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PREFACE 

This Primer and Programming Guide has been extracted from the 
documentation of the interim Command Ship Data System (CSDS), to 
permit a wider distribution of the specifications for the NELIAC 
language. The interim CSDS was a project completed under the 
technical supervision of the Navy Electronics Laboratory for the 
Bureau of Ships, Navy Department. 
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APPLICATION OF NELIAC 



1. INTRODUCTION 

INTENT 

This part of the User's Guide is intended to serve as both an 
introduction and a programmer's working-guide to the computer 
compiling language known as NELIAC -- the Navy Electronics 
Laboratory International Algorithmic Compiler. The NELIAC vo­
cabulary and phraseology required of a programmer for communi­
cation with a computer will be presented along with the background 
information necessary for a complete understanding of NELIAC 
applications. 

It was the original intent for NELIAC, to function independ­
ently of any particular machine. ImpliCit in this design require­
ment was the understanding that a programmer would be able to 
compile any algorithm written in the NELIAC language on a large 
number of digital machines with only a very few concessions to 
individual machine characteristics. In the discussion which 
follows, reference to machines will be avoided, whenever possible, 
for it is hoped that this guide, while serving prinCipally as a key 
to understanding the micro-programs of the Interim Command Ship 
Data System (as implemented on the AN/USQ-20) , will be univer­
sally applicable to the comprehension and composition of NELIAC 
programs. 

Another purpose conceived for and incorporated into NELIAC 
was that it lend itself to the digital computer solution of scientific 
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problems. Thus the examples and problems presented herein will 
be of the type requiring algebraic or scientific expressions for 
their solution. 

ORGANIZATION 

The order of presenting the material in this manual might be 
considered somewhat unorthodox. However, an attempt has been 
made to group NELIAC elements of comparable characteristics 
in order to provide a continuity of ideas. The acorn -to-oak prin­
ciple also has been utilized: from the most basic of the NE LIAC 
elements -- the name -- grow the large, many-faced program 
devices of later chapters. 

In addition to the textural presentation of each subject, two 
summary tables are included where appropriate. In the first table 
the reader will find a synopsis of the ideas just presented, in order 
to give the new programmer a concise review and the experienced 
hand a concise reference. The second table is devoted to a number 
of examples, some legal and some illegal (and why), which illus­
trate the material that has just been presented. 

At the end of the NELIAC portion of this manual, in section 
9, two "case study" problems are presented with full statements, 
solutions, and discussions. The second problem, a little more 
involved than the first, provides a ground on which to parade the 
more sophisticated elements of NE LIAC. 

BACKGROUND INFORMATION 

The only prior knowledge in the field assumed of the reader 
is a basic understanding of computers and the concept of a stored 
program. Several good references covering these topics are 
available from manufacturers or libraries. 
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Engineers and scientists in first using the digital computer 
recognized its rapid and accurate handling of large, complex prob­
lems involving vast amounts of data. As early as 1956, digital 
computer manufacturers and other groups came to realize the need 
for languages which could be used with some facility after a mini­
mum of programmer training. In other words, a language form 
other than machine code was required. 

From this realization have come several "automatic program­
ming" systems consisting of language-processor pairs. The sys­
tems are labeled "automatic" because the computer itself seems to 
be responsible for the programming task. This is not absolutely 
correct, as shall be seen. 

These languages are characterized by their algebraic nota­
tion for mathematical solutions and by the use of English phrases 
for program control. They are often referred to as procedure- or 
problem -oriented languages (POL), a title which reflects their 
great usefulness in the solution of scientific problems. 

The function of the processors is to translate the algebraic 
notation and English phrases into machine code for subsequent 
execution. A more detailed look at this translation process 
follows. 

In. the step numbered 1 in figure Bl-1, the processor, in 
machine code, is read into computer storage. In. the step numbered 
2, the source program, a procedure written in the system language 
by the user to solve his problem, is presented to the processor 
residing in core. Since the source program is not written in ma­
chine code, but in a more sophisticated language, the processor 
must be capable of translating the one into the other. In so doing, 
the proces sor calls upon generators of machine language appliable 
to every source program syntactical form. The object program is 
a collection of machine instructions created by the generators 
from the source program. The collection process is known as 
compilation, and it is from this that the processor or translator 
has become a "compiler." 
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PROCESSOR 
1 2 

1---.... COMPUTER .... ---t 

CARDS 

3 

OBJEC T PROGRAM IN 
ANY ONE OF THREE FORMS 

SOURCE 
PROGRAM 

LISTING 

Figure Bl-l. The compilation procedure. 

As each source program statement is encountered, the com­
piler generates multiple object-program instructions in machine 
code. The object program is the assemblage of these instructions. 
step 3 illustrates the fact that the object program may be returned 
to the programmer in several forms: cards, tape, or a hard-copy 
listing. 

Execution, or the actual running of the problem on the com­
puter, is a separate and distinct operation. Once the object pro­
gram. has been created, it may at any later time be read into core, 
data supplied to it, the computation prescl1ibed undertaken, and 
the results presented to the problem originator. 

This is the meaning of the term "automatic programming. " 
Computer programming is automatic in the sense that, in pre­
senting the processor with a source program in a problem or pro­
cedure oriented language, the creation of a program in an execu­
table form (1. e., in machine code) is left to the compiler. 
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Thus, the automatic programming system is comprised of 
two parts: a language and a processor. The "language" part is of 
primary concern in the following sections of this manual. 

NELIAC 

The NELIAC language and compiler were conceived and de­
veloped by a group of U. S. Navy Officers and civilians at the U. S. 
Navy Electronics Laboratory in San Diego, California. Due to the 
fact that it is procedure-oriented and machine independent, its 
development has included an implementation on many different 
computers and a use in a large number of locations for varied 
scientific purposes. 

NELIAC is a dialect of ALGOL 58, the Algorithmic Language 
established in 1958 by an international forum asa standard for 
expressing computer algorithms for scientific problems. One of 
the administrative problems of NELIAC has been standardization; 
in spite of machine independence, there are difficulties in imple­
menting all facets of the expanding NELIAC on all machines. 
There is no provision for input/output in the original NELIAC, in 
line with the concept of ALGOL 58, to permit dissociation with 
any reference machine. In the compilers since developed for 
specific computers, routines have been devised for the machine­
related functions and have been included in the separate NELIAC's. 

To further classify it, NELIAC is a "one-pass self-compiler." 
"One-pass" means that there is no intermediary conversion of 
source program language to assembly language; translation of 
NELIAC is made directly to machine code. This eliminates 
multiple considerations of the program in core and consequently 
saves compilation time. "One-pass" also means that machine 
code is generated as each source program statement is en­
countered; there is no backtracking to pick up information. 

The term "self-compiler" has much more significance. 
NELIAC is written in its own language, and as such is capable of 
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compiling itself. Consider figure Bl-l again. If the source pro­
gram is replaced by an updated NELIAC processor which is to be 
compiled, the old processor is read into core, the new NE LIAC is 
presented to it for compilation, and the output or object program 
is a revised NELIAC compiler. 

There are interesting ramifications to this unique capability. 
First, the hard-copy listing of the source program is never out of 
date since changes are made directly to the system at the NELIAC 
language level, and the entire compiler is recompiled to incorpo­
rate the changes. Secondly, the implementation of NELIAC on 
other computers is more readily achieved because of the higher 
level language which describes the system processor; routines for 
compilation of features that are machine independent are already 
written; only the machine dependent features, such as input/ out­
put, need to be programmed in machine code. 

A misinterpretation that should be clarified is the statement 
that NELIAC is self-documenting. The basis for saying that 
NELIAC is self-documenting is that the NELIAC processor is 
written in the NELIAC language and that the listing of such a pro­
cessor provides an instruction -by- instruction documentation for 
the compiler. The area of fallacy lies in the argument that such 
a listing is totally self-documenting. Unless the programmer goes 
to great pains to write comments within the body of the program, 
there should be accompanying definitions for the terms used as an 
explanation for the directions of program flow in order that any 
programmer may understand the intentions of the original author. 
Such measures prevent the necessity of guesswork to understand 
flow and term meanings. Hence, it is strongly advocated that any 
program written should be accompanied by appropriate documen­
tation. Later examples will illustrate the need for such descrip­
tiveefforts. 
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2. THE NELIAC PROGRAM 

APPROACH 

As often as not, a man sitting down to a problem which he 
must solve by himself will use an intuitive approach in which the 
steps to solution are arrived at subconsciously and without calcu­
lation. However, when that man intends to utilize a digital com­
puter for problem solution, he is forcedto examine, plan, and 
delimit his approach very precisely. 

Initially, he must understand the problem sufficiently to 
state accurately the given conditions and the unknowns to be found. 
If he cannot do this, no amount of data manipulation will provide 
the needed answers. 

As a second step, he must describe the problem mathemati­
cally, reducing the original definition to formulae or equations, 
thereby isolating the pertinent information. If his problem is not 
reducible to simple algebra, he must recognize the applicability 
of some numerical analysis scheme. 

The third step requires an understanding of digital com­
puters and thus the services of a programmer who must propose 
an algorithm or procedure for a computer solution of the problem. 
This will probably involve a detailed picture or block diagram of 
the algorithm as well as the instruction-by-instruction specifica­
tion of the computer program. For the computer to accomplish 
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the proposed calculations, the programmer might specify the 
algorithm in machine code, a language comprised of numbers for­
matted into instructions. To do this, he must know the machine 
in detail, a knowledge acquired through special training in the 
subject. His final act of preparation for execution is to assign 
memory locations to data storage, an elaborate task. 

Mter loading the program successfully, the stage is set for 
testing the program. Data are applied to the instructions, and the 
programmer soon knows if his routine is correctly written. If not, 
he must go back, diagnose the troubles, and repair the errors. 
When he is successful, the results are returned to the problem's 
originator, This is the fourth step. 

The last step is an evaluation of the answers by the origi­
nator; if he is satisfied that the program achieved the goal, the 
algorithm and program should be documented. If he isn't satisfied, 
the programmer initiates step four again. 

The reader should understand that since the computer cannot 
exercise common sense (should the programmer incorrectly specify 
the data or instruct the computer badly), the chances for succes s 
on the first few tries are slight indeed. Consequently, the pro­
grammer frequently repeats the entire approach several times. 

POL 

If the programmer uses a procedure-oriented language (POL) 
instead of machine code while going through his approach, he takes 
advantage of a number of features which simplify his task. 

The first advantage of a POL is that it reduces the require­
ment for a detailed knowledge of digital computers and frees the 
programmer to concentrate on other steps in tbe problem approach. 
In using the POL, the algorithm may be written in a language akin 
to English. Little training is required to become versed in such 
a language; in fact, when so desired, the scientist and the pro­
grammer may be the same person. 
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Secondly, the compiler considers names and operations as 
written by the programmer. It does all the assignment of addresses 
to data and instructions and translates the algebraic expressions 
and control statements to machine code. 

Thirdly, the language allows comparison between quantities 
to decide logic flow; when commanded to do so, it compiles the 
statements necessary to create control for multiple executions of 
a series of instructions; and it incorporates such facilities as sub­
routines and functions which allow the programmer to specify an 
algorithm once and call on (jump to) it from different portions of 
his program. 

The fourth advantage is that program changes are more 
simply made when a routine is in error. The language is easier to 
read than machine code; when errors are determined, they are 
readily located and the necessary corrections can be quickly in­
corporated in the program with a compilation. 

PROGRAM STRUCTURE 

An algorithm written for the solution of a problem using the 
NELIAC language is called a program. When a program reaches 
such proportions that its size does not permit the processor to 
compile all of it simultaneously, the programmer must break the 
program logically into smaller parts called segments or flowcharts. 
For large programs it is usually desirable to separate programs 
logically into smaller parts for ease of error-checking. The 
NELIAC processor has the capability of individually compiling 
these flowcharts and then considering the whole program for gram­
matical errors. The flowchart concept also is useful when a 
number of programmers are working on separate segments of a 
much larger system, in that grammar checks may be made on 
individual flow charts before assembling the over-all program. 
For the programmer familiar with other compiling systems, the 
term "flowchart" must not be confused with the block diagram or 
flow diagram concept used to pictorially outline program logic flow. 
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FLOWCHARTS 

In constructing a program, five primary flowchart types are 
available for use by the programmer at his discretion; they are: 
(a) the flowchart which incorporates data storage allocation and 
program logic, called the "process" flowchart; (b) the "declara­
tive" flowchart, which provides for the introduction of machine 
dependent routines through a unique definition and call arrange­
ment; (c) the "executive" flowchart, an indicator to the program 
entrance; (d) the "correction" flowchart, the segment intended 
to replace, before compiling, a flowchart presently a part of the 
program; and (e) the "edited" flowchart, the output of a format­
ting run by the compiler on any of the other four flowchart types. 

Process Flowchart 

The process flowchart (figure B2-1), introduced to the com­
piler with a control number of 5, is made up of two parts: the 
dimensioning and the program logic. The fact that either part or 
both parts are included in the flowchart is dictated by need and not 
by language rules. 

The dimensioning part might better be called the "definition, " 
since with dimensioning the programmer informs the compiler 
that areas are to be reserved by name for specific data, as well as 
defining the mode (indicating whether the data are to be integral or 
decimal fractions), the predetermined numerical values (if any), 
and the type of computer word storage to be used (whether full or 
partial word). Output formats and messages are also defined in 
dimensioning. 

The program logic is the portion of the flowchart or program 
in which is found the algebraic approach, statement by statement, 
to the problem's numerical solution. Program control, directing 
the computer in a path of execution, subroutines, and functions to 
do special repeated programmed tasks, and other features that will 
be explained later, are also to be found in the program logic. 
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5 (COMMENT I I PROCESS FLOWCHART> ______ CONTROL NUMBER 
A, BOXI = 4, CZJT, DIMENSIONING 
DIAGONAL (4) = 1, 2, 3, 4 DIMENSIONING 
$ END OF DIMENSIONING 
TITLE I I PROGRAM LOGIC 
ZONE CLEAR, PROGRAM LOGIC 
ZONE CLEAR I I BEGIN PROGRAM LOGIC 

A + BOX 1 =) CJZT, PROGRAM LOG IC 
($ CLEAR CELLS LS CJZT GR , PROGRAM LOGIC 
LS DIAGONAL GR , $), END PROGRAM LOGIC 

____________________ ENDOFFLOWCHART 

Figure B2-1. Process flowchart, example. 

Declaration Flowchart 

The declaration flowchart (figure B2-2), indicated by a 6 
(control number), enables the programmer to assign a NELIAC 
name to an absolute (machine) address, to define input/output 
functions, and to define desired machine code procedures. The 
purpose of the procedure written in machine code is to avoid the 
necessity of programming a required routine several times in 
NELIAC; a hand-coded procedure is often more efficient as well. 

6 (COMMENT I I DECLARATION FLOWCHART> CONTROL NUMBER 
CLEAR CELLS = LS MACHINE {7(.H(1(1 OCT (1K) GR __ DEFINITION 

LS MACH INE {l6(13(1 OCT (1K) GR __ DEFINITION 
--__________________________ ENDOFFLOWCHART 

Figure B2-2. Declaration flowchart, example. 
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Executive Flowchart 

Through the use of the executive flowchart (figure B2-3), 
indicated by control number 9, the programmer provides an en­
trance (indicates the first instruction to be executed during actual 
operation) to his program. Another reason for using this type of 
segment is in the field of program debugging (error resolving). 
With such a tool the programmer can force a flowchart execution 
sequence and cause diagnostic checks to be made without altering 
his process flowchart. 

The executive flowchart has all the dimensioning and pro­
gram logic capabilities of the process flowchart. In the absence 
of such a flowchart, the first executable process flowchart be­
comes the entrance. 

9 (COMMENT I I EXECUTIVE FLOWCHART> _____ CONTROL NUMBER 
$ END OF DIMENSIONING 
ZONE CLEAR, ($ CALL NELOS LS , $) PROGRAM LOGIC 

_______________________________ END OF FLOWCHART 

Figure B2-3. Executive flowchart, example. 

Correction Flowchart 

A correction flowchart (figure B2-4), having a control number 
of 8, serves to modify an existing flowchart by deleting the old and 
substituting the entire corrected flowchart specified as the next 
flowchart. 

8 (COMMENT I I CORRECTION FLOWCHART) CONTROL NUMBER 
15 NUMBER OF FLOWCHART TO BE REPLACED 
_ - - - - FLOWCHART SEPARATOR 
5 (COMMENT I I CORRECTED PROCESS FLOWCHART #15L CONTROL NUMBER 
$ END OF DIMENSIONING 
_______________________ ENDOFFLOWCHART 

Figure B2-4. Correction flowchart, example. 
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Edited Flowchart 

An edited flowchart (figure B2-5), which is requested by a 
programmer (i. e., is not automatic), is a formatted, somewhat 
diagnostically checked output flowchart which will come out in any 
of three forms depending upon the portion of the NELIAC processor 
called: printed copy, cards, or magnetic tape. The primary use 
of the edited flowchart is in helping the programmer find grammat­
ical errors through use of the formatted (to conform with logic 
flow intentions) output to search for errors in procedure specifica­
tion. An edited flowchart output from any of the other four flow­
chart types may be requested. The edited flowchart, still at the 
NELIAC language level, must nonetheless be compiled before 
execution. 

f1 (COMMENT I I EDIT PROCESS FLOWCHART> ____ CONTROL NUMBER 
A (1(1(1), X DIMENSIONING 
$ END OF DIMENSIONING 
1 =) J, 19 =) X, PROGRAM LOGIC 
REPEAT I I PROGRAM LOGIC 
A ($ J $) + X =) A ($ J+S(1 $), J+1 =) J, PROGRAM LOGIC 
J = 12 I I STOP. REPEAT. PROGRAM LOGIC 
STOP I I PROGRAM LOGIC 
__________________ END OF FLOWCHART 

Figure B2-5. Edit flowchart, example. 
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3. NAMES 

GRAMMAR OF NAMES 

Neliac Symbo I Set 

There are 62 characters in the NELIAC symbol set, includ­
ing all the numbers ~ through 9, the entire alphabet, and some 26 
special characters. Letters and numbers together are used in the 
construction of names, numbers alone are used for data, and the 
special characters serve primarily as punctuation and operation 
symbols. 

No differentiation is made between upper and lower case 
letters by the NE LIAC compiler,' but the programmer may use 
both cases interchangeably for greater readability. In other words, 
the NELIAC names, "EXCHANGE," "exchange," and "ExcHanGE" 
are equivalent. This text for its examples, uses all capital letters 
since in a card system no differentiation between upper and lower 
cases is possible. 

The early versions of NELIAC were built with the Friden 
Flexowriter as an input/output device. Some of the punctuation 
characters of the symbol set are not available on card keypunches 
and high speed printers and, consequently, concessions have been 
made in the card NELIAC system to these character restrictions. 
The conversions necessary are shown in figure B3-1. 
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FLEX CARD FLEX CARD FLEX CARD FLEX CARD 

EQ 
; $ } END = or ~ GQ 

= 

: II x * ~ NQ n AND 
S 
Y 
M 
B [ ($ - =) < LS U OR 
0 
L 
S 

t ] $) ** > GR 8 OCT 

{ I 
, ( ) + - / 

BEGIN I s LQ INTERCHANGEABLE 

SYSTEMS 

Figure B3-1. NELIAC character set conversion. 

Name Formation 

A NELIAC name is any combination of letters and numbers 
so long as the first character is a letter. Blanks imbedded in the 
name are ignored by the NELIAC processor, enabling the program­
mer to make his long names meaningful by spacing. The first 
fifteen nonblank characters constitute a name; characters beyond 
those fifteen are not compiled, but a programmer may still refer 
to the long name elsewhere in his program. 
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Index Register Variables 

The first exception to these rules of formation are the 
index register variables, which are identified by the single letters 
I, J, K, L, M, N. (This does not prevent the use of names start­
ing with one of these letters 0) These six variables are not available 
for use as NELIAC names, but are employed as counters within the 
program logic. Each letter is associated with the machine index 
registers Bl through B6, respectively; use of an index register 
for counting generates a more efficient object program than if 
other NELIAC names are utilized for the same purpose. An index 
register is only half a word long (AN/USQ-20: 15 bits) 0 The pur­
pose of the index register variables will become more apparent 
later in the text. Other single letters, however, are valid 
NELIAC names. 

Operators and Comparison Symbols 

The only other exception to the general rule is the use of 
names which are identical to the card-NELIAC-language operators 
and comparison symbols. These include BEGIN, END, EQ, NQ, 
LS, GR, LQ, GQ, AND, OR, and OCT. Wherever used, a space 
(or blank card column) must precede and follow the operator or 
symbol. The programmer must not use these letter combinations 
for purposes other than those for which they were intended; other­
wise, he may anticipate unexpected compilation results. 

Following are a synopsis of the formation of names (table 
B3-1) and a list of examples of names (table B3-2). 
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TABLE B3-1. NAME FORMATION CONSTITUENTS 

a. A combination of letters and numbers 
b. First character must be alphabetic 
c. Imbedded blanks have no significance 
d. Maximum significant length = 15 characters; longer name 

possible 
e. Single letters; except I, J, K, L, M, N, may be used; ex­

ceptions reserved for register variables 
f. Operator and comparison symbols may not be used 

TABLE B3-2. EXAMPLES OF NAMES 

a. A, legal; single letter 
b. BOX 1, legal; letters, imbedded blank, 

number 
c. NONSENSICAL PHRASE legal; only first 15 considered 
d. cummings legal; lower case permissible 
e. 1C74 illegal; starts with number 
f. C2$41 illegal; contains symbol 
g. I illegal; index register variable 
h. BEGIN illegal; operator 
i. LS illegal; comparison symbol 
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The Purposes of a Name 

A name serves as an identifier or tag within the bounds of the 
algorithm. When the programmer uses a name in his program, it 
is linked to an address or a series of addresses in computer storage 
by the processor during compilation. So far as the programmer is 
concerned, however, this area in core continues to be addressed 
mnemonically. 

If a name is defined in the dimensioning portion of a flow­
chart, it is called a noun. Nouns provide a tag for storage which 
will contain variable (ever-changing) information or data. 

N ames assigned to routines in program logic are lmown as 
verbs, since they are associated with the action portion of the flow­
chart. If a programmer wishes to jump from some point in his 
program to a particular routine, he indicates by specification of a 
verb and punctuation that the jump to a particular location is in­
tended. 

Meaningful Names 

The programmer is urged to use NELIAC names which 
represent the literal meaning of his data or logic intentions. For 
example, in handling data conc~rning rocket fuel, the name 
ROCKET FUEL would be a sensible choice. Or, a routine to 
clear an area of computer core to zeros might be identified more 
easily by calling it ZONE CLEAR. 

An effort in this direction pays rich rewards. The amount 
of documentation for a weU-designed algorithm is greatly reduced 
by an appropriate choice of names. 
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NAME PRECEDENCE 

The "name list" is a table maintained by the NELIAC pro­
cessor as an inventory of names contained in a NELIAC program. 
As new names are encountered, they are added to the list. 

There are three distinct times when the processor deletes 
or purges names from the name list: at the completion of a func­
tion or subroutine definition, at the end of a flowchart, and after 
the last flowchart or upon program completion. The timing of 
such purges implies that some names can be more localized than 
others, which is the case. When it is considered that the size and 
importance of subroutines, flowcharts, and programs increase in 
that order, this may be more clear. 

The purges prevent the name list from becoming too long. 
As a result, additional subroutines, functions, and flowcharts can 
be processed in any given compiling run. More names can be 
temporarily stored, assigned addresses, and purged from the 
name list before list overflow than would be the case if all entries 
were additive and never subtractive. Another outcome of this 
differentiation or precedence among names is that a purged name 
list is a shorter table to search during compilation. This re­
presents a sizable savings in processing time, since a search of 
the list is usually made several times for each NELIAC statement 
compiled. 

All NELIAC names are divided into three classes: global 
names, local names, and function or subroutine names. The 
global class consists of those names which mnemonically tag ad­
dresses referred to throughout the program. The local names are 
peculiar to only one flowchart of the program. The subroutine or 
function names are used only in the definition and call of these 
specialized routines. Further discussion of these classes follows. 
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Global Name 

A global name may be referenced from any flowchart in the 
program. It is sometimes designated as a "permanent" name be­
cause throughout the compiling run the name is never purged 
from the processor's name list. The programmer must be care­
ful to avoid defining the name for more than one purpose as this 
sort of error results in an unsuccessful compilation. 

Local Name 

The local class of name is distinguished by its unique for­
mation: one character of the name within the first 15 nonblank 
characters is an absolute sign (flex system) or apostrophe (card 
system); L'OCAL NAME is an example. This is the exception to 
NELIAC rules concerning the inclusion of symbols other than 
letters and numbers in name formation. When defining local 
nouns, the apostrophe is necessary only in the dimensioning portion 
of the flowchart. For local verbs, their first occurrence in the 
program logic serves as an indicator to the compiler. Additional 
specification of this class by use of the apostrophe is unneces­
sary and represents wasted time. 

The local name can only be called or referred to from with­
in the flowchart which contains its definition. In other words, a 
local name is uniquely identified with a specifiC flowchart. 

Otherwise known as a temporary name, the local noun or 
verb is purged from the name list when the processor enCOlnlters 
a double period during compilation. This prevents double address 
definitions for the same name and reduces ambiguity. 
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Subroutine or Function Name 

This class of names is available for reference only during 
the definition of the subroutine or function. Upon encountering the 
right brace or END as punctuation, signalling definition comple­
tion, the need for these names terminates, and they are deleted 
from the name list. More information is presented on this class 
of names in the discussion of subroutines and functions. 

Joint Use 

All three NELIAC name classes may be used within the 
same program; furthermore, because of the way the NELIAC pro­
cessor handles names, a programmer may use the identical name 
for all three purposes in one program. For example: 

5 (COMMENT' 'FIRST PROCESS FLOWCHART) 
AJAX, a'jax, BAKER, blaker, Z 
$ 
2=) ajax + baker =) Z, 
Z= 2' 'GO (ajax, baker $ Z) $$ STOP. 
GO (Ajax, Baker $ z)' , 

BEGIN Ajax + Baker =) z, END , 
STOP' , 

5 (COMMENT' , SECOND PROCESS FLOWCHART) 

$ 
8 =) AJAX + BAKER =) Z 

The example has been formatted to point out precedence; 
ordinarily, with the exception of the local name definition (which 
requires an apostrophe), all names are written to look the same. 
In the flowcharts above, AJAX represents a global name, a'jax is 
a local name, and Ajax is a name of functional precedence. The 
first two are defined in the dimensioning portion of the initial flow­
chart; the last is prescribed in the function definition. 
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To illustrate the result of name precedence in the example 
program, when any of the defined names are used in the program 
logic of either flowchart, the use or absence of capital letters in­
dicates their precedence. In the first flowchart where AJAX, 
a'jax and Ajax are all defined, employment of that four letter name 
within the program logic but external to the function definition re­
sults in local name precedence, here indicated by lower case 
letters. Use of the name in the second flowchart invokes global 
precedence since a local name of the same spelling has not been 
defined there. 

NOUNS 

Noun Usage 

As indicated earlier, a noun is one of two forms a name may 
take. The NELIAC programmer uses a noun to reserve computer 
storage for data he anticipates inputting, manipulating and output­
ting. He specifies his storage intentions in the dimensioning por­
tion of the flowchart. The speCification may include one or more 
of the following parameters to fully describe the programmer in­
tentions: the mode; the size of storage to be allocated; the form 
of the array if more than one value is to be stored simultaneously; 
any initial values; the signs of the values; the input and output for­
mats of variable data fields; and any partial computer word stor­
age. Each of these topics will be considered in this section. 

All nouns must be defined somewhere within the boundaries 
of the NELIAC program. For maximum object program efficiency, 
nouns should be speCified before their use. Only named full com­
puter word storage (and a type of noun to be considered later --
a literal) may be defined after a reference in program logic. 

It should be noted that index registers, although not names 
or nouns, are defined automatically by the NELIAC processor, 
and further specification is not required. 
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Mode 

All computational efforts are divided into two types: fixed 
point and floating point algebra. The basic differences between 
the two are discussed in the following paragraphs. 

FIXED POINT ALGEBRA 

When fixed point algebra is used to express data for com­
putation, the programmer does so with the knowledge that he is 
manipulating integers or whole numbers, and that no fractions are 
involved. This method of data handling is similar to the way in 
which people count, number pages, score a basketball game, and 
do many other daily arithmetic operations. 

So far as fixed point algebra concerns programmers, these 
numbers are treated as if there is a hypothetical radix point to the 
far right of all significant numbers (e. g., we imagine 236 to be 
236.). Throughout our calculations with these numbers, that radix 
point (decimal or octal) will not move from its right-hand position; 
in this sense, these numbers have a "fixed point. " 

Addition, subtraction, and multiplication with fixed point 
numbers present no problem; however, division does. When 
dividing one integral number by another, and the dividend is not an 
exact multiple of the divisor (dividend/divisor = quotient), the 
dividend is reduced to a nonzero remainder. In fixed point algebra, 
this remainder is ignored; and although the quotient may not be 
the completely correct answer, it is accepted as being close 
enough for use with the algorithm. Another way of saying that the 
remainder is ignored is to employ the word "truncation"; any por­
tion of the dividend remaining after integral division is truncated 
or cut off. 

Another simple trick is "rounding" an answer to the nearest 
whole number, and NELIAC fixed point algebra ignores this trick, 
too. 
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ORIGINAL 

Some sample fixed-point-algebra calculations follow: 

Addition: 
Subtraction: 
Multiplication: 
Division: 

21 + 42 = 63 
967 - 822 = 145 
85 x 131 = 11135 
5/2 = 2; 11/3 + 22/3 = 10 

FLOATING POINT ALGEBRA 

When one divides a pie among guests, computes an income 
tax, or buys a partial share -of stock, fractions play an important 
role in each calculation. Since numerical analysts have chosen to 
do so and because the digital computer is so designed, these frac­
tions are expressed decimally when using a computer. 

When, using pencil and paper, a person solves an arithmetic 
problem having decimal fractions, experience dictates the proper 
positioning of the decimal point in the answers. For computers, 
experience comes from programming; consequently, computer 
designers have resorted to the use of engineering notation for 
floating point numbers internally in order to properly accomplish 
the desired calculations and positioning. During calculations, in­
termediate results are shifted to maintain a consistent form. 

Numbers in ordinary floating point notation are expressed 
as a whole. Engineering notation for a floating point number con­
sists of three parts, a mantissa, a base and a characteristic. 

Ordinary notation: - 1234.567890 
+4 

Engineering notation: - .123456789 x 10 . ,~ ~ 

mantissa base characteristic 

A mantissa contains the significant digits of the number, 
with the decimal point left-justified (to the left of the most signi­
ficant digit). This is a normalized mantissa. A base is the 
number system under consideration; in this example the decimal 
system is used, hence the base equals 10. In the octal system, 
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base equals 8; in the binary system, base equals 2. A character­
istic is that power to which the base is raised to give a multipli­
cand' which when multiplied by the mantissa, results in the float­
ing point number of ordinary notation. Both notations, ordinary 
and engineering, are used in NELIAC. 

The rules of truncation and rounding for fixed point algebra 
mayor may not apply to floating point calculations, although not 
entirely in the same sense as in the fixed point mode. Truncation 
occurs when the space allotted to a mantissa or characteristic is 
exceeded; no heed is paid to significance of truncated digits. (Rules 
for preventing improper truncation will be presented later). 
Rounding in any case never occurs. Consider 3.0 7- 16.5 = 

0.18181818... This calculation if delegated to machine solution 
would be carried out until truncation, and if the last digit were a 
one, and the next digit beyond allotted mantissa space were to be 
an eight, the last digit would remain a one. 

COMPARATIVE MERITS OF MODE 

There are advantages for and against each mode of algebra. 
Fixed point algebra requires less core space; only one computer 
word is reserved for each number. All indexing is done in this 
mode since fractions are meaningless for such a purpose. A dis­
advantage of the fixed point mode is that it is in general inaccurate 
for nonintegral calculations; scaling (multiplying or dividing by 
the radix) of operands may be used to achieve more precision, as 
shown in the following example: 

To accomplish a division of 15 by 64 with two places of 
accuracy, (a) scale 15 up by 1000 = 15000; (b) integrally divide 
15000 by 64 = 234; (c) for two places of accuracy, add 5, then 
truncate the last digit, leaving 23. This is the answer in the 
fixed point mode, taking into account that it is 100 times too large. 
(If the calculation had been done in floating point, the answer 
would be 0.23.) 
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As for floating point algebra, it requires more core space; 
for each value, a word must be set aside for the mantissa and one 
for the characteristic. However, as mentioned in the preceding 
example, this mode allows greater accuracy, without the require­
ment of scaling. Another point in its favor is the fact that it is far 
more useful in expressing scientific data and problems, which is 
why we have a NELIAC, anyway. 

Constants 

ORIGINAL 

When a value is invariable during all executions of the pro­
gram, it is a constant. A NELIAC programmer will encounter a 
constant in two forms. The first form is the initial value, a con­
stant assigned in dimensioning or early in the program logic to 
preset a noun to a specific number, such as H = 47, or -23 = ) R,. 
The value of the noun may be modified by program logic, but when 
an entrance is made to the beginning of the program (as in a sub­
sequent execution), the initial value again presets the noun. The 
second form is the expression operand, a number which is part of 
a NE LIAC expression and is not changed during execution, such as 
A * ~ = ) B. 

Constants in NELIAC may be written in either mode: fixed 
point or floating point. 

FIXED POINT CONSTANTS 

A fixed point constant is an association of numbers in either 
the decimal or the octal number system. This mode of constants 
is stored in one computer word ( 3 ~ bits in the AN /USQ -2 0) . Its 
magnitude range decimally is ±536, 87~, 911 (upper bit is reserved 
for a sign, and 2 29_1 possible nonzero values as well); octally 
the range is ± 37777 77777. For numbers larger than the maximum 
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specifications, the programmer may expect trouble; the minimum 
consequence would be truncation of the least significant (most 
right-hand, nonzero) digits. The octal specification must include 
the octal sign: OCT (space OCT space; e. g., 213 OCT). In the 
absence of the octal sign, the constant is assumed to be decimal. 

Fixed point constants must be integral in nature; no frac­
tions are allowed, and consequently no radix point. Constants in­
volve only numbers, signs, and blanks (which are ignored by the 
compiler). No alphabetic or special symbol information may be 
considered part of a number. The sign of a fixed point constant is 
assumed to be positive if the sign is physically absent in the speci­
fication. Otherwise, it may be positive or negative, as indicated. 

Following are a synopsis (Table B3-3) and a list of examples 
(Table B3 -4) of fixed point constants. 

TABLE B3-3. CONSTITUENTS OF FIXED POINT CONSTANTS 

a. 

b. 
c. 
d. 

e. 

a. 
b. 
c. 
d. 
e. 

f. 
g. 

h. 
i. 
j. 

Numbers and blanks only; no letters or special characters 
(other than ± or OCT) 
Whole number; no fractions or radix point 
Sign may be + or -; absence of sign indicates positive 
May be decimal or octal; OCT (space OCT space) after 
number indicates octal; no indicator implies decimal 
Magnitudes: ±536879'911 decimal 

±37777 77777 octal 

TABLE B3-4. EXAMPLES OF FIXED POINT CONSTANTS 

-500000000 legal; negative decimal constant 

0 legal; zero 

497 legal; positive decimal constant 

+17 OCT legal; positive octal constant 

-626 OCT legal; negative octal constant 

-500,000,000 illegal; special symbols 

-600000000 illegal; exceeds magnitude 
allowed 

-43B7 illegal; letters not permitted 

+27. illegal; decimal point 
123459 OCT illegal; not an octal number 
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FLOATING POINT CONSTANTS 

All fractional values are expressed in NELIAC by the float­
ing point constant. As discussed earlier, numbers of this mode 
require two computer words for storage, one word each for the 
characteristic and mantissa. The range in magnitude of the char­
acteristic is ± 268,435,455 (sign bit, overflow bit and 228_1 
possible nonzero values). The range of the mantissa is ± 536, 
870,911, with the storage oriented identically as that for an equiv­
alent fixed point number. NELIAC is capable of handling only dec­
imal floating point numbers. 

Floating point numbers, as we noted previously, are written 
in two forms: the ordinary notation and the engineering notation. 
Each form in NE LIAC has its idiosyncrasies; both have common 
elements. These common elements will be covered first. 

Floating point constants involve only numbers, signs, blanks 
(which are ignored by the compiler), and decimal points (optional 
in the dimensioning specification of engineering notation for whole 
numbers) 0 Special symbols and letters may not be part of a con­
stant. Unsigned constants are considered positive; signed numbers 
are considered as indicated. All numbers less than one must 
have a zero before the decimal point. 

In the ordinary notation, the decimal point is mandatory. 
The NELIAC specification for this notation consists of only a man­
tissa: a sign, an integer or integers, a decimal point, and a dec­
imal fraction, if necessary (e.g., -002735169400). The significant 
digits (27351694) may not exceed the magnitude range of the man­
tissao This notation may be used in both the dimensioning and the 
program logic portions of the NELIAC flowchart. 

In the engineering notation, constants are comprised of a 
mantissa and a characteristic. The general NELIAC form for this 
notation is "± MANTISSA * ± CHARACTERISTIC, " where the man­
tissa consists of integral and fractional parts separated by a dec­
imal point. 
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When specifying whole numbers, a decimal point is not man­
datory. For example, the number +24. ~ may be expressed in 
NELIAC in many ways, several of which follow: 

a. +24.~*~ 
b. +24*~ 
c. +24~*-1 
d. +24~.~*-1 
e. +~. 24*2 
f. 24*~ 

The first case (ltalt) is the basic form. Case Itb" is identical to 
"a" except for the absence of the decimal point; the omission is 
permitted because the number is integral (no fractional part). 
Cases TIc, " TId, " and "e" illustrate the fact NELIAC speCifications 
of such a number need not be consistent with regards to decimal 
point justification. A programmer may locate the decimal point 
anywhere in his mantissa providing his characteristic is changed 
accordingly so as to not modify the given value. Internally, how­
ever, the decimal point of the floating point constant is still justi­
fied fully to the right or left (depending upon machine character­
istics). The last case ("f") illustrates the omission of sign from 
the second case. 

The significant digits of the mantissa may not exceed the 
maximum magnitude. A similar restriction is placed upon the 
characteristic 0 The engineering notation may be used in the di­
mensioning portion of a flowchart only. 

Following are a synopsis (table B3 -5) and a list of examples 
(table B3 -6) of floating point constants. 
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TABLE B3-5. CONSTITUENTS OF FLOATING POINT CONSTANTS 

ORIGINAL 

a. Numbers and blanks only; no letters or special characters 
(other than ±, *, or .) 

b. Ordinary notation, mantissa: sign, integers, decimal point 
and decimal fractions 

c. Engineering notation, mantissa, and characteristic: sign, 
integer (s); decimal point and decimal fraction of mantissa 
may be omitted in specification of whole numbers 

d. Signs of mantissa and characteristic may be + or -; absence 
of sign indicates positive 

e. Decimal floating point constants only 
f. Magnitude range: 

+536, 87~, 911. ~ x 10 ± 268,435,455 \" ,L , 
mantissa characteristic 

g. Constants less than one require a zero before decimal 

TABLE B3-6. EXAMPLES OF FLOATING POINT CONSTANTS 

a. ~. 0, 0.0*0, +0.~, +0*0 legal; zeros 
legal; variety b. 5.23, 52.3*-1, 0.523*1, 

0.523*+1, +5.23*~, 
c. -5~0000000*- 1~0000000, legal; small constant 

legal; fractions d. -0.46325786, ~.000000~~~004 

e. 0 
f. -1,~00.0 
g. 2.3*-75~236429 

h. -4.0*7.6 
i. 7.7*77 OCT 
j. -.693 
k. +46.7-8 

illegal; fixed point number 
illegal; special symbol 
illegal; characteristic too large 
illegal; characteristic is floating point 
illegal; octal floating point 
illegal; missing leading zero 
illegal; missing asterisk 
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Variables, Whole Word 

A variable is an area in core set aside to maintain data of a 
varying or nonconstant nature. The values assigned to a variable 
may change during execution or between executions of a particular 
program. 

There are two patterns of storage provided by the NE LIAC 
language: whole word and partial word. A discussion of partial 
word storage will come later. Whole word storage implies that 
the smallest unit of storage is the computer word (30 bits in the 
AN/USQ-20). As mentioned, the fixed point mode requires one 
word per constant. The floating point mode, however, requires 
two words to express a similar value. In both modes, no matter 
how small or how large the value, the number is stored in some 
multiple of the word. 

A whole word variable, then, is a noun used to tag one or 
more words in core reserved for storage of fixed point or floating 
point data. 

The mode of a variable is specified by punctuation in the 
dimensioning section of the NELIAC flowchart. If a properly 
formed NELIAC noun is immediately followed by a comma, the 
punctuation indicates that this variable is fixed point. Index reg­
ister variables, I through N, may be dimensioned in a flowchart 
as fixed point variables, but such dimensioning serves no purpose 
since the NELIAC processor automatically provides definition for 
these variables. A noun employed for fixed point whole word stor­
age may be referenced in program logic before being dimensioned 
elsewhere in the program. 

If a NELIAC noun is immediately followed by a period, this 
indicates that the variable is reserved for floating point data. 

Following are a synopsis (table B3 -7) and a list of examples 
(table B3-8) of whole word variables. 
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TABLE B3-7. CONSTITUENTS OF WHOLE WORD VARIABLES 

a. Variables are identified by properly formed NELIAC nouns 
b. Fixed point whole word nouns need not be dimensioned be­

fore use; must be dimensioned somewhere in program 
c. Fixed point variables: noun followed immediately by comma 
d. Floating point variables: noun followed immediately by 

period 
e. Index registers should not be dimensioned 

a. 
b. 

c. 
d. 

TABLE B3-8. EXAMPLES OF WHOLE WORD VARIABLES 

ABCZ, 
ABCZ. 

3LTD 
1. 

legal; fixed point variable 
legal; floating point variable 

illegal; improper NELIAC noun 
illegal; register variables should 
not be dimensioned, definitely not 
as floating point 

CHANGING MODES OF VARIABLES 

When a variable is dimensioned as floating point, and a fixed 
point constant is moved to the area in core reserved for that vari­
able, the number is converted to a normalized floati!lg point con­
stant before storing it. The converse holds true for the floating 
point constant intended to be stored in a fixed point variable. How­
ever, any fractional portion of the mantissa is truncated before 
storage. For example: 

a. +86.793 stored in a fixed point whole word variable be­
comes +86 

b. -126 stored in a floating point whole word variable be­
comes the equivalent in core of -0. 126*3 

ORIGINAL B3-19 



B3-20 

DIMENSIONING WHOLE WORD VARIABLES 

In the foregoing, information necessary for a preliminary 
discussion of dimensioning has been presented. The purpose for 
the next brief discourse is to help tie together constants and 
variables as used in dimensioning, and to introduce further topics 
which could not be discussed without such prior discourse. 

As stated previously, dimensioning is to inform the compiler 
that areas are to be reserved by name for specific data, as well 
as to define the mode, initial values (if any), and the storage pattern 
for whole or partial words. Dimensioning then, serves two pur­
poses: it assists the compiler in storage allocation, and it assists 
the programmer by putting initial values in specific reserved 
areas. 

By dimensioning a noun in NELIAC, the programmer indicates 
a need for storage. The amount of storage that is reserved de­
pends upon that follows the noun. In the absence of an initial value, 
a comma indicates fixed point, and one computer word is reserved 
for one constant; a period indicates floating point, and two com­
puter words are reserved for one constant. In either case, the 
value stored by the compiler in the variable is exactly zero. 

To store a nonzero initial value, an equal sign and the value 
and a comma follow the noun. For example: 

SHARKS = +47.67*-2, 
JEM = -114, 
PART = 10'9.83, 

No matter what the mode of the initial value, not that it is followed 
by a comma. The mode of the variable is determined by that of the 
initial value. Once the variable is dimensioned, it is not possible 
in program logic to change its mode; any value stored later in that 
variable will conform to the mode already specified. 
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Several fixed or floating point nouns may share the same 
variable definition. For example, with the following dimensioning 
statement, the fixed point variables A, B, and C may all jointly 
occupy the same computer word: 

A" B" C, 

All are preset to zero. The floating point variables XRAY, YAN­
KEE, and ZULU are defined at the same locations by the following: 

XRAY' , YANKEE' , ZULU -1.47, 

Each is preset to the initial value. The double apostrophe acts as 
the connector in any multiple variable specification. 

Bitfield Algebra 

The format of data storage in digital comp~ters is deter­
mined by a system called a code. All computer logic circuitry is 
based on one code or another. In general, the differentiation be­
tween machine types is the manner in which instructions and data 
are handled. 

There are several different codes in common use. The most 
widely used are the character (binary coded decimal or alphanu­
meric) and the binary codes. The lowest denominator of storage 
in a character machine that may be addressed is the character it­
self, while in a binary computer the data are manipulated in full 
word increments. Most binary computers offer in their machine 
language the additional capability of handling data one bit at a time. 

Few procedure oriented languages for binary digital com­
puters offer the programmer the capability of handling the con­
tents of computer words a bit at a time; NE LIAC, however, is 
atypical in this respect. The significance of this capability will be 
discussed in the next paragraphs. 
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PACKING 

When small positive numbers are stored in whole computer 
words, zeros are employed to fill the remaining binary digits. 
Consequently, multiple entries of low magnitude data require 
large storage areas primarily full of zeros. To utilize the com­
puter core efficiently, a method must be available for the careful 
programmer to pack and unpack large amounts of data in a small 
amount of core. 

NELIAC provides this packing and unpacking capability. 
Packing involves the storage of data side-by-side, with as little 
insignificant information as possible (preferably none) stored with 
the important data. For example, if three variables are to be 
dimensioned, and each variable has a significant (nonzero) length 
less than half a word, the programmer might consider making a 
composite number out of these values; such a packing should re­
quire a maximum of two whole words. Consider the case of A = 

5, B = 146, C = 2479. Since the numbers are stored internally in 
the octal number system, before creating a composite value these 
should be converted: A = 5, B = 222 OCT , C = 4657 OCT. The 
composite value might be G = 465700'2225 OCT. Note that this val­
ue is considerably less than the maximum of 77777 77777 OCT . 

UNPACKING 

As might be expected, unpacking involves the capability of 
selecting certain contiguous hits within the specified word and 
assigning them to another variable for additional manipulation or 
output. This operation would follow when a programmer for pur­
poses of efficiency had packed many variables into a few and was 
now ready for separation of the values into their respective 
variables. 
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As an example, take G (defined above under "Packing") and, 
is program logic, divide the word. This requires the use of the 
partial word variable to be discussed shortly but which for immed­
iate purposes must be introduced now. If G = 46570'0'2225 OCT and 
the word size is 30' bits, each octal digit takes 3 bits, the bit posi­
tions being numbered 0' through 29 in a right to left direction. Con­
sequently, to obtain 4657 OCT to restore C, the statement is made 
that G (18 =) 29) =) C. This commands the computer to take bits 
18 through 29 of G and store them in C. To restore A and B, 
G (3=) 11) =) B, and G (0' =) 2) =) A would be written. 

DISCUSSION 

Operations in program logic which involve bitfield algebra 
generate more machine language instructions than the equivalent 
whole word operation. In short, there is what is known as a 
"tradeoff" --efficiency in storage vs. efficiency in instructions. 
The tradeoff becomes advantageous to the programmer when there 
are long lists or tables of small values to be defined. (These 
elements are discussed later within the confines of this section.) 

Certain computers (including the AN/USQ-20') have the capa­
bility of handling half-words with the same facility as whole words. 
Small numbers, then, may be stored two to a register, represent­
ing a reduction by half in dimensioned storage. The machine code 
instructions generated from program logiC to handle these half 
words are no less efficient than the equivalent instructions to 
handle whole words. Therefore, l!Q tradeoff in half-word algebra 
is necessary. Where it can be used, this form of data handling is 
advantageous. 

Variables, Partial Word 

The term "partial word storage" defines the fact that the 
smallest unit of storage is something less than a full computer 
word: a bit, a series of bits, or a half word. With this facility, 
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the programmer need only reserve a portion of a register for his 
variable; Le., he may store several variables within another vari­
able. He may also select certain contiguous bits from a full word 
variable for separate manipulation. Several examples of these 
tools have been discussed in the previous paragraphs. Now the 
mechanics of partial word variables will be examined. 

An important aspect of bitfield algebra that the programmer 
must keep foremost in mind is that any partial word data are of 
necessity positive fixed point constants. A number stored in or 
extracted from a partial word must be assumed to be an unsigned 
integer. The assumption holds since only with sign extension 
(moving the sign bit with the constant) can a negative number be 
properly signed, and only with two full words (not a partial word) 
maya floating point number be represented. 

All partial word variables must be defined before use. This 
rule necessitates dimensioning the variable somewhere in the pro­
gram prior to involving it in a logic expression. When employing 
a partial word variable in an expression its formation is V ARI­
ABLE (LOWES~BIT =) HIGHEST BIT); e.g., ASIAN (14 =) 26). 
When specifying a single bit, the lowest and highest bit are iden­
tical; e.g., ASIAN (14 =) 14). The symbol "=)" between bit speci­
fications means "through." Bitfields must be within a single word; 
there can be no partial word variables which cross the imaginary 
line dividing computer registers. Implicit in this restriction is 
the statement that a smaller number always precedes a larger 
number in partial word specifications. 

The programmer must insure sufficient space in his bit­
field definitions for the data he intends to store. When an attempt 
is made to store a number too large for the definition, a part of 
the number (the most significant or leftmost digits) will be trun­
cated. 

Partial word variables may be dimensioned by enclosing the 
bitfield definitions between BEGIN and END punctuation symbols. 
A maximum of one computer word is dimensioned between symbols. 
For example: 

BEGIN ECHO (23 =) 27), END, 
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Examination of this particular example reveals the fact that an 
entire word of zeros will be reserved for ECHO whether or not a 
bitfield specification is made in the variable definition. 

If, however, a clever programmer wishes to use several 
variables in one word, he may so define them with the understand­
ing that bitfields of variables may overlap. To illustrate: 

BEGIN ECHO (23 =) 27), XYLD (24 =) 28), 
ANTE (0 =) 4), END, 

He has packed three partial word variables in one word. 

Multiple variable specifications in dimensioning incorporating 
partial word variables are possible as in the following example: 

ALPHA r r BANG' , BEGIN CHECK (23 =) 29), END, 

Here CHECK is defined as the 23rd through 29th bits of the coinci­
dent variables ALPHA and BANG. All three variables are con­
sidered to be defined by this one statement. No multiple variable 
specification is allowed within the punctuation BEGIN and END; 
i. e., A ' , BEGIN B ' , C (~ =) 1), END , is not permitted. 

It is also possible to define several different partial words 
within ALPHA and BANG provided that the bitfield specifications 
are enclosed between BEGIN and END. For example: 

ALPHA' , BANG' r BEGIN C (~ =) 4), D (3 =) 9), 
E (23 =) 23), END, 

Notice in this example that if more than one bit of information is 
stored in either ALPHA or BANG, it is not possible to retrieve 
more information than that from the variable E. Note, also, that 
storing a value in D does not imply it is retrievable from variable 
C (although it is from ALPHA or BANG). 

Consider a multiple variable specification like the following: 

B ' , BEGIN A (6 =) 11), END, 
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In the following, A is defined as bits six through eleven of a word 
named B: 

A 

If the variable A is involved in an expression, 

A (~ =) 2) =) D, 

bits zero through two of A are being stored in variable D; this is 
the equivalent of storing bits six through eight of B. 

Index registers also may be treated as partial word variables, 
although they may not be so defined in dimensioning. In program 
logic, the last five bits of index register five might be stored in a 
variable HOLD: 

M (1~ =) 14) =) HOLD, 

It is emphasized again that a partial word variable must be a 
valid NELIAC noun. 

Following are a synopsis (table B3 -9) and a list of examples 
(table B3-10) of partial word variables. 

TABLE B3-9. CONSTITUENTS OF PARTIAL WORD VARIABLES 

a. Variables are identified by properly formed 
NELIAC nouns 

b. Only positive fixed point data may be stored 
or extracted 

c. Must be defined before use in a flowchart 
d. Bitfields specified are contained in a single 

word 
e. Bitfield: VARIABLE (LOW BIT =) HIGH 

BIT) 
f. Single bits: VARIABLE (BIT =) BIT), as A 

(l~ = ) l~) 

g. Multiple partial word specifications possi­
ble, but variables containing bitfields are 
enclosed by BEGIN and END 

h. Index registers may be handled as partial 
word variables 
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TABLE B3-10. EXAMPLES OF PARTIAL WORD VARIABLES 

a. BEGIN D35K (23 =) 23), END, legal; single bit, 
dimensioning 

b. BEGIN TEST (~=) 27) = 146, END, legal; 28 bits, 
dimensioning 

c. A" B " BEGIN e (19 =) 26), END, legal; multiple vari­
ables, dimensioning 

d. I (8 =) 14) =) ALPHA (13 =) 19), legal; partial word 
phrase, program 
logic 

e. 847 =) XYZ (2~ =) 29), legal; partial word 
phrase, program 
logic 

f. 9DELT (14 =) 15), illegal; improper 
NELIAe noun 

g. A' ZAHJ (15 =) 9), illegal; bits limits in 
wrong order 

h. 14. ~7 =) HELP (1 =) 13), illegal; no floating 
point data allowed 

i. -14.07 =) HELP (1 =) 13), illegal; no negative 
data allowed 

j. A" B ' , e (19 =) 26), illegal; BEGIN and 
END missing 

k. I (17 =) 26) =) ALPHA (13 =) 19), illegal; index regis­
ter variables are 
only 15 bits long: 
0=) 15 

Subscripts 

To understand the reasons for subscripting, consider an 
equation with several terms: 

65432 
AX + BX + GX + LX + ex + sx + D = 14 
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The coefficients (A, B, G, L, C, S, and D) are purposely mixed 
alphabetically to illustrate a point: if a single letter with ascend­
ing subscripts was used instead, there would be less confusion as 
to which coefficient goes with which term: 

Ad x6 + A X5 + A x4 + A x3 + A x2 + A X + A = 14 
p 1 2 3 4 5 6 

In this equation, only one name, A, would be necessary to identify 
a particular item -- the coefficients. 

IT this argument is extended to a matrix, the reasons are 
even clearer, for now the confusion in row and column coefficients 
can be eliminated: 

COLUMNS COLUMNS 

Z K M D A~, ~ A~, 1 A~, 2 A~, 3 
becomes R 

o 
w 
S 

N G U A 
R 
o 
w 
S 

A A A A 
1,~ 1,1 1,2 1,3 

X D B R A2, ~ A2,1 A2,2 A2,3 

SOY Q A A3 1 A A3 3 3, ~ , 3,2 , 

The first subscripted digit after the name is the row and the 
second digit is the column of the matrix in which one would expect 
to find the coefficient. The range of row and column numbers be­
gins with zero. 

The expectation that a variable may be assigned several 
values, all of which are to be retained concurrently in core, 
forces the programmer to provide storage for these constants. 
This type of storage will involve the use of a variable name and 
subscripts to distinctively identify each element of the value list. 

Subscripted variables serve the programmer as an indexing 
tool; in an array of similar numbers we can index or point directly 
to a particular value. IT we ask for A~, we have indexed to the 
zero element of an array named A. 
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SUBSCRIPT FORMS 

Presently available input/output equipment for digital com­
puters does not provide the resources for handling numbers which 
are above or below the printed line. As a consequence, no pro­
vision for this has been built into the NELIAC language. NELIAC 
subscripts are written on the same line as the variable but are 
enclosed in punctuation to set them apart, as in "A ($ 4 $). " 

Subscripts are encountered in both parts of a NELIAC flow­
chart, dimensioning and program logic. Consistent with the defi­
nition of dimensioning, a subscript associated with a variable in 
dimensioning indicates the number of values a programmer expects 
to assign to that variable. VARIABLE (7). indicates that seven 
floating point numbers will be stored in a core area (in this case 
14 words) identified by the name VARIABLEo 

A subscript associated with a variable in program logic is 
employed to select a particular value from among several as­
signed to the variable and involves this value in some programmer­
specified algebraic manipulation. VARIABLE ($7$) in program 
logic indicates that the contents of V ARIABLE7 are currently being 
considered mathematically in a NELIAC statement. Subscripts 
used without variables (in program logic) are discussed in Section 
5 Wlder the topic "Indirect Addressing. " 

To dimension a variable that will have length of seven values, 
a programmer writes in NELIAC "PERS (7)." However, when 
reference is made in program logic to the first element of the list, 
the address is "PERS ($~$)" and the seventh element is "PERS 
($6$)." Notice that the subscripts assigned internally run from 
zero to one less than the length specified in dimenSioning. This 
mental conversion (of length to subscript) must be borne in mind 
when subscripts are used. 

A subscript takes many forms depending upon its intended 
use. In dimensioning, where a subscript specifies a list length, 
it is a constant; any other form would be ambiguous since the 
compiler depends upon this subscript for storage reservation. The 
subscript follows the variable and is enclosed in parentheses, as in 
"OBOE(4). " 
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In program logic, one refers to an element in a list with any 
one of the following subscript forms: constants, nouns, index 
register variables, or index register variables plus or minus a 
constant. 

If a constant is used in dimensioning or program logic as a 
subscript, it must be an unsigned fixed point number less than or 
equal in magnitude to 77777 OCT or 32767 decimal. Fixed point 
subscripts are employed since floating point numbers are neither 
desirable nor necessary for use as subscripts. For example XI. 3 
is not generally a meaningful notation, and Xs. jS is redundant when 
X3 is sufficient. The floating pOint mode is therefore not imple­
mented. 

An important point to remember is that the subscript itself 
does not have any bearing on the mode of the subscripted variable. 
The fact that subscripts must be fixed point does not affect a fixed 
or a floating point variable in the determination of the variable mode. 

Nouns used for subscripts imply that the contents of the named 
computer word will be used as the actual subscript. The numerical 
subscript will change as the value assigned to the noun is changed 
in program logic. When the subscript is referenced by name, the 
value contained in the noun at the instant of consideration is the 
subscript for that execution. If the noun APPLE has been given 
the value 4, BASKET ($ APPLE $) would refer to BASKET ($4$) or 
the fifth element of the list named BASKET. 

In the introduction to index register variables under "Gram­
mar of Names" at the beginning of this section, it was indicated 
that the use of these special nouns for some jobs generated more 
efficient code than if other nouns were used for the same purpose. 
This statement holds for subscripts; wherever pOSSible, the index 
register variables, I, J, K, L, M, and N should be employed as 
indices. 

If an index register variable and a constant are used jOintly 
as a subscript they are separated by a plus or a minus sign. The 
sum of the contents of the index register and the constant must not 
exceed the magnitude limits of the constant alone -- 77777 OCT or 
32767 decimal. In format, the index register variable must always 
precede the constant in a subscript. 

Under no circumstances may a subscript be subscripted. 
This means that any noun used as a subscript must itself be 
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unsubscripted. Index register variables cannot be subscripted. 

Following are a synopsis (table B3-11) and a list of examples 
(table B3 -12) of subscripts. 

ORIGINAL 

TABLE B3-11. CONSTITUENTS OF SUBSCRIPTS 

a. Dimensioning: (SUBSCRIPT) 
b. Program logic: ($ SUBSCRIPT $) 
c. Forms: 

1) Dimensioning: constant only 
2) Program Logic: constant, noun, index register, 

index register ± constant 
d. Constant: unsigned (positive) fixed point number 

:::; 77777 OCT or 32767 decimal 
e. Noun: valid NELIAC name; contents of variable is 

actual subscript, $..77777 OCT or 32767 decimal 
f. Index register variable: I, J, K, L, M, N; con­

tents of index register is actual subscript 
g. Index register variable ± constant: variable must 

precede constant; sum of contents of index register 
and constant must be:::; 77777 OCT or 32767 decimal 

h. Subscripts may not be subscripted 

TABLE B3-12. EXAMPLES OF SUBSCRIPTS 

a. (3~ OCT ), (1), (32767) legal; list lengths 
(dimensioning) 

b. ($ 45 $), ($ I $), 

c. ($ HOLOCAUST $) 

legal; subscript for program 
logic 
legal; subscript for program 
logic 

d. ($ 1+42 OCT ), ($ M-3 $) legal; subscripts for program 
logic, (variable ± constant 
form) 

e. 
f. 
g. 
h. 

i. 

(I), (HOLOCAUST) 

(4~~11~) 
($ 4+1 $) 
($ A ($ I $) $) 

($-36.9$) 

illegal; constants only for dimensioning 
illegal; constant too large 
illegal; variable and constant reversed 
illegal; subscripts may not be sub­
scripted 
illegal; subscript must be unsigned and 
fixed point 
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SUBSCRIPTED VARIABLES 

Consider a list of numbers. If they are stored in a computer 
for referencing in the course of program logic, they must be 
assigned to a variable. To individually select or index individual 
elements of this list, the name of the list and the subscript (posi­
tion of the element) are specified. In doing so, a subscripted vari­
able has been used. 

A series of constants is usually referred to as a list if it 
has one dimension and as an array or table if it has two dimensions. 
NELIAC has the capability of handling either possibility, with one 
subscript for lists and two subscripts for arrays or tables. 

A list in dimensioning is specified with a variable and a con­
stant in parentheses, denoting list length. When addressing a par­
ticular list element in program logic, a variable and a subscript 
enclosed in a combination of parentheses and dollar signs (as indi­
cated in the previous discussion of subscripts) are required. 

An array or table in dimensioning requires an asterisk be­
tween subscripts to give a row and column specification. The 
asterisk is used in NELIAC as a multiplication sign; the product 
of the two subscripts will indicate to the programmer the size of 
storage he is reserving. The product must not exceed the maxi­
mum core size of the computer. 

One element of an array in program logic is addressed in a 
fashion Similar to an element of a list. Two subscripts are re­
quired instead of one, and they are separated by a comma. The 
format otherwise is identical. A doubly dimensioned variable can­
not be used before definition. 

Samples of the forms, in order, are: 

a. List. dimensioning: 
b. List, program logic: 
c. Array, dimensioning: 
d. Array, program logic: 

A(14), 
A ($ 13 $) =) B, 

A (4 * 9), 
A ($ 3,7 $) =;) B, 
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The programmer is cautioned to avoid the obvious pitfall of 
expressing "A3" as "A3 "; such a representation is a NELIAC noun 
entirely separate from the original variable, A. Another possible 
pitfall is the double subscript when specifying the variable name of 
a singly dimensioned list. Both will cause results that for all pur­
poses are errors. 

If a noun is used as a subscripted variable, it represents a 
collection of values and may not be used without a subscript except 
in two cases. The first case is its use in an input/output statement 
when it is desired by the programmer to transfer the entire list or 
array. The second case occurs when the variable is found in an 
arithmetic statement in which case it is interpreted as if it were 
the first element of the list or array as in VARIABLE ($ is $). 

FollOwing are a synopsis (table B3-13) and a list of examples 
(table B3-14) of subscripted variables. 

TABLE B3-13. CONSTITUENTS OF SUBSCRIPTED VARIABLES 

a. Valid NELIAC name followed by appropriate sub­
scripts 

b. List, dimensioning: VARIABLE (SUBSCRIPT) 
c. List, program logic: VARIABLE 

($ SUBSCRIPT $) 
d. Array, dimensioning: VARIABLE (SUBSCRIPT 

1 * SUBSCRIPT 2); SUBSCRIPT 1 = row, SUB­
SCRIPT 2 = column 

e. Array, program logic: VARIABLE ($ SUB­
SCRIPT 1, SUBSCRIPT 2 $); SUBSCRIPT 1 = 
row, SUBSCRIPT 2 = column 

f. Noun defined as subscripted variable used 
without subscripts specifies whole list or 
array in 1/0, or first element in list or 
array in program logic 
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TABLE B3-14. EXAMPLES OF SUBSCRIPTED VARIABLES 

a. BOA (4), legal; 4 element list 
( dimensioning) 

b. KP (4 * 7), legal; 28 element list 
dimensioning 

c. MAN (8 * 13 OCT ), legal; 12~ element list 
(dimensioning) 

d. JOB ($ XRAY $) =) A, legal; variable in program logic 
e. D ($ 1+7 $) =) A, legal; composite subscript 

(program logic) 
f. AFOGE ($ 13, 9 $) =) A, legal; double subscript 

(program logic) 

g. N' ICK (I), illegal; list length must be 
constant 

h. I (NICK) illegal; subscripted register 
variable 

i. GZ ($ J, K, $) =) A, illegal; second comma is improper 
j. PORFO LB (6 * 9 * 3), illegal; more than two dimensions 
k. MAN5 illegal; not a subscripted variable 

A programmer may desire to preset some or all of the ele­
ments of an array or list before program execution. As in single 
value variables, NELIAC makes provision for initial values. 

In a many-element list or array, if no initial values are 
specified, all elements are preset to zero by the compiler. The 
mode of such a variable is determined by these punctuations: a 
period following the variable definition denotes floating pOint, and 
all elements are reserved two words each; a comma following the 
variable implies fixed point, and all elements are reserved one 
word each. 

When nonzero initial values are given, the mode of the vari­
able is dictated by the mode of the first element, and all succeed­
ing initial values must be written to match that mode if an error in 
dimensioning is to be avoided. In addition, assuming a properly 
punctuated constant speCification, any elements left blank are 
assumed to be zero. 
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Some examples of subscripted variables with initial values 
follow: 

a. B(14)o 

b. R(4 * 3), 

c. ANCHOR (4) = 6, 
2, 14, -237, 

d. ZY (5) = 0*0, 
8.0, -0.003, 
4762.0, -15.62* 
-13, 

e. NOBE(3*2) = 6, , 
2, -1, 
,9, 

Denotes fourteen floating point 
elements in a list named B; all 
are preset to zero. 

Reserves twelve words in core 
for twelve fixed pOint variable 
R elements; all are preset to 
zero. 

Defines four initial values for 
the fixed point variable ANCHOR. 

Fi ve floating point values pre­
set the variable ZY; note that 
the absence of a first value would 
have caused ZY to be defined as 
fixed point and an erroneous def­
inition of all other values would 
have followed. 

Two fixed point zeroes are im­
plied through punctuation; ele­
ments are stored sequentially 
by rows: 6, is, 

2, -1, 

is,9, 

In an extension of the above discussion, if a variable is di­
mensioned as having seven values, and only the first four are 
specified, as in A(7) = 1,2,3,4, the remaining values are assumed 
to be zero; no further punctuation is necessary. 

When subscripting partial word variables, the rules for these 
variables are a summation of restrictions applied to partial words 
and subscripted variables. A programmer who wishes to store a 
4 in bits nine through eleven of the tenth element of variable 
DACHS does so by specifying the following: 

4 =) DACHS ($ 9 $) (9 =) 11), 
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To dimension forty elements with a bitfield specification of bits six 
through eight of a variable ENTROPY, the correct form is: 

BEGIN ENTROPY (6 =) 8), END (4f1), 

If these bitfield elements were to be part of another variable 
THERMO, the definition would look like this: 

THERMO' I BEGIN ENTROPY (6 =) 8), END (4.0), 

This is interpreted to mean that there is a list named THERMO, 
forty words long, and, in each element, bits six through eight may 
also be referred to as ENTROPY ($ n $), where n = .0 through 39, 
and THERMO ($ n $) refers to the full word element; THERMO 
($ n $) (6 =) 8) would be equivalent to ENTROPY ($ n $). ENTROPY 
($ n $) (f1 =) 1) would specify bits six and seven of THERMO ($ n $). 

Moving THERMO ($ n $) (3 =) 7) to BIX3 would cause bits 
zero through four of BIX3 to be reset to the contents of the 
THERMO bitfield and any remaining bits of BIX3 to be reset to~. 
(Refer to figure B3-2 and to the preceding paragraphs under 
"Variables, Partial Word. ") 

THERMO ( $ n $) (3 =) 7) =) BIX3, 

76543 2 1 g 

) ? t1Jf/!Y/A'IA'// ? I ? I ? I 
t;i 

" THERMO ($ " S.=l 71 
, , 

> 'glglglg~jVh11~ 
7 6 5, 4 3 2 1 g I 

'" BIX3 (g =) 4) 

THERMO ($ n $ ) 

BIX 3 

Figure B3-2. Partial word transfer. 
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MATRICES 

A matrix is the general term applied to a group (defined as 
2:. 1) of elements assigned to a variable. The group is always con­
sidered to be in rectangular form, row by column. A 1-by-1 ma­
trix is a single element; a 1-by-N matrix has one row, N columns, 
or N elements; an M-by-1 matrix has M rows, one column, or M 
elements; and an M-by-N matrix has M rows, N columns, or M 

times N elements. 

Under previous definitions, a list is a 1-by-N matrix and an 
array is an M-by-N matrix. One may consider a variable sub­
scripted in dimensioning without initial values as a "normal" ma­
trix. A "preset" matrix is a subscripted variable with one or more 
dimensioned initial values. A "congruent" matrix, often referred 
to as a congruent table, is a matrix known by more than one noun. 
In other words, a multiple variable specification may be applied to 
the same area in core and the area addressed by several names. 
The following examples explore the possibilities provided by these 
matrix types: 

ORIGINAL 

a. A' , B ' , C, 

b. A(2) , , B, C, 

c. A(10) , , B(6), 
C(3), D, 

d . A( 7) " B( 4) , 

C(3) " D(2), E, 

A congruent, normal matrix with 
one element, addressable by A or 
B or C. 

A congruent, normal matrix; ma­
trix A has two elements, Band C; 
matrices Band C are each com­
posed of a single element. 

A congruent, normal matrix; ma­
trix A has three partition ma­
trices, B, C, and D, with 10 ele­
ments; matrix B has 6 elements, 
matrix C has 3 elements, and 
matrix D has a single element. 

A congruent, normal matrix; 
matrix A has two partition mat­
rices, Band C; matrix C has two 
partition matrices, D and E; the 
number of elements of each mat­
rix is indicated by subscript. 
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e. A" B I , C = 1, 

f. A(7) If B(4) = 1, 
3, 5, 7, 
C(3) II D(2) = 2, 

4, E = 6, 

g. A I r B I I BEGIN 

C(6 =) 11), 
END, 

h. A(7) I I 

B(4) = 1, 3, 5, 7, 
C(3) I I 

BEGIN D(14 =) 17), 
END (2) = 2, 4, 
E = 6, 

i. A(2 * 3) r I 

B(3 * 2) = 1.~, 2.~, 
3.~, 4.~, 5.Jj, 6.~, 

j. A(2 * 3) I I 

B(3 * 2) I I 

C(7 * 1) = 1, 2, 
3,4, 5, 6, 7, 
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A congruent, preset matrix; A, 
B, and C are single element ma­
trices, all equal to 1, all occupy­
ing the same single word in core. 

A congruent, preset matrix simi-
1ar to example d; A ($ 3 $) = B 
($ 3 $) = 7 and A ($ 5 $) = C ($ 1 
$) :I: D ($ 1 $) = 4. 

A congruent, normal matrix with 
bits 6 through 11 of matrices A 
and B known as the matrix C; all 
matrices have single elements. 

A congruent, preset matrix simi-
1ar to example f except matrix D 
consists of bits 14 through 17 of 
the first two elements of matrix 
C which have initial values of 2 
and 4, respectively. 

A congruent, preset matrix; the 
third element may be referenced 
by either A($ ~,2 $) or B($ 1, ~ $). 

A congruent, preset matrix; note 
that matrix C is dimensioned as 
having one more element than A 
or B; reference to C($ 6, ~ $) in­
dexes to the first word beyond 
both A and B but is the last ele­
ment of C; this is an acceptable 
dimensioning statement, much as 
A($ 6 $) refers to the sixth word 
beyond the single word defined by 
A(I); A($ 2, ~ $) and B($ 3, ~ $) 
both contain a 7; A($ 2,1 $) would 
refer to the first word beyond all 
three dimensioned matrices. 
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The double apostrophe signals congruency -- the left-hand ma­
trix is said to be congruent to the right-hand matrix. Both ma­
trices occupy an identical area in core if the subscripts indicate 
equivalence in area reserved. If one subscripted variable oc­
cupies more core than another, overlap where possible is accom­
plished by the compiler. 

Dimensioning 

The format and purposes of dimensioning will now be examined. 
Examples will be used to illustrate the topics of dimensioning al­
ready discussed. Although some elements of NELIAC theoretically 
should be discussed before dismissing dimensioning, for better 
understanding and text organization they have been left to later 
sections. 

Dimensioning is in part a concession to the needs of the com­
piler. The programmer, as the only constituent of the problem­
solving process understanding in advance the storage requirements 
of his program, must specify all he mows about his variables be­
fore they are used in the program logic. The compiler has no way 
of guessing the programmer's intentions; in this sense, the pro­
grammer must accommodate the language. 

Dimensioning, as well, accommodates the programmer. It 
provides (a) a vehicle for defining initial values, (b) formats for 
data inputs and outputs, (c) switches for directing program flow, 
and (d) diagnostic messages (of which (b), (c), and (d) are the top­
ics reserved for the later discussion). 

Dimensioning in any flowchart or program must precede the 
program logic because of the concessions to the compiler just 
enumerated. The first NE LIAC character in a program is the con­
trol number, and it indicates to the NE LIAC compiler the type of 
flowchart the programmer has written. The last character in 
dimensioning is the dollar sign, which is a flag indicating to the 
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compiler that all preceding is dimensioning and all following is pro­
gram logic. Examine the following typical dimensioning examples: 

a. 5 

A, 

B. 

Control number. 
Fixed point whole word 
variable. 
Floating point whole word 
variable. 

C = 1, Fixed pOint whole word 
variable preset to 1. 

D = 4. jj, Floating point whole word 
variable preset to 4. ~ . 

$ Flag. 
(COMMENT" PROGRAM LOGIC) .. 

b. 5 
BEGIN EXTRA (9 =) 15), 

END, 
BEGIN Jl (~ =) 1~), 
J2 (~=) 7), J3 (8 =) Ijj), 
J4 (9 =) It1), END , 

F ,t G ' , BEGIN 

H (~ =) 14), END , 

$ 

Partial word variable de­
fined equal to ~. 
Several partial word vari­
ables defined within one 
computer word. 

Multiple variable specifi­
cations incorporating a 
half word variable. 

(COMMENT' , PROGRAM LOGIC) .. 

c. 5 
PAX (3) = 1, -147, , 
PIX (5) = -31.72, 
9. 2, -0. 003, + 85. 6 * 6 
POX (2 * 2) = 18, -7, + 3, 

Qt1 

LONG WAY TO SAY MA-
TRIX = 1, 

R (7) , , 

S (4) = 1, 3, 5, 7, 

T (3) " 
BEGIN ULTIMATE (14 =) 17), 
END (2) = 2, 4, V12 = 6, 

$ 

Preset fixed point list. 
Preset floating point list. 

Preset fixed point array. 

Congruent, preset, single 
element matrix. 

Congruent, preset matrix 
of seven elements. 

(COMMENT' , PROGRAM LOGIC) .. 
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Note that the individual specifications may be written to fill a 
line or strung out over several lines. The ability of the NE LIAC 
compiler to ignore insignificant blanks permits the programmer this 
freedom. 

VERBS 

Verb Usage 

In addition to the noun form, a name may take the form of a 
verb. A verb is the name that a programmer assigns to a flowchart 
routine (several lines of NELIAC), function, or subroutine which 
enables him to reference a line or routine within his program. Ex­
amination of a simple problem will serve to explain this ability. 

Suppose a tally must be kept of automobiles stopped by a red 
light in a particular direction at an intersection, and when this line 
becomes seven autos long the light must change to green to allow 
seven cars to go by after which it must change back to red again, 
etc. 

The solution may be represented diagrammatically in a form 
similar to figure B3-3. The arrows indicate the direction of logic 

flow in the block diagram. START is the entry point, and all of the 
rectangular blocks contain arithmetic or process type instructions. 
The oblong block contains a question: "IS NUMBER OF AUTOS == 

7?" The decision offers two alternatives: a true (YES) and a false 
(NO); if false, flow returns to the previous block; if true, flow 
moves forward to the next block. 
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NUMBER 
OF AUTOS 

= 

TURN 
LIGHT 
RED 

LET 7 
AUTOS 
PASS 

ADD 1 
TO NUMBER 
OF AUTOS 

TURN 
LIGHT 
GREEN 

Figure B3-3. Block diagram solution of traffic problem. 

When NELIAC is used to satisfy the requirements of the prob­
lem, the block diagram may be followed quite closely as in the 
following example: 

5 
NUMBER OF AUTOS, 
RED = 1, GREEN = fj, 
LIGHT, 
$ 
start ff 
j1 =) NUMBER OF AUTOS, 
RED =) LIGHT, 
no t t 

NUMBER OF AUTOS + 1 =) NUMBER OF AUTOS, 
NUMBER OF AUTOS = 7: YES. NO. 
yes f t 

GREEN =) LIGHT, 
NUMBER OF AUTOS - 7 =) NUMBER OF AUTOS, 
START. 
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Notice that the words "start, " "no, " and "yes" -- the verbs-­
are in lowercase letters. Notice also that without these verbs 
there would be no point of reference to which to proceed after an 
alternative (NUMBER OF AUTOS = 7: YES. NO.) or at the end of 
the program (START.). The NELIAC language does not provide 
arrows per se as the block diagram does; in order to provide a 

logical flow from program segment to program segment, the NE rr--­
lAC language equivalent of arrows -- the verbs -- are used. 

In the formation of a verb, all of the rules pertaining to the 
NE LIAC name apply. A name may not be a noun and a verb simul­
taneously. Name precedence is especially important when the same 
verb is used in several flowcharts and subroutines of one program. 

A verb is used only in program logic since it is a tag refer­
enced in actual program execution. A verb does not appear in di­
mensioning since it is considered to be defined by that which im­
mediately follows its double apostrophe. The verb generates no 
instructions; like the noun, it is placed on a list where it is assigned 
an address, and this address becomes the location of the first ex­
ecutable instruction of the routine it identifies. 

If a verb is used at the very beginning of a flowchart, the en­
tire flowchart is identified by that name. If a verb is used at the 
very end of a flowchart (verb followed by two periods) it denotes the 
stopping point of the program. Note that the preceding NELIAC ex­
ample pertaining to the traffic problem had no stopping pOint; the 
solution was a continuous loop. 

Program Logic 
The organization of this text dictates a short discussion of 

program logic at this point, before its parts are discussed in 
greater detail. 

All of that which follows the dollar sign of dimensioning and 
precedes the double period which denotes the end of the flowchart 
is program logic. Program logic is made up of arithmetic opera­
tions of all types, subroutines, functions, control logic, and some 
other programming tools remaining to be discussed. 
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Program logic is the algorithm of the programmer in quest of 
a solution to his problem. The compiler accommodates the pro­
grammer by enabling him to specify his algorithm in algebraic for­
mulae and in near-English statements. 

In the remaining sections, the components of program logic 
will be examined. 
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4. ARITHMETIC OPERATIONS 

INTRODUCTION 

Previous sections have covered the necessary preliminaries 
to writing a computer program. This section introduces the actual 
process of preparing a program which will command the computer 
in mathematical and near-English language to manipulate data in 
the manner specified. As the topics concerning program logic are 
covered, it will be seen why a problem-oriented, algebraic language 
provides all the tools needed to solve a scientific problem no mat­
ter how complex. 

NELIAC requires a programmer to be as precise in his 
specifications as with any mathematical regimen. For instance, in 
the area of arithmetic precedence, a wide difference can develop 
between the arithmetic operation as intended by the programmer, 
and the expression as written, translated, and executed. Neither 
the computer nor the compiler can differentiate between the in­
tention and the operation as actually programmed. 

Programming is an exacting task. But the job can be made 
easier by learning the rules thoroughly and applying them consist­
ently, and these next sections have been prepared with this end in 
mind. 

As most everyone at some time or other has learned, the 
quantities of interest in an algebraic expression are called 
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operands and the symbols that connect them are known as operat­
ors. An operand or an assemblage of operands and operators 
forms an expression, and one expression set equal to another ex­
pression constitutes an equation. 

NELIAC uses essentially identical terminology: the operands 
are the constants and variables of all forms; the operators (with 
concessions to the card handling hardware) are the familiar addi­
tion, subtraction, multiplication, division, and exponentiation 
symbols; and the expressions are the endless permutations and 
combinations of the operands and operators. 

In NELIAC, however, the sense of equality between two ex­
preSSions is avoided. This evasion is offset by provision in the 
language for an operation more powerful than and inclusive of the 
equation: the "store" operation. The result of a series of calcu­
lations in a NELIAC expression is stored in an area of core re­
served by a variable. Instead of an equation, NE LIAC uses the 
term "statement." There is a small but important difference: 
impliCit in the store operation is the ability to replace an old value 
stored in the variable with a new one, allOwing the calculation of the 
new value to be completed without creating a condition of inequal­
ity. 

For example, in some areas of NE LIAC programming a 
statement of the form "SUM + 1 =) SUM, " is very useful. This 
statement says, in essence, take the old value assigned to thevari­
able SUM, add 1 to it, and store the new value back in SUM (re­
placing the old value, of course). If SUM were preset to zero, 
upon execution of this statement the left-hand operation would yield 
a total of 1, and SUM would be reset to the value 1. Notice that if 
this had been an equation instead of a statement, at completion of 
the execution of the operation the left-hand expression (value of 2) 
and the right-hand variable (value of 1) would now be equal--an 
impossibility . 

The term "equation, "therefore, is avoided in the discussion 
of NE LIAC program logic. An expression and a variable joined by 
the store symbol constitute the "statement. " 
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EXPRESSIONS 

Symbols and Their Use 

As already mentioned, expressions are an aggregate of alge­
braic parts known as operands and operators. Operands as used in 
a NE LIAC expression are simply the variables and constants the 
formation and grammar of which were investigated in the preceding 
section 3. Operators, or operation symbols, are now introduced 
formally. These symbols and their meanings are shown in table 
B4-1. 

TABLE B4-1. NELIAC ARITHMETIC OPERATION SYMBOLS 

SYMBOL TITLE OPERATION 

+ Plus Addition 

- Minus Subtraction 

* Asterisk Multiplication 

/ Slant Division 

*2** Scale-up 
/2** Scale-down Exponentiation 

The remainder of this section will define the arithmetic op­
erations of NE LIAC in order to dispel any confusion between the 
contents of a variable and its address. A shorthand notation--c( ), 
which cannot be used in a NELIAC program--is employed in the 
specification of an operation's meaning. c( ) refers to the contents 
of the variable at the instant considered. 

The addition A + B is defined as the contents of the computer 
word(s) identified by the variable A added to the contents of the 
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computer word(s) identifed by the variable B. In shorthand this is 
c(A) + c(B). The subtraction, A - B, means c(A) - c(B). 

The asterisk and slant--multiplication and division, respec­
tively -- are concessions to the card handling equipment associated 
with the digital computer. No commonly used symbol for multipli­
cation is distinctive enough on the keypunch, and consequently the 
asterisk has been substituted. Because of the restriction that all 
NELIAC statements must be written on the line and not above or 
below it, divisions have been reformatted and the + symbol is re­
placed by the slant. A * B is defined as c(A) . c(B); AlB is inter-

preted to mean c(A) or c(A) + c(B). 
c(B) 

Exponentiation in NELIAC is a little more difficult to under­
stand. Since the compiler has been designed primarily for a binary 
computer, exponentiation is thought of in terms of shifting the con­
tents of a variable so many binary digits to the left or right (to the 
left makes it a larger nunber; to the right, a smaller one). It can 
also be thought of as scaling, a subject covered in section 3 in the 
discussion of mode. Scaling up by a power of two is equivalent to 
multiplying the operand by 2n; scaling down by a power of two is 
equivalent to the operation "operand + 2n. " 

Because of the binary influence, exponentiation in NELIAC 
may be carried out only in powers of two. The expression A * 2 
** B means the contents of A are shifted left (increased in magni­
tude) c(B) binary digits. That is, c(A) are scaled up by 2c(B), or 
c(A) . 2c(B). The expression A I 2 ** B is the converse; the con­
tents of A are shifted right (decreased in magnitude) c(B) binary 
digits, or c(A) are scaled down by 2C(B), or c(A) + 2c(B). 

Formation of Expressions 

The spectrum of possible operand and operator combinations 
is bounded only by the inventiveness and needs of the programmer. 
There are, however, some basic rules which pertain to all expres­
Sions, and these should be well understood before even the first 
program is written. 
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A single operand expression is often employed to preset a 
partial word variable, to store the contents of an index register 
somewhere in core, or to duplicate the results of a calculation in 
another computer word with a separate name. 

The operand may be a single NE LIAC constant or a single 
NE LIAC variable. If the operand is a variable, the variable may 
be whole word, half word, or partial word, subscripted or nonsub­
scripted. No negative constant may be considered an expression 
by itself. To employ such a constant for any purpose, a leading 
zero must be supplied; e. g., ~. ~ -3.2 =) DO. The mode of the con­
stant or whole word variable may be fixed point or floating pOint; 
for half word and partial word variables the mode must be fixed 
point. The use of a single index register variable as an expresion 
is fully valid. 

The complexity of an expression may be increased by includ­
ing several variables and constants and introducing arithmetic 
symbols to indicate intended computation. 

With complexity comes the possibility that the programmer 
will err in an area which to now may have seemed unimportant: 
mode. There is a rule of NELIAC which prohibits the mixing of 
modes in an expression. This type of error occurs in an expres­
sion when a floating point variable or constant and a fixed point vari­
able or constant are joined by an operator; e. g., 1+ 3.127, or 
APRON / 3, when APRON has been dimensioned as a floating point 
variable. 

There are several exceptions to the ordinary rules of math­
ematical notation. First, in ordinary arithmetic AB can be inter­
preted as A . B or A times B. However, in NE LIAC, AB can never 
be equivalent to A * B; if multiplication is intended, the appropri­
ate symbol may not be omitted. Such an omission forces the NE L­
lAC processor to interpret AB as a new name. 
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Second, in common usage expressions like A + B . C and 
A + B + C are considered ambiguous. Such expressions are per­
mitted in NELIAC and they are interpreted as follows: 

A / B * C is the equivalent of (A / B) * C 

A * B / C is the equivalent of (A * B) / C 

A / B / C is the equivalent of (A / B) / C 

Third, it is impossible to correctly write in NELIAC two 
operators consecutively. For example, the expression A * -B, 
where a programmer intended to change the sign of B before multi­
plying by A, may be perfectly good algebraically, but is unaccept­
able grammatically in NELIAC. To change the indicated expression 
to proper form, the programmer needs only to enclose the -B in 
parentheses; i. e., A * (-B). 

Irrespective of any of the rules of arithmetic precedence, 
the use of parentheses in NELIAC gives the enclosed operation 
precedence over the surrounding operations in an expression. 
A + B * 2 ** C / D might rightfully be interpreted in mathematical 
circles as A + B . 2C all divided by D; if the programmer had in­
tended (A + B) . 2C/ D, he should have written in NELIAC, (A + B) 
* 2 ** (C / D). This change forces the computation of the addition 
and the division before any consideration of exponentiation. Par­
entheses, then, provide a grouping symbol, a means of treating 
the enclosed operators and operands together as a whole. The 
symbol itself may be used frequently for it generates no code. In 
fact the variable ENEMY may be well-enclosed in parentheses as 
«««ENEMY»»»; such a use only causes a lengthened compilation 
time while the processor wades through the chaff. Note that paren­
theses always come in pairs. Another important conSideration is 
that the parenthesis, in addition to the subscript and the exponent, 
as shall be seen, has no effect on the mode of the arithmetic opera­
tion it surrounds. 

Rules regarding the use of exponentiation are fairly straight­
forward. When scaling or shifting in NELIAC, the operand follow­
ing the double asterisk must be a positive fixed point constant, or 
a whole word, half word, or index register variable containing a 
positive fixed point number. The reason for this restriction is 
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obvious when one considers the impossibility of shifting the contents 
of some variable a fraction of abinarydigit. (The positive require­
ment on the exponent is made because of the fact that positive and 
negative exponents are already designated by the appropriate ex­
ponentiation symbol: scale-up or scale-down.) The "leading" op­
erand, which precedes the scale-up or scale-down symbol, must be 
a fixed point variable or a parenthesized operation of the fixed mode. 

Following are a synopsis (table B4-2) and a list of examples 
(table B4-3) of expressions: 

TABLE B4-2. CONSTITUENTS OF EXPRESSIONS 

1. Format: 
a. Single operands or several operands separated by 

operators 
b. Single operands: Positive constants or whole word 

variables, fixed or floating point, subscripted or 
nonsubscripted; half word or partial word variables, 
fixed point, subscripted or nonsubscripted; index 
register variables 

c. Several operands: Any combination of the above 
operands and appropriate operators 

2. Error-prone areas: 
a. Operands: Cannot mix modes within an expression 
b. Operators: Cannot be presumed; must be specified 
c. Operators: May not be written consecutively 

3. Parentheses: Used as a grouping symbol to force arith­
metic precedence; can be used in pairs freely 

4. Mode: 
a. Parentheses: No effect on mode of enclosed opera­

tion 
b. Exponent: No effect on mode of leading operand 

in exponentiation 

5. Exponentiation: 
a. Leading operand: Fixed point variable or a fixed 

pOint parenthesized operation 
b. Exponent: Positive fixed point constant or whole 

word, half word or index register variable con­
taining positive fixed point numbers 
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TABLE B4-3. EXAMPLES OF EXPRESSIONS 

a. 3, + 14.06. 29, + ~L.02 * 7, legal; single constant 
.0 . .0 - 7.461, expressions 

b. TRAC, L, MU'CK ($ 6,5 $), legal; single variable 
expressions 

c. ITSELF (8 =) 23), legal; partial word 
ST (15 =) 29), expressions 

d. ENTRY + 44, legal; fixed point 
I + ZERO * (9 - UPTURN), expressions 

e. -3 . .079 * AZJ ($ 6 $), legal; floating point 
1 . .0 - GLE * 2 ** 7, expressions 

f. HERBS + HOMINY/OIL - legal; either fixed or 
(VOX / 2 ** PZP), floating point depending 

on operands 

g. 1*2 . .0, illegal; mixed mode, I must 
be fixed pOint 

h. 1.0 * - A, illegal; consecutive 
operators 

i. (A * (X) + 1 . .0/(Y+ 3 . .0), illegal; missing right 
parenthesis 

j. 7DRAFT illegal; incorrect name or 
missing operator 

k. (1. 8.02 * G) / 2 ** K illegal; leading operand is 
floating point 

1. - 12.8 illegal; zero must precede 
minus sign 

Arithmetic Precedence 

The operations contained within a NELIAC expression are 
executed in an order prescribed by three conventions of precedence: 
the parenthetical convention, the hierarchy table, and the left-to­
right rule. These conventions are in order; an operation falling 
within the realm of parenthetical precedence is executed before an 
operation governed only by the left-to-right rule. 
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The left-to-right rule is the most basic of the conventions. 
In the absence of parentheses and in the case of identical operations 
within an expression (as in a string of simple additions), the ex­
pression is executed operation-by-operation from the leftmost op­
erand to the rightmost operand. There can be no more basic a con­
vention and yet have expressions make any sense. 

If the operations are unlike, but the expression again contains 
no parentheses, the hierarchy table (table B4-4) determines prece­
dence of execution. The hierachy is composed of the five types of 
operations: addition, subtraction, multiplication, division, and 
exponentiation. 

TABLE B4-4. HIERARCHY TABLE 

OPERATION 

Exponentiation 

Multiplication, division 

Addition, subtraction 

PRECEDENCE 

High 

Middle 

Low 

To interpret table B4-4, an example will be considered. For illus­
tration purposes intermediate results will be stored in elements of 
a list identified by TEMP, and the final result in the variable 
ANSWER. 

The expression: 

A + B - C * D / E * F + G * 2 ** 4 

Order of execution: 

1. G * 2 ** 4 =) TEMP ($ ~ $), (exponentiation before 
all else) 

2. C * D =) TEMP ($ 1 $), (in a string of multiplications 
and divisions, which are of equal precedence, the 
left-to-right rule applies) 

3. TEMP ($ 1 $) / E =) TEMP ($ 2 $), 

4. TEMP ($ 2 $) * F =) TEMP ($ 3 $), 
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5. A + B ==) TEMP ($ 4 $), (next lowest precedence; 
several operations of equal precedence, so left-to­
right rule prevails again) 

6. TEMP ($ 4 $) - TEMP ($ 3 $ ) =) TEMP ($ 5 $ ), 

7. TEMP ($ 5 $ ) + TEMP ($ ~ $ ) =) ANSWER, 

The most powerful of the precedence schemes is the paren­
thetical convention. Any operation or series of operations enclosed 
between parentheses will be executed before an operation governed 
only by the other two conventions. For example, in the expression 

A * (B - C) / 2 ** D, 

the subtraction, exponentiation, and multiplication are carried out 
in that order. 

It is in the area of arithmetic precedence that the differences 
between the expression as written and the expression as intended 
occur. If NELIAC programs are written to conform to the three 
conventions, there are no differences in meaning at execution time. 

ARITHMETIC STATEMENTS 

NELIAC grammar prescribes that every series of arithmetic 
operations must end with the storing of the computed result in a 
variable of some type. The only exception is found in the condition­
al transfer which involves alternatives to be chosen on the basis of 
the calculation; no storage is necessary for such transfers. A dis­
cussion of conditional transfers is contained in section 5. 
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Store Symbol 

This symbol has in effect been introduced in several places, 
specifically in partial word variables (indicating the connector 
"through"), and generally in various examples. The symbol is com­
posed of an equal sign followed by a right parenthesis: =). It is in­
tentionally designed to approximate the right-directed arrow of the 
Flexowriter NELIAC system. 

The consequence of the store symbol between an expression 
(no matter how complex) on the left and a variable on the right is 
the storage of the result of the arithmetic operations indicated with­
in the expression into the computer word(s) identified by the vari­
ble. 

Formation of Statements 

An expression becomes a statement with the addition of the 
store operator and operand. The operand may be any NELIAC 
variable dimensioned large enough to contain the answer. In the 
event the result overflows the variable, it is truncated in a manner 
dictated by the variable type: most significant digits truncated for 
fixed point, and least Significant digits missing for floating point. 

The store operator may be included within the body of an ex­
pression, permitting the storage of intermediate results. For ex­
ample 

A+B=)C*D/E=)F, 

causes the sum A + B to replace the contents of C and the final re­
sult to be stored in F. Notice that there are three expressions 
joined by the store symbols and two store operands, C and F. C 
plays a double role: an operand in an expression and a store oper­
and. There is no practicable limit to the number of included store 
symbols. 
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The store operator may also be written several times at the 
end of a statement, indicating a multiple store operation, as in: 

THIRD + PERSON =) HE =) SHE =) IT, 

This results in the saving of the machine code necessary to store 
the result separately in all three operands. 

A statement is terminated by a comma or its equivalent. 
Normally the punctuation immediately follows the store operand, 
but in the case of a multiple store operation, the last operand is 
followed by the comma. The word "equivalent" is used to indicate 
that in operations other than arithmetic, such as control, the punc­
tuation indicating the end of a statement is not the comma (which 
will be explained in section 5). 

The final rule of formation concerns itself with mode. Allied 
with, but contrary to the rule forbidding the mixing of modes in ex­
pressions, a programmer may mix modes in a statement, provided 
that each side of the store symbol is of only one mode. Consider 
an expression of the fixed point mode and a floating point store op­
erand. ; The store operation consists of two parts: conversion of 
the fixed point result to a floating point notation, and storage. In a 
statement with a floating point expression and a fixed point variable 
to the right of the store symbol, conversion again is necessary. 
This time the fractional portion of the number is cut off, and the 
integral number stored. To illustrate thiS, two statement exam­
ples are given: 

a. XQ and FLPTV are dimensioned as floating point 
variables. 

b. S2 U and LINK are fixed pOint. 

Statement 1: S2U / LINK =) XQ, 
If S2 U equals 9 and LINK equals -7, XQ = -1. t1 
after execution. 

Statement 2: XQ * FLPTV =) LINK, 
If XQ equals ~. ~~2 and F LPTV equals + 783. 4 * 2, 
LINK = 156 after execution. 
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Following are a synopsis (table B4-5) and a list of examples 
(table B4-6) of arithmetic statements. 

TABLE B4-5. CONSTITUENTS OF ARITHMETIC STATEMENTS 

a. Valid NE LIAC expression 
b. One or more store operators 
c . Store operands, one per store operator 
d. Any included expressions 
e . Terminal comma 

EXPHESSION =) STOHE OPEHAND ($ ~ $) 
=) STORE OPEHAND ($ 1 $) 

f . Pitfalls: 

+ INCLUDED EXPHESSION 
=) STOnE OPEHAND ($ n $), 

Arithmetic overflow (result larger than 
space reserved by store operand) and/or 
wrong mode (unintended) 

TABLE B4-6. EXAMPLES OF ARITHMETIC STATEMENTS 

a. 
b. 

c. 

d. 

e. 

f. 

YZERO =) RESULT, 
BSQUARED - 4 * A * C =) 
TERM, 
5 =) I =) L + 3 =) M, 

x ($ 1 $) / 4 
=) A, =) B, 
-723. 15 =) LAP 

86215 =) M, 

legal; two single variables 
legal; expression and operand 

legal; multiple store and 
included expression 
illegal; comma after last 
operand only 
illegal; zero must precede 
minus sign 
illegal; arithmetic overflow 
(M being an index register 
15 bits long) 
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5. CONTROL OPERATIONS 

INTRODUCTION 

Most digital computers are sequential by nature; that is, they 
are designed to execute machine language instructions in consecu­
tive addresses in core. It is the function of the control section of 
computer circuitry to oversee sequential operations. An execution 
of this type will begin at a specified entry point and proceed through 
all of core unless otherwise directed. 

It is not always the intention of the programmer that execu­
tion be sequential, and provisions are made in the manufacturer's 
machine instruction set for leaving the mainstream of the program 
either temporarily or altogether in favor of another program seg­
ment. These departures from sequential operations also are an 
executive function of the control section. 

This section concerns the NELIAC language equivalents of 
those machine instructions which permit nonsequential operations. 
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UNCONDITIONAL TRANSFER 

Jump 
When the programmer wishes to depart from the mainline 

program r~gardless of consequences and to neglect all machine 
conditions attendant to previous execution, an unconditional trans­
fer may be used to move program execution to another location in 
core. Such a transfer involves no qualitative or quantitative tests; 
the jump is made and operations resumed in a new program seg­
ment. 

The period, a mark of punctuation, is employed in the NEL­
lAC language to indicate an unconditional transfer or jump command. 
The location of the NE LIAC statement next executed is deSignated 
by the verb specified just before the period. - The verb in the jump 
command must not be part of an arithmetic operation. The instruc­
tion, ENTER. causes an unconditional jump to the verb with the 
same name. Within the definition of the verb, the first executable 
operation is then performed. 

This form of unconditional transfer is also known as a 
"direct" jump, in the sense that there are no intervening opera­
tions. It is also characterized by the fact that the execution con­
sists of a single transfer. 

The following example -- repeated from section 3 -- contains 
three verbs and three unconditional transfers: "start," "no, " and 
"yes." Study this example again with the added knowledge of jumps. 
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5 
NUMBER OF AUTOS, 
RED = 1, GREEN = ~, 
LIGHT, 
$ 
start' , 
~ =) NUMBER OF AUTOS, 
RED =) LIGHT, 
no' , 
NUMBER OF AUTOS + 1 =) NUMBER OF AUTOS, 
NUMBER OF AUTOS = 7 : YES. NO. 
yes' , 
GREEN =) LIGHT, 
NUMBER OF AUTOS - 7 =) NUMBER OF AUTOS, 
START. 

Return Jump 
The NELIAC language provides another unconditional trans­

fer, this one of a slightly different nature. The return jump, as it 
is called, is actually two jumps in one instruction. Before the 
execution of the first jump, the address of the last command per­
formed is noted, and control is transferred to a special program 
segment known as a subroutine. A subroutine provides a set of 
operations applicable to computational requirements at several 
points in the program (further explained in section 6). Upon com­
pletion of the operations specified within the confines of the sub­
routine, another jump is executed back to the area of the departure 
point and specifically to the address of t4e next executable instruc­
tion (a location based upon the address noted) in that portion of the 
program. 
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To indicate a return jump to a subroutine, the name of that 
subroutine followed by a comma is written into the program. The 
subroutine name must not be part of an arithmetic operation. Con­
sider the following flowchart: 

5 
A, B, C, X, Y, Z 
$ 
A + B =) C, COMPUTE, WHOA. 
COMPUTE ' , BEGIN A + C =) X * B =) Y =) Z, END, 
WHOA' , 

In this flowchart the return jump command "COMPUTE," forces 
the computer to execute those operations between the BEGIN and 
END punctuation symbols and return to the command "WHOA. " 
The latter is an unconditional transfer to the corresponding verb at 
the end of the program; an instruction to halt execution is implied 
by the definition of WHOA. 

CONDITIONAL TRANSFER 

The jump and return jump allows the computer no opportunity 
to exhibit its logical powers; the matter is predetermined and the 
command unconditional. However, the next level of sophistication 
to be studied -- the conditional transfer -- does provide this oppor­
tunity. 

In brief, the conditional transfer presents the computer with 
a comparison statement to evaluate a~d forces it to make a logical 
choice between two alternatives, a "yes" or true option and a "no" 
or false option. The alternative chosen specifies the location of 
subsequent program execution. At no time will both alternatives 
be selected simultaneously. 
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Symbols 
The remainder of the NE LIAC character set is shown in fig­

ure B5-1 with a list of usages and meanings. (See figure B3 -1 for 
other symbols.) Note that either form of the symbol meaning 
"equal to" is acceptable and that all symbols must be set off from 
operands by spaces. Caution is advised for those who use the Boo­
lean characters without some understanding of Boolean algebra. 

Formation 
The structure of the conditional transfer may be expressed 

as follows: 

COMPARISON STATEMENT "ALTERNATIVE 1 $ 
ALTERNA TIVE 2 $ 

The comparison statement is like an arithmetic statement ex­
cept that the store operator is absent, and its place is taken by any 
of six comparison symbols. There are two basic forms of compar­
ison which may be written in NELIAC: 1) A ? B, where the ques­
tion mark is one of the symbols EQ, NQ, LS, GR, LQ, or GQ; and 
2) A LS B LS C, a statement with two LS symbols permitting a 
"between limits" comparison. A, B, and C are intended to repre­
sent arithmetic expressions. 

CHARACTER USAGE MEANING 

EQ or = A=B A EQUAL TO B 

NQ A NQB A NOT EQUAL TO B 

LS A LS B A LESS THAN B 

COMPARISON GR A GR B A GREATER THAN B SYMBOLS 

LQ A LQ B A LESS THAN OR 
EQUAL TO B 

GQ A GQ B A GREATER THAN OR 
EQUAL TO B 

AND A AND B A n B (BOOLEAN) 
CONNECTORS 

OR A OR B A U B (BOOLEAN> 

Figure B5-1. NELIAC comparison symbols and COlUlectors. 
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In the first form, A and B, as expressions, may be combina­
tions of arithmetic operators and operands of almost indefinite 
length. Each expression must be of a single mode, and the modes 
of A and B must be identical but may be either floating or fixed 
point. All of the rules of arithmetic expression formation are ap­
plicable. 

The second form is more limited in one sense; expressions 
A, B, and C are restricted to the fixed pOint mode. In its use, 
A LS B LS C makes up for its inflexibility in formation because 
this one comparison does the work of two. It provides the capability 
of checking whether or not the value represented by expression B 

lies between the values of A and C, where A is the lower limit and 
C the upper limit. 

Boolean connectors are employed to join from two to sixteen 
comparison statements into one large comparison statement. De­
pending upon the sense of the connectors, the large comparison 
statement must as a whole be true in order to select the first alter­
native; otherwise, it is false, and alternative 2 is chosen. Connec­
tors of one type or the other may be utilized in each statement; a 
combination of ANDs and ORs is an illegal formation. The individ­
ual statements of the large comparison statement may be of either 
mode. 

Boolean connectors serve an important purpose in that they 
provide expanded decision capabilities. The comparison statement 

ALQBANDCNQD 

asks if A is less than or equal to B and if C is not equal to D; both 
comparisons must be true for alternative 1 to be chosen. If either 
or both is false, alternative 2 is selected. 

Consider another comparison statement: 

A GQ G OR L EQ 3 

This asks if A is greater than or equal to G Q! if L is equal to 3, or 
both. In other words, if either comparison or both is true, control 
is transferred to alternative 1. If both comparisons are false, the 
execution moves to alternative 2. 
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Following are a synopsis (table BS-1) and a list of examples 
(table BS-2) of comparison statements. 

TABLE BS-1. CONSTITUENTS OF COMPARISON STATEMENTS 

Forms: 
a. A? B, where ? is EQ, NQ, LS, GR, LQ, or GQ 
b. A LS B LS C 

Particulars: 
a. In forms a and b, preceding, A, B, and C are arithmetic 

expressions of indefinite length 
b. In form a, A and B must be of a single mode, either 

floating or fixed point 
c. In form b, A, B, and C must all be fixed point ex-

pressions 

Boolean connectors: 
a. Join two to sixteen comparison statements 
b. Either ANDs or ORs may be used, but not a combination 

TABLE BS-2. EXAMPLES OF COMPARISON STATEMENTS 

a. DIV3 * 14.3 LQFALL legal; form a, floating point 
b. LOW LS RISK LS 9 + HIGH legal; form b 
c. 1/3 GQ HOP * (3 + S * D) legal; form a, fixed point 
d. ANTE LS S~ legal; forms a and b joined by 

AND ODDS GR ~.S~ Boolean connectors 
+ JFACTOR 
ANDILSNLSM 

e. K GQ -13. 6~2 + BLU illegal; mixed mode 
f. NORMAL LS 96.4 LS HOT illegal; floating point mode 
g. AB OR KANGAT illegal; improperly used 

Boolean connector 
h. FLOW EQ 6.2 illegal; combination of AND 

AND B EQ -4 and OR 
OR DAP GQ X48 

In the structure of the conditional transfer, the comparison 
statement is followed by a double apostrophe signalling the begin­
ninr; of the alternatives. 
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Alternative 1 and alternative 2 follow identical rules of forma­
tion; if an alternative is described, the discussion concerns both. 
An alternative is that set of control statements or combination of 
arithmetic and control statements to which the computer moves 
after evaluation of the comparison statement. All instructions 
found in an alternative are executed. In the absence of any instruc­
tions or in the absence of a direct jump command as the last instruc­
tion of the alternative, the first operable NELIAC statement beyond 
the conditional transfer becomes the next instruction executed. In 
other words, it is not necessary to specify a direct jump in an al­
ternative if sequential operations are intended. 

Alternative 1 is the "yes" or true option and alternative 2 is 
the "no" or false option. The alternative selected depends upon 
the evaluation of the comparison statement during program execu­
tion. 

In general, a dollar sign terminates an alternative. Within 
the body of an alternative, a return jump is specified with a verb 
and comma and, after the return jump, execution continues inside 
the alternative. However, when a return jump to a subroutine is 
desired at the end of an alternative, the dollar Sign serves as the 
punctuation necessary to indicate such a transfer; i. e., the comma 
is not used. In this case, after the subroutine, execution will re­
turn to the first operable NELIAC statement beyond the conditional 
transfer. 

If a direct jump is specified in an alternative, it is interpre­
ted as the last executable instruction in that alternative. In other 
words, the dollar sign is replaced as the terminal punctuation for 
that alternative by the period associated with the jump. Care must 
be exercised with the use of direct jumps in conditional transfers to 
prevent the unintentional completion of alternatives. 

Following are a synopsis (table B5-3) and a list of examples 
(table B5-4) of alternatives. 
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TABLE B5-3. CONSTITUENTS OF ALTERNATIVES 

Forms: 
a. Blank 
b. Control statements 
c. Control and arithmetic statements 

Particulars: 
a. If form a alternative is chosen, control is transferred 

to first NELIAC statement beyond conditional transfer; 
$ terminates alternative 

b. If form b or c alternative is chosen, and last instruction 
of alternative is return jump, after execution of sub-
routine, control is transferred to first NELIAC state­
ment beyond conditional transfer; comma for that return 
jump not needed; $ terminates alternative and replaces 
comma as well 

c. If form b or c alternative is chosen and it contains 
direct jump, the jump becomes last executable in­
struction of alternative; period (.) terminates alter­
native 

TABLE B5-4. EXAMPLES OF ALTERNATIVES 

a. A = B ' , $ STOP $ legal; form a, form b 
h. MIX GQ Y , f $ X + Z =) G, T. legal; form a, form c 

c. A = B t t 47 $ STOP $ illegal; 47 cannot be 
a verb 

d. REP LS I LS YOYO " illegal; extraneous 
REST + 1 =) F $ WOW. $ punctuation in alter-

native 2 

Nested Conditional Transfers 
It is often advantageous to substitute an entire conditional 

transfer within an alternative of another conditional transfer. In 
effect, we can make a decision within a decision within a decision 
. .. etc. The fact that the subsequent conditional transfer is total­
ly enclosed within the confines of an alternative to a preceding com­
parison statement has generated the adjective "nested. " 
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To illustrate the formation of the nested decision, the follow­
ing conditional transfer is given: 

DAY = CLEAR" CD TEMPERATURE = WARM" ® 
GET UP, GO PICNICKING $ @ 
GET UP, GO SKIING $ @ GO HOME. @ 
STAY IN BED $ @ 

(Note: "T" = true option; "F" = false option) 

The outer comparison statement, identified by the superscript CD 
after the double apostrophe, has two alternatives and superscripts 

@ and @ (true and false options for decision CD ). Note 

that the second conditional transfer (superscript ®, @ , and 

@ ) is explicitly specified within conditional transfer CD. 
If DAY does in fact equal C LEAR, a second decision is neces­

sary: does TEMPERATURE equal WARM? If it does, the alter­
native GET UP, GO PICNICKING is selected; if it doesn't, the false 
alternative GET UP, GO SKITNG is chosen. In either case, the di­
rect jump GO HOME. is executed afterwards. Under the circum­
stances in which DAY is not equal to CLEAR, the false alternative 
STAY IN BED is executed without consideration of the second com­
parison statement. 

The superscript notation, although not an allowable grammat­
ical form of NE LIAC, is often used by programmers to mentally 
check the nesting of conditional transfers before the source pro­
gram is punched into cards. Two rules of thumb should be employed 
in conjunction with the extra-NELIAC notation: first, alternatives 
always come in pairs (i. e., there must be two symbols of alterna­
tive termination -- period or dollar sign -- for each double apos­
trophe); second, nested conditional transfers must be totally en­
closed in one alternative or the other of the more inclusive condi­
tional transfers. 

A maximum of fifteen conditional transfers may be nested. 
One may anticipate the complexity and occasional obscurity that 
accompanies the nesting. For the purposes of understanding and 
better organization, a programmer may choose to enclose, between 
the BEGIN and END punctuation symbols, entire conditional trans­
fers when they are a part of or the whole alternative of a preceding 
comparison statement. Only nested decisions may be so written. 
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One special rule applies to this added punctuation: if the nest­
ed conditional transfer is written so that the last instruction before 
the END is an unconditional transfer outside both alternatives (as 
GO HOME. in the last example), the verb specified must be followed 
by a comma or period, regardless of the fact that a dollar sign 
outside the END actually terminates the more inclusive alternative. 

The following example illustrates a nested conditional trans­
fer using BEG IN and END punctuation symbols: 

DAY = CLEAR" BEGIN TEMPERATURE = WARM" 
GET UP, GO PICNICKING $ 
GET UP, GO SKIING $ GO HOME. END $ 
STAY IN BED $ 

To see the comparative effects of the conditional transfer 
with Boolean connectors and the nested conditional transfer, refer 
to figures B5-2 and B5-3. A glance at the two figures shows the 
double comparison with Boolean connectors is the Simpler in scope 
of the two. With Boolean connectors note that only two options are 
available; in the alternative ONEORNEITHER. it is impossible to 
ascertain which comparison held true or if both were false. 

Nested conditional transfers are more powerful. Nesting re­
sults in three alternatives; two of the three are firm indicators. 
The third alternative eliminates the early comparison but cannot 
rule on the second; another comparison is necessary to decide on 
the appropriate action. 

INDIRECT TRANSFER 

Indirect Addressing 
A noun or verb used in an arithmetic operation will cause the 

contents of the word(s) specified to be involved in the appropriate 
calculations. During execution of this operation, addresses are 
referenced directly and the data contained therein withdrawn and 
manipulated. 
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A NQ BAND D NQ E II 

BOTH. 
ONEORNEITHER. 

ONE 
OR 

NEITHER 

Figure B5-2. Conditional transfer with Boolean connectors. 

A control statement of the unconditional transfer form will, 
upon execution, command the control portion of the computer to 
jump to the address specified as part of the instruction. Again, 
the location is referenc ed directly. 

Indirect addressing, as one might expect, is more complex 
than direct addressing. The address specified in an instruction 
which implies indirect addressing causes the computer, first, to 
reference the given location and extract another address contained 
therein and, second, to involve the information (data or instructions) 
found at the new location in arithmetic or control operations. 

Variables written in program logic as subscripts (enclosed in 
proper punctuation) such as ($ VARIABLE $), are treated as oper­
ands in themselves. This NELIAC form, when incorporated in the 

ORIGINAL 
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BOTH. FIRST NOT SECOND. $ 
NOT FIRST. 

FIRST 
NOT 

SECOND 

Figure BS-3. Nested conditional transfer. 

appropriate instruction environment, infers indirect addressing. 
For example, the command ($ CONNECT $). is an indirect trans­
fer; during execution, the computer is to look at the contents of 
the variable CONNECT and use the information stored there as the 
address to which control is transferred. If CONNECT had con­
tained the address assigned to the variable KEY, ($ CONNECT $). 
would have been equivalent to executing the direct jump, KEY. 

Note that an unsigned constant as a subscript does not imply 
indirect addressing. It is interpreted, rather, as a request for 
the contents of a particular word in core. The arithmetic state­
ment ($ J $) + ($ 47 $) =) ($ A $), when executed, would cause the 
contents of the address specified in J to be added to the contents of 
computer word numbered 47 decimal (or 57 octal) and the sum 
stored in the address contained in the variable, A. 
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Some interesting sidelines are created by the subscript form, 
and are mentioned only briefly for interest's sake. First, in 
dimensioning, the statement ABC = BEGIN XYZ END , assigns to 
the variable ABC an initial value equal to address of the variable 
XYZ. Second, in dimensioning, the statement A = BEGIN 4~~~~ 
OCT END, is illegal; one may not specify a particular machine 
address for a variable since this is a function of the compiler (see 
section 7). Third, in program logic, only a single level of indirect 
addressing is allowed; i. e., it is not possible in NELIAC to re­
quest the contents of the address specified as the contents of the 
address specified as the contents of a variable. Fourth, the form 
($ v ± c $) may be used (v = fixed whole or half word variable, 
c = constant); in general, it is defined as the contents of the location 
identified by the variable plus or minus so many words. 

Then why have indirect addressing? The answer is that this 
feature allows the programmer to change the address contained in 
a variable like CONNECT from time to time, creating in effect a 
modifiable, multidirectional switch. The use of this switching 
feature, through address modification, saves many NELIAC pro­
gramming steps and consequently execution time. 

Switches 

In the conditional transfer a bidirectional programming de­
vice was uncovered. Based on a comparison statement, a true or 
a false alternative path was taken. Because conditional transfers 
are lengthy and sometimes clumsy (when nested), and because a 
compact list of routine names is often required for specification 
of many different paths of execution, switches are incorporated in 
NELIAC. 

There are baSically two forms a NELIAC switch may take: 
a noun switch (often called an address switch) and a verb switch 
(known also as a jump table). The more important of the two is 
the verb switch, and immediate emphasis will be placed on it. 
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A verb switch may be defined in either the dimensioning or 
the program logic portion of a flowchart. It is composed of an 
identifying name for the switch, and two or more entries in a list 
or array. These entries are the verbs associated with routines or 
subroutines. In dimensioning, the verb switch looks like one of 
these: 

a. SWITCH = BEGIN A, B, C, D, END, 

b. QUEUE (4 * 3) = BEGIN 

ALFA, ROMEO, JULIET, HOTEL, 
ROMEO, PAPA, NOVEMBER, QUEBEC, 
BRAVO, CHARLIE, ECHO, WHISKEY, 

END, 

If written in program logic, the verb switch must have a format 
similar to the following: 

COUNT' , ONE. TWO, THREE, ETC. 

No two-dimensional switch may be incorporated in program logic. 

When a verb is specified in a switch, there must be a 
corresponding routine or subroutine with that name; the routine it 
identifies serves as defintion for the verb. Punctuation separating 
entries in the list or array may be either the period or the comma; 
their function in verb switch definitions is as a separator and con­
sequently no differentiation is made between them. 

A subscripted verb, followed by a period or comma, in 
program logic constitutes the command necessary to operate the 
switch. QUEUE ($ 1, 1 $). in the sample switches will instruct 
that a direct jump be made to the routine PAPA. COUNT ($ 3 $), 
forces a return jump to the subroutine named ETC. No execution 
actually takes place in the verb switch itself. The switch may 
even be thought of as being passive, since all it does is provide an 
address indirectly to a jump command. Whether the jump is direct 
or return is determined by the command punctuation. If a return 
jump to a verb is specified, that verb must be defined by a 
subroutine. 
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The noun switch is a list of names, and both the names and 
the noun switch must be defined in dimensioning. The noun switch 
cannot be differentiated in appearance from the verb switch except 
that it is never written in program logic. 

Each noun in the switch represents a machine address. Using 
an entry of the noun switch one may modify the starting address 
of a table of values, as in the following example: 

5 
SOLE (2), 
CHANGE = BEGIN SOLE END , 
$ 
CHANGE ($ t1 $) + 1 =) CHANGE ($ t1 $), 

This sort of programming task might be required when another 
list (defined in another flowchart) would overlay the first element 
of the list named SOLE should this provision not be made. The 
address of a flowchart to be loaded, while one is already reSident, 
could be added to the resident segment's length to provide a loading 
address. This sort of information would originate from a noun 
switch. 

Noun switches may also be composed of literal addresses. 
Literals are lines of English defined in dimensioning which are 
output on a hard copy device at the request of the programmer. 
Their primary use is in debugging (making flowcharts error-free) 
and in printing headings. Noun switches allow the programmer to 
specify the literals for output in any order he chooses. More will 
be said about literals in section 8. 

ITERATIVE PROCEDURES 

Introduction 
There are three approaches to programming an algorithm 

containing a group of instructions which must be repeated several 
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times. To illustrate the several methods, consider a simple 
problem; the first five integers are to be stored in a list dimensioned 
as five elements in length and identified by the variable NUMBER. 

The first approach is to write the instructions over and over 
again in the flowchart until the requisite number of executions is 
provided for. The straightforward approach to the solution appears 
below in routine form: 

1 =) NUMBER ($ ~ $), 
2 =) NUMBER ($ 1 $), 
3 =) NUMBER ($ 2 $), 
4 =) NUMBER ($ 3 $), 
5 =) NUMBER ($ 4 $), 

The second approach incorporates the utilization of the con­
ditional transfer to test if sufficient executions have been com­
pleted. Note that the important instruction, the storage of the value 
into the list, is written only once; all of the other instructions are 
the "master" or the controlling instructions. The second approach 
follows: 

ORIGINAL 

~ =) I, 
ADD I I I + 1 =) I, 

I =) NUMBER ($ 1-1 $), 
I ~ 5 I I ADD. GO ON. 
GO ON I I 
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Using NELIAC loop control to replace the master instructions 
of the second approach constitutes approach number three: 

I = 1 (1) 5 BEGIN I =) NUMBER ($ I-I $), END, 

The number of instructions to accomplish the required com­
putation (including control) decreases from the straightforward to 
the loop-control approach: five instructions in the first, or straight 
forward, approach; four in the second, or master-instruction, 
approach; and one in the third, or loop-control, approach. As the 
sophistication increases, more of the counting and control function 
is maintained by programming tools rather than by the programmer. 
The example of the straight forward approach was written for five 
executions of the storage instructions; the program length required 
to store the first It1t1 or It1t1t1 integers would be so immense as to 
nearly defeat the purpose of using a procedure-oriented language. 
The other two approaches would need only minor changes and would 
involve no additional NE LIAC instructions. 

In spite of the outward efficiency in coding the loop control 
rather than the straightforward approach, consider again the 
familiar tradeoff in digital computers: time vs. space. The store 
instruction, written repeatedly, sans loop control, occupies a 
larger area of core than the single instruction in either of the other 
approaches. This space ratio becomes more unfavorable for the 
repetitive specification as required iterations become more num­
erous. 

On the other hand, the time required to execute the loop 
control, added to the routine execution time, all multiplied by !l 
iterations, exceeds the length of execution time of the straight­
forward approach. The second approach is no less time-consuming. 

A decision must be made, and the approach favoring the 
loop control wins the nod. The reason is simple. In digital 
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computers space is often more valuable than time. (This does not, 
however, dictate a policy; the use of one approach over another 
should be decided by the programming application.) 

In the second, or master-instruction approach, the register 
variable I was preset to~, and in a routine identified by the verb 
ADD, immediately reset to 1. This value of I was stored in 
NUMBER ($ ~ $). Then a test to see if 11=5 was performed. Until 
the loop was executed five times, the true alternative ADD. was 
chosen; once the inequality was false, control dropped out of the 
loop to the verb GO ON. Note that the direct jump to ADD caused 
I to be incremented, a new value to be stored in the next sequential 
element of NUMBER, and caused a return to the conditional 
transfer. 

The third, or loop-control, approach reads as follows: take 
the value 1 and store it in I; execute all instructions found between 
BEGIN and END; test to see if I is equal to five; if so, drop to 
next instruction; if not, go back, increment I by 1 (the parenthesized 
constant) and proceed as before in executing, testing, etc. 

Format 

ORIGINAL 

The general form of an iterative procedure is 

LOOP CONTROL BEGIN PROCEDURE, END, 

where LOOP CONTROL is defined as 

INDEX = START (INCREMENT/DECREMENT) STOP 

and PROCEDURE is a routine composed of arithmetic and control 
operations which are to be repeated the number of times deSig­
nated in LOOP CONTROL. 

INDEX may be any of the index register variables, I, J, K, 
L, M, N. It serves the LOOP CONTROL by providing a register 
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to act as a counter. During execution of the iterative procedure, the 
variable specified as an index will contain the value of the count 
related to each execution and, as shown in the example of the third, 
or loop-control, approach under the immediately preceding 
"Introduction" heading, this portion of loop control may be in­
volved in the computation of the PROCEDURE. 

START is the beginning value of LOOP CONTROL; it may 
take any of seven forms: 

a. Positive fixed pOint constant, including zero. 

b. Fixed point whole word variable. 

c . Fixed point half word variable. 

d. Fixed point whole word variable subscripted. 

e. Fixed point half word variable subscripted. 

f. Index register variable. 

g. Index register variable ± fixed point constant (must be 
in order specified). 

INCREMENT/DECREMENT is a mnemonic name for the 
parenthesized fixed point constant found in LOOP CONTROL. In 
a situation where the INDEX is to increase in a positive direction 
from the START limit to the STOP limit, the INCREMENT is 
positive. To count in a negative direction from START to STOP 
when START is some positive integer and STOP is zero, the 
DECREMENT is positive. For a nonzero STOP in LOOP CONTROL, 
to create a decrementing count, the DECREMENT must be negative. 

STOP has the same rules of formation that govern START. 

Following are a synopsis (table B5-5) and a list of examples 
(table B5-6) of iterative procedures. 
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TABLE B5-5. CONSTITUENTS OF ITERATIVE PROCEDURES 

Formats 
a. Iterative procedure: 

LOOP CONTROL BEGIN PROCEDURE, END, 
b. LOOP CONTROL: 

INDEX = START (INCREMENT/DECREMENT) STOP 
c. PROCEDURE: 

Any routine composed of arithmetic and control 
operations 

Particulars 
a. INDEX: Any of index register variable, I, J, K, 

L, M, N 
b. START: Any of seven forms: 

(1) Positive fixed pOint constant, including zero 
(2) Fixed point whole word variable, subscripted or 
(3) Not 
(4) Fixed point half word variable, subscripted or 
(5) Not 
(6) Index register variable 
(7) Index register variable ± fixed point constant 

(in order specified) 
c. INCREMENT/DECREMENT: Parenthesized fixed 

pOint constant: 
(1) START:S STOP: INCREMENT positive 
(2) START> STOP, STOP = l1: 

DECREMENT positive 
(3) START> STOP, STOP f; l1: 

DECREMENT negative 
d. STOP: Same rules as START 

TABLE B5-6. EXAMPLES OF ITERATIVE PROCEDURES 

a. I = l1 (1) 5 BEGIN I =) J, END, 
b. I=5(1)l1BEGINI=)J, END, 

legal; incrementing loop 
legal; decrementing loop, 
STOP = 1.1 

c. 1=6 (-1) 3 BEGIN 1=) J, END, legal; decrementing loop, 
STOP f; ~ 
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TABLE B5-6. (CONT) 

d. J = HARP ($ 5 $) (7) LUTE 

e. M = I - 6 (4) 1+26 

f. L = 98 (-1) PAL (15 =) 29) 

g. INDEX = N (1) L BEGIN B, 
END, 

h. K = 1 (PANG) G BEGIN B, 
END, 

i. J = 4 (1) 2 

j. N = I (2) 5 + K 

Operations 

legal LOOP CONTROL; 
whole word variables (one 
subscripted) 
legal LOOP CONTROL; 
index register variables 
± fixed point constants 
legal LOOP CONTROL; 
half word variable 
illegal; INDEX is a 
mnemonic device for 
describing formats; only 
index register variables 
may be used 
illegal; INCREMENT/ 
DECREMENT must be 
fixed pOint constant 
illegal LOOP CONTROL; 
in this loop, INCREMENT / 
DECREMENT must be 
negative to decrement 
4 to 2 
illegal LOOP CONTROL; 
STOP has constant and 
variable reversed 

The purpose of this subsection is to familiarize the program­
mer or programmer-initiate with the inner workings of loop 
control and with the programming possibilities of this tool. 

LOOP CONTROL is a most important consideration when 
establishing an iterative procedure in NE LIAC . The rules of 
formation have been reviewed; actual operations now will be 
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described. To simplify the discussion, the steps of execution are 
enumerated: 

1. Set the INDEX = START. 

2. Execute the instructions contained in the PROCEDURE. 

3 . Test if INDEX = STOP. 

4. INDEX = STOP: Set INDEX to zero, take first sequential 
instruction beyond END punctuation. 

5. INDEX f. STOP: Add INCREMENT/DECREMENT to 
INDEX and return to step 2. 

Note that the STOP or end pOint of the loop control must be 
reached exactly; i. e., a multiple of the INCREMENT/DECREMENT 
added to START must exactly equal STOP. If STOP never equals 
INDEX, the PROCEDURE will continue to be executed indefinitely. 

LOOP CONTROL written as either a decrementing or an 
incrementing loop with the START and STOP limits interchanged 
from one case to the other causes no difference in the number of 
PROCEDURE executions. For example, I = t1 (1) 15 BEGIN 
PROCEDURE END, controls 16 executions of the PROCEDURE; 
I = 15 (1) t1 BEGIN PROCEDURE END, also forces 16 executions. 
The reason for one LOOP CONTROL rather than another is the use 
of the INDEX within PROCEDURE; it is sometimes the desire of a 
programmer to use a decrementing count in PROCEDURE calcula­
tions rather than an incrementing INDEX. 

START and STOP limits in LOOP CONTROL must not be 
altered during iterative executions of the PROCEDURE. The result 
of such an operation is the deterioration of LOOP CONTROL and 
the possibility of program failure. 

START and STOP limits which are equal will allow a single 
execution of the iterative procedure since the test for equality is 
made subsequent to the execution. 

Control may be transferred at any time from an iterative 
procedure. If it occurs at the normal STOP limit, the INDEX is 
set to zero. If, however, a transfer is made before that point, 
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the instantaneous INDEX value is saved for later reference, and 
will maintain its status unless control is resumed within the loop 
or if some arithmetic statement changes the INDEX. 

Entire iterative procedures may be enclosed within other 
iterative procedures, as in the following example: 

1=1 (2) 5 BEGIN J = 4 (-1) 2 BEGIN I + J =) K, END, END, 

The instruction length of the PROCEDURE, i. e. from BEGIN to 
END, is known as "scope. " The general rule for nesting iterative 
procedures is that the scope of an enclosed iterative procedure 
must lie wholly within the scope of the outer iterative procedure(s). 
This is illustrated in figure B5-4, whereas figure B5-5 shows an 
illegal configuration of iterative procedures. In figure B5-5, the 
nested loops are illegal because the scope of iterative procedure 
#2 extends beyond that of procedure # 1. 

LOOP CONTROL #1 

BEGIN #1 

LOOP CONTROL #2 

BEGIN #2 

LOOP CONTROL #3 

BEGIN #3 

I 
END #3 

END #2 

END #1 

Figure B5-4. Legal nested iterative procedures. 
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LOOP CONTROL f1 

BEGIN f1 

LOOP CONTROL f2 

BEGIN f2 

END f1 

ND f2 

Figure B5-5. illegal nested iterative procedures. 

Another illegal operation is the transfer of control into an 
iterative procedure from a point outside its scope. For example, 
a transfer from loop #=3 into loop #= 1 of figure B5-4 might be legally 
carried out, but the converse would not be permitted. The purpose 
of this restriction is to prevent program failure or the deterioration 
of loop control. 

Iterative procedures may be nested six deep without any 
extra programming; six nested loops would utilize every index 
register variable available. Any attempt to reuse one of these 
variables before its iteration is complete, without making special 
provision to save the current value assigned to it, will cause 
problems in the loop with the modified index. The only extra pro­
gramming necessary to prevent these troubles is to temporarily 
store the outer index value in a fixed point variable while the index 
is reused and then to reinstate this value before operations in the 
outer loop are continued. For example: 
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I = 1 (3) 4 BEGIN I =) TEMP STORE, 
1= 12 (1) ts BEGIN A + B =) C, END, 
TEMP STORE =) I, END , 
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6. SUBROUTINES AND FUNCTIONS 

INTRODUCTION 

A routine is a series of instructions written to match the 
program requirements and expressed in a specific sequence. When 
these requirements dictate that the identical routine must be in­
corporated several times in the algorithm, the source program re­
flects the inclusion of the indistinguishable instruction sets. 

NELIAC provides the programmer with the subroutine and 
the function to avoid the necessity for multiple programming and 
flowcharts with their lengthy composition and compilation times. 
Subroutines and functions are routines written (or defined) once 
within the confines of the program and referenced (or called) as 
necessary from any point in the program logic of any flowchart. 
They are classified as closed routines--the machine code equiva­
lent to these source program segments is inserted only once in the 
object program in spite of the number of references made in pro­
gram logic. 

In principles of operation there are several degrees of sim­
ilarity between the subroutine and the function. Each is a self­
contained group of commands which will manipulate data and/or 
cause control operations to take place. Each is defined and called 
in program logic; definitions and calling sequences may look al­
most identical. Each may be defined or called from within another 
subroutine or function. 
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· The differences and similarities of these routines are dis­
cussed in the following subsections. 

SUBROUTINES 

Definition 

To create a subroutine from a routine, a programmer needs 
only to enclose the routine between the BEGIN and END punctua­
tion and assign it a name. In other words, the format is 

VERB ' , BEGIN ROUTINE END , 

A subroutine normally is written toward the end of a program 
to avoid the necessity of branching around it, since it is not exe­
cutable unless called by name in a return jump instruction. If its 
importance or size warrants the separation, the subroutine defini­
tion may occupy a flowchart by itself (no dimensioning is needed, 
provided that all names used in the routine are properly defined 
el sew here). 

A subroutine definition may include the description of func­
tions or other subroutines. Any verb defined by the included rou­
tines is considered of "subroutine or function" precedence (see 
section 3 for explanation) and therefore may duplicate any other 
name outside its own routine without compiling errors. Other 
verbs and all nouns (operands in arithmetic or control statements) 
called or operated upon within the routine must be externally 
defined. 

Likewise, the definition may incorporate definitions of and 
calls on any functions or subroutines in the program other than 
itself. 
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Calls 

The uniquely proper manner for subroutine entry is via the 
subroutine call; unless such a call is made, the subroutine is non­
executable. An unconditional transfer of control in the form of a 
return jump is the correct form for subroutine calls. Such a call 
may be written at any point in the program. During execution, the 
call will force transfer to the subroutine and cause operation of all 
executable instructions therein contained and an automatic return 
transfer to the departure point. 

A subroutine may be left via an included direct jump at any 
time; if no return to an inner point in the subroutine is anticipated. 
If temporary departure from the subroutine, such as a return 
jump to another subroutine, is desired, the call is the only exit 
which provides a reentry to that particular routine at the departure 
point. Calls made within the subroutine on other subroutines de­
fined within the confines of the outer subroutine are legal because 
of name precedence. 

Following are a synopsis (table B6-l) and a list of examples 
(table B6-2) of subroutines. 

TABLE B6-l. CONSTITUENTS OF SUBROUTINES 

Definition: 
a. Form: 

VERB' , BEGIN ROUTINE END , 
b. VERB is any name unique to the more inclusive subroutines; 

if the subroutine is not nested, VERB is a name unique only 
to the program 

c. ROUTINE is any combination of arithmetic and control 
statements; other subroutines and functions may be defined 
or called within ROUTINE 

Call: 
a. Form: ordinary return jump--SUBROUTINE NAME, 
b. Only entry to subroutine 
c. May call any other subroutine or function; such a call 

provides a reentry point 
d. Direct jump from subroutine provides no reentry point 
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TABLE B6-2. EXAMPLES OF SUBROUTINES 

a. TRIVIA" BEGIN A + B =) C, END, 
b. REDO" BEGIN I * 4 =) J < 14 ' , 

TRIVIA$ PART. END, 

c. CRANK" BEGIN CIIDG ' , BEGIN 

legal; definition 
legal; definition in­
cludes call on sub­
routine TRIVIA 
legal; definition of 

SEAR ' , BEGIN D, END, nested subroutines; 
END , END , incl uded calIon sub-

d. FORT" BEGIN ADDAGAIN, 
GEO/ GLOSS * 2 ** 9 =) 
STORE, ADDAGAIN ' , 
BEGIN STORE + 1 =) 

STORE, END, END, 
e. BAD" BEGIN BAD, END, 

f. ADDAGAIN, 
FORT' , BEGIN ADDAGAIN, 

FUNCTIONS 

Discussion 

GEO/GLOSS * 2 ** 9 =) 
STORE, ADDAGAIN ' , 
BEGIN STORE + 1 =) 

STORE, END, END, 

routine D 
legal; definition in­
cludes call on sub­
routine nested within 
itself 

illegal; definition 
includes call on sub­
routine itself 
illegal; call external 
to subroutine on 
name of subroutine 
precedence 

Subroutines and functions are self-contained groups of com­
mands designed to manipulate data and! or cause control operations 
to take place. In other words, they are assigned the same basic 
task, and the programmer is left to choose the proper one for his 
needs. 
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In calculus, a parameter is a quantity to which arbitrary 
values may be assigned. If a dependency is established between 
two parameters, x and y, it may be said that the value assigned to 
parameter y is some function of the value given to parameter x or 
vice versa. In the shorthand of calculus, this dependency is 
written as 

y = f(x) 

The value of the function,f(x), when x= c, iSf(c). 

The names written as a part of the NELIAC function definition 
are also called parameters in that they characterize the names or 
values that will be substituted during function execution. The 
parametric function, as written in the definition, provides the 
guidelines for name substitution in the call and execution. 

A representative NELIAC function definition is written as 
follows: 

P (X, Y, Z $ D) , , BEGIN X + Y * Z =) D, END , 

The function P has three input parameters--X, Y, and Z-- and one 
output parameter--D. The definition consists of the routine en­
closed by the BEGIN and END. A function call from within pro­
gram logic 

P (A, B, C $ E), 

would cause the following routine to be calculated: 

A + B * C =) E, 

Note the facility with which the parametric values in the 
function use can be changed. The function, then, in contrast with 
the subroutine, manipulates the data in and performs control oper­
ations on the names supplied by the call, and not on tho se names 
written in the definition. This facility permits the programmer to 
write a generalized routine and to use the function at several points 
in the program logic without intermediate store operations to re­
place the contents of subroutine names. 
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Definition 

Like the subroutine, the function is defined only once in a 
program, for the calls to it provide the necessary linkages. The 
function definition is usually placed among the last routines of a 
flowchart or program in order to isolate it from executable rou­
tines and to avoid interruption of sequential operation of the pro­
gram. 

The function definition may be considered a flowchart in it­
self. The definition may be broken into two parts, one easily 
identified as the dimenSioning portion, the other as the program 
logic. 

Dimensioning in the function definition comes directly after 
the name of the function (which is a verb, since it provides an 
entry point for a procedure), before the double apostrophe (signal­
ling the beginning of the routine), and enclosed between a left and a 
right parenthesis. Within the parentheses the dummy parameters 
for the function are dimensioned. All parameters in a function 
definition are of the "subroutine or function" precedence, and con­
sequently the identical NE LIAC names may be used as nouns and 
verbs elsewhere in the program. 

Dimensioning in the function definition allows the name forms 
discussed in section 3--nouns, subscripted nouns, nouns involved 
in bitfield algebra, modal specification (fixed or floating point), 
assignment of initial values, and combinations of the above. The 
nouns are the dummy parameters of the function. 

The dimenSioning portion of the definition in general looks 
like 

NAME (INPUT PARAMETERS $ OUTPUT PARAMETERS)" 

NAME is a verb, as previously mentioned, and the routine to the 
right of the double apostrophe serves to define it. INPUT PARAM­
ETERS is a list of all those dummy parameters that represent 
values calculated previous to the calIon the function. The list may 
be as few as one input parameter or as many as desired. OUTPUT 
PARAMETERS is a list of values calculated within the function's 
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routine from the input parameters. This list may be nonexistent, 
in which case the parenthesized parameters are written without 
the dollar sign, since there is no need to separate IN from OUT. 
Again, the list may be as long as necessary. 

Parameters in either list must include the mode the pro­
grammer intends to assign to each. If a parameter is fixed point, 
it is separated from its fellows by a comma (the last comma before 
the dollar sign or right parenthesis is superfluous). If, on the 
other hand, the parameter is written as floating point, a period 
follows it no matter what its position in either list. 

The input and output parameters must be specified in the def­
inition in the same sequence that they are found in the program 
logic. A closer look at this dimensioning might find 

VERB (INPUT PARAMl, INPUT PARAM2 $ OUTPUT PARAMl. )" 

The program logic portion of the function definition, which 
follows the double apostrophe, may contain any of the operations 
one might find in a normal flowchart: arithmetic and control oper­
ations, definitions of and calls on subroutines and other functions, 
etc. Calls on subroutines and functions defined within the outer 
function are legal. Variable operands exclusive of definitions and 
calls are either input and output parameters dimensioned by the 
function definition, or variables defined elsewhere in the program 
(external to the function definition). 

A function definition, like that of a subroutine, may include 
the description of subroutines and/or other functions. Any verb 
defined by the included routines is considered of "subroutine or 
function" precedence and therefore may duplicate any other name 
outside its own routine without compiling errors. 

Under the topic of function calls, we will come to the use of 
the function in an arithmetic statement. For most occasions of 
such a use it is necessary to insure that intermediate results in the 
statement, derived from execution of the function, are stored in 
the computer's accumulator (a register employed as a storage 
place for totals o:utside normal core storage). To provide this in­
surance, the program logic of the function definition should 
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normally include as a last instruction the storage of the output 
parameter back into itself, as in the following example: 

F (X, Y; X) , , BEGIN X + Y =) X, X =) X, END, 

In general, then, the function definition has the following 
form: 

VERB (PARAMETERS) , , BEGIN ROUTINE END, 

Calls 

Without the requisite call, the NELIAC function is not exe­
cutable because there is no other programmable means for entry 
into the routine. In addition, the function call provides a list of 
variables for substitution in the slots reserved by the dummy 
parameters. 

The function call may take two forms. The first is the func­
tion as an operand in an arithmetic statement, and the second is as 
a return jump to the function alone. 

The first form is the more sophisticated. It is equivalent to 
a return jump to the function plus the additional arithmetic state­
ment incorporating the function t s output. The following example 
illustrates the difference between the two forms: 

First form: FUNC (A, B $ C) + D =) E, 

Second form: FUNC (A, B $ C), 

Additional statement: C + D =) E, 

It is emphasized that in the first form the function definition must 
include provision for storage of the function's output in the accumu­
lator. Bitfield operands and some arithmetic calculations involv­
ing "add-to-store" operations demand this provision. 
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Since the function name has been identified as a verb, and 
since only a noun may serve as an operand in an arithmetic state­
ment, the question arises as to how a function call can be incor­
porated in arithmetic operations. The answer is twofold. First, 
only a function with a single output parameter may be used in an 
arithmetic statement. Second, the inclusion of the function implies 
that its parametric numeric output will be manipulated in some 
manner, and since the output is assigned to a noun the ru1e of 
NELIAC operands has not been violated. (This argument may seem 
strained, but it is valid.) 

The mode of the function call in an arithmetic statement is 
determined by the mode of the output parameter. As a result, the 
entire mode of the expression is dictated by this same parameter. 

The second form of the function call resembles the lefthand 
portion of the function definition--a verb and one or more paren­
thesized variables. The call is punctuated by a comma indicating 
a return jump command. Following is an example of the general 
form: 

VERB (INPUT PARAMS $ OUTPUT PARAMS), 

There are rules of NELIAC grammar common to both forms 
of the function call which must be observed. 

The function call may have any of the following parameter 
name forms: a noun, subscripted or not; a noun, with bit limits, 
subscripted or not; or a verb. In the case of the verb, an uncondi­
tional transfer of control within the function's program logic in­
volving the verb must be of the return variety to insure proper 
stowage of the function's output. 

The parameters may be of mixed modes. That is, the input 
parameters of both the function definition and call may be of a dif­
ferent mode than the output parameters. However, it is mandatory 
that corresponding parameters (e. g., input parameter 1 of defini­
tion and input parameter 1 of call, etc.) be of identical mode. No 
provision is made for conversion of one mode to the other during 
the function call which precedes execution. 
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The parameters must agree in order and number; thus, if two 
input parameters and three output parameters are defined for the 
function, two input parameters and three output parameters must 
be supplied in the function call. If a call is required which deletes 
the use of a parameter defined in the function, the call must be 
written with a space between commas to indicate that the param­
eter's absence is intentional. Otherwise, the parameters are 
right-justified upon compilation, and the absence of a parameter 
might transmit an input parameter of the call to an output param­
eter of a definition, rendering the entire operation meaningless. 

All parameters used in the function call are of necessity de­
fined somewhere within the program confines. No attempt need be 
made to indicate the mode of the call parameters. Punctuation 
serves only to separate parameters. Regardless of the punctua­
tion used in the call, the dimensioned mode of the call parameters 
will be used. 

Following are a synopsis (table B6-3) and a list of examples 
(table B6-4) of functions. 

TABLE B6-3. CONSTITUENTS OF FUNCTIONS 

Defini tion: 
a. Form: 

VERB (PARAMETERS) , , BEGIN ROUTINE END, 
b. VERB is any name unique to the more inclusive subroutines; 

if the function is not nested, VERB is a name unique only to 
the program 

c. PARAMETERS composed of two lists, INPUT and OUTPUT 
separated by $; dummy parameters to be replaced by other 
variables specified in function call; INPUT for variables 
calculated before function call; OUTPUT is provision for 
results from execution; INPUT parameters: minimum = 1, 
maximum boundless; OUTPUT parameters: minimum =~, 
maximum boundless; if no OUTPUT, eliminate $; commas 
separate parameters if fixed point, periods if floating point; 
punctuation before $ and) not needed unless last parameter 
is floating point; PARAMETERS must be specified in same 
order used in ROUTINE; dimensioning in PARAMETERS 
may include any name form possible in flowchart dimen­
sioning 
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TABLE B6-3. CONSTITUENTS OF FUNCTIONS (Continued) 

d. ROUTINE similar to flowchart program logic; arithmetic 
and control operations, definitions of and calls on other 
subroutines and functions, are possible 

Call: 
a. Forms: 

(1) ... VERB (PARAMETERS) ... 
(2) VERB (PARAMETERS), 

b. Form (1): Function as operand of arithmetic statement 
c. Form (2): Return jump to function 
d. General form: 

VERB (INPUT PARAMS $ OUTPUT PARAMS), 
e. PARAMETERS may be nouns, subscripted or not, partial 

or full word; or verbs; mixed modes in call, but each call 
parameter must be same mode as corresponding definition 
parameter; call parameters must agree in order and num­
ber with definition parameters; all are defined elsewhere 
in program; commas or periods serve only as separators; 
omitted parameter must be provided for with dummy 
comma; form(l) call: no more than one output parameter; 
form(2) call: no output, no $ or output parameter 

TABLE B6-4. EXAMPLES OF FUNCTIONS 

a. SERIES (X, Y $ Z) , , BEGIN 
X + Y I X - X I Y =) Z, P, 
END, 

b. SERIES (A, B $ CHU'M), 
c. HOP + 4.37 * BLEU -

TRIM / SERIES (T, SO $ B6) 
=) N, 

d. BAD CALL (43, A4), 

e. DENT + LOG (P, Q $ R, S) 
=) THUD, 

f. OHGAD ($ IAG'O) , , 
BEGIN 3 =) IAG'O, END, 

legal; function definition 

legal; form (2) call 
legal; form (1) call 

illegal; constant may not 
be used in call 
illegal; call in routine may 
not have > 1 output 
parameter 
illegal; must have ~ 1 input 
parameter 
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7. DECLARATIONS 

MACHINE DEPENDENCY 
A procedure oriented language (POL), as defined in section 

2, is a programming tool which incorporates the use of algebraic 
notation for mathematical solutions, near-English phrases for 
program control, and other sophisticated capabilities which place 
the language on a level high above machine code. The POL has 
been developed for the scientist, engineer, or mathematician who 
desires to write his own programs and lacks the detailed training 
required of a machine language programmer. 

NELIAC, as the language under discussion, satisfies the 
criteria for a procedure oriented language. Its syntax is orga­
nized so as to be largely machine independent. Routines written in 
NE LIAC may be compiled on any of several digital computers with 
little compensation for individual machine characteristics. 

Some programs, of necessity, must be subject to computer 
idiosyncrasies. These are programs written in the areas of input/ 
output, often-used and machine dependent algorithms, and address 
assignment. 
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Input/Output 

Communications between a digital computer and its peri­
pheral equipment (hardware external to the central processing unit 
such as a printer, card reader, magnetic tape unit, etc.) consti­
tute the programming area lmown as input/output. The central 
processing unit, or mainframe, is the reference equipment in such 
exchanges. Input describes communications from an external 
device to the mainframe, and output implies the reverse. 

Input/output configuration normally changes from one com­
puter installation to another, and communications programming 
changes sympathetically. Therefore, one might expect for each 
manufacturer, model, variation in equipment, etc., that the sec­
tion of a compiler devoted to communications would be wholly 
machine dependent; this is the case. 

Specialized Algorithms 

The digital computer manufacturers offer two classes of 
hardware: generalized and specialized. A generalized machine is 
one designed for multipurpose uses, suitable for many unspecified 
jobs. A specialized computer, on the other hand, is constructed 
to accomplish only the task for which it was designed. 

As in computer hardware, there is generalization and spe­
cialization in compilers. Specialization provides efficiency in the 
source-to-object-program translation and in the machine code 
generated by the translation. The immediate effects of such effi­
ciency are savings in time for compilation and execution and a 
compression of core space required to contain the object program. 

A generalized compiler by its nature must be capable of 
handling a wide scope of syntactical combinations. Provisions for 
generalities cause some inefficiencies in object program code 
reflected as wasted time and space. 
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Any routine that is machine dependent or specialized, writ­
ten with the intention that it will be frequently used, and processed 
by a generalized compiler, is doomed to some inefficiencies at 
best. Other means for incorporating the required algorithm in the 
object program must be found or devised. 

Address Assignment 

In medium-to-large-scale computers, certain addressable 
registers are reserved for particular purposes. The contents of 
these registers at all times reflect the status of the function they 
serve. For example, a binary clock may be an integral part of 
the computer design. There will be a word in core assigned to 
the clock, and a request for the contents of that word will yield the 
clock's numeric reading in binary. 

Likewise, a location in core which is the entry point to a 
specialized routine must be addressable. A name must be given 
to the routine (so that it may be called from some external point 
in the program) and concurrently pinned to a particular machine 
address . 

. To utilize the clock or provide the entry pOint, the compiler 
or some adjunct of it must provide the facilities for addreSSing 
these specific registers. 

NELIAC accommodates all of these three areas with the 
"declaration, " a powerful machine-dependent programming device. 

The declaration is a member of the subroutine family. It is 
subj ect to definition and call as is the subroutine and function. 
But unlike the latter pair, the declaration is an "open" routine-­
the appropriate machine code is inserted in the object program 
each time the declaration call is used. Where calls to NELIAC 
subroutines or functions are made, return jumps are generated 
to the routine named. For "closed" routines, the machine code 
routines are included just once in the object program regardless 
of the number of calls made upon them. 
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The declaration definition is a routine written essentially in 
machine code. It may reside on a compiling system tape awaiting 
a call into the object program, or it may be entered as part of the 
source program. 

If the routine is a resident of the compiling system, it is 
known as a "system declaration." Dec larations so designated are 
of sufficient importance to the NE LIAC user to be already fully 
programmed. They are simply called from the system tape wher­
ever needed; no reprogramming is necessary . Input/output, some 
specialized routines, and some address aSSignments are inc luded 
among system declarations. 

If the declaration definition is entered as part of the source 
program, the programmer uses the declaration flowchart (control 
number of 6, for which see "Flowcharts" in section 2). A defini­
tion of this type must be written by the programmer, although such 
a project should not be undertaken unless space and time are at a 
high premium. The declaration flowchart is normally reserved 
for the specialized routine or address assignment. 

The general form of a declaration definition is 

VERB = ROUTINE, 

where VERB is any previously unused NELIAC name, and ROUTINE 
is an arithmetic and control operation program similar in purpose 
to a flowchart's program logic. It does not, however, look like 
the latter. Further discussion is reserved for the next subsections. 

The declaration call is similar to the function call. It may 
be used anywhere in program logic, subject to the restriction that 
a declaration cannot be called before it is defined. The call 
involves the specification of parameters or operands to fill the 
slots provided in the definition. The same form of call is used 
whether a declaration is a system reSident or not. 

The declaration call on the sample definition, given above, 
may be represented in general form by the following 

($ VERB LS OPERAND! GR, ... LS OPERANDn GR , $), 
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VERB for the definition and call must be identical in order to com­
pile the proper pair together. The operands are constants and 
variables to be incorporated in the machinations of the declara­
tion's ROUTINE. They are written in the precise order required 
by the ROUTINE. 

The application of declarations to each of the three areas 
(input/output, specialized routines, address assignments) will be 
described in detail in the ensuing subsections. For the remaining 
discussion concerning declarations, all machine references will 
be made to the digital computer utilized to implement the Command 
Ship Data System, the Remington Rand Univac AN/USQ-20, about 
which some knowledge is assumed on the part of the reader. Addi­
tional explanation will be offered where it is felt necessary to do 
so. 

CATEGORIES 

The routine of a declaration, like any other arithmetic or 
control operation, is composed of operators and operands. Dec­
laration operators (shortened to "declarators lf

), written in the 
declaration definition, indicate the machine code intentions of the 
programmer. These declarators are English words or phrases 
punctuated in a manner to provide, when necessary, a niche for 
operand substitution by the declaration call. The combination of 
the definition and call is required for generation of the machine 
language inserted in the object program, because operands and 
operators both must be speCified to write full instructions. 

Declarations may be separated into three categories. The 
category of declaration used is dependent upon the requirements 
of the algorithm and is a decision made by the programmer. In 
turn, the category determines in what form the appropriate 
declarator is to receive the operand requisite to its part in the ( 
computation. 

ORIGINAL B7-5 



B7-6 

Category I 

This declaration category depends upon the call as written 
in program logic to provide the operands and input/output "sense" 
(direction) to generate machine code. Category I declarations are 
characterized by the punctuation symbols LS and GR which enclose 
the declarators of the declaration definition and the operands of 
the program logic call. 

Declarators of this category are always written in the defini­
tion in the following manner: 

LS DECLARATOR GR , 

Operands provided by the call are enclosed in LS and GR , unless 
the operand is to be an input parameter (a variable assigned to an 
area in core to be filled by reading data into the computer from 
some external device). In this case, the punctuation symbols are 
reversed, as 

GR OPERAND LS , 

Further discussion of the declaration for input/output purposes is 
presented later in this section. 

The declarators listed below belong in Category I: 

LS EXTERNAL FUNCTION GR , 
LS RELEASE INTERRUPT LOCKOUT GR , 
LS JUMP ACTIVE GR , 
LS BUFFER GR , 
LS MONITOR BUFFER GR , 
LS GENERATE BUFFER CONTROL WORD GR , 
LS DELAY GR , 
LS SET INTERNAL INTERRUPT ENTRANCE GR , 
LS SET EXTERNAL INTERRUPT ENTRANCE GR , 

Some of these are applicable to other categories; all are defined in 
the subsection of this section called "Declarators. " 
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Category II 

The formation of machine code from declarations of this 
category is the antithesis of Category I. That is, the operators 
and required operands are both specified in the declaration defini­
tion' no dependence is placed upon the call except the sense of the 
LS or GR punctuation, an LS followed by a comma in the call indi­
cates that the corresponding operand in the definition should be 
regarded in the output sense, and a GR followed by a comma indi­
cates the operand is an input variable. 

Category II definitions are characterized by declarators 
enclosed in parentheses. Where an operand is required by the 
declarator, a decimal or octal number, enclosed by a separate set 
of parentheses, is located between the declarator and its right 
parenthesis as in the following: 

(DECLARATOR (OPERAND», 

The declarators listed below belong in Category II: 

(EXTERNAL FUNCTION (OPERAND», 
(RELEASE INTERRUPT LOCKOUT), 
(JUMP ACTIVE), 
(TERMINATE BUFFER), 
(DELAY (OPERAND», 
(MACHINE CODE (OPERAND», 

The use and meaning of the presence or absence of the OPERAND 
will be explained later in the subsection, "Declarators." 

Category III 

Definitions of Category III declarations contain declarators 
and operands. Calls from program logic provide addit~onal or 
modifying operands and the input/output sense. 
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For the declarator EXTERNAL FUNCTION, a four word 
(three instructions and a temporary storage word) program is 
tacked onto the otherwise appropriate machine code for the purpose 
of adding the definition operand to the contents of the corresponding 
modifying operand of the call at execution time. 

In the case of MACHINE CODE, the operand addition is car­
ried out at compilation time and the sum inserted directly into the 
instruction operands of the machine equivalent to the declaration 
routine. 

All operands used in the definition, regardless of declarator, 
must be fixed point numbers. Call operands may be fixed point 
constants or variables, including index register variables. The 
definition takes the following format: 

NAME = (CHANNEL#) LSDECLARATOR(OPERAND)GR, 

while the call (input sense) looks like 

($ NAME LS MODIFYING OPERAND GR , $), 

Only two declarators belong to the Category III: 

LS EXTERNAL FUNCTION (OPERAND) GR , 
LS MACHINE CODE (OPERAND) GR , 

FollOwing are a synopsis (table B7-!) and a list of examples 
(table B7-2) of categories. 

TABLE B7-1. CONSTITUENTS OF CATEGORIES 

Category I 
a. Definition depends upon call for operands and I/O sense 
b. Definition form: NAME = (CHANNEL #) LS DECLARATOR! 

GR , ... LS DECLARATORn GR , 
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TABLE B7-!. (CONT) 

c. Call form: all purposes except input: 
($ NAME LS OPERAND GR , $),; input: 
($ NAME GR OPERAND LS , $), 

d. Applicable declarators: 
LS EXTERNAL FUNCTION GR , 
LS RELEASE INTERRUPT LOCKOUT GR , 
LS JUMP ACTIVE GR , 
LS BUFFER GR , 
LS MONITOR BUFFER GR , 
LS GENERATE BUFFER CONTROL WORD GR , 
LS DELAY GR , 
LS SET INTERNAL INTERRUPT ENTRANCE GR , 
LS SET EXTERNAL INTERRUPT ENTRANCE GR , 

Category II 
a. Definition depends upon call for I/O sense only; operands are 

self-contained 
b. Definition form: NAME = (CHANNEL #) 

(DECLARATOR! (OPERAND», (DEC LARATOR2) , 
(DECLARATORn (OPERAND», 

c. Call form: ($ NAME LS , GR , GR , LS, ... etc. $) (LS: 
operand to be treated in output sense; GR: operand to be 
treated in input sense) 

d. Applicable declarators: 
(EXTERNAL FUNCTION (OPERAND», 
(RELEASE INTERRUPT LOCKOUT), 
(JUMP ACTIVE), 
(TERMINATE BUFFER), 
(DELAY (OPERAND», 
(MACHINE CODE (OPERAND», 

Category III 
a. Definition depends upon call for I/O sense and modifying 

operands; operands are self-contained 
b. Definition form: NAME = (CHANNEL #) 

LS DECLARATOR! (OPERAND) GR , 
LS DECLARATORn (OPERAND) GR , 
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TABLE B7-1. (CONT) 

c. Call form: all purposes except input: 
($ NAME LS OPERAND GR , $),; input: 
($ NAME GR OPERAND LS , $), 

d. Applicable declarators: 
LS EXTERNAL FUNCTION (OPERAND) GR , 
LS MACHINE CODE (OPERAND) GR , 

TABLE B7-2. EXAMPLES OF CATEGORIES 

a. PUNCH CARD 1 = (1.0) legal; Category I definition 
LS MONITOR BUFFER GR , 

b. ZU INT RELEASE = legal; Category II definition 
(MACHINE 
(6.0.0.0.0 OCT .0» , 

c. RE LEASE = LS MACHINE legal; Category III definition 
(6.011.0 OCT .0) GR , 

d. ($ JB TRAP LS D GR , legal; Categories I and III call 

GR PFF LS , $), 
e. ($ CALL NELOS LS ,$), legal; Category II call 

DECLARATORS 

As the operators of the declaration routine, declarators are 
the symbolic phrases which generate the machine language func­
tion or operation code, whereas the operands of the definition and 
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call are responsible for completion of the instruction format. The 
function code f of a machine instruction is the fundamental com­
mand to the computer's logic. 

The discussion which follows is an exposition of the pur­
pose(s) each declarator serves. 

Release Interrupt Lockout 

RELEASE INTERRUPT LOCKOUT is a declarator which may 
be used in Category I or Category II declarations. 

The machine function code f= 6~ is generated for each 
specification of this declarator. This machine instruction has two 
extraordinary uses besides its intention as a jump command; if 
the branch designator)' is equal to a zero, the command to clear 
the interrupt lockout mode (established by the interrupt lockout 
instruction 73~3~~~~~~) will be created, no jump will actually 
transpire, and the next sequential instruction will be executed; if 
j = 1, the interrupt lockout will be cieared, and a jump to the 
operand speCified by the call will follow the release. 

Employing RELEASE INTERRUPT LOCKOUT in a Category I 
declaration causes j to be set to a 1. In a Category II delcaration, 
the arithmetic jump command generated has a j =~, and no oper­
and is required. 

Jump Active 

Declarations of Category I or Category II may employ this 
operator to jump to a specified address if a particular channel is 
active. 
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If a Category I declaration is defined, the machine function 
code is determined by the I/O sense of the call from program logic. 
In the case of an operand surrounded by punctuation indicating the 
input sense, the function code f = 62 is generated; for the output 
case, the instruction becomes a 63 function code. For either func­
tion code, the operand of the call is inserted as the operand of the 
object program. 

If a Category II declarat ion is defined, the declaration 
JUMP ACTIVE and the I/O sense of the corresponding LS or GR 
punctuation of the call will combine to designate the proper func­
tion code. If punctuation is LS , the instruction will be f= 63; if 
GR , f will equal 62. Note that JUMP ACTIVE does not require an 
operand in a Category II definition. The operand substituted will 
be the address of the instruction itself. 

The JUMP ACTIVE declaration forces a check to see if the 
/\ 

communications channel j is actively transmitting information 
either in or out. If the channel is found to be active, the operand 
in the generated instruction becomes the address transferred to. 
If it is inactive, the next sequential instruction is executed. 

External Function 

This declarator is the only one of eleven to belong to all 
three categories. 

EXTERNAL FUNCTION generates one of two machine func­
tion codes--f= 13 or f= 17--depending upon the I/O sense of the 
punctuation in the active statement. In the input sense, f= 17 is 

/\ 
generated, and the information from the communication channel} 
wi 11 be stored in the operand formed. In the output sense, f = 13 
is generated, and the contents of the operand specified will be 
transmitted out on channelj to the peripheral equipment connected 
thereto. A channel number must be specified by the declaration 
definition. 
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The sole purpose of this dec larator is to provide a means 
for control communications between peripheral equipment and the 
mainframe. For f = 13, a word will be transmitted out on the indi­
cated channel, forcing the external device to accomplish some 
function such as turning itself on, enabling an output mode, etc. 
In the opposite direction, an interrupt may be generated by a piece 
of peripheral equipment containing an indication that it has some 
control information to give to the computer, such as the fact that 
it has just completed the rewind of a magnetic tape unit. The only 
way the computer can assess the meaning of the interrupt is to 
draw it in core for examination; this store operation is the purpose 
of the f= 17 instruction. 

As a Category I declarator, EXTERNAL FUNCTION relies 
upon the call for operand and input/output sense. Defined in a 
Category II declaration, the declarator is written with an operand; 
it requires the input/output sense of the program logic call. Cate­
gory III means that EXTERNAL FUNCTION receives a modifying 
operand and the intended direction from the call to be compiled 
along with its self-contained operand. 

Generate Buffer Control Word 

The terms ''buffer'' and "buffer control word" introduce some 
new topics which require the following preliminary discussion 
before proceeding to the subject itself of this subsection. 

The AN/USQ-2.0, or mainframe, and its peripheral equip­
ment communicate in a buffered mode. This means that normal 
mainframe operations may take place simultaneously with input/ 
output functions. For a program involving much communications, 
the buffered mode represents a great saving in time. 

A buffer of the AN/USQ-2.0 is that area of core specified by 
the buffer control word (BCW), a single word in memory that con­
tains the upper and lower limits of the area. Designating certain 
locations as a buffer identifies them with the input/output process. 
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This designation marks the area with a purpose in addition to its 
normal function as programmable storage. That is, the buffer may 
be filled or transmitted by an input/output program, the contents 
of the buffer may be manipulated by program dynamically during 
communications, or the buffer area may be used for purposes 
unallied with input/output. 

The opposite, however, is not true. Data transmitted exter­
nally may not be taken from just anywhere in core; data to be 
communicated must be provided for with a BCW. 

Communications proceed at a word-by-word pace in either 
the input or output direction. How the information is assembled is 
determined by the direction of transmission and the equipment 
receiving the data. For example, the printer (strictly an output 
device) must print 120 columns simultaneously; since one word 
provides only 5 characters, the printer must wait for 24 trans­
missions before it can assemble and print a line. A card reader, 
on the other hand, as an input device, reads only enough informa­
tion from a card to fill the buffer specified; if the buffer is longer 
than that necessary to contain 80 columns of information (16 words), 
subsequent cards are read to satisfy the buffer. The magnetic 
tape unit requires only a variable length buffer. In the output 
direction, the length of a buffer in general specifies the length of 
a record on tape. In the input direction, the information from a 
record in words up to the length defined in the BCW is stored in 
the buffer. If too much information is contained in the record for 
the buffer, an interrupt is sent to the computer indicating the fact; 
if too little or just enough data to fill the buffer is received from 
the record, an interrupt is generated by the magnetic tape unit 
denoting the sensing of the end of a record. Any space in the buf­
fer unfilled by the input operation maintains its previous contents. 

Communications do not commence until the device addressed 
is ready to accept the information. When that equipment signals 
its acceptance, communications between the buffer and the device 
begin. Meanwhile, the mainframe continues to perform its func­
tions oblivious of the communications. The computer is able to 
handle control and arithmetic operations simultaneously with 
input/output because the logic for each is separate. 
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Once initiated, the mechanically programmed section of 
computer logic governing the buffer mode proceeds to input or out­
put data, without additional prodding, at a speed determined by the 
external device (because the mainframe is so fast). Buffer guide­
lines are provided by the limits and length of the BCW. 

The lower half of the BCW contains the five-digit starting 
address; transmission of information continues without interrup­
tion until the data contained in the address in the upper half of the 
BCW have been moved. At such time, the buffer is said to be 
terminated, and the input/output processing ceases until begun 
again by appropriate instruction. 

The length of the buffer used in communications is a decision 
of the programmer. It is necessary, however, to consider the 
fixed length requirements of the peripheral devices when communi­
cating with them--for example, the printer buffer should be some 
multiple of 24 words in length, and that of a card punch a multiple 
of 16 words. Otherwise, a partially filled buffer will cause unex­
pected results follOwing the next communications. 

Now, to discuss the declarator, GENERATE BUFFER CON­
TROL WORD, itself--it serves a small but important purpose: 
the storing of the buffer control word in the Q-register (a nonad­
dressable 30-bit arithmetic register) for access by the input/output 
processor. The latter takes the BCW from the Q-register and 
stores it in the specially wired address for control of buffered 
communications. 

GENERATE BUFFER CONTROL WORD is a Category I 
declarator dependent upon the declaration call for substitution of 
an operand. The punctuation enclosing the operand is ignored as 
the dec larator acts independently of input/output sense. 

The storing of the BCW in the Q-register is but the end prod­
uct of this declarator. Depending upon the operand of the decla­
ration call, a translation of some form must transpire before the 
BCW is established. 

To input or output an entire list, the call operand takes the 
form 

LS LIST GR , 
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GENERATE BUFFER CONTROL WORD obtains the lower and 
upper limits of LIST and creates a BCW by placing the upper limit 
in the upper half of the BCW and the lower limit in the lower half. 

To input or output some continuous portion of a list, "run­
ning subscripts" are used. These are integers, register variables, 
or fixed point whole or half word variables separated by a store 
operand such as 3 =) 7 , A =) PAB , I =) J. Running subscripts 
modify the address of the first list entry to provide the addresses 
of the desired segment. For example, LIST ($ 3 =) 7 $) tags 
LIST ($ 3 $) through LIST ($ 7 $) for communications. The declar­
ator converts the subscripts to machine addresses and generates 
the BCW from them. 

To communicate to or from some list whose BCW is already 
contained in an address, the form 

LS ($ ADDRESS $) GR , 

is used. The contents of that location, without checking for valid­
ity, will be treated as the BCW. 

Buffer 

This is a Category I-only declarator. 

Since all input/output communications involve the use of 
buffering for data transmission, it is not surprising to find declar­
ators which provide the meap.s for initiating buffers. To initiate 
a buffer implies that transmission of data into or from the loca­
tions specified in the BCW should commence. 

For information transfer in the mainframe to peripheral 
equipment direction, the f= 74 command is generated by the declar­
ator BUFFER. Input buffer initiation is accomplished by the 
f= 73 command. The instruction generated is dictated by the 
sense of the operand in the call from program logic. 
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The channel designator J is required to indicate which chan­
nel is to be employed for buffer operations. The channel number 
of the declaration provides this designator. 

BUFFER has all the capabilities of generating a BCW from 
a program logic call that the declarator GENERATE BUFFER 
CONTROL WORD has. The call operand may take any of these 
forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2 $), ($ LIST $). 
(See GENERATE BUFFER CONTROL WORD, immediately 
preceding. ) 

Set Internal Interrupt Entrance 

This declarator provides the capability to store a return 
jump at the special address or "entrance" queried by the MONI­
TOR BUFFER declarator. Termination of a buffer generates an 
interrupt which halts all processing and causes the entrance to be 
queried, and any instruction there executed. The precise address 
is determined by the sense of the call operand and the channel 
which is to be active during the communications. 

Before explaining the SET INTERNAL INTERRUPT 
ENTRANCE, the term "interrupt" should be defined. An interrupt 
is a coded message generated by the occurrence of some input/ 
output phenomenon; its purpose is the intervention of program 
execution which has proceeded in parallel (also known as "asyn­
chronous operations") during communications, and the provision 
of equipment status information for the input/output processor (a 
programmer-specified algorithm). The interrupt is one word in 
length, and the contents of certain bits are interpreted by the 
processor. Status information might include the fact that a mag­
netic tape unit had written a record properly or that the tape re­
wind previously requested had been terminated. 

Two types of interrupts are accepted by the input/output 
processor--external and internal. The external interrupt is 
created by an input/output event in a device external to the 
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mainframe. The preceding examples concerning status informa­
tion are of this type. An internal interrupt is generated by the 
input/output section of computer logic when a monitor buffer, pre­
viously initiated, is terminated after transmission of the specified 
block of data. This form of interrupt is accepted by the input/ 
output processor as well. 

After interpretation of an interrupt and execution of any 
associated interrupt program, control is returned to the main pro­
gram at the address abandoned due to the interruption. 

SET INTERNAL INTERRUPT ENTRANCE is a Category I 
declarator. In addition to the generation of the return jump, suf­
ficient other machine code is inserted into the object program to 
store the return jump instruction in the appropriate entrance, as 
determined by the sense of the corresponding declaration call 
operand and the channel number of the definition. 

Monitor Buffer 

The difference between BUFFER and MONITOR BUFFER 
lies in the direction of program flow after execution of the 
declarator. 

BUFFER causes a channel to become active and the BCW is 
stored at an address specially wired for access by the mechanized 
input/output program (discussed earlier). Communications then 
are begun and continue until terminated. If more input/output jobs 
are to be accomplished, the input/output section processes them 
all in turn. When the job queue is empty, this portion of the com­
puter becomes idle. Meanwhile, parallel data processing has been 
accomplished. The next instruction to be executed after the last 
buffer termination is the one presently being executed by the arith­
metic and control logic in parallel with the communications. 

MONITOR BUFFER goes through the same steps as BUFFER 
However, it goes one step further by allowing the programmer to 
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place an instruction at another specially wired address. The next 
instruction to be executed after buffer termination will be the one 
found at the special address; an internal interrupt causes all proc­
essing except that instruction to cease. In most cases the ad­
dress will contain a return jump to some programmer-specified 
routine which will perform one or several functions to "tidy up" 
or to the input/output section such as for turning off the external 
device. After execution of the subroutine, control will be trans­
ferred to the address of the next sequential instruction of the main­
stream program before it was interrupted. 

To initiate a monitored buffer in the input direction, an f= 75 

is generated by the declarator while the operand is supplied by the 
declaration call. The function code f= 76 applies to a monitor 
buffer in the output sense. MONITOR BUFFER is valid only in 
Category I. 

The channel number provided by the declaration definition 
supplies the necessary information to complete the instruction. 
The channel deSignator J indicates the channel to be made active 
during buffered communications; its value is supplied by the pro­
grammer designation of channel number. 

MONITOR BUFFER has all the capabilities of generating a 
BCW from a program logic call as has the declarator GENERATE 
BUFFER CONTROL WORD. The call operand may take any of 
these forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2 $), 
($ LIST $). (See preceding GENERATE BUFFER CONTROL 
WORD.) 

Set External Interrupt Entrance 

Specially wired entrances are provided for external inter­
rupts as well. The particular location referenced as an interrupt 
entrance will be defined by the input/output sense of the communi­
cations which led to the interrupt and the channel which was active 
during data transmission. 
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When an external device experiences a prescribed event of 
significance to the computational process, it sends an interrupt to 
the mainframe. The portion of the input/output processor that is 
to handle the interrupt is pinpointed by a return jump contained in 
the appropriate external interrupt entrance. SET EXTERNAL 
INTERRUPT ENTRANCE generates a return jump at the entrance 
specified by the declaration definition and call--input/output sense 
and operand address (for the return jump) from the call, and the 
channel number from the definition. 

SET EXTERNAL INTERRUPT ENTRANCE is a Category I 
declarator, as well. Like its corollary, SET INTERNAL INTER­
RUPT ENTRANCE, this declarator generates the machine code 
necessary to store the return jump at the proper address upon pro­
gram execution. 

Terminate Buffer 

In monitor buffered operations, when the contents of the 
entire buffer as defined by the BCW have been outputted or the 
buffer has been filled by a peripheral device, an internal interrupt 
is generated by input/output logic notifying the interrupt program 
that the buffer has been terminated. 

However, it may become necessary to prematurely termi­
nate a buffer. TERMINATE BUFFER incorporated in a declara­
tion provides for such an eventuality. As a Category II declarator, 
it does not depend on the definition for anything except the channel 
number and only upon the call for the sense of communications, 
and, in addition, it does not require an operand. 

At execution, the declarator will force a simulated buffer 
termination, but no internal interrupt will occur. The buffer will 
be terminated on the input channel by the j= 66 machine function 
code. In the output direction, the j= 67 function code generated 
by the declarator will cause completion of buffered communications 
on the channel designated. 
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Delay 

DE LAY causes the inclusion of two machine language in­
structions and the creation of a one-instruction loop. Upon execu­
tion' it effectively provides sufficient delay between other dec lara­
tors to permit electromechanical devices to match the electronic 
communications rate. The first instruction (f= 12) is relied upon 
to store a count in one of the index registers (in this case B7). 
The second instruction is an indexed jump command (f= 72) to its 
own compiled address. 

DELAY is either a Category I or II declarator. If it is 
defined in a Category I declaration, the operand of the declaration 
call becomes the count. If it is in a Category II declaration, the 
count is a self-contained operand. 

At execution, the count is stored in B7; the indexed jump 
acts as a "do nothing" command by jumping repeatedly to itself, 
each time decrementing the count in B7 by one. When B7 is re­
duced to zero, the next sequential instruction is executed. 

The delay is equivalent to the execution time of the indexed 
jump instruction (8 microseconds) multiplied by the operand value 
(count). Input/output sense of the operand is ignored. 

Machine Code 

The declarator, MACHINE CODE, is the most versatile of 
all eleven declarators, even though restricted to Categories II and 
III. Its purpose is to provide the programmer with the ability to 
include any machine instruction of the AN/USQ-2~ repertoire in 
his source program. 

In Category II, the declarator is written in a manner to in­
clude the entire operand, a!ld, since the operand is the desired 
machine language instruction, it is incorporated verbatim into the 
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object program. This, of course, dictates that the operand as 
written in the definition be composed entirely of numbers. The 
indicated sense is always output. 

The operand is always divided into two halves. The first 
half contains the function code (two digits) and three designators 
(each one digit); the second half is the instruction operand which 
may contain an address or some data (one to five digits). 

One degree of flexibility exists in the Category II declaration 
involving MACHINE CODE. If the letter "L" is written to the im­
mediate right of the declaration operand's second half (this is the 
only exception to the rule of wholly numeric operands in Category 
II declaration definitions), it serves as a signal to the compiler 
that an addition is to be performed before generation of machine 
code. The compiled address of the machine language instruction 
is added to the operand contained in the half which precedes the 
"L", and the sum is substituted as the second half of the now fin­
ished machine code instruction. For example, the declarator 
(MACIDNE CODE (61~~~ OCT 77776 OCT L», might be compiled 
at address 423158, in which case the instruction as inserted in the 
object program would look like 61SJ'~~42314 since 77776 acts as a 
minus one. In the positive direction, (MACIDNE CODE (61~~~ 
OCT 13 OCT L», at a hypothetical address 267278 would generate 
a machine instruction 61~~~26742. 

It is emphasized that this facility to specify a relative ad­
dress in machine code should not be disregarded. In the first 
example, the programmer wished to jump to the instruction just 
passed; in the second example, the jump was to the thirteenth 
(octal) address beyond the generated instruction. 

As a Category ITI declarator, MACHINE CODE incorporates 
an operand in the definition and relies upon the call to provide an 
added operand. At compilation time, the corresponding operands 
are summed and the result becomes the operand of the machine 
language instruction. The indicated sense is always output. 

A single degree of flexibility also is possible in Category III 
MACHINE CODE declarations, but before explaining this it is 
necessary to first talk about another machine quantity. 
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One of the three designators mentioned previously as com­
ponents of the first half of a machine instruction is the operand 
interpretation designator "k." As the name would indicate, dif­
ferent values assigned to "k" cause the computer to interpret the 
instruction operand in different ways. For example, k = 1 forces 
consideration of only the lower half of the contents at the operand 
address; k = 3 causes the whole of the operand's contents to be 
considered. Values for "k" range from ~ to 7. 

The NELIAC compiler assigns a "k" of zero to all verbs 
because they are addresses and used solely as entry points. Full 
word nouns on the other hand are given a k = 3 because the entire 
contents are a candidate for further processing. 

When half-word algebra was indicated as preferable to other 
partial word algebra, the reason was the k-designator. Half-word 
nouns can be manipulated with no more difficulty than whole word 
nouns because k = 1 handles the lower half and k = 2 the upper half 
of nouns. 

If a Category III MACHINE CODE declaration is written with 
a "K" to the immediate right of the second half of the definition 
operand (same position as the "L" of Category II), whatever the k­
deSignator of the embryo declaration machine instruction in the 
definition, the k-designator of the declaration call operand sup­
presses and replaces it. For example, if the call operand is a 
verb, the machine code instruction inserted in the object program 
has a k-designator of zero; for a noun dimensioned as a full word, 
k becomes a three in the object program. 

This flexibility is more than a protection device. If prop­
erly used, an address or the contents thereof need never be im­
proper ly referenced. 

Regardless of the category declaration used, this declarator 
is the most demanding of all with regards to understanding the 
reference machine. However, it also provides the facility of writ­
ing an algorithm in machine code for purposes of efficiency in 
space and time since all function codes may be used, and each is 
transferred almost verbatim to the object program (without extra 
instructions to store and retrieve operands, etc., that one might 
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expect from the translation of near-English phrases to machine 
code). 

Also irrespective of category line is the fact that input/output 
sense is completely ignored in the MACIDNE CODE declaration. 
The output sense is normally assumed for appearance alone. 

Following are a synopsis (table B7-3) and a list of examples 
(table B7-4) of declarators. 

TABLE B7-3. CONSTITUENTS OF DECLARATORS 

RELEASE INTERRUPT LOCKOUT 
a. Category I or II 
b. Purpose: clear interrupt lockout mode 
c. Category I: f= 6j1, j = 1, clear lockout, jump to operand 
d. Category II: f = 6t1, j = t1, clear lockout, no jump, next 

sequential instruction 
e. No channel number specification necessary 

JUMP ACTIVE 
a. Category I or II 
b. Purpose: jump to specified address if channel is active 
c. Input: f= 62, Category I: input channel active, jump to 

operand; Category II: input channel active, jump to own 
address 

d. Output: f= 63, Category I: output channel active, jump to 
operand; Category II: output channel active, jump to own 
address 

e. If channel inactive, next sequential instruction 
f. Channel number required in definition 

EXTERNAL FUNCTION 
a. Category I, II, or III 
b. Purpose: control communications 
c. Input: f = 17, interrupt store instruction 
d. Output: f= 13, external equipment function command 
e. Channel number required in definition 
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TABLE B7-3. (CONT) 

GENERATE BUFFER CONTROL WORD 
a. Category I 
b. Purpose: establish BCW in Q-register; required for buffer 

or monitor buffer operations 
c. f= 1~, store BCW in Q 
d. Operand forms: LIST, LIST ($ MODIFIER 1 =) MODIFIER 2 

$), ($ LIST $); operand converted to BCW 
e. No channel number specification necessary 

BUFFER 
a. Category I 
b. Purpose: initiate data transmission; controlled by BCW 
c. Input: f = 73, initiate buffered input 
d. Output: /= 74, initiate buffered output 
e. Upon buffer termination, no definitive action 
f. Channel number required in definition 

SET INTERNAL INTERRUPT ENTRANCE 
a. Category I 
b. Purpose: store return jump at internal interrupt entrance 
c. Three instructions: (1) enter Q-register (/= 1,0) with con­

tents of next address, and skip around next address; (2) con­
tents: return jump instruction; (instruction operand furnished 
by call); (3) store contents of Q-register (/= 14) at internal 
interrupt entrance 

d. Entrance determined by input/output sense (call) and channel 
number (definition) 

MONITOR BUFFER 
a. Category I 
b. Purpose: initiate data transmission; controlled by BCW 
c. Input: f= 75, initiate buffered input 
d. Output: f = 76, initiate buffered output 
e. Upon buffer termination, jump to internal interrupt entrance 
f. Channel number required in definition 

SET EXTERNAL INTERRUPT ENTRANCE 
a. Category I 
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TABLE B7-3. (CONT) 

b. Purpose: store return jump at external interrupt entrance 
c. Three instructions: see SET INTERNAL INTERRUPT 

ENTRANCE 
d. Entrance determined by input/output sense (call) and channel 

number (definition) 

TERMINATE BUFFER 
a. Category II 
b. Purpose: manual buffer termination 
c. Input: 1 = 66, terminate input buffer 
d. Output: f = 67, terminate output buffer 
e . No internal interrupt generated 
f. Channel number required in definition 

DELAY 
a. Category I or II 
b. Purpose: provide delay between input/output operations to 

allow external devices to match communication flow 
c. Two instructions: (1) enter B7 index register (f= 12) with 

count; (2) indexed jump command (1= 72) to own compiled 
address (numQer of executions = count) 

d. When B7 = tS, next sequential instruction 
e. No channel number specification necessary 

MACHINE CODE 
a. Category II or III 
b. Purpose: include any machine language instruction in object 

program 
c. Operand is instruction; separated in two halves: (1) function 

code and designators; (2) instruction operand; each half nu­
meric, except in extended form 

d. Category II extended form: "L" after definition operand; 
generates instruction operand = sum of instruction I s compiled 
address and definition operand 

e. Category III extended form: "K" after definition operand; 
causes suppression of k-designator of definition operand and 
replacement with k-designator of call operand (verb: k = t1, 
half word noun: k = 1 or 2, full word noun: k = 3 
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ORIGINAL 

f. Channel number not normally required in definition (depends 
on operand) 

g. Input/output sense of c all ignored 

TABLE B7-4. EXAMPLES OF DECLARATORS 

a-I. RILl = LS RELEASE legal; Category I 
INTERRUPT LOCKOUT GR , definition 

a-2. ($ RILl LS JUMP ADDRESS and call 
GR , $), 

b-I. RIL2 = (RELEASE INTERRUPT legal; Category II 
LOCKOUT), definition 

b-2. ($ RIL2 LS , $), and call 
c-l. JAl = (5) LS JUMP legal; Category I 

ACTIVE GR, definition 
c-2. ($ JAl GR JUMP ADDRESS and call (input) 

LS , $), 
d-I. JA2 = (5) (JUMP ACTIVE), legal; Category II 

definition 
d-2. ($ JA2 LS , $), and call (output) 
e-I. EFl = (5) LS EXTERNAL legal; Category I 

FUNCTION GR , definition 
e-2. ($ EFl GR l~ OCT LS , $), and call (input) 
f-I. EF2 == (5) (EXTERNAL legal; Category II 

FUNCTION (4Jlj OCT », definition 
f-2. ($ EF2 LS , $), and call (output) 
g-I. EF3 = (5) LS EXTERNAL legal; Category III 

FUNCTION (4~ OCT) GR , definition 
g-2. ($ EF3 GR lJlj OCT LS , $), and call (input) 
h-l. GBCW = LS GENERATE legal; Category I 

BUFFER CONTROL WORD definition 
GR, 

h-2. ($ GBCW LS LIST GR , $), operand form 1 call, or 
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h-3. ($ GBCW LS LIST ($ 4 =) 7 $) operand form 2 call, 
GR , $), or 

h-4. ($ GBCW LS ($ LIST $) GR , $), operand form 3 call 
i-I. BUF = (5) LS BUFFER GR , legal; Category I 

definition 

i-2. ($ BUF GR LIST LS , $), and call (input) 

j-l. SIlE = (5) LS SET INTERNAL legal; Category I 

INTERRUPT ENTRANCE GR , definition 

j-2. ($ SIlE GR RETURN JUMP and call (input) 

ADDRESS LS , $), 
k-l. MBUF = (5) LS MONITOR legal; Category I 

BUFFER GR, definition 

k-2. ($ MBUF LS LIST GR , $), and call (output) 

1-1. SEIE = (5) LS SET EXTERNAL legal; Category I 

INTERRUPT ENTRANCE GR , definition 

1-2. ($ SEIE LS RETURN JUMP and call (output) 

ADDRESS GR , $), 
m-I. TBUF = (5) (TERMINATE legal; Category II 

BUFFER), definition 

m-2. ($ TBUF GR , $), and call (input) 

n-l. DELI = LS DELAY GR , legal; Category I 
definition 

n-2. ($ DELI LS COUNT GR , $) and call 

0-1. DEL2 = (DELAY (4~~~ OCT», legal; Category II 
definition 

0-2. ($ DEL2 LS , $), and call 

p-l. MCI = (MACHINE CODE legal; Category II 

(61~~~ OCT 14~~~ OCT», definition 

p-2. ($ MCI LS , $), and call 

q-l. MC2 = (MACHINE CODE legal; Category II 

(61~~~ OCT 54 OCT L», extended; definition 

q-2. ($ MC2 LS , $), and call 

r-l. MC3 = LS MACIDNE CODE legal; Category III 

(l~~~~ OCT ~) GR , definition 

r-2. ($ MC3 LS 49 GR , $), and call 

8-1. MC4 = LS MACHINE CODE legal; Category III 

(l~~~~ OCT ~K) GR , extended; definition 

8-2. ($ MC4 LS FULL WORD and call 
NOUN GR , $), 
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DEFINITION AND CALL 

This subsection summarizes the information on declarations 
that has been presented in this section. Specialized algorithm and 
address assignment types of declarations will be emphasized be­
cause they are far more apt to be written than the input/output 
type. 

Definition 

The function of system declarations should be reiterated at 
this point. The system declaration is reserved for the more dif­
ficult input/output routines and for those specialized algorithms 
and address assignments which are of sufficiently wide applica­
tion to merit writing them once and making them available to all 
system programmers. For these people, system declarations 
are well enough documented to reduce the use of declarations to 
copying the proper call into the source program at the correct 
places and to supplying the proper operands for the declaration 
call. Note well that the use of system declarations does not imply 
the writing of the declaration definitions since these are supplied 
by the system automatically when called. 

For purposes of efficiency or to remedy deficiencies in other 
portions of the language, the declaration definition as part of the 
source program may be utilized. If such is the case, it will be 
necessary for the programmer to know some of the finer details 
of declaration definition. 

The definition must be written as part of a declaration flow­
chart (section 2). These flowcharts may be located anywhere in 
the program prOVided they precede the particular declaration call 
in the program logic of some flowchart. It is therefore not sur­
prising to see the declaration flowchart(s) written before all other 
flowcharts in the program. 
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As previously stated, the general form of a declaration 
definition is 

VERB = ROUTINE , 

where VERB is any previously unused NELIAC name, and ROU­
TINE is an arithmetic and control operation segment, similar in 
purpose, if not likeness, to a flowchart's program logic. The 
routine of a declaration definition is composed of operators and 
operands. The operators, called declarators, are always in­
cluded in the definition. The operands, however, are written 
either in the definition or the call or both, depending upon the 
category that the programmer selects for his declarators. 

Normally, ROUTINE is composed of several declarators, 
the appropriate operands and any necessary punctuation. The 
definition may contain declarators of mixed categories; e. g. , 
MACHINE CODE of Category II, EXTERNAL FUNCTION of Cate­
gory I, DE LA Y of Category II, and MACHINE CODE of Category 
III may all be in the same definition. Incorporating these declara­
tors, a definition might be 

TROUBLE = (MACHINE CODE (11,fj3,fj OCT ,fj L», 
LS EXTERNAL FUNCTION GR , 
(DELAY (4tJtJ OCT », 
LS MACHINE CODE (61,fjtJtJ OCT tJ) GR , 

(No attempt at creating a meaningful declaration has been made.) 

Since all declarators except MACHINE CODE are primarily 
input/output oriented, it is not surprising to find that specialized 
algorithms rely upon this particular declarator. To illustrate 
the form for definitions of specialized algorithms, the following 
system declaration has been chosen for analysis: 

SEARCH NOT BETWEEN = LS MACHINE CODE 
(11f13~ OCT ,fjK) GR , 
LS MACHINE CODE 
(1f1~3~ OCT ~K) GR , 
(MACHINE CODE (21f1~~ 
OCT 1», 
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LS MACHINE CODE 
(70230 OCT ~K) GR , 
LS MACHINE CODE 
(04537 OCT 77776 OCT 
~K) GR , 
LS MACHINE CODE 
(61000 OCT 0K) GR , 
LS MACHINE CODE 
(1673~ OCT ~K) GR , 

Since the MACHINE CODE declarator contains the major 
portion of the machine language instruction as its operand, one may 
expect just seven machine language instructions to be generated 
from the above definition. Six of the seven declarators are 
enclosed in punctuation indicating Category m, and therefore the 
programmer would be expected to supply six operands in the 
declaration call. The seventh operand is self-contained. 

The six operand meanings are as follows: first declarator, 
"lower argument"; second, "upper argument"; third, "list length 
to search"; fourth, "name of list"; fifth, "no find entry"; and sixth, 
"find index." The machine language routine inserted in the object 
program for this definition will read: 

a. Enter the A-register with the lower argument. 

b. Enter the Q-register with the upper argument. 

c. Subtract one from the contents of the A-register and 
store the result in the A-register. 

d. Execute the next instruction a number of times equal to 
the list length to search; decrement the instruction oper­
and of the next instruction by one upon each execution; 
enter the list length into B7. 

e. Compare: skip the next instruction if the contents of 
the entry being examined are greater than the contents of 
the Q-register, or less than or equal to the contents of 
the A-register. The address of the first entry of the 
list to be examined is equal to the address identified by 
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the name of the list, plus the length of the list minus 
one (i. e. , the search begins at the end of the list and 
terminates at the beginning). 

f. Jump unconditionally to the "no find" routine entry. 

g. Store the contents of the index counter (B7) in the loca­
tion identified as "find index. " 

To summarize the purpose of the declaration: the declara­
tion causes a list of a known length to be searched for values 
between an upper and a lower limit. If a find is made at any point, 
the search is abandoned with the index count saved for purposes of 
later reference. If no find is made, the declaration is exited and 
a jump to a routine implying "no find" is made. 

With the tools given, little additional explanation other than 
the understanding of machine instructions is necessary. Several 
points of punctuation come to mind: the OCT or octal symbol must 
be written whenever the numeric portion of an operand is to be 
interpreted by the compiler in the octal number system; each 
declarator (and operand, if required) is separated from the suc­
ceeding declarators by a comma; and any additional punctuation is 
determined by the category selected. 

A hybrid category has not been classified with the other 
three. This "fourth" category is not a true declaration type, but 
is instead a specification of the order in which a series of declara­
tions are to be executed. All declarations specified must have 
been previously defined. The specification itself is a definition 
and is given a name. The call for this declaration from program 
logic must provide the necessary operands for all the designated 
declarations and in the order they are to be executed. A sample 
definition might be: 

NAME 1 = (4) LS EXTERNAL FUNCTION GR, (DELAY 
(OPERAND 2», 

NAME 2 = (6) LS BUFFER GR, LS MACHINE CODE 
(OPERAND 4a» GR , 

NAME = NAME 1, NAME 2, 
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Sample call: 

( $ NAME LS OPERAND 1 GR, LS, LS OPERAND 3 GR , 
LS OPERAND 4b GR , $), 

Although this example is strictly input/output oriented, the 
same formation could be used with the specialized algorithms. 

In connection with the example, the channel number of each 
declaration applies to all declarators in that declaration which 
require a channel number. If a different channel is to be specified, 
then a separate declaration must be written (note that NAME 1 used 
channel 4 and NAME 2 used channel 6; if the declarators in NAME 
2 had referenced channel 4 instead of 6, the two declarations could 
have been merged into one, but not necessarily). 

The address assignment form of declaration is unique. It 
enables the programmer to assign a name to a particular machine 
address. Any nonrelocatable routine (program compiled ata given 
address) introduced into core simultaneously with a NELIAC pro­
gram is executable only if the machine address is given a NELIAC 
name. 

The format of such a declaration definition is 

VARIABLE ' 'K ADDRESS, 

VARIABLE is any NELIAC name; K is the operand interpretation 
designator (see MACHINE CODE in preceding subsection on 
declarators); ADDRESS is an octal or decimal machine address. 
Each address assignment is followed by a comma. Consider the 
declaration which allows reference to the specially wired clock 
register at address ~~~36 octal: 

CLOCK' '3 36 OCT , 

As before, the k-designator reflects the address usage: ~ for 
verbs, 3 for full word nouns, etc. 

Address assignment declarations need no calls; they are the 
exception to the rule, and may be considered self-calling. 
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Calls 

The declaration programming device comes in two parts, 
mentioned previously: the definition and the call. For input/output 
and specialized algorithms they are inseparable- -one cannot be 
used without the other. Both are needed to generate the machine 
code. 

The call is found in the program logic of any process flow­
chart. Depending upon the categories of the declarators involved 
in the definition, the call may provide the input/output sense and/or 
operands to complete the machine language instructions. The 
operands of a call must line up with the spaces left for them in the 
definition; they must be in the order specified and in number equal 
to the requirements. 

ConSider, if you will, a call on the system declaration, 
SEARCH NOT BETWEEN, illustrated previously: 

($ SEARCH NOT BETWEEN LS 4ft1ft1 OCT GR , 
LS 45~ OCT GR , 
LS 47 OCT GR, 
LS DATA BANK GR , 
LS NOFIND GR , 
LS CONTINUE GR, $), 

The requirements were filled; 4~~8 became the lower argu­
ment, 45~8 the upper argument, 478 the list length to search, DATA­
BANK the name of the list, NOFIND the "no find" entry, and 
CONTINUE the "find index." Note that they were equal in number 
to the definition needs and in the order prescribed; there was no 
call operand (or space left blank) for the operand already specified 
in the definition. 

The call from the program logic causes the compiler to gen­
erate a machine language routine from the function codes (disguised 
as declarators) of the definition and the addresses and values of the 
call. Machine instructions are inserted in the object program each 
time the call is written. 
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To prevent the inclusion of the same machine instructions 
every time the identical declaration is referenced, the programmer 
may enclose the declaration call between BEGIN and END punctua­
tion, making it a closed subroutine. The subroutine may have the 
same name as the declaration. Any subroutine call of this form 
simply generates a return jump to the declaration routine which is 
included once in the object program. 

The general form for a declaration call is 

($ VERB LS OPERAND 1 GR, GR, GR OPERAND 2 LS, 
• •• , $), 

An input operand is specified GR . .. LS, and an output operand is 
vice versa. In a call the sense frequently determines the function 
code of the machine instruction generated, but where no sense is 
required by the declarator the output sense is assumed. In a call 
input and output operands may be mixed. Each operand is 
enclosed by GR and LS and commas separate operands. Each 
declaration call begins with the combination ($ VERB LS or 
($ VERB GR . 

Operands may be of four forms: address variables (verbs), 
input operands (register variables, whole or half word nouns), out­
put operands (whole or half words) and buffer operands (see dis­
cussion of GENERATE BUFFER CONTROL WORD under "Declara­
tors" in this section). Note that index register variables should 
not be used as operands into which values are to be stored; for 
example, "find index" in the SEARCH NOT BETWEEN declaration 
may not be stored in an index register. 
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8. COMMENTS, ABSOLUTE CODE, 
AND WRITE PACKAGE 

COMMENTS 

The purpose of COMMENT statements is to provide the pro­
grammer with a means for writing into his NELIAC algorithm any 
alphanumeric information he considers necessary for the under­
standing of the dimensioning and program logic. When written in 
the prescribed format, the COMMENT is ignored by the compiler; 
it appears only in the input medium (cards, tape, etc.) and on the 
hard copy listing of the source program. A COMME NT will not be 
printed at execution time. 

The correct form for the statement is 

(COMMENT' , this is a comment) 

Between the double apostrophe and the right parenthesis, any of the 
NELIAC symbols (except another right parenthesis,of course) may 
be used to increase program clarity. The statement may be 
written anywhere in the algorithm, as in the following example: 
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5 
(COMMENT' , DIMENSIONING 123 * / + - END) 
A, B, C $ 
(COMMENT' , PROGRAM LOGIC) 
A + B =) C, 
(COMMENT' , END OF PROGRAM) 
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ABSOLUTE CODE 

This element of the NE LIAC language is an archaic leftover 
from the predeclaration days. Although it is still acceptable by 
most, if not all compilers, the absolute code--commonly referred 
to as "crutch code" because early compilers were incomplete and 
had to "lean" on the machine language to provide full capabilities-­
is now replaced by the declaration. 

The absolute code is very similar to the operand of the 
MACHINE CODE declarator. There are five octal digits corre­
sponding to the function code f, the deSignators j, k, and b, fol­
lowed by the octal sign OCT and the instruction operand Y which 
may be numerical or a noun, subscripted or not. (Subscripting is 
limited to constants and index register variables.) The numerical 
Y has one or more digits which are assumed to be decimal unless 
indicated as octal. Absolute code may be inserted in the flowchart 
at any point in the program logic and requires no external punctua­
tion except a comma to set it off from any succeeding instructions. 
All instructions in the repertoire of the reference computer may 
be implemented in the NELIAC source program. Following is an 
example of absolute code: 

5 
A, B, C, D (4), 
$ 
1 =) A =) B, 

A + B =) C, 
10030 OCT C, 
14030 OCT D ($ 3 $), 
D ($ 3 $) =) A =) B, 
10030 OCT B, 
26000 OCT 00436 OCT, 
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WRITE PACKAGE 

Declarations and absolute code provide the only means for 
input communications to the computer in the NELIAC language. 
However, an additional output programming device--the "write 
package"--is available for generation of hard copy information. 

Basically, the package has two output capabilities: the title 
literal and the formatted literal. The title literal is a message 
written by the programmer for use as a heading or title for the 
anticipated output or as a means for generating error messages. 
This literal, defined in the dimensioning portion of the flowchart, 
reflects the precise information requested for output. It has the 
general form 

($ TITLE LITERAL' , LS HEADING GR $), 

TITLE LITERAL may be any previously unused NELIAC 
name. HEADING may contain any alphanumeric characters or 
symbols (except the apostrophe, double asterisk, /, LS , or GR ) 
that the programmer wishes to employ as a title. It is written be­
tween the LS and GR punctuation combination. As mentioned pre­
viously, the literal is defined in the flowchart dimensioning. 

To print the title literal, the programmer uses the statement 

WRITE (TITLE LITERAL), 

at that point in the program logic where he intends to output the 
HEADING. TITLE LITERAL therefore acts the same as a noun 
switch entry; calling the noun from the program logic causes the 
message defined to be outputted on the high speed printer. 

The formatted literal is the more general of the two, since 
it incorporates the facilities of the title literal. It is formatted in 
the sense that this literal allows the programmer to output the 
contents of variables listed in the program logic call according to 
the format specified in the literal definition in flowchart dimen­
sioning. 
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The formatted literal definition is an image of the form in 
which the programmer wishes to output any alphanumeric messages 
and numerical results. This literal affords, as well, the opportun­
ity to control the printer with three special symbols. 

As before, the literal is given a name to identify it for call. 
Any messages, formatted data output specifications, and control 
symbols are included between the double apostrophe and the $) 
combination, as in the following example: 

($ FORMATTED LITERAL' , DATA FORMAT, 
CONTROL SYMBOLS, LS MESSAGES GR $), 

DATA FORMAT provides the following data images: 

a. 888. .. (Contents of the variable named in the call out­
putted in octal notation.) 

b. ~~~ ... (Contents of the variable named in the call out­
putted in fixed point decimal notation. ) 

c. XXX. .. (Contents of the variable named in the call out­
putted in alphanumeric. ) 

In all of the above images, the number of characters written 
in the format dictates the number of spaces on the printed line that 
the compiler will reserve for the contents of the call variable. The 
programmer must insure that the proper format length is used to 
prevent data truncation upon output. If the outputted data does not 
fill the field reserved, blank spaces will be inserted by the printer. 
For numeric output a space for a sign must be provided. 

d. ~~. ~~~ ... (Contents of the variable named in the call 
outputted in floating point decimal notation; the number 
of zeros preceding the decimal point indicates the length 
of integral portion of the floating point data plus sign 
that the programmer anticipates outputting; the length of 
the zeros to the right of the decimal point specifies the 
degree of fractional accuracy desired.) 
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e. 00.000 * 00. .. (Contents of the variable named in the 
call outputted in the engineering notation of floating point 
decimal numbers; the characters to the left of the aster­
isk act in a fashion similar to the preceding specification; 
the zeros to the asterisk's right are the exponent length 
that the programmer will allow; this format is generally 
used when the magnitude of results is unknown.) 

CONTROL SYMBOLS cause the printer to execute a top of 
form, or spacing control, or a line skip: 

a. ** (Generates a top of form command to the printer.) 

b. 'N' (Generates spacing control--N spaces on a line are 
inserted in the line output; N is a decimal fixed point 
number. ) 

c. / (Generates a line skip, equivalent in theory to a 
carriage return.) 

MESSAGES allow the programmer to insert the equivalent of 
a title literal within a formatted literal. There is no extraordinary 
restriction placed on the MESSAGES because of their inclusion in 
the formatted literal. 

The write package provides in addition the capability to re­
peat any of the data formats, control symbols, or messages in any 
literal output. The repeat format is 

($ NAME ' , (M , , FORMATTED LITERAL) $), 

NAME is the noun by which the literal may be referenced. M 
is a fixed point decimal number which specifies how many times the 
FORMATTED LITERAL will be repeatedly printed. For example: 
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(COMMENT' , DIMENSIONING) 
($ OUTPUT' , '20' (3 ' , 'S' 00) / ** 

LS POUNDS PER INCH GR $), 
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OUTPUT is the literal name; '2e' indicates twenty spaces; 
(3 " 's' ee) causes eight spaces followed by two fixed point decimal 
digits to be repeated three times; / is a line skip and ** a top of 
form; "POUNDS PER INCH" is printed on the top of a new form. 

Calling the literal with the following statement commands the 
output of the contents of the three variables requested. 

(COMMENT" PROGRAM LOGIC) 
WRITE (OUTPUT, X, Y, Z), 

The result of such a call is shown in figure BS-l. 

PAGE 1: 

LINE 1: 15 9 -4 

1-2aSPACEs-1 I-aspo-I l-aspo-II- 7I1SPACES-1 
LINE 2: (BLANK) 

PAGE 2: 

LINE 1: POUNDS PER INCH 

I 1- 1(15 SPACES -I 

Figure BS-l. Formatted literal output. 
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9. CASE STUDIES 

PROBLEM ONE 

Statement 

Three simultaneous equations with three unknowns--x, y, 
and z --are presented for solution. The values of the unknowns are 
to be found to the nearest integer. 

ORIGINAL 

The equations are: 

x + 2Y = 28 

9X + 5 Y + 6Z = 215 
7 X + 8 Y + 3Z = 181 
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Problem Discussion 

Any three simultaneous equations with three unknowns may 
be represented in the following form: 

A X +B Y +C Z =D 
1 1 1 1 

As any algebraist knows, to find an unknown in terms of known 
quantities (such as' coefficients), the other unknowns in the equa­
tions must be eliminated through algebraic manipulation. Once one 
unknown is found, the other unknowns may be determined through 
substitution of the new "known" into some intermediate equations. 

The equations for solution, then, are: 

There is nothing very complicated about this problem. The 
reader can already anticipate a fairly simple approach and solution. 

To aid in the numerical solution, the constants of the given 
equations are assigned to the hypothetical coefficients: 

A 0 = 1, B 0 = 2, C 0 = 0, D 0 = 28 

A - 9 B = 5 C = 6 D = 215 1-' 1 '1' 1 

A = 7 B = 8 C = 3 D = 181 
2 ' 2 ' 2 ' 2 
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Flowchart 
The solution presented here (figure B9-1) is one of a large 

number which could be written to achieve the correct answer. The 
attack made here is the straightforward approach. Wherever pos­
sible, repeated computations are eliminated by preprocessing the 
coefficients. The algebra is reduced through the use of common 
terms. The output is printed by means of the write package. 

ORIGINAL 

5 

A(3) EQ 1, 9, 7, 

B(3) EQ 2, 5, 8, 

C(3) EQ (J, 6, 3, 

0(3) EQ 28, 215, 181, 

TERM(6), 

($HEAOING I 1** 125 1 LS OUTPUT FROM NELIAC PROBLEM ONE GR III 

129 1 LS X GR 19 1 LS V GR 19 1 LS Z GR II $), 

($OUTPUT II 12(J1 (3 1118 1 (J(J)/**$), 

X,V,Z 

$ 

COMPUTE THE ANSWERS I 
I 

O($(J$) * A($l$) - 0($1$) * A($(J$) =) TERM($(J$), 

C($(J$) * AC$l$) - CC$1$) * AC$(J$) =) TERMC$l$), 

BC$l$) * AC$2$) - BC$2$) * A C$1$)=) TERMC$2$), 

OC$l$) * AC$2$) - OC$2$) * AC$l$) =) TERMC$3$), 

CC$l$) * AC$2$) - CC$2$) * A($l$) =) TERMC$4$), 

B($(J$) * A($1$) - B($l$) * AC$(J$) =) TERM($5$), 

CTERM($(J$) * TERM($2$) - TERMC$3$) * TERMC$5$» I 

CTERMC$l$) * TERMC$2$) - TERMC$4$) * TERMC$5$) ) =) Z, 

CTERMC$(J$) - Z * TERM{$l$» I TERM{$5$) =) V, 

(DC$(J$) - BC$(J$) * V - CC$(J$) * Z) I A{$(J$) =) X, 

WRITECHEAOING), WRITECOUTPUT, X, V, Z), 

Figure B9-1. NELIAC problem one, flowchart. 

B9-3 



B9-4 

Flowchart Discussion 
This step-by-step assessment of the flowchart is intended to 

provide a confirmation of the rules developed in the text and to 
suggest ideas for programmers who may be undecided on direc­
tions to take. 

a. 5 (Control number; informs compiler that this is to be a 
process flowchart.) 

b. A(3) EQ 1, 9, 7, (First dimensioning statement; presets 
the list called A with three fixed point constants.) 

c. B(3) EQ 2, 5, 8, (List B preset with three fixed point 
constants. ) 

d. C(3) EQ 0, 6, 3, (List C preset with three fixed point 
constants. ) 

e. D(3) EQ 28, 215, 181, (List D preset with three fixed 
point constants. ) 

f. TERM(6), (List called TERM dimensioned as six ele­
ments in length; all elements preset to zero.) 

g. ($HEADING' , ** '25' LS OUTPUT FROM NELIAC 
PROBLEM ONE GR / / / '29' LS X GR '9' LS Y GR '9' 
LS Z GR /1$), (Literal; identified by an address 
variable, in this case HEADING; double asterisk indi­
cates a top of form command; all numbers enclosed in 
apostrophes are spacing specifications; any information 
contained between the LS and GR punctuation is to be 
outputted on the printer; a slash indicates a line skip.) 

h. ($OUTPUT" '20' (3' , '8' 0~) I ** $), (Another literal, 
this one named OUTPUT; twenty spaces; parenthesized 
specification indicates that information will be out­
putted via the literal in a format given by the specifica­
tion; here the 3 indicates that everything following the 
double absolute Sign is to be repeated three times-­
eight spaces and a two decimal integer result; this is 
followed by a line skip and a top of form operator. ) 
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i. X, Y, Z (Three fixed point nouns, all preset to zero.) 

j. $ (End of dimensioning, beginning of program logic. ) 

k. COMPUTE THE ANSWERS' , (Verb; name of the 
flowchart. ) 

1. D($m$) * A($l$) - D($l$) * A($m$) =) TERM($m$), (First 
line of program logic; computes (Dm) • (AI) - (D1) . (Am) 
and stores the result in a temporary storage word, 
TERMm· ) 

m. C($m$) * A($l$) - C($l$) * A($m$) =) TERM ($1$), (Com­
putes (Cm) • (AI) - (Cl) • (Am) and stores the result in a 
temporary storage word, TERM1.) 

n-l. B($l$) * A($2$) - B($2$) * A($l$) =) TERM($2$), 

n-2. D($l$) * A($2$) - D($2$) * A($l$) =) TERM($3$), 

n-3. C($l$) * A($2$) - C($2$) * A($l$) =) TERM($4$), 

n-4. B($m$) * A($l$) - B($l$) * A($m$) =) TERM($5$), (Com­
putation of TERM2 through TERM

5
.) 

o. (TERM($m$) * TERM($2$) - TERM($3$) * TERM($5$) ) I 
(TERM($l$) * TERM($2$) - TERM($4$) * TERM($5$) ) =) Z, 
(Computation of the first unknown Z based on the values at 
the temporary storage locations. ) 

p. (TERM($m$) - Z * TERM($l$) ) I TERM($5$) =) Y, (Com­
putation of the unknown Y based on the temporary storage 
values and the parameter Z.) 

q. (D($m$) - B($m$) * Y - C($m$) * Z) / A($m$) =) X, (Com­
putes (Dm - (Em) (Y) - (em) (Z» divided by Am which 
sol ves for the last unknown X in terms of the other 
parameters Y and Z and the equation coefficients. ) 

r. WRITE (HEADING), WRITE (OUTPUT, X, Y, Z) (Outputs 
the title literal, the formatted literal, and the three un­
knowns.) The printed output appears as: 
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OUTPUT FROM NELIAC PROBLEM ONE 

X 
14 

s. (Flowchart termination.) 

PROBLEM TWO 

Statement 

y 

7 

Z 

9 

This problem concerns a picture window with two parallel 
glass panes of differing compositions and widths separated by an 
air space (figure B9-2). 

Q 

INDOORS OUTDOORS 

I 
I I 

GLASS GLASS 
I I 

I 
Mg M M2 1 

Tj = TEMPERATURES AT THE VARIOUS BOUNDARIES 

Mj = MEAN LAYER TEMPERATURES 

Xj = LAYER WIDTHS 

Cj = LAYER CONDUCTIVITIES 

Q = RATE OF HEAT FLOW (CONSTANT) 

Figure B9-2. NELIAC problem two, diagram. 

Q 
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The indoor and outdoor temperatures, and the layer widths 
are known; the conductivity of each layer is assumed to be a linear 
function of the layer's mean temperature. The time is some night 
during winter when heat flows in the indoor-to-outdoor direction 
through the glass. 

The rate of heat flow and the internal temperatures at the 
air/glass boundary are to be found and outputted on the high speed 
printer. 

Problem Discussion 

This problem is considerably more difficult than the first, 
but not beyond the reach of a new programmer. There are two 
reading approaches possible: first, consideration of all aspects: 
theory, formulae, and fabrication of an algorithm for solution (this 
is the long way); or, second, use of the algorithm provided toward 
the end of this discussion. It is, of course, up to the reader which 
course he takes; the discussion will encompass both approaches. 

Since the conductivities (or inverse resistance to heat flow) 
C i are assumed to be linearly dependent upon the mean layer tem­
peratures M i, in general one may state that 

C.=A. M.+ B. 
~ ~ ~ 1, 

(1) 

In turn, the mean temperatures M i are found by averaging 
the temperatures T i at the boundaries of each layer: 

(2) 

The rate of heat flow Q is the quotient found by dividing the 
indoor-outdoor temperature differential (Tf1 - T3) by the sum of the 
quotients formed in the division of each layer thiclmess Xi by its 
conductivity Ci: 
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(3) 

The known quantities in the equation above are too few: 
T0, T 3 , X0, Xl' and X 2- Somehow the conductivities C i must be 
ascertained in order to solve for Q_ 

The rate of heat flow is known to be constant; if equations are 
written for the Q across each layer, the following equalities are 
obtained: 

TI - T2 T2 - T3 
(4a) 

or, by multiplying the denominator up, 

(4b) 

Substituting the right-hand term of equation (1) for Q, and dropping 
the middle term of equations (4a) and (4b) which have only one 
known quantity, the following is obtained: 

= 

Solving for the intermediate temperatures T 2 and T
3

, equations 
(5a) and (5b) evolve: 

T = T + 
2 3 

(5 a) 
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(5b) 

In equations (5a) and (5b), note that all unknowns save Ci' 
the conductivities of each layer, have been eliminated. Reviewing 
equations (1) and (2), it becomes evident that C i is dependent upon 
Ti; conversely, in equations (5a) and (5b), the dependency is re-
versed. Hence, the conclusion is that there are too many unknowns 
for so few equations. Consequently, the approach to solution must 
incorporate an iterative scheme. 

The algorithm begins with an initial ~ess at the interval 
boundary temperatures Tl and T2• Thereafter, the solution pro­
ceeds as follows: 

a. Solve for the mean layer temperatures M i using 
equation (2). 

b. Solve for the layer conductivities Ci using equation (1). 

c. Sol ve for the rate of heat flow Q using equation (3). 

d. Solve for a corrected set of internal temperatures Tl 
and T2 using equations (5a) and (5b). 

e. Repeat steps a. through d. until the rate of heat flow Q , 
as determined in step c., is approximately equal for two 
successive calculations. When that occurs, the problem 
stands solved. 

Indoor temperature T 0 and outdoor temperature T3 will be 
70 and 0 degrees, respectively. The widths X0, Xl' and X2 will 
be 0.25, 0.2, and 0.15 inch, in that order. The arbitrary con­
stants A i and Bi are given as follows: 

ORIGINAL 

A0 = .0025, Al = .00028, A2 = .002 

B0 = • 0419, Bl = • 0036, B2 = .0407 
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Flowchart 
As in the case of the Problem One example, this solution 

(figure B9-3) is only representative of many which could have been 
written. The approach is largely straightforward, but a loop is 
fashioned from entry pOints and a conditional transfer in order to 
force repeated execution of the steps outlined in the preceding sub­
section. Because of the floating point specification of the known 
data, this flowchart differs in mode from the last. Output again is 
printed by the write package. 

5 

T(4) EQ 7rJ.f}, 9rJ.rJ, 8.rJ, rJ.rJ, 

A(3) EQ rJ.rJ.025, (1.rJrJrJ28, rJ.rJ(l2, 

B(3) EQ rJ. rJ419, rJ. rJrJ36, rJ. rJ4(l7 , 

C(3). 

MN(3). 

X(3) EQ rJ. 25, rJ.2(l, (l.15, 

SAVE. RATE. TEMP 1. TEMP 2. RATE OF HEAT FLOW. , 

($HEAD' : III 11rJ I LS INTERMEDIATE RATE OF HEAT FLOW GR III $), 

($HEADING' 1** 1251 LS RATE OF HEAT FLOW IN DEGREES/INCH GR III $), 

($OUTPUT ' 1 LS RATE OF HEAT FLOW EQ GR III rJrJ.rJ(lrJ(lrJ I 

LS TEMP 1 EQ GR 'II (lrJ.rJrJ(l(lrJ I 

LS TEMP 2 EQ GR 'II rJrJ.rJrJrJrJrJ 1$) $ 

RATE ROUTINE' , 

(T ($rJ$) + T($l$) )/2.rJ =) MN($rJ$), 

(T ($1$) + T($2$) )/2.rJ =) MN($l$), 

(T ($2$) + T($3$) )/2.rJ =) MN{$2$), 

A{$(1$) * MN($rJ$) + B($rJ$) =) C($rJ$), 

A($l$) * MN($l$) + B($l$) =) C($l$), 

A($2$) * MN($2$) + B($2$) =) C($2$), 

(T ($rJ$) - T($3$) )/( (X ($rJ$) I C($rJ$» + (X ($1$) I C($l$» + ex ($2$) I 

C($2$) ) ) =) RATE, 

Figure B9-3. NELIAC problem two, flowchart. 

ORIGINAL 



RATE - SAVE LS (1.(1(1(1(11 I r SAVE - RATE LS (1.(1(1(1(11 I I STOP. $ $ $ 

( (X ($2$) / C($2$) ) * (T ($(1$) - TC$3$) ) / ( (X ($(1$) / C($(1$» + 

(X ($1$) / C($I$» + (X ($2$) / C($2$»» + TU.3$) =) T($2$), 

T($(1$) - ( (X ($(1$) / C($(1$) ) * (T ($(1$) - T($3$) ) / ( (X ($(1$) / C($(1$) ) 

+ (X ($1$) / C($I$» + (X ($2$) / C($2$»» =) T($I$), 

T($I$) =) TEMP 1, T($2$) =) TEMP 2, RATE =) RATE OF HEAT FLOW, 

WRITE(HEAO), WRITE(OUTPUT, RATE OF HEAT FLOW, TEMP 1, TEMP 2, ), 

RATE =) SAVE, 

. RATE ROUTINE. 

STOP' I 

T($I$) =) TEMP 1, T($2$) =) TEMP 2, RATE =) RATE OF HEAT FLOW, 

WRITE(HEAOING), WRITE(OUTPUT, RATE OF HEAT FLOW, TEMP 1, TEMP 2), 

Figure B9-3. (Continued) 

Flowchart Discussion 

Many programming techniques in this flowchart are similar 
to those used in the solution of the previous Problem One. Al­
though the techniques themselves are listed, discussions of these 
techniques are not repeated here; refer to the "Flowchart Discus­
sion" for Problem One if this information is required. 

ORIGINAL 

a. 5 

b. T(4) EQ 70.0, 90.0, 8.0, 0.0, 

c. A(3) EQ 0.0025, 0.00028, 0.002, 

d. B(3) EQ 0.0419, 0.0036, 0.0407, 

e. C(3). (Floating point mode established; three zeros 
stored. ) 

f. MN(3). 

g. X(3) EQ 0.25, 0.20, 0.15, 

h. SAVE. RATE. TEMP 1. TEMP 2, RATE OF HEAT 
FLOW. , 
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i. ($HEAD' , / / / '10' LS INTERMEDIATE RATE OF HEAT 
FLOW GR /// $), 

j. ($HEADING" ** '25' LS RATE OF HEAT FLOW IN 
DEGREES/INCH GR / / / $), 

k. ($OUTPUT" LS RATE OF HEAT FLOW EQ GR '1' 
00. 00000 / LS TEMP 1 EQ GR '1' 00.00000 / 
LS TEMP 2 EQ GR '1' 00. 00000 / $) $ (The 00. 00000 
format specification info rms the compiler that a maxi­
mum positive integral number of 99 or a maximum nega­
tive integral number of -9 is anticipated; five decimal 
places of accuracy are requested.) 

1. RATE ROUTINE" (Entry point for the iterative pro­
cedure. ) 

m-1. (T ($0$) + T($l$) )/2.0=) MN($0$), 

m-2. (T ($1$) + T($2$) )/2.0=) MN($l$), 

m-3. (T ($2$) + T($3$) )/2.0 =) MN($2$), 

m -4. A($0$) * MN($0$) + B($0$) =) C ($0$), 

m-5. A($l$) * MN($l$) + B($l$) =) C($l$), 

m-6. A($2$) * MN($2$) + B($2$) =) C($2$), (Generation of 
mean temperatures and conductivities. ) 

n. (T ($0$) - T($3$) )/ ( (X ($0$) / C ($0$) ) + (X ($1$) / 
C($l$) ) + (X ($2$) / C($2$) ) ) =) RATE, (Computation 
of Q.) 

o. RATE - SAVE LS 0.00001' , SAVE - RATE LS 0.00001 
" STOP. $ $ $ (Comparison statement which checks 
to see if the new and previous values of the rate of heat 
flow are nearly equal, within a tolerance of 1 x 10-5; 
true alternative causes jump to end of routine; false or 
partially false alternatives all cause regeneration of the 
intermediate boundary temperatures and an intermediate 
printout. ) 
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p. «X ($2$) / C($2$) ) * (T ($0$) - T($3$) )/ ( (X ($0$) / 
C ($£1$) ) + (X ($1$) / C ($1$) ) + (X ($2$) / C ($2$) ) ) ) + 
T($3$) =) T($2$), 

q. T($0$) - ( (X ($£1$) / C($0$) ) * (T ($0$) - T($3$) ) / 
( (X ($£1$) / C($£1$) ) + (X ($1$) / C($I$) ) + (X ($2$) / 
C($2$) ) ) ) =) T($I$), 

r. T($I$) =) TEMP 1, T($2$) =) TEMP 2, RATE =) RATE 
OF HEAT FLOW, 

s. WRITE(HEAD), WRITE (OUTPUT, RATE OF HEAT FLOW, 
TEMP 1, TEMP 2, ), 

t. RATE =) SAVE, 

u. RATE ROUTINE. (Direct jump to the entry point for the 
iterative procedure. ) 

v. STOP" (End of routine; entry point. ) 

w. T($I$) =) TEMP 1, T($2$) =) TEMP 2, RATE =) RATE 
OF HEAT FLOW, 

x. WRITE (HEADING) , WRITE (OUTPUT, RATE OF HEAT 
FLOW, TEMP 1, TEMP 2), 

y. 

A sample intermediate solution follows: 

INTERMEDIATE RATE OF HEAT FLOW 

RATE OF HEAT FLOW = 4. 46972 

TEMP 1 = 65.38£160 

TEMP 2 = 13. 76712 
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The rate of heat flow, correct to five decimal places, is 
given in the final printout: 

RATE OF HEAT FLOW IN DEGREES/INCH 

RATE OF HEAT FLOW = 3. 88173 

TEMP 1 = 65.40417 

TEMP 2 = 11.21554 

A number of improvements could have been made. For ex­
ample, the generation of the mean temperatures and conductivities 
could have been relegated to functions, and the iterative scheme 
reduced from four instructions to two: the computation of Q, and 
the generation of improved values for the internal temperatures. 
However, this was not done because it would have changed the 
originality of the NE LIAC program produced by a new programmer 
on the third try, which speaks well for the language. 
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