
I

!
4'

TRIM ni
ASSEMBLER

USER'S
INSTRUCTIONS

f

I
ft*

SECTION I I I - C . TRIM I I I ASSEMBLY SYSTEM

1. im'RODUCTION

The TRIM I I I assembly system provides programming assistance through the use
of i t s symbolic shorthand. As i l l u s t r a t e d in Figure I I I - C - 1 , this assembly
system converts a source program written with symbolic addressing into an
object program with absolute or relocatable addressing. TRIM I I I produces the
assembled object program on punched paper tape, punched cards, or magnetic tape.

The
Definition

of a
Problem

/ input \
\Language/

TRIM I I I
Assembly
System

Input Data

Object
Program

Output Data

Figure I I I - C - 1 . TRIM I I I Solution of a Problem

TRIM I I I has an easy-to-use but effective l i b r a r y r e t r i e v a l capability. The
l i b r a r y of subroutines i s stored on the assembler magnetic tape. The user
simply c a l l s by name those subroutines he wishes to include with his assembled
program. TRIM I I I honors the c a l l s by automatically adding them to the end
of the source program during assembly. A companion program to TRIM I I I c a l l e d
the l i b r a r y builder routine provides easy l i b r a r y building, insertion, replace­
ment, deletion, and l i s t i n g c a p a b i l i t i e s .

TRIM I I I possesses source language level correction capability in combination
with an assembly run. Although this feature i s primarily designed for use
with paper tape input, i t may be used with any combination of input modes.

2. DESCRIPTION

TRIM I I I i s b a s i c a l l y designed for a minimum equipment configuration of a
computer with at least 16,384 words of core memory, a magnetic tape system with
two or more tape transports, and an I/O console consisting of a punched tape
reader, tape punch, keyboard, and console typewriter. Optional equipment i s
an on-line card processor system with card reader, card punch, and high-speed
printer.

The TRIM I I I assembler i s stored on magnetic tape in functional segments.
During an assembly run the segments are read into computer memory and executed
in the proper sequence by the assembler controlling routine. See Figures
I I I - C - 2 and I I I - C - 3 . TRIM I I I i s a single external pass assembler. I t accepts
a source program, converts i t to TRIM code, and stores i t on magnetic tape for
subsequent processing. I f the user has included c a l l s for l i b r a r y subroutines
in his source program, TRIM I I I selects them from the l i b r a r y and adds them to
the end of the source program before proceeding with assembly. TRIM I I I also
has source language correction capability in conjunction with an assembly run.

I I I - C - 1

TRIM I I I
Controlling Routine

Source
Program

I
o I lO

Input
Converter

Table 2

Input
Operators

Table 1

I n i t i a l
Source
Prograi

ITables 4.131,
I Library I
• C a l l s tr ,
'Header '
'Labels '

Table 6
Label/Tag
Alloca­
tions

Segment 1

Lib r a r i a n

I
I Fables 7*

11**.

J bra ry Dir.
& L i b r a i j _ |

Table 1

F i n a l
Source
Program

• Magnetic Tape Table ;= Core Table 10
** Table 11 On Magnetic Tape A =

Table 12 On Magnetic Tape B

Segment 2

Fiaure I I I C-2. TRIM I I I Segments 1 and 2

(((((

Table 1

Fina l
Source
*rogram

TRIM I I I
Controlling Routine

Translator'
Allocator

Table 5

Mnemonic
Operators

Segment 3

Table 3

Assembled
Obj ec t
Program

Table 6
Label/Tag
Alloca­
tions

Output
Converter

Segment 4

TRIM I I I
Outputs

Obj ec t
Language
• 6 Editing
Information

No. 1

No. 2

No.

No.

No.

No,

No.

No.10*

No. 11

No. 12

No. 13

No. 14

No. 15

No.16*

* Output No. 10 i s Table 3; Output No. 16 i s Table

Figure I I I - C - 3 . IRIM I I I Segments 3 and 4

2.1 SOURCE LANGUAGE

A TRIM program as prepared by the programmer i s composed of a l i s t of operations
which perform the step-by-step processing of a problem. An operation has the
following general format:

label statement notes V
The general format may be further subdivided into:

label - operator • operand(s) — ^ notes

2 o1.1 LABEL

V
The label i d e n t i f i e s this particular statement. A label i s not required for
every statement. In an absolute-addressed program every word i s assigned an
absolute address during the coding process. The assembling process of the
TRIM I I I system equates the label to the machine address assigned to the i n ­
struction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address. Where more than
one instruction i s generated by a statement, the label refers to the address of
the f i r s t instruction generated. The term label i s used rather than address
since i t more accurately describes the function of the symbolic address. A
label may never be incremented or decremented. The instructions or words
generated from unlabeled statements following one another on the source program
tape are ultimately assigned to consecutive memory addresses. Each label of
an assembly run must be unique.

A label may consist of not more than s i x alphanumeric characters; i t never
begins with the l e t t e r 0 or a number, and never consists of the leters LOK
alone. The f i r s t instruction of each program or subroutine must have a lab e l .

An operand which refers to another operation label i s called a tag. The tag
must be identical with the label i t refers to except that i t may be followed
by a + octal or decimal integer to f a c i l i t a t e reference to unlabeled operations.
Whenever a decimal integer i s used, i t must be followed by the l e t t e r D. A
tag coincides with the u or k portion of the instruction word. Tags have the
same notation r e s t r i c t i o n s as labels except they may be incremented. Any
number of tags may refer to a given la b e l .

I f the programmer wishes to reference unlabeled instructions in his program
in another manner, he may do so in terms of a s p e c i f i c instruction by means
of the LOK tag plus or minus an integer. LOK always refers to the instruction
in which i t appears. For example, i f the instruction JP»L0K-3 appears at
address 04503, the resulting generation i s a jump to address 04500. Thus the
instruction f a l l i n g at address 04500 need not have been labeled. No valid
program label may consist only of the l e t t e r s LOK. Reasonable care should be
exercised in the use of the LOK tag since corrections to the original program
may affect the LOK references.

I I I - C - 4

2.1.2 STATEMENT

The statement of an operation i s made up of an operator and operand(s). The
statement defines the operation.

2.1.2.1 OPERATOR

The operator may be a symbolic shorthand or octal notation which i d e n t i f i e s the
basic function to be performed. The operator must always be present. I t may
cause the assembler to generate one machine instruction or a group of machine
instructions. The operator coincides with the function code f, and/or sub-
function code m, of the instruction word,

2.1.2.2 OPERAND(S)

One or a series of operands associated with the basic operator are referred
to as VQ, Vi ... Vn. These may take several forms depending upon the basic
operator. They define, modify, or complete the function.

The operand(s) coincides with the u or k portion of an instruction word and
may be either a constant in octal notation or a symbolic alphanumeric notation
referring to a constant (either an absolute address or an item of data).

2.1.3 NOTES

Descriptive notes may follow the statement; they are for the programmer's use
and in no way affect the instructions generated from the statement. Notes must
be r e s t r i c t e d in length such that the entire source statement does not exceed
one l i n e or one card.

2.1.4 SYMBOLS

The program
symbols are

uses a uniform set of symbols as separators in a l l coding. These
depicted in Table I I I - C - 1 below.

TABLE I I I - C - 1 . TRIM I I I CODING SYMBOLS

Symbol Coding Significance

(tab) Major separator delimiting the statement.
Must always precede the statement operate
Must precede notes; omitted i f notes are
not given.

J (CR) Specifies the end of an operation. Must
precede end-of-tape double period.

(comma) Separates certain subsets of statement
components.

• (point) Separates statement components.

I I I - C - 5

TABLE l l I - C - 1 . TRIM I I I COOING SYMBOLS (CONT.)

Symbol Coding Significance

+ Specifies an integer increment to follow.

Specifies an integer decrement to follow.

(delta) Specifies space.

1 (v e r t i c a l l i n e) Special control character.

(double period) Specifies end-of-tape read-in. Must
terminate every input tape.

2.2 HEADER AND D E C L A R A T I V E OPERATIONS

T R I M I I I recognizes four types of header operations:

L W VQ V I

POKER — • CONTR • JONES • 1 0 DEC1964 — •

POKER — - ALLOC • JONES • 1 0 DEC1964 — •

POKER • PROG • JONES • 1 0 DEC1964 — •

POKER — • CORREC • JON E S • 1 0 DEC 1964 — •

2,2.1 CONTROL HEADER (CONTR)

The CONTR header operation i s a convenience for the user. I t enables him to
group a l l of his assembler declarative operations following one CONTR header.
A label and identifying operands may be used with the CONTR header, but TRIM I I I
does not require them.

L

label

W

CONTR name
^ 1 .

date

Operations which may follow a CONTR header are ALLOC, DEBUG, OUTPUT, REMARK,
DECKID and CALL. CALL operations may also follow a PROG header. Figure I I I - C - 4
shows typical coding for a CONTR header and the declarative operations used
with i t .

I I I - C - 6

TITl F U N I V A C C O D I N G F O R M PPO'TP'^MMFR
P A G E of PIT FVT M<?

D A T E —

L A B E L O P E R A T O R O P E R A N D S A N D N O T E S

POKER — ^
HEAOCR TYPE

CONTR JONES . 16N0VEMBER1963
POKER — ^ ALLOC JONES •16N0VEMBER
POKER — • 05000
CHIP — 05500
DEBUG — • 13000
TYPT — • 12700

— • OUTPUT 1.6-2.5-6-11
— • DEBUG

CALI SINE TODEC TYPT

— • REMARK CONTR TAPE FOR DATAX REVISION 3
— • DECKID SINE

• • — • •

— » •

—

— • •

— • •

— ^ •

— • •

— •

— ^ •

— » • •

— ^ •

— • •

— •

Figure I I I - C - 4 . Sample CONTR Header And Delcarative Operations

2.2.2 ALLOCATION HEADER (AaOC)

The ALLOC header follows a CONTR operation and informs TRIM I I I that the
operations which follow constitute assignments of absolute values to labels and/
or tags. Any number of ALLOC tapes or cards may be loaded. An allocation tape
must always be preceded by a carriage return (see paragraph 3) . When the
allocations are on a separate tape, the tape must terminate with a carriage
return and two periods. ALLCX̂ operations have the following format:

L

label

label

label

label

W

ALLOC

assigned value

assigned value

"0

name

Vl

date

assigned value
etc.

1) L - The label of the ALLCX; header operation i t s e l f i s optional,
each assignment operation following must have a label.

However,

2) W - The operator of this header operation i s always ALLOC, and must be
present. For the subsequent assignment operation, W must be an
absolute numeric value expressed either in octal or decimal. When
expressed decimally, the number must be followed by the l e t t e r D,
for example:

CAT

DOG

C H I P S

CHOPS

0100^

3) V - The V operands of this header operation take the form name and date
as i l l u s t r a t e d . These operands are omitted for subsequent assignment
operations.

2.2.3 PROGRAM HEADER (PROG)

The PROG header informs TRIM I I I that the operations to follow are program
operations as distinguished from control operations. The PROG header must
precede the f i r s t statement of a program. The PROG header operation on paper
tape must always be preceded by a carriage return (see paragraph 3) . A program
header has the following format:

Program
[name

w ^0 Vl
PROG" • name • date

I I I - C - 8

1) L - The label of the PROG header operation i s optional; however, when
present i t i s considered to be the name of the program.

2) W - The operator of this header operation i s always PROG and must be
present.

3) V - The V operands of this header operation normally take the form name
and date as i l l u s t r a t e d . The operands are optional and completely
f l e x i b l e in number and length within the maximum l i n e length,

2.2.4 CORRECTION HEADER (CORREC)

The CORREC header informs TRIM I I I that the operations following are source
language corrections to be integrated into the source language program under
assembly. A maximum of 192 correction operations i s permitted for any one
assembly run. Three types of correction operations are provided by TRIM I I I :

1) Insertions or additions.
2) Replacements.
3) Deletions,

Although the correction feature i s primarily intended for use with paper tape
input mode, i t may be used with any combination of input modes, the only
r e s t r i c t i o n being that a l l corrections must be read in prior to read-in of
the source program.

The format of correction operations i s identical to that required by the TRIM
corrector (refer to the TRIM corrector description contained in this manual).
Figure I I I - C - 5 shows a sample of correction coding which may be used with the
CORREC leader in the TRIM I I I assembler,

Corxections are always made on the basis of the sequential l i n e i d e n t i f i e r
associated with each source program statement. This sequential i d e n t i f i e r
appears on TRIM I I I outputs 2, 12, and 14. I f assembly consists of multiple
source programs, i t must be remembered that the sequential i d e n t i f i e r s are
cumulative and correction i s based upon these cumulative i d e n t i f i e r s in any
given assembly. I f two or more correction operations bear the same integral
and fractional i d e n t i f i e r , the l a s t one read w i l l supersede the preceding one
with the same i d e n t i f i e r , permitting a programmer to correct a correction.
Only the l a s t such correction w i l l count towards the 192 maximum.

2.2,5 DEBUG DECLARATIVE

TRIM I I I accepts the declarative operation:

L W N

DEBUG label

I I I - C - 9

TITl F MANL (CORRECTIONS)
PAGE L of I

UNIVAC

TAPE CORRECTION F O R M D A T E

P R O G R A M M E R —

P L T E X T M S

L A B E L O P E R A T O R 1 O P E R A N D S A N D N O T E S

^ MANL — •
MEAOEB TYPE

CORREC • W. C. Roos * 8N0V 1964
112 - OS

MANL17 — • MOVE • 10 • MANL8 • MANL99 — I N S E R T CORRECTION
47 • 0

— • ENTALK • 501 — • REPLACE CORRECTION
6 •05

— » BUFIN • CHANL • MAD • lOOD • MANL ,
6 'OS

BUFIN • CHAN • MAD • ICQ • MANL80 — • CORRECTS A CORRECTION

201 •
— • D E L E T E • 18D — • DEL E T E S Tins AND NEXT 17

17 •
D E L E T E • — • D E L E T E S THIS ONE ONLY

315 • 05

MANL99 — ^ RESERV • 8D ADDITION TO END OF PROGRAM
315 •10

MANLAU —>• 0 •

315 ̂ 15
MANLAL — • 0 • /

316 •
MANLB — • 0 •

•
• •

— » . •
•

— » • •

Figure I I I - C - 5 . Sample Correction Coding

The DEBUG operator informs TRIM I I I that generation i s to be performed for
debugging operations contained in the source program. I f the DEBUG operator
is absent, no generation w i l l occur for such debugging operations. The DKBUG
operation when used must be loaded prior to the f i r s t PROG header. I t normally
appears on the CONTR tape.

2.2.6 OUTPUT DECLARATIVE

TRIM I I I accepts the declarative operation:

L W VQ Vl

label! OUTPUT • ' '

0

n • n

Vn

n

The OUTPUT operation permits the user to specify the assembler outputs he
desires. The outputs are specified by number in the VQ through V^ p o s i t i o n .
Up to eight outputs may be requested by the OUTPUT operation. Requests i n
excess of eight w i l l be ignored and multiple OUTPUT statements are not permitted,
An example of a legal OUTPUT operation i s given below.

OUTPUT • 1 15

2.2.7 DECKID DECLARATIVE

TRIM I I I accepts the declarative operation:

L

label

W

DECKID •

/o
name

The DECKID operation permits the user to specify card i d e n t i f i c a t i o n on p r i n t e r
or source card outputs he may select from TRIM I I I . From one to four alphanumeric
characters may be specified in the VQ position. These characters together with
a 4-digit sequential octal number beginning with 0001, are added to each TRIM
I I I statement that i s also assigned a sequential l i n e i d e n t i f i e r . T h i s card
information w i l l appear on the side-by-side printer l i s t i n g output of the
program (output 12) and the punched card output i n source language (output 15).
The new card i d e n t i f i c a t i o n and numbering preempts that which might be
present i f the input source program i s on cards. Any number of DECKID s t a t e ­
ments may be inserted anywhere in the source program; however, each DECKID
operation affects only those statements following that DECKID statement, and
the card numbering w i l l always begin with 0001.

2.2.8 ENDATA DECLARATIVE

The ENDATA operation i s used with card input to TRIM I I I . I t informs the
assembler of the end of a card deck. I t does not mean the end of a l l input.
The ENDATA operation does not cause any object language generation. I t may
have a label and notes. One blank card must follow each ENDATA card.

W

ENDATA

II I - C - 1 1

2.3 MONO-OPERATIONS

Mono or one-io-one operations consist of the mnemonic function codes in the
instruction repertoire and symbolic addresses, absolute machine codes, or
constants. Mono-operation statements may be in one of the following formats:

2.3.1 FORMAT A

L

label operator

^0

operand

L - The label i s optional.

W - The operator i s the f or fm portion of the operation statement and i s the
mnemonic representation of the desired function code of the computer
instruction repertoire.

VQ- Represents the u or k portion of the statement and may be a tag, a tag +
an integer, or an integer only. Integers may be in octal or decimal
representation. When decimal representation i s used, the integer must be
followed by the l e t t e r D. Incrementing or decrementing of integers i s
not permitted. I f i s absent, TRIM I I I generates zeros for the operand
without error indications.

Examples:

ENTAL-CAT

STRADR«CAT+1 — •

CMAfCAT-8D

-•ENTBK»28D — •

ENTALK*7776

STOP* DOG —P'

SKP0IN«7 — ^

CPAU — •

JP»L0K-10 — •

* 0UT»6 — •

••0-CHEESE+l — •

••O'CHEESE

ENTAL

JP*
V

Minus 1 to AL

DOG defined by an ALLOC opn

Results in 506200

LOK s i g n i f i e s this address

Output transfer channel 6

Buffer terminal address

Buffer i n i t i a l address

Results in 120000

Results in 340000

III - C - 1 2

2.3.2 FORMAT B

TRIM I I I also accepts programs coded with absolute function codes and absolute
or symbolic addressing. Normal instructions are represented by a 2-digit
function code followed by a point separator and the desired u or mk operand.
However, absolute instructions may also be represented by 6 consecutive d i g i t s
without a point separator.

Examples:

— 1 2 « 3 5 0 5 — •
— • 63«CAT+6
— • 50«1305 — •
— • 50*6200 — •
— • 506200 — •

2.3.3 FORMAT C

Constants may be represented in a number of ways:

7.0

•77 -

-•77»0 —

-•777

•77070 — •

-•777 »7 - H

^777*—

••123456

Results in 000007

Results in 700000

Results in 000077

Results in 770000

Results in 000777

Results in 077070

I l l e g a l *

Results in 000777*

Results in 123456

Two special mono-operations are available for the programmer's use; STOP and
SKP. I f either of these operators i s used without a k operand, TRIM I I I w i l l
automatically generate an unconditional instruction of 50 56 40 or 50 50 40
respectively.

2.4 POLY-OPERATIONS

Frequently groups of instructions which perform a sp e c i f i c function appear
i t e r a t i v e l y in a program. A single poly-operation generates a unique sequence
of instructions designed to perform some such specified function. This i s the
one-to-many relationship between instructions herein termed poly-coding; the
parent instruction i s termed a poly-operation. TRIM I I I provides for several
poly-operations. In some cases TRIM I I I generates only a single instruction or.

*Whenever there i s an expressed value following the point separator, only 1 or
2 d i g i t s are permitted in the operator position.

I I I - C - I 3

as in the case of REMARK and CALL operation, no instructions. I t i s permissible
when coding a routine to intermix mono- and poly-operations in any desired order.

The CLEAR and MOVE poly-operations use the currently active B register and the
MOVE poly-operation also uses AU in the generated coding. I f the programmer
does not wish the data in these registers to be destroyed, he must store and
restore the data around a MOVE or CLEAR operation. The MOVE and CLEAR opera­
tions store and restore the programmer's special register setting. Since
poly-operations generate more than one machine instruction, the tag LOK + an
integer must not be used for poly-operation coding.

2.4.1 RESERVE OPERATION (RESERV)

L W V

l a b e l RESERV

0

Number
of words

Ihe RESERV operation causes the desired number of sequential words to be
reserved w i t h i n a program. The operation generates the number of zero words*
s p e c i f i e d by the V̂^ operand.

n

2)

3)

The l a b e l for t h i s operation i s optional.

RESERV must always be present.

S p e c i f i e s by an octal or decimal integer the number of zero words to
be generated. V̂-̂ may never equal zero.

Exainples:

Assume CAT ̂ 1000 and DOG

CAT — » • RESERV • 12 —

Df)G — * RESERV lOD

2000

Generates zeros at addresses 1000-1011

Generates zeros at addresses 2000-2011

2 A.2 CLEAR OPERATION

L W

l a b e l — • CLEAR • Number
of words

• starting address

ThQ CLEAR operation clears to zero those memory addresses specified in the
operation.

1) [. - The label for this operation i s optional.

2) W ~ CLEAR must always be present.

*TRIM I I I outputs 2, 12, and 14, used primarily for hard-copy debugging and
documentation, r e f l e c t only the f i r s t generated zero word of each RESERV opera­
tion. AU other object language outputs contain the requested number of zero
wo rd s.

III-C-14

3) VQ- Specifies by an octal or decimal integer the number of consecutive
memory locations to cl e a r , VQ may never exceed 4000 octal or 2048D,
A VQ of zero i s not permitted,

4) V l - Specifies the f i r s t address of the area to bo cleared. The address
may be expressed as an absolute octal number or as a symbolic tag
plus or minus an octal or decimal integer; that i s , CAT-12D or CAT-ll.
A l l the words to be cleared must be wholly contained within one
memory bank.

Examples of coding for CLEAR operations are given below.

label

label

label

label

CLEAR

• CLEAR

• CLEAR

• CLEAR

180

22

lOOD

4000

FLIP+12D

FLIP+14 -

FLAP-5 -

130000 —

Examples of CLEAR operations and the absolute coding generated by
the assembler are given below.

Assume EXAMl = 1000, EXAM2 = 1006, and CAT = 10123

Input Operation Generated Coding

EXAMl — • CLEAR • 70 • 7000 - • 36 0067
75 1005
50 7300
41 7000
73 1003
50 7300

EXAM2 — • CLEAR • 210 • CAT — • 36 0024
75 1013
50 7311
41 0123
73 1011
50 7300

A symbolic representation of the instructions generated i s given below.

—w-ENTSK '[No, of locations - l] — • S e t B for No. of locations
-•STRSR • LOK+4—^Store current SR
-•ENTSR • [Bank No. of clear area] — • S e t SR to clear area
—•CLB • [F i r s t location] — ^ Clear word at f i r s t location + B
—•BJP • LOK-1 — • Decrement B and repeat loop
—•ENTSR • 0 — • Return to current bank when B i s zero

III-C-15

2.4.3 MOVE OPERATION

L

label!

W

MOVE

"0

number
of words

Vl

from address

V2

to address

1) L - The label for this operation i s optional.

2) W - MOVE must always be present.

3) VQ- Specifies by an octal or decimal integer the number of sequential
words to be moved. VQ may never exceed 4000 octal or 2048D. A VQ
of zero i s not permitted.

4) V^- Specifies the f i r s t address of a block of data to be moved. I t may
be expressed as an absolute address in octal or as a symbolic tag
plus or minus an octal or decimal integer. A l l the words to be
moved must be wholly contained within one bank.

5) V2- Specifies the f i r s t address to which the block of data i s to be moved.
I t i s expressed the same as the Vi operand. A l l the destination
addresses into which data are to be moved must be wholly contained
within one bank.

Examples of coding for MOVE operations are given below.

label

label

label

[label

label

MOVE • 78D • CAT • DOG-7

MOVE • 10 • HORSE+10 • C0W+8D

MOVE • 4000 • CAT • PIG — •

MOVE • lOOD • 0 • 10000 — •

MOVE • lOOD • 130000 • CAT

Examples of move operations and the absolute coding generated by the
assembler are given below.

Assume EXAM3 = 1014, EXAM4 = 1024, and CAT = 1056

E X A M 3

Input Operation

MOVE • 10 • CAT • 7000

Generated Coding

36 0007
75 1023
50 7300
11 1056
50 7300
47 7000
73 1016
50 7300

III-C-16

Input Operation Generated Coding

EXAM4 — • MOVE • 100 • 12000 • CAT-100 — • 36 0077
75 1033
50 7311
11 2000
50 7310
47 0756
73 1026
50 7300

A symbolic representation of the instructions generated i s given below.

• ENTBK* [No, of l o c a t i o n s - l] — • S e t B for No. of words
• STRSR • LOK+6—•Store current SR
• ENTSR • [Bank No. of from address] — • S e t SR to origin bank
• ENTAUB* [from a d d r e s s] — • G e t word at from address + B
• ENTSR • [Bank No, of to address] — • S e t SR to destination bank
• STRAUB • [To address]—•Store word at to address + B
• BJP • LOK-4 — • Decrement B and repeat loop
• ENTSR • 0 — • Return to current bank when B i s zero

2,4,4 I/O OPERATIONS

L W Vo

label - • E X F C T • 'channel
number

label - • B U F I N • channel
number

[label [-•BUFOUT* channel
number

Vl

• AD CAD
MAD CMAD
BK CBK

MBK CMBK

" AD CAD"
MAD CMAD
BK CBK

MBK CMBK_

" AD CAD'
MAD CMAD
BK CBK

MBK CMBK

V2

number of
buffer words

number of
buffer words

number of
buffer words

V3

buffer start­
ing address

buffer start­
ing address

buffer s t a r t
ing address

1) L - Label for these operations i s optional.

2) W - The operator must always be present.

3) VQ- Specifies the channel number expressed as an integer or a symbolic

tag.

4) V l - Specifies the buffer mode and must be present:

a) AD - Advance without monitor.
b) MAD - Advance with monitor.

I I I - C - 1 7

c) BK - Back without monitor.
d) MBK - Back with monitor.
o) CAD - Advance without monitor - continuous data mode,
f) CMAD - Advance with monitor - continuous data mode.

CBK - Back without monitor - continuous data mode,
h) CMBK - Back with monitor - continuous data mode.

For use with
1219 Input/
Output Buf­
fering Mode
only

3) V'j

(0 V3

Specifies as an octal or decimal integer the number of buffer words
involved. Maximum of five d i g i t s .

Specifies the address in memory at which buffering i s to begin. V3
may be expressed absolutely or as a symbolic tag plus or minus an
octal or decimal integer.

Examples:

Assume CHAN = 07 and CAT = 10000

label

label

label

label

-EXFCT • CHAN • AD • 1 • 130000

BUFIN • 6 • MAD • 10 • CAT — •

•BUFOUT • 3 • CBK • 10 • CAT+7

Generates 501307
130000
130000

Generates 501106
010007
210000

Generates 501203
410000
410007

BUFOUT • lOD • MBK • lOOD • CAT+99D-*'Generates 501212
010000
610143

2.4,5 LIBRARY CALL OPERATION

L W V 0 Vl

label -• CALL • n • n • • • n

The CALL operation permits the programmer to specify by name (label of the
PROG header) the subroutines he wishes the assembler to retrieve from the
l i b r a r y of subroutines. A single CALL operation may name up to eight such
subroutines. I f the user requires more than eight subroutines, he may specify
them with additional CALL operations. Subroutines retrieved from the li b r a r y
are automatically added to the end of the source program and assembled with i t ,
The user has complete control of their address allocation i f he wishes via
ALLOC operations.

III-C-18

Whenever a CALL operation follows the COrfTR header, TRIM I I I w i l l honor the
c a l l s , but the CALL operation i t s e l f w i l l not appear on a side-by-side output
l i s t i n g . Only those operations following a PROG header appear on such l i s t ­
ings. I f a subroutine retrieved from the li b r a r y contains CALL operations,
these c a l l s w i l l also be retrieved and added to the end of the composite
program un t i l the l a s t CALL operation has been honored. A request for
output No. 7 causes a l l l i b r a r y CALL operations to be ignored.

The CALL operation causes no object program generation.

Examples:

—•CALL»TYPT»FLP«SINE«TYPC — •

—•CALL^PCHC—•

2.4.6 REMARK OPERATION

L

label

W

REMARK •

0

desired statement

The REMARK operation causes no object program generation. I t i s simply an
aid to the programmer in expanding normal program notes.

The REMARK statement may not exceed one line or one card in length.

2.4.7 DATA OPERATION

L

label

W

• DATA •

0

integer, binary point specification

The DATA operation allows the programmer to specify a positive dr negative dat
integer and i t s binary point position. The bits are numbered from right to
l e f t 0-17D, The binary point specification must be separated from i t s asso­
ciated integer by a comna. The absence of a minus sign implies a positive
integer. The label i s optional.

Examples:

label

or

label

• DATA • 24D, 9D

• DATA • 30, 11

Generates 030000

Generates 030000

The binary representation i s :

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 }

I I I - C - 1 9

label — • DATA •123,4 — • Generates 002460

The binary representation i s :

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

2.4.8 PUNCH CONTENTS OPERATION (PCHC)

W VQ

label PCHC information to be punched
and/or typewriter commands

The PCHC operation res u l t s in generated coding which, when run on the computer
with the PCHC* subroutine, causes the octal contents of A, AU, AL, B or any
memory location to be punched on the high-speed paper tape punch. The words
to be punched may be interspersed with the following typewriter control symbols
to provide subsequent l i s t i n g in the desired format.

Operand Performance

• I C R I * carriage return, l i n e feed

• A • or • I S P I • space

The v e r t i c a l bars indicate the information enclosed i s a special symbol d i r e c t ­
ing the typewriter. Each CR and SP must begin and end with the v e r t i c a l bar.
Controls are separated from other operands by point separators.

1) L - The label i s optional.

2) W - The operator PCHC must be present.

3) VQ- Specifies the operands in the order in which they are to be punched.
Except for the typewriter commands, a l l operands imply their con­
tents are to be punched. Such operands may be A, AU, AL, active B,
a tag or a tag + an absolute value, or an absolute address.

Examples:

CAT — • PCHC •A • A ^ 7070 • A • DOG-llD • ICRl

— • PCHC •DOG^A.B • A L — •

— • PCHC* I C R ! • AU^ I S P I • AL — •

• PCHC • DOGflO • ISPl •CAT

*See paragraph 3.4 6) ,

III- C - 2 0

2.4.9 PUNCH TEXT OPERATION (PCHT)

L

label

W

PCHT •

^0

text and/or typewriter commands

The PCHT operation res u l t s in generated coding which, when run on the computer
with the PCHT* subroutine, causes the text and/or typewriter commands in the VQ
operand position to be punched by the high-speed paper tape punch. The text
may be interspersed with the following typewriter control symbols as desired;
each CR and SP must be set off between two v e r t i c a l bars.

Operand

ICRi

A or ISP

1)

Performance

carriage return, l i n e feed

space

L - The label i s optional.

2) W - The operator PCHT must be present.

3) VQ- I s the text to be punched interspersed with typewriter commands
desired by the programmer. I f the text i s too long for one PCHT
operation, the programmer can write successive operations.

Examples:

CAT — • PCHT • PROFIT A AND A LOSS A FOR — •

—•PCHT •JULY A 10, A 1967 I C R I — •

NOTE: Point separators are not required within VQ; they w i l l be
punched i f present.

2.4.10 TYPE CONTENTS OPERATION (TYPC)

L W Vn

label TYPC information to be typed and/or
typewriter commands

The TYPC operation r e s u l t s in generated coding which, when run on the computer
with the TYPC* subroutine, causes the octal contents of A, AU, AL, current B,
or any memory location to be typed on the typewriter. The words to be typed
may be interspersed with the following typewriter commands.

*See paragraph 3.4 6) ,

I I I - C - 2 1

Operand Performance

• I C R I • carriage return, line feed

• A • or • ISPl • space (may be used for formatting)

The v e r t i c a l bars indicate the information enclosed i s a special symbol d i r e c t ­
ing the typewriter. Each, CR or SP must begin and end with a v e r t i c a l bar-

1) L - The label i s optional.

2) W - The operator TYPC must be present.

3) VQ- Specifies the operands in the order in which they are to be typed.
Except for the typewriter commands, a l l operands imply their contents
are to be typed. Such operands may be A, AU, AL, active B, a tag
or a tag + an absolute value, or an absolute address.

Examples:

CAT—•TYPC • A • A • A * 7070 • A • A • D O G - l l D • I C R I — •

—•TYPC • AU • A • AL • I S P ! • B • H O R S E — •

2.4,11 TYPE TEXT OPERATION (TYPT)

L W V 0

l a b e l TYPT • text and/or typewriter commands

The TYPT operation r e s u l t s in generated coding which, when run on the computer
with the TYPT* subroutine, causes the text and/or commands in the VQ operand
p o s i t i o n to be typed by the typewriter. The text may be interspersed with
the following typewriter commands:

Operand Performance

ICRI carriage return, l i n e feed

A or ISPl space (may be used for formatting)

1) L - The label i s optional.

2) W - The operator TYPT must be present.

3) VQ- I S the text to be typed interspersed with typewriter commands. I f
the t e x t i s too long for one TYPT operation, the programmer may use
successive operations to complete the text.

*See paragraph 3.4 6) .

I I I - C - 2 2

Examples:

C A T — • T Y P T • P R O F I T ISPI A^JD A L O S S A FOR - •

— • T Y P T • J U L Y A 1 0 , A 1 9 6 7 I C R I — •

NOTE: Point separators are not required within VQ; they w i l l be typed
i f present.

2 . 4 . 1 2 DOUBLE SET OPERATION

label DBLSET

The DH.SET operation insures that the Y of a double add or subtract instruction
i s located at an even address. The DM-SET operation i s normally followed by
a Y constant. TRIM I I I examines the address to which the following constant
(or instruction) would normally be assigned. I f the address i s odd, a word
of zeros i s f i r s t generated to insure that the constant (or instruction) w i l l
be assigned to an even address. I f the address i s even, no generation r e s u l t s .

2 . 4 . 1 3 SETSR OPERATION

L

label

W

-• SETSR alphanumeric tag

The SETSR operation enables the programmer to place responsibility for setting
k of an ENTSR instruction upon TRIM I I I . Based upon an ALLOC operation or the
assembled address of the referenced tag, TRIM I I I generates an ENTSR i n s t r u c t i
(5 0 7 3 k) with the proper k value for each SETSR operation.

1) L - Label i s optional.

2) W - SETSR must be present.

3) VQ- Must be an alphanumeric tag corresponding to a program label or an
allocated value. The tag may not be incremented or decremented.

Examples:

Assume CAT i s a label at 3 6 4 2 1 and DOG i s a label at 1 7 0 4 6 0 and COW i s
allocated to 0 1 0 0 0 0 , then:

— • S E T S R * CAT — • Generates 5 0 7 3 1 3

• SETSR* DOG — • Generates 5 0 7 3 3 7

• SETSR •COW — • Generates 5 0 7 3 1 0

I I I - C - 2 3

2.5 DEBUGGING OPERATIONS

TRIM I I I provides two debugging operations for punching a paper tape output
of either the contents of registers AU, AL, and current B, or the contents of
specified sequential memory locations. TRIM I I I recognizes these operations
only i f a DEBUG declarative operation i s read prior to the f i r s t PROG header
operation. When recognized, these operations generate a set of three or five
instructions in the object program which, when run on the computer with the
DEBUG* subroutine, produce the desired dump. Each set of instructions i s
assigned a sequential identifying number which appears with each punched out­
put, thereby enabling programmer recognition of repeated times through given
coding paths. The debugging operations take the following form.

label

L

label

W

• DUMPR

W

• DUMPM

N

^0

number of
words to dump

address of f i r s t
word to dump

1) L - Label i s optional.

2) W - DUMPR or DUMPM must always be present.

3) VQ- Applicable to the DUMPM operation only. Specifies the total number
of memory locations to be dumped. The number may be expressed in
octal or in decimal followed by the l e t t e r D.

4) V^- Applicable to the DUMPM operation only. Expresses the address of
the f i r s t word to be dumped. I t may be expressed as an integer or
a tag plus or minus an integer.

Examples of coding for DUMPR or DUMPM operations are given below.

label — • » DUMPR '

label — • DUMPM • 12 10000 — •

label — • DUMPM • lOD 10000 — •

label — • DUMPM • lOD CAT+28D —

label DUMPM • 12 • CAT-15 — •

label DUMPM • 64D • CAT — •

*See paragraph 3.4 6) .

III-C-24

Examples of the DUMPR and DUMPM operations and the coding generated
by the assembler are given below.

Examples:

Assume EXAM5 = 1000, EXAM6 = 1050, and DEBUG

Input Operation

EXAM5 — - DUMPR — » •

30000.

Generated Coding

301001
030000
000001

301051
030000
400002
000005
010000

A symbolic representation of the instructions generated i s given below. The
f i r s t three instructions apply to both DUMPR and DUMPM. The la s t two inst r u c ­
tions apply to DUMPM only.

EXAM6 — » • DUMPM • 5 • 10000

• IRJP • DEBUG Indirect return jump to DEBUG
• 0 'DEBUG — • A d d r e s s of DEBUG
• X • [Y] X = 0 for DUMPR, 4 for DUMPM

Y = No. of DUMPR or DUMPM operation
in t h i s program

-• [N o . of words] — • No. of words to be dumped
-• [F i r s t address] — • Address of f i r s t word to be dumped

Both DUMPR and DUMPM operations preserve existing values in AU, AL, and the
current B register.

TRIM I I I also provides two additional debugging operations for programmer use:
DSTOP and DTYPT.

L

label

W

DSTOP

The DSTOP operation permits the programmer to intersperse strategic debugging
stops within his program. I f the DEBUG operator i s read in the assembly prior
to the PROG header, the DSTOP w i l l generate an unconditional stop (505640);
otherwise, TRIM I I I w i l l ignore the operation.

L

label] DTYPT

"0

text and/or typewriter commands

III-C-25

The DTYPT operation performs the same function as the TYPT operation. I f the
DEBUG operator i s read in the assembly prior to the PROG header, TRIM I I I w i l l
perform the generation; otherwise, the operation w i l l be ignored.

2.6 TRIM I I I OUTPirrS

TRIM I I I provides 13 different outputs of the assembled and/or source program.
The user selects his outputs in accordance with his needs and the available
peripheral devices.

The available outputs are l i s t e d under the output device on which they are pro­
duced.

Monitoring typewriter:

No. 1 - Program summary consisting of the number of memory locations used
and inclusive addresses.

Paper tape punch: Except for outputs 6 and 11, a l l paper tapes are loadable via
the u t i l i t y packages. Outputs 6 and 11 may be used as input to TRIM I I I .

No. 2 - Absolute assembled program, sequential l i n e i d e n t i f i e r , source program,
and assembly error alarms when applicable. This i s a side-by-side
l i s t i n g in source code preceded by a program summary consisting of
the number of memory locations used and inclusive addresses.

No. 3 - Absolute assembled program in source code, consisting of a carriage
return, 88, carriage return, addresses and instructions, a carriage
return, double period and checksum.

No. 4 - Absolute assembled program in bioctal format, consisting of a 76
code, inclusive area addresses followed by the instructions only, and
a checksum.

No. 5 - Relocatable assembled program in bioctal format starts with a 75
code followed by the assembled program r e l a t i v e to base 00000, and
terminates with a checksum. The output tape may be loaded starting
at any desired memory location.

No. 6 - Allocation output in source code consisting of an ALLOC header,
followed by a i l program tags and labels and addresses in allocation
format.

No. 11- The source program only, produced in source code.

High-speed printer:

No. 12- Absolute assembled program, sequential l i n e i d e n t i f i e r , deck and card
number i f applicable, source program, and assembly error alarms when
applicable. This i s a side-by-side l i s t i n g suitable for hard-copy
editing and documentation.

ni-C-26

No. 14 - This i s the same as output No. 12 except that there i s no card i n ­
formation and page size i s assumed to be 11 inches wide by
inches long.

Card processor:

No. 13 - Relocatable assembled program on Hollerith-coded 80-column cards.
The f i r s t card contains only the base load address. Subsequent cards
contain up to 8 computer words, a cumulative checksum, and a card
sequence number.

No. 15 - Source program only, on Hollerith-coded 80-column cards. Each card
contains one TRIM I I I statement as well as any card deck i d e n t i f i c a ­
tion and sequence number.

Magnetic tape unit:

Relocatable object program. Assembled object program in assemble table 3 format.

No. 10 - During assembly TRIM I I I automatically produces this output on the
magnetic scratch tape. The tape data can be loaded into the computer
memory absolutely or relocated to any specified base address by the
u t i l i t y packages.

No. 16 - Source program on magnetic tape. This output does not include
declarative operations such as ALLOC, OUTPUT, or DECKID. Output
No. 15 may be used as input to TRIM I I I .

Miscellaneous:

No. 7 - Output No. 7 i s not i t s e l f an output, but does affect a l l other
requested outputs, since i t causes TRIM I I I to ignore a l l l i b r a r y
CALL operations of the input program.

3, PROGRAMMING PROCEDURES

3.1 PAPER TAPE INPUT FORMAT

Two versions of TRIM I I I are available; one version accepts a source program
paper tape prepared in f i e l d data code, the other version accepts a source
program paper tape prepared in ASCII code (refer to Appendix A, Tables A-2
and A-3).

Each source tape must begin with a carriage return and terminate with a
carriage return and two periods.

3.1.1 KEYBOARD CORRECTION METHODS

Typing-error correction procedures have been incorporated in both versions of
the TRIM I , TRIM I I , and TRIM I I I assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of input tapes
for these programs on the UNIVAC 1232 and 1532 I/O consoles. These procedures
are described under TRIM I , paragraph 8.

III-C-27

3.2 80-COLUMN CARD INPUT FORMAT

For those i n s t a l l a t i o n s whose peripheral equipment configuration includes an
on-line card reader, TRIM I I I accepts source programs prepared in Hollerith
code on standard 80-coluran cards as well as source programs prepared on paper
tape. The two input types may be intermixed.

B a s i c a l l y the coding format i s similar for either card or paper tape unit.
Interpretation of coding separator symbols for card input i s given in
Table I I I - C - 2 .

TABLE I I I - C - 2 . CODING SYMBOLS FOR CARD INPUT

Symbol Key Rows Punched

— • (s t a r t statement) ^ I R (none)

— • (s t a r t notes) ©©© 4,8 4,8 4,8

^ (carriage return) E E L) (none)

1 (v e r t i c a l l i n e) 11, 3, 8

• (point separator) 11, 4. 8

(period) © 12, 3, 8

, (comma) 0 0, 3, 8

+ (plus) 12

(minus) 11

The straight coding arrow i s interpreted according to i t s format position; i t
represents a SKIP key at the beginning of a statement and three dashes at the
end of a statement. The point separator i s represented by the * key in a l l card
input.

Card control: The ENDATA operation card followed by one blank card denotes
the end of a card input deck.

Coding format: The examples on the top of page III-C-30 i l l u s t r a t e the basic
coding format for card input: (Also see Figure I I I - C - 6) .

I I I - C - 2 8

to
sO

ICARO LABEL I OPERATOR 1 O P E R A N D S AND NOTES

•aSBBII III PAN —PROG • CMB • 4 OCTOBER 1964 XS-3 TO OCTAL INTEGER CONVERSION
Q33E10IIIII PAN — ^ 0 •
an<!tiiiRiiii — • ENTAU • PTMP XS-3 INTEGER TO AU

—P- ENTBK • 3 SHIFT INDEX
i 3 a g D 1 M — • ENTALK • 0

) 0 0 5 PANl —LSHA • 6
) 0 0 6 JPALZ • FAN 2
)) 0 7 — • ADDALK • 7774 CHANGE TO 6-BIT BCD 1
) 0J8 1 — • LSHAL • 14 1

Bi»ll
!Qf!!ei»llHl

PAN2 — • BJP • PANl
— • ENTBK • 2 SET INDEX FOR 3 CHARACTERS

PANS — • ENTAL • INCH CONVERSION LOOP
— • LSHAL • 2

e
(9
Z

ADDAL INCH (INCR) INITIALLY CLEARED
LSHAL
STRAL PTMP
ENTALK

laiaQDEii
LSHA

1 — ^ ADDAL • PTMP
' — • STRAL • INCR

— • BJP • PAN 3

Figure I I I - C - 6 . Typical Coded Programmer Card Input

DECK CARD
ID NO.

B017 0005

B017 0005

B0I7 0006

INS

NO. L W V N

CAT4 —•ENTAUB • D0G5-*MASK FOR SEARCH^

05 —•CMSK • CATIO V
• JPNOT* LOK-3 — • LOOK AGAIN V

Card format: Card format uses card columns 1-4 for deck i d e n t i f i e r , 5-8 for
card number, 9-10 for card insert number, 11-16 for the la b e l ,
and 21-80 for statement and notes.

p.4 5., ^8 9.,—^10 l l - ^ ^16 21-*

Deck Id Card No. Ins . Label Statement Notesy^
No.

Three dashes (—) , punched code 4,8, always follow the statement whether or
not there are notes. The REL (release) key terminates the card. TRIM I I I
makes no provision for the statement and notes to overflow one card. Any
attempt to continue notes on a second card results in improper generation
for that card.

The column-skip feature on the key punch provides a convenient means to bypass
unused columns reserved for the l a b e l . The keypunch operator begins a label
with column 11 and skips any unused columns between the end of the label and
column 21. I f no label i s present, the operator depresses the SKIP key and
the card i s automatically positioned at column 21. The statement always begins
at column 21. Figure I I I - C - 7 shows a typical input operation in punched card
format.

'00210067 F H M T l Ch*SK»SPACE NO P A R A G R A P H N U M B E R

I I I I I I I I I I I I I
I I I I I I I I I I I I I I I

g|0 9 | | t i i M ; i | (i i M 8 e i | i i | i i i i i i i t i i i i i M i i i i i t | (i i M i n i i i i B n i n 6 i s i i f l s i
1 I) > t < ' > • t t M i n i u i n i i i i i i t n i i ! > n) i » N > i i i) i a i i i i » H U M) > a a « < i t) « « a « i i 4 i n) «) i u u H S i i i s i i i M a i i i) i i H i i i i i i i i i i i i i i n n H

. n i | n i n i t n i | i n i n n n i t | i i n t t t M | i | n | i i i M i n i i n i n n i i n t i i n i n t i

i i K i g
n n II n n a
1 1,1 1 1 1

[2222222222222722222 227222

^3n3 3 n 3 n 3 3] | 3) n 3 3 |] 3 n]] J | 3 1 3 n) 3] 3 3]]) n 3 1]) n 3 3 3 3 3 13333333333333333333 333333

> | 4 4 4 (4 4 4 4 4 4 t | 4 4 4 U 4 4 4 | 4 4 | 4 4 4 4 4 |||4 4 4 4 (4 4 4 4 (4 4 M||4 4 4 4 4 < 1 4

|sn!iSSi!SSS$5SSS$iS3liSS5S$SiS|SSS|SSiS5$$S»SSS|93S|S$$ s s s s s s

S(tSSI|IEt|SS(S(StliltlltillllllSI|lfl(llitttt$ISI(gSS ttSiittiSI6(SStil6S8 ssstis

^ ? J ? 7 n ? | 7 1 7 n 7 7 r) J17 7 7 n J j | n m n 7 i |) ? i|i j | 7 ? 7] n J 7 7 7 17

0 i M M i i i i i i M i i i i i a t i i a i | i i t a i | | | i i t i i i i i i i t | g i i M (i i i i i i i i i i i i M i i i n a s i s tlllll

1 s!n!n9 5 i s | n i n s n M 9 m 9 n 3 i n i n i s | n i i i n i s i i s i i « n M S 9 i 3 ! s n n 3 n $ 9 9
> 1 1 < > 1 ' I I >• '1 1) IIII It IIII •! II a >< n 11 M n N II a n a)< n)i 11 a a >i a • • <• n It u Ji a •< li 41 a V u u »< u a SI H » u II u ti u H H i: u n n II ri 1) •)

999999
'1 -1 '1 H 1 K

Figure I I I - C - 7 . Typical Punched Card Input Operation

III-C-30

3.3 SOURCE PROGRAM CORRECTIONS

When so directed by a CORREC header operation, TRIM I I I w i l l perform source
program corrections in conjunction with an assembly run. Outputs from the
assembly w i l l include the requested corrections. The following rules govern
the use of the correction capability:

1) A maximum of 192 corrections per assembly i s allowed.

2) Corrections must follow the CORREC header.

3) A l l corrections must be loaded prior to the loading of the source
program to be corrected.

4) Corrections need not be in any special order. TRIM I I I w i l l sort the
correction items prior to merging them with the source program,

5) I f two or more correction operations bear the same integral and fractional
value, the l a s t such operation overrides. This permits programmers to
correct an erroneous correction,

6) Corrections are based on the assembler-assigned sequential line i d e n t i f i e r
for each source statement (see paragraph 2.2.4).

7) The integral and fractional portions of the correction i d e n t i f i e r must be
expressed in octal notation only. The integer i s limited to a maximum
of 6 d i g i t s ; the fraction (which indicates insertion or addition) i s
limited to 3 d i g i t s . The fraction i s a straight binary magnitude,
(for example, the correction i d e n t i f i e r s 12.2, 12*20, and 12*200 a l l
have the same value).

8 ; Corrections may be prepared on punched cards or punched paper tape.

3 . 3 . 1 PAPER TAPE CORRECTION FORMAT

The format of correction operations prepared on paper tape i s identical to
that required by the TRIM corrector (refer to input formats in the TRIM
corrector description contained in this manual) with the following exceptions:

1) Corrections must follow a CORREC header.

2) A maximum of six integral d i g i t s i s permitted.

3.3.2 CARD CORRECTION FORMAT

Special formatting rules apply to correction operations prepared on 80-column
punched cards. Except for the CORREC header each correction action requires
two cards. The f i r s t card contains the integer and fraction of the sequential
i d e n t i f i e r while the second card contains the correction operation i t s e l f . I f
the correction operation i s an insertion or replacement, the f i r s t ten columns
of this second card may also contain card identifications which are included in
the outputs 12 and 15 of the assembled corrected program, unless a DECKID
operator is used.

I I I - C - 3 1

On the f i r s t card, the integral portion of the sequential i d e n t i f i e r must begin
in column 11. A point separator (a s t e r i s k) must not be used. The fractional
portion, i f any, must begin in column 21 and must be terminated with the con­
ventional three dashes. I f there i s no fraction, one zero code followed by the
three dashes must s t i l l be punched beginning at column 21.

An E^DATA card followed by a blank card must always follow the l a s t correction
card even i f other cards are to follow in the assembly.

The following example of card correction format makes changes to the program
i l l u s t r a t e d in Figure I I I - C - 8 .

Column:

Card 9

Card 8

Card 7

Card 6

Card 5

Card 4

Card 3

Card 2

Card 1

LIBX00191

LIBXOOll

11

22

14

CAD

12

BITSUM

21

ENDATA

0*77

1

DELETE *3

0

0*1000 — Current Address

0 —

CORREC —

3.4 GROUND RULES

Regardless of the input format, there are certain conventions which the pro­
grammer must bear in mind when coding for TRIM I I I .

1) No label may exceed six characters. The label must not begin with a
number, the l e t t e r 0, nor may i t consist only of l e t t e r s LOK. The label
may never contain a +, comma, or point separator code.

2) The maximum size program which TRIM I I I can assemble i s limited only by
the number of memory locations above address 13(X)0Q used for label/tag
storage (3 words per label or tag),

3) Each break in addressing sequence constitutes a program area. A total
of 64 such areas i s permitted.

4) TRIM I operators SETADR and EQUALS are ignored by TRIM I I I . The ALLOC
operation replaces these two functions.

I I I - C - 3 2

PAGE 001

OUTPUT 12

MEM. STRG. USED 11061
00240 THRU 00404
01000 T«RU 07743
20000 THRU 21747

LOK INSTR LlID DECK CARD LO

0 LIBX 0001 BITSUM PR0G*JRS*6N0V64 FLEX
00240 34 0364 1 LIBX 0002 BITSUM JP*SEOK LIBBLD BOTTSTRAP LOAD
00241 76 0355 o

i - LIBX 0003 UPAKX RJP*ERP
00242 40 0247 3 LIBX 0004 UPAK CL*CHECK CLEAR ACCUM CKSUM
00243 42 0254 4 LIBX 0005 STRB*BNASTY SAVE B
00244 76 0345 5 LIBX 0006 UPAKl RJP*RF READ FRAME
00245 61 0244 6 LIBX 0007 JPALZ*UPAK1 IGNORE LEADER
0024 b 34 0270 7 LIBX 0008 JP*BILD

00247 00 0000 10 LIBX 0009 CHECK 0* ACCUM CKSUM
00250 00 0000 11 LIBX 0010 SUM 0* ZERO CONST
00251 00 0000 12 LIBX 0011 CAD 0* CURRENT ADDR
00252 00 0000 13 LIBX 0012 FAD 0* FINAL ADDR
tX)253 00 0076 14 LIBX 0013 BIO 76* BIOCTAL CODE
00254 00 0000 15 LIBX 0014 BNASTY 0* BKEEPER
00255 00 0000 16 LIBX 0015 BUWD 0* DATA I/O BUFFER
00256 00 0000 17 LIBX 0016 0*

00257 00 0000 20 LIBX 0017 0*
00260 00 0000 21 LIBX 0018 0*
00261 00 0000 22 LIBX 0019 0*
00262 00 0000 23 LIBX 0020 0*
00263 00 0000 24 LIBX 0021 0*
00264 00 0000 25 LIBX 0022 0*
00265 00 0000 26 LIBX 0023 0*
00266 00 0000 27 LIBX 0024 0*

00267 00 0000 30 LIBX 0025 0*
00270 40 0247 31 LIBX 0026 BILD CL*CHECK
00271 10 0250 32 LIBX 0027 ENTAU*SUM CL AU
00272 76 0335 33 LIBX 0028 RJP*BILD7 6 DIGITS OF ADDRS
00273 50 4717 34 LIBX 0029 LSHA*17
00274 46 0251 35 LIBX 0030 STRAU*CAD
00275 10 0250 36 LIBX 0031 ENTAU*SUM
00276 50 4703 37 LIBX 0032 LSHA*3

00277 70 0001 40 LIBX 0033 ENTALK*1
00300 74 0336 41 LIBX 0034 STRADR*BILD7+1
00301 76 0335 42 LIBX 0035 RJP*BILD7 GET REST OF ADDRS
00302 44 0252 43 LIBX 0036 STRAL*FAD
00303 70 0002 44 LIBX 0037 ENTALK*2
00304 74 0336 45 LIBX 0038 STRADR*BILD7+1
00305 76 0335 46 LIBX 0039 BILD2 RJP*BILD7
00306 32 0251 47 LIBX 0040 ENTB*CAD

Figure I I I - C - 8 . TRIM I I I Output 12 from Card Input

I I I - C - 3 3

5) When specifying a decimal integer, the l e t t e r D occupies one digit position;
therefore, the maximum decimal integer that can be expressed i s 99999D.

6) Assembler support subroutines TYPT, TYPC, PCHT, PCHC, and the debugging
package, DEBUG, are included in the TRIM I I I l i b r a r y of subroutines. The
programmer uses a CALL operation to retrieve them from the l i b r a r y . The
programmer may allocate these subroutines through normal ALLOC operations.
I f he does not allocate them, TRIM I I I w i l l assign them sequential
addresses immediately following the principal program. I f these sub­
routines are not assembled with the principal program and the programmer
has not provided for their allocation, TRIM I I I w i l l a r b i t r a r i l y assign
a l l references to them to the following fixed addresses:

TYPT 17000

TYPC 17160

PCHT 16400

PCHC 16560

DEBUG 17470

Each of these five subroutines uses the tag CHAN for a l l I/O instructions.
I t i s the programmer's resp o n s i b i l i t y to provide an ALLOC operation
equating CHAN to the appropriate I/O channel.

7) I f a program contains ADDA, ADDAB, SUBA, or SUBAB instructions, regardless
of whether or not a DK.SET operation was used, the following r e s t r i c t i o n s
s h a l l apply to loading a TRIM I I I output No. 5, 10, or 13 into computer
memory:

a) I f the program was assembled starting at an even address, i t must be
loaded starting at an even address.

b) I f the program was assembled starting at an odd address, i t must be
loaded starting at an odd address.

8) TRIM I I I informs the user of a duplicate label via a typeout on the on­
line typewriter. The typeout includes the sequential l i n e i d e n t i f i e r ,
the warning, DUP LBL, and the label name. Except for the warning typeout
TRIM I I I w i l l normally ignore duplicate labels equating a l l references to
the address of the f i r s t such la b e l . However, i f the user has allocated
a label which i s in fact a duplicate, that allocation i s lost with un­
predictable results in address assignment.

9) Any program to be assembled by TRIM I I I must be assembled for only one
32K segment of memory, either 000000 through 077777 or 100000 through
177777. This means that the assembled program must reside in one 32K
segment or the other, but not both. This does not preclude inter-segment
references which would be implemented exactly as for inter-bank references.
The TRIM assemblers do not provide any alarm indications for this condition.

III-C-34

4. TRIM I I I LOADING AND OPERATING PROCEDURES

4.1 BASIC INFORMATION

TRIM I I I i s a magnetic-tape-stored assembly system which accepts source programs
written with absolute or mnemonic function codes and symbolic addressing and
produces assembled output programs suitable for loading into the computer and/
or hard copy editing and documentation. TRIM I I I has been designed to f i t the
channel and equipment configuration of the center in which i t is used. The
assembler provides the user with a simple means for selecting three optional
modes of input, and each mode i s represented by a number code.

Input Mode Number Code

Cards 000001

Paper Tape 000002

Magnetic Tape 000003

Each TRIM I I I has one normal mode built into i t (the one prevailing at the center
where i t i s used). I f only the normal mode i s required, the user need not con­
cern himself with the modes at a l l . However, i f different input modes are to
be used (for example, card and paper tape in combination) TRIM I I I users must
fami l i a r i z e themselves with the input mode codes and their use.

Prior to loading and operating TRIM I I I , the computer and the I/O equipment
(magnetic tape unit, I/O console or card processor) must be placed in the
operational state with a l l switches in the normal operating position.

4.2 LOADING TRIM I I I

1) For i n s t a l l a t i o n s possessing a magnetic tape wired bootstrap:

a) Mount the TRIM I I I assembler tape on magnetic tape cabinet 1,
transport 1, and set the corresponding write enable button on
the magnetic tape control panel.

b) At the computer control panel, press MASTER CLEAR, LOAD, and
START. The TRIM I I I executive w i l l be loaded into memory and the
computer w i l l stop with P = 01404.

2) For i n s t a l l a t i o n s possessing a paper tape wired bootstrap:

a) Mount the TRIM I I I assembler tape on magnetic tape cabinet 1, trans­
port 1, and set the corresponding write enable button on the magnetic
tape control panel,

b) Mount the TRIM I I I paper tape loader in the paper tape ireader.

c) At the computer control panel, press MASTER CLEAR, LOAD, and START.
The TRIM I I I executive w i l l be loaded into memory and the computer
w i l l stop with P = 01404.

III- C - 3 5

4.3 INITIALIZING TRIM I I I

When the computer stops with P = 01404, i t i s necessary to identify the magnetic
tape configuration to be used for assembly. This i d e n t i f i c a t i o n need be made
only once for a l l subsequent assemblies unless i t i s necessary to change the
configuration, TRIM I I I expects tape information in the format OOXXCT where XX
i s the channel number (b i t s 6 through 11), C i s the tape cabinet number (b i t s
3 through 5), and T i s the transport number (b i t s 0 through 2) . Thus, 001512
represents channel 15, cabinet 1, transport 2, and 000112 represents channel
1, cabinet 1, transport 2.

The procedures required to i n i t i a l i z e TRIM I I I are as follows:

1) Set the AU register to the number (OOXXCT) which i d e n t i f i e s the location
of the assembler tape.

2) Set the AL register to the number (OOXXCT) which ide n t i f i e s the transport
to be used as the magnetic scratch tape,

3) Start the computer. The computer stops with AU and AL cleared.

4) I f only two transports are to be used in the assembly, start the computer.
When the computer stops with P set to 01400, TRIM I I I i s ready for use
(refer to paragraph 4.4).

5) I f more than two transports are to be used in the assembly, perform the
procedures below.

a) I f source input i s to be from magnetic tape, set the AU register to
the number (OOXXCT) which i d e n t i f i e s the transport to be used for
source input.

b) I f a magnetic tape output other than output No. 10 i s to be requested,
set the AL register to the number (OOXXCT) which id e n t i f i e s the
transport on which the output i s to be produced. Output No. 10 i s
always produced on the scratch tape.

c) Start the computer. When the computer stops with P set the 01400,
TRIM I I I i s ready for use (refer to paragraph 4.4).

I f , at any time during assembly, the user wishes to change the magnetic tape
configuration, he may do so by setting P to 01404 and repeating the i n i t i a l i ­
zation procedures.

4.4 USING TRIM I I I

1) For paper tape input, mount the source tape in paper tape reader.

2) For card input from the UNIVAC 1004 Card Processor, i n i t i a l i z e the
UNIVAC 1004 Card Processor as follows:

a) Mount the source card deck in card reader input hopper,

b) Press CLEAR, START, FEED, and RUN.

III-C - 3 6

3) For magnetic tape input, mount the input tape as follows:

a) I f two tape transports are being used, mount the input tape on
the scratch tape transport,

b) I f three or four transports are being used mount the input tape
on the transport designated for the input tape. Since this transport
is used only for magnetic tape input, no warning typeout occurs,

4) Master c l e a r .

5) Set P = 01400.

6) Set PROGRAM SKIP key 1.

7) For error typeout suppression, set PROGRAM S K I P key 3 ,

8) I f source input i s other than the normal mode, set AL to the proper
code. (For normal mode, AL remains equal to zero.)

9) Start the computer.

10) TRIM I I I prepares to read input. I f further operator action i s necessary
to continue assembly of the input currently being read, the computer
stops after an operator instruction typeout occurs on the on-line type­
writer. Refer to paragraph 4.5 to determine the operator action required.

11) When the current read-in i s complete, the computer stops with AL equal to
zero. At this time the operator must perform one of the following:

a) I f additional input i s required, mount the source input on the input
device as directed in 1), 2) , or 3) above and restart the procedure
at step 8) above.

b) I f no additional input i s required, release PROGRAM SKIP key 1 and
start the computer. TRIM I I I begins assembling the program. I f
further operator action i s necessary, the computer stops after an
operator instruction typeout (r e f e r to paragraph 4.5).

12) I f for any reason the operator wishes to abort an output during process­
ing, he must perform the following procedures:

a) Stop the computer.

b) Master clea r the computer.

c) Set the P register to 01401.

d) Start the computer. TRIM I I I begins processing the next requested
output. I f a l l outputs have been processed, the typeout SELECT
OUTPUTS IN A w i l l occur.

III-C-37

NOTE: Since TRIM I I I includes correction features, i t i s possible to correct
a source program and assemble i t for the desired new outputs in the
same assembly run. Although this feature i s intended primarily for the
paper tape input mode, i t may be used with any combination of input
modes. Correction tapes or cards must be read in before the source
program(s). I f ithe assembly consists of multiple source programs, i t
must be remember]ed that the sequential line i d e n t i f i e r s are cumulative
and the corrections are based upon these i d e n t i f i e r s in any given
assembly. The input of the corrections and source program proceeds as
in a normal assembly run. After the corrections have been read in, the
source program(s) must follow with PROGRAM SKIP key 1 s t i l l set. Any
outputs selected w i l l contain the requested corrections including source
program outputs 1 5 (cards), 1 1 (paper tape), and 1 6 (magnetic tape).

4.5 OPERATOR INSTRUCTION TYPEOUTS

TRIM I I I contains limited error detection capability. The majority of programmer
errors are handled i n t e r n a l l y . However, i t i s desirable when practicable to
permit the user to take corrective action during the assembly process in order
to achieve an accurate assembly. The headings of the subparagraphs which follow
are instruction typeouts that may occur during assembly. Information given
in each subparagraph directs operator actions required by the typeout. When
PROGRAM SKIP key 3 i s set, certain typeouts are suppressed.

4 . 5 . 1 SET KEY 1

This typeout w i l l occur i f the user has not set PROGRAM SKIP key 1 at the start
of the assembly process. To correct, set PROGRAM SKIP key 1 and start again,
PROGRAM SKIP key 3 has no effect on this error typeout.

4.5.2 IDENT. MTUS IN A

This typeout occurs when no magnetic tape configuration id e n t i f i c a t i o n has been
made prior to the f i r s t assembly. To correct this condition, perform the follow­
ing steps:

1) Identify magnetic tape units exactly as outlined in paragraph 4 . 3 of
this section.

2) Start the computer. PROGRAM SKIP key 3 has no effect on this error
typeout.

4 . 5 . 3 I D E N T I F Y TAPE JOB IN AL

This typeout occurs when the magnetic tape input to be read i s in the format
produced by the CART (card-to-tape) program. Since this format may contain
more than one source program on the same tape, the operator must identify the
program to be read from tape by performing the following actions:

1) Set the AL regis t e r to the number which i d e n t i f i e s the position of the
program on the tape (1 for the f i r s t program, 2 for the second program,
and so fort h) .

III-C-38

2) Start the computer. TRIM I I I directs the tape unit to pass tape un t i l
the selected program i s reached and then begins reading the input program.
I f two or more programs on the same tape are to be assembled together,
these procedures are repeated for each program,

4.5.4 REMOVE INPUT TAPE TO SAVE

This typeout occurs when input has been read from the magnetic tape transport
identified as the scratch transport. The output No, 10 w i l l also be written
on t h i s transport during the assembly process. Therefore, i f the input tape
i s to be sayed, the operator must change the tape on the scratch transport
before the output No. 10 i s produced. This typeout occurs each time a magnetic
tape read-in i s completed; therefore, i f more than one input program i s read
from the same magnetic tape, the operator must remove the tape only after the
la s t input has been read. After the l a s t magnetic tape input has been read
and the tape has been removed, the operator must mount a scratch tape on the
scratch tape transport and proceed with the assembly at step 11) of paragraph
4.4.

4.5.5 SELECT OUIPUTS IN A

This typeout may occur twice during an assembly. I f i t occurs before any out­
puts have been produced, i t indicates that the programmer has neglected to
select outputs via a programmed output operation. To correct this condition,
perform the following steps:

1) Set AU5_Q and AL5_o to desired output numbers.

2) Start the computer,

a) The computer stores the outputs and stops. Repeat steps a) and
b) u n t i l a l l desired outputs (not more than eight) have been
selected. When the procedure i s repeated with either AU or AL
equal to zero, TRIM I I I assumes a l l selections have been made
and proceeds. PROGRAM SKIP key 3 has no effect on this typeout.

I f this typeout occurs after at least one output has been produced, i t indicates
that the assembly i s complete. I f another program i s to be assembled at this
time, the operator may elect to stack the output No, 10 for the next program
behind the output No, 10 for the previously assembled program on the scratch
tape. To select this option, perform the following steps:

1) Set PROGRAM SKIP key 2,

2) Start the computer. After TRIM I I I performs an index table adjustment,
the computer stops with P set to 01400.

3) Release PROGRAM SKIP key 2, and begin assembly of the next program.

II I - C - 3 9

4.5.6 I F NECESSARY CHANGE SCRATCH TAPES FOR TOTS OUIPUT

This typeout occurs when a magnetic tape output, other than output No. 10, has
been requested but no tape transport has been identified for magnetic tape
output. The typeout indicates that TRIII I I I i s ready to write the magnetic
tape output on the scratch tape and destroy the output No. 10 in the process.

I f the operator does not wish to save the output No. 10, he may star t the
computer to continue assembly. I f the operator does wish to save the output
No. 10, be must change the tape on the scratch tape transport before starting
the computer to continue assembly.

4.5.7 MTU ERROR CTXX IMPR. COND.

This typeout indicates an error condition on the XX tape unit. The user
must correct the condition before restarting the assembly, PROGRAM SKIP key 3
has no effect on this error,

4.5.8 SET BASE ADDR. IN AL

This typeout indicates that the programmer has neglected to allocate the f i r s t
program l a b e l . To correct, set A L j s ^ to the desired base address and s t a r t .
I f PROGRAM SKIP key 3 i s set, TRIM I I I a r b i t r a r i l y allocates the program to
address 01200, and no typeout occurs.

4.5.9 NNNNN DUP. LBL XXXXXX

This typeout occurs when the source program contains at least two identical
l a b e l s , TRIM I I I equates a l l references to a duplicate label to the address
of the f i r s t such l a b e l . TRIM I I I does not stop after the typeout. NNNNN i s
the sequential program l i n e i d e n t i f i e r number and XXXXXX i s the duplicate
l a b e l . I f PROGRAM SKIP key 3 i s set, the typeout does not occur.

4.5.10 UNALLOC TAGS
NNNNN XXXXXX AAAAA

By far the most common programmer error i s the use of a tag for which no
allocation was made and which does not appear anywhere in the source program
as a label. TRIM I I I w i l l stop after typing NNNNN XXXXXX (sequential line
i d e n t i f i e r and tag name). To correct, perform the following steps:

1) Set AL to the address at which the tag i s to be allocated (i f the
tag i s to be allocated to zero, leave AL c l e a r) .

2) I f the tag refers to an instruction contained within the program
being assembled, set AL^y to a 1,

3) I f the user wishes he may allocate a l l future unallocated tags to the
address in AL by setting AU to any nonzero value.

4) Start the computer. TRIM I I I types the manual allocation and uses i t to
continue assembly.

II I - C - 4 0

The typeout UNALLOC tags occurs once only. Thereafter, only the i d e n t i f i e r
and the tag are typed. I f the user e l e c t s to allocate a l l unallocated tags
to a fixed address, only the f i r s t such tag i s typed.

I f PROGRAM SKIP key 3 i s set, TRIM I I I a r b i t r a r i l y allocates a l l unallocated
tags to address 00000.

4.5.11 TCS ERR XX TBL XX

This typeout indicates the table control system (TCS) of TRIM I I I has detected
an error while attempting to operate on the indicated table. When meaningful,
the number of the item being manipulated when the error occurred i s displayed
in AU, Table I I I - C - 2 describes the errors which TCS detects.

TABLE I I I - C - 3 , TCS ERRORS

Error
Number Meaning Usual Cause

1 I l l e g a l Table Number*

2 I l l e g a l Media Designation*

3 I l l e g a l TCS Function Code* Assembler error. Bad
TRIM I I I tape

4 Misused Q-Replace

5 I l l o g i c a l TCS Function Sequence

6 Table Not Found* CALL used but no Library
Directory on tape

7 Table Overflow Too many labels, segments,
or corrections

8 Too Many Tape Units Referenced
or Item Length of Zero Loose cabling

9 Unrecoverable Tape Error
Table 1

Table 3

Bad scratch area behind
TRIM I I I
Bad scratch tape

TRIM I I I has been designed so that a table overflow error w i l l seldom occur.
I f a table overflow error does occur, the programmer may extend the lim i t s of
the table as set in the table design and re s t a r t at the TCS entrance 10012.

*Incorrect table design or control parameters.

I I I - C - 4 1

I f the li m i t s cannot be extended, the programmer must eliminate the cause of
the overflow or reassemble his program in smaller segments, PROGRAM SKIP key 3
has no effect on errors of this type.

4.5.12 POLY-CODE BANK OFL

This typeout indicates that generation resulting from a poly-code used in the
source program has overflowed from one bank to the next. TRIM I I I does not
stop following this typeout but w i l l produce the selected outputs even though
they w i l l require correction. PROGRAM SKIP key 3 has no effect on this typeout.

I I I - C - 4 2

SECTION IV-D. TRIM LIBRARY BUILDER (LIBBLD)

1. GENER.4L INFORMATION

The TRIM I I I l i b r a r y builder, LIBK^D, i s a program by means of which a user may
add, delete, or replace programs on the assembler l i b r a r y . LIBBLD also has the
capability to furnish l i s t i n g s of the l i b r a r y directory and any or a l l of the
programs in the l i b r a r y . The l i b r a r y builder i s designed for use with the
following minimum equipment configuration:

1 computer with 16K words of memory
1 magnetic tape system with two transports
1 I/O console with paper tape reader, paper tape punch, and typewriter

Optional equipment includes:

1 UNIVAC 1004 card reader and high-speed printer
1 UNIVAC 1004 card punch

Input to and output from the l i b r a r y builder i s i d e n t i c a l to TRIM I I I source
language formats.

A TRI.! I l l l i b r a r y consists of two parts, the directory which records the names
of the l i b r a r y subroutines ordered by t h e i r physical appearance on the tape, and
the l i b r a r y of subroutines themselves. The l i b r a r y directory i s stored on
magnetic tape, preceding the l i b r a r y .

2. INPUIS

2.1 BUILDING OR UPDATING

The command tape or deck must always be preceded by a LIBUPD header control
operation and a l i b r a r y number i d e n t i f i c a t i o n operation. For example:

LIBUPD

LIBNO

name date

l i b r a r y number

IVhen building a new l i b r a r y , the l i b r a r y number i s an assignment of t h i s number
to the l i b r a r y . Once a l i b r a r y has been b u i l t , LIBBLD checks the assigned
number against that of the LIBNO operation to ensure that they correspond. I f
they do not, an error typeout occurs.

The operations allowed in updating a l i b r a r y are:

REC (record - add program at beginning of l i b r a r y)

DEL (delete - delete program from l i b r a r y)

WDG (wedge - i n s e r t program in l i b r a r y , not at the beginning)

IV-D-1

RPL (replace - program with new program)

Only the REC operation i s used when building a new l i b r a r y .

These operations are accomplished in two steps:

1) Directory building or updating,
2) Library building or updating.

To insure proper c a l l i n g , i t i s the r e s p o n s i b i l i t y of the user to enter a l l
programs in the proper order in the directory. This i s dictated by the fact
that the magnetic tape can never be rewound when c a l l i n g programs from the
li b r a r y during an assembly run. This requires any program i n t e r n a l l y c a l l i n g
on another to precede the ca l l e d program on the l i b r a r y .

The LIBBLD checks a l l c a l l s within a program to determine i f they are l i s t e d
in proper order in the directory, and i f not, prints out a c a l l error on the
typewriter.

Input to LIBBLD may be eit h e r on paper tape or punched cards.

The format for paper tape input i s i l l u s t r a t e d in the following example of a
command sequence:

-•LIBUPD MRS-JUNE 65

-• LIBN0»35 — •

-• REC-DOG — •

-• DEL* CAT

WDG«MUTT oJEFF

-• RPL'MOP

building or updating header.

command to update l i b r a r y 35.

command to enter program DOG at
beginning.

command to delete program CAT.

command to ins e r t program MUIT
following program JEFF.

command to replace old program
MOP with new.

end of commands.

Each entry must be a separate statement. The tab at the end of each statement
may be omitted; however, a carriage return must precede each entry (each l i n e
shown above). A label may precede the beginning tab on the LIBUPD and LIBNO
statements.

IV-D-2

The format for card input i s i l l u s t r a t e d in the following exnmple of comm.ind
sequence:

Column 21 i s the starting point of the command. A blank card must appear as
the l a s t card in the command deck.

2.2 LISTING

The command tape or deck must always be preceded by a LIBLST header control
operation and a l i b r a r y number i d e n t i f i c a t i o n operation. For example:

LIBLST • name date

LIBNO li b r a r y number

The user may request a l i s t i n g of the directory (DIR), an individual subroutine,
or the entire l i b r a r y of subroutines (L I B) .

Input to LIBBLD may be either on paper tape or punched cards.

The format for paper tape input i s i l l u s t r a t e d in the following example of a
command sequence:

— L I B L S T « J R S « J U N E 65 — • l i s t i n g header.

— • LIBfK)»40 — • command to l i s t from l i b r a r y 40.

— > LST*DIR — • command to l i s t directory.

—p' LST»LIB — p command to l i s t whole l i b r a r y .

— > LST*CAR•COW*RAT — • command to l i s t programs, CAT,
COW, and RAT.

end of commands.

The tab at the end of each statement may be omitted; however, a carriage
return must precede each entry (each l i n e shown above). A label may precede
the beginning tab on the LIBLST and LIBNO statements.

The format for card input i s i l l u s t r a t e d in the following example of a command
sequence;

IV-D-4

3. OUTPUTS

3.1 BUILDING OR UPDATING

When using LIBBLD to build or update a l i b r a r y , the output i s the new li b r a r y
tape, in the format i l l u s t r a t e d in Figures IV-D-1 and IV-D-2,

Word

30^

Word 0

1

2

3

4

5

7 7 0 0 7 7

7 7 0 0 7 7

LIBRARY NUMBER

PROG

LABEL 1

PROG

LABEL 2

A 30o word block of
770077 precedes the
li b r a r y directory, and i t
is terminated by two words
of alphas and one word
of 770077.

N - 3

N - 2'

N - 1

N

N + 1

PROG

LABEL N

a Q a

a a a

7 7 0 0 7 7

Figure IV-D-1. Library Directory

Word 1

30,

1 1 1 1 1 1

1 1 1 1 1 1

PROG 1

0 1 0 1 0 1

0 0 0 0 0 2

PROG 2

0 1 0 1 0 1

0 0 0 0 0 2

\

N—-

PROG N

0 1 0 1 0 1

0 0 0 0 0 2

1 1 1 1 1 1

A 3 0 Q word block of
m i l l precedes the
l i b r a r y , and i t i s
terminated by one word of
1 1 1 1 1 1 . Each major
program i s followed by a
word of DELTAS and a word
of 0 0 0 0 0 2 .

3.2 LISTING

Figure IV-D-2. Library Routines Format

When using LIBBLD to l i s t the directory or any or a l l of the li b r a r y sub­
routines, the output may be requested on punched paper tape, punched cards,
or a high-speed printer.

4. OPERATING PROCEDURES

Prior to operating the l i b r a r y builder, the computer, magnetic tape unit, and
I/O console must be placed in the operational state with a l l switches in the
normal operating position. I f the 1004 card processor i s to be used, i t must
also be placed in the normal operating position. The li b r a r y builder absolute
bioctal tape must be loaded into computer memory via a u t i l i t y package. The
procedures required to operate the l i b r a r y builder are given below. While
operating the program the user must observe typeouts on the console typewriter
and refer to the dir e c t i o n s provided in paragraph 5.

4.1 LIBRARY BUILDING AND UPDATING PROCEDURES

1) Mount the tape, on which the new or updated l i b r a r y i s to be written,
on a tape transport,

2) I f the process i s an update, mount the old l i b r a r y tape on a second
tape transport.

3) I f input i s to be from paper tape, mount the tape containing the con­
t r o l and corranand operations in the paper tape reader,

4) I f input i s to be from cards, mount the control and command card deck
in the 1004 card input hopper and perform the following steps:

a) Press the CLEAR, START, FEED, and RUN buttons on the 1004 console.
b) Set PROGRAM SKIP key 3 on the computer.

5) I f a new l i b r a r y i s to b u i l t , set PROGRAM SKIP key 1.

6) I f the operation i s to be performed in dual-channel mode, set the
appropriate channel mode switch to the dual position. I f a l i b r a r y
was written on tape in dual-channel mode, i t must be updated in dual-
channel mode.

7) Master clear the computer.

8) Identify the new and old l i b r a r y tapes in AU and AL, respectively, by
setting the magnetic tape channel No. in bit s 9 through 6, the cabinet
No. in bi t s 5 through 3, and the transport No. in b i t s 2 through 0. I f
dual-channel mode i s to be used, the channel No. must be odd.

9) Set P to 20000.

10) Start the computer. The control and command input i s read and the
computer stops,

11) Set PROGRAM SKIP key 2.

12) I f any new programs are to be written on the new l i b r a r y , mount the
input program on the appropriate input device (paper tape reader or
card reader). I f input i s from cards, PROGRAM SKIP key 3 must be set;

i f input i s from tape, i t must not be set. I f no new programs are to
be written, proceed with step 15).

13) Start the computer. The input program i s read, and the computer stops.

14) Repeat steps 12) and 13) for each new program to be written on the
l i b r a r y .

15) Release PROGRAM SKIP key 2.

16) St a r t the computer. The building or updating process i s performed and
the new or updated l i b r a r y i s written on tape. When the process i s
complete, the computer stops after the typeout DONE occurs.

4.2 LIBRARY LISTING PROCEDURES

1) Mount the l i b r a r y tape on a tape transport.

2) I f l i s t i n g commands are on paper tape, mount the tape in the reader.

3) I f l i s t i n g commands are on cards, mount the cards in the 1004 card
reader, and perform the following steps:

a) Press the CLEAR, START, FEED and RUN buttons on the 1004 console.
b) Set PROGRAM SKIP key 3 .

4) Set PROGRAM SKIP key 0 to select output on the 1004 printer; set PRO­
GRAM SKIP key 4 to sel e c t output on the 1004 card punch. I f neither of
these keys are set, output i s on punched paper tape. Only one of the
keys may be set during a given run.

5) Ensure that the output device i s ready (paper in the printer, tape in
the tape punch, cards in the card punch),

6) I f card or printer output i s selected and input i s from tape, press
the OFF, ON, CLEAR, START, FEED, and RUN buttons in sequence on the
1004 console.

7) I f the operation i s to be performed in dual-channel mode, set the
appropriate channel mode switch to the DUAL position. I f a l i b r a r y
was written in dual-channel mode i t must be l i s t e d in dual-channel mode.

8) Master clear the computer.

9) Identify the l i b r a r y tape address in AL by setting the magnetic tape
channel No. in b i t s 9 through 6, the cabinet No. in b i t s 5 through 3,
and the transport No. in b i t s 2 through 0. I f dual-channel operation i s
selected, the channel No, must be odd.

10) Set P to 20000.

IV-D-8

11) Start the computer. The l i s t i n g s defined by the input command operations
are produced on the selected output device and the computer stops a f t e r
the typeout DONE occurs.

. TYPEOUTS

1) CALL ERR XXX)0(X.

Program XXXXXX was called but i s not found in the directory or i s not in
the proper order. I t must follow the c a l l i n g program on the l i b r a r y
because the tape i s never rewound while c a l l i n g programs during an
assembly run. Correction must be made before processing i s restarted.

2) DIRECTORY.

This typeout, followed by a l i s t i n g of the directory, occurs whenever a
l i s t i n g of the directory i s requested on paper tape,

3) DONE.

The building, updating, or l i s t i n g process i s complete,

4) ILL-OPERATOR XXX.

An i l l e g a l updating command has been detected. Processing continues
and the i l l e g a l command i t ignored.

5) IMP COND.

An improper condition has been detected on a magnetic tape unit. Correct
the improper condition and s t a r t the computer. The magnetic tape func­
tion w i l l be attempted again.

6) LIBNO XXX.

Library XXX i s the one being updated or l i s t e d .

7) NO HEADER.

No legal header has been read. Correct the tape or card deck, place the
corrected tape or card deck in the reader, and s t a r t over.

8) NO LIBNO.

The l i b r a r y to be updated or l i s t e d does not contain an identifying
l i b r a r y number. Correct the tape or card deck, place the corrected tape
or card deck in the reader, and s t a r t over.

9) READ XXXXXX NEXT.

The wrong source program tape or deck was mounted in the reader. Mount
the correct program and s t a r t the computer.

10) TCS ERR Z TBL Y.

The table control system has detected an error while attempting to
operate on the indicated table Y. The error i s unrecoverable and i s
the result of internal trouble or a magnetic tape error (X = 9) .

11) WRONG LIBNO XXX.

XXX i s the l i b r a r y mounted on the tape transport but i t i s not the one
requested for updating or l i s t i n g . However, i f the user s t a r t s the
computer, l i b r a r y XXX w i l l be updated or l i s t e d . I f updating i s r e ­
quested, the new l i b r a r y assumes the l i b r a r y number which was input via
the command card deck or paper tape.

12) XXXXXX NOT IN DIR,

Program XXXXXX i s eit h e r not found in the directory or has been deleted
by command.

IV-D-10

