

ORIGINAL

PREFACE

This Primer and Programming Guide has been extracted from the
documentation of the interim Command Ship Data System (CSDS), to
permit a wider distribution of the specifications for the NELIAC
language. The interim CSDS was a project completed under the
technical supervision of the Navy Electronics Laboratory for the
Bureau of Ships, Navy Department.

B-i

CONTENTS
Note

The prefix "B" in the pagination of this manual was required for
another, separate issue of a User's Guide for NELIAC. The "B"
has no significance in this edition and may be ignored.

1. INTRODUCTION ... page Bl-l

Intent ... B1-1
Organization ... Bl-2
Background Information .. . B 1 - 2
NELIAC •• # Bl-5

2. THE NELIAC PROGRAM ... B2-1

Approach ... B 2-1
POL ... B2-2
Program Structure ... B2-3
Flowcharts ... B 2-4

3. NAMES ... B3-1

Grammar of Names ... B3-1
Name Precedence ... B3-6
Nouns ... B3-9
Verbs ... B3-42

4. ARITHMETIC OPERATIONS ... B4-1

ORIGINAL

Introduction. .. B4-1
Expressions ... B4-3
Ari thmetic Statements. .. B4 -1 0

B-iii

B-iv

5. CONTROL OPERATIONS .. . B5-1

Introduction. .. B 5 -1
Unconditional Transfer ... B 5 - 2
Conditional Transfer ... B5-4
Indirect Transfer. . . B 5 -11
Iterative Procedures ... B 5 -16

6. SUBROUTINES AND FUNCTIONS ... B6-1

Introduction .. . B 6 -1
Subroutines ... B 6 - 2
Functions ... B6-4

7. DECLARATIONS ... B7-1

Machine Dependency ... B 7 -1
Categories ... B 7-5
Declarators ... B7-10
Definition and Call ... B7-29

8. COMMENTS, ABSOLUTE CODE, AND WRITE PACKAGE .. . B8-1

Comments ... B8-1
Absolute Code ... B8-2
Write Package ... B8-3

9. CASE STUDIES ... B9-1

Problem One ... B9-1
Problem Two ... B9-6

ORIGINAL

Bl-l

B2-1

B2-2

B2-3

B2-4

B2-5

B3-1

B3-2

B3-3

B5-1

B5-2

B5-3

B5-4

B5-5

BS-l

B9-1

B9-2

B9-3

ORIGINAL

ILLUSTRATIONS

The compilation procedure. .. BI-4

Process flowchart, example ... B 2-5

Declaration flowchart, example ... B2-5

Executive flowchart, example ... B 2- 6

Correction flowchart, example... B2- 6

Edit flowchart, example ... B2-7

NELIAC character set conversion. .. B3-2

Partial word transfer ... B3 -37

Block diagram solution of traffic problem. .. B3 -43

NELIAC comparison symbols and connectors ... B5-5

Conditional transfer with Boolean connectors ... B5-12

Nested conditional transfer ... B5 -13

Legal nested iterative procedures ... B 5 - 24

Illegal nested iterative procedures ... B5-25

Formatted literal output. .. B8 - 6

NELIAC problem one, flowchart. .. B9-4

NELIAC problem two, diagram. .. B9-7

NELIAC problem two, flowchart. .. B9-11

B-vii

B3-1

B3-2

B3-3

B3-4

B3-5

B3-6

B3-7

B3-8

B3-9

B3-10

B3-11

B3-12

B3-13

B3-14

B4-1

B4-2

B4-3

B4-4

ORIGINAL

TABLES

Name formation constituents. . . B3-4

Examples of names. .. B3-4

Constituents of fixed pOint constants. .. B3 -15

Examples of fixed point constants .. B3-15

Constituents of floating point constants .. . B3-1B

Examples of floating point constants ... B3-18

Constituents of whole word variables ... B 3 - 20

Examples of whole word variables . .. B 3 - 20

Constituents of partial word variables. .. B3 - 27

Examples of partial word variables. .. B3 - 27

Constituents of subscripts ... B3-32

Examples of subscripts . .. B3-32

Constituents of subscripted variables. .. B3-34

Examples of subscripted variables ... B3-35

NELIAC arithmetic operation symbols ... B4-3

Constituents of expressions ... B4-7

Examples of expressions ... B4-8

Hierarchy table. .. B4-9

B-ix

B-x

B4-5

B4-6

B5-1

B5-2

B5-3

B5-4

B5-5

B5-6

B6-1

B6-2

B6-3

B6-4

B7-1

B7-2

B7-3

B7-4

Constituents of arithmetic statements ... B4-13

Examples of arithmetic statements ... B 4 -13

Constituents of comparison statements ... B5-7

Examples of comparison statements. .. B 5 -7

Constituents of alternatives ... B5-9

Examples of alternatives. .. B5-9

Constituents of iterative procedures ... B5 - 21

Examples of iterative procedures. .. B5 - 21

Constituents of subroutines ... B 6-3

Examples of subroutines. .. B 6-4

Constituents of functions ... B6-1 0

Examples of functions. .. ~6-11

Constituents of categories. .. B 7-8

Examples of categories. .. B7 -10

Constituents of declarators ... B7-24

Examples of declarators ... B 7 - 27

ORIGINAL

APPLICATION OF NELIAC

1. INTRODUCTION

INTENT

This part of the User's Guide is intended to serve as both an
introduction and a programmer's working-guide to the computer
compiling language known as NELIAC -- the Navy Electronics
Laboratory International Algorithmic Compiler. The NELIAC vo­
cabulary and phraseology required of a programmer for communi­
cation with a computer will be presented along with the background
information necessary for a complete understanding of NELIAC
applications.

It was the original intent for NELIAC, to function independ­
ently of any particular machine. ImpliCit in this design require­
ment was the understanding that a programmer would be able to
compile any algorithm written in the NELIAC language on a large
number of digital machines with only a very few concessions to
individual machine characteristics. In the discussion which
follows, reference to machines will be avoided, whenever possible,
for it is hoped that this guide, while serving prinCipally as a key
to understanding the micro-programs of the Interim Command Ship
Data System (as implemented on the AN/USQ-20) , will be univer­
sally applicable to the comprehension and composition of NELIAC
programs.

Another purpose conceived for and incorporated into NELIAC
was that it lend itself to the digital computer solution of scientific

ORIGINAL Bl-l

Bl-2

problems. Thus the examples and problems presented herein will
be of the type requiring algebraic or scientific expressions for
their solution.

ORGANIZATION

The order of presenting the material in this manual might be
considered somewhat unorthodox. However, an attempt has been
made to group NELIAC elements of comparable characteristics
in order to provide a continuity of ideas. The acorn -to-oak prin­
ciple also has been utilized: from the most basic of the NE LIAC
elements -- the name -- grow the large, many-faced program
devices of later chapters.

In addition to the textural presentation of each subject, two
summary tables are included where appropriate. In the first table
the reader will find a synopsis of the ideas just presented, in order
to give the new programmer a concise review and the experienced
hand a concise reference. The second table is devoted to a number
of examples, some legal and some illegal (and why), which illus­
trate the material that has just been presented.

At the end of the NELIAC portion of this manual, in section
9, two "case study" problems are presented with full statements,
solutions, and discussions. The second problem, a little more
involved than the first, provides a ground on which to parade the
more sophisticated elements of NE LIAC.

BACKGROUND INFORMATION

The only prior knowledge in the field assumed of the reader
is a basic understanding of computers and the concept of a stored
program. Several good references covering these topics are
available from manufacturers or libraries.

ORIGINAL

Engineers and scientists in first using the digital computer
recognized its rapid and accurate handling of large, complex prob­
lems involving vast amounts of data. As early as 1956, digital
computer manufacturers and other groups came to realize the need
for languages which could be used with some facility after a mini­
mum of programmer training. In other words, a language form
other than machine code was required.

From this realization have come several "automatic program­
ming" systems consisting of language-processor pairs. The sys­
tems are labeled "automatic" because the computer itself seems to
be responsible for the programming task. This is not absolutely
correct, as shall be seen.

These languages are characterized by their algebraic nota­
tion for mathematical solutions and by the use of English phrases
for program control. They are often referred to as procedure- or
problem -oriented languages (POL), a title which reflects their
great usefulness in the solution of scientific problems.

The function of the processors is to translate the algebraic
notation and English phrases into machine code for subsequent
execution. A more detailed look at this translation process
follows.

In. the step numbered 1 in figure Bl-1, the processor, in
machine code, is read into computer storage. In. the step numbered
2, the source program, a procedure written in the system language
by the user to solve his problem, is presented to the processor
residing in core. Since the source program is not written in ma­
chine code, but in a more sophisticated language, the processor
must be capable of translating the one into the other. In so doing,
the proces sor calls upon generators of machine language appliable
to every source program syntactical form. The object program is
a collection of machine instructions created by the generators
from the source program. The collection process is known as
compilation, and it is from this that the processor or translator
has become a "compiler."

ORIGINAL B1-3

Bl-4

PROCESSOR
1 2

1---.... COMPUTER ---t

CARDS

3

OBJEC T PROGRAM IN
ANY ONE OF THREE FORMS

SOURCE
PROGRAM

LISTING

Figure Bl-l. The compilation procedure.

As each source program statement is encountered, the com­
piler generates multiple object-program instructions in machine
code. The object program is the assemblage of these instructions.
step 3 illustrates the fact that the object program may be returned
to the programmer in several forms: cards, tape, or a hard-copy
listing.

Execution, or the actual running of the problem on the com­
puter, is a separate and distinct operation. Once the object pro­
gram. has been created, it may at any later time be read into core,
data supplied to it, the computation prescl1ibed undertaken, and
the results presented to the problem originator.

This is the meaning of the term "automatic programming. "
Computer programming is automatic in the sense that, in pre­
senting the processor with a source program in a problem or pro­
cedure oriented language, the creation of a program in an execu­
table form (1. e., in machine code) is left to the compiler.

ORIGINAL

Thus, the automatic programming system is comprised of
two parts: a language and a processor. The "language" part is of
primary concern in the following sections of this manual.

NELIAC

The NELIAC language and compiler were conceived and de­
veloped by a group of U. S. Navy Officers and civilians at the U. S.
Navy Electronics Laboratory in San Diego, California. Due to the
fact that it is procedure-oriented and machine independent, its
development has included an implementation on many different
computers and a use in a large number of locations for varied
scientific purposes.

NELIAC is a dialect of ALGOL 58, the Algorithmic Language
established in 1958 by an international forum asa standard for
expressing computer algorithms for scientific problems. One of
the administrative problems of NELIAC has been standardization;
in spite of machine independence, there are difficulties in imple­
menting all facets of the expanding NELIAC on all machines.
There is no provision for input/output in the original NELIAC, in
line with the concept of ALGOL 58, to permit dissociation with
any reference machine. In the compilers since developed for
specific computers, routines have been devised for the machine­
related functions and have been included in the separate NELIAC's.

To further classify it, NELIAC is a "one-pass self-compiler."
"One-pass" means that there is no intermediary conversion of
source program language to assembly language; translation of
NELIAC is made directly to machine code. This eliminates
multiple considerations of the program in core and consequently
saves compilation time. "One-pass" also means that machine
code is generated as each source program statement is en­
countered; there is no backtracking to pick up information.

The term "self-compiler" has much more significance.
NELIAC is written in its own language, and as such is capable of

ORIGINAL Bl-5

Bl-6

compiling itself. Consider figure Bl-l again. If the source pro­
gram is replaced by an updated NELIAC processor which is to be
compiled, the old processor is read into core, the new NE LIAC is
presented to it for compilation, and the output or object program
is a revised NELIAC compiler.

There are interesting ramifications to this unique capability.
First, the hard-copy listing of the source program is never out of
date since changes are made directly to the system at the NELIAC
language level, and the entire compiler is recompiled to incorpo­
rate the changes. Secondly, the implementation of NELIAC on
other computers is more readily achieved because of the higher
level language which describes the system processor; routines for
compilation of features that are machine independent are already
written; only the machine dependent features, such as input/ out­
put, need to be programmed in machine code.

A misinterpretation that should be clarified is the statement
that NELIAC is self-documenting. The basis for saying that
NELIAC is self-documenting is that the NELIAC processor is
written in the NELIAC language and that the listing of such a pro­
cessor provides an instruction -by- instruction documentation for
the compiler. The area of fallacy lies in the argument that such
a listing is totally self-documenting. Unless the programmer goes
to great pains to write comments within the body of the program,
there should be accompanying definitions for the terms used as an
explanation for the directions of program flow in order that any
programmer may understand the intentions of the original author.
Such measures prevent the necessity of guesswork to understand
flow and term meanings. Hence, it is strongly advocated that any
program written should be accompanied by appropriate documen­
tation. Later examples will illustrate the need for such descrip­
tiveefforts.

ORIGINAL

2. THE NELIAC PROGRAM

APPROACH

As often as not, a man sitting down to a problem which he
must solve by himself will use an intuitive approach in which the
steps to solution are arrived at subconsciously and without calcu­
lation. However, when that man intends to utilize a digital com­
puter for problem solution, he is forcedto examine, plan, and
delimit his approach very precisely.

Initially, he must understand the problem sufficiently to
state accurately the given conditions and the unknowns to be found.
If he cannot do this, no amount of data manipulation will provide
the needed answers.

As a second step, he must describe the problem mathemati­
cally, reducing the original definition to formulae or equations,
thereby isolating the pertinent information. If his problem is not
reducible to simple algebra, he must recognize the applicability
of some numerical analysis scheme.

The third step requires an understanding of digital com­
puters and thus the services of a programmer who must propose
an algorithm or procedure for a computer solution of the problem.
This will probably involve a detailed picture or block diagram of
the algorithm as well as the instruction-by-instruction specifica­
tion of the computer program. For the computer to accomplish

ORIGINAL B2-1

B2-2

the proposed calculations, the programmer might specify the
algorithm in machine code, a language comprised of numbers for­
matted into instructions. To do this, he must know the machine
in detail, a knowledge acquired through special training in the
subject. His final act of preparation for execution is to assign
memory locations to data storage, an elaborate task.

Mter loading the program successfully, the stage is set for
testing the program. Data are applied to the instructions, and the
programmer soon knows if his routine is correctly written. If not,
he must go back, diagnose the troubles, and repair the errors.
When he is successful, the results are returned to the problem's
originator, This is the fourth step.

The last step is an evaluation of the answers by the origi­
nator; if he is satisfied that the program achieved the goal, the
algorithm and program should be documented. If he isn't satisfied,
the programmer initiates step four again.

The reader should understand that since the computer cannot
exercise common sense (should the programmer incorrectly specify
the data or instruct the computer badly), the chances for succes s
on the first few tries are slight indeed. Consequently, the pro­
grammer frequently repeats the entire approach several times.

POL

If the programmer uses a procedure-oriented language (POL)
instead of machine code while going through his approach, he takes
advantage of a number of features which simplify his task.

The first advantage of a POL is that it reduces the require­
ment for a detailed knowledge of digital computers and frees the
programmer to concentrate on other steps in tbe problem approach.
In using the POL, the algorithm may be written in a language akin
to English. Little training is required to become versed in such
a language; in fact, when so desired, the scientist and the pro­
grammer may be the same person.

ORIGINAL

Secondly, the compiler considers names and operations as
written by the programmer. It does all the assignment of addresses
to data and instructions and translates the algebraic expressions
and control statements to machine code.

Thirdly, the language allows comparison between quantities
to decide logic flow; when commanded to do so, it compiles the
statements necessary to create control for multiple executions of
a series of instructions; and it incorporates such facilities as sub­
routines and functions which allow the programmer to specify an
algorithm once and call on (jump to) it from different portions of
his program.

The fourth advantage is that program changes are more
simply made when a routine is in error. The language is easier to
read than machine code; when errors are determined, they are
readily located and the necessary corrections can be quickly in­
corporated in the program with a compilation.

PROGRAM STRUCTURE

An algorithm written for the solution of a problem using the
NELIAC language is called a program. When a program reaches
such proportions that its size does not permit the processor to
compile all of it simultaneously, the programmer must break the
program logically into smaller parts called segments or flowcharts.
For large programs it is usually desirable to separate programs
logically into smaller parts for ease of error-checking. The
NELIAC processor has the capability of individually compiling
these flowcharts and then considering the whole program for gram­
matical errors. The flowchart concept also is useful when a
number of programmers are working on separate segments of a
much larger system, in that grammar checks may be made on
individual flow charts before assembling the over-all program.
For the programmer familiar with other compiling systems, the
term "flowchart" must not be confused with the block diagram or
flow diagram concept used to pictorially outline program logic flow.

ORIGINAL B2-3

B2-4

FLOWCHARTS

In constructing a program, five primary flowchart types are
available for use by the programmer at his discretion; they are:
(a) the flowchart which incorporates data storage allocation and
program logic, called the "process" flowchart; (b) the "declara­
tive" flowchart, which provides for the introduction of machine
dependent routines through a unique definition and call arrange­
ment; (c) the "executive" flowchart, an indicator to the program
entrance; (d) the "correction" flowchart, the segment intended
to replace, before compiling, a flowchart presently a part of the
program; and (e) the "edited" flowchart, the output of a format­
ting run by the compiler on any of the other four flowchart types.

Process Flowchart

The process flowchart (figure B2-1), introduced to the com­
piler with a control number of 5, is made up of two parts: the
dimensioning and the program logic. The fact that either part or
both parts are included in the flowchart is dictated by need and not
by language rules.

The dimensioning part might better be called the "definition, "
since with dimensioning the programmer informs the compiler
that areas are to be reserved by name for specific data, as well as
defining the mode (indicating whether the data are to be integral or
decimal fractions), the predetermined numerical values (if any),
and the type of computer word storage to be used (whether full or
partial word). Output formats and messages are also defined in
dimensioning.

The program logic is the portion of the flowchart or program
in which is found the algebraic approach, statement by statement,
to the problem's numerical solution. Program control, directing
the computer in a path of execution, subroutines, and functions to
do special repeated programmed tasks, and other features that will
be explained later, are also to be found in the program logic.

ORIGINAL

5 (COMMENT I I PROCESS FLOWCHART> ______ CONTROL NUMBER
A, BOXI = 4, CZJT, DIMENSIONING
DIAGONAL (4) = 1, 2, 3, 4 DIMENSIONING
$ END OF DIMENSIONING
TITLE I I PROGRAM LOGIC
ZONE CLEAR, PROGRAM LOGIC
ZONE CLEAR I I BEGIN PROGRAM LOGIC

A + BOX 1 =) CJZT, PROGRAM LOG IC
($ CLEAR CELLS LS CJZT GR , PROGRAM LOGIC
LS DIAGONAL GR , $), END PROGRAM LOGIC

____________________ ENDOFFLOWCHART

Figure B2-1. Process flowchart, example.

Declaration Flowchart

The declaration flowchart (figure B2-2), indicated by a 6
(control number), enables the programmer to assign a NELIAC
name to an absolute (machine) address, to define input/output
functions, and to define desired machine code procedures. The
purpose of the procedure written in machine code is to avoid the
necessity of programming a required routine several times in
NELIAC; a hand-coded procedure is often more efficient as well.

6 (COMMENT I I DECLARATION FLOWCHART> CONTROL NUMBER
CLEAR CELLS = LS MACHINE {7(.H(1(1 OCT (1K) GR __ DEFINITION

LS MACH INE {l6(13(1 OCT (1K) GR __ DEFINITION
--__________________________ ENDOFFLOWCHART

Figure B2-2. Declaration flowchart, example.

ORIGINAL B2-5

B2-6

Executive Flowchart

Through the use of the executive flowchart (figure B2-3),
indicated by control number 9, the programmer provides an en­
trance (indicates the first instruction to be executed during actual
operation) to his program. Another reason for using this type of
segment is in the field of program debugging (error resolving).
With such a tool the programmer can force a flowchart execution
sequence and cause diagnostic checks to be made without altering
his process flowchart.

The executive flowchart has all the dimensioning and pro­
gram logic capabilities of the process flowchart. In the absence
of such a flowchart, the first executable process flowchart be­
comes the entrance.

9 (COMMENT I I EXECUTIVE FLOWCHART> _____ CONTROL NUMBER
$ END OF DIMENSIONING
ZONE CLEAR, ($ CALL NELOS LS , $) PROGRAM LOGIC

_______________________________ END OF FLOWCHART

Figure B2-3. Executive flowchart, example.

Correction Flowchart

A correction flowchart (figure B2-4), having a control number
of 8, serves to modify an existing flowchart by deleting the old and
substituting the entire corrected flowchart specified as the next
flowchart.

8 (COMMENT I I CORRECTION FLOWCHART) CONTROL NUMBER
15 NUMBER OF FLOWCHART TO BE REPLACED
_ - - - - FLOWCHART SEPARATOR
5 (COMMENT I I CORRECTED PROCESS FLOWCHART #15L CONTROL NUMBER
$ END OF DIMENSIONING
_______________________ ENDOFFLOWCHART

Figure B2-4. Correction flowchart, example.

ORIGINAL

Edited Flowchart

An edited flowchart (figure B2-5), which is requested by a
programmer (i. e., is not automatic), is a formatted, somewhat
diagnostically checked output flowchart which will come out in any
of three forms depending upon the portion of the NELIAC processor
called: printed copy, cards, or magnetic tape. The primary use
of the edited flowchart is in helping the programmer find grammat­
ical errors through use of the formatted (to conform with logic
flow intentions) output to search for errors in procedure specifica­
tion. An edited flowchart output from any of the other four flow­
chart types may be requested. The edited flowchart, still at the
NELIAC language level, must nonetheless be compiled before
execution.

f1 (COMMENT I I EDIT PROCESS FLOWCHART> ____ CONTROL NUMBER
A (1(1(1), X DIMENSIONING
$ END OF DIMENSIONING
1 =) J, 19 =) X, PROGRAM LOGIC
REPEAT I I PROGRAM LOGIC
A ($ J $) + X =) A ($ J+S(1 $), J+1 =) J, PROGRAM LOGIC
J = 12 I I STOP. REPEAT. PROGRAM LOGIC
STOP I I PROGRAM LOGIC
__________________ END OF FLOWCHART

Figure B2-5. Edit flowchart, example.

ORIGINAL REVERSE SIDE BLANK B2-7

3. NAMES

GRAMMAR OF NAMES

Neliac Symbo I Set

There are 62 characters in the NELIAC symbol set, includ­
ing all the numbers ~ through 9, the entire alphabet, and some 26
special characters. Letters and numbers together are used in the
construction of names, numbers alone are used for data, and the
special characters serve primarily as punctuation and operation
symbols.

No differentiation is made between upper and lower case
letters by the NE LIAC compiler,' but the programmer may use
both cases interchangeably for greater readability. In other words,
the NELIAC names, "EXCHANGE," "exchange," and "ExcHanGE"
are equivalent. This text for its examples, uses all capital letters
since in a card system no differentiation between upper and lower
cases is possible.

The early versions of NELIAC were built with the Friden
Flexowriter as an input/output device. Some of the punctuation
characters of the symbol set are not available on card keypunches
and high speed printers and, consequently, concessions have been
made in the card NELIAC system to these character restrictions.
The conversions necessary are shown in figure B3-1.

ORIGINAL B3-1

B3-2

FLEX CARD FLEX CARD FLEX CARD FLEX CARD

EQ
; $ } END = or ~ GQ

=

: II x * ~ NQ n AND
S
Y
M
B [($ - =) < LS U OR
0
L
S

t] $) ** > GR 8 OCT

{ I
, () + - /

BEGIN I s LQ INTERCHANGEABLE

SYSTEMS

Figure B3-1. NELIAC character set conversion.

Name Formation

A NELIAC name is any combination of letters and numbers
so long as the first character is a letter. Blanks imbedded in the
name are ignored by the NELIAC processor, enabling the program­
mer to make his long names meaningful by spacing. The first
fifteen nonblank characters constitute a name; characters beyond
those fifteen are not compiled, but a programmer may still refer
to the long name elsewhere in his program.

ORIGINAL

Index Register Variables

The first exception to these rules of formation are the
index register variables, which are identified by the single letters
I, J, K, L, M, N. (This does not prevent the use of names start­
ing with one of these letters 0) These six variables are not available
for use as NELIAC names, but are employed as counters within the
program logic. Each letter is associated with the machine index
registers Bl through B6, respectively; use of an index register
for counting generates a more efficient object program than if
other NELIAC names are utilized for the same purpose. An index
register is only half a word long (AN/USQ-20: 15 bits) 0 The pur­
pose of the index register variables will become more apparent
later in the text. Other single letters, however, are valid
NELIAC names.

Operators and Comparison Symbols

The only other exception to the general rule is the use of
names which are identical to the card-NELIAC-language operators
and comparison symbols. These include BEGIN, END, EQ, NQ,
LS, GR, LQ, GQ, AND, OR, and OCT. Wherever used, a space
(or blank card column) must precede and follow the operator or
symbol. The programmer must not use these letter combinations
for purposes other than those for which they were intended; other­
wise, he may anticipate unexpected compilation results.

Following are a synopsis of the formation of names (table
B3-1) and a list of examples of names (table B3-2).

ORIGINAL B3-3

B3-4

TABLE B3-1. NAME FORMATION CONSTITUENTS

a. A combination of letters and numbers
b. First character must be alphabetic
c. Imbedded blanks have no significance
d. Maximum significant length = 15 characters; longer name

possible
e. Single letters; except I, J, K, L, M, N, may be used; ex­

ceptions reserved for register variables
f. Operator and comparison symbols may not be used

TABLE B3-2. EXAMPLES OF NAMES

a. A, legal; single letter
b. BOX 1, legal; letters, imbedded blank,

number
c. NONSENSICAL PHRASE legal; only first 15 considered
d. cummings legal; lower case permissible
e. 1C74 illegal; starts with number
f. C2$41 illegal; contains symbol
g. I illegal; index register variable
h. BEGIN illegal; operator
i. LS illegal; comparison symbol

ORIGINAL

The Purposes of a Name

A name serves as an identifier or tag within the bounds of the
algorithm. When the programmer uses a name in his program, it
is linked to an address or a series of addresses in computer storage
by the processor during compilation. So far as the programmer is
concerned, however, this area in core continues to be addressed
mnemonically.

If a name is defined in the dimensioning portion of a flow­
chart, it is called a noun. Nouns provide a tag for storage which
will contain variable (ever-changing) information or data.

N ames assigned to routines in program logic are lmown as
verbs, since they are associated with the action portion of the flow­
chart. If a programmer wishes to jump from some point in his
program to a particular routine, he indicates by specification of a
verb and punctuation that the jump to a particular location is in­
tended.

Meaningful Names

The programmer is urged to use NELIAC names which
represent the literal meaning of his data or logic intentions. For
example, in handling data conc~rning rocket fuel, the name
ROCKET FUEL would be a sensible choice. Or, a routine to
clear an area of computer core to zeros might be identified more
easily by calling it ZONE CLEAR.

An effort in this direction pays rich rewards. The amount
of documentation for a weU-designed algorithm is greatly reduced
by an appropriate choice of names.

ORIGINAL B3-5

B3-6

NAME PRECEDENCE

The "name list" is a table maintained by the NELIAC pro­
cessor as an inventory of names contained in a NELIAC program.
As new names are encountered, they are added to the list.

There are three distinct times when the processor deletes
or purges names from the name list: at the completion of a func­
tion or subroutine definition, at the end of a flowchart, and after
the last flowchart or upon program completion. The timing of
such purges implies that some names can be more localized than
others, which is the case. When it is considered that the size and
importance of subroutines, flowcharts, and programs increase in
that order, this may be more clear.

The purges prevent the name list from becoming too long.
As a result, additional subroutines, functions, and flowcharts can
be processed in any given compiling run. More names can be
temporarily stored, assigned addresses, and purged from the
name list before list overflow than would be the case if all entries
were additive and never subtractive. Another outcome of this
differentiation or precedence among names is that a purged name
list is a shorter table to search during compilation. This re­
presents a sizable savings in processing time, since a search of
the list is usually made several times for each NELIAC statement
compiled.

All NELIAC names are divided into three classes: global
names, local names, and function or subroutine names. The
global class consists of those names which mnemonically tag ad­
dresses referred to throughout the program. The local names are
peculiar to only one flowchart of the program. The subroutine or
function names are used only in the definition and call of these
specialized routines. Further discussion of these classes follows.

ORIGINAL

Global Name

A global name may be referenced from any flowchart in the
program. It is sometimes designated as a "permanent" name be­
cause throughout the compiling run the name is never purged
from the processor's name list. The programmer must be care­
ful to avoid defining the name for more than one purpose as this
sort of error results in an unsuccessful compilation.

Local Name

The local class of name is distinguished by its unique for­
mation: one character of the name within the first 15 nonblank
characters is an absolute sign (flex system) or apostrophe (card
system); L'OCAL NAME is an example. This is the exception to
NELIAC rules concerning the inclusion of symbols other than
letters and numbers in name formation. When defining local
nouns, the apostrophe is necessary only in the dimensioning portion
of the flowchart. For local verbs, their first occurrence in the
program logic serves as an indicator to the compiler. Additional
specification of this class by use of the apostrophe is unneces­
sary and represents wasted time.

The local name can only be called or referred to from with­
in the flowchart which contains its definition. In other words, a
local name is uniquely identified with a specifiC flowchart.

Otherwise known as a temporary name, the local noun or
verb is purged from the name list when the processor enCOlnlters
a double period during compilation. This prevents double address
definitions for the same name and reduces ambiguity.

ORIGINAL B3-7

B3-8

Subroutine or Function Name

This class of names is available for reference only during
the definition of the subroutine or function. Upon encountering the
right brace or END as punctuation, signalling definition comple­
tion, the need for these names terminates, and they are deleted
from the name list. More information is presented on this class
of names in the discussion of subroutines and functions.

Joint Use

All three NELIAC name classes may be used within the
same program; furthermore, because of the way the NELIAC pro­
cessor handles names, a programmer may use the identical name
for all three purposes in one program. For example:

5 (COMMENT' 'FIRST PROCESS FLOWCHART)
AJAX, a'jax, BAKER, blaker, Z
$
2=) ajax + baker =) Z,
Z= 2' 'GO (ajax, baker $ Z) $$ STOP.
GO (Ajax, Baker $ z)' ,

BEGIN Ajax + Baker =) z, END ,
STOP' ,

5 (COMMENT' , SECOND PROCESS FLOWCHART)

$
8 =) AJAX + BAKER =) Z

The example has been formatted to point out precedence;
ordinarily, with the exception of the local name definition (which
requires an apostrophe), all names are written to look the same.
In the flowcharts above, AJAX represents a global name, a'jax is
a local name, and Ajax is a name of functional precedence. The
first two are defined in the dimensioning portion of the initial flow­
chart; the last is prescribed in the function definition.

ORIGINAL

To illustrate the result of name precedence in the example
program, when any of the defined names are used in the program
logic of either flowchart, the use or absence of capital letters in­
dicates their precedence. In the first flowchart where AJAX,
a'jax and Ajax are all defined, employment of that four letter name
within the program logic but external to the function definition re­
sults in local name precedence, here indicated by lower case
letters. Use of the name in the second flowchart invokes global
precedence since a local name of the same spelling has not been
defined there.

NOUNS

Noun Usage

As indicated earlier, a noun is one of two forms a name may
take. The NELIAC programmer uses a noun to reserve computer
storage for data he anticipates inputting, manipulating and output­
ting. He specifies his storage intentions in the dimensioning por­
tion of the flowchart. The speCification may include one or more
of the following parameters to fully describe the programmer in­
tentions: the mode; the size of storage to be allocated; the form
of the array if more than one value is to be stored simultaneously;
any initial values; the signs of the values; the input and output for­
mats of variable data fields; and any partial computer word stor­
age. Each of these topics will be considered in this section.

All nouns must be defined somewhere within the boundaries
of the NELIAC program. For maximum object program efficiency,
nouns should be speCified before their use. Only named full com­
puter word storage (and a type of noun to be considered later --
a literal) may be defined after a reference in program logic.

It should be noted that index registers, although not names
or nouns, are defined automatically by the NELIAC processor,
and further specification is not required.

ORIGINAL B3-9

B3-10

Mode

All computational efforts are divided into two types: fixed
point and floating point algebra. The basic differences between
the two are discussed in the following paragraphs.

FIXED POINT ALGEBRA

When fixed point algebra is used to express data for com­
putation, the programmer does so with the knowledge that he is
manipulating integers or whole numbers, and that no fractions are
involved. This method of data handling is similar to the way in
which people count, number pages, score a basketball game, and
do many other daily arithmetic operations.

So far as fixed point algebra concerns programmers, these
numbers are treated as if there is a hypothetical radix point to the
far right of all significant numbers (e. g., we imagine 236 to be
236.). Throughout our calculations with these numbers, that radix
point (decimal or octal) will not move from its right-hand position;
in this sense, these numbers have a "fixed point. "

Addition, subtraction, and multiplication with fixed point
numbers present no problem; however, division does. When
dividing one integral number by another, and the dividend is not an
exact multiple of the divisor (dividend/divisor = quotient), the
dividend is reduced to a nonzero remainder. In fixed point algebra,
this remainder is ignored; and although the quotient may not be
the completely correct answer, it is accepted as being close
enough for use with the algorithm. Another way of saying that the
remainder is ignored is to employ the word "truncation"; any por­
tion of the dividend remaining after integral division is truncated
or cut off.

Another simple trick is "rounding" an answer to the nearest
whole number, and NELIAC fixed point algebra ignores this trick,
too.

ORIGINAL

ORIGINAL

Some sample fixed-point-algebra calculations follow:

Addition:
Subtraction:
Multiplication:
Division:

21 + 42 = 63
967 - 822 = 145
85 x 131 = 11135
5/2 = 2; 11/3 + 22/3 = 10

FLOATING POINT ALGEBRA

When one divides a pie among guests, computes an income
tax, or buys a partial share -of stock, fractions play an important
role in each calculation. Since numerical analysts have chosen to
do so and because the digital computer is so designed, these frac­
tions are expressed decimally when using a computer.

When, using pencil and paper, a person solves an arithmetic
problem having decimal fractions, experience dictates the proper
positioning of the decimal point in the answers. For computers,
experience comes from programming; consequently, computer
designers have resorted to the use of engineering notation for
floating point numbers internally in order to properly accomplish
the desired calculations and positioning. During calculations, in­
termediate results are shifted to maintain a consistent form.

Numbers in ordinary floating point notation are expressed
as a whole. Engineering notation for a floating point number con­
sists of three parts, a mantissa, a base and a characteristic.

Ordinary notation: - 1234.567890
+4

Engineering notation: - .123456789 x 10 . ,~ ~

mantissa base characteristic

A mantissa contains the significant digits of the number,
with the decimal point left-justified (to the left of the most signi­
ficant digit). This is a normalized mantissa. A base is the
number system under consideration; in this example the decimal
system is used, hence the base equals 10. In the octal system,

B3-11

B3-12

base equals 8; in the binary system, base equals 2. A character­
istic is that power to which the base is raised to give a multipli­
cand' which when multiplied by the mantissa, results in the float­
ing point number of ordinary notation. Both notations, ordinary
and engineering, are used in NELIAC.

The rules of truncation and rounding for fixed point algebra
mayor may not apply to floating point calculations, although not
entirely in the same sense as in the fixed point mode. Truncation
occurs when the space allotted to a mantissa or characteristic is
exceeded; no heed is paid to significance of truncated digits. (Rules
for preventing improper truncation will be presented later).
Rounding in any case never occurs. Consider 3.0 7- 16.5 =

0.18181818... This calculation if delegated to machine solution
would be carried out until truncation, and if the last digit were a
one, and the next digit beyond allotted mantissa space were to be
an eight, the last digit would remain a one.

COMPARATIVE MERITS OF MODE

There are advantages for and against each mode of algebra.
Fixed point algebra requires less core space; only one computer
word is reserved for each number. All indexing is done in this
mode since fractions are meaningless for such a purpose. A dis­
advantage of the fixed point mode is that it is in general inaccurate
for nonintegral calculations; scaling (multiplying or dividing by
the radix) of operands may be used to achieve more precision, as
shown in the following example:

To accomplish a division of 15 by 64 with two places of
accuracy, (a) scale 15 up by 1000 = 15000; (b) integrally divide
15000 by 64 = 234; (c) for two places of accuracy, add 5, then
truncate the last digit, leaving 23. This is the answer in the
fixed point mode, taking into account that it is 100 times too large.
(If the calculation had been done in floating point, the answer
would be 0.23.)

ORIGINAL

As for floating point algebra, it requires more core space;
for each value, a word must be set aside for the mantissa and one
for the characteristic. However, as mentioned in the preceding
example, this mode allows greater accuracy, without the require­
ment of scaling. Another point in its favor is the fact that it is far
more useful in expressing scientific data and problems, which is
why we have a NELIAC, anyway.

Constants

ORIGINAL

When a value is invariable during all executions of the pro­
gram, it is a constant. A NELIAC programmer will encounter a
constant in two forms. The first form is the initial value, a con­
stant assigned in dimensioning or early in the program logic to
preset a noun to a specific number, such as H = 47, or -23 =) R,.
The value of the noun may be modified by program logic, but when
an entrance is made to the beginning of the program (as in a sub­
sequent execution), the initial value again presets the noun. The
second form is the expression operand, a number which is part of
a NE LIAC expression and is not changed during execution, such as
A * ~ =) B.

Constants in NELIAC may be written in either mode: fixed
point or floating point.

FIXED POINT CONSTANTS

A fixed point constant is an association of numbers in either
the decimal or the octal number system. This mode of constants
is stored in one computer word (3 ~ bits in the AN /USQ -2 0) . Its
magnitude range decimally is ±536, 87~, 911 (upper bit is reserved
for a sign, and 2 29_1 possible nonzero values as well); octally
the range is ± 37777 77777. For numbers larger than the maximum

B3-13

B3-14

specifications, the programmer may expect trouble; the minimum
consequence would be truncation of the least significant (most
right-hand, nonzero) digits. The octal specification must include
the octal sign: OCT (space OCT space; e. g., 213 OCT). In the
absence of the octal sign, the constant is assumed to be decimal.

Fixed point constants must be integral in nature; no frac­
tions are allowed, and consequently no radix point. Constants in­
volve only numbers, signs, and blanks (which are ignored by the
compiler). No alphabetic or special symbol information may be
considered part of a number. The sign of a fixed point constant is
assumed to be positive if the sign is physically absent in the speci­
fication. Otherwise, it may be positive or negative, as indicated.

Following are a synopsis (Table B3-3) and a list of examples
(Table B3 -4) of fixed point constants.

TABLE B3-3. CONSTITUENTS OF FIXED POINT CONSTANTS

a.

b.
c.
d.

e.

a.
b.
c.
d.
e.

f.
g.

h.
i.
j.

Numbers and blanks only; no letters or special characters
(other than ± or OCT)
Whole number; no fractions or radix point
Sign may be + or -; absence of sign indicates positive
May be decimal or octal; OCT (space OCT space) after
number indicates octal; no indicator implies decimal
Magnitudes: ±536879'911 decimal

±37777 77777 octal

TABLE B3-4. EXAMPLES OF FIXED POINT CONSTANTS

-500000000 legal; negative decimal constant

0 legal; zero

497 legal; positive decimal constant

+17 OCT legal; positive octal constant

-626 OCT legal; negative octal constant

-500,000,000 illegal; special symbols

-600000000 illegal; exceeds magnitude
allowed

-43B7 illegal; letters not permitted

+27. illegal; decimal point
123459 OCT illegal; not an octal number

OmGINAL

FLOATING POINT CONSTANTS

All fractional values are expressed in NELIAC by the float­
ing point constant. As discussed earlier, numbers of this mode
require two computer words for storage, one word each for the
characteristic and mantissa. The range in magnitude of the char­
acteristic is ± 268,435,455 (sign bit, overflow bit and 228_1
possible nonzero values). The range of the mantissa is ± 536,
870,911, with the storage oriented identically as that for an equiv­
alent fixed point number. NELIAC is capable of handling only dec­
imal floating point numbers.

Floating point numbers, as we noted previously, are written
in two forms: the ordinary notation and the engineering notation.
Each form in NE LIAC has its idiosyncrasies; both have common
elements. These common elements will be covered first.

Floating point constants involve only numbers, signs, blanks
(which are ignored by the compiler), and decimal points (optional
in the dimensioning specification of engineering notation for whole
numbers) 0 Special symbols and letters may not be part of a con­
stant. Unsigned constants are considered positive; signed numbers
are considered as indicated. All numbers less than one must
have a zero before the decimal point.

In the ordinary notation, the decimal point is mandatory.
The NELIAC specification for this notation consists of only a man­
tissa: a sign, an integer or integers, a decimal point, and a dec­
imal fraction, if necessary (e.g., -002735169400). The significant
digits (27351694) may not exceed the magnitude range of the man­
tissao This notation may be used in both the dimensioning and the
program logic portions of the NELIAC flowchart.

In the engineering notation, constants are comprised of a
mantissa and a characteristic. The general NELIAC form for this
notation is "± MANTISSA * ± CHARACTERISTIC, " where the man­
tissa consists of integral and fractional parts separated by a dec­
imal point.

ORIGINAL B3-15

B3-16

When specifying whole numbers, a decimal point is not man­
datory. For example, the number +24. ~ may be expressed in
NELIAC in many ways, several of which follow:

a. +24.~*~
b. +24*~
c. +24~*-1
d. +24~.~*-1
e. +~. 24*2
f. 24*~

The first case (ltalt) is the basic form. Case Itb" is identical to
"a" except for the absence of the decimal point; the omission is
permitted because the number is integral (no fractional part).
Cases TIc, " TId, " and "e" illustrate the fact NELIAC speCifications
of such a number need not be consistent with regards to decimal
point justification. A programmer may locate the decimal point
anywhere in his mantissa providing his characteristic is changed
accordingly so as to not modify the given value. Internally, how­
ever, the decimal point of the floating point constant is still justi­
fied fully to the right or left (depending upon machine character­
istics). The last case ("f") illustrates the omission of sign from
the second case.

The significant digits of the mantissa may not exceed the
maximum magnitude. A similar restriction is placed upon the
characteristic 0 The engineering notation may be used in the di­
mensioning portion of a flowchart only.

Following are a synopsis (table B3 -5) and a list of examples
(table B3 -6) of floating point constants.

ORIGINAL

TABLE B3-5. CONSTITUENTS OF FLOATING POINT CONSTANTS

ORIGINAL

a. Numbers and blanks only; no letters or special characters
(other than ±, *, or .)

b. Ordinary notation, mantissa: sign, integers, decimal point
and decimal fractions

c. Engineering notation, mantissa, and characteristic: sign,
integer (s); decimal point and decimal fraction of mantissa
may be omitted in specification of whole numbers

d. Signs of mantissa and characteristic may be + or -; absence
of sign indicates positive

e. Decimal floating point constants only
f. Magnitude range:

+536, 87~, 911. ~ x 10 ± 268,435,455 \" ,L ,
mantissa characteristic

g. Constants less than one require a zero before decimal

TABLE B3-6. EXAMPLES OF FLOATING POINT CONSTANTS

a. ~. 0, 0.0*0, +0.~, +0*0 legal; zeros
legal; variety b. 5.23, 52.3*-1, 0.523*1,

0.523*+1, +5.23*~,
c. -5~0000000*- 1~0000000, legal; small constant

legal; fractions d. -0.46325786, ~.000000~~~004

e. 0
f. -1,~00.0
g. 2.3*-75~236429

h. -4.0*7.6
i. 7.7*77 OCT
j. -.693
k. +46.7-8

illegal; fixed point number
illegal; special symbol
illegal; characteristic too large
illegal; characteristic is floating point
illegal; octal floating point
illegal; missing leading zero
illegal; missing asterisk

B3-17

B3-18

Variables, Whole Word

A variable is an area in core set aside to maintain data of a
varying or nonconstant nature. The values assigned to a variable
may change during execution or between executions of a particular
program.

There are two patterns of storage provided by the NE LIAC
language: whole word and partial word. A discussion of partial
word storage will come later. Whole word storage implies that
the smallest unit of storage is the computer word (30 bits in the
AN/USQ-20). As mentioned, the fixed point mode requires one
word per constant. The floating point mode, however, requires
two words to express a similar value. In both modes, no matter
how small or how large the value, the number is stored in some
multiple of the word.

A whole word variable, then, is a noun used to tag one or
more words in core reserved for storage of fixed point or floating
point data.

The mode of a variable is specified by punctuation in the
dimensioning section of the NELIAC flowchart. If a properly
formed NELIAC noun is immediately followed by a comma, the
punctuation indicates that this variable is fixed point. Index reg­
ister variables, I through N, may be dimensioned in a flowchart
as fixed point variables, but such dimensioning serves no purpose
since the NELIAC processor automatically provides definition for
these variables. A noun employed for fixed point whole word stor­
age may be referenced in program logic before being dimensioned
elsewhere in the program.

If a NELIAC noun is immediately followed by a period, this
indicates that the variable is reserved for floating point data.

Following are a synopsis (table B3 -7) and a list of examples
(table B3-8) of whole word variables.

ORIGINAL

TABLE B3-7. CONSTITUENTS OF WHOLE WORD VARIABLES

a. Variables are identified by properly formed NELIAC nouns
b. Fixed point whole word nouns need not be dimensioned be­

fore use; must be dimensioned somewhere in program
c. Fixed point variables: noun followed immediately by comma
d. Floating point variables: noun followed immediately by

period
e. Index registers should not be dimensioned

a.
b.

c.
d.

TABLE B3-8. EXAMPLES OF WHOLE WORD VARIABLES

ABCZ,
ABCZ.

3LTD
1.

legal; fixed point variable
legal; floating point variable

illegal; improper NELIAC noun
illegal; register variables should
not be dimensioned, definitely not
as floating point

CHANGING MODES OF VARIABLES

When a variable is dimensioned as floating point, and a fixed
point constant is moved to the area in core reserved for that vari­
able, the number is converted to a normalized floati!lg point con­
stant before storing it. The converse holds true for the floating
point constant intended to be stored in a fixed point variable. How­
ever, any fractional portion of the mantissa is truncated before
storage. For example:

a. +86.793 stored in a fixed point whole word variable be­
comes +86

b. -126 stored in a floating point whole word variable be­
comes the equivalent in core of -0. 126*3

ORIGINAL B3-19

B3-20

DIMENSIONING WHOLE WORD VARIABLES

In the foregoing, information necessary for a preliminary
discussion of dimensioning has been presented. The purpose for
the next brief discourse is to help tie together constants and
variables as used in dimensioning, and to introduce further topics
which could not be discussed without such prior discourse.

As stated previously, dimensioning is to inform the compiler
that areas are to be reserved by name for specific data, as well
as to define the mode, initial values (if any), and the storage pattern
for whole or partial words. Dimensioning then, serves two pur­
poses: it assists the compiler in storage allocation, and it assists
the programmer by putting initial values in specific reserved
areas.

By dimensioning a noun in NELIAC, the programmer indicates
a need for storage. The amount of storage that is reserved de­
pends upon that follows the noun. In the absence of an initial value,
a comma indicates fixed point, and one computer word is reserved
for one constant; a period indicates floating point, and two com­
puter words are reserved for one constant. In either case, the
value stored by the compiler in the variable is exactly zero.

To store a nonzero initial value, an equal sign and the value
and a comma follow the noun. For example:

SHARKS = +47.67*-2,
JEM = -114,
PART = 10'9.83,

No matter what the mode of the initial value, not that it is followed
by a comma. The mode of the variable is determined by that of the
initial value. Once the variable is dimensioned, it is not possible
in program logic to change its mode; any value stored later in that
variable will conform to the mode already specified.

ORIGINAL

Several fixed or floating point nouns may share the same
variable definition. For example, with the following dimensioning
statement, the fixed point variables A, B, and C may all jointly
occupy the same computer word:

A" B" C,

All are preset to zero. The floating point variables XRAY, YAN­
KEE, and ZULU are defined at the same locations by the following:

XRAY' , YANKEE' , ZULU -1.47,

Each is preset to the initial value. The double apostrophe acts as
the connector in any multiple variable specification.

Bitfield Algebra

The format of data storage in digital comp~ters is deter­
mined by a system called a code. All computer logic circuitry is
based on one code or another. In general, the differentiation be­
tween machine types is the manner in which instructions and data
are handled.

There are several different codes in common use. The most
widely used are the character (binary coded decimal or alphanu­
meric) and the binary codes. The lowest denominator of storage
in a character machine that may be addressed is the character it­
self, while in a binary computer the data are manipulated in full
word increments. Most binary computers offer in their machine
language the additional capability of handling data one bit at a time.

Few procedure oriented languages for binary digital com­
puters offer the programmer the capability of handling the con­
tents of computer words a bit at a time; NE LIAC, however, is
atypical in this respect. The significance of this capability will be
discussed in the next paragraphs.

ORIGINAL B3-21

B3-22

PACKING

When small positive numbers are stored in whole computer
words, zeros are employed to fill the remaining binary digits.
Consequently, multiple entries of low magnitude data require
large storage areas primarily full of zeros. To utilize the com­
puter core efficiently, a method must be available for the careful
programmer to pack and unpack large amounts of data in a small
amount of core.

NELIAC provides this packing and unpacking capability.
Packing involves the storage of data side-by-side, with as little
insignificant information as possible (preferably none) stored with
the important data. For example, if three variables are to be
dimensioned, and each variable has a significant (nonzero) length
less than half a word, the programmer might consider making a
composite number out of these values; such a packing should re­
quire a maximum of two whole words. Consider the case of A =

5, B = 146, C = 2479. Since the numbers are stored internally in
the octal number system, before creating a composite value these
should be converted: A = 5, B = 222 OCT , C = 4657 OCT. The
composite value might be G = 465700'2225 OCT. Note that this val­
ue is considerably less than the maximum of 77777 77777 OCT .

UNPACKING

As might be expected, unpacking involves the capability of
selecting certain contiguous hits within the specified word and
assigning them to another variable for additional manipulation or
output. This operation would follow when a programmer for pur­
poses of efficiency had packed many variables into a few and was
now ready for separation of the values into their respective
variables.

ORIGINAL

As an example, take G (defined above under "Packing") and,
is program logic, divide the word. This requires the use of the
partial word variable to be discussed shortly but which for immed­
iate purposes must be introduced now. If G = 46570'0'2225 OCT and
the word size is 30' bits, each octal digit takes 3 bits, the bit posi­
tions being numbered 0' through 29 in a right to left direction. Con­
sequently, to obtain 4657 OCT to restore C, the statement is made
that G (18 =) 29) =) C. This commands the computer to take bits
18 through 29 of G and store them in C. To restore A and B,
G (3=) 11) =) B, and G (0' =) 2) =) A would be written.

DISCUSSION

Operations in program logic which involve bitfield algebra
generate more machine language instructions than the equivalent
whole word operation. In short, there is what is known as a
"tradeoff" --efficiency in storage vs. efficiency in instructions.
The tradeoff becomes advantageous to the programmer when there
are long lists or tables of small values to be defined. (These
elements are discussed later within the confines of this section.)

Certain computers (including the AN/USQ-20') have the capa­
bility of handling half-words with the same facility as whole words.
Small numbers, then, may be stored two to a register, represent­
ing a reduction by half in dimensioned storage. The machine code
instructions generated from program logiC to handle these half
words are no less efficient than the equivalent instructions to
handle whole words. Therefore, l!Q tradeoff in half-word algebra
is necessary. Where it can be used, this form of data handling is
advantageous.

Variables, Partial Word

The term "partial word storage" defines the fact that the
smallest unit of storage is something less than a full computer
word: a bit, a series of bits, or a half word. With this facility,

ORIGINAL B3-23

B3-24

the programmer need only reserve a portion of a register for his
variable; Le., he may store several variables within another vari­
able. He may also select certain contiguous bits from a full word
variable for separate manipulation. Several examples of these
tools have been discussed in the previous paragraphs. Now the
mechanics of partial word variables will be examined.

An important aspect of bitfield algebra that the programmer
must keep foremost in mind is that any partial word data are of
necessity positive fixed point constants. A number stored in or
extracted from a partial word must be assumed to be an unsigned
integer. The assumption holds since only with sign extension
(moving the sign bit with the constant) can a negative number be
properly signed, and only with two full words (not a partial word)
maya floating point number be represented.

All partial word variables must be defined before use. This
rule necessitates dimensioning the variable somewhere in the pro­
gram prior to involving it in a logic expression. When employing
a partial word variable in an expression its formation is V ARI­
ABLE (LOWES~BIT =) HIGHEST BIT); e.g., ASIAN (14 =) 26).
When specifying a single bit, the lowest and highest bit are iden­
tical; e.g., ASIAN (14 =) 14). The symbol "=)" between bit speci­
fications means "through." Bitfields must be within a single word;
there can be no partial word variables which cross the imaginary
line dividing computer registers. Implicit in this restriction is
the statement that a smaller number always precedes a larger
number in partial word specifications.

The programmer must insure sufficient space in his bit­
field definitions for the data he intends to store. When an attempt
is made to store a number too large for the definition, a part of
the number (the most significant or leftmost digits) will be trun­
cated.

Partial word variables may be dimensioned by enclosing the
bitfield definitions between BEGIN and END punctuation symbols.
A maximum of one computer word is dimensioned between symbols.
For example:

BEGIN ECHO (23 =) 27), END,

ORIGINAL

Examination of this particular example reveals the fact that an
entire word of zeros will be reserved for ECHO whether or not a
bitfield specification is made in the variable definition.

If, however, a clever programmer wishes to use several
variables in one word, he may so define them with the understand­
ing that bitfields of variables may overlap. To illustrate:

BEGIN ECHO (23 =) 27), XYLD (24 =) 28),
ANTE (0 =) 4), END,

He has packed three partial word variables in one word.

Multiple variable specifications in dimensioning incorporating
partial word variables are possible as in the following example:

ALPHA r r BANG' , BEGIN CHECK (23 =) 29), END,

Here CHECK is defined as the 23rd through 29th bits of the coinci­
dent variables ALPHA and BANG. All three variables are con­
sidered to be defined by this one statement. No multiple variable
specification is allowed within the punctuation BEGIN and END;
i. e., A ' , BEGIN B ' , C (~ =) 1), END , is not permitted.

It is also possible to define several different partial words
within ALPHA and BANG provided that the bitfield specifications
are enclosed between BEGIN and END. For example:

ALPHA' , BANG' r BEGIN C (~ =) 4), D (3 =) 9),
E (23 =) 23), END,

Notice in this example that if more than one bit of information is
stored in either ALPHA or BANG, it is not possible to retrieve
more information than that from the variable E. Note, also, that
storing a value in D does not imply it is retrievable from variable
C (although it is from ALPHA or BANG).

Consider a multiple variable specification like the following:

B ' , BEGIN A (6 =) 11), END,

ORIGINAL B3-25

In the following, A is defined as bits six through eleven of a word
named B:

A

If the variable A is involved in an expression,

A (~ =) 2) =) D,

bits zero through two of A are being stored in variable D; this is
the equivalent of storing bits six through eight of B.

Index registers also may be treated as partial word variables,
although they may not be so defined in dimensioning. In program
logic, the last five bits of index register five might be stored in a
variable HOLD:

M (1~ =) 14) =) HOLD,

It is emphasized again that a partial word variable must be a
valid NELIAC noun.

Following are a synopsis (table B3 -9) and a list of examples
(table B3-10) of partial word variables.

TABLE B3-9. CONSTITUENTS OF PARTIAL WORD VARIABLES

a. Variables are identified by properly formed
NELIAC nouns

b. Only positive fixed point data may be stored
or extracted

c. Must be defined before use in a flowchart
d. Bitfields specified are contained in a single

word
e. Bitfield: VARIABLE (LOW BIT =) HIGH

BIT)
f. Single bits: VARIABLE (BIT =) BIT), as A

(l~ =) l~)

g. Multiple partial word specifications possi­
ble, but variables containing bitfields are
enclosed by BEGIN and END

h. Index registers may be handled as partial
word variables

B3-26 ORIGINAL

TABLE B3-10. EXAMPLES OF PARTIAL WORD VARIABLES

a. BEGIN D35K (23 =) 23), END, legal; single bit,
dimensioning

b. BEGIN TEST (~=) 27) = 146, END, legal; 28 bits,
dimensioning

c. A" B " BEGIN e (19 =) 26), END, legal; multiple vari­
ables, dimensioning

d. I (8 =) 14) =) ALPHA (13 =) 19), legal; partial word
phrase, program
logic

e. 847 =) XYZ (2~ =) 29), legal; partial word
phrase, program
logic

f. 9DELT (14 =) 15), illegal; improper
NELIAe noun

g. A' ZAHJ (15 =) 9), illegal; bits limits in
wrong order

h. 14. ~7 =) HELP (1 =) 13), illegal; no floating
point data allowed

i. -14.07 =) HELP (1 =) 13), illegal; no negative
data allowed

j. A" B ' , e (19 =) 26), illegal; BEGIN and
END missing

k. I (17 =) 26) =) ALPHA (13 =) 19), illegal; index regis­
ter variables are
only 15 bits long:
0=) 15

Subscripts

To understand the reasons for subscripting, consider an
equation with several terms:

65432
AX + BX + GX + LX + ex + sx + D = 14

ORIGINAL B3-27

B3-28

The coefficients (A, B, G, L, C, S, and D) are purposely mixed
alphabetically to illustrate a point: if a single letter with ascend­
ing subscripts was used instead, there would be less confusion as
to which coefficient goes with which term:

Ad x6 + A X5 + A x4 + A x3 + A x2 + A X + A = 14
p 1 2 3 4 5 6

In this equation, only one name, A, would be necessary to identify
a particular item -- the coefficients.

IT this argument is extended to a matrix, the reasons are
even clearer, for now the confusion in row and column coefficients
can be eliminated:

COLUMNS COLUMNS

Z K M D A~, ~ A~, 1 A~, 2 A~, 3
becomes R

o
w
S

N G U A
R
o
w
S

A A A A
1,~ 1,1 1,2 1,3

X D B R A2, ~ A2,1 A2,2 A2,3

SOY Q A A3 1 A A3 3 3, ~ , 3,2 ,

The first subscripted digit after the name is the row and the
second digit is the column of the matrix in which one would expect
to find the coefficient. The range of row and column numbers be­
gins with zero.

The expectation that a variable may be assigned several
values, all of which are to be retained concurrently in core,
forces the programmer to provide storage for these constants.
This type of storage will involve the use of a variable name and
subscripts to distinctively identify each element of the value list.

Subscripted variables serve the programmer as an indexing
tool; in an array of similar numbers we can index or point directly
to a particular value. IT we ask for A~, we have indexed to the
zero element of an array named A.

ORIGINAL

SUBSCRIPT FORMS

Presently available input/output equipment for digital com­
puters does not provide the resources for handling numbers which
are above or below the printed line. As a consequence, no pro­
vision for this has been built into the NELIAC language. NELIAC
subscripts are written on the same line as the variable but are
enclosed in punctuation to set them apart, as in "A ($ 4 $). "

Subscripts are encountered in both parts of a NELIAC flow­
chart, dimensioning and program logic. Consistent with the defi­
nition of dimensioning, a subscript associated with a variable in
dimensioning indicates the number of values a programmer expects
to assign to that variable. VARIABLE (7). indicates that seven
floating point numbers will be stored in a core area (in this case
14 words) identified by the name VARIABLEo

A subscript associated with a variable in program logic is
employed to select a particular value from among several as­
signed to the variable and involves this value in some programmer­
specified algebraic manipulation. VARIABLE (7) in program
logic indicates that the contents of V ARIABLE7 are currently being
considered mathematically in a NELIAC statement. Subscripts
used without variables (in program logic) are discussed in Section
5 Wlder the topic "Indirect Addressing. "

To dimension a variable that will have length of seven values,
a programmer writes in NELIAC "PERS (7)." However, when
reference is made in program logic to the first element of the list,
the address is "PERS ($~$)" and the seventh element is "PERS
(6)." Notice that the subscripts assigned internally run from
zero to one less than the length specified in dimenSioning. This
mental conversion (of length to subscript) must be borne in mind
when subscripts are used.

A subscript takes many forms depending upon its intended
use. In dimensioning, where a subscript specifies a list length,
it is a constant; any other form would be ambiguous since the
compiler depends upon this subscript for storage reservation. The
subscript follows the variable and is enclosed in parentheses, as in
"OBOE(4). "

ORIGINAL B3-29

B3-30

In program logic, one refers to an element in a list with any
one of the following subscript forms: constants, nouns, index
register variables, or index register variables plus or minus a
constant.

If a constant is used in dimensioning or program logic as a
subscript, it must be an unsigned fixed point number less than or
equal in magnitude to 77777 OCT or 32767 decimal. Fixed point
subscripts are employed since floating point numbers are neither
desirable nor necessary for use as subscripts. For example XI. 3
is not generally a meaningful notation, and Xs. jS is redundant when
X3 is sufficient. The floating pOint mode is therefore not imple­
mented.

An important point to remember is that the subscript itself
does not have any bearing on the mode of the subscripted variable.
The fact that subscripts must be fixed point does not affect a fixed
or a floating point variable in the determination of the variable mode.

Nouns used for subscripts imply that the contents of the named
computer word will be used as the actual subscript. The numerical
subscript will change as the value assigned to the noun is changed
in program logic. When the subscript is referenced by name, the
value contained in the noun at the instant of consideration is the
subscript for that execution. If the noun APPLE has been given
the value 4, BASKET ($ APPLE $) would refer to BASKET (4) or
the fifth element of the list named BASKET.

In the introduction to index register variables under "Gram­
mar of Names" at the beginning of this section, it was indicated
that the use of these special nouns for some jobs generated more
efficient code than if other nouns were used for the same purpose.
This statement holds for subscripts; wherever pOSSible, the index
register variables, I, J, K, L, M, and N should be employed as
indices.

If an index register variable and a constant are used jOintly
as a subscript they are separated by a plus or a minus sign. The
sum of the contents of the index register and the constant must not
exceed the magnitude limits of the constant alone -- 77777 OCT or
32767 decimal. In format, the index register variable must always
precede the constant in a subscript.

Under no circumstances may a subscript be subscripted.
This means that any noun used as a subscript must itself be

ORIGINAL

unsubscripted. Index register variables cannot be subscripted.

Following are a synopsis (table B3-11) and a list of examples
(table B3 -12) of subscripts.

ORIGINAL

TABLE B3-11. CONSTITUENTS OF SUBSCRIPTS

a. Dimensioning: (SUBSCRIPT)
b. Program logic: ($ SUBSCRIPT $)
c. Forms:

1) Dimensioning: constant only
2) Program Logic: constant, noun, index register,

index register ± constant
d. Constant: unsigned (positive) fixed point number

:::; 77777 OCT or 32767 decimal
e. Noun: valid NELIAC name; contents of variable is

actual subscript, $..77777 OCT or 32767 decimal
f. Index register variable: I, J, K, L, M, N; con­

tents of index register is actual subscript
g. Index register variable ± constant: variable must

precede constant; sum of contents of index register
and constant must be:::; 77777 OCT or 32767 decimal

h. Subscripts may not be subscripted

TABLE B3-12. EXAMPLES OF SUBSCRIPTS

a. (3~ OCT), (1), (32767) legal; list lengths
(dimensioning)

b. ($ 45 $), ($ I $),

c. ($ HOLOCAUST $)

legal; subscript for program
logic
legal; subscript for program
logic

d. ($ 1+42 OCT), ($ M-3 $) legal; subscripts for program
logic, (variable ± constant
form)

e.
f.
g.
h.

i.

(I), (HOLOCAUST)

(4~~11~)
($ 4+1 $)
($ A ($ I $) $)

(-36.9)

illegal; constants only for dimensioning
illegal; constant too large
illegal; variable and constant reversed
illegal; subscripts may not be sub­
scripted
illegal; subscript must be unsigned and
fixed point

B3-31

B3-32

SUBSCRIPTED VARIABLES

Consider a list of numbers. If they are stored in a computer
for referencing in the course of program logic, they must be
assigned to a variable. To individually select or index individual
elements of this list, the name of the list and the subscript (posi­
tion of the element) are specified. In doing so, a subscripted vari­
able has been used.

A series of constants is usually referred to as a list if it
has one dimension and as an array or table if it has two dimensions.
NELIAC has the capability of handling either possibility, with one
subscript for lists and two subscripts for arrays or tables.

A list in dimensioning is specified with a variable and a con­
stant in parentheses, denoting list length. When addressing a par­
ticular list element in program logic, a variable and a subscript
enclosed in a combination of parentheses and dollar signs (as indi­
cated in the previous discussion of subscripts) are required.

An array or table in dimensioning requires an asterisk be­
tween subscripts to give a row and column specification. The
asterisk is used in NELIAC as a multiplication sign; the product
of the two subscripts will indicate to the programmer the size of
storage he is reserving. The product must not exceed the maxi­
mum core size of the computer.

One element of an array in program logic is addressed in a
fashion Similar to an element of a list. Two subscripts are re­
quired instead of one, and they are separated by a comma. The
format otherwise is identical. A doubly dimensioned variable can­
not be used before definition.

Samples of the forms, in order, are:

a. List. dimensioning:
b. List, program logic:
c. Array, dimensioning:
d. Array, program logic:

A(14),
A ($ 13 $) =) B,

A (4 * 9),
A ($ 3,7 $) =;) B,

ORIGINAL

The programmer is cautioned to avoid the obvious pitfall of
expressing "A3" as "A3 "; such a representation is a NELIAC noun
entirely separate from the original variable, A. Another possible
pitfall is the double subscript when specifying the variable name of
a singly dimensioned list. Both will cause results that for all pur­
poses are errors.

If a noun is used as a subscripted variable, it represents a
collection of values and may not be used without a subscript except
in two cases. The first case is its use in an input/output statement
when it is desired by the programmer to transfer the entire list or
array. The second case occurs when the variable is found in an
arithmetic statement in which case it is interpreted as if it were
the first element of the list or array as in VARIABLE ($ is $).

FollOwing are a synopsis (table B3-13) and a list of examples
(table B3-14) of subscripted variables.

TABLE B3-13. CONSTITUENTS OF SUBSCRIPTED VARIABLES

a. Valid NELIAC name followed by appropriate sub­
scripts

b. List, dimensioning: VARIABLE (SUBSCRIPT)
c. List, program logic: VARIABLE

($ SUBSCRIPT $)
d. Array, dimensioning: VARIABLE (SUBSCRIPT

1 * SUBSCRIPT 2); SUBSCRIPT 1 = row, SUB­
SCRIPT 2 = column

e. Array, program logic: VARIABLE ($ SUB­
SCRIPT 1, SUBSCRIPT 2 $); SUBSCRIPT 1 =
row, SUBSCRIPT 2 = column

f. Noun defined as subscripted variable used
without subscripts specifies whole list or
array in 1/0, or first element in list or
array in program logic

ORIGINAL B3-33

B3-34

TABLE B3-14. EXAMPLES OF SUBSCRIPTED VARIABLES

a. BOA (4), legal; 4 element list
(dimensioning)

b. KP (4 * 7), legal; 28 element list
dimensioning

c. MAN (8 * 13 OCT), legal; 12~ element list
(dimensioning)

d. JOB ($ XRAY $) =) A, legal; variable in program logic
e. D ($ 1+7 $) =) A, legal; composite subscript

(program logic)
f. AFOGE ($ 13, 9 $) =) A, legal; double subscript

(program logic)

g. N' ICK (I), illegal; list length must be
constant

h. I (NICK) illegal; subscripted register
variable

i. GZ ($ J, K, $) =) A, illegal; second comma is improper
j. PORFO LB (6 * 9 * 3), illegal; more than two dimensions
k. MAN5 illegal; not a subscripted variable

A programmer may desire to preset some or all of the ele­
ments of an array or list before program execution. As in single
value variables, NELIAC makes provision for initial values.

In a many-element list or array, if no initial values are
specified, all elements are preset to zero by the compiler. The
mode of such a variable is determined by these punctuations: a
period following the variable definition denotes floating pOint, and
all elements are reserved two words each; a comma following the
variable implies fixed point, and all elements are reserved one
word each.

When nonzero initial values are given, the mode of the vari­
able is dictated by the mode of the first element, and all succeed­
ing initial values must be written to match that mode if an error in
dimensioning is to be avoided. In addition, assuming a properly
punctuated constant speCification, any elements left blank are
assumed to be zero.

ORIGINAL

Some examples of subscripted variables with initial values
follow:

a. B(14)o

b. R(4 * 3),

c. ANCHOR (4) = 6,
2, 14, -237,

d. ZY (5) = 0*0,
8.0, -0.003,
4762.0, -15.62*
-13,

e. NOBE(3*2) = 6, ,
2, -1,
,9,

Denotes fourteen floating point
elements in a list named B; all
are preset to zero.

Reserves twelve words in core
for twelve fixed pOint variable
R elements; all are preset to
zero.

Defines four initial values for
the fixed point variable ANCHOR.

Fi ve floating point values pre­
set the variable ZY; note that
the absence of a first value would
have caused ZY to be defined as
fixed point and an erroneous def­
inition of all other values would
have followed.

Two fixed point zeroes are im­
plied through punctuation; ele­
ments are stored sequentially
by rows: 6, is,

2, -1,

is,9,

In an extension of the above discussion, if a variable is di­
mensioned as having seven values, and only the first four are
specified, as in A(7) = 1,2,3,4, the remaining values are assumed
to be zero; no further punctuation is necessary.

When subscripting partial word variables, the rules for these
variables are a summation of restrictions applied to partial words
and subscripted variables. A programmer who wishes to store a
4 in bits nine through eleven of the tenth element of variable
DACHS does so by specifying the following:

4 =) DACHS ($ 9 $) (9 =) 11),

ORIGINAL B3-35

B3-36

To dimension forty elements with a bitfield specification of bits six
through eight of a variable ENTROPY, the correct form is:

BEGIN ENTROPY (6 =) 8), END (4f1),

If these bitfield elements were to be part of another variable
THERMO, the definition would look like this:

THERMO' I BEGIN ENTROPY (6 =) 8), END (4.0),

This is interpreted to mean that there is a list named THERMO,
forty words long, and, in each element, bits six through eight may
also be referred to as ENTROPY ($ n $), where n = .0 through 39,
and THERMO ($ n $) refers to the full word element; THERMO
($ n $) (6 =) 8) would be equivalent to ENTROPY ($ n $). ENTROPY
($ n $) (f1 =) 1) would specify bits six and seven of THERMO ($ n $).

Moving THERMO ($ n $) (3 =) 7) to BIX3 would cause bits
zero through four of BIX3 to be reset to the contents of the
THERMO bitfield and any remaining bits of BIX3 to be reset to~.
(Refer to figure B3-2 and to the preceding paragraphs under
"Variables, Partial Word. ")

THERMO ($ n $) (3 =) 7) =) BIX3,

76543 2 1 g

) ? t1Jf/!Y/A'IA'// ? I ? I ? I
t;i

" THERMO ($ " S.=l 71
, ,

> 'glglglg~jVh11~
7 6 5, 4 3 2 1 g I

'" BIX3 (g =) 4)

THERMO ($ n $)

BIX 3

Figure B3-2. Partial word transfer.

ORIGINAL

MATRICES

A matrix is the general term applied to a group (defined as
2:. 1) of elements assigned to a variable. The group is always con­
sidered to be in rectangular form, row by column. A 1-by-1 ma­
trix is a single element; a 1-by-N matrix has one row, N columns,
or N elements; an M-by-1 matrix has M rows, one column, or M
elements; and an M-by-N matrix has M rows, N columns, or M

times N elements.

Under previous definitions, a list is a 1-by-N matrix and an
array is an M-by-N matrix. One may consider a variable sub­
scripted in dimensioning without initial values as a "normal" ma­
trix. A "preset" matrix is a subscripted variable with one or more
dimensioned initial values. A "congruent" matrix, often referred
to as a congruent table, is a matrix known by more than one noun.
In other words, a multiple variable specification may be applied to
the same area in core and the area addressed by several names.
The following examples explore the possibilities provided by these
matrix types:

ORIGINAL

a. A' , B ' , C,

b. A(2) , , B, C,

c. A(10) , , B(6),
C(3), D,

d . A(7) " B(4) ,

C(3) " D(2), E,

A congruent, normal matrix with
one element, addressable by A or
B or C.

A congruent, normal matrix; ma­
trix A has two elements, Band C;
matrices Band C are each com­
posed of a single element.

A congruent, normal matrix; ma­
trix A has three partition ma­
trices, B, C, and D, with 10 ele­
ments; matrix B has 6 elements,
matrix C has 3 elements, and
matrix D has a single element.

A congruent, normal matrix;
matrix A has two partition mat­
rices, Band C; matrix C has two
partition matrices, D and E; the
number of elements of each mat­
rix is indicated by subscript.

B3-37

e. A" B I , C = 1,

f. A(7) If B(4) = 1,
3, 5, 7,
C(3) II D(2) = 2,

4, E = 6,

g. A I r B I I BEGIN

C(6 =) 11),
END,

h. A(7) I I

B(4) = 1, 3, 5, 7,
C(3) I I

BEGIN D(14 =) 17),
END (2) = 2, 4,
E = 6,

i. A(2 * 3) r I

B(3 * 2) = 1.~, 2.~,
3.~, 4.~, 5.Jj, 6.~,

j. A(2 * 3) I I

B(3 * 2) I I

C(7 * 1) = 1, 2,
3,4, 5, 6, 7,

B3-38

A congruent, preset matrix; A,
B, and C are single element ma­
trices, all equal to 1, all occupy­
ing the same single word in core.

A congruent, preset matrix simi-
1ar to example d; A ($ 3 $) = B
($ 3 $) = 7 and A ($ 5 $) = C ($ 1
$) :I: D ($ 1 $) = 4.

A congruent, normal matrix with
bits 6 through 11 of matrices A
and B known as the matrix C; all
matrices have single elements.

A congruent, preset matrix simi-
1ar to example f except matrix D
consists of bits 14 through 17 of
the first two elements of matrix
C which have initial values of 2
and 4, respectively.

A congruent, preset matrix; the
third element may be referenced
by either A($ ~,2 $) or B($ 1, ~ $).

A congruent, preset matrix; note
that matrix C is dimensioned as
having one more element than A
or B; reference to C($ 6, ~ $) in­
dexes to the first word beyond
both A and B but is the last ele­
ment of C; this is an acceptable
dimensioning statement, much as
A($ 6 $) refers to the sixth word
beyond the single word defined by
A(I); A($ 2, ~ $) and B($ 3, ~ $)
both contain a 7; A($ 2,1 $) would
refer to the first word beyond all
three dimensioned matrices.

ORIGINAL

The double apostrophe signals congruency -- the left-hand ma­
trix is said to be congruent to the right-hand matrix. Both ma­
trices occupy an identical area in core if the subscripts indicate
equivalence in area reserved. If one subscripted variable oc­
cupies more core than another, overlap where possible is accom­
plished by the compiler.

Dimensioning

The format and purposes of dimensioning will now be examined.
Examples will be used to illustrate the topics of dimensioning al­
ready discussed. Although some elements of NELIAC theoretically
should be discussed before dismissing dimensioning, for better
understanding and text organization they have been left to later
sections.

Dimensioning is in part a concession to the needs of the com­
piler. The programmer, as the only constituent of the problem­
solving process understanding in advance the storage requirements
of his program, must specify all he mows about his variables be­
fore they are used in the program logic. The compiler has no way
of guessing the programmer's intentions; in this sense, the pro­
grammer must accommodate the language.

Dimensioning, as well, accommodates the programmer. It
provides (a) a vehicle for defining initial values, (b) formats for
data inputs and outputs, (c) switches for directing program flow,
and (d) diagnostic messages (of which (b), (c), and (d) are the top­
ics reserved for the later discussion).

Dimensioning in any flowchart or program must precede the
program logic because of the concessions to the compiler just
enumerated. The first NE LIAC character in a program is the con­
trol number, and it indicates to the NE LIAC compiler the type of
flowchart the programmer has written. The last character in
dimensioning is the dollar sign, which is a flag indicating to the

ORIGINAL B3-39

B3-40

compiler that all preceding is dimensioning and all following is pro­
gram logic. Examine the following typical dimensioning examples:

a. 5

A,

B.

Control number.
Fixed point whole word
variable.
Floating point whole word
variable.

C = 1, Fixed pOint whole word
variable preset to 1.

D = 4. jj, Floating point whole word
variable preset to 4. ~ .

$ Flag.
(COMMENT" PROGRAM LOGIC) ..

b. 5
BEGIN EXTRA (9 =) 15),

END,
BEGIN Jl (~ =) 1~),
J2 (~=) 7), J3 (8 =) Ijj),
J4 (9 =) It1), END ,

F ,t G ' , BEGIN

H (~ =) 14), END ,

$

Partial word variable de­
fined equal to ~.
Several partial word vari­
ables defined within one
computer word.

Multiple variable specifi­
cations incorporating a
half word variable.

(COMMENT' , PROGRAM LOGIC) ..

c. 5
PAX (3) = 1, -147, ,
PIX (5) = -31.72,
9. 2, -0. 003, + 85. 6 * 6
POX (2 * 2) = 18, -7, + 3,

Qt1

LONG WAY TO SAY MA-
TRIX = 1,

R (7) , ,

S (4) = 1, 3, 5, 7,

T (3) "
BEGIN ULTIMATE (14 =) 17),
END (2) = 2, 4, V12 = 6,

$

Preset fixed point list.
Preset floating point list.

Preset fixed point array.

Congruent, preset, single
element matrix.

Congruent, preset matrix
of seven elements.

(COMMENT' , PROGRAM LOGIC) ..

ORIGINAL

Note that the individual specifications may be written to fill a
line or strung out over several lines. The ability of the NE LIAC
compiler to ignore insignificant blanks permits the programmer this
freedom.

VERBS

Verb Usage

In addition to the noun form, a name may take the form of a
verb. A verb is the name that a programmer assigns to a flowchart
routine (several lines of NELIAC), function, or subroutine which
enables him to reference a line or routine within his program. Ex­
amination of a simple problem will serve to explain this ability.

Suppose a tally must be kept of automobiles stopped by a red
light in a particular direction at an intersection, and when this line
becomes seven autos long the light must change to green to allow
seven cars to go by after which it must change back to red again,
etc.

The solution may be represented diagrammatically in a form
similar to figure B3-3. The arrows indicate the direction of logic

flow in the block diagram. START is the entry point, and all of the
rectangular blocks contain arithmetic or process type instructions.
The oblong block contains a question: "IS NUMBER OF AUTOS ==

7?" The decision offers two alternatives: a true (YES) and a false
(NO); if false, flow returns to the previous block; if true, flow
moves forward to the next block.

ORIGINAL B3-41

B3-42

NUMBER
OF AUTOS

=

TURN
LIGHT
RED

LET 7
AUTOS
PASS

ADD 1
TO NUMBER
OF AUTOS

TURN
LIGHT
GREEN

Figure B3-3. Block diagram solution of traffic problem.

When NELIAC is used to satisfy the requirements of the prob­
lem, the block diagram may be followed quite closely as in the
following example:

5
NUMBER OF AUTOS,
RED = 1, GREEN = fj,
LIGHT,
$
start ff
j1 =) NUMBER OF AUTOS,
RED =) LIGHT,
no t t

NUMBER OF AUTOS + 1 =) NUMBER OF AUTOS,
NUMBER OF AUTOS = 7: YES. NO.
yes f t

GREEN =) LIGHT,
NUMBER OF AUTOS - 7 =) NUMBER OF AUTOS,
START.

ORIGINAL

Notice that the words "start, " "no, " and "yes" -- the verbs-­
are in lowercase letters. Notice also that without these verbs
there would be no point of reference to which to proceed after an
alternative (NUMBER OF AUTOS = 7: YES. NO.) or at the end of
the program (START.). The NELIAC language does not provide
arrows per se as the block diagram does; in order to provide a

logical flow from program segment to program segment, the NE rr--­
lAC language equivalent of arrows -- the verbs -- are used.

In the formation of a verb, all of the rules pertaining to the
NE LIAC name apply. A name may not be a noun and a verb simul­
taneously. Name precedence is especially important when the same
verb is used in several flowcharts and subroutines of one program.

A verb is used only in program logic since it is a tag refer­
enced in actual program execution. A verb does not appear in di­
mensioning since it is considered to be defined by that which im­
mediately follows its double apostrophe. The verb generates no
instructions; like the noun, it is placed on a list where it is assigned
an address, and this address becomes the location of the first ex­
ecutable instruction of the routine it identifies.

If a verb is used at the very beginning of a flowchart, the en­
tire flowchart is identified by that name. If a verb is used at the
very end of a flowchart (verb followed by two periods) it denotes the
stopping point of the program. Note that the preceding NELIAC ex­
ample pertaining to the traffic problem had no stopping pOint; the
solution was a continuous loop.

Program Logic
The organization of this text dictates a short discussion of

program logic at this point, before its parts are discussed in
greater detail.

All of that which follows the dollar sign of dimensioning and
precedes the double period which denotes the end of the flowchart
is program logic. Program logic is made up of arithmetic opera­
tions of all types, subroutines, functions, control logic, and some
other programming tools remaining to be discussed.

ORIGINAL B3-43

B3-44

Program logic is the algorithm of the programmer in quest of
a solution to his problem. The compiler accommodates the pro­
grammer by enabling him to specify his algorithm in algebraic for­
mulae and in near-English statements.

In the remaining sections, the components of program logic
will be examined.

ORIGINAL

4. ARITHMETIC OPERATIONS

INTRODUCTION

Previous sections have covered the necessary preliminaries
to writing a computer program. This section introduces the actual
process of preparing a program which will command the computer
in mathematical and near-English language to manipulate data in
the manner specified. As the topics concerning program logic are
covered, it will be seen why a problem-oriented, algebraic language
provides all the tools needed to solve a scientific problem no mat­
ter how complex.

NELIAC requires a programmer to be as precise in his
specifications as with any mathematical regimen. For instance, in
the area of arithmetic precedence, a wide difference can develop
between the arithmetic operation as intended by the programmer,
and the expression as written, translated, and executed. Neither
the computer nor the compiler can differentiate between the in­
tention and the operation as actually programmed.

Programming is an exacting task. But the job can be made
easier by learning the rules thoroughly and applying them consist­
ently, and these next sections have been prepared with this end in
mind.

As most everyone at some time or other has learned, the
quantities of interest in an algebraic expression are called

ORIGINAL B4-1

B4-2

operands and the symbols that connect them are known as operat­
ors. An operand or an assemblage of operands and operators
forms an expression, and one expression set equal to another ex­
pression constitutes an equation.

NELIAC uses essentially identical terminology: the operands
are the constants and variables of all forms; the operators (with
concessions to the card handling hardware) are the familiar addi­
tion, subtraction, multiplication, division, and exponentiation
symbols; and the expressions are the endless permutations and
combinations of the operands and operators.

In NELIAC, however, the sense of equality between two ex­
preSSions is avoided. This evasion is offset by provision in the
language for an operation more powerful than and inclusive of the
equation: the "store" operation. The result of a series of calcu­
lations in a NELIAC expression is stored in an area of core re­
served by a variable. Instead of an equation, NE LIAC uses the
term "statement." There is a small but important difference:
impliCit in the store operation is the ability to replace an old value
stored in the variable with a new one, allOwing the calculation of the
new value to be completed without creating a condition of inequal­
ity.

For example, in some areas of NE LIAC programming a
statement of the form "SUM + 1 =) SUM, " is very useful. This
statement says, in essence, take the old value assigned to thevari­
able SUM, add 1 to it, and store the new value back in SUM (re­
placing the old value, of course). If SUM were preset to zero,
upon execution of this statement the left-hand operation would yield
a total of 1, and SUM would be reset to the value 1. Notice that if
this had been an equation instead of a statement, at completion of
the execution of the operation the left-hand expression (value of 2)
and the right-hand variable (value of 1) would now be equal--an
impossibility .

The term "equation, "therefore, is avoided in the discussion
of NE LIAC program logic. An expression and a variable joined by
the store symbol constitute the "statement. "

ORIGINAL

EXPRESSIONS

Symbols and Their Use

As already mentioned, expressions are an aggregate of alge­
braic parts known as operands and operators. Operands as used in
a NE LIAC expression are simply the variables and constants the
formation and grammar of which were investigated in the preceding
section 3. Operators, or operation symbols, are now introduced
formally. These symbols and their meanings are shown in table
B4-1.

TABLE B4-1. NELIAC ARITHMETIC OPERATION SYMBOLS

SYMBOL TITLE OPERATION

+ Plus Addition

- Minus Subtraction

* Asterisk Multiplication

/ Slant Division

*2** Scale-up
/2** Scale-down Exponentiation

The remainder of this section will define the arithmetic op­
erations of NE LIAC in order to dispel any confusion between the
contents of a variable and its address. A shorthand notation--c(),
which cannot be used in a NELIAC program--is employed in the
specification of an operation's meaning. c() refers to the contents
of the variable at the instant considered.

The addition A + B is defined as the contents of the computer
word(s) identified by the variable A added to the contents of the

ORIGINAL B4-3

B4-4

computer word(s) identifed by the variable B. In shorthand this is
c(A) + c(B). The subtraction, A - B, means c(A) - c(B).

The asterisk and slant--multiplication and division, respec­
tively -- are concessions to the card handling equipment associated
with the digital computer. No commonly used symbol for multipli­
cation is distinctive enough on the keypunch, and consequently the
asterisk has been substituted. Because of the restriction that all
NELIAC statements must be written on the line and not above or
below it, divisions have been reformatted and the + symbol is re­
placed by the slant. A * B is defined as c(A) . c(B); AlB is inter-

preted to mean c(A) or c(A) + c(B).
c(B)

Exponentiation in NELIAC is a little more difficult to under­
stand. Since the compiler has been designed primarily for a binary
computer, exponentiation is thought of in terms of shifting the con­
tents of a variable so many binary digits to the left or right (to the
left makes it a larger nunber; to the right, a smaller one). It can
also be thought of as scaling, a subject covered in section 3 in the
discussion of mode. Scaling up by a power of two is equivalent to
multiplying the operand by 2n; scaling down by a power of two is
equivalent to the operation "operand + 2n. "

Because of the binary influence, exponentiation in NELIAC
may be carried out only in powers of two. The expression A * 2
** B means the contents of A are shifted left (increased in magni­
tude) c(B) binary digits. That is, c(A) are scaled up by 2c(B), or
c(A) . 2c(B). The expression A I 2 ** B is the converse; the con­
tents of A are shifted right (decreased in magnitude) c(B) binary
digits, or c(A) are scaled down by 2C(B), or c(A) + 2c(B).

Formation of Expressions

The spectrum of possible operand and operator combinations
is bounded only by the inventiveness and needs of the programmer.
There are, however, some basic rules which pertain to all expres­
Sions, and these should be well understood before even the first
program is written.

ORIGINAL

ORIGINAL

A single operand expression is often employed to preset a
partial word variable, to store the contents of an index register
somewhere in core, or to duplicate the results of a calculation in
another computer word with a separate name.

The operand may be a single NE LIAC constant or a single
NE LIAC variable. If the operand is a variable, the variable may
be whole word, half word, or partial word, subscripted or nonsub­
scripted. No negative constant may be considered an expression
by itself. To employ such a constant for any purpose, a leading
zero must be supplied; e. g., ~. ~ -3.2 =) DO. The mode of the con­
stant or whole word variable may be fixed point or floating pOint;
for half word and partial word variables the mode must be fixed
point. The use of a single index register variable as an expresion
is fully valid.

The complexity of an expression may be increased by includ­
ing several variables and constants and introducing arithmetic
symbols to indicate intended computation.

With complexity comes the possibility that the programmer
will err in an area which to now may have seemed unimportant:
mode. There is a rule of NELIAC which prohibits the mixing of
modes in an expression. This type of error occurs in an expres­
sion when a floating point variable or constant and a fixed point vari­
able or constant are joined by an operator; e. g., 1+ 3.127, or
APRON / 3, when APRON has been dimensioned as a floating point
variable.

There are several exceptions to the ordinary rules of math­
ematical notation. First, in ordinary arithmetic AB can be inter­
preted as A . B or A times B. However, in NE LIAC, AB can never
be equivalent to A * B; if multiplication is intended, the appropri­
ate symbol may not be omitted. Such an omission forces the NE L­
lAC processor to interpret AB as a new name.

B4-5

B4-6

Second, in common usage expressions like A + B . C and
A + B + C are considered ambiguous. Such expressions are per­
mitted in NELIAC and they are interpreted as follows:

A / B * C is the equivalent of (A / B) * C

A * B / C is the equivalent of (A * B) / C

A / B / C is the equivalent of (A / B) / C

Third, it is impossible to correctly write in NELIAC two
operators consecutively. For example, the expression A * -B,
where a programmer intended to change the sign of B before multi­
plying by A, may be perfectly good algebraically, but is unaccept­
able grammatically in NELIAC. To change the indicated expression
to proper form, the programmer needs only to enclose the -B in
parentheses; i. e., A * (-B).

Irrespective of any of the rules of arithmetic precedence,
the use of parentheses in NELIAC gives the enclosed operation
precedence over the surrounding operations in an expression.
A + B * 2 ** C / D might rightfully be interpreted in mathematical
circles as A + B . 2C all divided by D; if the programmer had in­
tended (A + B) . 2C/ D, he should have written in NELIAC, (A + B)
* 2 ** (C / D). This change forces the computation of the addition
and the division before any consideration of exponentiation. Par­
entheses, then, provide a grouping symbol, a means of treating
the enclosed operators and operands together as a whole. The
symbol itself may be used frequently for it generates no code. In
fact the variable ENEMY may be well-enclosed in parentheses as
«««ENEMY»»»; such a use only causes a lengthened compilation
time while the processor wades through the chaff. Note that paren­
theses always come in pairs. Another important conSideration is
that the parenthesis, in addition to the subscript and the exponent,
as shall be seen, has no effect on the mode of the arithmetic opera­
tion it surrounds.

Rules regarding the use of exponentiation are fairly straight­
forward. When scaling or shifting in NELIAC, the operand follow­
ing the double asterisk must be a positive fixed point constant, or
a whole word, half word, or index register variable containing a
positive fixed point number. The reason for this restriction is

ORIGINAL

obvious when one considers the impossibility of shifting the contents
of some variable a fraction of abinarydigit. (The positive require­
ment on the exponent is made because of the fact that positive and
negative exponents are already designated by the appropriate ex­
ponentiation symbol: scale-up or scale-down.) The "leading" op­
erand, which precedes the scale-up or scale-down symbol, must be
a fixed point variable or a parenthesized operation of the fixed mode.

Following are a synopsis (table B4-2) and a list of examples
(table B4-3) of expressions:

TABLE B4-2. CONSTITUENTS OF EXPRESSIONS

1. Format:
a. Single operands or several operands separated by

operators
b. Single operands: Positive constants or whole word

variables, fixed or floating point, subscripted or
nonsubscripted; half word or partial word variables,
fixed point, subscripted or nonsubscripted; index
register variables

c. Several operands: Any combination of the above
operands and appropriate operators

2. Error-prone areas:
a. Operands: Cannot mix modes within an expression
b. Operators: Cannot be presumed; must be specified
c. Operators: May not be written consecutively

3. Parentheses: Used as a grouping symbol to force arith­
metic precedence; can be used in pairs freely

4. Mode:
a. Parentheses: No effect on mode of enclosed opera­

tion
b. Exponent: No effect on mode of leading operand

in exponentiation

5. Exponentiation:
a. Leading operand: Fixed point variable or a fixed

pOint parenthesized operation
b. Exponent: Positive fixed point constant or whole

word, half word or index register variable con­
taining positive fixed point numbers

ORIGINAL B4-7

B4-8

TABLE B4-3. EXAMPLES OF EXPRESSIONS

a. 3, + 14.06. 29, + ~L.02 * 7, legal; single constant
.0 . .0 - 7.461, expressions

b. TRAC, L, MU'CK ($ 6,5 $), legal; single variable
expressions

c. ITSELF (8 =) 23), legal; partial word
ST (15 =) 29), expressions

d. ENTRY + 44, legal; fixed point
I + ZERO * (9 - UPTURN), expressions

e. -3 . .079 * AZJ ($ 6 $), legal; floating point
1 . .0 - GLE * 2 ** 7, expressions

f. HERBS + HOMINY/OIL - legal; either fixed or
(VOX / 2 ** PZP), floating point depending

on operands

g. 1*2 . .0, illegal; mixed mode, I must
be fixed pOint

h. 1.0 * - A, illegal; consecutive
operators

i. (A * (X) + 1 . .0/(Y+ 3 . .0), illegal; missing right
parenthesis

j. 7DRAFT illegal; incorrect name or
missing operator

k. (1. 8.02 * G) / 2 ** K illegal; leading operand is
floating point

1. - 12.8 illegal; zero must precede
minus sign

Arithmetic Precedence

The operations contained within a NELIAC expression are
executed in an order prescribed by three conventions of precedence:
the parenthetical convention, the hierarchy table, and the left-to­
right rule. These conventions are in order; an operation falling
within the realm of parenthetical precedence is executed before an
operation governed only by the left-to-right rule.

ORIGINAL

The left-to-right rule is the most basic of the conventions.
In the absence of parentheses and in the case of identical operations
within an expression (as in a string of simple additions), the ex­
pression is executed operation-by-operation from the leftmost op­
erand to the rightmost operand. There can be no more basic a con­
vention and yet have expressions make any sense.

If the operations are unlike, but the expression again contains
no parentheses, the hierarchy table (table B4-4) determines prece­
dence of execution. The hierachy is composed of the five types of
operations: addition, subtraction, multiplication, division, and
exponentiation.

TABLE B4-4. HIERARCHY TABLE

OPERATION

Exponentiation

Multiplication, division

Addition, subtraction

PRECEDENCE

High

Middle

Low

To interpret table B4-4, an example will be considered. For illus­
tration purposes intermediate results will be stored in elements of
a list identified by TEMP, and the final result in the variable
ANSWER.

The expression:

A + B - C * D / E * F + G * 2 ** 4

Order of execution:

1. G * 2 ** 4 =) TEMP ($ ~ $), (exponentiation before
all else)

2. C * D =) TEMP ($ 1 $), (in a string of multiplications
and divisions, which are of equal precedence, the
left-to-right rule applies)

3. TEMP ($ 1 $) / E =) TEMP ($ 2 $),

4. TEMP ($ 2 $) * F =) TEMP ($ 3 $),

ORIGINAL B4-9

B4-10

5. A + B ==) TEMP ($ 4 $), (next lowest precedence;
several operations of equal precedence, so left-to­
right rule prevails again)

6. TEMP ($ 4 $) - TEMP ($ 3 $) =) TEMP ($ 5 $),

7. TEMP ($ 5 $) + TEMP ($ ~ $) =) ANSWER,

The most powerful of the precedence schemes is the paren­
thetical convention. Any operation or series of operations enclosed
between parentheses will be executed before an operation governed
only by the other two conventions. For example, in the expression

A * (B - C) / 2 ** D,

the subtraction, exponentiation, and multiplication are carried out
in that order.

It is in the area of arithmetic precedence that the differences
between the expression as written and the expression as intended
occur. If NELIAC programs are written to conform to the three
conventions, there are no differences in meaning at execution time.

ARITHMETIC STATEMENTS

NELIAC grammar prescribes that every series of arithmetic
operations must end with the storing of the computed result in a
variable of some type. The only exception is found in the condition­
al transfer which involves alternatives to be chosen on the basis of
the calculation; no storage is necessary for such transfers. A dis­
cussion of conditional transfers is contained in section 5.

ORIGINAL

Store Symbol

This symbol has in effect been introduced in several places,
specifically in partial word variables (indicating the connector
"through"), and generally in various examples. The symbol is com­
posed of an equal sign followed by a right parenthesis: =). It is in­
tentionally designed to approximate the right-directed arrow of the
Flexowriter NELIAC system.

The consequence of the store symbol between an expression
(no matter how complex) on the left and a variable on the right is
the storage of the result of the arithmetic operations indicated with­
in the expression into the computer word(s) identified by the vari­
ble.

Formation of Statements

An expression becomes a statement with the addition of the
store operator and operand. The operand may be any NELIAC
variable dimensioned large enough to contain the answer. In the
event the result overflows the variable, it is truncated in a manner
dictated by the variable type: most significant digits truncated for
fixed point, and least Significant digits missing for floating point.

The store operator may be included within the body of an ex­
pression, permitting the storage of intermediate results. For ex­
ample

A+B=)C*D/E=)F,

causes the sum A + B to replace the contents of C and the final re­
sult to be stored in F. Notice that there are three expressions
joined by the store symbols and two store operands, C and F. C
plays a double role: an operand in an expression and a store oper­
and. There is no practicable limit to the number of included store
symbols.

ORIGINAL B4-11

B4-12

The store operator may also be written several times at the
end of a statement, indicating a multiple store operation, as in:

THIRD + PERSON =) HE =) SHE =) IT,

This results in the saving of the machine code necessary to store
the result separately in all three operands.

A statement is terminated by a comma or its equivalent.
Normally the punctuation immediately follows the store operand,
but in the case of a multiple store operation, the last operand is
followed by the comma. The word "equivalent" is used to indicate
that in operations other than arithmetic, such as control, the punc­
tuation indicating the end of a statement is not the comma (which
will be explained in section 5).

The final rule of formation concerns itself with mode. Allied
with, but contrary to the rule forbidding the mixing of modes in ex­
pressions, a programmer may mix modes in a statement, provided
that each side of the store symbol is of only one mode. Consider
an expression of the fixed point mode and a floating point store op­
erand. ; The store operation consists of two parts: conversion of
the fixed point result to a floating point notation, and storage. In a
statement with a floating point expression and a fixed point variable
to the right of the store symbol, conversion again is necessary.
This time the fractional portion of the number is cut off, and the
integral number stored. To illustrate thiS, two statement exam­
ples are given:

a. XQ and FLPTV are dimensioned as floating point
variables.

b. S2 U and LINK are fixed pOint.

Statement 1: S2U / LINK =) XQ,
If S2 U equals 9 and LINK equals -7, XQ = -1. t1
after execution.

Statement 2: XQ * FLPTV =) LINK,
If XQ equals ~. ~~2 and F LPTV equals + 783. 4 * 2,
LINK = 156 after execution.

ORIGINAL

ORIGINAL

Following are a synopsis (table B4-5) and a list of examples
(table B4-6) of arithmetic statements.

TABLE B4-5. CONSTITUENTS OF ARITHMETIC STATEMENTS

a. Valid NE LIAC expression
b. One or more store operators
c . Store operands, one per store operator
d. Any included expressions
e . Terminal comma

EXPHESSION =) STOHE OPEHAND ($ ~ $)
=) STORE OPEHAND ($ 1 $)

f . Pitfalls:

+ INCLUDED EXPHESSION
=) STOnE OPEHAND ($ n $),

Arithmetic overflow (result larger than
space reserved by store operand) and/or
wrong mode (unintended)

TABLE B4-6. EXAMPLES OF ARITHMETIC STATEMENTS

a.
b.

c.

d.

e.

f.

YZERO =) RESULT,
BSQUARED - 4 * A * C =)
TERM,
5 =) I =) L + 3 =) M,

x ($ 1 $) / 4
=) A, =) B,
-723. 15 =) LAP

86215 =) M,

legal; two single variables
legal; expression and operand

legal; multiple store and
included expression
illegal; comma after last
operand only
illegal; zero must precede
minus sign
illegal; arithmetic overflow
(M being an index register
15 bits long)

REVERSE SIDE BLANK B4-13

5. CONTROL OPERATIONS

INTRODUCTION

Most digital computers are sequential by nature; that is, they
are designed to execute machine language instructions in consecu­
tive addresses in core. It is the function of the control section of
computer circuitry to oversee sequential operations. An execution
of this type will begin at a specified entry point and proceed through
all of core unless otherwise directed.

It is not always the intention of the programmer that execu­
tion be sequential, and provisions are made in the manufacturer's
machine instruction set for leaving the mainstream of the program
either temporarily or altogether in favor of another program seg­
ment. These departures from sequential operations also are an
executive function of the control section.

This section concerns the NELIAC language equivalents of
those machine instructions which permit nonsequential operations.

ORIGINAL B5-1

B5-2

UNCONDITIONAL TRANSFER

Jump
When the programmer wishes to depart from the mainline

program r~gardless of consequences and to neglect all machine
conditions attendant to previous execution, an unconditional trans­
fer may be used to move program execution to another location in
core. Such a transfer involves no qualitative or quantitative tests;
the jump is made and operations resumed in a new program seg­
ment.

The period, a mark of punctuation, is employed in the NEL­
lAC language to indicate an unconditional transfer or jump command.
The location of the NE LIAC statement next executed is deSignated
by the verb specified just before the period. - The verb in the jump
command must not be part of an arithmetic operation. The instruc­
tion, ENTER. causes an unconditional jump to the verb with the
same name. Within the definition of the verb, the first executable
operation is then performed.

This form of unconditional transfer is also known as a
"direct" jump, in the sense that there are no intervening opera­
tions. It is also characterized by the fact that the execution con­
sists of a single transfer.

The following example -- repeated from section 3 -- contains
three verbs and three unconditional transfers: "start," "no, " and
"yes." Study this example again with the added knowledge of jumps.

ORIGINAL

5
NUMBER OF AUTOS,
RED = 1, GREEN = ~,
LIGHT,
$
start' ,
~ =) NUMBER OF AUTOS,
RED =) LIGHT,
no' ,
NUMBER OF AUTOS + 1 =) NUMBER OF AUTOS,
NUMBER OF AUTOS = 7 : YES. NO.
yes' ,
GREEN =) LIGHT,
NUMBER OF AUTOS - 7 =) NUMBER OF AUTOS,
START.

Return Jump
The NELIAC language provides another unconditional trans­

fer, this one of a slightly different nature. The return jump, as it
is called, is actually two jumps in one instruction. Before the
execution of the first jump, the address of the last command per­
formed is noted, and control is transferred to a special program
segment known as a subroutine. A subroutine provides a set of
operations applicable to computational requirements at several
points in the program (further explained in section 6). Upon com­
pletion of the operations specified within the confines of the sub­
routine, another jump is executed back to the area of the departure
point and specifically to the address of t4e next executable instruc­
tion (a location based upon the address noted) in that portion of the
program.

ORIGINAL B5-3

B5-4

To indicate a return jump to a subroutine, the name of that
subroutine followed by a comma is written into the program. The
subroutine name must not be part of an arithmetic operation. Con­
sider the following flowchart:

5
A, B, C, X, Y, Z
$
A + B =) C, COMPUTE, WHOA.
COMPUTE ' , BEGIN A + C =) X * B =) Y =) Z, END,
WHOA' ,

In this flowchart the return jump command "COMPUTE," forces
the computer to execute those operations between the BEGIN and
END punctuation symbols and return to the command "WHOA. "
The latter is an unconditional transfer to the corresponding verb at
the end of the program; an instruction to halt execution is implied
by the definition of WHOA.

CONDITIONAL TRANSFER

The jump and return jump allows the computer no opportunity
to exhibit its logical powers; the matter is predetermined and the
command unconditional. However, the next level of sophistication
to be studied -- the conditional transfer -- does provide this oppor­
tunity.

In brief, the conditional transfer presents the computer with
a comparison statement to evaluate a~d forces it to make a logical
choice between two alternatives, a "yes" or true option and a "no"
or false option. The alternative chosen specifies the location of
subsequent program execution. At no time will both alternatives
be selected simultaneously.

ORIGINAL

Symbols
The remainder of the NE LIAC character set is shown in fig­

ure B5-1 with a list of usages and meanings. (See figure B3 -1 for
other symbols.) Note that either form of the symbol meaning
"equal to" is acceptable and that all symbols must be set off from
operands by spaces. Caution is advised for those who use the Boo­
lean characters without some understanding of Boolean algebra.

Formation
The structure of the conditional transfer may be expressed

as follows:

COMPARISON STATEMENT "ALTERNATIVE 1 $
ALTERNA TIVE 2 $

The comparison statement is like an arithmetic statement ex­
cept that the store operator is absent, and its place is taken by any
of six comparison symbols. There are two basic forms of compar­
ison which may be written in NELIAC: 1) A ? B, where the ques­
tion mark is one of the symbols EQ, NQ, LS, GR, LQ, or GQ; and
2) A LS B LS C, a statement with two LS symbols permitting a
"between limits" comparison. A, B, and C are intended to repre­
sent arithmetic expressions.

CHARACTER USAGE MEANING

EQ or = A=B A EQUAL TO B

NQ A NQB A NOT EQUAL TO B

LS A LS B A LESS THAN B

COMPARISON GR A GR B A GREATER THAN B SYMBOLS

LQ A LQ B A LESS THAN OR
EQUAL TO B

GQ A GQ B A GREATER THAN OR
EQUAL TO B

AND A AND B A n B (BOOLEAN)
CONNECTORS

OR A OR B A U B (BOOLEAN>

Figure B5-1. NELIAC comparison symbols and COlUlectors.

ORIGINAL B5-5

B5-6

In the first form, A and B, as expressions, may be combina­
tions of arithmetic operators and operands of almost indefinite
length. Each expression must be of a single mode, and the modes
of A and B must be identical but may be either floating or fixed
point. All of the rules of arithmetic expression formation are ap­
plicable.

The second form is more limited in one sense; expressions
A, B, and C are restricted to the fixed pOint mode. In its use,
A LS B LS C makes up for its inflexibility in formation because
this one comparison does the work of two. It provides the capability
of checking whether or not the value represented by expression B

lies between the values of A and C, where A is the lower limit and
C the upper limit.

Boolean connectors are employed to join from two to sixteen
comparison statements into one large comparison statement. De­
pending upon the sense of the connectors, the large comparison
statement must as a whole be true in order to select the first alter­
native; otherwise, it is false, and alternative 2 is chosen. Connec­
tors of one type or the other may be utilized in each statement; a
combination of ANDs and ORs is an illegal formation. The individ­
ual statements of the large comparison statement may be of either
mode.

Boolean connectors serve an important purpose in that they
provide expanded decision capabilities. The comparison statement

ALQBANDCNQD

asks if A is less than or equal to B and if C is not equal to D; both
comparisons must be true for alternative 1 to be chosen. If either
or both is false, alternative 2 is selected.

Consider another comparison statement:

A GQ G OR L EQ 3

This asks if A is greater than or equal to G Q! if L is equal to 3, or
both. In other words, if either comparison or both is true, control
is transferred to alternative 1. If both comparisons are false, the
execution moves to alternative 2.

ORIGINAL

Following are a synopsis (table BS-1) and a list of examples
(table BS-2) of comparison statements.

TABLE BS-1. CONSTITUENTS OF COMPARISON STATEMENTS

Forms:
a. A? B, where ? is EQ, NQ, LS, GR, LQ, or GQ
b. A LS B LS C

Particulars:
a. In forms a and b, preceding, A, B, and C are arithmetic

expressions of indefinite length
b. In form a, A and B must be of a single mode, either

floating or fixed point
c. In form b, A, B, and C must all be fixed point ex-

pressions

Boolean connectors:
a. Join two to sixteen comparison statements
b. Either ANDs or ORs may be used, but not a combination

TABLE BS-2. EXAMPLES OF COMPARISON STATEMENTS

a. DIV3 * 14.3 LQFALL legal; form a, floating point
b. LOW LS RISK LS 9 + HIGH legal; form b
c. 1/3 GQ HOP * (3 + S * D) legal; form a, fixed point
d. ANTE LS S~ legal; forms a and b joined by

AND ODDS GR ~.S~ Boolean connectors
+ JFACTOR
ANDILSNLSM

e. K GQ -13. 6~2 + BLU illegal; mixed mode
f. NORMAL LS 96.4 LS HOT illegal; floating point mode
g. AB OR KANGAT illegal; improperly used

Boolean connector
h. FLOW EQ 6.2 illegal; combination of AND

AND B EQ -4 and OR
OR DAP GQ X48

In the structure of the conditional transfer, the comparison
statement is followed by a double apostrophe signalling the begin­
ninr; of the alternatives.

ORIGINAL BS-7

B5-8

Alternative 1 and alternative 2 follow identical rules of forma­
tion; if an alternative is described, the discussion concerns both.
An alternative is that set of control statements or combination of
arithmetic and control statements to which the computer moves
after evaluation of the comparison statement. All instructions
found in an alternative are executed. In the absence of any instruc­
tions or in the absence of a direct jump command as the last instruc­
tion of the alternative, the first operable NELIAC statement beyond
the conditional transfer becomes the next instruction executed. In
other words, it is not necessary to specify a direct jump in an al­
ternative if sequential operations are intended.

Alternative 1 is the "yes" or true option and alternative 2 is
the "no" or false option. The alternative selected depends upon
the evaluation of the comparison statement during program execu­
tion.

In general, a dollar sign terminates an alternative. Within
the body of an alternative, a return jump is specified with a verb
and comma and, after the return jump, execution continues inside
the alternative. However, when a return jump to a subroutine is
desired at the end of an alternative, the dollar Sign serves as the
punctuation necessary to indicate such a transfer; i. e., the comma
is not used. In this case, after the subroutine, execution will re­
turn to the first operable NELIAC statement beyond the conditional
transfer.

If a direct jump is specified in an alternative, it is interpre­
ted as the last executable instruction in that alternative. In other
words, the dollar sign is replaced as the terminal punctuation for
that alternative by the period associated with the jump. Care must
be exercised with the use of direct jumps in conditional transfers to
prevent the unintentional completion of alternatives.

Following are a synopsis (table B5-3) and a list of examples
(table B5-4) of alternatives.

ORIGINAL

TABLE B5-3. CONSTITUENTS OF ALTERNATIVES

Forms:
a. Blank
b. Control statements
c. Control and arithmetic statements

Particulars:
a. If form a alternative is chosen, control is transferred

to first NELIAC statement beyond conditional transfer;
$ terminates alternative

b. If form b or c alternative is chosen, and last instruction
of alternative is return jump, after execution of sub-
routine, control is transferred to first NELIAC state­
ment beyond conditional transfer; comma for that return
jump not needed; $ terminates alternative and replaces
comma as well

c. If form b or c alternative is chosen and it contains
direct jump, the jump becomes last executable in­
struction of alternative; period (.) terminates alter­
native

TABLE B5-4. EXAMPLES OF ALTERNATIVES

a. A = B ' , $ STOP $ legal; form a, form b
h. MIX GQ Y , f $ X + Z =) G, T. legal; form a, form c

c. A = B t t 47 $ STOP $ illegal; 47 cannot be
a verb

d. REP LS I LS YOYO " illegal; extraneous
REST + 1 =) F $ WOW. $ punctuation in alter-

native 2

Nested Conditional Transfers
It is often advantageous to substitute an entire conditional

transfer within an alternative of another conditional transfer. In
effect, we can make a decision within a decision within a decision
. .. etc. The fact that the subsequent conditional transfer is total­
ly enclosed within the confines of an alternative to a preceding com­
parison statement has generated the adjective "nested. "

ORIGINAL B5-9

B5-10

To illustrate the formation of the nested decision, the follow­
ing conditional transfer is given:

DAY = CLEAR" CD TEMPERATURE = WARM" ®
GET UP, GO PICNICKING $ @
GET UP, GO SKIING $ @ GO HOME. @
STAY IN BED $ @

(Note: "T" = true option; "F" = false option)

The outer comparison statement, identified by the superscript CD
after the double apostrophe, has two alternatives and superscripts

@ and @ (true and false options for decision CD). Note

that the second conditional transfer (superscript ®, @ , and

@) is explicitly specified within conditional transfer CD.
If DAY does in fact equal C LEAR, a second decision is neces­

sary: does TEMPERATURE equal WARM? If it does, the alter­
native GET UP, GO PICNICKING is selected; if it doesn't, the false
alternative GET UP, GO SKITNG is chosen. In either case, the di­
rect jump GO HOME. is executed afterwards. Under the circum­
stances in which DAY is not equal to CLEAR, the false alternative
STAY IN BED is executed without consideration of the second com­
parison statement.

The superscript notation, although not an allowable grammat­
ical form of NE LIAC, is often used by programmers to mentally
check the nesting of conditional transfers before the source pro­
gram is punched into cards. Two rules of thumb should be employed
in conjunction with the extra-NELIAC notation: first, alternatives
always come in pairs (i. e., there must be two symbols of alterna­
tive termination -- period or dollar sign -- for each double apos­
trophe); second, nested conditional transfers must be totally en­
closed in one alternative or the other of the more inclusive condi­
tional transfers.

A maximum of fifteen conditional transfers may be nested.
One may anticipate the complexity and occasional obscurity that
accompanies the nesting. For the purposes of understanding and
better organization, a programmer may choose to enclose, between
the BEGIN and END punctuation symbols, entire conditional trans­
fers when they are a part of or the whole alternative of a preceding
comparison statement. Only nested decisions may be so written.

ORIGINAL

One special rule applies to this added punctuation: if the nest­
ed conditional transfer is written so that the last instruction before
the END is an unconditional transfer outside both alternatives (as
GO HOME. in the last example), the verb specified must be followed
by a comma or period, regardless of the fact that a dollar sign
outside the END actually terminates the more inclusive alternative.

The following example illustrates a nested conditional trans­
fer using BEG IN and END punctuation symbols:

DAY = CLEAR" BEGIN TEMPERATURE = WARM"
GET UP, GO PICNICKING $
GET UP, GO SKIING $ GO HOME. END $
STAY IN BED $

To see the comparative effects of the conditional transfer
with Boolean connectors and the nested conditional transfer, refer
to figures B5-2 and B5-3. A glance at the two figures shows the
double comparison with Boolean connectors is the Simpler in scope
of the two. With Boolean connectors note that only two options are
available; in the alternative ONEORNEITHER. it is impossible to
ascertain which comparison held true or if both were false.

Nested conditional transfers are more powerful. Nesting re­
sults in three alternatives; two of the three are firm indicators.
The third alternative eliminates the early comparison but cannot
rule on the second; another comparison is necessary to decide on
the appropriate action.

INDIRECT TRANSFER

Indirect Addressing
A noun or verb used in an arithmetic operation will cause the

contents of the word(s) specified to be involved in the appropriate
calculations. During execution of this operation, addresses are
referenced directly and the data contained therein withdrawn and
manipulated.

ORIGINAL B5-11

B5-12

A NQ BAND D NQ E II

BOTH.
ONEORNEITHER.

ONE
OR

NEITHER

Figure B5-2. Conditional transfer with Boolean connectors.

A control statement of the unconditional transfer form will,
upon execution, command the control portion of the computer to
jump to the address specified as part of the instruction. Again,
the location is referenc ed directly.

Indirect addressing, as one might expect, is more complex
than direct addressing. The address specified in an instruction
which implies indirect addressing causes the computer, first, to
reference the given location and extract another address contained
therein and, second, to involve the information (data or instructions)
found at the new location in arithmetic or control operations.

Variables written in program logic as subscripts (enclosed in
proper punctuation) such as ($ VARIABLE $), are treated as oper­
ands in themselves. This NELIAC form, when incorporated in the

ORIGINAL

A NQ B I I D NQ E I I

BOTH. FIRST NOT SECOND. $
NOT FIRST.

FIRST
NOT

SECOND

Figure BS-3. Nested conditional transfer.

appropriate instruction environment, infers indirect addressing.
For example, the command ($ CONNECT $). is an indirect trans­
fer; during execution, the computer is to look at the contents of
the variable CONNECT and use the information stored there as the
address to which control is transferred. If CONNECT had con­
tained the address assigned to the variable KEY, ($ CONNECT $).
would have been equivalent to executing the direct jump, KEY.

Note that an unsigned constant as a subscript does not imply
indirect addressing. It is interpreted, rather, as a request for
the contents of a particular word in core. The arithmetic state­
ment ($ J $) + ($ 47 $) =) ($ A $), when executed, would cause the
contents of the address specified in J to be added to the contents of
computer word numbered 47 decimal (or 57 octal) and the sum
stored in the address contained in the variable, A.

ORIGINAL B5-13

B5-14

Some interesting sidelines are created by the subscript form,
and are mentioned only briefly for interest's sake. First, in
dimensioning, the statement ABC = BEGIN XYZ END , assigns to
the variable ABC an initial value equal to address of the variable
XYZ. Second, in dimensioning, the statement A = BEGIN 4~~~~
OCT END, is illegal; one may not specify a particular machine
address for a variable since this is a function of the compiler (see
section 7). Third, in program logic, only a single level of indirect
addressing is allowed; i. e., it is not possible in NELIAC to re­
quest the contents of the address specified as the contents of the
address specified as the contents of a variable. Fourth, the form
($ v ± c $) may be used (v = fixed whole or half word variable,
c = constant); in general, it is defined as the contents of the location
identified by the variable plus or minus so many words.

Then why have indirect addressing? The answer is that this
feature allows the programmer to change the address contained in
a variable like CONNECT from time to time, creating in effect a
modifiable, multidirectional switch. The use of this switching
feature, through address modification, saves many NELIAC pro­
gramming steps and consequently execution time.

Switches

In the conditional transfer a bidirectional programming de­
vice was uncovered. Based on a comparison statement, a true or
a false alternative path was taken. Because conditional transfers
are lengthy and sometimes clumsy (when nested), and because a
compact list of routine names is often required for specification
of many different paths of execution, switches are incorporated in
NELIAC.

There are baSically two forms a NELIAC switch may take:
a noun switch (often called an address switch) and a verb switch
(known also as a jump table). The more important of the two is
the verb switch, and immediate emphasis will be placed on it.

ORIGINAL

ORIGINAL

A verb switch may be defined in either the dimensioning or
the program logic portion of a flowchart. It is composed of an
identifying name for the switch, and two or more entries in a list
or array. These entries are the verbs associated with routines or
subroutines. In dimensioning, the verb switch looks like one of
these:

a. SWITCH = BEGIN A, B, C, D, END,

b. QUEUE (4 * 3) = BEGIN

ALFA, ROMEO, JULIET, HOTEL,
ROMEO, PAPA, NOVEMBER, QUEBEC,
BRAVO, CHARLIE, ECHO, WHISKEY,

END,

If written in program logic, the verb switch must have a format
similar to the following:

COUNT' , ONE. TWO, THREE, ETC.

No two-dimensional switch may be incorporated in program logic.

When a verb is specified in a switch, there must be a
corresponding routine or subroutine with that name; the routine it
identifies serves as defintion for the verb. Punctuation separating
entries in the list or array may be either the period or the comma;
their function in verb switch definitions is as a separator and con­
sequently no differentiation is made between them.

A subscripted verb, followed by a period or comma, in
program logic constitutes the command necessary to operate the
switch. QUEUE ($ 1, 1 $). in the sample switches will instruct
that a direct jump be made to the routine PAPA. COUNT ($ 3 $),
forces a return jump to the subroutine named ETC. No execution
actually takes place in the verb switch itself. The switch may
even be thought of as being passive, since all it does is provide an
address indirectly to a jump command. Whether the jump is direct
or return is determined by the command punctuation. If a return
jump to a verb is specified, that verb must be defined by a
subroutine.

B5-15

B5-16

The noun switch is a list of names, and both the names and
the noun switch must be defined in dimensioning. The noun switch
cannot be differentiated in appearance from the verb switch except
that it is never written in program logic.

Each noun in the switch represents a machine address. Using
an entry of the noun switch one may modify the starting address
of a table of values, as in the following example:

5
SOLE (2),
CHANGE = BEGIN SOLE END ,
$
CHANGE ($ t1 $) + 1 =) CHANGE ($ t1 $),

This sort of programming task might be required when another
list (defined in another flowchart) would overlay the first element
of the list named SOLE should this provision not be made. The
address of a flowchart to be loaded, while one is already reSident,
could be added to the resident segment's length to provide a loading
address. This sort of information would originate from a noun
switch.

Noun switches may also be composed of literal addresses.
Literals are lines of English defined in dimensioning which are
output on a hard copy device at the request of the programmer.
Their primary use is in debugging (making flowcharts error-free)
and in printing headings. Noun switches allow the programmer to
specify the literals for output in any order he chooses. More will
be said about literals in section 8.

ITERATIVE PROCEDURES

Introduction
There are three approaches to programming an algorithm

containing a group of instructions which must be repeated several

ORIGINAL

times. To illustrate the several methods, consider a simple
problem; the first five integers are to be stored in a list dimensioned
as five elements in length and identified by the variable NUMBER.

The first approach is to write the instructions over and over
again in the flowchart until the requisite number of executions is
provided for. The straightforward approach to the solution appears
below in routine form:

1 =) NUMBER ($ ~ $),
2 =) NUMBER ($ 1 $),
3 =) NUMBER ($ 2 $),
4 =) NUMBER ($ 3 $),
5 =) NUMBER ($ 4 $),

The second approach incorporates the utilization of the con­
ditional transfer to test if sufficient executions have been com­
pleted. Note that the important instruction, the storage of the value
into the list, is written only once; all of the other instructions are
the "master" or the controlling instructions. The second approach
follows:

ORIGINAL

~ =) I,
ADD I I I + 1 =) I,

I =) NUMBER ($ 1-1 $),
I ~ 5 I I ADD. GO ON.
GO ON I I

B5-17

B5-18

Using NELIAC loop control to replace the master instructions
of the second approach constitutes approach number three:

I = 1 (1) 5 BEGIN I =) NUMBER ($ I-I $), END,

The number of instructions to accomplish the required com­
putation (including control) decreases from the straightforward to
the loop-control approach: five instructions in the first, or straight
forward, approach; four in the second, or master-instruction,
approach; and one in the third, or loop-control, approach. As the
sophistication increases, more of the counting and control function
is maintained by programming tools rather than by the programmer.
The example of the straight forward approach was written for five
executions of the storage instructions; the program length required
to store the first It1t1 or It1t1t1 integers would be so immense as to
nearly defeat the purpose of using a procedure-oriented language.
The other two approaches would need only minor changes and would
involve no additional NE LIAC instructions.

In spite of the outward efficiency in coding the loop control
rather than the straightforward approach, consider again the
familiar tradeoff in digital computers: time vs. space. The store
instruction, written repeatedly, sans loop control, occupies a
larger area of core than the single instruction in either of the other
approaches. This space ratio becomes more unfavorable for the
repetitive specification as required iterations become more num­
erous.

On the other hand, the time required to execute the loop
control, added to the routine execution time, all multiplied by !l
iterations, exceeds the length of execution time of the straight­
forward approach. The second approach is no less time-consuming.

A decision must be made, and the approach favoring the
loop control wins the nod. The reason is simple. In digital

ORIGINAL

computers space is often more valuable than time. (This does not,
however, dictate a policy; the use of one approach over another
should be decided by the programming application.)

In the second, or master-instruction approach, the register
variable I was preset to~, and in a routine identified by the verb
ADD, immediately reset to 1. This value of I was stored in
NUMBER ($ ~ $). Then a test to see if 11=5 was performed. Until
the loop was executed five times, the true alternative ADD. was
chosen; once the inequality was false, control dropped out of the
loop to the verb GO ON. Note that the direct jump to ADD caused
I to be incremented, a new value to be stored in the next sequential
element of NUMBER, and caused a return to the conditional
transfer.

The third, or loop-control, approach reads as follows: take
the value 1 and store it in I; execute all instructions found between
BEGIN and END; test to see if I is equal to five; if so, drop to
next instruction; if not, go back, increment I by 1 (the parenthesized
constant) and proceed as before in executing, testing, etc.

Format

ORIGINAL

The general form of an iterative procedure is

LOOP CONTROL BEGIN PROCEDURE, END,

where LOOP CONTROL is defined as

INDEX = START (INCREMENT/DECREMENT) STOP

and PROCEDURE is a routine composed of arithmetic and control
operations which are to be repeated the number of times deSig­
nated in LOOP CONTROL.

INDEX may be any of the index register variables, I, J, K,
L, M, N. It serves the LOOP CONTROL by providing a register

B5-19

B5-20

to act as a counter. During execution of the iterative procedure, the
variable specified as an index will contain the value of the count
related to each execution and, as shown in the example of the third,
or loop-control, approach under the immediately preceding
"Introduction" heading, this portion of loop control may be in­
volved in the computation of the PROCEDURE.

START is the beginning value of LOOP CONTROL; it may
take any of seven forms:

a. Positive fixed pOint constant, including zero.

b. Fixed point whole word variable.

c . Fixed point half word variable.

d. Fixed point whole word variable subscripted.

e. Fixed point half word variable subscripted.

f. Index register variable.

g. Index register variable ± fixed point constant (must be
in order specified).

INCREMENT/DECREMENT is a mnemonic name for the
parenthesized fixed point constant found in LOOP CONTROL. In
a situation where the INDEX is to increase in a positive direction
from the START limit to the STOP limit, the INCREMENT is
positive. To count in a negative direction from START to STOP
when START is some positive integer and STOP is zero, the
DECREMENT is positive. For a nonzero STOP in LOOP CONTROL,
to create a decrementing count, the DECREMENT must be negative.

STOP has the same rules of formation that govern START.

Following are a synopsis (table B5-5) and a list of examples
(table B5-6) of iterative procedures.

ORIGINAL

ORIGINAL

TABLE B5-5. CONSTITUENTS OF ITERATIVE PROCEDURES

Formats
a. Iterative procedure:

LOOP CONTROL BEGIN PROCEDURE, END,
b. LOOP CONTROL:

INDEX = START (INCREMENT/DECREMENT) STOP
c. PROCEDURE:

Any routine composed of arithmetic and control
operations

Particulars
a. INDEX: Any of index register variable, I, J, K,

L, M, N
b. START: Any of seven forms:

(1) Positive fixed pOint constant, including zero
(2) Fixed point whole word variable, subscripted or
(3) Not
(4) Fixed point half word variable, subscripted or
(5) Not
(6) Index register variable
(7) Index register variable ± fixed point constant

(in order specified)
c. INCREMENT/DECREMENT: Parenthesized fixed

pOint constant:
(1) START:S STOP: INCREMENT positive
(2) START> STOP, STOP = l1:

DECREMENT positive
(3) START> STOP, STOP f; l1:

DECREMENT negative
d. STOP: Same rules as START

TABLE B5-6. EXAMPLES OF ITERATIVE PROCEDURES

a. I = l1 (1) 5 BEGIN I =) J, END,
b. I=5(1)l1BEGINI=)J, END,

legal; incrementing loop
legal; decrementing loop,
STOP = 1.1

c. 1=6 (-1) 3 BEGIN 1=) J, END, legal; decrementing loop,
STOP f; ~

B5-21

B5-22

TABLE B5-6. (CONT)

d. J = HARP ($ 5 $) (7) LUTE

e. M = I - 6 (4) 1+26

f. L = 98 (-1) PAL (15 =) 29)

g. INDEX = N (1) L BEGIN B,
END,

h. K = 1 (PANG) G BEGIN B,
END,

i. J = 4 (1) 2

j. N = I (2) 5 + K

Operations

legal LOOP CONTROL;
whole word variables (one
subscripted)
legal LOOP CONTROL;
index register variables
± fixed point constants
legal LOOP CONTROL;
half word variable
illegal; INDEX is a
mnemonic device for
describing formats; only
index register variables
may be used
illegal; INCREMENT/
DECREMENT must be
fixed pOint constant
illegal LOOP CONTROL;
in this loop, INCREMENT /
DECREMENT must be
negative to decrement
4 to 2
illegal LOOP CONTROL;
STOP has constant and
variable reversed

The purpose of this subsection is to familiarize the program­
mer or programmer-initiate with the inner workings of loop
control and with the programming possibilities of this tool.

LOOP CONTROL is a most important consideration when
establishing an iterative procedure in NE LIAC . The rules of
formation have been reviewed; actual operations now will be

ORIGINAL

described. To simplify the discussion, the steps of execution are
enumerated:

1. Set the INDEX = START.

2. Execute the instructions contained in the PROCEDURE.

3 . Test if INDEX = STOP.

4. INDEX = STOP: Set INDEX to zero, take first sequential
instruction beyond END punctuation.

5. INDEX f. STOP: Add INCREMENT/DECREMENT to
INDEX and return to step 2.

Note that the STOP or end pOint of the loop control must be
reached exactly; i. e., a multiple of the INCREMENT/DECREMENT
added to START must exactly equal STOP. If STOP never equals
INDEX, the PROCEDURE will continue to be executed indefinitely.

LOOP CONTROL written as either a decrementing or an
incrementing loop with the START and STOP limits interchanged
from one case to the other causes no difference in the number of
PROCEDURE executions. For example, I = t1 (1) 15 BEGIN
PROCEDURE END, controls 16 executions of the PROCEDURE;
I = 15 (1) t1 BEGIN PROCEDURE END, also forces 16 executions.
The reason for one LOOP CONTROL rather than another is the use
of the INDEX within PROCEDURE; it is sometimes the desire of a
programmer to use a decrementing count in PROCEDURE calcula­
tions rather than an incrementing INDEX.

START and STOP limits in LOOP CONTROL must not be
altered during iterative executions of the PROCEDURE. The result
of such an operation is the deterioration of LOOP CONTROL and
the possibility of program failure.

START and STOP limits which are equal will allow a single
execution of the iterative procedure since the test for equality is
made subsequent to the execution.

Control may be transferred at any time from an iterative
procedure. If it occurs at the normal STOP limit, the INDEX is
set to zero. If, however, a transfer is made before that point,

ORIGINAL B5-23

B5-24

the instantaneous INDEX value is saved for later reference, and
will maintain its status unless control is resumed within the loop
or if some arithmetic statement changes the INDEX.

Entire iterative procedures may be enclosed within other
iterative procedures, as in the following example:

1=1 (2) 5 BEGIN J = 4 (-1) 2 BEGIN I + J =) K, END, END,

The instruction length of the PROCEDURE, i. e. from BEGIN to
END, is known as "scope. " The general rule for nesting iterative
procedures is that the scope of an enclosed iterative procedure
must lie wholly within the scope of the outer iterative procedure(s).
This is illustrated in figure B5-4, whereas figure B5-5 shows an
illegal configuration of iterative procedures. In figure B5-5, the
nested loops are illegal because the scope of iterative procedure
#2 extends beyond that of procedure # 1.

LOOP CONTROL #1

BEGIN #1

LOOP CONTROL #2

BEGIN #2

LOOP CONTROL #3

BEGIN #3

I
END #3

END #2

END #1

Figure B5-4. Legal nested iterative procedures.

ORIGINAL

LOOP CONTROL f1

BEGIN f1

LOOP CONTROL f2

BEGIN f2

END f1

ND f2

Figure B5-5. illegal nested iterative procedures.

Another illegal operation is the transfer of control into an
iterative procedure from a point outside its scope. For example,
a transfer from loop #=3 into loop #= 1 of figure B5-4 might be legally
carried out, but the converse would not be permitted. The purpose
of this restriction is to prevent program failure or the deterioration
of loop control.

Iterative procedures may be nested six deep without any
extra programming; six nested loops would utilize every index
register variable available. Any attempt to reuse one of these
variables before its iteration is complete, without making special
provision to save the current value assigned to it, will cause
problems in the loop with the modified index. The only extra pro­
gramming necessary to prevent these troubles is to temporarily
store the outer index value in a fixed point variable while the index
is reused and then to reinstate this value before operations in the
outer loop are continued. For example:

ORIGINAL

I = 1 (3) 4 BEGIN I =) TEMP STORE,
1= 12 (1) ts BEGIN A + B =) C, END,
TEMP STORE =) I, END ,

REVERSE SIDE BLANK B5-25

6. SUBROUTINES AND FUNCTIONS

INTRODUCTION

A routine is a series of instructions written to match the
program requirements and expressed in a specific sequence. When
these requirements dictate that the identical routine must be in­
corporated several times in the algorithm, the source program re­
flects the inclusion of the indistinguishable instruction sets.

NELIAC provides the programmer with the subroutine and
the function to avoid the necessity for multiple programming and
flowcharts with their lengthy composition and compilation times.
Subroutines and functions are routines written (or defined) once
within the confines of the program and referenced (or called) as
necessary from any point in the program logic of any flowchart.
They are classified as closed routines--the machine code equiva­
lent to these source program segments is inserted only once in the
object program in spite of the number of references made in pro­
gram logic.

In principles of operation there are several degrees of sim­
ilarity between the subroutine and the function. Each is a self­
contained group of commands which will manipulate data and/or
cause control operations to take place. Each is defined and called
in program logic; definitions and calling sequences may look al­
most identical. Each may be defined or called from within another
subroutine or function.

ORIGINAL B6-1

B6-2

· The differences and similarities of these routines are dis­
cussed in the following subsections.

SUBROUTINES

Definition

To create a subroutine from a routine, a programmer needs
only to enclose the routine between the BEGIN and END punctua­
tion and assign it a name. In other words, the format is

VERB ' , BEGIN ROUTINE END ,

A subroutine normally is written toward the end of a program
to avoid the necessity of branching around it, since it is not exe­
cutable unless called by name in a return jump instruction. If its
importance or size warrants the separation, the subroutine defini­
tion may occupy a flowchart by itself (no dimensioning is needed,
provided that all names used in the routine are properly defined
el sew here).

A subroutine definition may include the description of func­
tions or other subroutines. Any verb defined by the included rou­
tines is considered of "subroutine or function" precedence (see
section 3 for explanation) and therefore may duplicate any other
name outside its own routine without compiling errors. Other
verbs and all nouns (operands in arithmetic or control statements)
called or operated upon within the routine must be externally
defined.

Likewise, the definition may incorporate definitions of and
calls on any functions or subroutines in the program other than
itself.

ORIGINAL

Calls

The uniquely proper manner for subroutine entry is via the
subroutine call; unless such a call is made, the subroutine is non­
executable. An unconditional transfer of control in the form of a
return jump is the correct form for subroutine calls. Such a call
may be written at any point in the program. During execution, the
call will force transfer to the subroutine and cause operation of all
executable instructions therein contained and an automatic return
transfer to the departure point.

A subroutine may be left via an included direct jump at any
time; if no return to an inner point in the subroutine is anticipated.
If temporary departure from the subroutine, such as a return
jump to another subroutine, is desired, the call is the only exit
which provides a reentry to that particular routine at the departure
point. Calls made within the subroutine on other subroutines de­
fined within the confines of the outer subroutine are legal because
of name precedence.

Following are a synopsis (table B6-l) and a list of examples
(table B6-2) of subroutines.

TABLE B6-l. CONSTITUENTS OF SUBROUTINES

Definition:
a. Form:

VERB' , BEGIN ROUTINE END ,
b. VERB is any name unique to the more inclusive subroutines;

if the subroutine is not nested, VERB is a name unique only
to the program

c. ROUTINE is any combination of arithmetic and control
statements; other subroutines and functions may be defined
or called within ROUTINE

Call:
a. Form: ordinary return jump--SUBROUTINE NAME,
b. Only entry to subroutine
c. May call any other subroutine or function; such a call

provides a reentry point
d. Direct jump from subroutine provides no reentry point

ORIGINAL B6-3

B6-4

TABLE B6-2. EXAMPLES OF SUBROUTINES

a. TRIVIA" BEGIN A + B =) C, END,
b. REDO" BEGIN I * 4 =) J < 14 ' ,

TRIVIA$ PART. END,

c. CRANK" BEGIN CIIDG ' , BEGIN

legal; definition
legal; definition in­
cludes call on sub­
routine TRIVIA
legal; definition of

SEAR ' , BEGIN D, END, nested subroutines;
END , END , incl uded calIon sub-

d. FORT" BEGIN ADDAGAIN,
GEO/ GLOSS * 2 ** 9 =)
STORE, ADDAGAIN ' ,
BEGIN STORE + 1 =)

STORE, END, END,
e. BAD" BEGIN BAD, END,

f. ADDAGAIN,
FORT' , BEGIN ADDAGAIN,

FUNCTIONS

Discussion

GEO/GLOSS * 2 ** 9 =)
STORE, ADDAGAIN ' ,
BEGIN STORE + 1 =)

STORE, END, END,

routine D
legal; definition in­
cludes call on sub­
routine nested within
itself

illegal; definition
includes call on sub­
routine itself
illegal; call external
to subroutine on
name of subroutine
precedence

Subroutines and functions are self-contained groups of com­
mands designed to manipulate data and! or cause control operations
to take place. In other words, they are assigned the same basic
task, and the programmer is left to choose the proper one for his
needs.

ORIGINAL

In calculus, a parameter is a quantity to which arbitrary
values may be assigned. If a dependency is established between
two parameters, x and y, it may be said that the value assigned to
parameter y is some function of the value given to parameter x or
vice versa. In the shorthand of calculus, this dependency is
written as

y = f(x)

The value of the function,f(x), when x= c, iSf(c).

The names written as a part of the NELIAC function definition
are also called parameters in that they characterize the names or
values that will be substituted during function execution. The
parametric function, as written in the definition, provides the
guidelines for name substitution in the call and execution.

A representative NELIAC function definition is written as
follows:

P (X, Y, Z $ D) , , BEGIN X + Y * Z =) D, END ,

The function P has three input parameters--X, Y, and Z-- and one
output parameter--D. The definition consists of the routine en­
closed by the BEGIN and END. A function call from within pro­
gram logic

P (A, B, C $ E),

would cause the following routine to be calculated:

A + B * C =) E,

Note the facility with which the parametric values in the
function use can be changed. The function, then, in contrast with
the subroutine, manipulates the data in and performs control oper­
ations on the names supplied by the call, and not on tho se names
written in the definition. This facility permits the programmer to
write a generalized routine and to use the function at several points
in the program logic without intermediate store operations to re­
place the contents of subroutine names.

ORIGINAL B6-5

B6-6

Definition

Like the subroutine, the function is defined only once in a
program, for the calls to it provide the necessary linkages. The
function definition is usually placed among the last routines of a
flowchart or program in order to isolate it from executable rou­
tines and to avoid interruption of sequential operation of the pro­
gram.

The function definition may be considered a flowchart in it­
self. The definition may be broken into two parts, one easily
identified as the dimenSioning portion, the other as the program
logic.

Dimensioning in the function definition comes directly after
the name of the function (which is a verb, since it provides an
entry point for a procedure), before the double apostrophe (signal­
ling the beginning of the routine), and enclosed between a left and a
right parenthesis. Within the parentheses the dummy parameters
for the function are dimensioned. All parameters in a function
definition are of the "subroutine or function" precedence, and con­
sequently the identical NE LIAC names may be used as nouns and
verbs elsewhere in the program.

Dimensioning in the function definition allows the name forms
discussed in section 3--nouns, subscripted nouns, nouns involved
in bitfield algebra, modal specification (fixed or floating point),
assignment of initial values, and combinations of the above. The
nouns are the dummy parameters of the function.

The dimenSioning portion of the definition in general looks
like

NAME (INPUT PARAMETERS $ OUTPUT PARAMETERS)"

NAME is a verb, as previously mentioned, and the routine to the
right of the double apostrophe serves to define it. INPUT PARAM­
ETERS is a list of all those dummy parameters that represent
values calculated previous to the calIon the function. The list may
be as few as one input parameter or as many as desired. OUTPUT
PARAMETERS is a list of values calculated within the function's

ORIGINAL

routine from the input parameters. This list may be nonexistent,
in which case the parenthesized parameters are written without
the dollar sign, since there is no need to separate IN from OUT.
Again, the list may be as long as necessary.

Parameters in either list must include the mode the pro­
grammer intends to assign to each. If a parameter is fixed point,
it is separated from its fellows by a comma (the last comma before
the dollar sign or right parenthesis is superfluous). If, on the
other hand, the parameter is written as floating point, a period
follows it no matter what its position in either list.

The input and output parameters must be specified in the def­
inition in the same sequence that they are found in the program
logic. A closer look at this dimensioning might find

VERB (INPUT PARAMl, INPUT PARAM2 $ OUTPUT PARAMl.)"

The program logic portion of the function definition, which
follows the double apostrophe, may contain any of the operations
one might find in a normal flowchart: arithmetic and control oper­
ations, definitions of and calls on subroutines and other functions,
etc. Calls on subroutines and functions defined within the outer
function are legal. Variable operands exclusive of definitions and
calls are either input and output parameters dimensioned by the
function definition, or variables defined elsewhere in the program
(external to the function definition).

A function definition, like that of a subroutine, may include
the description of subroutines and/or other functions. Any verb
defined by the included routines is considered of "subroutine or
function" precedence and therefore may duplicate any other name
outside its own routine without compiling errors.

Under the topic of function calls, we will come to the use of
the function in an arithmetic statement. For most occasions of
such a use it is necessary to insure that intermediate results in the
statement, derived from execution of the function, are stored in
the computer's accumulator (a register employed as a storage
place for totals o:utside normal core storage). To provide this in­
surance, the program logic of the function definition should

ORIGINAL B6-7

B6-8

normally include as a last instruction the storage of the output
parameter back into itself, as in the following example:

F (X, Y; X) , , BEGIN X + Y =) X, X =) X, END,

In general, then, the function definition has the following
form:

VERB (PARAMETERS) , , BEGIN ROUTINE END,

Calls

Without the requisite call, the NELIAC function is not exe­
cutable because there is no other programmable means for entry
into the routine. In addition, the function call provides a list of
variables for substitution in the slots reserved by the dummy
parameters.

The function call may take two forms. The first is the func­
tion as an operand in an arithmetic statement, and the second is as
a return jump to the function alone.

The first form is the more sophisticated. It is equivalent to
a return jump to the function plus the additional arithmetic state­
ment incorporating the function t s output. The following example
illustrates the difference between the two forms:

First form: FUNC (A, B $ C) + D =) E,

Second form: FUNC (A, B $ C),

Additional statement: C + D =) E,

It is emphasized that in the first form the function definition must
include provision for storage of the function's output in the accumu­
lator. Bitfield operands and some arithmetic calculations involv­
ing "add-to-store" operations demand this provision.

ORIGINAL

Since the function name has been identified as a verb, and
since only a noun may serve as an operand in an arithmetic state­
ment, the question arises as to how a function call can be incor­
porated in arithmetic operations. The answer is twofold. First,
only a function with a single output parameter may be used in an
arithmetic statement. Second, the inclusion of the function implies
that its parametric numeric output will be manipulated in some
manner, and since the output is assigned to a noun the ru1e of
NELIAC operands has not been violated. (This argument may seem
strained, but it is valid.)

The mode of the function call in an arithmetic statement is
determined by the mode of the output parameter. As a result, the
entire mode of the expression is dictated by this same parameter.

The second form of the function call resembles the lefthand
portion of the function definition--a verb and one or more paren­
thesized variables. The call is punctuated by a comma indicating
a return jump command. Following is an example of the general
form:

VERB (INPUT PARAMS $ OUTPUT PARAMS),

There are rules of NELIAC grammar common to both forms
of the function call which must be observed.

The function call may have any of the following parameter
name forms: a noun, subscripted or not; a noun, with bit limits,
subscripted or not; or a verb. In the case of the verb, an uncondi­
tional transfer of control within the function's program logic in­
volving the verb must be of the return variety to insure proper
stowage of the function's output.

The parameters may be of mixed modes. That is, the input
parameters of both the function definition and call may be of a dif­
ferent mode than the output parameters. However, it is mandatory
that corresponding parameters (e. g., input parameter 1 of defini­
tion and input parameter 1 of call, etc.) be of identical mode. No
provision is made for conversion of one mode to the other during
the function call which precedes execution.

ORIGINAL B6-9

B6-10

The parameters must agree in order and number; thus, if two
input parameters and three output parameters are defined for the
function, two input parameters and three output parameters must
be supplied in the function call. If a call is required which deletes
the use of a parameter defined in the function, the call must be
written with a space between commas to indicate that the param­
eter's absence is intentional. Otherwise, the parameters are
right-justified upon compilation, and the absence of a parameter
might transmit an input parameter of the call to an output param­
eter of a definition, rendering the entire operation meaningless.

All parameters used in the function call are of necessity de­
fined somewhere within the program confines. No attempt need be
made to indicate the mode of the call parameters. Punctuation
serves only to separate parameters. Regardless of the punctua­
tion used in the call, the dimensioned mode of the call parameters
will be used.

Following are a synopsis (table B6-3) and a list of examples
(table B6-4) of functions.

TABLE B6-3. CONSTITUENTS OF FUNCTIONS

Defini tion:
a. Form:

VERB (PARAMETERS) , , BEGIN ROUTINE END,
b. VERB is any name unique to the more inclusive subroutines;

if the function is not nested, VERB is a name unique only to
the program

c. PARAMETERS composed of two lists, INPUT and OUTPUT
separated by $; dummy parameters to be replaced by other
variables specified in function call; INPUT for variables
calculated before function call; OUTPUT is provision for
results from execution; INPUT parameters: minimum = 1,
maximum boundless; OUTPUT parameters: minimum =~,
maximum boundless; if no OUTPUT, eliminate $; commas
separate parameters if fixed point, periods if floating point;
punctuation before $ and) not needed unless last parameter
is floating point; PARAMETERS must be specified in same
order used in ROUTINE; dimensioning in PARAMETERS
may include any name form possible in flowchart dimen­
sioning

ORIGINAL

ORIGINAL

TABLE B6-3. CONSTITUENTS OF FUNCTIONS (Continued)

d. ROUTINE similar to flowchart program logic; arithmetic
and control operations, definitions of and calls on other
subroutines and functions, are possible

Call:
a. Forms:

(1) ... VERB (PARAMETERS) ...
(2) VERB (PARAMETERS),

b. Form (1): Function as operand of arithmetic statement
c. Form (2): Return jump to function
d. General form:

VERB (INPUT PARAMS $ OUTPUT PARAMS),
e. PARAMETERS may be nouns, subscripted or not, partial

or full word; or verbs; mixed modes in call, but each call
parameter must be same mode as corresponding definition
parameter; call parameters must agree in order and num­
ber with definition parameters; all are defined elsewhere
in program; commas or periods serve only as separators;
omitted parameter must be provided for with dummy
comma; form(l) call: no more than one output parameter;
form(2) call: no output, no $ or output parameter

TABLE B6-4. EXAMPLES OF FUNCTIONS

a. SERIES (X, Y $ Z) , , BEGIN
X + Y I X - X I Y =) Z, P,
END,

b. SERIES (A, B $ CHU'M),
c. HOP + 4.37 * BLEU -

TRIM / SERIES (T, SO $ B6)
=) N,

d. BAD CALL (43, A4),

e. DENT + LOG (P, Q $ R, S)
=) THUD,

f. OHGAD ($ IAG'O) , ,
BEGIN 3 =) IAG'O, END,

legal; function definition

legal; form (2) call
legal; form (1) call

illegal; constant may not
be used in call
illegal; call in routine may
not have > 1 output
parameter
illegal; must have ~ 1 input
parameter

REVERSE SIDE BLANK B6-11

7. DECLARATIONS

MACHINE DEPENDENCY
A procedure oriented language (POL), as defined in section

2, is a programming tool which incorporates the use of algebraic
notation for mathematical solutions, near-English phrases for
program control, and other sophisticated capabilities which place
the language on a level high above machine code. The POL has
been developed for the scientist, engineer, or mathematician who
desires to write his own programs and lacks the detailed training
required of a machine language programmer.

NELIAC, as the language under discussion, satisfies the
criteria for a procedure oriented language. Its syntax is orga­
nized so as to be largely machine independent. Routines written in
NE LIAC may be compiled on any of several digital computers with
little compensation for individual machine characteristics.

Some programs, of necessity, must be subject to computer
idiosyncrasies. These are programs written in the areas of input/
output, often-used and machine dependent algorithms, and address
assignment.

ORIGINAL B7-1

B7-2

Input/Output

Communications between a digital computer and its peri­
pheral equipment (hardware external to the central processing unit
such as a printer, card reader, magnetic tape unit, etc.) consti­
tute the programming area lmown as input/output. The central
processing unit, or mainframe, is the reference equipment in such
exchanges. Input describes communications from an external
device to the mainframe, and output implies the reverse.

Input/output configuration normally changes from one com­
puter installation to another, and communications programming
changes sympathetically. Therefore, one might expect for each
manufacturer, model, variation in equipment, etc., that the sec­
tion of a compiler devoted to communications would be wholly
machine dependent; this is the case.

Specialized Algorithms

The digital computer manufacturers offer two classes of
hardware: generalized and specialized. A generalized machine is
one designed for multipurpose uses, suitable for many unspecified
jobs. A specialized computer, on the other hand, is constructed
to accomplish only the task for which it was designed.

As in computer hardware, there is generalization and spe­
cialization in compilers. Specialization provides efficiency in the
source-to-object-program translation and in the machine code
generated by the translation. The immediate effects of such effi­
ciency are savings in time for compilation and execution and a
compression of core space required to contain the object program.

A generalized compiler by its nature must be capable of
handling a wide scope of syntactical combinations. Provisions for
generalities cause some inefficiencies in object program code
reflected as wasted time and space.

ORIGINAL

Any routine that is machine dependent or specialized, writ­
ten with the intention that it will be frequently used, and processed
by a generalized compiler, is doomed to some inefficiencies at
best. Other means for incorporating the required algorithm in the
object program must be found or devised.

Address Assignment

In medium-to-large-scale computers, certain addressable
registers are reserved for particular purposes. The contents of
these registers at all times reflect the status of the function they
serve. For example, a binary clock may be an integral part of
the computer design. There will be a word in core assigned to
the clock, and a request for the contents of that word will yield the
clock's numeric reading in binary.

Likewise, a location in core which is the entry point to a
specialized routine must be addressable. A name must be given
to the routine (so that it may be called from some external point
in the program) and concurrently pinned to a particular machine
address .

. To utilize the clock or provide the entry pOint, the compiler
or some adjunct of it must provide the facilities for addreSSing
these specific registers.

NELIAC accommodates all of these three areas with the
"declaration, " a powerful machine-dependent programming device.

The declaration is a member of the subroutine family. It is
subj ect to definition and call as is the subroutine and function.
But unlike the latter pair, the declaration is an "open" routine-­
the appropriate machine code is inserted in the object program
each time the declaration call is used. Where calls to NELIAC
subroutines or functions are made, return jumps are generated
to the routine named. For "closed" routines, the machine code
routines are included just once in the object program regardless
of the number of calls made upon them.

ORIGINAL B7-3

B7-4

The declaration definition is a routine written essentially in
machine code. It may reside on a compiling system tape awaiting
a call into the object program, or it may be entered as part of the
source program.

If the routine is a resident of the compiling system, it is
known as a "system declaration." Dec larations so designated are
of sufficient importance to the NE LIAC user to be already fully
programmed. They are simply called from the system tape wher­
ever needed; no reprogramming is necessary . Input/output, some
specialized routines, and some address aSSignments are inc luded
among system declarations.

If the declaration definition is entered as part of the source
program, the programmer uses the declaration flowchart (control
number of 6, for which see "Flowcharts" in section 2). A defini­
tion of this type must be written by the programmer, although such
a project should not be undertaken unless space and time are at a
high premium. The declaration flowchart is normally reserved
for the specialized routine or address assignment.

The general form of a declaration definition is

VERB = ROUTINE,

where VERB is any previously unused NELIAC name, and ROUTINE
is an arithmetic and control operation program similar in purpose
to a flowchart's program logic. It does not, however, look like
the latter. Further discussion is reserved for the next subsections.

The declaration call is similar to the function call. It may
be used anywhere in program logic, subject to the restriction that
a declaration cannot be called before it is defined. The call
involves the specification of parameters or operands to fill the
slots provided in the definition. The same form of call is used
whether a declaration is a system reSident or not.

The declaration call on the sample definition, given above,
may be represented in general form by the following

($ VERB LS OPERAND! GR, ... LS OPERANDn GR , $),

ORIGINAL

VERB for the definition and call must be identical in order to com­
pile the proper pair together. The operands are constants and
variables to be incorporated in the machinations of the declara­
tion's ROUTINE. They are written in the precise order required
by the ROUTINE.

The application of declarations to each of the three areas
(input/output, specialized routines, address assignments) will be
described in detail in the ensuing subsections. For the remaining
discussion concerning declarations, all machine references will
be made to the digital computer utilized to implement the Command
Ship Data System, the Remington Rand Univac AN/USQ-20, about
which some knowledge is assumed on the part of the reader. Addi­
tional explanation will be offered where it is felt necessary to do
so.

CATEGORIES

The routine of a declaration, like any other arithmetic or
control operation, is composed of operators and operands. Dec­
laration operators (shortened to "declarators lf

), written in the
declaration definition, indicate the machine code intentions of the
programmer. These declarators are English words or phrases
punctuated in a manner to provide, when necessary, a niche for
operand substitution by the declaration call. The combination of
the definition and call is required for generation of the machine
language inserted in the object program, because operands and
operators both must be speCified to write full instructions.

Declarations may be separated into three categories. The
category of declaration used is dependent upon the requirements
of the algorithm and is a decision made by the programmer. In
turn, the category determines in what form the appropriate
declarator is to receive the operand requisite to its part in the (
computation.

ORIGINAL B7-5

B7-6

Category I

This declaration category depends upon the call as written
in program logic to provide the operands and input/output "sense"
(direction) to generate machine code. Category I declarations are
characterized by the punctuation symbols LS and GR which enclose
the declarators of the declaration definition and the operands of
the program logic call.

Declarators of this category are always written in the defini­
tion in the following manner:

LS DECLARATOR GR ,

Operands provided by the call are enclosed in LS and GR , unless
the operand is to be an input parameter (a variable assigned to an
area in core to be filled by reading data into the computer from
some external device). In this case, the punctuation symbols are
reversed, as

GR OPERAND LS ,

Further discussion of the declaration for input/output purposes is
presented later in this section.

The declarators listed below belong in Category I:

LS EXTERNAL FUNCTION GR ,
LS RELEASE INTERRUPT LOCKOUT GR ,
LS JUMP ACTIVE GR ,
LS BUFFER GR ,
LS MONITOR BUFFER GR ,
LS GENERATE BUFFER CONTROL WORD GR ,
LS DELAY GR ,
LS SET INTERNAL INTERRUPT ENTRANCE GR ,
LS SET EXTERNAL INTERRUPT ENTRANCE GR ,

Some of these are applicable to other categories; all are defined in
the subsection of this section called "Declarators. "

ORIGINAL

Category II

The formation of machine code from declarations of this
category is the antithesis of Category I. That is, the operators
and required operands are both specified in the declaration defini­
tion' no dependence is placed upon the call except the sense of the
LS or GR punctuation, an LS followed by a comma in the call indi­
cates that the corresponding operand in the definition should be
regarded in the output sense, and a GR followed by a comma indi­
cates the operand is an input variable.

Category II definitions are characterized by declarators
enclosed in parentheses. Where an operand is required by the
declarator, a decimal or octal number, enclosed by a separate set
of parentheses, is located between the declarator and its right
parenthesis as in the following:

(DECLARATOR (OPERAND»,

The declarators listed below belong in Category II:

(EXTERNAL FUNCTION (OPERAND»,
(RELEASE INTERRUPT LOCKOUT),
(JUMP ACTIVE),
(TERMINATE BUFFER),
(DELAY (OPERAND»,
(MACHINE CODE (OPERAND»,

The use and meaning of the presence or absence of the OPERAND
will be explained later in the subsection, "Declarators."

Category III

Definitions of Category III declarations contain declarators
and operands. Calls from program logic provide addit~onal or
modifying operands and the input/output sense.

ORIGINAL B7-7

B7-8

For the declarator EXTERNAL FUNCTION, a four word
(three instructions and a temporary storage word) program is
tacked onto the otherwise appropriate machine code for the purpose
of adding the definition operand to the contents of the corresponding
modifying operand of the call at execution time.

In the case of MACHINE CODE, the operand addition is car­
ried out at compilation time and the sum inserted directly into the
instruction operands of the machine equivalent to the declaration
routine.

All operands used in the definition, regardless of declarator,
must be fixed point numbers. Call operands may be fixed point
constants or variables, including index register variables. The
definition takes the following format:

NAME = (CHANNEL#) LSDECLARATOR(OPERAND)GR,

while the call (input sense) looks like

($ NAME LS MODIFYING OPERAND GR , $),

Only two declarators belong to the Category III:

LS EXTERNAL FUNCTION (OPERAND) GR ,
LS MACHINE CODE (OPERAND) GR ,

FollOwing are a synopsis (table B7-!) and a list of examples
(table B7-2) of categories.

TABLE B7-1. CONSTITUENTS OF CATEGORIES

Category I
a. Definition depends upon call for operands and I/O sense
b. Definition form: NAME = (CHANNEL #) LS DECLARATOR!

GR , ... LS DECLARATORn GR ,

ORIGINAL

TABLE B7-!. (CONT)

c. Call form: all purposes except input:
($ NAME LS OPERAND GR , $),; input:
($ NAME GR OPERAND LS , $),

d. Applicable declarators:
LS EXTERNAL FUNCTION GR ,
LS RELEASE INTERRUPT LOCKOUT GR ,
LS JUMP ACTIVE GR ,
LS BUFFER GR ,
LS MONITOR BUFFER GR ,
LS GENERATE BUFFER CONTROL WORD GR ,
LS DELAY GR ,
LS SET INTERNAL INTERRUPT ENTRANCE GR ,
LS SET EXTERNAL INTERRUPT ENTRANCE GR ,

Category II
a. Definition depends upon call for I/O sense only; operands are

self-contained
b. Definition form: NAME = (CHANNEL #)

(DECLARATOR! (OPERAND», (DEC LARATOR2) ,
(DECLARATORn (OPERAND»,

c. Call form: ($ NAME LS , GR , GR , LS, ... etc. $) (LS:
operand to be treated in output sense; GR: operand to be
treated in input sense)

d. Applicable declarators:
(EXTERNAL FUNCTION (OPERAND»,
(RELEASE INTERRUPT LOCKOUT),
(JUMP ACTIVE),
(TERMINATE BUFFER),
(DELAY (OPERAND»,
(MACHINE CODE (OPERAND»,

Category III
a. Definition depends upon call for I/O sense and modifying

operands; operands are self-contained
b. Definition form: NAME = (CHANNEL #)

LS DECLARATOR! (OPERAND) GR ,
LS DECLARATORn (OPERAND) GR ,

ORIGINAL B7-9

B7-10

TABLE B7-1. (CONT)

c. Call form: all purposes except input:
($ NAME LS OPERAND GR , $),; input:
($ NAME GR OPERAND LS , $),

d. Applicable declarators:
LS EXTERNAL FUNCTION (OPERAND) GR ,
LS MACHINE CODE (OPERAND) GR ,

TABLE B7-2. EXAMPLES OF CATEGORIES

a. PUNCH CARD 1 = (1.0) legal; Category I definition
LS MONITOR BUFFER GR ,

b. ZU INT RELEASE = legal; Category II definition
(MACHINE
(6.0.0.0.0 OCT .0» ,

c. RE LEASE = LS MACHINE legal; Category III definition
(6.011.0 OCT .0) GR ,

d. ($ JB TRAP LS D GR , legal; Categories I and III call

GR PFF LS , $),
e. ($ CALL NELOS LS ,$), legal; Category II call

DECLARATORS

As the operators of the declaration routine, declarators are
the symbolic phrases which generate the machine language func­
tion or operation code, whereas the operands of the definition and

ORIGINAL

call are responsible for completion of the instruction format. The
function code f of a machine instruction is the fundamental com­
mand to the computer's logic.

The discussion which follows is an exposition of the pur­
pose(s) each declarator serves.

Release Interrupt Lockout

RELEASE INTERRUPT LOCKOUT is a declarator which may
be used in Category I or Category II declarations.

The machine function code f= 6~ is generated for each
specification of this declarator. This machine instruction has two
extraordinary uses besides its intention as a jump command; if
the branch designator)' is equal to a zero, the command to clear
the interrupt lockout mode (established by the interrupt lockout
instruction 73~3~~~~~~) will be created, no jump will actually
transpire, and the next sequential instruction will be executed; if
j = 1, the interrupt lockout will be cieared, and a jump to the
operand speCified by the call will follow the release.

Employing RELEASE INTERRUPT LOCKOUT in a Category I
declaration causes j to be set to a 1. In a Category II delcaration,
the arithmetic jump command generated has a j =~, and no oper­
and is required.

Jump Active

Declarations of Category I or Category II may employ this
operator to jump to a specified address if a particular channel is
active.

ORIGINAL B7-11

B7-12

If a Category I declaration is defined, the machine function
code is determined by the I/O sense of the call from program logic.
In the case of an operand surrounded by punctuation indicating the
input sense, the function code f = 62 is generated; for the output
case, the instruction becomes a 63 function code. For either func­
tion code, the operand of the call is inserted as the operand of the
object program.

If a Category II declarat ion is defined, the declaration
JUMP ACTIVE and the I/O sense of the corresponding LS or GR
punctuation of the call will combine to designate the proper func­
tion code. If punctuation is LS , the instruction will be f= 63; if
GR , f will equal 62. Note that JUMP ACTIVE does not require an
operand in a Category II definition. The operand substituted will
be the address of the instruction itself.

The JUMP ACTIVE declaration forces a check to see if the
/\

communications channel j is actively transmitting information
either in or out. If the channel is found to be active, the operand
in the generated instruction becomes the address transferred to.
If it is inactive, the next sequential instruction is executed.

External Function

This declarator is the only one of eleven to belong to all
three categories.

EXTERNAL FUNCTION generates one of two machine func­
tion codes--f= 13 or f= 17--depending upon the I/O sense of the
punctuation in the active statement. In the input sense, f= 17 is

/\
generated, and the information from the communication channel}
wi 11 be stored in the operand formed. In the output sense, f = 13
is generated, and the contents of the operand specified will be
transmitted out on channelj to the peripheral equipment connected
thereto. A channel number must be specified by the declaration
definition.

ORIGINAL

The sole purpose of this dec larator is to provide a means
for control communications between peripheral equipment and the
mainframe. For f = 13, a word will be transmitted out on the indi­
cated channel, forcing the external device to accomplish some
function such as turning itself on, enabling an output mode, etc.
In the opposite direction, an interrupt may be generated by a piece
of peripheral equipment containing an indication that it has some
control information to give to the computer, such as the fact that
it has just completed the rewind of a magnetic tape unit. The only
way the computer can assess the meaning of the interrupt is to
draw it in core for examination; this store operation is the purpose
of the f= 17 instruction.

As a Category I declarator, EXTERNAL FUNCTION relies
upon the call for operand and input/output sense. Defined in a
Category II declaration, the declarator is written with an operand;
it requires the input/output sense of the program logic call. Cate­
gory III means that EXTERNAL FUNCTION receives a modifying
operand and the intended direction from the call to be compiled
along with its self-contained operand.

Generate Buffer Control Word

The terms ''buffer'' and "buffer control word" introduce some
new topics which require the following preliminary discussion
before proceeding to the subject itself of this subsection.

The AN/USQ-2.0, or mainframe, and its peripheral equip­
ment communicate in a buffered mode. This means that normal
mainframe operations may take place simultaneously with input/
output functions. For a program involving much communications,
the buffered mode represents a great saving in time.

A buffer of the AN/USQ-2.0 is that area of core specified by
the buffer control word (BCW), a single word in memory that con­
tains the upper and lower limits of the area. Designating certain
locations as a buffer identifies them with the input/output process.

ORIGINAL B7-13

B7-14

This designation marks the area with a purpose in addition to its
normal function as programmable storage. That is, the buffer may
be filled or transmitted by an input/output program, the contents
of the buffer may be manipulated by program dynamically during
communications, or the buffer area may be used for purposes
unallied with input/output.

The opposite, however, is not true. Data transmitted exter­
nally may not be taken from just anywhere in core; data to be
communicated must be provided for with a BCW.

Communications proceed at a word-by-word pace in either
the input or output direction. How the information is assembled is
determined by the direction of transmission and the equipment
receiving the data. For example, the printer (strictly an output
device) must print 120 columns simultaneously; since one word
provides only 5 characters, the printer must wait for 24 trans­
missions before it can assemble and print a line. A card reader,
on the other hand, as an input device, reads only enough informa­
tion from a card to fill the buffer specified; if the buffer is longer
than that necessary to contain 80 columns of information (16 words),
subsequent cards are read to satisfy the buffer. The magnetic
tape unit requires only a variable length buffer. In the output
direction, the length of a buffer in general specifies the length of
a record on tape. In the input direction, the information from a
record in words up to the length defined in the BCW is stored in
the buffer. If too much information is contained in the record for
the buffer, an interrupt is sent to the computer indicating the fact;
if too little or just enough data to fill the buffer is received from
the record, an interrupt is generated by the magnetic tape unit
denoting the sensing of the end of a record. Any space in the buf­
fer unfilled by the input operation maintains its previous contents.

Communications do not commence until the device addressed
is ready to accept the information. When that equipment signals
its acceptance, communications between the buffer and the device
begin. Meanwhile, the mainframe continues to perform its func­
tions oblivious of the communications. The computer is able to
handle control and arithmetic operations simultaneously with
input/output because the logic for each is separate.

ORIGINAL

Once initiated, the mechanically programmed section of
computer logic governing the buffer mode proceeds to input or out­
put data, without additional prodding, at a speed determined by the
external device (because the mainframe is so fast). Buffer guide­
lines are provided by the limits and length of the BCW.

The lower half of the BCW contains the five-digit starting
address; transmission of information continues without interrup­
tion until the data contained in the address in the upper half of the
BCW have been moved. At such time, the buffer is said to be
terminated, and the input/output processing ceases until begun
again by appropriate instruction.

The length of the buffer used in communications is a decision
of the programmer. It is necessary, however, to consider the
fixed length requirements of the peripheral devices when communi­
cating with them--for example, the printer buffer should be some
multiple of 24 words in length, and that of a card punch a multiple
of 16 words. Otherwise, a partially filled buffer will cause unex­
pected results follOwing the next communications.

Now, to discuss the declarator, GENERATE BUFFER CON­
TROL WORD, itself--it serves a small but important purpose:
the storing of the buffer control word in the Q-register (a nonad­
dressable 30-bit arithmetic register) for access by the input/output
processor. The latter takes the BCW from the Q-register and
stores it in the specially wired address for control of buffered
communications.

GENERATE BUFFER CONTROL WORD is a Category I
declarator dependent upon the declaration call for substitution of
an operand. The punctuation enclosing the operand is ignored as
the dec larator acts independently of input/output sense.

The storing of the BCW in the Q-register is but the end prod­
uct of this declarator. Depending upon the operand of the decla­
ration call, a translation of some form must transpire before the
BCW is established.

To input or output an entire list, the call operand takes the
form

LS LIST GR ,

ORIGINAL B7-15

B7-16

GENERATE BUFFER CONTROL WORD obtains the lower and
upper limits of LIST and creates a BCW by placing the upper limit
in the upper half of the BCW and the lower limit in the lower half.

To input or output some continuous portion of a list, "run­
ning subscripts" are used. These are integers, register variables,
or fixed point whole or half word variables separated by a store
operand such as 3 =) 7 , A =) PAB , I =) J. Running subscripts
modify the address of the first list entry to provide the addresses
of the desired segment. For example, LIST ($ 3 =) 7 $) tags
LIST ($ 3 $) through LIST ($ 7 $) for communications. The declar­
ator converts the subscripts to machine addresses and generates
the BCW from them.

To communicate to or from some list whose BCW is already
contained in an address, the form

LS ($ ADDRESS $) GR ,

is used. The contents of that location, without checking for valid­
ity, will be treated as the BCW.

Buffer

This is a Category I-only declarator.

Since all input/output communications involve the use of
buffering for data transmission, it is not surprising to find declar­
ators which provide the meap.s for initiating buffers. To initiate
a buffer implies that transmission of data into or from the loca­
tions specified in the BCW should commence.

For information transfer in the mainframe to peripheral
equipment direction, the f= 74 command is generated by the declar­
ator BUFFER. Input buffer initiation is accomplished by the
f= 73 command. The instruction generated is dictated by the
sense of the operand in the call from program logic.

ORIGINAL

The channel designator J is required to indicate which chan­
nel is to be employed for buffer operations. The channel number
of the declaration provides this designator.

BUFFER has all the capabilities of generating a BCW from
a program logic call that the declarator GENERATE BUFFER
CONTROL WORD has. The call operand may take any of these
forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2 $), ($ LIST $).
(See GENERATE BUFFER CONTROL WORD, immediately
preceding.)

Set Internal Interrupt Entrance

This declarator provides the capability to store a return
jump at the special address or "entrance" queried by the MONI­
TOR BUFFER declarator. Termination of a buffer generates an
interrupt which halts all processing and causes the entrance to be
queried, and any instruction there executed. The precise address
is determined by the sense of the call operand and the channel
which is to be active during the communications.

Before explaining the SET INTERNAL INTERRUPT
ENTRANCE, the term "interrupt" should be defined. An interrupt
is a coded message generated by the occurrence of some input/
output phenomenon; its purpose is the intervention of program
execution which has proceeded in parallel (also known as "asyn­
chronous operations") during communications, and the provision
of equipment status information for the input/output processor (a
programmer-specified algorithm). The interrupt is one word in
length, and the contents of certain bits are interpreted by the
processor. Status information might include the fact that a mag­
netic tape unit had written a record properly or that the tape re­
wind previously requested had been terminated.

Two types of interrupts are accepted by the input/output
processor--external and internal. The external interrupt is
created by an input/output event in a device external to the

ORIGINAL B7-17

B7-18

mainframe. The preceding examples concerning status informa­
tion are of this type. An internal interrupt is generated by the
input/output section of computer logic when a monitor buffer, pre­
viously initiated, is terminated after transmission of the specified
block of data. This form of interrupt is accepted by the input/
output processor as well.

After interpretation of an interrupt and execution of any
associated interrupt program, control is returned to the main pro­
gram at the address abandoned due to the interruption.

SET INTERNAL INTERRUPT ENTRANCE is a Category I
declarator. In addition to the generation of the return jump, suf­
ficient other machine code is inserted into the object program to
store the return jump instruction in the appropriate entrance, as
determined by the sense of the corresponding declaration call
operand and the channel number of the definition.

Monitor Buffer

The difference between BUFFER and MONITOR BUFFER
lies in the direction of program flow after execution of the
declarator.

BUFFER causes a channel to become active and the BCW is
stored at an address specially wired for access by the mechanized
input/output program (discussed earlier). Communications then
are begun and continue until terminated. If more input/output jobs
are to be accomplished, the input/output section processes them
all in turn. When the job queue is empty, this portion of the com­
puter becomes idle. Meanwhile, parallel data processing has been
accomplished. The next instruction to be executed after the last
buffer termination is the one presently being executed by the arith­
metic and control logic in parallel with the communications.

MONITOR BUFFER goes through the same steps as BUFFER
However, it goes one step further by allowing the programmer to

ORIGINAL

place an instruction at another specially wired address. The next
instruction to be executed after buffer termination will be the one
found at the special address; an internal interrupt causes all proc­
essing except that instruction to cease. In most cases the ad­
dress will contain a return jump to some programmer-specified
routine which will perform one or several functions to "tidy up"
or to the input/output section such as for turning off the external
device. After execution of the subroutine, control will be trans­
ferred to the address of the next sequential instruction of the main­
stream program before it was interrupted.

To initiate a monitored buffer in the input direction, an f= 75

is generated by the declarator while the operand is supplied by the
declaration call. The function code f= 76 applies to a monitor
buffer in the output sense. MONITOR BUFFER is valid only in
Category I.

The channel number provided by the declaration definition
supplies the necessary information to complete the instruction.
The channel deSignator J indicates the channel to be made active
during buffered communications; its value is supplied by the pro­
grammer designation of channel number.

MONITOR BUFFER has all the capabilities of generating a
BCW from a program logic call as has the declarator GENERATE
BUFFER CONTROL WORD. The call operand may take any of
these forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2 $),
($ LIST $). (See preceding GENERATE BUFFER CONTROL
WORD.)

Set External Interrupt Entrance

Specially wired entrances are provided for external inter­
rupts as well. The particular location referenced as an interrupt
entrance will be defined by the input/output sense of the communi­
cations which led to the interrupt and the channel which was active
during data transmission.

ORIGINAL B7-19

B7-20

When an external device experiences a prescribed event of
significance to the computational process, it sends an interrupt to
the mainframe. The portion of the input/output processor that is
to handle the interrupt is pinpointed by a return jump contained in
the appropriate external interrupt entrance. SET EXTERNAL
INTERRUPT ENTRANCE generates a return jump at the entrance
specified by the declaration definition and call--input/output sense
and operand address (for the return jump) from the call, and the
channel number from the definition.

SET EXTERNAL INTERRUPT ENTRANCE is a Category I
declarator, as well. Like its corollary, SET INTERNAL INTER­
RUPT ENTRANCE, this declarator generates the machine code
necessary to store the return jump at the proper address upon pro­
gram execution.

Terminate Buffer

In monitor buffered operations, when the contents of the
entire buffer as defined by the BCW have been outputted or the
buffer has been filled by a peripheral device, an internal interrupt
is generated by input/output logic notifying the interrupt program
that the buffer has been terminated.

However, it may become necessary to prematurely termi­
nate a buffer. TERMINATE BUFFER incorporated in a declara­
tion provides for such an eventuality. As a Category II declarator,
it does not depend on the definition for anything except the channel
number and only upon the call for the sense of communications,
and, in addition, it does not require an operand.

At execution, the declarator will force a simulated buffer
termination, but no internal interrupt will occur. The buffer will
be terminated on the input channel by the j= 66 machine function
code. In the output direction, the j= 67 function code generated
by the declarator will cause completion of buffered communications
on the channel designated.

ORIGINAL

Delay

DE LAY causes the inclusion of two machine language in­
structions and the creation of a one-instruction loop. Upon execu­
tion' it effectively provides sufficient delay between other dec lara­
tors to permit electromechanical devices to match the electronic
communications rate. The first instruction (f= 12) is relied upon
to store a count in one of the index registers (in this case B7).
The second instruction is an indexed jump command (f= 72) to its
own compiled address.

DELAY is either a Category I or II declarator. If it is
defined in a Category I declaration, the operand of the declaration
call becomes the count. If it is in a Category II declaration, the
count is a self-contained operand.

At execution, the count is stored in B7; the indexed jump
acts as a "do nothing" command by jumping repeatedly to itself,
each time decrementing the count in B7 by one. When B7 is re­
duced to zero, the next sequential instruction is executed.

The delay is equivalent to the execution time of the indexed
jump instruction (8 microseconds) multiplied by the operand value
(count). Input/output sense of the operand is ignored.

Machine Code

The declarator, MACHINE CODE, is the most versatile of
all eleven declarators, even though restricted to Categories II and
III. Its purpose is to provide the programmer with the ability to
include any machine instruction of the AN/USQ-2~ repertoire in
his source program.

In Category II, the declarator is written in a manner to in­
clude the entire operand, a!ld, since the operand is the desired
machine language instruction, it is incorporated verbatim into the

ORIGINAL B7-21

B7-22

object program. This, of course, dictates that the operand as
written in the definition be composed entirely of numbers. The
indicated sense is always output.

The operand is always divided into two halves. The first
half contains the function code (two digits) and three designators
(each one digit); the second half is the instruction operand which
may contain an address or some data (one to five digits).

One degree of flexibility exists in the Category II declaration
involving MACHINE CODE. If the letter "L" is written to the im­
mediate right of the declaration operand's second half (this is the
only exception to the rule of wholly numeric operands in Category
II declaration definitions), it serves as a signal to the compiler
that an addition is to be performed before generation of machine
code. The compiled address of the machine language instruction
is added to the operand contained in the half which precedes the
"L", and the sum is substituted as the second half of the now fin­
ished machine code instruction. For example, the declarator
(MACIDNE CODE (61~~~ OCT 77776 OCT L», might be compiled
at address 423158, in which case the instruction as inserted in the
object program would look like 61SJ'~~42314 since 77776 acts as a
minus one. In the positive direction, (MACIDNE CODE (61~~~
OCT 13 OCT L», at a hypothetical address 267278 would generate
a machine instruction 61~~~26742.

It is emphasized that this facility to specify a relative ad­
dress in machine code should not be disregarded. In the first
example, the programmer wished to jump to the instruction just
passed; in the second example, the jump was to the thirteenth
(octal) address beyond the generated instruction.

As a Category ITI declarator, MACHINE CODE incorporates
an operand in the definition and relies upon the call to provide an
added operand. At compilation time, the corresponding operands
are summed and the result becomes the operand of the machine
language instruction. The indicated sense is always output.

A single degree of flexibility also is possible in Category III
MACHINE CODE declarations, but before explaining this it is
necessary to first talk about another machine quantity.

ORIGINAL

One of the three designators mentioned previously as com­
ponents of the first half of a machine instruction is the operand
interpretation designator "k." As the name would indicate, dif­
ferent values assigned to "k" cause the computer to interpret the
instruction operand in different ways. For example, k = 1 forces
consideration of only the lower half of the contents at the operand
address; k = 3 causes the whole of the operand's contents to be
considered. Values for "k" range from ~ to 7.

The NELIAC compiler assigns a "k" of zero to all verbs
because they are addresses and used solely as entry points. Full
word nouns on the other hand are given a k = 3 because the entire
contents are a candidate for further processing.

When half-word algebra was indicated as preferable to other
partial word algebra, the reason was the k-designator. Half-word
nouns can be manipulated with no more difficulty than whole word
nouns because k = 1 handles the lower half and k = 2 the upper half
of nouns.

If a Category III MACHINE CODE declaration is written with
a "K" to the immediate right of the second half of the definition
operand (same position as the "L" of Category II), whatever the k­
deSignator of the embryo declaration machine instruction in the
definition, the k-designator of the declaration call operand sup­
presses and replaces it. For example, if the call operand is a
verb, the machine code instruction inserted in the object program
has a k-designator of zero; for a noun dimensioned as a full word,
k becomes a three in the object program.

This flexibility is more than a protection device. If prop­
erly used, an address or the contents thereof need never be im­
proper ly referenced.

Regardless of the category declaration used, this declarator
is the most demanding of all with regards to understanding the
reference machine. However, it also provides the facility of writ­
ing an algorithm in machine code for purposes of efficiency in
space and time since all function codes may be used, and each is
transferred almost verbatim to the object program (without extra
instructions to store and retrieve operands, etc., that one might

ORIGINAL B7-23

B7-24

expect from the translation of near-English phrases to machine
code).

Also irrespective of category line is the fact that input/output
sense is completely ignored in the MACIDNE CODE declaration.
The output sense is normally assumed for appearance alone.

Following are a synopsis (table B7-3) and a list of examples
(table B7-4) of declarators.

TABLE B7-3. CONSTITUENTS OF DECLARATORS

RELEASE INTERRUPT LOCKOUT
a. Category I or II
b. Purpose: clear interrupt lockout mode
c. Category I: f= 6j1, j = 1, clear lockout, jump to operand
d. Category II: f = 6t1, j = t1, clear lockout, no jump, next

sequential instruction
e. No channel number specification necessary

JUMP ACTIVE
a. Category I or II
b. Purpose: jump to specified address if channel is active
c. Input: f= 62, Category I: input channel active, jump to

operand; Category II: input channel active, jump to own
address

d. Output: f= 63, Category I: output channel active, jump to
operand; Category II: output channel active, jump to own
address

e. If channel inactive, next sequential instruction
f. Channel number required in definition

EXTERNAL FUNCTION
a. Category I, II, or III
b. Purpose: control communications
c. Input: f = 17, interrupt store instruction
d. Output: f= 13, external equipment function command
e. Channel number required in definition

ORIGINAL

ORIGINAL

TABLE B7-3. (CONT)

GENERATE BUFFER CONTROL WORD
a. Category I
b. Purpose: establish BCW in Q-register; required for buffer

or monitor buffer operations
c. f= 1~, store BCW in Q
d. Operand forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2

$), ($ LIST $); operand converted to BCW
e. No channel number specification necessary

BUFFER
a. Category I
b. Purpose: initiate data transmission; controlled by BCW
c. Input: f = 73, initiate buffered input
d. Output: /= 74, initiate buffered output
e. Upon buffer termination, no definitive action
f. Channel number required in definition

SET INTERNAL INTERRUPT ENTRANCE
a. Category I
b. Purpose: store return jump at internal interrupt entrance
c. Three instructions: (1) enter Q-register (/= 1,0) with con­

tents of next address, and skip around next address; (2) con­
tents: return jump instruction; (instruction operand furnished
by call); (3) store contents of Q-register (/= 14) at internal
interrupt entrance

d. Entrance determined by input/output sense (call) and channel
number (definition)

MONITOR BUFFER
a. Category I
b. Purpose: initiate data transmission; controlled by BCW
c. Input: f= 75, initiate buffered input
d. Output: f = 76, initiate buffered output
e. Upon buffer termination, jump to internal interrupt entrance
f. Channel number required in definition

SET EXTERNAL INTERRUPT ENTRANCE
a. Category I

B7-25

B7-26

TABLE B7-3. (CONT)

b. Purpose: store return jump at external interrupt entrance
c. Three instructions: see SET INTERNAL INTERRUPT

ENTRANCE
d. Entrance determined by input/output sense (call) and channel

number (definition)

TERMINATE BUFFER
a. Category II
b. Purpose: manual buffer termination
c. Input: 1 = 66, terminate input buffer
d. Output: f = 67, terminate output buffer
e . No internal interrupt generated
f. Channel number required in definition

DELAY
a. Category I or II
b. Purpose: provide delay between input/output operations to

allow external devices to match communication flow
c. Two instructions: (1) enter B7 index register (f= 12) with

count; (2) indexed jump command (1= 72) to own compiled
address (numQer of executions = count)

d. When B7 = tS, next sequential instruction
e. No channel number specification necessary

MACHINE CODE
a. Category II or III
b. Purpose: include any machine language instruction in object

program
c. Operand is instruction; separated in two halves: (1) function

code and designators; (2) instruction operand; each half nu­
meric, except in extended form

d. Category II extended form: "L" after definition operand;
generates instruction operand = sum of instruction I s compiled
address and definition operand

e. Category III extended form: "K" after definition operand;
causes suppression of k-designator of definition operand and
replacement with k-designator of call operand (verb: k = t1,
half word noun: k = 1 or 2, full word noun: k = 3

ORIGINAL

TABLE B7-3. (CONT)

ORIGINAL

f. Channel number not normally required in definition (depends
on operand)

g. Input/output sense of c all ignored

TABLE B7-4. EXAMPLES OF DECLARATORS

a-I. RILl = LS RELEASE legal; Category I
INTERRUPT LOCKOUT GR , definition

a-2. ($ RILl LS JUMP ADDRESS and call
GR , $),

b-I. RIL2 = (RELEASE INTERRUPT legal; Category II
LOCKOUT), definition

b-2. ($ RIL2 LS , $), and call
c-l. JAl = (5) LS JUMP legal; Category I

ACTIVE GR, definition
c-2. ($ JAl GR JUMP ADDRESS and call (input)

LS , $),
d-I. JA2 = (5) (JUMP ACTIVE), legal; Category II

definition
d-2. ($ JA2 LS , $), and call (output)
e-I. EFl = (5) LS EXTERNAL legal; Category I

FUNCTION GR , definition
e-2. ($ EFl GR l~ OCT LS , $), and call (input)
f-I. EF2 == (5) (EXTERNAL legal; Category II

FUNCTION (4Jlj OCT », definition
f-2. ($ EF2 LS , $), and call (output)
g-I. EF3 = (5) LS EXTERNAL legal; Category III

FUNCTION (4~ OCT) GR , definition
g-2. ($ EF3 GR lJlj OCT LS , $), and call (input)
h-l. GBCW = LS GENERATE legal; Category I

BUFFER CONTROL WORD definition
GR,

h-2. ($ GBCW LS LIST GR , $), operand form 1 call, or

B7-27

TABLE B7-4. (CONT)

h-3. ($ GBCW LS LIST ($ 4 =) 7 $) operand form 2 call,
GR , $), or

h-4. ($ GBCW LS ($ LIST $) GR , $), operand form 3 call
i-I. BUF = (5) LS BUFFER GR , legal; Category I

definition

i-2. ($ BUF GR LIST LS , $), and call (input)

j-l. SIlE = (5) LS SET INTERNAL legal; Category I

INTERRUPT ENTRANCE GR , definition

j-2. ($ SIlE GR RETURN JUMP and call (input)

ADDRESS LS , $),
k-l. MBUF = (5) LS MONITOR legal; Category I

BUFFER GR, definition

k-2. ($ MBUF LS LIST GR , $), and call (output)

1-1. SEIE = (5) LS SET EXTERNAL legal; Category I

INTERRUPT ENTRANCE GR , definition

1-2. ($ SEIE LS RETURN JUMP and call (output)

ADDRESS GR , $),
m-I. TBUF = (5) (TERMINATE legal; Category II

BUFFER), definition

m-2. ($ TBUF GR , $), and call (input)

n-l. DELI = LS DELAY GR , legal; Category I
definition

n-2. ($ DELI LS COUNT GR , $) and call

0-1. DEL2 = (DELAY (4~~~ OCT», legal; Category II
definition

0-2. ($ DEL2 LS , $), and call

p-l. MCI = (MACHINE CODE legal; Category II

(61~~~ OCT 14~~~ OCT», definition

p-2. ($ MCI LS , $), and call

q-l. MC2 = (MACHINE CODE legal; Category II

(61~~~ OCT 54 OCT L», extended; definition

q-2. ($ MC2 LS , $), and call

r-l. MC3 = LS MACIDNE CODE legal; Category III

(l~~~~ OCT ~) GR , definition

r-2. ($ MC3 LS 49 GR , $), and call

8-1. MC4 = LS MACHINE CODE legal; Category III

(l~~~~ OCT ~K) GR , extended; definition

8-2. ($ MC4 LS FULL WORD and call
NOUN GR , $),

B7-28 ORIGINAL

DEFINITION AND CALL

This subsection summarizes the information on declarations
that has been presented in this section. Specialized algorithm and
address assignment types of declarations will be emphasized be­
cause they are far more apt to be written than the input/output
type.

Definition

The function of system declarations should be reiterated at
this point. The system declaration is reserved for the more dif­
ficult input/output routines and for those specialized algorithms
and address assignments which are of sufficiently wide applica­
tion to merit writing them once and making them available to all
system programmers. For these people, system declarations
are well enough documented to reduce the use of declarations to
copying the proper call into the source program at the correct
places and to supplying the proper operands for the declaration
call. Note well that the use of system declarations does not imply
the writing of the declaration definitions since these are supplied
by the system automatically when called.

For purposes of efficiency or to remedy deficiencies in other
portions of the language, the declaration definition as part of the
source program may be utilized. If such is the case, it will be
necessary for the programmer to know some of the finer details
of declaration definition.

The definition must be written as part of a declaration flow­
chart (section 2). These flowcharts may be located anywhere in
the program prOVided they precede the particular declaration call
in the program logic of some flowchart. It is therefore not sur­
prising to see the declaration flowchart(s) written before all other
flowcharts in the program.

ORIGINAL B7-29

B7-30

As previously stated, the general form of a declaration
definition is

VERB = ROUTINE ,

where VERB is any previously unused NELIAC name, and ROU­
TINE is an arithmetic and control operation segment, similar in
purpose, if not likeness, to a flowchart's program logic. The
routine of a declaration definition is composed of operators and
operands. The operators, called declarators, are always in­
cluded in the definition. The operands, however, are written
either in the definition or the call or both, depending upon the
category that the programmer selects for his declarators.

Normally, ROUTINE is composed of several declarators,
the appropriate operands and any necessary punctuation. The
definition may contain declarators of mixed categories; e. g. ,
MACHINE CODE of Category II, EXTERNAL FUNCTION of Cate­
gory I, DE LA Y of Category II, and MACHINE CODE of Category
III may all be in the same definition. Incorporating these declara­
tors, a definition might be

TROUBLE = (MACHINE CODE (11,fj3,fj OCT ,fj L»,
LS EXTERNAL FUNCTION GR ,
(DELAY (4tJtJ OCT »,
LS MACHINE CODE (61,fjtJtJ OCT tJ) GR ,

(No attempt at creating a meaningful declaration has been made.)

Since all declarators except MACHINE CODE are primarily
input/output oriented, it is not surprising to find that specialized
algorithms rely upon this particular declarator. To illustrate
the form for definitions of specialized algorithms, the following
system declaration has been chosen for analysis:

SEARCH NOT BETWEEN = LS MACHINE CODE
(11f13~ OCT ,fjK) GR ,
LS MACHINE CODE
(1f1~3~ OCT ~K) GR ,
(MACHINE CODE (21f1~~
OCT 1»,

ORIGINAL

LS MACHINE CODE
(70230 OCT ~K) GR ,
LS MACHINE CODE
(04537 OCT 77776 OCT
~K) GR ,
LS MACHINE CODE
(61000 OCT 0K) GR ,
LS MACHINE CODE
(1673~ OCT ~K) GR ,

Since the MACHINE CODE declarator contains the major
portion of the machine language instruction as its operand, one may
expect just seven machine language instructions to be generated
from the above definition. Six of the seven declarators are
enclosed in punctuation indicating Category m, and therefore the
programmer would be expected to supply six operands in the
declaration call. The seventh operand is self-contained.

The six operand meanings are as follows: first declarator,
"lower argument"; second, "upper argument"; third, "list length
to search"; fourth, "name of list"; fifth, "no find entry"; and sixth,
"find index." The machine language routine inserted in the object
program for this definition will read:

a. Enter the A-register with the lower argument.

b. Enter the Q-register with the upper argument.

c. Subtract one from the contents of the A-register and
store the result in the A-register.

d. Execute the next instruction a number of times equal to
the list length to search; decrement the instruction oper­
and of the next instruction by one upon each execution;
enter the list length into B7.

e. Compare: skip the next instruction if the contents of
the entry being examined are greater than the contents of
the Q-register, or less than or equal to the contents of
the A-register. The address of the first entry of the
list to be examined is equal to the address identified by

ORIGINAL B7-31

B7-32

the name of the list, plus the length of the list minus
one (i. e. , the search begins at the end of the list and
terminates at the beginning).

f. Jump unconditionally to the "no find" routine entry.

g. Store the contents of the index counter (B7) in the loca­
tion identified as "find index. "

To summarize the purpose of the declaration: the declara­
tion causes a list of a known length to be searched for values
between an upper and a lower limit. If a find is made at any point,
the search is abandoned with the index count saved for purposes of
later reference. If no find is made, the declaration is exited and
a jump to a routine implying "no find" is made.

With the tools given, little additional explanation other than
the understanding of machine instructions is necessary. Several
points of punctuation come to mind: the OCT or octal symbol must
be written whenever the numeric portion of an operand is to be
interpreted by the compiler in the octal number system; each
declarator (and operand, if required) is separated from the suc­
ceeding declarators by a comma; and any additional punctuation is
determined by the category selected.

A hybrid category has not been classified with the other
three. This "fourth" category is not a true declaration type, but
is instead a specification of the order in which a series of declara­
tions are to be executed. All declarations specified must have
been previously defined. The specification itself is a definition
and is given a name. The call for this declaration from program
logic must provide the necessary operands for all the designated
declarations and in the order they are to be executed. A sample
definition might be:

NAME 1 = (4) LS EXTERNAL FUNCTION GR, (DELAY
(OPERAND 2»,

NAME 2 = (6) LS BUFFER GR, LS MACHINE CODE
(OPERAND 4a» GR ,

NAME = NAME 1, NAME 2,

ORIGINAL

Sample call:

($ NAME LS OPERAND 1 GR, LS, LS OPERAND 3 GR ,
LS OPERAND 4b GR , $),

Although this example is strictly input/output oriented, the
same formation could be used with the specialized algorithms.

In connection with the example, the channel number of each
declaration applies to all declarators in that declaration which
require a channel number. If a different channel is to be specified,
then a separate declaration must be written (note that NAME 1 used
channel 4 and NAME 2 used channel 6; if the declarators in NAME
2 had referenced channel 4 instead of 6, the two declarations could
have been merged into one, but not necessarily).

The address assignment form of declaration is unique. It
enables the programmer to assign a name to a particular machine
address. Any nonrelocatable routine (program compiled ata given
address) introduced into core simultaneously with a NELIAC pro­
gram is executable only if the machine address is given a NELIAC
name.

The format of such a declaration definition is

VARIABLE ' 'K ADDRESS,

VARIABLE is any NELIAC name; K is the operand interpretation
designator (see MACHINE CODE in preceding subsection on
declarators); ADDRESS is an octal or decimal machine address.
Each address assignment is followed by a comma. Consider the
declaration which allows reference to the specially wired clock
register at address ~~~36 octal:

CLOCK' '3 36 OCT ,

As before, the k-designator reflects the address usage: ~ for
verbs, 3 for full word nouns, etc.

Address assignment declarations need no calls; they are the
exception to the rule, and may be considered self-calling.

ORIGINAL B7-33

B7-34

Calls

The declaration programming device comes in two parts,
mentioned previously: the definition and the call. For input/output
and specialized algorithms they are inseparable- -one cannot be
used without the other. Both are needed to generate the machine
code.

The call is found in the program logic of any process flow­
chart. Depending upon the categories of the declarators involved
in the definition, the call may provide the input/output sense and/or
operands to complete the machine language instructions. The
operands of a call must line up with the spaces left for them in the
definition; they must be in the order specified and in number equal
to the requirements.

ConSider, if you will, a call on the system declaration,
SEARCH NOT BETWEEN, illustrated previously:

($ SEARCH NOT BETWEEN LS 4ft1ft1 OCT GR ,
LS 45~ OCT GR ,
LS 47 OCT GR,
LS DATA BANK GR ,
LS NOFIND GR ,
LS CONTINUE GR, $),

The requirements were filled; 4~~8 became the lower argu­
ment, 45~8 the upper argument, 478 the list length to search, DATA­
BANK the name of the list, NOFIND the "no find" entry, and
CONTINUE the "find index." Note that they were equal in number
to the definition needs and in the order prescribed; there was no
call operand (or space left blank) for the operand already specified
in the definition.

The call from the program logic causes the compiler to gen­
erate a machine language routine from the function codes (disguised
as declarators) of the definition and the addresses and values of the
call. Machine instructions are inserted in the object program each
time the call is written.

ORIGINAL

To prevent the inclusion of the same machine instructions
every time the identical declaration is referenced, the programmer
may enclose the declaration call between BEGIN and END punctua­
tion, making it a closed subroutine. The subroutine may have the
same name as the declaration. Any subroutine call of this form
simply generates a return jump to the declaration routine which is
included once in the object program.

The general form for a declaration call is

($ VERB LS OPERAND 1 GR, GR, GR OPERAND 2 LS,
• •• , $),

An input operand is specified GR . .. LS, and an output operand is
vice versa. In a call the sense frequently determines the function
code of the machine instruction generated, but where no sense is
required by the declarator the output sense is assumed. In a call
input and output operands may be mixed. Each operand is
enclosed by GR and LS and commas separate operands. Each
declaration call begins with the combination ($ VERB LS or
($ VERB GR .

Operands may be of four forms: address variables (verbs),
input operands (register variables, whole or half word nouns), out­
put operands (whole or half words) and buffer operands (see dis­
cussion of GENERATE BUFFER CONTROL WORD under "Declara­
tors" in this section). Note that index register variables should
not be used as operands into which values are to be stored; for
example, "find index" in the SEARCH NOT BETWEEN declaration
may not be stored in an index register.

ORIGINAL REVERSE SIDE BLANK B7-35

8. COMMENTS, ABSOLUTE CODE,
AND WRITE PACKAGE

COMMENTS

The purpose of COMMENT statements is to provide the pro­
grammer with a means for writing into his NELIAC algorithm any
alphanumeric information he considers necessary for the under­
standing of the dimensioning and program logic. When written in
the prescribed format, the COMMENT is ignored by the compiler;
it appears only in the input medium (cards, tape, etc.) and on the
hard copy listing of the source program. A COMME NT will not be
printed at execution time.

The correct form for the statement is

(COMMENT' , this is a comment)

Between the double apostrophe and the right parenthesis, any of the
NELIAC symbols (except another right parenthesis,of course) may
be used to increase program clarity. The statement may be
written anywhere in the algorithm, as in the following example:

ORIGINAL

5
(COMMENT' , DIMENSIONING 123 * / + - END)
A, B, C $
(COMMENT' , PROGRAM LOGIC)
A + B =) C,
(COMMENT' , END OF PROGRAM)

BS-1

BS-2

ABSOLUTE CODE

This element of the NE LIAC language is an archaic leftover
from the predeclaration days. Although it is still acceptable by
most, if not all compilers, the absolute code--commonly referred
to as "crutch code" because early compilers were incomplete and
had to "lean" on the machine language to provide full capabilities-­
is now replaced by the declaration.

The absolute code is very similar to the operand of the
MACHINE CODE declarator. There are five octal digits corre­
sponding to the function code f, the deSignators j, k, and b, fol­
lowed by the octal sign OCT and the instruction operand Y which
may be numerical or a noun, subscripted or not. (Subscripting is
limited to constants and index register variables.) The numerical
Y has one or more digits which are assumed to be decimal unless
indicated as octal. Absolute code may be inserted in the flowchart
at any point in the program logic and requires no external punctua­
tion except a comma to set it off from any succeeding instructions.
All instructions in the repertoire of the reference computer may
be implemented in the NELIAC source program. Following is an
example of absolute code:

5
A, B, C, D (4),
$
1 =) A =) B,

A + B =) C,
10030 OCT C,
14030 OCT D ($ 3 $),
D ($ 3 $) =) A =) B,
10030 OCT B,
26000 OCT 00436 OCT,

ORIGINAL

WRITE PACKAGE

Declarations and absolute code provide the only means for
input communications to the computer in the NELIAC language.
However, an additional output programming device--the "write
package"--is available for generation of hard copy information.

Basically, the package has two output capabilities: the title
literal and the formatted literal. The title literal is a message
written by the programmer for use as a heading or title for the
anticipated output or as a means for generating error messages.
This literal, defined in the dimensioning portion of the flowchart,
reflects the precise information requested for output. It has the
general form

($ TITLE LITERAL' , LS HEADING GR $),

TITLE LITERAL may be any previously unused NELIAC
name. HEADING may contain any alphanumeric characters or
symbols (except the apostrophe, double asterisk, /, LS , or GR)
that the programmer wishes to employ as a title. It is written be­
tween the LS and GR punctuation combination. As mentioned pre­
viously, the literal is defined in the flowchart dimensioning.

To print the title literal, the programmer uses the statement

WRITE (TITLE LITERAL),

at that point in the program logic where he intends to output the
HEADING. TITLE LITERAL therefore acts the same as a noun
switch entry; calling the noun from the program logic causes the
message defined to be outputted on the high speed printer.

The formatted literal is the more general of the two, since
it incorporates the facilities of the title literal. It is formatted in
the sense that this literal allows the programmer to output the
contents of variables listed in the program logic call according to
the format specified in the literal definition in flowchart dimen­
sioning.

ORIGINAL B8-3

B8-4

The formatted literal definition is an image of the form in
which the programmer wishes to output any alphanumeric messages
and numerical results. This literal affords, as well, the opportun­
ity to control the printer with three special symbols.

As before, the literal is given a name to identify it for call.
Any messages, formatted data output specifications, and control
symbols are included between the double apostrophe and the $)
combination, as in the following example:

($ FORMATTED LITERAL' , DATA FORMAT,
CONTROL SYMBOLS, LS MESSAGES GR $),

DATA FORMAT provides the following data images:

a. 888. .. (Contents of the variable named in the call out­
putted in octal notation.)

b. ~~~ ... (Contents of the variable named in the call out­
putted in fixed point decimal notation.)

c. XXX. .. (Contents of the variable named in the call out­
putted in alphanumeric.)

In all of the above images, the number of characters written
in the format dictates the number of spaces on the printed line that
the compiler will reserve for the contents of the call variable. The
programmer must insure that the proper format length is used to
prevent data truncation upon output. If the outputted data does not
fill the field reserved, blank spaces will be inserted by the printer.
For numeric output a space for a sign must be provided.

d. ~~. ~~~ ... (Contents of the variable named in the call
outputted in floating point decimal notation; the number
of zeros preceding the decimal point indicates the length
of integral portion of the floating point data plus sign
that the programmer anticipates outputting; the length of
the zeros to the right of the decimal point specifies the
degree of fractional accuracy desired.)

ORIGINAL

e. 00.000 * 00. .. (Contents of the variable named in the
call outputted in the engineering notation of floating point
decimal numbers; the characters to the left of the aster­
isk act in a fashion similar to the preceding specification;
the zeros to the asterisk's right are the exponent length
that the programmer will allow; this format is generally
used when the magnitude of results is unknown.)

CONTROL SYMBOLS cause the printer to execute a top of
form, or spacing control, or a line skip:

a. ** (Generates a top of form command to the printer.)

b. 'N' (Generates spacing control--N spaces on a line are
inserted in the line output; N is a decimal fixed point
number.)

c. / (Generates a line skip, equivalent in theory to a
carriage return.)

MESSAGES allow the programmer to insert the equivalent of
a title literal within a formatted literal. There is no extraordinary
restriction placed on the MESSAGES because of their inclusion in
the formatted literal.

The write package provides in addition the capability to re­
peat any of the data formats, control symbols, or messages in any
literal output. The repeat format is

($ NAME ' , (M , , FORMATTED LITERAL) $),

NAME is the noun by which the literal may be referenced. M
is a fixed point decimal number which specifies how many times the
FORMATTED LITERAL will be repeatedly printed. For example:

ORIGINAL

(COMMENT' , DIMENSIONING)
($ OUTPUT' , '20' (3 ' , 'S' 00) / **

LS POUNDS PER INCH GR $),

BS-5

BS-6

OUTPUT is the literal name; '2e' indicates twenty spaces;
(3 " 's' ee) causes eight spaces followed by two fixed point decimal
digits to be repeated three times; / is a line skip and ** a top of
form; "POUNDS PER INCH" is printed on the top of a new form.

Calling the literal with the following statement commands the
output of the contents of the three variables requested.

(COMMENT" PROGRAM LOGIC)
WRITE (OUTPUT, X, Y, Z),

The result of such a call is shown in figure BS-l.

PAGE 1:

LINE 1: 15 9 -4

1-2aSPACEs-1 I-aspo-I l-aspo-II- 7I1SPACES-1
LINE 2: (BLANK)

PAGE 2:

LINE 1: POUNDS PER INCH

I 1- 1(15 SPACES -I

Figure BS-l. Formatted literal output.

ORIGINAL

9. CASE STUDIES

PROBLEM ONE

Statement

Three simultaneous equations with three unknowns--x, y,
and z --are presented for solution. The values of the unknowns are
to be found to the nearest integer.

ORIGINAL

The equations are:

x + 2Y = 28

9X + 5 Y + 6Z = 215
7 X + 8 Y + 3Z = 181

B9-1

B9-2

Problem Discussion

Any three simultaneous equations with three unknowns may
be represented in the following form:

A X +B Y +C Z =D
1 1 1 1

As any algebraist knows, to find an unknown in terms of known
quantities (such as' coefficients), the other unknowns in the equa­
tions must be eliminated through algebraic manipulation. Once one
unknown is found, the other unknowns may be determined through
substitution of the new "known" into some intermediate equations.

The equations for solution, then, are:

There is nothing very complicated about this problem. The
reader can already anticipate a fairly simple approach and solution.

To aid in the numerical solution, the constants of the given
equations are assigned to the hypothetical coefficients:

A 0 = 1, B 0 = 2, C 0 = 0, D 0 = 28

A - 9 B = 5 C = 6 D = 215 1-' 1 '1' 1

A = 7 B = 8 C = 3 D = 181
2 ' 2 ' 2 ' 2

ORIGINAL

Flowchart
The solution presented here (figure B9-1) is one of a large

number which could be written to achieve the correct answer. The
attack made here is the straightforward approach. Wherever pos­
sible, repeated computations are eliminated by preprocessing the
coefficients. The algebra is reduced through the use of common
terms. The output is printed by means of the write package.

ORIGINAL

5

A(3) EQ 1, 9, 7,

B(3) EQ 2, 5, 8,

C(3) EQ (J, 6, 3,

0(3) EQ 28, 215, 181,

TERM(6),

($HEAOING I 1** 125 1 LS OUTPUT FROM NELIAC PROBLEM ONE GR III

129 1 LS X GR 19 1 LS V GR 19 1 LS Z GR II $),

($OUTPUT II 12(J1 (3 1118 1 (J(J)/**$),

X,V,Z

$

COMPUTE THE ANSWERS I
I

O($(J$) * A(l) - 0(1) * A($(J$) =) TERM($(J$),

C($(J$) * ACl) - CC1) * AC$(J$) =) TERMCl),

BCl) * AC2) - BC2) * A C1)=) TERMC2),

OCl) * AC2) - OC2) * ACl) =) TERMC3),

CCl) * AC2) - CC2) * A(l) =) TERMC4),

B($(J$) * A(1) - B(l) * AC$(J$) =) TERM(5),

CTERM($(J$) * TERM(2) - TERMC3) * TERMC5» I

CTERMCl) * TERMC2) - TERMC4) * TERMC5)) =) Z,

CTERMC$(J$) - Z * TERM{l» I TERM{5) =) V,

(DC$(J$) - BC$(J$) * V - CC$(J$) * Z) I A{$(J$) =) X,

WRITECHEAOING), WRITECOUTPUT, X, V, Z),

Figure B9-1. NELIAC problem one, flowchart.

B9-3

B9-4

Flowchart Discussion
This step-by-step assessment of the flowchart is intended to

provide a confirmation of the rules developed in the text and to
suggest ideas for programmers who may be undecided on direc­
tions to take.

a. 5 (Control number; informs compiler that this is to be a
process flowchart.)

b. A(3) EQ 1, 9, 7, (First dimensioning statement; presets
the list called A with three fixed point constants.)

c. B(3) EQ 2, 5, 8, (List B preset with three fixed point
constants.)

d. C(3) EQ 0, 6, 3, (List C preset with three fixed point
constants.)

e. D(3) EQ 28, 215, 181, (List D preset with three fixed
point constants.)

f. TERM(6), (List called TERM dimensioned as six ele­
ments in length; all elements preset to zero.)

g. ($HEADING' , ** '25' LS OUTPUT FROM NELIAC
PROBLEM ONE GR / / / '29' LS X GR '9' LS Y GR '9'
LS Z GR /1$), (Literal; identified by an address
variable, in this case HEADING; double asterisk indi­
cates a top of form command; all numbers enclosed in
apostrophes are spacing specifications; any information
contained between the LS and GR punctuation is to be
outputted on the printer; a slash indicates a line skip.)

h. ($OUTPUT" '20' (3' , '8' 0~) I ** $), (Another literal,
this one named OUTPUT; twenty spaces; parenthesized
specification indicates that information will be out­
putted via the literal in a format given by the specifica­
tion; here the 3 indicates that everything following the
double absolute Sign is to be repeated three times-­
eight spaces and a two decimal integer result; this is
followed by a line skip and a top of form operator.)

ORIGINAL

i. X, Y, Z (Three fixed point nouns, all preset to zero.)

j. $ (End of dimensioning, beginning of program logic.)

k. COMPUTE THE ANSWERS' , (Verb; name of the
flowchart.)

1. D(m) * A(l) - D(l) * A(m) =) TERM(m), (First
line of program logic; computes (Dm) • (AI) - (D1) . (Am)
and stores the result in a temporary storage word,
TERMm·)

m. C(m) * A(l) - C(l) * A(m) =) TERM (1), (Com­
putes (Cm) • (AI) - (Cl) • (Am) and stores the result in a
temporary storage word, TERM1.)

n-l. B(l) * A(2) - B(2) * A(l) =) TERM(2),

n-2. D(l) * A(2) - D(2) * A(l) =) TERM(3),

n-3. C(l) * A(2) - C(2) * A(l) =) TERM(4),

n-4. B(m) * A(l) - B(l) * A(m) =) TERM(5), (Com­
putation of TERM2 through TERM

5
.)

o. (TERM(m) * TERM(2) - TERM(3) * TERM(5)) I
(TERM(l) * TERM(2) - TERM(4) * TERM(5)) =) Z,
(Computation of the first unknown Z based on the values at
the temporary storage locations.)

p. (TERM(m) - Z * TERM(l)) I TERM(5) =) Y, (Com­
putation of the unknown Y based on the temporary storage
values and the parameter Z.)

q. (D(m) - B(m) * Y - C(m) * Z) / A(m) =) X, (Com­
putes (Dm - (Em) (Y) - (em) (Z» divided by Am which
sol ves for the last unknown X in terms of the other
parameters Y and Z and the equation coefficients.)

r. WRITE (HEADING), WRITE (OUTPUT, X, Y, Z) (Outputs
the title literal, the formatted literal, and the three un­
knowns.) The printed output appears as:

ORIGINAL B9-5

B9-6

OUTPUT FROM NELIAC PROBLEM ONE

X
14

s. (Flowchart termination.)

PROBLEM TWO

Statement

y

7

Z

9

This problem concerns a picture window with two parallel
glass panes of differing compositions and widths separated by an
air space (figure B9-2).

Q

INDOORS OUTDOORS

I
I I

GLASS GLASS
I I

I
Mg M M2 1

Tj = TEMPERATURES AT THE VARIOUS BOUNDARIES

Mj = MEAN LAYER TEMPERATURES

Xj = LAYER WIDTHS

Cj = LAYER CONDUCTIVITIES

Q = RATE OF HEAT FLOW (CONSTANT)

Figure B9-2. NELIAC problem two, diagram.

Q

ORIGINAL

The indoor and outdoor temperatures, and the layer widths
are known; the conductivity of each layer is assumed to be a linear
function of the layer's mean temperature. The time is some night
during winter when heat flows in the indoor-to-outdoor direction
through the glass.

The rate of heat flow and the internal temperatures at the
air/glass boundary are to be found and outputted on the high speed
printer.

Problem Discussion

This problem is considerably more difficult than the first,
but not beyond the reach of a new programmer. There are two
reading approaches possible: first, consideration of all aspects:
theory, formulae, and fabrication of an algorithm for solution (this
is the long way); or, second, use of the algorithm provided toward
the end of this discussion. It is, of course, up to the reader which
course he takes; the discussion will encompass both approaches.

Since the conductivities (or inverse resistance to heat flow)
C i are assumed to be linearly dependent upon the mean layer tem­
peratures M i, in general one may state that

C.=A. M.+ B.
~ ~ ~ 1,

(1)

In turn, the mean temperatures M i are found by averaging
the temperatures T i at the boundaries of each layer:

(2)

The rate of heat flow Q is the quotient found by dividing the
indoor-outdoor temperature differential (Tf1 - T3) by the sum of the
quotients formed in the division of each layer thiclmess Xi by its
conductivity Ci:

ORIGINAL B9-7

B9-8

(3)

The known quantities in the equation above are too few:
T0, T 3 , X0, Xl' and X 2- Somehow the conductivities C i must be
ascertained in order to solve for Q_

The rate of heat flow is known to be constant; if equations are
written for the Q across each layer, the following equalities are
obtained:

TI - T2 T2 - T3
(4a)

or, by multiplying the denominator up,

(4b)

Substituting the right-hand term of equation (1) for Q, and dropping
the middle term of equations (4a) and (4b) which have only one
known quantity, the following is obtained:

=

Solving for the intermediate temperatures T 2 and T
3

, equations
(5a) and (5b) evolve:

T = T +
2 3

(5 a)

ORIGINAL

(5b)

In equations (5a) and (5b), note that all unknowns save Ci'
the conductivities of each layer, have been eliminated. Reviewing
equations (1) and (2), it becomes evident that C i is dependent upon
Ti; conversely, in equations (5a) and (5b), the dependency is re-
versed. Hence, the conclusion is that there are too many unknowns
for so few equations. Consequently, the approach to solution must
incorporate an iterative scheme.

The algorithm begins with an initial ~ess at the interval
boundary temperatures Tl and T2• Thereafter, the solution pro­
ceeds as follows:

a. Solve for the mean layer temperatures M i using
equation (2).

b. Solve for the layer conductivities Ci using equation (1).

c. Sol ve for the rate of heat flow Q using equation (3).

d. Solve for a corrected set of internal temperatures Tl
and T2 using equations (5a) and (5b).

e. Repeat steps a. through d. until the rate of heat flow Q ,
as determined in step c., is approximately equal for two
successive calculations. When that occurs, the problem
stands solved.

Indoor temperature T 0 and outdoor temperature T3 will be
70 and 0 degrees, respectively. The widths X0, Xl' and X2 will
be 0.25, 0.2, and 0.15 inch, in that order. The arbitrary con­
stants A i and Bi are given as follows:

ORIGINAL

A0 = .0025, Al = .00028, A2 = .002

B0 = • 0419, Bl = • 0036, B2 = .0407

B9-9

B9-10

Flowchart
As in the case of the Problem One example, this solution

(figure B9-3) is only representative of many which could have been
written. The approach is largely straightforward, but a loop is
fashioned from entry pOints and a conditional transfer in order to
force repeated execution of the steps outlined in the preceding sub­
section. Because of the floating point specification of the known
data, this flowchart differs in mode from the last. Output again is
printed by the write package.

5

T(4) EQ 7rJ.f}, 9rJ.rJ, 8.rJ, rJ.rJ,

A(3) EQ rJ.rJ.025, (1.rJrJrJ28, rJ.rJ(l2,

B(3) EQ rJ. rJ419, rJ. rJrJ36, rJ. rJ4(l7 ,

C(3).

MN(3).

X(3) EQ rJ. 25, rJ.2(l, (l.15,

SAVE. RATE. TEMP 1. TEMP 2. RATE OF HEAT FLOW. ,

($HEAD' : III 11rJ I LS INTERMEDIATE RATE OF HEAT FLOW GR III $),

($HEADING' 1** 1251 LS RATE OF HEAT FLOW IN DEGREES/INCH GR III $),

($OUTPUT ' 1 LS RATE OF HEAT FLOW EQ GR III rJrJ.rJ(lrJ(lrJ I

LS TEMP 1 EQ GR 'II (lrJ.rJrJ(l(lrJ I

LS TEMP 2 EQ GR 'II rJrJ.rJrJrJrJrJ 1$) $

RATE ROUTINE' ,

(T (rJ) + T(l))/2.rJ =) MN(rJ),

(T (1) + T(2))/2.rJ =) MN(l),

(T (2) + T(3))/2.rJ =) MN{2),

A{$(1$) * MN(rJ) + B(rJ) =) C(rJ),

A(l) * MN(l) + B(l) =) C(l),

A(2) * MN(2) + B(2) =) C(2),

(T (rJ) - T(3))/((X (rJ) I C(rJ» + (X (1) I C(l» + ex (2) I

C(2))) =) RATE,

Figure B9-3. NELIAC problem two, flowchart.

ORIGINAL

RATE - SAVE LS (1.(1(1(1(11 I r SAVE - RATE LS (1.(1(1(1(11 I I STOP. $ $ $

((X (2) / C(2)) * (T ($(1$) - TC3)) / ((X ($(1$) / C($(1$» +

(X (1) / C(I» + (X (2) / C(2»» + TU.3$) =) T($2$),

T($(1$) - ((X ($(1$) / C($(1$)) * (T ($(1$) - T(3)) / ((X ($(1$) / C($(1$))

+ (X (1) / C(I» + (X (2) / C(2»» =) T(I),

T(I) =) TEMP 1, T(2) =) TEMP 2, RATE =) RATE OF HEAT FLOW,

WRITE(HEAO), WRITE(OUTPUT, RATE OF HEAT FLOW, TEMP 1, TEMP 2,),

RATE =) SAVE,

. RATE ROUTINE.

STOP' I

T(I) =) TEMP 1, T(2) =) TEMP 2, RATE =) RATE OF HEAT FLOW,

WRITE(HEAOING), WRITE(OUTPUT, RATE OF HEAT FLOW, TEMP 1, TEMP 2),

Figure B9-3. (Continued)

Flowchart Discussion

Many programming techniques in this flowchart are similar
to those used in the solution of the previous Problem One. Al­
though the techniques themselves are listed, discussions of these
techniques are not repeated here; refer to the "Flowchart Discus­
sion" for Problem One if this information is required.

ORIGINAL

a. 5

b. T(4) EQ 70.0, 90.0, 8.0, 0.0,

c. A(3) EQ 0.0025, 0.00028, 0.002,

d. B(3) EQ 0.0419, 0.0036, 0.0407,

e. C(3). (Floating point mode established; three zeros
stored.)

f. MN(3).

g. X(3) EQ 0.25, 0.20, 0.15,

h. SAVE. RATE. TEMP 1. TEMP 2, RATE OF HEAT
FLOW. ,

B9-11

B9-12

i. ($HEAD' , / / / '10' LS INTERMEDIATE RATE OF HEAT
FLOW GR /// $),

j. ($HEADING" ** '25' LS RATE OF HEAT FLOW IN
DEGREES/INCH GR / / / $),

k. ($OUTPUT" LS RATE OF HEAT FLOW EQ GR '1'
00. 00000 / LS TEMP 1 EQ GR '1' 00.00000 /
LS TEMP 2 EQ GR '1' 00. 00000 / $) $ (The 00. 00000
format specification info rms the compiler that a maxi­
mum positive integral number of 99 or a maximum nega­
tive integral number of -9 is anticipated; five decimal
places of accuracy are requested.)

1. RATE ROUTINE" (Entry point for the iterative pro­
cedure.)

m-1. (T (0) + T(l))/2.0=) MN(0),

m-2. (T (1) + T(2))/2.0=) MN(l),

m-3. (T (2) + T(3))/2.0 =) MN(2),

m -4. A(0) * MN(0) + B(0) =) C (0),

m-5. A(l) * MN(l) + B(l) =) C(l),

m-6. A(2) * MN(2) + B(2) =) C(2), (Generation of
mean temperatures and conductivities.)

n. (T (0) - T(3))/ ((X (0) / C (0)) + (X (1) /
C(l)) + (X (2) / C(2))) =) RATE, (Computation
of Q.)

o. RATE - SAVE LS 0.00001' , SAVE - RATE LS 0.00001
" STOP. $ $ $ (Comparison statement which checks
to see if the new and previous values of the rate of heat
flow are nearly equal, within a tolerance of 1 x 10-5;
true alternative causes jump to end of routine; false or
partially false alternatives all cause regeneration of the
intermediate boundary temperatures and an intermediate
printout.)

ORIGINAL

ORIGINAL

p. «X (2) / C(2)) * (T (0) - T(3))/ ((X (0) /
C ($£1$)) + (X (1) / C (1)) + (X (2) / C (2)))) +
T(3) =) T(2),

q. T(0) - ((X ($£1$) / C(0)) * (T (0) - T(3)) /
((X ($£1$) / C($£1$)) + (X (1) / C(I)) + (X (2) /
C(2)))) =) T(I),

r. T(I) =) TEMP 1, T(2) =) TEMP 2, RATE =) RATE
OF HEAT FLOW,

s. WRITE(HEAD), WRITE (OUTPUT, RATE OF HEAT FLOW,
TEMP 1, TEMP 2,),

t. RATE =) SAVE,

u. RATE ROUTINE. (Direct jump to the entry point for the
iterative procedure.)

v. STOP" (End of routine; entry point.)

w. T(I) =) TEMP 1, T(2) =) TEMP 2, RATE =) RATE
OF HEAT FLOW,

x. WRITE (HEADING) , WRITE (OUTPUT, RATE OF HEAT
FLOW, TEMP 1, TEMP 2),

y.

A sample intermediate solution follows:

INTERMEDIATE RATE OF HEAT FLOW

RATE OF HEAT FLOW = 4. 46972

TEMP 1 = 65.38£160

TEMP 2 = 13. 76712

B9-13

B9-14

The rate of heat flow, correct to five decimal places, is
given in the final printout:

RATE OF HEAT FLOW IN DEGREES/INCH

RATE OF HEAT FLOW = 3. 88173

TEMP 1 = 65.40417

TEMP 2 = 11.21554

A number of improvements could have been made. For ex­
ample, the generation of the mean temperatures and conductivities
could have been relegated to functions, and the iterative scheme
reduced from four instructions to two: the computation of Q, and
the generation of improved values for the internal temperatures.
However, this was not done because it would have changed the
originality of the NE LIAC program produced by a new programmer
on the third try, which speaks well for the language.

ORIGINAL

	000
	001
	003
	004
	007
	009
	010
	1-001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14

