NAVAL TACTICAL DATA SYSTEM(NTD

technical note no. 240
REPERTOIRE of INSTRUCTIONS for the

AN/USQ-20 UNIT COMPUTER

Romington Fand Univac
DIVISION OF SPERRY RAND CORPORATION
UNIVAC PARK, ST. PAUL 16, MINNESOTA

NAVAL TACTICAL DATA SYSTEM
TECHNICAL NOTE
NO. 240

REPERTOIRE of INSTRUCTIONS
for the
AN/USQ-20 UNIT COMPUTER

by
Walter G. Haberstroh

PX 1343-36

Pomington Fand UUnivac ®
DIVISION OF SPERRY RAND CORPORATION
UNIVAC PARK, ST. PAUL 16, MINNESOTA

NAVY DEPARTMENT BUREAU OF SHIPS ELECTRONICS DIVISIONS
CONTRACT: NObsr 72769 NTDS NO. U-6090 1 AUGUST 1960

1.

2.

3.

CONTENTS

INTRODUCTION v v v v vt et e et et oo v o as e e e e
GENERAL INFORMATION it 0ot v vt oo v o v oo

Symbol ConventionsS ¢« ¢ ¢ ¢ v v v ¢ s e o b 0 o b e e e
Function Code Designator. e e e e s e e e e e e
Branch Condition Designator« ¢ v v ¢ v v v o v v v o 0 v
Input/Output Channel Designator ¢ v v v oo
Operand Interpretation Designator
Index Designator ¢ i v o v o v o o o v o 0 o 0 o 0 s 0 0 o v
Operand Designator v v v v 0t 0 ot v o o o o v o oo oo
Core Memory Assignment e e e e e e

moERD WP

=

Wired MEMOTY ¢ v v vt v v e o o o o o o s o oo o oo s oo
Automatic Recovery. e e e e e s e e e e e e e e
Buffer Modes v ¢ v v vt v v o o o oo o v e e e e e

R

W 0 O O O W W N

o
W NN

[y
w

TECHNICAL NOTE NO. 240

REPERTOIRE OF INSTRUCTIONS FOR THE AN/USQ-20 UNIT COMPUTER

1. INTRODUCTION

This technical note presents the instruction repertoire for the AN/USQ-20 NTDS Unit Com-
puter. Details presented are limited to the needs of the NTDS programmer and liSt only
symbols, registers, terms, and instruction characteristics pertinent to programming the
computer.

Major programming differences between the AN/USQ-20 and its forerunner, the AN/USQ-117,
lie in the area of input/output characteristics. The AN/USQ-20 Unit Computer features
simplified instructions pertaining to both input and output on 14D channels, 12D of which have
external function capabilities. In addition, the computer provides a more powerful Repeat in-
struction, two instructions with parity check, buffer monitoring, and other modifications.,

Those familiar with the AN/USQ-17 instruction repertoire should make special note of the
following AN/USQ-20 instructions: 13, 17, 40, 44, 60, 62, 63, 66, 70, 73, 74, 75, and 76.
Major revisions have been made to these instructions specifically. In addition, the reader
must also be aware of fault procedures since function codes 00 and 77 are fault conditions

which, if executed, will cause a fault interrupt.

2, GENERAL INFORMATION

The Naval Tactical Data System Unit Computer (NTDSUC) is a self-modifying, one-address
computer. Although this means that one reference or address is provided for the execution
of an instruction, this reference canbe modified automatically during a programmed sequence.
The references are modified by using the B (index) registers one through seven, which con-
tain any previously stored constants., To modify the address, the content of a selected B-
register is added to the Operand Designator, y.

A programmed address is coded using octal notation with each octal digit denoting three bi-
nary digits. The instructions are read sequentially from Magnetic Core Storage except after
Jump or Skip instructions.

A. SYMBOL CONVENTIONS - The following symbols are used throughout the descriptive

material on instructions:

a = a register (A, Q, Bn), a memory location Y, or a constant.
(a) = content of a.
(a)i = initial content of a.
(a)f = final content of a.
th
a = then bit of a.
n th
(a)n = then bit of the content of a.
f = Function Code Designator (i29 y vee s i2 4)"‘.
j = Branch Condition Designator (i23 y sesy izl)*.
? = Input/Output Channel Designator (i23 s eeey izo)*.
k = Operand Interpretation Designator (120 s sen s i1 8)"‘.
0 = Operand Interpretation Designator (i19 y soes ils)*.
_ . . . N
b = Index Designator (117, i 115) .
y = Operand Designator (i1 FEREED io)*.
Y = the Operand (regardless of source).
Y = y+ (Bb).

1) The operand or address of the operand for the Read portion of an in-

struction or

2) The destination address for the Sfore portion of an instruction.

(Y) = content of memory address Y.

L(Y)(Q) = Dbit-by-bit multiplication, logical multiply of Y. and (Q)n.

A = A-register or accumulator (30-bit arithmetic register).

B = seven B-registers (15 bits each). B-registersareaddress-modifying regis-

ters generally used for indexing loops in a program; in addition, B’7 serves
as a repeat counter. (The address modification does not alter the instruc-
tions as stored in memory.) A b or l designator specifies the B-register

used.
Q = Q-register (30-bit arithmetic register).

= U-register (30 bits). The U-register holds the instruction word during
execution of an operation. If address modificationis required before execu-
tion, the appropriate B-register content is added to the lower-order 15 bits

of the U-register before execution.

* irl is the nth bit position in an instruction.

2

P = P-register (15 bits). The P-register is the Program Address Register. This
register holds the address of the current instruction throughout the program
except for Jump instructions where the P-register is cleared and the new

program address is entered.

C = the 14D input/output channels (30 lines each). Channels consist of transmis-
sion lines, therefore they cannot be considered registers, The designator ?
specifies (in octal) the channel used.

Figure 1 illustrates bit configuration of instruction designators in two forms. Form I per-
tains to input/output instructions; Form II pertains to all other instructions.

f f R b Y
r — NN — \

29128|27|26(25|24|23{22|21|20§19{1817({16{15|14/13(12{11|10(9(8(7|6{5|4|3]|2{1(0

Form I - Input/Output Instructions

f j k b y
/ "~ "y - —

29128|27(26|25|24123|22(21{20|19{18]17{16{15{14|13|12|11{10{9(8{7|6(5|4{3|2(1|0

Form II - All Other Instructions

Note: ’,\ = C" input/output channel

Figure 1, Bit Allocation of Instruction Designators

Table 1 is a list of the computer's entire repertoire of instructions; each instruction is listed
by its function code number and name. Two cards contained in envelopes in the back of this
technical note also show the repertoire. In addition, the instructions on these cards are
lettered in a form which indicates coding used by the CS-1 Compiling System. *

* Additional references: 1) NTDS Technical Note No. 202 Compiling System CS-1.
2) Compiling System CS-1 - Programmer's Reference Manual
PX 1349,
3) Phase HII Basic Input Language PX 1478.

TABLE 1.

INSTRUCTION REPERTOIRE - AN/USQ-20 UNIT COMPUTER

CODE FUNCTION NAME CODE FUNCTION NAME
00 (Fault Interrupt) 40 ENTER LOGICAL PRODUCT
01 RIGHT SHIFT Q 41 ADD LOGICAL PRODUCT
o2 RIGHT SHIFT A 42 SUBTRACT LOGICAL PRODUCT

03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
317

RIGHT SHIFT AQ
COMPARE

LEFT SHIFT Q
LEFT SHIFT A
LEFT SHIFT AQ

ENTER Q

" ENTER A

ENTER B!

EXTERNAL FUNCTION ON CM
STORE Q

STORE A

STORE B"

STORE CM

ADD A
SUBTRACT A
MULTIPLY
DIVIDE
REPLACE A + Y
REPLACE A - Y
ADD Q
SUBTRACT Q

ENTER Y + Q
ENTER Y - Q
STORE A + Q
STORE A - Q
REPLACE Y + Q
REPLACE Y - Q
REPLACE Y + 1
REPLACE Y - 1

43
44
45
46
47

50
51
52

53 -

54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
14
75
76
i

COMPARE MASKED

REPLACE LOGICAL PRODUCT
REPLACE A + LOGICAL PRODUCT
REPLACE A - LOGICAL PRODUCT
STORE LOGICAL PRODUCT

SELECTIVE SET

SELECTIVE. COMPLEMENT
SELECTIVE CLEAR

SELECTIVE SUBSTITUTE

REPLACE SELECTIVE SET
REPLACE SELECTIVE COMPLEMENT
REPLACE SELECTIVE CLEAR
REPLACE SELECTIVE SUBSTITUTE

JUMP (Arithmetic)

JUMP (Manual)

JUMP ON C" ACTIVE INPUT BUFFER
JUMP ON CP ACTIVE OUTPUT BUFFER
RETURN JUMP (Arithmetic)

RETURN JUMP (Manual)

TERMINATE C" INPUT BUFFER
TERMINATE C? OUTPUT BUFFER

REPEAT
B SKIP ON B"
B JUMP ON B"

INPUT BUFFER ON C" (without Monitor mode)
OUTPUT BUFFER ON CP (without Monitor mode)

INPUT BUFFER ON CP® (with Monitor mode)

OUTPUT BUFFER ON C" (with Monitor mode)

(Fault Interrupt)

B. FUNCTION CODE DESIGNATOR - f

The f designator (6 bits) appears in bit-positions 29 through 24 of the U-register, or an in-
struction, designating the function to be performed by that instruction. All values of § other
than 00 and 77 are defined in the instruction list. The twocodes 00 and 77 are fault conditions
which, if executed, will cause a fault interrupt. This results in a jump to address 00014, the
Fault Entrance Register or address 00014 of wired memory depending on the Automatic Re-
covery Switch setting (see page 12).

C. BRANCH CONDITION DESIGNATOR - j

The j designator (3 bits) appears in bit-positions 23, 22, and 21 of the U-register, or an in-
struction; it is used in a majority of the instructions (see Figure 1, Form II), There are
three primary categories of use: 1) for Jump and Skip determination, 2) for B-register
specification, and 3) for repeat status interpretation. Appropriate interpretations of the ,
designator are listed either below or under the descriptions of the individual instructions.

For those instructions in which the] designator has no special interpretation, it specifies
the condition under which the next sequential instructionin the program will be skipped. This
provides for branching from a sequence without executing a Jump instruction, as would nor-
mally occur if a Skip condition were not satisfied.

Skip of the next sequential instruction is determined by the following rules in all instructions
except 04, 12, 13, 16, 17, 26, 27, 60 through 67, and 70 through 76.

j = 0: Do not skip the next instruction.

j=1 Skip the next instruction.

j=2 Skip the next instruction if (Q) is positive.
j= & Skip the next instruction if (Q) is negative.
j=4 Skip the next instruction if (A) is zero.*
j=05 Skip the next instruction if (A) is nonzero.

j=6 Skip the next instruction if (A) is positive.
j=T Skip the next instruction if (A) is negative.

When the branch (Skip or Jump) condition involves the sign of the quantity in A or Q, the
evaluation examines the sign bit of these quantities; hence, a positive zero (all zeros) is
considered a positive quantity, and a negative zero (all ones) is considered a negative
quantity.

* Positive zero

D. INPUT/OUTPUT CHANNEL DESIGNATOR - /J\

The /J\ designator (4 bits) appears in bit-positions 23, 22, 21, and 20 of the U-register, or an
input/output instruction, specifying the C-channel for the instruction (see Figure 1, Form I).
Bit 23 assumes a value of eight, bit 22 a value of four, bit 21 a value of two, and bit 20 a value
of one; thus the ’j\ designator provides accessibility to the 14 (decimal) input/output channels
numbered 0-158 .

Instructions 13, 17, 62, 63, 66, 67, 73, 74, 75, and 76 use the ’j\designator configuration.

E. OPERAND INTERPRETATION DESIGNATOR - k or II:

The k designator (3 bits) [or /I> designator (2 bitsil appears in bit-positions 20, 19, and 18 of
the U-register, or an instruction; a /I\(designator appears only in bit positions 19 and 18,
since bit 20 is a portion of the j\ designator. (See Figure 1, Forms I and II.) Instructions 13,
17, 62, and 73 through 76 use the /I\(designator configuration since they perform input/output

activities and require a /j\ designator for channel specification.

The k and /l: designators control operand interpretation. Those instructions which read an
operand but do not replace it after the arithmetic is performed are designated Read instruc-
tions, Those instructions which do not read an operand but sfore one are designated Sfore
instructions. Instructions which both read and store operands are classified as Replace

instructions.

A
The various values of k or k affect the operand in the following list except where otherwise
noted under individual instruction descriptions.

1) Read instructions (01 through 13, 20 through 23, 26, 27, 30, 31, 40 through 43, 50
through 53, and 60 through 76):

A
kor k = 0: Yu=0's; Y, =Y.

L
kork=1: Y =0' Y. = (Y
or k = =08 Y =)L.

A

k or k =2 Yu=0's;YL=(Y).
A

k or _I5_= Y=Y
k = Yu = same bits as YM; YL =Y.
k = 5: Yu = same bits asY14; Y, = (Y)L.
k = 6: Yu = same bits as Y29; YL = (Y)u.

k=T Y= (A).

For instructions 23, 52, and 53, k = 7 is not used.
For instruction 13, only /l\(= 3 is permitted.
For instructions 73 through 76, /l\(= 2 is not used.
2) Store instructions (14 through 16, 17, 32, 33, and 47):
k=0: Store A orB) inQ"
k=1: Store (A, Q ,or B)) in Y, , leaving (Y), undisturbed.
k= 2: Store (AL » Qp,Or Bj) inY ,leaving (Y)L undisturbed.

A .
k or k= 3: Store (A, Q, c, or BJ) in Y.
k= 4: Store (Q or BJ) in A™,

k=5 Store complement of (A.L , QL , or Bj) in YL , leaving (Y)u
undisturbed.

k= 6: Store complement of (AL » Q,0r Bj) inY ,leaving (Y)L
undisturbed.

k= 17: Store complement of (A, Q, or BJ) in Y. (Storing the complement
of Bj is the same complement as for a 30-bit register.)
For instruction 17, only ’I:= 3 is permitted.

3) Replace instructions (24, 25, 34 through 37, 44 through 46, and 54 through 57):
k = 0: Not used.
- 1 - = 0Olg: =
k= 1. Read portion Y, 0's; Y, (Y)L.

Store portion - stores (AL, QL’ or BJ) in Y_, leaving (Y)u
undisturbed.

- . - - Ig. -
k = 2: Read portion Y, =0's YL (Y) x

Store portion - stores (AL, Qp, or Bj) in Yu’ leaving (Y)u
undisturbed.

k=3 Read portion- Y=Y,
Store portion - stores (A, Q, or B]) in Y,

k = 4: Not used.

k= 5. Read portion - Y, = same bits at Y, ,; Y, = (Y)L.
Store portion - stores (AL, Qp,or B)) in Y, , leaving (Y)u
undisturbed.

* A 14000 00000 instruction complements (Q).
** A 15040 00000 instruction complements (A).

k = 6: Read portion - Y, = same bits as Y29; Y, = Y.

Store portion - stores (A or Bl) in Y, , leaving (Y)L

undisturbed.

L @

k=1 Not used.

The Repeat instruction requires special interpretation when followed by a Replace instruc-
tion. See details on page 24, Instruction No. 70, REPEAT.

F. INDEX DESIGNATOR - b

The b designator (3 bits) appears in-bit-positions 17, 16, and 15 of the U-register, or an in-
struction (see Figure 1), specifying which of the B-registers, if any, will be used to modify
the Operand Designator, y, to form Y = y + (Bb) This operation employs an additive ac-
cumulator; hence, a quantity cons1stmg of all zeros cannot result unless the bits of both the
Operand Designator, y, and (B) are all zeros.

Effect of the various values of b, the Index Designator, is summarized:

b = 0: Do not modify y.

b =1: Add (B) to Yy (modulo 215 1).
b =2 Add (B) to y (modulo 2 -1).
b=3 Add(B% toy (modulo2!®-1).
b =4 Add (B4) to y (modulo 215 1).

b =15 Add (B5) to y (modulo 215 1).

b =6: Add (Bs) to y (modulo 215-1).
b=T Add(B')toy (modulo 2'°-1),

G. OPERAND DESIGNATOR -y

The y designator (15 bits) appears in bit-positions 14 through 0 of an instruction (see Figure
1). The operand or address of the operand, Y, is relative to y since Y=y + (Bb).

H. MAGNETIC CORE MEMORY ASSIGNMENT

The main Magnetic Core memory consists of 32,768 addressable storage locations. Seventy-

three of these locations are special-purpose and provide eight distinct functions:

1) The starting address from MASTER CLEAR

2) The Fault Entrance Register

3) The Real-Time Clock Register

4) External Interrupt Entrance Register for each channel

5) Internal Interrupt Entrance Register for each énput channel
6) Internal Interrupt Entrance Register for each oufput channel
7) Input Buffer Control Register for each input channel

8) Output Buffer Control Register for each oufput channel,

Each of the other memory locations are used for:

1) Instruction word storage
2) Data storage.

The following tabulation specifies Magnetic Core Memory Address assignments and associated

storage functions.

ADDRESS STORAGE FUNCTION
(octal)
00000 Initial Starting Address from MASTER CLEAR
00001 Memory Word
00002 Memory Word
00003 Memory Word
00004 Memory Word
00005 Memory Word
00006 Memory Word
00007 Memory Word
00010 Memory Word
00011 Memory Word
00012 Memory Word
00013 Memory Word
00014 Fault Entrance Register
00015 Memory Word
00016 Memory Word)
00017 Real-Time Clock Register
00020 External Interrupt Entrance Register for Channel 0
00021 External Interrupt Entrance Register for Channel 1
00022 External Interrupt Entrance Register for Channel 2
00023 External Interrupt Entrance Register for Channel 3

10

ADDRESS
(octal)

00024
00025
00026
00027
00030
00031
00032
00033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
00051
00052
00053
00054
00055
00056
000517
00060
00061
00062
00063
00064
00065

STORAGE FUNCTION

External Interrupt Entrance Register for Channel 4
External Interrupt Entrance Register for Channel 5
External Interrupt Entrance Register for Channel 6
External Interrupt Entrance Register for Channel 7
External Interrupt Entrance Register for Channel 8D
External Interrupt Entrance Register for Channel 9D
External Interrupt Entrance Register for Channel 10D
External Interrupt Entrance Register for Channel 11D
External Interrupt Entrance Register for Channel 12D
External Interrupt Entrance Register for Channel 13D
Memory Word

Memory Word

Internal Interrupt Entrance Register for Input Channel 0
Internal Interrupt Entrance Register for Input Channel 1
Internal Interrupt Entrance Register for Input Channel 2
Internal Interrupt Entrance Register for Input Channel 3
Internal Interrupt Entrance Register for Input Channel 4
Internal Interrupt Entrance Register for Input Channel 5
Internal Interrupt Entrance Register for Input Channel 6
Internal Interrupt Entrance Register for Input Channel 7
Internal Interrupt Entrance Register for Input Channel 8D
Internal Interrupt Entrance Register for Input Channel 9D
Internal Interrupt Entrance Register for Input Channel 10D
Internal Interrupt Entrance Register for Input Channel 11D
Internal Interrupt Entrance Register for Input Channel 12D
Internal Interrupt Entrance Register for Input Channel 13D
Memory Word

Memory Word

Internal Interrupt Entrance Register for Output Channel 0
Internal Interrupt Entrance Register for Output Channel 1
Internal Interrupt Entrance Register for Output Channel 2
Internal Interrupt Entrance Register for Output Channel 3
Internal Interrupt Entrance Register for OQutput Channel 4
Internal Interrupt Entrance Register for Output Channel 5

ADDRESS
(octal)

00066
00067
00070
00071
00072
00073
00074
00075
00076
00077
00100
00101
00102
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00115
00116
00117
00120
00121
00122
00123
00124
00125
00126
00127

STORAGE FUNCTION

Internal Interrupt Entrance Register for Output Channel 6
Internal Interrupt Entrance Register for Output Channel 7
Internal Interrupt Entrance Register for Output Channel 8D
Internal Interrupt Entrance Register for Output Channel 9D
Internal Interrupt Entrance Register for Output Channel 10D
Internal Interrupt Entrance Register for Output Channel 11D
Internal Interrupt Entrance Register for Output Channel 12D
Internal Interrupt Entrance Register for Output Channel 13D
Memory Word

Memory Word

Input Buffer Control Register for Input Channel 0

Input Buffer Control Register for Input Channel 1

Input Buffer Control Register for Input Channel 2

Input Buffer Control Register for Input Channel 3

Input Buffer Control Register for Input Channel 4

Input Buffer Control Register for Input Channel 5

Input Buffer Control Register for Input Channel 6

Input Buffer Control Register for Input Channel 7

Input Buffer Control Register for Input Channel 8D

Input Buffer Control Register for Input Channel 9D

Input Buffer Control Register for Input Channel 10D

Input Buffer Control Register for Input Channel 11D

Input Buffer Control Register for Input Channel 12D

Input Buffer Control Register for Input Channel 13D
Memory Word

Memory Word

Output Buffer Control Register for Output Channel 0

Output Buffer Control Register for Output Channel 1

Output Buffer Control Register for Output Channel 2

Output Buffer Control Register for Output Channel 3

Output Buffer Control Register for Output Channel 4

Output Buffer Control Register for Output Channel 5

Output Buffer Control Register for Output Channel 6

Output Buffer Control Register for Output Channel 7

11

ADDRESS STORAGE FUNCTION

(octal)
00130 Output Buffer Control Register for Output Channel 8D
00131 Output Buffer Control Register for Output Channel 9D
00132 Output Buffer Control Register for Output Channel 10D
00133 Output Buffer Control Register for Output Channel 11D
00134 Output Buffer Control Register for Output Channel 12D
00135 Output Buffer Control Register for Output Channel 13D

(00136-01771717) = 4,002D words of memory
(10000-1771717) = 4,096D words of memory
(20000-27171717) = 4,096D words of memory
(30000-3717171T) = 4,096D words of memory
(40000-4771717) = 4,096D words of memory
(50000-57171717) = 4,096D words of memory
60000-67171717) = 4,096D words of memory
(TO0OO0O0-771T171T) = 4,096D words of memory

1. WIRED MEMORY - The AN/USQ-20 Unit Computer contains 16D words of semipermanent
wired core storage. Programming this memory area requires a process of wiring-in the
desired instructions. The semipermanent feature of these storage locations prevents acci-
dental destruction of program instructions contained therein since entries cannot be made via

main memory.

—

An Input Bootstrap routine occupies this memory, and its execution is controlled by the Auto-

matic Recovery Switch.

J. AUTOMATIC RECOVERY - In the event of a fault condition (encountering either a 00
or 77 function code), the Automatic Recovery Switch directs computer activity. This switch
has three positions: 1) DOWN, 2) NEUTRAL, and 3) UP. Action resulting from these posi-

tions is:

1) DOWN position - This causes manual execution of the Bootstrap routine. Computer
action begins at address 0 of Wired Memoryand executes the Bootstrap routine when
this switch is depressed. (A MASTER CLEAR should precede this operation.)

2) NEUTRAL position - This causes an Interrupt to address 00014 of Main Memory

on a fault condition. Action continues as programmed.

3) UP position - This causes an Interrupt to address 14 of Wired Memory on a fault

condition. This results in automatic execution of the Bootstrap routine.

12

K. BUFFER MODES - The AN/USQ-20 Unit Computer provides two modes of buffering:

1) with monitor and 2) without monitor.

Buffering with monitor transfers words sequentially, starting at a given initial address
through a given terminal address, on the specified input or output channel. The computer
continues execution of program instructions during the buffer process. Completion of the
buffering process causes an Internal Monitor Interrupt to the Internal Interrupt Entrance
Register assigned to the input or output channel. (See subsection H, MAGNETIC CORE
MEMORY ASSIGNMENT.) This register should contain a RETURN JUMP instruction*. (See
Instructions 75 and 76.)

Buffering without the monitor transfers words sequentially, starting at a given initial address
through a given terminal address, on a specified input or output channel. The computer con-
tinues execution of program instructions during the buffer process. No monitor interrupt will

occur, (See Instructions 73 and 74.)

3. LIST OF INSTRUCTIONS
This section lists the repertoire of instructions used with the NTDS AN/USQ-20 Unit Com-~
puter. Common usage of these instructions is also included; no attempt is made to indicate

more sophisticated use.

01 RIGHT SHIFT @
This instruction shifts (Q) to the right Y bit positions. The higher-order bits are re-
placed with the original sign bit as the word is shifted. Only the lower-order six bits
of Y are recognized for this instruction. The higher-order 24 bits are ignored.

Example of right shift in Q: Y = 2

Content of Q Content of Q
(Q)i (positive) = 0101 (Q)i (negative) = 1010
First shift 0010 First shift 1101
Second shift 0001 Second shift 1110

02 RIGHT SHIFT A
This instruction shifts (A) to the right Y bit positions. The higher-order bits are re-
placed with the original sign bit as the word is shifted. Only the lower-order six bits of

* Suggested instruction for the Internal Interrupt Register is:
650nn nnnnn - Exit to an Interrupt subroutine for remedial action. This subroutine ends
with a 60inn instruction which clears the Interrupt mode, then returns
control to the main routine.

13

03

Y are recognized for this instruction. The higher-order 24 bits are ignored. The over-

all operation is analogous to the example given in the foregoing instruction.

RIGHT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is to the right Y bit
positions with the lower-order bits of A shifting into the higher-order bit positions of Q.
The higher-order bits of A are replaced with the original sign bit as the word is shifted.
Only the lower-order six bits of Y are recognized for this instruction. The higher-

order 24 bits are ignored.

Example of right shift in AQ: Y = 2

Content of AQ Content of AQ
(AQ)i (positive) =01010011 (AQ)i (negative)= 10001010
First shift 00101001 First shift 11000101
Second shift 00010100 Second shift 11100010
04 COMPARE

05

This instruction compares the signed value of Y with the signed value of (A) and/or (Q).
It does not alter either (A) or (Q). The Branch Condition Designator, j» i8 interpreted in
a special way for this instruction as listed below:

j=0 Do not skip the next instruction.

j=1 Skip the next instruction.

j=2 Skip the next instruction if Y is less than, or equal to, (Q).
j=3 Skip the next instruction if Y is greater than (Q).

j=4 Skip the next instruction if (Q) is greater than, or equal to Y, and Y is
greater than (A).

j = 5: Skip the next instruction if Y is greater than (Q) or if Y is less than, or
) |
equal to, (A).

j=6 Skip the next instruction if Y is less than, or equal to, (A).
j=m Skip the next instruction if Y is greater than (A).

LEFT SHIFT Q
This instruction shifts (Q) circularly to the left Y bit positions*. The lower-order bits

* Maximum shift count permitted is 59D places.

14

are replaced with the higher-order bits as the word is shifted. Only the lower-order six

bits of Y are recognized for this instruction. The higher-order 24 bits are ignored.
Example of left circular shift in Q: (Y) = 2

Content of Q Content of Q
(Q)i (positive) = 0011 (Q)i (negative) = 1100
First shift 0110 First shift 1001
Second shift 1100 Second shift 0011
06 LEFT SHIFT A
*
This instruction shifts (A) circularly to the left Y bit positions. The lower-order bits
are replaced with the higher-order bits as the word is shifted. Only the lower-order six
bits of Y are recognized for this instruction. The higher-order 24 bits are ignored. The
over=-all operation is analogous to the example given in the foregoing instruction.
07 LEFT SHIFT AQ
This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the
left Y bit positions.* The lower-order bits of A are replaced with the higher-order bits
of Q and the lower-order bits of Q are replaced with the higher-order bits of A. Only
the lower-order six bits of Y are recognized by this instruction. The higher-order 24
bits are ignored.
Example of left circular shift in AQ: Y =2
Content of AQ Content of AQ
(AQ)i (positive) =01010011 (AQ)i (negative)= 10001011
First shift 10100110 First shift 00010111
Second shift 01001101 Second shift 00101110
10 ENTER @
Clear the Q-register. Then transmit Y to Q.
11 ENTER A
Clear A, Then transmit Y to A,
n
12 ENTER B

Clear B-register j. Then transmit the lower-order 15 bits of Y to B-register j. The
higher-order 15 bits of Y are ignored in this instruction. The Branch Condition Desig-

* Maximum shift count permitted is 59D places.

15

nator,] , is used to specify the selected B-register for this instruction and is not avail-

able for its normal function.

13 EXTERNAL FUNCTION ON C"
,j\ = 0 or 1. Interrogate the two bits connected to the input-active designator (flip-flops)
on an interconnected computer. If the interconnected computer's input buffer is active,
skip the next instruction. If the interconnected computer's input buffer is not active,

N

execute the next instruction. There are no External Function lines on C0 or Cl. k=3
is required for timing when ? _;é 0 or 1. Transmit Y, the External Function, over the
channel specified by /j\ Only k=3is permitted.

14 STORE @
Store (Q) at storage address Y as directed by the Operand Interpretation Designator, k.
I k= 0, complement (Q). K k= 4, store in A,

15 STORE A
Store (A) at storage address Y as directed by the Operand Interpretation Designator, k.
I k = 4, complement (A). K k = 0, store in Q.

16 STORE B"
Store a 30-bit quantity whose lower-order 15 bits correspond to the content of B-register
j and whose higher-order 15 bits are zero at storage address Y as directed by the
Operand Interpretation Designator, k. The Branch Condition Designator, j is used to
specify the selected B-register for this instruction and is not available for its normal
function.

17 STGRE C"
Store the content of the C-channel specified by ’,\ at storage address Y. An Input Acknowl-
edge signal is then sent on the C-channel. Only k=3is permitted.

20 ADD A
Add Y to the previous content of the Accumulator.

21 SUBTRACT A
Subtract Y from the previous content of the Accumulator.

22 MULTIPLY

16

Multiply (Q) times Y leaving the double-length product in AQ. I the factors are con-

sidered as integers, the product is an integer in AQ.

23

24

25

26

27

The Branch Condition Designator, j is interpreted prior to end correction permitting
sensing of a product with (A)f = 0. K j equal 4, a skip of the next instruction is made
when (A)f = 0. When (A)f # +0, a double-length product has been formed with significant
bit(s) in the Accumulator; however, if a Skip does occur for j = 4 the Multiply instruc-
tion can be re-executed with the same operand and with j = 2 or 3 to determine if Q29

contains a significant bit (a onég of the product.

In this instruction, k = 7 should not be used.

DIVIDE

Divide (AQ) by Y leaving the quotient in the Q-register and the remainder in the A-
register. The remainder bears the same sign as the quotient. In this instruction, k = 7
should not be used.

NOTE:

If a DIVIDE FAULT condition exists, no Maintenance Console indication is
given; however, by coding each Divide instruction with j = 3, a program

test for the DIVIDE FAULT is automatic. With this selection of j, a Skip
of the next instruction occurs if a DIVIDE FAULT exists. The Skip should
be made to a Jump instruction which provides a remedial means of noting

or correcling the error. Therefore, the instruction which follows the Divide
instruction should have its , = 1 in order to preclude the Jump instruction
whenever the ''Divide Sequence'' culminates in a correct answer.

A DIVIDE FAULT can also be detected if the Divide instruction is executed

with J = 2. In this case, a correct answer is indicated when a Skip occurs.

REPLACE A +Y
Add (Y) to the previous content of A. Store (A) at storage address Y.

REPLACE A - Y
Subtract (Y) from the previous content of A. Then store (A) at storage address Y.

ADD @
Interchange (A) and (Q). Thenadd Y to (A). Interchange (A) and (Q). The content of A
is undisturbed by this instruction. The Branch Condition Designator, j, has special

meaning in this instruction as in instruction 27.

SUBTRACT @
Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The con-

17

30

31

32

33

34

35

36

18

tent of A is undisturbed by this instruction. The Branch Condition Designator, j, has

special meaning in this instruction as listed below.

NOTE:
In instructions 26 and 27 the Branch Condition Designator, j» has the
following meaning: '
j = 0: Do not skip the next instruction,
j = 1: Skip the next instruction.
j=2: Skip the next instruction if (A) is positive.
j=3 Skip the next instruction if (A) is negative.
j=4 Skip the next instruction if (Q) is zero.
j=95: Skip the next instruction if (Q) is nonzero.
j=6: Skip the next instruction if (Q) is positive.
j=7: Skip the next instruction if (Q) is negative.
ENTER Y + @

Clear A. . Then transmit (Q) to A. Then add Y to (A).

ENTER Y - Q
Clear A. Then transmit (Q) to A. Then subtract Y from (A). Finally, complement (A).

"STORE A + Q

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed by
the Operand Interpretation Designator, k.

STORE A - Q

Subtract (Q) from the previous content of A. Then store (A) at storage address Y as
directed by the Operand Interpretation Designator, k.

REPLACE Y + Q
Clear A. Thentransmit (Q)toA. Then add (Y) to (A). Then store (A) at storage address Y.

REPLACE Y - Q
Clear A. Then transmit (Q) to A. Then subtract (Y) from (A). Then complement (A) and
store at storage address Y.

REPLACE Y + 1
Clear A. Then set (A) = 1. Then add (Y) to (A). Then store (A) at storage address Y.

317

40

41

42

43

REPLACE Y - 1
Clear A, Then set (A) = 1. Then subtract (Y) from (A). Then complement (A) and store
at storage address Y.

ENTER LOGICAL PRODUCT
Enter in A the bit-by-bit product of Y and (Q).

The j designator is interpreted in a special way for this instruction for the value j =2
or 3. K j=2, Skip if the parity of (A)f is even. K j = 3, Skip if the parity of (A)f is
odd.

NOTE:
Even parity
odd parity

an even number of ''ones'' in the A-register.

an odd number of '"ones'' in the A-register.

ADD LOGICAL PRODUCT
Add to (A) the bit-by-bit product of Y and (Q).

SUBTRACT LOGICAL PRODUCT
Subtract from (A) the bit-by-bit product of Y and (Q).

COMPARE MASKED

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the branch point
evaluation for Skip of next sequential instruction as directed by the Branch Condition
Designator, j

This instruction results in no net change in the content of any operational register. It
provides, through the Branch Condition Designator, i,acomparisonof a portion of Y with
(A).

REPLACE LOGICAL PRODUCT
Enter in A the bit-by-bit product of (Y)and (Q). Then store (A) at storage address Y.

The J designator is interpreted in a special way for this instruction for the values j =2
or 3. K j=2, Skip if the parity of (A)f iseven. I j = 3, Skip if the parity of (A)f is
odd.

NOTE:
Even parity
odd parity

an even number of '"'ones' in the A-vegister.

an odd number of ''ones' in the A-register.

19

45

46

41

50

51

52

53

54

55

20

REPLACE A + LOGICAL PRODUCT
Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

REPLACE A - LOGICAL PRODUCT
Subtract from (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address
Y.

STORE LOGICAL PRODUCT
Store in address Y the bit-by-bit product of (A) and (Q) as directed by the Operand Inter-
pretation Designator, k.

SELECTIVE SET

Set the individual bits of A to one corresponding to ones in Y leaving the remaining
bits of A unaltered.)

SELECTIVE COMPLEMENT
Complement the individual bits of A corresponding to ones in Y leaving the remaining
bits of A unaltered.

SELECTIVE CLEAR

Clear the individual bits of A corresponding to ones in Y leaving the remaining bits of
A unaltered.

In this instruction, k = 7 should not be used.

SELECTIVE SUBSTITUTE

Set the individual bits of A withbitsof Y corresponding to ones in Q leaving the remain-
ing Lits of A unaltered.

In this instruction, k = 7 should not be used.

REPLACE SELECTIVE SET

Set the individual bits of A to ome corresponding to ones in(Y)leaving the remaining
bits of A unaltered. Then store (A) at storage address Y.

REPLACE SELECTIVE COMPLEMENT
Complement the individual bits of A corresponding to ones in(Y)leaving the remaining
bits of A unaltered. Then store (A) at storage address Y.

56

57

REPLACE SELECTIVE CLEAR

Clear individual bits of A corresponding to ones in(Y)leaving the remaining bits of A
unaltered. Then store (A) at storage address Y.

REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of A corresponding to ones in Q leaving the remaining bits of A
unaltered. Then form the bit-by-bit product of (Y) and (Q),and set ones of this product
in corresponding bits of A leaving the remaining bits of A unaltered. Then store (A) at
storage address Y.

60 JUMP (Arithmetic)

This instruction clears the Program Address Register, P, and enters a new program
address in P for certain conditions of either the A- or Q-register content. The Branch
Condition Designator, j, is interpreted in a special way for this instruction and thus
determines the conditions under which a Jump in program address occurs. If the Jump
condition is not satisfied, the next sequential instruction in the current sequence is exe-
cuted in a normal manner. K the Jump condition is satisfied, as listed below, then Y
becomes the address of the next instructionandthe beginning of a new program sequence.

j = 0: No jump. Set Interrupt Enable to remove interrupt lockout, thus
clearing Bootstrap and Interrupt modes. Continue with current pro-
gram sequence,

j = 1: Execute jump. Set Iﬁterrupt Enable to remove interrupt lockout,
thus clearing Bootstrap and Interrupt modes.

j=2 Execute jump if (Q) is positive.

j=% Execute jump if (Q) is negative.

j=4 Execute jump if (A) is zero.

j = 5: Execute jump is (A) is nonzero.

j=6: Execute jump if (A) is positive.

j=" Execute jump if (A) is negative.

61 JUMP (Manual)

This instruction clears the Program Address Register, P, and enters a new program
address in P for certain conditions of manual JUMP key selections. The Branch Con-
dition Designator, j, is interpreted in a special way for this instruction and thus deter-
mines the conditions under which a jump in program address occurs. If the Jump condi-

tion is not satisfied, the next sequential instruction in the current sequence is executed

21

62

63

64

22

in a normal manner. If the Jump condition is satisfied, as listed below, then Y becomes

the address of the next instruction and the beginning of a new program sequence.

Program execution may be stopped by certain STOP selections on execution of this in-
struction. The Branch Condition Designator, j, specifies whichkey selections are effec-

tive.

Execute jump regardless of key selections.

Execute jump if JUMP 1 is selected.

Execute jump if JUMP 2 is selected.

Execute jump if JUMP 3 is selected.

Execute jump. Stop computation,

Execute jump. Stop computation if STOP 5 is selected.
Execute jump. Stop computation if STOP 6 is selected.

e G Ammme Smmm S S— Q- S—
il
o - LI S 7 T - T o =

Execute jump. Stop computation if STOP 7 is selected.

JUMP ON C" ACTIVE INPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new program ad-
dress in P for certain input buffer conditions on the channel designated by /j\ ¥ the buffer
is active, the Jump condition is satisfied; then Y becomes the address of the next in-
struction. I the buffer in inactive, the Jump condition is not satisfied. The ﬁext sequen-
tial instruction in the current sequence is executed in the normal manner. Q =0,1, 2, or

3 is permitted.

JUMP ON C' ACTIVE OUTPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new address in P
for certain output buffer conditions onthe channel designated by /]\ H the buffer is active,
the Jump condition is satisfied; then Y becomes the address of the next instruction. K
the buffer is inactive, the Jump condition isnot satisfied. The next sequential instruction
in the current sequence is executed in the normal manner. /l: = 0, 1, 2, or 3 is permitted.

RETURN JUMP (Arithmetic)

This instruction executes a Return Jump sequence for certain conditions of either the A~
or Q-register content. The Branch Condition Designator, j, is interpreted in a special
way for this instruction and determines the conditions under which the Return Jump
sequence is executed. I the Return Jump condition is not satisfied, the next sequential
instruction in the current sequence is executed in a normal manner. I the Return Jump
condition is satisfied, as listed below, the following sequence is performed.

65

66

67

Store (P) + 1 in the lower half of memory address Y. Then jumptoY + 1.

j = 0: , No action; continue with the current program sequence.
j=1 Execute return jump.,

j=2 Execute return jump if (Q) is positive.

j=3 Execute return jump if (Q) is negative.

j = 4: Execute return jump if (A) is zero.

j=15 Execute return jump if (A) is nonzero.

j=6 Execute return jump if (A) is positive.

j =T Execute return jump if (A) is negative.

RETURN JUMP (Manual)

This instruction executes a Return Jump sequence for certain conditions of manual key
selections. The Branch Condition Designator, j, is interpreted in a special way for
this instruction and determines the conditions under which the Return Jump sequence is
executed. K the Return Jump condition is not satisfied, the next sequential instruction in
the current sequence is executed in a normal manner. K the Return Jump condition is

satisfied, as listed below, the following sequence is performed.

Store (P) + 1 in the lower half of memory address Y. Then jumpto Y + 1.

Qumm Sme Cmme tome Qo S —
]
A S 4

Execute return jump regardless of key selections.

Execute return jump if JUMP 1 is selected.

Execute return jump if JUMP 2 is selected.

Execute return jump if JUMP 3 is selected.

Execute return jump. Then stop computation.

Execute return jump, Stop computation if STOP 5is selected.
Execute return jump. Stop computation if STOP 6 is selected.
Execute return jump. Stop computation if STOP 7 is selected.

TERMINATE C" INPUT BUFFER

This instruction terminates the input buffer on channel ? No Input Buffer Monitor Inter-
rupt will occur.

The Operand Interpretation Designator, /I?, the Index Designator, b, and the Operand
Designator, Y, bits are not translated for this instruction.

TERMINATE C" OUTPUT BUFFER
This instruction terminates the output buffer on channel ? No Output Buffer Monitor

Interrupt will occur.

23

70

24

A
The Operand Interpretation Designator, k, the Index Designator, b, and the Operand
Designator, Y, bits are not translated for this instruction.

REPEAT
Clear B7 and transmit the lower 15 bits of Y to B7. K Y ‘is nonzero, transmit (j) to r

(designator register), thereby, initiating the repeat mode I Y is zero, skip the next

instruction.

REPEAT MODE - The repeat mode executes the instruction immediately following the
Repeat instruction Y times; B'7 contains the number of executions remaining throughout
the repeat mode.

If no Skip condition is met for the repeated instruction, the repeat mode terminates. The
instruction following the repeated instruction is then executed. I the Skip condition for
the repeated instruction is met, the repeat mode terminates, and the instruction follow-
ing the repeated instruction is skipped.

Following the 7epeat mode termination, the count remains in B7. In no way does the

repeal mode alter a repeated instruction as stored in memory.

The ihree low-order bits of the r designator (from j of instruction 70) affect operand

indexing as follows:

r =0: Do not modify the operand address of the repeated instruction after

each individual execution.

r = 1: Increase the operand address of the repeated instruction by one after

each execution of the repeated instruction.

r = 2: Decrease the operand address of the repeated instruction by one after

each execution of the repeated instruction.

r =3 Repeat the initial B-register modification of the repeated instruction

before each execution.

r = 4: Do not modify the operand address of the repeated instruction after
each individual execution. I the repeated instruction is a Replace in-
struction, the operand address is incremented by (B6) for the store
portion of the Replace Instruction.

r =5 Increase the operand address of the repeated instruction by one after

each execution of the repeated instruction. K the repeated instruction

1

T2

is a Replace instruction, the operand address is incremented by (Be)

for the store portion of the Replace instruction.

r = 6: Decrease the operand address of the repeated instruction by one after
each execution of the repeated instruction. I the repeated instruction
is a Replace instruction, the operand address is incremented by (B6)

for the store portion of the Replace instruction.

r="T Repeat the initial B-register modification of the repeated instruction
before each execution. K the repeated instructionis a Replace instruc-
tion, the operand address is incremented by (Be) for the store portion
of the Replace instruction.

NOTE:

Instruction 70 j designator establishes the repeat mode r designator
since j is transmitted to r.

B SKIP ON B"

K the content of B-register] is equal to Y, skip the next instruction in the current se-
quence and proceed to the instruction following. Clear B-register]

K the content of B-register] is not equal to Y, proceed to the next instruction in the

sequence in a normal manner. Increase the content of B-register j by one.

The Branch Condition Designator, j, is used todesignatethe selected B-register in this
instruction and is not available for its normal function. Only the lower-order 15 bits of
Y are used in the comparison described in the preceding paragraph.

B JUMP ON B"

K the content of B-register j is monzero execute a jump in program address to address
Y. Reduce the content of B-register j by one.

K the content of B-register , is zera, proceed tothe next instruction in a normal manner.
Do not alter the content of B-register j.

The Branch Condition Designator, j, is used to designate the selected B-register in this
instruction and is not available for its normalfunction. K the Jump condition is satisfied,
then the lower-order 15 bits of Y become the address of the next instruction and the be-
ginning of the new program sequence. The higher-order 15 bits of (Y) cannot be used in
this instruction.

25

73

74

5

26

INPUT BUFFER ON C* (without MONITOR Mode)

This instruction establishes an input buffer via input buffer channel /j\ to Magnetic Core
Storage with an initial storageaddress Y. Subsequent to this instruction, individual trans-
fers will be executed at a rate determined by an external device. The storage address
initially ,established by this instruction will be advanced by one preceding each individual
transfer. The next current address will be maintained throughout the buffer process in
the lower-order 15 bits of Magnetic Core Storage address 00100 plus /J\ This mode will
continue until it is superseded by a subsequent initiation or termination of an input buffer
via the same input channel or until the higher-order half and the lower-order half of -
storage address 00100 plus ? contain equal quantities, whichever occurs first.

This instruction is implemented as follows: X /I: = 3, store (Y) in storage location 00100
plus /J\ If /l: = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage
location 00100 plus ’j\ leaving the higher-order half undisturbed. K /I\(=0, store Y in the
lower-order half of storage location 00100 plus /j\leaving the higher-order half undis-
turbed. Proceed to the next instruction. ﬁ = 2 is not permitted.

OUTPUT BUFFER ON C' (without MONITOR Mode)

This instruction establishes an output buffer via output buffer channel /j\from initial
storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual
transfers will be executed at a rate determined by an external device. The storage ad-
dress initially established by this instruction will be advanced by one preceding each
individual transfer. The next current address will be maintained throughout the buffer
process in the lower-order 15 bits of Magnetic Core Storage address 00120 plus /j\ This
mode will continue until it is superseded by a subsequent initiation or termination of an
output buffer via the same output channel or until the higher-order half and the lower-
order half of storage address 00120 plus /j\contain equal quantities, whichever occurs
first.

This instruction is implemented as follows: K /k\ = 3, store (Y) in storage location 00120
plus /,\ i /l: = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage
location 00120 plus /j\ leaving the higher-order half undisturbed. I /l: = 0, store Y in the
lower-order half of storage location 00120 plus /j\leaving the higher-order half undis-
turbed. Proceed to the next instruction. /I}= 2 is not permitted.

INPUT BUFFER ON Cn (with MONITOR Mode)
This instruction establishes an input buffer via input buffer channel ',\ to Magnetic Core
Storage with an initial storage address Y. Subsequent to this instruction, the individual

76

transfers will be executed at a rate determined by an external device. The storage ad-
dress initially established by this instruction will be advanced by one preceding each
individual transfer. The next current address will be maintained throughout the buffer
process in the lower-order 15 bits of Magnetic Core Storage address 00100 plus '1\ This
mode will continue until it is superseded by a subsequent initiation or termination of an
input buffer via the same input channel or until the higher-order half and the lower-order
half of storage address 00100 plus ’,\ contain equal quantities, whichever occurs first.
Initiation of this input buffer selects the input channel 'j\ and establishes a buffer monitor
on input channel /j\ A Monitor Interrupt follows completion of the buffering operation:
(00100 + j)u = (00100 + j)L .

This instruction is implemented as follows: I /I: = 3, store (Y)in storage location 00100
plus /j\ I /k\ = 1, store the lower-order 15 bits of (Y) in the lower~order half of storage
location 00100 plus ’,\ leaving the higher-order half undisturbed. K Q = 0, store Y in the
lower-order half of storage location 00100 plus /j\ Proceed to the next instruction, Q =2
is not permitted.

OUTPUT BUFFER ON C" (with MONITOR Mode)

This instruction establishes an output buffer via output buffer channel /j\from initial
storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual
transfers will be executed at a rate determined by an external device. The storage in-
itially established by this instruction will be advanced by one preceding each individual
transfer. The next current address will be maintained throughout the buffer process in
the lower-order 15 bits of Magnetic Core Storage address 00120 plus /,\ This mode will
continue until it is superseded by a subsequent initiation or termination oi an output buffer
via the same output channel or until the higher-order half and the lower-order half of
storage address 00120 plus /j\ contain equal quantities, whichever occurs first. Initiation
of this output buffer selects the output channel /]\ and establishes a buffer monitor on out-
put channel /j\ A Monitor Interrupt follows the completion of the buffering operation:
(00120 + ;i)u = (00120 + j)L.

This instruction is implemented as follows: H ‘(\ = 3, store (Y) in storage location 00120
plus /]\ i /l: = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage
location 00120 plus ? leaving the higher-order half undisturbed. K Q = 0, store Y in the
lower-order half of storage location 00120 plus /j\leaving the higher-order half undis-
turbed. Proceed to the next instruction. ’|2 = 2 is not permitted.

21

28

BuShips Code 687E
NEL Code 1800
NEL Code 2800

St. Paul Central File
San Diego Central File
A. P. Hendrickson
G. G. Chapin

C. W. Glewwe

R. A, Hileman

C. J. Homan

M.M. Koschmann

G. E. Pickering

J. A. Kershaw

F. E, McLeod

R. P. Fischer

H. K. Smead

T. O. Robinson

C. J. Haggerty

- Contracts Department

TECHNICAL NOTE NO. 240
DISTRIBUTION LIST

®)
(20)
(6)
(250)
(50)

@)
)
@)

Bureau of Ships Technical Representative - St. Paul

W. G. Haberstroh
E. G. Runyon

R. L. Burkholder
G. R. Kregness
H. D, Wise

7z w
Approved: +Z w A —

F. E. McLeod

Asst. Department Manager

Computer Design

Approved: i ﬁ %f’v‘"

G. G. Chapin
Asst. Department Manager
Systems Development

Approved: dﬂ M‘;”é’”")

A, P. Hendrickson

Manager
Naval Tactical Data System

NTDS UNIT COMPUTER
AN/USQ-20 Repontone of Tmstuctions

JP & RIP -~
j-DESIGNATORS 1-DESIGNATORS

" LY B [T Occupies & bt positions ens resresents C* whors & mey be O— iy
| i jso L AL} s2 The insiraction werd asvumes. the formet:
[0 § (W vumsl® | (Uncond sump
Tnone deg™ 1 kv 1] TR TEE ™ D) G LR
o_ros xeve
T NEB KEV3 N
- k-DESIGNATORS
AWOT Zes | STOP D | 12 bim)
A F08 Sror e x-rer STReCH I3 Mo CH,0UToCh
a0 $TOP T 3 It} 62 6 T3S eTe
I ol | not used’ ‘net_ueed’ ‘blens’ .
|0 ft st uses } T
cad in w [T oot vase” not_uaed” L T
90 Cloars oerrops & ot wsed’ | Toet_uaed] ot vy
3 2 w v

ADD+Q ,SUS+Q
26 27

10 skip}
[T
A POS
AN |
9
[2ero

2 POS_
o nes

E

¥/ 8% incroment If N1 is RPL, 6ioes, incremenis Y oddress for Ine aters partien of e repisre.
NE ~ Nout onovution.

NORMAL NORMAL
i-DESIG. k-DESIGNATORS:

Tiow eppicatie on
o) R0 sTone nerLace ... S,
Stip Code Cote _ Ori Ce Cote Origla _Oeel M- Lower Mol mamary word
ise ship) _J i A & Tdd My Unper helt memery woed
wie b o L L L M L W] k- sien ot estontes
Q Pos hy y U My My
o NEs] ¥ LM L% | a-acepenr
A ZERO X - el —— Q=~Q-regieter.
5 | woY Zere S 4 ix_Txw [cer X XM [Mo | o yerugioter
K A PO | S o Twy, [chu [Coimy] ux [kmg | Wy
A nea A | 4 [crwloim e

NTRS UNIT COMPUTER

AN/USQ-20 Repontone of Twsomctions

:a : l‘-uimmo < SET (Al, POR (1) *1, —> Y B A
Sective * - FOR L=V BA

Rigw & umm- ‘umw.mm.-\ﬂ'o'{ru

COMpers ST Baplece . — (A}, PR (Q), »i, ~» T

Lot 0 Jmp [dump te ¥ I j-condivien is.

Lot N P 4P 8 AP | -Dusigesters}

[*.] [Yoy bo VIt CY lngut

BN ee@.iveciiee,, Y20 - Mttt (e # & AIP

i o Svmp o VI Jmu] 1~ Desigaators)

o

EXternl “ « [domp to Y41 aad Poi-0-¥, if | condition is

$Tohe ® Jump + Joutietiod ese JP 8 AIP j - Designaters }

STole #5” TERMnete * C3 o INPUT. Torminate inget butier o0 chonnet

STole 67" TERMnoh ¢ CP o OUTPUT Terrinets auiput bufter on chesest T

Tehe % NaPoal. « Envcute N1 Y times

::- esKip .(Iﬂ-v._n:‘mma.-m). @isy,

ract ~
BuLtipty T2 BdumP o 8% Amnu:&”m.ml-n o
Ovide Temp to adde !

i

73" INput © C* tuithout monitor model. Butter INon Oy & «3, (Y15 {00100+ 7},
»1,{Y1ce (00100+ 1),

0, ¥ - 100000\ .

4% OUTpute Clutot momior wode). Butter OUT om ¢, & +3, M-+ (0020+T),
= 1,00} > 000+), ;

o §00, Y'~» (00120¢]\.

73" Wiput o C*ithaMOMITOR model. Butfor IN on C! with mon.
Eu.m-omm.k,

ey

Comp!
~Cloar oA Qo8 o Y.

EREBARAR2AL AU LUN T Y RYXYRLBIRIIGI=2 328 AN
]

educt CP-Complement BU - Substitute Gl ~Clear :)wunmmhmuauwu Y =The sperand; Y o (Y)
NOTE: Ship Ni if other Computer (s chamsal O or |} hos input buffer achive. Esacute twics.

;
i

(o]
02
03

04*

05
06
o7
10
]
12
3"
4
15
6
7
20
2l
22

23*

24
25
26"

2™

30
3l

32
33
34
35
36
37

ao*

L]
a2
43

aq*

45
46
a7
50
51

52
53

*% p — Logical Product

NTDS UNIT COMPUTER

AN/USQ-20

Right SHifte Q Shift (Q) Right by Y

Right SHitt ¢ AShift (A) Right by Y

Right SHifte AQ....... .. Shift (AQ) Right by ¥

COMpare ® A,¢Q,*AQ...... Sense (j) (A); =(A)

Left SHift e Q,Shift (Q) Left by ¥

Left SHifte A ,,,....... Shift (A) Left by Y

Left SHifte AQ,......... Shift (AQ) Leftby Y
ENTereQ.......00000.. Y 2Q

ENTere A,cce00.. Y A

ENTer » B"v—»al '

EXternal - FunCTioneC"™ j#0 orl,(Y)-bC' 720 0orl, See Note.
SToRe *Q.........0c0... (Q—>Y;k=0,0'>Q

STORO'A.'.. s 0000000 00 (A)_’Ylk=4'Al_’A

SToRe ¢ B". B>y

SToRe ¢ C". .0 vv'une.... (CI—>Y

ADD® A.....ccccveesec A+ Y > A

sua"oc' L4 Aco eee s vees e (A,-Y _’A
MULEIDIY . coveeveessesss QY —AQ

DlVidO ® 06 0000 0000 000000 (AQ)/Y _’Q.R—’Af

RePLace ® A+Y.., .. 00000, (A+ V)= YR A

RCPLOCO L] A-Yo eo 00 00000 ‘A)-_(Y)—. YaA

ADD *Q ..ccvveesoseess (Q+ Y —>Q.(A);=(A)] jinterpretation
SUBtroci L4 0 e 0000000000 (Q)-Y_’Q(A)|=(A)f fevef”dfaAaQ
ENTer *Y+Q, .0, c000000 Y HQAD>A

ENTer.Y o'.."...l'. Y (Q)_’A

SToRe ¢ A+Q.....00000, (A+HQ—YBRA

SToRe'A OOOOO0.0'OOO(A) (Q)—’Y&A

RePlace * Y+Q.......... (Y)+HQ->Y&A

RePLace ® Y=Q,, .6 sssse0 (Y)-(Q>YBRA

RePLace © Y+I, ,,c000ees (Y)I+1 =0 YBA .

RePLacee® Y=-I,.........(Y)-1—>Y8BA

ENTer o LP**L[VQ]>Aj=2,even pority,}=3,0dd parity
ADD ® LPcvvsenn. LlVIQ]H(A)—A

SUBtract o LP. (A) = L]Y(Q)

COMpare o MASK. <+« (A) = [Y(Q)SENSE (), (A)+L[v(Ql]; (A)j=(A)¢
RePlace ® LP........... LIYNQ —»YBA; j=2,even parity; j=3, odd parity
RePLace e eeeos LIYHQ) +(A) > YBA

RePLace © A=LP......... (A —L(YNQ) > Y&A

SToRe ¢ LP............ LIAXQ) —» Y; (A); = (A)¢

SELective o SET SET (A), FOR Yg=1

SELective «eees. COMPLEMENT (Al FOR Yp=I
SElective o CL™ " CLEAR (A),FOR Y =1

SELective Y n—» (AR FOR (Q)p=!

CL —Clear

CP - Complement SU — Substitute

Repertocne of Tnstructions
54 Replace SElective ® SET. SET (A), FOR (Y)“ =, > Y&A
55 Replace SElective ® CP. COMPLEMENT (A), FOR {Y)p=I,— Y BA
56 Replace SElective ® CL.... .. CLEAR (Al FOR (Y)p=l,—> Y8 A
57 Reploce SElective ® SU, . .., .. (Y)y— (A}, FOR (Q), =I, —»Y

60 JumP (arithmetic),....... Jump to Y if j-condition is satisfied.
6l JumP (manual)..... e oo oo)isee JP 8 RJP j-Designators)
62 JumP {if oC" has ACTIVE Jump fo Yif CT input
INput buffer) buffer active (see JP & RJP
63" JumP (if ¢C" has ACTIVE Jump to Yif CJ output | j - Designators)
OUTput buffer) buffer active

64 Return JumP (arithmetic) ,. .. |Jump to Y +| and P+1— Y, if j condition is

65. Return JumP (manual). Jsatisfied (see JP & RUP j - Deslgnotors)

66~ TERMinate ® C"® INPUT. Terminate input buffer on channel 1

67" TERMinate cn0OUT PUT Terminate output buffer on channel T

70® RePeaT. eees o Execute NI Y times

71 BSKip®B™............. (BN=Y, skip Nl and clear (B), (B) # Y,
Advance Bl and read NI

.. (BM=0, read NI; (BV#0, (B)i-1 and
jump to oddress Y

73™ INput o C* twithout monitor mode} . Buffer IN on cl

72 BJumPeB",..........

k=3, (Y)->(00|oo+',‘);
= 1,(Y) (00100+}),
~ k=0, vr—»(oonooa-nL
74" OUTpute CMwithout monitor mode) . Buffer OUT on C'; K =3, (Y) - (00120+7) ,
K=1,(0 > (00120+1), ;
. k=0, ¥ —»(ooureo#i‘)L
75~ INput o c"(mth-umnoa mode). Buffer IN on C! with mon.
k =3, (Y) —(00100+ 1),
5 =1, (\rlt—ﬂomooJ‘)Li
k=0, v —»(oouoo+‘f)L
~ mon. inter. at 00040+]
76™ OUTpute C"(witheMONITOR mode) . Buffer OUT on C’ with mon.
k=3, (Y)—>(00I20+])
=1, (Y),—(00120 + 1),
k=0, Y —»(00120+]),,
mon. inter. at 00060*1

tlal X o

’)’

>

"

)’)

— NO~—~OPeration
— ComPlementeA ore Q... ... CS-1i Mono —codes
— CLear *A,*Q,* Bhory.....

:} Special j & k Designators (see opposite side of card) Y —The operand; Y or {Y)

NOTE: Skip NI if other Computer {(on channel O or i) has input buffer active. Execute twice.

JP &

NTDS UNIT COMPUTER

AN/USQ-20

RJP

j-DESIGNATORS

Repentone of Tnstructions

7-DESIGNATORS

(4 bits)
JP RJP | JP RJP T Occupies 4 bit positions and represents C" where n may be 0 —i5g
i 80 6: il 85 The instruction word assumes the format:
0 {No Jump) (Uncond. Jump) f 1 b
I_II_tuncond. Jump)* KEY | [2s= -2afe3 - 20fis 18]i7 = 15[1a- -0|
2 Q POS KEY 2
3 Q NEG KEY 3
o k-DESIGNATORS
5 A NOT Zero STOP S (2 bits)
6 A_POS STOP 6 || Ex=reT STReC" JP INeCP,OUTeCP
7 A NEG STOP 7 k 13 17 62 63 73 75 74 76
5 i 62 63 7 0 'not used' 'not used' "blank’ "blank’
0-15g]] C" ACTIVE IN | C" ACTIVE OUT 1 "not used' 'not used' L L
*60 Clears interrupt & bootstrap modes. 2 ‘not used' 'not used' u ‘not used'
3 W w w w
[]
% ;_DESIGNATORS
COMe A, e Q,*AQ DIV ADDeQ ,SUB«Q ENTOLP.RPLOLPI RPT
j 04 23 26 27 40 44 70
0 {no skip) (no skip)- (no skip) (no skip) {no mod.)!Y of NE =Y
| {unconditional skip) SKIP SKIP SKIP ADV [Yof NE=Y+|
2 ||[YLESS | Y 5(Q NO Over Flow A POS EVEN parity |BACK Y of NE=Y—|
3 |IYMORE | Y >(Q) Over Flow A NEG 0DD parity |ADD B }Yof NE=Y+BD
4 |lYIN {Q)2 Y and Y >(A) A ZERO Q ZERO A ZERO |Rpl.Inc. ;Y of NE=Y([+B9 v
5 [[YOUT Q)<Y or ¥ <(A) A NOT Zero Q NOT Zero A NOT Zero [ADVR |YofNE=Y+[+BS]
6 _|[YLESS | Y s(A) A POS Q POS A POS BACKR iYof NE=Y-i[+8°] V
7 ||y MORE! ¥ > (A) A NEG Q NEG A NEG |ADDBR |Yof NE=Y+Bb[+B6]

v B85 Increment if NI is RPL class ; increments Y address for the store portion of the repiace.

NE — Next execution

NORMAL
i-DESIG.

NORMAL
k-DESIGNATORS

(Not applicable on :

|l or f'i READ STORE REPLACE " Mem-o!r-yﬁv%dgﬂo bits)
j Skip Code k Code Origin | Code Dest. | Code Origin Dest. M~ Lower half memory word
0 {no skip) 0 |i 'blank'| UL Q Q [notused] — . M.~ Upper half memory word |
! SKIP ! L M | L M| L ML M1 " ign bit extended

2 Q POS 2 U My V] My V) My My Cpl - Complement

3 Q NEG 3 w M w M w M M A - A-register

4 A ZERO 4 X_ | XU A A [notused| — — 1 a-Qq-register

5 A NOT Zero 5 LX | XMy | CPL [Cpl ML | LX XMy M U - U-register

3 A POS 6 Ux [xMy [cpu [Coimy] ux | XMy | My
7 A NEG 7 A A CPW |Cpi M ['notused] — —

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	A-1
	A-2
	A-3
	A-4

