
Bomber

Weapons

Defense

Computer

Study

Final Engineering Report

INCREMENTAL COMPUTER
LOGIC AND- PROGRAMMIN

Volume 4 October 1956

CONTRACT NUMBEI
A. 33 (616) -2326

PROJECT NUMIEI
UNIVAC 2052

'm,a 21 I'rmst ~U'c
DMSION O. S'IIIY lAND COIPOIATION

ltOI WI. T M'."IHAHA AVI. • T. PAUL Wot 1.0 T A

CONTRACT NUMBER
AF33(616)-2326

FINAL ENGINEERING REPORT

VOLUME IV

INCREMENfAL COMPUTER LOGIC
-0

AN> PROGRAMMI Ni

PX 56-4

DIVISION Of SPERRY .RAND CORPORATION

1902 W £ S T MIN N t: H A H A A" E. • T. , AU L W~. 'M INN £ SOT A'

PROJECT NUMBER
UNIVAC 2052

INTRODUCTION

This volume describes the incremental computer from the operational point

of view" . In brief, the computer accepts real-time analog inputs and ·continu-

ously modifies pertinent functions of the variables so as to yield updated out-

put functions. For example, the. fire control problem has as inputs the vector

position and vector velocity of an attacker and computes as outputs the azimuth

and elevation ,lead angles. Only the change .of the output function is computed o

and this is added to the initial function value to give the updated value. The

computer operates by performing one basic computation (whose formulation is the

basic algorism discussed later) about 64 times every drum revolution. The

quantities necessary for a computation are read off the drum serially and out

of the random access m~mory during a minor cycle.

The detailed analysis of the mathematical operation of the compUter and

the points considered in programming and coding follow as outlined below.

A knowledge of Section I is not strictly necessary to the practical opera­

tion of the computer except perhaps for the section on errors o It is invaluable

for a mathematical understanding of the computer action, however, and the spe-

cia I techniques discussed indicate interesting but les~ obvious possibilities

of the computer.

11

1.

TABLE OF CONTENTS

MATHEMATICAL ANALYSIS OF OPERATIONS

Introduction e e .. e • e

Machin~ Algorism .. 0 • .. • • "

Qualitative Description of Algorisms

(1) Integral 1/1 • ..
(2) Time Derivative · Q

(3) Logarithm · .. C>
(4) Exponential 0 .. e .. e .. fl ..

fl .. · " " e

.. CI .. 1/1

.. '" t! lOa

.. " • f) ~ ..

d~ Quantitative Description. of Incremental Arithmetic

"
,. ..

• co " .. • ..
CI .. '"

..

..
"
e

Page

1

1
3
5

to
1
8
8

Operations ~ e " f) 1/1 • e a
(1) Sum and Difference · .. III " " .. ., e .. III .. e •
(2) Product • .. · .. (OJ " .. fl " e "
(3) Quotient •, CI " III 0 I!I .. " e ..
(4) Square Root e .. '" .. e e " " e <I> f) " It ill

(5) Integrals CD .. e e .. " ill .. (I e ..
(6) Deri vat! ves ill e
(7) Integral Wi th a Reciprocal Integrand

" .. ill II .. • " (8) Exponential o. II " .. 0 .. 0 e (\I <I> " e e '"

Special Algorisms III e .. • .. ill ..

(1) Sign • .. . 0 • • '" e • <II ill '" ill ..
(2) Absolute Value

" .. 0 dI • e " 6 " 0 e i!I " (3) Independent Variable (Time) Control .. • \II 6 0 e fI <!l

(4) Gating e f) · • " • e .. " (5) Errors in Incremental Algorisms ; .. • " " .. '" 8> .. 4l

(6) Summary CI .. • 0 .. III • (I} <!l " .. " (II " " ..

f. Applications of the Incremental Techniques Using Several

•
•
..
"
(I

I!I>

..
of)

..
6

i!I

•
e

..

9
10
11
11
12
13
15
16

16

11
16
20
21
26
31

Steps e f) e 0 " e " f) e " \II • e e " e 32

(1)
(2)
(3)
(4)

Filters e e e

Polynomial e.....
Sine And Cosine e ..

Conclusion .. . e " " • .. " .. e e " " " " e 0

32
33
35
42

iii

2.

"ICf
I

..0
U)

><
CoD

TABLE OF CONTENTS (conte'>

PHOGRAMMING THE INcREMENTAL COMPUTER

Be Introduction
" ... " " III e '" ... " " "

b" Definitions
" III " '" III " ill • • " 0 e ..

Co Programming
" .. e <II <II <II " ill <II " <II ., 0

(1) Choice Of Functions .. III " ~ " "

(2) Sequencing ... • 0$ '" " -~ " " III "

(1) Conservative Scaling !l • .. - «> " tl> " (2) Word Length Considerati~ns
'" " " II>

(3) Inputs - Range Expansion c e " " •
(4) Example: Scaling x2 ",

" 61 tl> "

Gl " • II> .. III

"
.,

" " e e

" III " " e !II

/I) f!) '" (/) III "
61 I') <II IS> it "
• " " " " "
"

., III " " '"

C! III (fJ

<II <II •
... I!J "

61 •

e (I

" " "
e • it

e e .,
e " <!J

Page

44

44
45
45

45
48

51
55
56
56

eo Coefficient Relationships ""., e " Gl <II • e III 4l fl III "" 51

(1) Conventions 0 f) '" • e " "-,, III ... fl ., 0' III

(2) Basic Algorism a~d Associated Equations
c .. '" "

Initial Values.
,,'<II " •• so-" • " e c e .. '" " " <II '" " Q.

(1) Introduction " " " " ~ " " " II ., .. III

(2) C?mparison " e e ... " " III II> •

59
59

64
64

9<0 .. Methods <0 <0 <0 • " II> 0 " <Ii 01> " <II ." C (fJ S - c- - \II " e " e C III 65

flO

(1) Introduction
(2) Sign Convention

Checking Of Computed Program

(1) Introduction
-(2) Simulation

Simulation " fJ "

(1) Introduction
(2) SIMIC . " " (3) Program • " (4) Constants

"

" .
" e

" " .. e

(5) Output Heading t!>

(6) Input
" . " ., e

(7) Control " " (6) Computation Time
(9) DYSIMIC

" " " "

" c . ·
" " " "
" .. e ..
., <Ii " e

., d) t!> It

" e " "
" .. " e

e e .. "
'" " " e

" .. " " -e " • C

" " 0 .. " - " " " •
" • " " ," • • •
ill d) " <II II> " e ..
.. It . $.. t!> " e

e It " IS II'> " <!l III

.. .. e e .. " " e

" " . ill " e " "
Q " e " C " e II

e e <I) "
e e <I) "
8 ill " It

" II'> " •
" " " <II

" " e III

\II " " "
" '" " e

" II e '"

" e

e e

" <!J

'" 0

(! '"
It e

" . e

., '"
0 e

68

66
70

70

70
71
71
72
72
73
73
74
14

3"

TABLE OF CONtENTS (cont.)

Demonstration Program
" " II

o ., ., " ., I) "
• 0

COllIN;
C) • 0 0 " c> ~ " 0 e 0' " I> e " " ill ., " •. It ., " e e .,

Introduction ." • II

Prodedure In Coding "
~ • " " • • e " ., • " II ., e • • •

., " • ill 1/ • • • III • I> " " • • • •

Page

15

92

92
92

(1) Constants " QQ. <I I), " 0 • " • e • 0 " " , •• 1/ e 99
(2) Input/Output "" III " • 0 • I) • C) " I) I> " " .. • .,,, 100
(3) Combining Commands C> II " • • • 0 ., (I ., III C) .. II ". 102
(4) Word Le.ngth " " " " <I ., • 41 0 " " • • " /e • ., " ". 103
(5) Use of Double Head on R-Line " " ., " " I> III 0, • fI., 103
(6) Stability Comparisons " " " " I> I) I) " ., • e • " ". loa

" .,

v

Table No.

1

2

3

4

5

6

"1

8

LIST OF TABLES

Equations " III 0 ell () ell " 4)'"

Inputs

Tabulation No,,',! o CI 0 I) '" 11), III, • - I') I) 0 II • '0 " I') ell It

Sample Scaling Calculations ~
" III • •

Page

77

78

79

81

Sample~)Ini tial Value Calculat ions II " " • " • fI ell e 82
\

Incremeiptal Computer Program - Tabulation NO e 2 C!I" 83

I,ncremental Computer Program - Tabulation No~ 3 85

Demonstration Program Univac SIMIC Input Tape ~ • $ 81

v1

Figure

1

2

3

LIST OF FIGURES

Setting for ,,2

Tabulation' No. 2 Check • 41

Command Codes o Incremental Comp~ter

fI t

• • 41 "

o • ~ • 0 • " 0 0

Page

58

69

93

vil

1. MATHEMATICAL ANALYSIS OF OPERATIONS

a o INTRODUCTION. - The application of digi tal terchntques to the methods

of solving mathematical problems normally associated witn analog computers leads

to a hybrid computer that has some of the advantages and some of tbe limitations

of both the analog computer~nd the general purpose digital computer. The ERA
(

incremental computer, as presently designed, carries out numerical computations

by acting on the small, discrete changes of the input variables to compute the

small, discrete changes in the output variables. In the memory of the computer

are stored the orders for a number of individual steps (called "minor cycles")

of , numerical computation. During one major cycle, all the variables in each

min~r cycle undergo changes of one increment, i.e., plus or minus one. At the

end of each minor cycle, the output of that cycle is stored in the random ac-
"-

cess memory as a plus or minus one. This stored output can be used to modify

any of the variables in any of the several steps including the step from which

the output is obtained. In any minor cycle, those numbers whose changes are

determined by other minor cycles (through the random access memory) or by an

input quantity are called independent variables, and those that are changed by

the step itself are called dependent variables.

An incremental computer is useful primarily because it is capable of doing

fairly complicated operations within a small computer and it produces an up-to-

d~te answer output once every major cycle, i.e., about once every 0.005 seconds.

The incremental computer can be made small because its arithmetic section

only adds, SUbtracts, and complements. These can be combined to form the more

complicated operations within a single step.

In principle, the incremental computer differs from a general purpose com­

puter in that instead of performing a complete numerical operation at each step

of each major cycle, it computes the change in that step's solution due to the

1

•

change in variables since the last major cycle. For example, instead ot form­

ing the sums UoQn-l + VoTn_l • UoQ n + VoTn, UoQn+l + VoTn ... l. etc •• directly in

successive major cycles. the incremental computer forms

By restricting the change of each variable to a +1 or -1 each major cycle,

these operations are accomplished by addition or subtr~ction. Throug~ the use

of these s,imple operations t appropriately controlled, the incremental, computer

can form sums, differences, products, quotients, square roots~ integrals, derl~

vatives t integrals wi th an inverse integrand. logarl thms., and exponentials"

Anyone of these arithmetic operations can be done in a single minor cycle.

It is basic to the use of an incremental computer that the error of one in-

crement in any variable is small enough so that to neglect it would 'not cause

serious errors in the answers. This implies that in five milliseconds the

answers th~mselves change by a "~egligible amount". This. in turn, implies

that five milliseconds is a "negligible" period of time. In other words the

incremental computer is useful for real time' control of systems whose time coo-'

stants are of the order of seconds or longer. In systems with relatively long

time constants, the answers can be changed by large numbers of increments dur-

iog a period of time short compared to the time constants. With longer time

constants it is possible to represent the variables more accurately within the

machine by making one increment a smaller part of the variable" The only prac­

tical limit on the accuracy of the numerical solutions of the mathematical

problem: programmed in the incremental computer is the length of time to effect

the changes in the variables.

2

In direct analogy to analog computers, the incremental computer can be used

for the solution of implicit equations. The pairs of operations multiply and'

divide, integrate and differentiate, squaring and extracting a square root, and

generating the logarithm and the exponential. can be considered 88 explicit­

implicit pairs in the incremental computer. SI~ultaneous and differential equa­

tions are solved by an implicit arrangement just as are similar problems in an
\

analog computer. They are fundamentally different, however, because the incre-

mental computer handles numbers digitally with the associated advantages

numerically and electrically.

bQ MACHINE ALGORISM. - The overall problem to be solved by the incremental

, computer must be divided into a sequence of arithmetic operations or steps.

The steps are coupled by the increments stored in the random access memory; the

output increments from one step are the input increments to other steps. In

the presently designed equipment, the heart of the storage system is the mag­

netic drum. The commands and numbers required for each of the steps of the

mathematical problem are stored'sequentially on several tracks on the drum.

Each step is acted on by the arithmetic section of the computer once each drum

revolution, that is, one drum revolution corresponds to one major cycle.

Let us consider the operations performed by the arithmetic section of the

computer during a single step. During each step four binary numbers are read

from the magnetic drum by four reading heads in the arithmetic section of the

computer. These numbers will be denoted as U1_1• Vi_I' Ri_Io and S. Three of

these numbers,U i _1e Vi_I. and Hi_I. are processed in accordance with the com­

mands from the control section of the computer and the new numbers are ~eturned

to replace the previously read numbers in their respective places. The number

S is a constant scale factor which remains on the drum.

3

At each step the aritbmetic section forms the incremtsl sum:

Ri = Ri_l + Ui~Qi + Vi_1l\Ti + S6.P i - S6.W i (1)

To simplify discussion, the increment will be considered unity and all machine

numbers will be conside~ed integers e That Iso the increments 6110 6 010 ~ Pio

and ~ Wio and the incremental changes in the variables U1 and V!o namely ~Ul

and ~ Vio can have the values +1 or -1. These incremental values are read from

the random access memory from positions given by the commands interpreted by

the control section. In many cases some of the increments are programmed to be

zero for all major cycles of a particular stepo i.e. g they are not read from

the random access memory.

By summing a single step over n major cycles o the values of the variables

during the nth maj or cycle can be determined. That is 0

n n n n
L (Ri - Ri~l)

i=1
= L U16. Ql + l: Vi _16Tt +Sl: 6. Pi

i=1 i=1 1=1

n n
= l: U i ~ Q i + LVi -1 ~ T i + S (P n - Po) - S (W Ii - W 0)

i::l 1=1
(2)

In the qomputer Ro = 0 in every case. In all but special_cases the incremental

changes in the dependent variable are chosen to cause Rn to go toward zero.

When Rn Is sufficiently close to zero to be considered negligible o the step Is

~settled". Whe~ it has settled, the equation for the machine algorism for that

is approximately:

n n
0= L Ui 6Q l' + L Vi_I&Ti + S(P - p) - S{W - W) (3)

i=1 i=1 nOn 0

In each case the increments are considered small. If we consider them to be

differentials, equation 3 suggests:

4

•

(4)

~. QUALITATIVE DESCRIPTION OF ALGORISMS. - In order to determine exactly

the course of an arithmetic operation performed by a step of the incremental

computer, equation I must be used with the mathematics of finite differences.

It 'is useful to use eq~ation 4 in a qualitative way to approximate the answers

actually obtained in the incremental computer~ In application~, the situation.

is reversed; the problem is to find an incremental program which will approxi­

mate the desired mathematics. It is hoped that the qualitative use ot equation

4 will clarify the principles of the 8rithmeti~ algorisms~

Sum and differences: Set U and V constant and solve for W. Then trom'

equation 4

n n
o == J, UodQ + J VodT + S(Pn - Po) - S(\~n - Wo)

~ 0 0

Let the initial conditions satisfy

VoTo + UoQo
Wo == S' + Po

Then

(5)

That is o through the use of the sum algorism up to three variables may be added

in the form

x == xl + 82x2 + a3xa

where 82 and a3 must be rational numbers. 82 and 83 are the quotient, of the

positive or negative integers Uo and Vo divided by the integer S.

5

Product and quoti~nt: S~t dT = dU f dQ = dV, aj~d sQ)l\l~' for W,. The!)

n In o = J UdV +
o 0

f n
o (UdV + VdU

W n = W 0 + P n - Po + '-=--- S

Let Wo
UoVo

Po = -S- + \
~

Then Wn = ~nUn
+ Pn' multiplication

S
(6)

or Un
SeWn - Pn)

division = Vn
(7)

Clearly. from equations 6 and 7, these alworisms should more properly be

called "Product and Sum" and "Sum and QuotieUi,"t, in general ..

Square Root: The square root of a, varii~l\>le can be derived from the incre-

mental algorism by letting U ~ V ~ I =Q. then equation 4 becomes:

2
Let Vo = S(Wo - Po)

V2 = sew _ p)

and V = Js (w - p) (6)

(1) INTEGRAl. .. - In equation 4 the availability of integration is obvious.

However, in a step doing a single integration it is sometimes advantageous to

set U ::: V, Xn ::: Xo ::: 0, and tJ. W = AT. For more specific details refer to the

quantitative description of integration.

6

(2) TIME DERIVATIVE. - Differentiation with respect to time can be

treated as the inverse of integration. However, ,special care must be taken to

make, it stable. Differentiation is accomplished by letting the U variable be

constant. the T variable be time, and dV = dQ and solve for V. Equation 4 be-

comes:

n n
o = f UodV + f Vdt + S Pn - Po - Wn + Wo

o 0

D iffe ren t la t 1 ng:
, dV dP dW
o = UOdt + V + Sdt - Sdt

d dV
V = S d t (W P) - Uo d t (9)

If Do were zero, V would be ?proportional to the derivative of the function W - p.

Tbis algorism would properly be called "Addition and Differentiation". However,

the last term with Do ¢ 0 is necessary to obtain a stable differentiation algo­

rism.' This stability term can be compensated for. The accuracy of the compen­

sation is determined by the number of minor cycles used.

Integral withoa Reciprocal Integrand.

Let V ~ V and solve for Q + T in equation 4:
"--\

'n n
o = J VdQ + J' VdT + S(Pn - Po) - SeWn - Wo)

o 0

Differentiating: .

o = Vd(Q + T) + Sd(P - W)

d (Q + T) - Sd (W - P)
- V

Integrating:

Q + T = s J d(W V - p) ,

Usually Q = T and P = O. Then equation 10 becomes

Q _§!dW'
- 2 V

(10)

(11)

7

(3) LOGARITI~. - Reciprocal integration can be used, to generate the

Iogarithm~ If we let V = W, equation 11 becomes:

Q SfdW
=2 W

s
or Q ,:;:: '2 loge W + C (12)

(4) EX~ONENTIAL.. - The expo,nential can be obtained from the 10gsr1 thm

by solving for Wo Then

£Q .. C·
eS = elogeW

~Q. + Ce

W = as (13)

The foregoing has been a qualitative treatment of the, use of the RRU incre­

mental computerG The following discussion Is a more formal presentation in­

cluding the specific restrictive formulas for the step and th~ choice of the

sign of the increment of the dependent variable to make the value of Rn go toward

. zaro e

«t QUANTITATIVE DESCRIIP'I1[({)~ OF Il\CREMENfAL ARITHMETiC OPERATIONS e - The

algQrisms previously qualit~tlv~ly described are specifically described by the
. .

choices of the increments and initial values. In any step there are six incre- .

menta to be specified (~U:D.o 6Tio l\V!o tlQio 6P!o and l\Wt)e two initial

values (00 and Wo), and the scale factor (S)$ The initial value of Rl,that

Is, Roo is always fixed at zero e The correct combination of the programmed

initial values, the programmed selection of the six increments in each stePt

and the wired-in machine algorism represented by equation 1 cause the incre­

mental computer to perform the arithmetic operations described above as well

as some special operations described latere Those variables of a given step

that have their increments determined by other than the step itselfo e$geo by

8

other steps, are called independent variables. The increment of the dependent

variable dep~nds on the sign of the remainder. Rn. of the step In questl~n

(which may vary from major cycle to major cycle) and usually on the non-varying

sign of other variables or const-ants as- well. For conve-nience of notation the

signum function will be used. It is defined by:

Signum x =sgn x= + 1 for x ~ 0

_ - 1 for x < 0

The programmer is free to "choos e the increments 6U i. ~ V! 0 6P i 0 ~ WI 0

6.Qi~ and II Ti from any posi'tion in the random access memory. Each increment

stored in the random access memory is ei~her sgn Ri t fOl"l"rne ot the steps or :):,

'5go (Vinput - Vi} for one of the ·inptit quantities.

(1) SUM AND: DIFFERENCE e - To perform the previously mentioned sum:·
UoQ n + VoTn

Wn = S + Po

s et ~1.u i = ~ Vi = 0

UoQo ... VoTo
Wo = -, S + Po

and 8 Wi+l = sgn Hi sgn S

The sense ~f equation 16 is such that the i~crements of W tend ~o reduce the

I magnitude of Hie Equation 1 becomes:

Hi - Ri_l = U0 6Ql ... VollT! + SllPi - SllWi

By summing this equation for n major cycles one finds that:

Rn - Ro = Uo(Qn - Qo> + Vo(Tn - To>·+ S(Pn - Po) - S(Wn - Wo)

Solving equation 18 for Wn=

(5)

(14)

(15) .

(16)

(18)

9

, (19)

Substituting equation 15 in equation 19 one has:

UQQn ... VoTn Rn
Wn = S + Pn - -S- , . (20)

'Equation 20 is accurate as it stands o iee •• no approximations have been made.

It is equivalent to equation 5 only if I~I is negligible. Since equation 16

tends ~o reduce IRnl" IRnl should eventually be sufficiently small o 1. e. e whe~
the step has settled. When the step bas settled, W is very nearly the desired

sumo

(2) PRODUCT. - The product W= ~V ... P can be formed approximately by

setting:

l1Q i = ~ V i (21)

6Ti = 6Ul (22)
uovo

Wo = -s- -+ Po (23)

6Wi = ~gn Rj sgn S (24)

Agaln the sense of equation 24 is to reduce IRol. Substituting into equation 1

we have:

Hi ::: Ri_l ... Ui 8 Vi t Vi_18Uj -+ S6 Pi - S~ Wi

= Rl~l ... U18 Vi + Vi~18Ui ... Vi_lUi_l - Ui-lYi-l ... S ~lPi - S b.Wi

== Ri_l .. Ui~V! ... Vi_lUi - Ui_lVi_l .. S~Pi - Sl1W i

. = R i -1 .. , U i Vi - U i _IV i -1 ... S 6 Pi - S 6 Wi

== Ri_l ... 8 (UV) i + S~ Pi - Sh. Wi

Summing -

Rn - Ro == UnVn ... SPn - UoVo - SPo + SWo - SWn

Rn = UnVn .". SPn - SWn

UnVg Rn
Wn = S .". Po - 5 (25)

10

Equation 25 is exact; no approximations have been made in its derivation. If
R

this step is settled, ~ should be small enough that it can be neglected and

Wn is app,roximately the desired product.

(3) QUOTIENT. - As mentioned above, division is effected implicitly from

multiplication. To find the quotient U = S(~~, the product UV is compared

to sew - P) to determine whether U is too large or too small. This quotient

can be formed by setting:

~Qi = ~Vi
ATi = ~Ui

uoVo = S(Wo - Po)

~Ui+l = -(sgn Vo)(sgn Ri)

Substituting into equation I

(26)

(27)

(28)

(29)

which is identical to the corresponding equation for multiplication. As for

multiplication, summing equation 30 yields:

Rn - Ro = UnVn + SPn - UoVo ~ SPo + SWo - SW n

Rn = UnVn + SPn - SWn

(31)

No approximations have been made in the derivation of equation 31. Therefore,
R

Un is different from the desired quotient by the round off error v:.
(4) SQUARE ROOT. - The square root algorism is effected by subtracting

the product of the dependent variable'times itself from the independent variable

input. The sign of this difference indicates the next change in the dependent

variable. The square root U =~S(W - P) is formed by setting

(32)

(33)

11

U0
2 = SWo - SPo

~Ui+l = -sgn Ri sgn Vo

Substituting in equation I,

Summing

R i = R i + I + U i ~ U i + U i .. l ~ UI + S ~ Pi - S t1 Wi

= R i .. l + ~ (U2) i + S ~ Pi - S ~ W i

2 . 2
Rn = Un + SP n - SWn - Uo - SP 0 + SWo '

(34)

·(35)

2 Un = SWn - SPn + Rn (36)

When Rn settles to a negligible value, Un2 is approximately S(Wn - Pn). There­

fore, Un must be close to the desired square root. Notice again the implicit

approach to the extraction 01 the square rpot.

(5) INTEGRA11S. '- Integrals can be approximated in the incremental com-

puter in a single step in several ways. One way is tb lofm sums of the inte­

grands. That Is, let U, V, P, Q. and T be independent variables. Solve equa-

tion 1 for W. Then:,

(1)

n n n
L Ri ~ Ri_l = L {Ui~Qi + Vi-l~!i} + S l: (~Pi" ~Wl)

i=1 i=1 . 1=1

n n
Rn = ~ Ui~Qi + L Vi_ll\Ti + SPn - SWn ... SPo +. SWo

1:;1 i=1

Neglecting Rn '

In I n
W n ::"S LUi ~Q i + S" l: V i -1 ~ T i + P n - Po + W 0

1=1 i~1
(37)

. 1'7
Equation 37' is the.Euler approximation' to:

J"'~. , r

1 J Qn 1 . J Tn
W n = s· UdQ + s V dT ... P n - po· ... W 0

Qo To
(38)

12

A second way to integrate is the following:

Let ~Ui =, ~ Vi

~Ql == ~Ti

Uo ::; Vo

~Wi+l = sgn Hi sgn 5

Then equation 1 becomes

n
L Hi - R1_1

i=l

n
Rn = L (Ui'" Ui_l)~Qi + 5(Pn - Po -oWn + Wo)

1=1

Neglecting Rn

1 n
Wn = -5 L (U i + Ui_l) ~Qi ... Pn - Po +Wo

i=1

Equation 40 is the trapezoidal approximation to:

2 J Qn
Wn = 5 UdQ ... Pn -Po'" Wo

Qo "

(39)

(40)

(41)

In those cases where the integrand U is an incrementally single valu~d function

of the independent variable Q, the trapezoidal form is drift free. i.e •• if the

variable Q changes from its initial value and returns to Its Initial value, In

will become Wo if U is a single valued function of Q. An example of a single

valued function is a polynomial in Q. An example of, a function that is not an'

incrementally single valued function is sin Q which is obtained by double inte-·

gration rather than polynomial apPfoximation.

(6) DERIVATIVES. - The incremental computer is capable of taking time

derivatives in a s~ngle step if properly stQbilized. 'The restrictions of the

algorism are:

13

1
~
l.Q

~

6Vi ::: APi = 0

AQi = ... 1

6Ui:: AT!::: - sgn Ri

Substituting in equation 1:

Ri :s Ri_l + 01 .. VoAU! - SAWi
I

Summing

Neglecting Rn

Ii

L Ul .. Ve(On - Uo) = S(Wn - We)
1=1

. n
The term L Vi is approximately:

1=1

1
n '/tn+2'
LUi r::4' 1 . U (T) d T

1=1 "2'

Then approximately:

~ t .J. .
f n 2 U (T) d T .. V 0 (Un - U 0) = S (In ~ '0)

1
2

D'ft.~entiatl~g:

U(t
n

+ *) ... V . dU(tn) = SdW(t n)
~ 0 dt . dt

I .
U(tn .. 1) I" 1 III '

But = U(tn> 1 .. '2U(t ..) t 8U(tn) .. !gU(tn) - - -
2

dW(tn) 1 dU(tn) 1 II 1 III
SO U(to) = 5 dt - (Vo Pt. '2> dt , --U -18 u 8 .

II III
dW 1.Q!! u JL s dt = U(to) .. (V 0 .. '2) ~t +11 + 48 - ...

1 2

U(tn ... Vo ~ ~) ·1 I (Vo .. 2)
Now. = U(to) .. (Vo .. '2) U(tn) ..

2.

II

u - -. -

14

So

2
dW 1 [I (V 0 +~)]It

S dt =.U(t n + Vo +~) + 8 - 2 u

dW 1 Vo
S at = U (t n + V 0 + '2) - r (V 0 + I) U

In other words U(t) is approximately equal to 5 times the derivative of W

at time (t'+ Vo + !>e The Vo which was necessary for stability introduces a

time lag e To make this lag small, one must try to make Vo small. The size ot

Vo is determined by the nature of We If Vo is too small and the second deriva­

tive ot W is too high, U(t) will vary to both sides of the correct derivative

value, eventually settling to the correct one. If Vo is too large, the delay

will be unnecessarily long e

(7) INTEGRAL WITH A RECIPROCAL INTEGRAND. - A variation of the integral

algorism is the form:

SJdW Q. ="2 tr

which is affected by letting:

~Ti = l\Qi

l\\j = l\Ui

6Pi = 0

Uo = Vo

~Qi+l = - sgn Ri sgo Vo .

Substituting in equation 1

Hi ::: Ri_l + Uil\ Qi + Ui_1l\ Qi - Sl\W t

Ri - Ri_l + Sl\W i A Qi = ---------..;..-.--..:.
Ui + U1_1

Summing over in cy~les:

(42)

(43)

(44)

(45)

(46)

(41)

15

(48)

If one neglects the contributions of the term containing theR's,equation 48 Is

approximately the integral equation 42.

Through the use of integration with 8 reciprocal integrand, the logarithm

can be generated. If we let Ui = Wi the form becomes;

SJdW
Q = '2 W- (49)

(50)

\

(8) EXPONENTIAL. - The exponential is 'found from the logarithm algorisms

by letting Q be the independent variable and taking the increments of W from the

step as the dependent variable. The algorism is identical to that of the loga­

rithm except that instead of equation 41 the dependent vari~ble is determined

~ Wi +1 = + (sgn R)(sgn S)

e. SPECIAL ,ALGORISMS. - The following algorisms are special in the sense

t~at they are not the usual arithmetic operations. They have been developed

for some special purpose during the evolution or study ot the fire control ap­

plication e They are included here for completeness, as examples of the varia-

tioR of the incremental computer algorism, and for possible application in ser-

vicing or other programs. This section can be skipped by the reader without

losing the continuity ~f this presentation.

'1Memo~o Some time during each major cycle e8th position used in the random

access memory has its old increment value removed and the updated increment

entered e On some 'occasions it is desirable to have the previous value avail-

able. It is possible to do this by using a step in the following way:

16

Set l.\ U i = l.\ V i = 0

Ui=Vj=O.

S = 1

AWi+l = sgn Ri

That this is, truly memory is proved as follows: With these restrictions equa-

tlon 1 becomes:

HI = Ri_l + APi - AWi

If for i = n, Rn = APn - Ie then

Rn+l = Rn + APn+l - AWn

= APn 1 + AP n+l - sgn (Pn - 1)

= ¢'Pn I + APn+l - l.\Pn

= APn+l 1

since 5gn (1 - 1) = sgn (0) = +. 1

,and 5gn (-1 - 1) = sgn (-2) = - 1

but initially

Ro = 0, and sgn Ro = + 1 = AW

Rl = 0 + .. A Pl - 1 = AP l - 1

Therefore, equation 50 is proven by mathematical induction. In this case agn

(APn+l - 1) = APn+1 = AWn+2

or ~Wn = l.\Pn_1

In other words. on the nth major. cycle, if ~ Pn is desired, APn is addressed

directly; if AP n-1 is desired, AWn is addressed.

Then

<l> SIGN. - Set

Uo = VOl A Ui = l.\Vio AT! = - AQi

APi = 0, AWi = sgn Hi_I' S= 1

Ri = Ri_1 ~ UiA Qi - Ui_l AQi - A Wi

If for i = n

then

and

Rn :: flUnflQn - 1,

6W~+1 = sgn (6UnflQ n - 1) :: flU nfl9n

Rn+l :: flUn~Qn - 1 + flUn+lflQn+l - ~UnflQn

Rn+l :: 8Un+l flQ n+l 1

and since Ro ::;: 0, Rl :: 0 + flUl~Ql - flW I :: ~UIAQI - 1, equation 52 is

(52)

(53)

proved by induction. Therefore, equation 53, giving the desired product, is

proved.

(2) ABSOLUTE VALUE. - When a variable changes its magnitude by one, its

absolute value changes by one. If the variable is positive, both changes are·

of the same sign; if negative, opposite sign. The change in the absolute value

of a variable upon a change in the variable by one is given by:

~i'X' :: sgn Xi sgn 8X j

. or fli IXil :: sgn Xi 8Xi

(54)

(55)

One can form the product Xi 8X i by letting Ui = Xi and ~Qi :: ilX i • In order

to sense the sign of this product, it should be put in a remainder alone. In

other words a step which adds to the remainder the product Xi ~Xi and subtracts

the previous product Xi_IflXi _1 has as its remainder XiilX io

tion of this remainder is the increment of the absolute value.

The signum func-

We have seen above that an increment can be stored for an extra major cycle

through the use of memory. One might expect a memory step would be required to

have available the ilXi_l required to form Xi_l ~Xi_lo In one special case this

-memory step can be avoided. This case is the following:

If a variable, X, is calculated in step j, the sign of its remainder is

stored in the random access memory on the fifth digi t period after the, s tart of

step j + 1. At any time prior to the fifth digit period the old value flXi_1 is

available. After the fifth digit period the new value flXi is available.

18

During the step j + I the increments for the calculation of step j + 2 are be­

. Ing selected. Step j + 2 can be used to calculate the absolute value of Xi

without a memory step by letting:

AUi ::: AV i ::: 6Qi = 6X i (56)

6Ti = .6Xi _1 ' (57)

Uo ::: Vo = + 1

S = 0

The. accumulation of the sign of the remainder of step j + 2 is the absolute

value of Xe This step does not require servoing.

To prove that sgn Ri is AilXlo consider the following:

If p.quations 56, 57. and 58 are substituted In equation 1, it becomes:

Summing

Rn - Ro = Xn 6Xn - XoAXo

Rn =: Xn 6Xn - I

If I Xnl 2: 2, sgn Rn = sgn Xn6 Xn

(58)

(59)

and sgn Xn6Xn =.6 nlx\ since if X changes by one with the same sign as X'it­

self, its ~.bsolute value increas~s by one. If AX and X are of opposite sign,

the absolute value decreases.

If Xn = + 1, sgn Rn = 6 Xn• since sgn 0=+ 1" If Xn = + 1, AX n is ~ nl xl.
If Xn = O. 1/.111 = 0, and 6 nlxl =- - 1 since 1-11 = III :: + 1. In this case

sgn Rn :: sgn - 1 = - 1 = 6 n Ix I.
Lastly. if Xn - - 1 and flnX = + I, sgn Rn = sgn (.1-1) = - I = II nlXI. If

Xn = - 1 and 6 Xn - - I, sgn Rn = 5gn (+ I - I) = sgn 0 = + I :: II n I X I.
Therefore, for every value of Xn• 5gn Rn = f),nlxl. The accumulation of

these increments is the absolute value of X.

19

I

NOTE: The restriction that the calculation of the absolute value .hould

occur two min'll' cycles subsequent to the calcu~.,t-ion of the va.riable does not

detract from 1 tl useflll~es. /.ince this" tim~ng 11 ulually thelllo-'It del! red.

(3) INDEJfENlENr VARIA8I.l.I' (T1II) mraROnfi ... In> lome servicing problems

It 1. desirable, t~ have an lndependent variable cha~ge trom one 'value to another

/land remain within one increment of 'that value indefinitely. That. 1'9 the change

In tbe variable will consist GiN ... 1', tollow~d:by an indefinite sequence of

alternately - 1 and .. 10 In order to perform this function three core memory
\

pOSitions are Ulede

ODe memory post tiOD Is us'ed 8S 8, constant + It) Any pOli tlon not otherwise
I

Msed can so serve. ,A second memory position ibould be 8 tOstep function"g i.e.{I

+' 1 tor the first major cycle and .. 1 indefinitely thereafter. This latter

function ean be obtained by letting

Dc = Yo = 1

6U1 :: 6Vt = t.Pi = 0 ::: S

llQl :: - 1

II 11+1 ::: - sgn Hi

HI = - 1 I: - 2

R2 = - 2 - 1 + 1 = - 2

He = Rn_1 - 1 + 1 = Rn_1 = - 2

That 110 after the first major eyeleoson Rrn 2: - 1 indefinitelYe

GSvern these tw~ functions o the independent ,ariable can be controlled 1m a

lingle'step by letting:

Uo = Yo = N

t6. Ui = ~Vi = t.Pi = 0

6Qi = +- 1

6. Wi = sgn Ri_l

S = 2

and II Ti = + sgn remainder of the step function.

Then Rl = N(+ 1) + N(+ 1) - 2 = + 2N - 2

R2 ; + 2N - 2 + N(+ 1) + N(- 1) - 2 = + 2N - 4

and if n ~ N + 1

Rn = Rn_2 + N - N - 2 = Rn_2 - 2 ~ + 2N - 2n

RN = 0

RN+l = 2

RN+2 = - 2 + N - N + 2 = 0

RN+2i = - 2 + N - N + 2 =- 0

RN+2i+l = 0 + N - N - 2 = - 2

Therefore e the sign of this remainder gives the desired function.

(4) GATING. - In some service problems it is desirable to gate certain

variables. By "gating" is meant either allowing a sequence of increments to be

duplicated exactly in a certain memory position until a certain time after which

that position will have alternately plus ones and minus ones unconditionally.

or.causing a memory position to have alternate plus and minus ones until 8

certain time after which a given sequence of increments is duplicated. These

gates will be referred to as "initially open" or "ini1ially closed" respectively.

Either of these gates requires a gate timing pulse. Incrementally the gate

timing step memory position has, alternately plus one and minus one until the

switching time. At the switching time there will be one extra plus one and the

alternate sequence will continue thereafter. To effect such a function the

algorism is:

Uo = 0

V = 3 o

S = 2M

21

!iUi :: - ~Vi ::: ~Wi :.: sgn Ri_l

Mi ::: 0

aT! = .6Qj

We wish to have this timing sequence awi teh when TN = Mil Let T be e :.l1ar!abl(8

such that To ::: 0 and T>O. To demonstrate that this gate timing step produce.

the desired sequence o substitute in equation 1. Then

R.l = «) .. 1 (-.6 T 1) .. 36 II ... 2M = 2 6 T 1 - 2M < 0

R2 ::: 2l~Tl - 2M - 06T2 ... 2~T2 .. 2M = 2 (aTI + 6T2) ::: 2 (T2 - TO) 2: 0

As long as the sequence is alternate 0i will be .. 1 for odd major. cycles and 0

for even major cycles~ Likewise, '1_10 will be + 3 for odd and + 2 for eye~

major cycles o If we assume that R2i ~ 0 where 1 is an integer, then

R2i+l :: R2i - Il T21+1 .. 3AT2i+l - 2N = R21 - 2M t. 26T21 +1

and if R21 - 2M ... 2:6 T2i + x'c 0

R2i+2 = R2i - 2M + 2AT21+1 - 0 .. 2b.T2i+2 = R2i + 2(T2i+.2 - T21)

If we assume the sequence of alternate Increments g the general values of the

. remainders are:

H2o = 2(T2n - To) = 2T2n

R2n+l = 212n+l - 2M

Converselyo the sequence of sgn Hi will foe alternate as long as sgn R2n+l I.

- 1 where iS2n + Ie The smallest value of 1 for which this condition does Dot

hold 1$ found as follows:

. 2T2n+l - 2M 2! 0

. T2n+l ~M

In other words o the alternate sequence will continue un'til thellrst l' on 8n

odd major cycle 1s greater or equal to M. the predetermine~ switching point.

Assume that switChing occurs on the Nth major cycle,o ieeeo TN~M

Then lRN :: 2TN_l .. 2l\TN - 21,(= 0 or 1

22

But sgn 0 = 5gn I = + I. The sequence sgn Ri is no longer alternate but con­

tains a + I for the Nth major cycle as well as for the N-Itho Then UN+l = 2.

The next remainder is:

RN+l = RN - 26TN+1 + 2 ~TN+l - 2M = - 2M or 1 - 2M

VN~l = 10 Since 1 - 2M <0, UN+2 = 10 Uling these values

RN+2 = RN - 2M - Il TN+2 + II TN+2 • 2M = RN = 0 or 1

After!' the N -+ 2th major cycle UN+2 == 10 VN+2 = 20 and RN+2 = O. These are

precisely the values obtained after the Nth major cycle. In other words, tbe

step bas become cyclic with a period of two major cycles~ The rewainder of

this step is alternately 0 a~d - 2M (or 1 and 1 - 2M). In either case sgn Hi

will be an infinitely long alternatingseq~ence8 Therefore v this step yields

t~e desired gate" timing pulse. This step is not reversible; the sequence will

remain alternating r~gardless of subsequent values of T.

A singl~ gate timing step can supply timing to open and/or close any number

of gates at some particular time. Both the initially open and the initially

closed gates will be considered here o

The in! t1al1y opened gate Is farmed by",;,.tlie toll!owlng algorism:

Uo = 1

Vo = 2

S :: 2

~Qi = - ~Ti

AUi = -l\Vi = sgn Hi in the gate timing step.

APi = 0

~Wi = sgn Hi .. l

Prior to switching the Ui will be 1 on even major cycles and 0 on odd. Yi - 1

will be 3 on eve~ majrir oycles and 2 on odd. In every major cycle prio~ to

switching Vi_! - Ui = 20 Substituting in equation 1 we have:

Hi = Ri_l + Ui (- ~Ti)+ Vi_l (~Ti) - 2~Wi

= Hi_l + 2~Ti - 2~wi

Hi = 0 ... 2 ~ Tl - 2

But sgn HI = ~ Tl

So R2 = 2b.Tl - 2'+ 2~T2 - 2~Tl = 2~T2 - 2

In general

Rn = 26 Tn - 2

and sgn Hn = .6. Tn

prior to the gate switching. If the gate switching pulse occur. on the Nth

. major cycle where N is odd, the values of U and V will have the following

values in the neighborhood of the Nth major cycle.

Maj or Cycle == i Ul Vi Vl_1 "1_1 - Ui

N - 3 1 2 3 2

N - 2 0 3 2 2

N - 1 1 ·2 3 2

N 2 1 2 0

N ... 1 1 2 1 0

N .. 2 2 1 2 0

After switching:

RN = 26 TN_l - 2 - 26TN + 2.6.TN - 2ATN_l = - 2

RN+l = - 2 +. 2 = 0

On ali subsequent major cycles .6.T1 has no effect because Vi_l - U1 = 0 and

k·

the agn Hi will alternatee Therefore. if k~ Nt L agn HI ~. TN_l - To t even
1=1

= Tn_l - To - 1 Ie odd.

The initially closed gate is formed by letting tbe algorism ~e:

24

" ~
U')

>c:
a.,

00 :: 0

Vo = 1

S = 2

t.Qi = - llTI

flV i = -flU! = ago Ri in the gate timing step

AP = 0

6W1 = sg~ Ri_l

Prior to swi tching both the U i and t'be V i-I will be 1 on even m8Jor~~ cycle.

end 0 on the oddo The difference 0i - Vi_l = Oe Substituting in equation 19

Hi = Ri_l -0- U11lQl - Vi _l 6. Qi - 2l1W1

= Ri_l .. 06Ql - 26 Wi ::: Ri_l CD 26W1

HI = 0 - 2 = - 2

R2 = - 2 +,2 = 0

R2111 = 0

R2ntl = - 2

If the gate switching pulse occurs on the Nth major cycle where N Is odd o th~

values of U and ,Y will be the following in the neighborhood of the Nth major

cycle;

Major cycle == i Vi Vi Vi_l U1 - "1_1

N - 3 1 0 1 I!)

N - 2 0 1 0 0

N - 1 1 0 1 '0

N 2 -1 0 2

N -0- I 1 0 -1 2

N .. 2 2 -1 0 2

RN = 0 .. 26QN - 2

Sgn RN = Il QN

RN+l = 2 ~QN - 2 + 2li QN+l - 2~QN = 2 ~QN+I - 2

and sgn RN+l = ~~+l
In general

agn RN+j = QN+j

The function

k
L sgn R i = Qk - QN where k ~ N

i=l

which is the desired gated function.

(5) ERRORS IN INCREMENTAL ,ALGORISMS. - In performing the incremental

algorism the computer can come up with only one possible answer. Since all

the operations are digital, there is not the slightest ambiguity about the

answer. This answer will be the same whether the incremental algorism is per-

formed by a small, specially built computer or a large general purpose computer.

However, the function generated by the incremental computer -may not coincide

with the function for which its program was designed. The difference between

the desired answer and the answer the incremental computer will yield with a

given program is called the program error.

In any digital computer there exists round off error when a number is

handled whose significance exceeds the ability of the machine to represent the

number as an integer. For example, a ten binary digit number can represent any

integer from one to 1024. If ten binary digits are used to represent numbers

framO.Ol to 10.24, the number 7.8382 would have to be rounded off to 1.84 with

a round off error of 0.0018 or 0.01.

In an incremental computer the round off error is usually no more than plus

or minus one increment on input quantities and slightly more on output quanti­

ties~ assuming that the computer can keep.,up with;their changes. In order to

keep up with the changes in the variables, the increments must be at least as

26

large as the maximum changes of the variables that can occur In one major cycl~.

For example, the ertor of a variable input or output due to round off Is about

equal to the maximum change the variable can make in 0.005 seconds in the case

of real time application. In many application~ this amount of error Is small.

Round off error in an incremental computer corresponds to the error made ,in

a~ analog computer due to the difference between the analog representation of

a number and the number ilseit. To decrease the round off error by a factor

of two in an analog machine may be a very difficult engineering operation. To

decrease the round off error by a factor of two in an incremental computer not

used for real time control, one more binary digit is requlred for the numbers

and twice as much time is req~ired for the computation e

The round-off error for the outputs from additiort t subtraction, multlpllc~­

R
tion~ and integration steps is equal to the term s. This term is usually less

than one, but it can be as high as three even when the numerical process has

~settled". In order to keep the fractional error small in addition, subtrac-

- tion o multiplication and integration, the answer should be kept large as com­

pared to the possible errore That is, the,magnitude of the quantities
U Q -+ V T uv

o so,. P for addition and subtraction,. S + P for multiplication o and

~fUdT for integration must be kept as large as is consistent with the require­

ment that the change in the quantity shall not exceed one in one major cyclee

The only quantity which may be adjusted to accomplish this is -the scale factOl'e

Therefore, to minimize,round-off err~r in addition, subtraction. multiplication

and integration, S should be just large enough that the arithmetic process can

keep up with the changes that can occur. In division and differentiation the

quantities to be kept large are: S(W.- P) and SdW
V - dt e In these cases S should be

made as large as the requirement that the step must keep up will allow. Round­

off Is the only error that occurs In addition, subtracti~no multiplication and

27

di vision. The round-off term 1'5 not discarded (as in normal round-oft, but ia

retained, preventing the error from accumulating. The error 1n the answer il

due only to the final rounding off. If the independent variables are returned

to their initial values~ the dependent variable will return to its Initial

Round-otf error is not the only error that occurs in Ancremental integra­

t.ion and arithmetic processes which use integrationq) More accuratelyo integra­

tion accumulates the round-off error which may grow systematically or .t8tllt1-

callYe The integrated round-off error is called driftg To investigate dritto

consider the p~lygonal function:

Then

for TiSTST!+l

Ti~T~T!+l

and Ti+l = Ti ... 6T1+1

if ~Ti+l = oj}- 1

if 6T1+1 - - 1

(60) .

28

That is:

J Tn Jl 'F(Ti) + F(T1 1)
F(T)dT = L 2 - 8T1

To 1=1,
(61)

Tbis'!OlI'm is suggestive of the incremental integration formula. equation 39 0

Substituting equation 61 into equation 39,

, 2 'J Tn Rn
Wn - Wo '= ~ UdT - s-

To

Xl U Is the polygonal function:

U(T) [U(T1 + 1) - U(T1)] = U(Tl) + (T- TI) 6Ti+1

forT!STSTI +1

TI2:T2:T1+1

If 611+1 ::: ' ... 1

if 6T.1+1 = - 1
R

It the process has settled in n maj or cycles 0 s'l can be neglec,ted and

R
Equation 64 is accurate except for the round-off error Sn for' the polygonal

(62)

(63)

(64)

function defined by equation 63 e Xn many applications e however, the function

to be integrated is not of this form. Let the function to be integrated be

G(T). Let the changes of G from one major cycle to the next have a magnitude

. no greater than one. The polygonal fu'nction U(T) can be made to approximate

G(T) within one increment. Define this difference as:

S(T) = U(T) - G(T) (65)

5(T) is the input round-off error.

Then: (66)

The term ~ ~n S(T)dT represents the error that would be caused by the approxl­
T .

o

mation G(T) ~ U(T), Since IS(T)I S I, I f Tn S(T)dT :S n.
To

Moreover, the

actual error is usually much less than n because the average value ot 5(T) is

approximately one-half i~ most cases instead of one, and the sign of S(T) tends

to alternatee If one assumes that this error accumulated statistically and

that the probable error for the round off error for one major cycle is u , then

the probable err~r for n major cycles is u~ Since the probable error u

2 J Ti+l is the probable error of the term S S(T)dT, its value for most appli-
Ti

cations is about 0,0005. Under these circumstances an accumulated probable

error will be equal to one increment in 4,000,000 major cycles (5.6 hours of

computer operation).

To show that T is not a single valued function of W, it is sufficient to

show that tor two different major cycles with the same value of W there are

different values for T, . Consider a sequence of ,6W 8 s such that they are + 1

until IVn is reached o and are - 1 immediately thereafter. In this case •• • •

Il Wa = 1. 6 Wn+l :: - I, Then Wn+l = wn_1 + l::t. Wn + II Wn+l = Wn_1• Without loss·

of generality assume that

30

0< Rn-2 < S ... 2. (67)

Ass~ming that W is positive for this problem, equation 57

6. Ti+l - - sgn W sgn Ri (57)

indicates that lVTn_l = - 1. Substituting in equation 41

R n -1 :: R n _ 2 + (W n -1 + W n _ 2) A Tn -1 - S ~ W n -1

= R n _ 2 - 2W n -2 - 1 - S < 0

Therefore,

6. Tn = + 1.

Then Rn = Rn_l + (W n + Wn_l) 6.Tn - S ~Wn

= Rn_2 - 2Wn_2 - 1 - S + 2Wn_2 + 3 - S

Rn :l: Rn-2 + 2 - 25 < 0

Therefore,

Tn+l = + 1.

Then Tn+l:::: Tn_l + ~Tn + ~Tn+l = Tn_l + 2 f. Tn-l

Although Wn+l = Wn_l, Tn+l f. Tn_I. T is not a single valued function of W.

Therefore, the drift in the logarithm is not reversible.

(6) SUMMARY. - The algorisms of addition, subtraction, multiplication.

aad division are subject only to round-off error. These errors are small, e.g.,

with full scale numbers equal to 1000 the round-off error is about 0.1 percent.

The algorisms involving integration are subject to drift as well as round-off

errors. Drift is either reversible or irreversible and it is either systematic

or randome (Actual lYe there are no random processes in an incremental computer •

. By random. is meant that which cannot be predicted analytically from the dif-

terence equations describing the process.) The random drift is very small and

can usually be neglected. The systematic drift can be anticipated analytically.

and perhaps eliminated by a suitable modification of the algorism~ Reversible

drift occurs when a single valued function is integrated. Such drift is zero

31

... ,

..t)
U)

~

when the independent variable is returned to its initial value. The algorism

for differentiation is unstable, but can be used with suitable feedback.

By using the smallest value of a icale factor that allows the step to keep

up in the algorisms for addition, subtraction, multiplication, and integration

and the largest scale factor~tor division and differentiation, the round-of(

errors can be kept to a minimum.

f. APPLICATIONS OF THE IN:REMENTAL TECHNIQUES USING SEVERAL STEPS. - In

the following discussion the steps for the variables are indicated by a super­

script. As before, the number of the major cycle is indicated by a subscript.

Independent variables will be indicated by letters without superscripts.

(1) FILTERS. - A single HC low pass filter satisfies the following

differential equation:

or

deo eJ - eo = RC ~

T
RCeo = J (ej - eo)dt

x
(68)

By using a single integration step with two simultaneous point slope (or Euler)

integrations, 8 ·single stage RC filter represented by equation 68 can be

realized. The algorism for this step is:

Uo = (ej)o

~ Qi = - .6 Ti = + 1

Vo :: 0

S =RC + 2

~Ui == (6ej)i

6Pi = 0

6 V i = 6 Wi = 5gn R i-I

This algorism corresponds to the integral equation:

t 1 tn ! ., n~ -2

f -/ ejdT eod == (RC ... 2)eo

tn~ tn_!

or J ejd J' eod ::: RCeo (69)

32

which is the filter differential equation 68. Therefore o when equation 69 is

satisfied Wi(!) is very nearly eo. These filters can be cascaded to give rather

sharp attenuation. By cascading five sections. the mat~ematics simulates five

electrical RC filters cascaded with unity gain isolation amplifiers between sec-

tions. The circuit would look like:.

I 1 I I

This program was run numerically on la simulation routine in an 1103 large scale

comput~r to obtain the frequency response of the system and the five outputs

agreed in ampli tude and phas e shift wi th that expected from fil ter th.eory"

(2) POLYNOMIAL. - ~ince multiplication can be performed in a single

step, a quadratic can befformed in one step.

+ Co form the product

Wn - Wo = Ax(x + i> and let Wo ~ C.

'l
If it is desired to form Ax'" • Bx·

Then Wn is the desired quadratic. In specific incremental notation let

00 = "00 Vo = Xo .. ~& APi = 0, ~Ui = ~Vl= t.Ti = 6Qi = ~xio and 6 W!+1 =

signum Ri. B Then U = x, V = x + A' and

when the step has settled down.

The scale factor, So is chosen as a compromise as indicated by the following

discussion. For the proper choice of the initial value ~O.lW~ is proportional

to the desired quadratic. A cubic can be generated in two steps. Probably the

simplest way of generating the cubic Ax3 + Bx2 +'Cx + D is to generate the

33

quadratic Ax2 + Bx + C in one step, and multiply it by x and add D in the sec­

ond step. A more general way is to factor the cubic into

(x + a) {Ax2 + (B _ aA) x + (C + a2A - Ba)} ... D - a3A ... ,a2B - ac (70)

The quadratic indieated is generated in the first step and the quadratic is

multiplied by x + a and the constant term 1s added to it in the second step •.

Factoring the quadratic in this manner is helpful because the usu~l limitation

on the accuracy of such a computation is due to the scaling of the quadratic

which is necessary in the first step to allow the step to keep up with changes

that occur in the independent variable. This rate of change is given by:

!L {Ax2 +
dt

(B - aA)x + (C + a2A - Ba>} = (2Ax + B - aA) I ~~l (71)

where I~I is the maximum absolute value of the rate of change of x at this

value of x. The constant "a" is chosen such that the maxi~um r~te at which the

quadratic-can change at all values of x is as small as possible. If 1~~1 is

constant throughout the range of x, equation 11 is linear in x and a = i + "min

+ xmax• For any choice of at if the scale factor S is equal to the maximum

rate of change of the quadratic, the quadratic will keep up with the changes

of x throughout its range. For this choice of a. the quadratic will keep up

wi th the minimum of round-off el,l"Or. In the case of a constant '~~l.

S = A(xmax - xmin) I~~'.
Quartics and higher degree polynomials can be generated as well. In gene-

ral a polynomial of a degree n can be generated in n-l steps. Variation in the

details of generation can be made allowing the programmer sQme flexibility in

adapting the computer to a particular polynomial. For example, a sixth degree

p~lynomial can be formed by the product of two cubics, the product of a quartic

and a quadratic, the product of three quadratics. oi the five steps can produce

the sequence of quadratic, cubic, quartic, fifth degree, and sixth degree. One

of these systems would be the best for a given sixth degree polynomial. The

34

... ,

..0
It)

~

best system would be the one which can keep up with the change in the indep~n~

dent variable with the minimum of error in the polynomial caused by round-of,
'.

of all the stepss To obtain the various constants required for the optimum IYs~

tern, criteria of the type suggested for the cubic should be used e These crl~

teria are too complicated to be included in a p~per of this scope.

(3) SINE ANI} roSINE. - The differential equation ~ + (i)2y = 0 (72)
, dx

defines the trigonometric sine and cosine. This equation can be solved by the

incremental computer either through the use of the differentiation routine or

through the integration routine. Inasmuch. as differentiation requires that the

independent variable increments always have the same sign, integration is the

more useful. Integrating equation 12 twice we have:

(73)

The general solution to either equation 72 or equation 73 is:

y = It cos W x + B sin w x (14)

If we wish to find the cos WX, the initial conditions are y(o) = A. Then

y = A cos W x" The first integration of A cos uJ x yields A sin w Xo The se§9pd

integration yields -A cos w x. The sum of A cos w x and -A cos w x should equal

O. The sign of the sum of the two calculated terms determines the sign of the

correotion to be appl ied to A cos "y) x.

The sine and cosine can be generated by the direct application of two steps

of integra tion. This algorism is:

~Pi (1) '- .6Pl(2) = 0 ' (15)

~Ti (1) ::: 6Qi (1) :: _ 6T i (2) _ . - .6Qi (2) = l\xi (76)

u (1)
0

= V (1)
0 = A cos w Xo (77)

U (2) - V (2)
o - 0 = A sin W Xo + 1 (78)

Au (1)
i :r; t;,V (1) ::::

i
a1W. (2)

1 = sgn Ri~2r (79)

35

= sgn Ri(l) (80)

5(1) = 5(2) =}- ?! 2A (81)

One incremental change in x represents an angular chang~ of i radians. With

this algorism the sine and cosine ,are generated very well under favorable cir-

cumstances e This program was tried with several values of ~ and S to hcheck on

its usefulness. For example, it was found that with A ; 1000 and S = 2000,

that after 6,283 cycles representing 2 v radians of angular change, the error

in the function A cos 2 v was between two and three increments, about 0.25 per-

cent. ,

If~for some reas6n,it is known j~hat the angle fo~ which the sine and/or

cosine is needed is limited by the problem, it is advantageous to change the

scale factors so that they are no longer equal and are just small enough to

allow both steps of the algorism to keep up with the change of the independent

variable. If, for example, it is-known that -200 ·S'wx S + 200 , we know that

I ~x cos w xl = I w silt w x , S w · 342

If W = 0.001, w~ can generate 2924 cos w x in- the second step instead of 1000

cos w x by letting the scale factor in the second step be 684 instead "of 2000

and the scale factor in the first step be 5848 instead of 2000.- The variable

1000 sin wx is computed in the first step just as before. By adjusting these'

scale factors the rounding off error is reduced for the cosine in this applica-

'ion causing less final error in both the sine and cosine.

By looking more closely at the difference equation actually solved by the'

algorism, the source of this small error can be found. Notice that in equation
, (1) (1) (2) , , \.

79, fl Ui = II Vi = sgn Ri _l '>,.' .. ' In this case tttere is a lag, i.e. o

cos W xi_2 + cos W xi_l
'~i sin wx = S 6xi

36

_ sin W xi_l + sin W xi
whereas 6. i cos W x - Il xi.

S
The latter represents trapezoidal integration. The difference equation actually

being solved is:

Yi - Yo ==

i-I
L

k=l

which corresponds to the integral equation:

f x-I [fT
Y (x) = - uJ 2 d T

o ·0

or to the differential equation:

d2y(x) + w 2y (x_!) = 0
dx2

Expanding equation 84 in a Taylor's series,

S2 d2y + y(x) dy(x) + 1 d2y(x) . ! d3y(x) + ••• = 0
4 dx2 - dx 2 dx2 - 6 dx3

(83)

(84)

(85)

T~is series is strongly convergent o An extremely small error is made by round-
/

Ing off equation 85 to:

S2 " 0 /I
~ Y + y - y +~, = 0 (86)

Equation 86 has the general solution:

~x [..j 2 2 ~ 52+1 x]' y(x) = eS +2 A sin 2 S +1 x + B cos ________ ~
2 + S2 , 2 + S2

(87)

In the usual case, S is of the order of 1000. With such an ~, it is justified

to approximate the solution by:

~.
y(x) = eS [A sin i x + B cos'g xl (88)

Equation 88 represents the solution to the diff~rence equation 82 actually be~

ing solved by the algorism of equations 75 through equation 81. For many appli-

cations this solution is close enough to the sine and cosine to be used. In

37

~
I

oJ)
!.t)

~

particular, in the usual case where the Independent variable changes relatively

slowly. the scale factor can be made large, and the exponential multiplier in

equation 88 changes from one slowly. In the cases where S cannot be made large

and the computation is to be carried on for a number of seconds, this algorism

produces considerable-error.

For a numerical check an incremental algorlsm of this kind was computed on

an 1103 large scale digital computer. All of the steps were performed to simu- .

late the incremental operation. The initial values were A = 150, B ;: 00 and

Xo = 0. In order to show how tbe algorlsm would differ from the .sine in a rea­

sonable number of cycles, a small scale f'actor was required. The scale factor

was 400. After 23,562 major cycles (corresponding to two minutes of incremental

computer running time), y was found to be -200.9. From equation 88~

2 ~ 23.562
e 160,000 0 150 • (-0.9981> = -201.1; in very good agreement. In this C8SB p

after- a long time ,(two minutes), and under poor cond! tions (small S aod no

changes In AT), a 35 percent error was produced. Compare this result with the

more realistic result above.

In the derivation of difference equation 82 it was assumed that 6T was + Ie

Since x is an independent variable o it is conceivable that 61 can be both

signs o During each major cycle that AT is different from the previous major

cycle o the difference equation 82 does not apply, and there is no drift.

Defining:

N ~ no o of major cycles.

In == nO e of changes in T.

the equation 88 becomes:

2 (N-ru.

y(x)
S2 [A sin i x ... B 2

x] (89) = e cos S

The variable n can be large when x is varying slowly causing the changes in x

to be alternately plus and minus one.

It is possible to alter the algorism to generate the trigonometric func-

tiona more accurately.

In some applications' x is monotonic, that is, 6T::: 6x ::: + I for every

major cycle. Such would be the case, for example, if a sine function of a cer-

tain frequency (relative to the speed of the drum) were desired. The sinc-

cosine algorism for monotonic independent variable can be formed by modifying

the algorism to read:

6T. (1) ='6T. (2) ::: 6p. (1) ::: '6P. (2) = 0
1 1 1 1

6Qi(l) = - 6Q i(2) = 6x
i

= + I

U
(1)

o = A cos w Xo

Uo (2) ::: A sin w 0 (xo

5(1) = 5(2) :::.L >A
w -

6U.(1) = 6W (2) :::
1 i

6U.(2) = 6W(l).
1 i +1

(2)
sgn Ri_!

= sgn Ri (!)

This modified algorism, using point slope instead of trapezoidal integration,

corresponds to the incremental equation:

n-l U (2) 1\

Un(l)::: _ l: i uXi

1=0 5(2)

(1) .2 n-l J. U (1)
Un = -w l: L j

i=O j=O

n-l 1\ i AX. (1)
L ~ L ~ u·
i =0 S (2) j =0 5 (1) J

. (1 I + 1y'(t) 1" I'u -LII In general y t~) - y(t-2) = yet) 2 + sY + 48Y + 384Y + •••••

.
::: y' (t) ::: :1!.'y' .! . II +

24 ... 1930Y •••••

39

I 1 I I III -L-V

y(t) = y(t~) ~ y(t~) - NY - 1920Y + ••• ~.

b I lIb 1 III 1 V L y(t) = y(b~) - y(a~~, - L (NY + 1920>' + •••• ~)
t~ t~ .

or approximately

III
b [b+- f b"*2 III 1 f b~ v
L y' (t) = 2 Y 9 (T) d T - ~4 I yd T - 1920 8 ! yd T

t=a b-'2 8 2 -2
+ ••••

b+!
2 y'(T)d't

II . 1 II 1
y (b~) - Y (a-~)

24

III 1 III 1
Y (b+ 2) - y (b+'Z)

1920
+ ••••• =~

8--
2

Then .

t(i+l) 1
i f ~ U 9 (i +-:;:)' Ulll (i 1)
~ Uj(l) -' U(T)dT _W 2·w ~ +
L - 1 24 ., - 1920

j:=0 8-"2
•••• + Const.

So

n-l i f 0-1+1 J 0 4 U w 4U'
w 2 L L uj (l) =.w2 d1] dTU(T) - W 24 - 1920 + ••• + Const.

1=0 j=O. -1 -1
,

That is. \

to J t (

J d t d T Un 1) - ~ 4U n (1) -u (1) = w 2 ••••
n .0

o

Differentiating twice

(1 - w 4) Un(l) + W 2 un
(1) = 0 c

or u (1) + w 2
U (1) = 0

n 1 _ w 4 n

. Let 2 w 2 n = 4
1 - w

(90)

Substituting in equation 90

1/ 2 y (x) + n y (x) = 0 (91)

40

This differential equatiC)D Is of the form of equation 721/: Equation 91 hal the

general solution y(x) = A s'in n x + B e.08 flx. The approximations 'necessary

to derive equation 91 from the integral equation describing the effect of the

modified algorism are much less severe than those necessary tor the unmodified

algorisme The modified algorism 11 much more accurate than the unmodifled~ .

virtually 'eliminating the exponential term of equation 86 .found tor the unmodi­

fied algoris~~ The only other errors of this algorism are the accumulation.ot '

the integral of the difference between the sine and cosine functions and their

polygonal representations and the final round-ott error., It must be remembered 0

however, that this modified algorism is most accurate when the independent

variable is monotonic. With non-monotone variables, this method is more accu-

rate than the method using trapezoidal integration.

To demonstrate these methods, simulations were carried out .. In the ease of

8 monotone variable, the two methods were used to generate 120 sin w t.. The

simulations were carried out for 13,000 major cycles (65 seconds of,real time

and 13 complete 3600 rotations of the input angle). Here again the scale factor

was chosen low in order .to show the errors in a bad case$ The resill t8 were;

the first method (trapezoidal integration) yielded 157.4 and the second method

(points!ope integration) yielded 120.38,
r-'

Their zelative errors were 31 percent

and 0.3 percent in this extreme case.,

A second simulation was done where the input variable was a sinusoidal faano­

tiom of time inste~d of monotone 41 The errors made by the second method were

about one~third that of the first.

, In any of the systems discussed o if w is very large, S must be made small

In the'lntegratlo~ steps and the amplitude, A, will ~ave to be small., This com­

bination tends to yield more drift due to the differences between the desired

trigonometric function and its polygonal representation. Both of these systems

are subject to this drift to the same extent, Since polYnomials are not sub­

ject to drift error, a polynomial approximation to the sine or cosine can be

made which will gi ve sufficient accuracy wi th final round off being the".only

'computation error. If the independent variable is restricted to a suitable

range, e.g., - 1T S W x S + 1T • the approximation can be made directly by .

Legendre or Tchebycheff polynomials. If, 1n the other hand, the independent.
!

variable has an extended range, the polynomial should be chosen to approximate

-11' +1T 8 the trigonometric function from 2 S 8 S 2' and let = w x + 2n 11'

where n is a positive or negative integer. The polynomial approximation to

the sine:

sin x ~ ,,986x - .143x3

-11' + 11' is in error no more than 0.006 at any value of x between ~ and~. This

cubic approximation should,be close enough for those cases where the use of

the polynomial is called for. In the extreme case, where a very accurate sine

is needed after a very large number of major cycles, it may be necessary to use

a fifth degree approximation"

(4) CONCLUSION. - To generate the sine and cosine, the simplest and

generally most useful method is to use two steps for double integration. This

method lends itself to a wide range of applications. In some cases this method

may lead to a drift error that is excessive.

A second method has been devised which greatly reduces this drift error in

those cases where the independent variable is monotone. In ev~ry case of a

monotonic independent variable this method should be used since it, too, re-

quires only two steps of integration, but yields greater accuracy than the

first method.

In some cases, generation of the sine and cosine by double integration may

not be satisfactory. Suitable approximations can be made with polynomials

42

either with one polynomial for the whole range or with a polynomial approxima­

tion from-: to +; repeated over the entire range.
~ ,,~ .. ~~

·13

2. PROGRM1MING THE If(;REMENrAL COMPUTER

a~ INTRODUCTION. - This section is concerned with the preparation of a

problem for computation on an incremental computer. This preparation may be

a~bitrarily divided into a series of interrelated operations. It is assumed

that. as is u~ually the case, the problem is to generate some output variabl~.

which is a function of the input variables. The first step is to determine a

seri~s of operations which will generate the desired function. This procedure

is known as "programming". The selection of the proper operations and inter-

mediate functions is subject to ,various criteria to be discussed below. Further,

the optimum sequence of operations must be determined.

The second step is to determine coefficients for each of the intermediate

functions, a procedure known as "scaling". The scaling of a function determilJes

the precision to which it is known in the computer and also the rate at whi~n

the computer quantity can vary. The accuracy pf the output f»oction is qui~~

dependent upon this scaling operation. As the incremental computer compute, ~

functiQn relative to its initial value, the initial values of ~ll the functfons

must be computed' and the appropriate quantities inserted in each register. In

cases where the inputs start out at values different from the initial values in

the computer, it takes a period of time for the functions in the computer to

equate themselves with the input,s. This period o known as "settling time" is

kept to a minimum by proper choice of initial values.

The various steps listed separately above are actually interrelated. In

, ,practice this means that the changes in one step affect the others so that it

is often necessary to iterate the steps.

Flnally~ ,the ~perations must be coded for the compute~and th~!lnputttapes:

must be cut.

44

h. DEFINITIONS o - At this poin,t some of the terms common' to this work will

be defined.

Coefficient - This is a constant, whic'ill Ii function !smul t!plied by(! in the

computere A. function x is represented by ex Incr~ments in the computero

where ex is the coefficient of the tunetloDo

A direct operation is defined as one in whicb IlW is the dependent varlable 41

An inverse operation Is one' in which ~ W is an independent wa~!able.

The outputo or l!!ult of stepo refers to either the sign of the remainder of

the step'or else the dependent variable generated by the step and defined

by the equation

n
F~ = Fo + L sgn Hi

1=1

. Overloading- A step is said to be overloaded! if til-e output function changes

more rapidly than one increment per cycle 6 This condition isoharacter!zedl .

by large values on· the R-linef) It Is the opposite of keepina W!O

Scaling is the operation of determining scale factors (and/or coefficients) for

the steps o~ a programe

Scaling down is to decrease the coefficient of the output of a stepo scaling.!m

to . increase i ttl

Settling - Immediately after a computaiionhas started o many steps aodlnputs

will be overloaded.. When no more steps or "inputs are o'verloaded, they are

all set'tled., The settling .u~ is the time from the start. ofacomputation

until all steps and inputs are settled.

Flipping a step is to reverse the sign of its dependent variables

lee PROG~~IN; ...

(1) CHOICE or FUNCTIONS. - In preparing a problem for an incremental

computer the f~rst operation is to write the program. This consists of a

sequence of inter~ediate functions which bridge the gap from the input functions

to the output functions. In order to obtain the greatest possible accuracy in

the output, it is necessary to choose terms of the sequence which introduce a

, minimum amount of error, and, also, to arrange them in an optimum order.

In choosing a set of intermediate functions, it is desirable to select

functions which fall in the general category of analytically "well-behaved"

functions; that is to say that they should be continuous and reasonably bounded~

Furthermore, they should be relatively insensitive to absolute error and should

tend to minimize its propogation. For example, the relative error in the dif-

ference between two almost equal terms is quite sensitive to variations in

either one of them. Or, to cite another case, the square root of a function

becomes highly sensitive, to absolute error in the function as it approaches

zero.

In addition to the restrictions placed on the function from the general

standpoint of error, the incremental computer itself has ~properties which

should be taken into account. Due to the representation of a function which

is used in the computer, absolute ~ather than relative error becomes the most

applicable type. In .the many cases where a certain relative error is aimed

for it is usually desirable to select functions with as limited a range as

possible so that the two types of error may be as similar as possible. This

limiting of range serves other useful functions as well, for as the maximum

rate of change of any computer variable is one increment per cycle, a limited

ra~ge allows a much greater total number of increments to be used to represent

the function, other things being equal. 'for the same settling time. Scaling of

a restricted function is usually more satisfactory as wide ranges tend to allow

scaling t~ be too high at one end and too low at the other. This restriction

of functions applies not only to the functions themselves but to their rates as

46

well. Beret even more clearlyo the accuracy with ,which a' function may be,repre­

sented is in~ersely proportional to its maximum ra~e. This may be seen,troml

the fact that the rQund-off error and ihe maximum rate Ire both proportlonaltto

increment size.

The principles which make inverse patrs, ~.g •• multiplication and dlvJJ.f,oft'Q

so ,easily obtainable in the incremental computer also make it possible to set ..

up larger. loops by which implicit functions may be computed. Larger loops, how~

ever 0 are not as Lfeolp·roof and 'may become unstable, ei ther oscillating or else

changing 8$ rapidly as PQsslble,to some value other than the desired one o

The fact tbat the incremental computer Is rate-limited becomes quite impor~
~-' -,

tant when dealing with loops. This limiting may restrict changes ,in such a

manner so as to diminish overshoot. On the other hand, there have been cases

where it lim~ted negative feedback so as to allow !qs.tability. In {feneral, how­

evero the usual analytical methods developed for feedback loops should apply to

'incremental loops as well.

Once a sequence has been selected, t'he next step is to determine incremental

methods for gene·rating it., In addi tion to the specified operations th!s genera­

tion may involve such techniques as polynomi~l approximation and double integra-

tion for sine and cosine.

On long programs, es,peeially, it is desirable to pack as much on to the drum

as possible. . This means performing as many operations in each step as possible.

Though usually only one operation can be performed at a time, there are a few

cases where two or more operations can be done at once e One of the most obvious

cases of this is the use of t.he P-inpute By using it, a term may be added ,: 1

at the same ~ime another operations is being performed. The chief limitation

to the P-i~put is that it must be scaled the same as We This usually is not @

serious problemd!, Where it is. however, it may be necessary to use a separate

47 .

addition step. Luckiiy, addition steps usually have short word lengths so that

they are not as costly space-wise as most other ste~s. In some cases addition

can be accomplished using only the Q~ ~nd P-inputs. thus leaving the V~line

available for comparisons. As ,a final remark it might be mentioned that repeti­

tion should be kept to a minimum with no function being generated more than

once if at all possible. It should be pointed out that it is less costly as 8

rule to add in a function already ~enerated than to regenerate it.

(2) SEQUENCING. - After the programmer has determined the set of func­

tions to be used, the next ~tep is to arrange them 'in the best possible sequence.

In this operation the programmer aims ~.l) to have minimum lag between input and

output, i.e. o minimum computation time, and:2) to efficiently utilize the RAM

<random access memory) so as to have adequate memory positions available.

In ·the present computere due to:/,l) the fact that the resul t of a computa­

tion is not stored until the step following, and (2) the fact' that the incre-,

mentE must be read in the step preceding the computation, 8 result computed in /

cycle n cannot be used until cycle n + 2. In arranging the sequence of steps,

to obtain the mi.nimum· computatio,n lag, mathematically consecuti ve op~rations

s~ould th(.refore fall on altern~te cycles. The (n + l)th cycle would use the
'" \1

result of the previous,major cycle, thus causing a major cycle delay_
"

The simplest means of spacing the operations as described above is the 2~

interlace. Witl the 2-interlaee, consecutive operations are written in alter-

nate drum' positions with the first half of the program occupying, say. the even

numbered positions and the second half occupying the odd-numbered positions.

With this arrangement there is a two drum revolution delay between the beginning

and end of the program, though all of the quantities' are computed twice within

this period, (In the first revolution the first half of the program is com­

puted e In the second revolution the results of the first half are used 8S 8

basis for the computations of the second half while the first half Is being sl~
'(

multaneously recomputed.) The effect of the two-interlace is to reduce the

computation delay from one cycle per step to two cycles over-all. It has the'

'advantage of being simple to use with a program written out in consecutive
(

fashion~ It is possible, however, to reduce the delay still further in ~any.

cases. It often happens that there are sequences of operations which can t~ke

place simultaneously. It is possible to interlace these sequences so that both'

are performed in the same time it would take for one using·the overall two­

interlace mentioned above~ ,It is often possible to divide the steps in a pro­

gram i~to two categories: those rapidly varying and those slowly varying. If

the rapidly varying functions a~e placed on alternate steps, tand .the slowly

varying functions placed in between, the result is essentially a one-c~cle time

delay~

To obtain the shortest possible time delay it is usually necessary to use

a combination of the above methods,~b~cause a method as simple as the'~two­

interlace will reduce delay to two cycles (for a completely consecutive program),

more ~laborate techniques may often be unnecessary. In some cases it is possi-

hIe to further compensate for delay by extrapolating ahead a period equal to

the delay. A one-cycle delay occurs when an input is operated upon during the

same cycle in wbic~ ·it is taken in. This is due to the fact that the incrementa

fo·r an operation are drawn f;om the RAM in the step preceding and that the re­

sults of a'comparison are not available until the cycle following. To obtain

, the shortest possible input delay. the input should be, first used during the

s~cond step after the comparison.

Generally speaking, one RAM position Is needed for each step and for each

,input. AS,thenumber ot cores Is limited (in this computer to 64)t RAM capacity
. .

becomes a limiting factor in long programs. To expand the capacity of the

'49,

computer in this respect, a second head was installed on the R-line to allow

the following command:

Wi = + sgn Ri_l

. This enables the programmer· in ·many cases to obtain Il W wi thout referenc1.ng the

RAM. Wi thout this command mos t memory pos it ions would ;:be always o<=cupied ,

since sgn R formed by a step is needed as AW in the step on the next revolu­

tion. With it the position usually need be occupied only until the last other

step calling for sgn R. As in a typical program 8gn R may be used only during

a few steps immediately fo1.10wing the step in which it is generated, the same

core may be used to store several values of sgn R in the course of a revolution;

one after the other. In long programs, the programmer may have tQ sequence the

steps so as to make maximum use of this feature. In most cases, however, it

would appear the capacity of the RAM is adequate so that no special rearrange-

ment is necessary. In a typical problem that uses the entire drum capacity,

about half of the RAM is needed.

d. SCALING. - The aim of the-scaling operation is to generate the sequence

of functions selected in the programming operation, with the minimum of error.

There are two principal sources of error to be deal t wi th: '.1) round-off error

and '.2) overloading error •. The former is due to the fact that a function cannot

be expressed any more accurately, on the average, than to the nearest whole In-

crement, while the latter is due to the error which is introduced when a func-

tion changes more rapidly than one increment per cycle so that the step gene~at­

Ing it cannot keep uP.

Unfortunately, these two errors are related in'such a way that to reduce

one usually increases the other. When a step is scaled uP. which is the only

way to decrease round-off error for the step. then the maximum rate of the out-

put of the step is decreased so that overloading becomes more likely. Similarly.

50

sQallng down a step to decrease the likelihood of over19ading increases the

round-dff error for the step. The two types of error are different in nature;

whereas round-off error occur~ all the time,' overloading occurs only in certain

cases. for example, during settling, or when a variable is changing at a high

rate o Thus, it is a case of comparing an error which is always present wi th ,th-e

probability of another error being present. In cases where scaling is critical.

a compromise normally has to be made.

In scaling programs where the problem is completely defined and the values

of the functions throughout. the computation are always known, 8 straight an81y-

tical 'approach may be used, scaling the steps so that the rate of their output

is never greater than one increment per cycle unless overloading Is deliberately

allowed to occur ~n~ccasion for the sake of reducing round-off error.

In actual practice, however, it usually happens that the system is not com-

pletely known; with only general information on the functions being availab~e.

Two examples of this would be: 1) where the inputs can vary over wide ranges

and are different each time, and 2) where the system is so complex that involved

analysis makes scaling exceedingly time-consuming. One solution to these prob-

lems lies in simulation, or in trial computation, whereby a representative set

of examples can be run with tentative scaling and the final scaling based on

these. A seco~d approach to these problems involves the use of approximations

by which the analysis can be simplified. An example of such procedures is con­

servative'scaling.

(1) CONSERVATIVE SCALING. - The ideal case of scaling is when all func-

tions are always varying at the rate of one increment per cycle without any

steps ever overloading. As the rate of a function in an actual case ,normally

varies, a function usual'ly varies at less than one increment per cycle on some

occasions and at more than this rate (i.e •• overloads the step) on others.

51

Though round-off error is less than one increment w overloading may cause ~n

error of many increments. It might seem desirable, iherefore, to scale a step

~o that it will never overload under any conditions. This is known ascon'serVa-

tive scaling. It has the advantage of being I relatively easy to do, and, pro­

vided the round-off error is tolerable, yields satisfactory results. It has

the additional advantage of providing the shortest possible settling time for a

given input to a step. The assumption for conservative scaling iJ that the in-"

put to each step can vary at the maximum possible rate, i.e., one increment per

cycle, and in the direction. causing greatest output rate. For this method of

scaling, the ranges of the functions need to be known.

Conservative scaling usually applies to steps where the ~ P-input is not

used a In all direct opera~lons the assumption that P can vary at one irtcrement

per cycle automatically means that W must be able to vary at the same rate,

without even considering the effect of the other inputs. The ~ P-input, there­

fore. will be assumed zero in the analysis of the individual operations which

follow e. •

Addition

'Mul tiplication

s~w ~ Ui~Vi + Vi_l~Ui

S ~ I U Imax + I vi max

Integration

S~ W ~ Ui~ T + -U i _l ~ T

S ~ 21ul max

Division

Vi_l~Ui ~ Ui ~Vi + S~Wi

*S will be considered as positive unless otherwise stated.

52

I v I mi n ~ I U I max + S

lsi s Ivlmin - Iulmax

Note that for division the minimum value of V is the limiting factor. It is '

possible to have cases where no S exists which will satisfy the equation e

Square Root

2U II U ~ Sll W

S ~ 21Ulmin

Exponential

2U 6r ~ S6 w

S ~ 2}U\ max

Logarithm

2U~T ~ S~W

S ~ 2lU\min

In conservative scaling the assumption is made that all functions vary at

their maximum rate (i.e., o~e increment per cycle). Though this may often be

the case during the settling period, during other times functions are usually

changing at some rate less than maximum, and often this rate has some definite
'\

limit below one increment per cycle. To give improved scaling, a higher order

method has been evolved. This modification assigns to each function an e (effi-

ciency) factor defined as its maximum rate in increments per cycle. Scale fac-

tors are then calculated as above with the exception that appropriate terms are

multiplied by their e-factors.

With this type of scaling the effect of settling time becomes more impor-

tant. As was mentioned above, in conservative scaling a step will settle as

fast as the inputs to it. ,In a completely conservatively scaled program, for

example, the program will have settled as soon as the inputs have settled so

that the overall settling time is merely the maximum input settling time. (In

53

the present computer, with an input range of 1000 increments, the Qverall set­

tling time would be 500 cycles maximum for a conservatively scal~d program,

assuming all of the in~tial values to be at midscale.} When it is assumed,

however, that the maximum rates are less than one iricrement per cycle, then

some steps are going to overload during settling when rates are one\1ncrem~nt

per cycle. Settling will -then take an additional period of time after the in­

puts have settled, during which the accumulated values on the R-lines in the

various steps will be reduced to zero.

At this point a brief discussion of settling will be introduced. The

settling period for a st~p may be arbitrarily divided into two parts: input

limited and output limited. Input limiting is said to occur when the inputs

are changing in such a way as to cause the output to vary at less than one in-

crement per cycle. Output limiting is said to occur when a step is overloaded.

The total settling time for a step may be calculated by first determining over

which periods it is input and output li.mited. The ltimes for'.~he two types ot

settling are calculated separately and then added together. As an example, the

case of multiplication will be considered. , The factors U and V will be assumed

to start from zero and proceed at one increment per cycle to the positive values

Umax and Vmax which are greater than S. Input limiting will occur for 5/2

cycles, at which time the product will beS/4 increments. Output limiting will

then occur until the value UV/S is reached. The total settling time is there­

fore: {S/2 + UV Cs S2/4 } = UV \ S2I4 = U· ~max + ~ cycles. In this particular

case the delay caused by the input limiting was equal to one-half the period

over which input limiting occurred.

An output limited step tends to accumulate large values on the R-line, thus

necessitating longer word length. In general, a step should be sc~led up until

it either takes too long to settle or else cannot keep uP. If settling wer~

not a limitation, then all outputs would presumably be scaled to change at 8

maximum rate so that cons.ervative scaling and its modification would be identi-

cal for all steps following input steps. As it Iso settling time often appears

to be a limiting factor so that the modification is of value.

Conservative scaling is inefficient in that to insure that no step ever,

overloads, the steps are usually scaled to,run appreciably under full capacity.

This situation can be improved by the simple expedlent of scaling the steps up- .

ward to a .value, say 30 percent, above the conservative value e

Because of its advantag~. i.e •• that all steps always keep uP. conservative

scaling should be used in cases where the accuracy is adequate. It provides

minimum settling time and minimum word length. Its use is essentially mandatory

in steps involving integration, for if an integrand does not always correspond

to the function it is being integrated with respect to, integration error will

be introduced. In the incremental computer this error is cumulative, and remains

until computation is re-initiated. This applies also to operations implicitly

using integration, such as generation of the logarithm and the exponential.

(2) WORD LENGTH CONSIDERATIONS. - When a program is so long that it

necessitat<.s use of the whole dr~!mo the word length of each step must be taken

into account. A step which is output-limited to any great extent accumulates

large values on the R-line. This action is most likely to occur during the

settling period Jlst after the computer is turned on. One of the advantages

of conservative scaling is that output limiting never occurs, hence the number

on the R-line is never greater than 25.

In cases when conservative scaling is not used some criterion other than

the magnitude of S must be used to assign word length. One method is to simu-

late a series of extreme cases as a basis for picking word length. A straight

analytical approach may also be used. It should be emphasized that while

55

temporary overloading is usually permissible, overil'owing of the R-line must

B~ be allowed to occur; for, if the R-line ever overflows, permanent. almost

invariably serious, errors are introduced, making any additional computation

useless.

(3) INPUTS - RANGE EXPANSION. - Inputs which vary over only a fraction

of the range from zero to full scale may often be scaled up so that this region

occupies 'an entire compariso~ interval. This is permissible because of the

fact that the digital-to-analog converter converts only the first ten low order

digits of a number, ignoring the others. The new regions are equal to the ori- -

ginal (12 to 1012), plus some multiple of 1024.

(4) EXAMPLE: SCALING x2• - As an example consider the function x2,

where -5 < x < + 3 and lxl ~ .02/cycle. First x is scaled. Assume, as is the

case with the present computer, that th~ input range is 0 ~ 500 increments. As

the maximum value of I x I is 5 it would appear possible to give x a, coefficient

of 100, thus, represehting it over the range from -500 to +300 increments. To

do this, however, would give the computer function a maximum rate of l/e or .01/

cye1e. This is one-half the maximum rate of the external function. Now, while

this condition might be tolerable, e.g., when the peak rate occurred only rarelYe

in general it is desirable to have the computer function always keep uP. This

is accomplished by specifying C = 50. The range of the function in increments

is now from -250 to +150, a total range of 400. If it is assumed that x may be

at any value when computation is initiated, then the logical initial value for

x would be -50. If more is known about the behavior of x, a more suitable

choice may be made.

Having scaled the input to the computer, the next step is to scale the func­

tion x2 itself. First of all conservative scaling will be used. Referring to

the algorism for squaring it will be noted that the quantity x appears in both

56

the U and V registers and that it is essentially added to R, every time x in-

creases by one increment. The largest value which appears in these registers

is -250, corresponding to x = -5. In the worst possible case~ therefore, R

changes by 500 every cycle, due to this action e To compensate for this we

simply set 5 = 500.
(C)2 (r::n\2

The coefficient of the output C is ___ u __ = ~- = 5 W S 500

x2 = (5)2 = 25, 5(25)
max

(-250)(-250) - 12-
(500) - o.

= 125 increments. Using a different form:

In this case the same result may be obtained using the rate of the function.

-2 = 2xx, ~ = 10<.02) = .2, 1/.2 = 5
x x max

As a further illustration assume that 'the coefficient of 5 is not large

enough to provide the desired a~curacy and that for that reason C was raised to

10, (5 = 250). In this case the maximum value of Cx2 equals 250. If x varies

at 0.02 per cycle when Ixl > 2.5, however, x2 will not keep uP. For all values

less than this (which in some cases may be most of the: time) x2 will keep uP.

If it is known that i is small whenever lxl is large, then this type of scaling

would keep up all of the time.

Consider now the settling time of x2 under the two types of scaling, assum­

ing x'to be at its maximum. For conservative scaling (C= 5), x2 will settle

just as soon as x will; where Xo 1, in 200 cycles. In the second case,

however, this is not true. Assuming that Xo = - 1 as above, x2 will keep up for

125-50 = 75 cycles at which time x2 = 6.25. x2 will then change at its maximum

rate (.l/cycle) until it reaches the final value of 25. The total settling time

is 75 + 10(25 - 6.25) = 263 cycles.

e. COEFFICIENT RELATIONSHIPS. - This section deals with the algebraic equa-

tions and methods for computing scale factors and coefficients for the various

operations.

57

100

R'

(!

Figure 1.

200

I SEC

TrME

I. DESIRED OUTPUT

2. ACTUAL OUTPUY

300

Settling For x2

400
2 SEC

58

(1) CONVENTIONS. - Whenever a function f is represented in the computer

it has two functions associated with it: the function F and the constant, or

coefficient, Cr. These three functions are related by the equation

F is the computer representation of f and ls defined as the number of increDJents

~epresenting f. The coefficient, Cit relating the two has units of increments

per unit. As an example, if a distanc,e x is represented in the computer"by 10

increments per foot, then when x = 7 ft. t' X = 70 increments".. ex = 10. It

should be emphasized here that the basic algorism and all equations associated

with it deal with the function F, not f.

(2) BASIC ALGORISM AND ASSOCIATED EQl)ATIONS. - I n the addi t ion opera-

tion the increments A U and A V are programmed to be zero so that U and V re-

main at their initial values Uo and Vo and act as scale factors. It is not the

actual values of U, V, and S that are important, but rather their ratios. This

is fairly evident from the basic addition algorism 2.

To obtain the coefficient relationships begi~ with the general equation 3.

w = kq + mt + p

By definition

p = Cpp, U = Cuu, V = Cvv, W = Cww, Q = Cqq, and T = Ctt

Substituting equation 4 in equation 3

w =k~+nt: p
Cw

+ -
Cq t Cp

W
Cw Cw Cw or = k C Q + m - T + Cp q Ct

From equation 2 and equation 5

Uo = k Cw
S Cq

p

(2)

(3)

(4)

(5)

(6)

59

or
_ Uo en _ Vo Ct _

Cw - S k - S iii - Cp

or S = Uo SJ = Vo Ct
k Cw m Cw

The usual procedure for picking Uo' Vo. and S is to pick the smallest inte­

gers yie~ding the desired accuracy for the ratio. Small integers are picked to

keep the remainder as low as possible. As for all direct operations, the~-

term must have the same coefficient as W.

Product

Taking the multiplication algorism equation 7 and substituting equation 4

into the general equation for multiplication we obtain

w = kuv + P

or

Quotient

Proceeding as for multiplication

u = S(W - P)
V

U :t k (w - p)
v

U =k(!L_L)j(L)
Cu Cw Cp Cv

let Cw = Cp

(7)

(8)

(9)

(10)

(II)

60 .

(W V P) • S k CUC y _ S Cw .
= C W t C U - k CuC y

. (12)

Square Root

u = k ~ w - p, u2 = k2(w - p) (13)

Substituting equation 4 in. equation 13

u2 W p
C

u
2 = k2

(Cw - C
p

)

let

Cw = Cp

u
2

2
= k 2 (~)

C
u

Cw
(14)

from the square root algorism

u2 = S(w _ P) (15)

from equation 14 and equation 15

k2C 2 (k C) 2 ~S C u u w
S = ~ = C ,eu = ---k-

w w
(16)

Integration - Trapezoidal

w = ~ J UdT (17)

w = k f udt (18)

Substituting equation 4 in equation 18

or (19)

from equation 17 and equation 19

2 k Cw 2C uCt _ 2C uCt
S = CC· S = kC · Cw - k S u t w

(20)

Int~ration - Point Slope

(21)

61

U~ing equation 21 in place of equation 17

1 k Cw CuC t CuC t
S - CuC t ' S ::: k Cw' Cw = ~

Integration - Reciprocal Integrand·

Q:::~Jgw

q :: k J ~w
Substituting equation 4 in equation 24

~ :: k J dW/Cw :: k Cu J dW
Cq UJc u Cw u

or Q :: k CgCu J dW
Cw U

From equations 23 and 25

.§ = k CgCu 2k CgCu S Cw
2 C

w
S::: Cw ' Cq :: 2k e

u

Differentiation

Using the formula without the stabiiizing term

U :: ~ dW
2 dT

u = k dw
dt

Substituting equation 4 in equation 28

U dWjC w k Ct dW
eu :: k dtjC t :: c;- dT

. _ k CuC t dW
U - -

Cw dT

From equations 27 and 29

~ _ ~ CuC t 2k CuC t 2k CuCt
2 - S :: --C--, Cw :: S

Cw • w

Exponential

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

62

This is obtained from

kw =f kudt where w = u = et

,Substituting equation 3 in equation 32

!... =f lL dT ;;; _1_ f UdT
Cw Cu CT CuCT

In order to have fl W = fl U. Cw = Cu' therefore W = U

w = L J UdT
CT

From equations 17 and 34

~ = L s = 2C t Ct - § S C' ,- 2
t

(32)

(33)

(34)

(35)

From the above it should be noted that Cw is independent of Ct. the only require-

ment for consistency being that Cw = CUe The coefficient of w is determined

from the relationship

w = Cw kw (36)

Logarithm

(37)

The logarithm is generated as the inverse of the exponential, namely, from the

equation

w = jud(kt)

where w = u = x and i kt = loge x

substituting equation 4 in equation 38

W f U T k
Cw = k Cu d C~ = CuC t

dividing by equation 17

2 _ k Cw
S - CuC t

But as Cu = Cw as with the exponential

~s= ~t' Ct = k 2
S

' S = ~t

(38)

(39)

(40)

(41)

(42)

Once again Ct is independent of Cw or Cu and is determined only by the ~calinge

63

f~ INITIAL VALUES

(1) Introduction. - At the time when incremental computation is begun,

,aJI,U and V registers must be set to a consistent set of values, which are

called initial values. This section deals with the theory of computing these

register values once the initial point has been determined. He-examination of

the basic algorism reveals that there is one term (usually S~W) which is af-

fee ted by the previous sign of the remainder. At the beginning, however, there,

should be no previous sign of the remainder to consider; therefore, the initial

values should be set so as to cancel out any effects of this term for the fi,rst

The following helps to explain the effect of this term. Assume all inde-

pendent increments are zero. The increment for the dependent variable (deter-

mined on the previous cycle), is defined as plus one for the first cycle. This

increment multiplied by some regJster quantity is added into the R register,

causing a second increment to be generated opposite in sign to the first. This

second increment on the next cycle will counteract the effects of the first

increment, thus leaving the R-line at or near zero. All steps following this

one will have a -1 for the result of this step, whereas it will be first a +1

and then a -1 for all steps preceding it. In order to compensate for this dif-

ference the registers of all steps following the step are set to an initial

value one higher than normal. The initial output for these steps is calculated

using this higher value. After the first cycle, compensation occurs and the

output is equal to the unraised value.

(2) COMPARISON. - V is updated prior to comparison. During the first

cycle __ ~ V = + 1 so that (Vo + 1) is compared. For this reason the V register

should be set to a value one less than the desired initial value.

64

If the register values in successive steps are each raised by an increment

as specified anove, the values in the final step could be considerably different

from the values based on the unraised functions. After the computer is turned

on these steps will s~ttle to the unraised values as expected, but only after

several cycles, as the raised value is several increments different from the,un-

raised value. This difference can be minimized by choosing tbe sign of the func-

tions generated in the various steps in such a way as to have successive offsets'

compensate for each other. For example, inste~d of generating x, x2, and x2 + y,

one could generate x, _x2, and x2 + y. In this case the second step would be

said to be ~ed (from + x2 to - x2). Flipping is most conveniently done by

changing the signs of increments in such a way as to leave the register values

unchanged.

For arithmetic operations, flipping does not affect the final answer, but

merely eliminates the initial delay described above o In the case of integration

and related operations, however, this initial delay can cause integration error

which is permanent. For this reason flipping should be used in steps affecting

an integral. In other cases the procedure is desirable though not necessarily

worth the effort.

g. METHODS

(1) INTRODUCTION. - The theory of program preparation has been dealt

with above. The following is a presentation of the techniques and conventions

which have been used in the task of program preparationo While no claim is made

that this system is the best one, it has worked satisfactorily and is the result

of modification of several p~ior systems with which trouble was experienced

over the past months.

The results of the preparation routine are expressed in the form of three

tabulations: (1) an algebraic listing of the dependent variables in each step

65

accompanied by a,sign columno step number, scale factor o and coefficient; (2) a

program tabulation giving the signs and addresses of each of the increments in

each step. and (3) a constants tabulation listing the values of VOo VaG and S

for each step. Tabulation 1 is essentially for checking and is the' basis for

tabulations 2 and 3 0

The first step of programming is to determine a set of intermediate func-

tions to be used in. computing the desired outputs. These are arranged in se-

quence in accordance with the principles described in the section on sequencing

and listed on Tabulation 1, the sign column being left blank. On Tabulation l~

the quantities appearing on the V-line are singly underlined. Those steps which

have inputs or outputs have the V-line quantity doubly underlined.

The scaling operation is then begun, using whichever method is desired.

Work in general is done consecutively from step to step in sequence. By this

time the initial point has usually been decided upon so that settling time can

be taken into consideration e If the coefficients are being primarily determined

rather than the scale factors, then the scale factors must be calculated, too,

rounded off to the nearest integer c and used as a basis for calculating exact

coefficients 4 In this way the round-off error for the scale factors can -usually

be eliminated. It often pays to go first through the program and set approxi-

mate scale factors or coefficients, performing the exact calculation later. In

the case of conservative scaling it is often desirable to calculate Wmax in a

step and use this value ~s a basis for scaling succeeding steps. This is parti-

cularly convenient in cases where the functions in many steps maximize under the

same conditions.

The next operation is to calculate the initial values. Presumably bY,this

time the initial point has been determined from input and settling considerations.

When flipping is to be done o it is desirable at this time to caltulate the

66

complete set of scaled initial {unctions and to tabulate them. Then, when the

initial values are calculated, the sign of the dependent variable is taken in .

such a way as to make the values of the U and V registers holding this function

as close to the calculated value as possihle. As an example, consider the func-

tion x2 where Xo = 5, ex ::: 100, and Cx2 = 10. The input to step is exo + 1 ::z SOl,

2
and the output is (SOl) = 251. The step is then flipped to give - x2 so that

200
250 = 251 - 1 rather than 252 may be entered into the U or V register of the

succeeding step using x2• Whenever a step is flipped a minus sign is entered

in the sign column of Tabulation 1. Initial values are most conveniently calcu-

lated using the scaled values of the functions as shown above. For, using the

scaled values it is possible to go from one step to the next, using only the

previous values along with the scale factors in the computations. If these

scaled values are checked with the initial function values mentioned above. a

double-check on the scaling dperation is provided. For convenience, the flip-

ping of a step is done in such a way as to leave the quantities in the U and V

registers for the step unaltered. Flipping a direct operation consists of re­

versing the sign of ~ P, ~Q. and ~T. Flipping an inverse operation consists

of reversing the s~gn of ~W and the dependent increment.

(2) SIGN CONVENTION. - The dependent variable of a step is defined as

the function listed on Tabulation 1, neglecting the sign column. It is this

value which appears in subsequent U and V registers. The function s9n R multi-

plied by the sign in the sign column is taken as a positive increment. Inverse

operations, i.e., division, square root, differentiation, and logarithm, are

considered to have a negative sign if ~ f = - sgn R, which is the convention

used in the section on theory.

In setting up the convention it was attempted to have a system whereby flip-

ping could be done with a minimum of after affects. Too, it was desired to have

a rigid convention in which errors were readily apparent.

61

Again it should be stated that though various operations are stated sepa­

rately, the programmer must take all into account simultaneously to do the best

job of scaling. Usually the operations are repeated, at least to some extent,

in an attempt to converge to the best possible program.

h. CHECKI NG OF COMPUTED PROGRAM

(1) INTRODUCTION. - Tabulation 2 provides a convenient intermediate form

for a program. This is primarily because a punched tape of the tabulation can

be fed into the Univac Scientific Computer for simulation. This form also has

the advantage that it is convenient for checking errors o Due to the standard

form and convention adopted a great many of the common clerical errors can be

either avoided or else, quickly spotted. The checks which are applied are 1)

address checks, and 2) sign checkso A careful check of Tabulation 2 can almost

eliminate programming errors. In the checking operations involving either Tabu-

lation 2 or 3, Tabulation I is used as the standardo

The following are the checks which are applied to Tabulation 2. The incre-

mental addresses are checked against Tabulation 1 to determine: J) whether the

right addresses were used, and 2) whether they were addressed to the appropriate

increments. Knowledge of the normal layout of the operations (see Figure 2)

makes the latter simple to perform.

Due to the convention used, the signs of the register values are always for

the positive function (that is, for +f, even though f may be negative). They

are unaffected by flipping the step in which they occur. The signs of ~U and

~V may therefore be checked to see that they generate + U and + V. The signs

of the other increments may then be checked to see that they generate a function

with the same sign as specified in the sign column of Tabulation 1.

As the U and V registers contain the operands as listed on Tabulation 1,

they may be checked against the initial value tabulations. A fairly convenient

Operation u V P Q T W

Addition - -
Mul tiplication - -
Division - - -
Integration (t) 1 I -
Integration (P.s.) -
Input-Output -
Square - -
Square Root --- ---
Logari thm - -
Exponential - -
Differentiation - 1-
NOTE: Each color stands for one incremental address. The dependent incre-

ment is green.

Figure 2. Tabulation No. 2 Check

69

check < on the initial values is obtained by calculating them first using the un-

scaled inputs and the set of equations and then recalculating them just on the

basis of the U, V, and S register values alone using the algorisms.

(2) SIMULATION. - The above checks allow one to be reasonably certain

as to the c9rrectness of his program. The next step is usually simulation o~

the Univac Scientific Computer. This is convenient at this time because Tabula-

tions 2 and 3 may be punched on paper tape and fed directly into the computer

once the SIMIC (SIMulation, Incremental Computer) control tape has been run in.

While the SIMIC routine allows the use of only static points as inputs, it,

nevertheless,has been very successful for troubleshooting purposes.

The usual procedure is to pick a static point at which all of the inputs

have changed •. The point is run until all of the computer values are expected

to have settled, with periodic dumps taken during the simulation as well as at

the end. The valu~s for the computer functions are calculated for this second

point and compared with the values obtained with the dumps. Th~ comparison

shows up any program errors which have not been found earlier. If errors are

found,it is possible to check for errors in steps following the erroneous one

by determining whether or not the later values are consistent with the first

error. Once the program has been checked out in this manner it is possible to

run. any other simulation which is desired, including one with dynamic inputs

(by means of the DYSIMIC and POLYSIMIC routines). When the program has proved

satisfactory it may be coded up for the incremental computer itself.

ie SIMULATION

(I) INTRODUCTION. - There are three simulation routines which may be

used: SIMIC e POLYSIMIC, and DYSIMIC. The difference between the three involves

(1) different incremental input procedures, and (2) different monitoring features.

In the SIMIC program the inputs (equivalent to the anal~g inputs for the real

70

incremental computer) remain constant unless programmed to a' different value o

While this limited type of input is very useful for eliminating program errors,

it does notpeimit simulation under dynamic input conditions which normally occur

in practice. In some cases the incremental program itself may be used to pro-

vide the dynamic in-puts. This is done by incrementally programming ,function~

to provide the desired inputs. A POLYSIMIC program is a SIMIC program in which

incrementally-computed polynomials in time are used for inputs. The third possi~

bility is DYSIMIC. This routine, independent of SIMIC~ takes values for the in-

puts, tabulated for regular intervals over the proposed simulation period and

uses cubic interpolation to provide values to the computer every major cycle.

Independent computer routines may be used to provide the input tabulations if

desired.

(2) SIMIC. - The SIMIC input program is composed of several sections,

each introduced by a code word. These code words prepare the computer to act

appropriately upon the data in the section. The sequence of these sections in

an actual program is important only in that the data conditions ,for any desired

simulation must be given before the COMPUTE command is given. The program is

all in Flex-code.

(3) PROGRAM. - The section is introduced by the word PROGRAM preceded

by a shift up following a carriage return. It contains all of the incremental

addresses from Tabulation 2. The information consists of one line for each step

of the program, each line being composed of a 3-digit octal step number followed

by six signed 3-digit octal addresses. The computer ignores all material follow-

ing the code word until it reads in a carriage return followed by 3 octal digits.

During simulation the sign of the remainder of each step is considered to be

stored in a register bearing the step number as an address. The addresses, in

order from left to right, are: IJ. U, !:lV, !:lp, llQ, IJ.T, and IJ.W. Any increment

71

• I
o
r')

<
L..

may be programmed zero by using "n" as an address. The sequence of ~teps with­

in the program~ constants, and input sections is immaterial: the step numbers

determine sequence. The results of a comparison in a step are considered to be

stored in a register with the same units and tens digit as the step, but with

3 for the hundreds digit. There can be comparisons only up through step 071~

There must be a line be~inning with the number of the last step in the program

plus one followed by the words "end of program" •. This causes the computer to

begin the next major cycle. Finally. there must be a line beginning with the

number 400 followed by six unsigned 3-digit octal step numbers. The presence

of a step number causes the V-line of the step to be printed out. The addition

of 300 (octal) to the step number causes the R-line of the step to be printed

oute The program may contain up to 277 (octal) steps. A stop code (anywhere

in the program section) signifies the end of the section and causes the computer

to begin.looking for the next code word. However, a carriage return at the end

of each line (including the last) is necessary to cause that line to be stored.

(4) CONSTANTS. - This section, introduced by the sequence: carriage

return, shift up, CONSTANTS,contains all of the initial values and scale factors

from Tabulation 3. There is one line for each step. Each line begins with a

step number followed by 3 signed 6-digit decimal numbers: Vo' Vo' and S, in

that order. Each number, though integral"may be punctuated by a period between

any digits. The section is ended by a stop code. Again, each line (including

the last) must be followed by a carriage return.

(5) OUTfUT HEADING. - This section is introduced by the sequence: OVT-

PUT, space, HEADING, carriage return. All material following the carriage re-

turn is stored character by character. It is punched out before each section of

results. A stop code following a carriage return signifies the end of this ma-

terial. It is limi ted to 376 (octal) characters, including spaces. shifts up or

12

down, punctuation, etc. The output heading may be eli~inated by programming an

output heading with no characters in it.

(6) INPUT. - This section is introduced by the sequence: INPUT. All

material is ignored until a carriage 'return followed by a step number is rea~.

Each line consists of a step number followed by signed, 6-digit decimal numb~r

with a pe-riod between the third and fourth digits.. There must be an input line

for each step containing a comparison. The section ends with a stop code follow-

ing a carriage return.

(7) CONfROL. - The above sections are used for loading information into

the computer. The control of the simulation is essentially performed by the

words "type (one space) spacing", "compute", "dump", and "restore". The word

"type spacing", preceded by a carriage return, is followed by a signed, 6-digit,

decimal number with a period between the third and fourth digits o During the

simulation, this number gives the number of major cycles between print outs

(actual~y punched). The word "cycles" may optionally be added after the number;

it has no effect. The number, once set, remains the same until changed.. The

word "compute", occurs with the same format as "type spacing"o The number in

this case, however, specifies the number of major cycles to be simulated; it is

normally a multiple of the "type,spacing" number o The "compute" command must

be repeated for each computation desired.

A "dump" is a print-out of all the simulated registers in a program. It

may be called for at any time by inserting the word "dump", preceded by a car-

riage return and f~llowed hy a space. This instruction by itself will print

out the contents of all the R-lines. If the space is followed by a "V", all of

the V- and R-lines will be printed out. If the space is followed by a "U", all

of the U- , V-, and R-lines will be printed out. This print-out, as is the nor-

mal print-out, is in flex-coded decimal. A special ~pe may be added to the

73

· SIMIC inas ter program which caus es octal .rather than decimal print-out. Th-e

code symbol It = .. will cause six inches of leadeI' to be punched. This is often

.efillli fi0't' ide!ntifying tlbevarious sections of a tap·e ..

~ft!eitl it is desiredl 1;(1) $!iowlate ;s;eV'~rtall progtfan:ts j.n succession wi·t;boutre ..

loading the mas ter tape; the "'res tore'" 'QQmmand al!l.!Qws this to be '(j,o;ue :by set,t.inl

all of the R-lines to zero and by setting all of t~e increments to their initial

value, which is plus one. Restoration is caused by the word "restore" preceded

by a carriage return and followed by a carriage return and then a stop code.

As mentioned above, stop codes signify the end of certain sections (any

section of variable length) and cause the computer to search for the next code

word. Any uncalled for stop codes will cause the computer to stop and may be

used for this purpose. The computer may be started again by pushing the START

but ton.

(8) CO~UrATION TDiE. - As would be expected, the computation time is

a function of: ,~1) numb~r of steps 0 ': 2) number of maj or cycles , and ':3) number

of print-outs. As a rough guide, the computation rate may be taken as four

cycles per second for a one-hundred octal-step program. Print-outs require ap-

proximately one second per line. As thi~ program operates almost exclusively

oft the drum, it is essential that an a-interlace be used for most rapid crimpu­

tat ion. However, there is little loss in speed when a l6-interlace is used.

Use of 4-interlace will increase the computation time prohibitively.

(9) DYSIMIC. - For convenience, DYSIMIC has been designed to use essen­

tially the same program and constants sections as SIMIC p It is more restricted

wi th respect to format, however. The computer recognizes 'the "PROGRA" of

"PROGRAM" 0 and then ignores all else until it read,,& a carriage return followed

by three ze·ros. It then takes in the following information, ignoring step num­

bers. It aSlumes the steps to be consecutive and increasing. This process

74

stops on the recognition of the He" from -end of program"e Search Is then be-
<; . ..' . '.'.

gun tor the 400-1ine which may contain the addresses of up to six V addresses o

i" e •• Itep numbers.. The following carriage return trigge,rs the search for the

500-line into which the control s~ction is condensed. The 00500'· is followed by

four octal number in order~ ~l) total major'cycles o ~2) major cycles between
)

input references [note: (2) z~l) for no references], :3) major cycles between

print-outs, and ~4) steps per major cycle ~4) = 76 (oetal~. .

The carriage return following the 500-line triggers the search for the

"C~STA" of "CONSTANTS". After a carriage return followed by three zeros the

constants are stored. Once againJthe step numbers are Ignored and t~e steps

. are assumed to be in consecutiv~. increasing order" Uo• VOl and S must be pre­

sent in that order. The numbers are signed, 6-digit and decimal. The period

used in SIMIC is ignored and thus need not be present.. The o'e" from "end of

constants" is sensed and stop. t~e computer, ready for the actual simulation e

j. DEMONSTRATION PROGRAM. - An example is included below as an illustration

of programming. In it, the Junctions 6.A and 6. E are computed. (The ~. here

does not indicate' an increment.) In the following pages the equations, program,

and sample calcula~ions are given. In addition, a SIMIC input tape is repro--

duced.

This program uses double,point-slope integration to generate sine and cosire

functions.. The use of this~type of integration leaves the V-line free for in­

put/output. The initial values of the inputs were chosen and the corresponding

T and Rt calculated. ·The values used are: .
R :: 5400 ft., -R ::: .. 400 ft./sec ••

(A -1T) =-E==E::;i" =0

a z· .94,· Po:a. 6, W ::: 800 ft./s.ee., (V 0 - 1800) :z 451 ft. /see.

75

for these: T: 2.3264 sec.

. Rf ::: 4469. 4 ft.

~E ::; 7.3 milliradians

6A :z 0

76·

TABLE I\D" 1 ,- EQUATIONS

I

V :: V 0 - 10-4 P 0 Ht (W cos A COl E .. 2030)

" $ R2T2 (~2... t2)
Rf = R + RT , .

2(R... T) /
\'
j'

Q = 14T2

t T / (. 060 a .. e 133)
6.A = -E .. V eos

Po W T sin A + W'cos A' 'cos E sin E

, 4.4 x 104

. ~E = ET .. 0 cos E .. (.060 e 133) Po VI T sin E cos A
Rf i

71

) (

Input

Rf

(A - 1r) .

E

" . -R

T*

" E

W

(Yo = 1800)

Po

(8 - • 1833)

" ... y' .. = A cos E

TABLE Ml.

Descr!ptiop

sigbt range.

light azimuth

~ ight elevatio'n

range rate

traverse wate

elevation rate

gun p~atform velocity

muzzle velocity

relative ~ir density

relative air temperature

2 - II\FUTS

Ri.nu -
.YnU Coefficienl Minimum !!x!mulB

it .16667 (\ 6000

rad 500 .. 1 +1

rad 750
2- 2· -3 +=

3
It/sec 1.25 0 ·)~oo

rad/sec 1750. -.~ +.3

. rad/sec 1750. -.3 . -.3

_ it/sec 1. 0 .1000

it/see 1. 1800 2800

1000 0 1.0

4615 .• 5666 1.0000

78

TABLE NO. 3 - TABULATION NO. 1

Step Sign Function

000

001

002

003

004

005

..

+

+

+

+

006·t +

007

010

011

012

013

014

015

D16

011

020

021

022

023

024

025

026

027

+

+

+

+

+

+

+

-+

+

+

+

+

+

+

+

+

+

HT

sin E cos A .
R + RT

,!!2,I2

·2 .E-

Q ::: 14T2

i2 + t 2

cos A cos E

(!: - • 7833) T

Q cos E/Rf

Pr <. 060 a + • 133)

R2r2 (i 2 + i2)

P TW (.060 a + .133)

R2r2 (t 2 + [2) 12(R +ilT)

W cos A cos ·E

Rf = R

· r T_

R·T R2r2(f 2 + t2)
+ +. •

2(R + RT)

sin E = J cos EdE

Rf (W cos A cos E + 2030)

t T/eos E .
Er + Q cos E/R f

V = Vo - 10-4 P Rf<W cos A cos E + 2030)

cos E = -J sin EdE

P lW(,060 a + ,133) Iv
Note: Single underline indicates V-operand; double underline

indicates input or output.

InPuts

.
-R

p

w

E

(Vo - 1800)

•
E
==

(A - 1T)

79

TABLE M>. 3 • TABULATION NO. 1 .. (cont.)

Step lim! Function

030 + Rfl i = T

031 + P nv sin A (.060 a + .133~1 V + t Tlcos E = llA

032 + P TW sin E cos A (.060 a + .133)/ V + Q co~ E/R f +

•
Et ~ llE

035 + sin A :: J cos AdA

034 + (.060 8 + .133)T = .06 [(a -. 7833)T + ~:L
. ·035 + cos A = - f 8 in AdA

036 + .2 cos E

No~e: Single underline indicates V-operand, double underline
indicates input or output.

Inpull

Il A out

Il E out

80

TABLE NO.4 SAMPLE SCALING CALCULATIONS

If cos it cos E I

S - (800.89) (1.) =800
- (1.) -

c = 800,84 = 1 00105
-800 •

5 = (1150){3Q2l'E262
, (2000)

c = 2003.8

Rfl V :: T I

S - (300)(1.) - 1800
- (1/6) =:

C = (1800)(1/6) = 300.00

Hi (W cos A co~ E + 2030) I

•

c = (1.001~)(1/6) = 83.4208 x 10-6
S E (2000)

(E) (T) + Q cos E/R f I

S - (1150)(300) - 262
- 2000 :;::

c = 1!1QO)(300) = 2003.8
' (262)

-(T/cos E I

s ;: !1214.90) (500) .. 303
(2003.8)

C s (~03)(2003.0) - 499 75
(1214.90) - •

.~ 81

TABLE NO. 5 - SAMPLE INITIAL VALUE CALCULATIONS

.00 HT I

W - (699) (9Pl) + 1 =. 421 -·(1500

= 420

#01 sin E cos A I
w - ~-594) (+1) ... l'~, 0,

- (892)

::; - 1

fl

.02 R + HT

w (699)(-499) + 900 + 1 = 746
::: (2250)

= - 155

(421) 2
W = 667 + 1 = 267

, = 266

. #04 [2 I
(+1)2 '

W :: (875) + 1 ::: + 1

:: 0

#05 Q = 14T2 I
(699)2

W =(3214) + 1 = 153

= 152

82

TABLE NO.6 -·INCREMENTAL COMPUTER PROGRAM - TABULATION NO.2

Program No. 2032-B Date: 9/10/56 Prog ramme r: GAC

Title: Demonstration Program Page -.L of2...

Step Il u Il V Il p Il .Q II T Il W Remarks

000 + 030 + 300 n' + 300 + 030 + 000

001 + 035 + 021 n + 021 + 035 + 001

002 + 030 + 302 + 300 - 302 - 030 + 002

003 + 000 + 000 n + 000 + 000 + 003

004 + 324 + 324 n + 324 + 324 + 004

005 + 030 + 030 n + 030 + 030 + 005

006 .. 306 + 306 + 004 + 306 + 306 + 006

001 + 035 + 026 n + 026 + 035 + 007

010 + 030 + 310 n + 310 + 030 + 010

011 + 011 + 011 n - 011 - 011 - 036

012 + 034 + 312 n + 312 +. 034 + 012

013 + .006 + .003 n + 003 + 006 + 013

014 + 012 + 314 D + 314 + 012 + 014

015 + 002 + 015 n - 015 - 002 - 013

016 + 001 + 314 n + 314 + 001 + 016

011 n + 311 + 002 + 015 D + 017

020 + 306 + 030 n + 030 + 306 + 020

021 + 026 + 321 n + 317 n + 021

022 + 016 + 011 n + 017 + 016 + 022

023 + 026 + 023 n - ·023 - 026 - 020

024 + 030 + 324 + 011 + 324 + 030 + 024

83

TABLE NO. 6 - INCREMENTAL COMPUTER PROGRAM - TABULATION NO. 2 (cont.) ,

.Program No. 2032-B Date: 9/10/56 Programmer:GAC

Title: Demonstration Program Page J... of J...

Step /),. u /),. ·V /),. p A Q /),. T /),. W Remarks

025 + 3~2 + 022 + 321 - 022 - 312 + 025

026 + 021 + '326 n - 317 n + 026

027 + 025 + 027 n - 027 - 025 . - 014

030 + 030 + 025 n - 025 - 030 - 017

031 + 027 + 033 + 023 + 033 + 027 + 031

032 + ·027 ' + 001 + 011 + 001 + 027 + 032

033 + 035 + 031 n + 326 n + 033

034 n n n + 030 + Ola + 034

035 + 033 P 032 n - 326 n + :035

036 + 026 + Oos n + 005 + 026 + 036

037 end of program
"

TABLE NO" 7 - INCREMENTAL COMPUTER PROGRAM - TABULATIPN 1'1)0 3

Program No~ 2032-B Dateg 9/10/56' Programmer: GAt

Title: ' Demonstration Program Page ...l... of J....

Step °0 Vo S C

000 + 0000 699 + 000.899 + 001e 5OO .03333'

001 - 000.594 + 000.001 + 000.892 500.,48

002 + 000.699 + 000.499 + 002.250 .16667
f

003 + 000,,421 + 000e 421 + 000.667 1.6666 x 10-6

004 + 000.001 ,+ 000,,001 + 000.815 3500

005 + 000.699 + 000.699 + 003.214 2.0002

006 + 000.001 - 000.001 + 000.875 3500

007 - 000e 594 + 001.216 .., 000.903 800~84

010 + 000.699 + 000.122 + 001.153 12<;l0.78

001 + 000.746 + 000.035 + 000.161 2003.8 '

012 + 000.679 + 000.59-9 + 001,.100 1399.5
<>

013 + 000.001, + 000.267 + 000.250 2.3332 x 10-5

014 + 000.371 + 000.799 + 000.700 2
"

·015 + 000.746 + 000.001 + 000.596 .16688

016 - 000.800 + 000.801 + 000.800 1.00105 ..

017 + 000.001 - 000.001 + 000.001 .16661

020 + 000.001 + 000.699 + 000 .. 262 2003.8

021 + 001.215 + 000.450 + 001.'215 750.00

022 + 001.230 + 000. 151 + 002.000 83.421 x 10-6

023 + 001.216 + 000.001 + 000.303 499.15

024 + 000.699 + 000.001 + 000.262 2003.8

85

TABLE Ml. 7 - INCREMENI'AL COMPUTER PROGRAM - TABULATION NO. 3 (cont.)

Program No. 2032-8 Date: 9/10/56 Programmer: GAC

Title: Demonstration Program Page -L of -L

Step Uo Vo S C

025 + 000.601 + 000.460 + 000.834 1.00024

026 + 000.001 - 000.001 + 000.463 1214,90

027 + 001,922 + 000.283 + 001.500 3000,0.

030 + 000_699 + 001.922 + 001.800 300.00

031 + 000.283 + 000.001 + 000,500 3000,0

032 + 000.283 + 000.001 + 000.500 3000,0

033 - .000.595 - 000.001 + 000.595 500,00

034 + 000.001 + 000,012 + 000.013 1539.45

035 + 000,001 + 000,021 + 000.420 595.24

036 + 001.216 + 000.153 + 001.215 2,0000

TABLE NO. 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE·

Program No. 2032-B Date: 9/10/56 Prog ramme r: GnJ GAC

Title: Demonstration Program Page ..L of -lL

Step A U Il V Il p Il Q A T A w

000 + 030 ~ 300 n + 300 + 030 + 000

001 + 035 + 021 n + 021 + 035 . + 001

002 + 030 + 302 + 300 - 302 - 030 + 002

003 + 000 + 000 n. + 000 + 000 + 003

004 + 324 + 324 n + 324 + 324 + 004

005 + 030 + 030 n + 030 + 030 + 005

006 + 306 + 306 + 004 + 306 + 306 + 006

001 + 035 + 026 n + 026 + 035 + 007

010 + 030 + 310 n + ~IO .0- 030 + 010

011 + 017 + 011 n - 011 - 011 - 036

012 + 034 + 312 n -I- 312 + 034 + 012

013 + 006 + 003 n + 003, + 006 + 013

014 + 012 + 314 n + 314 "'- 012 1 + 014

I 015 + 002 + 015 n - 015 -' 002 - 013

016 . + 001 + 314 n + 314 + 001 + 016

011 n + 311 + 002 + 015 n + 011

020 + 306 + 030 n + 030 + 306 + 020

021 + 026 + 321 n + 317 n + 021

022 + 016 + 011 n + 011 + 016 + 022

023 + 026 + 023 n - 023 - 026 - 020

024 + 030 + 324 + 011 + 324 + 030 + 024

87

TABLE NO.8' .. DEMO~TRATION PROGRAM UNIVAC SIMIC INPUT TAPE (conte)

Program No" 2032-8 Date: 9/10/56 Programmer: GTU GAC

Title: Demonstration Program Page...,L of5....

Step II U II V ., II p II Q II T II W

025 + 312 + 022 + 321 - 022 - 312 + 025\
, j

026 + 021 + 326 n - 317 .n + 026·

027 + 025 + 027 n - 027 - 025 - 014

030 + ~O + 025 n - 025 - 030 - 011
)

031 + 027 + 033 + 023 + 033 + 027 + 031

032 + 027 + 001 + 011 + 001 + 027' + 032
,

033 + 035 + 031 n + 326 n + ,033

, 034 n n n + 030 +. 010 + 034

035 + 033 + 032 n - 325 n + 035

036 + 026 + 005 n . + 005 + 026 + 036
~
"

031 end of program
~

400 033 035 020 030 022 036

(STOP)

88·

TABLE NO. 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE (cont.)

Program No. 2032-B Date: 9/10/56 Programmer: G1U GAC

Title: Demonstration Program Page ..!... of ..5....

CO~TANTS

Step Uo Vo S

000 + 000 .. 699 + 000.899 + 001.500

001 - 000.594 + 000.001 + 000.892

002 + 000.699 + 000.499 + 002.250

003 + 000.421 + 000 .. 421 + 000,1661

004 + 000.001 + - 000.001 + 000.815 .
Oos + 000.699 + 000.699 + 003.214

006 + 000.001 - OQO.OO1 + 000.875

007 - 000.594 + 001.216 + 000.903

010 + 000.699 + 000. 722 + 001.153

011 + 000.746 + 000,,035 + 000.167-

O~2 + 000.679 .+ 000.599 + 001.100

013 + 000.001 + 000.261 + 000.250

014 + 000.311 + 000.199 + 00001100

015 + 000.746 + 000.001 + 000.596

016 - 000.800 + 000.801 + 000.800

017 + 000.001 - 000.001 + 000.001

020 + 000.001 + 000,,699 + 000.262

021 + 001 01 215 + 000.450 + 001.215

022 + 001,,230 + 000.151 + 002.000

023 + 001.216 + 000.001 - + 000.303

024 + 000.699 + 000.001 + 000.262

89

TABLE NO. 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE ·(cont.)

Program No. 2032-8 Date:· 9/10/56 Programmer: GTU GAC

Title: ·Demonstration Program Page -L of ..A...

CONSTANTS

Step Uo Vo S

025 + 000.601 + 000.460 + 000.834

026 + 000.001 - 000.001 + 000.463

.027 + 001.922 + 000.283 + 001.500

030 + 000.699 + 001.922 + 001.800

031 + QOO.283 + 000,001 + 000.500

032 + 000,283 + 000.001 + 000.500

033 - 000.595 - 000.001 + 000.595

034 + 000.001 + 000.012 + 000.013

035 + 000.001 + 000.021 + 000.420

036 + 001.216 + 000.153 + 001.215 .

(STOP)

90

-'"

TABLE NO. 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE (cont.,,)

Program No., 2032-B Date: 9/10/56

Title: Demonstration Program

INPUT

000 + 000.582

002 + 000.645

006 + 000.036

010 + 000.723

012 ... 000.600

014 + 000.800

017 + (,OO(}~327

021 + ' 000.451

024 - 000.092

Q26 - 000.410

(STOP)

OUTPUT HEADING

RESULTS

Program ,2032-b Demonstration Program GTU GAC 9/10/56

CYCLE dA dE

.(STOP)

type spaeingCOOO.050

compute 000.800 cycles '.' • ~ dump u

~ (STOP)

T .~ Hf

Programmer: GTU GAC

Page....§.. of .i.

Q

91

3. ' CODING

a. INTRODUCTION. - The solution to Ii mathematical problem fs expressed as

a series of equations. In order for a computer to solve a problem, it must be

given inst'ructions so that i~ will solve these equations. The translation from

equations to machine instructions is called coding.

All of the information necessary to code for the Incremental computer Is

contained in the command code sheet (.~,Figure. 3.) and the algorisms e The follow­

ing paragraphs will explain B~dillustrate their use.

b, PROCEDURE IN CODII'G •. ~ The equations are broken down into a series of

simpler equations, called steps. Each step must be capable of being handled by

one of the special algorisms. For example, the multiplication algorisms is
UV ' W ::; 5 + P, so two quantities could be multiplied and a third added to the pro-

duct in one step. '

Using the special algorism, identify the variables of each step with the

corresponding variable in the algorism. For example, let us compute the equa-

UV tion Z :: XY. From the multiplication algorism we are given W ='5 + p. To

change our "equatiOn to look like this we can write Z = Xy + O. It is now plain

tllat P = 0. ,X = U, Y = V, Z ::; W.

We have nQw identified the variables in our simple equation with th~ varia­

bles in the algorism. Using the restrictions for the multipiication algorism we

have

~Qi = AVi,~T =6U. 6W = {+ 1 for Ri positive
i l' i+l _ 1 for Ri negative

So we instruct the mach'ine to" read + 6 Qand + flV from the address where IlY

is stored, and + 4T and + AU from the address where 6X is stored. We can

make P = O'by not reading it.

When Ri is positive, the output increment, of the step read by ~W is posi­

tive, and ~hen Ri is negative the increment is negative. Therefore, if we

92

CQIlAND' CODES

P3 P2 PI

0 D. S. Address

2 0 0 No Action

2 2 Initiate Comparison Non-complement • · · · · • · ·
2 3 Initiate Comparison Complement

2 4 End pulse. . . . · · · · ·
2 5 End pulse. . · · · · ·
2 6 Initiate step . · . . · · · · · · · · ·
2 '7 Initiate step · · · · · · · ·
2 e 1 Read + ~P from last indicated address · · · · ·
2 e 2 Read + ~ W from last indicated address ·
2 < e 3 Read +/J.V from last indicated address

2 e 4 Read +DoQ from last indicated address · · · · · · ·
2 e 5 Read + Do T from last indicated address · · · · · · · ·
2 e 6 Read +DoU from last indicated address · ·
2 e 7 Read + Do w from Sign of Ri - l · · · · ·
2 d 1 Read - Do p from last indicated address · · · · ·
2 d 2 Read - Do w from last indicated address · · · .. · · · •

2 d 3 Read -DoV from last indicated address · ·
2 d 4 Read -DoQ from last indicated address ·
2 d 5 Read - Do T from last indicated addre's's · · · ·
2 d 6 Read - 11 U from last indicated address · · · · · · · · · ·
2 d 7 Initiate cycle. · · · · · · · · · · · · .. ·

n
co
1:\1

0 22 0 Comparator address · · · · · · · · · · · ·
~
co 0 22 1
...J
>t

1 22 2

1 22 3

Figure 3. Command Codes, Incremental Computer
t

7 22 15
7 22 16 Comparator address · · · · · · · · .. _, . . . · · ""."."" ". ·

93 .

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

o

2

3

4

5

6

e

e

e

e

e

e

e

d

d

d

d

d

d

d

o

o

1

1

7
7

o

1

2

3

4

5

6

7

I

2

3

4

CO_ND' CODES

D. S. Address

No Action

Initiate Comparison Non-complement.

Initiate Comparison Complement

End pul see

End pulse ..

Initiate step

Initiate step

Read + !J. P from last indicated address •.

Read + ~ W from last indicated address

Read + !J. V from last indicated address • .

Read + !J. Q from last indicated address •

Read + ~ T from last indicated address

Read + ~ U from last indicated address •

Read + ~ W from Sign of Ri - l •••••

Read - ~ P from la st indicated address .

Read - ~ W from last indicated address • •

Read - ~ V from last indicated address •

Read - ~ Q from last indicated address • •

Read - ~ T from last indicated address •

Read - fl U from last indicated address •

COMMAND POSITION

09 of x

09 of x

12th digit after Initiate Comparison

12th digit after Initiate Comparison

00 of x

00 of x

. . .. 02 of x- I through last digit of x - I

. . .

01 of x 1 through 00 of x

02 of x-I through 00 of x

04 of x - I through 02 of x

03 of x-I through 00 of x

03 of x - I through 01 of x

p ~ 20 of x-I where p = sum of the number
of digits in x - I and x. p ~ 21.

02 of x - I through·last digit of x - I

01 of x-I through 00 of x

02 of x-I through 00 of x

04 of x- 1 through 02 of x

03 of x-I through 00 of x

• •• 03 of x - I through .01 of x

Initiate cycle .•.

o Comparator address •

· • • • . • . • • ••• diVi t period preceding
00 ,of x

digit-period following
Initiate Comparison

1

2

3

15
16 Comparator address • . . . • • • . digitperlod followh1g

lnitiaieCOIlparison

1.

2.

3.

NOTEs --
Command Position~efers to the allowable
digit positions for commands for the xth
step.

Address for storing
sign of Ri •• • . • . . 05 of x + I

Address for storing results
of the comparisQn . 4thdigi t

following end
pulse

4. e - even numbers
d - odd numbers

5.

6.

7.

8.

9.

Information from a! digi t storage address
I

remains available until another D. S.
address is progr8~ed.

Where command codes permit. combinations
of commands may be prC)grammed simultane­
ously. and comparator addresses may be
programmed with commands or D.S. addresses
if their common parts can be made identical.

- I

22 = 0, 1, 2 or 3 in this position

22 = 4, 5, 6, or 7 in this position

i DS - Digit Storage
I

•. S.D. of the Uo and Ul preceding initiate
cycle must be O.

10. First two M.S.D. 's' of the RI preceding
initiate cycle must be O.

program II W to be plus (+) 8 W, the required case is satisfied. To make llW = - I

when Hi is positive; we would read - ~W. To do this in the case of multiplica­

tion would be incorrect, however,as the value for Hi would change away from

rather than toward zero.

The command cod~ sheet gives a code number for every command and the allowed

digit positions for that command to be given. For example, let us read one of

the variables in the above equation: take +~V. The code number to read +llV

is given as 2e3. The e can be any even number 0 through 6. The allowed posi­

tions are "02 of x-I through 00 of x" 8 The meaning of this Is made clear in

note No.1. The fiX" refers to the step number wi th ;~which we are concerned. The

02 and 00 refer ~o digit positions within a step. The digit positions are num-

bered starting with the initiate step command as zero; this is necessarily so.

since the digit position for initiate step (15) command is 00 of x. Thus, we

see that +llV must be read in the step before the step in which it is to be used

in computation~ The same is true of the other variables with minor differences

1ninitial digit positions allowed.

After all of the variables have been read from their .respective addresses,

computation takes place automatically. All that remains is to store the sign

of the re-mainder for use in the next major cycle. According to the sheet this

is to be done at 05 of x + 1, the fifth digit position of the following step.

Let us illustrate with ~ typical equation and how it is coded.

Z = (A/d) log A - b

1. Break into steps

Step No. 1 A/d

Step No. 2 log A

Step No; 3

Step No.4 (Step No. 2) (Step No.1) - b

94

Each a.tep can be generated) by:'tlie use of only one special algorism. Note

that ,step ~o. 3 is blank~ This is because the. next step a,fter step No. 2 uses

the resul ts of's tep No.2. The resul ts of step No. 2 are not available until

after they are stored in 05 of step No. 3; If read out as soon as possible in
J

step No. '3 it will not 'be available for computation until step No.4. Now let

us look at the program for this equation and the step-by-step analysis of the

program.· 'This is a general format that all programs follow •. Let us assume

that llA is found at, address 10, llb at 011, lldat 012.

Step No. 0

Prepare Step No. I

Compute Step No. 1
Prepare Step No. 2

Command
Code

2d7

260

010

212

012

203

214

001

206

215

260

010

202

203

206 '

200

002

204

205

Remarks

Initiate cycle (IC)

Initiate s'tep (IS) No. 0

llA address

Read - W from last indicated address

lld address

read + II V from last indicated address

read -.flQ from last indicated address

AId address

read + llU from last indicated address

read -IlT from last indicated address

IS No. 1

A address

+ llW

+ llV

+ llU

no action

' log A address

+ llQ

+ llT

Digit
.Period

(0)

(1)

(2)

(3) .

(4)

(5)

(6)

(7l

((8)

(0)

(1)

(2) 'v,

(3)

(4)

(5)

(6)

(7)

(8)

'95

260 IS No. 2 (0)

200 no action (1)

Store Step No. 1 200 no action (2)
Compute Step No. 2
Prepare Step No. 3 200 no action (3)

200 no action (4)

001 store sign Rl ' (5)

260 IS No. 3 (0)

004 AId [log A] - b address ' (I),

202 +6W (2)

011 6b (3)

211 -~p (4)

002 Store sign R2 (log A) (S)

203 +'6. V (6)
Store Step No. 2
Prepare Step No. 4 204 +AQ (1)

001 AId (8)

206 +6U (9)

205 '''!:IT (10)

260 IS No. 4 (0)

200 No action (1)

Compute Step No, • 200 No action (2)

200 No action (3)

200 No action (4)

260 IS NO e 5 (0)

.. 200 (1)
0

..0
200 U) (2)

>4 Store Ste'p No. 4
I~

200 (3)

200 (4)

004 (5)

96
j

Explanation

Step No. 0 2d7

alsp

digit period
00

digit period
01, 02

Initiate cycle. This command begins operation. The d

can be any odd number I through 7. tid" will hereafter

be called I.

26 __ initiate step command goes at the beginning of

every step. Any number can be put in the space. It

will be called 0 from here on.

In the division algorism we have

U = W ~ P To get our equation
VS •

P = 0

~w = ~A
~V = ~Q = ~d
~u = ~T = ~(A/d) which is the answer or output of

the step.

+ 1 f6r Ri positive and Vi negative

According to the comm·and code we can get -~A on ~ W by giving first the

address of ~A(lO) and then the command "Read -~W from the last indicated ad­

dress" in digit period (dp) 01 or after.' The address 10 was therefore put in

dp 01 and the command "read -~ W" in dp 02.

dp 03, 04, 05 Similarly we read +~V and +~Q from address 12 where

~d is stored •. Notice it is not necessary to repeat- the

address since the command reads "from last indicated ad-

dress" •

97

dp 06, 07. 08 + A Q and + A T 'are the output 01 the I tep. but must be

read for use-1n computation. The place where the output

of a step 1s stored is arbitrary. but the customary

place 1s in the address whose number 1s the same as the

step number -in which _ it is computed; in this case 01.

Step No. 1 dp 00 1.5. No.1. Step 1 is automatically computed: step No e

2 must be prepared.

dp 01, 02, 03,
04

From the algorismwehave
1

Q = '25 log W

AV = AU = AW = 8A

Il T = A Q = Al og A

~A is of course at address 10, and the following eom-

mands read-it out. The address of log A is 002 as 9iven

by the convention mentioned in step 00. Digit period

05 contains a no action command. If there were an ad-

dress in this position the contents of the R line of

step No. O'would be stored here and would erase anythi~

previously stored.

Step No. 2 dp 00 1.5.

dp 01, 02. 03, There is nothing to prepare for step'No. 3, so the no
- 04

-action command is given.

dp 05_ The sign 01 the remainder of a step is stored at 05-of

x + 1 according to the command code, so the remainder of

step 'No. 1 is stored at the address given here.

_ Step No. 3 dp 00 1.5.

dp 01, 02 To prepare for step No. -4-, the algorism gl ves 'W = ~V + p

To form our equation

98

6(A/d) = /1U :It llT, II P = -6 b, .610g A ::II II V= 6Q

, The output of step No.4 is stored at, 04, so this Is

read by +~ W in 010 02. We want /1 P = - ~bo so these

are read, inO~, 04. The sign of R2 is stored in dp 05.

Log A is read from 02· by ... flV and + /1Q. Not.iee It iar

not necessary to repeat the address. AId is read from

01 where it was stored by + flU and ... !:lI.

Step No. 4 dp 00 1.5. There is nothing to be prepared or stored, and

computation is automatic. The length of this step is

somewhat arbitrary, but is set by factors which will be

mentioned later.

Step No. 5 The result of step No.4 is stored in 05 of step No.5.

~l) CONSTANTS;,' - The U, V" and S constants are put into the computer in'

binary no~ation. A typical coding form might look like this:

Octal Program
Constants and Constants Remarks

S V..o U...o. P4 P3 P2 ,PI
.. :r! 6 0 Initiate cycle

1 4 - - -
o 1 2 - - -
1 1 0 6 - - -
o 0 0 0 - - -
1 0 1 5 - - -
o 1 0 2 - - -
1 1 1 7
o 0 1 1
1 0 0 4

1 1

The constants are staggered. This staggering causes S to reach the arith-

metic section first, and forms S6P and -SIlW. Next V arrives and VIlT is formed

and added 'to the rest, and so on. If we call the line containing initiate cycle.

00; the least significant digit of S begins on 01, of V on 02, and of U on 03. '

99

Then the rows ot dfgfts 8~e taken as octal numbers and the result Is put in the

P4 column, as illustrated above. Of course there must be enough digit positions

in a step so that the constants can be put in,

If a constant is ,a negative number, the 2's complement of the positive con­

stant is used. All complemented numbers have a series of l'sfor the most s.10-

nificant digits. These lIs should be continued up to the constants of the follow~

Ing step. For example

5 V U P4 P3 P2 PI
I I I 7
1 1 1 7
1. I 1 7
1 1 1 7 YLhi3 1 0 1 ,5

260 Initiate step

0 1 1 3
·1 0 0 4

\. 10 ;~l ,0 2
1 , 1 1 7

etc.

Thus, we see that each column is continued up to the following step.
: '! Ii:,:':l

'(2) INJ?u.r/ourrUT. - ~omparison~."

Quantities are introdueed 'in~o the)ncrementalcomputer by means of compari­

Ions. In the process of comparing, the digital quantity in the computer on the

V-line is·converted to an analog current by means of a digital-to-analog con­

verter. This current and the input current are run in opposition through wind-

ings of a magnetic modulat·or. The output of the modulator is fed to a detector

wh.ich generates an' increment of ei ther + I or - 1 depending on the sign of the

current difference, In the case of comput~r outputs, the detector output is fed

to a holding circuit wh,ich adj usts . the value of the output current so that it

approaches in magnitude the ourre.nt from the digital-ta-analog converter.

, The input circui try is such that it can only accept currents in 'the range'

from zero to plus full scale. In order that variables whi:ch are both positive

100

and negative could be handled, a special command, complement comparison, was in-

troduced. The inputs are biased externally so that zero for the variable corre­

,sponds to 8 half-scale current. Within the computer the highest order digit Is

complementedo ' The reason for this can be seen by considering the behavior of

,the highest order digito Normally this digit is zero for numbers less than half-

scale and one for numbers greater than half-scale. Using complement notation,

however, the highest order digit(s) is ,zero for positive numbers and one for ne­

gative numbers. If we adopt the convention that positive numbers be represented

by currents greater than half scale, then it can be seen that the highest order

dig~t must becomplementede

The necessary commands for a comparison are:

P3 P2 PI Command

2 2 Initiate comparison non-complement

comparator address ot modulator where'variable appears

24- end pulse

o - address for storing results of comparison

The following is a typical input step:

Step (x - 1) 2 6 0

260

220
0--

Initiate step (x-l)

quantity appears on V-line

Initiate step x

Initiate comparison
comparator address '

0
1
2
3
4
5
6
7
8
9

10 1
2
3

•
•

260

240

0 -

Explanation of Format"

Ini ti8te Step (x + 1) o •
11

.12
end pulse - - - - - - - - - 13

address for storing
results of comparison

14
15
16
17

As previously mentioned, the quantity to be compared must appear on the V­

line of the step during which it Is compared. Therefore. ~VI Is read during

the'step before, i.e •• in x - Ie At 09 of x, the command "comparison 008-

eomplement" (or complement as the 'case may be) is given. The very next digit

period, dp 10 of x, the address of the modulator which holds this variable Is

given. The modulator addresses are given at the bottom of the command code'

sheet. " For example, if our variable, ,A, were stored in modulator 3, we would

give, in 10 of x, the command -14, -15, -16, or -17; they all have the same ,ef­

fect here according to the command code sheet. Thirteen digit periods later the

end pulse is given; this stops the comparison. Four digit periods later the

address at which the result of the comparison is stored is given. This is the

same as the address from which .flV was read. In our case, A was stored at, 010.

This gives the 8A needed in the computations and up-dates the value of A.

Output.

Output is exactly like input except the result of the comparison is not

stored. As mentioned above, the result of the comparison is fed into a detec­

tor and ultimately .~dJusts the output current.

At this time it is thought that there should be a minimum of approximately

35 digit. periods between initiate comparison commands.-

(3) COMBINING COMMANDS. - According to the command sheet, commands may

be' programmed either simultaneously or with comparator addresses if their common

102

parts can be made identical. An example of this is a situatIon where the twelfth

digi t after ini tiate comparison came at the digi t posi tion where "read + 8 P"

is. Both commands could be given by 241.

(4) WORD, LENGTH. - The number of digit positions in 8 step, also known

,as word length, must be at least as large as the largest of the following:

1) The number of commands and addresses

2) The number of digits on the R-line when it is at its maximum o

If the R-line does not overload, its maximum is about 3S (assuming 5>U o 5>V);

if it does overload.its value will be higher. If the word length is not long

enough to accommodate the R-line,some of the most significant digits are lost

and large errors introduced.

(5) USE OF DOUBLE HEAD ON R-LlNE. - Since there are 100 (oc~al) cores

for storage of the output of a step or result of a comparison, the number of

steps plus the number of comparisons would be limited to 100 octal (64 decimal)

except for a special command. This special command allows the sign of a remain-

d~r to be read from a special track, thus freeing a core for some other use.

The command nec~ssary for this operation is "Read + 6 W from sign of Ri _l ", and

the allowable digit position is P-20 of x-I where P = sum of digits in x -1

and x; P ~ 21.

In normal practice this special command is used as often' as possible if there

are more than 64 steps plus comparisons so that core storage is available as

needed during coding without re-arranging the command structure.

When this special command is used pra'ctically the only limitation on the

length of a program is the total number of digit positions. If the double head

on the R-line is used, the maximum word length is less than or equal to 20, and

the sum of any two consecutive words must be greater than or equal to 21.

103

(6) STABI&I'l)' COMPARISONS In order to stabilize the modulators, pro-

vi$ion must be made in every program for zero and full scale comparisons. This

is done in the 'following way.

Zero Comparison.

In some ste~where the V-line is free, make the initial constant on the V-

line equal to zero and do not program Il Vo This will keep V at zero. Then make

an output comparison in the usual manner. At the time of this writing the modu-

lator used for zero comparison is modulator 2, so the corresponding comparator 9 s

address would be put in the program.

Full Scale Comparison.

In some other step where the V-line is freet,make the 10 least significant

digits of the initial constant on the V-line equal I. Then do not program ~V

and proceed as in zero comparison. The present full scale modulator is No. I.

4. SIMULATION

In order to test the behavior of the incremental computer e and ,to acquire

, facility in programming and scaling for the incremental computer. a program which

simulates the logic of the incremental computer was written for the Remington

,Rand Univac Division's 1103 large scale computer. This section describes this

program", The commands which comprise the program are listed at the end of this

section. Reference is made to the following publications, obtainable from Rem.

Ington Rand Univac Division, which describe the programming oithe 1103.

1) "Notes on' the Logic of the ERA 1103 Computer"

.~) "The ERA 1103 Computer System''o PX' 71920. Vol. IV, Se,ction 6,

Programming.

This simulation program was given the name SIMIC for SIMulation Incremental

~omputer. It requires an input tape o the preparation and format ~f whic~ have

been previously described. Since this input tape contains constant inputs (R.

A. E, etc.) SIMIC gives a static simulation of the Incremental C~mputer. A simu-

latlon program to receive a new set of inputs every major cycle is being pre­

pared and has been given the name DYSIMIC e for DYnamic SIMulation. Incremental

~omputere

The SIMIC program contains room for more computation steps (minor cycles)

than the Incremental Computer itself. Consequentlyo a program to generate varia ..

ble inputs to the program maybe included in SIMIC ahead of the program to be

simulated. When used in this way, it is called POLYSIMIC since the variable in-

puts are approximated by polynomials, This has been used primarily because DY­

SIMIC was not yet ready. When it becomes ready. POLYSIMIC will no longer be

When a simulation is to be made, a bioctal punched tape containing the SIMIC

prog.ram is loaded into the 1103 computer by means of the Ferranti loading routine

10-5

•

in the Service Library. It goes on the drum in addresses 40000 through 44117.

Drum addresses 44200 through 50000 plus 40x, where x is the number of minor

cycles in the simulated program, are used'for storage in the course of simula-

tion o The input tape is then inserted in the tape reader. PAl{ is set to 40000

and the machine started. The simulation proceeds as per instructions on the in­

put tape until the end of the input tape. If the code word "restore" appears

at the start of a second input tape, this second simulation can be run without

re-loading the SIMIC program tape.

The SIMIC program can be divided into three tasks which the program must

perform:

t) Read input tape; recognize code words; store constants and addresses

~) Carry out the simulation

3.) Convert to decimal, flex-codeo and punch out the results when called

f~r by the input tape.

The SIMIC program works from high-speed storage (HSS) in accomplishing tasks 1

and 3 while 2 is done on the drum.

Starting at 40000 the program jumps to 41776 which is the start of a block

transiere 40000 through 41777 is transferred to HSS and control passes to 00010

(which now contains the instruction in 40010>. This,and the instructions fol10w-

Ing cause one character to be read from the input tape. This character is

examined to see if'it is a stop code (43) or carriage return (45). If it is 8

stop, the program jumps to 00007 which is an unconditional stop, with 40000 as

NI. If a carriage return is found, the program jumps back to 00010 to read

another character. If the character so examined is, nei ther stop nor carriage

return o it is stored in the scratch pad (00017 through 00037) and the program

Jumps to 00100. As the characters are read in,they are stored in'order in the

scratch pad. Starting with 00100 the program examines the appropr18te number

10,6

'I;JI,
t

"" It)

~

of characters in the scratch pad to determine the presence of one oft,:he code

words 0 If a given code word is not found. the program Jumps t08 sectipnwhich

seeks to identify the next c9de word. If a code word is found,the program jumps

to the section which handles,!n an appropriate fashion.the characters which· .

follow that code word on the input tap~. If none of the code words are-found •

. the program returns to 00010, reads another character from the input tape. and

again looks for one of the code words among the last n characters read, (n de-

pends.on the number of characters that comprise a code wor~). For example, the

section beginning with 00100 seeks to identify the code word ~'program" e In this

case n = 9· for the code word to be recognized includes "carriage return" and ,!

"shift. up" characters' as well as the seven letters of the .word "programtO
• The

following table lists the code words, together with the first address of the

section in which they are recognized, and where the p~ogram goes if. the code

word is or fs not recogni.zed.

If recognized If not. recognized
Address' Code Word

00100 cr-su-p-r-o-g-r-a-m

00140 cr-su-c-o-n-s-t-8-n-t-s

00200 o-u-t-~-u-t-sp.-h-e-a-d-i-n-g

00240 t-y-p-e-sp.-s-p-a-c-i-n-g

00300 ·c-o-m-p-u- t-8

00340 i-n-p-u-t

01024 d-u-m-p-sp.

01223 r-e-s-t-o-r-e

01252 =
where cr means carriage return

su means shift up' code

sp. means space code

. = means equal sign c6de

code

jump to:

42000

00150

01000

01100

01200

00350

01034

01233

01255

(45)

'(47l)

'«()4)

(44)

jump to;

00140

00200

00240

00300

00340

01024'

01223

01252

00010

107-

If none of the code words is found, control is returned to 00010 which reads in

another character and initiates the above sequence again. This continues until

a code word is found c

When a code word is found, the program jumps to the indicated instruction

where appropriate action is taken e When this action has been completed, the

program jumps back to 40000 and, after the block transfer to HSS, begins to look

for alOstopto or the next code word" A .estop" code at the end of the input tape

(the incremental program being simulated) causes the comput~r to stop with 40000

in PAK c

The following paragraphs will sketch what happens when the various code words

are recognized. The reader should have in mind the format of the input tape as

well as the Incremental Computer algorism which this program is designe~ to

simulate!!

When "program" is recognized, the SIMIC program jumps to 42000. This.inl-

tiate5 a block transfer of 42000 through 42177 into HSS, and jump to 00100. A

character is read from the tape and checked to see if it is a relevantsymhol,

such as a number,· carriage retu~n, stop code, letters "e" (from "~nd of program")

or IOn", plus or minus sign, period, space, shift up, shift 'down~ back space 9

delete o or tab. Any symbols other than these will cause the program to read

the tape, ignoring everything, until a carriage return is fo·und., When a number

is found,it is converted from flex-code symbols into binary and the program

jumps to 00140 •. Beginning at 00140 is a series of index jumps which cause the

numbers to be organized into .groups of three as they come in (see incremental

tape format).. There will be seven groups of three digits each, representing

step, U, Vo P, Q, T, and We After each group is completed and stored, the pro­

gram goes to 00204. Here, and in the steps which follow, these addresses are

manipulated in such a way as to produce the proper modifications in the steps

106

from 00400 to 00437. This block of steps is the nucleus of the whole SIMIC pro­

gram, for it is here that the Incremental Computer's algorism is simulated. It

may be indexed as follows:

400 - 404 adds -5 IlWi to Ri_l

405 - 411 adds Vi_lilT!

412 - 416 updates U: U1 = U1_1 + l\ Ui

411 - 422 adds Ui II Qi

423 - 427 adds SIlPi to form Hi

430 - 434 updates V: Vi = Vi_l + 6Vt

435 - 437 compares Vi with input and stores the difference as the

6V1 to be used in this step at the next major cycle.

After this block of instructions has been set up to carry out the algorism ac~

cording to addresses given in, sayo step 000, tlie carriage return at the end of

the line signals that this task is completed. ThIs causes this block to be

transferred.to the drum at 50000 through 50037 (for step 000) and then to get

ready for the next line of addresses by again block transferring from 42000

through 42777 into HSS e The next line is handled in the same way except that

the algorism block (400 ~ 437) is transferred' into 50040 - 50077 on the drum

(f~r step 001). Thus, the algorism for.each step is set up in accordance with

the input tape and transferred to the drume The instructions :for step xa appear

on the drum beginning at (50000a + 40axa>, the subscript 8 denot~ng an octal

number. When carrying out the Simulation, the computation will start at 50000

and run in order to (50000 ... 40y) where jump instruction has been ·placed by the

program after finding the code word e-n-d (part of "end of program") oppo~ite.

say t step Y., This is a jump to 00040. At the time the computation is carried

out, H55 will contain instructions which decide after each major cycle, {:f,ite-l-s

• timesto.:stopnando}Vhether::orl.:Dot:iit; is. time Ltoppunchc,out l.res1'alt$. ';Tbls ~:colles lirom

the "compute" and "type spacing" numbers on the input tape o and will be taken

up later.

After "end of program" 0 the input tape contains a line beginning with 400

in the "step" column.! ([he six 3-digit octal numbers of this line, .are the step

numbers (of the incremental program) of tbose steps whose V-line values are to

be punched out as output of the program.) When 01400" is sensed, the SIMIC pro­

gram jumps to 00500 where the 'instructions at 44005 through 44012 are changed

to give the desired print-out.

The "stop" code a~ the end of the "programt9 section returns control to 40000,

and the machine begins to look for the next code word.

Normally the next code word encountered is constants. The program jumps to

00150, which now corresponds to 40150. Here, indexes at 43041 through 43043

are restored and the program jumps to 43000. As before, there is a block trans~

fer. The HSS now contains a duplicate of the instructions that are on the drum

from 43060 .through 43777. Starting again at 00100. the SIMIC program reads and

decodes the step numbers and constants Uo' Vo' and S listed on the input tap~,

arid stores these"in their proper positions. These positi~ns 'are listed in the

table below. The table als6 includes 8 for convenient refetence, the locations

o~ other quantities used in the simulation e

Ultimate Location
Quantity Location in HSS at Time

Stored on Drum of Computation

UOi's 44200 - ·44477 00200 - 00477

VOi's 44500 - 44777 00500 - 00771

R· 's 1 45000 - 45277 01000 - 01277

Results of
Comparisons 45300 - 45377 01300 - 01377

5's 45400 45677 01400 01677

In'puts 45700 - 45777 01700 - 01777

110

The location of a particular Vo• VOl or Sf within the range indicated above, de­

pends of course upon the step number associated with it. Thus, SIMIC has room

for up to 300 (octal) steps in the program to be simulated. SIMIC uses these

locations as V-lines, V-lines, and R-lines are used in the Incremental Computer,

iee. o the values in these registers are changed in the course of the computa­

tlono To allow the initial values to be brought back, instructions located at

43200 - 43224 mirror the Do's and VODS at 46000 through 46571~ Later o if de­

sired, the code word Vlrestore" will clear the R-lines and'return the UODS and

Voe s to 44200 through 44477.

After the constants have been stored, stop code causes the program to go

back to 40000 as before, and to look for the next code word e Normally this will

be "InputOt
, causing a jump to 00350 (40350) 0 Here 43041 - 43043 are cleared

and we jump to 43000. After the block transfer to H55 the program jumps to

OOIOOe Because the indices at 00041 - 00043 are now cleared, the program goes

through the index jumps at 141, 142, and 143 (after each ~tep number has been

read in) and goes (via 00144)- to 00210. Here, and in subsequent instructions.

the input values are decoded, converted to binary, and stored in 45700 - ,45771,

depending on the step numbere Again, the stop code at the end of the section

caus~s a jump to 40000 and initiates the s~arch for the next code word.

The code word etoutput heading" causes a jump to 01000 (41000)" The effect

of these instructions is simply to store the flexowriter symbols, as read from

the input tape, in locations starting with 41400. There is room for 376 (octal)

symbols in the output heading e since any more than this would write over some

of the instructions effecti~g a block transfer which is still needed. These

instructions ~re located at 41775 - 41771. After storing the heading, control

returns to 40000 and a search for the next code word is initiated.

III

The code word V'type spacingO~, causes a jump to 01100 (41100) where the number

following this code word is decoded, converted to binary. and stored in 44003.

This time a stop code is not required to cause the program to return to' 40000

and seek another code word.

The next code word is "compute". This causes a jump to 01200 (41200) where

the number following the code word is stored in 440020 Then the stored output

headi ngs a re punched out and ,the program jumps to 44000.

The instructions starting at 44000 control the functions. First 44000 -

45177 is block-transferred to HSS and control jumps to 00040. HSS now contains

all the data needed by the computation which is on the drum starting with 50000,

as well as the instructions which decide when to punch-out the outputs (type

spacing) and when to stop the computation ("compute" number). Starting with

00040, the program sets up the output registers, punches out the first line of

outputs (for cycle 000), and jumps to 50000. Upon reaching 50000 + 40x (octal),

where x is the step number corresponding to "end of program" on the input tape,

one major cycle has been simulated. The jump to 00040 is made, and the cycle

counter (at 00013) is compared with the "type spacing" and "compute" numbers"

Whether or not an output is punched now, the program jumps to 50000 if the num-

ber of cycles computed is less than the "compute" number. The program continues

thus until these numbers are eq~al, when it again jumps to 40000 and looks for

another code word. Usually this is a stop code, and the simulation stops.

The remaining code words in the foregoing table are simply convenience fea-

tures which have been added to SIMIC since its original inception. "Res tore"

has been described. Use of this word at the beginning of an input tape enables

1t to be fed into SIMIC after another simulation without the necessity of read-

Ing in the (large) SIMIC tape again. Used within an input program it enables

the simulated program to ,be brought back to its initial values of Do and Vo and

112

run again with new input values. Thus, a dynamic simulation could be achieved

by, listing a new set of input values for each major cycle of computation. lhis

is rather impractical, however, as it would mean a very long list of inputs. A

"stop" code after "restore" is required to effect a return to 40000 and a search

for the next code word.

The "=" code word causes approximately six inches of leader to be punched

out. This is convenient in identifying portions of the output tape.

The code word "d-u-m-p-spaceu causes SIMIC to convert' to decimal and flex-

code, the contents of all the R's in order. When immediately followed by "V",

the program will punch out all the V's and all the ROs. When followed by "Un

(i.e., d-u-m-p-space-u) it will punch out the D's, V's, and R's. These dumps

are invaluable in analyzing a proposed incremental computer program, especially

in deciding upon scaling and word length which are governed in part by the

build-up of the R-line.

It is' planned to add a "moni tor" function to SIMIC also, but this has not

been completely debugged as of the date of this report. Monitoring would com-

pare the R-line df each step with three times that step's scale factor and

punch out the cycle and the R-line when 35 is exceeded. It would do this each

time an output is called for ("type spacing" number). The primary reason for

adding this to SIMIC is that DYSIMIC. which has ,this useful feature, is not yet

readyo It is planned to test Incremental Computer programs on POLYSIMIC until

DYSIMIC is ready for use.

113

Digital Compute r for Fire Control

.. .
" .
. "
" .

..
.

, , . ,

.,
. . .. , ,

• I • • , •• •

. , , , , " "
• • , • •• I I • • •• • •

, •• • " " ., • I . , • •
I " • • • , ••••• " ' •

. • I ' • • I " • •• • "'

• • • • I •• •• • • • • • •• ••• •• • I

Computer - Sides Off

lJ""J
-D
lJ""J
0'

co o

Magnetic Storage Drums - Incremental
Computer and Univac Scientific

~

Computer - Magnetic Switch Wiring Exposed

Subminiature Tube Classes and Driver Units in Computer

o
lJj
CO
0-

o

..

. .. .

Computer - Drum and Power Supply

Ins ertion of Magnetic Switch

Computer - Insertion of Subminiature Tube Classes

OB 9597

Magnetic Switch

c::
::s
~

o 9610

Magnetic Storage Drum - Incremental Computer

• s n NI 3ay'l

nnn
~

0 0 0 0 f) 0 0 0

0 ,f':~'1
"\1"

0

0
.. ~,' '\ • 0
• ... ~:I r'" 0 \t

:/",1,.,.
.f) I '""

Q
, ..

"'" 0
••• ft . .:l'.

a ',-" .
-I ()

, ... '"
0

~1''P'' " ,;.."
.110<

.J 0
i

I I .. \
1:\1

(.;l·~'p, . .."

0 "' .. \
~ . 0 .,..

. f t ..
(,~I \ .1>

0 •
0 0 0 0 a 0 0 () ()

Core Matrix - Random Access Storage

08 9606

o 9853

. .

..

o 9855 . .

•
•

•
• •

• ·
· • •

• · • .
• . ·

• • · •
• • • . . •

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093a
	093b
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16

