
PROGRAMING STUDY GUIDE

eeeeeee

1219 COMPUTER

PROGRAMING

STUDENT STUDY GUIDE

FEBRUARY 1967

PX 3943-0-2

Prepared by: Defense Systems Training

!:!N~,!Y~E I DEFENSE SYSTEMS DIVISION

@ 1967 - SPERRY RAND CORPORATION

\

S.G.1219 (P) Effective Pages

LIST OF EFFECTIVE PAGES

PAGE CHANGE IN PAGE CHANGE IN
NUMBER EFFECT NUMBER EFFECT

Title Original 1.5-1 thru 1. 5-18 Original
ii thru vi Original 1.6-1 thru 1.6-26 Original
1.1-1 thru 1.1-8 Original 2.1-1 thru 2.1-30 Origi na 1
1. 2-1 thru 1.2-42 Original 2.2-1 thru 2.2-36 Origi na 1
1.3-1 thru 1.3-20 Original 2.3-1 thru 2.3-56 Original
1.4-1 thru 1.4-32 Original 3.1-1 thru 3.1-50 Original

ii

S.G.1219 (P)FRONT MATTER

USE OF YOUR STUDY GUIDE
FOR PROGRAMING TRAINING

PUBLICATIONS

This publication is for your use while studying programing of the 1219 Computer.
You may place in this book any notes that will help you for reviewing later on in
the class, or that will help you when you are on the jOb. You may retain this
publication for your personal use.

OTHER PUBLICATIONS

This publication was designed to help you study the available UNIVAC Manuals and
allow you easier access to particular information desired. The study guides in
this publication are to be used for training purposes only and are not meant to
supersede or replace any other publications.

PRESENTATION OF COURSE MATERIAL

The presentation of course material on the 1219 Computer is according to study guide
topics. Each topic will be presented by the instructor. He will assign certain
sections of the study guides to enable you to study more effectively the information
that has been presented or will be presented in class. The study guides contain
training goals and objectives for the particular topic, information supplementing
existing manuals, references, and study questions included to help you measure
your understanding and help you learn the material.

iii

S.G.1219 (P)FRONT MATTER

OUTLINE OF CONTENTS

SECTION 1 - UNIVAC 1219 COMPUTER FUNf,TIONAL DESCRIPTION

1.1 General Description
1.2 Instruction Repertoire
1.3 Operator's Information
1.4 Program Development
1.5 Detailed Block Diagram of the 1219 Computer
1.6 Functional Input/Output

SECTION 2 - SOFTWARE

2.1 Trim II Assembler
2.2 Trim III Assembler
2.3 Operator Service Routines

SECTION 3 - PERIPHERAL EQUIPMENT

3-1. Peripheral Equipment

v

S.G.1219 (P)I.l

SECTION 1 - UNIVAC 1219 COMPUTER FUNCTIONAL DESCRIPTION

1.1. GENERAL DESCRIPTION

1.1-1. OBJECTIVES

To give the student additional information on the general characteristics of the
1219 computer.

1.1-2. INTRODUCTION

The 1219 computer is a versatile, stored-program, medium-scale, general-purpose
digital computer with solid state, parallel circuitry designed for maximum
reliability.

1.1-3. REFERENCES

PX 3288, Programers Reference Manual, Section I-A.

1.1-4. INFORMATION

a. General. The UNIVAC 1219 computer is a medium-scale, general-purpose,
digital computer. The 1219 has a standard computer word length of 18 binary digits
or bits, with the capacity to combine two binary words to do 36-bit arithmetic
operations. The computer uses one's complement binary arithmetic and logical
operations to manipulate data. This data is contained in the computer in two
types of storage devices.

One of these storage devices is the flip-flop register. The flip-flop is a
bistable electrical device. One of these two stable states is used to represent
a binary one and the other a binary zero. A series of these flip-flops is
combined to form a device for holding binary data. This is referred to as a
hardware register.

The second device for storing binary data is the magnetic core memory. This is a
nonvolatile storage device where binary information is represented by the direction
of magnetic flux in each core.

To solve a problem, a digital computer executes a series of instructions stored
wi thin its memory. This series of instructions, called a program, tells the
computer which functions to perform. The instructions are performed by the transfer
of the instruction from memory into hardware registers and the manipulation of
that information and/or additional information from memory, other registers, or
external sources.

The computer has a repertoire of more than 100 flexible, single-address instructions
with provisions for address or operand modification by eight index registers.

1. 1-1

S.G.1219 (P)l.l

b. Operational. The computer consists of four functionally definable
sections as shown in figure 1.1-1. These sections, classified by the function '~
which they perform, are the control section, the I/O section, the arithmetic section
and the memory sectiori.

1. Control Section. The control section provides the timin9,
instruction translation, and operational sequencing require~' for performance under
either manual operation or operation under program control.

For manual operation, control panels contain those switches and indicators with
which the computer may be sequenced, under operator control, through the functions
of an instruction, allowing each operation and its results to be visually displayed
and examined. '

2. I/O Section. The I/O section contains optional 4, 8, 12, or 16
input/output channels used for communication between the computer and associated
peripheral devices or other computers. Circuits contained within the I/O section
are the I/O registers, priority circuits, and associated circuits requi~ed to
logically initiate the input and output signal and data transfers. Thus, the I/O
section provides the necessary buffer between the main computer circuitry and the
peripheral communicating devices.

3. Arithmetic Section. The arithmetic section of the computer performs
the arithmetic and logic functions to present a solution to a given problem. The
arithmetic functions include addition, subtraction, multiplication, division,
shifting, and scaling. The logic functions include masking, selective substitution,
comparisions, and word transfers between the components of the arithmetic section
or between the arithmetic section and the computer core memory.' The circuits ' '
contained within the arithmetic section include a 36-bit A-register which is
subdivided into two 18-bit registers, AU and AL, the X-register, the D-register,
the W-register, and the subtractive type adder.

The arithmetic section employs one's complement binary arithmetic to perform these
arithmetic and logic functions. The control section utilizes the arithmetic section
to modify operands and addresses.

4. Memory Section. The memory section consists of a main core storage
memory, a core storage control memory, a bootstrap memory, and the associ~ted
addressing, control, and transfer logic. The main memory has the capability of
storing optional 8k, 16k, or 32k, 18-bit binary words with provisions for expansion
to 65k. It is used to store programs, constants, and input/output data. It is
bit-oriented and operates on the cnincident current principle.

The bootstrap memory is word-organized,permanent storage for fixed instructions and
constants and provides for automatic initial loading of programs and for automatic
recovery in the event of program failure. The contents of the bootstrap memory,
32, 18-bit words, are unalterable.

The control memory contains either 128 or 256 storage addresses, depending upoh the
optional operating modes contained within the equipment. It provides storage for
the buffer control words and contains the index registers, fault registers, real­
time clock registers, and the scale factor shift count register. The control
memory is a word-organized magnetic core memory with a cycle time of 500 nanoseconds.

1.1-2

S.G.1219 (P)l.l

CONTROL ARITHMETIC
SECTION SECTION

- --
-
TI MING FUNCTION MATHEMATICAL AND

OPERATION CONTROL
LOGICAL OPERATIONS

CODE TRANSLATION

~ 1

,~ ~ ~

COMPUTERS I N PUT /OUTPUT MEMORY - -...
SECTION SECTION

.--- ..
SINGLE CHANNEL PERMANENT STORAGE PERIPHERAL DUAL CHANNEL FOR 8K, 16K, 32K, _ DEVICES .- ES1 OR 65K 18-BIT

ESA WORDS
INTERCOMPUTER

Figure 1.1-1. UNIVAC 1219 Computer Simplified Block Diagram

1. 1-3

S.G.1219 (P)l.l

c. Registers and Their Contents. All registers in the computer may be
classified as addressable or unaddressable. Those discussed here will be other
than the normal core storage registers. Addressable registers are directly
available to the programer through computer instructions. The other functional
registers are nonaddressable.

ll. Addressable Registers

a) ~. A 36-bit arithmetic accumulator which:

1) Contains the product of two 18-bit quantities
2) Contains the 36-bit dividend for a divide instruction
3) Is used as an accumulator for double length arithmetic

and logical functions
4) Has shifting capabilities and complementing

capabilities

b) AU. The upper accumulator (most significant 18 bits) of A
which:

1) Contains a mask for logical instructions
2) Captures the remainder for the divide process
3) Has shifting capabilities
4) Has complementing capabilities

c) AL. The lower accumulator (least significant 18 bits) of A
which:

1) Is used as the main accumulator for the arithmetic
section for all functions

2) Contains quotient for the divide process; contains
sum for add

3) Has shifting capabilities
4) Has complementing capabilities

d) ~. The contents of the active index r~2ister in control
memory which are used to modify ~ to form an address or an odd-numbered instruction
less than ~ and, therefore, not illustrated on the block diagram. B is an 18-
bit one's complement number that may be used to increment or decrement. When the
quantity y + B is used as an address, only the number of lower order bits
sufficient to fill the S-register are transmitted.

e) ICR. An index control register (3 bits) contains the index
register identifier currently active in address or operand modification requested
by instructions. Anyone of eight index registers may be selected by the numerical
value entered into this register by the program.

f) f. Program address register, P, (i.e., the address of the
instruction currently being entered for execution). The contents of Pare
incremented by one in the arithmetic section as soon as the instruction is
transferred from memory. If the computer is stopped, the P register exhibits the
address of the next instruction, (P) + 1. This is incremented by one again if the
condition stated by a skip instruction is satisfied. When the current instruction
is a return jump, (P) + 1 is stored in the core location specified by the

1. 1-4

S.G.1219 (P)l.l

instruction, and the entrance address of the new routine is entered into the
program address register. When the return jump is the result of an interrupt, (P)
is stored in the core location specified by the instruction since the interrupt
condition does not initiate the (P) + 1 sequence.

g) SR. A 5-bit special register through which the program has
control of the 4096 word modules in core memory (in all instructions numbered
under 50S except jump and enter constant or add constant instructions). When the
23 bit contains one, the remaining bits of SR are used to extend u for the address
instead of the upper bits of p. If the 23 bit of SR is zero, the most significant
bits of P extend u for the address. Therefore, y (the address) equal to up or
uSR is determined by the 23 bit of SR. (Active if 23 = 1.) Refer to paragraph 1.3.

2. Nonaddressable Registers

a) ~U. An IS-bit FF-register associated with control memory.
It is used to hold and update buffer limits during I/O operations and to hold
contents of the currently active index or B register, located in control memory,
prior to updating.

b) ~O. Two IS-bit output buffer registers for transferring data
or instruction words (external function) to external devices which may include
other computers. The Co-register is the buffer register for the odd-numbered
channels (1, 3, 5 and 7) and the CE-register is for the even-numbered channels
(0, 2, 4 and 6). These two output registers may be linked in consecutive "even­
odd" pairs to permit 36-bit parallel output transfers when words larger than IS
bits are desired.

c) ~O & ~E, Two IS-bit output buffer registers for channels lOS
through 17S (optional).

d) Q. An IS-bit arithmetic exchange register holds an operand for
the adder during arithmetic and I/O operations.

e) E. A 7-bit function register holds the function code of the
instruction being executed. The low order six bits hold the function code (f for
format 1 instructions and m for format 2 instructions), The most significant bit
will be set for format 2 instructions only. Computer control is directed from
this register.

f) ~l' A 16-bit address register which receives the address of a
main memory location at the beginning of a memory cycle and holds it to control the
translators and circuitry throughout the read/write cycle. The S-register may
receive its address from the input/output section (which generates certain
assigned addresses), the control section, the arithmetic section, or from an input
channel connected to a device capable of specifying an address.

g) ~O. A 7- or S-bit address register which receives the address
of control memory locations. The So-register may receive addresses from the 51-
register, ICR-register, the I/O section, and the arithmetic section as well as
peripheral equipment capable of specifying an address.

1. l-S

S.G.1219 (P) 1.1

h) ~. An IS-bit shifting register in the arithmetic section.

i) J. An IS-bit exchange or communication register in the'
arithmetic section receives operands for arithmetic and logical instructions.

j) ~l. An IS-bit main memory buffer register for all transfers
to and from core memory. The Z-register communicates with all other sections of
the computer since core memory may contain instructions and data.

k) ~O. An IS-bit control memory buffer register for all transfers
to and from control memory locations. It communicates with all sections of the
computer.

1.1-6

S.G.1219 (P) 1. I

NAME:

1.1-5. STUDY QUESTIONS

a. What are the four major sections of a computer and what is the function
of each?

c. What is meant by one's complement binary arithmetic?

Ii ()O :?'- l 9-- / - 7 () I dOC)
.;- 'I (7-0 (..> -----I OC) eJd()

~~
CJ 00 0 I :.- I

d. Explain the difference between addressable and nona~essable registers.

I

1. 1-7

S.G.1219 (P)l.l

e. Explain the difference between the B-register and the Bu-register.

1.1-8

S.G.1219 (P) 1.2

SECTION 1 - UNIVAC 1219 COMPUTER FUNCTIONAL DESCRIPTION

1.2. INSTRUCTION REPERTOIRE

1.2-1. OBJECTIVES

a. To provide a means of study of the instruction repertoire by classified
types to improve your understanding and use of the various instructions.

b. To provide study questions on the use of the instructions.

1.2-2. INTRODUCTION

In order to program the 1219 it is necessary that the programer have a complete
understanding of the instruction repertoire. It is the purpose of this section to
aid you in the study of the instruction repertoire and its use.

1.2-3. REFERENCES

PX 3288, Programers Reference Manual, Section I-C & 1-0

1.2-4. INFORMATION

a. Symbol Conventions. See table 1.2-1.

b. Philosophy of Memory Address Control. The computer main core memory is
built in modules of 4096 memory locations. The twelve bit constant u of the in­
struction word can designate one of these locations in any bank of memory. In order
to designate a specific bank of memory in addi tion to a location wi thin the bank the
value u must be extended upward. For a memory size of 4096 times 2n the computer
must be capable of extending u upward in magnitude n bits. These n bits are taken
from those bits of SR 20 - 22 + 24 or from those bits of P above the twelve lower
order bits. The programer has control over the activity of SR through which he may
specify any address in memory. Refer to paragraph 1.2-4c, Word Format, for detailed
uses of P and SR.

c. Instruction Word Formats. Two basic instruction word formats are used
by the computer, format I, and format II.

1. Format I Instructions.

k 18 Bi ts >1

f u

f: function code, six high order bits
u: twelve low order bits

1.:2-1

S.G.1219 (P)1.2

SYMBOL

AU

AL

A

B

f

F

k

m

M

NI

P

SR

u

()

()i

()f

()n

(Y + I, Y)

L()()
or

() . ()

() v ()

() + ()

(), or ()

() . ()

(Y)

"CONSOLE" and
"CONTROL PANEL"

xY

1.2-2

TABLE 1.2-1 SYMBOL CONVENTIONS

DESCRIPTION

Upper accumulator, IS-bit arithmetic register.

Lower accumulator, IS-bit arithmetic register.

AU and AL linked together to form one 36-bit arithmetic register.

Contents of the active index register, IS-bit one's complement.

Function code, high order six bits of all instruction words.

Function Register, seven bits.

Designator contained in format II instructions, six bits.

Minor function code contained in format II instructions, six bits.

Memory word specified by (y), (y + B), L(y)(AU) or L (y + B)(AU) of
compare instruction.

Next instruction.

The program address register.

Special register, 5-bit core memory bank designator.

The low order 12 bits contained in format I instruction words.

u prefaced with core memory bank designator bits of P.

u prefaced with core memory bank designator bits of SR.

u extended or ~ or uSR'

The address or constant formed by y or y + B with or without sign
extension.

Contents of the address or register.

Initial contents of the address or register.

Final contents of the address or register.

Designates any single nth bit of the contents of a register.

Designates the contents of two consecutive memory locations linked
together to form a 36-bit word. Address Y + I contains the most sig­
nificant half of the word while address Y contains the least significant
half.

The colon in a logical expression indicates comparison.

The bit-by-bit or logical product (logical AND) defined by the table:

mtl 000
101

rttt
LO~i~al sum, or inclusive OR defined by the table:

001
I I I

Half add, Half subtract, or exclusive OR defined by the table:

m-1
001
I I 0

The one's complement of the contents of the address or register.

Algebraic product of the contents of two locations.

When the contents of Yare used as an Address only that lower portion of
the word that can be contained in S is transferred.

Transfer the quantity stated at the left of the symbol to the address or
register stated at the right of the symbol.

Are used to deSignate I/O console or the computer control panel.

x preceding some symbol indicates that the sign of the 12-bit constant
has been extended to produce an IS-bit word, i.e.,

xY = ull •.. ull ull uo

6 Bits 12 Bits

S.G.1219 (P) 1.2

The definition and usage of u are determined by the function code utilizing u in
two distinct manners:

I a) u Used as a Constant. In this case, u itself is the operand
and requires no further memory reference; however, u is extended to 18 bits. (Re­
fer to paragraph 1.2-4d, List of Instructions.)

b) u Used as an Address. In this case, u is used as the lower
order 12 bits of the base address referring to a memory cell. The base address is
16 bits, designated as up or uSR' and is described below:

up is defined as a 16-bit address whose four high order bits consist of the four
higher order bits of P and whose twelve low order bits are u.

r= 16 Bi ts -----:..I~I

----~--~'~'--------~------~,
P15~12 u

uSR is defined as a 16-bit address whose four high order bits consist of the three
lower bits and the high order bit of SR and whose twelve low order bits are u.

SR

1< 16 Bi ts .,

uSR 115 1 14 - 12111 ---- 0 I
~' ., I

u
SR4 SR2-0

If' = 1 when ACTIVE

I 3 2--- 0 1

Certain format I instructions allow the use of either up or USR as the operand ad­
dress; for these instructions uSR is used if SR is active andup is used whenever SR is
inactive. (Refer to paragraph 1.2-4d, List of Instructions.)

2. Format II Instructions.

f< 18 Bits ~
117 12111 6 I 5 01 , II It J y

k f m

f: six-bit function code (always equal to octal 50)
m: six-bit minor function code
k: six low order bits

Format II instructions perform a variety of operations and can be classified in two
instruction categories:

a) No Memory Address Needed. In this case, the information exist­
ing in the computer's arithmetIc or control registers and the value k are sufficient
to perform the specified operation.

1. ~-3

S. G. 1219 (P) 1. 2

b) Initiate Input/Output Buffer. In this case, the two memory
cells immediately following the instruction are used to contain the buffer control
words. The complete instruction must therefore occupy three sequential memory
cells; the format is as follows:

Any Address

n I 17 12 I 11 61 5 a I/O Instruction
\ w ' l '\

f m k

n + 1 I 17 16 15 a TAC Word

CDMj J w
Buffer Terminal Address

Unassigned

n + 2 I 17 16 15 a I lAC Word

MOdiftJ

,
Buffer Initial Address

Monitor

Bi t 17: CDM of n + 1 (termi nal addres s control word) is the conti PUO)! ~
data mode identifier~ If equal to one the computer I/O section operates
fn the continuous data mode. If equal to zero a normal buffer is exe­
cuted.

Bit 17: Modifier of n + 2 (initial address control word); if equal to
one the buffer current (initial) address is decremented for each word
transferred in or out; if equal to zero the buffer current address is
incremented.

Bit 16: Monitor of n + 2 (initial address control word); if equal to
one the monitor interrupt occurs upon successful completion of the
last transfer; if equal to zero no monitor interrupt will occur.

NOTE

Normal buffer termination occurs when the incremented/decre­
mented buffer current address is equal to the buffer terminal
address. A buffer is terminated when tests in the control
section detect buffer control address equality.

3. I/O Buffer Initiating Instructions. During the execution of any
instruction that initiates a buffer three main memory references are involved.

a) The I/O instruction is extracted from memory and interpreted by
the control section and sets I/O active on the specified channel.

b) The terminal address control word is transferred from the loca­
tion following the I/O instruction to the control memory location assigned to that
type buffer terminal address control word.

1.2-4

S.G.1219 (PJl.2

c) The initial address control word is transferred from the loca­
tion following the TAC word in main memory to the control memory location assigned
to that type buffer current address word.

Computer control reads the next sequential instruction and continues the program
leaving the input/output section with the task of handling the transfers. The input/
output section generates the addresses in control memory to examine the control words
placed there by the preceding steps when it receives a request for word transfer from
the device on the activated channel. For the actual word transfer the I/O section
robs one main memory cycle from the program being executed.

d. List of Instructions (By Classified Types). Tables 1.2-3 through 1.2-15
list the repertoire of instructions for the computer. Common usage and examples are
included with instructions where the meaning may not be obvious. No attempt has
been made to indicate more sophisticated use. The instructions are listed and de­
fined in the following format.

(Octal code) (Instruction name) (TRIM code) (Symbolic summary)

(Execution time)

(Definition of the y address or constant)

(Text defining the instruction in detail)

(Examples and/or notes if any)

The symbolic summary expression will use the symbol Y to include y or y + B which­
ever is stated in the text for that instruction.

1. Enter Type Instructions. See table 1.2-3.

2. Store Type Instructions. See table 1.2-4

3. Modifying Type Instructions. See table 1.2-5.

4. Jump Instructions. See table 1.2-6.

a) Unconditional Jumps. See table 1.2-6.

b) Conditional Jumps. See table 1.2-7.

1.2-5

S.G.1219 (P)1.2

TABLE 1.2-2. UNIVAC 1219 COMPUTER REPERTOIRE OF INSTRUCTIONS

CODE

02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
51
52
53
54
55
56
57
60
61
62
63
64

1.2-6 L)"

SYMBOL

CMAL
CMALB
SLSU
SLSUB
CMSK
CMSKB
ENTAU
ENTAUB
ENTAL
ENTALB
ADDAL
ADDALB
SUBAL
SUBALB
ADDA
ADDAB
SUBA
SUBAB
MULAL
MULALB
DIVA
DIVAB
IRJP
IRJPB
ENTB
ENTBB
JP
JPB
ENTBK
ENTBKB
CL
CLB
STRB
STRBB
STRAL
STRALB
STRAU
STRAUB
SLSET
SLCL
SLCP
IJPEI
IJP
BSK
ISK
JPAUZ
JPALZ
JPAUNZ
JPALNZ
JPAUP

DESCRIPTION

Compare Y
Compare Y + B
Selective substitute
Selective substitute Y + B
Masked compare Y
Masked compare Y + B
Enter AU, Y
Enter AU, Y + B
Enter AL, Y
Enter AL, Y + B
Add Y, 18 bi t
Add Y, + B, 18 bit
Subtract Y, 18 bit
Subtract Y + B, 18 bit
Add Y, 36 bit
Add Y + B, 36 bit
Subtract Y, 36 bit
Subtract Y + B, 36 bit
Multiply Y
Multiply Y + B
Divide, Y
Divide, Y + B
Indirect RJP, Y
Indirect RJP, Y + B
Enter B, Y
Enter B, Y + B
Jump, Y
Jump, Y + B
Enter, B, U
Modify, B, U
Store zero, Y
Store zero, Y + B
Store, B, Y
Store B, Y + B
Store AL, Y
Store AL, Y + B
Store AU, Y
Store AU, Y + B
Selective set (lOR), Y
Selective clear (AND), Y
Selective complement (XOR), Y
Indirect jump (RIL), Y
Indirect jump, Y
Increment B, skip, Y
Decrement index, skip, Y
Jump AU zero, Y
Jump AL zero, Y
Jump AU not zero, Y
Jump AL not zero, Y
Jump AU positive, Y

TIME IN tLs

4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6

14
14
14
14
6
6
4
4
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
2
2
2
2
2

CODE

65
66
67
70
71
72
73
74
75
76
5001
5002
5003
5011
5012
5013
5014
5015
5016
5020
5021
5022
5024
5026
5027
5030
5032
5034
5036
5041
5042
5043
5044
5045
5046
5047
5050
5051
5052
5053
5054
5055
5056
5057
5060
5061
5062
5063
5072
5073

S.G.1219 ((JH.2

TABLE 1.2-2. UNIVAC 1219 COMPUTER REPERTOIRE OF INSTRUCTIONS (CONT.)

SYMBOL

JPALP
JPAUNG
JPAfJ\JG
ENTALK
ADDALK
STRICR
BJP
STRADR
STRSR
RJP
SIN
SOUT
SEXF
IN
OUT
EXF
RTC
INSTP
OUTSTP
SRSM
SKPIIN
SKPOIN
WRFI
OUTOV
EXFOV
RIL
EXL
SIL
SXL
RSHAU
RSHAL
RSHA
SF
LSHAU
LSHAL
LSHA
SKP
SKPNBO
SKPOV
SKPNOV
SKPODD
SKPEVN
STOP
SKPNR
RND
CPAL
CPAU
CPA
ENTICR
ENTSR

DESCRIPTION

Jump AL positive, Y
Jump AU negative, Y
Jump AL negative, Y
Enter AL, Y
Add U, 12 bi ts
Store ICR, Y
Decrement B, jump, Y
Store address, Y
Store SR, deactivate SR, Y
Return jump, Y
Set input active
Set output active
Set external function active
Initiate input buff, k
Initiate output buff, k
External function
Enable real-time clock
Terminate input, k
Terminate output, k
Set resume ff (lntercomp)
Skip input inact, k
Skip output inac, k
Wait for interrupt
Force output one word, k
Force Ext function one word, k
Remove interrupt lockout
Remove Ext interrupt lockout
Set interrupt lockout
Set Ext interrupt lockout
Right shift AU, k
Rig h t s h i f tAL, k
Right shift A, k
Scale A left, k, SF
Left shift AU, k
Left shift AL, k
Le f t s h i f t A, k
Skip console key, k
Skip no borrow
Skip overflow
Skip no overflow
Skip L(AU, AL) odd parity
Skip L(AU, AL) even parity
Stop console key, k
Skip no resume ff (intercomp)
Round AU
Complement AL
Complement AU
Complement A
Enter ICR, k
Enter SR, k

TIME IN f.1s

2
2
2
2
4
4
2
4
4
4
2
2
2
6
6
6
2
2
2
2
2
2
2
2
2
2
2
2
2

2-10
2-10
2-20
2-20
2-10
2-10
2-20

2
2
2
2
2
2
2
2
2
2
2
2
2
2

1.:2-7

S.G.1219 (P)1.2

10

11

12

13

32

33

1.2-8

TABLE 1.2-3. ENTER TYPE INSTRUCTIONS

ENTER AU (ENTAU)
Execution time:
y = up or uSR
Clear AU. Then transmit (y) to AU.

ENTER AU (ENTAUB)

(Y)~AU

4 microseconds

(Y)~AU

Execution time: 4 microseconds
y = up or uSR
Clear AU. Then transmit (y + B) to AU.

ENTER AL (ENTAL)
Execution time:
y = up or uSR
Clear AL. Then transmit (y) to AL.

ENTER AL (ENTALB)

(Y) ~AL

4 microseconds

Execution time: 4 microseconds
y = up or uSR
Clear AL. Then transmit (y + B) to AL.

ENTER B (ENTB)
Execution time:
y = up or uSR
Transmit (y) to BICR

(Y)~B Reg
4 microseconds

The full 18 bits of (y) are transmitted to the B-register
(a normally addressable core cell).

ENTER B (ENTBB)
Execution time:
y = up or uSR
Transmit (y + B) to BICR

(Y) ~B Reg
4 microseconds

The full 18 bits of (y + B) are transmitted to the B
register (a normally addressable core cell).

36

70

50 72

50 73

S.G.1219 (P)1.2

TABLE 1.2-3. ENTER TYPE INSTRUCTIONS (CONT.)

ENTER B WITH CONSTANT (ENTBK)
Execution time:
y = u (sign extended to 18 bits)
Clear B. Then transmit y to B.

NOTE

xY~B

2 microseconds

u is a 12-bit, one's complement number contained within
the instruction; it does not refer to an address.
Example of enter B with constant when u = 7701:

B. = any value
1

Bf = 777701

ENTER AL WITH CONSTANT (ENTALK)
Execution time:
y = u (with sign extended to 18 bits)
Clear AL. Then transmit y to AL.
Example of enter AL with constant when
u = 0001:

(AL). = any value
1

(AL)f = 000001 (+1)

xY~AL

2 microseconds

Example of enter AL with constant when u = 7776:

(AL). = any value
1

(AL)f = 777776 (-1)

NOTE

u is a 12-bit, one's complement number within the
instruction; it does not refer to an address.

ENTER INDEX CONTROL REGISTER (ENTICR)
Execution time:
Clear the index control register. Then
transmit the three, low-order bits of
k to the ICR.

ENTER SPECIAL REGISTER (ENTSR)
Execution time:
Clear the special register. Then trans­
mit the five low-order bits of k to the
SR. (SR3 = 1 activates the SR.)

k2_0~ICR
2 microseconds

k4_0~SR
2 microseconds

1. 2-9

S.G.1219 (P) 1.2

40

41

42

43

44

45

46

47

50

1. 2-10

TABLE 1.2-4. STORE TYPE INSTRUCTIONS

CLEAR Y (STORE ZERO) (CL)
Execution time:
y = up or uSR
Store an 18-bit word of zeros at
storage address y.

CLEAR Y (STORE ZERO) (CLB)
Execution time:
y = up or uSR
Store an 18-bit word of zeros at
storage address y + B.

STORE B(STRB)
Execution time:
y = up or uSR
Store B at storage address y.

STORE B (STRBB)
Execution time:
y = up or uSR
Store B at storage address y + B.

STORE AL (STRAL)
Execution time:
y = up or uSR
Store (AL) at storage address Y.
(AL) f = (AL\

STORE AL (STRALB)
Execution time:
y = up or uSR
Store (AL) at storage address y + B.
(AL)f = (AL)i

STORE AU (STRAU)
Execution time:
y = up or uSR
Store (AU) at storage address y.
(AU) f = (AU) i

STORE AU (STRAUB)
Execution time:
y = up or uSR
Store (AU) at storage address y + B.
(AU) f = (AU) i

(See format 2 instructions immediately
following function code 77.)

O~Y

4 microseconds

O~Y

4 microseconds

B~Y

4 microseconds

B~Y

4 microseconds

(AL)~Y

4 microseconds

(AL)~Y

4 microseconds

(AU)~Y

4 microseconds

(AU)~Y

4 microseconds

72

74

75

S.G.1219 (P)1.2

TABLE 1.2-4. STORE TYPE INSTRUCTIONS (CONT.)

STORE INDEX CONTROL REGISTER
(STRICR)
Execution time:
y = up
Replace the low-order six bits of (y)
with a six-bit value consisting of
the four lower-order bits equal to
the address of the index register and
the remaining two bits equal to zero.
As this instruction effects a six-bit
partial transfer, the upper 12 bits
of (y) remain unchanged.
(ICR)f = (ICR)i

STORE ADDRESS (STRADR)
Execution time:
y = up
Replace the low-order 12 bits of (y)
with the low-order 12 bits of (AL).
As this instruction effects a partial
transfer, the higher-order six bits
of (y) remain undisturbed.

Examples of a store address instruction:

CAL). = 742504
1

(y). = 567777
1

(Y) f = 562504

STORE SPECIAL REGISTER (STRSR)

Execution time:
y = up
Replace the low-order six bits of (y)
with a six-bit value of which the five
low-order bits are equal to special
register with the remaining bit equal
to zero, then clear SR. As this in­
struction effects a six-bit partial
transfer, the upper 12 bits of (y)
remain undisturbed.
(SR)f = 0

(ICR)~Y3_0

4 microseconds

(AL)11_0 ~ Y11 - 0
4 microseconds

(SR) ----:. Y 4-0
4 microseconds

1. 2-11

S.G.1219 (P) 1.2

37

56

57

73

1. 2-12

TABLE 1.2-5. MODIFYING TYPE INSTRUCTIONS

MODIFY B WITH CONSTANT (ENTBKB)
Execution time:
y = u (sign extended to 18 bits)
Add y to B (add a constant to B).
Note that u is a 12-bit, one's
complement number contained within
the instruction and can be used to
increment or decrement B.

B SKIP (BSK)

Execution time:
y = up
Test Band (y) for equality. Skip
next instruction if equal; otherwise
increment B by one and read the next
instruction.

INDEX SKIP (ISK)

Execution time:
y = up
If (y) # 0, subtract one from (y)
leaving the result in y, and take
the next instruction; otherwise
skip the next instruction leaving
(y) unaltered.

B JUMP (BJP)

Execution time:
y = up
If B # 0, subtract one from B, then
jump to y; otherwise take the next
instruction leaving B unaltered
(neg zero # 0).

NOTE

Ri + xY~B Reg
2 microseconds

If B = (Y), ski p NI
If B # (Y), (B) + 1
~n, read NI
4 microseconds

If (Y) = 0, skip NI
If (Y) # 0, cy) - 1
~Y, read NI

6 microseconds

If B # 0, B-l~
B-Reg [,. Y~P
If B = 0, Execute NI
2 microseconds

As B is a one's complement number and can take values
less than zero, the B jump will be effective only for
program loops where B is initially positive.

30

31

S. G. 1219 (P) 1. 2

TABLE 1.2-6. UNCONDITIONAL JUMPS

INDIRECT RETURN JUMP (IRJP) (P) + l~(Y);
(Y) + l-?>P

Execution time: 6 microseconds
instruction executed from running program:
y = up
Store (P) + 1 at the address which is the low-order 16 bits of
(y), then increment that address by one and enter it into the
program address register.

Instruction executed from entrance register on interrupt: y - u.

NOTE

u is 12 bits

Store (P) at the address which is the low-order 16 bits of (y),
then increment that address by one and enter it into the pro­
gram address register.

Example of an indirect return jump executed from address 22000:

Address Initial Final Explanation
Contents Contents

22000 30 6500 Same Execute subroutine from main
program.

26500 01 7420 Same Constant defining location of
desired subroutine.

17420 37 2164 02 2001 Subroutine exit address.

17421 Same Subroutine entrance address
(control is transferred here
from indirect return jump).

The effect of the above sequence, upon execution of the indirect
return jump at address 22000, is to transfer control to the sub­
routine starting at address 17421, but at the same time letting
the subroutine know where to return control.

INDIRECT RETURN JUMP (IRJPB)

Execution time:
Instruction executed from running program:
y = up

(P) + l~(Y);
(X) + l~P
6 microseconds

Store (P) + 1 at the address which is the low-order bits of
(y + B), then increment that address by one and enter it into
the program address register.

Instruction executed from entrance register on interrupt: y = u.

NOTE

u is 12 bits

Store (P) at the address which is the low-order 16 bits of (y +
B) then increment that address by one and enter it into the pro-
2ram address register.

1.2-13

S.G.1219 (P) 1.2

34

35

54

55

76

77

1. 2-14

TABLE 1.2-6. UNCONDITIONAL JUMPS (CONT.)

DIRECT JUMP (JP)
Execution time:
y = up
Unconditional jump to y. (Set P = y.)

DIRECT JUMP (JPB)
Execution time:
y = up
Unconditional jump to y + B.

NOTE

Y~P; NI = (Y)
2 microseconds

Y~P; NI = (Y)
2 microseconds

Since B is an 18-bit, one's complement number, care must be
taken when using this instruction. In addition, it is possi­
ble that the address y + B may not be relative to the same
core bank from which the (35) DIRECT JUMP was executed; con­
sider a direct jump with y = 03560 and b = 010000. In this
case y + B = 03560 + 010000 = 13560.

INDIRECT JUMP AND ENABLE
INTERRUPTS (IJPEI)
Execution time:
y = up Address = (y)15-0

(Y)~P; enable
interrupts
4 microseconds

Remove interrupt lockout (enable interrupts). Then jump to the
address which is the low-order 16 bits of (y). An application
of this instruction is the termination of a subroutine activated
by an interrupt.

INDIRECT JUMP (IJ)
Execution time:
y = up Address = (y)15-0

(Y)~P

4 microseconds

Jump to the address which is the low-order 16 bits of (y).

DIRECT RETURN JUMP (RJP) (P) + l~Y;
Y + l~P

Execution time: 4 microseconds
y = up
Store (P) + 1 at y, then jump to y + 1. This instruction
transfers to y a full 18-bit word, the lower 16 bits being the
address (P) + I with the upper two bits set to zero.

When this instruction is executed from an interrupt entrance
register by an interrupt, store (P). Do not initiate the (P)
+ 1 sequence.

ILLEGAL CODE - Jump to fault entrance register, address 0, or
address 500 (depending upon position of AUTO RECOVERY switch).
Execution time: 2 microseconds

60

61

62

TABLE 1.2-7. CONDITIONAL JUMPS

JUMP AU ZERO (JPAUZ)

Execution time:
y = up
Jump to y, for example, set P = y, if:

S.G.1219 (P) 1.2

If (AU) = 0, . Compare
not set, @ (AL) = M, .
Compare set, e L(AL) (AU)
= M, •
Compare set, Y~P
2 microseconds

1) Compare stage of the comparison designator is not set and
(AU) = O. (Negative zero acts as not zero.)

or

2) Compare stage of the comparison designator is set and the
equals stage of the comparison designator is set.

Otherwise, execute the next instruction.

JUMP AL ZERO (JPALZ)

(JPEQ)

Execution time:
y = up
Jump to y, for example, set P = y, if:

If (AL) = 0, • Compare
not set, @ (AL) = M, .
Compare set, +
L(AL)(AU) = M, .
Compare set, Y~P
2 microseconds

1) Compare stage of the comparison designator is not set and
(AL) = O. (Negative zero acts as not zero.)

2) Compare stage of the comparison designator is set, and the
equals stage of the comparison designator is set.

Otherwise, execute next instruction.

JUMP AU NOT ZERO (JPAUNZ)

Execution time:
y = up
Jump to y, for example, set P = y, if:

If (AU) # 0, . Compare
not set, <±> (AU) # M, •
Compare set, E>
L(AL)(AU) ~ M, .
Compare set, Y~P
2 microseconds

1) Compare stage of comparison designator is not set and
(AU) # O.

or

1. 2- L3

S.G.1219 (P)1.2

63

64

65

1. 2-16

TABLE 1.2-7. CONDITIONAL JUMPS (CONT.)

2) Compare stage of comparison designator is set and the
equals stage of the comparison designator is not set.

Otherwise, execute next instruction.

JUMP AL NOT ZERO (JPALNZ)

JUMP AL NOT EQUAL M (JPNOT)

Execution time:
y = up
Jump to y, for example, set P = y, if:

If (AL) ~ 0, . Compare
not set, ED (AL) ~ M .
Compare set, ED
L(AL) (AU) ~ M, .
Compare set, Y~P
2 microseconds

1) Compare stage of comparison designator is not set and
(AL) ~ o.

or

2) Compare stage of comparison designator is set and the
equals stage of the comparison designator is not set.

Otherwise, execute next instruction.

JUMP AU POSITIVE (JPAUP)

JUMP AL EQUAL OR GREATER
THAN M (JPMLEQ)
Execution time:
y = up
Jump to y, for example, set P = y, if:

1) Compare stage of comparison designator
(AU) ~ O.

or

2) Compare stage of comparison designator
than stage of comparison is not set.

Otherwise, execute next instruction.

JUMP AL POSITIVE (JPALP)
JUMP AL EQUAL OR GREATER
THAN M (JPMLEQ)

If (AU) Pos . Compare
not set, @ (AL) ~ M •
Compare set, @ L(AL) (AU)
~ M . Compare set, Y~P
2 microseconds

is not set and

is set and the less

If (AL) Pos, . Compare
not set, @ (AL) ~ M .
Compare set, EE>
L (AL)(AU) ~ M, .
Compare set, Y ~P

66

67

S. G. 1219 (P) 1. 2

TABLE 1.2-7. CONDITIONAL JUMPS (CONT.)

Execution time:
y = up
Jump to y, for example, set P = y, if:

2 microseconds

1) Compare stage of comparison designator is not set and
(AL) ~ o.

2) Compare stage of comparison designator is set and the
less-than stage of comparison designator is not set.

Otherwise,execute next instruction.

JUMP AU NEGATIVE (JPAUNG)
JUMP AL LESS THAN M (JPMGR)

If (AU) Neg • Compare
not set, <±> (AL) < M •
Compare set t <±>
L(AL)(AU) < M .
Compare set, Y ~ P

Execution time:
y = up
Jump to y, for example, set P = y, if:

1) Compare stage of comparison designator is not set and
(AU) less than zero.

or

2) Compare stage of comparison designator is set and the
less-than stage of comparison designator is set.

Otherwise, execute next instruction.

JUMP AL NEGATIVE (JPALNG)
JUMP AL LESS THAN M (JPMGR)

I f (AL) Ne g, EE> (AL) < M
. Compare se t, EE>

Execution time:
y = up
Jump to y, for example, set P = y, if:

L(AL) (AU) < M, .
Compare set, Y ~ P
2 microseconds

1) Compare stage of comparison designator is not set and
(AL) less than zero.

or

2) Compare stage of comparison designator is set and the
less-than stage of comparison designator is set.

Otherwise, execute next instruction.

1. 2-17

S.G.1219 (P) 1.2

c) Conditional Jump Features. The arithmetic conditional jump in­
structions may be used with associated compare instructions to obtain certain re­
sults according to the state of the comparison designator or they may be used inde­
pendently for other results.

The comparison designator is a 3-state bistable register which records the results
of a compare instruction (02, 03, 06 and 07) as follows:

1) The compare stage is set upon the computer's execution of
anyone of the compare instructions;

2) The less-than stage is set if a compare instruction finds
(AL) less than the contents of an addressed memory location, or L(AL)(AU) less than
the logical product of (AU) and the contents of the addressed memory location
(whichever applies).*

3) The equals stage is SET if a compare instruction finds (AL)
equal to the contents of an addressed memory location or finds the logical product
of (AL) and (AU) equal to the logical product of (AU) and the contents of the ad­
dressed memory location (whichever applies).~:~

The comparison designator is cleared by the execution of any instruction other than
the arithmetic conditional jump instructions (codes 60-67). Therefore, in order to
set the compare stages desired, a compare instruction must immediately precede a
single 60-67 instruction, or immediately precede the first of a consecutive string
of 60-67 instructions. Otherwise, these jump instructions are executed without
reference to the comparison designator.

The arithmetic conditional jump instructions 60-67 are used with or without an asso­
ciated compare instruction (02, 03, 06 and 07). If used without a preceding compare
instruction, the jump is executed upon satisfying the condition directly stated by
the instruction. If a compare instruction is used in conjunction with one or more
conditional jump instructions, the satisfaction of a jump condition is dependent
upon the set or not set state of certain stages of the comparison designator.

Table 1.2-8 shows the jump or no-jump conditions resulting from the combined and
separate uses of the compare and arithmetic conditional jump instructions. The
compare instructions use the following operands for comparison with (AL):(y) for
02; (y + B) for 03; for comparison with L(AL)(AU):L(Y)(AU) for 06; and L(y + B)(AU)
for 07.

5. Arithmetic Type Instructions. See Table 1.2-9.

*Note all compares are algebraic. Therefore when comparing a portion of or an
entire word the sign of that computer word must be considered.

1. 2-18

\
)

TABLE 1.2-8. JUMP OR NO-JUMP CONDITIONS

JUMP COMPARE COMPARE DESIGNATOR SET RESULTS
INSTR. DESIGNATOR EQUALS STAGE LESS-THAN STAGE IF A
CODE NOT SET . JUMP OCCURS

SET NOT SET NOT SET SET

60 JP if (AU) = 0 JP if (AL) = M No JP ::!~ ::!~ (AU) = 0 or (AL) = M

61 JP if (AL) = 0 JP if (AL) M No JP '" :::~ (AL) = 0 or M = .. '

62 JP if (AU) -f:. 0 No JP JP if (AL) f- M '" :::.: (AU) -f:. 0 or (AL) -f:. M '"

63 JP if (AL) f- 0 No JP JP if (AL) -f:. M ." ::!:: (AL) f- 0 or M '"

64 JP if (AU) ~ 0 '" '" JP if (AL) ~ M No JP (AU) POS. (AL) ~ M ", ", or

65 JP if (AL) ~ 0 ." _ ..
JP if (AL) ~ M No JP (AL) POS. (AL) ~ M ", ", or

66 JP if (AU) ~O ~~ '" No JP JP if (AL) < M (AU) NEG. (AL) < M ", or

67 JP if (AL) < 0 :::~ ::::; No JP JP if (AL) < M (AL) NEG. or (AL) < M

~:~Does not apply, and the next sequential instruction is executed.

~:~~:~ (AL) = (AL) if compared as a result of 02, 03 instructions.
M = (y)

(AL) = L(AU)(AL) if compared as a result of 06, 07 instructions
M = L(AU)(y)

en
0

.......
~
.......
-..0

.......

r", "'0
I

......
--0

~

S.G.1219 (P)1.2

14

15

16

TABLE 1.2-9. ARITHMETIC TYPE INSTRUCTIONS

ADD AL (ADDAL)
Execution time: 4 microsecunds
y = up or uSR
Add (y) to CAL) and leave the result in AL. Set overflow desig­
nator if overflow occurs.*

(AL)f are all ones if (AL)i and (y) are all ones.

ADD AL (ADDALB) (AL) + (Y) ~AL
Execution time~ 4 microseconds
y = up or uSR
Add (y + B) to (AL) and leave the result in AL. Set overflow de­
signator if overflow occurs.*

(AL)f are all ones if (AL)i and (y + B) are all ones.

SUBTRACT AL (SUBAL) (AL) - (Y)~AL

Execution time: 4 microseconds
y = up or uSR
Subtract (y) from (AL) and leave the difference in AL. Set over­
flow designator if overflow occurs.*

(AL)f are all ones if (AL)i are all ones and (y) are all zeros.

17 SUBTRACT AL (SUBALB) (AL) - (Y)~AL

20

Execution time: 4 microseconds
y = up or uSR
Subtract (y + B) from (AL) and leave the difference in AL. Set
overflow designator if overflow occurs.*

(AL)f are all ones if (AL)i are all ones and (y + B) are all zeros.

ADD A (ADDA) (A) + (Y + L, Y)
~A

Executive time: 6 microseconds
y = up or uSR
Add to (A) the double length (36-bit) number contained in storage
cells y + 1, y and leave the result in A. Set overflow designator
if overflow occurs.* The least-significant half is in cell y and
the most-significant half in y + 1. The sign of the double length
number is indicated by the most-significant bit of (y + 1). Ad­
dress y must be even; for example, the right-most octal digit must
be 0, 2,4, or 6.

NOTE

The instruction is executed in the following manner. The AU and
AL registers are linked to form a continuous 36-bit A register. Any

*The overflow designator is cleared only by the execution of instruction skip-on­
overflow (f m = 50:52) or instruction skip-on-no-overflow (f m = 50:53).

1. 2-20

S.G.1219 (P)1.2

TABLE 1. 2-9. ARITHMETIC TYPE INSTRUCTIONS (CONT.)

borrow required by AL comes from AU; any end-a round-borrow re­
quired by AU is blocked and recorded in the borrow designator,
leaving A uncorrected. The skip-on-no-borrow instruction (code
50 51) is used to test for required correction. Only add A or
subtract A instructions set the designator.

Example of a double add with y = 07506

(A)i = 201007430145
Address 07506 = 351123 (least-significant half)
Address 07507 = 077430 (most-significant half)

(A)f = 300440001271 - The result may be incorrect
since the addition of some
numbers results in an end­
around borrow. Since it is
blocked, the result will be
1 larger than it should be
(as in the example).

21 ADD A (ADDAB) (A) + (Y + 1, y)~A
Execu ti on time: 6 microseconds
y = up or uSR
Add to (A) the double length (36-bit) number contained in storage
cells y + B + 1, y + B, leaving the result in A. Set overflow
designator if overflow occurs.* The least-significant half is in
cell y + B and the most-significant half in cell y + B + 1. The
sign of the double length number is the sign of (y + B + 1). Ad­
dress y + B must be even. (See NOTE, instruction 20.)

22 SUBTRACT A (SUBA) (A) - (Y + L, Y)~A
Execution time: 6 microseconds
y = up or uSR
Subtract from (A) the double length (36-bit) number contained in
storage cells y + 1, y, and leave the difference in A. Set over­
flow designator if overflow occurs.* The least-significant half
is in cell y and the most-significant half in cell y + 1. The
sign of the double length number is the sign of (y + 1). Address
y must be even. The computer executes subtract A in a manner
analogous to the add A instruction. (See NOTE, instruction 20.)

*The overflow designator is cleared only by the execution of instruction skip-on­
overflow (f m = 50:52) or instruction skip-on-no-overflow (f m = 50:53).

1. 2-2 1

S.G.1219 (P) 1.2

TABLE 1.2-9. ARITHMETIC TYPE INSTRUCTIONS (CONT.)

23 SUBTRACT A (SUBAB) (A) - (Y + I, Y)~A

24

25

26

Execution time: 6 microseconds
y = up or uSR
Subtract from (A) the double length number contained in storage
cells y + B + 1, y + B, and leave the difference in A. Set over­
flow designator if overflow occurs.* The least-significant half
is in cell y + B and the most-significant half in cell y + B + 1.
The sign of the double length number is the sign of (y + B + 1).
Address y + B must be even. The computer executes subtract A in
a manner analogous to the add A instruction. (See NOTE, instruc­
tion 20.)

MULTIPLY AL(MULAL) (AL) x (Y)~A
Execution time: 14 microseconds
y = up or uSR
Multiply (AL) by (y) leaving the double length product in A. If
the factors are considered integers, the product is an integer
in A. The multiplication process is executed on the absolute
values of the factors, then corrected for algebraic sign.

MULTIPLY AL (MULALB) (AL) x (Y)~A
Execution time: 14 microseconds
y = up or uSR
Multiply CAL) by (y + B) leaving the double length product in A.
If the factors are considered integers, the product is an integer
in A. The multiplication process is executed on the absolute
value of the factors, then corrected for algebraic sign.

DIVIDE A (DIVA) (A) ~ (Y); Quote ~AL,
Rem--AU

Execution time: 14 microseconds
y = up or uSR
Divide (A) by (y) leaving the quotient in AL and the remainder in
AU. The remainder always bears the sign of the dividend A. with
the results satisfying the relationship. 1

dividend = quotient x divisor + remainder

Set overflow designator if overflow occurs.* Examples of the four
possibl~ sign combinations of the dividend/divisor and the results:

Dividend Divisor Quotient Remainder

+5 +4 +1 +1
+5 -4 -1 +1
-5 +4 -1 -1
-5 -4 +1 -1

* The overflow designator is cleared only by the execution of instruction skip-on­
overflow (f m = 50:52) or instruction skip-on-no overflow (f m = 50:53).

1. 2-22

27

71

S.G.1219 (P) 1.2

TABLE 1.2-9. ARITHMETIC TYPE INSTRUCTIONS (CONT.)

DIVIDE A (DIVAB)

Execution time:
y = up or uSR

(A) :- (Y); Qu 0 t
~AL, Rem ~AU

14 microseconds

Divide (A) by (y + B)
in AU. The remainder
instruction 26.)

leaving the quotient in AL and the remainder
bears the sign of the di vidend, Ai' (See

ADD CONSTANT TO AL (ADDALK) (AL) + xY ~AL
Execution time: 2 microseconds
y = u (sign extended to 18 bits)
Add y to (AL) and leave the result in AL. The effect of this
instruction is to increment/decrement (AL) with a constant con­
tained within the instruction.

Example of add constant to AL when u

(AL) i = 057777

(AL)f = 060001 (incremented)

Example of add constant

(AL). = 067055
1

to AL when u

(AL)f = 067053 (decremented)

- 0002 (+2) -

= 7775 (-2)

50:60 ROUND AU (RND) If (AU) positive,
(AU) + (AL)17 ~
AL

Execution time:

If (AU) negative,
(AU) - (AL)' 17~
AL
2 microseconds

If (AU) is positive, add bit posItIon 17 of AL to (AU); if (AU) is
negative, subtract the complement of bit position 17 of AL from AU
and leave the resultant rounded (AU) in AL.
Ignore k. (AU)i = (AU)f'

An application of this instruction would be: a double length value
in A is normalized as far as possible to the left; however, only a
rounded, single-length number is required for the accuracy desired.
Set Overflow FF if overflow occurs.

6. Logical Type Instructions.

a) Format 1 Instructions. See Table 1.2-10.

1. :2-:23

S.G.1219 (P)1.2

TABLE 1.2-10. FORMAT 1 LOGICAL TYPE INSTRUCTIONS

00 ILLEGAL CODE - Jump to fault entrance register, address 0 or ad­
dress 500 (depending upon position of AUTO RECOVERY switch),
Execution time: 2 microseconds

01 ILLEGAL CODE - Jump to fault entrance register, address 0 or ad­
dress 500 (depending upon position of AUTO RECOVERY switch).

02

Execution time: 2 microseconds

COMPARE AL (CMAL) (AL): (Y)
Execution time: 4 microseconds
Y = up or uSR
Algebraically compare (AL) with (y) and set the comparison desig­
nator as follows:

1) Set the compare stage
2) Set the greater-than stage if (AL) > (y)
3) Set the equals stage if (AL) = (Y)
(AL) f = (AL) i

NOTE

The comparison designator is cleared by the execution of any sub­
sequent instruction other than codes 60-67, and no interrupt will
be honored while the designator is set.

03 COMPARE AL (CMALB) (AL):(Y)

04

1. 2-24

Execution time: 4 microseconds
y = up or uSR
Algebraically compare (AL) with (y + B) and set the comparison
designator as follows:

1) Set the compare stage
2) Set the greater-than stage if (AL) > (y + B)
3) Set the equals stage if (AL) = (y + B)
(AL) f = (AL) i

NOTE

The comparison designator is cleared by the execution of any sub­
sequent instruction other than codes 60-67, and no interrupt will
be honored while the designator is set.

SELECTIVE SUBSTITUTE (SLSU)

Execution time:
y = up or uSR

L(AU)' (AL) + L(AU) (y) ~ AL or
(Y)n ~ALn for (AU)n = 1
4 microseconds

Replace the individual bits of (AL) with bits of (y) correspond­
ing to ones in (AU), leaving the remaining bits of (AL) unaltered.

selective substitute: Example of

(AU)i =
(y)

007777- Mask
= 123451

666666 (AL)i =
(AL)f = 663451

05

06

07

51

S.G.]219 (P) 1.2

TABLE 1.2-10. FORMAT 1 LOGICAL TYPE INSTRUCTIONS (CONT.)

SELECTIVE SUBSTITUTE (SLSUB) U AU) , (A L) + L(AU) (Y) -7 A L
Execution time: 4 microseconds
y = up or uSR
Replace the individual bits of (AL) with bits of (y + B) correspond-
ing to ones in (AU), leaving the remaining bits of (AL) unaltered.

(AU) f = (AU) i

COMPARE WITH MASK (CMSK) L(AU)(AL):L(AU)(Y)
Execution time: 4 microseconds
y = up or uSR
Algebraically compare selected bits of (AL) with corresponding
bits of (y) and set comparison designator as follows:
1) Set the compare stage
2) Set the less-than stage if UAL)(AU) < L(y)(AU)
3) Set the equals stage if L(AL)(AU) = L(y)(AU)
(AL) f = (AL) i : (AU) f = (AU) i

NOTE

The comparison designator is cleared by the execution of any sub­
sequent instruction other than codes 60-67, and no interrupt will
be honored while the designator is set.

Example of compare with mask:

(AU)i = 007777 - Mask

(y) 123451

(AL) i = 222351
Compare 2351 with 3451
(AU)f = 007777: (AL)f = 222351

COMPARE WITH MASK (CMSKB) L(AU)(AL):(AU)(Y)
Execution time: 4 microseconds
y = up or uSR
Algebraically compare selected bits of (AL) with corresponding
bits of (y + B), and set the comparison designator as follows:

1) Set the compare stage
2) Set the less-than stage if L(AL)(AU)< L(y + B)(AU)
3) Set the equals stage if L(AL)(AU) = L(y + B)(AU)
(AU f = (AL) i: (AU) f = (AU) i

NOTE

The comparison designator is cleared by the execution of any sub­
sequent instruction other than codes 60-67, and no interrupt will
be honored while the designator is set.

SELECTIVE SET (SLSET)

Execution
y = up
Set the individual bits of
(y), leaving the remaining
bit-by-bit inclusive OR.

(AU v (Y) -7 AL or set
(AL)n for (Y)n = 1
4 microseconds

(AL) to one corresponding to ones in
bits of (AL) unaltered. This is a

1. :2-2')

S.G.1219 (P)1.2

52

53

50:61

50:62

TABLE 1.2-10. FORMAT 1 LOGICAL TYPE INSTRUSTIONS (CONT.)

Example of selective set:

(AL) i = 123456

(y) = 000077

(AL)f = 123477

SELECTIVE CLEAR (SLCL) L(AL) (y) ~ AL or
c I ear (AL) n for (y) n = 0

Execution time: 4 microseconds
y = up
Clear the individual bits of (AL) corresponding to zeros in (y),
leaving the remaining bits of (AL) unaltered. The effect of this
instruction is to compute the bit-by-bit (or logical) product of
(AL) and (y) leaving the result in AL.

Example of selective

(AL) i = 123456

(y) = 707070

(AL)f = 103050

SELECTIVE COMPLEMENT

clear:

(SLCP) (AL) @ (Y) ~ AL or com­
plement (AL) n for (Y) n = 1

Execution time: 4 microseconds
y = up
Complement the individual bits of (AL) corresponding to ones in
(y), leaving the remaining bits of (AL) unaltered, for example,
complement (AL)n for (y)n = 1. This is abit-by-bit exclusive OR.

Example of selective complement instruction:

(AL)i = 123456

(y) = 070007

(AL)f = 153451

COMPLEMENT AL (CPAL) (AL)' ~ AL
Execution time: 2 microseconds
Complement (AL), leaving the result in AL; ignore k.

NOTE

Thi s instruction effects a bi t-by-bi t complement wi th the following
exception: all zeros (positive zero) will remain all zeros.

COMPLEMENT AU (CPAU) (AU)' ~ AU
Execution time: 2 microseconds
Complement (AU), leaving the resul t in AU; ignore k. (See NOTE,
instruction 50:61.)

50:63 COMPLEMENT A (CPA) (AL)'~ A

1. 2-26

Execution time: 2 microseconds
Complement (A), leaving the resul t in A; ignore K. (See NOTE,
instruction 50:61.)

--"

S.G.1219 (P) 1.2

b) Examples of logical instructions. The selective type instructions
are explained more fully on the following pages.

SELECTIVE CLEAR
(LOGICAL PRODUCT) L(AL)(Y) ~AL

The most common use of the logical product in programing is an operation commonly
referred to as "masking". Masking is the process of lifting out a selected portion
of an operand and leaving undesired parts behind. This is done by placing a "mask"
in a core location, consisting of ones in the desired bit positions, and zeros in
the others. The logical product will then contain only bits from the other operand
corresponding to the ones in the core location, the other bits being zero. The
following example, using 12-bit registers, shows a masking of alternate octal digits
from an operand in AL.

mask in Y = III 000 III 000

(AL) = 001 010 all 100

L(AL)(Y) = 001 000 all 000

SELECTIVE SET A v Y = INCLUSIVE OR n n

The selective set instructions are used to force ones into selected bit positions
of an operand contained in AL. If a one is already in the selected bit position,
it will remain. The following example adds four to each octal digit 4 in AL.

(AL)

(y)

(AL) v (Y)

= 001 010 all 100

= 100 100 100 100

= 101 110 III 100

SELECTIVE COMPLEMENT (AL) + (Y) EXCLUSIVE OR

The selective complement instructions are used to complement selected bits of an
operand contained in AL. In the following example, alternate octal digits of an
operand in AL are complemented.

(AL)

(Y)

(AL) + (Y)

= 100 101 110 III

= III 000 III 000

= 011 101 001 III

SELECTIVE SUBSTITUTE L (AU) . (AL) + L(AU) . Y

The selective substitute instructions provide for replacing selected bits of an
operand contained in AL with corresponding bits of an operand Y. The bits to be
substituted are specified by ones in AU. In the following example, alternate octal
digits of an operand in AL are replaced by the corresponding octal digits of an
operand in AL are replaced by the corresponding octal digits in an operand Y.

(AU) = 000 III 000 III

(Ai]) = III 000 III 000 initial conditions
(AL) = 001 101 011 110

(Y) = 110 010 101 100
1 '1-.)-

• - -I

S.G.1219 (P)1.2

Our select bits in AU indicate that we wish to replace the second and fourth octal
digits, (counting from the left), of (AL) with the corresponding octal digits of Y,
yielding a result = 001 010 011 100.

First: (AU) = III 000 III 000

(AL) - 001 101 all 110 -

L(AU) (AL) = 001 000 011 000

Second: (AU) = 000 III 000 III

(Y) = 110 010 101 100

L(AU) . (Y) = 000 010 000 100

Finally: L(AU) . (AL) = 001 000 all 000

L(AU) (y) = 000 010 000 100

L (AU) . (AL) + L(AU) . (y) = 001 010 all 100

Note that the notation L(AU)' . (AL) v L(AU) . (Y) also is logically correct for
Selective Substitute.

7. Shift Type Instructions. See table 1.2-11.

8. Skip Type Instructions.

a) Arithmetic. See table 1.2-12.

b) I/O (Skips). See table 1. 2-13.

9. Input/Output Type Instructions. See table 1.2-14.

10. Program Stop and Fault Type Instructions. See table 1.2-15.

1. 2-28

50:41

50:42

50:43

50:44

S.C.l219 (P)].2

TABLE 1.2-11. SHIFT TYPE INSTRUCTIONS

RIGHT SHIFT AU (RSHAU)
Execution time: 2 microseconds (k = 0);

4-10 microseconds (k # 0)*
Shift (AU) to the right, k-bit positions, The higher-order bits
are replaced with the original sign bit, AU17, as the value is
shifted. This is an end-off shift, for example, the low-order
bits are lost upon completion of the shift.

Example of right shift AU with k = 2.

(AU)i (positive) = 370000

After first shift = 174000

After second shift = 076000

(AU) i (negati ve) - 400000 -

After first shift = 600000

After second shift = 700000

RIGHT SHIFT AL (RSHAL)
Execution time: 2 microseconds (k F 0);

4-10 microseconds (k F 0)*
Shift (AL) to the right, k-bit positions. The higher-order bits
are replaced with the original sign bit as the value is shifted.
This is an end-off shift, for example, the low-order bits are
lost upon completion of the shift.

RIGHT SHIFT A (RSHA)
Execution time: 2 microseconds (k = 0);

4-20 microseconds (k ~ 0)*
Shift (A) to the right, k-bit positions. The higher-order bits
are replaced with the original sign bit, A35, as the value is
shifted. This is an end-off shift; for example, the low-order
bits are lost upon completion of the shift.

Example of right shift A with k = 2:
AU AL

(A)i (positive) = 370000 000000

After first shift = 174000 000000

After second shift = 076000 000000

(A)i (negative) = 460000 000000
After first shift = 600000 000000
After second shift = 700000 000000

SCALE FACTOR (SF)
Execution time: 4 microseconds (k = 0);

4-20 microseconds (K I 0)*
Shift (A) circularly to the left until either A35 F A34 or k minus
shift count = 0; then store the positive quantity k minus shift
count at memory address 00017. The effect of the instruction is to
normalize (A) to the left subject to k. Scale factor is extremely
useful when working with numerical values in floating point nota­
tion.

1.~-2q

S.G.1219 (P)1.2

50:45

50:46

50:47

TABLE 1.2-11. SHIFT TYPE INSTRUCTIONS (CONT.)

1) Example of scale factor with k = 7:
(A)i = 170000 000000 (positive, not normalized)
After first shift = 360000 000000 (positive, nurmalized)

The computer, sensing (A) now normalized, stores k - shift
count (7-1) = the 18-bit quantity 000006 00017.

2) Example of scale factor with k = 3:
(A)i = 600000 000000 (negative, not normalized)
After first shift = 400000 000000 (negative, normalized)

The computer then stores the quantity 000002 ~00017.

3) Example of scale factor with k = 1:
(A)i = 070000 000000 (positive, not normalized)
After first shift = 160000 000000 (positive, not normalized)

The computer, having exhausted k, stores the quantity 000000
~00017 leaving (A) only partially normalized.

LEFT SHIFT AU (LSHAU)
Execution time: 2 microseconds (k = 0);

4-10 microseconds (k # 0)*
Shift (AU) circularly to the left, k-bit positions. The lower­
order bi ts are replaced wi th the higher-order bi ts as the word is
shifted.

Example of left shift AU with k = 2.

(AU) i = 300000

After first shift = 600000

After second shift = 400001

No bits are lost with the execution of left shift instructions.

LEFT SHIFT AL (LSHAL)
Execution time: 2 microseconds (k = 0);

4-10 microseconds (k # 0)*
Shift (AL) circularly to the left, k-bit positions. The lower-order
bits are replaced with the higher-order bits as the word is shifted.
No bits are lost with the execution of left shift instructions.

LEFT SHIFT A (LSHA)
Execution time: 2 microseconds (k = 0);

4-20 microseconds (k # 0)*
Shift (A) circularly to the left, k-bit positions. The lower- order
bi ts are rep laced wi th the hi gher-order bi ts as the word is sh i fted.
No bits are lost with the execution of left shift instructions.

Example of left shift A with k = 2.

(A)

After first shift

After second shift

= 300000 000000

= 600000 000000

= 400000 000001

*Execution time for shifting is 2 microseconds for every 4 shifts after shifting
has been initiated-therefore execution time for shifting any of the registers
could be a maximum of 34 microseconds.

1.2-30

50:51

50:52

50:53

50:54

50:55

S.G.1219 (P) 1.2

TABLE 1.2-12. ARITHMETIC SKIP TYPE INSTRUCTIONS

SKIP ON NO BORROW (SKPNBO)
Execution time: 2 microseconds skip or no skip
If the last previous add A or subtract A required a borrow, take the
next instruction; otherwise skip the next instruction; ignore k. The
skip occurs if no correction to (A) is needed. This allows a cor­
recting instruction to be inserted to save program steps. The cor­
recting instruction will be subtract A where (Y + 1, Y) =
000000000001.
This instruction clears the borrow designator.

SKIP ON OVERFLOW (SKPOV)
Execution time: 2 microseconds skip or no skip
If an overflow condition occurred on a previous arithmetic instruc­
tion, skip the next instruction; otherwise take the next instruction.
Ignore k and clear the overflow designator.

SKIP ON NO OVERFLOW (SKPNOV)
Execution time: 2 microseconds skip or no skip
If an overflow condition did not occur on the previous arithmetic
instruction, skip the next instruction; otherwise take the next in­
struction. Ignore k and clear the overflow designator.

SKIP ON ODD PARITY (SKPODD)
Execution time: 2 microseconds skip or no skip
If the Sum of the bits resulting from the bit-by-bit product of (AL)
and (AU) is odd, skip the next instruction; otherwise take the next
instruction. Ignore k.

(AU)f = (AU). ; (AL) f = (AL) .
I I

Example of skip odd pari ty:

(AU) = 000077 mask
(AL) = 127723

bit-by-bit product = 000023

bit sum = 3

Since the bit sum is odd, the next instruction is skipped.

SKIP ON EVEN PARITY (SKPEVN)
Execution time: 2 microseconds skip or no skip
If the sum of the bits resulting from the bit-by-bit product of (AL)
and (AU) is even, skip the next instruction; otherwise take the next
instruction. Ignore k.

(AL)f = (AL)i; (AU)f = (AU)i

1.~-31

S.G.1219 (P)1.2

50:21

50:22

50:23

50:50

50:57

1.2-32

TABLE 1.2-13. I/O SKIP TYPE INSTRUCTIONS

SKIP ON INPUT INACTIVE (SKPIIN)
Execution time: 2 microseconds skip or no skip
Test for input activity on channel k. If inactive, skip the next
instruction; otherwise, take the next instruction.

SKIP ON OUTPUT INACTIVE (SKPOIN)
Execution time: 2 microseconds skip or no skip
Test for output activity on channel k. If inactive, skip the next
instruction; otherwise, take the next instruction.

SKIP ON EXTERNAL FUNCTION INACTIVE (SKPEIN)
Execution time: 2 microseconds skip or no skip
Test for external function activity on channel k. If inactive,
skip the next instruction; otherwise, take the next instruction.

SKIP ON KEY SETTING (SKP)
Execution time: 2 microseconds skip or no skip
If bit 4, 3, 2, 1, or 0 of k is one and the corresponding skip key
4, 3, 2, 1, or 0 is set; or, if bit 5 of k is a one, skip the next
instruction; otherwise take the next instruction.

Examples of skip with:

k = 01 (bit 0) Skip if skip key #0 is set.

k = 02 (bit 1) Skip if skip key #1 is set.

k = 04 (bit 2) Skip if skip key #2 is set.

k = 10 (bit 3) Skip if skip key #3 is set.

k = 20 (bit 4) Skip if skip key #4 is set.

k = 40 (bit 5) Skip unconditionally.

k = 03 (bits 1, 0) Skip if either key #1 or #0 is set.

SKIP ON NO RESUME (SKPNR)
Execution time: 2 microseconds skip or no skip
If the resume designator is not set (indicating unsuccessful trans­
fer of a word to an output device), skip the next sequential in­
struction; otherwise take the next instruction.

SO:Ol

SO:02

SO:03

SO:ll

50: 12

SO: 13

S.G.1219 (p) 1.2

TABLE 1.2-14. INPUT/OUTPUT TYPE INSTRUCTIONS

SET INPUT ACTIVE (SIN)
Execution time: 2 microseconds
Set input channel k to the active state. The buffer control words
stored in memory locations 60 + 2k and 61 + 2k or as specified by
the externally specified index or externally specified address
will control the transfers.

SET OUTPUT ACTIVE (SOUT)
Execution time: 2 microseconds
Set output channel k to the active state. The buffer control words
stored in memory locations 40 + 2k and 41 + 2k or as specified by
the ESI or ESA will control the transfers.

SET EXTERNAL FUNCTION ACTIVE (SEXF)
Execution time: 2 microseconds
Set channel k external function mode active. The buffer control
words stored in memory locations 40 + 2k and 41 + 2k will control
the transfers.

INPUT TRANSFER (IN) (P + 1)-;.61 + 2k (240 + 2k)~:~
(P + 2)-;.61 + 2k (241 + 2k)~:~

Set input active on channel k.
Execution time: 6 microseconds
Initiate input transfer mode on channel k.

Transfer buffer limit address words (for input buffer) from the fol­
lowing two addresses to the input buffer control register for the
designated channel. (Other I/O channel and processor activity pro­
ceeds normally.)

OUTPUT TRANSFER (OUT) (P + 1)~40 + 2k (220 + 2k)~:~

(P + 2)-;.41 + 2k (221 + 2k r:~
Set output acti ve on channel k.

Execution time: 6 microseconds
Initiate output transfer mode on channel k.

Transfer buffer limit address words (for output buffer) from the
following two instruction locations to the output buffer control
register for the designated channel. (Other I/O channel and pro­
cessor activity proceeds normally.)

EXTERNAL FUNCTION (EXF) (P + l)~40 + 2k (220 + 2k)~:~

(P + 2)~41 + 2k (221 + 2k)~:~

Set external function active
on channel k.

Execution time: 6 microseconds
Initiate external function mode on channel k.

Transfer buffer limit addresses (for the function buffer) from the
following two instruction locations to the output huffer control
registers for the designated channel.

~:~Buffer control registers for channels 8-1S.

1. :2-33

S.G.1219 (P)l.2

50: 14

50: 15

50: 16

50: 17

50:20

40:24

or

TABLE 1.2-14. INPUT/OUTPUT TYPE INSTRUCTIONS (CONT.)

ENABLE REAL-TIME CLOCK MONITOR (RTC)
Execution time: 2 microseconds
Enable the real-time clock monitor interrupt; ignore k. After
execution of this instruction, equality between the RTC register
(location 15) and the RTC monitor word register (location 14)
will interrupt the computer program. The next instruction is
taken from the RTC monitor interrupt entrance register (location
12) and the RTC monitor is disabled.

TERMINATE INPUT (INSTP)

Execution time:
Terminate input on channel k.

Clear input active
channel k.
2 microseconds

No monitor interrupt will occur as a result of the execution of
this instruction.

TERMINATE OUTPUT (OUTSTP)

Execution time:
Terminate output on channel k.

Clear output active
channel k.
2 microseconds

No monitor interrupt will occur as a result of the execution of
this instruction.

TERMINATE EXTERNAL FUNCTION (EXFSTP)

Execution time:
Terminate external function on channel k.

Clear external func­
tion active channel k.
2 microseconds

No monitor interrupt will occur as a result of the execution of
this instruction.

SET RESUME (SRSM)
Execution time: 2 microseconds
Set the resume designator to permit honoring the next requesting
output function. Loss of any information currently held by the
output register(s) for a peripheral device is allowed by this
instruction.

WAIT FOR INTERRUPT (WTFI)

50:25 Execution time: 2 microseconds
Stop the computer until any interrupt occurs; ignore k, then exe­
cute the instruction located in the interrupt entrance register
designated by the interrupt.

50:26 OUTPUT OVERRIDE (OUTOV)

1. 2-34

Execution time: 2 microseconds
Wait for the output device to accept the word in the C register(s).
Then simulate an output request on channel k and transfer the word
designated by the address in the output buffer control register for
that channel. Ignore the ESI mode if active. This instruction

50:27

50:30

or

50:31

50:32

or

50:33

S.G.1219 (P) 1.2

TABLE 1.2-14. INPUT/OUTPUT TYPE INSTRUCTIONS (CONT.)

will transfer a word whether the buffer is active or not. Also
since the transfer takes place under control of the word in the
buffer control register the two buffer control words must not be
equal.

EXTERNAL FUNCTION OVERRIDE (EXFOV)
Execution time: 2 microseconds
Wait for the output device to accept the word in the C register(s).
Then simulate an external function request on channel k and trans­
fer the word designated by the address in the external function
buffer control register for that channel. Ignore the ESI mode if
active. This instruction will transfer a word whether the buffer
is active or "not. Also since the transfer takes place under con­
trol of the word in the buffer control register the two buffer
control words must not be equal.

REMOVE INTERRUPT LOCKOUT (RIL)

Execution time: 2 microseconds
Remove the interrupt lockout - enable all interrupts, all channels;
ignore k.

NOTE

A 50:30 or 50:31 instruction must be used in conjunction with a
50:34 or 50:35 instruction. It will not affect a 50:36 or 50:37
instruction.

REMOVE EXTERNAL INTERRUPT LOCKOUT (RXL)

Execution time: 2 microseconds
Remove the external interrupt lockout - enable external interrupts,
all channels; ignore k.

NOTE

A 50:32 or 50:33 instruction must be used in conjunction with a
50:36 or 50:37 instruction. It will not affect a 50:34 or 50:35
instruction.

50:34 SET INTERRUPT LOCKOUT (SIL)

or

50:35

50:36

or

50:37

Execution time: 2 microseconds
Set the interrupt lockout - disable all interrupts, all channels;
ignore k.

SET EXTERNAL INTERRUPT LOCKOUT (SXL)

Execution time: 2 microseconds
Set the external interrupt lockout - disable external interrupts,
all channels; ignore k.

1..2-33

S.G.1219 (P) 1.2

TABLE 1.2-15. PROGRAM STOP AND FAULT TYPE INSTRUCTIONS

50:56 STOP ON KEY SETTING (STOP)
Execution time: 2 microseconds
If bit 4, 3, 2, 1, or 0 of k is one and the corresponding console
stop key 4, 3, 2, 1, or o is set; or, if bit 5 of k is one, stop
the computer; otherwise take the next instruction.

Examples of stop with:

k = 01 (bit 0) Stop if stop key 1+0 is set.

k - 02 (bit 1) Stop if stop key 1+1 is set. -

k = 04 (bit 2) Stop if stop key 1+2 is set.

k = 10 (bit 3) Stop if stop key 1+3 is set.

k = 20 (bit 4) Stop if stop key 1+4 is set.

k = 40 (bit 5) Stop unconditionally.

k = 03 (bits 1, 0) Stop if either stop key 1+1 or
1+0 is se t.

00:01 ILLEGAL CODE - Jump to fault entrance register, address 0, or
address 500 (depending on position of AUTO RECOVERY switch).

Execution time: 2 microseconds

77 ILLEGAL CODE - Jump to fault entrance register, address 0, or
address 500 (depending on position of AUTO RECOVERY switch).

50:00 ILLEGAL CODE - Jump to fault entrance register, address 0, or
address 500 (depending on position of AUTO RECOVERY switch).

Execution time: 2 microseconds

50:77 ILLEGAL CODE - Jump to fault entrance register, address 0, or
address 500 (depending on position of AUTO RECOVERY switch).

Execution time: 2 microseconds

1. 2-36

S.G.1219 (P) 1.2

NAME __________ _

1.2-5. STUDY QUESTIONS

a. What are the two types of instructions?

b. What is the purpose of the SR and ICR registers?

c. What memory location is referenced during a B modification if the
ICR register contains all zeros?

d. What is the main difference between a 54 and 55 instruction?

e. How are B modified instructions indicated?

1.2-37

S.G.1219 (P)1.2

1. 2-38

f. Explain each of the instructions in the following list which starts at
P = 3000. This is a nonsense program which emphasizes the use of the
SR & ICR registers.

ADDRESS CONTENTS MNEMONIC EXPLANATION

000001 00 0000

000002 00 0002

002773 00 0004

002774 12 3456

002775 77 0000

002776 00 0000

002777 00 0001

003000 50 7201

003001 36 0000

003002 70 0200

003003 14 2777

003004 44 2776

003005 50 7333

003006 13 3400

003007 71 0020

003010 45 2000

003011 56 2773

003012 34 3006

003013 75 6001

003014 10 2775

003015 06 2774

003016 63 6000

f. (Cont.)

ADDRESS

003017

005777

006000

006001

006002

006003

006004

006005

006006

006007

132000

132004

133400

133401

133402

133403

133404

CONTENTS

50 5601

00 0000

44 5777

50 7300

02 3401

61 6005

50 5602

50 7202

73 3000

50 5640

00 0000

00 0000

00 0300

12 4736

00 1600

00 0020

00 0176

S.G.1219 (P) l.2

NAME:

MNEMONIC EXPLANATION

1.2-39

S.G.1219 (P) 1.2

1.2-40

g. Explanation each of the following set of instructions. This is a non­
sense program which emphasizes I/O instruction.

ADDRESS CONTENTS EXPLANATION

063200 50 1306

063201 17 7010

063202 17 7010

063203 50 2306

063204 .34 3203

063205 50 1317

063206 17 7007

063207 17 7007

063210 50 2717

063211 50 1106

063212 54 3000

063213 34 2400

063214 50 1217

063215 40 1000

063216 60 1500

063217 50 5640

S.G.1219 (P) 1.2

NAME:

h. Write a program to count the total number of I bits in any of five
adjacent memory cells. Put the total in AU and stop. The first
address of the five should be put in A before the program is ex­
hausted.

S.G.1219 (P)I.2

1.2-42

i. Transfer a block of data from one section of memory to another. For
example, (1000 1075) to, (143600 143675).

j. Sum a group of numbers in 20 adjacent memory cells, (037150 037170) and
take their average. Put the average in AL, the total in AU and stop.
If overflow occurs during summation, handle it as a subroutine which
could be expanded later. In this problem just put a stop on a key set­
ting in the subroutine.

S.G.1219 (P) 1.3

SECTION 1 - UNIVAC 1219 COMPUTER FUNCTIONAL DESCRIPTION

1.3. OPERATOR'S INFORMATION

1.3-1. OBJECTIVES

To familiarize the student with the switches and controls that affect the 1219
computer operation.

1.3-2. INTRODUCTION

The 1219 computer is basically an automatic machine; however, there are certain
switches and controls that affect computer operation.

1.3-3. REFERENCES

PX 3316, Vol. I and Vol. II.

1.3-4. INFORMATION

a. General. A computer is basically an automatic machine; however, there
are certain switches and controls that affect computer operation. The switches and
controls provide a means of setting and clearing the registers, selecting computer
operating speeds, selecting optional program jumps or stops, and selecting input/
output modes. On the 1219 computer, these controls are on the front panels of each
drawer. The panels are designated as input/output panel (AI or optional A9), con­
trol panel 1 (A2), memory panel (A3 or optional A9), control panel 2 (A4), and pow­
er control panel (AS). These panels are shown in figures 1.3-1 through 1.3-4.

The computer register and control flip-flops are associated with indicator/switches
on the operator panels. These indicator/switches serve a dual function. That is,
the indicator comes on when the associated flip-flop is in the set or 1 condition.
Also, pressing the indicator places the associated flip-flop in the set or 1 condi­
tion. The indicators are normally intended to provide a visual indication of status
and operation. As such, they are intended primarily for maintenance personnel.

b. Description of Controls. Tables 1.3-1 through 1.3-5 list the switches
and indicator/switches of the computer with a functional description of each.

1 . :1- 1

S.G.1219 (P)1.3

1. 3-2

I 0 0 0 (0 (0 (Q) 0 00
1

17 16 15 14 13 12 II 10 9

OOOOO(Q)OOO 876543210

'000000000
1

17 16 15 14 13 12 II 10 9

000000000 876543210
CHAN. EI EWOo 10 EF/OO 10 EF/oD 10 . EF CHAN PRI MON ~ ACT MON MON ACK ~MODE

OO(Q)oOOOOoO
10(Q)OCOOO(Q)0

200000(Q)OOO

30000000(Q)0

4000000000

5000000000

60(Q)OOOOOOO
7000(Q)0(Q)0(Q)0

o
FUNCTION .-PRIORI TY----,

000000

E"'£NO 0 0 EX'[INT EF/OO 10
I 0 CHAN~EL INTER-CO~PUTER~

@ @ @ @
.... ' ---CHANNEL NORMAL 1
I CHAN,!EL INTER-CO~PUTER ~

, (6)_4 ___ ~NNEL NO~ @,
r--CHANNEL FUNCTION----,

OUAL:-\ ~ SNGL. OUAL~ ,-SNGL.
ESA.,"" 0 ESI. ESA 0 ESI.

0-1 2-3

OUAL~ ,-SNGL.
ESA''"''gESI.

4-5

OUAL:-\ r: SNGL.
£SA=", gESI.

6-7

Figure 1.3-1. Input/Output Panel (AI or optional A9)

S.G.1219 (P)I.3

TABLE 1.3-1. INPUT/OUTPUT PANEL, Al OR OPTIONAL A9 (FIGURE 1.3-1)

TITLE FUNCTION/USE

0-17

0-17

I/O Channel and
Status Grid

CMN 0-7

CHAN PRI

EI MON

EF/OD ACT

ID ACT

EF/OD MON

1D MON

EF/OD ACK

ID ACK

EF MODE

FUNCTION PRIORITY
Grid

ODD

EVEN

DisplayJ the contents and allows manual control of the 18
bits of the communications register common to all odd-num­
bered output channels. It contains the upper 18 bits of
the word in the dual channel mode.

Displays the contents and allows manual control of the 18
bits of the communications register common to all even­
numbered output channels. It contains the lower 18 bits
of the word in the dual channel mode.

The indicator/switches indicate the function and channel
of that coordinate.

Channels 0 through 7 or 10 through 17.

The indicated channel is requesting priority.

An external interrupt monitor has been detected and is
being processed.

The external function or output data mode has been made
active (able to communicate).

'The input data mode 'has been made active.

An external function or output data monitor has been
detected and is being processed.

An input data monitor has been detected and is being
processed.

An external function or output data acknowledge signal
has been placed on an output control line.

An input data acknowledge signal has been placed on an
output control line.

External function mode; when on, it indicates the EF
mode for any EF/OD function; when off, it indicates the
OD mode.

NOTE

Pressing the above indicator/switches except CHAN
PRI will set the associated flip-flops.

The indicator/switches indicate the function and channel
group of the coordinate.

The odd-numbered I/O channels

The even-numbered I/O channels

S.G.1219 (P)1.3

TABLE 1.3-1. INPUT/OUTPUT PANEL, Al OR OPTIONAL A9 (FIGURE 1.3-1) (CONT.)

TITLE FUNCTION/USE

EXT INT An external interrupt request for priority has been
made or is being processed.

EF/OD An external function or output data request has been
made or is being processed.

10 An input data request for priority has been made or is
being processed.

CHANNEL INTER­
COMPUTER/CHANNEL
NORMAL 0-7

CHANNEL FUNCTION
Switches
0-1 ESA
2-3
4-5
6-7

DUAL

SINGLE

A request for priority cannot appear simultaneously on
the odd and even channel group.

NOTE

Pressing the FUNCTION PRIORITY indicator/
switches will set the associated flip-flops.

Up position: Enables the corresponding numbered input
and output channels to be used as an intercomputer
channel.

Down position: Allows normal use of that numbe~ed
channel for other peripheral equipment.

Allows the two channels selected to operate in the
externally specified address mode (dual mode forced).

Connects adjacent input/output channels so they
operate in double length (36-bit) mode; for example,
switch 0-1 in DUAL position allows channels 0 and 1
to operate in the dual mode.

Allows I/O channels to operate in Single (18-bit)
mode.

ESI Allows the two channels selected to operate in the
externally specified index mode (dual mode forced).

1.3-4

o

o

o

I AU i

99q<g>~~9q<?
OOO©©©oooe
876 ~4 32 10

I AL I

OOO©O©OOO
17 16 I~ 14 13 12 Ii 10 9

OOO©©©OOO.
876543210

r--1CR---, r-SR----, oooeOOoooe
2 I 0 ACT 3 2 I 0

i TIMING i

000000000
31 32 33 34 41 42 41 44 52

00000000
Ii 12 13 14 21 22 23 24

o
ABNORMAL

r--CONDIT 10N----,

000
LOSS TEMP VOLTAGE

OF AIR FAULT

FIt r=-FUNCTION CODE---:-1 o ©©<ooooe
6 543210

r:--PHASE-=-t r--MODE----, ooooe 90992 i 2 3 4
STEP STEP

I/O SEQ
CLEAR STEP RESTART

@ @ 0 @
MASTER STOP RESTART START
CLEAR SPEED CONT STEP

<& 0 (@ (Q)
FUNCTION PHASE AUTO DISC
REPEAT REPEAT RECOVERY ADV P

Figure 1.3-2. Control Panel 1 (A2)

S.G.1219 (P) 1.3

1. 3-5

S.G.1219 (P)1.3

TABLE 1.3-2. CONTROL PANEL 1 (A2) (FIGURE 1.3-2)

TITLE FUNCTION/USE

0-17 and clear Displays the contents and allows manual control of the
AU register (the upper eighteen bits of the A regis­
ter). Each bit may be set by pressing the appropriate
indicator/ switch. The clear button clears all 18-bit
positions.

0-17 and clear Displays the contents and allows manual control of the
AL register (the lower eighteen bits of the A regis­
ter). Each bit may be set by pressing the appropriate
indicator/switch. The clear button clears all 18-bit
positions.

ICR 0-2 and clear Indicates which of eight index registers is to be
used as a modifier. Clear button clears entire reg­
ister.

(Index Control Register)

SR bits 0-2 and
(Special) 4 and clear

ACT
bit 23

SEQ DES I/O I (I/O I
on front panel)

1.3-6

I/O 2 (I/O II
on front panel)

I

INT
R I (R I on
front panel)

R 2 (R lIon
front panel)

W

WAIT

B I (B I on
front panel)

B 2 (B lIon
front panel)

A four-bit register used to specify the memory bank
currently being used. The clear button clears the
register.

Comes on when SR is active. When cleared, SR is
inactive.

Indicates the performance of the first I/O sequence.

Indicates the performance of the second I/O sequence.

Indicates the performance of the instruction sequence
which is common to all instructions. Manually select­
ing the I-sequence clears all other sequences.

Indicates the performance of the interrupt sequence.

Indicates the performance of the first R (read)
sequence.

Indicates the performance of the second R (read)
sequence.

Indicates the performance of the W (write) sequence.

Indicates the performance of the wait sequence (for
example, the computer waits for an interrupt.)

Indicates the performance of the first B-sequence
which reads the TACW and stores it in the control
memory.

Indicates the performance of the second B-sequence
which reads the. IACW and stores it in the control
memory.

TIMING
11-14
21-24
31-34

TITLE

41-44 and 52

ABNORMAL
CONDITION

S.G.1219 (P)l.3

TABLE 1.3-2. CONTROL PANEL 1 (A2) (Figure 1.3-2) (CONT.)

LOSS OF
AIR

TEMP

VOLTAGE
FAULT

FUNCTION/USE

NOTE

All of the sequence designator indicators
can be manually set.

Indicates the setting of the main timing cycle flip­
flops, TIl through T52. Thus, as the indicators come
on and go off the progression of the cycle time of
the computer is indicated. Indicator 52 comes on
only during the 50:61 and 50:63 instructions.

This indicator comes on when the air flow sensor de­
tects the absence of air circulation.

This indicator comes on when either low temperature
thermostat detects an internal air temperature higher
than 1150 F (46°C).

This indicator comes on when any of the logic voltage
(±5V, -3V) or memory voltage (±lOV) fluctuates out­
side of the preset limits.

F II (Format 2) 6 Bit 26 indicator of the function code register indi­
cates the function code is of the Format 2 type (for
example, 50:XX). May be manually set or cleared.

FUNCTION CODE
0-5 and clear

Bit 20_2 5 indicators of the function code register
octally display the function code in the F-register.
All six bits may be manually set or cleared.

P 0-15 and clear Displays the contents and allows manual control of
the sixteen bits of the program address register.
Each bit may be set by pressing the appropriate in­
dicator/switch. The clear button clears all 16 bit
positions.

MODE LOAD Indicates the load mode. Pressing the MODE LOAD
button sets the load mode, clears all other modes,
and forces a jump to address 00500 for loading at
high speed.

PHASE STEP Indicates the phase step mode. Pressing the MODE
PHASE STEP button sets the phase step mode, clears
all other modes, and enables the PHASE indicator/
switches and computer for clock phase operation.
Inhibits memory.

1.3-7

S.G.1219 (P)1.3

TABLE 1.3-2. CONTROL PANEL 1 (A2) (Figure 1.3-2) (CONT.)

TITLE FUNCTION/USE

MODE
(CONT.)

PHASE

OP STEP

RUN

1-4 and
clear

I/O CLEAR/MASTER CLEAR
Switch

SEQ STEP/STOP Switch

RESTART SPEED CONT

RESTART/START STEP
Switch

1.3-8

Indicates the operation step mode. Pressing the MODE
OP STEP button sets the operation step mode, clears
all other modes, and enables the computer for execu­
tion of one operation at a time. This will be one
instruction or one sequence depending upon the posi­
tion of the SEQ STEP/STOP switch.

Indicates the run mode. Pressing the MODE RUN button
sets the run mode, clears all other modes, and enables
the computer for normal high speed operation.

Indicates the phase selected. Selectind the one phase
by pressing the indicator/switch enables computer to
issue phase pulses in conjunction with the phase step
mode. Phase pulses are issued individually beginning
with the selected phase. PreSSing the clear button
clears all four phases.

Center posi tion: Neutral.
Momentary up position (I/O CLEAR): Clears I/O section
of computer only and sets all stages of channel pri­
ority.
Momentary down posi tion (MASTER CLEAR): Wi th computer
not running and not in phase stop mode, clears all
sections, registers, and control flip-flops of central
computer. With computer running, it clears the VOLT­
AGE FAULT and/or PROGRAM FAULT indicators only.

Center position: Neutral.
Momentary up position (SEQ STEP): Enables execution
of a Single sequence in conjunction with the operation
step mode.
Momentary down position (STOP)~ Stops high speed
operation of the computer~ RUN indicator goes off.

Varies the speed of the low-speed oscillator.

Center position: Neutral.
Momentary up position (RESTART): Enables the selected
mode to be executed at. the restart speed control rate
setting. .
Momentary ,down posi tion (START/STEP):

Load mode selected - initiates high-speed start at
address 00500. .

Run mode selected - initiates high-speed start at
address designatedtin p.

Phase step mode selected - initiates the issuance
of the phase or phases indicated by the PHASE indi­
cators.

S.G.1219 (P) 1.3

TABLE 1.3-2. CONTROL PANEL 1 (A2) (Figure 1.3-2) (CONT.)

TITLE

RESTART/START STEP
Swi tch (CONT.)

FUNCTION REPEAT Switch

PHASE REPEAT Switch

AUTO RECOVERY Switch

DISC ADV P Switch

FUNCTION/nSE

Op step mode selected - initiates execution of one
instruction or one sequence, depending upon the posi­
tion of the SEQ STEP/STOP switch.

Up position: Forces a repeat of the instruction in
the F-register at mode rate, and disables the clear­
ing of the S-register in any sequence other than I,
except in the W-sequence of instruction 50:10 - 50:13.

Up position: Forces the repeat, at high speed, of
the phase or phases selected by the PHASE indicators.
(Phase step mode must be selected.)

Up position: Computer fault results in a jump to
address 00500.
Down position: Computer fault results in a jump to
address 00000.

Up position: Inhibits incrementing the P-register.

TABLE 1.3-3. MEMORY PANEL (A3 OR OPTIONAL A9)

TITLE FUNCTION/USE

MARGINAL CHECK Switches Up position (HIGH): Places a high bias on memory
sense amplifier circuits.
Center position (NORMAL): Places a normal bias on
memory sense amplifier circuits.
Down position (LOW): Places a low bias on memory
sense amplifier circuits.

Left-hand switch affects the upper 16K addresses.
Right-hand switch affects the lower 16K addresses.

1.3-9

S.G.1219 (P) 1.3

TABLE 1.3-4. CONTROL PANEL 2 (A4) ,(Figure 1.3-3)

TITLE FUNCTION/USE

PROGRAM STOP indicators
0-5

PROGRAM STOP Switches
0-4

PROGRAM SKIP Switches
0-4

0-15 and clear

0-17 and clear

B 0-17 and clear

K 0-5

REG +lOV/-lOV

ADV P SEQ 0-2

INTERRUPT INST

1. 3-10

Comes on when a programstop'occurs as a result of a
50: 56 instruction. Indicator 5 lights' for an uncon­
ditional stop; the rest are dependent upon the stop
switches.

On position (up): Enables a program stop on switch
setting for a 50:56 instruction if the corresponding
bit of the instruction is a binary one.

On position (up): Enables a skip of the next instruc­
tion on a 50:50 instruct~on if the corresponding bit
of the instructi6n is a binary one.

Displays the contents and allows manual control of
the 16 bits of the memorY,address register. Each bit
may be set by pressing the appropriate indicator/
switch. The clear button clears all bit positions
simultaneously.

Displays the contents and allows manual control of
the 18 bits of the main memory exchange register.
Each bit may be set by pressing the appropriate in­
dicator/switch. Pressing the clear button clears
all l8-bit positions.

Displays the contents and allows manual control of the
18 bits of the buffer control register. Each bit may
be set by pressing the appropriate indicator/switch.
The clear button clears all bit positions simultane­
ously.

Displays the contents and allows manual control of the
six-bit register used for shift, multiply, divide,
stop, and skip instructions. Must be cleared by
MASTER CLEAR switch.

Manual adjustable potentiometers setting the outputs
of the ±lOV regulators.

Indicates the set condition of the advance P sequence
flip-flops and the operation of the sequence. Each
flip-flop may be set by pressing the appropriate in­
dicator/switch.

Indicates that an instruction fault (f = 00, 01, 77)
has been detected by the fault circuitry, and a fault
interrupt address is being generated to the computer.

S.G.1219 (P)1.3

TABLE 1.3-4. CONTROL PANEL 2 (A4) (Figure 1.3-3) (CONT.)

TITLE

INTERRUPT
(CONT.)

RESUME
FAULT

RTC
MON

RTC
OVERFWW

SYNC

EXT SYNC DISC Switch

RTC

I/O
TRANSLATOR

FUNCTION

CHANNEL

SEQ
Indicator

DISC
Switch

ACTIVE

ESA

DUAL

ESI

o and 1

0-3 and
clear

FUNCTION/USE

Indicates that the resume signal was not received dur­
ing a minimum period of one second and a maximum of
two seconds after data was placed on an inter-computer
channel. ~:

Indicates that memory address 15, RTC word, is equal
to memory address 14, RTC monitor; and that an inter­
rupt is being generated to inform the computer.*

Indicates that the 18 bits of the RTC word have
changed from all binary ones to all binary zeros; and
that an interrupt is being generated to inform the
computer. ~~

Indicates that a synchronizing interrupt has been re­
ceived from a peripheral device and is being processed.

Up position: The external synchronizing input is dis­
connected.
Down position: The external synchronizing input may
be received.

Indicates that the operation of updating the real-time
clock word is in process.

Up position: The RTC interrupting signal is discon­
nected (disabled).
Down position: The RTC interrupting signal is opera­
tional (enabled).

Indicates the performance of any I/O operation or in­
struction (50:01 - 50:27).

Indicates that the current I/O operation is in the
ternally specified address mode.

Indicates that the current I/O operation is in the
dual (Dual channe 1, 36-bit words) mode.

Indicates that the current I/O operation is in the
ESI (externally specified index) mode.

These indicator/switches dipslay the binary value
which represents the I/O functions.
The values are assigned as follows:
00 - Ext Interrupt 10 - Output
01 - Unassigned 11 - Input

ex-

These indicator switches display the octal value of
the active I/O channel. Each bit may be set by pres­
sing the appropriate indicator/switch. The Clear but-
ton clears all bits of CHANNEL and FUNCTION.

MULT/DIV SEQ 0-6 Indicate the set condition of the multiply, divide,
shift, an~ scale sequence flip-flops and the opera­
tion of the sequence. Each flip-flop may be set by
pressing the appropriate indicator/switch.

*Dependent on the RTC being operational (RTC DISC switch in the down position).

1. 3-11

S.G.1219 (P)1.3

0
, PROGRAM STOP i

5 •
4 3 2 I 0

• • • • •
4 3 2 I 0

(C) (C) @ @ (6)

'4
PROGRAM SKI P

0
1

3 2 I e (B) @ @ (Q)
I 51

0000000
I

15 14 13 12 II 10 9

000(0)<0)0000.
8 7 6 5 4 3 2 I 0

I ZI I

00000<0>000
17 16 15 14 13 12 II 10 9

00000<0>000.
8 7 6 5 4 3 2 I 0

0 0
I B 1

00000<0>000
17 16 15 14 13 12 II 10 9

000000000.
8 7 6 5 4 3 2 I 0

+IOV
I K I @) AlNPSEO

OOOOO~REG·OOO
@)

-IOV

r-INTERRUPT--, E~II~NCSEoRTC~

00000 @ 0 ~
r-I/O TRANSLATOR,

0000
ACTiVE ESA DUAL E$I

000000.
L 1 0 I L.!...c.LN~L~

r----MULT/DIV.5EO----,

0000000
0 1 2 3 4 6 6

0

Figure 1.3-3. Control Panel 2(A4)

1. 3-12

)

UNIVAC 1219 ~i I I I I ' , i c::
I ' . , . I , , c::=
• , c:::= ,~ I

~c II 1.1 II I , I :oJ C--
~. . , I. •• jr--- -., I

~:..- I co:::::: c:= I c::=: I

I I

II
I I _ L

I I I J , 1::=

f:::::J i IL....-- --II I I I I I t:::=

RUNNIN.
TINE LOCAL PROGRAM PROGRAM ABNORMAL .-BATTLE --, MARGINAL

[II
r-POWER --, CONTROL RUN DISC FAULT CONDITION SHORT CHECK

ON

G G {3
ALARM

00
ON

0 " 'i):FF ~ ~ @)
OFF RESET OFF INDICATE SET

ALARM

-.
Figure 1.3-4. Power Control Panel (A5)

S.G.1219 (P)1.3

TABLE 1.3-5.

TITLE

RUNNING TIME METER

POWER ON/OFF Switch

POWER Indicator

LOCAL CONTROL Indicator

PROGRAM RUN Indicator

DISC ALARM/RESET ALARM
Switch

PROGRAM FAULT Indicator

ABNORMAL CONDITION
Indicator

BATTLE SHORT Switch

BATTLE SHORT Indicator

MARGINAL CHECK Indicator

INDICATE-OFF-INDICATE/
SET Switch

1.3-14

POWER CONTROL PANEL (A5) (FIGURE 1.3-4)

FUNCTION/USE

Cumulatively records the time that power is supplied
to the computer. Range of meter is 0 to 9999.9 hours
and cannot be reset.

Under normal conditions (proper interlock and operat­
ing temperatures), when momentarily in the ON posi­
tion, power is applied to the computer; in the momen­
tary OFF pOSition power is removed.

Comes on when power is being applied to the computer.

Comes on when computer may be controlled from the
control panels of the computer (not the remote con­
trol panel).

Comes on when the computer is in any mode of opera­
tion other than stop. (For example, the run flip­
flop is set.)

Center position: Allows the horn to sound on program,
voltage, blower, or temperature fault. Momentary
down position (RESET ALARM): Silences horn.
Momentary up position (DISC ALARM): Disables horn
for all faults.

Comes on when the computer detects an illegal function
code of 00, 01, 77 (format 1) in the F-register. Goes
off by setting the I/O CLEAR/MASTER CLEAR switch to
the MASTER CLEAR position, regardless if the computer
is running or not.

Comes on when one of the three abnormal condition in­
dicators, TEMP, LOSS OF AIR, or VOLTAGE FAULT on
panel A2 is on.

ON position: Disables memory protective circuitry,
temperature and blower sensor circuitry thus removing
all automatic computer shutdown.

Comes on when £ATTLE SHORT switch is in the ON posi­
tion.

Comes on when one of the memory MARGINAL CHECK switch­
es is in the HIGH or LOW position or when either CLOCK
NARROW/NORMAL switch is in NARROW pOSition.

Center position (OFF): Disconnects voltage to all in­
candescent lamps on all panels.
Up position (INDICATE): Supplies voltage to all in­
candescent lamps on ali panels.
Down position (INDICATE/SET): Supplies VOltage to all
incandescent lamps and pushbutton switches on all
panels.

S.G.1219 (P) 1.3

c. Manual Reading and Writing. The following procedures for manually
reading and writing can be used to test and debug a program. The manual opera­
tions principally involve the correction and checking of the stored program being
run. Although all of the procedures can be used, it is not intended that they
should be rigidly followed for all cases of program correction and checking.

1. Manual Reading from Addresses. Manual reading into the AL register
involves the use of the ENTER AL instruction (f = 12). With this instruction the
contents of any memory address can be observed by using the following procedures.

STEP 1. Set the SEQ STEP/STOP switch momentarily to the STOP posi­
tion.

STEP 2. Set the I/O CLEAR/MASTER CLEAR switch momentarily to the
MASTER CLEAR position.

STEP 3. Set the P-register equal to one less than the address of
the word to be entered into the AL register.

STEP 4. Set the FUNCTION CODE register equal to 128'

STEP 5. Set the FUNCTION REPEAT switch to the up pOSition.

STEP 6. Press the MODE OP STEP button.

STEP 7. Set the RESTART/START STEP switch momentarily to the
START STEP pOSition (repeat Step 7 for first-time
operation) .

With Step 7 completed, the computer stops and the desired word is available for
inspection in the AL register. To repeat the procedure, perform Step 7 only.

2. Manual Loading (Writing) into Addresses. The procedure for manually
entering a word into storage can be varied. One way is with a STORE AL (f = 44)
instruction using the following procedures.

SlEP 1. Set the SEQ STEP/STOP swi tch momentarily to the STOP
position.

STEP 2. Set the I/O CLEAR/MASTER CLEAR switch momentarily to the
MASTER CLEAR pOSition.

STEP 3. Set the P-register equal to one less than the address of
the desired storage address.

STEP 4. Set the FUNCTION CODE register equal to 448 ,

STEP 5. Set the FUNCTION REPEAT switch to the up position.

STEP 6. Set the word to be stored in the AL register.

STEP 7. Press the MODE OP STEP button.

STEP 8. Set the RESTART/START STEP switch momentarily to the START
STEP position (repeat Step 8 for first-time operation).

1. 3-15

S.G.1219 (P) 1.3

With Step 8 completed, the computer stops and the word in the AL register will
have been transferred to the desired memory location. To repeat the procedure,
perform Step 8 only.

3. Manual Inspect and Change Routine. Many times it is necessary to
check the contents of consecutive addresses in storage. This can be done by manu­
ally loading the short program in table 1.3-6. Load each instruction of the pro­
gram using the procedure outlined in paragraph 1.3-4c2.

TABLE 1.3-6. INSPECT AND CHANGE ROUTINE

ADDRESS INSTRUCTION EXPLANATION

010 507201 Select address 01 for
index register (Bl)
modification.

011 440001 (AL) to Bl

012 110000 81 to AU

013 505640 STOP

014 470000 (AU)~ (81)

015 710001 Increment AL

016 340011 Jump

When the program has been loaded it can be used to read consecutive memory address­
es by use of the following procedures.

STEP 1. Set the SEQ STEP/STOP switch momentarily to the STOP
position.

STEP 2. Set the I/O CLEAR/MASTER CLEAR switch momentarily to the
MASTER CLEAR position.

STEP 3. Set the P register equal to 000108 ,

STEP 4. Set the desired starting address in the AL register.

STEP 5. Press the MODE RUN button.
~~

STEP 6. Set the RESTART/START STEP switch momentarily to the START
STEP pOSition.

With Step 6 completed the computer will stop and AU will display the contents of
the address specified in AL. Each time the RESTART switch is pressed, AL will be
incremented and the computer will stop with the contents of the next consecutive
address displayed in AU. If at any time the operator decides to change the con­
tents of an address as displayed in AU, he can make the change manually (set AU to

1. 3-16

S.G.1219 (P)1.3

the new value) and press the RESTART switch. This will automatically change the
contents of that address (as specified in AL) and then display the contents of the
next consecutive address.

d. Wire Memory (Bootstrap).

1. General. The 1219 computer has 3210 memory address locations
(005008 through 005378) which contain the wired memory bootstrap program for an
initial load or bootstrap program. The computer can have a bootstrap written for
paper tape, magnetic tape, or teletype input. The following paragraphs describe
the paper tape bootstrap as a typical example.

The wired load program provides the ability to enter an initial package of utility
routines which may subsequently be used to enter and debug more sophisticated pro­
grams. These memory address locations have unique characteristics in that they
operate in a special type of nondestructive read-out mode. They are not accessible
to the programmer for store-type instructions.

The wired memory bootstrap program first locks out all interrupts then loads in the
1219 utility package. The utility package is formulated so that only the basic
load routine is read into the memory addresses immediately following the bootstrap
program via wired memory load program. Control is then given to a temporary check­
sum verification routine of the utility package which verifies the basic load rou­
tine. A utility package routine then reads the balance of the utility package. If
the checksum verification is incorrect, the computer will come to an unconditional
stop with AU equal to the tape checksum and AL equal to the load checksum.

2. Operating Instructions. Instructions for the load mode and automatic
recovery mode are described in the following paragraphs.

a) Load Mode. The load mode is used when the manual selection of
the wired load program is desired and the computer is in the master clear state.
The procedure is as follows.

STEP 1. Place paper tape utility package in reader (assuming
paper tape input).

STEP 2. Master clear the computer.

STEP 3. Press the MODE LOAD button.

STEP 4. Set the RESTART/START STEP switch momentarily to the
RESTART position. If tape and load checksums agree the
computer will come to an unconditional stop with AU and
AL cleared.

b) Automatic Recovery Mode. If a fault condition occurs during the
running of a program and the AUTO RECOVERY switch is in the up position, an inter­
rupt will address 005008 (starting address of the wired load program). This locks
out all interrupts and initiates the wired load program which loads in the utility
package. For paper tape input, the paper tape utility package must have been
placed in the reader (may be positioned on any leader frame) for the recovery to
be completed.

1.3-17

S.G.1219 (P)1.3

1.3-18

NOTE

A fault condition occurring during the running of a program with the
AUTO RECOVERY switch in the center position will cause a jump to Hd­
dress 00000. Action will continue as programmed.

S.G.1219 (P) 1.3

NAME:

1.3-5. STUDY QUESTIONS:

a. Explain the uses of the four modes of the 1219 computer.

b. What is the purpose of the AUTO RECOVERY switch?

c. What are the different uses of the SEQ STEP/STOP switch?

1. 3-19

S.G.1219 (P)1.3

d. Explain the different uses of the RESTART/START STEP switch.

c. What is the purpose of the F II bit?

1. 3-20

S.G.1219 (PH.4

SECTION 1 - UNIVAC 1219 COMPUTER FUNCTIONAL CHARACTERISTICS

1.4. PROGRAM DEVELOPMENT

1.4-1. OBJECTIVES

To acquaint the student with techniques for developing programs.

1.4-2. INTRODUCTION

Development of real-time operational programs consists of several phases that are
completed following an analysis of the programts requirements. The programing
activity for the development of an operational program consists of the following
seven phases:

a. Program definition and design.

b. Flow charting.

c. Coding.

d. Compiling and assembly.

e. Program checkout.

f. Program integration.

g. Program installation.

The satisfactory completion of any operational programing task is based on the as­
sumption that two types of information are available to the programer(s), a descrip­
tion of the problem and a description of the system interfaces. The desired infor­
mation is preferably documented in problem documents known as "Program Requirements"
and "Interface Specifications." The information is furnished to the programer(s) by
those responsible for system design.

1.4-3. REFERENCES

None.

1.4-4. INFORMATION

a. Program Definition and Design.

1. Introduction. The work associated with the definition portion of
this phase consists of the analysis and study necessary to define the problem to be
solved. This work results in the preparation of a "Program Design Report ft to show

1.4-1

S.G.12l9 (P)l.4

the over-all characteristics of the program(s) to be generated and to provide the
basic outline for the development of specific, detailed plans for the computer
solution to the problem. The design portion of this phase of the work results in
the preparation of one or more documents called "Coding Sped fication" - one for
each program or program module.

The proposed computer solution to a problem is verified, modified, and even rede­
signed, if necessary, to permit easier computer solution. System constraints are
identified along with a thorough data analysis of the computer solution.

Program definition and design is the first phase of program development. Its in­
puts are program requirements and interface specifications. and its outputs are a
Program Design Report, Data Designs (if a compiler is to be used), and one or more
Coding Specifications.

2. Definition Stage. In the definition stage of this phase, the pro­
gram requirements and interface specifications are analyzed in the programing
activity to verify the proposed computer solution of the mathematical model, equa­
tions, or functions described. Functions and mathematical presentations may be
rearranged, modified, or redesigned to permit easier computer solution of the prob­
lems.

Completion of the analysis results in preparing a Program Design Report (see para­
graph 1.4-4a4) for each program or program system showing the specific, detailed
plans for the problem solution.

3. Design Stage. In the design stage of this phase, the general plan
of problem solution, as defined in the Program Design Report, is broken down into
details, and the exact steps to be followed in solving the problem are spelled out.
The proposed solution is checked and modified, if necessary, in the desire to pro­
duce the best method for the solution of the problem.

This stage of the development results in preparing one or more Coding Specifications
(see paragraph 1.4-4a5), depending upon the complexity of the problem, in which sys­
tem constraints and a detailed explanation of the computer solution are included.

4. Program Design Report. During the initial stage of the program
definition and design phase, the organization of the operating procedures (pro­
cesses) and the organization of the data (and data tables) of the program are de­
termined and documented in the Program Design Report. In addition, the document
may contain some design and organization information primarily of interest to the
individuals developing the program.

The typical topics included in a Program Design Report are as follows:

a) Programing conventions.

b) Data table organization.

c) Descriptions of data.

d) Identification of program sections (modules, routines, etc.).

e) Organization of program.

1.4-2

S.G.1219 (P)1.4

f) Identification of common data tables.

g) Functional descriptions of program sections.

h) Outline of over-all program control.

i) Identification of common subroutines.

j) Outline of operation and application procedures.

k) Scheduling.

1) Overall test organization for check-out and integration.

m) Test requirements.

n) Program production requirements.

The specific format and content of a "Program Design Report" vary with each program
being developed; the above-listed topics are examples of typical topics and mayor
may not be included in specific reports.

5. Coding Specification. The purpose of a Coding Specification is to
define a program. It normally includes:

a) The method and processes of problem solution.

b) The restrictions imposed on the program by external conditions.

c) The external interfaces to the program.

External interfaces are concerned primarily with data but may include such inter­
face information as:

a) Programs.

b) Processes.

c) Equipment.

d) Other devices.

A Coding Specification is written for each level of a program (development). In­
dividual Coding Specifications are prepared:

a) For a program system.

b) For Parts of the same system.

c) Eventually for each program written at the task level.

1.4-3

S.G.1219 (P)1.4

A Coding Specification contains three main categories of information:

1) Title page.

2) Purpose of program.

3) Coding requirements.

a) Title Page. The title page includes (but is not limited to) the
following items.

1) Name of the company.

2) Location of the company.

3) Name of the producing department.

4) Program title.

5) Data produced.

6) Author(s).

7) Customer.

b) Purpose of Program. The purpose of program of a Coding Speci­
fication is a summary statement describing the major functions performed by the
program. It is a concise description of the programed solution for a problem.
Reference to other documents and identification of any other sources of information
are listed following the statement of the purpose.

c) Coding Requirements. Coding requirements are described in terms
of four major classes of information:

1) Input data.

2) Output data.

3) Methods and processes.

4) Restrictions.

The information is presented in sufficient detail so that all information necessary
to code the program is available in the specification. All Coding Specifications
for the same program follow a uniform organization; the four major classes of in­
formation serve as the basis for organizing Coding Specifications.

All program input and program output data are defined in the detailed items of:

1) Item name.

2) Item symbol.

3) Tag assignment.

4) Source of destination.
1.4-4

S.G.1219 (P)1.4

5) Bit designations.

6) Number of bits (or words).

7) Scaling.

8) Accuracy.

9) Granularity.

b. Program Flow Charting.

1. Introduction. Graphic symbols are used to indicate major processing
paths and most decisions accomplished by a program or routine; this representation
is called a flow chart. The preparation of flow charts using standard flow chart
symbols comprises the effort in this phase of operational program development.

Program flow charting is the second phase of program development. Its inputs are a
Coding Specification and Data Designs (if a compiler is to be used), and its output
is a flow chart or a set of flow charts, depending upon the complexity of the prob­
lems.

2. Flow Charting. Flow charting is the preparation of a diagram,
called a flow chart, showing the flow of data and the sequence of operations to be
performed on the data in a program or program module.

3. Reasons for Flow Charting. There are several reasons for flow
charting, especially for flow charting before coding is begun. The four basic
reasons are:

a) Work Division.

1) Each programer knows which computations he has to program.

2) Each programer knows which data or variables he is responsi­
ble for and which ones he can assume are computed by someone else's program.

3) The person in charge of the programing effort knows just who
is responsible for each section of the program and can determine how the coding is
progressing.

4) After each module is written, the flow chart is the guide
for incorporating the program modules into the program.

b) Coding Guide.

1) The programer can refer to the flow chart to make sure he
does the computations in the proper order.

2) The flow chart shows where the tests and branches in the
program are located.

3) The programer can compare the flow chart to the coding to
make sure the re-entries to the program are in the proper places.

1.4-5

S.G.1219 (PH.4

c) Debugging aid.

1) The flow chart can help the programer locate errors in
computations.

2) If addresses or tags are placed on a working model of the
flow chart, the programer can tell at a glance just where computation is located in
the computer storage.

d) Future Reference.

1) The flow chart is a very important reference for persons who
are going to be working with the program in the future. If the program has to be
modified, updated, or corrected in the future, the flow chart is one indispensable
reference. Even if this work is done by the original programer, he cannot remember
all he needs to know about the program. The person using the program can tell from
the flow chart what the program will do and how it accomplishes the task.

2) The flow chart is a handy reference for someone who may
want to use the program. If the flow chart is properly drawn, the potential user
can usually tell in a very short time if he can use the program. The potential user
can determine what modifications, if any, are necessary for his purpose.

3) If someone wants the same routine for another computer, he
can use the flow chart, along with other documentation, to assist with program de­
sign. This could save valuable time.

4. Sizes. Each flow chart should be prepare~ on the itandard 8-1/2 x
11 document form. If the flow chart requires more than a single 8-1/2 x 11 sheet,
it should be prepared on two or more 8-1/2 x 11 sheets. If it is impossible to
effectively split a flow chart into understandable 8-1/2 x 11 portions, the flow
chart may be prepared on one or more sheets of standard 11 x 17 document form. The
use of other than the 8-1/2 x II form results in difficult-to-handle documentation;
so such use should be kept to a minimum.

5. Standard Symbols. The standard flow chart symbols in MIL-STD-682A
shall be used in the preparation of all flow charts. These symbols shall not be
redefined, and other symbols shall not be substituted for the defined functions. If
additional symbols, for functions not defined, are required for a specific applica­
tion, such additional symbols may be used providing that they have pre-use approval
of the Manager of Defense Systems Programing and that they are fully explained in
this document.

6. Symbol Template. All of the standard symbols can be drawn with the
aid of the UNIVAC symbol template labeled MIL-STD-682A, see figure 1.4-1. The tem­
plate should be used in the preparation of all flow charts.

7. Symbol Sizes. The size of each symbol shall be as specified in
MX-3983/G and as provided for in the MIL-STD-682A template. The sizes are consid­
ered. appropriate for the full-scale preparation and reproduction of any flow chart,
regardless of the sheet size.

8. Symbol Orientation. All of the symbols shall be oriented as illus­
trated in paragraph 1.4-4bll.

1.4-6

)

#1 (-#

e0 #13 4

#'8

/ #5 7 c:) 0 #14
#2

{} #9

~ #15

(#10) 3 U

\. .I \. .I \.. I '--v-/ V V V'

Figure 1.4-1. Template for Flow Chart Symbols

S.G.1219 (P)1.4

9. Lines of Flow. Straight lines, vertical or horizontal, shall be
used to show the flow of control or data between the symbols on a flow chart. In
general, the lines shall be aligned in the direction of data flow, i.e., if the
flow is from top to bottom, the lines shall appear vertical with input at the top
and output at the bottom; if the flow is from left to right, the lines shall appear
horizontal with input at the left and output at the right.

Symbols requiring two output lines shall normally have one output line,in-line with
the input line and the other output line in a direction perpendicular to the input
line.

None of the lines -- input or output -- is considered to be inherently the part of
any symbol.

10. Direction of Flow. Vertical flow charting, in which successive
symbols are placed one below the other, is preferable to horizontal flow charting.

All direction of flow of inputs and outputs is from top to bottom or from left to
right unless otherwise indicated. If the flow is from bottom to top or from right
to left, a properly oriented direction arrowhead shall be placed on the line with
the tip of the arrowhead touching the symbol to which the flow is directed.

When increased clarity is desired, direction arrowheads may be placed anywhere along
a flow line.

11. Flow Chart Symbols. Symbols are used on a flow chart to represent
the functions of a data processing program or system. The basic functions are in­
put/output, processing, and annotation.

A basic symbol is established for each basic function and can always be used to re­
present the function on a system flow chart. Specialized symbols are established
for detailed functions and shall be used to represent those functions on a program
flow chart.

a) Basic Symbols. (For use only on system flow charts.)

1) Input/Output Symbol. The symbol shown below represents the
basic input/output function (I/O), i.e., the making available of data for processing
(input), or the recording of processed data (output).

Dimensional ratio
width: height = 1:2/3
(Combination of symbols #13 & #14)

2) Processing Symbol. The symbol shown represents the basic
processing function, i.e., the process of executing a defined operation or a group
of operations resulting in a change in value, form, or location of data, or in the
determination of which output path is to be followed.

1.4-8

Dimensional ratio width:
height = 1:2/3 (Symbol #1)

S.G.1219 (P)1.4

3) Annotation Symbol. The symbol shown below represents the
basic annotation function, i.e., the addition of descriptive comments or explanatory
notes as clarification. The dotted line may be drawn either on the left and down
(as shown), on the right and down, on the top and left, or on the top and right. It
is connected to the flowline, at a point where the annotation is meaningful, by ex­
tending the broken line in whatever manner is appropriate.

Dimensional ratio
width: height = 1:2/3
(Symbol U13)

b) Specialized Symbols. (For use expressly on program flow charts.)

1) Input/Output Symbols. The specialized input/output symbols
represent the I/O function and, in addition, denote the medium on which the data is
recorded or the manner of handling data, or both.

~. Data Card Symbol. The symbol shown below represents an
I/O function in which the medium is punch cards, or the like. The symbol also re­
presents a card file.

Symbol u4

(
Typical Use

PUNCH
DATA

Q. Magnetic Tape Symbol. The symbol shown below represents
an I/O function in which the medium is magnetic tape.

Symbol u7

1.4-9

S.G.1219 (P)1.4

£. Punch Tape Symbol. The symbol shown below represents
an I/O function in which the medium is punch tape.

Symbol +tl Typical Use

Q. Printed Document Symbol. The symbol shown below repre­
sents an I/O function in which the medium is a (high-speed printer) printed document.

Symbol +tl

~. Manual Input Symbol.

NOTE

This symbol can be
drawn with the tem­
plate, but it is not
defined as a Military
Standard symbol. It
may be used as an ap­
proved symbol. (See
paragraph 1. 4-4b5 J

Typical Use

PRINT
LISTING

The symbol shown below represents an I/O function in which the data is entered man­
ually at the time of processing, by means of on-line keyboards, switch settings,
pushbutton, etc.

Symbol +t4

[

1.4-10

J

Typical Use

ENTER DATE
AND TIME

S.G.12l9 (PH.4

i. Display Symbol. The symbol shown below represents an
I/O function in which the data is displayed for human use at the time of processing,
by means of on-line printers, console printers, video devices, plotters, etc.

Symbol 1+6 & 1+8 Typical Use

g. Mass Storage Symbol. The symbol shown below represents
an I/O function utilizing auxiliary mass storage of data that can be accessed on­
line, e.g., magnetic drums, magnetic discs, etc.

Symbol 1+9 Typical Use

2) Processing Symbols. The specialized processing symbols re­
present the processing function, and, in addition, identify the specific type of
operation to be performed on the data.

~. Decision Symbol. The symbol shown below represents a
decision type operation that determines which of two or more alternate paths is to
be followed.

Symbol 1+8 or 1+9 Normal Decision Use

OR

Multiple Decision Use (includes use of connector symbol)

ELEVATION

RANGE
2000 FT

+

ZERO

NO

1 .4-11

S.G.1219 (PH.4

Q. Switch & I Branch Symbol. The symbol shown below repre­
sents a switching type of operation wherein (input) data is routed to either of two
(output) paths depending upon the setting of the switch, either "set" (S) or
ft norma 1" (N) .

Symbol #6 Typical Use

N

S

£. Subroutine Symbol. The symbol shown below represents a
named process consisting of one or more operations or program steps that are de­
fined elsewhere, i.e., a closed subroutine or a library subroutine.

Symbol #15 Typical Use

SPACE FOR
NOTE

Q. Manual Operation Symbol. The symbol shown below repre­
sents any off-line process geared to the speed of a human being.

Symbol #5 Typical Use

/ /
~. Auxiliary Equipment Operation Symbol. The symbol shown

below represents any off-line operation performed"on equfpment not under direct
control of the central processing unit.

Symbol #6 Typical Use

D
I

PUNCH
DATA

I

1.4-12

S.G.1219 (P)lA

1. Non-Auxiliary Equipment Operation Symbol. The symbol
shown below represents an on-line operation performed on equipment under direct con­
trol of the central processing unit.

Symbol #13 or #14

OR

Typical Use

I

COMPUTE
ELEVATION

3) Annotation Symbols. The specialized a~notation symbols are
used to identify specific types of connections or terminations.

~. Terminal Symbol. The symbol shown below represents a
terminal point in a system or communication network at which data can enter or
leave, i.e., start, stop, halt, delay, or interrupt.

Symbol #10

(--)

ENTER PROGRAM LABEL IN
A "START" SYMBOL

OR

ENTER SPECIAL INFORMA­
TION, IF ANY, IN A
"STOP" SYMBOL

Typical Use

h. Connector Symbol. The symbol shown below represents a
point at which a computational path conveniently starts or ends. Connectors are
used for identifying common points in separate areas of a single sheet of a flow
chart, primarily to avoid crossover of flow lines. Connectors are also used for
identifying the end of flow lines that leave one sheet of a flow chart and resume
on another sheet.

Symbol #12

o
Typical Uses

G
NOTE

This symbol is included
in the template, but it
is not defined as a Mili­
tary Standard symbol. It
may be used as an approved
symbol (see paragraph 1.4-
4b5.

1.4-13

S.G.1219 {PH.4

The symbol shown below represents the point at which re-entry into the main path of
a program is made.

Symbol #11 Typical Uses

o y-cr
Q. Assertion Symbol. The symbol shown below indicates a

special condition existing at a certain point along a flow line.

Symbol #13 or #14

,---------. - - -

I
~'I

Typical Uses

N = 100

'\ !

SIMULATE

~. Insertion Symbol. The symbol shown below indicates the
insertion (without redrawing the flow chart) of a processing symbol into a flow
line; the single line drawn to the symbol re~resents both the input line and the
output line.

Symbol #3 Typical Uses

7RS TO EC BEAR TO RIS

1. 4-14

S.G.1219 (P)1.4

1. Communication Link Symbol. The symbol shown below re­
presents an I/O function in which data are transmitted automatically from one loca­
tion to another. The symbol shall always be drawn with superimposed arrowhead to
denote the direction of data flow.

Symbol #2 Typical Uses

DATA PHONE

Q. Flow Lines. Vertical or horizontal lines between sym­
bols to show the flow of data or control. Arrowheads shall be used for other than
top-to-bottom or left-to-right flow, and they may be used on any line for clarity.

Symbols

(HORIZONTAL)

(VERTICAL) (TOP­
TO
BOTTOM)

(BOTTOM­
TO
TOP)

Typical Uses

(LEFT-TO-RIGHT)

<
(RIGHT-TO-LEFT)

13. Flow Chart (Fictitious). Figure 1.4-2 illustrates the application
of some of the flow chart rules.

c. Coding.

1. Introduction. Translation of the terms of a problem from the sym­
bology of the flow chart to the symbolic language of a compiler or assembler pro­
gram defines the coding effort of a programing task. The translation is accom­
plished manually on coding forms or sheets.

Coding is the third phase of program development. Its inputs are a Coding Specifi­
cation and either a flow chart or a set of flow charts, and its output is a manually­
prepared list of program instructions.

2. Coding. Coding is the translation of the details of problem solu­
tion from the symbology of a flow chart to a sequence of instructions in a language
(or, in some cases, in a combination of languages) acceptable to and understandable
by a specific computer.

1.4-15

S.G.1219 (P)1.4

.... --t-- LABEL OF PROGRAM OR ROUTINE

SET SMP
MONITOR

SWITC\i TO 0

CLEAR FI RST
TIME THROUGH

FLAGS

IS THIS

FIRST TIME

THROUGH

YES

CLEAR
SELECTED
OPERATION
INDICATOR

DIRECTION INDICATED
WHEN NOT NORMAL
FLOW

NO

S

READ IN

MON ITOR DATA
CARDS

WRITE IN ENGLISH PHRASEOl.,OGY

R£TURN VIA JUNCTION SYMBOL ~ DO NOT

ENTER INTO OTHER SYMBOLS DIRECTLY

SUBROUTINE

BWRTR

IDENTI FY BOTH EXIT LI NES
WITH PROPER DECISIONS

NO QUESTION MARK IN DECISION SYMBOL-­

SYMBOL DENOTES QUESTION

SET SMP
MONITOR \

SWITCH TO I
CALCULATE

ALTrTUDE

<:, _____ E_X_IT ____ ~~

Figure 1.4-2. Sample Flow Chart.

1. 4-16

S.G.l2l9 (PH.4

3. Goding Languages. Two types or levels of program languages are
associated with program coding. One can be used directly by the computer; the
other must be translated before use. The languages are as follows:

a) Machine language (use directly).

b) Symbolic languages (translate before use). Consist of
assembler language (machine oriented) and compiler language
(problem, procedure or business oriented).

In machine-language coding the instructions are prepared in absolute code. In
symbolic-language coding the instructions are prepared in either a mnemonic mono­
code or a mnemonic polycode, depending upon whether the object-program instructions
are to be computer-prepared by an assembler (program) or by a compiler (program),
respectively.

4. Machine Language Coding. Machine language coding refers to the
use of machine language in the preparation of the computer instructions by the pro­
gramer. Such preparation is usually referred to simply as absolute coding.

Absolute coding is the only method of coding available to programers before assembler
and/or compiler programs have been produced for a computer.

The significant features of absolute coding are:

a) It requires an experienced programer.

b) It is usually a one-man operation.

c) It requires considerable (length of) time.

d) It offers great latitude and flexibility in coding.

5. Symbolic Language Coding. Symbolic language coding refers to
the use of a symbolic language - either assembler or compiler language - in the
preparation of the computer instructions by the programer. Such preparation is
usually referred to simply as symbolic coding.

Symbolic coding can be used only if and when assembler and/or compiler programs
have been developed for a computer.

Some of the significant features of symbolic coding and the associated use of an
assembler or compiler are:

a) 'The number of trained programers capable of coding more
complex problems in absolute code is far too small to meet
the demands of the rapidly-growing applications of computers
in industry. .

b) Writing programs in absolute code requires more time than
in symbolic code. As problems become more complex, the
time difference becomes greater. Since computer programers
are expensive, costs increase with problem complexity.

1. 4-17

S.G.1219 (P)1.4

c) Symbolic languages, because they are written in (familiar)
English or mathematical statements, are learned more easily
and quickly then machine languages.

d) Errors are less frequent in symbolic coding, thereby redu­
cing the quantity and hours of expensive computer reruns.

e) One of the more tedious tasks of coding, that of housekeep­
ing, becomes much simpler and easier to handle with assem­
blers and/or compilers. Housekeeping involves keeping rec­
ords. of memory locations to avoid conflict of assignment,
keeping records of controls and indexes, constant checking
and referencing of memory assignements to avoid error, and
other minute details, all of which are time-consuming,
tedious, and subject to error. By assigning meaningful
names to indexes, flags, memory locations, starting address­
es, and other housekeeping functions, assemblers and compil­
ers can make unique assignments and maintain records of such
assignments without error.

f) The use of significant names instead of numbers makes in­
structions more meaningful and easier for another programer
or for the user of the program to follow. The program be­
comes much more self-explanatory.

g) The use of mnemonic names for memory locations, counters and
other controls makes it possible for many programers to work
on subroutines of the same program independently. Names of
similar memory locations and controls can be interchanged or
equated subsequent to the writing of the subroutines.

h) The integration of independently produced subroutines into a
program becomes much easier because of the ability to use the
same names or to equate names in assemblers and compilers.

i) Since the computer can be used to perform the functions of
equating and integration, much time and expense is saved in
these operations.

6. Selecting the Coding Language. Normally the philosophy and
policy is to use the highest level of coding language available and applicable to
the project concerned. The absolute language for each different computer is ex­
plained in detail in the hardware documentation for the computer. The various sym­
bolic languages, i.e., assemblers and compilers, are explained in special manuals
prepared for each of the languages.·

7. Preparing the Coding Form. Once the language has been selected,
i.e., absolute, assembler, or compiler, the programer completes the appropriate
coding form with successive instructions written on successive lines of the form.
Examples of typical coding forms are shown in figures 1.4-3 through 1.4-5.

Completing the coding form is the most critical step in coding. The completed form
is used by keypunch operators or Flexowriter operators to prepare punch cards or
punch tape, respectively, of the instructions written on the form; and errors in
completing the form invariably result in errors which must be later debugged.

1.4-18

)

UNIVAC

PATRAC ASSEMBLER CODING FORM

PROBLEM _______________ CODED BY ________ DATE ____ PAGE __ OF __

ITEM NUMBER TAG OPERATION OPERAND INDEX SCALING COMMENTS

I

Figure 1.4-3. PATRAC Assembler Coding Form

S.G.1219 (P)1.4

PAGE __ OF .--:.::...

PROBLEM
IA

u
I

Z
.:)

r -'"'

'+

::>

0 -,
~

U

I

i:::

.:>
A
-;)
.-
0 ,
.-
U

I \
.....
~

,.- ~ - -----
....- - -

CA

Figure 1.4-4. UNIVAC 1103 Absolute Coding Form

1.4-20

,TITLE _________ _ UNIVAC CODING FORM PROGRAMMER ______________ __
PAGE _____ of __ _ PLT. __ EXT. ___ MS __ _

DATE

LABEL l OPERATOR 1 OPERANDS AND NOTES
I*' HEADER TYPE

, .. • .. • .. • .. • .. • .. • .. • .. • ... • .. • .. • .. • .. • .. • .. •
~ • .. •

•
•

---' ~ -------------- -----------
Figure 1.4-5. UNIVAC Coding Form

S.G.1219 (P)1.4

8. Preparing Program and User Documents and Publications. In addi­
tion to completing the coding form in the desired program language, the coding phase
often includes the preparation of documentation in the form of program and user
documents and publications; such preparations depend upon the nature of the program
being developed.

The documents that may be prepared are:

a) Program synopses.

b) Program application guides.

c) Program operating procedures.

The publications that may be prepared are:

a) Handbooks.

b) Manuals.

c) Brochures.

In many cases, programers prepare the documents, but seldom, if ever, do they pre­
pare the publications. The publications are normally prepared by technical writers,
who sometimes also prepare the documents.

d. Compiling and Assembly. Conversion and translation of a symbolic
language used to code a problem into a form of absolute machine language recogniz­
able and understandable to a computer is accomplished during the compiling or as­
sembly process. A computer is used to perform the process, and it is called com­
piling or assembly dependent upon the type of translation program used. The com­
piling or assembly program automatically produces a physical representation of a
program that can be loaded into the memory of a computer. Another result of the
process is the automatic production of a copy of the program on a document called
the "Program Li st i ng."

Compiling and assembly is the fourth phase of program development. Its input is an
annotated sequence of instructions manually recorded on appropriate coding sheets,
and its outputs are a Program Listing and a computer-prepared sequence of instruc­
tions recorded on magnetic tape.

Compiling is the conversion and translation of a manually-prerecorded sequence of
polycode program-language instructions into a computer-recorded sequence of object­
language instructions, with the use of a compiler (program).

Assembly is the conversion and translation of a manually-recorded sequence of mono­
code program-language instructions into a computer-recorded sequence of object-lan­
guage instructions, with the use of an assembler (program).

1. Data Preparation & Processing. Several steps of data prepara­
tion and processing are involved in the compiling and assembly phase, as shown in
figure 1.4-6.

1.4-22

SOURCE

::::. :~:~.::.:.:: (COOING SHEETS)
::=--=:.~ • :.:::~~ ... _- _. ---.- -.- ..

S.G.1219 (PH.4

I~---- OR

PROGRAMER
(MAY BE SKI PPED)

SATELLITE
COMPUTER

SOURCE
PUNCH CARDS

SOURCE
PUNCH CARDS

SOURCE

SOURCE
PUNCH TAPE

FLEXO­
WRITER

PROGRAMER
(MAY BE SKIPPED)

SOURCE
PUNCH TAPE

LISTING
OF

SOURCE
PUNCH
TAPE

MAG NETIC TAPE

SOURCE
PUNCH .CARDS

SOURCE

i - ;;;OGRA-;;L;;;A;; -l
II ~O~ ASSEMBLER "

r::~====~L ... &----' ,......... MAGNETIC TAPE

OR I I MAIN
COMPUTER I ~ COMPILER I 1!::::::;:========..J-----J...\Qj MAG NETIC TAPE I

OBJECT L - - _____ ...J
LANGUAGE

Dl] PROGRAM
PUNCH
CARDS

8 • AND

SOURCE ~
MAGNETI C

TAPE

SOURCE
PUNCH
TAPE LISTlNG~ PROGRAM

PUNCH

J TAPE

r OR
• ..- PROGRAM

~O~ MAGNETIC TAPE

Figure 1.4-6. Program Compiling and Assembly

1.4-23

S.G.1219 (P)1.4

The coding sheets, which have been prepared specifically for either card punching
or tape punching, are submitted by the programer to the computer center for appro­
priate preparation and processing. After processing is completed, the normal items
delivered to the programer are the deck of source punch cards (or the roll of
source punch tape), the listing of the source punch cards (or of the source punch
tape), the listing of the source punch cards (or of the source punch tape), and the
Program Listing. The normal items retained by the center are the source language
and object language magnetic tapes. Unless the programer has specifically requested
that these magnetic tapes be saved, the tapes are reused in other jobs.

2. Program Listing. A Program Listing is a document containing a
complete list of computer instructions and constants as they are (to be) used in
performing the tasks involved in solving the problem for which the program is de­
signed.

The Program Listing is the document from which the programer works while debugging
a program. Also, since the Program Listing is a permanent, readable copy of the
program, it provides the starting point for making alterations or modifications to
a program as the programing requisites change.

3. Content of Program Listing. The exact content of a Program
Listing depends upon the method used in preparing the program and the specific pro­
gram in computer storage at the time the Program Listing is produced. As a result,
the instructions may be listed in anyone or more of the following languages:

a) Compiler.

b) Assembler.

c) Machine.

If a compiler or assembler is used, the Program Listing mayor may not include pro­
visions for including one or more lines of explanatory comments or remarks to aid
in the understanding of the program. If the absolute machine language instructions
are included in the Program Listing as the result of a storage dump from the com­
puter, any explanatory comments must be added by a manual operation. During the
development of a program, the programer may be satisfied with a listing that does
not contain the absolute machine language instructions, that only includes the first
lines of multiline comments, or that is prepared from a storage dump.

The final Program Listing shall include the following information arranged in three
columns:

1) Absolute machine language instructions.

2) Original symbolic statements.

3) Explanatory comments and remarks.

e. Program Checkout.

. 1. Intro~uction. In~tial program checkout, e.g., debugging, para-
meter testIng, etc., conSIsts of testIng each ~ection of the program by itself with
test parameters that generate predeterm~ned results only if the programed section
(of program) operates correctly. Locating errors that prevent successful generation

1.4-24

S.G.1219 (PH.4

of known results requires extensive re-evaluation of the effort expended in the
preceding phases of the program development.

Program checkout (debugging) is the fifth phase of program development. Debugging
is the isolation and removal of mistakes from a newly assembled or compiled program
or program module.

2. Sources of Mistakes. There are several sources of mistakes in
newly coded programs. Knowing the sources should prompt all programers and program
supervisors to maintain constant vigilance in critical areas to minimize the mis­
takes. To avoid all mistakes is humanly impossible; to ignore them is foolhardy;
to minimize them is important.

Common sources of mistakes are:

a) Ignoring of program goals.

b) Ignoring of program restrictions.

c) Poor flow charting.

d) Poor coding sheet preparation (careless hardwriting).

e) Incorrect coding sheet interpretation (difficult reading),

f) Poor card, or tape, punching.

3. Isolation of Mistakes. The isolation of mistakes is normally
accomplished by using one or more of the following methods.

a) Visual examination of the source punch-card (or source
punch-tape) listing.

b) Visual review of the object program listing.

c) Running the program with a driver.

d) Running the program with a tracing routine.

e) Using debugging aids.

The selection of methodes) depends primarily upon the input medium and length and
complexity of the newly coded program.

a) Using the Source Punch-Card Listing. When punch-cards are
to be used as the input medium, the instructions from the programer's coding
sheet(s) are punched on cards with a card punch. As each character is punched in
code on the card, the character itself is ~rinted (interpreted) near the top of the
same column of the card. Thus, successive instructions are printed on successive
cards.

The interpreted cards can be reviewed to verify the correctness of the punched cards
and, occasionally, to reveal coding mistakes or keypunch operator errors, Or, it
may be easier to use the listi~g of the source punch-cards rather than the

1.4-25

S.G.1219 (P)1.4

punch-cards themselves; the listing can be requested by the programer during the
compiling and assembly phase.

b) Using the Source Punch Tape Listing. When punch tape is to
be used as the input medium, the instructions from the programer's coding sheet(s)
are punched on tape with a Flexowriter. As each character is punched in flex code
on the tape, the character itself is typed on paper. Thus, a typewritten copy of
the coding sheet is automatically prepared as the tape is punched.

A visual review of the typewritten copy can be made to verify the correctness of
the punched tape, and occasionally, to reveal coding mistakes or Flexowriter opera­
tor errors.

c) Using the Program Listing. For debugging short programs, a
review of the source punch-card (or source punch-tape) listing may be satisfactory.
However, for long routines it is usually better to examine the program listing, for
it contains not only the information from the coding sheets but also any error
flags introduced by the .computer.when assembling or compiling the program.

d) Using a Driver. A driver is a special program used to test
an operational program by creating conditions expected to be encountered under nor­
mal run conditions of the operational program. Drivers normally operate by creating
inputs and producing conclusions that would be expected to affect the program in a
predetermined manner. Normally, if the actual run results compare with the expected
results, the tested program is assumed to be operating properly. It is very impor­
tant, however, to be certain that the new program is tested to its designed limits
before drawing any such conclusion.

e) Using a Tracing Routine. A tracing routine is a routine
that monitors a program as it is being run. For any selected address or group of
addresses, it extracts, examines, and executes the instructions of the tested pro­
gram in the same order as would normally occur. After the instruction is executed,
data is sent to a magnetic tape unit for off-line listing on the high-speed printer
according to the input parameters to the tracing routine. The output listing nor­
mally consists of the operand of the instruction and the contents of the P, AU, AL,
F and B registers. This listing is an invaluable aid to debugging when a mistake
is known to exist but cannot be isolated by examining the program listing.

f) Use ot Debugging Aids.
debugging routines with special capabilities.

Compilers usually contain built-in
These include:

1) Contents-of-registers printouts.

2) Dumps of specified computer storage areas.

3) Tracing routines.

4) Records of changes to program instructions.

Individual projects also frequently develop special debugging techniques.

Programers shall use these speCial debugging features as prescribed for the project
or as otherwise needed.

1.4-26

S.G.l2l9 (PH.4

f. Program Integration.

1. Introduction. The purpose of the integration phase is to dis­
cover and eliminate interface problems between program modules. Special tests are
used to provide predetermined results when two or more checkout program modules
are operated together. These tests are continued until all modules are integrated
into an operating unit called the program. Errors discovered in this phase of pro­
gram development are more difficult to find and isolate than errors discovered dur­
ing the checkout of program modules. Successful simulation runs indicate the com­
pletion of program integration.

Program integration is the integrating or uniting of two or more routines or pro­
gram module~ into a single routine or program.

The purpose of the integration phase is to discover and eliminate interface problems
between routines or program modules.

2. Isolation of Mistakes. Mistakes discovered in this phase of
program development are much more difficult to isolate than are the mistakes dis­
covered in the checkout phase.

The value of good data reduction and utility programs becomes apparent in this
phase of development. Simulation efforts should be started to aid in the integra­
tion. Successful simulation runs indicate completion of integration, even though.
this phase usually merges with the next phase - the installation phase.

3. Use of Compilers and Assemblers. Compilers and assemblers pro­
mote the ease of integration. Assemblers make use of symbolic addressing. The
symbolic addresses are then assigned to appropriate computer storage locations dur­
ing integration. This avoids duplication of assignment.

Most compilers have built-in methods of accounting for and assigning data to storage
locations. In addition, they provide for the equating or substituting of data names.
Routines can thus be integrated into programs by proper manipulation of data names.

If an assembler or a compiler is used, the programer should become thoroughly ac­
quainted with the integrating capability of the system.

g. Program Installation.

1. Introduction. The programing effort associated with system in­
tegration and checkout is the primary activity of the phase of program development.
The effort consists of running both simulated and real checks to determine the
correctness of the program interface with all other elements of the operational
system.

Program installation is the successful running of the object program on the object
hardware in accordance with the customer's stated requirements.

Unfortunately, the stated requirements do not always present a full and correct
picture of actual operating conditions, so it may be possible to satisfy the stated
requirements but fail to perform the on-site operation.

1.4-27

S.G.1219 (P)1.4

2. Installation Tasks. The programer performs three distinct
tasks in installing the program:

a) Program evaluation.

b) Program revision.

c) Documentation revision.

Program evaluation is the study of the operation of an integrated program to ensure
that it performs all required tasks under all specified conditions. Essentially,
program evaluation has the same function as the program checkout except that the
program consists of a number of integrated routines rather than one routine.

After evaluation, the program is revised as needed, then reassembled and re-evalu­
ated. Where minor program reVISIons are required, it is often convenient to change
the input directly without going through reassembly. When this is done, however,
no revised program listing is produced. This omission must be corrected as soon as
possible by reassembling the program. Until the reassembly is accomplished, hand­
written changes shall be recorded in the documents being used.

During the installation phase, the documentation for all portions of an integrated
program are revised to reflect changes made to the program, and final copies are
prepared for all activities and persons concerned.

To maintain orderly records and to ensure full distribution of final documentation,
all changes to final documents and publications shall only be accomplished by fol­
lowing the formal change procedure of a Program Change Order.

1.4-28

S.G.1219 (P)1.4

NAME: ______________________ _

1.4-5. STUDY QUESTIONS

a. What two types of information should be available to programer(s)?

b. Name the typical topics included in a Program Design Report.

c. Define Flow Charting and the reasons for its use.

d. What does the following symbol represent?

1.4-29

S.G.1219 (P)1.4

1.4-30

e. What are the three levels or types of program languages associated with
program coding?

f. What is the major difference between compilers and assemblers?

g. What is the program listing used for?

h. What are some common errors or mistakes in newly coded programs?

S.G.1219 (PH.4

NAME: __________ _

i. Explain the difference between program checkout and program integration.

j. What are some of the problems that may arise in program installa­
tion?

1 .4-31

S.G.1219 (P)1.5

SECTION 1 - 1219 COMPUTER FUNCTIONAL DESCRIPTION

1.5. DETAILED BLOCK DIAGRAM OF THE 1219 COMPUTER

1.S-1. OBJECTIVES

To provide the student with specific areas of study and self-check questions to
give you a better understanding of the 1219 Computer through the block diagram.

1.S-2. INTRODUCTION

The 1219 Computer is made up of four sections, the memory section, the arithmetic
section, the control section and the input-output section. In order to be able to
understand how the computer processes data and instructions you should have a basic
understanding of the sections of the block diagram.

I.S-3. REFERENCES

a. PX 3288, Programers Reference Manual

b. PX 3316, VOl. I & II

1.S-4. INFORMATION

a. General. The UNIVAC 1219 Military Computer is a medium-scale, general­
purpose digital computer specifically designed to comply with the environmental
specifications of MIL-E-16400. It is a faster version of the widely-used UNIVAC
1218 Computer and is functionally compatible with that machine.

To meet the extreme requirements of real-time and concurrent batch processing
operations, the UNIVAC 1219 is equipped with a 2-microsecond, internal, random
access core memory in sizes of 8,192, 16,384, 32,768 or 6S,S36 18-bit words with
a read access time of 0.9 microseconds and a SOO-nanosecond control memory. In
addition to this, other random-access storage devices connected to input/output
channels provide unlimited memory capacities. A portion (32 word locations) of the
core memory addresses has been used for the nondestructive memory in which constants
and instructions are stored for automatic recovery from fault situations and for an
initial load of routines.

With its high internal operating speed, core memory, and 500-nanosecond control
memory, the UNIVAC 1219 Computer is capable of transferring SOO,OOO words per
second. Arithmetic and input/output operations can be performed on the basis of
a single-length 18-bit word, or a double-length 36-bit word if greater preCISIon
is required for compatibility with other computers. The repertoire of 100

1.S-1

S.G.1219 (P)1.5

instructions allows complete programing freedom in mathematical and logical
computations and operations. The computer features parallel transfers. one's com­
plement binary arithmetic. direct addressing, and program controlled automatic
address or operand modification via eight control-memory-contained index registers.

The UNIVAC 1219 Computer with a 32,768 word core memory, power supply, and all logic
and control circuitry is contained in a single cabinet whi~h occupies less than 32
cubic feet and requires less than five square feet of floor area.

A simplified block diagram of the computer a_ppears in figure 1.5-1. Abbreviations
on the diagram are explained as the operation of the various computer sections are
discussed.

b. Memory. The computer memory consists of up to 65.536 18-bit words of
addressable storage locations divided into three distinct sections in a continuous
addressing structure.

1. Control Memory. An independent high-speed core memory, consisting
of 128 18-bit words, is used for index registers, buffer control words, a real-time
clock cells, real-time clock interrupts, and the fault interrupt address. The
fixed addresses for these functions are listed in table 1.5-1.

TABLE 1.5-1. CONTROL MEMORY FIXED ADDRESSES

Address Assignment

00000
00001-00010
00011
00012
00013
00014
00015
00016
00017
00020-00037
00040-00057
00060-00077

Fault interrupt entrance register
8 index registers
Inter-computer time-out interrupt register
Real-time clock interrupt register
Clock overflOW interrupt register
Real-time clock monitor word register
Real-time clock incrementing register
Synchronizing interrupt register
Scale factor shift count
Continuous data mode (channels 0-7)
Output buffer control registers (channels 0-7)
Input buffer control registers (channels 0-7)

FOR UNIVAC 1219 COMPUTERS EQUIPPED WITH 16 I/O CHANNELS:

00200-00217 Unassigned
00220-00237* Continuous data mode (channels 8-15)
00240-00257* Output buffer control registers (channels 8-15)
00160-00277* Input buffer control registers (channels 8-15)

*When not assigned for these functions, the locations may be used for data
storage.

An additional 128 words of control memory are optional.

2. 32-Word NDRO Memory (Bootstrap). The computer is provided with
3210 nondestructive readout memory locations (005008-005378) which contain computer
instructions and constants for an initial load program (bootstrap). This provides
the ability to enter an initial package of utility routines that may be used to
load and/or debug more sophisticated programs. These memory locations have unique
characteristics in that they are transformer cores which operate in a special type
of nondestructive read-out mode. They are not accessible to the programer for store­
type instructions. The bootstrap program is assigned to memory locations 005008 to
005378 inclusive.

1.5-2

)

MAJOR COMMAND SEQUENCES- I SEQ-READ INSTRUCTION FROM MEMORY a INDEX MODI FICATION
R SEQ- READ OPERAND FROM MEMORY
W SEQ-WRITE OPERAND INTO MEMORY

MANUAL
~ T CONTROL

Z SEL. (COMP

• f f ,
..

K - ... F ... Zm .. Ze
-- p

J I~
4. i

rJ , ,.
Mm Me

4~ ICR • • I-- I
P ... ~ Sm

.,.
Se -r- - .. -....

4~ SR H. t f f (

--
,r , r ,r (ADR. GEN. -./-

-",I

~ X a D SEL .,.-, -, " , , "
X .. Sub r- D W ---....

~~ .~

" I - --Au AI W -- ... - -
Figure 1.5-1. 1219 Computer Block Diagram

)

CO
4 a ...--.

f CO'

Bu ---,
)

CE
±I 4- a r-+

CE I

-
IN

STR SEL - SEL ..--....

f
AMP

I~

"
IIO
ACK

4~

TRANS . -....
" t (f) .

Pri - IIO -- CONTROL

-,
EXT. REG.

S.G.1219 (P)l.S

3. Main Memory. The main memory consists of a 2-microsecond core
storage that is used for program, constants, and data storage. All locations are
accessible to the programer at random and to all sections of the computer on a time­
shared basis. Some locations are given special assignments which the programer
must respect and provide for their contents. The fixed addresses assigned to main
memory are listed in table 1.S-2.

TABLE 1.S-2. MAIN MEMORY FIXED ADDRESSES

Address Assignment

000100-000117
000120-000137
000140-0001S7

000300-000317

000320-000337
000340-0003S7

000360-000377

000400-000477
000S40-177777

000S40-077777

000600-000677

External interrupt registers (channels 0-7)
Unassigned
Output monitor interrupt registers
(channels 0-7)
External interrupt registers (channels
8-lS)
Unassigned
Output monitor interrupt registers
(channels 8-lS)
Input monitor interrupt registers (channels
8-lS)
Unassigned*
Unassigned (for computers equipped with
6SK memory)
Unassigned (for computers equipped with
32K memory)
Unassigned*

* These addresses are in control memory when 256 'words of control memory
are used.

4. Main Memory and Control Memory Concurrent Operation. The master
clock in the UNIVAC 1219 Computer controls and synchronizes all operations performed
by the various sections through the electronic timing chains allotted to them.
The read/restore cycle time of main memory is 2 microseconds. All control 'and
timing sequences for the various functions the computer performs are based on this
2-microsecond cycle. Four SOO-nanosecond control memory read-write cycles occur
during one main memory read-write cycle. An instruction from main memory storage
can be transferred to the control section for execution in approximately 0.9
microseconds. Any modification to this instruction and complete trnaslation is
completed before the end of that main memory cycle since the modifiers are extracted
from control memory in less than 2S0 nanoseconds. The input/output section has
independent access to control memory for its control words, clocks, etc., during
instruction sequences.

c. Arithmetic Section. The arithmetic section performs numeric and logical
calculations. Thoug~greatly simplified, figure I.S-2 shows the important components
of the arithmetic section: AU-, D-, AL-, X-, and W-registers and the adder network
(subtractive type).

The AL-register (18 bits)
conventional accumulator.
is actually only the main
rank.

1.5-4

may be thought of, for programing purposes, as a
Because of the logic employed, however, the AL-register

rank of the accumulator; the D-register serves as a second

SoG o1219 (P)1.5

I OF 54 Y DRIVE LINES

1/2 1 WRITE-+ 4-- 1/2 I READ
IOF64 X

DRIVE LI NES &::===;::===:~:;::::;4
INHIBIT

PASS THROUGH AL L
CORE IN 2" BIT PLANE

2° BIT PLANE ~;::===~~

I

217 BIT PLANEI~===:=I'"

X X X

STACK

1&1
!::
g:
~ ...

4-- 1/2 1

OUTPUT ON SENSE

MAIN MEMORY
ORO
BIT ORIENTED

;;:-:=--r-. ... _~ .. ·O .. VDC

2 ". SEC CYCLE

XXX XXX XXX X X X
• •

X DIODE X GROUP Y DIODE Y GROUP

Figure 1.5-2. Core Memory Example

1. 5-5

S.G.1219 (P)1.5

The ADDAL operation is typical of the relationship between the AL and D registers:
the augend and addend are initially contained in AL and D. Before the addition is
performed, the contents of the AL register are transmitted to the X register. The
values of X and D are combined by the adder network (subtractive type) to form the
sum of the two numbers in a parallel manner and are placed in the AL register.

The AU register (18 bits) is used principally during multiply and divide operations.
The contents of both AL and AU may be shifted left or right, either individually or
as one double-length 36-bit word. The AU and AL registers may also be combined
to do 36-bit arithmetic operations.

The X-, D-, and W-, registers are 18-bit, nonaddressable registers. These registers
are used primarily either for the exchange of data within the arithmetic section or
for communicating with the remaining sections of the computer. The X-, D-, and W­
registers are not displayed on the control panel of the computer; the AU-, and AL­
registers do have indicators which allow the operator to inspect the contents of
these registers during debugging operations.

The arithmetic section is used by the control section of any address or operand
modification requested by an instruction and for overflow detection if overflow
exists at the completion of any arithmetic instruction except multiply.

d. Control. The control section contains circuitry necessary to procure,
modify, and execute the single-address instructions of a program stored in the
core memory of the computer. It controls parallel transfers of instructions and
data. Direct or indirect addressing capabilities and automatic address and operand
modification are directed by the control section translators and the timing of the
synchronous, electronic master clock. This section controls all arithmetic, logical,
and sequential operations of the computer except those assigned to the input/output
section. It has facilities to permit an interruption of the running program when
certain real-time events require such interventions.

Timing commands within the computer are a function of the master clock circuit and
the main timing cycle circuits. The master clock circuit produces the four basic
timing pulses used to establish the operation of the main timing cycle circuits and
provides the command enable pulses through gating by the main timing chain.

The master clock generates and distributes four basic timing pulses for each SOD
nanoseconds of operation. These four pulses, called phases I through 4, constitute
one complete clock cycle. Four clock cycles represent one computer memory cycle of
2 microseconds. This provides the basis for the major command sequences which are
outlined in table 1.5-3.

The control sectio'n is made up of the P-, SR-, K, ICR-, and F- registers.

e. Input/Output.

1. Introductiono The input/output section includes those data paths and
control circuits used by the computer for communicating with external equipment.

All communication betwe~n the computer and the external equipment is accomplished
via 16 input and 16 output channels and their associated control circuits. The
chan~el~, both in~ut and ~utpu~ are numbered from,O through 178 with each channel
consIstIng of 18 InformatIon lInes plus control lInes; channel priority ranks from
17 through 0, with the high numbered channels given preference over the lower
numbered channels. Input and output communication alternates if both types of
requests exist simultaneously.

The input/output section uses particular control memory addresses which dicate the
memory area affected by this input or output operation (buffer control words) and
~articular core m~m?ry addresses which contain instructions executed when particular
Input/output condItIons occur (interrupts).
1.5-6

TYPE
CONTROL

INPUT/
OUTPUT

WAIT

SEQUENCE
1
R1

R2

W

INTERRUPT

B1

B2

I/O 1

I/O 2

WAIT

S.G.1219 (P)l.5

TABLE 1.5-3. COMMAND SEQUENCES

FUNCTION
Reads the instruction word from memory.
Reads the normal IS-bit operands from
memory and performs the data manipulations
as required.
Reads the second IS bits of a 36-bit operand
and performs the data manipulations as required.
Writes an IS-bit word in memory and performs data
manipulations as required.

Reads the contents of the interrupt entrance
registers from memory.
Reads the terminal address control word
and stores it in the appropriate control
memory address.
Reads the initial address control word and
stores it in the appropriate control memory
address.
Reads from or writes into the memory, either
an 18-bit word or the first 18 bits of a
36-bit word.
Reads from or writes into the memory, the second
18 bits of a 36-bit word.
Inhibits the performance of all control sequences
but permits input/output operations to continue
until an interrupt occurs.

2. Input Channels. The input channels are used to receive two types
of information from external equipment: input data and external interrupt infor­
mation. External interrupt information originates at the external equipment and
usually informs the computer of an abnormal condition such as tape breakage or
incorrect parity. Input data information transfers are controlled by buffer control
words in core memory.

3. Output Channels. The output channels are used to transmit data and
external function information from the computer to external equipment. External
function information, transmitted through the data lines, is used for external
equipment control such as turn on reader, rewind tape, or turn off typewriter.
Both data and external function information transfers are controlled by buffer
control words in core memory.

Either an output buffer or an external function mode may be active. Both use the
same assigned locations in control memory for buffer control words. Thus,
initiating an output buffer will cancel any external function buffer on the same
channel and initiating an external function mode will cancel any active output
buffer on the same channel. -

1.5-7

S.G.1219 (P)1.5

4. Priority. The higher numbered channel operation is given highest
priority. Then the I/O function priority circuits provide automatic selection
of the higher priority operation when two or more operations are requested by
peripheral equipment or by the computer at the same time. Some real-time events
as well as certain information transfers require special handling or main program
intervention. These operations or interrupts are processed by the input/output
section according to a prearranged priority scheme.

5. I/O Instructions. To initiate input/output buffers, the two memory
cells immediately following the instruction are used to contain the buffer control
words. The complete instruction must therefore occupy three sequential memory
cells; the format is shown in figure 1.5-3.

Any Address

n L-l_7 ___________ 1_2~I __ ll _____________ 6~1~5 _______________ 0II/O Instruction

f m k

n + 1 1175115
COM •
Unassigned

olTAC Word

Buffer Terminal Address

n + 2 ~6115
Modifier
Monitor

olIAC Word

Buffer Initial Address

Figure 1.5-3. Buffer Initial Address

The following paragraphs apply to figure 1.5-3.

1.5-8

a) Bit 17. COM of n + 1 (terminal address control word) is the
continuous data mode identifier. If equal to one the computer
I/O section operates in the continuous data mode. If equal to
zero a normal buffer is executed.

b) Bit 17. Modifier of n + 2 (initial address control word); if
equal to one the buffer current (initial) address is decremented
for each word transferred in or out; if equal to zero the buffer
current address is incremented.

c) Bit 16. Monitor of n + 2 (initial address control word); if equal
to one the Monitor Interrupt occurs upon successful completion of
the last transfer; if equal to zero no Monitor Interrupt will
occur.

S.G.1219 (P)1.5

NOTE

Normal buffer termination occurs when the incremented/decremented buffer
current address is equal to the buffer terminal address. A buffer is
terminated when tests in the control section detect buffer control address
equality.

6. I/O Buffer Initiating Instructions. During the execution of any
instruction that initiates a buffer, three main memory references are involved.
(5011-5013).

a) The I/O instruction is extracted from memory and interpreted by
the control section.

b) The terminal address control word is transferred from the location
following the I/O instruction to the control memory location
assigned to that type buffer terminal address control word.

c) The initial address control word is transferred from the location
following the TAC word in main memory to the control memory loca­
tion assigned to that type buffer current address word and the
specified channel is set active for that type transfer.

Computer control reads the next sequential instruction and
continues the program leaving the input/output section with the
task of handling the transfers. The input/output section
generates the addresses in control memory to examine the control
words placed there by the preceding steps, when it receives a
request for word transfer from the device on the activated channel.
For the actual word transfer the I/O section robs one main memory
cycle from the program being executed.

The continuous data mode, requested when initiating a buffer on a channel, is a
feature which provides an automatic reinitiation of the buffer upon completion.
A new pair of buffer control words is transferred to the control memory buffer
control addresses from the control memory COM addresses for that channel. The
monitor interrupt can be incorporated with the COM and, if so, the interrupt will
occur each time the buffer is terminated and reinitfated. The COM is especially
useful when a continuous, high rate stream of data must be transferred in or out of
the computer.

7. Real-Time Processing (Interrupts). The ability of the UNIVAC 1219
Computer to process various applications concurrently is implemented by a program
intervention system called "interrupts". These interrupts may originate at some
remote external device (external interrupts) or they may originate within the
computer (internal interrupts L Since more than one may occur at the same time the
computer possesses a priority scheme with decision-making qualities so that it can
select the branch of operation for solving the problem requiring the most urgent
attention. Under program control the other interrupts may be honored in turn
according to the next highest priority or they may be ignored. With this interrupt
feature real-time problem solution and maximum processing potential of the system
is realized since less important routines can occupy the computer's surplus time.

1. 5-9

S.G.1219 (P}1.5

8. Special I/O Modes.

a) Externally Specified Index. This outstanding feature provides
peripheral devices with a means of specifying core storage areas in the computer's
memory for any input or output transfers they may request. The externally specified
index (ESI) mode of operation is useful as multiplexing device for a number of slow
transfer peripheral units occupying one dual channel. The buffer control words
governing the transfers are located at the Index addresss. If input is desired an
input request is presented with the index on one channel of the pair and the data
on the other channel. If Output is desired, an Output Request is presented with
the Index address.

b) Externally Specified Addressing (ESA). The ESA feature provides
peripheral devices with a means of specifying an absolute core memory location for
storage or retrieval of data. An active dual-channel mode of operation is required
for computer response to this function. The address is presented on one channel
and the data transmission path on the other. If input is desired the external device
presents an Input Request with the address and data. If output is desired an
Output Request is presented with the address.

c) Dual Channel. The Dual Channel mode provides for consecutive
(even/odd numbered) channels may be "paired" to form a single 36-bit parallel
channel.

d) Intercomputer. The Intercomputer mode provides for 18 or 36-bit
parallel data transfers with other UNIVAC computers. No interface adapters are
required for intercomputer communication.

e. 1219 Computer Physical Description. The computer was built to conform to
specification MIL-E-16400 (i.e., for ruggedized equipment). The single cabinet
contains power supply, logic circuits, core memory, (up to 32,768 words) control
panel on front of cabinet and cooling system. See table 1.5-4.

TABLE 1.5-4. PHYSICAL CHARACTERISTICS

Physical Size and Weight: (32K, 8 I/O Channels)

Height:
Width:

Environment:

71.75 inches
25.88 inches

Depth:
Weight:

Operating temperatures OOC to 500 C
Non operating temperatures -- 620 C to +750 C
Humidity -- Relative Humidity to 95%

Power Requirements:

30.03
900-1000 pounds

J

115 volts +5 percent, 3-phase, 400 cps, 2000 watts maximum, air-cooled.
115 volts +5 percent, 3-phase, 400 cps, 3000 watts maximum, water-cooled.

1.5-10

S.G.1219 (P)1.5

f. Operational Characteristics. See table 1.5-5.

TABLE 1.5-5. OPERATIONAL CHARACTERISTICS

Control Memory

Cycle Time:
Capaci ty:
Type:
Purpose:

Main Memory

Cycle Time:
Capaci ty :

Type:
Purpose:

NDRO Memory

Cycle time:
Capaci ty :

Purpose:

Channels

Type:
Number:

Transfer Rate:

Operation:

MEMORY

500 nanoseconds
128 18-bit words
Word organized, magnetic core
Index registers, clock cells,
I/O buffer control registers;
operates in the "shadow" of
the main memory at a 4:1 ratio.

2 microseconds
8,192, 16,384, or 32,768 18-bit
words (standard options) 65,536
word memory (additional option)
Coincident current, magnetic core
I/O interrupt registers, program
and data storage.

2 microseconds
32 18-bi t words
Word organized, transformer,
unalterable
Bootstrap (initial load) program
storage. Programs available for
paper tape and magnetic tape
load.

INPUT/OUTPUT

Simplex, 18-bit parallel
32 maximum; 16 input plus 16
output
One channel--166,000 18-bit words/
second (maximum)
Multichannel--500,000 18-bit
words/second (maximum)
Each channel fully buffered
and once activated operates
without program attention,
asynchronous, at the rate of the
peripheral unit.

1. 5-11

S.G.1219 (P)1.5

TABLE 1.5-5. OPERATIONAL CHARACTERISTICS (CONT.)

1. 5-12

Information Transfers

Input Channels:
Output Channels:
Processing Time Required:

Delay due to Program:

Operating Modes (Standard)

Normal Single Channel:
Normal Dual Channel:

Externally "Specified
Index (Dual Channel)

Externally Specified
Address (Dual Channel):

Continuous Data Mode:

Intercomputer Single
Channel:

Intercomputer Dual
Channel:

Interrupts

Input Channels:

Output Channels:

Input data, interrupt data
Output data,external command data
2 microseconds/word transferred
o microseconds during extended sequence
instructions
2 microseconds (maximum)

18-bit parallel transfers
Consecutive (even/odd numbered)
channels may be "paired" to form
a single 36-bit parallel channel.
18-bit parallel data transfers
with storage address indirectly
specified by external device;
useful for multiplexing decom­
mutating data to/from computer.
18-bit parallel data transfers
with storage address directly
specified by external device.
Program controlled automatic
reinitiation of previously
established buffers. Program
controlled termination of CDM.
18-bi t parallel or 36-bi t par­
allel input/output word trans­
fers.
Direct 18-bit parallel data
transfers with other Univac
computers; no interface adapters
required for intercomputer com­
munication.
Direct 36-bit parallel data
transfer with other Univac
computers. No interface adap­
ters required for intercomputer
communication.

16 external interrupts plus 16
internal interrupts (programer
option).
16 internal interrupts (programer
option).

S.G.1219 (P)1.5

TABLE 1.5-5. OPERATIONAL CHARACTERISTICS (CONT.)

Instructions

Type:
Address Modification

Repertoire:

Clock

Type:

Location:
Durat ion:
Granularity:
Interrupt:

Synchronizer

Interrupt:

Purpose:

Organization:

Execution Times:

CONTROL

Single address.
8 Control-memory-contained index
registers.
102 instructions.

Automatic, additive, under program
con trol.
Control memory.
Established under program control.
LSB represents 1/1024 second.
Interrupt occurs when program pre­
set value is reached.

Interrupt occurs whenever the
non-I/O synchronizing control
line is set to logical one by an
external device.
To allow a variable-granularity
clock function or to provide a
high priority alarm recognition
capability.

ARITHMETIC

18-bit parallel, one's comple­
ment, integer.
Typical execution times, including
instruction and data fetch plus
indexing.
Ad d , sub t r act (s i n g 1 e - 1 eng t h) 4
usec.
Multiply/divide 14 usec.
Add, subtract (double-length) 6
usec.
Compare/masked compare and branch
6 usee.
Register shifts: right, left,
single, double 2 + .5n usec
(n = shift count).

1. 5-13

S.G.1219 (P}1.5

NAME:

1.5-5. STUDY QUESTIONS:

a. What are the four major sections of the computer?

b. How long is the core memory cycle time?

c. Why are the Sand P registers 16 bits long?

d. When is the SR-register used? What precautions will the programer
have to take regarding the use of the SR register?

e. When is the P-register advanced? What happens to the P-register
during interrupt?

1.5-15

S.G.12l9 (P}1.5

1.5-16

f. What is the purpose of the B-registers? When are they used and
under what conditions?

g. What are the possible faults in the computer?

h. When an instruction word is read into the Z-register, to what
register(s) is this information transferred?

i. What is the purpose of the CE and CO registers?

j. How is an input/output operation initiated?

S.G.1219 (P)1.5

NAME:

k. What is the meaning of the word "monitor" when used with input/
output?

1. Dual option has been selected and you receive an interrupt on an
even channel. How will the computer respond?

1. 5-17

S.G.1219 (P)1.6

SECTION 1 - 1219 COMPUTER FUNCTIONAL DESCRIPTION

1.6. FUNCTIONAL INPUT/OUTPUT

1.6-1. OBJECTIVES

To acquaint the students with the characteristics of the input/output hardware of
the 1219 computer.

To acquaint the students with the necessary program consideration fur input/output
operations.

1.6-2. INTRODUCTION

The input/output section of the 1219 computer is a major portion of the computer.
The I/O section includes those data paths and control circuits used by the compu­
ter for communicating with external equipment. The I/O section uses particular
control memory add~esses which dictate the memory area affected by this I/O
operation (buffer control words) and particular core memory addresses which contain
instructions executed when particular I/O conditions occur (interrupts).

1.6-3. REFERENCES

a. PX 3316, Vol. I, Vol. II

b. PX 3288, Programers Reference Manual, Sections, I-B and I-E

1.6-4. INFORMATION

a. General Operation.

1. Introduction. Communication with the UNIVAC 1219 Military Computer
is carried on in an l8-bit parallel mode. The computer is provided with up to
sixteen input and sixteen output channels, each logically independent of the others
and each brought to its own cable connector (32 connectors in all). Each channel
contains 18 information lines plus control signals. If it is desired to communicate
with an external device requiring more than 18 bits of parallel data, a dual
channel option -may be selected by one of four switches on a control panel. The
selected option logically combines a pair of sequentially numbered even and odd
channels to form a single channel having 36 bits of parallel data plus one set of
control lines. All signals on information lines and control lines' are at two d-c
levels which may be changed upon interchange of information. These may be held
stable for microseconds or days, depending on the nature of the particular task.

The computer is scanning for input/output or interrupts during the time it is trans­
ferring input/output data, performing an instruction, or at any time when the timing

1.6-1

S.G.1219 (P)1.6

chain is running. If it finds an input or output request it will not look for
interrupt since I/O scan is performed ahead of interrupt scan. If both Input and
Output requests are present, the data scan will alternate service--if not both
present it will honor either.

All references to input or output in the documentation are made from the standpoint
of the computer; that is, "input" is always input to the computer and "output" is
always output from the computer.

Input/output is carried on in a request acknowledge basis. The request is a control
signal sent by the peripheral device to the computer, telling the computer that
peripheral device is ready to communicate with the computer in some given mode.
The acknowledge is a control signal that originates in the computer and serves to
inform the peripheral device that the computer has performed the requested transfer.

2. Control Signals. There are four basic types of transfers between
the computer and peripheral equipment. They are data transfers or command code
transfers. On the output cable the computer can either send information (output
data) to be handled by the peripheral device or a command code (external function)
which serves to tell the peripheral device to perform some operation. These two
types of transfers are differentiated from one another in the peripheral device
by observing which control signal (acknowledge) accompanied the transfer.

On the input cable the computer can receive from the peripheral information (input
data) or a command code (external interrupt), which serves to inform the computer
of the status of the peripheral equipment. These transfers are differentiated
from one another in the computer by observing which control signal (request)
accompanied the transfer. See Table 1.6-1 for an explanation of specific control
signals.

All input and output statements are made with reference to the computer; that is,
"input" is always input to the computer and "output" is output from the computer.

Examples will clarify the uses of the control lines. Figure 1.6-1 shows the
computer communicating with a peripheral equipment over both input and output
cables.

Notice the direction of information flow. Request and interrupt signals always
originate at the peripheral equipment. Acknowledge and external function signals
always originate at the computer. Examples are given in the following paragraphs.

1.6-2

a) Normal Input Sequence For Data Transfer to the Computer From
Peripheral Equipment.

1) Program control initiates input buffer for given channel.

2) Peripheral equipment places data word on information lines.

3) Peripheral equipment sets the input request line to indicate
that it has data ready for transmission.

4) Computer detects the input request.

5) Computer samples the information lines at its own conven­
ience.

Input
Channel

Output·
Channel

S.G.1219 (PH.6

TABLE 1.6-1. DESCRIPTION OF INPUT OUTPUT CONTROL SIGNALS

SIGNAL
NAME

Input
Request (IR)

Input
Acknowledge
(lA)

External
In terrupt (EI)
(Reques t)

Output
Request (OR)

Ou tpu t
Acknowledge
(OA)

External
Fu n c t ion (E F)
(Acknowledge)

External
Function
Reques t (EFR)

ORIGIN

Peripheral
Equipment

Computer

Peripheral
Equipment

Peripheral
Equipment

Computer

Computer

Peripheral
Equipment

MEANING

I have a data word on
the input lines ready
for you to accept.

I have sampled the word
on the input lines.

I have an interrupt
code word on the input
lines ready for you to
accept.

I am in a condition to
accept a word of data
from you.

I have put a data word
for you on the output
lines; sample them now.

I have put an external
function message for
you on the output lines;
sample them now.

I am in a condition to
accept an external
function message from
you.

1.6-3

S.G.1219 (PH.6

... E. F. REQUEST

E. F. ACK. .. .

UNIVAC t- OUT. REQUEST OUTPUT
1219 PERIPHERAL

COM PUTER UNIT
OUT. ACK.

INFOR MATION LINES :>
ONE 1219 OUTPUT CHANNEL

IN. REQUEST

IN. ACK.

UNIVAC INPUT
1219 .- EXT. INTERRUPT PERIPHERAL

COMPUTER - UNIT

~ I NFORMATION LINES

ONE 1219 INPUT CHANNEL

Figure 1.6-1. 1219 Input/Output Connections

1.6-4

S.G.1219 (PH.6

6) Computer sets the input acknowledge line, indicating that
it has sampled the data.

7) Peripheral equipment senses the input acknowledge line.

8) Peripheral equipment drops the input request line.

Steps 2 through 8 of this sequence are repeated for every data word until the
number of words specified in the input buffer have been transferred o

b) Sequence For Peripheral Equipment When Transmitting an Interrupt
Code to Computer.

1) Peripheral equipment places the interrupt code on the
information lines.

2) Peripheral equipment sets the interrupt line.

3) Computer detects the interrupt.

4) Computer samples the input lines and stores interrupt code
in memory location 101 plus twice the channel number (281
plus twice the channel number for channels 108 to 178).

5) Computer sets the input acknowledge lines, indicating that
it has sampled the information and when no data request or
interrupt lockout exist, it reads its next instruction from
memory location 100 plus twice the channel number (280 plus
twice the channel number).

6) Peripheral equipment senses the input acknowledge line.

7) Peripheral equipment drops the interrupt signal.

8) Peripheral equipment may change the data lines any time
after dropping the interrupt signal.

The input acknowledge is the computer response to either an input request or to an
interrupt. To eliminate misinterpretation of the input acknowledge signal, per­
ipheral equipment must not interrupt until its last input request has been ac­
knowledged by the compu ter. Under emergency condi tions, when data loss is of
secondary importance, IR may be dropped but data lines mus t rem'lin s table for not
less than four microseconds. If, during this four microsecond interval, an IA
is received, the peripheral equipment may assume successful transfer of last data
word. At any time after the four microsecond interval the peripheral equipment
may change the data lines and send an interrupt. When these conditions prevail,
an input acknowledge signal that occurs after the interrupt is raised will be in
answer to the interrupt.

c) Normal Output For Data Transfer From Computer to Peripheral
Equipment.

1) Program control initiates output buffer for given channel.

1.6-5

S.G.1219 (P)1.6

2) Peripheral equipment sets the output request line when it
is in a condition to accept data.

3) Computer detects output request.

4) Computer (at its convenience) places data on the output
information lines.

5) Computer sets the output acknowledge line, indicating that
data are ready for sampling.

6) Peripheral equipment detects the output acknowledge.

7) Peripheral equipment may drop output request any time after
detecting output acknowledge.

8) Peripheral equipment samples the data on the output lines.

9) Computer drops output acknowledge.

All steps of this sequence except the first are repeated for every data word until
the number of words specified in the output buffer has been transferred. The
computer also has the option of forcing any word of an output buffer; that is, it
can, under program control, send an output data word regardless of the state of the
Output Request line.

1.6-6

d) Sequence For Computer Transmitting External Function Messages
To Peripheral Equipment.

1) Program control initiates external function buffer for
given channel.

2) Peripheral equipment sets the external function request
line when it is in a condition to accept external function
message.

3) Computer detects external function request.

4) Computer (at its convenience) places external function
message on the output lines.

5) Computer sets the external function line indicating that an
external function message is ready for sampling.

6) Peripheral equipment detects the external function.

7) Peripheral equipment may drop the external function request
any time after detecting the external function.

8) Peripheral equipment samples the external function message
on the output lines.

9) Computer drops the external function.

S.G.1219 (PH.6

All steps of this sequence except the first are repeated for every external func­
tion message until the number of words specified in the external function buffer has
been transferred.

The computer also has the option of forcing any word of an external function buffer;
that is, it can,under program control, send an external function message regardless
of the state of the EF request line for that channel. This option is necessary so
that the computer can override whatever function the peripheral equipment is per­
forming in order to re-establish positive control.

3. Rules for Use of Control Signals.

a) Request Signal. A request signal (or an interrupt) once set,
must remain set until it is acknowledged. This is necessary to maintain synchronism
in the passing of data words back and forth between units. There is one exception
to this rule, mentioned previously und~r paragraph 1.6-4a2. It is permissible for a
peripheral device to drop its input request in order to interrupt when it needs to
give the computer an urgent message and data loss is of secondary importance. This
case is philosophically similar to the computer sending a forced external function,
since the computer risks destroying data or an unexecuted command when it sends an
urgent external function message.

b) Information Lines. Information lines must be stable at the
time they are gated into storage elements. This self-evident axiom dictates the
timing re~ationships between the information lines and the control signals. In the
case of computer output, this rule requires the computer to provide a suitable delay
between gating information into output registers and raising the output acknowledge
or the external function signals, and similarly requires the computer to drop the
output acknowledge or the external function a suitable interval before changing the
information on the lines. Thus, the peripheral equipment is guaranteed that output
lines will be stable for sampling any time the output acknowledge or external func­
tion is present. In any case of computer input, the computer detects the input re­
quest or the interrupt before the sampling of the data lines. The peripheral equip­
ment cannot change the information lines after raising either its input request or
interrupt until an acknowledge has been received, indicating that the data lines
have sampled (except as stated in a) above).

c) Control Signals. All control signals will be resynchronized to
ensure that the control line has been returned to a logical zero state between suc­
cessive recognitions of control signals (b~ing reset to the one state). Thie re­
quirement guarantees that only a single recognition pulse will be generated each
time the control signal is set to a one state, and also is a safeguard against false
gating of data lines caused by noise or other spurious signals appearing on the con­
trol lines. There is no such restriction on the information lines. These need not
be cleared to zeros between successive words.

4. Interface Option. The 1219 computer is available in two interface
options, fast or slow. The fast interface option is characterized by interface
circuits that operate with voltage levels of 0 vdc, a binary one, a -3 vdc, a
binary zero. The slow interface is characterized by interface circuits that oper­
ate with voltage levels of 0 vdc, a binary one, and -15 vdc, a binary zero. In
this mode, additional time is allowed for control signals. To operate in either
option the correct option must be selected on the INTERFACE FAST/SLOW switch and
the correct printed circuit cards must be inserted in the computer. (See figures
1.6-2 and 1.6-3.)

1.6-7

S.G.1219 (P)1.6

INPUT DATA BIT OR
INTERRUPT CODE BIT

(TO COMPUTER)

I N PUT DATA REQUEST OR
EXTERNAL INTERRUPT
REQUEST
(TO COM PUTER)

INPUT ACKNOWLEDGE
(FROM COMPUTER)

OUTPUT DATA REQUEST OR
EXTERNAL FUNCTION
REQUEST

(TO COM PUTER)

OV

-15V

f.- 0.0 USEe

1.0

1]
-15V

OV

2.4 USEC l O.oUSEC

1----___ OV

\t~~c~- 8.0 USEC .~_ -15 v

INPUT COMMUNICATION

3.3
USEC

USEC O>Ol

OV

'--------- -15V

OUTPUT DATA BIT OR EXTERNAL ~
FUNCTION CODE BIT

(FROM COM PUTER)

- _______ ...J ~C---16.7 USEC

OUTPUT ACKNOWLEDGE OR
EXTERNAL FUNCTION
ACKNOWLEDGE

(FROM COM PUTE R)

NOTE: ALL TIMES SHOWN
ARE MINIMUM

1.6-8

1..4.3 I USEC

~-----t. OV

OUTPUT COMMUNICATION

8.0
USEC

Figure 1.6-2. Slow Interface Timing

'------ -15 V

S.G.1219 (PH.6

INPUT DATA BIT OR
INTERRUPT CODE BIT

(TO COMPUTER)

---J~--------- °3
V

V

0.0 USEC

I NPUT DATA REQUEST OR
INTERRUPT REQUEST

l TO COMPUTER)

INPUT ACKNOWLEDGE
(FROM COMPUTER)

OUTPUT DATA REQUEST OR
EXTERNAL FUNCTION REQUEST

0.8
USEC

2.4
USEC

INPUT COMMUNICATION

(TO COMPUTER I \!u~:1;1

OUTPUT DATA BIT OR EXTERNAL
FUNCTION CODE BIT

(FROM COM PUTER)

EXTERNAL FUNCTION
ACKNOWLEDGE OR
OUTPUT ACKNOWLEDGE
(FROM COMPUTER)

NOTE: ALL TIMES SHOWN
ARE MINIMUMS

Figure 1.6-3.

2.7 1

OUTPUT COMMUNICATION

Fast Interface Timing

OV

'-------3V

OV

3V

OV

~,"----3V
0.0 USEC

1.6-9

S.G.1219 (P)1.6

b. Interrupts and Assigned Interrupt Addresses.

1. General. Interrupts in the computer system may cause main program
intervention. An instruction located in a core memory address, designated by the
condition causing the interrupt, will be normally executed.

The instruction located in the designated memory location is chosen by the programer
and is usually an indirect return jump. A return jump instruction stores the ad­
dress of the next sequential instruction of the main program, so that computer con­
trol can return to the main program. External interrupts are processed after the
interrupt code is stored in the next sequential address following the interrupt
entrance register. The code is stored at the time the computer honors the interrupt
from the peripheral device. When an interrupt is processed, the computer will gen­
erate the address required to callout the instruction from the assigned locations
as well as the address for storage of the interrupt codes.

2. Classification of Interrupts. Interrupts can be classified as spe­
cial or channel interrupts.

a) The Special Interrupts.

1) Fault Interrupts. A fault interrupt is a special case of
internal interrupt caused by executing a meaningless function code, i.e., 00, 01, 77,
or 5000, or 5077.

2) Intercomputer Time Out Interrupt. The intercomputer time­
out interrupt is available during intercomputer operation. Any single bit of the
RTC incrementing register may be wired to monitor the resume circuitry. When the
RTC count reaches the specified bit, a designator is set. If no resume is received
by the computer before the next time the count reaches that bit, the intercomputer
time-out interrupt is activated and the next program instruction is taken for the
IC interrupt entrance register (location 11).

3) Real-Time Clock Monitor. The real-time clock (RTC) monitor
interrupt causes an intervention in the computer program when the value of the real­
time clock monitor word stored at address 00014 equals the value of the real-time
clock word stored at address 00015, provided instruction 50:14 (enable real-time
clock monitor) has been performed. The equality of the two RTC words is checked in
the BU ~ ZO network. Once the interrupt has occurred, the computer is forced to
address 00012 where it can enter a subroutine for RTC proceSSing.

4) Real-Time Clock Overflow. The RTC overflow interrupt occurs
only when an addition of one to the contents of the BU register (the RTC word)
changes it from all binary ones to all binary zeros. Using the 1024-cps RTC, the
time interval, measured from an all zero RTC word until it is all zeros again, is
256 seconds. When the overflow interrupt occurs the computer is forced to address
00016.

5) Synchronizing Interrupt. A synchronizing interrupt (not
associated with any input or output channel) is provided on the computer via a
single line. Whenever certain events occur at some external device which requests
the computer to perform a given routine, this synchronizing input will be used to
alert the computer. High priority is given to the interrupt and. control is trans­
ferred to the instruction located in memory address 00016.

1.6-10

S.G.1219 (P)1.6

b) Channel Interrupts.

1) External Interrupts. External interrupts originate in peri­
pheral equipment. The peripheral equipment places a code on the input data lines
and sends an interrupt request to the computer. The code is stored in assigned
memory locations in main memory, (101 + twice the channel number for channel 0-7)*
during an I/O-sequence or sequences. At some later time the computer will generate
the address required to callout the instruction from the appropriate assigned mem­
ory location (100 + twice the channel number for channel 0-7)*.

2) Monitor or Buffer Termination Interrupts. Monitor inter­
rupts are generated by the input/output section of the computer whenever a buffer,
which has been initiated with monitor imposed, terminates. This does not result in
any code storage except in the case of ESI mode. In the ESI mode the sub-channel
address is stored in the odd address. Use of monitor is a program option.

The assigned memory locations for output or external function monitor are 140 +
twice channel number (channels 0-7).** The assigned memory locations for input
monitor are 160 + twice channel number (channels 0-7).**

c. Priorities.

1. General. The input/output section of the 1219 handles two basic
types of operations. These operations are the transfer of data or codes between
peripheral equipment and the computer, and the processing of interrupts.

The 1219 scans for transfer requests or interrupt requests during the execution of
instructions or the processing of I/O operations. These scan functions can be
divided into two types. These two are the data scan and the interrupt scan.

Each scan is responsible for gating requests and selecting the order in which re­
quests will be processed. These are accomplished according to definite priority
schemes.

In the priority scheme the higher numbered channel activity is honored first. The
scanning of functions for priority determination is based on the computer's 2-micro­
second cycle time. During any major sequence (i.e., one that requires a memory ref­
erence) one data scan cycle transpires during the first microsecond and one inter­
rupt scan follows in the next microsecond if some inhibiting condition does not
exist.

*

**

For computers with 16 channels the assigned memory location for the second 8
channels are 261 and 260 + twice the channel number for code storage and
instruction.

For computer with 16 channels the aSSigned memory locations for the second eight
channels are 320 + twice the channel number for output or external function
monitor, and 340 + twice the channel number for input monitor.

1.6-11

S.G.1219 (PH.6

2. Data Scan Priorities. The data scan sequence, after determining
channel priority, selects top function subpriority in the following order:

a) RTC update.

b) External interrupt status word storage.

c) Output request (or external function) if preceding I/O scan
sequence honored input.*

d) Input request; if preceding I/O scan honored output or E.F.
output or input if only one request exists.*

If none of the above functions are detected during the I/O scan sequence the inter­
rupt scan is initiated to operate during the next microsecond of the computer cycle.
If a request is detected, the I/O' sequence is initiated. It processes the request being
honored. Scan for interrupts is inhibited during extended sequences because inter­
rupts cannot be honored during the execution of an instruction. The scanning se­
quence for interrupts is not effective when an interrupt lock-out exists.

3. Interrupt Scan Priorities. The interrupt scan sequence selects top
interrupt priority as follows if no lock-out exists.

a) Fault.

b) Intercomputer time-out interrupt.

c) RTC monitor interrupt.

d) RTC overflow interrupt.

e) Synchronizing interrupt.

4. Conditions to Inhibit Scan Functions.

a) Data Scan.

1) I/O = 1 and dual mode.

2) I/O = land ESI and terminate.

~,; The I/O section of the 1219 computer is constructed in' four channel modules.
These modules comprise one computer chassis. A given chassis would contain all
of the odd or all of the even channels in either the high or low eight channel
group, i.e., channels 0, 2,4, and 6, would be on one chassis, channels 1, 3, 5,
and 7, would be on a second chassis. Function priority is determined in each
chassis. Therefore, the function priority applies for each set of 4 channels.
For example, it may happen, assuming proper requests, that the computer would
process an output request on channel 7, and then an output request on channel 6
(another chassis) before doing any input operations.

Dual mode processes the odd channels according to function priority.

1.6-12

S.G.1219 (P)1.6

3) Continuous data request.

During R-l of function 20-23 and 57 scan runs but the set­
ting of 1/0-1 sequence is inhibited.

b) Interrupt Scan.

d. Modes.

1) During any I/O sequence or instruction.

2) After accepting an interrupt and until the interrupt lockout
is cleared.

3) During compare instructions.

1. Single Channel Operation. Input and output data transfers are 18-
bits parallel. Two 24-pair cables connect the peripheral unit to the input/output
channel for two way communication. Input and output connections are physically
separated for each channel.

2. Dual Channel Operation. Users of the computer have the option of
communicating over the l8-bit parallel single channels or of logically combining
sequential even and odd numbered channels into a 36-bit parallel dual channel. This
option is selected by one of eight switches (16 channels) on the control panel.
Selection of this dual channel option affects only that pair of channels selected,
but both input and output channels of a given channel number are combined by a sin­
gle switch setting. For example, if the first switch is activated, input and output
channels 0 and 1 are combined to form a 36-bit input and a 36-bit output channel,
but input and output channels 2 through 17 remain l8-bit, logically independent
channels. If this dual option is selected, the set of control lines belonging to
the odd-numbered option is selected, the set of control lines belonging to the odd­
numbered channel will have control of the information transfers over all 36 lines.

With this dual option selected, energizing of the request lines or the interrupt
line on the even-numbered channel will cause the computer to interpret this as a
desire to communicate in a single channel mode and the computer will reply over the
even-numbered set of control lines. Eighteen bits of information will be accepted
from the peripheral equipment on the even-numbered set of lines, and, as in any
single channel operation, identical information will appear to both sets of output
lines.

3. Externally Specified Indexing (ESI). ESI is usable only in a dual
channel mode. The I/O mode switch must also be set to ESI on the computer control
panel. The index address word is always placed on the set of input lines for the
odd-numbered channel. If the peripheral equipment desires to send an input word, it
will place the input data word on the 18 lines for the odd-numbered channel. If the
peripheral equipment desires to send an input word, it will place the input data
word on the 18 lines of the even channel and raise the odd input request line. The
computer will reply on the odd input acknowledge line. If the peripheral equipment
should raise the even IR line instead of the odd, the computer will interpret this
as normal single channel communication and ignore the index address, as explained
above. The program must provide an active channel for the ESI operation (instruc­
tion 5001, 5002, 5011 or 5012).

1.6-13

S.G.1219 (P)1.6

If the peripheral equipment wants a word of output data, it will place the index
address on the odd-numbered set of input lines and raise the odd output request.
The computer will reply with 18-bits of data, duplicated on both sets of output
lines, with the odd channel output acknowledge. Activation of the even-numbered
output request will similarly cause the computer to ignore the ESI feature.

Because the I/O control words are located in control memory, a limitation is imposed
on the ESI mode of operation. For this reason the control memory may, by option, be
expanded to 256 words to gain additional control word storage. In the 1218 some de­
lay arises when a subchannel buffer termination occurs as the computer program must
search all subchannel buffer control words to determine which buffer terminated.
This has been improved in the 1219 by automatically storing the subchannel address
into a fixed location (the vacant address associated with the channel monitor inter­
rupt entrance address) when termination occurs. In this manner the program can imme­
diately determine which subchannel terminated.

A sequence of events for output from a computer using ESI is as follows:

a) The computer program provides an active output channel to the
equipment.

b) The external device places a 6-bit control memory index address
(128 word control memory) N/2 on the odd input channel. The
subchannel address is left-shifted one place on input.

Nom

Addresses nand n + 1 are treated as normal buffer control
words with the same buffer control options available
(refer to section on control words). When the monitor in­
terrupt occurs during an ESI input/output sequence the in­
dex address N/2 is stored in the associated monitor inter­
rupt status word location (odd address) and the channel is
deactivated. The subchannel address is not left-shifted
on input when stored in an assigned memory location.

c) The external device sets the output request control line on the
odd output channel.

d) The computer detects the output request and at its convenience
reads and compares the addresses stored in nand n + 1.

e) The computer transfers the word from.the address located in
n + 1 to both output channels.

f) The computer sets the output acknowledge line on the odd channel.

4. Externally Specified Addressing (ESA). ESA·is a switch-selectable
dual channel mode of operation that allows external devices random access to core
memory for retrieval and storage of data as opposed to the continuous addressing
scheme associated with normal buffers. Individual and/or random entries in a data
pool lend themselves to an effective use of ESA. The external unit must be capable
of presenting the absolute address on the odd input channel of the pair.

1. 6-14

S.G.1219 (P)l.6

A sequence of events for output from the computer using ESA is as follows.

a) The computer program provides an active output channel to the
equipment. (The 5002 and 5012 instructions are used to
activate the channel.)

b) The external device places a 16-bit absolute address, n, on the
odd channel input lines.

c) The external device sets the output request control line on the
odd output channel.

d) The computer detects the output request and at its convenience
transfers the address, n, to the S-register.

e) The computer places the contents of address n on both output
channels of the pair.

f) The computer sets the output acknowledge on the odd channel.

The sequence of events for input is similar to output except that a data word is
placed on the even input channel with the storage address on the odd channel and the
input request line is raised. The computer responds with an input acknowledge. The
computer channel is activated by using instruction codes 5001 or 5011.

NOTE

No' addi tional equipment should be connected to the
even-numbered channel of the dual, ESA, or ESI
selected pair.

5. I/O Transfer Under Continuous Data Mode. Assume a buffer has been
initiated via a 5011 03 (initiate input on channel 3) instruction, and the input
transfer has been completed. If the CDM bit was set (bit 17 of terminal address
buffer control word), the contents of control memory addresses 26 and 27 would be
transferred to addresses 66 and 67 and the input buffer for channel 3 will have been
re-initiated without program attention. Before the buffer, defined by the new BOW's,
has been completed, the program has the option of storing another set of BOW's in
addresses 26 and 27 with or without the CDM bit set; this cycle continues until the
program clears the CDM bit in location 26. Similar action occurs for output and
external function buffers.

6. Intercomputer Communication Mode. SWitches on the control panel
provide the option of intercomputer communication to any or all input/output chan­
nels. The selection of a given I/O channel as an intercomputer channel has no
effect upon the modes of the un selected channels. An intercomputer channel can
function in either the dual or ESI mode in addition to the normal 18-bit mode.

The selection of a given channel as an intercomputer channel affects only the logic
concerned with the output and external function buffers.

A channel which is sending data or external function messages to a given peripheral
device holds the data in the output registers for a fixed minimum time period,
after which any output or external function request on any other channel which is
part of this 4-channel group can cause the data to be changed. However, a channel

1.6-15

S.G.1219 (PH.6

sending data or external function messages to another computer must hold the infor-
mation in the output registers until the receiving computer acknowledges receipt of __ /
those words. This acknowledge signal is received on what is known as the output
request line when not in the intercomputer mode. This line, in the intercomputer
mode, is known as the resume line.

In the case of UNIVAC 1219-to-1219 communication,this resume line is connected to
the input acknowledge line of the receiving computer. Activation of the resume
signal on the transmitting computer channel causes the setting of the resume flip­
flop which, when set, allows the transmitting computer to proceed to the next
highest priority output function (the next output data word or external function
message). If an output channel is holding data for another computer and no resume
is received from that computer, the output registers will be tied up until the
intercomputer time-out interrupt branches to a remedial routine. During the interim
no output buffers or external function buffers to other equipment on that channel
group can proceed. To limit the possibility of this hang-up occurring, two instruc­
tions and the intercomputer time-out interrupt are provided by which the computer
program can monitor the status of the resume flip-flop. These instructions are:
Skip On No Resume (5057 k), and Set Resume (5020 k). The former allows examination
of the resume flip-flop, and the later allows the program to correct the situation
in whi ch the hang-up exi s ts . (See figure 1.6-4.)

I
I

READY (ODA) I INPUT DATA REQUEST

I
INPUT ACKNOWLEDGE UNIVAC RESUME (ODR) 1 UNIVAC

1219 I 1219
OUTPUT I INPUT

CHANNEL EXTERNAL INTERRUPT
CHANNEL

(TRANSMITTrNG
EXTERNAL FUNCTION

'" - (RECEIVING

COMPUTER) I COMPUTER)

EXIT FUNCTION REQUEST
t
I

18 OR 36 INFORMATION I
LINES I

I

Figure 1.6-4. 1219-to-12l9 Communication

1.6-16

S.G.1219 (P)l.6

e. I/O Timing.

1. General. The 1219 computer accomplishes input/output on a time­
share basis with the running program. There are two basic types of operatio~s ac­
complished by the I/O section, the transfer of data or codes and the processIng of
interrupts.

During the first microsecond of the execution of an instruction sequence the 1219
computer scans for data request, except in those cases when the scan is inhibited.
If at this time the scan detects a request, the computer will hold up the execution
of the instruction at the end of the first microsecond and go into an I/O sequence
or sequences. The scan also normally runs during the last I/O sequence. If this
scan detects a request the 1219 stays in the input/output mode and continues to in­
hibit the second microsecond of the instruction sequence. If this scan does not de­
tect a request, control is transferred back to the program and the instruction se­
quence is completed. The data scan detects input/output, external function, exter­
nal interrupt code storage and real time clock update requests. (See figure 1.6-5.)

The interrupt scan runs during second microsecond of the instruction sequence. This
scan is inhibited during some conditions. If this scan detects an interrupt request,
the instruction is completed and the computer performs an interrupt sequence. The
interrupt sequence calls up an instruction from an appropriate assigned memory loca­
tion, and sets the interrupt lockout. The instruction is generally a return or in­
direct return jump, or a clear the interrupt lockout instruction.

2. Input/Output Sequences.

a) Single Channel I/O Sequence (2 usec). The I/O sequence includes
three control memory (500-nsec) cycles, During this sequence the current address
control word and the terminal address control words are read from control memory.
The current address control word is compared to the terminal address control word.
If during all this time they are found equal, the active flip-flop is cleared. The
current address control word is updated and stored in control memory. The data is
then transferred to or from memory at or from the contents of the address specified
by the current address control word. This sequence is altered for real-time clock
update.

b) Dual Channel 1/0-1 - 1/0-2. 1/0-1 (see preceding paragraph).
1/0-2. During this sequence the second half of a 36-bit word is transferred to or
from the address specified by the current address control word plus one if the buf­
fer is incrementing or minus one if the buffer is decrementing.

c) ESI I/O. The 1/0-1 of the ESI is a normal 1/0-1 sequence except
that the location of the buffer control words in control memory is specified by the
peripheral equipment and sent on the odd channel.

d) 1/0-2. The 1/0-2 sequence is run when in the ESI mode only if
monitor has been requested and the buffer is terminated. During this sequence the
subchannel address is stored in an appropriate assigned memory location.

e) ESA I/O-I. The address of the memory location to be transferred
is input directly to the S register from the odd channel input selectors and the
word is transferred to or from computer memory.

1.6-17

.
0"­
I
co

Assume the peripheral equip~ent has received an E.F. word to enable output, and responds
with an output data request. Single channel mode has been selected. The buffer has been
set up with monitor and is incremental, continuous data mode has not been requested, i.e.
Bit 17 of the TACW = O. The program continues as follows:

(01000) 50 12 01
(01001) 00 60 00
~01002) 20 60 00
(01003) 14 00 50
(01004) This value (P) will be stored b RJP of address 142

Output Request Channel 1
--,

\

Chan Output Ack Line / \
'--

2.75 j..Lsec

,.......
C"j

s::: -0 --.~ ,-...
~
t.)

::s

"'"
t...

""" t... . ..-..t...

"""
C"j --~ C'\J C"j t...

en """ """
s:: -s::: . 0

CI'i H 3: 3: ~ .~

t~
U 3:U t.) ~

-..:t: u..:t: ..:t: t.)
CJ)E--i ..:t: ::s

~

,f~ - - .j-l-

"'" c..c:::

t;~
::s ~

I 0 . en

Scan* s::: - s:: I c.. c::: C'C$.~ .j-l C'C$ Cl'iH

1 ** Ic..~~ ~..s:::

t~ Scan* Cl'iU

1B-l** I Scan* c..c:::
1B-2** I Scan*

IF

*

\
\

**
Scan for Data Type Requests
See Command Timing Charts for
Scan for Intprrupts

Details I Interrupt
-::f =

OMI = Output Monitor Int.

Figure 1.6-5. One Word Buffer With Monitor (No Higher Order Type Requests - Fast Interface)

.
0'

.,.

S.G.1219 (P)1.6

f) Continuous Data Mode I/O Sequence. This is an additional I/O
sequence that is run after an I/O-lor 1/0-2 (dual) during which the buffer control
words were found to be equal. During this sequence the terminal and initial address
control words are transferred from the COM assigned memory locations for the given
channel to the assigned memory for the buffer control words of the buffer that ter­
minated. The active flip-flop is reset.

1.6-19

S.G.1219 (P)l.6

NAME:

1.6-5. STUDY QUESTIONS

a. General

1. What control signals originate in the computer?

2. What control signals originate in the peripheral equipment?

3. Discuss the use of each control signal.

4. When, in relation to the request, is data placed on the data lines
for input? Output?

1 .6-21

S.G.1219 (P)1.6

1.6-22

5. List in sequence all transfers of control signals and information
between 1219 and a peripheral device (assume external function
request) either output or input.

6. What must the programer do to enable the preceding events?

b. Interrupts

1. Define an interrupt.

2. What interrupts result in a code storage?

S.G.1219 (P)1.6

NAME:

3. How is the code word stored? Where?

4. List the interrupts that do not result in code storage and the
corresponding interrupt entrance address.

c. Priorities

1. Why is a system of priorities necessary?

2. Why are there two scans?

1.6-23

S.G.1219 (PH.6

1.6-24

3. Explain the purpose of each scan and why they occur when they do.

d. Modes

1. What programing considerations apply to the following? Mention
the way in which control words are stored.

a) Single channel

b) Dual

c) ESI

S.G.1219 (P)l.6

NAME:

d) ESA

2. Write a program to transfer 5 words from one 1219 to another 1219.
Program transmitting computer - Program receiving computer.

e. I/O Timing

1. How long does the 1219 delay the program in order to output one
18-bit word?

2. Do control and main memory cycles overlap? Explain.

1.6-25

S.G.1219 (P)1.6

1.6-26

3. How many control memory cycles are needed for a normal output
transfer? Explain the job of each cycle.

4. Is the arithmetic section used during I/O? Why?

5. Assuming an output request, how long, in microseconds, after main
memory is initiated to call up a 5012 k instruction until a word is
available to the peripheral equipment? How long until the second
word could be available?

6. Why does it take 4 microseconds to transfer 36 bits?

S.G.1219 (P)2.1

SECTION 2 - SOFTWARE

2.1. TRIM II ASSEMBLER

2.1-1. OBJECTIVES

To provide information and study questions for the student to analyze the use of
TRIM II and to give the student practice in writing programs in TRIM II language.

2.1-2. INTRODUCTION

During the last week you probably have had many problems arise because you have
been doing your coding in absolute machine language. You have probably come to
the realization that machine coding in absolute language is difficult and very
time consuming because of the necessity to keep track of all allocations of memory
locations. The counting process becomes involved and human beings are likely to
make mistakes in this counting so the question has arisen, why not let the machine
do the paperwork and bookkeeping involved when making a program. The TRIM II
assembler will do the necessary bookkeeping for the programer so that it allows him
to bypass the meticulous task of machine coding. However the programer must learn
the requirements of TRIM II in order to use it effectively.

2.1-3. REFERENCES

PX 3288, Programer Reference Manual, Section on TRIM II

2.1-4. INFORMATION

a. General. TRIM II is a set of instructions or program that will accept
a predefined symbolic language in certain format and convert it into machine
language. The assembler will make the necessary allocations for memory addresses
and will also output a listing of these memory addresses and machine instructions
in one of several available formats.

The method of using TRIM II is for the programer to prepare his program in the
required format and then prepare a tape of this program on a standard Flexowriter
using the required format. The programer has the option to request his output in
one of several permissible outputs.

TRIM II is an assembler which operates on an 8K memory computer with a paper tape
reader-punch unit and a console typewriter. In addition to the monocode (one-to­
one) mnemonics of TRIM I, it also accepts polycode Cone-to-many) mnemonic
operations in the source program. The source language also has debugging aids which
cause dump of registers and memory contents wherever desired by the programer. The
assembler can be instructed to ignore debugging operations if desired.

2.1-1

S.G.1219 (P)2.1

b. TRIM II Assembly System

1. Introduction. The TRIM II Assembly System for the UNIVAC 1219
Computer provides programing assistance through the use of Its symbolic shorthand.
This simplified system converts a source program written with symbolic addressing
into an object program with absolute or relocatable addressing. TRIM II produces
the assembled object program on punched paper tape suitable for loading into the
UNIVAC 1219 computer via the 1219 utility packages.

2. Description. TRIM II is a two-pass assembler designed for a minimum
equipment configuration of one UNIVAC 1219 computer with 8,192 (decimal) words of
core memory and one paper tape reader, paper tape punch, and console typewriter.
The assembler accepts a source program expressed symbolically, absolutely, or in
combination thereof and converts it into an ordered set of machine instructions
suitable for loading via the 1219 utility packages.

The term two-pass means the source program tape(s) must be loaded into the computer
twice. The first such loading, constituting pass one, assimilates and stores
information needed for pass two. Refer to figure 2.1-1, Block Chart for TRIM II -
Pass One. At the completion of pass one the source program tape(s) must again be
loaded, and the desired output must be selected. Using the information accumulated
during pass one, pass two reads, assembles, and punches on paper tape each source
program instruction, statement by statement. This second loading constitutes pass
two. Refer to figure 2.1-2, Block Chart for TRIM II - Pass Two. Subsequent
outputs are achieved by repeating (reloading) pass two.

3. Source Language. A TRIM program as prepared by the programer is
composed of a list of operations which perform the step-by-step processing of a
problem. An operation has the following general format: .. ~tatement] .. [notes]..,
The general format may be further subdivided into:

L W Vn N

[label] .. ~peratorJ • [operand(s) J .. [notesJ..,
a) Label. The label identifies this particular statement. A label

is not required for every statement. In an absolute-addressed program every word is
assigned an absolute address during the coding process. The assembling process of
the TRIM II system equates the label to the machine address assigned to the
instruction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address. Where more than one
instruction is generated by a statement the label refers to the address of the first
instruction generated. The term "label" is used rather than "address" since it more
accurately describes the function of the symbolic address. A label may never be
incremented or decremented. The instructions or words generated from unlabeled
statements following one another on the source program tape are ultimately assigned
to consecutive memory addresses. Each label of an assembly run must be unique.

2.1-2

EXECUTIVE
CONTROL

1
r

PERMANENT TEMPORARY

TABLE 5
AREA MNEMONIC --- -

OPERATOR STORAGE

LO
TABLE

TRANSLATOR-
TABLE -. INPUT

~ ALLOCATOR -r-- WSI -
TEMPORARY

TABLE 6
LABEL
TABLE

TEMPORARY -
.. TABLE 6

LABEL
TABLE

-

INPUT: Q. READS ONE ITEM INTO WS I

b. ADOS ALLOCATIONS TO TABLE 6
c. CHECKS FOR DEBUG STATUS

T RAN / ALLOC : Q. ADOS LABELS TO TABLE 6

b. PERFORMS PSEUDO GENERATION
CFl

c. FORMS THE AREA STORAGE TABLE FOR OUTPUT 4
.
~

EXECUTIVE: a.. MONITORS KEY SETTINGS I-'
l\.:J

b. PERFORMS INITIALlZATIONS I-'
...0

c. EXECUTES SECONDARY SUBROUTINES
l\.:J ""0

'-' .
l\.:J I-' .

I Figure 2.1-1. Block Chart for TRIM II - Pass One I-' w

SOURCE
PROGRAM

TRIM III

CONTROLLING ROUTINE

TABLE I r-------,
I I

TABLE I

INPUT
CONVERTER

t---.... @JLIBRARIAN: I_..-
INITIAL I I

@

TABLE 2

INPUT
OPERATORS

TABLE 6

LABELl TAG
ALLOCATIONS

~

SOURCE I I
PROGRA L I

I - -,--1;*-:
I r:- - - ;, I L _ _ ITABLES4, 13 t+ __ -1

-, LI BRARY I
I CALLS

I RE:DER JI
I LABEL;'

L_/

TABLES 7,11

~ LIBRARY DIR

~

FINAL
SOURCE

~

* MAGNETIC TAPE TABLE 7 = CORE TABLE 10
** TABL E II ON MAGNETIC TAPE A = TABLE 12

ON MAGNETIC TAPE 8

,-------------------_/'--..... -------- ~-------_/ r - y-
SEGMENT I SEGMENT 2

Figure 2.1-2. Block Chart for TRIM II - Pass Two

U'J .
C') .

S.G.12l9 (P)2.l

A label may consist of not more than six alphanumeric characters, but it never
begins with the letter 0 or a number and it never consists of the letters LOK alone.
The first instruction of each program or subroutine must have a label.

An operand which refers to another operation label is called a tag. The tag must
be identical with the label it refers to but may be followed by an octal or decimal
integer to facilitate reference to unlabeled operations. Whenever a decimal
integer is used, it must be followed by the letter D. A tag coincides with the u
or k portion of the instruction word. Tags have the same notation restrictions as
labels except they may be incremented. Any number of tags may refer to a given
label.

b) Statement. The statement of an operation is made up of an
operator and operand(s). The statement defines the operation. In the instruction
word format it consists of the fu or fmk portions or as otherwise specified for
header, declarative, debugging, or polyoperations.

1) Operator. The operator may be a symbolic shorthand or
octal notation which identifies the basic function to be performed. The operator
must always be present. It may cause the assembler to generate one machine
instruction or a group of machine instructions. The operator coincides with the
function and/or subfunction codes of the instruction word.

2) OperandCs). One of a series of operands associated with
the basic operator are referred to as Vo, VI ... Vn. These may take several forms
depending upon t~e basic operator. They define, modify, or complete the function.

The operand(s) coincides with the u or k portion of an instruction word and may be
either a constant in octal notation or a symbolic alphanumeric notation referring
to a constant (either an absolute address or an item of data).

c) Notes. Descriptive notes may follow the statement; they are
for the programer's use and in no way affect the instructions generated from the
statement. Notes may not exceed 40 decimal characters.

d) Symbols. The programer uses a uniform set of symbols as
separators in all coding. These symbols are depicted in tables 2.1-1 and 2.1-4.

4. Header and Declarative Operations. TRIM II recognizes two types
of header operations.

L

POKER

POKER

.. ..
W

ALLOC •
PROG •

Vo

JONES

JONES

VI

• 10 MAY 1963 ..

• 10 MAY 1963 ..

N

2.1-5

SOFTWARE
NAME

Carriage Return

Shift Up

Shift Down

Tab

Point Separator

Double Period

Space

Comma

Vertical Bar
~

, Plus

Minus

TABLE 2.1-4. EQUIVALENT INPUT FORMAT CODES
(FLEXOWRITER vs. FIELDATA

SOFTWARE FLEXOWRITER FIELDATA SYMBOL
SYMBOL CODES SUBSTITUTION .. 4 5

t 4 7 , 5 7 .. 5 1 Special c:J

• 4 4 Apostrophe ,

.. 5 7 4 2 4 2

6 o 4

, 5 7 464 7

I 57 50 4 7 Exclamation f

+ 5 7 544 7

- 5 6

-

FIELDATA
CODES

o 4 o 3

0 1

o 2

7 6

7 2

7 5 7 5

o 5

5 6

5 5

4 2

4 1

TYPE
UC

A

B

C

0

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

S

T

U

V

W

X

Y

Z

*

S.G.1219 CP)2.1

TABLE 2.1-3. FLEXOWRITER CODE CHART

LETTER TYPE LETTER PERFORM TYPE-
LC* OCTAL** UC LC OCTAL WRITER OPERATION OCTAL

a 30 1 1 52 Space 04

b 23 2 2 74 Shift up 47

c 16 3 3 70 Shift down 57

d 22 4 4 64 Back space 61

e 20 5 5 62 Car. return 45

f 26 6 6 66 Tabula tor 51

g 13 7 7 72 Color shift 02

h 05 8 8 60 Color delete 77'1.;*~~

i 14 9 9 33 Stop 43'1.''1.0 :.

j 32 0 0 37

k 36

1 11

m 07 TYPE SYMBOL

n 06

0 03 UC LC OCTAL

P 15 - (Superscript - (Hyphen or 56
q 35 Minus) Minus)

r 12 • (Multiply) = (Equal s) 44

s 24 / (Vi rgul e) + (Plus) 54

t 01 ((Open Parens) , (Comma) 46

u 34) (Close Parens) (Period) 42

v 17 (Underline) I (Absolute) 50 -
w 31

x 27

Y 25

z 21

The upper case, UC, or lower case, LC, character is typed according to the
position of the type bars.

** Codes not used are: 00, 10, 40, 41, 53, 55, 63, 65, 67, 71, 73, 75, 76.

Codes 43 and 77 are considered illegal codes in operations with the computer.

2.1-7

S.G.1219 (P)2.1

a) ALLOCation Header. The ALLOC header informs TRIM II that the
operations following constitute assignments of absolute values to labels and/or
tags. Any number of ALLOC tapes may be loaded, but all must be loaded prior to the
loading of program tapes. An allocation tape must always be preceded by a carriage
return (and a shift to upper case for Flexcode oriented TRIM II). When the
allocations are on a separate tape, the tape must terminate with a carriage return
and two lower case periods. An ALLOC tape has the following format:

2.1-8

L W Vo VI

[label] .. [ALLOC] • [name] • [date].,

[label] .. [!s'signed value]..,

[label] .. ~ssigned valu~..,

[label] .. ~ssigned value]..,
etc.

TABLE 2.1-1. TRIM II CODING SYMBOLS

SYMBOL CODING SIGNIFICANCE

.. (tab) Major separator delimiting the
statement. Must always precede the
statement operator. Must precede
notes; omitted if notes are not
given .

.., (CR) Specifies the end of an operation.

(comma)

• (point)

+

Do (delta)

I (vertical line)

'0 (double periods)

Must precede end-of-tape double
period.

Separates certain subsets of
statement components.

Separates statement components.

Specifies an integer increment to
follow.

Specifies an integer decrement to
follow.

Specifies space.

Special control character.

Specifies end-of-tape read-in.
Must terminate every input tape.

S.G.1219 (P)2.1

1) L. The label of the ALLOC header operation itself is
optional. However, each-assignment operation following must have a label.

2) ~. The operator of this header operation is always ALLOC,
and must be present. For the subsequent assignment operations, W must be an
absolute numeric value expressed either in octal or decimal. When expressed
decimally, the number must be followed by the letter 0, e.g.

CAT

DOG

CHIPS

CHOPS

..
01000.,

5120 ..

12

100

3) ~. The V operands of this header operation take the form
name and date as illustrated. These operands are omitted for subsequent assignment
operati'ons.

b) PROGram Header. The PROG header informs TRIM II that the
operations to follow are program operations as distinguished from allocation
operations. The PROG header must precede the first statement of a program. The
PROG header operation must always be preceded by a carriage return (and shift to
upper case for the Flexcode oriented TRIM II). A program header has the following
format:

L

[program J
name

1)
however, when present,

W Vo .. ~ROGJ • [name] •

1. The label of the PROG
it is considered to be the

header operation is optional;
name of the program.

2) ~. The operator of this header operation is always PROG
and must be present.

3) ~. The V operands of this header operation normally take
the form name and date as illustrated. The operands are optional and completely
flexible in number and length within the maximum line length.

c) DEBUG Declarative. TRIM II accepts the declarative operation,

L W N

~abelJ ... DEBUG ...

2.1-9

S.G.1219 (P)2.1

The DUBUG operator informs TRIM II that generation is to be performed for debugging
operations contained in the source program. If the DEBUG operator is absent,
generation will occur for such debugging operations. The DEBUG operation when used
must be loaded prior to the first PROG header. It may be loaded separaLely or
as the last operation on an ALLOC tape, e.g.,

L

POKER

CHIPS

CHOPS

CHAPS

5.
function codes

W Vo .. ALLOC • JONES .. 01234 ., .. 1245 ., .. 13880 ., .. DEBUG .,
Mono-OQerations. Mono

and symbolic addresses,

VI

• 10 MAY 196~

or one-to-one operations consist of mnemonic
absolute machine codes, or constants.

Mono-operation statements may be in one of the following formats.

a) Format A.

W Vo

• Gpera to~ • [operand].
1) ~. The operator is the f, fb, or fm portion of the operation

statement and is the mnemonic respresentation of the desired function code of the
computer instruction repertoire.

2) 10. Represents the u or k portion of the statement and may
be a tag, 2 an integer, or an integer only. Integers may be in octal or decimal
representation. When decimal representation is used, the integer must be followed
by the letter D. Incrementing or decrementing of integers is not permitted. If
Vo is absent, TRIM II generates zeros for the operand without any error indication.

Examples:

"ENTAL • CAT .,
"STRADR. CAT+l .,
.. CMAL • CAT-8D .,
"ENTBK • 28D .,

2.1-10

S.G.1219 (P)2.1

~ ENTALK.7776 ~ Minus 1 to AL ..,
.. STOP. DOG ~ DOG defined by an ALLOC opn ..,
~ SKPOIN.7 .., Results in 502207

~ CPAU .., Results in 506200

.. JPeLOK-10 ... LOK signifies this address ..

.. OUTe6 ... Output transfer channel 6 ..,

... 0.CHEESE+1 ... Buffer terminal address ..

... O-CHEESE ... Buffer initial address ..

.. ENTAL .., Results in 120000

... JP .., Results in 340000

b) Format B. TRIM II also accepts programs coded with absolute or
symbolic addressing. Normal instructions are represented by a 2-digit function
code followed by a point separator and the desired u or mk operand. However,
absolute instructions may also be represented by six consecutive digits without
a point separator.

Examples:

... 12e3505 ...

... 63eCAT+6 ...

... 50.1306 ...

.. 50-6200 ...

... 506200 ...

c) Format C. Constants may be represented in a number of ways ... 7 ... Results in 000007 .., ... 7-0 ... Results in 700000 .., .. 77 .. Results in 000077 .., ... 77-0 ... Results in 770000 777 .. Results in 000777 ..
77070 ... Results in 077070 ..,

2.1-11

S.G.12l9 (P)2.l

... 777-7 ...

... 777e ...

... 123456 ...

Illegal *

Results in 000777*~

Results in 123456~

Two special mono-operations are available for the programer's use: STOP and SKP.
If either of these operators i used with a k operand, TRIM II will automatically
generate an unconditional instruction of 505640 or 505040 respectively.

If the programer wishes to reference unlabeled instructions in his program, he
may do so in terms of a specific instruction by means of the LOK tag plUS or minus
an integer. LOK always refers to the instruction in which it appears. For example,
if the instruction JP LOK-3 appears at address 04503, the resulting generation will
be 34 4500. Thus the instruction falling at address 04500 need not have been
labeled. No valid program label may consist only of the letters LOK. Reasonable
care should be taken in the use of the LOK tag since corrections to the original
program may affect the LOK references.

6. Poly-Operations. Frequently groups of instructions which perform
a specific function appear iteratively in a program. A single poly-operation
generates a unique sequence of instructions designed to perform some such specified
function. This is the one-to-many relationship between instructions herein termed
poly-coding; the parent instruction being termed a poly-operation. TRIM II
provides eleven such poly-operations. In some cases TRIM II generates only a single
instruction or, as in the case of the REMARK operation, no instructions. It is
permissible when coding a routine to intermix mono- and poly-operations in any
desired order.

The CLEAR and MOVE pOly-operations use the currently active B-register, and the MOVE
poly-operation also uses AU in the generated coding. If the programer does not
wish the data in these registers to be destroyed, he must store and restore the
data around a MOVE or CLEAR operation. The MOVE and CLEAR operations store and
restore the programer's special register setting.

a) RESERVe Operation.

L W Vo

[label] .. RESERV • ~umber of word~ ..

The RESERV' operation causes the desired number of sequential words to be reserved
within a program. The operation generates the number of zero words* specified
by the Vo operand.

1) b. The label for this operation is optional.

2) ~. RESERV must always be present.

* Whenever there is an expressed value following the point separator, only 1 or 2
digits are permitted in the operator position.

2.1-12

S.G.1219 (P)2.1

3) .YO· Specifies by an octal or decimal integer the number
of zero words to be generated. Vo may never equal zero.

Examples:

CAT .. RESERV • 12 ..
DOG .. RESERV • 100 ..

b) CLEAR Operation.

L w

[label] .. CLEAR • [Number J ~tarting address] ..
of words L

The CLEAR operation clears to zero those memory addresses specified in the
operation.

1) 1. The label for this operation is optional.

2) ~. CLEAR must always be present.

3) .YO. Specifies by an octal or decimal integer the number of
consecutive memory locations to clear. Vo may never exceed 4000 octal or 20480.
A Vo of zero is not permitted.

4) .Yl. Specifies the first address of the area to be cleared.
The address may be expressed as an absolute octal number or as a symbolic tag plus
or minus an octal or decimal integer, i.e., CAT-120 or CAT-14. All the words to
be cleared must be wholly contained within one bank.

Examples:

[label] CLEAR • 180 • FLIP+120 ..
[label] CLEAR • 22 • FLIP+14 ..
[label] CLEAR • 100D • FLAP-5 ..
[label] CLEAR • 4000 • 170000 ..

c) MOVE Operation.

L W Vo VI V2

[label]_ MOVE • [number J.[from
of words addres~ • Eo addres~_

* TRIM II output number 2, used primarily for hard-copy debugging and documentation,
reflects only the first generated zero word of each RESERV operation. TRIM II
outputs 3, 4, and 5 contain the requested number of zero words.

2.1-13

S.G.1219 (P)2.1

1) b. The label for this operation is optional.

2) ~. MOVE must always be present.

3) 10. Specifies by an octal or decimal integer the number of
sequential words to be moved. Vo may never exceed 4000 octal or 2048D. A Vo of
zero is not permitted.

4) 11. Specifies the first address of a block of data to be
moved. It may be expressed as an absolute address in octal or as a symbolic tag
plus or minus an octal or decimal integer. All the words to be moved must be wholly
contained within one bank.

5) 12. Specifies the first address to which the data are to be
moved. It is expressed the same as the VI operand. All the destination' addresses
into which data are to be moved must be wholly contained within one bank.

Examples:

[label] ~ MOVEe78DeCATeDOG-7 ~

[label] ~ MOVEelOeHORSE+IO.cOW+8D ~

[label] ~ MOVEe400DeCATePIG ..

[label] ~ MOVEelOODeOe125000 ..

d) INPUT/OUTPUT Operations.

L W Vo VI V2 V3

~ EXFCT • CChanne~. [:AD CAD J [fumber 0] [bUffer j number MAD CMAD e buffer • startin ~
BK CBK words address
KB CMBK

• IThannej •
number

[
label] ~ BUFOUT • rChannel]

Lnumber •

[AD CAD:J [number 0] Wffer r MAD CMAD • buffer • startin
BK CBK words address

MBK CMB

[M~g g~~~ e[~~~~:~ OJ · [:~!!~~n1~
BK CBK words address

MBK CMB

1) b. Label for these operations is optional.

2) ~. The operator must always be present.

or symbolic tag.
3) 10. Specifies the channel number expressed as an integer

2.1-14

/

~

S.G.12l9 (P)2.1

4) ~l. Specifies the buffer mode and must be present:

5)
buffer words involved.

AD - Advance without monitor

MAD - Advance with monitor

BK - Back without monitor

MBK - Back with monitor

CAD - Advance without monitor, continuous data mode

CMAD - Advance wi th moni tor, continuous data mode

CBK - Back without monitor, continuous data mode

CMBK - Back with monitor, continuous data mode

~2' Specifies as an octal or decimal integer the number of
Maximum of five digits.

6) ~3' Specifies the address in memory at which buffering is
to begin. V3 may be expressed absolutely or as a symbolic tag plus or minus an
octal or deCImal integer.

Examples:

[label] .. EXFCTe7eACeleCAT ..
[label] .. BUFINe6eMADel0eCAT ..
[label] .. BUFOUTe13DeBKe10eCAT+7 ..
[label] .. BUFOUTe1eCMBKe100DeCAT+100D ..

[label] .. BUFINeCHANeCADe10e1250000 ..
e) REMARK O~eration.

L W Vo

[label] • REMARK. [deSired statement] •

The REMARK operation causes no obj~ct program generation. It is simply an aid to
the programer in expanding normal program notes. REMARK operations may not
exceed one line in length.

f) DATA O~eration.

L W Vo

[labe~ • DATA. [integer, binary point speCificatio~.

2.1-15

S.G.1219 (P)2.1

The DATA operation allows the programer to specify a positive or negative data
integer and its binary point position. The bits are numbered from right to left
0-170. The binary point specification must be separated from its associated
integer by a comma. The absence of a minus sign implies a positive integer. The
label is optional.

Examples:

[1abe~ .. DATA • 240,90 ..

or

[1abe~ .. DATA • 30,11

would result in

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10000110000000000001

and

[1abe~ • DATA
would result in

• 123,4' ..

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1000000010100110000

g) PunCH Contents Operation.

L w

PCHC • [information to be punched]
and/or typewriter commands ..

The PCHC operation produces generated coding which, when run on the computer with
the PCHC* subroutine, causes the octal contents of A, AU, AL, B, or any memory
location to be punched on the high-speed paper tape punrih. The words to be
punched may be interspersed with the following three typewriter control symbols
to provide subsequent listing in the desired format.

Operand Performance

-I CR I-
-/::;.- or _I spl_
-ITABI-

Carriage return

Space

Move to next tabular stop (Flexowriter only)

2.1-16

S.G.1219 (P)2.1

The vertical bars indicate the information enclosed is a special symbol directing
the typewriter. Each CR, SP, and TAB must begin and end with the vertical bar.
Controls are separated from other operands by point separators.

Vo - Specifies the operands in the order in which they are to be punched. Except
for the typewriter commands, all operands imply that their contents are to be
punched. Such operands may be A, AU, AL, active B, a tag or a tag i an absolute
value, or an absolute address.

Examples:

CAT"PCHC • A • 6. • 7070 • 6. • DOG-lID • 1 CR I-
.. PCHC • DOG • 6 • B ·ITAB I. AL • I TAB I. AL ..

I CR I • I TAB I • TA "PCHC • ..
"PCHC • DOG+IO • SP • CAT ..

h) PunCH Text Operation.

L W Vo

~abel] .. PCHT • [text and/or typewriter commandS]

The PCHT operation produces coding which, when run on the computer with PCHT*
subroutine, causes the text(s) and/or typewriter commands in the Vo operand
position to be punched by the high-speed paper tape punch. The text may be inter­
spersed with the following typewriter control symbols as desired; each CR, SP, and
TAB must be set off between two vertical bars

Operand Performance

ICRI

6 or I spl
I TAB I

Carriage

Space

Move to next tabular stop CFlexowriter only)

NOTE

Point separators are not required within VO; they will be punched if present.

Vo - Is the text to be punched interspersed with typewriter commands desired by the
programer. If the text is too long for one PCHT operation, the programer can write
successive operations.

Examples:

CAT" PCHT

.. PCHT

•
•

PROFIT 6. AND 6.

JULY ~ 10, D.

LOSS 6. FOR

19641 CR I -

2.1-17

S.G.1219 (P)2.1

i) TYPe Test Operation.

L w

[labe~ .. TYPT - Gext and/or line printer command~ ..

The TYPT operation results in generated coding which, when run on the computer with
the TYPT* subroutine, causes the text and/or commands in the Vo operand position to
be typed by the line printer. The text may be interspersed with the following
line printer control symbols:

Operand Performance

Carriage return, line feed

Space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol directing
the line printer. Each CR or SP must begin and end with a vertical bar.

Vo - Is the text to be typed interspersed with line printer commands. If the text
is too long for one TYPT operation, the programer may use successive operations to
complete the text.

Examples:

CAT "'TYPT • PROFIT I sp I AND 6 LOSS ~ FOR ...
I CR I "'TYPT • JULY 6 10,6 1963 ...

NOTE

Point separators are not required within VO; they will be typed if present.

j) TYPe Contents Operation.

L w

[label] .. TYPC - [information to be typed and/or]
line printer control symbols

The TYPC operation results in generated coding which, when run on the computer
with the TYPC* subroutine, causes the octal contents of A, AU, AL, current B, or
any memory location to be typed on the line printer. The words to be typed may
be interspersed with the following line printer control symbols.

Operand Performance

-I CR I-
- l:!. - or-I sp I-

Carriage return, line feed

Space (may be used for formatting)

2.1-18

S.G.1219 (P)2.1

The vertical bars indicate the information enclosed is a special symbol directing
the line printer. Each CR or SP must begin and end with a vertical bar.

Vo - Specifies the operands in the order in which they are to be typed. Except
for the line printer commands, all operands imply that their contents are to be
typed. Such operands may be A, AU, AL, active B, a tag or a tag i an absolute
value or an absolute address.

Examples:

CAT .. TYPC • A • ~.~.7070 .6.~. DOG-lID •
.. TYpe • AU -6-AL -I Sp I- B • HORSE .. ICRI ..

k) DouBLe SET 0Qeration.

L W

[labe~ .. DBLSET ..

The DBLSET operation frees the programer from the responsibility of insuring that
the Y of a double add or subtract instruction be located at an even address. The
DBLSET operation may be followed only by the Y constant concerned. TRIM II
examines the address to which the constant would normally be assigned. If the
address is odd, a word of zeros is first generated to ensure that the constant will
be assigned to an even address.

7. Debugging OQerations. TRIM II provides two debugging operations
for punching a paper tape output of either the contents of register AU, AL, and
current B, or the contents of specified sequential memory locations. These
operations generate a set of three of five instructions in the object program which,
when run on the computer with the DEBUG* subroutine, produce the desired dump.
Each set of instructions is assigned a sequential identifying number which appears
with each punched output, thereby enabling programer recognition of repeated times
through given coding paths. The debugging operations take the following form:

L W N

~abelJ .. DUMPR ..
L W Vo VI N

rabe1 J .. DUMPM • [numbers of J_[address of firsj ..
words to dump word to dump

a) 1· Label is optional.

b) ~. DUMPR or DUMPM must always be present.

2.1-19

S.G.12l9 (P)2.l

c) !O. Applicable to the DUMPM operation only. Specifies the
total number of memory locations to be dumped. The number may be expressed in
octal or in decimal followed by the letter D.

d) ~1' Applicable to the DUMPM operation only. Expresses the
address of the first word whose contents are to be dumped. It may be expressed as
an integer or a tag plus or minus an integer.

Examples:

[label] .. DUMPR •
[label] .. DUMPM • 12 • 10000 ..
[label] .. DUMPM .100 • 110000 ..
[label] • DUMPM .100 • CAT+28D ..
[label] .. DUMPM .12 • CAT-15 ..
[label] .. DUMPM • 64D • CAT ..

Both DUMPR and DUMPM operations preserve existing values in AU, AL, and the current
B-register.

8. TRIM II Outputs. TRIM II provides six optional punched paper tape
outputs of the assembled program. All the outputs except output no. 6 are loadable
via the 1219 utility packages. However, only Output No.5, in relocatable bioctal
format, can be loaded above address 100000 at those installations possessing a 65K
memory computer.

The available outputs are as follows.

a) No.2. Absolute assembled program, sequential line identifier,
source program, and assembly error alarms when applicable. This is a side-by-side
listing in source code preceded by a program summary consisting of the number of
memory locations used and inclusive A addresses.

b) No.3. Absolute assembled program in source code, consisting
of a carriage return, 88, carriage return, addresses and instructions, a carriage
return, double period and checksum.

c) No.4. Absolute assembled program in bioctal format, r.onsisting
of a 76 code, inclusive area addresses followed by the instructions only, and a
checksum.

d) No.5. Relocatable assembled program in bioctal format starts
with a 75 code followed by the assembled program relative to base 00000, and
terminates with a checksum. The output tape may be loaded starting at any desired
memory location.

2.1-20

S.G.12l9 (P)2.1

e) No.6. Allocation output in source code consisting of an ALLOC
header followed by all program tags and labels and addresses in allocation format.
To ensure a complete allocation tape, output 6 should not be the first requested
output.

f) No. 11. Source program on paper tape in source code.

c. Programing Procedures.

1. Input Tape Format. Source program tapes will be punched in field­
data code or standard flexcode, and the resulting punched paper tape serves as
input to TRIM II.

2. Ground Rules.

a) TRIM II is available in two versions; one version accepts a
source program prepared in fieldata code, the other version accepts a source
program in standard Flexowriter code. Input to TRIM II is via punched paper tape.
For the Fieldata-oriented TRIM II each source tape must begin with a carriage
return and terminate with a carriage return and two periods. Shift up and shift
down codes are ignored. For the Flexcode-orientedTRIM II each source tape must
begin with a carriage return and shift to upper case since the assembler assumes
all input is in upper case except for the comma, the vertical bar, +, and the
period. Each source tape must terminate with a carriage return, shift to lower
case, and two periods. The term "source code" used herein refers to the code in
which the input tapes are prepared.

b) No TRIM II label may exceed six characters. The label must not
begin with a number, the letter 0, or consist only of the letters LOK.

c) Each break in sequence of addressing constitutes a program area.
A total of 27 such areas is permitted.

d) The maximum size program which TRIM II can assemble is limited
only by the number of program and allocation labels. The maximum number of labels
allowed is approximately 118410 ,

e) TRIM II provides a limited amount of error detection with error
typeouts. All other errors are indicated by multiples of 100 following the notes of
the instruction concerned on the No, 2 output. Thus 100 indicates one error; 200
indicates two errors in this instruction, etc. Typical errors are unconvertible
numbers, illegal operators, no label first instruction, duplicate label, etc.

f) TRIM I operators SETAOR and EQUALS are ignored by TRIM II. The
ALLOCation operation replaces these two functions.

g) When specifying a decimal integer, the letter 0 occupies one
digit position; therefore, the maximum decimal integer that can be expressed is
999990.

2.1-21

S.G.1219 (P)2.1

2.1-22

h) Sample coding generated by the CLEAR poly-operation.

1) Assume CAT is in bank 3

.. CLEAR • 10 e CAT ...

ENTBKe7

STRSReLOK + 4

ENTSRe13

CLBeCAT

BJPeLOK - 1

ENTSReO (User's SR stored here)

2).CLEAR el0 e 115000

ENTBKe7

STRSReLOK + 4

ENTSRe31

CLBe5000

BJPoLOK - 1

ENTSReO (User's SR stpred here)

" i) Sample coding generated by the MOVE poly-operation.

1) Assume MOW, COW, and the MOVE instruction are in bank 3

... MOVEel0eMOVeCOW ...

ENTBKe7

STRSReLOK + 6

ENTSReo

ENTAUBeMOW

ENTSReO

STRAUBeCOW

BJPeLOK - 4

ENTSReo (User's SR stored here)

S.G.1219 (P)2.1

2) Assume CAT is in bank 4

... MOVE e12 eCAT e 135000 ...
ENTBKe11

STRSReLOK + 6

ENTSRe14

ENTAUBeCAT

ENTSRe33

STRAUBe5000

BJPeLOK - 4

ENTSReo (User's SR stored here)

j) Due to space considerations the TYPT, TYPC, PCHT, PCHC, and
DEBUG subroutines are supplied on tape separate from the TRIM II package in both
source-language and object-language formats. Therefore, when using these operations,
it is necessary either to assemble the subroutine(s) with the running program or
load them independently with the running program. If the programer assembles any
of these subroutines with his program he may allocate them or let TRIM II allocate
them sequentially fOllowing the end of his program. In either case the programer
must allocate the tag CHAN used by these source language subroutines to reference
the paper tape input/output channel. If the programer does not assemble any of
these subroutines with his program but uses poly-operations calling on them, he
must allocate the subroutines to a desired address. If he does not, TRIM II will
arbitrarily allocate them.

TYPT 16400

TYPC 16560

PCHT 17000

PCHC 17200

DEBUG 17470

k) Keyboard correction methods for TRIM fieldata assembler and
corrector input tapes: Typing error correction procedures have been incorporated
in the fieldata versions of the TRIM I, TRIM II, and TRIM III assemblers, and
the TRIM corrector for deleting immediate keyboard errors that might be made in the
preparation of input tapes for these same programs on the Type 1232 I/O Console.

2.1-23

S.G.1219 (P)2.1

Since it is impossible to back up the paper tape in preparation and punch
'~ode-delet~' codes over the erroneous frame or frames, any typing errors must be
Identified by a special code or codes following the erroneous data. On the 1232
I/O Console, we have designated the BACKSPACE code of the keyboard as a REJECT code.
The BACKSPACE is identified by the upward pointIng arrow t below the stop code
(®) on the same key on the left hand s ide of the keyboard, In lower case, this
key punches a 77 and types the same arrow f on the printer~

A single reject code (77) anywhere on an input tape to the TRIM assemblers or
corrector informs that routine that the legal code that immediately preceded the
77 should be rejected. (Any code other than 01, 02, 03, or 57 is a legal code),
e.g. ,

o ER t NTE of' AL / of' CAG '" T

appearing on the console printer and punched as one of the statements on a program
tape to be assembled will be interpreted as

o ENTAL CAT

by that assembler.

Three consecutive reject codes in a row (77-77-77) on an assembler or corrector
input tape inform that routine that the entire statement being formed should be
rejected, and that processing of a new statement should not begin until a carriage
return is found, e.g.,

o ENTAL CAT (Carriage Return - Line Feed)

MOOSE STRAL"D ttf JP'TIGER (Carriage Return - Line Feed)

[] ADDALK'63 (Carriage Return - Line Feed)

MICEO STRAL'DOG (Carriage Return - Line Feed)

appearing in a program to be assembled by a TRIM assembler will be interpreted by
that assembler as

o ENTAL'CAT (Carriage Return)

[] ADDALK'63 (Carriage Return)

MICEO STRAL' DOG (Carriage Return)

Another example:

143' 102 (Carriage Return - Line Feed)

GOOF(]SLSUB' JUNK t t' (Carriage Return - Line Feed)

RIGH'IQIK t P 'HON1 f OR (Carriage Return - Line Feed)

on a correction tape will be interpreted by the TRIM Corrector as

143'2 (Carriage Return)

RIGHT 0 JP'HONOR (Carriage Return)

2.1-24

S.G.1219 (P)2.1

1) If a program contains ADDA, ADDAB, SUBA, or SUBAB instructions,
regardless of whether or not a DBLSET operation was used, the following restrictions
shall apply to loading a TRIM II Output No.5 into computer memory:

1) If the program was assembled starting at an even address,
it must be loaded starting at an even address.

2) If the program was assembled starting at an odd address, it
must be loaded starting at an odd address.

m) If it is desired to assemble a program to load and run at or
above address 100000, the user must obtain a No.5 output.

n) (Applicable to 65K memory computers only). Any program to be
assembled by TRIM II or TRIM III must be assembled for only one 32K segment of
memory, either 000000 through 077777 or 100000 through 177777. This means that the
assembled program must reside in one 32K segment or the other, but not both. This
does not preclude inter-segment references which would be implemented exactly as
for interbank references. The TRIM assemblers do not provide any alarm indications
for this condition.

d. TRIM II Operating Procedures.

1. Basic Information. TRIM II is a two-pass assembler which accepts
source programs written with absolute or mnemonic function codes and symbolic
addressing and produces an output program on punched paper tape suitable for loading
into the UNIVAC 1219 computer via the 1219 utility packages.

2. Loading the Assembler. To load TRIM II, a 1219 utility package
must already have been loaded into the computer.

STEP 1. Master clear the console.

STEP 2. Mount the TRIM II Assembler tape in the reader.

STEP 3. Set P to the UPAK starting address for paper tape load.

STEP 4. Start.

3. Using the TRIM II Assembler.

1. Pass 1.

STEP 1. Master clear the console.

STEP 2. Set P to 1400.

STEP 3. Set Skip Keys 1 and 2.

STEP 4. Set Skip Key 3 for error typeout suppression during
assembly.

STEP 5. Mount the program tape in the reader.

2.1-25

S.G.1219 (P)2.1

STEP 6. Start. The computer will stop after each program
tape has been read. Repeat steps 5 and 6 until all
tapes have been read in.,

2. Pass 2.

STEP 1. Release Skip Key 1.

STEP 2. Set AL to desired output number.

STEP 3. Mount the program tape in the reader (program tapes
must be loaded in exactly the same order as for Pass 1.

STEP 4. Start. The assembler will assemble the input tape
and punch the output ,tape. Repeat Steps 3 and 4 until
all tapes have been read in and punched.

STEP 5. Release Skip Key 2.

STEP 6. Start. The assembler will finalize the output tape
with a checksum and trailer.

STEP 7. Set Skip Key 2 and start with Step 2 to obtain
additional outputs.

4. Error Detection and Display. TRIM II contains certain error
detection capabilities. The majority of programer errors can be handled internally.
However, since skip key settings are essential to the assembly process, assembly
will always stop when Skip Keys 1 and 2 are not set. The proper action to take is
indicated by the following typeout: "SET KEYS 1 AND 2".

Set both skip keys and start to continue assembly.

The programer has the option of requesting that the assembler stop and type out
pertinent information for four basic programer errors, or requesting that the
assembler handle these errors internally, thereby "forcing" an assembly.

If Skip Key 3 is set, the assembler will force the assembly. If Skip Key 3 is not
set, the assembler will stop for the following errors:

a) Set Base Address in AL. This error stop occurs during Pass 1
and means that no starting address has been given. To correct,

2.1-26

STEP 1. Clear AL.

STEP 2. Set AL(15_0) to the desired address in octal.

STEP 3. Start. The assigned base address will then be typed
out and assembly will continue.

S.G.1219 (P)2.l

If typeout suppression has been selected (Skip Key 3 set), assembly will not stop
and TRIM II will arbitrarily assign the program to the base address 01200.

b) Illegal Output Reselect in AL. This error stop indicates an
illegal output has been selected at the start of Pass 2. To recover, start. When
the computer stops, reselect the output in AL, and start.

NOTE

If poly-operation generation results in a memory bank overflow, output 2 is
the only legal output that may be requested. If a legal output has been
selected and the above typeout occurs, bank overflow is the cause.

c) Unalloc Tags. This error stop occurs during Pass 2 and
indicates an unallocated tag. The typeout occurs for the first such tag.
Thereafter only the sequential line identifier, the tag name, and, after manual
allocation, the value to which the tag was equated are typed.

The recovery procedure is:

STEP 1. Set AL to the desired value.

STEP 2. If the tag refers to an instruction contained within
the program being assembled, set AL17 to 1. If the
tag is a constant or refers to a fixed address outside
the program, AL17 must be O.

STEP 3. If the user wishes any later unallocated tags
allocated to the same address, set AU # o.

STEP 4. Start. TRIM II will type the manual allocation and
use it to continue assembly.

d) Dup LBL. If during generation a duplicate label is discovered,
TRIM II types the sequential line identifier, "DUP LBL", and the label name. The
assembly will continue without a computer stop.

5. Assembler Outputs (Loadable Via the 1219 Utility Packages).

a) Output No.2. A side-by-side listing of the absolute assembled
program in source code, sequential line identifiers, the source program and alarm
codes. Output 2 is preceded by a program summary consisting of memory locations
used and inclusive addresses.

b) Ouput No.3. Absolute assembled program in typewriter code.

c) Output No.4. Absolute assembled program in bioctal code.

d) Output No.5. Relocatable assembled program in bioctal code.

e) Output No.6. ALLOC output consisting of all labels and
addresses. Output 6 is not loadable via the 1219 utility packages, but may be used
as an ALLOCation tape for input to TRIM II. To ensure a complete list of all labels
and tags, output 6 should not be the first output selected.

2.1-27

S.G.1219 (P)2.1

f) Output No. 11. Source program on paper tape in typewriter code.
Output No. 11 is not loadable via the 1219 utility package, but may be used as
source input to TRIM II.

2.1-28

.,
\

0

1

2

3

4

5

6

7

6. Assembler Addresses.

01400 Start assembly, Pass 1.

01401 Restart outputs, Pass 2.

TABLE 2.1-2. FIELDATA CODE (6 BITS) UNIVAC 1232
KEYBOARD AND LINE PRINTER

0 1 2 3 4 5 6

MASTER UPPER LOWER LINE CAR.
~ A SPACE CASE CASE FEED RETURN

C 0 E F G H I

K L M N 0 P Q

S T U V W X Y

) - + / = > -

* (" ?
,

: ;

0 1 2 3 4 5 6

CJ
8 9 , ; / SPEC

A = SPACE

NOTE: Master space indicates an absence of information.

7

B

J

R

Z

$

S
STOP

7

l'
IDLE

S.G.1219 (P)2.1

NAME:

2.1-5. STUDY QUESTIONS

a. What is the difference between a label and a tag? Why is it that a
tag can be incremented Dr decremented and a label not?

b. In the space below show the form you would use, 1) to make an
allocation header, and 2) to make a program header.

c. What is the use of the allocation tape? When is it used?

d. List the nine poly-operations of Trim II.

2. 1-29

S.G.1219 (P)2.1

2.1-30

e. What is the procedure to correct an unallocated tag?

f. Write a program in Trim II language to count the number of l's in A
and have the result displayed on the printer of the I/O Console. The
input in A will be made manually.

g. Write a program to convert flex characters to fieldata characters.
Expand the program so that the flex characters may be inputted on a
paper tape from the 1232 I/O Console and the fieldata characters
will be punched on a paper tape to the 1232 I/O Console.

S.G.1219 (P)2.2

SECTION 2 - SOFTWARE

2.2. TRIM III ASSEMBLER

2.2-1. OBJECTIVES

To provide areas of study for the student and to provide study questions for the
student to analyze the use of Trim III.

2.2-2. INTRODUCTION

Trim III in many respects is like Trim II but Trim III is more powerful and will
allow the programer to assemble his program on magnetic tape instead of paper tape.
The format in many cases is the same in both assemblers but in ways it is different.
The student should be aware of the many differences between the two.

2.2-3. REFERENCES

PX 3288 Programers Reference Manual, Section on Trim III

2.2-4. INFORMATION

a. General. The use of Trim III is very similar to the Trim II assembler
with the exception that Trim III is a one-pass assembler and gives more poly-oper­
ations and outputs. The method of study should probably fOllow the same format as
you followed by analyzing Trim II.

Trim III is an assembler which operates on a 16K memory computer with a magnetic
tape system, paper tape reader-punch unit, a console typewriter, and UNIVAC 1004
Card Processor.

This assembler has a source language librarian for aiding the programer in selecting
subroutines for incorporation into the program during the assembly process. The
programer uses CALL operations in his source program to implement retrieval from
the source library.

The source programing language includes the operations of TRIM I and TRIM II.
Operations which aid debugging in this language cause generations that present
diagnostic information to the programer during a run. This works with the TRIM
DEBUGGING PAK discussed later. In addition TRIM III may be controlled via CONTROL
operations.

2.2-1

S.G;1219 (P)2.2

In operation, TRIM III makes only one pass on the source program input. Subroutines
are retrieved from the magnetic tape source library and added to the end of the
source program. Assembled programs can then be written on magnetic tape, cards, or
paper tape. Diagnostic errors are typed on the console typewriter. These features
cut TRIM III assembly time to a minimum.

The assembler possesses source language correction capability in conjunction with
an assembly run.

b. TRIM III Assembly System.

1. Introduction. The TRIM III Assembly System for the UNIVAC 1219
computer provides programing assistance through the use of its symbolic shorthand.
This assembly system converts a source program written with symbolic addressing
into an object program with absolute or relocatable addressing. TRIM III produces
the assembled object program on the high-speed printer, punched paper tape, punched
cards, or magnetic tape.

The
Definition

of a
Problem

TRIM III
(Input) --~> ASSEMBLY
Language SYSTEM

>

INPUT DATA
i'

OBJECT
PROGRAM

.. ~

OUiPUT DATA

Figure 2.2-1. TRIM III Solution of a Problem

TRIM III has an easy-to-use but effective library retrieval capability. The
library of subroutines is stored on the assembler magnetic tape. The user simply
calls by name those subroutines he wishes to include with his assembled program.
TRIM III honors the calls by automatically adding them to the end of the source
program during assembly. A companion program to TRIM III called the Library Builder
Routine provides easy library building, insertion, replacement, deletion, and listing
capabilities.

TRIM III possesses source language level correction capability in combination with
an assembly run. Although this feature is .primarily designed for use with paper
tape input, it may be used with any combination of input modes.

2. Description. TRIM III is basically designed for the following
minimum equipment configuration listing:

a) UNIVAC 1219 computer with 16,384 words of core memory

b) Magnetic Tape System with a minimum of two tape transports

c) Input-Output Console consisting of a perforated tape reader,
tape perforator, keyboard, and printer. ~

Optional equipment is an on-line UNIVAC 1004 Card Processor System with card reader,
card punch, and high-speed printer.

2.2-2

S.G.l2l9 (P)2.2

The TRIM III assembler is stored on magnetic tape in functional segments. During
an assembly run the segments are read into computer memory and executed in the
proper sequence by the assembler controlling routine. See figures 2.2-2 and 2.2-3.
TRIM III is a single external pass assembler. It accepts a source program, .
converts it to TRIM code, and stores it on magnetic tape for subsequent processIng.
If the user has included calls for library subroutines in his source program, TRIM
III selects them from the library and adds them to the end of the source program
before proceeding with assembly. TRIM III also has source language correction
capability in conjunction with an assembly run.

3. Header and Declarative O~erations. TRIM III recognizes four types
of header operations,

L W Vo VI N

POKER .. CONTR • JONES • 10 DEC 1964 ..
POKER .. ALLOC • JONES • 10 DEC 1964 ..
POKER .. PROG • JONES • 10 DEC 1964 ..
POKER .. CORREC • JONES • 10 DEC 1964 ..

a) CONTRol Header. The CONTR header operation is a convenience
for the user enabling him to group all of his assembler declarative operations
following one CONTR header. A label and identifying operands may be used with the
CONTR header, but TRIM III does not require them.

L W Vo VI

[label] .. [CONTRJ • [name] • [date] ...
Operations which may follow a CONTR header are ALLOC, DEBUG, OUTPUT, REMARK, DECKID
and CALL. CALL operations may also follow a PROG header.

b) ALLOCation Header. (See figure 2.2-4). The ALLOC header follows
a CONTR operation and informs TRIM III that the operations which follow constitute
assignments of absolute values to labels and/or tags. Any number of ALLOC tapes or
cards may be loaded. An allocation tape must always be preceded by a carriage
return. When the allocations are on a separate tape, the tape must terminate with
a carriage return and two periods. ALLOC operations have the following format:

L W Vo VI

[label] .. [ALLOCJ • [name] • (date]

[label J .. [assigned value]
~ ..

[label] .. [assigned value] ..
[label] .. [assigned value] ..

etc.

2.2-3

•
LO --- INPUT

r-t-
WSI

EXECUTIVE: Q.

b.
c.

INPUT: a.

TRANI ALLOC: Q.

b.

OUTPUT: Q.

b.

c.

EXECUTIVE
CONTROL

PERMANENT

TABLE 5
MNEMONIC -
OPERATOR

TABLE
TRANSLATOR-- -" ALLOCATOR

TEMPORARY

TABLE 6
LABEL

~

MONITORS KEY SETTINGS
PERFORMS INITIALIZATIONS
EXECUTES SECONDARY ROUTINES

READS ONE ITEM INTO WSf

TEMPORARY

AREA
STORAGE

TABLE'

~ WS3 f-+

PERFORMS GENERATION INTO WS3 ONE ITEM AT A TIME

ADOS UNALLOCATED TAGS INTO TABLE 6

~

r-

OUTPUT

I

PUNCHES ONE WS3 ITEM AT A TIME IN ACCORDANCE WITH THE NUMBERED OUTPUT
REQUEST (FOR OUTPUT 2 ALSO PUNCHES THE WSI ITEM WITH THE FIRST WS3 ITEM)
OUTPUT 6 WILL BE PRODUCED ALL AT ONCE AND DOES NOT REQUIRE THAT THE
SOURCE TAPE BE RELOADED FOR OTHER OUTPUTS

2 OUTPUTS
3

4
5 TYPES
6

II

OUTPUT I IS NOT A SELECTABLE OUTPUT. BUT IS AUTOMATICALLY PRODUCED WITH OUTPUT 2

Figure 2.2-2. TRIM III Segments 1 and 2

N

N
I
Ul

TRIM III
CONTROLLING ROUTINE

j

,

TABLE I TABLE 3

@ - TRANSLATOR - @ OUTPUT
p

ALLOCATOR - CONVERTER

FINAL ASSEMBLED
SOURCE OBJECT

PROGRAM

~ -

TABLE 5 TABLE 6

MNEMONIC LABEL /TAG
OPERATORS ALLOCATIONS

v--- ~-
"'-..... ___________ ,,-. ___________ --'J\. ___________ -'1

V y-
SEGMENT 3 SEGMENT 4

-
OBJECT
LANGUAGE
a EDITING
FORMATION IN

TRIM III
OUTPUTS

NO.

NO. 2

NO. 3

NO. 4

NO. 5

NO. 6

NO. 7

* NO. 10

NO. II

NO. 12

NO. 13

NO. 14

NO. 15

* NO. 16

* OUTPUT NO.IO IS TABLE 3 t OUTPUT NO.16 IS TABLE 15

Figure 2.2-3. TRIM III Segments 3 and 4

)

N

N
I
0'

"'%j
i-'.

~
s::
1-1
(!)

I\.:)

I\.:)
I

..J:::,.

Cf)
Q)

3
"0

........
(!)

~
o
:z
t-:3
:::c

~
"0
(!)

TITLE
r roo",,",

LABEL
~

POKER

YUJ\..J:O.;K

POKER

CHIPS

DEBUG

.1 1.1"'"J.

of

1 OPERATOR .. HEADEIt T YP£

CONTR .. AI.J.~ .. 05000

• 05500 .. 13000 .. 127QO ..
.-U..U.:J.~:r .. DEBUG .. CALL .. REMARK .. DECKlD

..
•

UNIVAC CODING FORM PROGRAMMER
rl;.'"" ,-~T

DATE

t OPERANDS AND NOTES

· JONES-l6 NOVEMBER1963

· JONES .16JUNE1963

·
·
·
•
• -.l e ~ • ..2. .-.5. eJi • .ll

·
• ...sINE. eJ.ULJ6\ • TYPT

· CONTR TAPE FOR DATAX RE VISION 3.

· SINE

·
· ·
·
•
e

·
·
•
•

·
·
e

·

MS

J

1

I

,

j
1

Cf) .
C":!
........
I\.:)
........
--0

'""C
'-'
I\.:)

I\.:)

S.G.1219 (P)2.2

1) L. The label of the ALLOC header operation itself is
optional. However, each-assignment operation following must have a label.

2) ~. The operator of this header operation is always ALLOC,
and must be present. For the subsequent assignment operations, W must be an
absolute numeric value expressed either in octal or decimal. When expressed
decimally, the number must be followed by the letter D; e.g.,

CAT ... 010~

DOG .. 512~

CHIPS ... 1~
CHOPS .. 10~

3) 1. The V operands of this header operation take the form
name and date as illustrated. These operands are omitted for subsequent assignment
operations.

c) PROGram Header. The PROG header informs TRIM III that the
operations to follow operations as distinguished from control operations. The PROG
header must precede the first statement of a program. The PROG header operation
on paper tape must always be preceded by a carriage return. A program header has
the following format:

L W

[
program] ... PROG

name •
Vo

[name]

VI

• [date]

1) 1. The label of the PROG header operation is optional;
however, when present it is considered to be the name of the program.

2) ~. The operator of this header operation is always PROG
and must be present.

3) 1. The V operands of this header operation normally take
the form name and date as illustrated. The operands are optional and completely
flexible in number and length within the maximum line length.

d) CORRECtion Header. The CORREC header informs TRIM III that the
operations following are sourCe language corrections to be integrated into the
source language program under assembly. A maximum of 192 correction operations is
permitted for anyone assembly run. Three types of correction operations are
provided by TRIM III:

1) Insertions or additions

2) Replacements

3) Deletions

2.2-7

S.G.1219 (P)2.2

Although the correction feature is primarily intended for use with paper tape
input mode. it may be used wi th any combination of input modes. the only restriction
being that all corrections must be read in prior to read-in of the source program.

Corrections are always made on the basis of the sequential line identifier associated
with each source program statement. This sequential identifier appears on a TRIM
III Output No.2. 12. and 14. If assembly consists of multiple source programs. it
must be remembered that the sequential identifiers are cumulative and correction is
based upon these cumulative identifiers in any given assembly. If two or more
correction operations bear the same integral and fractional identifier. the last
one read will supersede the same preceding one(s) with the same identifiers.
permitting a programer to correct a correction. Only the last such correction will
count towards the 192 maximum.

The format of correction operations is similar to that required by the TRIM
CORRECTOR. Figure 2.2-5 shows a sample of correction coding.

e) DEBUG Declarative. TRIM III accepts the declarative operaton.

L w N

Label ... DEBUG ...

The DEBUG operator informs TRIM III that generation is to be performed for debugging
operations contained in the source program. If the DEBUG operator is absent. no
generation will occur for such debugging operations. The DEBUG operation when used
must be loaded prior to the first PROG header. It normally appears on the CONTRol
tape.

f) OUTPUT Declarative. TRIM III accepts the declarative operation.

N

The OUTPUT operation permits the user to specify the assembler outputs he desires.
The outputs are specified by number in the Vo through Vn position. Up to eight
outputs may be requested by the OUTPUT operation. Requests in excess of eight will
be ignored and multiple OUTPUT statements are not permitted.

g) DECKID Declarative. TRIM III accepts the declarative operation.

L W

[label] ... DECKID •

Vo

[name]

N

The DECKID operation permits the user to specify card identification on printer or
source card outputs he may select from TRIM III. From one to four alphanumeric
characters may be specified in the Vo position. These characters together with a
four-digit sequential octal number beginning with 0001. will be added to each TRIM
III statement that is also assigned a sequential line identifier. This card
information will appear on the side-by-side printer listing output ·of the program

2.2-8

N

N
I

--0

n
o
0...
::s

to

)

TITLE MANL (CORRECTIONS)
PAGE 1 of 1

LABEL I OPERATOR

~MANL "Ej\Dt~ TYPE .. CORREC

112 • 05
..,

MANL17 • MOVE

47 • 0
., .. ENTALK

6 • 05
., .. BUFIN

6 - 05
., .. BUFIN

201 • '41

• DELETE

17 •
.., .. DELETE

315 - 05
.,

MAN1,99 .. RESERV
315 -10 ..,

MANLAU .. 0

315 • 15
.,

MANLAL .. 0

316 •
.,

MANLB .. 0

• .,
• ., ..

UNIVAC PROGRAMMER W C Roos .
PLT. 1 EXT 2341 MS 1091

TAPE CORRECTION FORM DATE 8 Nnvp.mhpr 1964

I OPERANDS AND NOTES

• W. C. Roos • BNDV 1964

• 10. MANL8 • MANL99 .. INSERT CORRECTION

• 501 .. REPLACE .cORRECTION

• CHANL· MAD • 1000 • MANL .,
• CHAN - MAD· 100 - MANL80" CORRECTS A CORRECTION

- 180"l- DELETES THIS AND NEXT 1 7

- .. DELETES THIS ONE ONLY

• 8D ADDITION TO END OF PROGRAM

- •
<tit'

- -.,
•
<ttl
•

•

)

C/l

~ .

S.G.1219 (P)2.2

(output 12) and the punched card output in source language (output 15). The new
card identification and numbering pre-empts that which might be present if the input
source program is on cards. Any number of DECKID statements may be inserted any­
where in the source program; however, each DECKID operation affects only those
statements following that DECKID statement, and the card numbering will always
begin wi th 0001.

h) ENDATA Declarative. The ENDATA operation is used with card
input to TRIM III. It informs the assembler of the end of a card deck. It does
not mean the end of all input. The ENDATA operation does not cause any object
language generation. It may have a label and notes. One blank card must follow
each ENDATA card.

L W

[L] .. ENDATA ..

4. POly-Operations (different from TRIM II).

a) Library CALL Operation.

L W

•
The CALL operation permits the programer to specify by name (label of the PROG
header) the subroutines he wishes the assembler to retrieve from the library of
subroutines. A single CALL operation may name up to eight such subroutines. If
the user requires more than eight subroutines, he may specify them with additional
CALL operations. Subroutines retrieved from the library are automatically added
to the end of the source program and assembled with it. The user has complete
control of their address allocation if he wishes via ALLOC operations.

Whenever a CALL operation follows the CONTR header, TRIM III will honor the calls,
but the CALL operation itself will never appear on a side-by-side output listing.
Only those operations following a PROG header appear on such listings. If a
subroutine retrieved from the library contains CALL operations, these calls will
also be retrieved and added to the end of the composite program until the last CALL
operation has been honored. A request for Output No. 7 causes all library CALL
operations to be ignored.

The CALL operation causes no object program generation.

Examples:

.. CALL. TYPT.GLP .SINE • TYPC ..

.. CALL. PCHC ..

b) SETSR Operation.

L W

[label] ... SETSR • [AlPhanumeric Tag] ..

2.2-10

S.G.1219 (P)2.2

The SETSR operation enables the programer to place responsibility for setting k of
an ENTSR instruction upon TRIM III. Based upon an ALLOC operati~n or th~ assembled
address of the referenced tag, TRIM III will generate an ENTSR InstructIon (5073
k) with the proper k value for each SETSR operation.

1) b. Label is optional.

2) ~. SETSR must be present.

3) .YO.
label or an allocated value.

Must be an alphanumeric name corresponding to a program
Va may not be incremented or decremented.

Examples:

Assume CAT is a label at 36421 and DOG is a label at 170460
and COW is allocated to 01000, then

... SETSReCAT ... Generates 507313

... SETSReDOG ... Generates 507337

... SETSReCOW ... Generates 507310

c) Debugging Operations. TRIM III provides two debugging
operations for punching a paper tape output of either the contents of registers AU,
AL, and current B, or the contents of specified sequential memory locations. These
operations generate a set of threee or five instructions in the object program
which, when run on the computer with the DEBUG subroutine, produce the desired dump.
Each set of instructions is assigned a sequential identifying number which appears
with each punched output, thereby enabling programer recognition of repeated times
through given coding paths. The debugging operations take the following form.

L W N

[label] .. DUMPR ...

L W N

[label] "DUMPM • [number of J.~ddress of first] ...
words to dump word to dump

1) b· Label is optional.

2) ~. DUMPR or DUMPM must always be present.

3) .YO. Applicable to the DUMPM operation only. Specifies the
total number of memory locations to be dumped. The number may be expressed in octal
or in decimal followed by the letter D.

4) .Yl. Applicable to the DUMPM operation only. Express the
address of the first word whose contents are to be dumped. It may be expressed as
an integer or a tag plus or minus an integer.

2.2-11

S.G.1219 (P)2.2

Examples:

label .. OUMPR ..

label .. OUMPM • 12 • 10000 ..
label .. OUMPM • 100 • 10000 ..
label .. OUMPM • 100 • CAT+280"

label .. OUMPM • 12 • CAT-IS ..

label .. OUMPM • 640 • CAT ..

Both OUMPR and OUMPM operations preserve existing values in AU, AL, and the current
B register.

TRIM III also provides two additional debugging operations for programer use: OSTOP
and OTYPT.

L W

[labe~.OSTOP ..
The OSTOP operation permits the programer to intersperse strategic debugging stops
within his program. If the DEBUG operator is used, the OSTOP will generate an
unconditional stop(505640); otherwise, TRIM III will ignore the operation.

L W

•
·V o

[text and/or line printer commands] ..

The OTYPT operation performs in the same way as the TYPT operation. If the DEBUG
operator is used, TRIM III will perform the generation. Otherwise, the operation
will be ignored.

5. TRIM III Outputs. TRIM III provides thirteen different outputs of
the assembled and/or source program. The user selects his outputs in accordance
with his needs and the available peripheral devices.

The available outputs are listed in the following paragraphs.

a) Monitoring Typewriter:

NO.1. Program summary consisting of the number of memory
locations used and inclusive addresses.

b) Paper Tape. Except for outputs 6 and 11, all paper tapes are
loadable via the 1219 utility packages. Outputs 6 and 11 may be used as, input to
TRIM III.

2.2-12

S.G.12l9 (P)2.2

1) No.2. Absolute assembled program, sequential line
identifier, source program, and assembly error alarms when applicable. This is
a side-by-side listing in source code preceded by a program summary consisting of
the number of memory locations used and inclusive addresses.

2) No.3. Absolute assembled program in source code, consisting
of a carriage return, 88, carriage return, addresses and instructions, a carriage
return, double period and checksum.

3) NO.4. Absolute assembled program in bioctal format,
consisting of a 76 code, inclusive area addresses followed by the instructions only,
and a checksum.

4) No.5. Relocatable assembled program in bioctal format
starts with a 75 code followed by the assembled program relative to base 00000, and
terminates with a checksum. The output tape may be loaded starting at any desired
memory location.

5) No.6. Allocation output in source code consisting of an
ALLOC header, followed by all program tags and labels and addresses in allocation
format.

6) No. 11. The source program only, produced on punched paper
tape in source code.

c) High-Speed Printer.

1) No. 12. Absolute assembled program, sequential line
identifier, deck and card number if applicable, source program, and assembly error
alarms when applicable. This is a side-by-side listing suitable for hard-copy
editing and documentation.

2) No. 14. This is the same as Output No. 12 except that there
is no card information and page size is assumed to be 11 inches wise by 8 1/2 inches
long.

d) Punched Card.

1) No. 13. Relocatable assembled program on Hollerith-coded
80-column cards. The first card contains only the base load address. Subsequent
cards contain up to 8 computer words, a cumulative checksum, and a card sequence
number. The initial load card may be removed and a load address set in A upper.

2) No. 15. Source program only, on Hollerith-coded 80-column
cards. Each card contains one TRIM III statement as well as any card deck
identification and sequence number.

e) Magnetic Tape.

1) No. 10. During assembly TRIM III automatically produces
this output on the magnetic scratch tape. The tape data can be loaded into the
computer memory absolutely or relocated to any specified base address by the 1219
UPAK II or UPAK III utility programs.

2.2-13

S.G.1219 (P)2.2

2) No. 16. Source program on magnetic tape. This output
does not include declarative operations such as ALLOC, OUTPUT, or DECKID. Output
No. 16 may be used as input to TRIM III.

f) Miscellaneous.

No.7. Output No.7 is not itself an output, but does affect
all other requested outputs, since it causes TRIM III to ignore all library CALL
operations of the input program.

6. Programing Procedures.

a) Paper Tape Input Format. Two versions of TRIM III are
available, one version accepts a source program paper tape prepared in fieldata
code, the other version accepts a source program paper tape prepared in standard
Flexowriter code (see tables

For the fieldata-oriented TRIM III each source tape must begin with a carriage
return and terminate with a carriage return and two periods. Shift-up and shift­
down codes are ignored.

For the Flexcode-oriented TRIM III each source tape must begin with a carriage
return and shift to upper case since the assembler assumes all input is in upper
case except for the comma, the vertical bar, the plus, and the period. Each source
tape must terminate with a carriage re~urn, a shift to lower case, and two periods.

Typing-error correction procedures have been incorporated in the fieldata versions
of the TRIM I, TRIM II, and TRIM III assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of input tapes for
these programs on the Type 1232 I/O Console.

Since it is impossible to back up the paper tape and punch "code-delete" codes
over the erroneous frame or frames, any typing errors must be identified by a
special code or codes following the erroneous data. On the 1232 I/O Console, we
have designated the BACKSPACE code of the keyboard as a REJECT code. The BACKSPACE
is identified by the upward pointing arrow (+) below the stop code (@O) on the same
key on the left hand side of the keyboard. In lower case, this key punches a 77
and types the same arrow (+) on the printer.

A single reject code (77) anywhere on an input tape to the TRIM Assemblers or
Corrector informs that routine that the legal code that immediately preceded the
77 should be rejected. (Any code other than 01, 02, 03, or 57, is a legal code),
e.g. ,

o ER + NTE + AL + CAG t T

appearing on the console printer and punched as one of the statements on a program
tape to be assembled will be interpreted as

a ENTAL CAT

by that assembler.

2.2-14

S.G.1219 (P)2.2

Three rejects in a row (77-77-77) on an assembler or corrector input tape inform
that routine that the entire statement being formed should be rejected, and that
processing of a new statement should not begin until a carriage return is found,
e. g.,

(JENTAL CAT (Carriage Return-Line Feed)

MOOSE (]STRAL D '" JP TIGER (Carriage Return-Line Feed)

(JADDALK 63 (Carriage Reutrn-Line Feed)

MICE (JSTRAL DOG (Carriage Return-Line Feed)

appearing in a program to be assembled by a TRIM Assembler will be interpreted by
that assembler as

(] ENTAL CAT (Carriage Return)

(J ADDALK 63 (Carriage Return)

MICE (] STRAL DOG (Carriage Return)

Another example:

143' 1 t 2 (Carriage Return - Line Feed

GOOF (] SLSUB' JUNK + + + (Carriage Return - Line Feed)

RIGHT 0 JK 'P'HONl + OR (Carriage Return - Line Feed)

on a correction tape will be interpreted by the TRIM Corrector as

143'2 (Carriage Return)

RIGHT 0 JP'HONOR (Carriage Return)

b) 80-Column Card Input Format. For those installations whose
peripheral equipment configuration includes a UNIVAC 1004 card reader, TRIM III
accepts source programs prepared in Hollerith code on standard 80-column cards as
well as source programs prepared on paper tape. The two input types may be
intermixed.

Basically the coding format is similar for either card or paper tape input.
Interpretation of coding separator symbols for card input is given in table 2.2-1.

The straight coding arrow is interpreted according to its format position; it
represents a SKIP key at the beginning of a statement and three dashes at the end
of a statement. The point represented by the "*,, key in all card input.

2.2-15

S.G.1219 (P)2.2

TABLE 2.2-1. CODING FORMAT SYMBOLS

Symbol Key Rows Punched

• (start statement) 9 (none)

.. (start notes) 8C)@ 4,8 4,8 4,8

.. (carriage return) @ (none)

I (vertical line) CD 11, 3, 8

• (point separator) CD :'.(11, 4, 8

. (period) CD 12, 3, 8

, (comma) ffi 0, 3, 8

+ (plus) 12

- (minus) @ 11

The ENDATA operation card followed by one blank card denotes the end of a card
input deck.

The following examples illustrate the basic coding format for card input:

DECK CARD INS.
10 NO. NO. L W V N

B017 0005 CAT4 .. ENTAUB • DOGS .. MASK FOR SEARCH.,

B017 0005 05 .. CMSK • CATl~

B017 0006 JPNOT • LOK-3 .. LOOK AGAIN ..
See figure 2.2-6. Typical Code Program for Card Input.

Card format uses card columns 1-4 for deck identifier, 5-8 for card number, 9-10
for card insert number, 11-16 for the label, and 21-80 for statement and notes.

1 ~---... 4 5 ... ----. .. 8 9 44--+ .. 10 11 +--+ 16 2144------------

DECK 10 CARD NO. INS. LABEL STATEMENT --- NOTES~
NO.

Three dashes (---) punched code 4.8 always follow the statement whether or not
there are notes. The REL (release) key terminates the card. TRIM III makes no
proviSion for the statement and notes to overflow one card. Any attempt to con­
tinue notes on a second card results in improper generation for that card.

2.2-16

l\..:)

l\..:)
I

I-'
-.]

"TJ
cO
~
t-!
ro
l\..:)

l\..:)
1
0'

1-3
'<
"0
~
Q.l
I-'

("l
o
0.
ro
0.

'"0
t-!
o

cO
t-!
Q.l

3
ro
t-!

("l
Q.l

t-!
0.

H
::s

"0
~
c+

CAR-D'~NS[-'"-~ABEL ! OPERATO-R -r- OPERANDS AND NOTES

~ r'J07~-r" .. ~.~~----_-- ;"'~;<ifi";"-'~~-~~-~'~ 4';C'~~n~~ 191)·1 - ~--XS-3TOOCTAL I!'TEGERCONVERSlON

I ;;~ '~;~~:~~:-------~:. E~T :~~~=~ .. _PT::~~~~_:~~:;l:~~:ii;-~~~~U -=- _____ =~~=~~~- ----=~~~~-~~--""~" ~ -==---=.-.--~~-~-~.== ... ~~~.
(£ i i'N' 0 ()O 3: : ~: ... E!,\TBK • 3 SHIFT INDEX
:i :~; S{)~:-4~--:-L-- -~=~-~--.. ENT~!:~·:=- .--'~~ :-~~=~_=__=_ __ =_=__~~-=~ __ ~~~.~~_=._=.---_=_~~~_=-_~- .. ------ -.---__ =~~-_:..~_. __ ~.
U' :iX 0,0,5,' f'Al'il .. LSHA 6
~ S::g .. Jl'A~_~ ______ ~AN~______ .----------- ------.-- ----- ---- II

I · ___ .~@DALK ____ 31.~~ _____ ____..£.HANGE TO/L:.illr.. BCD _
--------------------1

;,i : .. LSHAL 14

'" o "-.....-,r-o--,,-T-y....---

g: cr;;P\ 0:0' 091; ; 1- "A~i~_u
'[EO'O:I,O I ~ __ _

, N; 0, 0 I, l' '" 1· AN 3
1--0

~:~I~'~ ~ ~I ~
~:I ~lfO?t~1\1~---

I' 0,0 1 ~, I

(!) :1 0:0' 1 : "
~i

.. BJP PANI
~iB-K------2 --
~ E~JAL lliCR

... LSHAL

... ADDAL INCR

... LSHAL

.. STRAL l-TMP

o .. ENTAL:...;K ______ _

o ;QT 'T-r-TTl1---·------ ---'-' - -.------- -----

------------_.---_. __ ._. ----_._._---
SET ll'ODEX FC)R 3 CHARACTERS .-----------------CONVERSIOl'i LOOP

(INCR) \!"ITlALLV CLEARED

._-------------

o \i P 0 0, 1 71 ' " .. LSHA • 6
Ui0J~+-1t-._-_-.. _-_:~_=_·-=_~ AE_~~~-::-=_~'~ ~TMP---- . _______ _

\~0;0,li9 : ______ ~~~~AJ:: ___ .~~ __ INCR ___ __. __ ._. ______ ~ ___ __I

"S, 00;20 ... B.1P • PAN3
I~ ----.~- .. - -- ---,,-----.. -."---.--- -----
i:~ O~h------~ IJt __ ,,_.~_· ___ ~~ ___ CONVERTED VALUE l~ AL Al"D INCR

, :!i~ 0-0 2 2; \ 'l'TMP .. O. TEMPORARY
;:, 0012'3 INCR---.--O-

I t 010
'
24 - --~N:"·D-A-T-A-----

-\11
:1' -----.. -
~i~J~h-~-----~- -.-----.-

! .i-l' : :j I , ...

';i! +. ,: ...

INTEGER WORD

;z.! .;i~ !! j: ..
<t: ,'j----J ... -
"" .,':11:: I ++H-+-+-----.--::....---------.----------------------------I ;iigr- .. ---~.---

~~I! .. 4- ' .. ----- ---------.---------~
~~lj ! J I! ..

U)

c:;".l

......
l\..:)
I-'
--0

'"0
"-'
l\..:)

l\..:)

S.G.1219 (P)2.2

The column-skip feature on the key punch provides a convenient means to bypass
unused columns reserved for the label. The keypunch operator begins a label with
column 11 and skips any unused columns between the end of the label and column 21.
If no label is present, the operator hits the SKIP key and the card is automatically
positioned at column 21. The statement always begins at column 21. Three dashes
separate the statement from the notes even though no notes may be present. The
REL key terminates each card.

00210067 FRMT 1 CMSK*SPACE - -- NO PARAGRAPH NUMBER

I I I III I II I I II
II I II I II I I I I I I I

.1 •• 11 ••••• ;.1 •••••• 1.1 •• 1 ••••••••••••• 1 ••••••• 1'.' ••••••••••••••••••••••• 11.,.1
I l] I II I I 1~~~"UnM"~~HVtlnUnHvHH.~HnMu.» ••• ~uuunM~MHM~UUWUM»Y~.»na~~.» •• H"""U~~"~~ •

• 1 1 111 I 1 I I I 111 til I 1 r I 1 I I I I I 111 I 11 f 1 , 111111 11111 I I 1 1 I I 1 I I I I I I 1 , 1 I I I I I 1 1 I , I I I I 1 I I I 1 .
: Z 212 2 2 2 2 2 2 2 2 2 2 2 2 Z ~ 2 22 211212 2 2 2 2 2 Z Z Z 2 2 Z 2 2 2 2 2 Z Z 2 2 2 212 2 2 2 2 Z Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Z 1 Z 2 Z ..
II 2 3 33 3 S 3 U 3 3 n 13 33 3 3 313 3 3 3 33 313 33 3 3 1 3 3l 1 3 3 3 3 U 3 3 3 3 3 3 3 3 3 3 3 3 3 U 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

~lc44444cc4'4Ic444444414414c.441114.4444.44444.4114444CCC44444444A4C4444444444444
z
:::J 5 5 5 5 5 5 55 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 15 5 51 S 5 5 55 5 5 5 5 n 515 5 515 5 5 5 55 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5

S I • II 111111 & I & 51 • 111111 I III lIS 111111111111 & 11111 • I & II & ... II , I & III & I & I 6 I & 56 6 & & 6 , 6

: ' , , 1 1 1 111 1 1 J 1 1 1 1 1 1 1 J 1 1 , 1 I 111 J 1 1 1 1 7 I 111 J 1 I J 11 J 1 1 1 I I I 1 1 1 1 1 1 7 1 1 1 7 1 1 1 1 1 1 1 1 1 1 I I 7 7 1 J 7 J

; '"I' , • II II • II I • II HIli '111 111111' II II II I , I "1 II II I • II • II • I • a I 181 B II 8 III 8 I a I 8 I a 8

r·~~!~~~!!:~~~~!~~~~!~~~!~!~!!!~!~!!!~!I!~W!!~!~!!~~I~~~!~!!!~!!~~~~!!~~~~~~~~~~!

See figure 2.2-7 for an example of TRIM III Output No. 12 resulting from card input.

c) Source Program Correction Formats. When so directed by a
CORREC header operation, TRIM III will perform source program corrections in
conjunction with an assembly run. Outputs from the assembly will include the
requested corrections. The following rules govern the use of the correction
capability:

2.2-18

1) A maximum of 192 corrections per assembly is allowed.

2) Corrections must follow the CORREC header.

3) Corrections must be loaded prior to the loading of the
source program(s) to be corrected.

4) Corrections need not be in any special order. TRIM III will
sort the correction items prior to merging them with the
source program.

5) Where two or more correction operations bear the same integral
and fractional value, the last such operation overrides
permitting programers to correct an erroneous correction.

6) Corrections are based on the assembler-assigned sequential
line identifier for each source statement.

S.G.1219 (P)2.2

PAGE 001

=====~~-====~-====~~~===~======~===;-=:===~===== -====~===========~=========================~========~~===;:======~=

OUTPUT 12
~ = ':": 7: ~ =- :: =: ::::;:~ ;; =;:: -; -=::--:: .::::; = ::-.::-:::::::::::-..: =~~====;=~:~=~=====E=========~==================~========~=======~=~~~--=~==

MEM. STRG. USED 11061
00240 THRt: 00404
01000 THRU 07743
20000 THRU 21747

LOK INSTR LiID DECK CARD LO

0 LIBX 0001 BITSUM PROG*JRS*6NOV64 FLEX
00240 34 0364 LIBX 0002 BITSUM JP·SEOK LIBBLD BOOTSTRAP LOAD
00241 76 0355 LlBX 0003 t:PAKX RJP*ERP 100

00242 40 0247 3 LIBX 0004 UPAK CL*CHECK CLEAR ACCUM CKSUM
00243 42 0254 4 LIBX 0005 STRS*BNASTY SAVE B
e<>244 76 0345 5 LIBX 0006 UPAKI RJP*RF READ FRAME
00245 61 0244 6 LIBX 0007 JPALZ*UPAK1 IGNORE LEADER
00246 34 0270 7 LIBX 0008 JP*BILD

00247 00 0000 10 LIBX 0009 CHECK O· ACCUM CKStJM
00250 00 0000 11 LIBX 0010 SUM 0* ZERO CONST
00251 00 0000 12 LIBX 0011 CAD O· CURRENT ADDR
00252 00 0000 13 LIBX 0012 FAD O· FINAL ADDR
00253 00 0076 14 LIBX 0013 BI0 76· BIOCT AL CODE
00254 00 0000 15 LIBX 0014 BNASTY O· BKEEPER
00255 00 0000 16 LIBX 0015 BUWD O· DATA I/O BUFFER
00256 00 0000 17 LIBX 0016 o·
00257 00 0000 20 LIBX 0017 D·
00260 00 0000 21 LIBX 001B' O·
00261 00 0000 22 LIBX 0019 O·
00262 00 0000 23 LIBX 0020 0*
00263 00 0000 24 LIBX 0021 O·
00264 00 0000 25 LIBX 0022 o·
00265 00 0000 26 LIBX 0023 o·
00266 00 0000 27 LIBX 0024 o·
00267 00 0000 30 LIBX 0025 O·
00270 40 0247 31 LIBX 0026 BILD CL*CHECK
00271 10 0250 32 LIBX 0027 ENTAU·SUM CL AU
00272 76 0335 33 LIBX 0028 RJP·BILD7 6 DIGITS OF ADDRS
00273 50 4717 34 LIBX 0029 LSHA·17
00274 46 0251 35 LlBX 0030 STRAU·CAD
00275 10 0250 36 LIBX 0031 ENTAU·SUM
00276 50 4703 37 LIBX 0032 LSHA*3

00277 70 0001 40 LIBX 0033 ENTALK·1
00300 74 0336 41 LlBX 0034 STRADR ·BILD7 + 1
00301 76 0335 42 LIBX 0035 RJP*BILD7 GET REST OF ADDRS
00302 44 0252 43 LlBX 0036 STRAL*FAD
00303 70 0002 44 L1BX 0037 ENTALK*2
00304 74 0336 45 LIBX 0038 STRADR*BILD7+1
00305 76 0335 46 L1BX 0039 BILD2 RJP*BILD7
00306 32 0251 47 L1BX 0040 ENTU·CAD

Figure 2.2-7. TRIM III Output 12 from Card Input

2.2-19

S.G.1219 (P)2.2

7) The integral and fractional portions of the correction
identifier must be expressed in octal notation only. The
integer is limited to a maximum of six digits; the fraction
(which indicates insertion or addition) is limited to three
digits. The fraction is a straight binary magnitude, (e.g.,
the correction identifiers 12'2, -12·20, and 12·200 all have
the same value.

8) Corrections may be prepared on punched cards or punched
paper tape.

d) Paper Tape Correction Format. The format of correction
operations prepared on paper tape is identical to that required by the TRIM CORRECTOR
(see paragraph 2.3-4e of this manual) with the following exceptions:

1) Corrections must follow a CORREC header.

2) A maximum of six integral digits is permitted.

e) Card Correction Format. Special formatting rules apply to
correction operations prepared on 80-column punched cards. Except for the CORREC
header each correction action requires two cards. The first card contains the
integer and fraction of the sequential identifier, while the second card contains
the correction operation itself. If the correction operation is an insertion or
replacement, this second card may also contain card identification in its first ten
columns which will be included in the outputs 12 and 15 of the assembled corrected
program unless a DECKID operator has been used.

On the first card, the integral portion of the sequential identifier must begin in
column 11. A point separator (asterisk) must not be used. The fractional portion,
if any, must begin in column 21 and must be terminated with the conventional three
dashes. If there is no fraction, one zero code fOllowed by the three dashes must
still be punched beginning at column 21.

An ENDATA card followed by a blank card must always follow the last correction card
even if other cards are to follow in the assembly.

The following example of card correction format makes changes to the program in
figure 2.2-6.

Column: 11 21

Card 9 (
Card 8 (
Card 7 (
Card 6 (

ENDATA ---

PANSOO181 SUBAL II< INCR

22 1 ---

Card 5 (DELETE II< 3

Card 4 (14 o ---
Card 3 (PANSOOll PAN3 ENTALK II< 53 --- CONSTANT TO AL

Card 2 (13 o ---
Card 1 (PAN CORREC

2.2-20

S.G.1219 (P)2.2

f) Ground Rules. Regardless of the input format, there are
certain conventions which the programer must bear in mind when coding for TRIM III.

1) No label may exceed six characters. The label must not
begin with a number, the letter 0, nor may it consist only
of the letters LOK. The label may never contain a +, -
comma, or point separator code.

2) The maximum size program which TRIM III can assemble is
limited only by the number of memory locations above address
130008 used for label/tag storage (3 words per label or tag).

3) Each break in addressing sequence constitutes a program area.
A total of 64 such areas are permitted.

4) TRIM III provides a limited amount of error detection with
error typeouts.

5) TRIM I operators SETADR and EQUALS are ignored by TRIM III.
The ALLOCation operation replaces these two functions.

6) When specifying a decimal integer, the letter 0 occupies
one digit position; therefore, the maximum decimal integer
that can be expressed is 999990.

7)· Sample coding generated by the CLEAR pOly-operation.

~. Assume CAT is in bank 3 .

... CLEAR.IO.CAT ..

ENTBK.7

STRSR.LOK + 4

ENTSR.13

CLB.CAT

BJP.LOK - 1

ENTSR.O

E· .. CLEAR.10.115000 ...
ENTBK.7

STRSR.LOK + 4

ENTSR.31

CLB.5000

BJP.LOK - 1

ENTSR.O

(User's SR stored here)

(User's SR stored here)

2.2-21

S.G.1219 (P)2.2

2.2-22

8) Sample coding generated by the MOVE poly-operation.

~. Assume MOW, COW, and the MOVE instruction are in bank 3

~ MOVEel0eMOwecow ~

ENTBKe7

STRSReLOK + 6

ENTSRe f1
ENTAUBeMOW

ENTSRe0

STRAUB.COW

BJPeLOK - 4

ENTSR.O

~. Assume CAT is in bank 4

~ MOVEel2eCATel35000 ..

ENTBKel1

STRSReLOK + 6

ENTSRe14

ENTAUBeCAT

ENTSRe33

STRAUB.5000

BJP.LOK - 4

ENTSReO

(User's SR stored here)

(User's SR stored here)

9) Assembler support subroutines TYPT, TYPC, PCHT, PCHC, and
the debugging package, DEBUG, are included in the TRIM III
library of subroutines. The programer uses a CALL operation
to retrieve them from the library. The programer may
allocate these subroutines through normal ALLOCation
operations. If he does not allocate them, TRIM III will
assign them sequential addresses immediately following the
principal program. If these subroutines are not assembled
with the principal program and the programer has not
provided for their allocation, TRIM III will arbitrarily
assign all references to them to the following fixed
addresses:

TYPT 17000

TYPC 17160

PCHT 16400

PCHC 16560

DEBUG 17470

S.G.1219 (P)2.2

Each of these five subroutines use the tag CHAN for all input/output instructions.
It is the programer's responsibility to provide an ALLOCation operation equating
CHAN to the appropriate I/O channel.

10) If a program contains ADDA, ADDAB, SUBA, or SUBAB
instructions, regardless of whether or not a DBLSET
operation was used, the following restrictions shall apply
to loading a TRIM III Output No.5, 10, or 13 into computer
memory:

~. If the program was assembled starting at an even
address, it must be loaded starting at an even address.

~. If the program was assembled starting at an odd
address, it must be loaded starting at an odd address.

11) TRIM III informs the user of a duplicate label via a type­
out on the on-line typewriter. The typeout includes the
sequential line identifier, the warning, DUP LBL, and the
label name. Except for the warning typeout TRIM III will
normally ignore duplicate labels equating all references
to the address of the first such label. However, if the
user has allocated a label which is in fact a duplicate,
that allocation is lost with unpredictable results in
address assignment.

12) (Applicable to 65K memory computers only). Any program to
be assembled by TRIM II or TRIM III must be assembled for
only one 32K segment of memory, either 000000 through
077777 or 100000 through 177777. This means that the
assembled program must reside in one 32K segment or the
other, but not both. This does not preclude intersegment
references which would be implemented exactly as for inter­
bank references. The TRIM assemblers do not provide any
alarm indications for this condition.

7. TRIM III Operating Procedures. See figure 2.2-8.

a) Basic Information. TRIM III is a magnetic-tape-stored assembly
system which accepts source programs written with absolute or mnemonic function
codes and symbolic addressing and produces assembled output programs suitable for
loading into the UNIVAC 1219 computer and/or hard copy editing and documentation.
TRIM III has been designed to fit the channel and equipment configuration of the
center in which it is used. The assembler provides the user with a simple means for
selecting various modes of input without skip key settings other than Skip Key 1.
TRIM III has three optional modes of input and each mode is represented by a number
code.

Input Mode

Cards

Paper Tape

Magnetic Tape

Number Code

000001

000002

000003

2.2-23

TITLE TYPE TEXT ROUTINE UNIVAC CODING FORM PROGRAMMER J E Scanlan
PAGE 1 of 2 PLT. 1 EXT 340 MS 1091

DATE 28 September 1964

LABEL 1 OPERATOR ! OPERANDS AND NOTES ...,.
PIt~ TYPE SCANLAN SEPT 1964 TYPT ... · •

TYPT • 0 · .. TYPE TEXT SUBROUTINE .. STRSR · TYPT20 .. STRAU · TYPT3 .. STRAL · TYPT4 .. STRB · TYPT5 ... ENTALK .~ - .. RJP · DOTYF .. ENABLE TT KEYBOARD -
IYET 1 ... ENID · TYET ... ADYANCE EXTT AnDR .. ENTBKB • 1 .. STRB · TYPT --.. t< NT:-iK • 10 ... ENTAUB · ~ .. PICK UP NEXT FIELD DATA WD .. ENTSR · ~ .. CLEAR SR ACTIVE .. ENTBK · 2

'I Y Pi 2 .. ENTALK · ~ .. LSHA · 6 .. NEXT FIELD DATA CD TO AL .. CMAL · TYPT 6 .. sIEEQ · LQK + 4 .. ,~LL DQNE IE 7'1 .. RJP · PIP .. TYPE IT .. BJP · TYPT 2 .. JP • TYPT 1 ... ENTALK · 1 .. RJP · DOTYF .. DISABLE KEYBOARD .. ADDAL • TYPT

N

N
I

N
U1

~
~.

co s=
1'1
('[)

N

N
I
co

~
3

"0
I-'
('[)

t-3
:::c
H
2:
(J
o
0..
~.

:3
CO

'":t1 o
1'1
3
g)
c-+

-.
(J
o
:3
r+

TITLE Type Text Routine
r,",v~

2 of 2

LABEL l OPERATOR
...... • HlAOER TYPE

-.. STRAL .. ENTAU .. ENTAL .. ENTB

TYPT 20 .. ENTSR .. IJP
TYPT 3 .. 0

TYET 4 .. 0

TYPT 5 .. 0
TYPT 6 .. 77

f··
•
•

-.-..

UNIVAC CODING FORM

I OPERANDS AND

·
• TYPT ... SET REAL EXIT

• TYPT 3 .. RESTORE REGS

• TYPT 4

• TYPT 5

• 0

• TYPT

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· ·
·

PROGRAMMER J. E. Scanlan
r~l· ~ L.~T 340 Mi 1091
DATE 28 September 196

NOTES

-

-

I
C/)

Cj)

I-'
N
I-'
--.0

""0
'-'
N

N

S.G.1219 (P)2.2

Each TRIM III has one normal mode built into it - the one prevailing at the center
where it is used. If only the normal mode is required, the user need not concern
himself with the modes at all. However, if different input modes are to be used
(for example, card and paper tape in combination) TRIM III users must familiarize
themselves with the input mode codes and their use.

b) Loading TRIM III.

1) For installations possessing a magnetic tape wired bootstrap,

STEP 1. Mount the TRIM III Assembler tape on magnetic
tape cabinet 1, transport 1, and set the corre­
sponding write enable button on the magnetic tape
control panel.

STEP 2. Press the computer control panel MASTER CLEAR
LOAD, and START switches. The TRIM III EXecutive
will be loaded into memory and the computer will
stop with P = 01404.

2) For installations possessing a paper tape wired bootstrap,

STEP 1. Mount the TRIM III Assembler tape on magnetic tape
cabinet 1, transport 1, and set the corresponding
write enable button on the magnetic tape control
panel.

STEP 2. Mount the TRIM III paper tape loader in the paper
tape reader.

STEP 3. Press the computer control panel. MASTER CLEAR
LOAD, and START switches. The TRIM III EXecutive
will be loaded into memory and the computer will
stop with P = 01404.

c) Initializing TRIM III. When the computer stops with P = 01404,
it is necessary to identify the magnetic tape configuration. This identification
need be made once only for all subsequent assemblies unless it is necessary to change
the configuration. TRIM III expects tape information in the format DOCST where C
is the channel number (bits 6 through 9), S is the tape synchronizer number (bits
3 through 5), and T is the transport number (bits 0 through 2). Thus, 001512
represents channel 15, synchronizer 1, transport 2, and 000112 represents channel
1, synchronizer 1, transport 2.

2.2-26

STEP 1. Set AU to the assembler tape (Tape A).

STEP 2. Set AL to a scratch tape (Tape B).

STEP 3. Start. TRIM III will record the information and stop
with AU and AL cleared.

STEP 4. When using only two transports, Start. The computer
will stop with P = 01400.

S.G.1219 (P)2.2

STEP 5. When using 4 transports,

a) If source input is on magnetic tape, set AU to
the input tape.

b) If a source output on magnetic tape (TRIM III
output 16) is being requested, set AL to the output
tape, (TRIM III output no. 10 is always produced
on scratch tape B,)

c) Start. The computer will stop with P = 01400.

d) Using TRIM III.

STEP I, For paper tape input, mount source tape in paper tape
reader.

STEP 2, For card input, initialize the UNIVAC 1004 Card
Processor as follows:

a) Set Manual Alternation Switch 1 only.

b) Mount source card deck in card reader input hopper.

,c) Press CLEAR, START, FEED, and RUN.

STEP 3. For magnetic tape input, mount the input tape as follows:

a) If two tape transports are being used, mount the
input tape on the scratch tape B transport, In
this situation via the typeout, "REMOVE INPUT TAPE
TO SAVE", TRIM III will instruct the operator to
replace the tape upon completion of read in the
event that the input tape is to be saved.

b) If three or four transports are being used, mount
the input tape on the transport identified in AU.
Since this transport is used only for magnetic tape
input, no warning typeout occurs,

STEP 4. Master Clear.

STEP 5, Set P = 01400.

STEP 6. Set Skip Key 1.

STEP 7. For error typeout suppression, set Skip Key 3.

STEP 8. If initial source input is other than the normal mode,
set AL to the proper code. (For normal mode AL
remains equal to zero).

STEP 9. Start. On completion of source program read in, the
computer will stop with AL equal to zero.

2.2-27

S.G.1219 (P)2.2

a) If input is complete, release Skip Key 1 and Start.
Assembly will now proceed with informative type­
outs occurring as required.

b) If there is addtional input, mount source input
on the input device as for Steps 1, 2, or 3.

1) If the input mode is the same as before, start
from Step 9.

2) If the input mode is to change, start from
Step 8.

e) Assembly with Corrections. TRIM III includes the same correction
features that the TRIM CORRECTOR possesses. It is possible to correct a source
program and assemble it for the desired new outputs in the same assembly run.
Although this feature is intended primarily for the paper tape input mode, it may
be used with any combination of input modes.

Correction tapes or cards must be read in before the source program. If the
assembly consists of multiple source programs, it must be remembered that the
sequential line identifiers are cumulative and the corrections are based upon these
identifiers in any given assembly. The input of the corrections have been read in,
the source program must follow with Skip Key 1 still set. Any outputs selected will
contain the requested corrections including source program outputs 15 (cards), 11
(paper tape), and 16 (magnetic tape).

f) Miscellaneous Information.

1) Tape Unit Re-identification1 To re-identify tape units, set
P = 01404 and execute the steps outlined in paragraph 2.2-4b7c).

2) TRIM III Output 10. To stack TRIM II output no. 10 on
scratch tape B, execute the following steps.

2.2-28

STEP 1. All desired outputs (up to 8) must have been pre­
selected either via an OUTPUT operation or manually
following the first "SELECT OUTPUTS IN A" typeout.
Once the stacking option has been exercised for a
given assembly, additional output requests from that
assembly will cause an error.

STEP 2. After the last preselected output has been produced
and the "SELECT OUTPUTS IN A" typeout has occurred,
the computer will stop.

STEP 3. Set Skip Key 2 and Start. TRIM III will adjust its
table index and the computer will stop with P =
01400 in preparation for the next assembly.

STEP 4. Release Skip Key 2, then proceed normally with the
next assembly.

\

S.G.1219 (P)2.2

3) Manual Output Selection. If outputs have not been
selected via the OUTPUT operation, TRIM III will request manual selection at
assembly time. When the source program has been read in, TRIM III will type "SELECT
OUTPUTS IN A" and stop with AU and AL equal to zero.

STEP 1. Set the low order bits of AU and AL to a single
output number each.

STEP 2. Start. This process may be repeated until up to
8 outputs have been selected or AU or AL equals
zero, whichever occurs first.

4) Unallocated Tags. When the "UNALLOC TAGS" typeout occurs
followed by the sequential (Ll) identifier and the tag name, the user may:

STEP 1. Start. TRIM III will assign a zero value to the
tag.

STEP 2. Set AL to a desired value (if the tag pertains to
a missing label within the program, also set bit
17 of AL to a 1) and Start.

STEP 3. Set AL as for 1 or 2 above; set AU ~ 0 and Start.
TRIM III will assign the value in AL to all
subsequent unallocated tags without further type­
out.

5) Restart Outputs. If for any reaon it is desired to abort
an output, perform the following steps.

STEP 1. Press STOP.

STEP 2. Master Clear.

STEP 3. Set P = 01401.

STEP 4. Start. TRIM III will either process the next
requested output or request output selection if
there are no more unprocessed outputs.

6) Output No. 2 Override. If during an assembly run, poly-code
generation causes a bank overflow TRIM III will type "POLY-CODE BANK OFL, OUTPUT 2
ONLY", and automatically start to produce an Output No.2. To override,

STEP 1. Stop the computer,

STEP 2. Inspect and change the contents of address 01245,
clearing it to zero.

STEP 3. Set P = 01401 and Start.

2.2-29

S.G.1219 (P)2.2

outputs. They are:

2.2-30

7) TRIM III Outputs. TRIM III provides 14 different optional

~. No. 1- Program memory storage and arp.as used summary
on the l~ne printer.

~. No. 2- Side-by-side listing in source code on paper tape
consisting of the absOlute assembled program, sequential
identifiers, source program, and error alarms.

£. No. 3- Absolute assembled program on paper tape in
source code.

~. No. 4- Absolute assembled program on paper tape in
bioctal format.

~. No. 5- Relocatable assembled program on paper tape in
bioctal format.

i. No. 6- ALLOCation output on paper tape in source code
(labels and addresses).

Q. No. 7- Ignore all library CALL operations of the input
source program.

h. No. 10- Absolute or relocatable assembled program on
magnetic tape.

i. No. 11 -Source program on paper tape in source code.

1. No. 12- Side-by-side listing on the 1004 printer wi th
same information as output no. 2 plus any card
identification and labels and addresses.

k. No. 13- Relocatable or absolute assembled program on
80-column cards via the 1004 card punch. Each data card
contains up to 8 instructions or words.

1. No. 14- Format side-by-side listing on 1004 printer
containing same information as a no. 2 output. This
output is designed to fit on 8-1/2 inch by II inch
printer vellum.

~. No. 15- Source program on 80-column cards via the 1004
punch.

Q. No. 16- Source program on magnetic tape. When selecting
an output no. 16, the following rule applies; if no tape
transport is selected as the output tape, TRIM III will
use scratch tape B. However, it will alert the operator
to change tapes (in the event that an output no. 10 is
to be saved) via the typeout, "IF NECESSARY CHANGE
SCRATCH TAPES FOR THIS OUTPUT". If an output no. 10 is
not to be saved or only source language outputs were

S.G.12l9 (P)2.2

requested (outputs 6, 11, 15, 16), press START switch
to continue. If an output 10 is to be saved, change
tapes before pressing START.

8) Magnetic Tape Input to TRIM III. There are two magnetic
tape formats acceptable as input to TRIM III.

~. Assembler Output No. 16. This output consists only of
the source program; therefore, any declarative operators (e.g., OUTPUT, ALLOCation
operations, DECKID, etc) must be provided by the user via some input medium.

E. Card-to-tape Output From a Card-to-tape Operation of
the CART Service Routine. Since CART has the ability to stack several source
programs on one tape, TRIM III requests the number of the program to be assembled
whenever CART input is detected. The typeout IDENTIFY TAPE JOB IN AL occurs and
the computer stops with AL = O.

STEP 1. Set AL to the relative program position on the
tape (1 means the first stacked program, 2
the second, 5 the fifth, etc.).

STEP 2. Start. Assembly now proceeds for the selected
program. If two or more programs from the same
CART tape are to be assembled together this
sequence is repeated for each selection.

g) Error Detection and Display. TRIM III contains limited error
detection capability. The majority of programer errors are handled internally.
However, it is desirable when practicable to permit the user to take corrective
action during the assembly process in order to achieve an accurate assembly. If he
wishes to bypass some error indications, the user may set Skip Key 3.

1) SET KEY 1. This typeout will occur if the user has not set
Skip Key 1 at the start of the assembly process. To correct, set Skip Key 1 and
start. Ski p Key 3 has no effect on thi s error.

2) IDENT. MTUS IN A. This typeout occurs when no magnetic
tape assignment has been made prior to the first assembly. To correct this
condition, perform the following steps:

STEP 1. Identify magnetic tape units exactly as outlined
in paragraph 2.2-4b7c).

STEP 2. Start. Skip Key 3 has no effect on this error.

3) SELECT OUTPUTS IN A. This typeout occurs if the programer
has neglected to select his outputs via a programed output operation. To correct
this condition, perform the following steps;

STEP 1. Set AU5-0 and AL5-0 to desired outputs.

S.G.1219 (P)2.2

STEP 2. Start. The computer will accept and store the
outputs and stop. Repeat Steps 1 and 2 until not
more than eight outputs have been selected. If
either AU or AL euqals zero, TRIM III assumes that
all selections have been made and proceeds. Skip
Kei 3 has no effect on this typeout.

4) MTU ERROR CTXX IMPR. CONDo This typeout indicates an
improper (not capable of being corrected) condition on the XX tape unit. The user
will have to correct the condi tion before attempting to proceed. Skip Key 3 has no
effect on this error.

5) SET BASE ADDR. IN AL. This typeout indicates that the
programer has neglected to allocate the first program label. To correct, set
AL14-0 to the desired base address and start. If skip key 3 is set, TRIM III will
arbitrarily allocate the program to address 01200.

6) NNNNN DUP. LBL XXXXXX. This typeout occurs when the source
program contains at least two identical labels. TRIM III equates all references to
a duplicate label to the address of the first such label (See paragraph 2.3.4 of
this section). TRIM III does not stop after the typeout. NNNNN is the sequential
program line identifier number and XXXXXX is the duplicate label. If Skip Key 3
is set, the typeout does not occur.

7) UNALLOC TAGS NNNNN XXXXXX AAAAA. By far the most common
programer error is the use of a tag for which no allocation was made and which does
not appear anywhere in the source program as a label. TRIM III will stop after
typing NNNNN XXXXXX (sequential line identifier and tag name). To correct, perform
the following steps:

'STEP 1. Set AL to the desired value.

STEP 2. If the tag refers to an instruction contained within
the program being assembled, set AL17 to a 1.

STEP 3. If the user wishes any later unallocated tags
allocated to the same address, set AU ¥ o.

STEP 4. Start. TRIM III will type the manual allocation
and use it to continue assembly.

The typeout UNALLOC TAGS occurs once only. Thereafter, only the identifier and the
tag are typed. If the user elects to allocate all unallocated tags to a fixed
address, only the first such tag is typed.

If Skip Key 3 is set, TRIM III will arbitrarily allocate all unallocated tags to
address 00000.

8) TCS ERR XX TBL XX. This typeout indicates the table control
system has detected an error while attempting to operate on the indicated table.
When meaningful, the number of the item being manipulated when the error occurred is
displayed in AU. Table 2.2-2 describes the errors which TCS will detect.

'-32

S.G.1219 (P)2.2

TABLE 2.2-2. TCS ERRORS

ERROR MEANING
NUMBER

1 Illegal table number*

2 Illegal media designation*

3 Illegal TCS function code*

4 Misused Q-replace

5 Illogical TCS function sequence

6 Table not found*

7 Table overflow

8 Too many tape units referenced or
item length of zero

9 Unrecoverable tape error

* Incorrect table design or control parameters.

All TCS errors except the table overflOW are the result of TRIM III internal
trouble and are unrecoverable. TRIM III has been designed so that a table overflOW
error will seldom occur. If an error does occur, the programer may extend the limits
of the table as set in the table design and restart at the TCS entrance 10012. If
the limits cannot be extended, the programer may have to reassemble his program in
smaller segments. Skip Key 3 has no effect on errors of this type.

9) POLY-CODE BANK OFL OUTPUT 2 ONLY. This typeout indicates
that generation resulting from a poly-code used in the source program has overflowed
from one bank to the next. TRIM III will not stop following this typeout but will
produce one Output 2, suppressing all other output requests. Skip Key 3 has no
effect on this typeout.

h) Useful Assembler Addresses.

01400 - Start assembly

01401 - Go on to next selected output

01404 - Identify magnetic tape units

01000 - Normal input mode key

01001 - Channel number for UNIVAC I/O Console

01002 - Channel number for UNIVAC 1004 Card Processor

01245 - Bank overflow indicator-clear for Output 2 override

2.2-33

S.G.12l9 CP)2.2

NAME: __________________________ _

2.2-5. STUDY QUESTIONS

a. How is the source tape for TRIM III prepared?

b. What is the purpose of the control reader?

c. Must the ALLOC Header follow the control header?

d. What additional poly-operations will TRIM III provide compared to
TRIM II?

e. What does the operator DUMPR do when you are using TRIM III?

2.2-35

S.G.1219 (P)2.2

2.2-36

f. What additional outputs ~re available from TRIM III compared to
TRIM II?

g. What happens during assembly using TRIM III if you use the operator
SETADR?

h. How many tape units are used when you are assembling using TRIM Ill?

i. If your installation possesses only a paper tape bootstrap and you
want to use TRIM III, what procedure would you follow?

j. You have forgotten to allocate the first program label. What indication
would you notice and how would you correct?

S.G.1219 (P)2.3

SECTION 2 - SOFTWARE

2.3. OPERATOR SERVICE ROUTINES

2.3-1. OBJECTIVES

To familiarize the student with the uses of the operator service routines.

2.3-2. INTRODUCTION

Operator service routines are those routines used by the computer operator, under
manual control, to perform computing center operations. Such routines perform
handling service to the user.

2.3-3. REFERENCES

Programers Reference Manual, Section on Operator Service Routines.

2.3-4. INFORMATION

a. General. The following paragraphs list and describe the available
operator service routines.

1. 1219 UPAK I. This is a paper tape utility package which loads as­
sembled program tapes and makes memory dumps on paper tapes. The package provides
other console conveniences such as inspect and change memory cell content, store
memory, etc.

2. 1219 UPAKII. This is a utility package which loads assembled
programs from paper tape or magnetic tape. The routine has the same capabilities
as UPAK I except that it also loads assembler-produced magnetic tape programs.

3. 1219 UPAK III. This is an expanded modular utility package. The
modules of the package operate normally under manual control; however, they can
also be activated under program control. A control routine loads one or all
modules as parameter specified. The package has the following modules:

a) Paper-tape handling

b) Computer control panel operations such as inspect and change

c) Magnetic tape handler, UMTH (basic handler for UNIVAC 1240
Magnetic ~~ System)

d) Magnetic tape duplicator

e) Loader for assembler-produced magnetic tape Object programs

f) Memory dump on the 1004 printer

2.3-1

S.G.1219 (P)2.3

g) Card load-dump

h) UPAKM paper tape handler

i) Print image on magnetic tape and tape-to-printer

j) Magnetic tape handler, JOSH (complete handler for UNIVAC 1240
Magnetic Tape System)

k) UPAK III controlling routine

Since UPAK III is modular, additional utility functions may be added without chang­
ing the general characteristics of the package.

4. TRIM Corrector. This routine corrects source programs. It reads a
correction tape(s) and erroneous source tapes into the computer, making the neces­
sary corrections, and punching a corrected tape. The routine is a companion to the
TRIM I and TRIM II assemblers.

5. TRIM Library Builder. This routine updates source magnetic tape
libraries which are used with the TRIM III assembler. It also has editing capa­
bilities.

6. Program Trace. This program traces the execution sequence of a
program during a processing run. It produces serial information pertaining to the
address and contents of the instruction executed, operand if applicable, B-register
content, and the entire A-register.

7. TALK System. This system is a real-time data extracting program.
Data is extracted on a time-share basis with the operational program. In order to
extract a maximum amount of data in a minimum amount of time, the TALK system is
divided into three major segments, the translator, the extractor, and the editor.

8. UPAKM. This utility package is similar to UPAK I with the addi­
tional capability of paper tape load and dump involving six-digit addresses (65K
memory).

9. CART. This routine performs a punched-card-to-magnetic tape con­
version, with optional correction and listing capability.

This study guide will go into detail only on several of the more frequently used
word routines. For a complete description of all the routines, refer to the
Programers Reference Manual.

b. UNIVAC 1219 Paper Tape Utility Package 1

I. General Information. UPAK I is a collection of seven subroutines
on punched paper tape in relocatable bioctal format which provide paper tape input/
output functions and examination and alteration of memory for program debugging.
The seven subroutines are as fOllows.

a) Load absolute typewriter code

b) Load absolute bioctal code

2.3-2

S.G.1219 (P)2.3

c) Load relocatable bioctal code

d) Dump absolute typewriter code

e) Dump absolute bioctal code

f) Inspect and change

g) Store constant in memory

UPAK I may be loaded anywhere in computer memory above address 01000 with the
single restriction that the entire package must be entirely conta~ned within a
single memory bank. The paper tape load and dump routines are operable under pro­
gram control or manually from the computer. However, the inspect-and-change and
store-constant-in-memory functions are operable from the computer control panel
only.

UPAK I has been designed for computers with a maximum of 32K storage locations. For
this reason, the dump and load subroutines (with the exception of load relocatable
bioctal code) cannot be used to either load or dump a tape above address 100000.
Those installations possessing a larger than 32K memory computer should use UPAKM
for operations involving addresses above 100000.

UPAK I occupies 1,031 octal memory locations exclusive of addresses 00540 through
00777 which are used by the UPAK I loader. Entrance addresses to the several sub­
routines are assigned .relative to the UPAK I base address as will be subsequently
shown. Increments to the base are in octal.

Address Routine Entrance

Base + 0 Program entrance paper tape load

Base + 2 Program entrance dump typewriter code

Base + 4 Program entrance dump bioctal code

Base + 6 Manual entrance paper tape load

Base + 7 Manual entrance dump typewriter code

Base + 10 Manual entrance dump bioctal code

Base + 11 Manual entrance inspect and change

Base + 12 Manual entrance store constant in memory

UPAK I subroutines use the currently active B-register, but they store and restore
its original value. Routines operating under program control also store and re­
store the user's special register setting:

2. Operations and Program Formats

a) Load Absolute Typewriter Code. A carriage return followed by
either an 8 or an 88 and another carriage return activates the load routine. A
single 8 indicates the input tape has no checksum; an 88 indicates the input tape

2.3-3

S.G.1219 (P)2.3

has a checksum. The routine ignores any data which may precede either of these two
combinations. Each tape instruction is preceded by a five-digit address which need
not be sequential; all five digits must be present. The next six digits constitute
the instruction to be loaded; all six digits must be present. The load routine, in
effect, accumulates the first 11 octal digits following a carriage return, ignoring
all other character codes including notes. A carriage return signals the end of
the instruction. If less than 11 octal digits are accumulated, the instruction will
not be loaded. A final carriage return followed by a double period (..) terminates
the load and initiates a checksum verification when required.

No checksum format Checksum format

8 88

xxxxx xx xxxx xxxxx xx xxxx

xxxxx xx xxxx xxxxx xx xxxx

xxxxx xx xxxx xxxxx xx xxxx

xx xxxx (checksum)

When the checksum verification is correct, the load terminates with (AU) and (AL) =
O. When it is incorrect, the load terminates with (AU) = computed checksum and
(AL) = tape checksum.

If Skip Key 1 is set, the load subroutine will perform a checksum verification with­
out loading the tape into memory.

b) Load Absolute Bioctal Code. The absolute bioctal tape must
begin with a 76 (code for absolute bioctal tape). Immediately after the 76 code
are the initial and final addresses consisting of five digits each. Six-digit in­
structions follow without further addressing, and the tape is terminated by a six­
digit checksum.

2.3-4

Absolute Bioctal Tape Format

76

II

II

IF

FF

FF

XX

XX

Absolute bioctal code

I - Initiate address

F -Final address

X - Instruction words

xx

xx
xx
xx
CC

CC

CC

S.G.l2l9 (P)2.3

C - Checksum

If Skip Key 1 is set, the absolute bioctal load subroutine will perform a checksum
verification without loading the tape into memory.

c) Load Relocatable Bioctal Code. The relocatable bioctal tape
must begin with a 75 (code for relocatable bioctal tape). The entire program must
be relative to base zero. Six-digit instructions follow the 75 code without ad­
dressing. Each instruction is preceded by a one-digit code which tells the load
routine how to modify the instruction for storage. The tape is terminated by a
six-digit checksum preceded by a code of 7. The computer operator specifies the
load base address in AU; the load routine then uses this information to accomplish
the tape load. The tape can_ be loaded anywhere in computer memory.

Relocatable Bioctal Tape Format

75

MX

XX

XX

XM
XX

XX

XX

MX

XX

X7

CC

CC

CC

Relocatable bioctal code

M - Modification code

X - Instruction words

7 - Checksum code

C - Checksum

2.3-5

S.G.12l9 (P)2.3

Modification codes appearing on a relocatable bioctal tape are:

Code

0

1

2

3

4

5,6

7

Meaning

No modification

Add base address to Yl1-0
No modification

Add base address to Y14-0

Increment current load ad­
dress by instruction value

Not used

Checksum follows

Type of Instruction

Constant or 4-digit Y
unmodified
4-digit Y modified

5-digit Y unmodified

5-digit Y modified (bit
15 is set to 0 or 1
depending on specified
base address)

Negative or positive
increment

Not used

Tape checksum

If Skip Key 1 is set, the relocatable bioctal load subroutine will perform a check­
sum verification without loading the tape into memory.

d) Dump Absolute Typewriter Code. The dump is initiated manually
at the computer or under program control for output on punched paper tape. The 88
format (with checksum at the end) is ihe only one dumped. The output tape includes
both the addresses and the contents of the memory locations being dumped.

e) Dump Absolute Bioctal Code. The absolute bioctal dump is initi­
ated manually at the computer or under program control. The output on punched paper
tape is the 76 code followed by:

1) The initial and final addresses of the area being dumped

2) The contents of the inclusive memory addresses

3) The checksum

If more than one program area is dumped successively on the same tape, the format
for each such area is as just described.

f) Inspect and Change. The inspect and change routine causes the
contents of memory location specified in AU to be displayed in AL. The contents of
AL may then be changed manually. (AL) is then returned to the memory address from
which it was taken. The inspection address need be entered only the first time
since (AU) is increased by 1, and the contents of sequential addresses will be
brought into AL with each successive performance of the inspect and change function.
If the user wishes to inspect the contents of some address other than the next se­
quential address, he may do so by setting the new address in AU before returning
AL to memory.

g) Store Constant in Memory. The store constant in memory function
permits the user to load a specified area of memory with a value manually entered
into AU. If AU = 0, the area is cleared. .

2.3-6

S.G.1219 (P)2.3

3. Operating Instructions.

a) Loading UPAK I. UPAK I is provided on punched paper tape. The
tape is subdivided into two parts: the loader in absolute bioctal format and UPAK I
in relocatable bioctal format. To load UPAK I, the following procedure is used:

STEP 1. Place tape in reader.

STEP 2. Master clear.

STEP 3. Press LOAD button to activate paper tape bootstrap.

STEP 4. Start. The computer will stop after the loader is in
memory with AU and AL equal to zero.

STEP 5. Set AU to the desired UPAK I base address.

STEP 6. Start. The computer will stop, after UPAK I has been
loaded, with AU and AL equal to zero.

After UPAK I has been loaded into memory, addresses 00540-00777, occupied by the
UPAK I loader, are available for use. It should be noted, however, that any sub­
sequent loading of UPAK I will use these addresses to accomplish the load.

b) Error D~tection. Automatic checksum verification by the paper
tape load subroutines .is the only error detection function performed by UPAK I. If
tape and load checksums agree, the computer will come to a normal stop with AU and
AL equal to zero. If they do not agree, the computer will stop with (AU) = load
checksum and (AL) = tape checksum.

The format of the UPAK I tape is such that only the basic bioctal load routine is
loaded via paper tape bootstrap. Control is then given to a temporary checksum
verification routine which verifies the bioctal load portion of the tape. If veri­
fication is correct, control is given to the bioctal load routine which reads in
the UPAK I loader. If verification is incorrect, the computer will come to a normal
stop with AU equal to the load checksum and AL equal to the tape checksum.

c) Paper Tape Load (All Formats).

1) Manual Operation.

STEP 1. Mount tape in reader.

STEP 2. Set P to UPAK I base address + 6.

STEP 3. Set Skip Key 1 if checksum verification only is
desired.

STEP 4. For relocatable bioctal load only set starting
address in AU. (Not required if Skip Key I is
set.)

STEP 5. Start.

STEP 6. Successive tapes may be loaded without resetting P.

2.3-7

S.G.1219 (P)2.3

2.3-8

2) Program Operation.

STEP 1. Tape must be mounted in reader.

STEP 2. For relocatable bioctal load only. enter AU with
starting address.

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address.

d) Dump Absolute Typewriter Code.

1) Manual Operation.

STEP 1. Set P to UPAK I base address + 7.

STEP 2. Set AU to first address to be dumped.

STEP 3. Set AL to last address to be dumped.

STEP 4. Start.

STEP 5. Successive dumps may be taken by starting from
Step 2.

2) Program Operation.

STEP 1. Enter AU with first address to be dumped.

STEP 2. Enter AL with last address to be dumped.

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address + 2.

e) Dump Absolute Bioctal Code.

1) Manual Operation.

STEP 1. Set P to UPAK I base address + 10 (octal).

STEP 2. Set AU to first address to be dumped.

STEP 3. Set AL to last address to be dumped.

STEP 4. Start.

STEP 5. Successive dumps may be taken by starting from'
Step 2.

2) Program Operation.

STEP 1. Enter AU with first address to be dumped.

STEP 2. Enter AL with last address to be dumped.

S.G.l2l9 (P)2.3

STEP 3. Execute a return jump or indirect return jump to
UPAK I base address + 4.

f) Inspect and Change.

1) Manual Operation Only.

STEP 1. Set P to UPAK I base address + 11 (octal).

STEP 2. Set AU to desired memory address.

STEP 3. Start. The computer will stop with the address in
AU and its contents in AL.

STEP 4. The user may now change the address in AU and/or
the contents in AL.

STEP 5. Start.

a) If contents only were altered, these will be
stored at the original address and the computer
will stop with the next sequential address in
AU and its contents in AL, etc.

b) If the address only was changed, (AL) will be
restored to its proper memory location, and
the computer will stop with the new address in
AU and its contents in AL, etc.

c) If both the address in AU and its contents in
AL were changed, (AL) will be stored at the
original address, and the computer will stop
with the new address in AU and its contents
in AL.

STEP 6. Any number of such sequences may be executed start­
ing with Step 5.

g) Store Constant in Memory.

1) Manual Operation Only.

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

Set P to UPAK I base address + 12 (octal).

Set first storage address in AU.

Set last storage address in AL.

Start. UPAK I will record these addresses, and
the computer will stop with AU cleared.

Set desired constant in AU.

Start. UPAK I will store (AU) at successive memory
locations within the parameters established in
Steps 2 and 3.

2.3-9

S.G.1219 (P}2.3

STEP 7. Additional entrances may be made starting from
Step 2.

c. UNIVAC 1219 Utility Package II.

1. General Information. UPAK II is a collection of eight subroutines
on punched paper tape in relocatable bioctal format which provide TRIM III output
no. 10 load, paper tape input/output functions, and examination and alteration of
memory for program debugging. The eight subroutines are as follows:

a) Load TRIM III output no. 10 from magnet i c ta pe

b) Load absolute typewriter code

c} Load absolute bioctal code

d} Load relocatable bioctal code

e) Dump absolute typewri ter code

f} Dump absolute bioctal code

g) Inspect and change

h) Store constant in, memory

UPAK II may be loaded anywhere in computer memory above address 01000 with the
single restriction that the entire package must be entirely contained within a
single memory bank. All UPAK II functions operate either under program control or
manually from the computer except for the inspect-and-change and store-con stant-in
memory functions, which are operable from the computer control panel only.

UPAK II has been designed for computers with a maximum of 32K storage locations.
For this reason the dump and load subroutines, with the exception of Load TRIM III
output no. 10 and load relocatable bioctal code, cannot be used to either load or
dump a tape above address 100000. Those installations possessing larger than a 32K
memory computer should use UPAKM for paper tape operations involving addresses
above 100000.

UPAK II occupies 1633 octal memory locations, exclusive of addresses 00540 through
00777 which are used by the UPAK II loader. Entrance addresses to the several sub­
routines are assigned relative to the UPAK II base address as will be subsequently
shown. Increments to the base are in octal.

Address Routine Entrance

Base + a Program entrance TRIM III output no. 10 load

Base + 2 Program entrance paper tape load

Base + 4 Program entrance dump typewriter code

Base + 6 Program entrance dump biocta'l code

Base + 10 Manual entrance TRIM III output no. 10 load

Base + 11 Manual entrance paper tape load

2.3-10

Base + 12

Base + 13

Base + 14

Base + 15

Manual entrance dump typewriter code

Manual entrance dump bioctal code

S.G.1219 (P)2.3

Manual entrance inspect and change

Manual entrance store constant in memory

UPAK II subroutines use the currently active B-register, but they store and restore
its original value. Routines operating under program control also store and re­
store the user's special register setting.

2. Operations and Program Formats.

a) Load TRIM III Output No. 10 from Magnetic Tape. In the course
of its assembly process, TRIM III produces the object program in tabular form on
magnetic tape. This table serves as the source for all assembler outputs reflect­
ing the object program. The table, called output no. 10, may also be loaded into
computer memory by the UPAK II magnetic tape load subroutine. The user has two
load options: UPAK II will load the program absolutely with addressing assigned at
assembly time, or UPAK II will load the program relative to any specified base
address.

TRIM III writes output no. 10 on magnetic tape in 1408 word records. Each record
consists of up to 378 items consisting of three computer words. Each item has the
following format:

Word 0 E

Word 1 M

Word 2

Sequential identifier

Address

Instruction

Used by TRIM III
only

Word 0 contains a line error counter, E, and a sequential line identifier used by
TRIM III but not by UPAK II.

M is the modification code which tells the load routine how to modify the instruc­
tion for storage for a relocatable load. M may be anyone of the following codes:

Code Meaning

0 No modification

1 Add base address

2 No modification

3 Add base address

to Yll-O

to Y14-0

Type of Instruction

Constant or 4-digit Y
unmodified

4-digit Y modified

5-digit Y unmodified

5-digit Y modified (bit 15
is set to 0 or 1 depending
on requested base address
for relocatable load)

Address is the address for this instruction assigned at assembly time.

Instruction is the machine instruction of constant to be stored.

2.3-11

S.G.1219 (P)2.3

Each output no. 10 begins with a sentinel record followed by the data records and
terminated by one sentinel word corresponding to the sentinel record and a tape
mark.

The no. 10 load subroutine indicates a successful load by terminating with (AL) = O.

2.3-12

b) TRIM III No. 10 Output Load.

1) Manual Operation.

STEP 1. Mount magnetic tape holding the no. 10 output on
a tape unit.

STEP 2. Set P to UPAK II base address + 10 (octal).

STEP 3. Start. The computer will stop for load parameters.

STEP 4. Set AU to NNCCST where NN is 1 through 408 indi­
cating the file number of the output no. 10 to be
loaded; CC is the tape unit channel number (0 -
178); S is the synchronizer (cabinet) number; and
T is the tape transport number.

STEP 5. Set AL to zero for absolute load or to the desired
base- address for relocatable load.

STEP 6. Start. The computer will stop with one of the
following indications in AL.

a) (AL) = 0 successful load.

b) (AL) = 1 tape status indicates improper con­
dition. The user should correct the condition
if possible and start, to continue with the
load.

c) (AL) = 777777 indicates the load subroutine has
attempted to read the same record seven times
and failed.

2) Program Control.

STEP 1. Mount magnetic tape holding the no. 10 output on
a tape unit.

STEP 2. Enter AU with NNCCST where NN is I through 408
indicating the file number of the output no. 10 to
be loaded, CC is the tape unit channel number
(0 - 178); S is the synchronizer (cabinet) number:
and T is the tape transport number.

STEP 3. Enter AL with zeros for absolute load or with the
desired base address for relocatable load.

S.G.1219 (P}2.3

STEP 4. Execute a return jump or indirect return jump to
the UPAK II base address. The load routine will
restore control to the using program with (AL)
equal to one of the following conditions:

a) (AL):::: 0 succes s ful load

b) (AL) = 1 tape status indicates improper con­
dition

c} (AL) - 777777 indicates the load routine has
attempted to read the same record seven times
and failed.

d. UNIVAC 1219 Utility Package III.

1. General Information. UPAK III is a modular utility system comprised
of stacked programs in the TRIM III output no. 10 format on magnetic tape. A con­
trol program loaded by magnetic tape bootstrap accomplishes loading of one or more
of the component modules. UPAK III presently has the following modules:

Module 1

Module 2

Module 3

Module 4

Module 5

Paper Tape Handler

Magnetic Tape Handler (UMTH)

Magnetic Tape Duplication

TRIM III Output 10 Load

Inspect and Change and Store Constant

Module 6 Print Memory Contents

Module 7 Data Card Handler

Module 8 Modified 1219 Paper Tape Handler

Module 9 Printer Line Image on Tape and Tape-To-Printer

Module 10 Magnetic Tape Handler (JOSH)

The modular framework of UPAK III, however, will permit the incorporation of addi­
tional modules with a minimum of effort.

UPAK III assumes a minimum equipment configuration of one UNIVAC 1219 Computer with
16,384D words of core memory, one Type 1240 Magnetic Tape Unit with two transports,
a Type 1232A Input/Output Console, and a UNIVAC 1004 Card Processor. Presently,
the 1004 is only used for modules 6, 7, and 9. UPAK III may be loaded anywhere in
computer memory above address 01000 with the Single restriction that any module
must be entirely contained within a single memory bank. Most UPAK III functions
operate either under program control or manually from the computer control panel.

2. Control Program.

a) Program Description. The control program of UPAK III is basi­
cally a module loader. It may be loaded by magnetic tape bootstrap or paper tape
load program anywhere in core memory above address 01000. However, it must be
wholly contained within one bank of memory.

2.3-13

S.G.1219 (P)2.3

Through manual parameter specification, the control program will load one or all
UPAK III modules. If a specific (non-zero) module is requested, only one module
may be loaded. If more than one module is desired at specific addresses, the user
must repeat the load procedure for each particular module. If the module number
is zero, UPAK III will load all of the modules at the base addresses denoted in
table 2.3-1; the base address parameter will be ignored.

Module entrances are determined by standard increments to their load address as
shown in table 2.3-2.

Care must be exercised in specifying a module base load address to the control pro­
gram such that any module is loaded entirely within one memory bank.

b) Operating Procedure. To load the UPAK III control program via
magnetic tape bootstrap, mount the UPAK III tape on transport 1 of cabinet 1. Then
perform the following.

STEP 1. Master clear.

STEP 2. Push LOAD button to activate bootstrap.

STEP 3. Start. When the computer stops, if the parameter dis­
played in AU is not desired, enter the desired param­
eter in AU. The parameter format is:

15 12 10 6 3 0

SiD ~ I C I S I T I
where SID i ~ specifies single channel operation, = 0
specifies dual channel operation, and CST specifies the
tape unit channel, cabinet and transport respectively.

NOTE

The logical selection of the tape transport is
not restricted to cabinet 1, transport 1 at this
time.

STEP 4. Enter a sixteen-bit control program load address in AL
if desired. If AL is zero, the control program will
be loaded at its assigned address.

STEP 5. Start. When the computer stops the control routine is
loaded.

UPAK III may be loaded via paper tape bootstrap through use of a core-stored magnetiC
tape bootstrap program. To accomplish the load, perform the following.

STEP 1. Mount the UPAK III magnetic tape on cabinet 1, trans­
port 1.

STEP 2. Place the PTMTBS* No.4 paper tape in the paper tape
reader.

* Magnetic tape bootstrap on paper tape.

2.3-14

Module

PTHAN

No.

1

Size: 10278

UMTH 2

Size: 6008

MTDUP 3

Size: 7128

LOAD10 4

Size: 6008

ICH-STC 5

Size: 778

PRINTC 6

Size: 4508

DATCD 7

Size: 6268

UPAKM 8

Size: 10608

S.G.1219 (P)2.3

TABLE 2.3-1. ENTRANCE ADDRESSES AND ASSIGNED BASES

Base

01100

02140

03000

04000

04700

05000

06000

06700

Entrance Increments to Base

+ 0 - ICH Entrance

+ 1 - STC Entrance

+ 2 - Programmed PT Load

+ 4 - Manual PT Load

+ 5 - Programmed Typewriter Code Dump

+ 7 - Manual Typewriter Code Dump

+10 - Programmed Bioctal Dump

+12 - Manual Biocta1 Dump

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - ICH Entrance

+ 1 STC Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Card Load

+ 2 - Manual Card Load

+ 3 - Programmed Card Dump

+ 5 - Manual Card Dump

+ 0 - ICH Entrance

+ 1 STC Entrance

+ 2 - Programmed PT Load

2.3-15

S.G.1219 (P}2.3

TABLE 2. 3-1. ENTRANCE ADDRESSES AND ASSIGNED BASES (CONT.)

Module No. Base Entrance Increments to Base

+ 4 - Manual PT Load

+ 5 - Programmed Typewriter Code Dump

+ 7 - Manual Typewriter Code Dump

+10 - Programmed Bioctal Dump

+12 - Manual Bioctal Dump

POTPOP 9 10000 + 0 - Programmed Line Image on Tape

Size: 4348 + 2 - Manual Line Image on Tape

+ 3 - Programmed Tape-To-Printer

+ 5 - Manual Tape-To-Printer

JOSH 10 10500 + 0 - Programmed Entrance

Size: 6408 + 2 - Check Status Entrance

+ 4 - Check Busy Entrance

+10 - Manual Entrance

2.3-16

S.G.1219 (P)2.3

TABLE 2.2-2. CONDENSED PARAMETERS FOR UPAK III

117 1219 o I 117 o I
Control Program M M 0 C S T Load Address

Paper Tape Absolute
Handler Typewriter None
(PTHAN) Code Load

Absolute None
Bioctal Load

117 01 117 0
Relative Load Address Unused Bioctal Load

Absolute Mem.
Dump Type- 0 F I R S T 0 F I N A L
writer Code

Absolute Mem. 0 F I R S T 0 F I A
---~ Dump·Bioctal N L

1171 14 1121 9 o I 117 91 Magnet i c Ta pe 15 01
Handler (UMTH)

0/
l OP CST F D M :tt-

I A T A

Search Key 1 Search Key 2

117 10
1
9 0 117 61 5 o I

Magnetic Tape Function
Duplicator (MTDUP) Word CST (TO tape) S T

FROM tape FROM tape
buffer IA buffer TA

TO tape TO tape
buffer IA buffer TA

2.3-17

S.G.1219 (P)2.3

TABLE 2.2-2. CONDENSED PARAMETERS FOR UPAK III (CaNT.)

Out put H~
Load
(LOADI0)

Inspect and
Change
(ICH)

Store
Constant
(STC)

Print Memory
Contents
(PRINTC)

Card Load
(DATCD-CLOD)

Card Dump
(DATCD-CDMP)

Line Image on Tape
(POT)

Tape-To-Printer
(POP)

Magnet i c Ta pe
Handler (JOSH)

UPAKM has the same A
dump routines.

2.3-18

register

117112 1
9 a 17 4

N N 0 C S T Load Address

Address Contents

0 F I R S T 0 F I N A

Constant Unused

I A T A

Load Address Unused
(If no Address Card)

I A or T A T A or I A

A CST Buffer I A

CST Unused

1
17

116 121' 11 01 117

0/
1

OP CST M F P D #

I A T A

Search Key 1 Search Key 2'

parameters as PTHAN for the various load

~

01

L

01

and

S.G.1219 (P}2.3

STEP 3. Push the LOAD button on the 1219 control panel.

STEP 4. Start. When the computer stops, if the parameter dis-
played in AU is not desired, enter the desired param-
eter in AU. The parameter format is:

15 12 10 6 3 0

I SID 0 0 I c I S T

where SiD 1 0 specifies single channel operation, = 0
specifies dual channel operation, and CST specifies the
tape unit channel, cabinet and transport respectively.

NOTE

The logical selection of the tape transport is
not restricted to cabinet I, transport 1 at this
time.

STEP 5. Enter a sixteen-bit control program load address in AL
if desired. If AL is zero, the control program will
be loaded at its assigned address.

STEP 6. Start. When the computer stops the control routine
is loaded.

To operate the UPAK III control routine,

STEP 1. Master clear.

STEP 2. Set P to the base address of the control routine.

STEP 3. Set AU to MM~CST* where MM is the module number; CST
is the UPAK III tape address. If MM is zero, all
modules will be loaded at their assigned addresses.*

STEP 4. Set a l6-bit load address for the requested module in
AL, if desired. If AL is zero, the control program
will assign a load address.

STEP 5. Start.

STEP 6. To load another module, repeat Steps 3 through 5
above.

c) Expanding UPAK III. User expansion of the UPAK III system to
incorporate one or more additional modules may be accomplished through use of TRIM
III. When expanded, UPAK III operates normally except when specifying the control
routine parameter MM = 00. To validate this parameter it is necessary to specify
the number of modules in the system by errata to the UPAK III control routine (word,

~, base + 668) before specifying MM = 00. This word should contain 7000XX, where XX

* See module assignments in table 2.1-2.

2.3-19

S.G.1219 (P}2.3

is the number of modules minus one in octal. Without this errata, MM = ~~ results
in loading the original UPAK III modules only.

To add modules to UPAK III,

STEP 1. Mount the TRIM III tape.

STEP 2. Mount the UPAK III tape as the TRIM III scratch tape.

STEP 3. Load TRIM III.

STEP 4. Change TRIM III address 01057 from zero to the number
of files on the UPAK III tape (actual number of mod­
ules plus two).

STEP 5. Assemble the program to become the next UPAK III
module.*

STEP 6. After the last desired output has been produced**
(one output other than a source output - 11, 15, or
16 - must be selected) and the "SELECT OUTPUTS IN A"
printout occurs, set Skip Key 2 and start.

STEP 7. The computer will stop at address 01400. Release Skip
Key 2.

STEP 8. Repeat Steps 5 through 7 until all desired additional
modules have been assembled.

STEP 9. Rewind and dismount the expanded UPAK III tape.

3. Paper Tape Handler Module.

a) Program Description. PTHAN is a collection of seven subroutines
which provide paper tape input/output functions and examination and alteration of
memory for program debugging. The seven subroutines are:

1) Load absolute typewriter code

2) Load absolute bioctal code

3) Load relocatable bioctal code

4) Dump absolute typewriter code

5) Dump absolute bioctal code

* Care should be exercised in specifying a base address to ensure compatibility
with other modules.

** All outputs of anyone program must be selected the first time TRIM III solicits
outputs. Restarting an output from address 01401 is not allowed.

2.3-20

S.G.1219 (P}2.3

6) Inspect and change

7} Store constant in memory

PTHAN may be loaded anywhere in computer memory above address 01000 with the single
restriction that the entire package must be entirely contained within a single mem­
ory bank. All functions operate either manually or under program control except
for the inspect-and-change and store-constant-in-memory functions, which are manu­
ally operable only.

Entrance addresses to the several subroutines are assigned relative to the PTHAN
base address as shown below and in table 2.1-2. Increments to the base are octal.

Address

Base + 0
Base + 1

Base + 2

Base + 4

Base + 5

Base + 7

Base + 10

Base + 12

Entrance

ICH entrance

STC entrance

Program entrance paper tape load

Manual entrance paper tape load

Program entrance dump typewriter code

Manual entrance dump typewriter code

Program entrance dump bioctal code

Manual entrance dump bioctal code

PTHAN subroutines use the currently active B register but store and restore its
original value. The load routines when operating under program control also store
and restore the user's special register setting.

4. Magnetic Tape Handler Module.

a) Program Description. UMTH provides the user with the basic
magnetic tape handling services of read, write, write tape mark, search, pass n
records, space file and rewind, with the added options of single or dual channel
operation, high or low density, and bioctal or octal recording format. Only for­
ward buffering is permitted.

This module may be loaded anywhere in core memory above address 01000 with the re­
striction that the entire module must be wholly contained within one memory bank.
Both manual and programed entrances are provided to UMTH. Refer to table 2.1-2.

b) Input Parameters. From two to six parameter entries stored
manually into the A register, or program stored in A and memory, govern the opera­
tion of the magnetic tape handler. They are as follows:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o (bit position)

1)

1
0 /11 OP I C I S T I I Code

'-y-J\' Y " T "- ---1\ y 1
,

a b c d e

2.3-21

S.G.1219 (P)2.3

2.3-22

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (bit position)

2) IF - Old D - 0 /1 1 M - 0 /1 1 # I
" ... " " ... ,

• T .,
f g h i

3) I Buffer Initial Address I
" '1'

,
j

4) I Buffer Terminal Address I
\

T
,

k

5) I Search Key I
\ • ,

1

6) Isearch Key (2 words for Dual Chan.) I
m

where:

a ~ Applicable to search, space file, and pass n records.

o ~ forward
\

1 = backward

b = Operation Code

Code

I Read variable length record

2 Write variable length record

3 Write tape mark

4 Search

5 Pass n records

6 Space file

7 Rewind

c = C - I/O Channel (0-178). For dual channel operation C
must be the odd-numbered channel.

d = S - Magnetic Tape synchronizer (cabinet) number (1-4).

e = T - Magnetic Tapi transport number (1-4).

S.G.1219 (P)2.3

f = F - Format of tape recording.

0 = bioctal

I == octal (redundant)

g = D - density of tape recording.

o = low

1 = high

h = M mode of tape communication.

0 = single channel

1 = dual channel

i = Number of records to pass forward or backward or
number of files to space forward or backward. Up to
778 such groups may be passed on 1 execution of UMTH.
If more than 778 are required, it is necessary to re­
execute UMTH.

j -= Buffer initial address for read, write, or search
operations.

k = Buffer terminal address for read, write, or search
operations.

1 = Search key for single channel search operations, or
first word of search key for dual channel search
operations.

m = Second word of search key for dual channel search
operations.

c) Operating Procedure.

1) Operation Under Program Control. The calling program enters
AU with parameter one, AL with parameter two, and, if applicable, enters the active
B register with the first of a group of consecutive addresses. This group may con­
sist of two, three, or four words depending upon the operation to be performed.
Parameters three and four are needed for read or write operations; parameters three,
four, and five are needed for single channel search operations; and parameters
three, four, five, and six are required for dual channel search operations. The
calling program then executes a return jump or indirect jump to UMTH base address.

Upon resumption of control, the calling program may check the contents of AU to
verify a good operation.

To manually operate UMTH:

STEP 1. Set P to UMTH base address + 2.

STEP 2. Set parameter 1 in AU; set parameter 2 in AL.

2.3-23

S.G.1219 (P}2.3

STEP 3. Start. When the computer stops, set parameter 3
in AU; set parameter 4 in AL.

STEP 4. Start. If the operation to be performed is a
search operation, the computer will stop again.
Set parameter 5 in AU, and, if needed, set param­
eter 6 in AL. Start again.

2) Alarms and Status Indications. Under both manual and pro­
gram operation, UMTH indicates the status of the operation attempted in AU.

If (AU) = zero, a successful operation is indicated.

If (AU) is non-zero, but positive, the job is incomplete. UMTH makes up to seven
recovery tries before indicating job incomplete, and if the operation does terminate
in an error, it terminates with the tape positioned to re-execute the incomplete
operation. AU will contain the actual tape status word.

If (AU) is non-zero and negative, it indicates an improper conditi~n of the tape
unit requiring manual intervention. Again, AU will contain the tape status word,
but the whole word will be normalized left (3 bits).

3) Special Considerations. UMTH assumes the following:

1) Search constants for a backward search must be reversed
characterwise.

2) Whenever dual channel operation is selected, the buffer
limits must begin with an even address and end with an
odd address or begin with an odd address and end with
an even address.

3) Address 00141 shall be reserved for use by UMTH as an
indirect interrupt address.

4) The original contents of AU, AL, and B will not be re­
stored upon exit.

5. Magnetic Tape Duplication Module.

a) Program Description. MTDUP is a module of UPAK III for the
UNIVAC 1219 Computer when operating with Type 1240 magnetic tape units and a Type
1232A Input/Output Console. The module copies the content of one magnetic tape
(FROM tape) onto another (TO tape). The normal copy process continues until MTDUP
encounters two consecutive tape marks or until end-of-tape, whichever occurs first.

MTDUP performs the duplication in the following sequence:

2.3-24

STEP 1. Rewind FROM tape and TO tape.

STEP 2. Read one record from FROM tape into user-specified
buffer.

S.G.1219 (P)2.3

STEP 3. Use buffer control words to determine buffer limits,
and write the record on the TO tape. Repeat Steps 2
and 3 until two successive tape marks have been found
or end-of-tape is detActed.

STEP 4. Rewind both tapes if verification option is selected.

STEP 5. Read one record from FROM tape into user-specified
buffer and checksum it.

STEP 6. Read one record from TO tape into user-specified
buffer and checksum it. Compare record checksums for
FROM and TO tapes. If not equal, add one to error
counter; repeat Steps 5 and 6 until two successive
tape marks or end-of-tape have been found.

STEP 7. R ew in d bo t h tape s i f r ew i n d 0 pt ion wa sse 1 e c te d .

STEP 8. If error counter is zero, type COPY-OK; otherwise type
ERR-XXX where XXX is the number of copy errors de­
tected.

NOTE

The user may alter the number of successive tape
marks terminating his FROM tape. To do this, he
should store the exact number at MTDUP label CAT
(base address + 6268)'

MTDUP occupies apprOXimately 7128 memory locations and may be loaded anywhere in
computer memory above address 01000 with the restriction that the entire module
shall be loaded entirely within one memory bank. The module operates either under
program control or manually from the computer control panel.

b) Input Parameters. Input parameters to MTDUP are shown below in
the required order.

17 16 15 14 13 12 11
Bit position

10 9 6 5 3 2 0

1) 1 0/1 I 0/1 1 ~~~d I ~: ~ ·1 0/1 I 0/1 I 0/1 1 C I s I T I
~1\ .. --'~'--y--J'--v--J

a b c d e f g h i

a = 0 single channel mode

1 - dual channel mode

b = 0 - do NOT rewind tapes after duplication

1 - Rewind tapes after duplication

c = o - MOD 3 (18-bi t transfer)

1 - MOD 4 (24-bit transfer)

2.3-25

S.G.1219 (P}2.3

2)

3)

4)

2.3-26

2 - MOD 5 (30-bit transfer)

3 - MOD 6 (36-bit transfer)

d = 0 bioctal character format

1 - octal character format

e = 0 even parity

1 - odd pari ty

f ~ 0 - even parity

1 - high density

g = Channel number for both the FROM and TO tapes. If
dual channel mode is selected, g must be set to the
odd-numbered channel.

h = Cabinet number for FROM tape

i = Transport number for FROM tape

17 6 5 3 2 0 Bit position

Not Used S I T I
" ,

j k

j - Cabinet number for TO tape

k - Transport number for TO tape

17 15 o Bit position

use~ Not I I ,

I

I = Memory address to be used as buffer initial address for
FROM tape.

17

Not I
. Used

15 o Bit position

m

m = Memory address to be used as buffer terminal address for
FROM tape.

5)

6)

S.G.1219 (P)2.3

17 15 o Bit position

Not I Used , ..
n

n = Memory address to be used as buffer initial address
for TO tape. If copy verification is not desired,
parameter 5 should be set to zero.

17 15 0 Bit position

Not I I Used
.. .

•
0

o = Memory address to be used as buffer terminal address
for TO tape. If copy verification is not desired,
parameter 6 should be set to zero.

NOTE

Parameters 4 and 6 need not be the exact buffer ter­
minal address. However, the buffer limits defined
must be adequate to accommodate the largest record
on the FROM tape. .

c) Operating Procedure.

1) Operation Under Program Control. The calling program enters
the active B register with the address of the first of six successive computer words
containing parameters 1 through 6 in the required order, and executes a return jump
or indirect return jump to MTDUP base address. Upon resumption of control, the
calling routine may check the contents of AU and AL for errors.

To manually operate MTDUP,

STEP 1. Set P to MTDUP base address + 2.

STEP 2. Set parameter 1 in AU; set parameter 2 in AL.

STEP 3. Start. When the computer stops; set parameter 3
in AU; set parameter 4 in AL.

STEP 4. Start. When the computer stops; set parameter 5
in AU; set parameter 6 in AL.

STEP 5. Start.

2) Alarms. An improper condition of a tape unit or a status
word error after seven tries causes MTDUP to exit with (AU) = ,status word from tape
system. This indicates the MTDUP did not complete the duplication. If the tape
duplication is completed without tape system errors, (AU) = zero.

2.3-27

S.G.1219 (P}2.3

If the duplication process was completed without tape system errors, but checksum
errors were detected upon check-reading the new tape against the old, the number of
such checksum errors (for each separate record on tape) will be displayed in AL.

assumptions:
3) Special Considerations. MTDUP makes the following

a That both the FROM and TO tapes are mounted on tape
transports served by a common input/output channel.

b That the 1232A I/O Console is on-line with the 1219
Computer.

c That address 00141 shall be used by MTDUP as an indirect
interrupt address.

d That MTDUP shall not restore the original contents of
AU, AL, or B.

6. TRIM III Output 10 Load Module.

a) Program Description. In the course of its assembly process,
TRIM III produces the Object program in tabular form on magnetic tape. This table
serves as the source for all assembler outputs reflecting the object program. The
table, called output no. 10, may also be loaded into computer memory by this UPAK
III module. TRIM III will stack a maximum of 408 of these out put's on one tape.
The user has two load options; a) that the program shall be loaded absolutely with
addressing assigned at assembly time, or b) that the program shall be loaded rela­
tive to any specified base address.

TRIM III writes output no. 10 on magnetic tape in 1408 word records. Each record
consists of 378 items of 3 computer words each. An item has the following format:

2.3-28

Word 0 E

Word 1 M

Word 2

Sequential Identifier

Address

Instruction

Used by
TRIM III only

1) Word 0 contains a line error counter, E, and a sequential
line identifier used by TRIM III but not by UPAK III.

2) M is the modification code which tells the load routine
how to modify the instruction for storage for a relocatable
load. M may be anyone of the following codes:

Code Meaning Type of Instruction

0 No modification Constant or 4-digit y
unmodified

1 Add base address to YII -O 4-digit Y modified

2 No modification 5-digit ,y unmodified

S.G.1219 (P}2.3

Code Meaning Type of Instruction

3 Add base address to Y14-0 5-digit Y modified
(bit 15 is set to 0
or 1 depending on
specified base ad­
dress)

3) Address is the address for this instruction assigned at
assembly time.

4) Instruction is the machine instruction or constant to be
stored.

Each output no. 10 begins with a sentinel record foll~ed by the data records and
terminated by one sentinel word corresponding to the sentinel record and a tape
mark.

The LOADl~ module indicates a successful load by terminat~ng with (AL) = O.

b) Input Parameters. TWo parameters govern the operation of
They are as follows:

17 15 12 11 10 9 6 5 3 2 o

1) N I N C S T

2) 15 o

Base Address

where:

NN is 1 through 408 indicating the file number of the
output no. 10 to be loaded.

C is the tape unit channel (0-178)

S is the synchronizer (cabinet) number (1-4)

T is the tape transport number (1-4)

Base address is a 16-bit address; zero for absolute load.

c) Operating Procedure.

1) Program Operation of LOADl~.

STEP 1. Mount the magnetic tape holding the output 10 on a
tape unit.

STEP 2. Enter AU with parameter I; ALwith parameter 2.

2.3-29

S.G.1219 (P)2.3 0(

STEP 3. Execute a return jump or indirect return jump to
the LOADl~ base address.

To manually operate LOADl~,

STEP 1. Mount the magnetic tape holding the output 10 on
a tape unit.

STEP 2. Set P to LOAD1~ base address + 2.

STEP 3. Set parameter 1 in AU; set parameter 2 in AL.

STEP 4. Start.

2) Alarms. The load routine will restore control to the using
program with (AL) containing one of the following status conditions:

a (AL) = 0 indicates a successful load.

b (AL) positive non-zero indicates the load routine has
attempted to read the same record seven times and
failed. AL contains the status word.

LOAD1~ will always stop if an improper condition arises. AL will contain the tape
status word normalized left (sign bit set).

3) Special Considerations.

a LOAD1~ uses address 00141 as an indirect interrupt
address.

b LOAD1~ does not restore the original contents of AU,
AL, or B.

7. Print Memory Contents.

a) Program Description. PRINTC is a module of UPAK III for the
UNIVAC 1219 Computer when operating with a UNIVAC 1004 Card Processor. This module
will list a specified area of 1219 memory on the 1004 high-speed printer, suppressing
the printout of any zero words.

PRINTC prints each line in the following format:

2.3-30

1) Nine columns of data, separated from each other by five
spaces, except for the first column, which is separated by
six spaces.

2) The first column contains the five digit octal address of
the memory word in the second column.

3) Columns two through nine contain the contents of eight
(lOa) consecutive addresses beginning with the address
shown in the first column. The first two digits (function
code position) of these memory words are separated from
the other four by one space.

S.G.1219 (P)2.3

4) If the contents of any memory address to be listed is zero
(000000), the zero codes are not printed and that column is
left blank. If the contents of an entire line's addresses
are zeros, the address in column one is not printed either.

5) If the contents of two or more consecutive lines' addresses
are zeros, PRINTC still only allows one blank line between

. the last printed line and the next group of eight (lOa)
addresses containing a non-zero quantity, no matter how
much memory area lies in between.

PRINTC occupies approximately 450a memory locations and may be loaded anywhere in
computer memory above address 01000 with the restriction that the entire module
shall be contained entirely within one memory bank. The module operates either
under program control or manually from the computer control panel.

b) Operating Procedure. For operation of print memory contents,

1) Make certain 1004 Card Processor is on and in a ready con­
dition; printer should have sufficient paper.

2) AU must contain the initial dump address; AL must contain
the final dump address.

Under program control:

3) Calling routine should do anRJP to PRINTC base address, or
an IRJP to an address containing the PRINTC base address.

Under manual operation,

4) Set P = PRINTC base address + 2, then start. When the
designated area has been processed, PRINTC stops at the
base address + 6 with AU and AL cleared. Another memory
area may be designated at this pOint and the dump started
without changing the P register.

8. Data Card Handler.

a) Program Description. DATCD consists of two subroutines which
provide the input and output of memory data in a specific format on 80 column
punched cards via the UNIVAC 1004 Card Processor. The two subroutines are:

CLOD - Load relocatable cards
CDMP - Dump absolute cards in relocatable format.

DATCD may be loaded anywhere in computer memory above address 01000 with the single
restriction that the entire package must be entirely contained within a single mem­
ory bank. Both functions operate either manually or under program control.

CLOD is a subroutine of DATCD that will load into a specified area or areas of
computer memory data words in relocatable format which it possesses from 80-column
Hollerith coded cards read via the 1004 Card Processor.

2.3-31

S.G.1219 (P)2.3

1) Address Card. CLOD examines the eightieth column control
digit of the first card that it buffers in: If it is a 1, CLOD takes the address
contained in columns 1 through 6 of that card as the initial load address. If it
is a 4, CLOD uses the contents of the upper half of the A register (AU) as the
initial load address. Any other digit than a 1 or 4 in the 80th column of the
first card causes CLOD to ignore that card data and continue to read cards until a
control digit of 4 is found.

Other than the first 6 columns and column 80, the rest of the columns on the ad­
dress card are blank (per TRIM III output 13, or the output from CDMP - the memory
dump on cards). However, if the user wishes to load manually prepared (key punched)
cards in data card format, he may cause CLOD to skip its checksum procedure by
punching the three letters ICS in columns 10, II, and 12 of address card (Ignore
Checksum) .

Hence, the address card is an optional card in the relocatable card load with an
optional feature on the card itself.

OPTIONAL (TO IGNORE CKSUM)

ADDRESS I C S I 0202(0
-9)-3)-2)

1 2 3 4 5 6 7 8 9 10 11 12 13 79 80

ADDRESS CARD FORMAT

2) Data Card. Following the address card (if any), each card
except the last card will have the following format:

2.3-32

a Eight (10 octal) 6-digit 1219 computer memory words or
special load modifier words in columns 1 through 48 in­
clusive.

b Eight (10 octal) relocatable modification digits one for
each data word) in columns 58 through 65. These digits
have the same meaning as those on a relocatable bioctal
paper tape:

o - No modification

1 - Add base address to Yll-O (4 digit Y modified)

2 - No modification

3 - Add base address to Y14-0 (5 digit Y modified
bit 15 is set to 0 or 1 depending on requested base
address for relocatable load)

4 - Increment current load address by data word value
(negative or positive)

5,6 - Not used

1st
Data
word

c

d

e

S.G.1219 (P)2.3

7 - End of load (corresponding data word not loaded).
Naturally. this digit ~ppears only upon the last
card of the load.

One 6-digit cumulative checksum generated by the TRIM
III number 13 output or CDMP, the memory dump on cards.
in columns 67 through 72. For cards prepared on the key
punch with ICS in columns 10 12 of the address card.
these columns will be ignored. By cumulative, we mean
that the preceding card's checksum is added to the
present one and punched, etc.

One 4-digit card number in either decimal or octal nota­
tion in columns 75 through 87. CLOD makes no reference,
examination, or use of this number. so it is optional.

A control digit of 4 in column 80. This is mandatory
for all data cards to be loaded by CLOD: any other digit
will cause the data of that card to be ignored and an-
other card read. '

2nd thtu 8th 8 modi fica- cumulative card
data words tion digits checksum number 4
(6 columns (optional) (optional)
each)

1 234 567 48 58 65 67 72 75 78 80

3) Last Data Card. The last card of any relocatable or ab­
solute card load will have almost exactly the same format as the other data cards.
The number of loadable data words on the last card will vary from seven to none.
The last card must always contain a data word of any value which has a correspond­
ing modification digit of 7. CLOD ignores the data word and terminates.

CDMP is a subroutine of DATCD that will dump a specified area of core memory on 80
column cards. It first converts the octal words of the computer core memory area
that is specified for output into excess-three code. It converts enough words to
fill the card buffer or finish the specified area, and then it punches the data via
the 1004 Card Processor onto 80-column Hollerith-coded cards. This process con­
tinues until the entire specified area has been punched.

b) Output Format.

1) Address Card. The first card punched by CDMP is the ad­
dress card which contains the initial dump address in columns I through 6, and a
control digit I in the eightieth column.

Address (Blank) I

Columns I 2 3 4 5 6 7 79 80

ADDRESS CARD FORMAT

2.3-33

S.G.1219 (P)2.3

2) Data Card. Following the address card, each card except
the last card will have the following format:

a Eight (10 octal) consecutive 6-digit 1219 computer
memory words, in columns 1 through 48 inclusive.

b Eight (10 octal) relocatable modification digits (one
for each memory word), in columns 58 through 65. As
this is an absolute dump, all of these modification
digits will be zero.

c One six-digit cumulative checksum in columns 67 through
72. By cumulative, we mean that the checksum from the
previous card(s) is added to the total of the present
card before being punched.

d One four-digit card number in columns 75 through 78.
The cards are numbered in octal notation.

e A control digit of "4" in column 80.

3) Last Data Card. The last card in any specific memory dump
will have almost exactly the same format as the normal data cards. The difference
is that the last card will contain anywhere from no memory words up to 7 of them
with a like number of zero modification digits. Following the last memory word of
a dump (either on the same card or the beginning of the next) there will be punched
a word of 6 zeros with a corresponding modification digit of 7.

c) Input Parameters. The card dump section of DATCD (CDMP) re­
quires as input parameters the first and last address of the memory area to be
punched on cards. These addresses must be present in AU and AL in any order Cfirst­
last, or last-first).

The card load section of OAT CD (CLOD) requires as input parameters the address to
begin the memory load in AU, but only if an address card does not precede the data
cards.

format:
d) Operating Procedure. To load 80-column cards in relocatable

STEP 1. Put cards in 1004 Card Processor's reader input hopper.
The 1004 must be on and ready.

STEP 2. Press the CLEAR, START, FEED, and RUN buttons on the
1004 console in that order. This will position the
first card at the 1004 read station ready for process­
ing. If the first card is an address card, no param­
eters are required as input to DATCD. If no address
card is present, AU must contain the base load address
when DATCD is called or used.

Under program control:

2.3-34

STEP 3. The calling program must perform an RJP toDATCD base
address, or an IRJP to an address containing DATCD base ad­
dress.

~-<

S.G.1219 (P)2.3

Under manual operation:

STEP 3. Set P = DATCD base address + 2, then start.

To dump absolute data on 80-column cards in relocatable format:

STEP 1. Put the 1004 Card Processor, including the punch unit,
in a ready condition.

STEP 2. Make certain the input hopper of the punch unit con­
tains enough blank cards.

STEP 3. When DATCD is called or used, AU and AL must contain
the first and last address of the memory area to be
dumped on cards. Either limit may be in either reg­
ister.

Under program control:

STEP 4. The calling program must perform an RJP to DATCD base
address + 3, or an IRJP to an address containing DATCD
base address + 3.

Under manual operation:

STEP 4. Set P ~ DATCD base address + 5, then start.

e) Alarms. The DATCD card load routine (CLOD) will always stop
before loading any data words from a card if the load address is below 01000. By
pressing start, data from the card will be loaded at the requested address. How­
ever, DATCD will stop before loading data words from the next card if the current
load address is still below 01000. This cycle will continue until the load address
exceeds 01000.

Unless the ignore checksum is being employed, DATCD's load routine will stop if it
detects an error in the cumulative checksum. Since the checksum total of all cards
preceding any specific card is included in that card's checksum, the omission or
disorder of any cards from a given dump will result in a checksum error.

9. UNIVAC 1219 MOdified Paper Tape Utility Package.

a) General Information. UPAKM is a modified version of UPAK I
which provides the same functions as UPAK I, but will facilitate 6-digit addressing
when desired. UPAKM contains seven subroutines on punched paper tape in relocatable
bioctal format. The seven subroutines are:

1) Load absolute typewri ter code

2) Load absolute bioctal code

3) Load relocatable bioctal code

4) Dump absolute typewriter code

5) Dump absolute bioctal code

2.3-35

S.G.1219 (P)2.3

6) Inspect and change

7) Store constant in memory

UPAKM may be loaded anywhere in computer memory above address 01000 with the single
restriction that the entire package must be entirely contained within a single mem­
ory bank. The paper tape load and dump routines are operable under program control
or manually from the computer. However, the inspect and change and store constant
in memory functions are operable from the computer control panel only.

UPAKM occupies 1060 octal memory locations. Entrance addresses to the several sub­
routines are assigned relative to the UPAKM base address as will be subsequently
shown. Increments to the base are in octal.

Address

Base +

Base +

Base +

Base +

Base +

Base +

Base +

Base +

0

1

2

4

5

7

10

12

Routine Entrance

ICH entrance

STC entrance

Program entrance paper tape load

Manual entrance paper tape load

Program entrance dump typewriter code

Manual entrance dump typewriter code

Program entrance dump bioctal code

Manual entrance dump bioctal code

UPAKM subroutines use the currently active B-register, but they store and restore
its original value. Routines operating under program control also store and re­
store the user's special register setting.

b) Operations and Program Formats.

1) Load Absolute Typewriter Code. A carriage return, followed
by either (1) an 8 or an 88, or (2) a 9 or a 99, activates the load routine. An 8
or an 88 following the carriage return indicates that the tape is prepared with 5-
digit addressing (i.e., all addresses are below 100000), while a 9 or a 99 indicates
6-digit addressing. A single 8 or a single 9 indicates that the tape has no check­
sum (user prepared tapes). An 88 or a 99 indicates that the tape is terminated with
a 6-digit checksum (TRIM outputs 2 and 3 and UPAK or UPAKM typewriter code dumps).
A carriage return must follow the 8/88 or 9/99 code.

Once the load routine has been activated, it accumulates the first 5 or 6 digits
following each carriage return and assembles them as the address. It then accumu­
lates the next six digits and stores them at the accumulated address. All characters
following the first 11 or 12 octal digits are ignored until another carriage return
is found. If less than 11 or 12 octal digits are accumulated, the instruction will
not be loaded. Examples of tape formats are shown on the following page.

Each tape to be loaded must terminate with a carriage return and a double period
(..), which will terminate the load and initiate a checksum verification when re~
quired. If the checksum verification is correct, the load terminates with (AU) and
(AL) = O. When it is incorrect, the load terminates with (AU) = computed checksum
and (AL) = tape checksum.

2.3-36

S.G.1219 (P)2.3

~- If Skip Key I is set, the load subroutine will perform a checksum verification
without loading the tape into memory. Examples of tape format:

5-digit 5-digit 6-digit 6-digit.
Addresses Addresses Addresses Addresses
No Checksum With Checksum No Checksum With Checksum

8 88 9 99
XXXXX XX XXXX XXXXX xx XXXX XXXXXX xx XXXX xxx xxx xx XXXX
XXXXX xx XXXX XXXXX xx XXXX XXXXXX xx XXXX XXXXXX xx xxx X

XXXXX xx XXXX xx XXXX (Checksum) XXXXXX XX XXXX XX XXXX (Checksum)

2) Dump Absolute Typewriter Code. The dump is initiated
manually at the computer or under program control for output on punched paper tape.
The 99 format (6-digit addressing with checksum at the end) is the only one dumped.
The output tape includes both the address and the content~ of the memory locations
being dumped.

10. Printer Line Image on Tape and Tape-to-Printer Module.

a) Program Description. POTPOP is a module of UPAK III for the
UNIVAC 1219 Computer when operating with Type 1240 Magnetic Tape Units and a UNIVAC
1004 Card Processor. One routine (POT) of the module writes a preformatted. excess­
three coded, 132-decimal character buffer on magnetic tape for subsequent listing
on the 1004 printer. POT will also write the tape mark which identifies the end of
the listing for the listing routine.

The other routine (POP) will list a POT-generated magnetic tape on the 1004 printer.
POP will continue to read and print line-records from the designated magnetic tape
until it detects a tape mark.

b) Input Parameters. The printer line image on magnetic tape
section of POTPOP (POT) requires as input parameters the following:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (bit position)

T I
I

b c d

AL I J Buffer Initial Address I
~c,========~========~,

e

where:

a = Indicates whether to write line buffer or tape termination
flag (tape mark).

o = write the buffer indicated by AL address
1 = write a tape mark

2.3-37

S.G.1219 (P}2.3

b = C - I/O Channel (0 - 178). The channel to which the mag­
netic tape unit is connected. POTPOP writes and reads only
in single channel, high density, odd parity, and octal
format. The computer must be set for the single channel
mode.

c ~ S - Magnetic tape synchronizer (cabinet) number (1-4).

d = T - Magnetic tape transport number (1-4).

e = Initial address of a 548 word excess-three coded printer
line buffer to be written on tape.

The tape-to-printer section of POTPOP (POP) requires as input parameters the
following:

AU

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (bit position)

C I S I T I
T

.,
~

'\ T
,

b c d

where b, c, and d correspond to the b, c, and d parameters of
POT described above.

c) Operating Procedures. To write a printer line image or tape
mark on magnetic tape:

Under program control:

STEP 1. Enter AU and AL with the desired parameters.

STEP 2. Do an RJP to POTPOP base address or an IRJP to an
address containing the POTPOP base address.

Under manual operation:

STEP 1. Enter AU and AL with the desired parameters.

STEP 2. Set P = POTPOP base address + 2.

STEP 3. Start.

To list a POT-generated magnetic tape on the 1004 printer:

Under program control:

STEP 1. Enter AU with the desired parameter.

STEP 2. RJP to POTPOP base address + 3 or IRJP to an address
containing POTPOP base address + 3.

Under manual operation:

STEP 1. Enter AU with the desired parameter.

2.3-38

S.G.1219 (P)2.3

STEP 2. Set P = POTPOP' base address + 5.

STEP 3. Start.

d) Alarms. POT or POP will try one recovery each upon detecting an
error in writing or reading a printer line record on magnetic tape. If an error
still occurs on the second attempt, POT or POP will ignore it and proceed normally.

An improper condition status word from the tape unit will cause POT or POP to stop
with:

AU = 777777 AL = 777777

The user may remedy the problem and restart from that point. POT will try writing
the last buffer it was given; POP will attempt to read the next record on tape.

11. Magnetic Tape Handler Module - JOSH.

a) Program Description. The JOSH magnetjc tape handler provides
users with the ability to implement all of the hardware capabilities of UNIVAC 1240
Magnetic Tape Systems while on-line with a UNIVAC 1219 Computer.

Under program operation JOSH provides for three types of user control via three
separate entrances.

1) JOSH base address + 0 - Initiate tape function. JOSH
initiates the requested tape function and returns control
to the calling program allowing it to proceed while the
tape action is in process.

2) JOSH base address + 2 - Job completion status check. The
tape handler interrupt routine stores a coded status indi­
cator in the first word of the tape function request
packet. The user may perform his own completion check by
analyzing the contents of this word. More simply, he can
enter JOSH at base + 2 and JOSH will perform the check for
him and indicate completion status via a good or bad exit.

3) JOSH base address + 4 - Check busy status. If the user
wishes, he may execute JOSH at this entrance to sample
current status of the tape function. JOSH returns control
to the calling program immediately with the indication in
AL. If the function is still in progress {busy),AL i 0;
if the function is complete (hardware interrupt status in),
AL = O.

JOSH provides automatic recovery capability by performing up to 10 recovery attempts
in an effort to complete a tape function successfully.

JOSH may be operated either under program control or manually from the computer
control panel. This UPAK III module may be loaded anywhere in computer memory above
address 01000 with the single restriction that the entire module must be wholly con-
tained within one memory bank. JOSH occupies approximately 6408 memory loca-
tions.

2.3-39

S.G.1219 (P)2.3

b) Input Parameters. From one to six parameter entries are manu­
ally entered into the A register or are program stored in memory to govern the
operation of the tape handler. They are as follows:

2.3-40

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1) 1°! II OP. CODE I C I S I T I
~~ , " " " ' \ ¥

,

a b c d e

17 15 14 12 11 9 8 6 5 0

2) ! MOD ! Format ! paritY!DensitY!NO. to Pass I . '\ " " " T
,

T

f g h i j

3) I Buffer Initial Address I ..
T

,
k

4) I Buffer Terminal Address I ..
T

,
1

5) I Search Key
..

m

6) Search Key
(2 words if for dual channel)

T

n

where:

a == Mode of operation

o == dua 1 channel
1 == single channel

b == Operation code - 0 338 to select particular tape
function

Code

o Read
1 Read.Selective
2 Read - Ignore Error Halt

S.G.1219 (P)2.3

Code

3 Read - Retain Control (Tape Handler holds until
function is complete)

4 Search - Type I
5 Search - Type II - Identical
6 Search File - Type I
7 Search File - Type II - Identical

10 Write
11 Write - Extended Inter-Record Gap
12 Write - Ignore Error Halt
13 Write - Extended Inter-Record Gap - Ignore

Error Halt
14 Write Tape Mark
15 Write Tape Mark - Extended Inter-Record Gap
16 Pass "N" Files Forward
17 Pass "N" Records Back
20 Pass "N" Records Forward
21 Backspace
22 Backspace - Read
23 Pass "N" Files Back
24 Back Search ~ Type I
25 Back Search - Type II - Identical
26 Back Search File Type I
27 Back Search File Type II - Identical
30 Rewind
31 Rewind - Clear Write Enable
32 Rewind - Read
33 Rewind - Read - Clear Write Enable

c = I/O Channel 0' - 178

d = Magnetic tape synchronizer (cabinet) number (1-4)

e = Magnetic tape transport number (1-4)

f ~ Modulus selection - 3, 4, 5 or 6

g = Recording format

o = bioctal (non-redundant)
1 = octal (redundant)

h = Parity selection

o = even
1 = odd

i = Density selection

o = low (220 frames per inch)
1 = high (556 frames per inch)

j = Number of records or files to space forward or backward.
Maximum of 77; if more are required it is necessary to
re-execute the command to JOSH.

2.3-41

S.G.1219 (P)2.3

k = Buffer initial address for read, write, and search
operations.

1 = Buffer terminal address for read, write, and search
operations.

m = Search key for single channel search operations or
first word of search key for dual channel operation.

n = Second word of search key for dual channel operations.

c) Operating Procedure.

1) Operation Under Program Control.

STEP 1. Enter the active B-register with the first address
of the input parameter packet. This packet may
consist of 2-7 words depending on the operation to
be performed. The first word of the packet must
be a blank word where the coded status will be
stored. The remaining words contain the input
parameters.

STEP 2. Execute a return jump or indirect return jump to
JOSH base address.

STEP 3. The user may sample a busy-bit by executing a re­
turn or indirect return jump to JOSH base address
+ 4. Upon return, one of the following indications
will be in AL:

CAL) = 0 indicates the job is done
CAL) i 0 indicates the job is still in progress.

STEP 4. The user may check the status of the tape functions
by one of two methods.

a Execute a return or indirect return jump to
JOSH base address + 2.

When the tape function is complete, control is returned to the user by the ~ood or
bad exit.

2.3-42

I Bad exit - is via the normal exit with the
following contents in the A register.

(AU) = tape unit status word
CAL) = one of the following codes

I - tape mark
2 - improper condition
3 - unrecoverable tape error
4 - parameter error
5 - low tape
6 - end of tape

2 Good exi t - CAU) and CAL) = 0

S.G.1219 (P)2.3

b The user may check for the above-mentioned
codes in the first word of the packet. (0 word
means good.)

2) Manual Operation.

STEP 1. Set P to JOSH base address + 10.

STEP 2. Set AU = parameter 1
AL = parameter 2

STEP 3. Start - when computer stops
Set AU - parameter 3

AL - parameter 4

STEP 4. Start - when the computer stops
Set AU - parameter 5

AL - parameter 6

STEP 5. Start again - tape function will be initiated.
(For parameters not applicable to the requested
operation - leave (AU) and (AL) = 0 and press
start.)

3) Special Considerations.

a Search constants for a backward search must be reversed
characterwise.

b Whenever the dual channel operation is selected the
buffer limits must begin with an even address and end
with an odd address or vice versa.

c Address 00141 shall be reserved for use by JOSH as an
indirect interrupt address.

d The contents of AU, AL, and active B will not be re­
stored.

e If the user elects to use the status checking feature
of JOSH base address + 2, he must do so before re-entry
into JOSH to do the next t~pe function.

e. UNIVAC 1219 TRIM Corrector.

1. General Information. The UNIVAC 1219 TRIM Corrector is a companion
to the UNIVAC TRIM I and II Assemblers using paper tape source program input. It
has been designed to operate on a UNIVAC 1219 Computer with paper tape input/output
and 8K core memory. The correction process, constituting a separate computer run,
provides a convenient method for correcting source programs for subsequent assembly.*

* A source program means any program prepared by the programer in TRIM format or
output no. 2 of the TRIM Assembler (a side-by-side output of the assembled ob­
ject program and the corresponding source program). The Corrector processes
only the source program portion of an output no. 2.

2.3-43

S.G.l2l9 (P}2.3

Input to the Corrector consists of one or more correction tapes and the source pro­
gram tape(s) to be corrected. The programer may make three types of corrections to
his source program; 1) insertions, 2) replacements, and 3} deletions. Output from
the Corrector is a single punched paper tape consisting of the corrected source
program.

2. Input Formats. Two versions of the Corrector are available; one
for standard Flexowriter prepared input, the other for fieldata coded input. In
either format, a correction tape should not have a header of any type. A flex­
coded correction tape begins with a carriage return and a shift to upper case, and
terminates with a carriage return, shift to lower case, and two periods. A fieldata
coded correction tape begins with a carriage return and line feed and terminates
with a carriage return, line feed, and two periods.

To establish correspondence between corrections and the operation items of the un­
corrected source program, the programer places an octal identifier (determined
from a previous TRIM Assembler output no. 2) before each correction operation.

Coded corrections thus consist of alternate identifiers and the corresponding cor­
rections as shown in the diagram that follows where ~ means carriage return, t means shift up, f means shift down, and ... means tab (Flex code 51 or
FD code 76).

IIDENTIFIERI .,
ICORRECTION OPERATIONI ..

I IDENTIFIER I ..,
I CORRECTION OPERATIONI ..

The identifier consists of an integer and fraction, separated by a point separator.
A maximum of five octal integer digits are permitted. The fraction portion is a
straight binary magnitude (from .001 through .777).

The correction operation format is shown below. A correction operation must not .
exceed 90 characters in length including control codes . ..

2.3-44

label if
applicable .. INSTRUCTION

(always present) .. notes if
applicable ..

S.G.1219 (P)2.3

a) The Insert Correction. An insert correction requires the iden­
tifier of its preceding operation from the source program, the pOint separator, and
additional octal insert digit(s). For example, an operation item to be inserted
between identifiers 12 and 13 of the source program has the insertion identifier
of 12·1.

Example:

140e31 ...
WALTH" ENTALKeo .. CLEAR AL

b) The Delete Correction. A delete correction lists the identifier
of the operation (or first operation of a group of sequential operations) to be de­
leted. The correction operation consists of a .. , the word DELETE, and a car­
riage return when only one program operation item is to be deleted. If more than
one sequential program operation is deleted, the word DEL~TE is followed by a point
separator and the number (in octal) of operations to be deleted and a carriage
return.

Example 1:
,-

1 27eO ..
.. DELETE ..

will delete item 127 from the source program.

Example 2:

l27e~

... DELETEe~

will delete items 127 through 133 from the source program.

c) The Replace Correction. A replace correction lists the identi­
fier of the source program operation to be replaced, a carriage return, and the re­
placing operation terminated by a carriage return.

Example:

105eo ..
.. ENTBKe35 .. INITIALIZE INDEX

This set of operations replaces whatever operation previously existed for identifier
105 of the source program.

2.3-45

S.G.l2l9 (P)2.3

Additions are made to the end of a source program by means of either the insert or
replace correction. For example, if the last identifier of a iource program is 320,
then either of the following examples will add the sample clear storages subroutine:

Example I (insert):

320e1 ..
CAT .. OeO .. CLEAR STORAGES SUB~

320e;..

.. ENTBKel~

320e3 ..
CATI .. CLBeWSTR~

320e4 ..
.. BJPeCAT~

320e~

.. IJPeCA~

Example 2 (replace):

2.3-46

321e~

CAT .. oeo .. CLEAR STORAGES SUB~

322e~

.. ENTBKeIO ..

323e~

CATI CLBeWSTR~

324.0..,

.. BJPeCAT;"

325~

"IJPeCA~

S.G.1219 (P)2.3

3. Performance. The TRIM Corrector occupies memory locations 01000
through 02505 plus buffer areas. The Corrector accepts a maximum of 2l2D correc­
tions for any single correction run. As many correction tapes as desired are given
to the Corrector, the only restrictions being that the total corrections do not ex­
ceed 212 and that each separate tape begin with the proper combination of control
characters as prescribed by the input format.

At the start of a correction run, the correction tapes are read into memory, and
the items are sorted by identifier in ascending numerical order. A control panel
Skip Key selection indicates when the last correction tape has been read.

The Corrector next reads the source program tapes, one operation item at a time.
An internal identifier is assigned to each such item, starting with zero and in­
creasing by one for each subsequent item.

This identifier is compared with that of the next correction to determine process­
ing action.

If the correction identifier is smaller, the correction item is punched on the
corrected output tape.

If the correction and source program identifiers are equal, the correcti~n item is
inspected. When it contains a DELETE operator, the corresponding source item (or
items) is bypassed (not punched on the corrected output tape). If the operator is
not DELETE, the source program item is ignored and the correction item is punched
on the corrected output tape, thereby replacing the original item.

If the correction identifier is greater, the source program item is punched without
alteration on the corrected output tape.

The process just described continues until a Skip Key selection indicates the last
source program tape has been processed. At this time the corrected output tape
becomes finalized, and the computer stops.

If several source program tapes are involved, they must be read in the proper order.
No restrictions are placed on the number of source program operation items; however,
no single item should exceed 90 characters in length including control codes.

4. Operating Instructions. The TRIM Corrector' may be loaded via the
1219 Utility Package or any acceptable bioctal load bootstrap routine or automatic
recovery bootstrap. When the Corrector has been loaded into memory:

STEP 1. Master clear.

STEP 2. Set P ~ 01000.

STEP 3. Set Skip Keys 1 and 2 (set Skip Key 3 also if the source
program to be corrected is a TRIM Assembler output no. 2).

STEP 4. Mount a correction tape in the reader.

STEP 5. Start. The computer will stop after each correction tape
has been read. Repeat Steps 4 and 5 until all correction
tapes have been read.

2.3-47

S.G.1219 (P)2.3

STEP 6. Release Skip Key 1.

STEP 7. Mount a source program tape in the reader.

STEP 8. Start. As the source program tape is read, the corrected
output is produced. The computer will stop after each
source program tape has been read. Repeat Steps 7 and 8
until all source program tapes have been read.

STEP 9. Release Skip Key 2 and (Skip Key 3 if it was previously
set).

STEP 10. Start. The Corrector will finalize the output tape and
the computer will stop. To process another correction
run, begin from Step 3.

5. Error Detection. The TRIM Corrector recognizes two error con-
ditions.

a) Computer Stops With (AL) = 000007. This error indicates that
no correction tape has been loaded. Restart the correction run from Step 1 of the
operating instructions.

b) Computer Stops With (AL) = 007777. This error indicates that
more than 212D correction operations have been detected. The programer may prefer
to terminate this correction run and replan his correction strategy. If he wishes
to proceed on the basis of the first 212 corrections only, he should remove the
correction tape from the reader and start from Step 6 of the operating instructions.

6. Corrected Tape Checksum Verification. The TRIM Corrector computes
a cumulative checksum as it produces the corrected output tape. This checksum is
punched as the last data on the tape preceded by double periods and a d. The user
may checkread his output tape as follows:

STEP 1. Master clear.

STEP 2. Set P = 01000.

STEP~. Set Skip Key 4.

STEP 4. Mount the corrected output tape in the reader.

STEP 5. Start. The computer will stop with P = 01000 and (A) =
zero following an accurate checkread. If the computed
checksum and the tape checksum do not agree, the computer
will stop with (AU) = computed checksum and (AL) = tape
checksum.

7. Expansion Capabilities. Installations possessing larger than an ~K
memory computer may increase the maximum number of corrections allowed by adding
2008 per additional available memory bank to the contents of the memory location
RC277 (address 01063 in the Flex version and 01065 in the Fieldata version).

2.3-48

S.G.1219 (P)2.3

f. UPAKM - UNIVAC 1219 Modified Paper Tape Utility Package.

1. General Information. UPAKM is a modified version of UPAK I which
provides the same functiops as UPAK I, but will facilitate 6-digit addressing when
desired. UPAKM contains seven subroutines on punched paper tape in relocatable
bioctal format. The seven subroutines are:

a) Load absolute typewriter code

b) Load absolute bioctal code

c) Load relocatable bioctal code

d) Dump absolute typewriter code

e) Dump absolute bioctal code

f) Inspect and change

g) Store constant in memory

UPAKM may be loaded anywhere in computer memory above address 01000 with the single
restriction that the entire package must be entirely contained within a single mem­
ory bank. The paper tape load and dump routines are operable under program control
or manually from the computer. However, the inspect and change and store-constant­
in-memory functions are operable from the computer control panel only.

UPAKM occupies 1060 octal memory locations exclusive of addresses 00540 through
00777 which are used by the UPAKM loader. Entrance addresses to the several sub­
routines are assigned relative to the UPAKM base address as well as subsequently
shown. Increments to the base are in octal.

Address Routine Entrance

Base + 0 Program entrance paper tape load

Base + 2 Program entrance dump typewriter code

Base + 4 Program entrance dump bioctQl code

Base + 6 Manual entrance paper tape load

Base + 7 Manual entrance dump typewri ter code

Base + 10 Manual entrance dump bioctal code

Base + 11 Manual entrance inspect and change

Base + '12 Manual entrance store constant in memory

UPAKM subroutines use the currently active B-register, but they store and restore
its original value. Routines operating under program control also store and re-
store the user's Special Register setting. .

2. Operations and Program Formats. A carriage return, followed by
either (1) an 8 or an 88, or (2) a 9 or a 99, activates the load absolute typewriter
code load routine. An 8 or an 88 following the carriage return indicates that the
tape is prepared with 5-digit addressing (i.e., all addresses are below 100000),

2.3-49

S.G.1219 (P)2.3

while a 9 or a 99 indicates 6-digit addressing. A single 8 or a single 9 indicates
that the tape has no checksum (user prepared tapes). An 88 or a 99 indicates that
the tape is terminated with a 6-digit checksum (TRIM outputs a 2 and 3 and UPAK or
UPAKM typewriter code dumps). A carriage return must follow the 8/88 or 9/99 code.

Once the load routine has been activated. it accumulates the first 5 or 6 digits
following each carriage return and assembles them at the accumulated address. All
characters following first 11 or 12 octal digits are ignored until another carriage
return is found. If less than 11 or 12 octal digits are accumulated, the instruc­
tion will not be loaded. Examples of tape formats are shown below.

Each tape to be loaded must terminate with a carriage return and a double period
(..) which will terminate the load and initiate a checksum verification when re­
quired. If the checksum verification is correct, the load terminates with (AU)
and (AL) = O. When it is incorrect, the load terminates with (AU) = computed
checksum and (AL) = tape checksum.

g. TALK. TALK, meaning Iake ~ kooK, is a debugging technique which aids
substantially in debugging complex real-time programing systems by interrupting the
user's program at desired points to extract previously specified data. The ex­
tracted data is later edited, listing the associated data with its high-level source
language identification. The debugging process is:

The user's program is written and compiled normally with no additional instructions
generated. An additional compiler output is also obtained which specifies and
allocates the data definitions.

A separate translator program inputs statements that specify the data to be ex­
tracted, the points of extraction, and editing desired on the final output. This
information is cross-referenced with the data definitions from the compiler to
produce information in a tabular form for the extractor and editor programs.

An extractor program utilizes the tabled information provided by the translator to
initialize the user's program by inserting jumps at the extraction points. As
these extraction points are executed during program operation, the specified data
units are extracted and written on external storage, or stored in core, for later
editing.

2.3-50

S.G.1219 (P}2.3

NAME: ____________________ __

2.3-5. STUDY QUESTIONS:

a. List the seven subroutines of UPAK 1.

b. What is the difference between an absolute typewriter load and an
absolute bioctal load? Show the two formats.

c. What is the difference between the absolute bioctal load and a re­
locatable bioctal load? How does the computer detect the difference
between the two?

d. What is the use of the modification code in relocatable bioctal load?

2.3-51

S.G.1219 (P)2.3

2.3-52

e. What is the difference between an absolute typewriter dump and an
absolute bioctal dump? What is the meaning of the word dump?

f. List the error detections performed by UPAK I. What is meant by the
word "checkout?"

g. Is there any correlation between the Fieldata Code and the Flexowriter
Code? If any. what?

h. List the types of corrections a programer may make to his source
program when using the TRIM Corrector.

i. What is the input format for using the TRIM Corrector?

S.G.1219 (P)2.3

NAME: --------------------------
j. How many corrections can you make on any correction run?

k. What is meant by identifier when using the corrector?

1. What is the prupose of the TRIM Library Builder?

m. What is a library director?

n. What is the purpose of the LIBLST operator?

2.5-53

S.G.1219 (P)2.3

2.3-54

o. What is the minimum equipment config'uration for using the TRIM
Library Builder?

p. What is the purpose of the Data Extraction System?

q. What is the purpose of the CART service routine?

r. What is the purpose of the Trace Diagnostic Routine?

s. Can TRACK be used on real-time problems? Why or why not?

S.G.1219 (P)2.3

NAME: ------------------------
t. What is the purpose of the "JOSH" module of UPAK III?

u. What equipment configuration is required for UPAK III?

2.3-55

S.G.1219 (P)3.1

SECTION 3 - PERIPHERAL EQUIPMENT

3.1. PERIPHERAL EQUIPMENT

3.1-1. OBJECTIVES

a. To give the student additional information on the I/O Console.

b. To give the student additional information on the 1240 Magnetic Tape
system.

c. To give the student additional information on the UNIVAC 1004 Card
Processor.

3.1-2. INTRODUCTION

It is important that the programer be familiar with the operation of peripheral
equipment that is connected to the 1219 computer system and of the formats re­
quired to make these peripheral units function as desired.

3.1-3. REFERENCES

PX 3640 - Magnetic Tape Unit, Type 1240, Section I, General Information.

3.1-4. INFORMATION

a. Input/Output Console.

1. General Information. The Input/Output Console is a peripheral
device of the 1219 Computer. See table 3.1-1. As such, it comm~nicates with the
computer through input/output channels. The Input/Output Console function is to
load programs and data into the computer and to monitor data from the computer.
The console consists of keyboard, printer, perforated tape reader and punch, the
logic circuitry necessary to control the above units, control panel, and power
supply assembly. Normally, the console operates with only one input or output
device at a time. However, during an output operation both printer and punch can
be selected simultaneously. During an input operation either printer or punch, or
both, can be selected to monitor data sent to the computer.

2. Operation. The Input/Output Console has two basic modes of operation
as listed below:

a) On-line; for normal operation.
b) Off-line; for maintenance purposes and tape preparation.

In the on-line mode, two types of data transfers are involved: input data transfers,
and output data transfers. An input data transfer refers to the transmission of
information from the console to the computer. An output data transfer refers to the
transmission of information from the computer to the console. In the off-line
mode, these transfers are within the console; no data transmission between the

3.1-1

S.G.1219 (P)3.1

TABLE 3.1-1. GENERAL INFORMATION ON INPUT/OUTPUT CONSOLE, TYPE 1232A

External Function Codes I/O Console Response

26 25 24 23 22 21 20 Octal

0 0 0 0 0 1 1 03 Turn on printer, turn off punch,
make Output Data Request.

0 0 0 0 I 0 1 05 Turn on punch, turn off printer,
make Output Data Request.

0 0 0 0 I I I 07 Turn on printer and punch, make
Output Data Request.

0 0 0 0 0 0 I 01 Turn off printer and punch.

0 0 I 1 0 0 0 30 Turn on keyboard. (Make Input
Data Request after key is depressed).

1 1 0 1 0 0 0 150 Turn on reader and Start Read.
Stop tape motion and make Input
Data Request after frame is over
photocells.

0 0 0 1 0 0 0 10 Turn off reader and keyboard.

0 0 0 I 0 0 I II Turn off all devices.

1. Input E.F. words and Output E.F. words are not interacting, i.e., any
combination of legal codes, such as 33, 157, 15, etc., causes the same
response as if the Input and OUtput"codes were sent using two s~parate
E.F. transmissions.

2. Any E.F. ACK signal from the computer causes the E.F. REQUEST to be
dropped for a 70 millisecond period.

3. Octal 70 E.F. code (turn on keyboard and reader) is illegal.

4. When turning on an output device there is a 500 millisecond delay between
when the E.F. code is received and when the first Output Data Request is
made. (Motor turn-on delay)

5. Turning on the keyboard automatically turns off the reader, and turning
on the reader automatically turns off the keyboard.

3.1-2

S.G.1219 (P)3.1

computer and console occurs. The operation of the console is explained by
starting from the off condition. The off condition is defined as the condition
when ac power is off and console is in the off-line mode.

a) On-Line Operations. In the on-line mode (ON-LINE/OFF-LINE
switch is in the ON-LINE position), the console operates as an input/output device
of the computer and normally the computer initiates and terminates an operation;
however, the controls on the control panel also can be used.

1) Input/Output Options. The computer can select either
printer or perforated tape punch, or both, for an output operation, and either
keyboard or perforated tape reader, for an input operation. The console operator
can obtain printed copy of the input data by pressing the COpy indicator-switch and
the PRINT indicator-switch. Punched copy may be obtained by pressing the COpy
indicator-switch and the PUNCH indicator-switch.

2) Input Operation. The computer selects an input operation
by sending to the console an appropriate external function word. The console
places data on the input data lines and sets the input request line, specifying that
data is ready for the computer. The computer samples the data and sets the input
acknowledge line, specifying that it is ready for more data. The input acknowledge
clears the input register and other areas of console control, and re-initiates the
cycle. The sequence is repeated until the input operation is completed.

3) Output Operation. The computer selects an output operation
by sending to the console an appropriate external function word. The console control
circuitry sets the output request line, specifying readiness to accept data. The
computer places data on the output data lines and sets the output acknowledge line,
specifying that the data is ready for transmission. The console detects the output
acknowledge, samples the output data lines, and clears the output request line.
Then, the control circuitry causes either the printer or punch, or both, to operate
and record the data received from the computer. After the printing or punching
cycle the output request line is set again. This sequence is repeated until the
output operation is completed.

4) Interrupt Operation. The console may interrupt the computer
from the keyboard. To accomplish this, the KEYBOARD and the INTERRUPT .indicator­
switches are pressed on the control panel. When a keyboard key is pressed, a
corresponding data code is set on the input data lines and an interrupt signal is
sent to the computer. The computer samples the data and sets the input acknowledge
line. Console control circuitry detects the input acknowledge and clears the
interrupt and input data lines.

b) Off-Line Operations. The console is independent of the computer
in the off-line mode (ON-LINE/OFF-LINE switch is in the OFF-LINE position). Off­
line operations are similar to on-line operations except that information and
control signals are not transmitted between the computer and console, and the input
and output devices are selected manually on the control panel. The ON-LINE/OFF-
LINE switch on the control panel provides the gating which causes each output request
to generate a synthetic input acknowledge, and each input request to generate a
synthetic output acknowledge.

3.1-3

S.G.1219 (P)3.1

3.1-4

1) Off-Line lape Preparation (Punch/Keyboard Operation).

STEP 1. Set ON-LINE toggle switch to OFF-LINE position.

STEP 2. Press MASTER CLEAR pushbutton-switch.

STEP 3. Press KEYBOARD indicator-switch.

STEP 4. Press PUNCH indicator-switch.

NOTE

COpy is automatically selected in off-line mode.

STEP 5. Run out desired amount of blank tape by pressing
TAPE FEED indicator-switch.

STEP 6. Enter desired information via the keyboard.

STEP 7. Repeat Step 5 if necessary.

STEP 8. Press MASTER CLEAR pushbutton-switch when operation
is completed.

2) Off-Line Tape Print-Out (Printer/Reader Operation).

STEP 1. Set ON-LINE/OFF-LINE toggle switch to OFF-LINE
position.

STEP 2. Press MASTER CLEAR pushbutton-switch.

STEP 3. Press PRINT indicator-switch.

STEP 4. Press READ indicator-switch.

STEP 5. Load tape in reader.

STEP 6. Press START READ indicator-switch.

STEP 7. Press READ/READ-ONE switch to READ position.

STEP 8. Allow print-out to continue until entire tape or
desired portion of the tape has been read.

STEP 9. Press MASTER CLEAR pushbutton-switch when operation
is completed.

3) Off-Line Tape Reproduction (Punch/Reader Operation).

STEP 1. Set ON-LINE/OFF-LINE toggle switch to OFF-LINE
position.

STEP 2. Press MASTER CLEAR pushbutton-switch.

S.G.1219 (P)3.1

STEP 3. Press PUNCH indicator-switch.

STEP 4. Press READ indicator-switch.

STEP 5. Load tape in reader.

STEP 6. Press START READ indicator-switch.

STEP 7. Press READ/READ-ONE switch to READ position.

STEP 8. Allow punch-out to continue until entire tape or
desired portion of the tape has been reproduced.

STEP 9. Press MASTER CLEAR pushbutton-switch when operation
is completed.

3. Console Input/Output Devices. The Input/Output Console utilizes
the printer and paper tape punch as output devices, and the keyboard and paper tape
readeras input devices. See Figure 3.1-1.

a) Printer. The printer uses 6-bit fieldata code for character
representation. A total of 64 different characters and functions may be represented
by this code. The printer is capable of printing 10 characters per second, 10
characters per inch horizontally, 72 characters per line, and six lines per inch
vertically.

b) Paper Tape Punch. The paper tape punch utilizes 5, 6, 7, or 8-
level code for character (frame) representation on 11/16, 7/8 or one inch tape. A
maximum of 256 different code combinations are possible using this method of coding.
The punch is capable of perforating 10 frames per inch at a tape speed of 11 inches
per second.

c) Paper Tape Reader. The paper tape reader is 'capable of reading
5, 6, 7, or 8-level code characters (frames) from 11/16, 7/8 or one inch tape, at
a rate of 300 frames per second.

d) Keyboard. The keyboard generates data codes as specified in the
fieldata code when the correspondingly labeled keys are pressed. Data entered into
the keyboard can be simultaneously printed by the printer if the PRINT and COpy
indicator-switches are selected on the control panel.

e) Use of Paper Tape Bin. The paper tape bin is used to prevent
the paper tape from piling up on the floor and, for this reason should be slightly
pulled out (approximately six inches) from the cabinet, during the paper tape
punch and reader operations.

b. UNIVAC 1240 Magnetic Tape Unit.

1. General Information. The UNIVAC 1240 Magnetic Tape Unit is a large
capacity, medium speed, auxiliary storage system. It may be operated on-line under
complete computer program control as an input/output storage device or with a High­
Speed Printer for off-line printing of tape recorded information. A flexible format
allows recording and reading in four moduli (18, 24, 30 or 36-bit computer words)

3.1-5

BIOCTAL

ABSOLUTE

2 OCTAL CHARACTERS
PER FRAME PRECEDED
BY A COD E lOAN 0 1

15 BIT STARTING AND
ENDING ADDRESSES.

RELOCATABLE

••••• • •••
••• • • • • • • •••• • • •• •

• · .. • • • • •••• •••
••• • •• ••

• • ••
• • • • • • •••• 'iii •

•

10 CODE FOLLOWED
BY 2 OCTAL CHARAC­
TERS PER FRAME PRE­
CEDED BY A MODLFI­
CATION CODE FOR EACH
INSTRUCTION.

I I

I

•

• •

TYPEWRITER

FLEX FIELDATA

• •• • ••
•• •• •• • •••• • •• • •••• •• •••• • •
• • • • •• ••••• • •• •••••• • •• • •••••• •• • •• •• •
•• • • •• •• •••• •• • • • • • •• •• •••• •• •• •• •• • • •• • •• • •• • •• • •• •• •••••• •• •• • • • • • •• ••••• •• •••••• •• • • • • •• • • • •• • •• • •• •••••• •• • •••• • • • • ••• • • •• • • • •• •••• •• .. ~ .. '. • •

~

ONE 6 BIT TYPEWRITER CODE PER FRAME
STARTING WITH CARRIAGE RETURN 8 OR 88
CARRIAGE RETURN FOLLOWED BY CR 5 CHAR.
OF ADDR ESS AND 6 CHAR. OF INSTRUCTION.

Figure 3.1-1. Paper Tape Formats

•

•

S.G.1219 (P)3.1

and two densities, and provides recording and reading of magnetic tapes compatible
in all respects with the IBM 727, IBM 729 II and IBM 729 IV system tapes. Either
even or odd frame parity may be utilized and for added reliability, the redundant
octal format is provided. A read after write feature is provided to check each
frame for parity immediately after recording. Longitudinal parity recording and
checking is automatic.

Records of data may be of variable lengths and are separated by 3/4 inch inter­
record gaps (IRG) unless otherwise extended by suitable programing. Records may be
lengthened if suitable inter-record gaps were provided in previous recordings.

The UNIVAC 1240 Magnetic Tape Unit is compatible with all UNIVAC Military Computers
and may be supplied with an 18, 24, 30 or 36-bit parallel input/output interface
with either of two sets of logic levels.

The Minimum Magnetic Tape Unit consists of one Magnetic Tape Control (MTC) , one
Tape Transport Control (TTC) in which are contained one Local Transport Control
(LTC) for each of two or four Magnetic Tape Transports (MTT). The maximum con­
figuration consists of one MTC, four TTC's and sixteen MTT's. Two or four MTT's
are contained in one cabinet with one TTC. One MTC is used for any configuration
on anyone computer channel since its function is to communicate with the computer
and with all TTC's. See Figure 3.1-2.

2. Electronics. The UNIVAC 1240 electronic control is a completely
solid-state machine. The components are mounted on small, plug-in, printed-circuit
cards which are assembled in a modular form for compactness. This building block
technique, and the circuit cards utilized in the 1240, have a field-proven record of
reliability in UNIVAC computers and peripheral equipment.

3. Maintenance. The SOlid-state, plug-in modules, in conjunction with
the manual controls and register and logic indicators, make maintenance of the
UNIVAC 1240 fast and easy, keeping repair time to a minimum. Manual controls permit
off-line maintenance of one tape unit during on-line operation of other units in
the system. The tape transports and all electronics are easily accessible from the
front of the unit.

4. Tape Unit Specifications.

a) Tape.

Width - 1/2 inch
Type - "N' wound (oxide coating on inside of tape) - Mylar base
Length - 2400 feet
Reels - 10-1/2 inch, IBM compatible hub type
Tape Markers - Load Point and End of Tape reflection markers

b) Tape Speed.

Read/Write - 112.5 inches per second forward
Rewind - 225 inches per second
Start/Stop time - 1.5 to 2.5 milliseconds

3.1-7

S.G.1219 (P)3.1

MINIMUM
MTU

CONFIGURATIO

MAXIMUM
MTU

CONFIGURATION

N

-

TT

TT

TT

TT

TT MTC

TT TTC

-- -

TT MTC

TT TTC

CABINET I

TT

TT TTC

CABINET 2

COMPUTER OUTPUT CABLE --
COMPUTER INPUT CABLE

J CHANNEL A

UNIVAC

---- - - COMPUTER

"""-
COMPUTER OUTPUT CABLE - COMPUTER INPUT CABLE ..

~
CHANNEL B

~

INTER CABINET CABLE

~ TT TT TT TT

14- TTT TT TTC f4- TT TT TTC 14-

CABINET 3 CABINET 4

Figure 3.1-2. Magnetic Tape Unit and Computer Configurations

3.1-8

c) Recording Techniques.

Non-Return to Zero (change-on-one)
Seven tracks - six data bits, one parity bit
Density - 200 o~ 555.5 frames per inch (Program Controlled)
Inter-Record Gap - 3/4 inch
Extended-Inter-Record Gap - 3-1/2 inches
Record Length - Variable
Parity - Lateral and longitudinal
Tape Mark - End of File (Program Controlled)
Write Lockout - IBM Type; upper reel

d) Transfer Rate.

62,500 characters per second - High Density
22,500 characters per second - Low Density

e) Format (Program Controlled).

Moduli - 3, 4, 5 or 6
Frame Character - Bioctal or Redundant Octal
Parity - Odd or even

f) Tape Compatibility.

Transport to transport
IBM 727, IBM 729 II and IV
Other IBM-compatible systems

g) Physical.

Size: Height
Width

Depth

- 72 inches
- 37 inches (2 tape transports)
- 60 inches (4 tape transports)
- 30 inches (air cooled)
- 34 inches (water cooled)

Weight: 1150 pounds (2 tape transports)
1900 pounds (4 tape transports)

Cooling: Ambient Air - 700 CFM (2 transports)
- 1000 CFM (4 transports)

S.G.1219 (P)3.1

- 4.8 Gallons/minute at 700 F (2 transports)

h)

- 8.0 Gallons/minute at tqo F (4 transports)

Power.

Air Cooled: 2 Transports 4 Transports
115 VAC ± 10%, 1 ph, 60 cps 2.75 KW 5.5 KW
115 VAC ± 5%, 3 ph, 400 cps, Reg 0.6 KW 0.6 KW

Water Cooled: 2 Transports 4 Transports
115 V AC .± 10% , 1 ph, 60 cps 2.6 KW 5.3 KW
115 VAC ± 5%, 3 ph, 400 cps, Reg 0.6 KW 0.6 KW
115 VAC .± 5%, 3 ph, 400 cps, Unreg 1.8 KW 3.0 KW

NOTE

For detailed specifications for the Tape Transports, see
UNIVAC Document DS 4613.

5. Magnetic Tape to Computer Specifications.

a) Performance of Function. The Magnetic Tape Unit communicates
with the computer in the request-acknowledge mode (see figure 3.1-3). The computer
issues commands to the MTU by means of the external function signal and function
words; thus computers with an 18-bit word structure (e.g., 1219) can use the 1240
tape unit as well as computers with longer word lengths. Function Words may be in
the Address Word format (see figure 3.1-4) or in the instruction word format (see
figure 3.1-5). When the MTC inspects the word format and recognizes it as an
Address Word, it selects the specified tape cabinet and tape transport.* When the
MTC recognize~ the function as an instruction word, it performs the specified
operation on the transport selected by the last interpreted address word. Each tape
transport control contains a 4-position address switch for each tape transport so
that each can be aSSigned a logical number 1, 2, 3, or 4. Another 4-position

*See Paragraph 3.1-4b5d).

3.1-9

I-'
I

I-'
o

f' EXTERNAL FUNCTION

OUTPUT REQUEST
OUTPUT ~

CABLE 4 OUTPUT ACKNOWLEDGE

W&,_18 TO 36 OUTPUT LINES

-
UNIVAC

COMPUTER

~ .. EXTERNAL INTERRUPT
~

INPUT DATA REQUEST

INPUT INPUT ACKNOWLEDGE
CABLE ..

~ 18 TO 36 INPUT LINES

"

'"C
'-"

"" ------,
,-------- I-'

I
1 TTC I

I
I
I

J
I

TTC

1/&1 ~ 2

I MTC

I

1 TTC ,

I
"3

1
•

J TTC

ai@ 4

I

TT3
TT4

I

TT7

TT8

TT II

TTI2

TTI5

TT\6

TT2

TT6

TTIO

TTI4

TTl

TT5

TT9

TT\3

I
I
I
I
I
I
I
I
I
I
I
I

L..- _____________ J
1240A MAGNETIC TAPE UNIT

Figure 3.1-3. Magnetic Tape Unit - Computer Interface

S.G.1219 (P)3.1

129 ~ ~ 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I~ Not Used • Not Used

I Function Word Designator = 1 Cabinet Address

1 Master Clear Transport Address

Figure 3.1-4. Function Word-Address Word Format

129~ .1918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I~ Not Used •
FORMAT

I Function Word Designator
I I = 0 I

1 Ma s t e r C 1 ear I I I D
I

loperation I COD E
Code I

I I Modulus See Paragraph ~ _________ J
I Character

~ __________ J (V,D,l,c,4)

Parity

I Densi ty

Figure 3.1-5. Function Word-Instruction Word Format

3.1-11

S.G.1219 (P)3.1

cabinet address switch assigns that cabinet a logical number 1, 2, 3, or 4. The
address word selection bits are interpreted by the magnetic tape control according
to physical position of these switches. No two transports in the same cabinet may
be assigned the same logical number, i.e., to allow identical function on both
units. If duplication does exist within the same cabinet, the lowest physically
numbered tape transport is the one that will function. Example -- if transport 1
and 2 are both set on 2, only transport number 1 will respond to address word
selection number 2. Similarly, no two cabinets on the same computer channel may
be assigned the same logical number. One exception is permitted. Writing on two
tapes simultaneously may be accomplished if two cabinets on the same channel are
assigned the same logical number and the write-ignore-error-halt command is issued
to the MTU. In no instance can any function other than Writing be accomplished
simultaneously on two transports. The operator must determine the 10gica1 addresses
required by each program and set the switches accordingly.

The instruction word will contain the code for one of five basic operations -- read,
search, write, backspace, rewind -- or a combination of two basic operations. The
master clear operation may be requested in either word format. This special
operation has priority over all other operations and will terminate all others in
process except rewind, which will go to completion.* To accept an external function
command other than master clear, the magnetic tape unit must be in the IDLE state,
i.e., operable but not performing a specific operation.

The completion of an operation or a master clear places the MTU in the IDLE state.

The general sequence of events for on-line operation with a computer (the MTC in
Automatic mode and in the IDLE state) is as follows:

1) Computer issues an address word via the external function
command.

2) The MTC selects the addressed tape cabinet and transport.

3) Computer issues an instruction word via the external function
command.

4) MTC samples the instruction word and becomes BUSY.

S)The operations stated in the instruction word are initiated
and carried to completion.

6) MTC sets a status word on the input lines.~¢~:¢

7) MTC interrupts the computer with external interrupt.

8) MTC issues STOP command to transport.

9) Computer samples status word and acknowledges interrupt
whereby the MTU becomes IDLE.

(Items 8 and 9 may be interchanged, or take place simultaneously).

* See Paragraph 3.1-4bSd).
**See Paragraph 3.1-4bSc).

3.1-12

S.G.1219 (P)3.1

Status words and input data are transferred on the input lines with identifying
signals on the external interrupt line and the input request line respectively ..
The computer acknowledges receipt of these transfers via the input acknowledge Ilne.

Function words and output data are transferred on the output lines with identifying
signals on the external function line and the output acknowledge lines respectively.
The output request line notifies the computer of the MTU ability to accept output
data or function words. See figure 3.1-6.

b) Tape Markers. The load point and end of tape markers are
adhesive-coated strips of aluminum one inch by 3/16 inch, placed on the base
(uncoated) side of the tape with the one-inch dimension parallel to the tape edge.
The Load Point marker is placed 1/32 inch from track 0 or outside edge of the tape
and at least ten feet from the beginning of the tape. The End of Tape marker is
placed 1/32 inch from track 6 or inside of the tape and at least fourteen feet from
the end of the tape. The markers are detected by reflective photoelectric sensors.
See figure 3.1-7.

c) Status Word and Interrupt (Status Interrupt). The computer
program is interrupted after completion of every operation, performed by the MTC,
except master clear and transport address selection. The MTC places a status word
on the channel input lines and a signal on the channel external interrupt line.
The bit structure of the status word (see figure 3.1-7) enables the computer program
to determine the status of the magnetic tape unit and whether or not the requested
operation was completed successfully. Errors encountered during a requested
operation, as well as the physical status of the MTU, are indicated in the status
word. The term status interrupt is used to express this philosophy since the
computer program is interrupted and the status of the MTU and the encountered errors
are designated in the status word. Any such interrupt sent to the computer must be
acknowledged by the computer before another external function with an instruction
word will be recognized by the MTC. An external function with a master clear or
address word will be recognized at any time.

Successful completion of an operation will contain no error indications, but other
indications of tape status may be present.

The status word requires a word of at least 15 bits. If the computer accepts words
larger than 15 bits, the information is duplicated in the next high order bits
beginning at bit 15. The following paragraphs present the detailed explanation of
each bit of the status word.

1) Improper Condition (Bits 29 and 14 = 1).

~. An Improper Condition will occur whenever: selected
tape transport is not in automatic condition. A tape
transport not in automatic condition implies one of the
following situations:

1. Tape transport was manually removed from automatic

~. Tape transport not in ready condition for one of the
following reasons:

Power Off

3.1-13

S.G.1219 (P)3.1

UNIVAC - ----
COMPUTER

OUTPUT

LINES

INPUT

LINES

IN. ACK.
-

OUT. ACK.

EXT. COM.

_IN. REO.

OUT. REO. -
EXT. INT.

"-

.

-
Z5 K>- Z4 ~ Z3 ~ Z2 ro- ZI ~ ZO

a:
1&.1
~
en
C!I
1&.1
a::

CHAR. COUNT MOD.

I "' __ ~_"""~I--I STATUS 14- LATERAL ____ ~
Or-REGISTER PARITY

t
ERROR LONG.

PARITY 14--4

j

DECODER

I

FU NCTION ~-I-_4-~4----.:C:.:.H.:.:A:.:.R,;;,A.:.;:C;..;.T.=E.:.:R.:../.;..P.:.:A;.;.R;..;.IT..;.Y-+------.-
PARITY ~

ITE

OT E C 0 1~_R..,EAr-0 __
... IMP. ON -

ENCODER T.M.

CONTROL
a

TIMING

I
L- 2A~ - - -1
I TRANSPORT 1
1 CONTROL

TRANSPORT

TAPE

I r-R-E-A-O-a-....HI.....;;;.s..;.,;TA..;.,T U;...;,S __ F_R O_M_

....... +-_ +---I'~ST_A_T_U_S __ -t STATUS I
II Io.-GA--r-

TE
_
S
_ -I

j~

I I
I I

DATA 2,3,4

TTl

I I
I

----+-----1, WRITE !t----+----I---+"1.~ J--....

TTC I

GATE a C~EAR I I
SIGNALS TO '- CABINET 1 I TO 2,3,4
ALL REGISTERS ----410\. .. _1----1 ... SELECT t---.. _O-_--~I--~....;...---.. -

ETC.

Figure 3.1-6 MTU, Simplified Block Diagram

3.1-14

r----- ---
135+-ZEROS -
L ___ _

1 = IMPROPER
NOT

1 = OUTPUT TI

1 = INPUT TIM

1 = INCORRECT

1 - LATERAL P

.30 29
--

14

CONDITIONJ

USED

MING ERROR

ING ERROR

FRAME COUNT

ARITY ERROR

28

13

\.

1 = LONGITUDI NAL PARITY ERROR

1 = BACKWARD

27 26

12 11

T

1

LAST MOTION OF TAPE
o = FORWARD

1 = TAPE MARK (END OF FILE)

1 = NO WRITE ENABLE

1 = END OF TA PE

1 = LOW TAPE

1 = LOAD POINT

25 24 23 22 21 20 19

10 9 8 7 6 5 4

I 4_
W A. .~ AI' j ~

Figure 3.1-7. Magnetic Tape Unit - Status Word Format

S.G.1219 (P)3.1

18 17 16 15

3 2 1 0

4 II' JI' I

3.1-15

S.G.1219 (P)3.1

Tape broken
Lamp burnout
Tape lo~d was not accomplished when tape was
mounted.

Q. No tape transport is selcted when one is required.

Q. A forward command is sent to a tape transport whose
tape is positioned at end of tape.

&. A reverse command, other than a rewind operation, is
sent to a tape transport whose tape is positioned
at load point.

~. A write instruction is issued to a tape transport that
has no write enable. (This situation also causes the
no write enable bit in the status word to be set.)
When the computer has been notified of an improper
condition, the computer program may then refrain from
issuing further external function commands to the tape
system to allow visual inspection of the trouble and
operator intervention to overcome the difficulty, or it
may issue another external function command. An
incoming external function command to the tape system
clears the improper condition indication.

2) Output Timing Error (Bits 25 and 10 = 1). If the computer
issued a write instruction to the MTC and did not transfer the first output data
word or transferred a requested data word too late to be written in its proper
place and before the interrupt is sent to the computer following end-of-record, an
output timing error occurs. This word transfer time is related to format and
density as shown in table 3.1-2. An output timing error can occur during search
operations if the MTC does not receive a search key before the start of reading the
record. The time requirement may be as short as 2 milliseconds from the time the
instruction word is received by the MTC until the search key or the first data word
must be received.

3) Input Timing Error (Bits 24 and 09 = 1). If the computer
issued a read instruction and failed to accept a word placed on the input cable by
the MTC before the next word was to be placed on the input cable, an input timing
error occurs. This error indicates that the computer lost one or more words of the
last record since data transmission to the computer ceases for the remainder of the
record. The tape continues to move to the end of record at which time the MTC
sends the status word indicating the error with an interrupt to the ~omputer.

4) Incorrect Frame Count (Bits 23 and 08 = 1). An i~proper
modulus specified or some frames lost causes an incorrect frame count error. This
may be caused by one or more of the following:

3.1-16

~. There were not enough frames in the record to complete
an integral number of computer words.

Q. One or more characters were not properly read or
recorded.

Modulus

3

4

5

6

3

4

5

6

S.G.1219 (P)3.1

TABLE 3. 1-2. WORD ASSEMBLY TIME

FORMAT WORD ASSEMRf.Y TIME

Character Low Density High Density

Bi-octal 133 usec 48 usec

Bi-octal 177 usec 64 usec

Bi-octal 222 usec 80 usec

Bi-octal 267 usec 96 usec

Octal 266 usec 96 usec

Octal 355 usec 128 usec

Octal 444 usec 160 usec

Octal 534 usec 192 usec

£. Bad spots on the tape caused characters to be lost.

Q. Reading the record with the wrong format (for example,
Reading Mod 4 with a tape record in Mod 5).

Longitudinal parity error can be expected with incorrect frome count error.

5) Lateral Parity Error (Bits 22 and 07 = 1). During a writing
process a parity bit is added to each six-bit character according to a format
specified and the seven bits are recorded as one frame. If the MTC detects a frame
whose lateral parity does not agree with that specified by the format, during any
read type operation or during the post-write check of the recording operation, a
lateral parity error occurs.

6) Longitudinal Parity Error (Bits 21 and 06 = 1). During a
writing process a longitudinal even parity bit is generated by the MTC for each tape
channel and recorded after the last frame of the record. If the MTC detects an error
in this parity during any read type operation or during the post-write check of the
recording operation, a longitudinal parity error occurs. If a frame count error
ever occurs, the longitudinal parity/error usually occurs. Both would be indicated
in the status word.

7) Last Tape Motion (Bits 20 and 05; 1 = Backward, 0 = Forward).
Any status word with interrupt sent to the computer at the completion of an operation
will indicate the direction of the last tape motion. This bit indicator is
especially useful to the program when a back-space-read operation results in a
parity error detection. The program can determine whether the tape is positioned at
the beginning or the end of the record.

3.1-17

S.G.1219 (P)3.1

8) Tape Mark (Bits 19 and 04 = 1). A recorded tape mark (see
write tape mark) separates files of information on the tape. Any read, space file,
search file or back space operation, that is limited to a file, and the post-write
check of the write tape mark operation, will indicate a tape mark in the status
word.

9) No Write Enable (Bits 18 and 03 = 1). When a write operation
is attempted on a selected transport that has its write enable cleared or the
write enable ring is inserted in the tape reel, the no write enable is indicated in
the status word.

10) End of Tape (Bits 17 and 02 = 1). When the end of tape
reflective marker is sensed by the MTU, a 1/2 second time-out begins after which no
forward movement of tape is possible. Reverse direction tape motion past the tape
marker is possible. The end of tape indication will appear in the status word. If
forward tape motion is reinitiated, the marker is sensed again and after the 1/2
second time-out the forward tape motion is stopped.

11) Low Tape (Bits 16 and 01 = 1). A pressure-sensitive
detector has sensed less than 100 feet of tape remaining on the selected transport
reel. The MTC will indicate a low tape any time a status word is sent to the
computer with the tape positioned within 100 feet of end of tape.

12) Load Point (Bits 15 and 00 = 1). Recording on a tape
begins at load point (a reflective tape marker placed at least ten feet from the
physical beginning of the tape). The write-load point delay allows for a gap of
about 3/4 inch beyond the load point m~rker (in the forward direction) before the
first record may be written. The MTC will indicate load point in the status word
whenever an operation requesting backward motion of tape is attempted with the
selected tape positioned at load point.

d) External Function Commands - Function Words.

1) Master Clear. Operations and tape selections are requested
by function words being sent to the MTU with an external function from the computer.
A master clear of the magnetic tape unit is performed when bit 16 of the function
word is a one. It differs from the other operations in these three respects:

~. It may be performed at any time, even when MTU is BUSY.

Q. It has priority over all other operations in the
Instruction Word, or Address Word. (see figures 3.1-4
and 3.1-5.

£. It does not result in a status interrupt.

The master clear stops all tape motion (except a rewinding tape) and sets the MTU in
the IDLE state. At any time after a master clear the MTC will accept another
external function. Since this function is not considered a normal operation, its
use should be restricted to times when the MTU is believed to be in an illogical
state or when its state cannot be determined. The master clear does not clear the
write enable which is set manually. To clear the write enable, the "rewind-clear
write enable" instruction must be used.

3.1-18

/

S.G.1219 (P)3.1

2) Address Word. An individual tape transport is selected
for operation by an address word and an external function. Figure 3.1-4 shows the
format of the address word. When bit 17 of a function word is one and bit 16 is
zero it is sensed at the MTC as an address word. The address of the cabinet and
tape'transport to be selected is found in bits 05-00 of the address word. Refer to
tables 3.1-3 and 3.1-4. An MTU consists of a maximum of four tape transport
cabinets, with 2 or 4 transports each which must be assiged logical numbers by the
operator. Within bits 05-00 of the address word, the cabinet is selected by bits
05-03 and the transport by bits 02-00 as shown in tables 3.1-3 and 3.1-4. Bits
15-06 of the address word are not used by the selection circuitry. The address word
does not cause a status interrupt and the MTC will accept another external function
command any time after the address word.

3) Instruction Word. Individual operations are performed by
the MTU under the direction of an Instruction Word. Figure 3.1-5 shows the format
of the instruction word. When bit 17 of a function word is zero and bit 16 is
zero, it is sensed at the MTC as an instruction word. The operation to be
performed by the MTU is stated in bits 15-11 of the instruction word. Format when
required is stated in bits 10-7, high or low density in bit 6, and in selective read
and write tape mark operations ,the identification key and tape mark first character
respectively are stated in the identifier code bits 5-0.

~. Format (Bits 10-7). The Format portion of the
instruction word contains modulus, character and parity designators. A complete
format selection must be included in all instruction words which request a reading
or recording operation with the exception that modulus may be ignored in the write
tape mark instruction. The modulus designator and the character designator direct
the MTC in the assembly and disassembly of computer words from or to tape frames.

1. Character Designator (Bit 8), 1 Selects Octal; 0
Selects Bioctal. Bioctal or octal (redundant) format is specified in operations
reqUIrIng reading or writing. The bioctal format disassembles 18, 24, 30 or 36-
bit computer words into 3, 4, 5, or 6 six-bit plus parity tape frames respectively
during recording (vice-versa for reading) (see figure 3.1-8). The octal format
disassembles 18, 24, 30 or 36-bit computer words into 6, 8, 10 or 12 tape frames
respectively during recording (vice-versa for reading). Tape channels 3, 4 and 5
contain the same information as channels 0, 1 and 2 respectively in each frame,
except when channels 0, 1 and 2 contain zeros, channels 3, 4 and 5 contain ones.
Odd parity is selected by the MTC when writing or reading octal characters. The
redundant recording in octal format adds to the reliability (see figure 3.1-9) For
compatible tapes, data must be recorded in bioctal format.

~. Modulus. The Modulus specifies the length of the
computer word to be recorded on tape or read from the tape (see table 3.1-5).

(a) Modulus 3 (Designator Bits 10 and 09 = 00).
An eighteen bit computer word is disassembled and recorded as three tape frames
of bioctal character format or six tape frames of Octal character format. If a
computer delivers a word larger than eighteen bits for recording the MTC will record
the lower order eighteen bits of the word on the tape and discard the remaining
high order bits. During Mod 3 reading operations, three tape frames are assembled
as an eighteen-bit computer word for bioctal character format, or six tape frames
are assembled as an eighteen bit computer word in octal character format. If the

3.1-19

S.G.1219 (P)3.1

Forward Tape
Direction

!

This edge}
of tape
next to
transport

3.1-20

-

,.,.-- - -Oxide P 05 04 03 02 01 00
Side P .. 11 10 09 08 07 06

. P" 17 16 15 14 13 12
- -
6 5 4 3 2 1 0

Modulus 3

r----- - -P 05 04 03 02 01 00
--.,.

P 11 10 09 08 07 06
Oxide p .. 17 16 15 14 13 12
Side P 23 22 21 20 19 l§

L- -
6 5 4 3 2 1 0

Modulus 4

- "'-
P 05 04 03 02 01 00 ... P 11 10 09 08 07 06

Oxide P 17 16 15 14 13 12
Side Po. 23 22 21 20 19 18

p. 29 28 27 26 25 24 -
6 5 4 3 2 1 0

Modulus 5

-P 05 04 03 02 01 00
. P 11 10 09 08 07 06 .. P 17 16 15 14 13 12

P 23 22 21 20 19 18
Oxide P 29 28 27 26 25 24
Side P 35 34 33 32 31 30

L..-.o...

6543210

Modulus 6

Figure 3.1-8. Bioctal Tape Format

3rd Frame
2nd Frame
1st Frame

Tape Channel

4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

Forward Tap
Direction

j

This edge}
of tape
next to
transport

e
'-

P 02 01 00 02 01 00
P 05 04 03 05 04 03

Oxide P 08 07 06 08 07 06
Side P _ 11 10 09 11 10 09

p. 14 13 12 14 13 12 .. -. P 17 16 15 17 16 15 - -
6 5 4 3 2 1 0

Modulus 3

-- -P 02 01 00 02 01 00
p 05 04 03 05 04 03 - p 08 07 06 08 07 06 .
p 11 10 09 11 10 09

Oxide P 14 13 12 14 13 12
Side P _ 17 16 15 17 16 15

P 20 19 18 20 19 18
P 23 22 21 23 22 21

-- -
6 5 4 3 2 1 0

Modulus 4

P 02 01 00 02 01 00
P 05 04 03 05 04 03
P 08 07 06 08 07 06

--. P 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18

Oxide P 23 22 21 23 22 21
Side P 26 25 24 26 25 24

P 29 28 27 29 28 27
L----. .."......,.

6 5 4 3 2 1 0

Modulus 5

Figure 3.1-9. Octal Tape Format

S.G.1219 (P)3.1

6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Ta pe Channe 1

8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

10th Frame
9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

3. 1-21

S.G.1219 (P)3.1

Forward Tape
Direction

1

This edge}
of tape
next to
transport

3.1-22

I

- -P 02 01 00 02 01 00
P 05 04 03 05 04 03
P 08 07 06 08 07 06
P 11 10 09 11 10 09
P 14 13 12 14 13 12
P 17 16 15 17 16 15

Oxide P 20 19 18 20 19 18
Side P 23 22 21 23 22 21

P" 26 25 24 26 25 24
P 29 28 27 29 28 27 -- P 32 31 30 32 31 30 ...

P 35 34 33 35 34 33
'--- -~
6543210

Modulus 6

Figure 3.1-9. Octal Tape Format (Cont.)

TABLE 3.1-3. CABINET ADDRESS

Bits
05 04 03 Cabinet Selected

0 0 0 4
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 1
1 1 0 2
1 1 1 3

TABLE 3.1-4. TRANSPORT ADDRESS

Bits
02 01 00 Transport Selected

0 0 0 None
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 1
1 1 0 2
1 1 1 3

12th Frame ,,---/

11th Frame
10th Frame
9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

I-'
I

[\J
c...v

TABLE 3.1-5. EFFECTS OF VARIOUS UNIVAC COMPUTERS OPERATING WITH THE UNIVAC 1240 MAGNETIC TAPE SYSTEM

COMPUTER

UNIVAC 1218
Since Channel
(One 18 bit word
is output/request)

UNIVAC 1218
Dual Channel
(One 36 bit word
is output/request)

UNIVAC 1206
or

UNIVAC 1212
or

CP-642B
(One 30 bit word
is output/request)

MOD 3
BCD

WRITE

For each 18 bit word
received, the 1240
writes 3 FRAMES on
the tape, MOD 3 is
RECOMMENDED for 1218
single channel
operation.

For each 36 bit word
received, the 1240
writes 3 FRAMES on
the tape. Si nce only
the 18 LSB are wri t ten,
the 18 MSB are "lost".

For each 30 bit word
received, the 1240
writes 3 FRAMES on
the tape. Since only
the 18LSBarewritten,
the 12 MSB are "lost".

LSB Least Significant Bits

MSB Most Significant Bits

MOD 4
BCD

WRITE

For each 18 bit word
received, the 1240
writes 4 FRAMES on
the tape: 1 FRAME of
zeros followed by
3 data FRAMES.

For each 36 bit word
received, the 1240
writes 4 FRAMES on
the tape. Since only
the 24 LSB are wri tten,
the 12 MSB are "lost".

For each 30 bit word
received, the 1240
writes 4 FRAMES on
the tape. Si nce only
the 24 LSB are wri t ten,
the 6 MSB are "lost".

MOD 5
BCD

WRITE

For each 18 bit word
received, the 1240
writes 5 FRAMES on
the tape: 2 FRAMES of
zeros followed by
3 da ta FRAMES.

For each 36 bit word
received, the 1240
writes 5 FRAMES on
the tape. Since only
the 30 LSB are wri t ten,
The 6 MSB are "lost".
MOD 5 is commonly used
when preparing tapes
for the 30 bit com­
puters: CP-642B or
1206.

For each 30 bit word
received, the 1240
writes 5 FRAMES on
the tape. MOD 5 is
RECOMMENDED for
operation wi th
CP-642B or 1206
computers.

MOD 6
BCD

WRITE

For each 18 bit word
received, the 1240
writes 6 FRAMES on
the tape: 3 FRAMES of
zeros followed by
3 data FRAMES.

For each 36 bit word
received, the 1240
writes 6 FRAMES on
the tape. MOD 6 is
RECOMMENDED for 1218
dual channel
operation.

For each 30 bit word
received, the 1240
writes 6 FRAMES on
the tape; 1 FRAME of
zeros followed by
5 da ta frames. MOD 6
is commonly used when
preparing tapes for
36 bit computers.

S.G.1219 (P)3.1

computer word size is larger than eighteen bits, the frames are assembled in the
lower order eighteen bits and zeros are placed in remaining high order bits (see
figures 3.1-8 and 3.1-9).

(b) Modulus 4 Designator Bits 10 and 09 = 01). A
twenty-four bit computer word is disassembled and recorded as four tape frames of
bioctal character format or eight tape frames of octal character format. If a
computer delivers a word larger than twenty-four bits for recording, the MTC will
record the lower order twenty-four bits of the word on the tape and discard the
remaining high order bits. During Mod 4 reading operations, four tape frames are
assembled as a twenty-four bit computer word for bioctal character format or eight
tape frames are assembled as a twenty-four bit computer word for octal character
format. If the computer word size is larger than twenty-four bits, the frames are
assembled in the lower order twenty-four bits and zeros are placed in the remaining
h i g h 0 r d e r bit s (s e e f i gu res 3. 1-8 and 3. 1-9) .

(c) Modulus 5 (Designator Bits 10 and 09 = 10).
A thirty bit computer word is disassembled and recorded as five tape frames of
bioctal character format or ten tape frames of octal character format. If a
computer delivers a word larger than thirty bits for recording, the MTC will record
the lower order thirty bits of the word on the tape and discard the remaining high
order bits. During Mod 5 reading operations, five tape frames are assembled as a
thirty bit computer word for bioctal character format or ten tape frames are
assembled as a thirty bit computer word for octal character format. If the computer
word size is larger than thirty bits, the frames are assembled in the lower order
thirty bits and zeros are placed in remaining high order bits (see figures 3.1-8 and
3.1-9),

(d) Modulus 6 (Designator Bits 10 and 09 = 11).
A thirty-six bit computer word is disassembled and recorded as six tape frames of
bioctal character format or twelve tape frames of octal character format. During
Mod 6 reading operations, six tape frames are assembled as a thirty-six bit computer
word for bioctal character format or twelve tape frames are assembled as a thirty­
six bit computer word for octal character format (see figures 3.1-8 and,3.1-9).

~. Parity Designator (Bit 7), 1 Selects Odd; 0 Selects
Even. Either odd (the total number of ones in a frame is odd) or even (the total
number of ones in a frame is even) lateral parity may be specified in the instruction
word for bioctal character writing and reading operations; however, odd parity is
selected by the MTC for the octal character writing and reading operations. For
compatible tapes, odd parity is chosen for binary coded data and even parity is
chosen for binary coded decimal (BCD) data.

~. Density Designator (Bit 6), 1 Selects High Density;
o Selects Low Density. At low density data are recorded on the tape at 200 frames
per inch (22.5 kc rate). At high density data are recorded on tape at 555.5 frames
per inch (62.5 kc rate). Density must be specified in instruction words requesting
reading or writing operations. See table 3.1-2 for word assembly and disassembly
time.

£. Operation Code. The operation code is located in bits
15-11 of the instruction word, Legal operation codes exist for the five basic
operations and for combinations of these operations. The five basic operations are
read, search, write, backspace, and rewind. Operation codes using any basic oper-

3.1-24

S.G.1219 (P)3.1

at ion (except rewind) must be supplemented by format and density codes placed in
bits 10-07 and bit 06 respectively of the instruction word. Table 3.1-6 is a listing
of the Operation codes and Figure 3.1-5 shows the structure of the entire instruction
word.

1. Read Operations. The selected transport moves
tape at 112.5 inches per second in the forward direction and transfer 7 bit frames
(read from tape) to the magnetic tape control. Parity, even or odd, as specified
in the format is checked for each frame of the record. The six data bits are
assembled into 18, 24, 30 or 36-bit computer words according to the modulus and
character designator of the format. The assembled computer word is placed on the
data lines of the computer input cable and the input request (IR) line is set. The
computer samples the data lines at its convenience and sets the input acknowledge
line to the MTC. The tape continues to move and new words are being assembled until
the end-of-record (inter-record gap) is reached. The computer must sample the input
lines and acknowledge each IR within a specified time, governed by density,
character and modulus, (table 4) to prevent loss of one or more words in the record.
If the computer fails to sample the input lines and acknowledge the IR within the
allotted time during any time of read operation, an input timing error will occur
and the MTC will cease to transfer data to the computer for the remainder of the
record. Following the detection of the end-of-record the MTC will set an input
timing error status word on the input lines and interrupt the computer program by
setting the external interrupt (EI) line on that channel. When the computer
acknowledges the interrupt the MTD becomes IDLE.

In all types of read operations, format and density selections must be made in each
instruction.

£. Normal Read. The selected transport will read
one record according to the format stated and check each frame f~r parity. If a
parity error is detected, the MTC will cease transferring data to the computer for
the remainder of that record. After sensing the end-of-record, the MTC will send
a status word to the computer with a signal on the external interrupt line. This
status word will contain MTD status and any or all error indications encountered
during the reading of the record.

~. Read-Ignore Error Halt. The selected transport
will read one record accoring to the format stated and will check each frame for
parity. If a parity error is detected the complete record will be sent to the
computer after detection of end-of-record and will contain MTD status and any or all
error indications including parity error.

4. Selective Read. The selected transport will
read one record accordingto the format stated and check each frame for parity. The
MTC will compare the least significant 6 bits (05-00) of each assembled computer
word with the 6 bits of the identification (10) code in the instruction word. If
the comparison is affirmative the word will be transmitted to the computer. If the
comparison is negative the word will be discarded. If a parity error is detected
the MTC will cease transferring data to the computer for the remainder of the
record. The status word sent to the computer after detection of the end-of-record
will contain MTD status and any or all error indications.

3.1-25

S.G.1219 (P)3.1

~. Write Operation. When the MTC senses a write
function, the selected transport moves the tape forward at 112.5 ips and records
the inter-record gap (IRG). A signal is placed on the computer output request (OR)
line. The computer, at its convenience, responds with a word on the data lines and
places a signal on the channel output acknowledge (OA) line. The MTC recognizes
the OA, samples the data lines and removes the output request. The word is
transferred to the disassembly register and another output request is issued. The
MTC disassembles each word according to the modulus selected in the write function
word, generates frame parity, and transfers the 7 bits to the transport for
recording on tape according to the density selected. As the recording frame passes
over the read head it is checked for parity. If a parity error is detected, the
MTC stops the write operation and the tape motion. A status word indicating an
error in recording is placed on the channel input lines with a signal on the external
interrupt line. If no error occurs during recording, the process continues until
the computer no longer acknowledges the output request within the time allotted for
another word to be disassembled and written. This time is dependent on format and
density (see Table 3.1-2). When the computer does not respond within the allotted
time, the end of write is assumed by the MTC. Longitudinal parity is written and
the recording process is terminated. Tape motion is stopped after a portion of the
inter-record gap is written on the tape. The MTC removes the output request and
places a status word, indicating successful completion of the write, on the input
lines and sets the external interrupt line. When the computer acknowledges the
interrupt the MTS becomes IDLE. If the computer acknowledges the output request
after the allotted time but before the interrupt is sent, the MTC interprets the
action as an output timing error and notifies the computer in the status word.

NOTE

The normal inter-record gap is approximately 3/4 inch in length and the
extended inter-record gap is approximately 3-1/2 inches in length.

Q. Write. The selected transport will write on the
tape according to the format and density stated in the function word. If no
recording error is detected the normal operation continues until the computer no
longer transfers data, at which time longitudinal parity is written and the status
word with interrupt is sent to the computer.

I. Write-Ignore Error Halt. The selected transport
will write on the tape according to the format and density stated in the function
word but the MTC will not stop the writing process if lateral parity errors are
detected as the recorded frames pass over the read head. The status word sent to
the computer with interrupt after completion will contain MTU status and any or all
errors encountered.

§. Write-Extended Inter-Record Gap (XIRG). The
selected transport will record an extended inter-record gap of 3-1/2 inches instead
of the normal 3/4 inch IRG preceding a normal write portion of the operation. If
no data are transferred from the computer for recording, the extended inter-record
gap will be present on the tape and an output timing error will occur. The status
word sent to the computer after completion will contain MTU status and any or all
error indications detected as in a normal write operation.

3.1-26

S.G.1219 (P)3.1

NOTE

Under program control, inter-record gaps other than the fixed 3/4-inch and
3-l/2-inch lengths may be written. Successive 3/4 or 3-1/2 inch gaps may be
written by issuing the appropriate write functions without initiating output
buffers at the computer. The program must be prepared to handle the output
timing error that will be indicated in the interrupt status word following
each write operation performed in this manner.

~. Write Tape Mark. The selected transport will
write a fixed format tape mark. The tape mark is a special record having ones in
only the 0, 1, 2 and 3-bit positions of the first frame, followed by three frames
of zeros and one frame of longitudinal parity. The entire record is written by
the MTC upon receiving the instruction word which must state even parity, bioctal
character and 178 as the ID code. Modulus selection can be ignored. The ID code
is used as the first frame of the tape mark record and longitudinal parity makes
it the last. To be compatible with other tape systems, the tape mark must be
exactly as specified above. However, the MTU will recognize tape marks which contain
any first frame code other than zeros. A status word with interrupt is sent to the
computer after completion of the write tape mark operation.

10. Back Space. The selected transport will move
the tape in the reverse direction to the next IRG (back one record). The tape
is properly positioned in the IRG for reading or writing. Format and density must
be stated in the instruction word since pari ty will be checked during the backward
motion. Any error detected and MTU status will be indicated in the status word
sent to the computer with interrupt after completion. If the tape is at load point
at the time the back space instruction is given, an improper condition exists and
will be noted in the status word.

11. Rewind. The selected transport will rewind the
tape backward to the load point at 225 inches per seoncd. The status word with
interrupt is sent to the computer after the MTC initiates the rewind and not at the
completion of the rewind. If the tape is at load point when the instruction is
received, no tape motion or improper condition will result but the status word will
indicate load point. This provides a method of testing for completion of the
rewind operation.

~. Multi-Function Operations. Multi-function
operations consist of combinations of basic operations of the MTU, which can be
performed in response to one instruction word from the computer. Examples are the
search operations which combine the features of a read with the ability to do a
search on the first word of records, compare these words against an identifier
(search key) word, and read on a "find". Other multi-function operations combine a
read with a space or a rewind operation. Combinations of functions such as these
save on computer instructions, and provide some capabilities that cannot be achieved
by using the basic operations one at a time.

13. Search - Type I and Type II. The search operation
combines the features of normal read and a search. The selected tape transport
will read records from the tape either forward or backward and compare the first
word* of each tape record with a search key (identifier word) which is transmitted

*In a forward Search the first word encountered in each record is the first word of
the record. In a backward Search the last word encountered in each record is the
first word of the record.

3. 1-27

S.G.1219 (P)3.1

TABLE 3.1-6. OPERATION CODES

Operation
Code Operation

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

1000X*

10010

10011

10100

10101

10110

10111

110XO~:~

110Xl~~

111XO*

lllXl*

* X may be either 0 or 1.

3.1-28

Read
Read; Selective

Read; Ignore Error Halt

Space File

Search Type I

Search Type II

Search-File Type I

Search-File Type II

Write

Write; XIRG

Write; Ignore Error Halt

Write XIRG, Ignore Error Halt

Write Tape Mark

Write Tape Mark, XIRG

Backspace

Backspace-Read

Backspace-Fi Ie

Backsearch Type I

Backsearch Type II

Backsearch File Type I

Backsearch File Type II

Rewind

Rewind, Clear Write Enable

Rewind-Read

Rewind-Read, Clear Write Enable

S.G.12l9 (P)3.l

from the computer to the MTU by an output buffer of one word. When a compare is
affirmative, that find record is transmitted to the computer as in a normal read.

Tape motion is started upon receipt of the instruction word. If the MTU does not
receive the search key from the computer before it starts reading the record, an
output timing error will occur. This reading start time may be as short as 2
milliseconds. The search operation will be terminated by the MTU when a parity or
timing error is detected by theMTC. The status word containing MTU status and any
or all error indications will be sent to the computer upon detecting the end of the
record in which the error occurred. When the tape motion is stopped due to an
error, the tape will be positioned in the inter-record gap (IRG) before the record
in which the error occurred if the motion is backward, and after the record if the
motion is forward. A parity error can result from a bad parity check on any frame
of the tape being searched.

The ONES (Type I) compare is a "greater-than-or-equal" compare. If the first word
of the record is greater than or equal to the search key identifier word a find is
made. A 6-bit example is shown below.

Search Key or Identifier Word 001101
FIND; if first word is 011101
FIND; if first word is 001101

NO FIND; if first word is 010101
NO FIND; if first word is 001100

The IDENTICAL (Type II) compare is an exact equal compare. The first word of the
record must be exactly equal to the search key identifier word to define the find
record.

11. Search Fi le:~ Forward! Backward. The MTU wi 11
perform a search forward/backward Type I or Type II as directed by operation code,
on the selected tape transport, until it detects a find or a tape mark.** If a tape
mark is detected before a find, the search file operation will be terminated and the
tape mark status code will be present in the status word sent to the computer after
detecting end of record.

~. Space File Forward/Backward. The MTC will cause
the selected transport to move the tape in the specified direction to the inter­
record gap beyond the next tape mark and will place a tape mark code in the status
word sent to the computer detecting the end of record (see figure 3.1-10). Space
file forward will position a tape at A upon completion; space file backward will
position the tape at B.

". ", A file is defines as one or more records separated by tape marks (see figure
3.1-10).

~:o:~ A tape mark is a s peci al record on a tape placed there by the opera t i on "Wri te
Tape Mark" See Paragraph 3.1-4b5d)3)g and figure 3.1-11.

3.1-29

S.G.1219 (P)3.1

16. Back Space Read. The selected transport will
move the tape backward to the next inter-record gap (back one record) and then
performs a normal read according to format and density stated in the instruction
word. Parity will be checked while backspacing; if an error is detected during
backward motion, the operation will be determined before the read operation is
performed and the status word will contain the MTU status and the error indication.
The computer program must determine if the error detection occurred during the back
spacing operation or during the read operation by examining the 25 bit (last tape
motion) of the status word received.

TAPE FORWARD DIRECTION ------~ ..

FILE

rr---------------------------~A~-------------------------~,

~~ IRG RECORD IRG RECORD IRG RECORD IRG RECORD IRG IRG I
I

STAtiNG

I

TAPE TAPE
MARK POSITION MARK

A B
POSITION POSITION

Figure 3.1-10. Magnetic Tape Unit - Tape File

17. Rewind-Read. The selected transport will rewind
the tape to the load point at 225 inches per second and then perform a normal read
of the first record according to the format and density stated in the Instruction
Word. A status word containing MTU status and any or all errors will be sent to the
computer with interrupt after detecting the end-of-record.

18. Rewind-Clear Write Enable. The selected
transport will perform a normal rewind of the tape to load point and will clear the
write enable. This selected transport will no longer perform a write function
without manual intervention. The status interrupt will be presented upon initiation
of the rewind and not upon completion.

3.1-30

......
I

CoW

END OF TAPE MARK
3/16'1 X I" ON NON­

OXIDE SIDE OF TAPE

1/32
11

TRAILING

END I
10001
10001

I 10001

I
10001

1

1

1

I
"I

INTER

r
RE~~:,~ GAIP

NORMAL
(3 1/2"
EXTENDED)

TAPE MARK

ZOOO
ZOOOX

ZOOOX

ZOOOX
ZOOQ)<
ZOOOX

ZOOOX

RECORDED DATA

X

X X

X X

X X X
X X

X X

LONGITUDINA~

Z = PARITY

REAR EDGE

00000
00000
00000

10001
10001
10001

10001

FRONT EDGE

LATERAL

P= PARITY

FORWARD DIRECTION OXIDE DOWN

WRITE LOAD POINT DELAY

3 1/2"

~------+-- 10' MIN --'"""i.~

TAPE MARK

1/32"

LOAD PO INT MARK
3/16" X III ON

NON-OXIDE SIDE

OF TAPE

LEADING
END

STARTING POINT OF

WRITE HEAD

Figure 3.1-11. Magnetic Tape Format

S.G.12l9 (P)3.l

6. Magnetic Tape Unit - High Speed Printer Off-Line Capability. The
UNIVAC 1240 Magnetic Tape Unit is capable of communicating directly with the
UNIVAC Type 1469 High Speed Printer for OFF-LINE operation. The MTU communicates
with the HSP unit in the request acknowledge mode.

The Magnetic Tape - Printer Interface is shown in figure 3.1-12.

Using terms based on Computer - MTU communication and Computer - HSP communication
in this discussion the output to the HSP interface is connected to the Input from the
MTU inteface, i.e., the

HSP Output Request Line is connected to the
MTU Input Acknowledge line. The
MTU Input Request line is connected to the
HSP Output Acknowledge line. The
MTU Interrupt line is connected to the
HSP External Function line. The
MTU data lines are connected to the
HSP data lines.

The High Speed Printer exercises control of the OFF-LINE system after the MTU is
switched to printer mode, the desired tape transport is selected and the tape
positioned at load point. The HSP will initiate the operation when it is placed
in OFF-LINE position.

The data on magnetic tape to be printed OFF-LINE must be recorded in 120 fieldata
character record lengths (120 characters per line on HSP). As each record is read
from the tape and transmitted to the HSP, the 120 characters are printed as one line
and the paper is advanced to the next line position. Each 3D-bit word delivered
to the HSP must contain S fieldata code (see table 3.1-7) characters. These are in
turn disassembled into six-bit characters and stored in the character core memory
of the HSP Control Unit. When the core memory character counter indicates 120
characters, the print cycle is initiated and the line is printed. A record of less
than 24 thirty-bit words will indicate to the HSP to stop the print operation. A
record of five space codes (OS) will stop the print operation without printing a
line.

a) Operating Instructions. To prepare the OFF-LINE MTU-HSP
system for operation the operator must perform the following steps.

3.1-32

STEP 1. Select character, parity and density, of the
recorded tape, at the Magnetic Tape Unit cabinet.

STEP 2. Switch the MTU to printer mode.

STEP 3. Select the desired tape transport.

STEP 4. Load and position the tape at load point.

STEP S. Place the HSP in ON-LINE position.

S.G.12l9 (P)3.l

b) Sequence of Events. The normal sequence of events for
transfer of data to the HSP is as follows:

STEP 1. The HSP sets its output data request.

STEP 2. The MTS, in the IDLE state, recognizes this first OOR
as a command to start the read operation.

STEP 3. The MTD places a word on the data lines and sets its
input data request.

STEP 4. The HSP recognizes this lOR as an Output Acknowledge.

STEP 5. The HSP samples the data lines and clears its OOR.

STEP 6. The MTD recognizes the clearing of the OOR as an
input acknowledge,

Steps 3 through 6 are repeated until the complete record is transferred, at which
time the line is printed, the paper is advanced and the cycle is reinitiated. The
process continues until the end of file tape mark is read. The HSP recognizes the
tape mark as a command to position the paper at top of form on the next page. The
interrupt line of the MTD being connected to the external function line of the HSP
permits the end-of-record and the tape mark codes to be sent to the HSP as commands
to move paper one line space or top of form respectively.

... - 30 DATA I LINES
- I

HIGH OUTPUT DATA REQUEST I INPUT ACKNOWLEDGE
MAGNETIC .

SPEED

I
r

PRINTER
TAPE

OUTPUT ACKNOWLEDGE INPUT DATA REQUEST UNIT
UNIT --

I
EXTERNAL FUNCTION I INTERRUPT --

I

Figure 3.1-12. Magnetic Tape - Printer Interface

3.1-33

S.G.1219 (P)3.1

c. UNIVAC 1004 Card Processor.

1. Introduction. The UNIVAC 1004 Card Processor, aO-column edits
and accumulates totals from data punched into aO-column cards and prints the results
in any desired format. Built-in abilities to perform arithmetic, transfer, and
compare operations, and reliable fast-access magnetic core storage provide a high
degree of data-processing efficiency.

The 1004 processor consists of a card reader, a processor, and a printer, housed in
a single compact unit. A card punch can be included as an optional output unit.

The functions of card reading, data-processing, printing, and punching are user­
programed through wiring of a removable ~onnection panel. To accomplish the desired
procedures, the machine follows a series of instructions called STEPS. These steps
are defined by connection panel wiring and can be executed in any sequence. The use
of magnetic core storage allows the steps to proceed at microsecond speeds.

2. Read Section. The card reading is performed column by column at a
basic speed of 300 cards per minute. During reading, the card image is transferred
to a section of the core storage specifically assigned to card reading.

3. Processing Section. The processing section contains magnetic core
storage and the control circuitry necessary to perform the machine operations
required. Once input data has entered read storage, the control circuitry performs
whatever operations have been programed for execution. When these are-completed,
the results are transferred to output storage for printing and/or punching. The
capacity of core storage is 961 locations each of which is made up of six magnetic
cores. Each core plane is 31-by-31.

The 1004 processor is a character oriented machine. Data is transferred between
storage locations one character at a time. The machine code of the Processor is
UNIVAC XS-3 code.

4. Printing Section. Printing speed is 300 lines of alphanumeric data
per minute, with a maximum of 132 print positions per line. Character spacing is
ten characters to the inch horizontally, with an operator option of 6 to a lines to
the inch vertically.

5. Card Punch.
through an electrical cable.

The punch is directly connected to the 1004 Processor
The speed of the card punch is 200 cards per minute.

6. Interfacing with 1219 Computer. The 1004 processor may be connected
to anyone of the I/O channels of the 1219 computer to permit medium speed printer
and card punch output and card input capabilities for the 1219 Computer.

The particular input/output format required 'between computer and processor may vary
with customer installation.

d. UNIVAC 1257, 1259, 1262 Teletypewriter Sets.

1. Introduction. The UNIVAC Teletypewriter Set is a conven~t input/
output and monitoring device for use with Univac computers when TELETYPEijVand line
communication is required. The set consists of a Teletype ASR-28 send-receive set,

QURegistered Trademark of American Telephone and Telegraph Co.

3.1-34

S.G.12l9 (P)3.l

a UNIVAC Adapter (type 1257, 1259, or 1262) and an auxiliary line relay. The
adapter converts the serial nature code transmission characteristics of teletype
to the parallel characteristics of the computer and vice versa and provides the
logic necessary for interunit communication and buffer operations with the computer.
The auxiliary line relay, under control of the adapter, routes data between the
teletypewriter and external communication lines. Keyboard or paper tape entries of
data may be made to the computer at the site or from some remote location. Printed
copy or punched paper tape outputs of data from the computer may be available at
the site or at some remote location. The components of the UNIVAC Teletypewriter
set perform certain functions for the computer system. As a result, the following
off-line and on-line operations are possible.

a) Off-Line Operations.

Printed and punched paper tape preparation
Keyboard transmission
Simultaneous keyboard transmission and paper tape preparation
Automatic tape transmission
Page copy of either incoming or outgoing messages

b) On-Line Operations.

Keyboard entries to the computer
Paper tape entries to the computer
Simultaneous keyboard entries to computer with paper tape copy

and/or page copy and/or external line transmission
Simultaneous paper tape entries to the computer with page copy

and/or external line transmission
Data outputs from the computer to page printer and/or paper

tape copy and/or external line transmission.

2. Description. The teletype model 28 automatic send-receive set
(28-ASR) consists of a page printer, a keyboard, a tape punch, and tape readers.

a) Keyboard. The keyboard consists of a set of manually operated
keys which, when pressed, generate teletypewri ter codes for transmission to the
printer, the typing reperforator, the auxiliary reperforator, the computer, or the
external communications line.

b) Page Printer. The page printer accepts teletype codes from the
keyboard, tape reader, adapter, or communication line (auxiliary line relay) and
converts them to print and printer control operations (carriage return, line feed,
etc.). Up to 72 characters or spaces may be printed in a line on paper of 8-1/2
inches maximum width. Printing may be performed on page size forms or on a
continuous roll of paper. Single thickness rolls of paper are fed by friction
through the paper advance and printing mechanism while multi-copy forms are aligned
and advanced by a pin feed mechanism.

c) Tape Reader (Transmitter/Distributor). The automatic tape
reader/transmitter is a fixed-head, single-contact, serial read, tape reader that
senses codes punched in the tape and generates teletype signals from a single-contact
distributor. Manual controls permit starting and stopping on the tape reader, and
a free-wheeling position of the start-stop switch disengages the tape feed wheel for
easy threading and positioning of tape. An index line is marked on the tape guide,

3.1-35

S.G.1219 (P)3.1

six characters in front of the tape-reading station, to indicate the printed
character on the tape that corresponds to the punched character in the reading
station at any moment.

Automatic controls are incorporated for stopping the reader if the tape becomes
tangled, taut, or the end-of-tape condition occurs.

d) Typing Reperforator. This unit is controlled by the keyboard
code or by line signals and prepares a printed and punched, chadless, paper tape.
Punched tapes can thus be identified and read directly, without the need for
interpreting punch codes or running tapes through a reader. This is of particular
value when tape is punched off-line and no simultaneous page record is being
prepared; direct printing on the tape allows rapid verification and correction of
punching errors.

Its ability to operate from both line signals and keyboard input makes the
reperforator useful in combining and editing tapes. Portions to be reproduced from
old tapes can be transmitted to the reperforator from the tape reader, while new
portions can be inserted by manual operation of the keyboard. The typing
reperforator prints a character for each code received, including machine function
codes.

e) Auxiliary Typing Reperforator. A typing reperforator, identical
with the one described above, is mounted in the upper left portion of the UNIVAC
Teletypewriter set. This unit permits recording of all incoming messages on
printed punched tape while the primary tape punch is being used for local tape
preparation.

f) Teletypewriter Adapter. Teletypewriter (TTY) equipment cannot
communicate directly with the computer because it operates serially whereas the
computer operates in parallel. The adapter converts the parallel format of the
computer word to the serial format of the teletypewriter, and vice versa. Each
teletype character consists of seven pulses: five data pulses, a start space
(binary 0), and a stop mark (binary 1) pulse. The space and mark serve as control
signals between the teletypewriter and the adapter and indicate the beginning and
end of a character code. It would be redundant to transmit these codes each time
a character is transferred to and from the computer. Therefore, the teletypewriter
adapter affixes the start and stop pulses to computer output words, and strips the
pulses from the computer input words.

The computer, which must have some method of sending and receIvIng control infor­
mation to and from each piece of peripheral equipment, sends external function
commands and receives interrupt codes when communicating with external equipment.
Teletypewriter equipment is not capable of generating, deciphering, and responding
to these control codes. The adapter provides the necessary logical circuitry to
perform these functions.

e. UNIVAC 1469 High Speed Printer.

1. General Information. The UNIVAC Type 1469 High Speed Printer is a
667 or 1000 line per minute printer for use on-line with any Univac military computer
or off-line with the UNIVAC 1240 (or similar) Magnetic Tape Unit. It can print
120 alphanumeric characters per line. Sixty-three printable characters plus space,

3.1-36

S.(;.1219 (P)3.1

selected by a 6-bit code, are available in each character position of the line. The
unit, consisting of an Anelex 4-1000 printer, printer control unit (PCU) , power
supply, and cooling system, is packaged in a single cabinet, constructed of steel
and fiberglass. The UNIVAC 1469 printer, having been designed for military
applications, has a greater capability of operating reliably in adverse environ­
mental conditions than the conventional type of printers normally used. Solid-state
circuitry of advanced design and rigid Univac quality control procedures are
combined in the fabrication process to provide the user with unexcelled, trouble­
free, printing service.

The printer control unit (PCU) contains the electronic logic and control circuitry
required to provide the communications necessary in the transmission of printable
data and command signals between a computer or magnetic tape unit and the high-speed
line printer. It incorporates a core memory for storage of the 120 characters that
are used to print one line. The PCU disassembles the words transmitted to it for
printing and provides the timing and commands required for the mechanical and
electrical operations involved in the printing process and paper movement. Controls
and switches easily accessible to the operator permit direct control of the
characteristic features of the printer: loading paper, adjusting printing quality,
printed page lengths, and for off-line operation and maintenance procedures.

In the on-line application, the computer program directs the format and printing of
a line or page. Abnormal activities such as printer not ready, broken paper, and
out of paper set corresponding indicators on the operator's panel and inform the
computer so that remedial action may be taken.

The off-line printing characteristics of the UNIVAC 1469 High-Speed Printer
contribute to more efficient computer processing systems since valuable computer
time is not utilized for initiating and executing buffers and commands to the
printer. During off-line printing operations with a magnetic tape unit, the PCo
takes its commands and format control from the format of each record on the magnetic
tape. Each line to be printed must appear in its desired format as one 120-char­
acter record. All lines desired on a· single page must appear on the tape as one
complete file. The tape mark (end-of-file) will be recognized by the high-speed
printer as a top of form command, and each l20-character record will be recognized
as a line of print.

2. Mechanical Description.

a) Printer Unit. The printer unit is composed of two main
assemblies: printing assembly and paper feed assembly. In addition, there are fault
sensing devices which monitor the operation of the printer unit.

1) Printing Assembly. The printing assembly consists of a
print drum, print hammers, and pulse generators. The print drum is a cylindrical
drum with characters engraved on its surface. The characters are arranged in 64
rows around the surface of the drum and 120 columns across the face of the drum.
One of the rows is undercut. A row contains 120 identical characters. A column
contains 63 characters and a blank space (undercut). Table 3.1-7 lists the 63
characters and the space along with the corresponding octal and binary codes
associated with each of the characters on the drum. The drum revolves at a speed
of either 1000 or 667 rpm.

3.1-37

S.G.1219 (P)3.1

Arranged in a row perpendicular to the surface of the drum are 120 hammers. Each
hammer can be driven against the drum surface when its associated solenoid is
energized. Paper and inked ribbon pass between the drum surface and the print
hammers. The ribbon is next to the drum and extends across its width. Each hammer
solenoid is connected to a triggering circuit in the printer. The triggering circuit
is connected to a line going to the control unit and energizes its associated
hammer solenoid, driving the printer hammeragainst the drum. A complete line is
printed each drum revolution. Mounted on the drum shaft are two pulse generators
composed of variable reluctance pickups and permanent magnets. One generator,
called the character pulse generator, produces 64 pulses for one drum revolution.
A character pulse is generated each time a drum character row is beneath the print
hammers. The other generator, called the index pulse generator, produces one pulse
for one drum revolution. The index pulse occurs between the character pulses
generated when the character rows on the drum, represented by octal codes 77 and 00
in table 3.1-7, are beneath the print hammers. The index and character pulses are
taken from their respective reluctance pickups, amplified, shaped, and presented to
the control uni t. .

2) Paper Feed Assembly. The paper feed assembly consists of
the engine, tractors, strobe generator, and vertical format tape reader. The
printer paper is held by two pairs of sprocket type feed tractors, with one tractor
pair above the print hammers and the other below the print hammers. The tractors
are driven by a magnetic brake-clutch type engine. The clutch on the engine is
engaged when an advance paper signal is received from the control unit. The clutch
stays engaged as long as this signal is present, turning the tractors that move the
paper. When the advance paper signal from the control unit is removed, the clutch
disengages and the brake is applied, stopping the paper feed tractors.

Mounted on the paper feed tractor drive shaft is a paper feed strobe generator
composed of a variable reluctance pickup and a permanent magnet. This strobe
generator produces a strobe signal for each print line advanced. The strobe
signal is amplified, shaped, and sent to the control unit and the vertical format
tape reader.

The vertical format tape reader is a device to control the vertical movement of the
printer paper. It monitors a I-inch wide, 8-level, punched tape, which moves one
frame each time the printer paper moves one line space. The reader consists of an
insulated, sprocketed, metal cylinder on which a loop of punched tape is placed.
The physical length of the form (page) dictates the length of the punched sequence
on the loop. Riding on the tape are eight sensing brushes, each of which is con­
nected to a line going to the printer unit interface. A ninth brush rides on the
metal cylinder outside the tape area, and is connected to the paper feed strobe
generator. When one of the tape brushes makes contact with the metal cylinder
through a hole in the tape, coincident with the strobe signal, the strobe signal
appears on the line of the associated tape track to the printer unit interface.

In this application of the tape reader, only three tape tracks are used. These tape
tracks, numbers 1, 2 and 3, pertain to the functions top of form, load paper, and
bottom of form respectively. The tape has a hole punched in track 1 corresponding
to the top of the form on the printed paper. Track 2 has a hold punched corre­
sponding to the load paper mark on the paper tractors. Track 3 has a hole punched to
correspond to the bottom of the printer paper form.

3.1-38

TALBE 3.1-7. TYPE SYMBOLS AND CODES

OCTAL BINARY OCTAL BINARY
CODE CODE CHARACTER CODE CODE CHARACTER

00 000 000 absolute value 40 100 000)

01 000 001 arrow (up) 41 100 001 -
02 000 010 8 subscript eight 42 100 010 +
03 000 all bracket (open) 43 100 all
04 000 100 bracket (close) 44 100 100 =
05 000 101 space (undercut) 45 100 101
06 000 110 A 46 100 110 equal to or less than
07 000 III B 47 100 III left hand brace
10 001 000 C 50 101 000 star
11 001001 0 51 101 001 (

12 001 010 E 52 101 010 equal to or greater than
13 001 all F 53 101 all ,
14 001 100 G 54 101 100 right hand brace
15 001 101 H 55 101 101 (or)
16 001 110 I 56 101 110 ,
17 001 III J 57 101 III #

20 001 000 K 60 110 000 a
21 010 001 L 61 110 001 1
22 010 010 M 62 110 010 2
23 010 all N 63 110 all 3
24 010 100 a 64 110 100 4
25 010 101 P 65 110 101 5
26 010 110 Q 66 110 110 6
27 010 III R 67 110 III 7
30 all 000 S 70 III 000 8
31 all 001 T 71 III 001 9
32 001 010 U 72 III 010 and
33 011 all v 73 III all ;
34 . all 100 w 74 III 100 /
35 all 101 x 75 III 101
36 all 110 Y 76 III 110 arrow right
37 all III z 77 III III x multiply sign

S.G.1219 (P)3.1

3. Functional Description. Figure 3.1-13, a functional diagram of
high-speed printer, shows the various registers used by the control unit to perform
its buffer operation, to print a line, and to advance paper.

a) Transfer Mode. The output request signal is sent to the com­
puter when the equipment is ready to receive data. The computer replies with 30
data bits accompanied by an output acknowledge signal. The output acknowledge
signal removes the output request signal and gates the data into the printer
control units. The equipment disassembles the 3D-bit word and stores it in the
memory as five 6-bit characters. The printer control unit then sends another output
request signal to the computer, and a second 3D-bit word is received accompanied by
an output acknowledge signal. After the computer has sent the high-speed printer
24 3D-bit words, the memory contains 120 6-bit characters. The character counter,
having been advanced to a count of 119 (1678), places the peu into a print mode, and
no output request is raised.

b) Print Mode. The 120-character memory is scanned completely to
print all similar characters in the line. The print drum advances to the next
character pOSition, and memory is scanned again to print all similar characters in
that position. The process continues until all 64 characters on the print drum are
compared with those in memory, thereby printing the complete line during one
revolution of the drum. When the print cycle is completed, the paper advance
mechanism is activated and the peu returns to the transfer cycle to reload memory
with the characters for the next line. The printer control unit then sends another
output request Signal to the computer, and the process is repeated. Figures 3.1-14
and 3.1-15 describe the transfer and print cycle.

The interrupt signal and interrupt code are sent to the computer when the equipment
is master cleared, or when there is a malfunction in the high-speed printer. An
interrupt signal and a logical 1 on the interrupt code line inform the computer that
the equipment was master cleared. An interrupt signal and a logical ° on the
interrupt code line inform the computer that there was a malfunction in the high­
speed printer. The computer replies in both cases with an input acknowledge signal,
which tells the peu to remove the interrupt Signal and interrupt code to the computer.

c) Paper Movement Mode. At the end of the print mode, the main
timing sends an end-of-print mode signal to the paper feed control. This signal
causes the paper feed control to send an advance paper signal to the printer unit,
which causes the paper to start moving. When the paper has moved one line distance,
the printer unit sends a strobe signal to the paper feed control. This signal
removes the advance paper Signal, stopping paper movement.

There are three exceptions to the normal movements of paper:

3.1-40

1) If the computer sends an external function signal ac­
companied by a logical 1 on the 20 data line, the paper
is not allowed to advance after a line is printed. This
condition is removed when the computer sends an external
function signal accompanied by a 1 on the 21 data line;

2) An external function signal accompanied by a 1 on the 24
data line causes the paper to move to the top of the paper
form after a line is printed;

-

-

S.G.1219 (P)3.1

_I I 120- CHARACTER CORE r--- MEMORY 1 r

.... ~i--------768-MICROSECOND CYCLE TIME -----------...,

SELECT ~ ~

INTERRUPT CODE

+ -
'" INPUT ACK.

J I f
I ONE PER 940 USEC

S Z C roo-

EXT. FUNCTION en

m 1 1 ~

~
t>

~ OUTPUT ACK. a:: COMPARE . <3
..J
0 I ADD I J OUTPUT REQUEST a::
~ z

I 0
~ INTERRUPT t> r ADD I r -"'L

---.

5 r......

K
1

MAIN L Z = C
COUNTER

I
TIMING

,,-
6.4 ~SEC 3#

SET 05 I
J

~

ENABLE J S- TRANS 1
Z = C ~I

GATES 44 ~144 -
~ ~

r
120 FLI P-FLOPS .1

I l

r B I H I REGISTER 1
\. 1

1 - 30
INPUT HAMMER ENABLE - TRI GGER

CIRCUITS

PAPER -}
[INKED RIBBON

120 PRINT HAMMERS a SOLENOIDS-1 I·
~

f
I

~

f

~I
63 ROWS OF RAISED CHARACTERS 7' -~

CHARACTER a INDEX PULSEY

Functional Diagram, High Speed Printer

I SPACE ROW UNDERCUT "'I
"'

Figure 3.1-13.

\

3.1-41

S.G.1219 (P)3.1

IS PRINTER READY

YES

COMPUTER INITIATES
OUTPUT BUFFER

SEND OUTPUT
REQUEST

HAS TOP OF FORM
COMMAND BEEN RECEIVED

NO

OOMPUTER SETS
WORD AND
OUT. ACK

CLEAR B GATE WORD
TO B; DROP OUT.

REQUEST

CHARACTER BK~Z;
5TAffT MEMOffT;
Z -+ M£MORYS

SHIFT K

S + 1 ~ S

NO LIGHT
PANEL
LIGHTS

TRANSFER CYCLE

NO

HAS K COUNTED
5 (K: 1)

Figure 3.1-14. Transfer Cycle
3.1-42

INTERRUPT
COMPUTER

PRINT
INSTRUCTIONS TO

OPERATOR-STOP

NO

HAS S COUNTED

170S (S:O)

~'-

S-?
S-TRANS

05~Z

S-TRANS H

CLEAR Z;
S + I ~S

IS S COUNTED
170 8 (S = 0)

C+ I ~C;
FIRE HAMMERS

NO

--1
INTERRUPT
COMPUTER

NO

C = 77

Figure 3.1-15. Print Cycle

S.G.1219 (P)3.1

SEND OUT
REQUEST

ADVANCE
PAPER

3.1-43

S.G.1219 (P)3.1

3) If the computer sends a line of spaces, that is, 120 space
code characters (octal 05's), the paper feed control dis­
regards the strobe signal from the printer unit and keeps
the paper moving another line feed.

d) Computer To Printer Commands. The high-speed printer will
accept and respond to three external commands from the computer. Three bits of the
external function word select the operations to be performed. If raised to the one
state, the commands are as follows:

~------------------------------2-5---2-4----23----22----2-1---2~01

J
y

Not Used

Print Characters Now in Memory and } __ ...-...-______ ...-____ ...-__ ~
Move Paper to the Top of Next Form

Not Used--------------------------------------

Enable Line Feed--...---...-...-----~
Disable Line Feed----...-----------------------...-------...-------------------...---~

The printer control unit, responding to the disable line feed, inhibits the paper
advance circuitry. Master clear sets the printer to the enable line feed condition.
The top of form command positions the paper so that the type line is at the top of
the next form. If this command is sent when the printer is in the disable line feed
command, the paper will not move.

e) Registers and Their Functions. The memory is a 120 6-bit
character core storage in which incoming data are stored during the transfer cycle.
When 120 characters are stored, the control unit enables the print cycle which
prints the 120 characters (described by the codes stored in memory) on one line.
One memory cycle is defined as the loading or the reading of all 120 character
locations in memory. Thirty-bit computer words are stored in the B-register and
transferred to memory as shown in figure 3.1~16.

< ONE 30-BIT COMPUTER WORD -------------~>

I ~2_2_9 _____ 2_2_4 __ 2_2_3 ______ 2_18 ____ 2I_7 ______ 2_I_2 ___ 2_II _____ 2_6 ___ 2_5 _____ 20~1 FIRST WORD

CHAR I

WORD IN
BUFFER
CHARACTER
POSITION
IN MEMORY

3.1-44

CHAR 2 CHAR 3 CHAR 4 CHAR 5

1ST 2ND 22ND 23RD 24TH
WORD WORD WORD WORD WORD

123 4 5 6 789 109 110 III 112 113 114 115 116 117 118 119 120

)

Figure 3.1-16. Printing Order

S.G.1219 (P)3.1

The Z register is a 6-bit transient register used as a memory buffer. All data
entering or leaving memory must pass through this register.

The S register is a 6-bit counter and memory address register that is incremented by
one each time a character position in memory is addressed. It selects the core
location for storing the character in the Z register during the transfer cycle, and
it selects the core location of the character in memory for transferring to the Z
register during the print cycle.

The B, H register (B = 30 bits and H = 90 bits) together form the 120-bit printer
hammer control register. During the print cycle, each set position enables a cor­
responding print hammer to strike the paper against the print drum. The B register
has a twofold function. During transfer cycle, the output word (from the computer
or magnetic tape unit) is gated into B. A 30-bit word is disassembled into five
6-bit characters each transferred to the Z register for sequential storage into
memory as dictated by S.

The K counter is a 5-count distributor register. Each count allows six data bits to
pass from the B register to the Z register. The 30-bit or IS-bit interface is
controlled by a switch on a logic chassis at the rear of the cabinet. This switch
enables or disables the most significant 12 bits of the B register and sets the K
counter to a five or three count limit respectively.

The C register is a 6-bit counter that cycles through its count (0000002 to
1111112) once during a print cycle (one rotation of print drum). During each count
(corresponding to the code of the next character on the drum to be printed), the S
register is advanced through all memory locat~ons (12010), As each character
designated by the address in the S register is transferred to the Z register, it is
compared to the code in C.

The S translator, when enabled by main timing and upon C equals Z comparison, sets
the flip-flop in the H register corresponding to the count in S. The H-bit fires
the print hammer in the line position that corresponds to the character position in
memory. The translator also sets the space code (05) in the Z register for the
write portion of the memory read/restore cycle.

All locations which contain character codes equal to (C) will cause the S translator
to set corresponding bit positions in the H register, thereby printing those
characters. After the hammers are fired, the drum character pulse advances the C
register, preparing it for the comparison with each memory cell during the next
memory cycle. The index pulse from the drum surface resets the C register at the
end of one revolution.

As each character from memory makes a positive comparison with (C), the Z register
is forced to an 05 (space) code, and this information is stored back into the cell
rather than its original code. If the comparison is negative, the Z register remains
and the original code is stored back into the cell. At the end of each memory cycle
(120 character positions read), all character positions will contain space codes.

4. Manual Controls and Adjustments.

a) Printer Adjustments. The following adjustment knobs are
provided on the printer; Vertical Position, Character Phasing, Paper Tension,
Penetration Control.

3.1-45

S.G.1219 (P)3.1

1) Vertical Position: controls the vertical positioning of
the paper with relation to the printed line. The maximum
adjustment is ± 0.25 inch.

2) Character Phasing: adjusts the index and character pulse
time for firing the hammers on the character and compensates
for print wheel speed. The maximum adjustment is 15
degrees.

3) Paper Tension: controls the paper tension by varying the
distance between corresponding feed pins on the upper and
lower feed tractors. The maximum adjustment is 0.125 inch.

4) Penetration Control: provides fine adjustment of the spacing
between the print hammers and the print wheel in order to
vary the density of print and to accommodate different
paper thicknesses.

b) Control Panel Operations. Various operations are initiated
from the control panel (see figure 3.1-17) by the following indicators and switches:

~

,--

....
,..'--

....

SLOW
II

l/

3.1-46

1) POWER ON indicator switch: initiates the power sequencing
cycle and indicates completion of the cycle.

2) POWER OFF indicator switch: turns ac power off. The switch
lamp is illuminated when ac power is available at the
output of the main circuit breaker, and a power sequencing
cycle has not been completed.

/
,... ,... r- -I-

TOP
LOAD LOAD OF TEST

RIBBON PAPER FORM RUN

.... - -
,... - r-

PRINTER PAPER ON-LINE
MASTER READY BREAK

CLEAR THROAT PAPER
OPEN OUT OFF-LINE

... ... --

I II
FAST

m
ON ~ OFF!

rn

" Figure 3.1-17. Operator's Control Panel

S.G.1219 (P)3.1

3) OFF-LINE/ON-LINE indicator switch: controls the logical
connection of printer to computer. When the printer is
master cleared and ON-LINE is selected, an interrupt is
sent to the computer.

4) SLOW/FAST switch: a rocker type switch that changes the
print wheel speed from 1000 to 667 rpm.

5) LOAD PAPER switch: positions the paper feed assembly so
that paper can be loaded conveniently.*

6) LOAD RIBBON switch: re-spools the inked ribbon prior to its
replacement. This operation is not available while the
unit is printing.

7) TEST PRINT switch: actuates a test cycle under local
control that utilizes a pattern which prints all characters
in all column positions. When the PATTERN SELECT switch on
the control chassis is in normal position, the test cycle
causes all 63 characters to appear in all column positions.
In any given line, one character will appear in all the 120
character positions, and after 63 lines of print, a line of
each character will have been printed. When the PATTERN
SELECT switch is in the M position, all M's are printed.
When it is in the E position, all E's are printed. The
paper advances one line after each line of print. The
operator presses the TEST PRINT switch to terminate the
test operation.*

8) TOP OF FORM switch: advances the paper so that the top of
the next form is positioned at the type line.*

9) MASTER CLEAR switch: clears the circuit logic, sets enable
line feed, sets the interrupt, and places the printer OFF­
LINE.

10) PAPER OUT indicator: indicates that the paper supply is
exhausted. This situation is detected 22 inches ahead of
the type line when the throat cover is closed.

11) PAPER BREAK indicator: indicates absence of paper above
the print station.

12) THROAT OPEN indicator: indicates that the printer throat
cover is not in position. A switch is available for over­
riding the throat open indication.

13) PRINTER READY indicator: indicates that the printer is
ready for operation. The indicator goes out when any of
the following conditions exist:

~. The printer is out of paper;

Q. The paper is torn or incorrectly positioned in the
feed tractors;

* This function is available for off-line operation only.

3.1-47

S.G.1219 (P)3.1

£. The throat cover is not in position;

Q. There is no ac power input;

~. A main circuit breaker is open;

i. A fuse is blown.

c) Control Chassis Operations.

1) 1206/1218 Switch: provides interface and control logic
change to either a 3D-bit word or an 18-bit word.

2) Pat tern Select Swi tch: selects one of three pat terns that
can be used in the test print operation:

~. Normal Position - prints all characters in the order
they appear on the print wheel.

.h. M Position - prints all M's

£. E Position - prints all E's

5. Programing Consideration. Certain communicating functions are
of importance to the programer. Some functions inform him of the operational state
of the printer, and others allow him full command of the printing operation.

a) Processing Interrupts. Before the printer is initially put
on-line, the printer-handling routine should be ready to process either of two types
of interrupts, or a fault condition will result in the computer. Processing
interrupts requires the interpretation of interrupt codes.

A start interrupt (code line is set) informs the computer that the printer is
operable. The start interrupt should be used to initiate the printer-handling
program. A command (via external function) to the printer will not be honored when
it is not operable. The first command to the printer is usually a top of form
instruction, and if this is lost, data in an output buffer may be printed in the
wrong position of the form.

Malfunction interrupts (cnde line is cleared) indicate that the printer is not
operable. This interrupt is sent from the printer to the computer when any of the
following malfunctions exist:

Printer is out of paper;
Paper is torn or incorrectly positioned in the feed racks;
Throat cover is not in position;
There is a loss of ac power input;
A main circuit breaker is open;
A fuse is blown.

The malfunction condition will destroy some data except in the case of the paper out
condition. Such destruction of data will require a repetition of some or all of the
previous output operation. When the printer is out of paper, printing will terminate ~~

3.1-48

S.G.1219 (P)3.1

at the bottom of the last form. The program can continue its output without loss
of data when a new supply has been loaded and the paper has been positioned at the
top of a form.

The programer may desire to handle malfunction interrupts by providing a means for
operator decisions concerning the continuation or repetition of output. Here again
the programer should utilize the start interrupt to restart the printer-handling
program.

b) Printing Format. Horizontal character format is controlled by
the program by loading the data into the output buffer in the desired character
positions. Space codes are placed in the buffer where blanks are desired in the
printed line.

Vertical line spacing is controlled by commands to the printer via the computer
external function instruction in conjunction with the paper movement control tape in
the paper advance mechanism. Single line spacing is automatic in the printer upon
completion of a print cycle. Extra line spacing is accomplished by initiating an
output buffer of 120 space codes. Line overprint is accomplished by following the
initial line print buffer (within 768 microseconds) with a command to disable line
feed and initiating another output buffer of a line of overprint data. Overprint
data buffers must contain space codes in positions previously printed as meaningful
characters on the line. The command to enable line feed must be received by the
printer control unit before or during the last overprint cycle to move the paper into
position for the next line.

The top of form command forces the printer control into the print cycle if other than
space codes are stored in its memory. The line is printed even though a portion of
a record is transferred. If the line feed is enabled, the paper is advanced to the
top of the next form. If the line feed is disabled, the paper does not move.

c) Assembly of Buffers. The printer will not print a line of data
until 120 character codes have been received, or if less than 120 characters, a top
of form command is received.

To print a line of less than 120 characters of intelligence and advance the paper one
line space, the balance of the 120-character buffer must be filled with space codes.
Figure 3.1-18 is a pictorial diagram of an assembled output buffer and its
resulting printed line.

3.1-49

S.G.1219 (P)3.1

BUFFER
WORD

\ ORDER,
T

1

2

3

4

5

6

7

8

9

10

11

12

LINE WORD
ORDER

3.1-50

," ."'~ • '. l " " '"

CONTENTS OF CORE MEMORY
IN BUFFER

BUFFER
WORD

,ORDER I
Y

CONTENTS OF CORE MEMORY
IN Bu'FFER··~·· , , A ,

31 15 12 05 32 13 60 60 05 21 16

23 16 33 06 10 14 23 12 30 05 24

05 61 64 66 71 15 13 05 06 21 25

05 15 16 14 15 16 15 06 23 32 22

05 30 25 12 12 17 12 27 16 10 05

11 05 25 27 16 18 10 15 06 27 06

23 31 12 27 05 19 10 31 12 27 30

10 06 23 05 25 20 05 25 12 27 05

27 16 23 31 05 21 22 16 23 32 31

32 25 05 31 24 22 12 75 05 22 32

05 66 66 67 05 23 21 31 16 10 24

24 27 06 61 60 24 25 16 12 30 75

1 ,2 3 4 5 6 7 8 9 10 11 12
THE UNIVAC 1469 HIGH-SPEED PRINTER CAN PRINT UP TO 667 or

16 2

ALPHANUMERIC CHARACTERS PER MINUTE. MULTICOPIES.

,:" ,.

Figure 3.1-18. Buffer and Printed Line

