


FOREWORD 

This document describes NELIAC (Navy Electronics 

Laboratory Algorithmic Compiler) as developed on the 

UNIVAC AN/USQ-17 computer and applied on the UNIVAC 

AN/USQ-20 and UNIVAC 490 real time computers. 

The author is indebted to LT J. E. White, USN, 

LCDR R. R. McArthur, USN, LT K. S. Masterson, USN, 

and Mr. Roger Rempel, who were instrumental in the 

development of the NELIAC language and compiler. 

The NELIAC language itself was invented and developed 

in its early phases by Dr. H. D. Huskey, Dr. M. H. 

Halstead, and LCDR R. R. McArthur, without whom there 

would be no NELIAC language. 

Special acknowledgment is due Mrs. Helen Bate 

for the preparation of the manuscript and her 

knowledgeable editing of the text for technical 

accuracy. 



INTRODUCTION 

The availability of large scale automatic data processing 

equipment has revolutionized problem-solving techniques in vir­

tually every modern industry and laboratory. 

Programming is the operation by which such data processing 

equipment is instructed to perform a particular task or se­

quence of tasks. Internal operation is in a numerical code or 

-machine language-. Usually, no distinction is made 

between the data which is operated on and the instructions them­

selves. Instructing the machine in its own language can be an 

onerous and monotonous job. To simplify the programming task, 

many -automatic programrning- systems have been developed. These 

-systems- are programs written for a computer to simplify the 

problem of programming for it or other computers. The term 

-compiler- is used to refer to such a system, and particularly 

to one which accepts an English or algorithmic input language. 

The compiler then translates that higher level language to the 

basic language of a particular computer. 

The evolution of programming systems has progressed fur~ 

ther and further away from the characteristics of the machines 

themselves. Indeed, some languages have highly machine in­

dependent characteristics, and may successfully generate pro­

grams for several dissimilar computers. NELIAC is a dialect of 

the ALGOL 1958 language; and is classified as a procedure­

oriented language. 
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Ie NELIAC SYNTACTICS 

A. SYMBOLS 

NELIAC programs are written using a basic set of alpha-

numeric, arithmetic, and punctuation symbols~ The symbol 

set consists of 26 letters, 10 numbers and 25 arithmetic-

punctuation symbols~ 

These symbols are translated from the code of the input 

device (Flexowriter, Teletypewriter, or Hollerith card reader) 

into compiler code. This code table is a logically arranged 

table which represents each symbol with the 6 bits necessary 

in the binary mode of the computer~ Table I lists all the 

NELIAC symbols with the NELIAC internal codes~ When 

punched cards are used for preparing NELIAC programs, special 

composite symbols are required $ These are also illustrated 

in Table I. Simple definitions of each NELIAC symbol are 

given in Appendix A; more definitive explanations are given in 

the following sections~ 

B. GRAMMAR 

The compiler, itself a sophisticated program written in 
1 • 

its own language, is classified as a -self compiler-. It 

utilizes -current operator/operand/next operator- combinations 

to transform the procedure oriented language into the computer 

oriented object program; see Table II. It is therefore 

absolutely necessary for the programmer to observe rather strict 

rules of punctuations 
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1 I The use of the , - , is as a quotation mark and is only for 
the convenience of the reader~ 



The rules are, however, simple and quite consistent 

throughout the framework of the language. Misuse of operators, 

i.e. punctuation, in the NELIAC language will result in 

more serious implications than merely using bad grammar, 

and will cause diagnostic printouts at compiling time. 

Indeed, an error in punctuation may cause a great many 

messages describing syntactical errors which are caused 

directly by the first error in the chain. 

NELIAC programs consist of up to three elements: the 

Declarative Statement, the Dimensioning Statement, and the 

Flowchart Logic. 

1) The Declarative Statement is a means of putting 

machine dependent operations into NELIAC language without 

using machine language in the flowchart logic. 

2) The Dimensioning Statement or noun list contains 

the assigned names{nouns) of all constants, variables, lists, 

and tables, etc. used in the flowchart logic. 

3) The Flowchart Logic is the NELIAC operating 

program itself. The flowchart logic is written using NELIAC 

symbols, constants, predefined variables (nouns), and other 

routine and subroutine names (verbs). Usually, programs are 

of such extent that they will consist of a collection of 

flowcharts (flowchart logic) with their associated dimensioning 

statements along with one declarative statement from which 

the compiler manufactures a machine coded program. 
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C. NAMED VARIABLES OR NOUNS 

Four types of variables are conunonly used in NELIAC 

programs. They are: (1) signed whole words, (2) unsigned 

half word or bit fields, (3) multiword floating point 

quantities, and (4) address variables. Half words and bit 

fields are always treated as positive integers. Constants 

in legal number format may be used in any part of .t~e flow­

chart. See the Section on dimensioning for 4etails~ 

D. NAME FORMAT 

The first fifteen characters in any NELIAC name are 

significant, not including spaces. Any chara.cter past the 

fifteenth is disregarded. Names must begin with a letter; 

thereafter, any combination of letters or numbers constitutes 

a legal name. The single letters -i- through -n- are 

register variables Bl through B6, and therefore cannot be 

used as labels or -verbs-. Operators cannot be. used as names, 

i.·e. those in the NELIAC card symbol set: BEGIN, END, OCT, 

etc. 

Examples: 

LEGAL NAMES 

qlzt 

Z 999876 b 

an extra long legal name 
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There are three levels of name precedence in the NELIAC 

language: 

1) Permanent or global names 

2) Flowchart local names 

3) Formal parameter and subroutine names 

A global or permanent name is one that has been defined in 

the dimensioning statement or is the name of a procedure and 

may be referenced anywhere within the system program. Names 

that are local to a flowchart contain a temporary sign -l-
and may not be referenced outside the flowchart. 

If a name is defined in a function or subroutine, it may 

not be referenced outside that function or subroutine. 

VJhen the program.'TIer uses the same name in two or three 

levels of name precedence, the compiler uses the definition of 

the most local name. 

Z < NUfllBER FO RI\~A T 

Numbers [I"lay be used as operands in the floVIchart 10Gl.c 

Hith the restriction that no float:tng point nu:nbers VJith 

exponent parts are allowed. See example 1. The dimensioning 

statement has no such restrictions. Example 2 illustrates all 

the legal forms. 
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Example 1: IN FLOWCHART LOGIC 

LEGAL NUMBERS 

37777777778 

77778 

12345 

3.2 

99.99 

0.00000123 

EXample 2: 

ILLEGAL NUMBERS 

1234512345 128 (more than 10 octal 

digits) 

.321 (no leading number or zero) 

3.73 18 (no floating point octal 

are allowed) 

IN THE DIMENSIONING STATEMENT 

LEGAL NUMBERS (include all above legal numbers) 

3.0 x 74 (a decimal power of ten is understood) 

3 x -1 

4 )( 0 

- 338 

- 89 

-62.3 x -3 

- 0 (octal 7777777777) 
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F. PUNCTUATION 

A program written in the NELIAC language depends upon 

the proper use of punctuation. The -punctuation symbols­

used are shown below. 

, 
, 

comma 

semicolon 

period 

colon 

right brace 

left brace 

n boolean -and­

U boolean -or-

1) COMMA: Commas are universal separators, they are 

used to show the end of a phrase or sequence. Commas can be 

used with great freedom almost everywhere. 

Example 1: 

, Compute Tax, Sum, Z, 

In Example 1 the comma indicates a transfer operation. 

Here -compute tax-, -sum-, and -z- have been defined as 

subroutines. The example says -transfer to compute tax and 

come back-, etc. Note that the return transfer is implied 

only when the previous operator is -punctuation-. 

Example 2: 

A + B ~ C ~ D, 

Example 2 shows that punctuation usually follows the final 

operand in all store operations. 

2) SEMICOLON: The semicolon denotes the end of the di­

mensioning statement. The compiler considers everything follow­

ing the semicolon at the end of the -dimensioning statement-

to be flowchart logic. 
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The semicolon also indicates the end of a true or false 

alternative to a comparison as described in Section III-B. 

The other legitimate use of the semicolon is to separate 

the input parameters from the output parameters in a -function 

call- or a -function definition-. See Section III-E and F. 

3) PERIOD: The period indicates an unconditional 

transfer when the previous operator is -punctuation-. 

Example 1: 

, Procedure. 

Like the semicolon, the period indicates the end of a true or 

false alternative wherever it is used. A misplaced period, i.e. 

one not indicating an unconditional transfer, will terminate an 

alt~rnative as effectively as a semicolon. See Section III-B. 

A double period signifies the end of a flowchart and will 

generate an unconditional jump stop to the flowchart entrance. 

4) COLON: The colon indicates definition when the previous 

operator is -punctuation-. 

Example 1: 

. 
I Compute Number: 

The example defines that which follows the colon as the sub-

routine or routine associated with -compute number-. 

When the colon is preceded by one of the comparison oper­

ators ( =1 >, etc.), it indicates the beginning of the -true­

alternative. See Section III-B. 

In the dimensioning statement the colon has several other 

defining capabilities as shown in Section II-B, E, F, and H. 
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5) LEFT AND RIGHT BRACES: The left and right braces are 

symbols which indicate loops (Section III-C) or subroutines 

(Section III-E). In all other respects they are identical to 

commas. For their application in dimensioning statements see 

Section II-B, C, D, E, and G. 

6) BOOLEAN AND-OR: The boolean operators are symbols 

which separate parts of a compound decision. In this sense 

they are treated as punctuation. See Section III-B. 
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II DIMENSIONING 

A. DIMENSIONING STATEMENT 

The dimensioning statement·, often called the noun list, 

contains the assigned names (nouns) of all variables, constants, 

lists, and tables. Dimensioning is the process of allocating 

machine locations and naming variables; stating whether or not 

they initially have known numerical values and their mode, 

i.e. fixed or floating point, and information on the forms and 

lengths of any lists or arrays. All variables used in a NELIAC 

program must be defined at some point or otherj however partial 

words and floating point variables must be defined before they 

are used. The dimensioning statement may be omitted in certain 

cases, but in any event a semicolon must precede the flowchart 

logic. 

B. SINGLE ITEMS, LISTS, TABLES, CONSTANTS, AND PARTIAL WORDS 

Example 1: 

a, b. c. 

This example defines the fixed point full word variable 

-a- and the floating point variables -b- and -c-, all equal 

to zero. 

~ample 2: 

a(20), b(20). 

In example 2 -a- is a list of 20 fixed point full word 

variables, -b- is a list of 20 floating point variables. In 

both cases all locations are equal to zero. 
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Example 3: 

a(10) = 1,7,3,6, 

Example 3 shows the general technique by which a list 

may be wholly or partially allocated with non-zero quantities. 

The remaining six locations of list -a- are equal to zero. 

Example 4: 

Z( 10) = 2.1, 3.2, 0.15, 100 x -10, 

The mode of a list, i.e. fixed or floating point, is 

determined by the first numerical value assigned in that list. 

Example 4 illustrates a list -z- of 10 floating point items, 

four of which are assigned non-zero values. (Example 3 

illustrates a list of 10 fixed point items.) 

Example 5: 

A: B: {c(2~29), d(24~29), e(0~17), f(12~17),1 (100), 

In-example 5, the partial word variable -f- occupies bits 

12 through 17 of the computer word -B- which is also defined as 

-A-. Note that -f- 1s wholly contained in the variable -e-, that 

-c- and -d- occupy the same bit locations and that bits 18 

through 23 are unallocated. Note also that there are one 

hundred of each of these variables, all of which are numerically 

equal to zero. 

c. JUMP TABLES 

Example 1: 

Jump Table = { Pj Q, R, S, T, U, V, I, 

In the example Jump Table [0] contains the address of -P-, 
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successive entries contain the addresses of the routines -Q-

through -V-o The names mentioned in the jump table can be 

names of routines or subroutines. In the flowchart logic 

statement, Jump Table[i], generates a return ju~p to the add­

ress specified in the lower half of the ith entry in the 

dimensioned jump table. Jump tables may be used to execute 

subscripted return jumps or straight jumps depending upon the 

items defined. 

D. ADDRESS SWITCHES 

Example 1: 

swi t ch = {a I , 

Address switches and jump tables are identical in 

principle. SWitch[O] contains the address of the noun -a­

and the k-designator (Note 1) appropriate to the noun. The 

functions of jump tables and address switches should not 

normally be mixed. 

Example 2: 

Sw itch =. {Noun 1, Noun 2, Noun 3, ..... ! , 

The switch[O] contains the address of Noun 1. Switch[l] 

contains the address of Noun 2, etc. Both jump tables and 

address switches are address variables, i.e. an address rather 

than data is referenced. The distinction between the two 

exists only in their usage. A Jump Table may be used as an 

address switch to obtain the address of a routine, but using 

Note 1: The k-designator, inserted in bits 18 through 20, is 
for operand interpretation in an AN/USQ-20 machine instruction. 
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?,D address switch as a jump table is very inadvisable, since 

one rarely wishes to jump into the dimensioning statement area. 

E. CONGRUENT TABLES AND LISTS 

Example 1: 

A(10): B(5), C(5), 

In example 1 the lists -B- and -C- are both numerically 

equal to zero and are wholly contained in the list -A-. The 

element -A[5]- is the same as element -C[O]-. The programmer 

must ensure the allocation of the whole of list -A- with other 

lists or tables, as in example 2. 

Example 2: 

A(lO): B(5): C(2) = 1,2, D(3) = 3,4,5, E(5): 

IF(24~29}, G( 0~5), 1 (3) ::::: 6, 7, 8, H(2) ::::: 9, 10, 

Example 2 illustrates some of the power of this technique. 

Note that only ten cells have been allocated in the object 

program. Example 3 illustrates diagrammatically the relations 

expressed in example 2. 

Example 3: 

10100 }c ( 1 ) 

1 0 101 ( 2) 

10102 B ( 3) 
D 

10103 ( 4) 

10104 ( 5) 

10105 ( 6) 

10106 ( 7) F, G 

10107 E ( 8) 

10 110 ( 9) } 

1 0 111 ( 10) H 
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F. DOUBLE INDEXING AND TWO DIMENSIONAL ARRAYS 

Example 1 : 

A (3 x 4): AO(4) = 0, 1 , 2, 3, 

A 1 (4) = 4, 5, 6, 7, 

.A2(4) = 8, 9, 10, 1 1 , 

Example 1 illustrates a two-dimensional array of three rows 

and four columns~ Each row is named with the appropriate row 

number. Thus, -AO- is row zero of the array -A-. Note that the 

leading element of the array is -A[O,OJ-. Elements of two­

dimensional arrays are stored as they appear on the flowchart, i.e., 

arrays are stored sequentially by rows" 

Example~ illustrates some of the identities possible with 

the conventions adopted" Note that the last element of a two-

dimensional array has subscripts which are one less than the 

number of rows and columns dimensioned. 

Example 2: 

A[O,O] is the same as AO[O] and is equal to 0 

A [2, 1 ] is the same as A2 [ 1 ] and is equal to 9 

A [2,3 ] is the same as A2 [3 ] and is equal to 1 1 

G. TWO DIMENSIONAL JUMP TABLES 

Example 1 : 

Q(3x3) = I A, B, C, 

D, E, F, 

G, H, P, } 
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Table -Q- is like any other jump table except that it 

may be referenced in the fashjon of example 2. 

Example 2: 

, go to Q [ " 2] . 

This example will result in a transfer to routine -F-. 

H. LITERALS 

Literals are defined in the dimensioning statement and 

stored in memory as NEL1AC code just as they are written. They 

are useful for alpha-numeric headings and output formats, etc. 

The data contained in the literal begins with the first character 

after the colon and ends with the character just before the right 

bracket. Any NEL1AC symbol may form part of the literal except 

the right bracket, which ends the 1 i teral.~ 

Example 1: 

[Text: This is a line of text, a+b~c,] 

The name -text- is an address variable. Whenever -text-

is used as an unsubscripted noun, the address of the literal will 

be obtained,. The literal is formed internally as NEL1AC code, 

packed five characters to a word from left to right. A full 

zero cell follows the literal~ 
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III. FLOWCHART LOGIC 

A. COMPUTATION RULES 

NELIAC is an algebraic language; the rules of arithmetic 

precedence are strictly observed. The order of execution 

within an algebraic group is: 

1. Scaling ( x 21 or / 21 ) 

2. Multiplication or division ( x or / ) 

3. Addition or subtraction ( + or - ) 

Example 1: 

A x B + C -+ P 

The above example says~ frake· the product of A and B, add C, 

then store in P. 

Example 2: 

A / B / C -+ P, 

Example 2 says: Divide A by B, then divide the resultant 

quotient by C, then store in P. 

Example 3: 

A - B x C + D -+ P, 

Example 3 says: subtract from A the product of Band C, then 

add D and store in P. 

A series or combination of divides and multiplies is taken 

from left to right. 

Example 4: 

A / B x D / C -+ P, 

This example is interpreted as A-divided by B, multiplied by D, 

divided by C, stored in P. 
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The programmer should observe that A, B, C, and D may be 

expressions enclosed in parentheses. 

Example 5: 

(6+H) x (F+K) + (6-F) 

Examnle 5 is treated like example 1 after the grouping is 

evaluated. However, an expression enclosed in parentheses 

must contain at least one arithmetic operator. 

Note that -H- and -F- may also be expressions, but 

-K- is the register variable B3. Any single variable may 

have been previously defined as a bit field, a whole or 

half word, an address variable, or a floating point quantity_ 

Mixed, i.e. fixed point and floating point, operations are 

not permitted. 

The programmer may refer to specific bit locations on any 

fixed point word. 

Example 6: 

DIMENSIONING 

CELL: { A(5~25),I, 

-A- DIMENSIONED 

FLOWCHART 

A( O~ 10) + . . " . . . 

.~ 

CELL g9 26 F;250/;'<'16~kj5~~~\5:3 4 =oQJ 
~--.J 

-A- FLOWCHART REFERENCE 

Any fixed point expression may be shifted or scaled by 

multiplying or dividing that expression by a power of 2. 
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Example 7: 

A(3~14) x 2t6 ~ P, 

A x 2tI -+ P, 

B / 2tA -+ P, 

Example 7 shows the three legal shifting operands: constants, 

register variables, or whole or half words. 

The programmer should observe that the CO/NO combinations 

of ( x 2t or / 2t ) have the highest arithmetic precedence 

and are always executed first. 

The result of every computation must be stored in a variable 

by the use of the store operator. 

Example 8: 

A + B -+ C, 

Expressions in a decision statement (see Sec III-B) need not be 

stored in this fashion. 

An expression may include a store operator at any point. 

Example 9: 

(A + B -+ C) / (D + E -+ F) -+ Q, 

Algorithms of dissimilar mode, i.e. fixed or floating, may 

be separated by any punctuation or the right arrow. When a 

fixed point expression is stored in a floating point variable, 

the normalized floating point representation of that integer is 

obtained. When a floating point expression is stored in a fixed 

point variable, the truncated integer value is obtained. 
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B. DECISION MAKING 

There are seven basic decisions for expressions of similar 

mode: 

A = B: 

A -f B: 

A < B: 

A > B: 

A ~ B: 

A ~ B: 

A < B < c: (fixed point only) 

Note that A, B, and C can be symbolic expressions of the type 

discussed in Section A. 

Example 1: 

A = B: (true alternative - any expression); 

(false alternative - any expression); 

The true or false alternatives may be terminated by a semi­

colon or by a period. The expression in the -true- or -false­

alternative can be another decision, if desired. For clarity 

it is permissible to enclose the whole true or false 

alternative in a set of braces. 

Example 2: 

A = B: True J; 

False }; 

Obviously, in executing a branch statement of this type, 

either the -true- alternative or the -false- alternative will 

be executed, but under no circumstances will both ever be 

executed. 
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Whenever a decision is enclosed in braces as the 

alternative of a previous decision, an unconditional transfer, 

within the braces, and out of the nested decision, is not 

treated as the end of the previous alternative. 

Example 3: 

A I: B: Ie = 0: ----j ----j Q. lj 

1M = Z: ----j . , 1 j 

Same example without the braces: 

A = B: C = 0: ----~j --~~-j Q. 

M == Z: -----j j j 

Both of the above examples generate the same code. 

Up to sixteen simple comparisons may be strung together 

with the symbols: 

U logical -OR-

n logical -AND-

In any such string only one of the logical operators may be 

used, i.e., no mixing of -and- and -or-. 

Example 4: 

A = B n C < D < E n FIG: 

The NELIAC equivalent of a simple flow diagram is shown 

in example 5. 

Example 5: 

NEL1AC 

A + 1 -+ A, 

A = B: 

B + -+ Bj 

A + -+ Aj 

A + B -+ A, 
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c. LOOPS 

Each compiler generated loop in a NELIAC program is 

enclosed in braces and preceded by the loop control. Loops 

use the register variables i through n only. 

Example 1: 

i == 10( 1 )20 {-------- 1, 

The above example says: Set i equal to 10, execute the operations 

between the braces at least once, ask if i is equal to 20; if 

it is , clear i and ignore the brace; if not, increment i and 

return to the routine enclosed in the braces. 

Note the difference in the basic format for an implied 

decrementing loop: 

Example 2: 

i == 10(1)0 --------- I, 
This loop is executed in the same fashion as the above loop, 

except that i is decremented by one to zero. 

Basic form of the loop control: 

alpha == beta(gamma)delta f -------- ~, 

Alpha may be anyone of the register variables i through n. 

Beta may be an integer, a fixed point whole or half word 

(subscripted or not), or a register variable plus or minus 

an integer. Gamma must be an integer, and a minus sign must 

be inserted before the integer if the programmer desires a 

decrementing loop, unless the delta is a written zero as in 

Example 2. Delta 1s of the same form as beta. 
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The programmer can specify any loop increment or decre­

ment, gamma; however, the loop will be terminated only if 

exact equality with delta is obtained. 

D. SUBSCRIPTING 

Any varlaole may be subscripted by an integer or a register 

variable or by a register variable plus or minus an integer. 

Example 1: 

A[i - 40 8 ] + B[2] ~ C[i], 

One can also subscript without an operand. 

Example 2: 

[1] + [2] ~ [i + 10], 

The above expression means the contents of the cell whose 

address is in i plus the contents of cell 2 is stored in the 

contents of the cell whose address is i + 10. 

When indicating bit limits with subscripts, the subscript 

comes before the bit notation. 

Example 3: 

A[i]{11~22) + B[j){23~29) ~ C[k](24+29), 

Subscripted straight or return jumps may be made to 

Jump tables in the dimensioning statement. 

Example 4: 

, A[j]. 

Example 4 executes a straight jump to the address contained 

in the Jth element of the jump table -A-. See Section II-C. 
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Double subscripting in arithmetic expresoions may be 

used when working wI th a two .. dimensional array. Two 

dimensional arrays may not be used before they are de­

fined in a dimensioning statement. See Section II-F. 

In summary, subscripting may be written with register 

variables, inteBers or with register variables plus or 

minus integers. 

Example 5: 

A [2] -) 

A[l] ~ 

A[1 - 20] ... 

A[k + 30J 

The use of double subscripting on single dimension lists 

1s meaningless and should be avoided. 

The following alternate forms are legal, but should be 

used as sparingly as possible, since they generate less 

erficient code. -P- is a Whole or half word. 

Example 6: 

A[P] ... B[l, oj ... 
A[P + 10] ... elk, kJ -) 

B[P, 0] ~ 

B[P, iJ ... 
B[P, pJ -+ 

The forms in Example 6 are not legal loop control operands. 
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E. SUBROUTINES AND FUNCTION DEFINITIONS 

Example 1: P: f ------ I, 

Example 1 illustrates the definition of a subroutine P. 

When a call of P is made in any other part of the program, 

control will be shifted to the flowchart enclosed within the 

braces. When the logical flow comes to the right brace, con­

trol will be shifted back to the point from which P was callede 

A subroutine cannot be executed in any way without calling the 

name of the subroutine, 

A function is a subroutine with associated parameters. 

Example 2: 

F( A, B, C,): ------- J, 

In example 2, F is defined as a function with associated formal 

parameters A, B, and C~ Those parameters are local to that 

function. The area between the parentheses is treated 

exactly as in dimensioning. 

Example 3: 

Function 1(fA(O~5), B(10~22)1(20) = 7,10, ): 

------- l, 

Example 3 shows the use of normal dimensioning capabilities 

within the parentheses. 

Output parameters may also be included in the function~ 

Example 4: 

F( A, B, C; D, E): { -------- I, 

Example 4 illustrates 5 formal parameters: A, B, C are input 
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parameters; D and ~ are output parameters. The input 

parameters are separated from the output parameters 

by a semicolon. 

Whenever the programmer writes a function with a single 

output parameter which he wishes to preserve in an arithmetic 

register, he must insure that the desired parameter is in the 

Q-register. (Note 2)0 

Example 5. 

F( E): -_______ answer ~ answer 1 
, , s 

Example 5 shows a way in which the programmer can insure 

that the parameter will be in the Q-register by entering the 

whole word -answer- and immediately re-storing it. However, 

this is usually not necessary since most arithmetic computa­

tions leave the result in the Q-register. 

It should be re-emphasized that the parameter names 

associated with the function definition are local to that 

function. These names may be used other places in the flow-

chart logic without danger of conflict. 

All names associated with subroutines or functions are 

local to that subroutine or function, i.e. one cannot calIon 

the functions formal parameter names outside the function and 

one cannot transfer into a subroutine or function except through 

the normal entrance. 

Note 2: The Q-register is the auxiliary arithmetic register in the 

AN / USQ-20 computer~ 

11I-10 



F. FUNCTION CALLS 

A function may be called by simply writing: 

Example 1: 

Q(F) , 

In example 1 the input parameter F is transmitted to the 

corresponding position in function Q, then the fUnction Q 

is called. If there is a single output parameter, the parameter 

can be left in the Q-register by the function and utilized as in 

example 2. 

Example 2: 

SIN (A) ~ B, 

NOTE: Here a function has been used as a noun or variable v 

A function can be used in an expression~ 

Example 3: 

(SIN(X) + COS(y)) x ARCTAN(Z) ~ Q, 

output parameters are placed to the right of a semicolon~ 

Example 4: 

F(Aj B, c), 

Example 4 says transmit parameter A to the function F, evaluate 

the fUnction F; the output parameters are then transmitted 

to the variables Band C. 

Functions may have mixed mode parameters. The programmer 

must insure that parameters of matching mode are set up in the 

correct order. If the function has been defined with more 

parameters than are used in the function call, the p~rameters 

will be normalized to the right {iee. the last parameter 
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called will be transmitted to the right-most position in the 

function definition). In using both input and output 

parameters, all output parameters called for in the 

function definition must be utilized; otherwise the last 

input parameter called will be transmitted to an output 

parameter and the function call will be meaningless. 

The mcde of arithmetic performed on the implicit 

output of a function called in an arithmetic expression is 

determined by the mode of the last parameter in the function 

call. 

To reiterate, in the function call the parameter names 

bear no relationship to the parameter names in the function 

definition., The parameters used in the function call must 

have been defined previously in the dimensioning statement 

before they will compile correctly. 

Example 5: 

Function Definition - Absolute(A; Abs A): 

Function Call - Absolute(Value[i]; Abs Value[i]), 

In Example 5, the parameter -Value[i ]-, would be transmitted 

to the function Absolute and evaluated as -A-. After 

execution of the function, Abs A would be stored in 

-Abs Value(i]-. 
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G. MACHINE LANGUAGE 

Machine language may be used at any point in the flowchart 

logic. Expressions of this form are completely unnecessary 

and anachronistic in view of the compilers ability to -declare­

machine dependent functions. This notation is common to less 

developed NEL1AC compilers and is included to aid the 

programmer in reading obsolescent NELIAC programs. 

Example 1: 

10000e O, (clear Q-register) 

26 030 e a, (add the whole word -a-) 

14 030 e b[j-1], (store in the whole word b[j-1]) 

Each machine command begins with the five octal digits 

corresponding to the -f-, -j-, -k-, and -b- designators 

followed by an octal sign. At least one digit of -operand-

must follow the octal sign, which is understood to be decimal 

unless modified with another octal sign. Named variables, with 

or without subscripts, are permissible as operands. Each machine 

command is terminated with a comma 0 If both subscripting and a 

non-zero -b- designator are written, the subscripting takes 

precedence. 

Example 2 shows the makeup of a typical AN/USQ-20 machine 

instruction with its associated meaning. Also shown is the 

binary representation of the same instruction in core. 
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Example 2: 

INSTRUCTION 

14 3 2 10250 

f j k b y 

MEANING 

Store the contents of the 

Q-register in cell (10250 + 

the contents of B2) and 

skip the next instruction. 

BINARY REPRESENTATION IN CORE 

001 100 001 all 010 001 000 010 101 000 
~ ~ "--.---.I "---" \... ~) 

f j k b Y 

H. SAMPLE FLOWCHART LAYOUT 

5 

DIMENSIONING STATEMENT 

NAME OF ROUTINE: 

FLOWCHART LOGIC 

.. stop code 

(may be omitted) 

(may be omitted) 

(may be omitted) 
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IVo DECLARATIONS 

A 0 MACHINE DEPENDENT OPERATIONS 

Declarative statements are a means of putting -machine 

dependent- operations into NELIAC language without -machine 

coding-in the flowchart logic. 

Input-output functions particularly need this kind of 

implementation. I/O functions are defined in the declaration 

before they are called upon in the regular NELIAC flowchart 

logic. This means that the declarative statement must always 

be read first in the line-up of flowcharts; preceding dimen­

sions, subroutines, executive routines, etc. 

There is a system declaration containing general utility 

routines provided with NELIAC. See Appendix Co The programmer 

may also provide one users declaration statement which must 

be in the flowchart format and kept separate from the other 

flowcharts. The compiler will store only one users declarative 

statement which must be re-declared before each compiling run. 

B. ESTABLISHING LOCATIONS 

Declarative operations do not allocate memory locations 

or produce machine language. However, the programmer can use 

the declarative ability of the compiler to establish the location, 
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for example, of the real time clock, interrupt entrances, or 

any machine code program which 'does not otherwise fit into 

the framework of the Neliac system. 

Examples: 

NAME K Designator ADDRESS 

CLOCK 3 368 , 
SIN 0 1408 , 
COS 0 1478 , 
RTPO 0 32000 , 
QPZ 2 30000 , 
Each name defined in this manner is followed by a colon; 

the first octal digit after the colon is interpreted as a 

k-designator, and the rest of the number is read as an octal 

or decimal absolute machine location. 

c. INPUT-OUTPUT SYSTEMS 

The declarative statement merely describes the input or 

output functions. Whether the function is input or output is 

determined by the sense of the active statement in the flow­

chart logic. The declarative I/O statements are implemented 

for the AN/USQ-20 computer. 
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The following eleven English phrases describe the input­

output operationsQ These phrases are referred to as declarators. 

1 ) External Function 6) Monitor Buffer 

2) Release Interrupt Lockout 7) Generate Buffer Control Word 

3) Jump Active 8) Delay 

4) Terminate Buffer 9) Machine 

5) Buffer 10) Set Int Interrupt Entrance 

11) Set Ext Interrupt Entrance 

Each name -declared- may refer to a specific communication 

channel in parantheses. 

Example 1: 

START PUNCH = (4), ---------­

START FLEX = (8), ---------­

START READER = (4), ---------

Following the channel number, a series of mixed individual 

operations may be described in the following four categories. 

Category 1: In order to control the operand in the flow­

chart logic, Category 1 should be used in the declaration. 

These declarators require an operand from the flowchart 

to generate the appropriate function codes determined by the 

sense of the active input-output statement. 

The declarators applicable to Category 1 are: 

<external function), <release interrupt lockout), <jump active>, 

<buffer), <monitor buffer), <generate buffer control word>, 

<delay>, <set int interrupt entrance), <set ext interrupt 

entrance). 
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Example 2: 

DECLARATION 

:::trART EQUIPMENT - (4) <external function), 

FLOWCHART LOGIC 

lstart Equipment <20 s ), ] 

Category 2: These opera-~,ions indicate that no operand 

is taken from the flowchart logic active statement. Each 

of these operations is purely parenthetical, no operand is 

required from the active statement. The current location is 

used as the operand, if appropriate. The applicable declar­

ators are: 

(external'function(20s )), (release interrupt lockout), 

(jump active), (terminate buffer), (delay(10)), 

(machine code( 17030s0)). 

Example 3: 

DECLARATION 

START PUNCH = (4) (external function(20 a )), 

FLOHCHAR'r LOGIC 

[start Punch <, ], 

At least one quotation mark, -(-, must appear in the callout. 

category 3: These operations are used when the program­

mer defines one operand in the declaration and another in the 

flowchart logic and calls for a summation of the two operands~ 

All operands declared must be legal fixed point numbers. The 

decl~rators applicable are: 

<external function(020000COCC s ), (machine (11030 a O), 
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example 4: 

DECLARATION 

REWIND = (External Function(02000 OOOOOs), 

FLOWCHART LOGIC 

[Rewind <unit number), ], 

category 4: A declarative statement may include 

previously declared names, and indicates the order in 

which they are called. 

Example 5: 

RUN AMOCK = Dump, Set, E, Tape, (all previously declared) 

Previously declared names may be used to set up a hierarchy of 

declarations. Such hierarchies are identical in principle to 

those declarations which consist entirely of the three basic 

declaration types. 

The implications of the declarators which describe the 

input-output operations are: 

1) External Function: 

The external function declarator is legal in all three 

categories, and is used to control external equipment. Basic 

commands to external equipment and other computers are given 

with this declarator. 

2) Release Interrupt Lockout: 

This declarator is legal as a Category 1 or 2 function, 

In category 1, a simple release interrupt jump is generated 

for ~~ransfer to the required operand location. In Category 2 

a release interrupt instruction is generated. 
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3) Jump Active: 

This declarator is legal in Categories 1 or 2 When 

used in Category 1, the last pertinent sense, i.e. input or 

output, is used to generate an input or output jump active. 

When used in category 23 a jump to current location is gener­

ated as in Category 1& 

4) Terminate Buffer: 

This declarator is legal only in Category 2 and takes the 

-sense- of the active statement to generate appropriate instruc­

tions to terminate the buffer. 

5) Buffer and 6) Monitor Buffer: 

These declarators are legal only in Category 1. They 

require special operands, called running subscripts, to de­

scribe what is to be buffered. The -sense- of the active 

statement is used to generate input or output, monitors or 

ordinary buffers, as appropriate. 

7) Generate Buffer Control Word: 

This declarator is legal only in Category 1. The oper­

ands required are identical to the Buffer or Monitor Buffer 

operands. The buffer control word is Simply transmitted to 

the Q-register independent of the -sense- of the active statement. 

8) Delay: 

The delay generated is equal to the number of machine 

executions of an index jump instruction as specified by the 

operand + 1. 
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9) Machine: 

This declarator is legal in Categories 2 and 3, and is 

described below., 

10) Set Internal Interrupt Entrance: 

This declarator is legal only in Category l~ It causes 

the compiler to generate code in the object program which trans­

mits to the appropriate input or output internal interrupt en-· 

trance a return jump instruction to an interrupt subroutine for 

the particular channel defined in the declaration. 

11) set External Interrupt Entrance: 

This declarator operates exactly the same as Number 10, 

except that the appropriate external interrupt entrance 1s seto 

D. MACHINE CODE 

A letter -L- following the numerical expressions in the 

lower half of a Category 2 operation indicates modification 

relative to the present location by the amount of that num­

erical expression. 

A letter -k- following a machine command in a Category 3 

operation indicates that the -k- designator of the operand in 

the active statement will suppress the -k- designator in the 

declaration. See Example 2. 

The declarative statement is also used when it is de­

sirable to use machine language instructions for minimizing 
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execution time. For example, the repeat instruction is faster 

than a loop for search operations and can be called up in a 

NELIAC flowchart by def~ning the operation in the declarative 

statement. 

Example 1: 

5(COMMENT: FLOWCHART) 

A(1008), B,; 

[SEARCH ZERO (100 s), (A), (NOT FOUND), (B), ], 

This expression calls for a search for zero in list A, which 

contains 100 items. The value of the index when the zero is 

first located is put in cell B, and the location at which the 

program is to be continued if the search is unsuccessful is 

the verb -not found-. 

The compiler implements the call-out in Example 1 by 

inserting the series of machine instructions in the object 

program which have been defined by a system declarative 

statement as follows: 

Example 2: 

SEARCH ZERO = (Machine Code(70230s Ok), 

<Machine Code ( 11437 s 777768 k», 

(Machine Code(61000e Ok», 

(Machine Code ( 16730e Ok), 

The -k- in the -y- part of the machine instruction refers to 

the -k- designator of the operand in the flowchart call-out 4 

See Appendix C for a listing of the implemented system 

declarations. 
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E. ACTIVE INPUT - OUTPUT STATEMENTS 

Each active input-output statement will generate a 

variable amount of code compiled as an open subroutine, that 

is, the code will be inserted each time the statement is 

written. If the programmer wishes to obtain the code only 

onde, 'he shbuld enclose the active statement in braces to 

make it into' a closed subroutine. The closed subroutine may 

have the' 'same name as th'e I/O statement, and is called 

as an ordinary subroutine. 

Input-output statements are similar to function calls in 

that the programmer must make his operands line up with the 

I/O declaration. 

Th~ -sense- 'of the statemeht, thati~, input or output, 

is determined by the -quotation- operators. 

Example 1: 

>input< . <output> 

Each statement begins with unique current operator-next oper­

ator pairs of [A< or [A). The name A must be defined as an input­

output function name. Input operands may be mixed with output 

operands. 

Each operand must' be endlosed in a set of -quotation­

operators. Corrunas are used to separate the operands. 

Part of a list may be used as the operand of an active 

statement. 
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Example 2: 

DECLARATION 

A = (4) (buffer), 

FLOWCHART 

[ A (B[C..l»D]), ], 

The active statement says, with reference to the declar­

ation: Initiate an output buffer on channel 4 of the area 

starting with the element B[C] through the element B[D]. The 

running subscripts may be integers, register variables, or 

fixed whole or half words. 

Example 3: 

[ A (B), ], 

Example 3 says: Initiate an output buffer on Channel 4 to 

output the whole of list B. 

Example 4: 

[ A ([B]), ], 

Example 4 says: Initiate a buffer using B as the buffer control 

word. 

Example 5: 

5(COMMENT: DECLARATION) 

PRINT = (4) (external function) 

(external function(200000000 s », 
(buffer) (jump active). $ 
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5(COMMENT: FLOWCHART) 

A( 10), status; 

(print) status <, <i), <A), ] .. 

If the flowchart in this example were compiled at 

cell 10100, the machine code generated would be: 

10000 61000 10113 

10100 00000 00000 (a) 

101 12 00000 00000 (status) 
external function 

10113 17230 10112 

10114 1 a 101 00000 

10115 02000 00000 

10116 26030 10115 

14130 
external function (200000000) 

10117 10120 

10120 00000 00000 

10121 13230 10120 

10122 20100 00000 

10123 1 a 111 10100 buffer 

10124 74230 10123 

10125 63200 10125 jump active 

10126 61400 10000 
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Example 6: 

Hypothetical input problem 

There are three logical records on each block of tape. 

Each record is 100 locations long. Search word for the 

block is -3 MAY~ in compiler code, left justified. Read the 

block, inserting the logical records into three discontinuous 

areas using the logical tape unit i. 

DECLARATION 

5 

READ 3 RECORDS = (10) 

<external function(4600000000 e », 
<external function), 

(buffer> (jump active), 

(buffer) (jump active), 

<buffer) (jump active) •• 

(FLOWCHART) 

5 

R(100), Q(100), P(100), [search word: 3 may]; 

NAME: 

[read 3 records <i>, <search word[O]), 

>P(, >Q<, )R(, ] •• 
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V. OPERATORS GUIDE 

A. CARD INPUT 

NELIAC uses only the first 12 columns of each card. 

The programmer may insert card numbers or any other infor­

mation he desires in columns 13 through 80. When the com­

piler edits the flowcharts for output, new card numbers are 

assigned. Columns 13 through 17 of the output cards are 

punched with the flowcharts sequence number, columns 78 

through 80 are used for flowchart line numbers (line num­

bers increment by three, leaving two unused line numbers 

for every card). The use of the editing routine of NELIAC 

is highly recommended, since many logical errors can be 

discovered by examining the spacing and indentation of the 

output flowcharts. 

B. LOAD NUMBERS 

Each flowchart begins with one of the ten load numbers. 

The function of the flowchart in the system is uniquely de­

scribed by that load number. 

o - Flowchart plus the edited output of that 

flowchart. 

1 - Declaration plus the edited output of 

that flowchart. 
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2 ~ One line correction plus the edited out­
put of that flowcharte 

3 - Flowchart correction plus the edited out-

put of that flowchart 0 

4 = Executive flowchart plus the edited output 

of that flowchart. 

5 - Flowchart 

6 ~ Declaration 

7 - One line correction 

8 - Flowchart correction 

9 - Executive flowchart 

Co CORRECTION LOADS 

Each correction flowchart must have a sequence number 

associated with ite The format for a correction is: 

Load Number 

Sequence Number 

Correction Load 

When a single line correction is made, the following 

format must be strictly observed: 

Example 1: 

7 or 2 

Sequence number 

First comparison of at least 10 characters 

Correction line 

Second comparison line of at least 10 characters. 
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When using paper tape input, each line is followed by 

a carriage return with a stop code at the end of the last lineo 

When using card input each line must be on a separate cardo 

The comparison lines are composed of a string of characters 

which are independent of the original spacing and indentation 

of the flowchart. Spaces in alpha-numerics are significant, 

however, and must be duplicated. The correction line may 

be blank, but must always existo 

Flowchart corrections are made to replace an entire 

flowchart on the input flowchart tape. 

Example 2: 

8 or 3 

Sequence number 

5 or 6 

(FLOWCHART) 

When using paper tape input, a stop code follows the 

the sequence number on the leader of a 5 or 6 load flowchart. 

When using card input, the load number and sequence number 

must be on separate cards preceding the 5 or 6 load flow­

chart. 
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Do BATCHING CORRECTIONS 

All corrections must be -batched-, i.e. all sequence 

numbers of correction loads must be greater than or equal to 

the sequence numbers of previously loaded corrections. If this 

rule is not observed, additional passes must be made to update 

the input master flowchart tape. 

E. FUNCTIONS OF THE 9 LOAD 

The 9 load, or executive flowchart, always indicates 

the end of the loading and correcting phase of the compiling 

process. At present, the information in this flowchart should 

be the programmers name and the date. 
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F. NELOS 

NELOS (Navy Electronics Laboratory Operating System) reflects an 

operating philosophy necessary for the generation and checkout of 

large-scale programs whose characteristics make them dif~icult to 

handle with less powerful tools. The NELOS philosophy is simple: 

NELOS provides automated supervisory control over the NELIAC compiler, 

over program execution, and over the utility programs in the system. 

Supervisory control must necessarily be informed control; to this end, 

sections describing the operation of the NELIAC compiler and of the 

monitor are included below. 

NELOS has three basic parts: (1) The executive program; (2) The 

monitor; and (3) The utility system. The executive program controls 

the execution of all programs in NELOS. The monitor program is a 

debugging aid which can interpretatively execute programs, insert and 

delete dynamic core dumps, and provide for dynamic source language 

data introduction. The utility system is a library of often used pro­

grams such as core dumps, tape dumps, tape copy programs, etc., which 

can be called in and executed under NELOS control. 

The NELOS executive program does a limited amount of automatic 

sequencing during the compiling process. On the whole, NELOS is con­

trolled by the set of fourteen NELOS operators. Any collection of 

these is called a NELOS control statement. It is a mistake to assume 

that there are only fourteen basic functions in NELOS, however, since 

the operators can be used in any combination to perform uniquely 

different tasks. 
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The "define segment" operator gives NELOS the ability to generate 

programs which are too large to fit into memory at once and must be 

split into pieces or "segments" which are called in from auxiliary 

storage for execution. NELOS is specifically designed to aid in the 

production of these programs from the NELIAC language. Because of the 

close interrelationships of NELOS and the NELIAC compiler, a thorough 

understanding of the operating principles of NELIAC is a prerequisite 

for the successful use of NELOS. 

G. NELIAC OPERATING CHARACTERISTICS 

The basic input element to NELIAC is called the "flowchart." Any 

collection of NELIAC or NELOS statements grouped together is always 

called a "flowchart." 

Identification of input types is effected by load numbers (i.e., 

the first character in a flowchart is taken to be the load number. If 

the first character in the flowchart is not a number, that flowchart 

is identified as a NELOS control statement.). 

The flowcharts are stacked for input to NELOS in the following 

order~ 

Initial control statement 

Declaration 

NELIAC flowcharts 

Terminal control statement 

The first flowchart must necessarily be a NELOS control statement and 

is called the "initial" control statement. This control statement is 
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different from other control statements in that it must be submitted 

for every NELOS run, unlike other control statements which are pre­

served on the master flowchart tape, and need not be resubmitted. 

The NELIAC compiler has three separate operating phases: 

1. Update and code conversion 

2. Compiling 

3. Output 

1. The update and code conversion phase does a very simple job; 

it merely takes the source language input element (the flowchart) and 

converts the card codes to a set of NELIAC compiler codes. The code 

conversion program (load flowcharts) converts the hardware codes for 

"Begin" to "{" and !tEnd" to "}", etc. The update phase places the 

binary core image of the NELIAC compiler codes onto the output flow­

chart tape for subsequent use by the compile phase. By the use of 

correction load numbers, a flowchart image may be replaced on the out­

put flowchart tape. 

Figure 1 is a detailed flow diagram of the operation of the 

update phase. "EOFF" is "end of file flag on old flowchart tape." 

"STOP CODE" is the hardware stop code recorded on the card image tape. 

When an error is detected, control shifts back to NELOS with an appro­

priate error message. Note, corrections must be batched, i.e., correc­

tion numbers must be in an ascending sequence. Every flowchart is 

counted in the correction process, the sequence numbers are implicit, 

i.e., the first flowchart is number 1, th~ second is number 2, etc. 

New flowcharts to be added to a program are always recorded after all 

the old flowcharts. 
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2. The compiling process is a one-pass operation; the source 

language statements are read, and machine language produced without 

any intervening intermediate language or assembly phases. When the 

process is complete for one flowchart element, all undefined or 

"future" references are written out on a scratch tape with the ma­

chine language produced from that flowchart. See Figure 2. 

3. The output phase of NELIAC uses the intermediate output 

tape of the compile phase to generate a binary object program tape 

which contains the machine language in NELIAC format. 

In addition, the output phase contains the formatting pro­

grams which generate the name list dump, thr object program dump, 

and others. The output listing tape contains a list of all syntac­

tical errors detected during the compile phase and a list of all 

undefined names detected during the output phase. A listing of the 

names of the flowcharts compiled in sequence, along with their run­

ning locations and entrances, if any, is also produced. 

H. NELOS EXECUTIVE PROGRAM 

The executive program reads the NELOS operator and executes the 

functions necessary to accomplish the required task. The first or 

"initial" control statement has a unique function since it is not 

placed on the flowchart tape with the other flowcharts introduced 

into the system. The reader should examine Figure 3 and Figure 4 

for an explanation of the automatic sequencing of NELOS. Subsequent 

control statements are written on the flowchart tape and are handled 

exactly like any other flowchart. Note Figure 2. 
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The reader should observe that NELOS control statements can be 

executed while compiling, and that control can be exercised between 

each NELIAC flowchart. 

A very important part of NELOS is the ItENVIRONMENT GENERATION" 

program. This program produces a tape which contains NELIAC I s "NAME 

LIST" or "ENVIRONMENT DESCRIPTION TABLEIt and the machine language of 

the programs whose names make up the name list. Every name defined 

at the time that the environment tape is generated is included; all 

programs and allocated tables are also included. Note, however, that 

nonallocatedtables do not exist as zeros on the tape, but only the 

pertinent table and item names are preserved. Any NELIAC program may 

become part of the "ENVIRONMENT" stored on tape. This tape will later 

become an input tape to NELOS; whenever it is called, NELIAC will re­

call all those previously defined names and programs. If a new envi­

ronment tape is then generated, an augmented, enhanced environment 

will be the result. The new environment is indistinguishable from an 

environment generated with all the flowcharts compiled at one time. 

Since it is not possible to change core allocation addresses on the 

environment tape, it is recommended that a "Master Flowchart" tape be 

generated and continually updated for this specific purpose by the 

system user. If such a tape is generated, then the flexibility of 

NELIAC correction loads is extended to the new environment tape. 

The tables and programs defined on the environment tape are typi­

cally those designed to work with programs which are not necessarily 

in memory at the same instant. Commonly used subroutines or utility 
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and input/output packages would also be likely residents of the envi­

ronment tape. The value of the "environment t~pe't lies not so much 

with the saving of compile time for often-used programs, but in the 

clarification of the status of such programs and tables for each 

individual contributor to a system program. Naturally, the burden of 

currency is placed on the individuals responsible for the maintenance 

of the environment tape. 

Io THE NELOS OPERATORS 

The NELOS operators discussed in this section are written in con­

trol statements just as they appear as the headings of the explanatory 

paragraphs.. If a nonexistent operator is written, or if the form is 

not strictly observed, a NELOS error message will appear and the run 

will be abandoned. 

There are three categories of NELOS operators: 

(1) PASSIVE 

ID: PRINT: STOP, SET CONSTANTS (BEG INNING ADDRESS, 

ENDING ADDRESS), 

(2) OUTPUT 

EDIT FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART), DUMP 

OBJECT PROGRAM (FIRST FLOWCHART, LAST FLOWCHART), DUMP 

NAME LIST, 

(3) ACTIVE 

DEFINE SEGMENT, TERMINATE RUN, CALL ENVIRONMENT, INCLUDE 

MONITOR, EXECUTE, GENERATE ENVIRONMENT, CALL UTILITY (N,,), 
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The "passive" operators can be written in any control statement. 

Their use does not affect the operating characteristics of NELOS in 

any way, i.e., the normal s'equ.ence of program generation will be 

followed as illustrated in Figure 5-. 

The "output tt operators can be used only at the termination of one 

of the major compiling phases. NELOS must reference some of the work­

ing tapes in the system to accomplish the tasks related to output 

operators, so their use is restricted to times when the tapes are 

being passed from one phase of HELOS to the next (such as the end of 

the update cycle or when a new environment tape is generated). 

The "active It statements define the operating characteristics of 

each NELOS run. The active statements may be written in any control 

statement, but some understanding 0 f the NELIAd compiling procedure s 

is essential for meaningful operation. 

The implications of the NELOS operators are described in the 

following paragraphs~ 

The ID, or identification operator may be written in any 

control statement. The ftID rt may be any alphanumeric string not 

exceeding 50 characters and is terminated by a period. The alpha­

numeric information is preserved in NELOS and is used on all the 

outputs generated until a new ID is given. This operator also sig­

nals the beginning of the update cycle (see Figures lA and lB). 

PRINT: 

The print operator causes the alphanumeric string following 

the colon to be displayed on the supervisory printer. The string is 
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restricted to a maximum of 50 characters. A period terminates the 

string. 

STOP, 

The stop operator halts the computer until the high speed 

switch is depressed. The stop statement is used typically to allow 

the computer operator to mount or dismount tapes following a request 

to do so as the result of a previous HpRINT n statement. The computer 

operator may reassign NELOS I logical tape drives at this time to 

utilize a newly generated environment or to swap malfunctioning tape 

units. 

SET CONSTANTS (BEG INNING ADDRESS, ElIDING ADDRESS) , 

The set constants operator allows the programmer to allocate 

his program to specific core locations starting with the octal or 

decimal locations written as "BEGINNING ADDRESS o ft The "ENDING 

ADDRESS n index is a threshold indicator to the compiler which causes 

a message to be placed on the error tape when the threshold is 

passed. See Sample Control statements, page V-2l. 

EDrr FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART) , 

This operator can only be used in the initial control state­

ment, and is always executed at the end of the update cycle. The 

inclusive flowcharts specified by "BEGINNING ADDRESS rt and f~ING 

ADDRESS'" are dumped on tape for subsequent listing and card punching. 

DUMP OBJECT PROGRAM (FIRST FLOWCHART,. LAST FLOWCHART) , 

This operator is legal only in the last or ftterminal n con­

trol statement, since NELIAC must perform the output phase to execute 

this operator, and therefore terminates the compile phase. 
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DUMP' NAME LIST, 

This operator produces a cross-referenced output of the tags, 

labels, verbs, and nouns used previously in the compiled program, 

whether included with the environment or generated by the object 

program. 

DEFINE SEGMENT, 

This operator is legal throughout the compiling phase. 

"DEFINE SEGMENT It will cause the program segment delimited by 'tnEFINE 

SEGMENT tf operators to be stacked on the ob ject program tape. This 

operator is typically followed by a "SET CONSTANTSn operator, 

although it ne.ed not be so followed. 

TERMINATE RUN, 

This operator is legal in any control statement, and simply 

calls the next job. The use of this operator is mandatory when the 

job to be done does not involve compiling. See Figure 3. 

CALL ENVIRONMENT , 

This operator should be used only in compiling control 

statements, and causes the load of the environment description table 

(name list) into NELIAC f S working storage. The reader should observe 

that ttCALL ENVIRONMENT fl will cause the compiler to forget all names 

not in the environment description table. 

INCLUDE MONITOR, 

This statement must be written if any calls to "ENTER 

MONITOR MODE tt are used in the 9-load flowchart (see Section V-KY. 

The monitor program is recorded as the first program on the object 

program tape and appears only once in the core program produced. 
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EXECUTE (N), 

The "EXECUTE" operator is used to run a program. which is on 

the object program tape. r~ft is an integer which specifies the num­

ber of program. segments to be loaded from the tape. The last program 

segment loaded will be executed first. uN" can also be computed as 

the number of times "DEFINE SEGMENTtt is written + 1. 

GENERATE ENVIRONMENT, 

This operator causes NELOS to generate an environment tape 

on the tape unit allocated for that purpose. Generation of the envi­

ronment tape should be done only in the last or ttterminal n control 

statement, since NELIAC must perform the output phase to execute this 

operator. 

CALL UTILITY (N, A, B, C, .•• z) 

The call utility operator is used to set up a parameter 

string for one of the NELOS utility programs. tiN" is an integer 

specifying the file number of the utility program desired. "A" 

through ftZ" are integers which are input parameters to the individual 

utility program. 

J. NELOS CONTROL STATEMENTS 

Each control statement must have at least one NELOS operator and 

must end with a double period. 

The proper use of NELOS is d.ependent on an understanding of NELIAC 

compiling techniques. It is obviously inadvisable to attempt such 

things as an object program dump or environment generation before 
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compiling. 

Given below are some sample control statements. These are given 

to acquaint the student with the appropriateness of most combinations. 

SAMPLE CONTROL STATEMENTS 

ID~ P, SMITH 7 DEC 62. 

EDIT FLOWCHARTS (3, 4), CALL 

UTILITY (3,7), 

PRINT: BEG IN COMPILING, REMOVE 

OLD FLOWCHART TAPE" 

STOP, TERMINATE RUN, 

SET CONSTANTS (10000
8

, 732618), 

ID: A,GZZORK. 

SET CONSTANTS (732628, 777778), 

CALL ENVmONMENT, 

DEFINE SEGMENT, 

TERMINATE RUN, 

PRINT: TERMINATE RUN IF ANY 

ERRORS THIS FAR. 

STOP, 

INCLUDE MONITOR, 
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DUMP NAME LIST, 

DUMP' OBJECT PROGRAM (10, 11), 

GENERATE ENVIRONMENT TAPE, 

PRmT: LABEL NEW ENVIROm.fENT 

TAPE: QP2 7 DEC 62. 

CALL UTILITY (2, 38, 5, 3), 

CALL UTILITY (3, 1:4), 

CALL ElVIROlIMENT; 

DUMP NAME LIST, 

TERMIliATE RUN, 

EXECUTE (3), 

K. THE NELOS MONITOR 

Appropriate in last state­

ment. Associated with 

compiling or output phase 

Appropriate as individual 

control statement which 

does not use NELIAC 

Appropriate as control 

statement which simply runs 

a pre-compiled program 

typically under NELOS 

monitor control 

The NELOS Monitor Mode of operation, a debugging aid, allows the 

programmer to monitor, or rtwatch," the operation of specified areas 

of his programs, through the use of his own f'Monitoring Subroutines, It 

The monitor will cause entry to the programmerts Monitoring Sub­

routine after the execution of each individual instruction within the 

program area being monitored. The monitor will continue full 

V-22 



monitoring of jumps (and return jumps) to instructions outside of the 

monitored area, unless the programmer chooses not to do so. 

Upon completion of a monitored area, the monitor mode will cause 

entry, if the programmer elects, to his own "End-Monitor" subroutine, 

before continuing along with the main program. 

The programmer may choose beforehand to have a monitor canceled 

at any time during the run.. If this is to be done during the execu­

tion of the monitor to be canceled, the associated End-Monitor sub­

routine, if any, will be executed as a part of the canceling 

sequence. 

Basically, then, the Monitor Mode is a vehicle for the pro­

grammer's convenience, one that leave:; him wide latitude in which to 

program his own monitoring subroutines. 

While the monitoring of an area is in progress, the address of 

the individual instruction being monitored is available to the pro­

grammer as the noun "P, rr so that the programmer may use his monitor­

ing subroutine to save rtp" and other data. When control is trans­

ferred to the programmer's monitoring subroutine, all registers will 

have been restored to the values dictated by the program being 

monitored. 

ESTABLISHING A MONITOR 

Monitors are established by use of the function call 

ENTER MONITOR MODE (A, B, C, D, E), where: 

A = The address (label) of the first instruction of the area to 

be monitored, (may not be the entry cell of a function or subroutine). 
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B = The address (label of the last, instruction of the area to be 

monitored; 

C = The address (label) of the programmer's ''Monitoring Sub­

routine ft * itself; 

D = The address (label) of the programmer t s "End-Monitor Sub­

routine, If * if desired, or zero, if no ending routine is W&Ilted with 

this monitor; and, 

E = Zero, indicating the program:mer wishes to monitor a.l1 

instructions encountered while in the monitor mode; or, Eequal 

nonzero, indicating the programmer has elected the option to abort 

fUll monitoring of jumps (and return jumps) to instructions outside 

the area to be monitored. 

If parameter E is nonzero, the monitor mode retains control in 

the event that a jump or return jump outside the areaia encountered, 

but does not cause entry to the programmer's subroutine until and 

unless the running program returns to the monitored area. (This 

condition is termed a "pauedo-monitor. tf
) 

ESTABLISHING AN END MONITOR 

See parameter ''D't under "Establishing a. Monitor. It 

CANCELmG A MONITOR 

Monitors are canceled by using the function call 

* Must be written as a subroutine. 
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CANCEL MONITOR MODE (Ml, M2, - - - M8)· 

where: 

Mi parameter "A" of an ENTER MONITOR MODE previously estab­

lished. From one to eight monitors may be canceled at one time. If 

the Monitor Mode is unable to find a parameter ftA" corresponding to 

Mi' the operation is ignored for that ~. 

If no parameters (MIs) are given in the function call, the 

Monitor Mode will assume that the monitor currently being executM 

is to be canceled immediately, and will proceed directly to the 

related End-Monitor Subroutine, if any. If no parameters are speci­

fied, and a Monitor Mode is not currently being executed, the opera­

tion will be ignored and the run will continue. 

MULTIPLE MONITORS 

Up to eight monitors may be established before any are canceled, 

but to establish subsequent additional monitors, one existing monitor 

must be canceled for each new one entered. Attempts to exceed the 

limit will be ignored. 

No matter how many monitors are established, only one may be in 

effect at anyone time. With care, monitored areas may be nested, or 

overlapped. If, while in monitor mode A, an entry to monitor mode B 

is encountered, monitor mode A will only temporarily relinquish con­

trol to monitor mode B, and monitor mode B will, upon completion, 

automatically return control to monitor mode A. This is ideal for 

nesting, but requires care in overlapping. 
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Nested Monitor Modes Overlapping Monitor Modes , 
2.. 

A A 

3 
B 

1 
Monitoring will be done in Mode Monitoring will be done in Mode 

A from points 1 through 2, in A from point 1 to point 2, in 

Mode B from points 2 through 3, Mode B from po~nt·s 2 through 4, 

in Mode A from points 3 through and in Mode A again from point 

4. After point 4 the program 4 until and unless the program 

will resume operation in high- happens to return to a point 

speed mode. between points 1 and 3. Mode A 

cannot be terminated (unless 

canceled) until the instruction 

at point 3 is actually executed, 

Since a monitoring mode must naturally cause some expansion of 

program running time (see "TlMINGtt
) it is important that the pro-

grammer carefully defines his limits~ and builds efficient monitoring 

subroutines. By keeping the monitoring subroutines small and fast, 

and using end-monitor subroutines for time-consuming operations, such 

as output operations, the programmer can keep running time at a mini-

mum. For example, it may be possible to use the Monitoring Subroutine 

to make a few quick entries into a buffer, and then output only once 

the monitored results for the entire pass through the monitored area 

during the End-Monitor routine. 
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It should be noted that the program being monitored will run at 

normal computer speed except while operating within a monitored area, 

If the abort Jumpoptlon is not taken, and jumps and subroutines are 

subsequently monitored, more time yet will be required. (This may be 

desired, of course.) If the abort jump option is- taken, the lOOnitor 

mode continues in a ttpsuedo-monitor" condition, wherein the progrBIl\-. 

mer's monitoring subroutine is not entered after each individual 

instruction is executed. 

Additionally ,care must be taken that the first instruction in 

an area will be executed, else the monitor may not be established. 

For instance, if the first instructlonof the area is skipped, or if 

a jump is made into the middle of an area to be monitored, then no 

monitor control will be initiated. Likewise, if the last instruction 

to be monitored is skipped, the monitor will not be discontinued at 

the proper point. The method used in establishing the monitor (in­

ternally) demands .this care. The monitoring program itself is 

initiated when an Enter Monitor Mode statement is encountered. Estab­

lishing a mode at this point, the monitoring routine saves the first 

instruction of the area to be- monitored, and replaces it with an entry 

to the monitor program. Control is returned to the program under 

study until the monitor area is reached. 

The use of the 9-load program is restricted to the writing of 

monitoring subroutines, formatted output or test data introduction. 

Since the 9-load flowchart is basically like any NELIAC flowchart, 

full cognizance of source language names is achieved. The separate 
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loa.d number for this flowchart is necessary because of the usage of 

this program rather than any unique treatment by NELIAC. When the 

"execute n operator of NELOS is used, the execution of the 9-load pro­

gram will always supersede the normal execution of the program. In 

this way, the monitor locations can be established for debugging runs, 

and ignored for production runs (as a manual option) without modifying 

the program in any way. When running a program in the monitor mode, 

care must be exercised in not disturbing the test environment defined 

in the 9-load program. Data may be introduced into tables in a very 

straightforward fashion by simply writing a NELIAC assignment 

statement. 

Example: 

100 ~ alpha, 200'" beta, 

But, if one writes: 

i=lO(l) 100 {i ~ table alpha [i] ,} 

the 9-1oad program writer must insure that the value of "i" can safely 

be altered or that zero is desired as the correct value of "i rt upon 

exit from the loop. 

For more ambitious test data introduction the programmer may use 

a prepared test data tape and write a simple I/O statement into the 

9-load program. 
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L. CAPABILITIES OF THE MONITOR PROGRAM 

SAMPLE MONITOR PROGRAM 

5 

A (100 ), B, C; 

D: 

J=3(1) 10 { 0 -;. A [i)], 

E: 

i=10(1)98 {A [iJ + B + A ~ + IJ ~ A [iJ}, 
F: 

9 

T S, (g : 888881 j 188888'-' ; 

Enter monitor mode (E, F, H, 0, 0), 

o ~B, 10~ C, 

E. 

H: 

{1=j: write (g, P, i), [call NELOS < ,J ;; J .. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

The above trivial 9-1oad program shows the introduction of test 

data in source language (line 11). The monitoring subroutine is 

written to detect the specific case when i is equal to j during the 

execution of the program between the labels E and F. As a result of 

running this program we would have written on the NELOS message 

tape the octal address of label ftFft and the value of "i ff when 
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equality with flj" was obtained, which is zero. Why? This example 

points out the fact that the NELDS monitor is a source language 

debugging aid which haS pointed out an eccentricity of the machine 

as reflected in NELIAC, but without going back to the machine lan­

guage to discover it. The power of the NELOS monitor is in .the fact 

that its focus can be broadened or narrowed as necessary to follow 

general or specific problems which are difficult to diagnose from 

static core dumps. The monitor mode may be used in its narrowest 

scope (i.e., beginning label = end label) to plant a dynamic core 

dump or test data introduction point without altering its running 

characteristics significantly. 



VIo PROGRAMMING TECHNIQUES 

A. SAMPLE PROGRAMS 

Efficient programming in any language is dependent upon 

the programmers knowledge of the problem at hand and the tech­

niques used in gene~ating machine code from the language in 

which the program is written. There are both efficient and in­

efficient programming methods in any language, whether it be 

machine code or the most sophisticated higher level language. 

Thi-s Section will attempt to provide examples of NELIAC pro­

gramming techniques which do provide efficient machine code 

for the AN/USQ-20 computer. 

Example 1 is a complete program producing a table of 

values for a simple function. -The production of the table is 

aided by use of the -write- package (See Section VI-B). 

Example 1: 

F(A,B) = a(b - 3.994) 

b + a 

Evaluate the above function over the range 

of A = 0.0 to A = 5.0 in steps of 0.2, B = 1.0 

to B = 2.0 in steps of 0.2. Set up a table 

of the function for these particular values. 

The table shpuld have a heading to 

appear as in the example below. Each 

answer should have two digits to the left of 

the decimal point and three to the righto 
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table of function f 

b 

a 1.0 1.2 1.4 1.6 1.8 2.0 

0.0 xx.xxx xx~xxx xx o xxx xx.xxx xx.xxx xx.xxx 

5 (COMMENT: DIMENSIONING) 

[heading: /251 < table of function f > III 1341 <b> II 

131 <a) 141 <1.0> [61 <1.2> 161 <1.4> 161 <1.6> 161 

< 1 .8> 161 <2.0) I I], 
[line: 0 .. a (6: 12/ U 0 .. 000) I ], 

ans(6). real i. real j. ; 

PROGRAM: (COMMENT: FLOWCHART LOGIC) 

enable paper tape, 

wri te (heading), 

i = 0(2)50 Ii ~ real i I 10.0 ~ real i, 

j = 10(2)20 {j ~ real j I 10.0 ~ real j, 

(j - 10) I 2 ~ k, 

f (real i, real j) ~ ans[k],1 

write{line, real i, ans[O], ans[l], ans[2], 

ans [3 ], ans [ 4], ans [5] ), I J 

disable paper tape, 

F(a. b.): 

fax (b x b - 3.994) / (b + a) ~ b, I .. 
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COMMENTS ON PROGRAM 

LINE 

Call the enabling subroutine for -write-. 

2 Call to write heading, which requires no parameters. 

3,4 Loop control with necessarily fixed point loop 

5 

6 

control, real i- and -real j- contain computed floating 

representation of the indexing variables i, j. 

Note the automatic conversion to floating point mode 

of the fixed point variables i and j9 

Compute subscript storage. 

Call the function -f- with real i, real j, and store 

the result in -ans[k], -, then end minor j loop. 

7 -Write- call with 7 parameters. End i loopo 

8 Disable paper tape, disabling subroutine for -write-9 

9 Definition of -f- with two floating point formal 

parameters, -a- and -b-9 

10 Computation of -f- with answer in arithmetic 

register. (always true for floating point pseudo 

accumulators) 0 
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table of function f 

b 

a 1 0 0 1 .2 1 .. 4 1 .6 1 08 2.0 

000 0.000 0.000 0.000 00000 0.000 0.000 
0.2 - 0.498 - 0.364 - 0.254 - 0 .. 159 - 0.075 0,,000 
0.4 - 0.855 - 0.638 - 0.451 - 0.286 - 0 .. 137 0 .. 001 
0.6 - 1 • 122 - 0.851 - 0.610 - 0.391 - o. 188 00001 
0.8 - 1 0330 - 1 .. 021 - 00739 - 0.477 - 0.231 0.001 
1 .0 - 1 .. 496 - 1 • 160 - 0.847 - 0.551 - 0.269 0.002 
1 .2 - 1 .633 - 1.276 - 0.938 - 0.614 - 0.301 0.002 
1 03 - 1.746 - 1 .375 - 1 .016 - 0.669 - 0.329 0.002 
1 .6 - 1 .842 - 1 .459 - 1.084 - 0.716 - 0.354 0.002 
1 .8 - 1.924 - 1.532 - 1 • 144 - 0.759 - 0.376 0.002 
2.0 - 1 e995 - 1 .596 - 1 .196 - 0.796 - 0.396 0.003 
2.2 - 2.058 - 1 .652 - 1.242 - 0.830 - 0.414 0.003 
2.4 - 2 .113 - 1 .702 - 1.284 - 0.860 - 0.430 0.003 
2.6 - 2. 162 - 1.747 - 1.322 - 0.887 - 0.445 0.003 
2.7 - 2.206 - 1.787 - 1.355 - 0.912 - 0.458 0.003 
3.0 - 2.245 - 1.824 - 1.386 - 0.935 - 0.471 0.003 
3.2 - 2.281 - 1 .857 - 1 .414 - 0.955 - 0.482 0 .. 003 
3.4 - 2.313 - 1.887 - 1.440 - 0.975 - 0.492 0.003 
3.6 - 2.343 - 1 .915 - 1 .464 - 0.992 - 0.502 0.003 
3.8 - 2.370 - 1 .941 - 1.486 - 1 .. 009 - 0.511 0.003 
4.0 - 2.395 - 1 .964 - 1 .. 506 -. 1 ~ 024 - 0.519 0.004 
4.2 - 2.418 - 1 .986 - 1 .525 - 1 .038 - 0.527 0.004 
4.4 - 2.439 - 2.006 - 1.543 - 1.051 - 0" 535 0.004 
4.5 - 2.459 - 2.025 - 1.559 - 1 ,,063 - 0.541 0.004 
4.8 - 2.477 - 20043 - 1.574 - 1 .. 075 - 0.548 0.004 
5.0 - 2.494 - 20059 - 1 .589 - 1" 086 - 0.554 00004 
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B. The NELIAC -WRITE- PACKAGE 

DESCRIPTION: 

The -write- package is a general purpose output 

package, written in NELIAC, which is in wide use for 

formatting, report writing and scientific output. -Write­

uses the philosophy of an external-format-statement, writ­

ten as a literal in a NELIAC dimensioning statement. Each 

-Write- call is written with its associated format literal 

name, and the necessary parameters to be justified, con­

verted and formatted for output. The formats are written 

as -pictures- of the desired output; the -write- package 

scans the format literal for each parameter, and assembles 

the external equipment codes for whichever piece of equip­

ment is -enabled- at that time. 

Example 1: 

Write(number format, number), 

Example 1 illustrates a simple -write- call with the 

format plus one parameter. All calls on -write- are made in 

a similar fashion. Up to thirty output parameters may be 

handled with a Single calr. 

PICTURES: 

Example 2: 

8888 

Example 2 illustrates a -picture- for a four octal digit 

field with a sign. This field therefore occupies 5 spaces e 
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Example 3: 

0000 

Example 3 illustrates a -picture- of a four digit decimal 

field plus signo 

Example 4: 

XXXX 

Example 4 illustrates a four character variable alpha­

numeric field. A literal or the address of a variable alpha­

numeric area is a valid input parameter for this picture. 

Example 5: 

00.000 

Example 5 illustrates a floating point picture for a 

fractional conversion without an exponent part~ 

Example 6: 

00.000 x 000 

Example 6 illustrates a floating point picture for an 

exponent conversion. This type of picture is the most general 

floating point conversion and should always be used whenever 

any doubt about the magnitude of output parameters exists. 

LITERAL FIELDS: 

Example 7: 

<TITLE 1) 

Example 7 illustrates a literal field in which the 

alphanumeric -TITLE 1- will be displayed. 
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SPACING AND LINE CONTROL: 

Example 8: 

1101 

Example 8 illustrates the technique by which one can 

space pictures or literal fields. The number between the 

absolute signs, which designates the number of spaces desired, 

is always decimal and may be zerou 

Example 9: 

/ 
Example 9 illustrates a carriage return or -proceed to 

the beginning of the next line- symbol. 

Example 10: 

l' 

Example 10 illustrates the top of form operator. 

Example 11: 

1'1' 

Example 11 illustrates the terminate function, or 

complete dump, operators. 

INSERT, DELETE AND OVERPUNCH: 

Any of the magnitude symbols (decimal point, multi­

plication sign, etc.) may be deleted with the following 

notation: 

Example 12: 

OOf. iOO} xlOO 
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Example 12 illustrates a floating point conversion in 

which the decimal point and multiplication sign have been 

suppressed using only 8 columns (6 digits and 2 signs)" 

Example 13: 

~O 0 l • 1 00 1 x { ~O 0 

Example 13 is basically the same as Example 12 

with both signs overpunched on the first digits of their 

corresponding fields~ Example 13 output requires only 6 

columns. 

Example 14: 

OOfalpha-numeric}00 

Example 14 shows an -insert- of an alpha-numeric 

field in a number which is converted as a decimal integer. 

Inserts may be made in any -picture-, but no more 

than 5 inserts are allowed in a single picture. 

REPEAT FORMATS: 

Example 15: 

(10:000) 

Example 15 illustrates a condensed notation for 10 

decimal parameters. 

Example 16: 

(3: xx 131 <TITLE) OO.OOxO t ) 

Example 16 illustrates the universality of the repeat 

operation* Any picture, literal field or spacing or line or 
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paper control operator may be included in the scope of the 

repeat operation. 

Example 17: 

(2: (3: 00 121) < z = > 00 ) / 

Example 17 shows the use of nested repeatso Up to 

three repeats may be nested~ 

VI=·g 



CHARACTER 
FLEX and CARD 

space 
A 
B 
C 
D 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
0 

P 
Q 
R 
s 
T 
u 
V 
W 

X 
y 
Z 
0 
1 
2 
3 
4 

TABLE I: NELIAC SYMBOLS 

INTERNAL 
OCTAL CODE 

00 
01 
02 
03 
04 
05 
06 
07 

10 
1 1 
12 

1~ 1 
15 
16 
17 

20 
21 
22 

~~ 
25 
26 
27 

30 
31 
32 
33 
34 
35 
36 
37 

CHARACTER 
FLEX CARD 

~ 
7 
8 
9 
8 OCT , 

~. · , 
• · " · ( ( 

t l~ .] 

I BEGIN 
END 

= EO. 
I NQ 
~ GQ 
< LS 
~ LQ 
> GR 
~ =) 
+ + 

- -/ / 
x ... 
.fot uS;d 

U OR 
f) AND 
l' .. 

INTERNAL 
OCTAL CODE 

40 
41' 
42 
43 
44 
45 
46 
47 

50 
51 

: 

52 
53 
54 
55 
56 
57 

60 
6f 
62 
63 
64 
65 
.r:·c 
00 
67 

70. 
71 
72 
7~ 7 
75 
76 
77 

NOTE: Alphabetic operators must be preceded and followed 
by a blank column on the card. 

TABLE I 



~ 

( 

~ 

> 

If 

4 

If 

" o 
o 

2" 
o 
4 

4 

o 
o 
o 
o 

o 
o 

+ 19 

+ 0 

o 

I 0 

JI 0 

p 0 

o 
u 
n 

o 
o 

If 

" 
If 

If 

o 
o 
o 
o 
4 

4 

o 
o 
o 
o 
o 
o 

19 

o 
o 
o 
o 
o 
o 
o 
o 

Tahle II: NELIAC co/No TABLE 

( ) + + I JI P 
, 29 

, 29 

, 29 

, 5 

o 0 

o 9 

o 0 

o 0 

, 29 

, 29 

o 
o 
o 
o 
o 
o 

6 " 2, 25 0 

6 " 2, 0 21 

6 " 2, 0 21 

6 4 2' 0 2' 
6 20 2, 0 0 

o 8 2, 0 21 

o 0 0 25 0 

o 0 0 0 0 

6 4 2, 25 0 

6 4 2, 25 0 

o 2, 0 0 

o 
o 
o 

o 
o 

o 
o 
o 
o 
o 

19 19 26 19 2, 0 0 

2'T 2, 25 21 

12 2, 25 21 

16 2, 0 0 

15 2, 0 0 

o ~ 6 

o '2 6 

o 16 6 

o 15 6 

000 

o 
o 
o 

o 
o 
o 

o 
6 

6 

000 0 

o o o 
o 
o 

o 
o 
o 

4 10 10 10 10 10 10 10 11 l' 

4 '0 10 10 10 10 10 10 11 11 

" 10 '0 10 '0 10 10 10 11 11 

4 10 10 10 10 10 10 10 11 11 

o 0 0 0 0 0 0 20 T T 

09999 9 998 8 

o 0 0 22 22 0 22 0 24 24 

00000 0 0 000 

4 10 10 10 10 10 '0 10 II II 

" 10 10 10 10 10 10 10 I' 11 

000 0 000 

o 
o 
o 
o 
o 

19 

o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 

19 19 

10 10 

12 12 

16 16 

15 15 

o 0 

o o 

o 0 

o 0 

o 28 

o 0 

o 0 

19 

10 

12 

16 

15 

o 
o 

19 

10 

12 

16 

15 

o 

o 

o 
o 
o 
o 
o 

19 

10 

12 

16 

15 

o 
o 

o 
o 
o 
o 
o 

19 

10 

12 

16 

15 

o 
o 

19 

10 

12 

16 

15 

o 
o 

19 

11 

12 

16 

15 

o 
o 

o 10 10 10 10 10 10 10 1 I 

o 10 10 10 10 10 10 10 11 

19 

11 

12 

16 

15 

o 
o 

11 

11 

IT " 
IT l' 

IT l' 
IT I' 
IT l' 
18 I" 

o 0 

o 0 

IT l' 
IT I' 

19 

IT 

IT 

16 

15 

o 
o 

19 

l' 
I' 
16 

15 

o 
o 

IT I' 

IT l' 

O. FAULT 10. GENERATE ADD OR ENTER 20. INITIATE LOOP CONTROL 
1. INITIATE RELATION CONTROL 11. GENERATE ADD 21. SET EXIT CONDITIONS 
2. FAULT 12. GENERATE SUBTRACT 22. GENERATE 10 
3. GENERATE STRAIGHT JUMP 13. GENERATE MULTIPLY 23. INITIATE SUBSCRIPT 
4. GENERATE RETURN JUMP 14. GENERATE MULT QUANT 24. MODIFY SUBSCRIPT 
5. CHECK PARTIAL WORD 15. GENERATE MULT OR ENTER 25. SET SUBSCRIPT 
6. CHECK FOR ALOEBRA 16. GENERATE DIVIDE 26. SAVE CURRENT OPERATOR 
7.. CHECK FOR NEG LOOP INCREMENT 17. GENERATE DIV OR ENTER 27. GENERATE ADD OR ENTER 
8 CHECK FOR LOOP LIMITS 18. GENERATE DIV QUANT 28. INITIATE RELATION CONTROL 
9. CLEAR TEMP LIST 19. GENERATE STORE 29. GENERATOR EXIT. 

This table is included as a guide to the legal cojNo pairs. The numbers given at the 
intersections specify which generator routine manufactures the machine code instructions 
pertinent to that pair. In general, if no number is given, that cojNo pair is illegal. 
Some special cases, such as shifts or octal notation, are processed elsewhere and do not 
appear at all. 

TABLE II 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

u n 

o 0 0 

000 

000 

o 2'T 2'T 

000 

099 

o 0 0 

o 0 0 

000 

000 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

19 19 

2T 2T 

12 12 

16 16 

15 15 

o 0 

o 
o 
o 

o 
o 
o 



alphabet, 
a through h, 
and q through z 

alphabet, 
i through n 

numerals 

, 

APPENDIX A 

DEFINITION OF NELIAC SYMBOLS 

Operands, i.eo constants, variables, 
names or tags. 

Indices, register variables. These 
are the AN/USQ-20 B-registers 1 through 
6 respectively. 

Constants. They are always considered 
to be decimal unless indicated other­
wise, see e. 

Punctuation. Separates statements 
in the flowchart logic, names in the 
dimensioning statement: indicates 
return transfer operationso 

Puncuationo Indicates end of an 
algorithm~ an unconditional transfer 
and may indicate end of a true or 
false alternative. 

Punctuation. Separates the dimension­
ing statement from the flowchart 
logic. Marks the end of an alternative. 
Separates the input and output parameters 
in the function definition or call. 

Punctuation. When used following a 
relationship symbol it marks the end 
of a comparison. It also denotes 
that which follows. as the definition 
of the name immediately preceeding. 
In the dimensioning statement it is 
used when defining partial words or 
congruent tables. 
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() Grouping symbols. In the dimensioning statement 
parentheses enclose the number of locations to 
be set aside for the name preceeding them. In 
the flowchart logic they enclose the numerals 
which indicate the increment or decrement to be 
added to the index Which controls a loop, or the 
bit limits in a partial word operation. Paren­
theses also indicate algebraic groups which are 
to be treated as a whole '. They also enclose 
comment statements. 

[] Grouping symbols, These subscripting symbols 
are used to enclose the subscript operand. 

II Punctuation. The braces enclose a subroutine, 
a function, or a comparison considered as one 
of the alternatives of a previous comparison. 
They are also used in dimensioning partial words, 
jump tables and address switches. 

= Relationship symbols. These are used in form-
i ulating a decision, branch point or comparison. 
< The < and > are also used as quotation marks in 
~ literals and declarations and to indicate input 
> or output in active r/o statements. 

~ Store symbol. That which preceeds it is to be 
stored in the variable which follows it. It 
is also used to indicate the limits of bit 
fields in partial word dimensioning. 

x2t Arithmetic symbols. The result of a compu-
x2t tat ion stays in an arithmetic register and 

x is not preserved unless a store operation is 
/ indicated. The symbols are listed in pri-
+ ority of execution within algebraic grouping. 

U Punctuation. Boolean comparison -or-. 

n Punctuation. Boolean comparison -and-. 
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e 

x21 
/21 

Octal symbol. Indicates that the numerals which 
preceded are an octal number. When used for 
machine code the first five digits which preceded 
the symbol are machine code for the f, j, k and 
b designators of a command. The next digits to 
follow are decimal unless indicated otherwise 
and are inserted as the y part of the instruction; 
a name may be inserted instead of numerals. 

Exponent Co/No combination. Scaling technique 
which indicates that the number preceding is 
to be shifted (to the left with the multiply 
symbol and to the right with the divide sym-
bol) the number of bits indicated by the number 
following. Scaling is not legal with floating 
point. 

Absolute sign. When inserted in a name defin­
ition the name will be temporary. 
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APPENDIX B 

GLOSSARY OF NELIAC TERMS 

The following terms and definitions may be all or in part 
well known to the readerc However, several have a more or 
less special meaning in the explanation of NELIAC, so all should 
be reviewed and understoodo 

The first explanation or definition will be from -Glossary 
of Terms and Expressions in the field of Computers and Auto-· 
mation- published in Computers and Automation, Dec. 1954, Vol. 
3, No. 10, with a few modifications. The second will be the 
NELIAC definition if appreciably different. Either the first or 
second definition will be omitted if not applicable. 

ADDRESS VARIABLES 
2. A noun which specifies the address of the variables 

which contain the data or the address of the data itself. 

BITS 
1~ A binary digit; the smallest unit of information; a 

-yes- or -no-; a single pulse in a group of pulses. 

CO 
1.2~ Current operator. 

COMPARISON 
i,,2 The act of comparing and, usually, acting on the 

result of the comparison. The cornmon forms are comparison of 
two numbers for identity, comparison of two numbers for relative 
magnitude, and comparison of the two signs, plus or minus. 

COMPARISON STATEMENT 
1"2,, A.NELIAC statement which designates the type of 

comparison to be,made and the action to be taken as a result 
of the comparison. 

COMPILER 
,1. A program making routine which produces a specific 

program for a particular problem by the following process: (a) 
determining the intended meaning of an element of information 
expressed in pseudo-code; (b) selecting or generating (i.e. 
calculating from parameters and skeleton instructions) the re­
quired subroutine; (c) transforming the subroutine into specific 
coding for the specific problem, assigning specific memory 
registers, etc., and entering it as an element of the problem 
program; (d) maintaining a record of the subroutines used 
and their position in the problem program; and (e) continuing 
to the next element in pseudo-codev 
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COMPUTER 
1. A machine which is able to calculate or compute, 

that is, which will perform sequences of reasonable oper­
ations with information, mainly arithmetical and logical 
operations. More generally, it is any device which is 
cpnp"bJe of accepting information, applying definite 
reasonable processes to the information, and supplying 
the results of these processes. 

CONSTANTS 
1~2. A specific numeric value, which is octal 77777 77777 

or less, that is in the NELIAC flowchart logic (iae. DOLLARS x 
100 ~ CENTS, where 100 is the constant). 

CONTROL 
1. To direct the sequence of execution of the instructions 

to a computer. 

CONTROL ROUTINE 
1.2. A routine which is entered with a straight jump and 

effects control. 

DEBUG 
1. To isolate and remove malfunctions from a computer or 

mistakes from a program. 

DECLARATION 
2. A machine dependent operation called by an active 

statement_in the flowchart logic and inserted into the object 
program as an open subroutine. 

DECLARATOR 
. 2. Any of the names available as English phrases to 

describe and calIon input/output declarations for the 
AN/USQ-20 computer~ 

DECREMENT 
1.2. To decrease the value contained in a register or 

cell by a given amount. 

DIMENSIONING STATEMENT 
1.2. The initial portion of a flowchart which contains 

the assigned names (nouns) of all variables, lists, and tables 
used in the flowchart logic. 

EQUALITY SIGN 
1.2. The symbol (=) meaning -equal to-. 

FLEXOWRITER 
1.2. A typewriter-like machine which will produce a 

punched paper tape that can be read by the computer. 
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FLOATING POINT 
1.2. A mode of arithmetic in which each variable has an 

associated radix point which is adjusted to preserve the max­
imum precision in each arithmetic operation, independent of 
the original magnitudes of the variables. 

FLOWCHART 
1. A graphical representation of a sequence of program­

ming operations, using symbols to represent operations such as 
compute, substitute, compare, jump, copy, read, write, etc. 

2~ The dimensioning statement and the flowchart logico 

FLOWCHART LOGIC 
lo2~ The NELIAC language logic flow usin~ NELIAC oper­

ator symbols, constants, predefined variables (nouns), and 
other routine, control routine and subroutine names {verbs)o 

INCREMENT 
1.2. To increase the value contained in a register or 

memory cell by a given amount. 

INDEXING 
lD2. Modifying or altering the operand by an indicated 

amount or value contained in a register. 

INSTRUCTION 
1. A machine word or set of characters in machine 

language which directs the computer to take a certain actionu 
More precisely, a set of characters which defines an operation 
together with one or more addresses (or no address) and which, 
as a unit, causes the computer to operate accordingly on the 
indicated quantities 0 

JUMP 
1. An instruction or signal which, conditionally or 

unconditionally, specifies the lo~ation of the next instruction 
and directs the computer to that instructiono A jump is used 
to alter the normal sequence in the control of the computer 0 

Under 'certain special conditions, a jump may be caused by the 
operator throwing a switch., 

K-DESIGNATOR 
1.2. The portion of an AN/USQ-20 machine instruction which 

designates what is to become the operand of the instruction. 

LOAD FLOWCHARTS 
1.2" The load program portion of the NELIAC compilero 
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LANGUAG~ 
1~2, A system of communication in which given combin­

ations of given symbols communicate a specific meaning. 

LOAD PROGRAM 
1.2. A short preliminary program loaded in memory 

which permits some interpretation and editing of the data 
during the loading operation. 

LOOP 
1.2. A loop is a series of operations repeated any 

number of times as specified by the loop control, or until 
an exit condition is satisfied. 

LOOP CONTROL 
1.2. The part of the loop which specifies the number of 

times the loop shall be repeated. 

MACHINE NEGATIVE NUMBER 
1.2. Any negative number in the machine kept in comple­

mented form with a one bit in the highest order position. 

NO 
1~2. Next operator. 

OPEN SUBROUTINE 
1.2. A sequence of instructions which are built into 

the program every time they are needed; as contrasted with a 
closed subroutine, where the instructions are inserted only 
once, then called with a return transfer instruction. 

OPERAND 
1.2. Anyone of the quantities entering into or arising 

from an operation. An operand may be an argument, a result, 
a parameter, or an indication of the location of the next 
instruction, 

OPERATOR 
1.2. The person who actually operates the computer, 

puts problems on, presses the start button, etc. 
2. The punctuation and algebraic symbols which the 

compiler uses to generate machine code. 

PSEUDO-CODE 
1.2. An arbitrary code, independent of the hardware 

of a computer, which must be translated into computer code if 
it is to direct the computer~ 
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PROGRAM 
1. A precise sequence of coded instructions for a dig­

ital computer to solve a problem. 
2. A collection of flowcharts with their associated 

dimensioning statements from which the compiler manufactures 
a machine coded program. 

PARAMETER 
1.2. In a subroutine, a quantity which may be given 

different values when the subroutine is used in different 
parts of one main routine, but which usually remains un­
changed throughout anyone such use. 

REGISTER 
1.2. The hardware for storing one machine word. 

REGISTER VARIABLES 
2. The index registers B1 throu~h B6, as represented 

by the letters i through n, on the AN/USQ-20 computer. 

ROUTINE 
.1.2. See -program-. 

SHIFT 
. 1.2. To move the character of a unit of information 

columnwise right or left. In the case of a number, this is 
equivalent to multiplying or dividing by a power of the base 
of notation (usually ten or two). This is regularly per­
formed faster than usual multiplication or division. 

STOP CODE 
1.2. On punched paper tape, a signal to stop equipment 

while reading or duplicating a tape. 

SUBROUTINE 
1. A short or repeated sequence of instructions for a 

computer to solve part of a problem: a part of a routine. 
2. The sequence of instructions necessary to direct the 

computer to carry out a well-defined mathematical or logical 
operation: a SUb-unit of a routine. 

TAPE 
1.2. Any kind of paper, metal, plastic, magnetic or 

non-magnetic material which carries coded information as 
polarized magnetic spots or punched holes in the tape. 
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VARIABLES 
1. Any specified memory cell or register may be 

thought of as a variable. 
2. Variables in NELIAC are designated by alpha-numeric 

names. The names must begin with a letter and may be of any 
lengtho The compiler will, however, interpret only the first 
fifteen characters of the name~ A variable may also have a 
specified constant value throughout the program 0 

WORD 
1.2 .. An ordered set of characters which has at least 

one meaning, and is stored and transferred by the computer 
circuits as a unit. Ordinarily, a word has a fixed number 
of characters, and is treated as an instruction by the 
control unit and as a quantity by the arithmetic unit. 
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APPENDIX C 

SYSTEM DECLARATION 

The active input/output statements listed here call 

on the -System Declaration-, which is a part of NELIAC. 

Following the name of each statement is a valid example 

of the use of that st-atement. 

There are four legal types of operands used in active 

input/output statements: 

1) Address variables, 

2) Read operands (register variables, whole or 

half words), 

3) Store operands (whole or half words only), 

4) Buffer operands (described in Section IV). 

The examples listed below use descriptive names as 

operands. -Entry- is defined as an entry point, -find 

index- is a store operand, -core area- is a buffer operand, 

and all the other operands are read operands. 
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ACTIVE INPUT/OUTPUT STATEMENTS 

STOP = 

[stop < entry), ], 

START FLEX = 

[start flex < ,], 

TURN OFF FLEX = 

[ turn off flex < , ], 

READ MAG DRUM = 

[ read mag drum < drum operand ), < core area), ], 

WRITE MAG DRUM = 

[ write mag drum < drum operand), < core area), J, 

MOVE BLOCK = 

[ move block < start operand ), < number of cells >, 
< move operand), ], 

PRINT LITERAL = 

[ print literal < address variable ), ], 

START READER = 

[ start reader < , ], 
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TURN OFF READER = 

[ turn off reader < , ], 

START PUNCH = 

[ start punch < , ], 

TURN OFF PUNCH = 

[ turn off punch < , ], 

OUTPUT FLEXCODE = 

[ output flexcode < read operand> , ], 

KEY 1 = 

[ key 1 < entry> , ], 

KEY 2 = 

[ key 2 < entry> , ], 

KEY 3 = 

( key 3 <entry>, ], 

KEY 5 = 

[ key 5 < entry> ,], 

KEY 6 = 

[key 6 < entry> ,], 

C-3 



KEY 7 = 
[ key 7 < entry> ,], 

READ ONE FRAME = 

[ read one frame < store operand> ,], 

STORE REMAINDER = 

[ store remainder < store operand> ,J, 

RETURN JUMP STOP = 

[ return jump stop < entry> ,], 

SEARCH ZERO = 

[ search zero < list length to search > , 
< name of list > , < no find entry > , 

< find index> ,], 

SEARCH NOT ZERO = 

[ search not zero < list length to search > , 
< name of list >, no find entry > , 

< find index> ,], 

SEARCH LESS THAN = 

[ search less than < argument > , 
< list length to search > , < name of list > , 

< no find entry> , < find index> , J, 
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SEARCH GREATER THAN =, 

[ search greater than < argument > , 

< list length to search > , < name of list > , 

< no find entry> , < find index> ,], 

SEARCH EQUAL = 

[ search equal < argument > , < list length to search > , 

< name of list> , < no find entry> , < find index> ,], 

SEARCH BETWEEN = 

[ search between < lower argument > , < upper argument > , 

< list length to search > , < name of list > , 

< no find entry> , < find index> ,], 

SEARCH NOT BETWEEN = 

[ search not between < lower argument > , 

< upper argument > , < list length to search > , 

< name of list> , < no find entry> , < find index> ,], 

CLEAR CELLS = 

[ clear cells < number of cells to clear > , 

< start operand> ,], 
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STOP = < machine(61400s0k) ), 

START READER = (4) (external function (40 s )), 

TURN OFF READER = (4) (external function (400s )), 

START PUNCH =(4) (external function (20s »), 

TURN OFF PUNCH = (4) (external function (200s )), 

KEY 1 = < machine(61100s0k) ) , 
KEY 2 = < machine(61200s0k) ) , 

KEY 3 = < machine(61300s0k) ) , 

KEY 5 = < machine(61500s0k) ) 

KEY 6 = < machine(61600s0k) > , 
KEY 7 = < machine(61700e Ok) ) , 

READ ONE FRAME = < buffer ), ( jump active) , 

.::-IfORE RErVIAINDER = < machine ( 15000eOk) ), 

RETURN JUMP STOP = < machine(65400s0k) ), 

SEARCH ZERO = < machine(70230e Ok) > , 
< machine( 1 1 437s77776s k) >, < machine(61000s0k) > , 

< machine(16730s0k) ) , 

SEARCH NOT ZERO = < machine(70230s0k) > , 
< machine(l 1 537s77776s k) >, < machine(61000s0k) > , 

< machine(16730s0k) > , 
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SEARCH LESS THAN = < mach1ne(10030s0k) > , 
(mach1ne(27000s1)), < mach1ne(70230s0k) > , 

< mach1ne(04237s77776s k) >, <mach1ne(61000s0k) > , 

< mach1ne(16730s0k) > , 

SEARCH GREATER THAN = < mach1ne(10030s0k) > , 
< mach1ne(70230s0k) >, < mach1ne(04337s77776sk) > , 
< mach1ne(61000s0k) >, < machine(16730s0k) > , 

SEARCH EQUAL = (machine(10040s77777s)), < machine(11030s0k) > , 
< machine(70230s0k) >, < machine(43437s77776sk) > , 
< machine(61000s0k) >, < machine(16730s0k) > , 

SEARCH BETWEEN = < machine(11030s0k) >, < machine(10030eOk) > , 
(machine(27000e1)), < machine(7023 0e Ok ) > , 
< mach1ne(04427s77776ek) >, < machine(61000e Ok) > , 
< machine(1673 0e Ok ) > , 

SEARCH NOT BETWEEN = < machine(11030s0k) > , 
< machine(10030s0k) > , (mach1ne(21000e l)), 

< mach1ne(7023 0eOk ) > , < machine(04537s77776ek) > , 
< mach1ne(61000s0k) > , < machine(16730s0k) > , 

CLEAR CELLS = < machine(70100s0k) >, < machine(16030s0k) >, 
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