
NAVAL TACTICAL DATA SYSTEM (NTDS)
technical note no. 240
REPERTOIRE of INSTRUCTIONS for the
AN/USQ-20 UNIT COMPUTER

DIVISION OF SPERRY lAND COIPOIATION

UNIVAC 'AU, ST. 'AUl \6, MINNESOtA

NAVAL TACTICAL DATA SYSTEM

TECHNICAL NOTE

NO. 240

REPERTOIRE of INSTRUCTIONS

for the

AN jUSQ-20 UNIT COMPUTER

NAVY DEPARTMENT

CONTRACT: NObsr 72769

by

Walter G. Haberstroh

PX 1343-36

UNIVAC PAil, ST. PAUL 16, MINNESOTA

BUREAU OF SHIPS

NTDS NO. U-6090

ELECTRONICS DIVISIO:\S

1 AUGUST 1960

CONTENTS
Page

1. INTRODUCTION . • . . • . • 1

2. GENERAL INFORMATION 1

A. Symbol Conventions ... 2

B. Function Code Designator. 3

C. Branch Condition Designator. 3

D. Input/Output Channel Designator •• · 6

E. Operand Interpretation Designator • 6

F. Index Designator 8

G. Operand Designator. • . . 8

H. Core Memory Assignment 8

L Wired Memory 12

J. Automatic Recovery. · 12

K. Buffer Modes · 13

3. LIST OF INSTRUCTIONS 13

i

TECHNICAL NOTE NO. 240

REPERTOIRE OF INSTRUCTIONS FOR THE AN/USQ-20 UNIT COMPUTER

1. INTRODUCTION

This technical note presents the instruction repertoire for the AN/USQ-20 NTDS Unit Com­

puter. Details presented are limited to the needs of the NTDS programmer and list only

symbols, registers, terms, and instruction characteristics pertinent to programming the

computer.

Major programming differences between the AN/USQ-20 and its forerunner, the AN/USQ-17,

lie in the area of input/output characteristics. The AN/USQ-20 Unit Computer features

simplified instructions pertaining to both input and output on 14D channels, 12D of which have

external function capabilities. In addition, the computer provides a more powerful Repeat in­

struction, two instructions with parity check, buffer monitoring, and other modifications.

Those familiar with the AN/USQ-17 instruction repertoire should make special note of the

following AN/USQ-20 instructions: 13, 17, 40, 44, 60, 62, 63, 66, 70, 73, 74, 75, and 76.

Major revisions have been made to these instructions specifically. In addition, the reader

must also be aware of fault procedures since function codes 00 and 77 arejault conditions

which, if executed, will cause ajault interrupt.

2. GENERAL INFORMATION

The Naval Tactical Data System Unit Computer (NTDSUC) is a self-modifying, one-address

computer. Although this means that one reference or address is provided for the execution

of an instruction, this reference can be modified automatically during a programmed sequen~e.

The references are modified by using the B (index) registers one through seven, which con­

tain any previously stored constants. To modify the address, the content of a selected B­

register is added to the Operand DeSignator, y.

A programmed address is coded using octal notation with each octal digit denoting three bi­

nary digits. The instructions are read sequentially from Magnetic Core Storage except after

Jump or Skip instructions.

1

A. SYMBOL CONVENTIONS - The following symbols are used throughout the descriptive

material on instructions:

a

(a)

(a)i

(a)f

a n
(a~n
f

j
~

J
k

~
b

y

y

Y

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

a register (A, Q, Bn), a memory location Y, or a constant.

content of a.

initial content of a.

final content of a.

the nth bit of a.

the nth bit of the content of a.

Function Code Designator (i29 , ••• , i24)*.

Branch Condition Designator (i23 , ••• , i21)*.

Input/Output Channel Designator (i23 , ••• , i20)*.

Operand Interpretation Designator (i20 , ••• , i1S)*.

Operand Interpretation Designator (i19' .•• , i1S)*.

Index Designator (i17 , i16 , i15)*.

Operand Designator (i14 , ••• , iO)*.

the Operand (regardless of source).
b

y + (B).

1) The operand or address of the operand for the Read portion of an in­

struction or

2) The destination address for the Store portion of an instruction.

(Y) = content of memory address Y.

L(Y){Q) = bit-by-bit multiplication, logical multiply of Y n' and (Q)n •

A = A-register or accumulator (30-bit arithmetic register).

B = seven B-registers (15 bits each). B-registersareaddress-modifying regis-

ters generally used for indexing loops in a program; in addition, B 7 serves

as a repeat counter. (The address modification does not alter the instruc­

tions as stored in memory.) A b or j designator specifies the B-register

used.

Q = Q-register (30-bit arithmetic register).

U = U-register (30 bits). The U-register holds the instruction word during

execution of an operation. If address modification is required before execu­

tion, the appropriate B-register content is added to the lower-order 15 bits

of the U-register before execution.

* in is the nth bit position in an instruction.

2

P = P-register (15 bits). The P-register is the Program Address Register. This

register holds the address of the current instruction throughout the program

except for Jump instructions where the P-register is cleared and the new

program address is entered.

C = the lID input/output channels (30 lines each). Channels consist of transmis-
t:... sion lines, therefore they cannot be considered registers. The designator j

specifies (in octal) the channel used.

Figure 1 illustrates bit configuration of instruction designators in two forms. Form I per­

tains to input/output instructions; Form n pertains to all other instructions.

f j ~ b y

,_------~-----__ ,~~,----------------A------------,

Form I - Input/Output Instructions

f j k b y

r_---A---______ ,~~~,----------A-------\

Form n - All Other Instructions

Note: j = Cn input/output channel

Figure 1. Bit Allocation of Instruction DeSignators

Table 1 is a list of the computer's entire repertoire of instructions; each instruction is listed

by its function code number and name. Two cards contained in envelopes in the back of this

technical note also show the repertoire. In addition, the instructions on these cards are

* lettered in a form which indicates coding used by the CS-1 Compiling System.

* Additional references: 1) NTDS Technical Note No. 202 Compiling System CS-1.
2) Compiling System CS-1 - Programmer's Reference Manual

PX 1349.
3) Phase m Basic Input Language PX 1478.

3

TABLE 1. INSTRUCTION REPERTOIRE - AN/USQ-20 UNIT COMPUTER

CODE FUNCTION NAME CODE FUNCTION NAME

00 (Fault Interrupt) 40 ENTER LOGICAL PRODUCT

01 RIGHT SHIFT Q 41 ADD LOGICAL PRODUCT

00 RIGHT SHIFT A 42 SUBTRACT LOGICAL PRODUCT

03 RIGHT SHIFT AQ 43 COMPARE MASKED

04 COMPARE 44 REPLACE LOGICAL PRODUCT

05 LEFT SHIFT Q 45 REPLACE A + LOGICAL PRODUCT

06 LEFT SHIFT A 46 REPLACE A - LOGICAL PRODUCT

07 LEFT SHIFT AQ 47 STORE LOGICAL PRODUCT

10 ENTER Q 50 SELECTIVE SET

11 ENTER A 51 SELECTIVE. COMPLEMENT

12 ENTER Bn 52 SELECTIVE CLEAR

13 EXTERNAL FUNCTION ON Cn 53 : SELECTIVE SUBSTITUTE

14 STORE Q 54 REPLACE SELECTIVE SET

15 STORE A 55 REPLACE SELECTIVE COMPLEMENT

16 STORE Bn 56 REPLACE SELECTIVE CLEAR

17 STORE Cn 57 REPLACE SELECTIVE SUBSTITUTE

20 ADD A 60 JUMP (Arithmetic)

21 SUBTRACT A 61 JUMP (Manual)

22 MULTIPLY 62 JUMP ON Cn ACTIVE INPUT BUFFER

23 DIVIDE 63 JUMP ON Cn ACTIVE OUTPUT BUFFER

24 REPLACE A + Y 64 RETURN JUMP (Arithmetic)

25 REPLACE A - Y 65 RETURN JUMP (Manual)

26 ADD Q 66 TERMINATE Cn INPUT BUFFER

27 SUBTRACT Q 67 TERMINATE Cn OUTPUT BUFFER

30 ENTER Y + Q 70 REPEAT

31 ENTER Y - Q 71 B SKIP ON Bn

32 STORE A + Q 72 B JUMP ON B
n

33 STORE A - Q 73 INPUT BUFFER ON Cn (without Monitor mode)

34 REPLACE Y + Q 74 OUTPUT BUFFER ON Cn (without Monitor mode)

35 REPLACE Y - Q 75 INPUT BUFFER ON Cn (with Monitor mode)

36 REPLACE Y + 1 76 OUTPUT BUFFER ON Cn (with Monitor mode)

37 REPLACE Y - 1 77 (Fault Interrupt)

4

B. FUNCTION CODE DESIGNATOR - f

The f desi~tor (6 bits) appears in bit-positions 29 through 24 of the U-register, or an in­

struction, designating the function to be performed by that instruction. All values of f other

than 00 and 77 are defined in the instruction list. The two codes 00 and 77 are fault conditions

which, if executed, will cause a fault interrupt. This results in a jump to address 00014, the

Fault Entrance Register or address 00014 of wired memory depending on the Automatic Re­

covery Switch setting (see page 12).

c. BRANCH CONDITION DESIGNATOR - j

The j designator (3 bits) appears in bit-positions 23, 22, and 21 of the U-register, or an in­

struction; it is used in a majority of the instructions (see Figure 1, Form n). There are

three primary categories of use: 1) for Jump and Skip determination, 2) for B-register

specification, and 3) for repeat status interpretation. Appropriate interpretations of the j
designator are listed either below or under the descriptions of the individual instructions.

For those instructions in which the j designator has no special interpretation, it specifies

the condition under which the next sequential instruction in the program will be skipped. This

provides for branching from a sequence without executing a Jump instruction, as would nor­

mally occur if a Skip condition were not satisfied.

Skip of the next sequential. instruction is determined by the following rules in all instructions

except 04, 12, 13, 16, 17, 26, 27, 60 through 67, and 70 through 76.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j =·7:

Do not skip the next instruction.

Skip the next instruction.

Skip the next instruction if (Q) is positive.

Skip the next instruction if (Q) is negative.

Skip the next instruction if (A) is zero. *
Skip the next instruction if (A) is nonzero.

Skip the next instruction if (A) is positive.

Skip the next instruction if (A) is negative.

When the branch (Skip or Jump) condition involves the Sign of the quantity in A or Q, the

evaluation examines the Sign bit of these quantities; hence, a positive zero (all zeros) is

conSidered a positive quantity, and a negative zero (all ones) is conSidered a negative

quantity.

* Positive zero

5

D. INPUT/OUTPUT CHANNEL DESIGNATOR - l'
The J designator (4 bits) appears in bit-positions 23, 22, 21, and 20 of the U-register, or an

input/output instruction, specifying the C -channel for the instruction (see Figure 1, Form I).

Bit 23 assumes a value of eight, bit 22 a value of four, bit 21 a value of two, and bit 20 a value

of one; thus the J designator provides accessibility to the 14 (decimal) input/output channels

numbered 0-158 •

Instructions 13, 17, 62, 63, 66, 67, 73, 74, 75, and 76 use the J deSignator configuration.

E. OPERAND INTERPRETATION DESIGNATOR - k or ~

The k deSignator (3 bits) [or ~ deSignator (2 bits~ appears in bit-positions 20, 19, and 18 of
~

the U-register, or an instruction; a k deSignator appears only in bit pOSitions 19 and 18,

since bit 20 is a portion of the 1'designator. (See Figure 1, Forms I and II.) Instructions 13,
1:\

17, 62, and 73 through 76 use the k deSignator configuration since they perform input/output

activities and require a l' deSignator for channel specification.

1\
The k and k deSignators control operand interpretation. Those instructions which read an

operand but do not replace it after the arithmetic is performed are designated Read instruc­

tions. Those instructions which do not read an operand but store one are deSignated Store

instructions. Instructions which both read and store operands are classified as Replace

instructions.

1\
The various values of k or k affect the operand in the following list except where otherwise

noted under individual instruction descriptions.

6

1) Read instructions (01 through 13, 20 through 23, 26, 27, 30, 31, 40 through 43, 50

through 53, and 60 through 76):

/\
k or k = 0: Y = O's; YL = Y. u

1\
YL = (Y)L· k or k = 1: Y = O's; u

1:\
Y = O's; Y L = (Y)u· k or k = 2: u

l\
k or k = 3: Y= Y.

k = 4: Y u = same bits as Y14 ; YL = Y.

k = 5: Y u = same bits as Y14 ; YL = (Y)L·

k = 6: Y u = same bits as Y29 ; Y L = (Y)u·

k = 7: Y= (A).

For instructions 23, 52, and 53, k= 7 is not used.

"" For instruction 13, only k = 3 is permitted.

For instructions 73 through 76, ~ = 2 is not used.

2) Store instructions (14 through 16, 17, 32, 33, and 47):

. *
k = 0: Store (A or Bl) in Q •

k = 1:

k = 2:

A
k or k = 3:

k = 4:

k = 5:

k = 6:

k= 7:

Store (AL , QL' or B
j
) in YL , leaving (Y)u undisturbed.

Store (AL , QL' or B
j
) in Yu ' leaving (Y)L undisturbed.

Store (A, Q, C
j
, or aJ) in Y.

. ** Store (Q or Bl) in A •

Store complement of CAr" QL' or B
j
) in Y L 1 leaving (Y)u

undisturbed.

Store complement of (AL' QL' or B
j
) in Yu ' leaving (Y)L

undisturbed.

Store complement of (A, Q, or Bj
) in Y. (Storing the complement

of Bj is the same complement as for a 30-bit register.)
A

For instruction 17, only k= 3 is permitted.

3) Replace instructions (24, 25, 34 through 37, 44 through 46, and 54 through 57):

k = 0: Not used.

k = 1: Read portion - Yu = OIS; YL = (Y)L.

Store portion - stores (AL, ~, or~) in YL' leaving (Y)u

undisturbed.

k = 2: Read portion - Y = OIS; YL = (Y) • u u

Store portion - stores (AL, QL' or BJ) in Yu' leaving (Y)u

undisturbed.

k = 3: Read portion - Y = Y.

Store portion - stores (A, Q, or B
j
) in Y.

k = 4: Not used.

k:: 5: Read portion - Yu = same bits at Y14 ; YL = (Y)L.

Store portion - stores (AL, QL' or Bl) in YL' leaving (Y)u

undisturbed.

* A 14000 00000 instruction complements (Q).
** A 15040 00000 instruction complements (A).

7

k = 6: Read portion - Yu = same bits as Y29 ; YL = Yu•

store portion - stores (AL, QL' or ~) in Yu ' leaving (Y)L

undisturbed.

k = 7: Not used.

The Repeat instruction requires special interpretation when followed by a Replace instruc­

tion. See details on page 24, Instruction No. 70, REPEAT.

F. INDEX DESIGNATOR - b

The b designator (3 bits) appears in-bit-positions 17, 16, and 15 of the U-register, or an in­

struction (see Figure 1), specifying which of the B-registers, if any, will be used to modify

the Operand Designator, y, to form Y = y + (Bb). This oper,ation employs an additive ac­

cumulator; hence, a quantity consisting of all zeros cannot result unless the bits of both the
b '

Operand Designator, y, and (B) are all zeros.

Effect of the various values of b, the Index Designator, is summarized:

b = 0: Do not modify y.

b = 1: 1 Add (B) to y
15 (modulo 2 -1).

b = 2:
2 Add (B) to y

15 (modulo 2 -1).

b = 3: Add (B3) to y 15 (modulo 2 -1).

b = 4: Add (B4) to 15 y (modulo 2 -1).

b = 5: Add (B5) to 15 y (modulo 2 -1).

b = 6: Add (B6) to y
15 (modulo 2 -1).

b = 7: Add (B7) to y 15 (modulo 2 -1).

G. OPERAND DESIGNATOR - Y

The y designator (15 bits) appears in bit-positions 14 through 0 of an instruction (see Figure
b

1). The operand or address of the operand, Y, is relative to y since Y = y + (B).

H. MAGNETIC CORE MEMORY ASSIGNMENT

The main Magnetic Core memory consists of 32,768 addressable storage locations. Seventy­

three of these locations are special-purpose and provide eight distinct functions:

1) The starting address from MASTER CLEAR

8

2) The Fault Entrance Register

3) The Real-Time Clock Register

4) External Interrupt Entrance Register for each channel

5) Internal Interrupt Entrance Register for each input channel

6) Internal Interrupt Entrance Register for each output channel

7) Input Buffer Control Register for each input channel

8) Output Buffer Control Register for each output channel.

Each of the other memory locations are used for:

1) Instruction word storage

2) Da1:fl. storage.

The following tabulation specifies Magnetic Core Memory Address assignments and associated

storage functions.

ADDRESS
(octal)

00000

00001

00002

00003

00004

00005

00006

00007

00010

00011

00012

00013

00014

00015

00016

00017

00020

00021

00022

00023

STORAGE FUNCTION

Initial Starting Address from MASTER CLEAR

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Memory Word

Fault Entrance Register

Memory Word

Memory Word

Real-Time Clock Register

External Interrupt Entrance Register for Channel 0

External Interrupt Entrance Register for Channel 1

External Interrupt Entrance Register for Channel 2

External Interrupt Entrance Register for Channel 3

9

10

ADDRESS
(octal)

00024

00025

00026

00027

00030

00031

00032

00033

00034

00035

00036

00037

00040

00041

00042

00043

00044

00045

00046

00047

00050

00051

00052

00053

00054

00055

00056

00057

00060

00061

00062

00063

00064

00065

STORAGE FUNCTION

External Interrupt Entrance Register for Channel 4

External Interrupt Entrance Register for Channel 5

External Interrupt Entrance Register for Channel 6

External Interrupt Entrance Register for Channel 7

External Interrupt Entrance Register for Channel 80

External Interrupt Entrance Register for Channel 90

External Interrupt Entrance Register for Channel 100

External Interrupt Entrance Register for Channel 110

External Interrupt Entrance Register for Channel 120

External Interrupt Entrance Register for Channel 130

Memory Word

Memory Word

Internal Interrupt Entrance Register for Input Channel 0

Internal Interrupt Entrance Register for Input Channel 1

Internal Interrupt Entrance Register for Input Channel 2

Internal Interrupt Entrance Register for Input Chinnel 3

Internal Interrupt Entrance Register for Input Channel 4

Internal Interrupt Entrance Register for Input Channel 5

Internal Interrupt Entrance Register for Input Channel 6

Internal Interrupt Entrance Register for Input Channel 7

Internal Interrupt Entrance Register for Input Channel 80

Internal Interrupt Entrance Register for Input Channel 9D

Internal Interrupt Entrance Register for Input Channel 10D

Internal Interrupt Entrance Register for Input Channel 11D

Internal Interrupt Entrance Register for Input Channel 12D

Internal Interrupt Entrance Register for Input Channel 130

Memory Word

Memory Word

Internal Interrupt Entrance Register for Output Channel 0

Internal Interrupt Entrance Register for Output Channell

Internal Interrupt Entrance Register for Output Channel 2

Internal Interrupt Entrance Register for Output Channel 3

Internal Interrupt Entrance Register for Output Channel 4

Internal Interrupt Entrance Register for Output Channel 5

ADDRESS
(octal)

0006~

00067

00070

00071

00072

00073

00074

00075

00076

00077

00100

00101

00102

00103

00104

00105

00106

00107

00110

001 11

00 11 2

00 11 3

00114

00 11 5

00 11 6

00117

00120

00121

00122

00 1 2 3

00124

00125

00126

00127

STORAGE FUNCTION

Internal Interrupt Entrance Register for Output Channel 6

Internal Interrupt Entrance Register for Output Channel 7

Internal Interrupt Entrance Register for Output Channel 8D

Internal Interrupt Entrance Register for Output Channel 9D

Internal Interrupt Entrance Register for Output Channel 100

Internal Interrupt Entrance Register for Output Channel lID

Internal Interrupt Entrance Register for Output Channel 120

Internal Interrupt Entrance Register for Output Channel 13D

Memory Word

Memory Word

Input Buffer Control Register for Input Channel 0

Input Buffer Control Register for Input Channel 1

Input Buffer Control Register for Input Channel 2

Input Buffer Control Register for Input Channel 3

Input Buffer Control Register for Input Channel 4

Input Buffer Control Register for Input Channel 5

Input Buffer Control Register for Input Channel 6

Input Buffer Control Register for Input Channel 7

Input Buffer Control Register for Input Channel 8D

Input Buffer Control Register for Input Channel 90

Input Buffer Control Register for Input Channel10D

Input Buffer Control Register for Input Channel 110

Input Buffer Control Register for Input Channel 12D

Input Buffer Control Register for Input Channel 130

Memory Word

Memory Word

Output Buffer Control Register for Output Channel 0

Output Buffer Control Register for Output Channel 1

Output Buffer Control Register for Output Channel 2

Output Buffer Control Register for Output Channel 3

Output Buffer Control Register for Output Channel 4

Output Buffer Control Register for Output Channel 5

Output Buffer Control Register for Output Channel 6

Output Buffer Control Register for Output Channel 7

11

ADDRESS
(octal)

00130

00131

00132

00133

00134

STORAGE FUNCTION

Output Buffer Control Register for Output Channel 80

Output Buffer Control Register for Output Channel 90

Output Buffer Control Register for Output Channel 100

Output Buffer Control Register for Output Channel 110

Output Buffer Control Register for Output Channel 120

o 0 1 3 5 Output Buffer Control Register for Output Channel 130

(0 0 1 3 6 - 0 7 7 7 7) = 4,0020 words of memory

(1 0 0 0 0 - 1 7 7 7 7) = 4,0960 words of memory

(2 0 0 0 0 - 2 7 7 7 7) = 4,0960 words of memory

(3 0 000 - 3 7 7 7 7) = 4,0960 words of memory

(4 0 0 0 0 - 4 7 7 7 7) = 4,096D words of memory

(5 0 0 0 0 - 5 7 7 7 7) = 4,0960 words of memory

(6 000 0 - 6 7 7 7 7) = 4,0960 words of memory

(7 0 0 0 0 - 7 7 7 7 7) = 4,0960 words of memory

I. WIRED MEMORY - The AN/USQ-20 Unit Computer contains 160 words of semipermanent

wired core storage. Programming this memory area requires a process of wiring-in the

desired instructions. The semipermanent feature of these storage locations prevents acci­

dental destruction of program instructions contained therein since entries cannot be made via

main memory.

An Input Bootstrap routine occupies this memory, and its execution is controlled by the Auto­

matic Recovery Switch.

J. A UTOMATIC RECOVERY - In the event of a fault condition (encountering either a 00

or 77 function code), the Automatic Recovery Switch directs computer activity. This switch

has three positions: 1) DOWN, 2) NEUTRAL, and 3} UP. Action resulting from these posi­

tions is:

12

1) DOWN position - This causes manual execution of the Bootstrap routine. Computer

action begins at address 0 of Wired Memory and executes the Bootstrap routine when

this switch is depressed. (A MASTER CLEAR should precede this operation.)

2) NEUTRAL position - This causes an Interrupt to address 00014 of Main Memory

on a fault condition. Action continues as programmed.

3) UP position - This causes an Interrupt to address 14 of Wired Memory on a fault

condition. This results in automatic execution of the Bootstrap routine.

K. BUFFER MODES - The AN/USQ-20 Unit Computer provides two modes of buffering:

1) with monitor and 2) without monitor.

Buffering with monitor transfers words sequentially, starting at a given initial address

through a given terminal address, on the specified input or output channel. The computer

continues execution of program instructions during the buffer process. Completion of the

buffering process causes an Internal Monitor Interrupt to the Internal Interrupt Entrance

Register assigned to the input or output channel. (See subsection H, MAGNETIC CORE

* MEMORY ASSIGNMENT.) This register should contain a RETURN JUMP instruction. (See

Instructions 75 and 76.)

Buffering without the monitor transfeI"s words sequentially, starting at a given initial address

through a given terminal address, on a specified input or output channel. The computer con­

tinues execution of program instructions during the buffer process. No monitor interrupt will

occur. (See Instructions 73 and 74.)

3. LIST OF INSTRUCTIONS

This section lists the repertoire .of instructions used with the NTDS AN/USQ-20 Unit Com­

puter. Common usage of these instructions is also included; no attempt is made to indicate

more sophisticated use.

01 RIGHT SHIFT Q

This instruction shifts (Q) to the right Y bit positions. The higher-order bits are re­

placed with the original Sign bit as the word is shifted. Only the lower-order six bits

of Yare recognized for this instruction. The higher-order 24 bits are ignored.

Example of right shift in Q: Y = 2

Content of Q Content of Q

(Q). (positive) = 010 1 (Q)i (negative) = 1 0 1 0
1

First shift o 0 1 0 First shift 1 101

Second shift 000 1 Second shift 1 1 1 0

02 RIGHT SHIFT A

This instruction shifts (A) to the right Y bit p6sitions. The higher-order bits are re­

placed with the original sign bit as the word is shifted. Only the lower-order six bits of

* Suggested instruction for the Internal Interrupt Register is:
650nn nnnnn ... Exit to an Interrupt subroutine for remedial action. This subroutine ends

with a 601nn instruction which clears the Interrupt mode, then returns
control to the main routine.

13

Yare recognized for this instruction. The higher-order 24 bits are ignored. The over­

all operation is analogous to the example given in the foregoing instruction.

03 RIGHT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is to the right Y bit

positions with the lower-order bits of A shifting into the higher-order bit positions of Q.

The higher-order bits of A are replaced with the original Sign bit as the word is shifted.

Only the lower-order six bits of Yare recognized for this instruction. The higher­

order 24 bits are ignored.

Example of right shift in AQ: Y = 2

Content of AQ Content of AQ

(AQ). (positive) = 0 1 0 1 0 0 1 1 (AQ). (negative) = 10001010
1 1

First shift 00101001 First shift 11000101

Second shift 00010100 Second shift 11100010

04 COMPARE

This instruction compares the Signed value of Y with the signed value of (A) and/or (Q).

It does not alter either (A) or (Q). The Branch Condition DeSignator, j, is interpreted in

a special way for this instruction as listed below:

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

Do not skip the next instruction.

Skip the next instruction.

Skip the next instruction if Y is less than, or equal to, (Q).

Skip the next instruction if Y is greater than (Q).

Skip the next instruction if (Q) is greater than, or equal to Y, and Y is

greater than (A).

Skip the next instruction if Y is greater than (Q) or if Y is less than, or

equal to, (A).

Skip the next instruction if Y is less than, or equal to, (A).

Skip the next instruction if Y is greater than (A).

05 LEFT SHIFT Q

* This instruction shifts (Q) circularly to the left Y bit positions. The lower-order bits

* Maximum shift count permitted is 59Dplaces.

14

are replaced with the higher-order bits as the word is shifted. Only the lower-order six

bits of Yare recognized for this instruction. The higher-order 24 bits are ignored.

Example of left circular shift in Q: (Y) = 2

Content of Q Content of Q

(Q). (positive) = 0011 (Q). (negative) = 1100
1 . 1

First shift o 11 0 First shift 100 1

Second shift 1100 Second shift 0011

06 LEFT SHIFT A

* This instruction shifts (A) circularly to the left Y bit positions. The lower-order bits

are replaced with the higher-order bits as the word is shifted. Only the lower-order six

bits of Yare recognized for this instruction. The higher-order 24 bits are ignored. The

over-all operation is analogous to the example given in the foregoing instruction.

07 LEFT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the

* left Y bit pOSitions. The lower-order bits of A are replaced with the higher-order bits

of Q and the lower-order bits of Q are replaced with the higher-order bits of A. Only

the lower-order six bits of Yare recognized by this instruction. The higher-order 24

bits are ignored.

Example of left circular shift in AQ: Y = 2

Content of AQ Content of AQ

(AQ). (positive) = 0 1 0 1 0 0 1 1 (AQ). (negative) = 10001011
1 1

First shift 10100110 First shift 00010111

Second shift 01001101 Second shift 00101110

10 ENTER Q

Clear the Q-register. Then transmit Y to Q.

11 ENTER A

Clear A. Then transmit Y to A.

12 ENTER B
n

Clear B-register j. Then transmit the lower-order 15 bits of Y to B-register j. The

higher-order 15 bits of Yare ignored in this instruction. The Branch Condition Desig-

* Maximum shift count permitted is 59D places.

15

nator, j , is used to specify the selected B-register for this instruction and is not avail­

able for its normal function.

13 EXTERNAL FUNCTION ON d'
J = 0 or 1. Interrogate the two bits connected to the input-active deSignator (flip-flops)

on an interconnected computer. If the interconnected computer's input buffer is active,

skip the next instruction. If the interconnected computer's input buffer is not active,

execute the next instruction. There are no External Function lines on cO or C
1

• ~ = 3

is required for timing when J l- 0 or 1. Transmit Y, the External Function, over the

channel specified by J. Only k = 3 is permitted.

14 STORE Q

Store (Q) at storage address Y as directed by the Operand Interpretation Designator, k.

If k = 0, complement (Q). If k = 4, store in A.

15 STORE A

store (A) at storage address Y as directed by the Operand Interpretation Designator, k.

If k = 4, complement (A). If k = 0, store in Q.

16 STORE If'
Store a 30-bit quantity whose lower-order 15 bits correspond to the content of B-register

j and whose higher-order 15 bits are zero at storage address Y as directed by the

Operand Interpretation Designator, k. The Branch Condition DeSignator, j, is used to

specify the selected B-register for this instruction and is not available for its normal

function.

17 STORE d'
Store the content oftheC-channelspecifiedby J at storage address Y. An Input Acknowl­

edge Signal is then sent on the C -channel. Only ~ = 3 is permitted.

20 ADD A

Add y to the previous content of the Accumulator.

21 SUBTRACT A

Subtract Y from the previous content of the Accumulator.

22 MULTIPLY

16

Multiply (Q) times Y leaving the double-length product in AQ. If the fa<:tors are con­

sidered as integers, the product is an integer in AQ.

The Branch Condition Designator, j, is interpreted prior to end correction permitting

senSing of a product with (A)f = O. If j equal 4, a skip of the next instruction is made

when (A)f::; O. When (A)f F +0, a double-length product has been formed with significant

bit(s) in the Accumulator; however, if a Skip does occur for j ::: 4, the Multiply instruc­

tion can b.e re-executed with the same operand and with j = 2 or 3 to determine if Q29

contains a significant bit (a on~ of the product.

In this instruction, k = 7 should not be used.

23 DIVIDE

Divide (AQ) by Y leaving the quotient in the Q-register and the remainder in the A­

register. The remainder bears the same sign as the quotient. In this instruction, k = 7

should not be used.

NOTE:

If a DIVIDE FAULT condition exists, no Maintenance Console indication is

given; however, by coding each Divide instruction with j = 3, a program

test for the DIVIDE FAULT is automatic. With this selection of j, a Skip

of the next instruction occurs if a DIVIDE FAULT exists. The Skip should

be made to a Jump instruction which provides a remedial means of noting

or correcting the error. Therefore, the instruction which follows the Divide

instruction should have its j = 1 in order to preclude the Jump instruction

whenever the "Divide Sequence" culminates in a correct answer.

A DIVIDE FAULT can also be detected if the Divide instruction is executed

with j = 2. In this case, a correct answer is indicated when a Skip occurs.

24 REPLACE A + Y

Add (Y) to the previous content of A. Store (A) at storage address Y.

25 REPLACE A - Y

Subtract (Y) from the previous content of A. Then store (A) at storage address Y.

26 ADD Q

Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The content of A

is undisturbed by this instruction. The Branch Condition Designator, j, has special

meaning in this instruction as in instruction 27.

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The con-

17

tent of A is undisturbed by this instruction. The Branch Condition Designator, j, has

special meaning in this instruction as listed below.

NOTE:

In instructions 26 and 27 the Branch Condition Designator, j, has the

following meaning:

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

Do not skiP the next instruction.

Skip the next instruction.

Skip the next instruction if (A) is positive.

Skip the next instruction if (A) is negative.

Skip the next instruction if (Q) is zero.

Skip the next instruction if (Q) is nonzero.

Skip the next'instruction if (Q) is positive.

Skip the next instruction if (Q) is negative.

30 ENTER Y + Q

Clear A •. Then transmit (Q) to A. Then add y to (A).

31 ENTER Y - Q

Clear A. Then transmit (Q) to A. Then subtract Y from (A). Finally, complement (A)e

32 . STORE A + Q

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed by

the Operand Interpretation Designator, k.

33 STORE A - Q

Subtract (Q) from the previous content of A. Then store (A) at storage address Yas

directed by the Operand Interpretation Designator, k.

34 REPLACE Y + Q

Clear A. Then transmit (Q)toA. Then add (Y) to (A). Then 'store (A) at storage address Y.

35 REPLACE Y - Q

Clear A. Then transmit (Q) to A. Then subtract (Y) from (A). Then complement (A) and

store at storage address Y.

36 REPLACE Y + 1

Clear A. Then set (A) = 1. Then add (Y) to (A). Then store (A) at storage address Y.

18

37 REPLACE Y - 1

Clear A. Then set (A) = 1. Then subtract (Y) from (A). Then complement (A) and store

at storage address Y.

40 ENTER LOGICAL PRODUCT

Enter in A the bit-by-bit product of Y and (Q).

The j designator is interpreted in a special way for this instruction for the value j = 2

or 3. If j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is

odd.

NOTE:

Even parity = an even number oj "ones" in the A-register.

Odd parity = an odd number oj "ones" in the A -register.

41 ADD LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and (Q).

42 SUBTRACT LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of Y and (Q).

43 COMPARE MASKED

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the branch point

evaluation for Skip of next sequential instruction as directed by the Branch Condition

Designator, j.

This instruction results in no net change in the content of any operational register. It

provides, through the Branch Condition Designator, j, a comparison of a portion of Y with

(A).

44 REPLACE LOGICAL PRODUCT

Enter in A the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

The j deSignator is interpreted in a special way for this instruction for the values j = 2

or 3. If j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is

odd.

NOTE:

Even parity = an even number of "ones" in the A-register.

Odd parity = an odd number of "ones" in the A-register.

19

45 REPLACE A + LOGICAL PRODUCT

Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

46 REPLACE A - LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address

Y.

47 STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the Operand Inter­

pretation Designator, k.

50 SELECTIVE SET

Set the individual bits of A to one corresponding to ones in Y leaving the remaining

bits of A unaltered.

51 SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to ones in Y leaving the remaining

bits of A unaltered.

52 SELECTIVE CLEAR

Clear the individual bits of A corresponding to ones in Y leaving the remaining bits of

A unaltered.

In this instruction, k = 7 should not be used.

53 SELECTIVE SUBSTITUTE

Set the individual bits of A with bits of Y corresponding to ones in Q leaving the remain­

ing bIts of A unaltered.

In this instruction, k = 7 should not be used.

54 REPLACE SELECTIVE SET

Set the individual bits of A to one corresponding to ones in (Y) leaving the remaining

bits of A unaltered. Then store (A) at storage address Y.

55 REPLACE SELECTIVE COMPLEMENT

20

Complement the individual bits of A corresponding to ones in (y) leaving the remaining

bits of A unaltered. Then store (A) at storage address Y.

56 REPLACE SELECTIVE CLEAR

Clear individual bits of A corresponding to ones in (Y) leaving the remaining bits of A

unaltered. Then store (A) at storage address Y.

57 REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of A corresponding to ones in Q leaving the remaining bits of A

unaltered. Then form the bit-by-bit product of (Y) and (Q),and set ones of this product

in corresponding bits of A leaving· the remaining bits of A unaltered. Then store (A) at

storage address Y.

60 JUMP (Arithmetic)

This instruction clears the Program Address Register, P, and enters a new program

address in P for certain conditions of either the A- or Q-register content. The Branch

Condition Designator, j, is interpreted in a special way for this instruction and thus

determines the conditions under which a Jump in program address occurs. If the Jump

condition is not satisfied, the next sequential instruction in the current sequence is exe­

cuted in a normal manner. If the Jump condition is satisfied, as listed below, then Y

becomes the address of the next instruction and the beginning of a new program sequence.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

61 JUMP (Manual)

No jump. Set Interrupt Enable to remove interrupt lockout, thus

clearing Bootstrap and Interrupt modes. Continue with current pro­

gram sequence.

Execute jump. Set Interrupt Enable to remove interrupt . lockout,

thus clearing Bootstrap and Interrupt modes.

Bxecute jump if (Q) is positive.

Execute jump if (Q) is negative.

Execute jump if (A) is zero.

Execute jump is (A) is nonzero.

Execute jump if (A) is positive.

Execute jump if (A) is negative.

This instruction clears the Program Address Register, P, and enters a new program

address in P for certain conditions of manual JUMP key selections. The Branch Con­

dition Designator, j, is interpreted in a special way for this instruction and thus deter­

mines the conditions under which a jump in program address occurs. If the Jump condi­

tion is not satisfied, the next sequential instruction in the current sequence is executed

21

in a normal manner. If the Jump condition is satisfied, as listed below, then y becomes

the address of the next instruction and the beginning of a new program sequence.

Program execution may be stopped by certain STOP selections on execution of this in­

struction. The Branch Condition DeSignator, j, specifies which key selections are effec­

tive.

j = 0: Execute jump regardless of key selections.

j = 1: Execute jump if JUMP 1 is selected.

j = 2: Execute jump if JUMP 2 is selected.

j = 3: Execute jump if JUMP 3 is selected.

j = 4: Execute jump. stop computation.

j = 5: Execute jump. Stop computation if STOP 5 is selected.

j = 6: Execute jump. Stop computation if STOP 6 is selected.

= 7: Execute jump. stop computation if STOP 7 is selected.

62 JUMP ON c!' ACTIVE INPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new program ad­

dress in P for certain input buffer conditions on the channel deSignated by t. If the buffer

is active, the Jump condition is satisfied; then Y becomes the address of the next in­

struction. If the buffer in inactive, the Jump condition is not satisfied. The next sequen-
A

tial instruction in the current sequence is executed in the normal manner. k = 0, 1, 2, or

3 is permitted.

63 JUMP ON c!' ACTIVE OUTPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new address in P

for certain output buffer conditions on the channel deSignated by J. If the buffer is active,

the Jump condition is satisfied; then Y becomes the address of the next instruction. If

the buffer is inactive, the Jump condition is not satisfied. The next sequential instruction

in the current sequence is executed in the normal manner. 'k = 0, 1, 2, or 3 is permitted.

64 RETURN JUMP (Arithmetic)

22

This instruction executes a Return Jump sequence for certain conditions of either the A­

or Q-register content. The Branch Condition DeSignator, j, is interpreted in a special

way for this instruction and determines the conditions under which the Return Jump

sequence is executed. If the Return Jump condition is not satisfied, the next sequential

instruction in the current sequence is executed in a normal manner. If the Return Jump

condition is satisfied, as listed below, the following sequence is performed.

store (P) + 1 in the lower half of memory address Y. Then jump to Y + 1.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

No action; continue with the current program sequence.

Execute return jump.

Execute return jump if '(Q) is positive.

Execute return jump if (Q) is negative.

Execute return jump if (A) is zero.

Execute return jump if (A) is nonzero.

Execute return jump if (A) is positive.

Execute return jump if (A) is negative.

65 RETURN JUMP (Manual)

This instruction executes a Return Jump sequence for certain conditions of manual key

selections. The Branch Condition Designator, j, is interpreted in a special way for

this instruction and determines the conditions under which the Return Jump sequence is

executed. If the Return Jump condition is n9t satisfied, the next sequential instruction in

the current sequence is executed in a normal manner. If the Return Jump condition is

satisfied, as listed below, the following sequence is performed.

Store (P) + 1 in the lower half of memory address Y. Then jump to Y + 1.

j = 0: Execute return jump regardless of key selections.

j = 1: Execute return jump if JUMP 1 is selected.

j = 2: Execute return jump if JUMP 2 is selected.

j = 3: Execute return jump if JUMP 3 is selected.

j = 4: Execute return jump. Then stop computation.

j = 5: Execute return jump. Stop computation if STOP 5 is selected.

j = 6: Execute return jump. stop computation if STOP 6 is selected.

j = 7: Execute return jump. stop computation if STOP 7 is selected.

66 TERMINATE c!' INPUT BUFFER

This instruction. terminates the input buffer on channel t No Input Buffer Monitor Inter­

rupt will occur.

The Operand Interpretation DeSignator, ~, the Index DeSignator, b, and the Operand

Designator, Y, bits are not translated for this instruction.

67 TERMINATE d" OUTPUT BUFFER

This instruction terminates the output buffer on channel t. No Output Buffer Monitor

Interrupt will occur.

23

A
The Operand Interpretation Designator, k, the Index Designator, b, and the Operand

Designator, Y, bits are not translated for this instruction.

70 REPEAT

24

Clear B 7 and transmit the lower 15 bits of Y to B 7. If Y 'is nonzero, transmit (j) to r

(designator register), thereby, initiating the repeat mode. If Y is zero, skip the next

instruction.

REPEAT MODE - The repeat mode executes the instruction immediately following the

Repeat instruction Y times; B 7 contains the number of executions remaining throughout

the repeat mode.

If no Skip condition is met for the repeated instruction, the repeat mode terminates. The

instruction following the repeated" instruction is then executed. If the Skip condition for

the repeated instruction is met, the repeat mode terminates, and the instruction follow­

ing the repeated instruction is skipped.

Following the repeat mode termination, the count remains in B 7• In no way does the

repeat mode alter a repeated instruction as stored in memory.

The three low-order bits of the r designator (from j of instruction 70) affect operand

indexing as follows:

r = 0:

r = 1:

r = 2:

r = 3:

r = 4:

Do not modify the operand address of the repeated instruction after

each individual execution.

Increase the operand address of the repeated instruction by one after

each execution of the repeated instruction.

Decreas~ the operand address of the repeated instruction by one after

each execution of the repeated instruction.

Repeat the initial B-register modification of the repeated instruction

before each execution.

Do not modify the operand address of the repeated instruction after

each individual execution. If the repeated instruction is a Replace in­

struction, the operand address is incremented by (B6) for the store

portion of the Replace Instruction.

Increase the operand address of the repeated instruction by one after.

each execution of th~ repeated instruction. If the repeated instruction

r = 6:

r = 7:

NOTE:

is a Replace instruction, the operand address is incremented by (B 6)

for the store portion of the Replace instruction.

Decrease the operand address of the repeated instruction by one after

each execution of the repeated instruction. If the repeated instruction

is a Replace instruction, the operand address is incremented by (B6)

for the store portion of the Replace instruction.

Repeat the initial B-register modification of the repeated instruction

before each execution. If the repeated instruction is a Replace instruc­

tion, the operand address is incremented by (B 6) for the store portion

of the Replace instruction.

Instruction 70 j designator establishes the repeat mode r designator

since j is transmitted to r.

71 B SKIP ON II"
If the content of B-register j is equal to Y, skip the next instruction in the current se­

quence and proceed to the instruction following. Clear B-register j.

If the content of B-register j is not equal to Y, proceed to the next instruction in the

sequence in a normal manner. Increase the content of B-register j by one.

The Branch Condition Designator, j, is used to designate the selected B-register in this

instruction and is not available for its normal function. Only the lower-order 15 bits of

Yare used in the comparison described in the preceding paragraph.

72 B JUMP ON If'
If the content of B-register j is nonzero execute a jump in program address to address

Y. Reduce the content of B-register j by one.

If the content of B-register j is zero, proceed to the next instruction in a normal manner.

Do not alter the content of B-register j.

The Branch Condition Designator, j, is used to deSignate the selected B-register in this

instruction and is not available for its normal function. If the Jump condition is satisfied,

then the lower-order 15 bits of Y become the address of the next instruction and the be­

ginning of the new program sequence. The higher-order 15 bits of (Y) cannot be used in

this instruction.

25

73 INPUT BUFFER ON c!" (without MONITOR Mode)

This instruction establishes an input buffer via input buffer channel J to Magnetic Core

Storage with an initial storage address Y. Subsequent to this instruction, individual trans­

fers will be executed at a rate determined by an external device. The storage address

initially established by this instruction will be advanced by one preceding each individual

transfer. The next current address will be maintained throughout the buffer procE'ss in

the lower-order 15 bits of Magnetic Core Storage address 00100 plus Jo This mode will

continue until it is superseded by a subsequent initiation or termination of an input buffer

via the same input channel or until the higher-order half and the lower-order half of

storage address 00100 plus J contain equal quantities, whichever occurs first.
1\

This instruction is implemented as follows: If k = 3, store (Y) in storage location 00100

plus j. If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location 00100 plus J leaving the higher-order half undisturbed. If ~ = 0, store Y in the

lower-order half of storage location 00100 plus t leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

74 OUTPUT BUFFER ON c!" (without MONITOR Mode)

This instruction establishes an output buffer via output buffer channel J from initial

storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual

transfers will be executed at a rate determined by an external device. The storage ad­

dress initially established by this instruction will be advanced by one preceding each

individual transfer. The next current address will be maintained throughout the buffer

process in the lower-order 15 bits of Magnetic Core Storage address 00120 plus J. This

mode will continue until it is superseded by a subsequent initiation or termination of an

output buffer via the same output channel or until the higher-order half and the lower­

order half of storage address 00120 plus j contain equal quantities, whichever occurs

first.
1\

This instruction is implemented as follows: If k = 3, store (Y) in storage location 00120

plus j. If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location Q0120 plus j leaving the higher-order half undisturbed. If ~ = 0, store Y in the

lower-order half of storage location 00120 plus J leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

75 INPUT BUFFER ON c!' (with MONITOR Mode)

26

This instruction establishes an input puffer via input buffer channel J to Magnetic Core

Storage with an initial storage address Y. Subsequent to this instruction, the individual

transfers will be executed at a rate determined by an external device. The storage ad­

dress initially established by this instruction will be advanced by one preceding each

individual transfer. The next current address will be maintained throughout the buffer

process in the lower-order 15 bits of Magnetic Core Storage address 00100 plus t This

mode will continue until it is superseded by a subsequent initiation or termination of an

input buffer via the same input channel or until the higher-order half and the lower-order

half of storage address 00100 plus t contain equal quantities, whichever occurs first.

Initiation of this input buffer selects the input channel t and establishes a buffer monitor

on input channel t A Monitor Interrupt follows completion of the buffering operation:

(00100 + j)u = (00100 + j)L •
1\

This instruction is implemented as follows: If k = 3, store (Y) in storage location 00100

plus t If k' = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage
1\

location 00100 plus t leaving the higher-order half undisturbed. If k = 0, store Y in the
1\

lower-order half of storage location 001~0 plus t Proceed to the next instruction. k = 2

is not permitfed.

76 OUTPUT BUFFER ON c!" (with MONITOR Mode)

This instruction establishes an output buffer via output buffer channel j from initial

storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual

transfers will be executed at a rate determined by an external device. The storage in­

itially established by this instruction will be advanced by one preceding each individual

transfer. The next current address will be maintained throughout the buffer process in

the lower-order 15 bits of Magnetic Core Storage address 00120 plus J. This mode will

continue until it is superseded by a subsequent initiation or termination oi an output buffer

via the same output channel or until the higher-order half and the lower-order half of

storage address 00120 plus j contain equal quantities, whichever occurs first. Initiation

of this output buffer selects the output channel t and establishes a buffer monitor on out­

put channel j. A Monitor Interrupt follows the completion of the buffering operation:

(00120 + j)u = (00120 + j)L·
1\

This instrucUon is implemented as follows: If k = 3, store (Y) in storage location 00120

plus t If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location 00120 plus j leaving the higher-order half undisturbed. If ~ = 0, store Y in the

lower-order half of storage location 00120 plus j leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

27

28

TECHNICAL NOTE NO. 240

DISTRIBUTION LIST

BuShips Code 687E (8)

NEL Code 1800 (20)

NEL Code 2800 (6)

st. Paul Central File (250)

San Diego Central File (50)

A. P. Hendrickson

G. G. Chapin

C. W. Glewwe

R. A. Hileman

C. J. Homan

M.M. Koschmann

G. E. Pickering

J. A. Kershaw

F. E. McLeod

R. P. Fischer

H. K. Smead

T. O. Robinson (2)

C. J. Haggerty (2)

Contracts Department (2)

Bureau of Ships Technical Representative - st. Paul

W. G. Haberstroh

E. G. Runyon

R. L. Burkholder

G. R. Kregness

H. D. Wise

'!7- z.... ;)J~ ~ Approved: _____ . ~ ____ _

F. E. McLeod

Approved: /f 4 . t!t.p
G. G. Chapin

Asst. Department Manager
Computer Design

Asst. Department Manager
Systems Development

APprOVed:a~ ~
A. P. Hendrickson
Manager
Naval Tactical Data System

NTDS UNIT COMPUTER
AN/USQ.20

JP &- RJP
j-DESIGNATOH

~DI5IGNATORS.
(4 l

~, "", ~, RJ'
10 54 " " (Nt". I '-. 1
'-. 1· KEY,

0- kEYI

jo-_ ••• ____ c"-._ .. O-...

T _t ... f ... ~

1211- f -+!ijl.ll1'~ 151M- -0\
olla kEY J
aZlRQ STO' -DESIGNATORS

Allert ZIfO (2"". a_ 1TOf'0
IX-PeT STR.C" ~, IIhC";OUToC"

13 11 52 U "'1'5 M~
a_ 1TOf'1' 'Mt • ' '-'

III~OUT tlllN· not_' L

10 __ 0 __ _

' -' U ... -' W W . .
*i-DI5IGNItTOas

~·.t·O, ... DIV
_ .. u ...

u:u'.~ -I 04 n K Z1' '0
0 , .. _I , .. _I ,,..ul.) , .. _I ,-- y,,-, .y , I_- I .. ,., 'KIP 'k" 10IIII Yo' .,+.
2 YLlDY,IOI IIO_~ a_ -- - "'''''.Y-I
J ,..,.:' Y -'0' -- A_ - • YofNE.,._ · YlII (011 YoM Y"(A) a_~ 0- a ZIIIO -.... "flHI-, , V OUT ,&Ole Y If' Y slA) • MOT z.,. OIlCrfZ_ AIICrfZ .. _"' ,, · y .. y IIA a," ON. a • ",,.C.y-,+ "
T Y 1lI0II1' Y "'AI A 1IIl. 0_ alia AODe. Ttl ... , ... r ... l J

./ .. I ff .. I y~,., of ,...... .---
NORMIIL
j-DISIG. ---......)
I

Sk' c_
o I .. ,",",
I '11'
2 o-
J 0-· A 11110 , • .". Z ... · a-· a_

.
0
I

z
3
4 , ,
T

NORMAL
k-DESIGNATOIIS' - STORE RII'UIC&

eo. Ot- e ... -. now. ..-'-' -0. . ~Q

0
L ~ L " L ~ ...
u --..;;- u " u " W M . " w " If

X , A a I'00I_
LX x..- el'\. LX 'M It
Uk lUI.. e", .., UX ,,,_ "-A " eN .. III I'00I_

.WIllI< "-__ 130_1

.... -'-... _-..".---­,-_w_ CeI-_
a-a._ 0-_
u-,,-

"'PI U .. ,' ~Q.'UTU
AN/l!~Q·20 ~ • ~

01 1t ""' •••••••••••• llIIfllQl~ .. Y = =::~::10:::::::::=:::.':.':,YY
:~If;~~.·::~::::::=:::::~
01 Loll IIIIlfl.lI •••••••••• _WUII .. ,
01 Loll II1II" _ UIt .. "(
10 _.a.' y .. O

: ::::0::::::::::::: ~:~-·FooCl c" •..•.. ll1O.'.M+i.r-o.'

i E~~~~~~ ~ ~~~ ~~~~ ~~ ~f:~~::!
It' AIIII' \III,y Mt-. A •••••••••••• W-y-+A
II ... I y O
.,. - fotIIIIl Y O.~-+At
.. __ ••• y •••••••••• W .. " '.A • __ • A-Y l1li-00-+ "A " _., , ClW'.IAIt}' __
111"' __ .0 ·' CllAh.""_ ... ~
• ItIfw .y+o •.••••.•••• ,
" _. y-a ,·""'A
31 IT 0 ••••••••••• W ,.~

: =:.:~;!e:::::::::::;::::!:: •
.. __ • y-O M-IQI itA " ,,~ . ., " , ..
If v-to M-''-''''.''
od'_ • • U'-- •••••••••• I{~A.'.I. __ '.S.~....,
... .IDO.LJI •••••••••••••• ~J: A

: ==:~:::::::::w:~nw~I"'."'" 44-"_ • U' ••••••••••• UYIIQI+ •••• ,.a-_,.s., : == ::~::::::::~;::~::
41 "' ... UO •.•••.•••••• LIAI\OI ""'.IAIt

::':::: ::l .. :::::::~~':.~~y~., : == : :'~:::::::~~:t= 70';! •
...... -"-''''_ CP-_ "'-_"1 ... ~-_ :)_ , __ .. _ .. y-no_ ••• I'1

"OfE: _ ... if ~ ' ____ I 0.,1) Wfer _ ~t. '''a.

NTDS
AN/USQ-20

UNIT COMPUTER
1i!~ ~ 'l~

01 Right SHift. Q ••••• 0 •••• Shift (Q) Right by Y
02 Right SH itt • A • 0 0 • 0 0 •••• Shift (A) Right by Y
03 Right SHift. AQ 0 0 0 • 0 0 ••• Shift (AQ) Right by Y
04* COMpare • A,· Q, • AQ 0 • • • • • Sense (j l. (A)i • (Alf
05 left SH 1ft • Q 0 0 0 • 0 •••••• Shift (Q) left by Y
06 left SHift. A 0 •••• 0 •••• Shift (A) Left by Y
07 left SH 1ft • AQ 0 0 0 • • • • • • • Shift (AQ) left by Y
10 ENTer. a ••• 0 • • • • • • 0 • •• Y ~ Q
II ENTer. A • • •• • • • • ••• • •• Y + A j
12 ENTer. Bn • •• • • • • • • • • •• Y B
13A EXternal - FunCTion. Cn •••••• j ttO or I,(Y)'" CIS =r0 or I, See Note.
14 SToRe. a •••••••••••••• (Q) +Yi k=O,Q'+Q
15 SToRe. A ••••• 0 •• 000 •• 0 (A)j-+Y' k=4,A'+A
16 SToRe· Bn

0 00 0 0 0 0 0 0 0 0 0 0 (Bl. + Y
17A SToRe· C~ 0 00 0 0 0 0 0 00 0 0 0 (C)J-. Y
20 ADD. A. • • 0 0 • 0 0 0 0 0 0 0 0 0 (Al + Y -. A
21 SUBtract. Ao 0 0 0 0 0 0 0 • 0 • 0 (A) - Y -+ A
22 MUltiply. 0 0 0 0 0 0 0 0 0 0 0 0 • 0 (Q) Y -+ AQ 0

23* DIVide • 0 • 0 o. • • 0 0 0 0 • • 0 • (AQ) I V -. Q. R -'Af
24 RePlace • A + Yo •• 0 • 0 0 • • • (Al +(y) --. Y 8 A
25 RePlace • A -Yo o. 0 0 ••••• (A) -(Y)--' Y 8 A
26: A. DO • a 0 o. 0 0 .0 •• 0 .0. 0 0 (Q~+ V .. ~Q.(A)i=(Alt}j interpretation
27 SUBtract • a •• 0' ••••••• (Q)- Y ~Q.(A)i ·(A)f reversed for A8Q
30 ENTer • Y + a. 0 0 , 0 • 0 • • •• Y +(Q) -+ A
31 ENTer. Y - a •••• 0. 00 o. •• Y -(Q) -+ A
32 ST oRe • A + Q. • • ~ • • 0 • • • • (A) +(Q) -+ Y 8 A
33 ST oRe • A - Q. • • • • • • • • • • (A) -(Q) -+ Y 8 A
34 RePlace. Y + a ••• 0 0 0 0 • • • (Y) +(Q) ~ Y 8 A
35 RePlace. Y-Q 0 ••••• (Y)-(Q)-+Y 8A
36 RePlace. Y+I •••• 0 ••••• (Y)+I-'Y8A -
37 RePlace. Y-I ••••••••• 0 (Y)-I-'Y8A
40· ENTer • lP** • 0 ••• 00 0 •• L[V(Q}]-+A.j=2,even parity,J=3,odd parity
41 ADD. lP • 0 ••• o. 0 •••• 0 • L[V(Q}]+(A}-+A
42 SUBtract. LP ••••••••••• (A) - LfY(Q)1-+A
43 COMpare • MASK ••••••••• (A) - L Y(Qj]sENSE Q),(A}+LrV(Q)ji (A)j=(Alf
44* RePlace. lP ••••••••••• L(Y)(Q)+Y8Ad=2,even parityd=3,odd parity
45 RePlace • A +LP ••••••••• L(Y)(Q) + (A} ... Y8A
46 RePlace. A-lP ••••••••• (A)-L(Y)(Q) Y8A
47 SToRe • lP •••••••••••• L(A)(Q) -+ Yi (A}i = (A)f
50 SElective • SET •••••••• SET (Aln FOR Y n = I
51 SElective • Cp* * • • • • • •• COM PLEM ENT (Aln FOR Y n = I

** 0 52 SElective • Cl • • • • • • • CLEAR (A)n FOR V n = I
53 SElective • SU·* • • • • • •• Y n (A)n FOR (Q)n =1

**lP - Logical Product CP - Complement SU - Substitute Cl -Clear

54 Replace SElective • SET ••••• SET (Aln FOR Mn = I, -+ Y 8A
55 Replace SElective • CPo ••••• COMPLEMENT (A}n FOR (Y)n = I, -+ Y 8A
56 Replace SElective • CL •••••• CLEAR (4}n FOR Mn=I, -. Y 8 A
57 Replace SElective • SUo ••••• (Y)n--+(A>n FOR (Q)n =1, -'Y
60 JumP (arithmetic 1 •••••••• }Jump to Y if j-C~dltio.n is satisfied.
61 Jum P (manua n (see JP 8 RJP J - Designators 1
62A Jum P (If e c" has AcTIVE Jump to V If C 1'lnput }

IN put buffer) • •• • • • • • buffer oct Ive .,. (see JP 8 R J P
63A JumP (If. Cn hos ACTIVE Jump to Y if CJ output j - Designators)

OUTput buffer) ••••••• buffer active
64 Return JumP (arithmetic) •••• }Jump to ..,+, and P+I-+YL if j condition Is
65 Return JumP (manual). • • • •• satisfied (see JP 8 RJP j - Designators)
66A TERMinate. Cn • INPUT •••••• Terminate input buffer on channel j
67A TERMinate. en e OUTPUT •••• Terminate output buffer on channel j
70* RePeaT ••••••••••••••••• Ex~cute N I Y times "
71 aSKlp. an •••••••••••••• (B}I =Y, skip NI and clear (B)' I (B}J tt Y,

Advance Bi and read N I
72 ,JumP. al! ••••••••••••• (Bli =0, read NI i (B}l tt 0, (Blj-l and

jump to oddress Y n .,. A ,..

73A INput. C (without monitor mode). Buffer IN on CJ i k = 3, (Y). (00100 + j) i
~ = I, (Y)r+ (00100+ 1) i

A k =0, Y (OOloo+ilL'
74" OUTput. C"twithout monitor mode). Buffer OUT on CJ

i k = 3, (y) .. (OOI20+j) i
o i = I, (Y)L" (00120+ flL ;

o k =0, Y ... (00120+t)L'
75A INput. c"(with.MONITOR mode). Buffer IN on CJ with man.

o i = 3, (Yl-'(OOloo+ I) i
k = I, (Y)L-+(OOIOO+j}Li

I k =0, Y ~ (oOloo+l}L'
II' mono inter. at 00040+j

76A OUTputeCn(with.MONITOR mode). Buffer OUT on cJ with mono
k = 3, (Yl -+(00120 + jh
k = I, (Y)L-+(00120+j)Li
k =0, Y "'(00120+ ill'
mono inter. at 00060 + 1

- NO-OPeration ••••••••.•• }
- ComPlement e A or e Q. • • . •• CS-I Mono -codes
- Clear .A,~ a,e an, or Y •••••

!} Special j a k Designators (see opposite side of cord) Y - The operand, Y or (Y)

NOTE: Skip Nt if other ComplJter (on channel 0 or I 1 has input buffer active. Execute twice.

NTDS
AN/USQ-20

JP & RJP

U,NIT COMPUTER
1<~ ~ 'lft4t1utetitut4

i-DESIGNATORS
(4 bits) j -DESIGNATORS

JP RJP JP RJP
j 60 64 61 65

0 (No Jump)* (Uncond. Jump)

I (Uncond. Jump)* KEY I

2 a pas KEY 2

3 a NEG KEY 3

4 A ZERO STOP

5 A NOT Zero STOP ~

6 A pas STOP 6
7 A NEG STOP 7
".. 62 T 63 T J

0-15.1 Cn ACTIVE IN Cn ACTIVE OUT

j Occupies 4 bit positions and represents Cn where nmay be 0 -15a
The instruction word assumes the format:

f j t b y

-01

~-DESIGNATORS
(2 bits)

A
EX-FCT STR-Cn JP IN -en,OUT-Cn

k 13 17 62 63 73 75 74 76

0 I not used l Inot used
l

I blankl I blank I

I Inot used I
,
not used l L L

*60 Clears interrupt a bootstrap modes. 2 'not used' I not used' U I not used'
3 W, W W W

* j-DESI,GNATORS
COM-A,-a, -AQ. DIV ADD-Q ,SUB-Q ENT-LP,RPL-LP RPT

j 04 23 26 27 40 44 70

0 (no skip) (no skip) (no skip) (no skip) (no mod.)! Y of NE = V
I (unconditional skip) SKIP SKIP SKIP ADV ;V of NE =V+l

2 Y LESS I Y s (Q) NO Over Flow A pas EVEN parity BACK :Vof NE=V-I

3 Y MORE 1 Y > (Q) Over Flow A NEG ODD parity ADDB, : V of NE = V + Bb

4 VIN : (Qh: Y and Y >(A) A ZERO a ZERO A ZERO Rpl.lnc. :VofNE=V[+B6]
5 Y OUT I(Q)< Y or V S (A) A NOT Zero a NOT Zero A NOT Zero ADVR l V of NE=V+I [+B6]

6 Y LESS : Y s (Al A pas a pas A POS BACK R : V of NE =V-I [+86]

J
J
J

7 Y MORE: Y > (A) A NEG o NEG A NEG ADDBR lVof NE=V+Bb[+B6] ./

./ B6 Increment If NI is RPL class l Increments V address for the store portion of the replace.
NE - Next execution

NORMAL
j-DESIG.

(Not applicable on
* or)

j Skip Code
0 (no skip)
I SKIP
2 a pas
3 a NEG
4 A ZERO
5 A NOT Zero
6 A pas

·7 A NEG

k

0
I

2
3

4

5
6

7

NORMAL
k-DESIGNATORS

READ STORE REPLACE

Code Origin Code Dest. Code Origin
Iblankl

UL a Q 'not used' -
L ML L ML L ML
U Mu U Mu U Mu
W M W M W M

X XUL A A 'not used' -
LX XML CPL Cpl ML LX XML
UX XMu CPU Cpl Mu UX XMu

A A CPW Cpl M 'not used' -

Dest.

-
ML
Mu
M

-
ML
Mu

-

LEGEND
M - Memory word (30 bits)
ML- Lower half memory word
Mu- Upper half memory word .

X - Sign bit extended
Cpl- Complement
A.,. A-register

Q - Q-register
U - U-register

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	A-1
	A-2
	A-3
	A-4

