

FOREWORD

This document describes NELIAC (Navy Electronics

Laboratory Algorithmic Compiler) as developed on the

UNIVAC AN/USQ-17 computer and applied on the UNIVAC

AN/USQ-20 and UNIVAC 490 real time computers.

The author is indebted to LT J. E. White, USN,

LCDR R. R. McArthur, USN, LT K. S. Masterson, USN,

and Mr. Roger Rempel, who were instrumental in the

development of the NELIAC language and compiler.

The NELIAC language itself was invented and developed

in its early phases by Dr. H. D. Huskey, Dr. M. H.

Halstead, and LCDR R. R. McArthur, without whom there

would be no NELIAC language.

Special acknowledgment is due Mrs. Helen Bate

for the preparation of the manuscript and her

knowledgeable editing of the text for technical

accuracy.

INTRODUCTION

The availability of large scale automatic data processing

equipment has revolutionized problem-solving techniques in vir­

tually every modern industry and laboratory.

Programming is the operation by which such data processing

equipment is instructed to perform a particular task or se­

quence of tasks. Internal operation is in a numerical code or

-machine language-. Usually, no distinction is made

between the data which is operated on and the instructions them­

selves. Instructing the machine in its own language can be an

onerous and monotonous job. To simplify the programming task,

many -automatic programrning- systems have been developed. These

-systems- are programs written for a computer to simplify the

problem of programming for it or other computers. The term

-compiler- is used to refer to such a system, and particularly

to one which accepts an English or algorithmic input language.

The compiler then translates that higher level language to the

basic language of a particular computer.

The evolution of programming systems has progressed fur~

ther and further away from the characteristics of the machines

themselves. Indeed, some languages have highly machine in­

dependent characteristics, and may successfully generate pro­

grams for several dissimilar computers. NELIAC is a dialect of

the ALGOL 1958 language; and is classified as a procedure­

oriented language.

SECTION

I. NELIAC

A.
B.
c.
D.
E.
F.

TABLE OF CONTENTS

FOREWORD

INTRODUCTION

SYNTACTICS

Symbols
Grammar
Named Variables or Nouns
Name Format
Number Format
Punctuation

II. DIMENSIONING

A. Dimensioning Statement
B. Single Items, Lists, Tables,

Constants and Partial Words
C. crump Tables
D. Address Switches
E. Congruent Tables and Lists
F. Double Indexing and

Two Dimensional Arrays
G. Two Dimensional Jump Tables
11. Literals

III. FLOWCHART LOGIC

A.
B. c.
:Q.
E.
F.
G.
H.

Computation Rules
Decision Making
Loops
Subscripting
Subroutines and Function Definitions
Function Calls
Machine Language
Sample Flowchart Layout

PAGE NUMBER

1- 1
1- 1
1- 3
1- 3
I~, 4
1- 6

11-

11- 1
11- 2
II~ 3
II~ 4

11- 5
II~ 5
I1- 6

III- 1
111- 4
111- 6
111- 7
III- 9
111-11
111-13
111-14

TABLE OF CONTENTS

SECTION PAGE NUMBER

IV. DECLARATIONS

A. Machine Dependent Operations
B. Establishing Locations
C. Input-Output Systems
D. Machine Code
E. Active Input-Output Statements

V. OPERATORS GUIDE

A. Card Input
B. Load Numbers
C.. Correction Loads
D. Batching Corrections
E.. Functions of the 9 Load
F. NELOS
G. NELIAC OperatlngCharacteristics
H. NELOS Executive Program
I. The NELDS Operators
J., NELOS Control Statements
K. The NELOS Monitor
L. Capabilities of the Monitor Program

VI. PROGRAMMING TECHNIQUES

A. Sample Programs
B. The NELIAC -WRITE- Package

TABLES

I~ NELIAC Symbols
II. NELIACCO/NO Table

APPENDIX

A. Definition of NELIAC Symbols
B. Glossary of NELIAC Terms
C. System Declarat ion

IV-l
IV 1
IV-2
IV-T
IV-9

V-l
V-l
V-2
v-4
V-4
V-5
v-6
V-10
V-15
V-20
V-22
V-29

VI-l
VI-5

Table I
Table II

A-l
B-1
C-l

Ie NELIAC SYNTACTICS

A. SYMBOLS

NELIAC programs are written using a basic set of alpha-

numeric, arithmetic, and punctuation symbols~ The symbol

set consists of 26 letters, 10 numbers and 25 arithmetic-

punctuation symbols~

These symbols are translated from the code of the input

device (Flexowriter, Teletypewriter, or Hollerith card reader)

into compiler code. This code table is a logically arranged

table which represents each symbol with the 6 bits necessary

in the binary mode of the computer~ Table I lists all the

NELIAC symbols with the NELIAC internal codes~ When

punched cards are used for preparing NELIAC programs, special

composite symbols are required $ These are also illustrated

in Table I. Simple definitions of each NELIAC symbol are

given in Appendix A; more definitive explanations are given in

the following sections~

B. GRAMMAR

The compiler, itself a sophisticated program written in
1 •

its own language, is classified as a -self compiler-. It

utilizes -current operator/operand/next operator- combinations

to transform the procedure oriented language into the computer

oriented object program; see Table II. It is therefore

absolutely necessary for the programmer to observe rather strict

rules of punctuations

1-1

1 I The use of the , - , is as a quotation mark and is only for
the convenience of the reader~

The rules are, however, simple and quite consistent

throughout the framework of the language. Misuse of operators,

i.e. punctuation, in the NELIAC language will result in

more serious implications than merely using bad grammar,

and will cause diagnostic printouts at compiling time.

Indeed, an error in punctuation may cause a great many

messages describing syntactical errors which are caused

directly by the first error in the chain.

NELIAC programs consist of up to three elements: the

Declarative Statement, the Dimensioning Statement, and the

Flowchart Logic.

1) The Declarative Statement is a means of putting

machine dependent operations into NELIAC language without

using machine language in the flowchart logic.

2) The Dimensioning Statement or noun list contains

the assigned names{nouns) of all constants, variables, lists,

and tables, etc. used in the flowchart logic.

3) The Flowchart Logic is the NELIAC operating

program itself. The flowchart logic is written using NELIAC

symbols, constants, predefined variables (nouns), and other

routine and subroutine names (verbs). Usually, programs are

of such extent that they will consist of a collection of

flowcharts (flowchart logic) with their associated dimensioning

statements along with one declarative statement from which

the compiler manufactures a machine coded program.

1-2

C. NAMED VARIABLES OR NOUNS

Four types of variables are conunonly used in NELIAC

programs. They are: (1) signed whole words, (2) unsigned

half word or bit fields, (3) multiword floating point

quantities, and (4) address variables. Half words and bit

fields are always treated as positive integers. Constants

in legal number format may be used in any part of .t~e flow­

chart. See the Section on dimensioning for 4etails~

D. NAME FORMAT

The first fifteen characters in any NELIAC name are

significant, not including spaces. Any chara.cter past the

fifteenth is disregarded. Names must begin with a letter;

thereafter, any combination of letters or numbers constitutes

a legal name. The single letters -i- through -n- are

register variables Bl through B6, and therefore cannot be

used as labels or -verbs-. Operators cannot be. used as names,

i.·e. those in the NELIAC card symbol set: BEGIN, END, OCT,

etc.

Examples:

LEGAL NAMES

qlzt

Z 999876 b

an extra long legal name

1-3

ILLEGAL NAMES

1 q I'zt

i

cde]pql

There are three levels of name precedence in the NELIAC

language:

1) Permanent or global names

2) Flowchart local names

3) Formal parameter and subroutine names

A global or permanent name is one that has been defined in

the dimensioning statement or is the name of a procedure and

may be referenced anywhere within the system program. Names

that are local to a flowchart contain a temporary sign -l-
and may not be referenced outside the flowchart.

If a name is defined in a function or subroutine, it may

not be referenced outside that function or subroutine.

VJhen the program.'TIer uses the same name in two or three

levels of name precedence, the compiler uses the definition of

the most local name.

Z < NUfllBER FO RI\~A T

Numbers [I"lay be used as operands in the floVIchart 10Gl.c

Hith the restriction that no float:tng point nu:nbers VJith

exponent parts are allowed. See example 1. The dimensioning

statement has no such restrictions. Example 2 illustrates all

the legal forms.

1-4

Example 1: IN FLOWCHART LOGIC

LEGAL NUMBERS

37777777778

77778

12345

3.2

99.99

0.00000123

EXample 2:

ILLEGAL NUMBERS

1234512345 128 (more than 10 octal

digits)

.321 (no leading number or zero)

3.73 18 (no floating point octal

are allowed)

IN THE DIMENSIONING STATEMENT

LEGAL NUMBERS (include all above legal numbers)

3.0 x 74 (a decimal power of ten is understood)

3 x -1

4)(0

- 338

- 89

-62.3 x -3

- 0 (octal 7777777777)

1-5

F. PUNCTUATION

A program written in the NELIAC language depends upon

the proper use of punctuation. The -punctuation symbols­

used are shown below.

,
,

comma

semicolon

period

colon

right brace

left brace

n boolean -and­

U boolean -or-

1) COMMA: Commas are universal separators, they are

used to show the end of a phrase or sequence. Commas can be

used with great freedom almost everywhere.

Example 1:

, Compute Tax, Sum, Z,

In Example 1 the comma indicates a transfer operation.

Here -compute tax-, -sum-, and -z- have been defined as

subroutines. The example says -transfer to compute tax and

come back-, etc. Note that the return transfer is implied

only when the previous operator is -punctuation-.

Example 2:

A + B ~ C ~ D,

Example 2 shows that punctuation usually follows the final

operand in all store operations.

2) SEMICOLON: The semicolon denotes the end of the di­

mensioning statement. The compiler considers everything follow­

ing the semicolon at the end of the -dimensioning statement-

to be flowchart logic.

1-6

The semicolon also indicates the end of a true or false

alternative to a comparison as described in Section III-B.

The other legitimate use of the semicolon is to separate

the input parameters from the output parameters in a -function

call- or a -function definition-. See Section III-E and F.

3) PERIOD: The period indicates an unconditional

transfer when the previous operator is -punctuation-.

Example 1:

, Procedure.

Like the semicolon, the period indicates the end of a true or

false alternative wherever it is used. A misplaced period, i.e.

one not indicating an unconditional transfer, will terminate an

alt~rnative as effectively as a semicolon. See Section III-B.

A double period signifies the end of a flowchart and will

generate an unconditional jump stop to the flowchart entrance.

4) COLON: The colon indicates definition when the previous

operator is -punctuation-.

Example 1:

.
I Compute Number:

The example defines that which follows the colon as the sub-

routine or routine associated with -compute number-.

When the colon is preceded by one of the comparison oper­

ators (=1 >, etc.), it indicates the beginning of the -true­

alternative. See Section III-B.

In the dimensioning statement the colon has several other

defining capabilities as shown in Section II-B, E, F, and H.

1-7

5) LEFT AND RIGHT BRACES: The left and right braces are

symbols which indicate loops (Section III-C) or subroutines

(Section III-E). In all other respects they are identical to

commas. For their application in dimensioning statements see

Section II-B, C, D, E, and G.

6) BOOLEAN AND-OR: The boolean operators are symbols

which separate parts of a compound decision. In this sense

they are treated as punctuation. See Section III-B.

1-8

II DIMENSIONING

A. DIMENSIONING STATEMENT

The dimensioning statement·, often called the noun list,

contains the assigned names (nouns) of all variables, constants,

lists, and tables. Dimensioning is the process of allocating

machine locations and naming variables; stating whether or not

they initially have known numerical values and their mode,

i.e. fixed or floating point, and information on the forms and

lengths of any lists or arrays. All variables used in a NELIAC

program must be defined at some point or otherj however partial

words and floating point variables must be defined before they

are used. The dimensioning statement may be omitted in certain

cases, but in any event a semicolon must precede the flowchart

logic.

B. SINGLE ITEMS, LISTS, TABLES, CONSTANTS, AND PARTIAL WORDS

Example 1:

a, b. c.

This example defines the fixed point full word variable

-a- and the floating point variables -b- and -c-, all equal

to zero.

~ample 2:

a(20), b(20).

In example 2 -a- is a list of 20 fixed point full word

variables, -b- is a list of 20 floating point variables. In

both cases all locations are equal to zero.

11-1

Example 3:

a(10) = 1,7,3,6,

Example 3 shows the general technique by which a list

may be wholly or partially allocated with non-zero quantities.

The remaining six locations of list -a- are equal to zero.

Example 4:

Z(10) = 2.1, 3.2, 0.15, 100 x -10,

The mode of a list, i.e. fixed or floating point, is

determined by the first numerical value assigned in that list.

Example 4 illustrates a list -z- of 10 floating point items,

four of which are assigned non-zero values. (Example 3

illustrates a list of 10 fixed point items.)

Example 5:

A: B: {c(2~29), d(24~29), e(0~17), f(12~17),1 (100),

In-example 5, the partial word variable -f- occupies bits

12 through 17 of the computer word -B- which is also defined as

-A-. Note that -f- 1s wholly contained in the variable -e-, that

-c- and -d- occupy the same bit locations and that bits 18

through 23 are unallocated. Note also that there are one

hundred of each of these variables, all of which are numerically

equal to zero.

c. JUMP TABLES

Example 1:

Jump Table = { Pj Q, R, S, T, U, V, I,

In the example Jump Table [0] contains the address of -P-,

11-2

successive entries contain the addresses of the routines -Q-

through -V-o The names mentioned in the jump table can be

names of routines or subroutines. In the flowchart logic

statement, Jump Table[i], generates a return ju~p to the add­

ress specified in the lower half of the ith entry in the

dimensioned jump table. Jump tables may be used to execute

subscripted return jumps or straight jumps depending upon the

items defined.

D. ADDRESS SWITCHES

Example 1:

swi t ch = {a I ,

Address switches and jump tables are identical in

principle. SWitch[O] contains the address of the noun -a­

and the k-designator (Note 1) appropriate to the noun. The

functions of jump tables and address switches should not

normally be mixed.

Example 2:

Sw itch =. {Noun 1, Noun 2, Noun 3, ! ,

The switch[O] contains the address of Noun 1. Switch[l]

contains the address of Noun 2, etc. Both jump tables and

address switches are address variables, i.e. an address rather

than data is referenced. The distinction between the two

exists only in their usage. A Jump Table may be used as an

address switch to obtain the address of a routine, but using

Note 1: The k-designator, inserted in bits 18 through 20, is
for operand interpretation in an AN/USQ-20 machine instruction.

II-3

?,D address switch as a jump table is very inadvisable, since

one rarely wishes to jump into the dimensioning statement area.

E. CONGRUENT TABLES AND LISTS

Example 1:

A(10): B(5), C(5),

In example 1 the lists -B- and -C- are both numerically

equal to zero and are wholly contained in the list -A-. The

element -A[5]- is the same as element -C[O]-. The programmer

must ensure the allocation of the whole of list -A- with other

lists or tables, as in example 2.

Example 2:

A(lO): B(5): C(2) = 1,2, D(3) = 3,4,5, E(5):

IF(24~29}, G(0~5), 1 (3) ::::: 6, 7, 8, H(2) ::::: 9, 10,

Example 2 illustrates some of the power of this technique.

Note that only ten cells have been allocated in the object

program. Example 3 illustrates diagrammatically the relations

expressed in example 2.

Example 3:

10100 }c (1)

1 0 101 (2)

10102 B (3)
D

10103 (4)

10104 (5)

10105 (6)

10106 (7) F, G

10107 E (8)

10 110 (9) }

1 0 111 (10) H

II-4

F. DOUBLE INDEXING AND TWO DIMENSIONAL ARRAYS

Example 1 :

A (3 x 4): AO(4) = 0, 1 , 2, 3,

A 1 (4) = 4, 5, 6, 7,

.A2(4) = 8, 9, 10, 1 1 ,

Example 1 illustrates a two-dimensional array of three rows

and four columns~ Each row is named with the appropriate row

number. Thus, -AO- is row zero of the array -A-. Note that the

leading element of the array is -A[O,OJ-. Elements of two­

dimensional arrays are stored as they appear on the flowchart, i.e.,

arrays are stored sequentially by rows"

Example~ illustrates some of the identities possible with

the conventions adopted" Note that the last element of a two-

dimensional array has subscripts which are one less than the

number of rows and columns dimensioned.

Example 2:

A[O,O] is the same as AO[O] and is equal to 0

A [2, 1] is the same as A2 [1] and is equal to 9

A [2,3] is the same as A2 [3] and is equal to 1 1

G. TWO DIMENSIONAL JUMP TABLES

Example 1 :

Q(3x3) = I A, B, C,

D, E, F,

G, H, P, }

11-5

Table -Q- is like any other jump table except that it

may be referenced in the fashjon of example 2.

Example 2:

, go to Q [" 2] .

This example will result in a transfer to routine -F-.

H. LITERALS

Literals are defined in the dimensioning statement and

stored in memory as NEL1AC code just as they are written. They

are useful for alpha-numeric headings and output formats, etc.

The data contained in the literal begins with the first character

after the colon and ends with the character just before the right

bracket. Any NEL1AC symbol may form part of the literal except

the right bracket, which ends the 1 i teral.~

Example 1:

[Text: This is a line of text, a+b~c,]

The name -text- is an address variable. Whenever -text-

is used as an unsubscripted noun, the address of the literal will

be obtained,. The literal is formed internally as NEL1AC code,

packed five characters to a word from left to right. A full

zero cell follows the literal~

11-6

III. FLOWCHART LOGIC

A. COMPUTATION RULES

NELIAC is an algebraic language; the rules of arithmetic

precedence are strictly observed. The order of execution

within an algebraic group is:

1. Scaling (x 21 or / 21)

2. Multiplication or division (x or /)

3. Addition or subtraction (+ or -)

Example 1:

A x B + C -+ P

The above example says~ frake· the product of A and B, add C,

then store in P.

Example 2:

A / B / C -+ P,

Example 2 says: Divide A by B, then divide the resultant

quotient by C, then store in P.

Example 3:

A - B x C + D -+ P,

Example 3 says: subtract from A the product of Band C, then

add D and store in P.

A series or combination of divides and multiplies is taken

from left to right.

Example 4:

A / B x D / C -+ P,

This example is interpreted as A-divided by B, multiplied by D,

divided by C, stored in P.

II1-1

The programmer should observe that A, B, C, and D may be

expressions enclosed in parentheses.

Example 5:

(6+H) x (F+K) + (6-F)

Examnle 5 is treated like example 1 after the grouping is

evaluated. However, an expression enclosed in parentheses

must contain at least one arithmetic operator.

Note that -H- and -F- may also be expressions, but

-K- is the register variable B3. Any single variable may

have been previously defined as a bit field, a whole or

half word, an address variable, or a floating point quantity_

Mixed, i.e. fixed point and floating point, operations are

not permitted.

The programmer may refer to specific bit locations on any

fixed point word.

Example 6:

DIMENSIONING

CELL: { A(5~25),I,

-A- DIMENSIONED

FLOWCHART

A(O~ 10) + . . " . . .

.~

CELL g9 26 F;250/;'<'16~kj5~~~\5:3 4 =oQJ
~--.J

-A- FLOWCHART REFERENCE

Any fixed point expression may be shifted or scaled by

multiplying or dividing that expression by a power of 2.

III-2

Example 7:

A(3~14) x 2t6 ~ P,

A x 2tI -+ P,

B / 2tA -+ P,

Example 7 shows the three legal shifting operands: constants,

register variables, or whole or half words.

The programmer should observe that the CO/NO combinations

of (x 2t or / 2t) have the highest arithmetic precedence

and are always executed first.

The result of every computation must be stored in a variable

by the use of the store operator.

Example 8:

A + B -+ C,

Expressions in a decision statement (see Sec III-B) need not be

stored in this fashion.

An expression may include a store operator at any point.

Example 9:

(A + B -+ C) / (D + E -+ F) -+ Q,

Algorithms of dissimilar mode, i.e. fixed or floating, may

be separated by any punctuation or the right arrow. When a

fixed point expression is stored in a floating point variable,

the normalized floating point representation of that integer is

obtained. When a floating point expression is stored in a fixed

point variable, the truncated integer value is obtained.

1II-3

B. DECISION MAKING

There are seven basic decisions for expressions of similar

mode:

A = B:

A -f B:

A < B:

A > B:

A ~ B:

A ~ B:

A < B < c: (fixed point only)

Note that A, B, and C can be symbolic expressions of the type

discussed in Section A.

Example 1:

A = B: (true alternative - any expression);

(false alternative - any expression);

The true or false alternatives may be terminated by a semi­

colon or by a period. The expression in the -true- or -false­

alternative can be another decision, if desired. For clarity

it is permissible to enclose the whole true or false

alternative in a set of braces.

Example 2:

A = B: True J;

False };

Obviously, in executing a branch statement of this type,

either the -true- alternative or the -false- alternative will

be executed, but under no circumstances will both ever be

executed.

111-4

Whenever a decision is enclosed in braces as the

alternative of a previous decision, an unconditional transfer,

within the braces, and out of the nested decision, is not

treated as the end of the previous alternative.

Example 3:

A I: B: Ie = 0: ----j ----j Q. lj

1M = Z: ----j . , 1 j

Same example without the braces:

A = B: C = 0: ----~j --~~-j Q.

M == Z: -----j j j

Both of the above examples generate the same code.

Up to sixteen simple comparisons may be strung together

with the symbols:

U logical -OR-

n logical -AND-

In any such string only one of the logical operators may be

used, i.e., no mixing of -and- and -or-.

Example 4:

A = B n C < D < E n FIG:

The NELIAC equivalent of a simple flow diagram is shown

in example 5.

Example 5:

NEL1AC

A + 1 -+ A,

A = B:

B + -+ Bj

A + -+ Aj

A + B -+ A,

111-5

c. LOOPS

Each compiler generated loop in a NELIAC program is

enclosed in braces and preceded by the loop control. Loops

use the register variables i through n only.

Example 1:

i == 10(1)20 {-------- 1,

The above example says: Set i equal to 10, execute the operations

between the braces at least once, ask if i is equal to 20; if

it is , clear i and ignore the brace; if not, increment i and

return to the routine enclosed in the braces.

Note the difference in the basic format for an implied

decrementing loop:

Example 2:

i == 10(1)0 --------- I,
This loop is executed in the same fashion as the above loop,

except that i is decremented by one to zero.

Basic form of the loop control:

alpha == beta(gamma)delta f -------- ~,

Alpha may be anyone of the register variables i through n.

Beta may be an integer, a fixed point whole or half word

(subscripted or not), or a register variable plus or minus

an integer. Gamma must be an integer, and a minus sign must

be inserted before the integer if the programmer desires a

decrementing loop, unless the delta is a written zero as in

Example 2. Delta 1s of the same form as beta.

III-6

The programmer can specify any loop increment or decre­

ment, gamma; however, the loop will be terminated only if

exact equality with delta is obtained.

D. SUBSCRIPTING

Any varlaole may be subscripted by an integer or a register

variable or by a register variable plus or minus an integer.

Example 1:

A[i - 40 8] + B[2] ~ C[i],

One can also subscript without an operand.

Example 2:

[1] + [2] ~ [i + 10],

The above expression means the contents of the cell whose

address is in i plus the contents of cell 2 is stored in the

contents of the cell whose address is i + 10.

When indicating bit limits with subscripts, the subscript

comes before the bit notation.

Example 3:

A[i]{11~22) + B[j){23~29) ~ C[k](24+29),

Subscripted straight or return jumps may be made to

Jump tables in the dimensioning statement.

Example 4:

, A[j].

Example 4 executes a straight jump to the address contained

in the Jth element of the jump table -A-. See Section II-C.

111-7

Double subscripting in arithmetic expresoions may be

used when working wI th a two .. dimensional array. Two

dimensional arrays may not be used before they are de­

fined in a dimensioning statement. See Section II-F.

In summary, subscripting may be written with register

variables, inteBers or with register variables plus or

minus integers.

Example 5:

A [2] -)

A[l] ~

A[1 - 20] ...

A[k + 30J

The use of double subscripting on single dimension lists

1s meaningless and should be avoided.

The following alternate forms are legal, but should be

used as sparingly as possible, since they generate less

erficient code. -P- is a Whole or half word.

Example 6:

A[P] ... B[l, oj ...
A[P + 10] ... elk, kJ -)

B[P, 0] ~

B[P, iJ ...
B[P, pJ -+

The forms in Example 6 are not legal loop control operands.

III-8

E. SUBROUTINES AND FUNCTION DEFINITIONS

Example 1: P: f ------ I,

Example 1 illustrates the definition of a subroutine P.

When a call of P is made in any other part of the program,

control will be shifted to the flowchart enclosed within the

braces. When the logical flow comes to the right brace, con­

trol will be shifted back to the point from which P was callede

A subroutine cannot be executed in any way without calling the

name of the subroutine,

A function is a subroutine with associated parameters.

Example 2:

F(A, B, C,): ------- J,

In example 2, F is defined as a function with associated formal

parameters A, B, and C~ Those parameters are local to that

function. The area between the parentheses is treated

exactly as in dimensioning.

Example 3:

Function 1(fA(O~5), B(10~22)1(20) = 7,10,):

------- l,

Example 3 shows the use of normal dimensioning capabilities

within the parentheses.

Output parameters may also be included in the function~

Example 4:

F(A, B, C; D, E): { -------- I,

Example 4 illustrates 5 formal parameters: A, B, C are input

111-9

parameters; D and ~ are output parameters. The input

parameters are separated from the output parameters

by a semicolon.

Whenever the programmer writes a function with a single

output parameter which he wishes to preserve in an arithmetic

register, he must insure that the desired parameter is in the

Q-register. (Note 2)0

Example 5.

F(E): -_______ answer ~ answer 1
, , s

Example 5 shows a way in which the programmer can insure

that the parameter will be in the Q-register by entering the

whole word -answer- and immediately re-storing it. However,

this is usually not necessary since most arithmetic computa­

tions leave the result in the Q-register.

It should be re-emphasized that the parameter names

associated with the function definition are local to that

function. These names may be used other places in the flow-

chart logic without danger of conflict.

All names associated with subroutines or functions are

local to that subroutine or function, i.e. one cannot calIon

the functions formal parameter names outside the function and

one cannot transfer into a subroutine or function except through

the normal entrance.

Note 2: The Q-register is the auxiliary arithmetic register in the

AN / USQ-20 computer~

11I-10

F. FUNCTION CALLS

A function may be called by simply writing:

Example 1:

Q(F) ,

In example 1 the input parameter F is transmitted to the

corresponding position in function Q, then the fUnction Q

is called. If there is a single output parameter, the parameter

can be left in the Q-register by the function and utilized as in

example 2.

Example 2:

SIN (A) ~ B,

NOTE: Here a function has been used as a noun or variable v

A function can be used in an expression~

Example 3:

(SIN(X) + COS(y)) x ARCTAN(Z) ~ Q,

output parameters are placed to the right of a semicolon~

Example 4:

F(Aj B, c),

Example 4 says transmit parameter A to the function F, evaluate

the fUnction F; the output parameters are then transmitted

to the variables Band C.

Functions may have mixed mode parameters. The programmer

must insure that parameters of matching mode are set up in the

correct order. If the function has been defined with more

parameters than are used in the function call, the p~rameters

will be normalized to the right {iee. the last parameter

111-11

called will be transmitted to the right-most position in the

function definition). In using both input and output

parameters, all output parameters called for in the

function definition must be utilized; otherwise the last

input parameter called will be transmitted to an output

parameter and the function call will be meaningless.

The mcde of arithmetic performed on the implicit

output of a function called in an arithmetic expression is

determined by the mode of the last parameter in the function

call.

To reiterate, in the function call the parameter names

bear no relationship to the parameter names in the function

definition., The parameters used in the function call must

have been defined previously in the dimensioning statement

before they will compile correctly.

Example 5:

Function Definition - Absolute(A; Abs A):

Function Call - Absolute(Value[i]; Abs Value[i]),

In Example 5, the parameter -Value[i]-, would be transmitted

to the function Absolute and evaluated as -A-. After

execution of the function, Abs A would be stored in

-Abs Value(i]-.

111-12

G. MACHINE LANGUAGE

Machine language may be used at any point in the flowchart

logic. Expressions of this form are completely unnecessary

and anachronistic in view of the compilers ability to -declare­

machine dependent functions. This notation is common to less

developed NEL1AC compilers and is included to aid the

programmer in reading obsolescent NELIAC programs.

Example 1:

10000e O, (clear Q-register)

26 030 e a, (add the whole word -a-)

14 030 e b[j-1], (store in the whole word b[j-1])

Each machine command begins with the five octal digits

corresponding to the -f-, -j-, -k-, and -b- designators

followed by an octal sign. At least one digit of -operand-

must follow the octal sign, which is understood to be decimal

unless modified with another octal sign. Named variables, with

or without subscripts, are permissible as operands. Each machine

command is terminated with a comma 0 If both subscripting and a

non-zero -b- designator are written, the subscripting takes

precedence.

Example 2 shows the makeup of a typical AN/USQ-20 machine

instruction with its associated meaning. Also shown is the

binary representation of the same instruction in core.

111-13

Example 2:

INSTRUCTION

14 3 2 10250

f j k b y

MEANING

Store the contents of the

Q-register in cell (10250 +

the contents of B2) and

skip the next instruction.

BINARY REPRESENTATION IN CORE

001 100 001 all 010 001 000 010 101 000
~ ~ "--.---.I "---" \... ~)

f j k b Y

H. SAMPLE FLOWCHART LAYOUT

5

DIMENSIONING STATEMENT

NAME OF ROUTINE:

FLOWCHART LOGIC

.. stop code

(may be omitted)

(may be omitted)

(may be omitted)

III-14

IVo DECLARATIONS

A 0 MACHINE DEPENDENT OPERATIONS

Declarative statements are a means of putting -machine

dependent- operations into NELIAC language without -machine

coding-in the flowchart logic.

Input-output functions particularly need this kind of

implementation. I/O functions are defined in the declaration

before they are called upon in the regular NELIAC flowchart

logic. This means that the declarative statement must always

be read first in the line-up of flowcharts; preceding dimen­

sions, subroutines, executive routines, etc.

There is a system declaration containing general utility

routines provided with NELIAC. See Appendix Co The programmer

may also provide one users declaration statement which must

be in the flowchart format and kept separate from the other

flowcharts. The compiler will store only one users declarative

statement which must be re-declared before each compiling run.

B. ESTABLISHING LOCATIONS

Declarative operations do not allocate memory locations

or produce machine language. However, the programmer can use

the declarative ability of the compiler to establish the location,

IV-l

for example, of the real time clock, interrupt entrances, or

any machine code program which 'does not otherwise fit into

the framework of the Neliac system.

Examples:

NAME K Designator ADDRESS

CLOCK 3 368 ,
SIN 0 1408 ,
COS 0 1478 ,
RTPO 0 32000 ,
QPZ 2 30000 ,
Each name defined in this manner is followed by a colon;

the first octal digit after the colon is interpreted as a

k-designator, and the rest of the number is read as an octal

or decimal absolute machine location.

c. INPUT-OUTPUT SYSTEMS

The declarative statement merely describes the input or

output functions. Whether the function is input or output is

determined by the sense of the active statement in the flow­

chart logic. The declarative I/O statements are implemented

for the AN/USQ-20 computer.

IV-2

The following eleven English phrases describe the input­

output operationsQ These phrases are referred to as declarators.

1) External Function 6) Monitor Buffer

2) Release Interrupt Lockout 7) Generate Buffer Control Word

3) Jump Active 8) Delay

4) Terminate Buffer 9) Machine

5) Buffer 10) Set Int Interrupt Entrance

11) Set Ext Interrupt Entrance

Each name -declared- may refer to a specific communication

channel in parantheses.

Example 1:

START PUNCH = (4), ---------­

START FLEX = (8), ---------­

START READER = (4), ---------

Following the channel number, a series of mixed individual

operations may be described in the following four categories.

Category 1: In order to control the operand in the flow­

chart logic, Category 1 should be used in the declaration.

These declarators require an operand from the flowchart

to generate the appropriate function codes determined by the

sense of the active input-output statement.

The declarators applicable to Category 1 are:

<external function), <release interrupt lockout), <jump active>,

<buffer), <monitor buffer), <generate buffer control word>,

<delay>, <set int interrupt entrance), <set ext interrupt

entrance).

IV-3

Example 2:

DECLARATION

:::trART EQUIPMENT - (4) <external function),

FLOWCHART LOGIC

lstart Equipment <20 s),]

Category 2: These opera-~,ions indicate that no operand

is taken from the flowchart logic active statement. Each

of these operations is purely parenthetical, no operand is

required from the active statement. The current location is

used as the operand, if appropriate. The applicable declar­

ators are:

(external'function(20s)), (release interrupt lockout),

(jump active), (terminate buffer), (delay(10)),

(machine code(17030s0)).

Example 3:

DECLARATION

START PUNCH = (4) (external function(20 a)),

FLOHCHAR'r LOGIC

[start Punch <,],

At least one quotation mark, -(-, must appear in the callout.

category 3: These operations are used when the program­

mer defines one operand in the declaration and another in the

flowchart logic and calls for a summation of the two operands~

All operands declared must be legal fixed point numbers. The

decl~rators applicable are:

<external function(020000COCC s), (machine (11030 a O),

Iv-4

example 4:

DECLARATION

REWIND = (External Function(02000 OOOOOs),

FLOWCHART LOGIC

[Rewind <unit number),],

category 4: A declarative statement may include

previously declared names, and indicates the order in

which they are called.

Example 5:

RUN AMOCK = Dump, Set, E, Tape, (all previously declared)

Previously declared names may be used to set up a hierarchy of

declarations. Such hierarchies are identical in principle to

those declarations which consist entirely of the three basic

declaration types.

The implications of the declarators which describe the

input-output operations are:

1) External Function:

The external function declarator is legal in all three

categories, and is used to control external equipment. Basic

commands to external equipment and other computers are given

with this declarator.

2) Release Interrupt Lockout:

This declarator is legal as a Category 1 or 2 function,

In category 1, a simple release interrupt jump is generated

for ~~ransfer to the required operand location. In Category 2

a release interrupt instruction is generated.

IV-5

3) Jump Active:

This declarator is legal in Categories 1 or 2 When

used in Category 1, the last pertinent sense, i.e. input or

output, is used to generate an input or output jump active.

When used in category 23 a jump to current location is gener­

ated as in Category 1&

4) Terminate Buffer:

This declarator is legal only in Category 2 and takes the

-sense- of the active statement to generate appropriate instruc­

tions to terminate the buffer.

5) Buffer and 6) Monitor Buffer:

These declarators are legal only in Category 1. They

require special operands, called running subscripts, to de­

scribe what is to be buffered. The -sense- of the active

statement is used to generate input or output, monitors or

ordinary buffers, as appropriate.

7) Generate Buffer Control Word:

This declarator is legal only in Category 1. The oper­

ands required are identical to the Buffer or Monitor Buffer

operands. The buffer control word is Simply transmitted to

the Q-register independent of the -sense- of the active statement.

8) Delay:

The delay generated is equal to the number of machine

executions of an index jump instruction as specified by the

operand + 1.

Iv-6

9) Machine:

This declarator is legal in Categories 2 and 3, and is

described below.,

10) Set Internal Interrupt Entrance:

This declarator is legal only in Category l~ It causes

the compiler to generate code in the object program which trans­

mits to the appropriate input or output internal interrupt en-·

trance a return jump instruction to an interrupt subroutine for

the particular channel defined in the declaration.

11) set External Interrupt Entrance:

This declarator operates exactly the same as Number 10,

except that the appropriate external interrupt entrance 1s seto

D. MACHINE CODE

A letter -L- following the numerical expressions in the

lower half of a Category 2 operation indicates modification

relative to the present location by the amount of that num­

erical expression.

A letter -k- following a machine command in a Category 3

operation indicates that the -k- designator of the operand in

the active statement will suppress the -k- designator in the

declaration. See Example 2.

The declarative statement is also used when it is de­

sirable to use machine language instructions for minimizing

IV-7

execution time. For example, the repeat instruction is faster

than a loop for search operations and can be called up in a

NELIAC flowchart by def~ning the operation in the declarative

statement.

Example 1:

5(COMMENT: FLOWCHART)

A(1008), B,;

[SEARCH ZERO (100 s), (A), (NOT FOUND), (B),],

This expression calls for a search for zero in list A, which

contains 100 items. The value of the index when the zero is

first located is put in cell B, and the location at which the

program is to be continued if the search is unsuccessful is

the verb -not found-.

The compiler implements the call-out in Example 1 by

inserting the series of machine instructions in the object

program which have been defined by a system declarative

statement as follows:

Example 2:

SEARCH ZERO = (Machine Code(70230s Ok),

<Machine Code (11437 s 777768 k»,

(Machine Code(61000e Ok»,

(Machine Code (16730e Ok),

The -k- in the -y- part of the machine instruction refers to

the -k- designator of the operand in the flowchart call-out 4

See Appendix C for a listing of the implemented system

declarations.

Iv-B

E. ACTIVE INPUT - OUTPUT STATEMENTS

Each active input-output statement will generate a

variable amount of code compiled as an open subroutine, that

is, the code will be inserted each time the statement is

written. If the programmer wishes to obtain the code only

onde, 'he shbuld enclose the active statement in braces to

make it into' a closed subroutine. The closed subroutine may

have the' 'same name as th'e I/O statement, and is called

as an ordinary subroutine.

Input-output statements are similar to function calls in

that the programmer must make his operands line up with the

I/O declaration.

Th~ -sense- 'of the statemeht, thati~, input or output,

is determined by the -quotation- operators.

Example 1:

>input< . <output>

Each statement begins with unique current operator-next oper­

ator pairs of [A< or [A). The name A must be defined as an input­

output function name. Input operands may be mixed with output

operands.

Each operand must' be endlosed in a set of -quotation­

operators. Corrunas are used to separate the operands.

Part of a list may be used as the operand of an active

statement.

IV-9

Example 2:

DECLARATION

A = (4) (buffer),

FLOWCHART

[A (B[C..l»D]),],

The active statement says, with reference to the declar­

ation: Initiate an output buffer on channel 4 of the area

starting with the element B[C] through the element B[D]. The

running subscripts may be integers, register variables, or

fixed whole or half words.

Example 3:

[A (B),],

Example 3 says: Initiate an output buffer on Channel 4 to

output the whole of list B.

Example 4:

[A ([B]),],

Example 4 says: Initiate a buffer using B as the buffer control

word.

Example 5:

5(COMMENT: DECLARATION)

PRINT = (4) (external function)

(external function(200000000 s »,
(buffer) (jump active). $

IV-l0

5(COMMENT: FLOWCHART)

A(10), status;

(print) status <, <i), <A),] ..

If the flowchart in this example were compiled at

cell 10100, the machine code generated would be:

10000 61000 10113

10100 00000 00000 (a)

101 12 00000 00000 (status)
external function

10113 17230 10112

10114 1 a 101 00000

10115 02000 00000

10116 26030 10115

14130
external function (200000000)

10117 10120

10120 00000 00000

10121 13230 10120

10122 20100 00000

10123 1 a 111 10100 buffer

10124 74230 10123

10125 63200 10125 jump active

10126 61400 10000

IV-l1

Example 6:

Hypothetical input problem

There are three logical records on each block of tape.

Each record is 100 locations long. Search word for the

block is -3 MAY~ in compiler code, left justified. Read the

block, inserting the logical records into three discontinuous

areas using the logical tape unit i.

DECLARATION

5

READ 3 RECORDS = (10)

<external function(4600000000 e »,
<external function),

(buffer> (jump active),

(buffer) (jump active),

<buffer) (jump active) ••

(FLOWCHART)

5

R(100), Q(100), P(100), [search word: 3 may];

NAME:

[read 3 records <i>, <search word[O]),

>P(, >Q<,)R(,] ••

IV-12

V. OPERATORS GUIDE

A. CARD INPUT

NELIAC uses only the first 12 columns of each card.

The programmer may insert card numbers or any other infor­

mation he desires in columns 13 through 80. When the com­

piler edits the flowcharts for output, new card numbers are

assigned. Columns 13 through 17 of the output cards are

punched with the flowcharts sequence number, columns 78

through 80 are used for flowchart line numbers (line num­

bers increment by three, leaving two unused line numbers

for every card). The use of the editing routine of NELIAC

is highly recommended, since many logical errors can be

discovered by examining the spacing and indentation of the

output flowcharts.

B. LOAD NUMBERS

Each flowchart begins with one of the ten load numbers.

The function of the flowchart in the system is uniquely de­

scribed by that load number.

o - Flowchart plus the edited output of that

flowchart.

1 - Declaration plus the edited output of

that flowchart.

V-l

2 ~ One line correction plus the edited out­
put of that flowcharte

3 - Flowchart correction plus the edited out-

put of that flowchart 0

4 = Executive flowchart plus the edited output

of that flowchart.

5 - Flowchart

6 ~ Declaration

7 - One line correction

8 - Flowchart correction

9 - Executive flowchart

Co CORRECTION LOADS

Each correction flowchart must have a sequence number

associated with ite The format for a correction is:

Load Number

Sequence Number

Correction Load

When a single line correction is made, the following

format must be strictly observed:

Example 1:

7 or 2

Sequence number

First comparison of at least 10 characters

Correction line

Second comparison line of at least 10 characters.

V-2

When using paper tape input, each line is followed by

a carriage return with a stop code at the end of the last lineo

When using card input each line must be on a separate cardo

The comparison lines are composed of a string of characters

which are independent of the original spacing and indentation

of the flowchart. Spaces in alpha-numerics are significant,

however, and must be duplicated. The correction line may

be blank, but must always existo

Flowchart corrections are made to replace an entire

flowchart on the input flowchart tape.

Example 2:

8 or 3

Sequence number

5 or 6

(FLOWCHART)

When using paper tape input, a stop code follows the

the sequence number on the leader of a 5 or 6 load flowchart.

When using card input, the load number and sequence number

must be on separate cards preceding the 5 or 6 load flow­

chart.

V-3

Do BATCHING CORRECTIONS

All corrections must be -batched-, i.e. all sequence

numbers of correction loads must be greater than or equal to

the sequence numbers of previously loaded corrections. If this

rule is not observed, additional passes must be made to update

the input master flowchart tape.

E. FUNCTIONS OF THE 9 LOAD

The 9 load, or executive flowchart, always indicates

the end of the loading and correcting phase of the compiling

process. At present, the information in this flowchart should

be the programmers name and the date.

v-4

F. NELOS

NELOS (Navy Electronics Laboratory Operating System) reflects an

operating philosophy necessary for the generation and checkout of

large-scale programs whose characteristics make them dif~icult to

handle with less powerful tools. The NELOS philosophy is simple:

NELOS provides automated supervisory control over the NELIAC compiler,

over program execution, and over the utility programs in the system.

Supervisory control must necessarily be informed control; to this end,

sections describing the operation of the NELIAC compiler and of the

monitor are included below.

NELOS has three basic parts: (1) The executive program; (2) The

monitor; and (3) The utility system. The executive program controls

the execution of all programs in NELOS. The monitor program is a

debugging aid which can interpretatively execute programs, insert and

delete dynamic core dumps, and provide for dynamic source language

data introduction. The utility system is a library of often used pro­

grams such as core dumps, tape dumps, tape copy programs, etc., which

can be called in and executed under NELOS control.

The NELOS executive program does a limited amount of automatic

sequencing during the compiling process. On the whole, NELOS is con­

trolled by the set of fourteen NELOS operators. Any collection of

these is called a NELOS control statement. It is a mistake to assume

that there are only fourteen basic functions in NELOS, however, since

the operators can be used in any combination to perform uniquely

different tasks.

V-5

The "define segment" operator gives NELOS the ability to generate

programs which are too large to fit into memory at once and must be

split into pieces or "segments" which are called in from auxiliary

storage for execution. NELOS is specifically designed to aid in the

production of these programs from the NELIAC language. Because of the

close interrelationships of NELOS and the NELIAC compiler, a thorough

understanding of the operating principles of NELIAC is a prerequisite

for the successful use of NELOS.

G. NELIAC OPERATING CHARACTERISTICS

The basic input element to NELIAC is called the "flowchart." Any

collection of NELIAC or NELOS statements grouped together is always

called a "flowchart."

Identification of input types is effected by load numbers (i.e.,

the first character in a flowchart is taken to be the load number. If

the first character in the flowchart is not a number, that flowchart

is identified as a NELOS control statement.).

The flowcharts are stacked for input to NELOS in the following

order~

Initial control statement

Declaration

NELIAC flowcharts

Terminal control statement

The first flowchart must necessarily be a NELOS control statement and

is called the "initial" control statement. This control statement is

v-6

different from other control statements in that it must be submitted

for every NELOS run, unlike other control statements which are pre­

served on the master flowchart tape, and need not be resubmitted.

The NELIAC compiler has three separate operating phases:

1. Update and code conversion

2. Compiling

3. Output

1. The update and code conversion phase does a very simple job;

it merely takes the source language input element (the flowchart) and

converts the card codes to a set of NELIAC compiler codes. The code

conversion program (load flowcharts) converts the hardware codes for

"Begin" to "{" and !tEnd" to "}", etc. The update phase places the

binary core image of the NELIAC compiler codes onto the output flow­

chart tape for subsequent use by the compile phase. By the use of

correction load numbers, a flowchart image may be replaced on the out­

put flowchart tape.

Figure 1 is a detailed flow diagram of the operation of the

update phase. "EOFF" is "end of file flag on old flowchart tape."

"STOP CODE" is the hardware stop code recorded on the card image tape.

When an error is detected, control shifts back to NELOS with an appro­

priate error message. Note, corrections must be batched, i.e., correc­

tion numbers must be in an ascending sequence. Every flowchart is

counted in the correction process, the sequence numbers are implicit,

i.e., the first flowchart is number 1, th~ second is number 2, etc.

New flowcharts to be added to a program are always recorded after all

the old flowcharts.

V-7

<:
I
(J:)

O~ END OF
FILE

(E OF F)

LOAD
FLOWCHART

NO

NO

YES

YES

UPDATE CYCLE

FIGURE U.

YES

YES

WRITE NEW
FLOWCHART

S

READ SEQUENCE
NUMBER TO BE
REPLACED

<:
I
\0

REWIND
OLD TAPE

NO

CORRECTIONS
NOT BATCHED

IS THIS AN
8 LOAD

FIGURE lB

IS THIS THE
FLOWCHART TO
BE REPLACED

YES

NO

COPY OLD
FLOWCHART
TO NEW

END OF OLD
FLOWCHARTS

S

SET EOFF

YES

2. The compiling process is a one-pass operation; the source

language statements are read, and machine language produced without

any intervening intermediate language or assembly phases. When the

process is complete for one flowchart element, all undefined or

"future" references are written out on a scratch tape with the ma­

chine language produced from that flowchart. See Figure 2.

3. The output phase of NELIAC uses the intermediate output

tape of the compile phase to generate a binary object program tape

which contains the machine language in NELIAC format.

In addition, the output phase contains the formatting pro­

grams which generate the name list dump, thr object program dump,

and others. The output listing tape contains a list of all syntac­

tical errors detected during the compile phase and a list of all

undefined names detected during the output phase. A listing of the

names of the flowcharts compiled in sequence, along with their run­

ning locations and entrances, if any, is also produced.

H. NELOS EXECUTIVE PROGRAM

The executive program reads the NELOS operator and executes the

functions necessary to accomplish the required task. The first or

"initial" control statement has a unique function since it is not

placed on the flowchart tape with the other flowcharts introduced

into the system. The reader should examine Figure 3 and Figure 4

for an explanation of the automatic sequencing of NELOS. Subsequent

control statements are written on the flowchart tape and are handled

exactly like any other flowchart. Note Figure 2.

V ... 10

CONTROL OR END
OF FLOWCHARTS

COMPILE PHASE

FIGURE 2

COMPILE
WRITE
INTERMEDIATE
TAPE

DECLARE

<
I
J-l
I\)

LOAD
INITIAL
CONTROL
STATEMENT

NO

NEXT OPERATOR
= ID OR
DOUBLE PERIOD

YES

EXECUTE
UPDATE
PHASE

RESET TO READ
REST OF INITIAL
CONTROL STATE-
MENT

EXECUTE
OPERATOR
FUNCTION

DOUBLE PERIOD

NO

NO

YES

NELOS AUTOMATIC SEQUENC ING OF THREE NELIAC PHASES

FIGURE 3

EXECUTE
OPERATOR
FUNCTION

EXECUTE
OUTPUT
PI{ASE

YES

END OF
FLOWCHARTS

EXECUTE
COMPILE
PHASE

<:
I
!-I
W

NELOS
OPERATOR

INDEX

4

DUMP
OBJECT
PROGRAM

EXECUTE OPERATOR FUNCTION

FIGURE 4

EDIT
FLOWCHARTS

SET
CONSTANTS

The reader should observe that NELOS control statements can be

executed while compiling, and that control can be exercised between

each NELIAC flowchart.

A very important part of NELOS is the ItENVIRONMENT GENERATION"

program. This program produces a tape which contains NELIAC I s "NAME

LIST" or "ENVIRONMENT DESCRIPTION TABLEIt and the machine language of

the programs whose names make up the name list. Every name defined

at the time that the environment tape is generated is included; all

programs and allocated tables are also included. Note, however, that

nonallocatedtables do not exist as zeros on the tape, but only the

pertinent table and item names are preserved. Any NELIAC program may

become part of the "ENVIRONMENT" stored on tape. This tape will later

become an input tape to NELOS; whenever it is called, NELIAC will re­

call all those previously defined names and programs. If a new envi­

ronment tape is then generated, an augmented, enhanced environment

will be the result. The new environment is indistinguishable from an

environment generated with all the flowcharts compiled at one time.

Since it is not possible to change core allocation addresses on the

environment tape, it is recommended that a "Master Flowchart" tape be

generated and continually updated for this specific purpose by the

system user. If such a tape is generated, then the flexibility of

NELIAC correction loads is extended to the new environment tape.

The tables and programs defined on the environment tape are typi­

cally those designed to work with programs which are not necessarily

in memory at the same instant. Commonly used subroutines or utility

v-14

and input/output packages would also be likely residents of the envi­

ronment tape. The value of the "environment t~pe't lies not so much

with the saving of compile time for often-used programs, but in the

clarification of the status of such programs and tables for each

individual contributor to a system program. Naturally, the burden of

currency is placed on the individuals responsible for the maintenance

of the environment tape.

Io THE NELOS OPERATORS

The NELOS operators discussed in this section are written in con­

trol statements just as they appear as the headings of the explanatory

paragraphs.. If a nonexistent operator is written, or if the form is

not strictly observed, a NELOS error message will appear and the run

will be abandoned.

There are three categories of NELOS operators:

(1) PASSIVE

ID: PRINT: STOP, SET CONSTANTS (BEG INNING ADDRESS,

ENDING ADDRESS),

(2) OUTPUT

EDIT FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART), DUMP

OBJECT PROGRAM (FIRST FLOWCHART, LAST FLOWCHART), DUMP

NAME LIST,

(3) ACTIVE

DEFINE SEGMENT, TERMINATE RUN, CALL ENVIRONMENT, INCLUDE

MONITOR, EXECUTE, GENERATE ENVIRONMENT, CALL UTILITY (N,,),

V-J.5

The "passive" operators can be written in any control statement.

Their use does not affect the operating characteristics of NELOS in

any way, i.e., the normal s'equ.ence of program generation will be

followed as illustrated in Figure 5-.

The "output tt operators can be used only at the termination of one

of the major compiling phases. NELOS must reference some of the work­

ing tapes in the system to accomplish the tasks related to output

operators, so their use is restricted to times when the tapes are

being passed from one phase of HELOS to the next (such as the end of

the update cycle or when a new environment tape is generated).

The "active It statements define the operating characteristics of

each NELOS run. The active statements may be written in any control

statement, but some understanding 0 f the NELIAd compiling procedure s

is essential for meaningful operation.

The implications of the NELOS operators are described in the

following paragraphs~

The ID, or identification operator may be written in any

control statement. The ftID rt may be any alphanumeric string not

exceeding 50 characters and is terminated by a period. The alpha­

numeric information is preserved in NELOS and is used on all the

outputs generated until a new ID is given. This operator also sig­

nals the beginning of the update cycle (see Figures lA and lB).

PRINT:

The print operator causes the alphanumeric string following

the colon to be displayed on the supervisory printer. The string is

v-l.6

NELIAC
STATEMENTS

UPDATE
PROGRAM

COMPILE

OUTPUT

ENVIRONMENT
GENERATION

PROGRAM GENERATION CYCLE

FIGURE 5

V-17

restricted to a maximum of 50 characters. A period terminates the

string.

STOP,

The stop operator halts the computer until the high speed

switch is depressed. The stop statement is used typically to allow

the computer operator to mount or dismount tapes following a request

to do so as the result of a previous HpRINT n statement. The computer

operator may reassign NELOS I logical tape drives at this time to

utilize a newly generated environment or to swap malfunctioning tape

units.

SET CONSTANTS (BEG INNING ADDRESS, ElIDING ADDRESS) ,

The set constants operator allows the programmer to allocate

his program to specific core locations starting with the octal or

decimal locations written as "BEGINNING ADDRESS o ft The "ENDING

ADDRESS n index is a threshold indicator to the compiler which causes

a message to be placed on the error tape when the threshold is

passed. See Sample Control statements, page V-2l.

EDrr FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART) ,

This operator can only be used in the initial control state­

ment, and is always executed at the end of the update cycle. The

inclusive flowcharts specified by "BEGINNING ADDRESS rt and f~ING

ADDRESS'" are dumped on tape for subsequent listing and card punching.

DUMP OBJECT PROGRAM (FIRST FLOWCHART,. LAST FLOWCHART) ,

This operator is legal only in the last or ftterminal n con­

trol statement, since NELIAC must perform the output phase to execute

this operator, and therefore terminates the compile phase.

v-18

DUMP' NAME LIST,

This operator produces a cross-referenced output of the tags,

labels, verbs, and nouns used previously in the compiled program,

whether included with the environment or generated by the object

program.

DEFINE SEGMENT,

This operator is legal throughout the compiling phase.

"DEFINE SEGMENT It will cause the program segment delimited by 'tnEFINE

SEGMENT tf operators to be stacked on the ob ject program tape. This

operator is typically followed by a "SET CONSTANTSn operator,

although it ne.ed not be so followed.

TERMINATE RUN,

This operator is legal in any control statement, and simply

calls the next job. The use of this operator is mandatory when the

job to be done does not involve compiling. See Figure 3.

CALL ENVIRONMENT ,

This operator should be used only in compiling control

statements, and causes the load of the environment description table

(name list) into NELIAC f S working storage. The reader should observe

that ttCALL ENVIRONMENT fl will cause the compiler to forget all names

not in the environment description table.

INCLUDE MONITOR,

This statement must be written if any calls to "ENTER

MONITOR MODE tt are used in the 9-load flowchart (see Section V-KY.

The monitor program is recorded as the first program on the object

program tape and appears only once in the core program produced.

V-l9

EXECUTE (N),

The "EXECUTE" operator is used to run a program. which is on

the object program tape. r~ft is an integer which specifies the num­

ber of program. segments to be loaded from the tape. The last program

segment loaded will be executed first. uN" can also be computed as

the number of times "DEFINE SEGMENTtt is written + 1.

GENERATE ENVIRONMENT,

This operator causes NELOS to generate an environment tape

on the tape unit allocated for that purpose. Generation of the envi­

ronment tape should be done only in the last or ttterminal n control

statement, since NELIAC must perform the output phase to execute this

operator.

CALL UTILITY (N, A, B, C, .•• z)

The call utility operator is used to set up a parameter

string for one of the NELOS utility programs. tiN" is an integer

specifying the file number of the utility program desired. "A"

through ftZ" are integers which are input parameters to the individual

utility program.

J. NELOS CONTROL STATEMENTS

Each control statement must have at least one NELOS operator and

must end with a double period.

The proper use of NELOS is d.ependent on an understanding of NELIAC

compiling techniques. It is obviously inadvisable to attempt such

things as an object program dump or environment generation before

V-20

compiling.

Given below are some sample control statements. These are given

to acquaint the student with the appropriateness of most combinations.

SAMPLE CONTROL STATEMENTS

ID~ P, SMITH 7 DEC 62.

EDIT FLOWCHARTS (3, 4), CALL

UTILITY (3,7),

PRINT: BEG IN COMPILING, REMOVE

OLD FLOWCHART TAPE"

STOP, TERMINATE RUN,

SET CONSTANTS (10000
8

, 732618),

ID: A,GZZORK.

SET CONSTANTS (732628, 777778),

CALL ENVmONMENT,

DEFINE SEGMENT,

TERMINATE RUN,

PRINT: TERMINATE RUN IF ANY

ERRORS THIS FAR.

STOP,

INCLUDE MONITOR,

V-21

Appropriate in initial

control statement to

control update phase

Appropriate in compiling

control statements

DUMP NAME LIST,

DUMP' OBJECT PROGRAM (10, 11),

GENERATE ENVIRONMENT TAPE,

PRmT: LABEL NEW ENVIROm.fENT

TAPE: QP2 7 DEC 62.

CALL UTILITY (2, 38, 5, 3),

CALL UTILITY (3, 1:4),

CALL ElVIROlIMENT;

DUMP NAME LIST,

TERMIliATE RUN,

EXECUTE (3),

K. THE NELOS MONITOR

Appropriate in last state­

ment. Associated with

compiling or output phase

Appropriate as individual

control statement which

does not use NELIAC

Appropriate as control

statement which simply runs

a pre-compiled program

typically under NELOS

monitor control

The NELOS Monitor Mode of operation, a debugging aid, allows the

programmer to monitor, or rtwatch," the operation of specified areas

of his programs, through the use of his own f'Monitoring Subroutines, It

The monitor will cause entry to the programmerts Monitoring Sub­

routine after the execution of each individual instruction within the

program area being monitored. The monitor will continue full

V-22

monitoring of jumps (and return jumps) to instructions outside of the

monitored area, unless the programmer chooses not to do so.

Upon completion of a monitored area, the monitor mode will cause

entry, if the programmer elects, to his own "End-Monitor" subroutine,

before continuing along with the main program.

The programmer may choose beforehand to have a monitor canceled

at any time during the run.. If this is to be done during the execu­

tion of the monitor to be canceled, the associated End-Monitor sub­

routine, if any, will be executed as a part of the canceling

sequence.

Basically, then, the Monitor Mode is a vehicle for the pro­

grammer's convenience, one that leave:; him wide latitude in which to

program his own monitoring subroutines.

While the monitoring of an area is in progress, the address of

the individual instruction being monitored is available to the pro­

grammer as the noun "P, rr so that the programmer may use his monitor­

ing subroutine to save rtp" and other data. When control is trans­

ferred to the programmer's monitoring subroutine, all registers will

have been restored to the values dictated by the program being

monitored.

ESTABLISHING A MONITOR

Monitors are established by use of the function call

ENTER MONITOR MODE (A, B, C, D, E), where:

A = The address (label) of the first instruction of the area to

be monitored, (may not be the entry cell of a function or subroutine).

V-23

B = The address (label of the last, instruction of the area to be

monitored;

C = The address (label) of the programmer's ''Monitoring Sub­

routine ft * itself;

D = The address (label) of the programmer t s "End-Monitor Sub­

routine, If * if desired, or zero, if no ending routine is W&Ilted with

this monitor; and,

E = Zero, indicating the program:mer wishes to monitor a.l1

instructions encountered while in the monitor mode; or, Eequal

nonzero, indicating the programmer has elected the option to abort

fUll monitoring of jumps (and return jumps) to instructions outside

the area to be monitored.

If parameter E is nonzero, the monitor mode retains control in

the event that a jump or return jump outside the areaia encountered,

but does not cause entry to the programmer's subroutine until and

unless the running program returns to the monitored area. (This

condition is termed a "pauedo-monitor. tf
)

ESTABLISHING AN END MONITOR

See parameter ''D't under "Establishing a. Monitor. It

CANCELmG A MONITOR

Monitors are canceled by using the function call

* Must be written as a subroutine.

V-2,4

CANCEL MONITOR MODE (Ml, M2, - - - M8)·

where:

Mi parameter "A" of an ENTER MONITOR MODE previously estab­

lished. From one to eight monitors may be canceled at one time. If

the Monitor Mode is unable to find a parameter ftA" corresponding to

Mi' the operation is ignored for that ~.

If no parameters (MIs) are given in the function call, the

Monitor Mode will assume that the monitor currently being executM

is to be canceled immediately, and will proceed directly to the

related End-Monitor Subroutine, if any. If no parameters are speci­

fied, and a Monitor Mode is not currently being executed, the opera­

tion will be ignored and the run will continue.

MULTIPLE MONITORS

Up to eight monitors may be established before any are canceled,

but to establish subsequent additional monitors, one existing monitor

must be canceled for each new one entered. Attempts to exceed the

limit will be ignored.

No matter how many monitors are established, only one may be in

effect at anyone time. With care, monitored areas may be nested, or

overlapped. If, while in monitor mode A, an entry to monitor mode B

is encountered, monitor mode A will only temporarily relinquish con­

trol to monitor mode B, and monitor mode B will, upon completion,

automatically return control to monitor mode A. This is ideal for

nesting, but requires care in overlapping.

V-25

Nested Monitor Modes Overlapping Monitor Modes ,
2..

A A

3
B

1
Monitoring will be done in Mode Monitoring will be done in Mode

A from points 1 through 2, in A from point 1 to point 2, in

Mode B from points 2 through 3, Mode B from po~nt·s 2 through 4,

in Mode A from points 3 through and in Mode A again from point

4. After point 4 the program 4 until and unless the program

will resume operation in high- happens to return to a point

speed mode. between points 1 and 3. Mode A

cannot be terminated (unless

canceled) until the instruction

at point 3 is actually executed,

Since a monitoring mode must naturally cause some expansion of

program running time (see "TlMINGtt
) it is important that the pro-

grammer carefully defines his limits~ and builds efficient monitoring

subroutines. By keeping the monitoring subroutines small and fast,

and using end-monitor subroutines for time-consuming operations, such

as output operations, the programmer can keep running time at a mini-

mum. For example, it may be possible to use the Monitoring Subroutine

to make a few quick entries into a buffer, and then output only once

the monitored results for the entire pass through the monitored area

during the End-Monitor routine.

v-26

It should be noted that the program being monitored will run at

normal computer speed except while operating within a monitored area,

If the abort Jumpoptlon is not taken, and jumps and subroutines are

subsequently monitored, more time yet will be required. (This may be

desired, of course.) If the abort jump option is- taken, the lOOnitor

mode continues in a ttpsuedo-monitor" condition, wherein the progrBIl\-.

mer's monitoring subroutine is not entered after each individual

instruction is executed.

Additionally ,care must be taken that the first instruction in

an area will be executed, else the monitor may not be established.

For instance, if the first instructlonof the area is skipped, or if

a jump is made into the middle of an area to be monitored, then no

monitor control will be initiated. Likewise, if the last instruction

to be monitored is skipped, the monitor will not be discontinued at

the proper point. The method used in establishing the monitor (in­

ternally) demands .this care. The monitoring program itself is

initiated when an Enter Monitor Mode statement is encountered. Estab­

lishing a mode at this point, the monitoring routine saves the first

instruction of the area to be- monitored, and replaces it with an entry

to the monitor program. Control is returned to the program under

study until the monitor area is reached.

The use of the 9-load program is restricted to the writing of

monitoring subroutines, formatted output or test data introduction.

Since the 9-load flowchart is basically like any NELIAC flowchart,

full cognizance of source language names is achieved. The separate

V-Z(

loa.d number for this flowchart is necessary because of the usage of

this program rather than any unique treatment by NELIAC. When the

"execute n operator of NELOS is used, the execution of the 9-load pro­

gram will always supersede the normal execution of the program. In

this way, the monitor locations can be established for debugging runs,

and ignored for production runs (as a manual option) without modifying

the program in any way. When running a program in the monitor mode,

care must be exercised in not disturbing the test environment defined

in the 9-load program. Data may be introduced into tables in a very

straightforward fashion by simply writing a NELIAC assignment

statement.

Example:

100 ~ alpha, 200'" beta,

But, if one writes:

i=lO(l) 100 {i ~ table alpha [i] ,}

the 9-1oad program writer must insure that the value of "i" can safely

be altered or that zero is desired as the correct value of "i rt upon

exit from the loop.

For more ambitious test data introduction the programmer may use

a prepared test data tape and write a simple I/O statement into the

9-load program.

v-28

L. CAPABILITIES OF THE MONITOR PROGRAM

SAMPLE MONITOR PROGRAM

5

A (100), B, C;

D:

J=3(1) 10 { 0 -;. A [i)],

E:

i=10(1)98 {A [iJ + B + A ~ + IJ ~ A [iJ},
F:

9

T S, (g : 888881 j 188888'-' ;

Enter monitor mode (E, F, H, 0, 0),

o ~B, 10~ C,

E.

H:

{1=j: write (g, P, i), [call NELOS < ,J ;; J ..

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The above trivial 9-1oad program shows the introduction of test

data in source language (line 11). The monitoring subroutine is

written to detect the specific case when i is equal to j during the

execution of the program between the labels E and F. As a result of

running this program we would have written on the NELOS message

tape the octal address of label ftFft and the value of "i ff when

v -';!9

equality with flj" was obtained, which is zero. Why? This example

points out the fact that the NELDS monitor is a source language

debugging aid which haS pointed out an eccentricity of the machine

as reflected in NELIAC, but without going back to the machine lan­

guage to discover it. The power of the NELOS monitor is in .the fact

that its focus can be broadened or narrowed as necessary to follow

general or specific problems which are difficult to diagnose from

static core dumps. The monitor mode may be used in its narrowest

scope (i.e., beginning label = end label) to plant a dynamic core

dump or test data introduction point without altering its running

characteristics significantly.

VIo PROGRAMMING TECHNIQUES

A. SAMPLE PROGRAMS

Efficient programming in any language is dependent upon

the programmers knowledge of the problem at hand and the tech­

niques used in gene~ating machine code from the language in

which the program is written. There are both efficient and in­

efficient programming methods in any language, whether it be

machine code or the most sophisticated higher level language.

Thi-s Section will attempt to provide examples of NELIAC pro­

gramming techniques which do provide efficient machine code

for the AN/USQ-20 computer.

Example 1 is a complete program producing a table of

values for a simple function. -The production of the table is

aided by use of the -write- package (See Section VI-B).

Example 1:

F(A,B) = a(b - 3.994)

b + a

Evaluate the above function over the range

of A = 0.0 to A = 5.0 in steps of 0.2, B = 1.0

to B = 2.0 in steps of 0.2. Set up a table

of the function for these particular values.

The table shpuld have a heading to

appear as in the example below. Each

answer should have two digits to the left of

the decimal point and three to the righto

VI-l

table of function f

b

a 1.0 1.2 1.4 1.6 1.8 2.0

0.0 xx.xxx xx~xxx xx o xxx xx.xxx xx.xxx xx.xxx

5 (COMMENT: DIMENSIONING)

[heading: /251 < table of function f > III 1341 II

131 <a) 141 <1.0> [61 <1.2> 161 <1.4> 161 <1.6> 161

< 1 .8> 161 <2.0) I I],
[line: 0 .. a (6: 12/ U 0 .. 000) I],

ans(6). real i. real j. ;

PROGRAM: (COMMENT: FLOWCHART LOGIC)

enable paper tape,

wri te (heading),

i = 0(2)50 Ii ~ real i I 10.0 ~ real i,

j = 10(2)20 {j ~ real j I 10.0 ~ real j,

(j - 10) I 2 ~ k,

f (real i, real j) ~ ans[k],1

write{line, real i, ans[O], ans[l], ans[2],

ans [3], ans [4], ans [5]), I J

disable paper tape,

F(a. b.):

fax (b x b - 3.994) / (b + a) ~ b, I ..

VI-2

2

3

4

5

6

7

8

9

10

COMMENTS ON PROGRAM

LINE

Call the enabling subroutine for -write-.

2 Call to write heading, which requires no parameters.

3,4 Loop control with necessarily fixed point loop

5

6

control, real i- and -real j- contain computed floating

representation of the indexing variables i, j.

Note the automatic conversion to floating point mode

of the fixed point variables i and j9

Compute subscript storage.

Call the function -f- with real i, real j, and store

the result in -ans[k], -, then end minor j loop.

7 -Write- call with 7 parameters. End i loopo

8 Disable paper tape, disabling subroutine for -write-9

9 Definition of -f- with two floating point formal

parameters, -a- and -b-9

10 Computation of -f- with answer in arithmetic

register. (always true for floating point pseudo

accumulators) 0

VI-3

table of function f

b

a 1 0 0 1 .2 1 .. 4 1 .6 1 08 2.0

000 0.000 0.000 0.000 00000 0.000 0.000
0.2 - 0.498 - 0.364 - 0.254 - 0 .. 159 - 0.075 0,,000
0.4 - 0.855 - 0.638 - 0.451 - 0.286 - 0 .. 137 0 .. 001
0.6 - 1 • 122 - 0.851 - 0.610 - 0.391 - o. 188 00001
0.8 - 1 0330 - 1 .. 021 - 00739 - 0.477 - 0.231 0.001
1 .0 - 1 .. 496 - 1 • 160 - 0.847 - 0.551 - 0.269 0.002
1 .2 - 1 .633 - 1.276 - 0.938 - 0.614 - 0.301 0.002
1 03 - 1.746 - 1 .375 - 1 .016 - 0.669 - 0.329 0.002
1 .6 - 1 .842 - 1 .459 - 1.084 - 0.716 - 0.354 0.002
1 .8 - 1.924 - 1.532 - 1 • 144 - 0.759 - 0.376 0.002
2.0 - 1 e995 - 1 .596 - 1 .196 - 0.796 - 0.396 0.003
2.2 - 2.058 - 1 .652 - 1.242 - 0.830 - 0.414 0.003
2.4 - 2 .113 - 1 .702 - 1.284 - 0.860 - 0.430 0.003
2.6 - 2. 162 - 1.747 - 1.322 - 0.887 - 0.445 0.003
2.7 - 2.206 - 1.787 - 1.355 - 0.912 - 0.458 0.003
3.0 - 2.245 - 1.824 - 1.386 - 0.935 - 0.471 0.003
3.2 - 2.281 - 1 .857 - 1 .414 - 0.955 - 0.482 0 .. 003
3.4 - 2.313 - 1.887 - 1.440 - 0.975 - 0.492 0.003
3.6 - 2.343 - 1 .915 - 1 .464 - 0.992 - 0.502 0.003
3.8 - 2.370 - 1 .941 - 1.486 - 1 .. 009 - 0.511 0.003
4.0 - 2.395 - 1 .964 - 1 .. 506 -. 1 ~ 024 - 0.519 0.004
4.2 - 2.418 - 1 .986 - 1 .525 - 1 .038 - 0.527 0.004
4.4 - 2.439 - 2.006 - 1.543 - 1.051 - 0" 535 0.004
4.5 - 2.459 - 2.025 - 1.559 - 1 ,,063 - 0.541 0.004
4.8 - 2.477 - 20043 - 1.574 - 1 .. 075 - 0.548 0.004
5.0 - 2.494 - 20059 - 1 .589 - 1" 086 - 0.554 00004

VI-4

B. The NELIAC -WRITE- PACKAGE

DESCRIPTION:

The -write- package is a general purpose output

package, written in NELIAC, which is in wide use for

formatting, report writing and scientific output. -Write­

uses the philosophy of an external-format-statement, writ­

ten as a literal in a NELIAC dimensioning statement. Each

-Write- call is written with its associated format literal

name, and the necessary parameters to be justified, con­

verted and formatted for output. The formats are written

as -pictures- of the desired output; the -write- package

scans the format literal for each parameter, and assembles

the external equipment codes for whichever piece of equip­

ment is -enabled- at that time.

Example 1:

Write(number format, number),

Example 1 illustrates a simple -write- call with the

format plus one parameter. All calls on -write- are made in

a similar fashion. Up to thirty output parameters may be

handled with a Single calr.

PICTURES:

Example 2:

8888

Example 2 illustrates a -picture- for a four octal digit

field with a sign. This field therefore occupies 5 spaces e

VI-5

Example 3:

0000

Example 3 illustrates a -picture- of a four digit decimal

field plus signo

Example 4:

XXXX

Example 4 illustrates a four character variable alpha­

numeric field. A literal or the address of a variable alpha­

numeric area is a valid input parameter for this picture.

Example 5:

00.000

Example 5 illustrates a floating point picture for a

fractional conversion without an exponent part~

Example 6:

00.000 x 000

Example 6 illustrates a floating point picture for an

exponent conversion. This type of picture is the most general

floating point conversion and should always be used whenever

any doubt about the magnitude of output parameters exists.

LITERAL FIELDS:

Example 7:

<TITLE 1)

Example 7 illustrates a literal field in which the

alphanumeric -TITLE 1- will be displayed.

VI-6

SPACING AND LINE CONTROL:

Example 8:

1101

Example 8 illustrates the technique by which one can

space pictures or literal fields. The number between the

absolute signs, which designates the number of spaces desired,

is always decimal and may be zerou

Example 9:

/
Example 9 illustrates a carriage return or -proceed to

the beginning of the next line- symbol.

Example 10:

l'

Example 10 illustrates the top of form operator.

Example 11:

1'1'

Example 11 illustrates the terminate function, or

complete dump, operators.

INSERT, DELETE AND OVERPUNCH:

Any of the magnitude symbols (decimal point, multi­

plication sign, etc.) may be deleted with the following

notation:

Example 12:

OOf. iOO} xlOO

VI-7

Example 12 illustrates a floating point conversion in

which the decimal point and multiplication sign have been

suppressed using only 8 columns (6 digits and 2 signs)"

Example 13:

~O 0 l • 1 00 1 x { ~O 0

Example 13 is basically the same as Example 12

with both signs overpunched on the first digits of their

corresponding fields~ Example 13 output requires only 6

columns.

Example 14:

OOfalpha-numeric}00

Example 14 shows an -insert- of an alpha-numeric

field in a number which is converted as a decimal integer.

Inserts may be made in any -picture-, but no more

than 5 inserts are allowed in a single picture.

REPEAT FORMATS:

Example 15:

(10:000)

Example 15 illustrates a condensed notation for 10

decimal parameters.

Example 16:

(3: xx 131 <TITLE) OO.OOxO t)

Example 16 illustrates the universality of the repeat

operation* Any picture, literal field or spacing or line or

VI ... 8

paper control operator may be included in the scope of the

repeat operation.

Example 17:

(2: (3: 00 121) < z = > 00) /

Example 17 shows the use of nested repeatso Up to

three repeats may be nested~

VI=·g

CHARACTER
FLEX and CARD

space
A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

P
Q
R
s
T
u
V
W

X
y
Z
0
1
2
3
4

TABLE I: NELIAC SYMBOLS

INTERNAL
OCTAL CODE

00
01
02
03
04
05
06
07

10
1 1
12

1~ 1
15
16
17

20
21
22

~~
25
26
27

30
31
32
33
34
35
36
37

CHARACTER
FLEX CARD

~
7
8
9
8 OCT ,

~. · ,
• · " · ((

t l~ .]

I BEGIN
END

= EO.
I NQ
~ GQ
< LS
~ LQ
> GR
~ =)
+ +

- -/ /
x ...
.fot uS;d

U OR
f) AND
l' ..

INTERNAL
OCTAL CODE

40
41'
42
43
44
45
46
47

50
51

:

52
53
54
55
56
57

60
6f
62
63
64
65
.r:·c
00
67

70.
71
72
7~ 7
75
76
77

NOTE: Alphabetic operators must be preceded and followed
by a blank column on the card.

TABLE I

~

(

~

>

If

4

If

" o
o

2"
o
4

4

o
o
o
o

o
o

+ 19

+ 0

o

I 0

JI 0

p 0

o
u
n

o
o

If

"
If

If

o
o
o
o
4

4

o
o
o
o
o
o

19

o
o
o
o
o
o
o
o

Tahle II: NELIAC co/No TABLE

() + + I JI P
, 29

, 29

, 29

, 5

o 0

o 9

o 0

o 0

, 29

, 29

o
o
o
o
o
o

6 " 2, 25 0

6 " 2, 0 21

6 " 2, 0 21

6 4 2' 0 2'
6 20 2, 0 0

o 8 2, 0 21

o 0 0 25 0

o 0 0 0 0

6 4 2, 25 0

6 4 2, 25 0

o 2, 0 0

o
o
o

o
o

o
o
o
o
o

19 19 26 19 2, 0 0

2'T 2, 25 21

12 2, 25 21

16 2, 0 0

15 2, 0 0

o ~ 6

o '2 6

o 16 6

o 15 6

000

o
o
o

o
o
o

o
6

6

000 0

o o o
o
o

o
o
o

4 10 10 10 10 10 10 10 11 l'

4 '0 10 10 10 10 10 10 11 11

" 10 '0 10 '0 10 10 10 11 11

4 10 10 10 10 10 10 10 11 11

o 0 0 0 0 0 0 20 T T

09999 9 998 8

o 0 0 22 22 0 22 0 24 24

00000 0 0 000

4 10 10 10 10 10 '0 10 II II

" 10 10 10 10 10 10 10 I' 11

000 0 000

o
o
o
o
o

19

o
o

o
o
o
o

o
o
o
o
o

o
o
o
o
o

19 19

10 10

12 12

16 16

15 15

o 0

o o

o 0

o 0

o 28

o 0

o 0

19

10

12

16

15

o
o

19

10

12

16

15

o

o

o
o
o
o
o

19

10

12

16

15

o
o

o
o
o
o
o

19

10

12

16

15

o
o

19

10

12

16

15

o
o

19

11

12

16

15

o
o

o 10 10 10 10 10 10 10 1 I

o 10 10 10 10 10 10 10 11

19

11

12

16

15

o
o

11

11

IT "
IT l'

IT l'
IT I'
IT l'
18 I"

o 0

o 0

IT l'
IT I'

19

IT

IT

16

15

o
o

19

l'
I'
16

15

o
o

IT I'

IT l'

O. FAULT 10. GENERATE ADD OR ENTER 20. INITIATE LOOP CONTROL
1. INITIATE RELATION CONTROL 11. GENERATE ADD 21. SET EXIT CONDITIONS
2. FAULT 12. GENERATE SUBTRACT 22. GENERATE 10
3. GENERATE STRAIGHT JUMP 13. GENERATE MULTIPLY 23. INITIATE SUBSCRIPT
4. GENERATE RETURN JUMP 14. GENERATE MULT QUANT 24. MODIFY SUBSCRIPT
5. CHECK PARTIAL WORD 15. GENERATE MULT OR ENTER 25. SET SUBSCRIPT
6. CHECK FOR ALOEBRA 16. GENERATE DIVIDE 26. SAVE CURRENT OPERATOR
7.. CHECK FOR NEG LOOP INCREMENT 17. GENERATE DIV OR ENTER 27. GENERATE ADD OR ENTER
8 CHECK FOR LOOP LIMITS 18. GENERATE DIV QUANT 28. INITIATE RELATION CONTROL
9. CLEAR TEMP LIST 19. GENERATE STORE 29. GENERATOR EXIT.

This table is included as a guide to the legal cojNo pairs. The numbers given at the
intersections specify which generator routine manufactures the machine code instructions
pertinent to that pair. In general, if no number is given, that cojNo pair is illegal.
Some special cases, such as shifts or octal notation, are processed elsewhere and do not
appear at all.

TABLE II

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

u n

o 0 0

000

000

o 2'T 2'T

000

099

o 0 0

o 0 0

000

000

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

19 19

2T 2T

12 12

16 16

15 15

o 0

o
o
o

o
o
o

alphabet,
a through h,
and q through z

alphabet,
i through n

numerals

,

APPENDIX A

DEFINITION OF NELIAC SYMBOLS

Operands, i.eo constants, variables,
names or tags.

Indices, register variables. These
are the AN/USQ-20 B-registers 1 through
6 respectively.

Constants. They are always considered
to be decimal unless indicated other­
wise, see e.

Punctuation. Separates statements
in the flowchart logic, names in the
dimensioning statement: indicates
return transfer operationso

Puncuationo Indicates end of an
algorithm~ an unconditional transfer
and may indicate end of a true or
false alternative.

Punctuation. Separates the dimension­
ing statement from the flowchart
logic. Marks the end of an alternative.
Separates the input and output parameters
in the function definition or call.

Punctuation. When used following a
relationship symbol it marks the end
of a comparison. It also denotes
that which follows. as the definition
of the name immediately preceeding.
In the dimensioning statement it is
used when defining partial words or
congruent tables.

A-l

() Grouping symbols. In the dimensioning statement
parentheses enclose the number of locations to
be set aside for the name preceeding them. In
the flowchart logic they enclose the numerals
which indicate the increment or decrement to be
added to the index Which controls a loop, or the
bit limits in a partial word operation. Paren­
theses also indicate algebraic groups which are
to be treated as a whole '. They also enclose
comment statements.

[] Grouping symbols, These subscripting symbols
are used to enclose the subscript operand.

II Punctuation. The braces enclose a subroutine,
a function, or a comparison considered as one
of the alternatives of a previous comparison.
They are also used in dimensioning partial words,
jump tables and address switches.

= Relationship symbols. These are used in form-
i ulating a decision, branch point or comparison.
< The < and > are also used as quotation marks in
~ literals and declarations and to indicate input
> or output in active r/o statements.

~ Store symbol. That which preceeds it is to be
stored in the variable which follows it. It
is also used to indicate the limits of bit
fields in partial word dimensioning.

x2t Arithmetic symbols. The result of a compu-
x2t tat ion stays in an arithmetic register and

x is not preserved unless a store operation is
/ indicated. The symbols are listed in pri-
+ ority of execution within algebraic grouping.

U Punctuation. Boolean comparison -or-.

n Punctuation. Boolean comparison -and-.

A-2

e

x21
/21

Octal symbol. Indicates that the numerals which
preceded are an octal number. When used for
machine code the first five digits which preceded
the symbol are machine code for the f, j, k and
b designators of a command. The next digits to
follow are decimal unless indicated otherwise
and are inserted as the y part of the instruction;
a name may be inserted instead of numerals.

Exponent Co/No combination. Scaling technique
which indicates that the number preceding is
to be shifted (to the left with the multiply
symbol and to the right with the divide sym-
bol) the number of bits indicated by the number
following. Scaling is not legal with floating
point.

Absolute sign. When inserted in a name defin­
ition the name will be temporary.

A-3

APPENDIX B

GLOSSARY OF NELIAC TERMS

The following terms and definitions may be all or in part
well known to the readerc However, several have a more or
less special meaning in the explanation of NELIAC, so all should
be reviewed and understoodo

The first explanation or definition will be from -Glossary
of Terms and Expressions in the field of Computers and Auto-·
mation- published in Computers and Automation, Dec. 1954, Vol.
3, No. 10, with a few modifications. The second will be the
NELIAC definition if appreciably different. Either the first or
second definition will be omitted if not applicable.

ADDRESS VARIABLES
2. A noun which specifies the address of the variables

which contain the data or the address of the data itself.

BITS
1~ A binary digit; the smallest unit of information; a

-yes- or -no-; a single pulse in a group of pulses.

CO
1.2~ Current operator.

COMPARISON
i,,2 The act of comparing and, usually, acting on the

result of the comparison. The cornmon forms are comparison of
two numbers for identity, comparison of two numbers for relative
magnitude, and comparison of the two signs, plus or minus.

COMPARISON STATEMENT
1"2,, A.NELIAC statement which designates the type of

comparison to be,made and the action to be taken as a result
of the comparison.

COMPILER
,1. A program making routine which produces a specific

program for a particular problem by the following process: (a)
determining the intended meaning of an element of information
expressed in pseudo-code; (b) selecting or generating (i.e.
calculating from parameters and skeleton instructions) the re­
quired subroutine; (c) transforming the subroutine into specific
coding for the specific problem, assigning specific memory
registers, etc., and entering it as an element of the problem
program; (d) maintaining a record of the subroutines used
and their position in the problem program; and (e) continuing
to the next element in pseudo-codev

B-1

COMPUTER
1. A machine which is able to calculate or compute,

that is, which will perform sequences of reasonable oper­
ations with information, mainly arithmetical and logical
operations. More generally, it is any device which is
cpnp"bJe of accepting information, applying definite
reasonable processes to the information, and supplying
the results of these processes.

CONSTANTS
1~2. A specific numeric value, which is octal 77777 77777

or less, that is in the NELIAC flowchart logic (iae. DOLLARS x
100 ~ CENTS, where 100 is the constant).

CONTROL
1. To direct the sequence of execution of the instructions

to a computer.

CONTROL ROUTINE
1.2. A routine which is entered with a straight jump and

effects control.

DEBUG
1. To isolate and remove malfunctions from a computer or

mistakes from a program.

DECLARATION
2. A machine dependent operation called by an active

statement_in the flowchart logic and inserted into the object
program as an open subroutine.

DECLARATOR
. 2. Any of the names available as English phrases to

describe and calIon input/output declarations for the
AN/USQ-20 computer~

DECREMENT
1.2. To decrease the value contained in a register or

cell by a given amount.

DIMENSIONING STATEMENT
1.2. The initial portion of a flowchart which contains

the assigned names (nouns) of all variables, lists, and tables
used in the flowchart logic.

EQUALITY SIGN
1.2. The symbol (=) meaning -equal to-.

FLEXOWRITER
1.2. A typewriter-like machine which will produce a

punched paper tape that can be read by the computer.

B-2

FLOATING POINT
1.2. A mode of arithmetic in which each variable has an

associated radix point which is adjusted to preserve the max­
imum precision in each arithmetic operation, independent of
the original magnitudes of the variables.

FLOWCHART
1. A graphical representation of a sequence of program­

ming operations, using symbols to represent operations such as
compute, substitute, compare, jump, copy, read, write, etc.

2~ The dimensioning statement and the flowchart logico

FLOWCHART LOGIC
lo2~ The NELIAC language logic flow usin~ NELIAC oper­

ator symbols, constants, predefined variables (nouns), and
other routine, control routine and subroutine names {verbs)o

INCREMENT
1.2. To increase the value contained in a register or

memory cell by a given amount.

INDEXING
lD2. Modifying or altering the operand by an indicated

amount or value contained in a register.

INSTRUCTION
1. A machine word or set of characters in machine

language which directs the computer to take a certain actionu
More precisely, a set of characters which defines an operation
together with one or more addresses (or no address) and which,
as a unit, causes the computer to operate accordingly on the
indicated quantities 0

JUMP
1. An instruction or signal which, conditionally or

unconditionally, specifies the lo~ation of the next instruction
and directs the computer to that instructiono A jump is used
to alter the normal sequence in the control of the computer 0

Under 'certain special conditions, a jump may be caused by the
operator throwing a switch.,

K-DESIGNATOR
1.2. The portion of an AN/USQ-20 machine instruction which

designates what is to become the operand of the instruction.

LOAD FLOWCHARTS
1.2" The load program portion of the NELIAC compilero

B-3

LANGUAG~
1~2, A system of communication in which given combin­

ations of given symbols communicate a specific meaning.

LOAD PROGRAM
1.2. A short preliminary program loaded in memory

which permits some interpretation and editing of the data
during the loading operation.

LOOP
1.2. A loop is a series of operations repeated any

number of times as specified by the loop control, or until
an exit condition is satisfied.

LOOP CONTROL
1.2. The part of the loop which specifies the number of

times the loop shall be repeated.

MACHINE NEGATIVE NUMBER
1.2. Any negative number in the machine kept in comple­

mented form with a one bit in the highest order position.

NO
1~2. Next operator.

OPEN SUBROUTINE
1.2. A sequence of instructions which are built into

the program every time they are needed; as contrasted with a
closed subroutine, where the instructions are inserted only
once, then called with a return transfer instruction.

OPERAND
1.2. Anyone of the quantities entering into or arising

from an operation. An operand may be an argument, a result,
a parameter, or an indication of the location of the next
instruction,

OPERATOR
1.2. The person who actually operates the computer,

puts problems on, presses the start button, etc.
2. The punctuation and algebraic symbols which the

compiler uses to generate machine code.

PSEUDO-CODE
1.2. An arbitrary code, independent of the hardware

of a computer, which must be translated into computer code if
it is to direct the computer~

B-4

PROGRAM
1. A precise sequence of coded instructions for a dig­

ital computer to solve a problem.
2. A collection of flowcharts with their associated

dimensioning statements from which the compiler manufactures
a machine coded program.

PARAMETER
1.2. In a subroutine, a quantity which may be given

different values when the subroutine is used in different
parts of one main routine, but which usually remains un­
changed throughout anyone such use.

REGISTER
1.2. The hardware for storing one machine word.

REGISTER VARIABLES
2. The index registers B1 throu~h B6, as represented

by the letters i through n, on the AN/USQ-20 computer.

ROUTINE
.1.2. See -program-.

SHIFT
. 1.2. To move the character of a unit of information

columnwise right or left. In the case of a number, this is
equivalent to multiplying or dividing by a power of the base
of notation (usually ten or two). This is regularly per­
formed faster than usual multiplication or division.

STOP CODE
1.2. On punched paper tape, a signal to stop equipment

while reading or duplicating a tape.

SUBROUTINE
1. A short or repeated sequence of instructions for a

computer to solve part of a problem: a part of a routine.
2. The sequence of instructions necessary to direct the

computer to carry out a well-defined mathematical or logical
operation: a SUb-unit of a routine.

TAPE
1.2. Any kind of paper, metal, plastic, magnetic or

non-magnetic material which carries coded information as
polarized magnetic spots or punched holes in the tape.

B-5

VARIABLES
1. Any specified memory cell or register may be

thought of as a variable.
2. Variables in NELIAC are designated by alpha-numeric

names. The names must begin with a letter and may be of any
lengtho The compiler will, however, interpret only the first
fifteen characters of the name~ A variable may also have a
specified constant value throughout the program 0

WORD
1.2 .. An ordered set of characters which has at least

one meaning, and is stored and transferred by the computer
circuits as a unit. Ordinarily, a word has a fixed number
of characters, and is treated as an instruction by the
control unit and as a quantity by the arithmetic unit.

B-6

APPENDIX C

SYSTEM DECLARATION

The active input/output statements listed here call

on the -System Declaration-, which is a part of NELIAC.

Following the name of each statement is a valid example

of the use of that st-atement.

There are four legal types of operands used in active

input/output statements:

1) Address variables,

2) Read operands (register variables, whole or

half words),

3) Store operands (whole or half words only),

4) Buffer operands (described in Section IV).

The examples listed below use descriptive names as

operands. -Entry- is defined as an entry point, -find

index- is a store operand, -core area- is a buffer operand,

and all the other operands are read operands.

C-l

ACTIVE INPUT/OUTPUT STATEMENTS

STOP =

[stop < entry),],

START FLEX =

[start flex < ,],

TURN OFF FLEX =

[turn off flex < ,],

READ MAG DRUM =

[read mag drum < drum operand), < core area),],

WRITE MAG DRUM =

[write mag drum < drum operand), < core area), J,

MOVE BLOCK =

[move block < start operand), < number of cells >,
< move operand),],

PRINT LITERAL =

[print literal < address variable),],

START READER =

[start reader < ,],
C-2

TURN OFF READER =

[turn off reader < ,],

START PUNCH =

[start punch < ,],

TURN OFF PUNCH =

[turn off punch < ,],

OUTPUT FLEXCODE =

[output flexcode < read operand> ,],

KEY 1 =

[key 1 < entry> ,],

KEY 2 =

[key 2 < entry> ,],

KEY 3 =

(key 3 <entry>,],

KEY 5 =

[key 5 < entry> ,],

KEY 6 =

[key 6 < entry> ,],

C-3

KEY 7 =
[key 7 < entry> ,],

READ ONE FRAME =

[read one frame < store operand> ,],

STORE REMAINDER =

[store remainder < store operand> ,J,

RETURN JUMP STOP =

[return jump stop < entry> ,],

SEARCH ZERO =

[search zero < list length to search > ,
< name of list > , < no find entry > ,

< find index> ,],

SEARCH NOT ZERO =

[search not zero < list length to search > ,
< name of list >, no find entry > ,

< find index> ,],

SEARCH LESS THAN =

[search less than < argument > ,
< list length to search > , < name of list > ,

< no find entry> , < find index> , J,

c-4

SEARCH GREATER THAN =,

[search greater than < argument > ,

< list length to search > , < name of list > ,

< no find entry> , < find index> ,],

SEARCH EQUAL =

[search equal < argument > , < list length to search > ,

< name of list> , < no find entry> , < find index> ,],

SEARCH BETWEEN =

[search between < lower argument > , < upper argument > ,

< list length to search > , < name of list > ,

< no find entry> , < find index> ,],

SEARCH NOT BETWEEN =

[search not between < lower argument > ,

< upper argument > , < list length to search > ,

< name of list> , < no find entry> , < find index> ,],

CLEAR CELLS =

[clear cells < number of cells to clear > ,

< start operand> ,],

C-5

STOP = < machine(61400s0k)),

START READER = (4) (external function (40 s)),

TURN OFF READER = (4) (external function (400s)),

START PUNCH =(4) (external function (20s »),

TURN OFF PUNCH = (4) (external function (200s)),

KEY 1 = < machine(61100s0k)) ,
KEY 2 = < machine(61200s0k)) ,

KEY 3 = < machine(61300s0k)) ,

KEY 5 = < machine(61500s0k))

KEY 6 = < machine(61600s0k) > ,
KEY 7 = < machine(61700e Ok)) ,

READ ONE FRAME = < buffer), (jump active) ,

.::-IfORE RErVIAINDER = < machine (15000eOk)),

RETURN JUMP STOP = < machine(65400s0k)),

SEARCH ZERO = < machine(70230e Ok) > ,
< machine(1 1 437s77776s k) >, < machine(61000s0k) > ,

< machine(16730s0k)) ,

SEARCH NOT ZERO = < machine(70230s0k) > ,
< machine(l 1 537s77776s k) >, < machine(61000s0k) > ,

< machine(16730s0k) > ,

c-6

SEARCH LESS THAN = < mach1ne(10030s0k) > ,
(mach1ne(27000s1)), < mach1ne(70230s0k) > ,

< mach1ne(04237s77776s k) >, <mach1ne(61000s0k) > ,

< mach1ne(16730s0k) > ,

SEARCH GREATER THAN = < mach1ne(10030s0k) > ,
< mach1ne(70230s0k) >, < mach1ne(04337s77776sk) > ,
< mach1ne(61000s0k) >, < machine(16730s0k) > ,

SEARCH EQUAL = (machine(10040s77777s)), < machine(11030s0k) > ,
< machine(70230s0k) >, < machine(43437s77776sk) > ,
< machine(61000s0k) >, < machine(16730s0k) > ,

SEARCH BETWEEN = < machine(11030s0k) >, < machine(10030eOk) > ,
(machine(27000e1)), < machine(7023 0e Ok) > ,
< mach1ne(04427s77776ek) >, < machine(61000e Ok) > ,
< machine(1673 0e Ok) > ,

SEARCH NOT BETWEEN = < machine(11030s0k) > ,
< machine(10030s0k) > , (mach1ne(21000e l)),

< mach1ne(7023 0eOk) > , < machine(04537s77776ek) > ,
< mach1ne(61000s0k) > , < machine(16730s0k) > ,

CLEAR CELLS = < machine(70100s0k) >, < machine(16030s0k) >,

C-7

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07

