
M-460
COMPUTER
Characteristics

DIVISION OF SPERRY RAND CORPORATION

UNIVAC PARK· SAINT PAUL 16, MINNESOTA

[C
l

~ Z U
00 ~ S'
'E..
e;

C4 (t)

0...

~
INTE:PR~ ra,

CS
~ e:.
tj

MEMORY S' c8
~
~

S
0 C7 t-t,

c-t-
p-'
(t)

q
X P S ~

~'
~

~
J::..
~
0

(1
0
S
"0
~
c-t-
(t)

~

[
A --+(SHIFT

------' --- Q

The Univac M-460 Computer.

M-460

COMPUTER CHARACTERISTICS

GENERAL

The Univac M-460 Computer is a stored program computer intended for
the rapid handling of large quantities of complex data. Relative to other general
purpose computer systems, the M -460 Computer emphasizes random access
storage and communication with external devices. The internal operations are
performed in a parallel binary mode, with a 30-bit instruction word and either
a 15- or 30-bit data word. Instructions are of the one-address type, with an
average execution time of 20 microseconds. Synchronous logic is used with a 2
megacycle clock rate.

The internal storage of the computer consists of a maximum of 8 modular
units. Each of these units consists of 4096 magnetic core storage locations with
a 30-bit capacity per location. Each of the possible 32,768 storage locations may
be interpreted as a single 30-bit word, or as two 15-bit words individually ad­
dressed. The control, arithmetic, and input-output sections of the computer have
independent access to the storage section. Information flows over parallel trans­
mission paths between the storage unit and other units in the system. A complete
storage cycle of read followed by write requires 8 microseconds.

The arithmetic and logical operations are performed in a parallel binary
mode. In general, the result appears in a 30-bit accumulator register. Arithmetic
is ones complement subtractive with a modulus 230_1. An auxiliary arithmetic
register, designated as the Q-register, is used in multiply, divide, and logical
operations. The .Q-register holds the multiplier at the beginning of a multiply
operation, the least significant half of the double length product at the end of
the operation. The Q-register also holds the least significant half of the dividend
at the beginning of a divide operation, the quotient at the end of the operation.

Computer operation is controlled by a stored program capable of self-modi­
fication. Each program instruction contains a function code (6 bits), one storage
address (15 bits), and three execution modifiers (3 bits each). The execution
modifiers provide for address incrementation, operand interpretation, and
branch point designation. A storage address may be incremented by anyone of
seven index registers. The operand specified by the execution address may be
interpreted as a 30-bit quantity, or as a 15-bit half word with or without sign
extension. The next sequential program step may be skipped under control of
the contents of the arithmetic register.

Communication between the M -460 Computer and associated external
equipment is normally handled by a block transfer of data, with the timing under

1

the control of the external device. Operating asychronously with the main com­
puter program, such transfers of data employ independent access to storage.

A communication path is established by a sequence of external request and
response signals between the external equipment and the M-460 Computer.
Such signals may originate either at the computer or at the external equipment.
The main computer program is interrupted by external request signals and es­
tablishes the communications channel. Once the link is established, the computer
returns to the main program sequence. The block transfer of input or output data
proceeds without program reference until completed.

A total of 18 input and 12 output channels is provided in the computer.
These channels vary in size from 6 to 30 parallel lines per channel. The 30 channels
are divided into three groups, viz., input, output, and function lines. Buffering
registers and control circuits are provided to permit concurrent activation of
7 channels. The maximum possible transfer rate of input or output data over a
given channel is 1~500,000 bits per second.

The M -460 Computer is constructed primarily of diodes, transistors, and
magnetic cores. The logical sections are implemented by transistor unit pack­
ages. However, the storage section contains combinations of transistors and
magnetic core arrays. The basic computer is contained in a single main cabinet
3' x 3' x 6'. Total power consumption is 1200 watts. Forced air cooling is pro­
vided without a heat exchanger.

REGISTERS

The M -460 Computer contains a number of registers in which data is
held during computation. These registers are· designated by a letter or by a
letter and a numeral, and are interconnected by parallel transmission paths over
which information flows during processing. The registers are identified below in
two categories, operational and transient. Operational registers hold information
from one instruction to another, and are referenced in the operational descrip­
tion of each instruction. On the other hand, transient registers are temporary
storage locations, which are always cleared at the end of an instruction.

OPERATIONAL REGISTERS

The A-Register (30 bits), or accumulator, is the principle arithmetic
register. It is provided with parallel addition and shifting properties. In the
majority of arithmetic instructions, the result of the operation is left in the
A-register for use in later program steps. Thus, after addition or subtraction the
sum or difference remains in the accumulator. However, after multiplication

2

the most significant half of the product remains in the accumulator. Mter di­
vision, the remainder is left in the accumulator.

The contents of the A-register may be shifted either to the left or to the
right as described in the shift instructions. When the shift is to the left, the
transfer is circular. That is, the rightmost digits are replaced with the leftmost
digits. When the shift is to the right, the sign bit is extended by the number of
bit positions shifted; and the lower order digits are discarded.

On certain instructions, the A and Q registers are shifted as a single 60-bit
register. In all such cases, the A-register represents the most significant half of
the double length quantity.

The Q-Register (30-bits), or auxiliary arithmetic register, assists the ac­
cumulator in multiply, divide, and logical operations. The Q-register has shifting
and logical properties, but it has no addition or counting functions.

The contents of the Q-register may be shifted to the right or left as a 30-bit
register or as the lower order half of a 60-bit register in conjunction with the
accumulator. With the exception of the shift paths, all communication is via
the X-register. Logical multiplication is performed on a transmission path be­
tween the Q and X registers.

The Q-register holds the multiplier at the beginning of a multiply operation.
As the product is formed by repeated additions and shifts, the multiplier digits
are shifted to the right and discarded. In their place, the lower order digits of the
double length product are shifted into the Q-register from the accumulator.

During a divide operation, a process essentially the reverse of multiplica­
tion takes place. The double length dividend is shifted to the left, and quotient
bits are inserted in the rightmost position of the Q-register. At the end of the
divide sequence, the quotient is assembled in the Q-register; and the remainder
is left in the accumulator.

The P-Register (15-bits) is the program address counter. This register
holds the address of the next sequential instruction throughout the program.
As each program address is transferred from the P-register to the S-register, the
contents of the P-register are increased by one. When executing jump instruc­
tions, the P-register is cleared; and a new program address is entered.

The B-Registers (15 bits each) are address modifying registers generally
used for indexing minor loops in a program. The contents of one register may be
used to increment the operand address before execution of an instruction. A total
of seven such registers are provided, with two of these serving additional control
functions as described in instructions 70, 73, and 74.

3

The C-Registers (6 to 30 bits each) are communication buffer registers
through which input and output data are synchronized. A total of eight C regis­
ters are provided. C-register 0 has a special function as described below. Each
of the other seven registers serves a group of input and output channels.

C-Register 0 (15 bits) is a communication channel switching register, which
by its content controls the channel selection for the other seven registers. The
various bit positions in this register may be interpreted in seven groups: three
bits for C-register 3, and two bits for each of the other C registers. The various
binary combinations in each group then determine the channel selection for the
corresponding C-register.

C-Register 1 (6 bits) is an input-output register used to communicate moni­
toring information. The monitoring typewriter and keyboard entry communi­
cation are via this register. In addition, perforated paper tape may also be pro­
cessed through this register.

C-Register 2 (15 bits) normally is assigned to input and output devices re­
quiring relatively few bits of information per message. Such devices as analog­
to-digital converters fall in this category.

C-Register 3 (15 bits) normally is assigned as an external function request
and response register. Computer function requests are sent to external equipment
via this register, and response signals return via this register.

C-Registers 4, 5, 6, and 7 (30 bits each) are the principle input-output
registers. Information may be transferred. through these registers over 30 parallel
lines. Communication with displays, magnetic tapes, magnetic drums, other
computers, etc., is handled through these registers.

TRANSIENT REGISTERS

The following registers are used in the manipulation of instruction words
and data words during the execution of an instruction. These registers are not
referenced in the description of the instructions, and do not retain information
from one operation to the next.

The X-Register (30 bits) functions as an arithmetic communication regis­
ter. It has complementing, but no shift properties. The X-register holds the
Ant.:rr~nrl f"rA1'n cotA1'"':lO"Do rI,,"';nO" ~ 11 ~"';th1'nDotin I"\na.,.~til"\Y'lC' A 11 nl"\1'n1'n"Y'lin~tiI"\Y'I 'ha_
'-'.t-'''''.LU/.L.L'U. .L.LV.L.L.L .'HJV.L""'6"" U.Y..L.L~~6 ""'~~ UI~~V ~~~~'Vv~'V V'p'V~""V~V~U;:" .L.1.~~ 'VV~~~~~~\.LL~~'VUIV~V~~ fJ\J-

tween the A and Q registers and the rest of the operational registers is via the
X -register.

The K-Register (6 bits) functions as a shift counter for all arithmetic
operations involvi~g shifts. The maximum shift count is 64. Multiply and divide

4

operations are controlled by pre-setting the K-register to 30, and by counting
the operational steps.

The S-Register (15 bits) holds the storage address during memory refer­
ences. At the beginning of a storage access period, the address is transferred to
the S-register. The contents of the S-register are then translated to activate the
storage selection system.

The Z-Register (30 bits) serves as an operand buffer for storage references.
During the read portion of the storage access period, the Z-register is cleared.
The digit-reading amplifiers are then sampled to set the contents of Z corre­
sponding to bits in storage. During the write portion of the storage access period,
the Z-register controls the inhibit circuits to write or restore the disturbed
storage register.

The U-Register (30 bits) is the program control register. In other words,
it holds the instruction word during the execution of an operation. The opera­
tion code and the various execution modifiers are translated from appropriate
sections of the register. The lower order 15 bits of the U-register have addition
properties, modulus 215_1. If an address modification is required before execu­
tion, the contents of the appropriate B-register are added to the contents of the
lower order 15 bits of the U -register before execution.

The R -Register (15 bits) functions as a communication register for the B
registers. All internal transmissions to or from the B registers pass through the
R-register. It also holds the incrementing quantity during address modification.
This register has complementing and- counting provisions for incrementing the
contents of the B-register.

INSTRUCTION FORMAT

Each step in the operation of the M -460 Computer is controlled by an
instruction in a stored program. An instruction is a 30-bit word which is read
from magnetic core storage at the appropriate time and entered in the U-register,
where it controls the particular operation required. Various portions of an in­
struction word are interpreted for various aspects of the required operation
while the instruction resides in the U -register. These portions, or designators,
are identified by a lower case letter for reference in the description of the instruc­
tions. They are listed below as they appear from left to right in the U-register.

f-function code designator (6 bits)
j-branch condition designator (3 bits)
k-operand interpretation designator (3 bits)
b-address modification designator (3 bits)
y-operand address designator (15 bits)

5

Normally, these designators become effective in the reverse of the order
listed.

• The first action following the entry of an instruction in the U -register is the
modification of y-the operand address designator-by the contents of a
B-register as specified by the b designator. This modification consists of
adding the contents of the B-register to the y designator.

• The second action is normally a storage reference to obtain the quantity at the
resultant storage address, and to enter it in the Z-register.

• The third action is a transmission of the contents of the Z-register to the
X-register, with the character Qf the transmission under the control of the
k designator.

• Subsequent action affects the contents of the operational register as speci­
fied by the f designator, and procures the next instruction as specified by the
j designator.

The quantity which enters the X -register in the above process is called the
operand. Since it is dependent on a number of designators, the operand is iden­
tified by a symbol, (Y), in describing the various instructions. The storage loca­
tion from which the operand comes is identified as Y. A letter in parenthesis
associated with an operational register is used as a shorthand symbol for the
contents of the operational register. However, this relationship is not quite true
in the case of the letter Y, since the k designator may distort the quantity which
comes from address Y before it becomes the operand (Y). Summarizing the
shorthand symbols,

Y-the storage location of the operand
(Y)-the operand
(A)-the contents of the accumulator
(Q)-the contents of the Q-register

(B2)-the contents of B-register 2
(C5)-the contents of C-register 5

Function Code Designator-f (6 bits) The highest order six bits of an
instruction designate the function to be performed by that instruction. All values
other than 00 and 77 are defined in the instruction list. The two codes 00 and 77
are fault conditions, which if executed will cause the computation to stop. The
fault light will then be illuminated on the operation control panel.

Branch Condition Designa tor-j (3 bits) This octal designator nor­
mally specifies the condition under which the next sequential instruction in the
program will be skipped. This provides for branching from a sequence without
executing the jump instruction, if the branch is not taken. Particular significance

6

is associated with this designator in the case of repeated instructions. In such
cases, the exit from the repeat mode is under the control of the j designator.
A skip of the next sequential instruction is determined by the following rules,
except where otherwise noted in the instruction list.

I

j = 0 do not skip the next instruction
j = 1 skip the next instruction
j = 2 skip the next instruction if (Q) is positive
j = 3 skip the next instruction if (Q) is negative
j =4 skip the next instruction if (A) is zero
j = 5 skip the next instruction if (A) is non-zero
j = 6 skip the next instruction if (A) is positive
j = 7 skip the next instruction if (A) is negative

Operand Interpretation Designator-k (3 bits) The operand inter­
pretation designator controls the transmission of the operand from the Z-register
to the X-register, and vice versa.

Those instructions which read an operand but do not replace it after the
arithmetic is performed are designated read instructions. Those instructions that
do not read an operand but store one are designated store instructions. Instruc­
tions which both read and write operands are known as replace instructions.

For read instructions, the k designator controls the transmission of the
operand from the Z-register to the X -register. This transmission may select
only half of the contents of the 30-bit Z-register, and mayor may not extend
the resulting upper bit throughout the higher order 15 bits of the X -register.
This provision allows a half word to be treated either as a 15-bit positive num­
ber or as a 14-bit number plus sign. In the case of k = 0, 4, or 7, the lower order
15 bits of the D-register are not used to specify a storage address for the pro­
curement of the operand. For k = 0 and k = 4, the lower order 15 bits of the D­
register are used directly as a 15-bit operand. In the case of k=7, the contents
of the accumulator are used as a 30-bit operand.

The effect of the various values of the k designator on the operand are
listed below. This applies to all read instructions, except where noted under
the individual instruction.

For read instructions:

k = 0 Clear the X-register. Then transmit the lower order 15
bits of (D) to the lower order 15 bits of X.

k = 1 Clear the X -register. Then transmit the lower order 15
bits of (Z) to the lower order 15 bits of X.

k = 2 Clear the X -register. Then transmit the higher order 15
bits of (Z) to the lower order 15 bits of X.

7

k = 3 Clear the X-register. Then transmit the entire 30 bits
of (Z) to X.

k = 4 Clear the X -register. Then transmit the lower order 15
bits of (U) to the lower order 15 bits of X. If bit position
14 of (X) is one, set each of the higher 15 bits of X to
one.

k = 5 Clear the X -register. Then transmit the lower order 15
bits of (Z) to the lower order 15 bits of X. If bit·position
14 of (X) is one, set each of the higher order 15 bits of X
to one.

k=6 Clear the X-register. Then transmit the higher order 15
bits of (Z) to the lower order 15 bits of X. If bit position
14 of (X) is one, set each of the higher order 15 bits of
X to one.

k=7 Clear the X-register. Then transmit (A) to all 30 bits of
the X-register.

The operand interpretation designator k controls the transmission from
the X -register to the Z-register on write operations. The effect of the k desig­
nator in store instructions is defined below, except where noted under the indi­
vidual instructions.

For store instructions:

k=O Clear the Q-register. Then transmit (X) to the Q-register.
k = 1 Replace the lower order 15 bits of the quantity stored

at address Y with the lower order 15 bits of (X)--leav­
ing the higher order 15 bits undisturbed.

k=2 Replace the higher order 15 bits of the quantity stored
at the address Y with the lower order 15 bits of (X)­
leaving the lower order 15 bits undisturbed.

k = 3 Replace the quantity stored at address Y with (X).
k=4 Clear the accumulator. Then add (X) to the accumulator.
k = 5 Replace the lower order 15 bits of the quantity stored

at address Y with the complement of the lower order 15
bits of (X)-leaving the higher order 15 bits undisturbed.

k = 6 Replace the higher order 15 bits of the quantity stored
at address Y with the complement of the lower order 15
bits of (X)-leaving the lower order 15 bits undisturbed.

k = 7 Replace the quantity stored at address Y with the com-
plement of (X).

The replace instructions combine a reading operation with a writing opera­
tion. For the read portion the operand interpretation designator k has the
same meaning as the read instructions. For the write portions, a different inter­
pretation is used.

8

For replace instructions:

k=O Not used.
k= L During the read portion, clear the X-register. Then

transmit the lower order 15 bits of (Z) to the lower order
15 bits of X. During the write portion, replace the
lower order 15 bits of the quantity stored at address Y
with the lower order 15 bits of (X)-leaving the higher
order 15 bits undisturbed.

k=2 During the read portion, clear the X-register. Then
transmit the higher order 15 bits of (Z) to the lower
order 15 bits of X. During the write portion, replace
the higher order 15 bits of the quantity stored at address
Y with the lower order 15 bits of (X)-leaving the
lower order 15 bits undisturbed.

k=3 During the read portions, clear the X-register. Then
transmit the entire 30 bits of (Z) to X. During the
write portion, replace the quantity stored at address
Y with (X).

k=4 Not used.
k = 5 During the read portion, clear the X-register. Then

transmit the lower order 15 bits of (Z) to the lower
order 15 bits of X. If bit position 14 of (X) is one, set
each of the higher order 15 bits of X to one. During the
write portion, replace the lower order 15 bits of the
quantity stored at address Y with the lower order 15
bits of (X)-leaving the higher order 15 bits undisturbed.

k=6 During the read portion, clear the X-register. Then
transmit the higher order 15 bits of (Z) to the lower
order 15 bits of X. If bit position 14 of (X) is one, set
each of the higher order 15 bits of X to one. During the
write portion, replace the higher order 15 bits of the
quantity stored at address Y with the lower order 15
bits of (X)-leaving the lower order 15 bits undisturbed.

k=7 Not used.

Address Modification Designator-b (3 bits) The address modifica­
tion designator specifies which of the B registers, if any, will be used to modify
the operand address designator y before a storage reference is made. If a modi­
fication takes place, the contents of a B-register is added to the lower order 15
bits of (U). This operation employs an additive accumulator. Hence, the quantity
consisting of all zeros cannot occur as a result, unless both the operand address
designator y and the contents of the B-register are all zeros. The effect of the
various values of the b designator are

b=O Do not modify y.
b = 0 Add the contents of selected B-register to y.

9

Operand Address Designator-y (15 bits) The operand address des­
ignator specifies, subject to modification, which of the 32,768 storage locations
will be referenced in the execution of an instruction. During execution, most
instructions reference this storage location once. In some cases, however, the
operand is read from storage, operated upon, and then returned to the same
storage location. Such instructions are described as replace instructions in the
listing. Other instructions, such as those with k = 0 or k = 4, make no storage
reference for an operand-but take the operand directly from the lower 15 bits
of the instruction word itself.

INSTRUCTION LIST FOR THE UNIVAC M-460 COMPUTER

00 not used
01 shift Q right
02 shift A right
03 shift AQ right
04 compare
05 shift Q left
06 shift A left
07 shift AQ left

10 enter Q-register
11 enter accumulator
12 enter B-register
13 enter C-register
14 store Q-register
15 store accumulator
16 store B-register
17 store C-register

20 add
21 subtract
22 multiply
23 divide
24 add replace
25 subtract replace
26 Q add
27 Q subtract

30 load A, add Q
31 load A, subtract Q
32 add Q and store
33 subtract Q and store
34 replace add Q
35 replace subtract Q
36 replace add one
37 replace subtract one

10

40 enter logical product
41 add logical product
42 subtract logical product
43 masked comparison
44 replace logical product
45 replace add logical product
46 replace subtract logical product
47 store logical product

50 selective set
51 selective complement
52 selective clear
53 substitute
54 replace selec~ive set
55 replace selective complement
56 replace selective clear
57 replace substitute

60 arithmetic jump
61 manual jump
62 input jump
63 output jump
64 arithmetic return jump
65 manual return jump
66 input return jump
67 output return jump

70 initiate repeat
71 index skip
'7. 9. ~rlr\v" .;" ,....

- ll.lUC;A JY..l.l.lp

73 initiate input transfer
74 initiate output transfer
75 initiate input buffer
76 initiate output buffer
77 not used

DETAILED EXPLANATION OF INSTRUCTION REPERTOIRE

(01) Shift Q Right-This instruction shifts (Q) to the right (Y) bit posi­
tions. The higher order bits are replaced with the original sign bit as the word
is shifted. Only the lower order six bits of (Y) are recognized for this instruction.

(02) Shift A Right-This instruction shifts (A) to the right (Y) bit posi­
tions. The higher order bits are replaced with the original sign bit as the word
is shifted. Only the lower order six bits of (Y) are recognized for this instruction.

(03) Shift AQ Right-This instruction shifts (A) and (Q) as one SO-bit
register. The shift is to the right (Y) bit positions, with the lower bits of (A)
shifting into the higher bits of (Q). The higher order bits of (A) are replaced
with the original sign bit as the word is shifted. Only the lowest order six bits
of (Y) are recognized for this instruction.

(04) Compare-This instruction compares (Y) with (A) and/or (Q). It
does not alter either (A) or (Q). The branch condition designator is interpreted
in a special way for this instruction.

j = 0 do not skip the next instruction.
j = 1 skip the next instruction.
j = 2 skip the next instruction if (Y) is less than, or equal to,

(Q).
j = 3 skip the next instruction if (Y) is greater than (Q).
j =4 skip the next instruction if (Q) is greater than, or equal

to, (Y) and (Y) is greater than (A).
j = 5 skip the next instruction if (Y) is greater than (Q) or if

(Y) is less than, or equal to, (A).
j = 6 skip the next instruction if (Y) is less than, or equal

to, (A).
j =7 skip the next instruction if (Y) is greater than (A).

(05) Shift Q Left-This instruction shifts (Q) circularly to the left (Y)
bit positions. The lower order bits are replaced with the higher order bits as the
word is shifted. Only the lower order six bits of (Y) are recognized for this in­
struction.

(06) Shift A Left-This instruction shifts (A) circularly to the left (Y)
bit positions. The lower order bits are replaced with the higher order bits as
the word is shifted. Only the lower order six bits of (Y) are recognized for this
instruction.

(07) Shift AQ Left-This instruction shifts (A) and (Q) as one 60-bit
register. The shift is circular to the left (Y) bit positions. The lower bits of (A)
are replaced with the higher bits of (Q), and vice versa. Only the lower order
six bits of (Y) are recognized by this instruction.

11

(10) Enter Q-Register-Clear the Q register. Then transmit (Y) to Q.

(11) Enter Accumulator-Clear the accumulator. Then add (Y) to the
accumulator.

(12) Enter B-Register-Clear the contents of B-register j. Then trans-
. mit the lower order 15 bits of (Y) to B-register j. The higher order 15 bits of (Y)

are ignored in this instruction. The branch condition designator j is used to
specify the selected B-register for this instruction and IS not available for its
normal function.

(13) Enter C-Register-Clear the contents of C-register j. Then trans­
mit (Y) to C-register j. If the selected C-register is not a 30-bit register, then
the lower order portion of (Y) is transmitted, the higher order portion ignored.
Finally, set the selected C-register indicator bit to one. The branch condition
designator j is used to specify the selected C-register for this instruction and is
not available for its normal function.

(14) Store Q-Register-Store (Q) at storage address Y as directed by
the operand interpretation designator k. For k=O, clear the Q-register. Then
transmit the complement of (X) to the Q-register, which has the effect of com­
plementing (Q).

(15) Store Accumulator-Store (A) at storage address Y as directed by
the operand interpretation designator k. For k = 4, clear the accumulator. Then
transmit the complement of (X) to the accumulator, which has the effect of
complementing (A).

(16) Store B-Register-Form in the X-register a 30-bit quantity, the
lower order 15 bits of which correspond to the contents of B-register j, the
higher order 15 bits of which are zero. Then store (X) at storage address Yas
directed by the operand interpretation designator k. The branch condition
designator j is used to specify the selected B-register for this instruction and is
not available for its normal function.

(17) Store C-Register-Store the contents of C-register j at storage ad­
dress Y as directed by the operand interpretation designator k. If the selected
C-register is not a 30-bit register, then the higher order bits are interpreted as
zeros. Clear the selected C-register indicator bit, but not the register. The branch
condition designator j is used to specify the selected C-register for this instruc­
tion and is not available for its normal function.

(20) Add-Add (Y) to the previous contents of the accumulator.

(21) Subtract-Subtract (Y) from the previous contents of the accumulator.

12

(22) Multiply-Multiply (Q) times (Y), leaving the double length prod­
uct in AQ. If the factors are considered as integers, the product is an integer
in AQ. The branch condition designator j is interpreted prior to end correction,
thus permitting overflow detection by sensing the sign of the accumulator.

(23) Divide-Divide (AQ) by (Y), leaving the quotient in the Q-register,
the remainder in the accumulator. The remainder bears the same sign as the
quotient. The branch condition designator j is interpreted prior to end correc­
tion, thus permitting overflow detection by sensing the sign of the accumulator.

(24) Add Repiace-Add (Y) to the previous contents of the accwnulator.
Then store (A) at the storage address Y as directed by the operand interpreta­
tion designator k.

(25) Subtract Replace-Subtract (Y) from the previous contents of the
accumulator. Then store (A) at the storage address Y as directed by the operand
interpretation designator k.

(26) Q Add-Shift left 30 places (A) and (Q) as a single 60-bit register.
Then add (Y) to the accumulator. Next, shift left (A) and (Q) 30 places as a
single 60-bit register. The contents of the accumulator are undisturbed by this
instruction. The branch condition designator j has special meaning in this in­
struction:

j = 0 do not skip the next instruction
j = 1 skip the next instruction
j = 2 skip the next instruction if (A) is positive
j = 3 skip the next instruction if (A) is negative
j = 4 skip the next instruction if (Q) is zero
j = 5 skip the next mstruction if (Q) is non zero
j = 6 skip the next instruction if (Q) is positive
j = 7 skip the next instruction if (Q) is negative

(27) Q Subtract-Shift left 30 places (A) and (Q) as a single 60-bit regis­
ter. Then subtract (Y) from the accumulator. Next, shift left (A) and (Q) 30
places as a single 60-bit register. The contents of the accumulator are undis­
turbed by this instruction. The branch condition designator j has special mean­
ing in this instruction as listed under (26) Q Add.

(30) Load A Add Q-Clear the accumulator, add (Q) to the accumulator,
and then add (Y) to the accumulator.

(31) Load A Subtract Q-Clear the accumulator, subtract (Q) from the
accumulator, and add (Y) to the accumulator.

(32) Add Q and Store-Add (Q) to the previous contents of the accumu­
lator; store (A) at storage address Y as directed by the operand interpretation

13

designator k. The branch condition designator j is not interpreted for values 0
and 4 of the operand interpretation designator k.

(33) Subtract Q and Store-Subtract (Q) from the previous contents
of the accumulator. Then store (A) at storage address Y as directed by the
operand interpretation designator k. The branch condition designator j is not
interpreted for values 0 and 4 of the operand interpretation designator k.

(34) Replace Add Q-Clear the accumulator, add (Q) to the accumulator,
add (Y) to the accumulator, and then store (A) at storage address Y as directed
by the operand interpretation designator k.

(35) Replace Subtract Q-Clear the accumulator. Subtract (Q) from the
accumulator. Next, add (Y) to the accumulator. Then store (A) at storage ad­
dress Y as directed by the operand interpretation designator k.

(36) Replace Add One-Clear the accumulator. Add one to the accumu­
lator. Then store (A) at storage address Y as directed by the operand interpre­
tation designator k.

(37) Replace Subtract One-Clear the accumulator. Add minus one to
the accumulator. Next, add (Y) to the accumulator. Then store (A) at storage
address Y as directed by the operand interpretation designator k.

(40) Enter Logical Product-Clear the accumulator. Form in the X­
register the bit-by-bit product of (Y) and (Q). Then add (X) to the accumulator.

(41) Add Logical Product-Form in the X-register the bit-by-bit product
of (Y) and (Q). Then add (X) to the previous contents of the accumulator.

(42) Subtract Logical Product-Form in the X-register the bit-by-bit
product of (Y) and (Q). Then subtract (X) from the previous contents of the
accumulator.

(43) Masked Comparison-Form in the X-register the bit-by-bit prod­
uct of (Y) and (Q). Next, subtract (X) from the previous contents of the ac­
cumulator. Then perform the branch point evaluation for skipping the next
sequential instruction as directed by the branch condition designator j. Finally,
add (X) to the accumulator.

This instruction results in no net change in the contents of any operational
register. Through the branch condition designator, it provides a comparison of a
portion of (Y) with the contents of the accumulator.

(44) Replace Logical Product-Clear the accumulator. Form in the
X-register the bit-by-bit product of (Y) and (Q). Next, add (X) to the accumu­
lator. Then store (A) at storage address Y as directed by the operand interpre­
tation designator k.

14

(45) Replace Add Logical Product-Form in the X-register the bit-by­
bit product of (Y) and (Q). Next, add (X) to the previous contents of the ac­
cumulator. Then store (A) at storage address Y as directed by the operand
interpretation designator k.

(46) Replace Subtract Logical Product-Form in the X-register the
bit-by-bit product of (Y) and (Q). Next, subtract (X) from the previous contents
of the accumulator. Then store (A) at storage address Y as directed by the
operand interpretation designator k.

(47) Store Logical Product-Form in the X=register the bit-by-bit prod­
uct of (A) and (Q). Then store (X) at storage address Y as directed by the
operand interpretation designator k. The branch condition designator j is not
interpreted for values 0 and 4 of the operand interpretation designator k.

(50) Selective Set-Set individual bits of (A) to one corresponding to
ones in (Y), leaving the remaining bits of (A) unaltered.

(51) Selective Complement-Complement individual bits of (A) cor­
responding to ones in (Y), leaving the remaining bits of (A) unaltered.

(52) Selective Clear-Clear individual bits of (A) corresponding to ones
in (Y), leaving the remaining bits of (A) unaltered.

(53) Substitute-Clear individual bits of (A) corresponding to ones in
(Q), leaving the remaining bits of (A) unaltered. Next, form in the X-register
the bit-by-bit product of (Y) and (Q). Then set individual bits of (A) to one,
corresponding to ones in (X)-leaving the remaining bits of (A) unaltered.

This instruction has the effect of replacing bits of (A) with bits of (Y) cor­
responding to ones in (Q).

(54) Replace Selective Set-Set individual bits of (A) to one corresponding
to ones in (Y), leaving the remaining bits of (A) unaltered. Then store (A) at
storage address Y as directed by the operand interpretation designator k.

(55) Replace Selective Complement-Complement individual bits of
(A) corresponding to ones in (Y), leaving the remaining bits of (A) unaltered.
Then store (A) at storage address Y as directed by the operand interpretation
designator k.

(56) Replace Selective Clear-Clear individual bits of (A) corresponding
to ones in (Y), leaving the remaining bits of (A) unaltered. Then store (A) at
storage address Y as directed by the operand interpretation designator k.

(57) Replace Substitute-Clear individual bits of (A) corresponding to
ones in (Q), leaving the remaining bits of (A) unaltered. Form in the X-register

15

the bit-by-bit product of (Y) and (Q). Next, set individual bits of (A) to one

corresponding to ones in (X), leaving the remaining bits of (A) unaltered. Then
store (A) at storage address Y as directed by the operand interpretation desig­
nator k.

This instruction has the effect of replacing bits of (Y) with bits of (A) cor­
responding to zeros in (Q).

(60) Arithmetic Jump-This instruction clears the program address
register, P, and enters a new program address for certain conditions of the con­
tents of arithmetic registers. The branch condition designator j is interpreted
in a special way for this instruction, determining the conditions under which a
jump in a program address occurs.

j = 0 No action. Continue with the current program sequence.
j = 1 Execute jump.
j =2 Execute jump if (Q) is positive.
j = 3 Execute jump if (Q) is negative.
j = 4 Execute jump if (A) is zero.
j = 5 Execute jump if (A) is non zero.
j = 6 Execute jump if (A) is positive.
j = 7 Execute jump if (A) is negative.

If the jump condition is not satisfied, the next sequential instruction in the
current sequence is executed in a normal manner. If the jump condition is satis­
fied, then the lower order 15 bits of (Y) become the address of the next instruc­
tion, and the beginning of a new program sequence. The higher order 15 bits of
(Y) are not used in this instruction.

(61) Manual Jump-This instruction clears the program address register,
P, and enters a new program address for certain conditions of manual key selec­
tions. The branch condition designator j is interpreted in a special way for this
instruction, determining the conditions under which a jump in a program ad­
dress occurs.

j=O Execute jump regardless of key selections.
j=1 Execute jump if Key 1 is selected.
j=2 Execute jump is Key 2 is selected.
j=3 Execute jump if Key 3 is selected.
j=4 Execute jump. Then stop computation.
j=5 Execute ju..rnp. Then ""tnn tonl'Y'lnllt<:ltinn if UO"'fT ~ ~c.t

'-'V'V ,tJ V'V.I..I..I.,tJu..vu.V.I.'V.I..1. .1..1. .L:LVJ U .1.0

selected.
j=6 Execute jump. Then stop computation if Key 6 IS

selected.
j=7 Execute jump. Then stop computation if Key 7 IS

selected.

16

If the jump condition is not satisfied, the next sequential instruction in the
current sequence is executed in a normal manner. If the jump condition is satis­
fied~ then the lower order 15 bits of (Y) become the address of the next instruc­
tion, and the beginning of a new program sequence. The higher order 15 bits of
(Y) are not used in this instruction.

The program may be stopped by certain key selections upon the execution­
of this instruction. The branch condition designator j specifies which key selec­
tions are effective.

(62) Input Jump-This instruction clears the program address register,
P, and enters a new program address for certain conditions determined by the
status of the C-register. The branch condition designator j is interpreted in a
special way for this instruction to designate which C-register status will be ex­
amined. If the C-register j indicator bit is in the one state, indicating information
in the register, then the jump condition is satisfied. If the selected indicator bit
is in the zero state, then the jump condition is not satisfied. If the jump condition
is not satisfied, the next sequential instruction in the current sequence is executed
in a normal manner. If the jump condition is satisfied, then the lower order 15
bits of (Y) become the address of the next instruction, and the beginning of a
new program sequence. The higher order 15 bits of (Y) are not used in this in­
struction.

(63) Output Jump-This instruction clears the program address register,
P, and enters a new program address for certain conditions determined by the
status of the C-register. The branch condition designator j is interpreted in a
special way for this instruction to designate which C-registerstatus will be ex­
amined. If the C-register j indicator bit is in the zero state, indicating no infor­
mation in the register, then the jump condition is satisfied. If the selected in­
dicator bit is in the one st3.te j then the jump condition is not satisfied. If the
jump condition is not satisfied, the next sequential instruction in the current
sequence is executed in a normal manner. If the jump condition is satisfied, then
the lower order 15 bits of (Y) become the address of the next instruction, and
the beginning of a new program sequence. The higher order 15 bits of (Y) are
not used in this instruction.

(64) Arithmetic Return Jump-This instruction executes a return jump
sequence for certain conditions determined by the contents of the arithmetic
register. The branch condition designator j is interpreted in a special way for
this instruction, determining the conditions under which the return jump se­
quence is executed.

j = 0 No action. Continue with the current program sequence.
j = 1 Execute return jump.
j = 2 Execute return jump if (Q) is positive.

17 -

j = 3 Execute return jump if (Q) is negative.
j = 4 Execute return jump if (A) is zero.
j = 5 Execute return jump if (A) is non zero.
j = 6 Execute return jump if (A) is positive.
j = 7 Execute return jump if (A) is negative.

If the return jump condition is not satisfied, then the next sequential instruction
in the current sequence is executed in a normal manner. If the return jump
condition is satisfied, shown above, then the following sequence is performed:

('Ila~ fhe Y = eN"isfe and f ~'YIS"YV'lif- (P\ fn fha lnum n rla 1 ~ hifo n-F Y ('Ila~
'-/.1~ \1.1.1 ..£lto...1 iS.1 \1.1 .1 \1.1 U.1.1 ~.1.1.1\1 \.L J \IV \I.1.1'V .1V ,y 'Vol Vol '-L'V.1 ..LV U.1'-"'=' V~ ..£lto... '-/.1'VC:.4I.L

the P-register and transmit the lower order 15 bits of (Y) to P. Then store the
lower order 15 bits of (X) in the lower order 15 bits of storage address (P), leaving
the higher order 15 bits undisturbed. Finally, increase (P) by one for the pro­
gram address of the next instruction.

(65) Manual Return Jump-This instruction executes a return jump
sequence for conditions determined by manual key selections. The branch con­
dition designator j is interpreted in a special way for this instruction, determining
the conditions under which the return jump sequence is executed.

j = 0 Execute return jump regardless of key selections.
j = 1 Execute return jump if Key 1 is selected.
j = 2 Execute return jump if Key 2 is selected.
j = 3 Execute return jump if Key 3 is selected.
j = 4 Execute return jump. Then stop computation.
j = 5 Execute return jump. Then stop computation if Key 5

is selected.
j = 6 Execute return jump. Then stop computation if Key 6

is selected.
j = 7 Execute return jump. Then stop computation if Key 7

is selected.

If the return jump condition is not satisfied, then the next sequential instruction
in the current sequence is executed in a normal manner. If the return jump
condition is satisfied, then the following sequence is performed:

Clear the X -register and transmit (P) to the lower order 15 bits of X. Clear
the P-register and transmit the lower order 15 bits of (Y) to P. Store the lower
order 15 bits of (X) in the lower order 15 bits of storage address (P), leaving the
higher order 15 bits undisturbed. Then increase CP) by one for the program ad­
dress of the next instruction.

(66) Input Return Jump-This instruction executes a return jump
sequence for certain conditions determined by the status of the C-register. The
branch condition designator j is interpreted in a special way for this instruction

18

to designate which C-register' status will be examined. If the C-register j indi­
cator bit is in the one state, indicating information in the register, then the re­
turn jump condition is satisfied.

If the selected indicator bit is in the zero state, then the return jump condi­
tion is not satisfied. If the return jump condition is not satisfied, the next se­
quential instruction in the current sequence is executed in a normal manner.
If the return jump condition is satisfied, then the following sequence is performed:

Clear the X -register and transmit (P) to the lower order 15 bits of X. Clear
the P-register and transmit the lower order 15 bits of (Y) to P. Then store the
lower order 15 bits of (X) in the lower order 15 bits of storage address (P),
leaving the higher order 15 bits undisturbed. Finally, increase (P) by one for the
program address of the next instruction.

(67) Output Return Jump-This instruction executes a return jump
sequence for certain conditions determined by the status of the C-register. The
branch condition designator j is interpreted in a special way for this instruction
to designate which C-register will be examined. If the C-register j indicator bit
is in the zero state, indicating no information in the register, then the return
jump condition is satisfied.

If the selected indicator bit is in the one state, then the return jump con­
dition is not satisfied. If the return jump condition is not satisfied, the next
sequential instruction in the current sequence is executed in a normal manner. If
the return jump condition is satisfied, the following sequence is performed:

Clear the X -register and transmit (P) to the lower order 15 bits of X. Clear
+'ha P -ramc<+a-r a1"lrl +-ra1"lC<"I'Y'I~+ t'he lrytTTO'" O-rrle". 1.c:;;: h~f-Ct Af fV\ f-r>. D lI..T r.vo-t- n-t-ro._ -I-t.,.,.
\1.1..1.'-' =.1. '-'6.1.":>\1'-'.1. .I..I.U \1.1. .1..1.":>.1..1..1..1.\1 .1..1. .I.V yy \:..1. .I. U .1 ..LU 1J.l\lO V.l \..L } l1V ..L • J.."'I CAIJ, "IJUI t "'lit

lower order 15 bits of (X) in the lower order 15 bits of storage address (P)­
leaving the higher order 15 bits undisturbed. Then increase (P) by one for the
program address of the next instruction.

(70) Initiate Repeat-Initiate a repeat mode of operation which will
cause the next sequential instruction to be repeated (Y) times, or until a branch
condition is satisfied, whichever occurs first. Maintain the number of remaining
executions in B-register 7. Only the lower order 15 bits of (Y) are used in this
instruction. The branch condition designator j is interpreted in a special \vay
for this instruction. The mode of modification of the repeated instruction is
specified by the j designator as

j = 0 or 4 Do not modify the repeated instruction after each
individual execution.

19

j = 1 or 5 Increase Y by one after each execution of the re­
peated instruction.

j = 2 or 6 Decrease Y by one after each execution of the re­
peated instruction.

j = 3 or 7 Repeat the initial B-register modification of the
repeated instruction before each execution.

This instruction is implemented by the following sequence: Clear B-register
7. Transmit the lower order 15 bits of (Y) to B-register 7. Record the lower
two bits of the branch condition designator j for interpretation during the repeat
mode. Establish the repeat mode of operation, and read the next sequential
instruction.

(71) Index Skip-If the contents of B-register j are equal to (Y), skip the
next instruction in the current sequence, proceed to the following instruction,
and clear B-register j.

If the contents of B-register j are not equal to (Y), proceed to the next in­
struction in the sequence in a normal manner. Increase the contents of B-register
j by one.

The branch condition designator j is used to designate the selected B­
register in this instruction and is not available for its normal function. Only the
lower order 15 bits of (Y) are used in the comparison with B-register j.

(72) Index Jump-If the content of B-register j is non zero, execute a
jump in the program address to address (Y). Reduce the contents of B-register
j by one.

If the contents of B-register j are zero, proceed to the next instruction in a
normal manner. Do not alter the contents of B-register j.

The branch condition designator j is used to designate the selected B­
register in this instruction and is not available for its normal function. If the
jump condition is satisfied, then the lower order 15 bits of (Y) become the address
of the next instruction, and the beginning of a new program sequence. The
higher order 15 bits of (Y) are not used in this instruction.

(73) Initiate Input Transfer-This instruction establishes an input
block transfer via C-register j to magnetic core storage with an initial storage
address (Y). Subsequent to this instruction, the individual transfers will be
executed at a rate usually determined by external devices. The storage address
initially established by this instruction will be advanced by one, following each
individual transfer. The current next address will be maintained throughout
the transfer in B-register 6. This mode will continue until it is superseded by a
subsequent initiation of an input or output transfer.

20

This instruction is implemented as follows: Set the C-register status
designator for the last previously assigned transfer mode to input and output
inactive and clear B-register 6. Transmit the lower order 15 bits of (Y) to B­
register 6. Record the j designator value for reference during the transfer. Set
the C-register j status designator to input mode active. Proceed to the next
instruction.

The branch condition designator j is used to specify the selected C-register
for this instruction, and is not available for its normal function.

(74) Initiate Output Transfer-This instruction establishes an output
block transfer via C-register j from magnetic core storage, with an initial storage
address (Y). Subsequent to this instruction, the individual transfers will be ex­
ecuted at a rate usually determined by external devices. The storage address
initially established by this instruction will be advanced by one following each
individual transfer. The current next address will be maintained throughout
the transfer in B-register 6. This mode will continue until it is superseded by a
subsequent initiation of an input or output transfer.

This instruction is implemented as follows: Set the C-register status
designator for the last previously assigned transfer mode to input and output
inactive and clear B-register 6. Transmit the lower order 15 bits of (Y) to B­
register 6. Record the j designator value for reference during the transfer. Set
the C-register j status designator to output mode active. Proceed to the next
instruction.

The branch condition designator j is used to specify the selected C-register
for this instruction, and is not available for its normal function.

(75) Initiate Input Buffer-This instruction establishes an input buffer
via C-register j to rnagnetic core storage with an initial storage address (Y).
Subsequent to this instruction, the individual transfers will be executed at a
rate determined by an external device. The storage address initially established
by this instruction will be advanced by one, following each individual transfer.
The current next address will be maintained throughout the buffer process in the
lower order 15 bits of magnetic core storage address j. This mode will continue
until it is superseded by a subsequent initiation of an input or output buffer
via the same C-register-or until the higher order half and the lower order half
of storage address j contain equal quantities, whichever occurs first.

This instruction is implemented as follows: If k = 3, store (Y) in storage
location j. If kf 3, store the lower order 15 bits of (Y) in the lower order half
of storage location j-Ieaving the higher order half undisturbed. In either case,
set the C-register j status designator to input mode active. Proceed to the next
instruction.

21

The branch condition designator j is used to specify the selected C-register
for this instruction, and is not available for its normal function.

(76) Initiate Output Buffer-This instruction establishes an output
buffer via C-register j from initial storage address (Y) in magnetic core storage.
Subsequent to this instruction, the individual transfers will be executed at a
rate usually determined by external devices. The storage address initially es­
tablished by this instruction will be advanced by one, following each individual
transfer. The current next address will be maintained throughout the buffer
process in the lower order 15 bits of magnetic core storage address j. This mode
will continue until it is superseded by a subsequent initiation of an input or
output buffer via the same C-register-or until the higher order half and the
lower order half of storage address j contain equal quantities, whichever occurs
first.

This instruction is implemented as follows: If k = 3, store (Y) in storage
location j. If k 13, store the lower order 15 bits of (Y) in the lower order half of
storage location j-leaving the higher order half undisturbed. In either case,
set the C-register j status designator to output mode active. Proceed to the
next instruction.

The branch condition designator j is used to specify the selected C-register
for this instruction, and is not available for its normal function.

CONTROL SEQUENCES

The execution of an instruction is divided into a number of lesser operations
called sequences. Each performs a logical portion of an instruction. Sequences
are further subdivided into steps, each of which performs an elementary manipu­
lation on bits of data, or makes an elementary decision on the basis of a bit of
data. A sequence is the smallest portion of a computer instruction which may be
executed as an entity. A manual selection on the operation control panel permits
an operator manually to step through an instruction one sequence at a time.

Each of the seven sequences provided in the Univac M -460 is identified by
a letter. The first four sequences to be described form the execution of a normal
instruction. The last three sequences execute a buffer operation on request of
external synchronizing signals.

"A" Sequence-Read Next Instruction-This sequence reads the next
instruction from storage and modifies the operand address as directed by the
address modification designator h. The address for the next instruction always
resides in the P-register at the beginning of the" A" sequence. As soon as the
storage reference has been initiated, (P) is increased by one in anticipation of

22

the next sequential instruction in the current program. The content of a B­
register, as specified by the address modification designator b is then added to
the operand address designator y. This addition is accomplished by transferring
the contents of the selected B-register to the R-register, and adding (R) to y.
If b = 0, the cleared R-register content is added to the y designator.

The" A" sequence for an instruction execution in the repeat mode represents
a significant departure from the normal operation described above. During a
repeat mode, the previous instruction remains in the U -register and no storage
reference is made. An increment is entered in the R-register, as directed by the
repeat status designator; and (R) is added to the y designator as in a normal
execution. The contents of B-register 7 are decreased by one in the repeat mode.
If the resultant value of (B7) is zero, the repeat mode is terminated. The content
of the P-register is not altered in a repeat mode.

"B" Sequence-READ Operand-This sequence reads the operand from
storage and performs any preliminary arithmetic appropriate for the particular
instruction being implemented. The operand interpretation designator k plays
a major role in the execution of this sequence. If k=O, 4, or 7, the operand is
not obtained from storage but is transferred from the U or A registers to the
X -register. If a storage reference is made, the operand is transferred from the
Z-register to the X-register-as described in the characteristics of the k designa­
tor. If arithmetic operations are required prior to procuring the operand, these
operations are performed before the operand is transferred to the X-register.

"e" Sequence-Arithmetic Manipulation-This sequence completes
all arithmetic processes required for the execution of the instruction. Add, sub­
tract, multiply, divide, and shift operations are all performed in this sequence.
No storage references are made. If a jump in the program address is required,
the contents of the P-register and the X-register are interchanged during this
sequence. If a store operation is required, this sequence is followed by the" D"
sequence. If no stoTe operation is required, this sequence is followed by the
"A" sequence.

"D" Sequence-STORE Operand-This sequence is executed only on
those instructions which require a result to be written into storage. In the case
of a return jump instruction, the storage location comes from the P-register.
In the case of all other instructions, the storage address comes from the U­
register. In any case, the quantity contained in the X -register at the beginning
oi the!! D" sequence is stored at the speci~ed storage location, with the k desig­
nator controlling the transfer from the X-register to the Z-register.

"E" Sequence-READ Buffer Address-This sequence is enabled by
an external request for the transfer of a word of data between the storage section
and the input-output section of the computer. This request may occur at any

23

time with respect to the main program sequences. Hence, the HE" sequence may
be executed between any two of the normal sequences. Once this sequence has
been initiated, the normal sequences are delayed until the entire buffer opera­
tion has been completed. If a buffer operation is required, this sequence reads
an address from a special storage location, and enters it in the R-register. This
sequence then enables the "F" sequence. If a transfer operation is required,
the "E" sequence reads an address from B-register 6, performs the transfer
between the required C-register and storage, and then increases the address by
one and returns it to B-register 6. In this case no other buffer sequence is required.

"F" Sequence-Transfer Buffer Word-This sequence buffers a word
of input or output data between a selected C-register and the storage address
contained in the R-register. The" G" sequence is then enabled.

"G" Sequence-STORE Buffer Address-This sequence increases the
buffer address contained in the R-register by one, and stores the result in the
special storage location from which it originally came. During this storage ref­
erence, the new buffer address being recorded is compared with a terminal ad­
dress contained in the upper half of the same storage location. If the two ad­
dresses are equal, the buffer mode is terminated. In either case, the buffer oper­
ation for this word of input or output data is completed; and the main program
sequences resume.

SPECIAL MODES OF OPERA liON

The M -460 Computer performs a number of complex operations which
may be identified as special modes of operation. Several of these special modes
require the existence of magnetic core storage locations as implicit addresses for
control information associated with the functioning of the special mode. These
special storage locations are assigned to beginning values of the address range
as follows:

24

OOOOO-initial starting address from a master clear
OOOOl-buffer control word for C-register 1
00002-buffer control word for C-register 2
00003-buffer control word for C-register 3
00004-buffer control word for C-register 4
00005-buffer control word for C-register 5
00006-buffer control word for C-register 6
00007-buffer control word for C-register 7
OOOIO-real time clock
OOOll-interrupt instruction
00012-interrupt exit
00013-interrupt entrance

Repeat Mode of Operation-A repeat mode of operation is initiated by
the execution of an initiate repeat (70) instruction. The purpose of the repeat
mode is to perform multiple executions of an instruction with minor variations
in the address of the operand. This instruction is used to process a list of data
words with a minimum of storage references for control purposes. Such opera­
tions as searching a list of words for coincidence with a reference word, or adding
a column of numbers, may be performed much more rapidly with this mode than
with an equivalent subroutine. The branch condition designator j plays a major
role in this mode. It permits the repeat mode to be terminated when a particular
execution satisfies the branch condition. For example, a search for coincidence
with a reference word could utilize the branch condition designator in the re­
peated instruction. When and if the coincident item is located, the repeat mode
is terminated. The address of the selected word can then be obtained by sub­
tracting the number of incompleted executions, as indicated in B-register 7,
from the terminal address of the search.

The repeat mode is implemented through a control designator which modi­
fies the execution of the" A" sequence when the repeat mode is active. A non­
zero value of this designator suppresses the procurement of the next sequential

. instruction from storage. The operand address of the repeated instruction is
modified during the" A" sequence of each execution of the instruction to advance
the address of the next item in the list being processed. The number of incom­
pleted executions is maintained in B-register 7 throughout the repeat mode.

If a repeat mode is terminated by a branch condition, then the instruction
in the storage location following the repeated instruction is skipped. If the re­
peat mode is terminated by exhausting the repeat count in B-register 7, then
the instruction in the storage location following the repeated instruction is
executed.

Buffer Mode of Operation-A buffer mode of operation is initiated by
the execution of an initiate input buffer (75) or initiate output buffer (76) in­
struction. The purpose of the buffer mode is to provide input and output com­
munication between the magnetic core storage and external equipment via
the communication registers. This operation is independent of, and in parallel
with, the main computer program. Provisions are made in the Univac M-460
for up to seven such independent buffering operations at one time---one through
each of the seven communication registers.

Each buffer control utilizes a special magnetic core storage location for
control information. Two 15-bit addresses are retained in this storage location,
and are referenced and modified as the buffer operation is performed. The higher
order 15 bits of a buffer control word represent the terminal address plus one
for the buffered data. Upon initiation of the buffer, the lower order 15 bits of

25

a control word represent the initial storage address of the buffered data. As each
item is transferred, the lower portion of the buffer control word is increased by
one until this portion is identical with the upper portion of the control word.
A control signal is generated by the equality of the upper and lower halves of a
control word which terminates the buffer mode for the C-register involved.

All data transferred into or out of the magnetic core storage via a buffer
mode are treated as 30-bit words. If the C-register involved in the buffer mode
provides less than 30 bits, then the higher order bits are always interpreted as
zero. The initial bu...fIer address is included in, the terminal address excluded from j

the storage addresses used in a buffer mode.

The individual steps in a buffer mode of operation are initiated by the
entry, or removal, of a data word in the associated C-register. The main pro­
gram sequences are suspended by these events, and a three-sequence operation is
performed to complete the buffer process.

• The "E" sequence reads the control word associated with the active C-register,
and enters the lower order 15 bits into the R-register.

• The "F" sequence uses the address in the R-register to transfer the data word
in the C-register to· or from the magnetic core storage. .

• The" G" sequence increases the address in the R-register by one, and records
the result in the lower order 15 bits of the special storage location. If the
upper and lower halves of this storage location are equal, the buffer mode is
terminated.

If several requests for buffer action occur at one time, they are processed
in the order of the C-register number, with C-register 7 having the top priority.
A designator holds the selected C-register number throughout the three buffer
sequences. As soon as one request has been satisfied, and the designator has
been cleared, a second request may become active and the corresponding C­
register number entered in the designator. The main program sequences resume
when the designator remains cleared on completion of a buffer sequence.

Transfer Mode of Operation-A transfer mode of operation is initiated
by the execution of an initiate input transfer (73) or initiate output transfer
(74) instruction. The purpose of the transfer mode is to move rapidly a block of
data into or out of the magnetic core storage. This mode is similar to the buffer
mode of operation. However, it differs in that the transfer mode does not ter­
minate at a predetermined address. The transfer mode must be terminated by
a main program instruction-which reassigns the mode to another C-register
or disables the mode by assigning it to C-register O. The transfer mode also
differs from the buffer mode in that the time required to complete the handling

26

of each word is considerably less than that for the buffer mode. Only one C­
register can be in the transfer mode at one time.

The principle application of the transfer mode of operation is a block trans­
fer of data from one location in magnetic core storage to another location in
the same storage. This is accomplished by establishing a transfer mode via an
arbitrary C-register, and then referencing the C-register with a repeated main
program instruction.

All data transferred into or out of the magnetic core storage via a transfer
mode are treated as 30-bit words. If the C-register involved in the transfer
mode provides less than 30 bits, then the higher order bits are always inter­
preted as zero. The individual steps in a buffer mode of operation are initiated
by the entry, or removal, of a data word in the associated C-register. The main
program sequences are suspended by these events, and a special "E" sequence is
performed to complete the transfer process. This sequence transfers the word
between the active C-register and the storage address specified by B-register 6.
The contents of B-register 6 are then increased by one.

The C-register, which is active in a transfer mode, is always recorded in a
control designator. If a buffer and a transfer mode are assigned to the same
C-register, the transfer mode is effective and the buffer mode is ignored. If a
transfer mode is assigned to C-register 0, the mode becomes inactive.

Advance Clock Mode of Operation-Magnetic core storage address
00010 functions as a 30-bit counter, advancing one count each millisecond.
This provision is made so that real-time measurements may be included in the
computation. The advancing of this counter is accomplished by a buffer type
operation under the control of a one kilocycle crystal oscillator. Once each
miHisecond, a control designator is set to indicate the need for advancing the
clock. The main program "E" and "G" sequences are executed as if a buffer
operation were being performed. These sequences advance the lower order 15
bits of (00010). If at the end of the" G" sequence (R) = 0, a special "F" sequence
is enabled, which advances the higher order 15 bits of (00010) by one.

Interrupt Mode of Operation-The interrupt mode of operation permits
an M-460 program to be interrupted by an unexpected request signal from ex­
ternal equipment. Upon interruption by such a signal, the computer executes
the instruction stored at a special storage location (00011). If this instruction
were not a jump instruction, the program would then continue as if it had not
been interrupted. A more usual instruction stored at address 00011 would be a
return jump to address 00012. This would record the current program address
in the lower order 15 bits of (00012), and commence a routine beginning at
address 00013. This routine would evaluate the reason for the interruption via

27

C-register communication with external equipment. When completed, the
routine would execute a jump instruction at address 00012 and return to the
main program.

An interruption of a program and the resulting execution of the instruc­
tion at address 00011 cause the interrupt designator to be set. This disables the
interrupt request line from the external equipment, and prevents a second
interruption from superseding the first. Upon completion of the interrupt rou­
tine, an instruction is normally read from address 00012 to return to the main
progranl. The process of reading an instruction, not an operand, from address
00012 causes the interrupt request line to be enabled for further interruptions.

COMMUNICATION CABLES

The M-460 Computer communicates with other equipment via a number
of communication lines. These communication lines are physically grouped
into cables containing 20 twisted pairs of wires and terminating in 37 pin AN
connectors. There are a total of 24 of these cables, functionally grouped into
three categories. These categories are described below as input, output, and
function cables. Each wire in a cable has a function which is identical to a sim­
ilar wire in any other cable of the same category. Hence, any external equipment
can be connected to any C-register as long as the cable categories are observed.
Communication registers with fewer than 30 bits transmit and receive zeros in
the higher order digits. A potential of -10V is interpreted as a zero signal. A
potential of 0 volts is interpreted as a one signal.

Input Cables (12)-There are a total of 12 input cables provided in
the Univac M-460 Computer. Two cables are associated with each of the com­
munication registers, except C-register 3, which is the function register. Each
cable contains 30 information lines and 2 control lines. The information lines
are twisted with one another, and the control lines are twisted with ground
wires. One control line, identified as the ready line, signals the external equip­
ment that the C-register is ready for an input. The other control line, identified
as the resume line, signals the computer that the input information lines are to
be sampled and the results entered in the C-register.

Output Cables (6)-There are provided a total of six output cables. One
output cable is associated with each of the communication registers, except for
C-register 3. Each cable contains 30 information lines and two control lines.
The information lines are twisted with one another, and the control lines are
twisted with ground wires. One control line, identified as the ready line, signals
the external equipment that the C-register has been filled and that the output
information lines are ready to be sampled. The other control line, identified as

28

the resume line, signals the computer that the information has been sampled
and that it is no longer needed.

Function Cables (6)-There are a total of six function cables provided in
the M-460. Each cable contains outputs from C-register 3 and inputs to C­
register 3. The cables are numbered 1 through 6, corresponding to values of the
output channel designator and the input channel designator which activate
them. Function channels 1 and 2 have fifteen active input lines and twelve
active output lines. Function channels 3, 4, 5, and 6 have six active input lines
and six active output lines. Information lines are twisted with one another, and
the control lines are twisted with ground wires.

Each cable contains 15 input information lines, 12 output information lines,
and 2 control lines. One control line, identified as the ready line, signals the
external equipment that C-register 3 has been filled and that the output lines
are ready to be translated. The other control line, identified as the interrupt
request line, may be activated at any time by external equipment to interrupt
the computer program. Inputs to C-register 3 are sampled at the time the input
channel selection is made.

29

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

