UNISYS System 80
0S/3

Transaction
Platform
System
(TPS)

Programming
Guide

Volume |

IMPORTANT NOTE!

This documentation describes the Transaction Platform Systen (TPS) software
product which is a fully functional subset of Allinson-Ross Corporation
Transaction Interface Processor /30 (TIP/30).

All references to TIP/30 in this documentation can be understood to refer to
TPS.

TIP/30 is a trademark of Allinson-Ross Corporation, Mississauga, Ontario,
Canada. TPS is a tradernark of Unisys Corporation.

© Copyright Allinson-Ross Corporation, 1989

Copyright © 1930 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 13 August 1990

Printed in U S America
Priced ftem 7002 3981-100 -

NO WARRANTIES OF ANY NATURE ARE EXTENDED 8Y THIS DOCUMENT. Any product and related material
disclosed herein are only funished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or iease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannaot
accept financial or other responsibility that may be the result of your use of the informaticn in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Unisys Corparation, 0S/3 Systems
Product Information Development, P.O. Box 500, Mail Station £5-114, Blue Bell, Pennsyivania, 19424, U.S.A.

Alagmssgd T
AMNUUL Ik

Purpose

The TIP/30 Programming Reference Manual Volume I:
* introduces you to the TIP /30 product
* illustrates some fundamental concepts and facilities of TIP/30 and

¢ describes, in detail, the numerous TIP /30 utilities.
Scope

This document provides detailed descriptions of the numerous TIP /30 utilities,
alphabetically ordered to facilitate ease of use.

Audience

The primary audience for this document is data processing programming staff.

Prerequisites

Anyone using this document should be familiar with Unisys computer hardware and the
OS/3 software system.

In addition, knowledge of the COBOL programming language is an asset.

How to Use This Document

This document contains documentation for all of the TIP /30 utility transaction programs,
arranged in alphabetic order. You should read this entire document to familiarize yourself
with its contents and to determine which of the TIP /30 utilities are useful for your
programming application.

7002 3881-100

About This Document

Organization

This document contains five sections:
"Section 1 Overview of TIP/30"

This section provides a general description of the capabilities of TIP/30.

"Section 2 Fundamental Concepts”

This section describes fundamental concepts that are essential to the understanding of the
TIP/30 system.

"Section 3 TIP/30 Utilities"

This section contains descriptions of the TIP/30 utilities, arranged in alphabetic order.

"Giossary"
This section contains definitions of TIP/30 and data processing terms and concepts.
"Index"

This section contains an index for this volume of the manual.

Results

After reading this document, your data processing staff will have a general understanding
of TIP /30 concepts and will be able to determine which TIP/30 utilities are best applicable
to your data processing needs. .

7002 3981-100

About This Document i, i

Section 1. Overviewof TIP/30 Ceesaaserienena 1-1
Program Control System i i 1-1

Message Control System e 1-2

File Control System i 1-2

T To: 14 1-2

Interactive Utilities i i, 1-3

Program Preparation ittt 1-3

Screen Format Preparation IR 1-3

Program Testingand Debuggingc i, 1-3

Utilfies ..o e 1-3

Section 2. FundamentalConceptsccivcviieneenenreanns 2-1
User Identification and Passwords ot 2-1

LOGON and LOGOFF Procedurescocevvununennn, 2-3

TIP/30 Command Lineot 2-5

TIP/30 System Securityc.itiitiiii i 2-6

Section 3. TIP/B0 Utilitiescccvieeiiinennnnnennsensnnns 3-1
ACCESS — AccessFile i 3-1

ALLOC -—— Allocate OS/3Fileo i, 3-2

APB — All Points Bulletint 3-3

ASG— AssignaFile i 3-4

B* — Begin All Spoolforadob o il 3-5

BE— OS/3BEGINCommandcoiiiiiinnininnn. 3-8

BR— OS/BBRCommandcciitiiiiiinninnnn 3-7

BRKPT — Breakpoint Print File oot 3-8

BX — OS/3 PR BX Comrhand 3-9

CA— OS/3CANCELCommandc.coivivininnn, 3-10

7002 3981-100 iii

Contents

CAT — TIP/30 Catalogue Managerccovveenuvunn 3-11
SecurityLevels 3-13
Definition of User Groups cviienan., 3-16
Group SecurityLevels i, 3-17
O (oTH] o =T (- AP 3-18
USER — CataloguingaUserid 3-20
PROG — Cataloguinga Program 3-26
Hintsfor Program Testing 3-35
FILE — CataloguingaFile 3-36
GROUPSET — Defininga Groupset 3-39
Catalogue Statement Continuation 3-40
Accessing OS/3 Librariesciiiiii... 3-40
Updating Catalogue Records 3-41
Updating by Load Module Name 3-42
Listing Catalogue Entries 3-43
Listing Dynamic File Entries 3-45
Listing Edit Buffer Entries 3-46
ListingFileEntries i iiionnnn.. 3-46
Listing Program Entries, 3-47
ListingUserEntrieso iiiiiininin. 3-48
Deleting Catalogue Entries 3-49
RecallLastCommand 3-50
Writing Catalogue Entries 3-50
CCA — |CAM Statistics Displayo, 3-52
A— ARPUtilization 3-56
B — Buffer Utilization o it 3-57
G — LOCAP Information 3-58
K — Linkpak Information 3-59
L— LineInformationt 3-60
QO — Opcom Utilization 3-61
P— PrintReport it 3-62
T - Terminal Information 3-63
U— Uduct Utilization 3-64
CH— OS/BCHANGECommand0cvu.. ..., 3-65
COPY — COPY Utility ...t 3-66
CPAGE — SetControlPage o iiiiiiinnn.. 3-67
CRASH — Abnormal TIP/30 Shutdown 3-68
CREATE — Create DynamicFile 3-69
D*— Delete SpooledData, 3-70
DE— OS/3DELETECOmMMANdccvitirinnnunnnnenn 3-71

iv 7002 3881-100

Contents

7002 3981-100

DEBUG — SetFileinTestModety 3-72
DEFKEY - Define FunctionKeys 3-73
DIE— Aborta Programottt 3-76
DIR — Display Library Directory ity 3-78
DISABLE — Disable Terminals ~............................ 3-80
DLL— Downline Load Utility i, 3-81
MCS400 -~ Message Control System 3-83
DLMSG ~— Redisplay LastQutput 3-84
DLOAD — Downlineloadery 3-85
DOF — DisplayOpen Files ...ty 3-86
DOWN-— SetlLineDowniiiniiiniennennnnn. 3-88
ENABLE — Enable Terminalinput 3-89
EQJ— TIP/BO Shutdown i 3-80
ERASE — ERASE Utility o, 3-92
FCLOSE — Close File(s) e 3-83
FDIR — Display Abbreviated Library Directory 3-95
FIN— Logoff TIP/30 e 3-97
FOPEN — OpenOniine File(S)cvviiiininnan, 3-28
FREE — De-AccessaFile iy 3-100
FSE — Full ScreenEditor i, 3-101
FSELineNumbers 3-104
FSEColumnRBRangeso, 3-105
FOESINNGS ... i 3-105
FSE Command Summarycc.ocveuvnnnn. 3-106
Ad— AdALINES ... i i e 3-109
BX — Create CommentBox 3-110
CB— CopylinesBefore 3111
CC— CopyColumnRangeccvvvn. 3-112
CO— CopylinesAfter 3-113
DE— Deletelines i it 3-114
DU — DuplicateLines 3-115
En-— End Full ScreenEditor 3-115
EX — Execute TIP/30 Command Line(s) 3-1186
FA — Find All Lines Containinga String 3-117
Fl — Find Lines Containinga String 3-118
FM — Find Lines Containinga String 3-119

Contents

vi

F#-— Define FunctionkKey 3-119
F-— FindBackward 3-121
He — Help for Full ScreenEditor 3-121
In— Insert Empty Lines (after) 3-121
IB — Insert Empty Lines (before) 3-122
Li—— ListLinesonScreenc.cvvunn 3-122
LL— ListLastPage 3-123
MA— MarginSet i, 3-123
MB-— MovelinesBefore 3-124
MC — Move Constantor Columns 3-125
MO — Move LinesAfter 3-126
O- Setlanguage "cuiiiiiiiirnnranns 3-126
OA — Setlanguage "A" i 3-126
OC — Setlanguage "C" c.iiiiiin.. 3-126
0D — SetlLanguage "D" 3-127
OL— OptionLiteral, 3-127
OP — Set Language "P" e e 3-127
OR — Setlanguage "R"ciiiiiiun, 3-127
OT— Setlanguage "T" ... innan, 3-127
OU— CptionUppercoiiiiiiiiiieinnnn. 3-128
OX— Setlanguage "X"cciitiiiiinennin. 3-128
Pr— Printlinesc . i, 3-128
PE— Peekatline iivioin., 3-129
P+— PeekScrollUp e 3-129
P-— Peek ScrollDown0.... 3-130
Qu— QUtFSE 3-130
Re — Read from Library or Edit Buffer 3-131
RC — RecallLastCommand 3-131
Su-— Substitute Text, 3-132
SA— SortAscending i, 3-133
SD— SortDescendingccvcnviennnn.nn 3-133
SE— SetFSEOptions 3-134
SP — Substitute and Display Changes 3-137
SW — Switch (exchange) Two Lines 3-137
Up-= UpdateLineRange 3-138
Wr — Write Moduleto Library 3-139
WE — Write Module to LibraryandEnd 3-139
WN — Write (No Overwrite Prompt) 3-140
WQ — Write Element to Library and Quit 3-140
+-— Forward Space Lines e 3-140
-— Backward Space Lines 3-140
=— SetOptions i 3-141
< — Shift Display Left e 3-141°
>-— Shift DisplayRight 3-141
A — CallFSERecursively 3-142

7002 3981-100

Contents

7002 3981-100

#d — SavingLineNumbers 3-142
ld— Clear FSERegisters 3-143
FSE FunctionKey Usage 3-144
FSE PatternMatchingo, 3-148
GO — Restart Paused Processc.ivveiinrennn.n 3-150
GROUPS — Modify Elective UserGroups 3-151
HANGUP — Hangup DialLine 3-153
HELP — Display Help Information 3-154
Call AnotherHelpModule 3-155
Chainto AnotherHelpModule 3-156
Display Another Help Screen Full 3-156
DefineaModuleTitle it 3-156
Define Heip Module Security 3-157
Sorted Cail/Chain Table 3-157
Display Call/ChainTable 3-157
HO— OS/BHOLD Commandc.coiiiiiiiine.n, 3-158
IDA — Interactive Debug Aid i, 3-189
IDACOMMANDS i, 3-160
IDA Command Examplescctvrven.en 3-166
IDAExample e 3-168
ILLTRN — lllegal TransactionHandler 3-169
IVP — Installation Verification 3-170
JBQ — Display OS/3JobQueuecviiirannann 3-171
Display Al OS/3 Job Queueso, 3-171
EndJBQProgram ...t 3-172
Display Help Information 3-172
Display High Priority Queue 3-172
DisplayJob Status i i 3-173
Display Low Priority Queue 3-173
Display Normai Priority Queue 3-174
Display Preemptive Priority Queue 3-174
End JBQ Programand Logoff 3-174
JCL — Job Submission Utility 3-175
Jl— Execute SystemCommand 3-176
JS— DisplayJob Status 3-177
LC — List TIP/30 Catalogue Information 3-178

ST— LIST Ut

Y e 3-179

Vi

Contents

viil

LOGOFF — Logoff TIP/30 System oviviiniennnnns 3-180
LOGON — Logon TIP/30 Systemoiiivieniennnn. 3-182
MEM — OSB3 MemoryMap i, 3-186
MODE — Specify Mode of Operation 3-188
MSG — Send TerminalaMessageccovvunnn 3-189
MSGAR — Message Archivero, 3-191
ALTRxx — Toggle Alternate Row 3-194

COBOL — Create Coboi Copy Element 3-194

COPY — CopyScreenFormat 3-195

CURSOR — Specify Cursor Location 3-1¢6

DATE — SelectbyDate 3-197
DELETE — Delete Screen Format 3-197

DIR — Directory of Screen Formats 3-198

END — End MSGARProgramc..ccc... 3-198

FSL — Toggle Fields SpanLines 3-199

GROUP — Specify Operating Group 3-199

HELP — CommandHelp 3-200

LIST — List Format Summary 3-200

MQOVE — Move ScreenFormat 3-200

PRINT — Print ScreenFormat 3-201

QUIT — End MSGARProgram 3-202

RENAME — Rename Screen Format 3-202
RESTORE — Restore Screen Formats 3-203

RPG — Create RPG Il Layout 3-204

RPGIND — Change RPG {l Formatid 3-205

SAVE — Save ScreenFormat 3-205

SE — Toggle Special Emphasis 3-206

TABxx — Toggle Auto-Tabbing 3-207
"TEST— TestScreenFormat 3-207

UNIxx — Toggle Unidirectional Fields 3-208

WRITE — Write Screen Format Name List 3-208
MSGSHOW — Screen Format Testing 3-209
NEWUSER — Logonas AnotherUser 3-211
NOTE — Display Informational Message 3-212
PAUSE — Pause Executing Processccovuer... 3-213
PMDA — Post Mortem Dump Analysiscut. 3-214
D- DisplayMemoryot 3-215

E— EndProgramouiiiniinenrnnnanas 3-216

P— Prnmt DUmiD .. i i i 3-217

Q— Endand Scratch Dump File 3-218

7002 3981-100

Contents

POC — Terminal Reset i iiiiiiniennnn, 3-219
PR— OS/BPRCOMMANGc.oiuiitiiiiniiinanennnn. 3-220
PRINT— PRINTUtilityco it 3-221
PURGE —~ Remove Processcvvriuinieenenennnns 3-222
RDR — Create RDR SpoolFilecovivun... 3-224
RE — Display ReadyMessage i, 3-226
RECOVER — RECOVERElementcovu... 3-227
RELOAD — Reload Program e 3-228
RPG— RPGEditor i, 3-230
Invoking RPG e 3-230
RPGEditorScreen e 3-231
Deleteline i, 3-236
Addaline i e 3-236
Update Lineot iinnnenenn. 3-236
Listlines 3-237
Endingthe RPGEditor 3-237
Changingthe Currentline 3-237
Saving Textinalibrary 3-237
RU— RunQOS/BdJob ... e 3-238
RV— RUNQS/3Job ... i 3-239
SC— 0OS/3Q0peratorSCCommand ccovvvvun.. 3-240
SCR— Scratch OS/3FHle ... 3-241
SCRATCH — ScratchDynamicFile 3-243
SET — Alter Process Aftributes 3-244
SHUTDOWN — Shutdown Processingcccovvvee.n.. 3-246
SOFF — Log Off TIP/30 and $$SOFF vttt 3-248
SORT — SortEditBuffer 3-249
SPL— Spool File Enquiry i, 3-251
SPLCommand Summary 3-253
SPL Security Considerations 3-254
SPLKeywords 3-254
SPL Program Operation e 3-257
SPLFunctionKeyUseo 3-257

DEL — Delete Spool Subfile 3-258
E— Terminate SPLProgram 3-288

H— Display SPLHEIDoerreeeeenenann, 3-259

7002 3881-100 ix

Contents

L — List SubfileonTerminal 3-259
LE— ListEmmorPagecovviiiinin .. 3-260
P— PrintSubfile, 3-261
PC — Print Subfile with Compression 3-262
PT— PrintwithTestPage 3-264
Q— End ProgramandlLogoff 3-265
R— Release Held Subfile 3-265
S — Summarize SPOOL Queue Contents 3-266
ST — Display SPOOL Status , 3-267
W — Write Subfile to Edit Buffer 3-268
WL — Write Subfile to Library Element 3-268
WS — Write Summary to Library Element 3-269
Invoking SPL fromaProgram 3-270
STARTUP — Startup Processing ..o ver i i i i i vien e 3-271
STOP — Shutdown TIP/30 Immediatély 3-273
SWTCH— Send FullScreenMessagecvvnn.. 3-274
SYM — Schedule OS/3 Symbiont 3-276
SYS — Display OS/3 System Status 3-279
TCB— OS/3TaskControlBlocks 3-281
TFD — Screen Format Definition 3-283
Display Intensitieso i, 3-287
Format Definition Options 3-288
Format Colour Definition 3-293
Format Composition i, 3-284
Field DefinitionCodes 3-295
Field EditingCodesoy, 3-299
Heading DefinitionCodes 3-301
Secure Information i . 3-303
TEDLINE COPY .. v vttt e i 3-305
Identify HeadingData 3-307
ldentify Unprotected 3-308
QOverride Field Attributes - 3-310
Screen Format Summary, 3-314
Format Definition Example 3-316
TLIB— Librarian Services i 3-325
TLIBCOMMAENAScvvviit et 3-326
TLIB OptioNst e e 3-327
TLIB Input and Qutput Specifications 3-328
COPY— COPYDatacoiiiiiiiviinnnn 3-330
DELETE — Delete Library Element 3-335
DIR — Display Library Directory 3-336

7002 3981-100

Contents

7002 3981-100

END — End TLIB interaction 3-337

FDIR — Display Abbreviated Library Directory 3-338

HELP — Helpfor TLIBCommands 3-339

Job— Submitdob, 3-340

LIST — Listlnputat Terminal 3-341

PRINT— Printlnput it 3-343

PUNCH — Create Punch Qutput 3-346

QUIT— End TLIBand LOGOFF 3-347
RECOVER — Activate Previous Version 3-348

SETON — Set TLIBOptionOn 3-350

SETOF — Set TLIBOptionOff 3-351

TSTCOM — Communication Test Program 3-352
UNS — Unsolicited Console Keyin 3-353
UP— SetlinelUp EEEEEE 3-354
USERS — Display UserDirectoryciivviinvienn. 3-355
WMI — Display User Information 3-357
ZZCLS — Close Online File(s)cvi ittt 3-358
ZZDWN — Disable Terminals i, 3-359
ZZOPN — Open Online File(S)vvvvvriiiieiiiiiinen. 3-360
ZZPCH— Reload Programot i ie e innns 3-361
ZZUP — Enable Terminalsccitiiiiiinunnany 3-362
... Glossary-1
.. Index-1

xi

Section 1
Overview of TIP/30

TIP/30 is an integrated system of transaction processing and program development
software which runs under the control of the Unisys OS/3 operating system.

TIP /30 provides an environment that offers the following advantages:

of application system

-

* TIP/30 facilitates the developmen
e TIP/30 has a large number of productivity tools
¢ TIP/30 makes most efficient use of hardware resources

e TIP/30 executes existing IMS action programs without modification (no need to
compile or link IMS programs).

Because it is a complete and comprehensive software system, TIP /30 represents the most
powerful transaction processing and program development software available to the OS/3
user.

The heart of the TIP /30 software system is a multi-thread Program Control System, an
integrated Message Control System, and a comprehensive File Control System. Included in
this nucleus is an extensive system access security control facility as well as facilities for
maintaining user data base integrity.

In addition, TIP/30 includes an extensive library of interactive utility programs to aid in
program design, testing, implementation and system monitoring.

1.1. Program Control System

The TIP/30 Program Control System provides multi-thread control of application
programs.

Through a concept of program stacking, TIP /30 provides inline returns from all program
CALLs. This feature allows each individual program to do more-work, thereby reducing
the number of programs required in an online system.

TIP /30 allows the application designer a great degree of flexibility in the design of
applications.

The TIP/30 Program Control System allows application designers to concentrate on the
application instead of ways to overcome constraints imposed by the software methodology.

7002 3981-100 | 1-1

Overview

1.2. Message Control System

The TIP/30 Message Control System is an integrated facility that provides user programs
and programmers complete freedom from terminal hardware characteristics.

MCS screen formats are developed interactively and stored in the TIP /30 screen format file.

TIP/30 provides a utility called MSGSHOW which is used to test developed screen formats
with no programming required. Users can therefore participate in the design of screen

formats. MSGSHOW makes it easier to develop online systems that feel comfortable to the
user.

MCS allows programs to be written with no concern for the physical hardware
characteristics of the terminal. The user program deals only with data. TIP/30 assumes the
responsibility for knowing the hardware characteristics of the terminal. TIP/30 users can
take advantage of new terminal hardware with no programming changes.

1.3. File Control System

The TIP /30 File Control System provides an efficient interface to all standard OS/3 Data
Management files as well as integrated data base systems such as DMS (a Unisys product).

FCS provides record level and file level locking to preserve data integrity.

Automatic journaling of file updates provides online or off line recovery from system
failures.

A system for creating, maintaining and scratching temporary scratchpad files allows
flexible application design.

1.4. Security

1-2

System-wide security in the TIP /30 system is maintained through the TIP/30 catalogue file.
All users, programs and files must be defined in the TIP/30 catalogue before they can be
referenced online. TIP /30 guarantees security for a user, his programs and his files.

Users can be required to logon to TIP /30 with a specific user id and password. The
password for a user cannot be displayed by anyone (not even the system administrator).

A horizontal layering of security is achieved by the use of a security level number in the
range of 1 to 255. A user can only access those system facilities permitted by his catalogued
security level.

A vertical partitioning of users, programs and files by application group can be achieved
through the group specification in the TIP /30 catalogue.

A user logged on the TIP/30 system with a valid password only has access to those

features of the system belongmg to his apphcation group for which his security level is high
enough to permit him access.

7002 3881-100

QOverview

1.5.

1.6.

1.7.

1.8.

Interactive Utilities

As a TIP /30 user you have access to an extensive library of interactive programs to assist in
the design, implementation, testing and maintenance of online application systems.

Program Preparation

For program preparation TIP /30 provides a powerful text editor, an online librarian and a
spool file inquiry utility.

The TIP/30 text editor is used to create and modify text elements. These elements may be
program source, job control statements, or documentation.

The editor’s work space is fully recoverable so that no work is lost due to a system failure.
This feature results in higher morale and greater productivity on the part of the

programming staff.

Screen Format Preparation

TIP/30 Message Control System screen formats are created and maintained online by the
screen format definition utility (TFD).

Screen formats can be tested online using the MSGSHOW utility. The screen format
maintenance utility, MSGAR, can be used to print screen formats, save screen formats in an
OS/3 library, and to restore screen formats that were saved in an OS/3 library.

Creating and maintaining screen formats in a TIP/30 system is a very simple task. User
departments can work with the development staff to design "friendly” screen formats to
help ensure online system success.

Program Testing and Debugging
TIP/30 provides utilities to help the programmer get his programs running quickly.

Program dumps may be displayed online by the Post Mortem Dump Analysis program
(PMDA). This eliminates waiting for the central printer and may also reduce the need to
print lengthy dumps.

User programs can be traced online by the Interactive Debug Aid (IDA). A programmer
can set break points in a program or trace a program one machine instruction at a time.
Errors can be corrected at execution time and the execution of the program can be resumed.
A programmer can find more errors during each program test using IDA and reduce the
number of compilations required to implement a program.

Utilities
The TIP /30 system includes batch utility programs to initialize and backup TIP/30 system

files as well as a program to analyze and summarize the system accounting information
that may be maintained in the TIP/30 journal file.

7002 3981-100 1-3

Section 2
Fundamental Concepts

2.1. User Identification and Passwords

A user of the TIP /30 system is assigned a "userid" by the installation administrator. This
userid is intended to be a meaningful pseudo name for the individual. It often takes the

£ nf tha inAditndiral’e lact namn hic intdHale A arer nhawanine abmma AF 117 1 Atorhé
10N O Ui HiViGidal 5 1asi Dailic, fus kGais, OF diy Ciaracicy Ssuing Of up 0 Cignd

characters (starting with a letter of the alphabet) that serves to identify the individual
within the TIP /30 user community. For example, user "John Q. Doe" might have a userid of
"DOE", "JOHN" or "JQDOE".

To be able to enforce system security, the TIP /30 system must be able to verify that an
individual is who he claims. To that end, there is a "password" associated with every userid
in the system. Each user is assigned an initial password with his userid.

The user should be aware that the passwora is an agreement between the user and the
TIP /30 system on a means of positively identifying the user.

The TIP/30 system does not provide any way to display a user’s password! If a user
"forgets" his password there is absolutely no way anyone — even the system administrator
— can determine what the password is. The only possible course of action is to have the
system administrator assign a new password for that user.

While it is intended that the individual’s userid be known to other users, the password is
the first and most fundamental level of security. The password should not be known to
anyone but the individual.

The TIP/30 system only requires a password to be given at logon time; the password is not
required to run programs or to access files. Once a user has logged on the system his
capabilities are well defined by his positive identification.

Associated with each user of the system is their security level. Each user is assigned a
security level by the installation administrator. This security level is a numeric value from 1
to 255.

In general terms, the security level is a statement about the access the user may have to
programs and files. A numerically low security level indicates that the user has a high
degree of access. Since there are 255 security levels, users may be easily organized into
logical access groups. A user may not access a program or file if their security level does
not permit access.

TIP /30 users may be given membership in groups. These user groups are established by
the installation administrator. A user is a member of two implicit groups: his own private
group (with the same name as his userid) and the system-wide group (named "TIPY").

7002 3981-100 2-1

User Identification and Passwords

Each user may also be given membership in one or two optional or elective groups. The
installation administrator specifies the elective group memberships at the time a userid is
established. These elective group memberships may be changed at any time by the
administrator.

Membership in a group grants the user the potential to access programs and files belonging
to the group. Actual ability to execute a specific program or file depends on the security
level of the user with respect to the security level of the program or file in question.

7002 3981-100

LOGON and LOGOFF Procedures

2.2. LOGON and LOGOFF Procedures

A user must LOGON the TIP /Qn system in order to identifv himself t

AR MOCL AT W NS N WA 4 AL Sy AATaild Y Al

establish his capabilities with respect to the TIP /30 securlty system Th
to LOGON:

* immediate transmission of a valid userid and password

* transmission of anything not valid as a userid and password.

If the user transmits (at an idle terminal) a valid userid and password he is logged on
immediately. For example, a user with a userid of "FRED" and a password of "QWERTYUI"
might logon by transmitting either of the following:

@D/QWERTYUI \
@ON FRED/QWERTYUT ﬁ

Note the required character (slash) separating the password from the userid.

If the user transmits an invalid userid/password combination or presses a function key or
msg-wait, the TIP /30 system responds by displaying a screen format similar to the one

shown below:
//,;IP/30 LOGON FRIDAY JULY 13 1984 Time: 10:01 ﬂ\\\
Site: ~site-=-name-
Please LOGON
Userid :
Password :

Account Number :

Place cursor here (_) and press XMIT

N /

The user is expected to fill in the appropriate values and press the key. TIP/30
validates the userid and password. The account number field may be required — thisisa
configuration option controlled by the system administrator for each site.

7002 3981-100 2-3

LOGON and LOGOFF Procedures

The user is presented with this screen format for up to 4 attempts. (The user must press
within 60 seconds, or the LOGON program clears the screen and the LOGON
procedure has to be started over).

When the user has successfully logged on the system, TIP /30 displays the standard system
prompt:

N Y

The text that is displayed as the standard system prompt is a TIP /30 generation
(configuration) option that may be customized by the installation. The value shown above
is the default prompt text.

To log off the TIP/30 system, the user may run the program "LOGOFF" as a response to the
standard system prompt. To run the LOGOFF program the user enters:

@? »LOGOFF v , /'

The logoff program terminates the session and outputs a display giving the date and time
of logoff and various statistics about the session that was just completed. The statistics
include average response time and the number of input and output messages to the
terminal. : ’

The installation administrator may (at his discretion) change the name of the "LOGON" and
"LOGOFF" programs. Users are advised to review their installation’s LOGON and
LOGOFF requirements with the installation administrator when they receive their userid
and initial password.

2-4 7002 3281-100

TIP/30 Command Line

2.3. TIP/30 Command Line

The TIP /30 system displays the standard system prompt on the terminal after a successful
logon and whenever control returns to TIP /30 from a transaction program. In order to run
transaction programs, the user must be familiar with the structure of the command line.
When the system issues the standard system prompt the terminal user has an opportunity
to enter a command to the TIP /30 system. This command has the following structure:

@??)trid[,options] [parameterl] ... [,parameter8] /

The system prompt is a configurable string followed by a start of entry (SOE) character. The
system prompt shown above is the default system prompt.

The transaction-id (trid) immediately follows the start-of-entry character (») and represents
the name of the program the user wishes to run. The trid may be up to eight characters
long.

Some transactions (programs) allow the user to enter options immediately following the
transaction-id. The options are separated from the trid by a comma or a slash. Options are
from one to eight characters which are defined by the particular transaction program.

Separated from the transaction-id (and possibly the option characters) by at least one space
are parameters for the program. There may be up to eight parameters supplied to the
program from the command line.

These command line parameters represent initial input data for the program. Each
parameter is restricted to a maximum of eight characters. The parameters are positional;

any omitted parameters are indicated by the presence of a comma separator without any
data.

Example:

wp»mrzom MAR, , 1982 J

In the example above "PAYROLL" is the transaction-id; there are no command line options;
parameter-1 is "MAR"; parameter-2 is omitted; parameter-3 is "1982".

It is important to note that the parameters on the command line are passed to the indicated
program as initial data. The programmer who wrote the program is free to interpret the
parameters in any manner he chooses. The TIP /30 system merely enforces this command
line convention as a simple means of running a program.

It is quite reasonable for a program to require no information from the command line (for
example, menu-oriented systems frequently require that the user enter only the name of the
menu program).

Many of the utility programs supplied with TIP/30 make extensive use of the command
line options and parameters. The documentation for these programs describes the
command line parameters recognized by each utility and the command line options
required.

7002 3981-100 2.5

TIP/30 System Security

2.4. TIP/30 System Security

TIP/30 provides an extensive security system that may be utilized by the installation
administrator to control access to programs and files. The security system cannot be
selectively disabled or circumvented. The security system is implemented by entries in the
TIP /30 catalogue. The catalogue is a TIP/30 file that is managed by the online catalogue
manager program (CAT). The installation administrator uses the catalogue manager
program to enter and modify information in the catalogue.

The catalogue contains entries for all authorized users of the TIP/30 system, all programs
that are available online, and all files that are accessible online.

Each authorized TIP/30 user has an entry in the catalogue that states his userid, current
password, security level and the names of (up to sixteen) elective groups to which he
belongs.

o 2 TP S S o mmtalagiin Lrm annl tavemoren { i i
There is an entry in the catalogue for each program (transaction-id) which states the group

to which the program belongs and the security level required to access the program.

There is an entry in the catalogue for-each online file in the system. The entry indicates
which group has access to the file and the security level required to access the file.

A user may only access programs and files that are defined in the group(s) in which the
user is a member. Furthermore, even though the user is a member of a group his access to
programs and files in that group is restricted further by the requisite security level.

The catalogue manager program is generally assigned a high security level so that only
users with high security (the installation administrator) may change entries in the
catalogue. This ensures there is no mechanism whereby the average user can alter security
levels or group memberships.

When a user attempts to run a program or access a file, TIP/30 searches for a
corresponding program or file entry in the TIP/30 catalogue. The search follows a fixed
order, known as "the order of search”. TIP/30 searches the user’s private group, any
elective groups, and the system universal group — TIPYS. The first program or file entry
that is found is considered to be the intended one. The user’s security level is compared to
the required security level to run the program or access the file.

If the security level does not imply access, TIP/30 displays a "SECURITY ERROR" message.
It is very important to note that the catalogue search does NOT continue past the first entry
found in the predefined order of search. If no appropriate entry is found in the catalogue,
the user receives an error message stating that the program or file could not be found.

The above description of search order also applies whenever a program attempts to call
another program or access files. The catalogue is searched every time an attempt is made to
access a program or file. The TIP /30 catalogue file i5 organized in such a fashion that this

order of search may be accomplished very quickly. There is no appreciable overhead
associated with this security mechanism.

2-6 7002 3981-100

Section 3
TIP/30 Utilities

3.1. ACCESS — Access File

The ACCESS transaction is used to manually assign a Logical File Name (LFN) to a file and
to make the file available to programs executed at the terminal. Most transaction programs
access files by specifying the logical file name in the catalogue entry for the program or by
calling the TIP /30 File Control System (TIPFCS) with the FCS-OPEN function.

Syntax:

ACCESS [/type] aftname, 1fn

Where:

type Command line option: "P" or "T" indicating whether the file to be accessed is a
permanent or temporary file (only applicable if the file is a TIP /30 Dynamic
File).

affname The Logical File Name to be assigned to the file. This is the name used in the
active file table and is the name used by programs to identify the file to the
TIP /30 File Control System (FCS).

lin The catalogue name of the file. If the file to be accessed is an FCS dynamic file,
the catalog-name consists of three sections: USER-ID, CATL-ID, FILE-ID.

If the USER-ID is not specified, then the USER-ID used to LOGON to TIP/30
is used. If left blank then CATL-ID is set to the value of FILE-ID.

In the following example assume that user "ARC’ is logged on.

Example:

ACCESS UPDATE,MASTER

This example assigns the file with catalogue name '"MASTER'’ to the issuing user under the
name "UPDATE’. The AFT (user’s Active File Table) would look as follows:

Logical User-id Catl-id File-id Type Class Hold Element

UPDATE ARC MASTER DIRAM S UP

7002 3981-100 3-1

ALLOC — Allocate OS/3 File

3.2. ALLOC — Allocate OS/3 File

3-2

The ALLOC transaction allocates an OS/3 file. The user specifies the name of the file, the
initial and secondary space allocation, the file type, and the volume serial number of the
disk where the file is to be located.

Syntax:

ALLOC FIle= TYpe= SIze= ([VSn=] [INc=] [CONtig=]

Where:
Flle= The LBL name of the file to be allocated. This keyword is required.
LBL names containing an embedded space or period must be enclosed in
quotes. _
TYpe= The type of file to be allocated. This keyword is required.
Specify one of: ST, M1, IS, DAM, 5Q, or NL
Slze= The number of CYLINDERS to allocate for the file. This keyword is required.
VSn= The volume serial number of the disk volume where the file is to be allocated.

This parameter may be omitted if the file has already been catalogued in the
0OS/3 system catalogue (YCAT).

INc= The secondary increment (in cylinders) for this file. Default is a secondary
increment of 1 cylinder.

CONtig= Specify CONtig=YES or CONtig=NO (the default) indicating whether or not
the allocated disk space must be contiguous.

Example:

ALLOC FILE='/TEST.FILE'’ VSN=REL130 TYPE=MI SIZE=8

This example allocates a file with an LBL name of "TEST.FILE" on the volume REL130. This
file is allocated as MIRAM with an initial space allocation of 8 cylinders. The file would not
necessarily be allocated as contiguous cylinders (since CONTIG=YES was not specified).

7002 3981-100

AN,

APB — All Points Bulletin

3.3. APB — All Points Bulletin

The APB program sends a broadcast message to all currently active terminals (except the

sender). A

The message is sent as an unsolicited message. When the message is received, it will be
prefaced by the userid and terminal name of the sender.

Syntax:
APB(/ALL] text
APB({/grp] text
Where:
ALL Command line option indicating that the APB message is to be sent to all
terminals connected to TIP/30 (whether or not the terminal is logged on
TIP /30).
If this option is not specified, only terminals that are currently logged on
TIP /30 receive the message.
This command line option is coded as the three characters "ALL".
grp Command line option indicating that the APB message is to be sent to
terminals where the logged on users are members of the specified user group.
text The text of the message (64 characters maximum). The text need not be
enclosed in quotes.
Example:

APB SYSTEM WILL SHUTDOWN AT 21:15 FOR 30 MIN,.

APB/EDP Meeting at 15:30 in boardroom

7002 3981-100 3-3

ASG — Assign a File

3.4. ASG — Assign a File

The ASG program is used to assign a logical file name (LFN) to a file and to make the file
available to programs executed by the process. Most transaction programs access files by

specifying the logical file name in the catalogue entry for the program or by calling the
TIP/30 File Control System (TIPFCS) with an FCS-OPEN function.

If the ASG program is used to assign a TIP /30 Dynamic File that does not currently exist,
the dynamic file will be created.

Syntax:

ASG([/type] 1fn, filename

Where:

type "P" or "T" indicating whether the file to be accessed is a permanent or
temporary file (only applicable if the file is a TIP /30 Dynamic File).

lfn The Logical File Name assigned to the file. This is the name used in the active
file table and is the name used by programs to identify the file to the TIP /30
File Control System (FCS).

filename The catalogue name of a file. If the file to be accessed is an FCS dynamic file,
the catalogue name consists of three sections:
USER-ID /CATL-ID/FILE-ID

If the USER-ID is not specified, the userid used to LOGON to TIP/30 is used.
If the CATL-ID is omitted then CATL-ID = FILE-ID.

In the following example assume that user "ARC" is logged on.

Example:

ASG,P TEST, , TESTFILE/ONE

This creates a TIP /30 Dynamic File called TESTFILE/ONE and assigns it with the logical
file name "TEST". The active file table for the terminal would then look like this:

Logical User-id Catl-id File-~id Type Class Hold Element

TEST ARC TESTFILE ONE DYNAM P

3-4 7002 3981-100

B* — Begin All Spool for a Job

3.5. B* — Begin All Spool for a Job

Lom ot AT

The B* utility submits an OS/3 console command to begin ALL spool queues for a specified
job. The generated command is logged on the OS/3 console and in the job log for the
TIP /30 job.

The command submitted is: BE SPL,ALL,JOB=xxooxxxx unless special processing options
are requested.

Syntax:

B*{,opt] [Jjobname]
Where:

opt Command line option that may be used to specify either a specific printer
. device type or a specific printer address.

If the option field begins with the character "7" (for example: B*,770) the option
field is interpreted as a printer device code.

If the option field begins with a character other than a "7" (for example: B* 3E0)
the option field is interpreted as a printer device address.

The actual OS/3 command that is generated varies according to the value in
the command line option field. See the examples shown below.

jobname An optional job name that is to be used in the generated OS/3 command.

If this parameter is omitted, the B* program uses the job name of the currently
executing TIP/30.

Example:

B* COB74 BE SPL,ALLJO=COB74
B*770 FRED | BE SPL,ALLJO-FRED DEV=770
B*3E0 FRED | BE SPL,PRJO-FRED,OUT=3ED

Additional Considerations:

Refer to the description of the OS/3 operator console command "BE" in the operation guide
for your system.

7002 3981-100 3-5

BE — 0S/3 BEGIN Command

3.6. BE — 0S/3 BEGIN Command

ey ho-3 » TSR S SIS, PR UITS S e Ve ly 1, | crnmanla Avmawabas an
The BE transaction impiements the O5/3 "BEGIN" console operator command. The BE

transaction is actually a clone of the more powerful SYM transaction. The SYM transaction
program can be invoked using an alias name that is interpreted as a specific command.
When the SYM program is invoked with a transaction name of "BE", the SYM program
assumes that the OS/3 command is "BE".

The OS/3 BEGIN command syntax is documented in the operation guide for your system.

The BE transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it was entered
at the system console.

Note: Thereis no provision for returning any completion status.

Exampie:
BE COBCOMP3 { begin a queued job }

The command shown in the example issues a BEGIN operator command for a job named
"COBCOMP3".

7002 3281-100

BR — 0S/3 BR Command

3.7. BR — 0S/3 BR Command

The BR transaction implements the OS/3 "BR" console operator command. The BR
transaction is actually a clone of the more powerful SYM transaction. The SYM transaction
program can be invoked using an alias name that is interpreted as a specific command.
When the SYM program is invoked with a transaction name of "BR", the SYM program

assumes that the OS/3 command is "BR".
The OS/3 BR command syntax is documented in the operation guide for your system.

The BR transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it had been
entered at the system console.

Note: Thereis no provision for returning any completion status.

BR PR,ACT, JO=TIP30

The command shown in the example breakpoints the active print file for the job named
TIP30.

7002 3981-100 3-7

BRKPT — Breakpoint Print File

3.8. BRKPT — Breakpoint Print File

The BRKPT transaction causes a breakpoint to be taken for a print file that is defined t

axciiiVia il joiip ey el 1o

TIP/30. The print file is closed to create a physical breakpoint.

Syntax:
BRKPT 1lfn

Where:

lfn The logical file name of a printer file that is defined to TIP/30. The logical file
name is the name that is defined in the TIP /30 Catalogue for the file (not
necessarily the LFD name). The file must be defined in the TIP /30 generation
parameters as type "PRINT".

Example:

BRKPT PRNTR

Note: The resulting status is displayed: "Print file breakpointed” or "Print file not
breakpointed". The latter message text may be the result of misspelling the logical file
name (LFN) or may result if the LFN is not defined or is not a print file.

3-8 7002 3981-100

BX — OS/3 PR BX Command

3.9. BX— 0S/3 PR BX Command

The BX transaction implements a variation of the OS/3 "PR" console operator command

(start burst mode output writer). The BX transaction is actually a clone of the more
powerful SYM transaction. The SYM transaction program can be invoked using an alias
name that is interpreted as a specific command. When the SYM program is invoked with a
transaction name of "BX", the SYM program assumes that the OS/3 command is "PR BX".

The OS/3 PR command syntax is documented in the operation guide for your system.

The BX transaction is a shorthand notation for the more cumbersome syntax of the "PR BX"
console command. The BX transaction accepts a job name and submits an appropriately
formed "PR BX" command to begin a burst mode output writer for the supplied job name.

Note: Thereis no provision for returning any completion status.

BX [jobname]
Where:
jobname An optional command line parameter that is used to specify the target OS/3
job name.

If omitted, the BX transaction will use the name of the TIP/30 job that is
executing.

Example:

BX PAY(20

This example command results in the OS/3 command: PR BX,JO=PAY020

7002 3981-100 3-9

CA — 08/3 CANCEL Command

3.10. CA — 0S/3 CANCEL Command

3-10

The CA transaction implements the OS/3 "CANCEL" console operator command. The CA
transaction is actually a clone of the more powerful SYM transaction. The SYM transaction
program can be invoked using an alias name that is interpreted as a specific command.
When the SYM program is invoked with a transaction name of "CA", the SYM program
assumes that the OS/3 command is "CA".

The OS/3 CANCEL command syntax is documented in the operation guide for your
system.

The CA transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it had been
entered at the system console.

Note: The CA transaction does not allow an ICAM symbiont to be cancelled. The CA command

T 1A N

cannot cancel the TIP{30 job that is issuing the CA command.

Example:

CA COBCOMP3,N

This example command cancels job "COBCOMP3" without a dump.

7002 3981-100

CAT — TIP/30 Catalogue Manager

3.11. CAT — TIP/30 Catalogue Manager

The CAT program is a system utility which displays, updates, adds, or deletes records in
the TIP /30 catalogue. The CAT program operates interactively and accepts commands
which have a very flexible syntax.

The user enters a command code, one or more positional parameters (used to identify the
required item), and keywords to supply information about that item.

CAT also accepts command line parameters for the list functions.

Syntax:
Command P1,P2,P3,P4 keyl= key2= key3= ... keyn=.
Where:

Command The CAT function to be performed. Valid functions are:
Table 3-1. CAT Commands

List List catalogue record(s) on the terminal.

Write Write catalogue record(s) to a library source
element.

DELete Delete catalogue record(s).

Prog Create/Update a program record.
User Create/Update a user record.
File Create/Update a file record.
Group Create/Update a groupset record.
End Terminate the CAT program.
Quit Terminate the CAT program and logoff
TIP/30.
P1,P2,P3,P4

Positional parameters supplied with the command.
For the Prog, User, File, and Group commands, only the first two positional

parameters are used — positional parameters three and four need not be
Qemparn£iad

For the List, Write, and DELete commands, positional parameters one through
four are used to identify the item(s) to be processed.

keyl= ..keyn=
Keyword parameters that are used to supply additional information.

7002 3981-100 3-11

CAT — TIP/30 Catalogue Manager

3.11.1. TIP/30 Catalogue File

The TIP /30 catalogue file (TIP$CAT) contains the information needed by TIP/30 to execute
online programs. The catalogue is organized as a hashed file (the key of a record is
transformed into a relative block number which indicates the place to store the record).
Specific records can therefore be retrieved without searching an index.

All of the information in the TIP/30 catalogue is available to users immediately when
updated; maintenance is performed by an online program. The exception to this rule is
user entries. The catalogue entry of a currently logged on user is not updated when the
user record is changed until the user logs off and on again or uses the NEWUSER utility.

Changes to the catalogue information is effective immediately and such changes are
directly updated in the file.

The TIP /30 catalogue contains the following types of records:

User These records identify valid users of the TIP/30 system.
Program These records describe valid online (transaction) programs.

The program record identifies all the run time requirements of the program
such as: load module name, MCS area size, Work are size, etc).

File These records describe valid online files.

‘The file record in the catalogue links the logical file name (the name used in a
program) to the LFD name (the name used in the operating system).

Groupset These records define SETS of group names.

A user may be given membership in several elective groups - if the user
belongs to more than two elective groups, they must be specified in a groupset
record.

Each record in the catalogue has a 25 character logical key. This key is composed of four
fields which together uniquely identify each record in the catalogue.

Duplicate keys in the catalogue are not allowed.
The four fields that form the catalogue key are as follows:

Group This is the name of the group to which the item belongs.
In the case of a userid record, this field contains the userid.
In the case of a Groupset record, this field is the name of the groupset.

Any items (programs or files) catalogued in a group with the same name as a
userid record, are considered to be in that user’s private group.

1d If the catalogue record is a file type record this field contains the logical file
ame (LEN) of the file,

Nawd 4 N7 UL

If the catalogue record is a program type record this field contains the TRID
(transaction id or program narne).

If the record is a userid type record or groupset type record, this field is
essentially not used.

7002 3981-100

CAT — TIP/30 Catalogue Manager

3.11.2.

Elt This field is only used if the catalogue record describes a TIP /30 dynamic file.

Dynamic files have a two level name (id/elt), and this field is used to contain
the element name of the dynamic file.

Type This is the type code of the catalogue record. There are four type codes used as
follows:
19) User record
P Program (TRID) record
F File (LFN) record

File records in the catalogue may also be referenced by the class
code which identifies the type of file as follows:

S System (data management) file
D Dynamic file

E Edit buffer

G Groupset record

Since the catalogue is a hashed file (has no index) it cannot be processed in any specific
order other than sequentially by physical block.

To produce an ordered listing of the file (either online or in batch), the file must be entirely
scanned at the block level to extract the desired records, the records selected must be sorted
to produce the desired listing.

An understanding of this fact facilitates obtaining listings of records in the catalogue in an
efficient manner.

The TIP/30 catalogue file (LFD=TIP$CAT) is implemented as a single partition SAT file.

The catalogue file must not be processed by any programs other than those supplied with
TIP /30 or the standard operating system file dump/restore program (DMPRST).

Security Levels

The SECurity= keyword is common to the USER, PROGRAM, FILE and GROUPSET
catalogue records. This keyword specifies information that is needed by the TIP /30
security system.

A user has a specific security level that he has been granted by the system administrator. A
user’s security level implies that he may access a program, file or groupset only if the item
has a security level numerically not greater than the user’s security.

A PROGRAM, FILE and GROUPSET record in the catalogue specifies the required security
level that a potential user must have to access or use the item.

Security levels range from 1 (the highest security clearance) to 255 (the lowest security
clearance):

7002 3981-100 ' 3-13

Security Levels

3-14

Security Level

Equivalent

1 TECH
2.9 MAST

10-19 SYST

// 20-29 \\ PROG
30-255 APPL

Reserved Word

Users at a particular security level are able to access PROGRAMS, FILES and/or
GROUPSETS that have a security level requirement at or lower than the user’s security
level (as discussed shortly, this statement assumes proper group membership beforehand!).

The SECurity= keyword may be specified in two different ways. Either an absolute
numeric value may be given, or a reserved word may be used:

Table 3-2.

Catalogue SECURITY Specification

Determines the security level of the catalogue
record. Enter a numeric value between 1 and
255 inclusive.

SECurity=TECH

Equivalent to SEC=1.

SECurity=MAST

Equivalent to SEC=9.

SECurity=SYST

Equivalent to SEC=19.

SECurity=PROG

Equivalent to SEC=29.

SECurity=APPL

Equivalent to SEC=32.

7002 3881-100

Security Levels

The following table lists the security ranges provided and the CAT commands allowed by
the online CAT program for users in each security range.

Table 3-3. CAT Capabiiities by Security Levei

1 System Administrator:

(TECH=1) |— may create any other level users
— may list, create, update, delete any entry in
the catalogue.

2-9 Master User:

(MAST=9) |— may list, create, update or delete any record
in the catalogue except user records of users
with higher security.

10-19 System User:

(SYST=19) |-— may list, create, update or delete any
catalogue record in a group to which he has
access (is a member)

— may create user records, but may not grant
access to a group that the system user does not
have access to

-~ may not create or update group sets.

20-29 Programmer User:

(PROG=29) | — may list any catalogue record in a group to
which he has access

— may create, update or delete program
records in his private group

— may not create or update file, user, or

groupset records.

30-255 Application user:

(APPL=32) | — not allowed to access the catalogue in any
manner.

Note: The rules described in the preceding table are enforced by the CAT program. The CAT
program does not allow these rules to be circumvented (even by altering the security level
of the CAT program).

When cataloguing FILES, PROGRAMS and GROUPSETS, assign a security level
numerically equal to or less than the security level of the user or users who need to access
the item.

7002 3981-100 3-15

Security Levels

When a user attempts to access a file or to run a program the following security check takes
place for these items:

IF user security level > item’s security
THEN deny access
ELSE
IF item is time~locked
THEN deny access
ELSE allow access
END-IF
END-IF

Note the comparison is a strictly numeric comparison of the user’s stated security and the
item’s stated security.

Exampie of Security Clearance Comparison:

1 any Yes

3.11.3. Definition of User Groups

The concept of grouping in the TIP /30 catalogue must be understood to properly utilize the
catalogue and its features. Every program and file is defined within a group (a program or
file may appear in several groups).

Every user of the system has a list of groups to which the user has access.

When a user requests access to a program or file, each group to which the user has access is
consulted to determine whether the requested item is defined in that group.

The order the groups are consulted is known as the catalogue order of search and is
defined as follows:

Private This is the user’s private group.

Any items (programs or files) catalogued in a group with the same name as
the userid name are considered to be in the private domain of that user.

Group1l Thisis an optional (elective) group and is consulted if the userid record was
reated using the GRouP=(a,b) keyword parameter.

L e FANS)59) \!

0

The first sub-parameter of the GRouP= keyword is used to identify elective
group one.

3-16 7002 3881-100

CAT User Groups

3.11.4.

Group2 This optional (elective) group is similar to Group 1 above. It is the third group
to be consulted when searching for an item.
The second sub-parameter of the GRouP= keyword of the User command
identifies elective group two.

groupset Optional, additional elective groups that extend the elective groups beyond
Groupl1 and Group2.

TIPSYS$ This group is the last group consulted in the order of search. The name of the
group is the reserved name "TIPY".

Note: Group membership and the order of search control only which item in the catalogue is
selected for a given user.

It is the security level of the item selected that ultimately determines whether the item
may be used by that user.

It is through the specification of groups and security levels t
mechanism is able to control user access to programs and files.

Group Security Levels

When TIP/30 searches the TIP/30 catalogue to resolve PROGRAM and FILE references, the
user’s stated security is ultimately used to determine whether an item is available to that
particular user.

It is possible to specify a security level that is associated with an elective group. This
security level effectively overrides the user’s security when the security check for that
group is performed.

Example:

USER FRED SECUR=PROG GRPS=(ACCTNG,55,PAYROLL, 65)

The effect of the example user specification is the following:

* FRED is a programmer level user
e FRED belongs to the following groups: FRED, ACCTNG, PAYROLL, TIPY

e when performing the security check for PROGRAM or FILE entries that are found in
the group FRED or TIPY, FRED's security is PROG (29)

e ifa PROGRAM or FILE entry from the GROUP ACCTNG is involved, the specification
55 overrides the value in the SECUR= keyword FRED has level 55 security when
searching the group ACCTNG;

° if a PROGRAM or FILE entry from the GROUP PAYROLL is involved, the
specification 65 overrides the value in the SECUR= keyword — FRED has level 65
security when searching the group PAYROLL.

7002 3981-100 3-17

CAT Group Security

3.11.5.

3-18

Very important point:

The use of the security level associated with elective groups is limited to determining the
user’s access to items in the group. In the example above, FRED is a programmer level user.

He happens to have diminished access (less than a programmer) in his elective groups.

If a security level is omitted for an elective group, the user’s security is assumed.

Syntactical note: the security level that may be specified with the group name in the
GROUPS= keyword must be specified as a numeric value — the short form names (TECH,
MAST, SYST, PROG, APPL) are not allowed because they could be erroneously interpreted
as a group name.

Example:

GRPS=(EDP, PAYROLL, 55)
GRPS=(EDP, 110, PAYROLL)
GRPS= (EDP, PAYROLL)

Groupsets

A groupset can be considered to be a definition of a pool of "additional” elective groups. A
groupset may be chained to another groupset record to create very long chains of potential
group names.

A groupset may be created that establishes a number of elective groups (and corresponding
security levels). Once this groupset is defined and given a name, users may be assigned to
have access to the named groupset.

The GROUPS transaction (see "3.40. GROUPS — Modify Elective User Groups” on page
3-151) may be used to dynamically reorder the elective groups to temporarily override the
usual order of search.

Altering the user’s elective groups via the GROUPS transaction is a temporary change to
the user’s elective group membership; all alterations are subject to a check that the
requested group names are part of the groupset to which the user belongs.

Example:

USER FRED SECUR=29 GROUPSET=SALES GRPS=(EDP,GOLFER)
GROUPSET SALES SECUR=PROG GRPS=(MKTNG,55) GRPS=(BUDGET, 65)
In this example, user FRED is defined to be a member of the groupset SALES.

At logon, FRED's elective groups are EDP and GOLFER (and appear in FRED's order of
search in that order).

The security associated with groups EDP and GOLFER is 29 (since it wasn’t explicitly
specified); the security associated with groups MKTNG is 55 and BUDGET is 65.

7002 3981-100

CAT Groupsets

Therefore, if FRED uses the GROUPS utility and enters:

k TIP?PGROUPS MKTNG.BUDGET }

N— /

the effect is to temporarily alter FRED's order of search to be as follows:

MKTNG BUDGET

The groupset record allows the system administrator to define up to 16 groups and
corresponding security levels that represent additional elective groups for users who are
assigned to that groupset.

7002 3981-100 3-18

CAT User command

3.11.6. USER — Cataloguing a Userid

The catalogue manager USER command creates or updates a userid record in the TIP/30
catalogue. If the specified user name already exists in the catalogue, the command is
considered an "update” operation rather than an "add" operation.

Syntax:

Whers:

User

userid kwd= kwd= .

Required positional parametert

This parameter specifies the userid of the user record being created or

updated.

A maximum of eight characters may be specified.

After the userid, one or more keywords follow:

3-20

Table 3-4. USER Definition Keywords

““i?ﬁﬂib

ACcounTs=

List of valid accounts for this user.

CoMmenTs= | User’s name or other identification.
DeBug= Set user in "test” mode.

DFLTACCT= | Default account number.

EXPIRY= Date when this userid record "expires".
GRouPs= User’s elective group memberships.
GRouP’SeT= | Define user's group set.

LANGuage= | Specify user’s language code.
LOGonSeT= | Define user’s initial elective groups.
MaXUSers= | Maximum concurrent logons with this userid.
MCSearch= | Type of screen format searching,.
MENU= Screen format to be used as menu.

NCS= OFIS Link National Character Set.
PassWorD= | TIP /30 logon password for this user.
PRoGram= | Program automatically called at LOGON.
SeaRCH= Restrict standard order of search.
SECurity= User security level.

continued ...

7002 3981-100

CAT User command

Set destructive space bar.

(period) Signal end of keywords for user command.

ACcounTs=(,,)

A list of valid accounts that may be supplied by this user when logging on
TIP/30. Up to 16 account "numbers” can be specified.

Each account "number" may be a character string of up to four characters (not
necessarily numeric).

If this keyword is specified the user must supply one of the valid account
numbers when logging on TIP’/30.

If only one account number is specified here it is used as a default account for
the user (if the user chooses to omit the account number at logon).

The account number appears in logoff information that is written to the
TIP /30 Journal or Log file (if configured).

CoMmenTs=

DeBug=

Up to 28 characters of descriptive information which is associated with this
user.

The data must be placed within single quotes if it contains an imbedded space
or period.

A popular choice for this data is additional information like the user’s full
name and telephone extension.

The utility program USERS (see "3.94. USERS — Display User Directory” on
page 3-355) displays this comment information.

The first 19 characters of this comment string appear in any print header pages
that are generated for the user by TIP/30 utilities.

YES automatically sets the user into "test mode" at logon. In test mode, all
updates to files are acknowledged, but not actually performed.

Default: NO (not in test mode).

DFLTACCT=

EXPIRY=

7002 3881-100

A four character account number that is taken as the default account number
when this user logs on the TIP /30 system. If the account number field is left
empty during the logon procedure, this account number is assumed.

The date when this userid expires (when the userid is no longer accepted by
the TIP /30 LOGON program).

Format is EXPIRY=yymmdd

This keyword may be useful when creating user ids for testing or for
demonstrations.

3-21

CAT User command

3-22

GRouPs=(g1[,s1],g2[s2])

This keyword identifies the user’s initial (logon) elective groups in the

I . X . .
situationn where only one or two groups are desired (if more than two elective

groups are desired the keyword LOGonSeT= must be used instead).
gl The name of elective group 1

sl Optional security level the user assumes when accessing a
catalogue entry in g1 (default for sl is the user’s security as
specified by the SECUR= keyword).

g2 The name of elective group 2

82 Optional security level the user assumes when accessing a
catalogue entry in g2 (default for s2 is the user’s security as
specified by the SECUR= keyword).

ML nen bais] (electira) grmere, 3 iH i
These optional (elective) groups are in addition to the user’s private group

and the system group (TIPY) used by TIP /30 to search the catalogue to
resolve a reference to a program or file. '

This keyword is optional; one or two elective groups (with or without security
level) may be given.

This keyword and the LOGonSeT= keyword (described later) are mutually
exclusive.

GRouPSeT=

The name of a GROUPSET record for this user.

A groupset record defines a list of (up to 16) of additional elective groups for
this user.

GROUPSET records may be chained to other GROUPSET records to create a
large "pool" of available group names. For more information, see
"3.11.10. GROUPSET — Defining a Groupset" on page 3-39.

A user may dynamically alter his elective groups by using the GROUPS
transaction.

LANGuages=

A one character (alphabetic) code that designates the language code for this
user. This language code appears in the field PIB-LANGUAGE and may be
interrogated by application programs.

LOGonSeT=

The name of a GROUPSET record that defines the initial (logon) elective
groups (and any associated security levels) for this user.

This keyword and the keyword GRouPs= are mutually exclusive.

The groups defined via this keyword automatically are included in the set of
available elective groups for this user.

Only the groups names defined in the first groupset record are considered the
user’s inital logon groups — that is, for this purpose, the NextGRPs=
specification in the GROUPSET record is ignored.

7002 3981-100

CAT User command

MaXUSers=

MCSearch=

NCS=

PassWorD=

7002 3981-100

Specifies the maximum number of concurrent uses of this userid.

Specifying MAXUSERS=1 implies that this userid may only be logged on one
terminal at a time.

If this keyword is not specified, there is no limit to the number of concurrent
logons with this userid.

Specifies the type of screen format group searching for this user.

Specifying MCSEARCH=YES implies that the order of search (as defined in
the SEARCH-= keyword described following) applies.

Specifying MCSEARCH=NO implies that TIP /30 is to search only the TIPY
group for screen formats.

Default is MCSEARCH=NO.

This is the name of a TI?/30 screen format to replace the standard system
prompt for this userid.

If this keyword is not specified the standard system prompt is used.

When this keyword is specified, the TIP/30 command processor outputs the
specified screen format instead of rolling the screen up one line and outputing
the usual system prompt. Use of the screen format may (depending on how
the screen format is defined) overlay all or part of whatever data was on the
screen when the last transaction terminated.

Specifies (for an OFIS Link /80 userid) the desired National Character Set (see
appropriate OFIS Link /80 documentation).

Specifies the logon password for this user.

The password may be up to 8 characters in length and may contain any
character that can be entered at the terminal keyboard.

A password that is the same as the userid or one which is symmetric (eg:
"ABCDABCD") or one which begins with a space is considered an illegal
password and is not allowed.

The password must be correctly supplied by the user when logging on
TIP/30.

If this keyword is omitted, the user need not supply a password to logon
TIP/30.

It is recommended that the password not contain imbedded spaces, or a slash
or comma character.

Passwords which are entirely numeric are not recommended (numeric
passwords are not compatible with the direct method of logging on TIP /30,
since numeric values are right justified and zero filled — and would not
match!).

3-23

CAT User command

3-24

PRoGram=

SeaRCH=

SECurity=

SP=DS

. (period)

A transaction code which is to be automatically invoked (on the user’s behalf)
after a correct logon to TIP/30.

When this feature is used the user is automatically logged off when the
specified program terminates.
This facility allows the user to be limited to a specific program (often a menu

program) and therefore not allowing the user an opportunity to access other
areas of the system.

If this keyword is omitted, TIP /30 does not automatically invoke any program
when this user logs on TIP/30.

Controls the type of catalogue searching to be performed for this use

If SEARCH=NO is specified, only the system group (TIPY) is searched.

If SEARCH=GROUFP is specified, the user’s private group (the userid itself) is
NOT searched. That is, the order of search begins with the elective groups and
continue through TIPYS.

If SEARCH=YES is specified (or this keyword is omitted) a complete order of
search (see previous discussion) is performed.

ol

If this user never needs to access programs or files in a group other than
TIP$YS, specifying SEARCH=NO eliminates the overhead involved in
checking the private and elective groups.

The security level for this user.
This value controls the user’s access to programs and files.

The security code may be specified as a number in the range 1-255 inclusive,
or as one of the following reserved words: TECH(1), MAST(9), SYST(19),
PROG(29), APPL(32).

The security level may not be specified as a (numerically) lower value than the
security level of the user issuing the command.

Default: SECURITY=PROG.

Specifies that this userid wishes to have the terminal control page altered at
logon time to define the space bar as destructive.

This facility is only supported on terminals which have the SP/DS capability
in the control page (U20, U30 U40 etc.).

This option may be specified on a terminal basis via a TIP/30 generation

COYTICTEDR ctatarmans
N ds & T 1 SN SUALTLIITIE,

The last keyword specified as part of the USER command should be followed
by a period (to indicate that the command is finished).

7002 3981-100

CAT User command

Example of dialogue defining a USER:

| TIP?BCAT
CAT (1) ?PUSER FRED GROUP=EDP PWD=QWERTYUI SECUR=PROG
Continue USER statementp CMT=/FREDERICK THE LESSER %2857 .
USER catalogue record added : FRED
CAT (1) ?p

This example illustrates the addition (presumably) of a user who is assigned a userid of
"FRED", a security of programmer level (29), and the indicated logon password.

The command was continued on an additional line (more on that in a later section) and the
entire command was terminated by a period.

7002 3981-100 3-25

CAT Prog command

3.11.7. PROG — Cataloguing a Program

The catalogue manager PROG command creates or updates a program entry in the TIP/30
catalogue. All online programs (transactions) must be catalogued.

Whenever an area size is required (CDASIZE=, WORKSIZE-=, etc), the value supplied must
be a decimal number and represents the specified number of bytes.

To remove a sized area (when updating a program entry for example), it is necessary to
specify the area with a length of zero (eg: CDASIZE=0).

Syntax:

Prog group/trid kwd= kwd= ..

Where:

group Required positional parameter to indicate to which group of users this
particular definition of the program applies.

trid A required positional parameter specifying the transaction-id used to refer to

this program entry. A transaction name may be from 1 to 8 characters in
length (transaction names for programs running under IMS emulation are
restricted by the value specified in the TIP /30 generation parameter:
IMStranL=). IMS actions (that is, programs that are not invoked directly but
are called internally by other programs) must be defined in the TIP/30
catalogue too; in this case, the trid is the same as the load module name
because IMS requires the successor name to be the load module name.

Programs can be called only using their catalogued transaction-id (trid).

Transactions may be defined with special 4-character names of the form: F#nn
(where nn is a two digit number 01 through 23 inclusive). These transaction
names are specially interpreted at the TIP/30 command line to correspond to
the associated function key.

For example, you may define a transaction named "F#03" to invoke your
choice of load module. If a user presses (£3) at the TIP/30 command line, the
TIP /30 catalogue is searched to attempt to find a definition of a transaction
program corresponding to F#03.

Such program catalogue definitions take precedence over any function keys
defined using the DEFKEY utility transaction (see "3.21. DEFKEY — Define
Function Keys" on page 3-73).

3-26 _ 7002 3981-100

CAT Prog command

7002 3981-100

Table 3-5. PROG Definition Keywords

Program may run in Background.

BaCK=

BICS= OFIS Link use BICS.

CDAsize= | Size of CDA required by program.

CMdLine= | Command line parameters required.

DeBug= Type of debugging.

EDIT= Removal of communications characters.

ENTer= Allow execution from TIP /30 command line.

ERET= Return error status to IMS program.

ESCape= | Allow escape from program.

FCCedit= | Edit FCC characters from input messages.

FiLes= Files to be automatically accessed.

FRom= Use keywords from another PROG entry.

IMS= Program runs under IMS emulation.

INsize= Size of IMA required (IMS emulation).

LoaDM= Load module name.

MAXsize= | Maximum LOADM size in IMS internal
succession or TIPJUMP.

MCSsize= | Size of MCS area required by program.

OUTsize= | Size of OMA required (IMS emulation).

PRlority= | Execution priority of program.

S34= Simulate System/34 function keys for RPG II
programs.

SECurity= | Security level required to run program.

SHRDsize= | Shared code size (alternate for VOL=).

SuBPRoG= | Definition is for a SUBPROG.

TiMeLocK= | Time range during which program may NOT
be started.

TPmode= | Short-lived program.

TRANGslat= | Translate input message to upper case.

TYPE= Type of program (IMS or TIP).

USeage= Program characteristics.

VOlLatile= | Size of VOLATILE data area required.

continued ...

3-27

CAT Prog command

3-28

I Descript

Size of WORK area required by program.

= Control page XMIT requirement.

(period) Signal end of keywords for PROG command.

BaCK=

BICS=

CDAsize=n

CMdLines=

BACK=YES implies that this program may run as a background process.

BACK=NO implies that this program may not run as a background process
(attempts to do so from the command line fail with the error report: "Invalid
transaction”).

This keyword is for OFIS Link programs only.
See TIP /30 OFIS Link documentation.

The CDA size (in bytes) required by this program.

TIP /30 does not place a restriction on the absolute size of the CDA (other than
available memory).

The CDA is always allocated and manipulated by TIP/30 in multiples of 236
bytes. If the value specified in the catalogue for the CDA size is not a multiple
of 256, the TIP /30 system interprets the value as the next higher multiple of
256.

Specify whether or not the program is to have the parameterized contents of
the command line as the initial contents of the CDA.

Default is "NO" for IMS programs; "YES" for TIP /30 programs.

Programs which are invoked via the TIP /30 command line and are catalogued
with CML=NO begin execution with an input message outstanding (the
"command line" input was not automatically read by TIP /30 — it is the
program’s responsibility to read this input message before soliciting terminal
input).

DeBug=DEFAULT

The default setting of the DeBug= keyword.

This setting means that the program is to use hardware storage protection
based on the current setting of the system-wide DEBUG option (a TIP/30 job
control or TIPGEN parameter which defaults to "YES").

The SET utility program (see "3.78. SET — Alter Process Attributes” on page
3-244) may be used to turn the system debug setting on or off.

7002 3981-100

AT

CAT Prog command

DeBug=YES

DeBug=NO

Ao mealate

The program uses storage protection regardless of the setting of the system
debug option.

This means that this program may abort with "PROTECTION EXCEPTION" if
it attempts to modify memory outside its allocated space.

Specifies that this program is never to be run with hardware storage
protection (regardless of the setting of the system-wide debug option).

Programs which modify the GDA require this specification.

DeBug=IDA

EDIT=NO

EDIT=YES

EDIT=X"__"'

ENTer=

7002 3981-100

This program is to be loaded with the Interactive Debug Aid (IDA) in control.

Note that using IDA and running with hardware storage protection are
mutually exclusive.

This is the default setting of the EDIT= keyword.

Input messages received by TIPTERM and IMS programs are NOT edited.
DICE codes and FCC sequences are not removed from the input message.

Input messages received by TIPTERM or IMS emulation are edited to remove
all communication control characters such as DICE and FCC sequences.

Multiple spaces are reduced to a single space.

Specifies a character to be used as the field separator in input messages
received by TIPTERM or IMS emulation.

Multiple occurrences of this character are reduced to a single occurrence.

This character may be specified as a hex value (X'_") or as a simple character
(eg: EDIT=%). The latter choice is only reasonabile if the character isa graphic
character.

This option also implies that DICE codes and FCC codes are to be removed
from the input message (like EDIT=YES).

Whether this program may be called directly by entering the TRID on the
TIP/30 command line.

Default: ENTER=YES.

Specifying NO implies that this program may only be invoked by transferring
control to it from another program (ie: IMS succession, TIPSUB, TIPXCTL).

3-29

CAT Prog command

3-30

ENTER=NO is most often used in the definition of IMS actions (not to be
confused with IMS transactions).

This is a keyword for IMS programs that is the same as the IMS ERET=
keyword which controls error return handling for IMS programs.

ESCape=NO

FCCedit=

FiLes=(,,)

Specify whether or not the terminal user may escape to another program
while this program is running (see description of the escape feature in the
description of the TIP /30 Command Line).

Default: ESCAPE=YES.

FCCEDIT=YES may be specified for IMS emulated programs to support the
corresponding keyword from the IMS configuration parameters.

Up to 12 files to be automatically assigned to the program when the program
is entered.

The filenames specified as sub-parameters for this keyword are the logical file
names (not necessarily the LFD names).

Default: no files automatically assigned; the program must explicitly open files
as needed.

This keyword may be specified more than once in a PROG command (if
necessary) until the maximum of 12 file names is reached.

TIP /30 programs that need to open more than 12 files must open the
additional files by issuing the appropriate call to the TIP /30 File Control
System.

Programs that run under IMS emulation automatically acquire files as
filenames are referenced by the program — files do not need to be identified
in the catalogue program entry (although it is slightly more efficient internally
if they are so defined).

FRom=grp[/trid]

IMS=YES

INsize=n

Indicates that the keywords (except GRP=) for the program entry for
"grp/trid" are to be copied for this program.

If the "trid" is omitted, it is assumed to be the same as the trid which is being

specified.

Specifies this is a catalogue entry for a program which is an IMS program (to
be executed under IMS emulation by TIP/30)

The IMA size if this is an action program to be run under IMS Emulation.

7002 3981-100

CAT Prog command

LoaDMs=

MAXsize=n

MCSsize=n

OUTsize=n

PRIority=n

S34=

7002 3981-100

The name of the load module associated with this transaction-id.
Default is the same as the trid positional parameter.
Trailing zeroes need not be specified.

For programs running under IMS emulation and utilizing immediate internal
succession, this keyword specifies the size of the largest program (load
module) in the succession chain.

One need not consider resident load modules in this calculation, but keep in
mind that load modules may be resident one session and not in the next
session. For safety considerations, it might be prudent to always include all
possible load modules in the calculation.

The MAXsize= specification is also required forNT'lP/ 30 programs which call’
the TIPJUMP subroutine.

The size of the MCS area (TIP/30 screen I/O area) for TIP /30 programs.

The Qutput Message Area (OMA) size if this is a program run under IMS
Emulation.

Override the default execution priority for this program.

By default, foreground or background programs run at the scheduling priority
specified in the TIP/30 job control or TIPGEN parameters.

This keyword may be used in the TIP/30 catalogue entry to force a specific
execution priority for this program.
The value specified is relative to 1 plus the base execution priority of TIP/30.

For example, if TIP /30 was executed at priority 1 (often the case) specifying
PRI=3 would run this program at 1+1+3=5.

If the value specified by this keyword exceeds the maximum priority level
available, the value is forced to the lowest (numerically highest) value
permitted.

Specifying S34=YES indicates that this program is a TIP/30 program written
in RPG II language and is to behave as an OS/3 work station RPG program or
a System/34 RPG online program.

The RPG interface routines supplied with TIP /30 simulate the ability of
function keys to return data as well as setting the appropriate "K" indicator.

534=YES also implies that the program is not controlling screen I/O using the
features provided by the MCS interface packet.

3-31

- CAT Prog command

3-32

SECurity=

The security level assigned to this program.
May be specified as a number between 1 and 255 (inclusive).

May be specified as one of: (TECH, MAST, SYST, PROG, APPL) representing
(respectively) security level (1, 9, 19, 29, 32).

To access this program, a user must be at a security level numerically less than
or equal to this value and must be a member of this program’s group!

Default is SEC=PROG.

SHRDsize=n

This is an alternative spelling of the VOLatile= keyword (see description
following).

YES indicates that this program entry applies to the definition of a TIP/30 or
IMS subprogram.

SUBPROG=YES must be specified to allow the specification of a REUSABLE
TIP /30 subprogram (TIP /30 programs may not be reusable UNLESS they are
subprograms).

TiMeLocK=(bgn,end)

TPmode=

The hours of the day that this program is NOT available.
Specified using a 24-hour clock.

Eg: TIMELOCK=(0830,1730) or TIMELOCK=(1800,0900).
Default: program is NOT time locked.

To rescind time locking specify TIMELOCK=NO.

Note: During the TIMELOCK period, the program may not be entered; if it
began execution before the TIMELOCK period it is allowed to continue
(it is NOT aborted!).

YES implies that this program normally does not execute for any significant
length of time (the WMI utility is a good example). Knowledge of this
behaviour enables TIP /30 to schedule the program into paged memory more
or less in the first available place.

The scheduler will not use the usual complex algorithm to decide where (in
memory) to load this program since it allegedly will not run very long,.

Default: NO (use "normal” scheduling algorithm).

Specifying YES for an interactive program (one that DOES carry on extended
conversations with the terminal) might result in the TIP /30 scheduler placing
this program in an area of memory that is not the "best" place for the program.

7002 3981-100

CAT Prog command

TRANslat=YES

TYPE=

USeage=

7002 3881-100

For input messages received by TIPTERM or IMS emulation all alphabetic

T s o 4 £ ad o
Characters are forced to upper case.

This specification is not necessary if the program uses the TIP /30 Message
Control System (screen formats) since upper case translation may be
controlled on a field-by-field basis with a screen format.

Default=NO.

IMS indicates that this is an IMS program (this could have been specified by
IMS=YES).

TIP indicates that this is a TIP /30 program

CICS indicates that this is an IBM CICS program that is to be run using the
CICS emulation package ("CAPIR" — from Chaparral Inc.).

Default: TIP/30 program.

Define the level of reentrancy of the load module. This keyword is not
misspelled; since lower case letters are optional, the spelling "USeage="
permits the keyword to be abbreviated as "USE=" or "USAGE="etc.

REENT This program is reentrant.

This may be specified for sharable COBOL programs (those
which compiled without diagnostics with the shared code option
— OUT=(M) for COBOL68, IMSCOD=YES for COBOL74).

If the program is a sharable COBOL program the shared code
VOLATILE data area size must also be specified (see
VOLATILE= keyword description).

If a COBOL program was compiled using the IMSCOD=REN
compiler option, the COBOL program is treated as a reentrant
program; otherwise, it is considered SHARABLE (TIP /30 must
reestablish each user’s VOL area during a process switch — this
is transparent to the programmer but does represent system
overhead).

REUSE The program is serially re-useable. Only one process is allowed
to use this program at a time. The process must terminate before
the load module may be used by another process.

This specification is only valid for IMS programs running under
emulation or TIP /30 subprograms which are not reentrant.

For sharable COBOL programs the VOLATILE data area size
(VOLATILE=) must also be specified.
RELOAD The load module is to be reloaded each time the program is used.

This entry is required if the program is neither reentrant nor
reusable.

3-33

CAT Prog command

VOLatile=n

The size (in bytes) of the shared code volatile data area of a sharable COBOL
program.

Maximum value supported by TIP/30: 4096 bytes.

The size of the shared code volatile data area is reported by the COBOL-68
compiler on the last page of the compilation listing (near the diagnostics
summary).

The size of the shared code volatile data area is reported by the COBOL-74
compiler on the first page of the compilation listing (compilation summary).

If this program calls any data base management routines, add four times the
number of parameters in the longest "CALL" parameter list to the size
reported by the COBOL compiler.

If the program calls DMS, it is necessary to add 256 bytes to the VOL size
reported by the COBOL compiler (if the program is reentrant COBOL, specify
256 bytes).

WoRKsize=n

. (period)

The size of the work area required by this program.

For COBOL-74 programs that were compiled with the IMSCOD=REN option,
the value specified for the work area must be the size of the work area plus the
amount reported by the compiler for the reentrant control area.-

If the program calls linked COBOL-74 subroutines, you must include the sum
of all of the reentrant control areas for the subroutines too.

The terminal control page XMIT setting required by this program.
Choices are: VAR, CHAN or ALL.

If this keyword is specified TIP /30 alters the terminal control page to the
specified value before entering the program.

Default: no control page modification is performed.

The last keyword specified as part of the Prog command should be followed
by a period (to indicate that the command is finished).

Example of dialogue defining a PROGRAM:

TIP?PCAT

CAT (1) ?PPROG EDP/TESTPROG SECUR=PROG LOADM=TEST10 CDA=256
Continue PROG statementyP WORK=1024 USAGE=RELOAD DEBUG=YES
Continue PROG statementp MCS=2048 FILES=PAYMAST,PAYDETL.
PROG catalogue record added : EDP/TESTPROG

Qcm)?»

/

This example illustrates the addition of a program entry in the TIP /30 catalogue for a
program with a transaction code "TESTPROG".

3-34

7002 3981-100

CAT Prog command

3.11.8.

This program definition is applicable to users who are members of group "EDP" and have
security of (at least) programmer level (numerically less than or equal to 29).

The load module is named "TEST1000" (note that trailing zeroes are automatically supplied

by CAT).and this load module requires a CDA of 256 bytes, a work area of 1024 bytes and
an MCS area of 2048 bytes.

The load module is used in a "reload before use" fashion; the program IS to be run with
hardware storage protection and the files with logical file names "PAYMAST" and
"PAYDETL" are to be accessed on behalf of the program (the program does not explicitly
call the TIP/30 file system to "OPEN" the files).

Hints for Program Testing

When testing a new program it is recommended that the transaction be catalogued with
somewhat larger areas (CDA, MCS, WORK, IMA, OMA, VOL) than actually required.

When the program is completely tested the TIP /30 catalogue should be updated to reflect
the correct sizes.

During program development the areas tend to grow and the programmer often forgets to
keep the catalogue information up to date.

WARNING

Dectlaring too small an area size in the TIP/30
catalogue may result in some portion of another
program (or TIP/30) being overwritten and may
cause transactions or TIP/30 to terminate
abnormally.

Catalogue the program being tested as USAGE=RELOAD and DEBUG=YES. When testing
is complete change the usage to reflect the program’s attributes and (if desired) remove
debug options.

If the transaction program is compiled by the OS/3 COBOL-85 compiler, TIP /30 validates
the sizes of the LINKAGE SECTION level 01 areas as defined to the compiler. The values
specified in the TIP/30 Catalogue entry for the transaction must be greater than or equal to
the amount calculated by the compiler. If the area sizes are not large enough, TIP/30
aborts the program before execution of the transaction begins.

7002 3981-100 3-35

CAT File command

3.11.9. FILE — Cataloguing a File

3-36

The FILE catalogue manager command creates or updates a file entry in the TIP /30
catalogue.

All online files must be catalogued in the TIP /30 catalogue — libraries and Data
Management files.

A further recommendation is that the user take advantage of the logical naming of files and
the assignment of security codes as these capabilities enhance the flexibility and security of
the system.

Syntax:
File group/LFN kwd= kwd= ...
Where:
group Positional parameter used to indicate that the definition of this file applies to
users who are members of this group.
lfn A required positional parameter identifying the logical file name which online

programs must use to access this file.

This may be the same as the LFD name, BUT it need not be the same. For
example, a user can create a file entry for a logical file name "J" that in fact
refers to the file with LFD=3Y3JCS.

The following table summarizes the keywords recognized by the FILE command:

Table 3-6. FILE Definition Keywords

DMCL= Define DMS DMCL name.

KeyREF= Default index to use when none specified.
LaBelL= Physical LBL name (library files).

LFD= LFD name of the file as given in JCL.
ReaD= "NO" — read not allowed.

ReadPWD= | READ password.

SECurity= | Security level required to use this file.
VSN= Volume serial number of disk volume.
WRITE= “NO" — write not allowed.

WritePWD= | WRITE password.

(period) Signal end of keywords for File command.

7002 3981-100

CAT File command

DMCL=

KeyREF=

LaBel=

LFD=

ReaD=

ReadPWD=

SECurity=

7002 3981-100

This keyword indicates that the logical file name (Ifn) is really a logical DMCL
name (for DMS use) and it is to refer to the actual DMCL name as specified by

this keyword.
DMCL= and LFD= are mutually exclusive keywords.

For MIRAM files, the default index to use (1-5) if a program chooses to not
supply an index specification explicitly when using the TIP /30 file system.

This keyword overrides the specification of the default key of reference for the
file.

Default: TIPGEN PKEY= specification for this file.

LBL name of a library that is catalogued in the OS/3 system file catalogue
(YCAT) that is being dynamically accessed.

See section following on accessing OS/3 libraries.

If the LBL name contains an imbedded space or period character or is longer
than eight characters, specify the LBL name in quotes. For example:

LBL=/PAYROLL SOURCE’

LFD name of the file as given in the TIP/30 JCL and in the TIP/30 generation.

If this file entry is for a dynamically accessed OS/3 library, be sure to specify
an LFD name that does not conflict with an LFD name that is used to reference
another file — the LFD name is not so important for dynamically accessed
libraries, but accidently using an LFD name of a different file can cause
unpredictable results. See also "3.11.12. Accessing OS/3 Libraries” on page
3-40.

READ=NO indicates read operations not permitted for this file — output only
file for this group.

Default: whatever was specified for the LFD in the TIP/30 generation
parameters or TIP /30 job control.

Read password for a library which is catalogued in the OS/3 catalogue
(YCAT) with a read password.

Specifying the password in the TIP/30 catalogue allows you to depend on the
TIP /30 security system; users who have legitimate access to this file never
need to explicitly specify the password.

Default: no read password is used.

T
11

oy

o
&
-
-
¢
[N

May be specified as a number between 1 and 255 (inclusive).

May be specified as one of: (TECH, MAST, SYST, PROG, APPL) representing
(respectively) security level (1, 9, 19, 29, 32).

3-37

CAT Flle command

To access this file, a user must be at a security level numerically less than or
equal to this value and must be a member of this file’s group!

Default is SEC=PROG.

VSN= For an OS/3 library that is being dynamically accessed (and has NOT been
catalogued in YCAT), the disk volume serial number where the library can
be found must be specified via this keyword (since it cannot be dynamicaily
obtained from $YSCAT).

Also see "3.11.12. Aécessing OS/3 Libraries" on page 3-40.

WRITE= WRITE=NO indicates write operations not permitted for this file — input only
file for this group.
Default: whatever was specified for the file in the TIP /30 generation
parameters or TIP /30 job control.

Write password for a password protected OS/3 library that is to be
dynamicaily accessed.

Specifying the password in the TI?/30 catalogue allows you to depend on the
TIP/30 security system; users who have legitimate access to this file never
need to explicitly specify the password.

Defauit: no write password is used.

.(period) The last keyword specified as part of the File command should be followed by
a period (to indicate that the command is finished).

Example of dialogue defining a FILE:

TIP28CAT

CAT (1) ?pFILE EDP/JCS LFD=YJCS SECUR=PROG.
FILE catalogue record added : EDP/JCS
CAT(1)?p

This example illustrates the definition of a file (a library) with the logical name "JCS". The
file is actually referencing the file with the LFD "Y]CS".

This TIP /30 Catalogue entry implies that users with at least programmer level security and
membership in the group "EDP" are able to access this file by referring to the (logical) file
name JCS.

3-38 7002 3981-100

CAT Groupset command

3.11.10. GROUPSET — Defining a Groupset

The CAT manager Groupset command may be used to define a groupset or to update an
existing groupset record in the TIP/30 catalogue.

If the named groupset already is defined in the catalogue, the "G" command is considered
- an update rather than an "add" operation.

Syntax:
Groupset name kwd= kwd=

Whers:

name The name of the groupset. This positional parameter is required.
The following table summarizes the keywords recognized by the GROUPSET command:
Table 3-7. GROUPSET Deflnition Keywords

SECurity= | Security for groupset record. |
GRouPSet= | A list of up to 16 groups in this set.
NextGRPs= | Point to next GROUPSET record in chain.
(period) Indicate end of Groupset command.

SECurity=
The security level for this groupset record.
GRouPSet=

A list of up to 16 group names (with or without an associated individual
security level) that are part of this defined set of group names.

This keyword may be repeated to facilitate keyboard entry.

If a security level is not explicitly coded with a group name, the security level
associated with that group name defaults to the security of the user accessing
the group information.

NextGRPs=
The name of the next groupset record to link in the chain of groupset records.

This keyword allows you to effectively connect an arbitrarily large number of

groupset records in a chain.

Note that the name supplied with this parameter is not validated when it is
entered in the TIP /30 catalogue - if the name is not valid at the time it is used
it is ignored and the chaining of groupset records terminates.

7002 3981-100 3-39

CAT Groupset command

.(period) The last keyword specified with the Groupset command should be terminated
with a period to indicate that the command has ended.

Example:
TIP?BCAT
CAT (1) ?PGRPS ALL SECUR=PROG GRPS=EDP GRPS=ACCTNG, 19
CAT (1) ?® GRPS=ENG, 65, PAYROLL, 70.
CAT{1l) ?b GRPS catalogue record added : ALL

CAT (1) 7b

This example creates a groupset named "ALL". Any user who is assigned membership in
the groupset "ALL" (by specifying GROUPSET=ALL in their user record) have additional
elective groups in their order of search: EDP, ACCTNG, ENG and/or PAYROLL (with the
indicated security levels within those groups).

3.11.11. Catalogue Statement Continuation

The CAT program processes only the first 72 characters of an input line.

When entering data on the terminal, type up to 72 characters and then press (itis
wise to completely finish a keyword before continuation becomes necessary).

The CAT program prompts again indicating that a continuation is expected. Leave at least
one space after the SOE character in the prompt and continue to enter additional keyword
parameters.

When entering the last line of a CAT command, terminate the line with a period (this
signals CAT that continuation is NOT required!).

CAT automatically terminates the previous command if it reads an input line that has a
command character as the first character.

3.11.12. Accessing OS/3 Libraries

3-40

0O6S/3 libraries need not be specified in the TIP/30 generation. They do not even have to be
defined in the TIP/30 Job Control stream.

An OS/3 library that is not explicitly generated in the TIP /30 system may be dynamicaily
accessible by TIP/30 subject to the following considerations:

¢ the disk VOLUME must be online _
¢ the JCL for the library need not be present in the Job Control stream for TIP /30
¢ the (library) file MUST be specified in the TIP/30 catalogue.

Since the library may or may not be defined in the TIP/30 Job Control and the library may
or may not be catalogued in the OS/3 system file catalogue (YCAT), the following rules
are enforced by TIP /30 when searching for access to a library:

7002 3881-100

S

Accessing OS/3 Libraries

First choice

The location of the library LFD according to any specifications in the TIP /30
Job Control stream.

Second choice
Search the OS/3 system file catalogue ($§Y$CAT) for the LBL= specified in the
TIP/30 catalogue entry for the library.

Third choice
Search the vtoc for the file using the information supplied in the TIP /30
catalogue FILE statement keywords LBL= and VSN=.

Dynamically accessed libraries should be included in the TIP/30 job control (even though

they may be defined in YCAT) to permit automatic secondary allocation to take place
when necessary.

3.11.13. Updating Catalogue Records

To update an existing catalogue record one need only specify sufficient information to

identify the key of the catalogue record desired and supply (via keywords) the information
which is to be changed or added.

Use the appropriate CAT command (User, File, Prog, Groupset) and be sure to supply the
requisite parts of the key:

Example:

TIP?PCAT

CAT (1) ?pUSER TOMMY PROG=MENU.

CAT (1) ?» USER catalogue record updated: TOMMY
CAT (1) ?2PPROG AP/UPDT CDA=768.

CAT{l) ?P PROG catalogue record updated: AP/UPDT
CAT(1)?pFILE AP/MAST SECUR=88.

CAT(1)?¥» FILE catalogue record updated: AP/MAST
CAT (1) ?p '

Note: The CAT program LIST command displays the information for a catalogue record in a
manner which is suitable for screen cannibalization and re-entry.

7002 3881-100 3-41

CAT Update commands

3.11.14. Updating by Load Module Name

Often it is necessary to change information that is related to the load module (ie: WORKsize
CDAsize USAGE etc). In this situation it is tedious to make the same change to a (possibiy)
large number of transaction entries that reference that load module.

The CAT program allows "mass” updates by load module name.

Syntax:
Prog grp/trid LDM=(oldldm [,newldm]) kwd= kwd= ...
Where:
&P A specification of the groups that are to be searched.
This entry is required and may be specified using standard prefix notation.
trid A spedification of the transaction names that are to be considered.

This entry is required and may be specified using standard prefix notation.

oldldm The first sub-parameter of the LDM= keyword specifies the existing load
module name.

newldm The second sub-parameter of the LDM= keyword may be used to specify a
new load moduie name (since LDM-= is used to locate candidates for change).

kwd= The other keywords that are valid for the PROG statement may be specified
here to alter the information for any PROG entry selected by the load module
name search.

Example:

TIP?BCAT
CAT (1) ?PPROG */* LDM=(PAY020,PAYX20) WORK=480C.

This example indicates that all transactions in all groups are to be searched for entries that
have an existing load module specified as "PAY020". The load module name is to be
changed to "PAYX20" and the worksize is to be changed to 4800 bytes.

Additional Considerations:

An important point to realize is that normal security rules apply during this "extended"
search — that is, a user can only access entries that he is entitled to access.

3-42 7002 3981-100

CAT List commands

3.11.15. Listing Catalogue Entries

The list command allows the user to display (at the terminal) the information stored in one
(or more) catalogue entries.

The listing is produced in physical catalogue order (undefined order!) unless the LS variant
is used (LS means "list sorted").

Syntax:

Whers:

Grp

id

Elt

Type

7002 3981-100

L(S] Grp/Id/Elt [,Type]

[GRouP=xxx]

[DATe=yymmdd]

[DATe<=yymmndd]

[LFD=XXXXXXXX]

[LoaDM=XXXXXXXX |

Userid or group name of the catalogue records to be listed.

This value must be a group to which the user belongs unless the user has a
security level of Tech or Master.

If this parameter is not given, the user’s private group (userid) is assumed.
Name of the item (program or file) to be displayed.
If not given, all items in the specified group are displayed.

The element name of a dynamic file. This parameter is only valid when used
with dynamic file entries.

If not given, all elements are processed.

The type(s) of catalogue records to list. The value for this parameter may be as
follows:

* — All record types

P — Program records

U — Userid records

F — File (all files) records
— D = Dynamic file records
— E = Edit file records
— S = System file records

G = Groupset records

More than one type may be specified by concatenating type codes (for
example, "DE" means dynamic or edit type).

If type is omitted, all types are processed.

CAT List commands

Note: for the first three positional parameters (Grp, Id, and Elt), the value may be specified
using standard prefix notation.

GRouP=

DATe=

DATe<=

LoaDM=

Example:

This optional keyword may be used to limit the scope of the command to
those catalogue entries in this group.

Prefix notation may be used for this value.

This optional keyword may be used to limit the scope of the command to
those catalogue entries which have a "last opened" date EQUAL TO this date.

This keyword is only applied to Dynamic or Edit buffer entries.
Prefix notation may not be used for this value.

This optional keyword may be used to limit the scope of the command to
those catalogue entries which have a "last opened" date LESS THAN OR
EQUAL TO this date.

This keyword is only applied to Dynamic or Edit buffer entries.
Prefix notation may not be used for this value.

This optional keyword may be used to limit the scope of the command to
those catalogue entries which have a load module name that matches this
value.

This keyword is only applied to PROG entries.
Prefix notation may be used for this value.

This optional keyword may be used to limit the scope of the command to
catalogue entries with an LFD name that matches this value.

This keyword is only applicable to standard system files.
Prefix notation may not be used for this value.

TIP?BCAT
CAT (1) 2pL *, *pay

This command lists all catalogue records (since no type is given) of any group (* alone
means "match any") and of any name that starts with the letters "PAY".

3-44

7002 3981-100

CAT List commands

3.11.16. Listing Dynamic File Entries

An abbreviated version of the List command is available to simplify listing catalogue
entries for dynamic files.

Syntax:

LD grp [,1d] [,elt] [keyword qualifiers]

Where:

grp The dynamic file group name to select.
This parameter may be specified using standard prefix notation.
If omitted, the user’s private group (userid) is assumed.

id The file name of the dynamic files to list.
This parameter may be specified using standard prefix notation.
If omitted a value of * is assumed (any id).

elt The element name of the dynamic files to list.

This parameter may be specified using standard prefix notation.
If omitted a value of * is assumed (any id).

qualifiers Any of the standard CAT list keyword qualifiers (GRouP=, DATe=, DATe<=,
LFD= or LoaDM=) as described in page 3-43.

Example:

TIP?PCAT
CAT (1) ?pLD EDP

This command lists all dynamic files in the group "EDP",

7002 3981-100 | 3-45

CAT List commands

3.11.17. Listing Edit Buffer Entries

An abbreviated version of the List command is available to simplify listing catalogue
entries for edit buffers.
Syntax:
LE grp [,name] [keyword qualifiers]
Where:
grp The edit buffer group name to select.

This parameter may be specified using standard prefix notation.

If omitted, the user’s private group (userid) is assumed.
name The name of the edit buffer to be listed.

This parameter may be specified using standard prefix notation.

If omitted, all edit buffers in the selected groups are listed.

qualifiers Any of the standard CAT list keyword qualifiers (GRouP=, DATe=, DATe<=,
LFD= or LoaDM=) as described in page 3-43.

Example:

TIP?pCAT
CAT (1) ?PLE EDP

This command lists all edit buffers in the group "EDP".

3.11.18. Listing File Entries

An abbreviated version of the List command is available to simplify listing catalogue
entries for Data Management (standard system) files.

Syntax:

LE grp [,name] [keyword qualifiers]
Where:
grp The group to which the desired file entry pertains.

This parameter may be specified using standard prefix notation.

If omitted, the user’s private group (userid) is assumed.

3-46 7002 3981-100

CAT List commands

name The logical file name of the file entry to list.
This parameter may be specified using standard prefix notation.
If omitted, a value of ™" is assumed (all logical file names).

qualifiers Any of the standard CAT list keyword qualifiers (GRouP=, DATe=, DATe<=,
LFD= or LoaDM=) as described in page 3-43.

Example:

TIP?PCAT
CAT (1) ?2pLF EDP

This command lists all files (of any type) that are defined in the group "EDP".

3.11.19. Listing Program Entries

An abbreviated version of the List command is available to simplify listing catalogue
entries for PROGRAM entries in the TIP/30 catalogue.

Syntax:
LP grp [,name] [keyword qualifiers]
Where:
grp The group to which the desired PROG entry pertains.
This parameter may be specified using standard prefix notation.
If omitted, the user’s private group (userid) is assumed.
name The name of the program entry to list.

This parameter may be specified using standard prefix notation.
If omitted, a value of ™" is assumed (all program names)

qualifiers Any of the standard CAT list keyword qualifiers (GRouP=, DATe=, DATe<=,
LFD= or LoaDM=) as described in page 3-43.

Example:

TIP?PCAT
CAT (1) ?pLP EDP *

This command lists all programs defined in the group "EDP".

7002 3981-100 3-47

CAT Llst commands

3.11.20. Listing User Entries

An abbreviated version of the List command is available to simplify listing catalogue user
records.

Syntax:

LU userid
Where:

userid The userid of the record to be listed.
This parameter may be specified using standard prefix notation.

Note that only TECH or MAST level users may list userid records other than
their own.

Example:

TIP?BCAT
CAT (1) ?pLU FRED

This command lists thé userid record for user FRED.

3-48 7002 3981-100

CAT Delete commands

3.11.21. Deleting Catalogue Entries

Entries in the catalogue may be deleted by using the delete command. The delete
command allows the user to delete entries by prefix specification but issues a warning
prompt if the number of entries to be deleted exceeds 10 — one final chance to confirm.

A fine rule of thumb is to List the entries to be deleted and use exactly the same parameters
for the DELete command that were used to list the entries (the function key can be used
to recall the list command).

A user can only delete those catalogue entries to which he has access.
The CAT program does not allow a user to delete his own userid record.
Syntax:

Where:

All four parts of the key must be specified.

Grp Userid or group name of the catalogue records to be deleted.

This value must be a group to which the user belongs unless the user has a
security level of Tech or Master.

If this parameter is not given, then the user’s private group (userid) is
assumed.

Id Name of the item (program or file) to be deleted.
If not given, then all items in the specified group are deleted.

Elt The element name of a dynamic file. This parameter is only valid when used
with dynamic file entries.

If not given, all elements are processed.

type The type of catalogue records to delete. The value for this parameter may be
as follows:

More than one type may be specified by concatenating the alphabetic type
codes (for example, "DE" means dynamic or edit type).

qualifiers Any of the standard CAT list keyword qualifiers (GRouP=, DATe=, DATe<=,
LFD= or LoaDM-=) as described in page 3-43.

7002 3981-100 , 3-49

CAT Delete commands

Additlional Considerations:

When a request is made to delete a user record, the CAT program checks whether that user

owns any TIP/30 Dynamic Files. If dynamic files exist, the CAT program prompts to
confirm that the user is to be deleted.

If the response to the prompt is "YES", the user record and the dynamic file or files are
deleted.

If the response to the prompt is "NQO", the delete command is not performed (the user
record remains in the catalogue).

3.11.22. Recall Last Command

The CAT program recognizes (£} (Function key 1) as a valid command.

Pressing the (B} key causes the CAT program to output the last command that was entered
from the terminal.

The text of that command may then be altered (on the screen) and transmitted — a popular
trick is to recall a List command and alter it slightly so that it is a DELete command with
exactly the same parameters — "what you listed is what you delete™).

Example:

TIP?pCAT

CAT (1) ?pL EDP, %, ,E

CAT(1)?%» ... { a list of edit buffers in the }
CAT(L)?p ... { group EDP now fills the screen }
car (1) 2» ()

»L EDP, *,.,E { CAT outputs last command entered }
CAT (1) ?p

3.11.23. Writing Catalogue Entries

3-50

It is often necessary to make "bulk" changes to the TIP/30 catalogue. A WRITE command

is recognized by the CAT program to make the process of mass changes somewhat easier to
accomplish.

The write command creates a library element containing the keyword information for
selected catalogue entries. The information is written in the format that the CAT program
expects the information to be input.

Once such an element is created, the user may use a standard Editor (FSE for example) to
make massive changes to the information.

The resultant (changed) element of information could then be supplied as input to the CAT
program to effect all the changes. See the example following for details.

The Write command processes PROGRAM and FILE entries (standard OS/3 file entries)

ONLY. User records, edit buffer records, and dynamic file records are ignored by the
WRITE command.

7002 3981-100

CAT Write command

The Write command ignores catalogue entries for PROGRAMS that are supplied with
TIP/30 (it does this by ignoring programs which have a load module name prefixed by
lm", "I'I'-"’ IFIT@"’ "Q’Is" or 'm“).

The alternative spelling of the write command ("WA") may be used to force the WRITE
command to process ALL catalogue records ("WA" means "write all").

Syntax:

W Grp, Id,Elt,type [,1lib [,elt] (keyword qualifiers]
WA

The parameters of the Write command are identical to the parameters required by the LIST
command (see previous description of that command for details) with the following

exceptions:

lib The logical file name of the library used to output the catalogue information.
If omitted, the library name "RUN" is assumed.

elt The element name created in the output library.
If omitted, the name "LISTCAT" is assumed.

Example:

TIP?PCAT
CAT (1) ?pw edp,*,,p sysgen/catsmash

This example writes the catalogue information for all programs in the group EDP to a
library element named CATSMASH in library SYSGEN.

The user can then invoke a standard editor (like FSE} and make changes, additions or
deletions to the information in SYSGEN/CATSMASH as desired.

When all changes are finished, the user can submit that element as input to the CAT
program by issuing the following command line:

wp?bcm <SYSGEN/CATSMASH j

The less than symbol "<" indicates to the TIP /30 command line processor that the input for
the program is to be taken one line at a time (as requested by the CAT program) from the
specified library element instead of soliciting the user at the terminal. See description of
"Input redirection” in the documentation of the Program Control System (PCS).

7002 3981-100 3-51

CCA — ICAM Statistics Display

3.12. CCA — ICAM Statistics Display

CCA is a TIP/30 utility program which displays information and statistics derived from
tables maintained by ICAM (the OS/3 communications control program).

ICAM must be generated with "STAT=YES" on the BUFFER statement and "STATS=YES"
on LINE statements (note the different keyword spelling). '

This specification causes ICAM to collect statistics for lines and buffers. The CCA program
can assist the systems programmer to determine the source of communications problems
and to evaluate the performance of ICAM.

The CCA program displays the statistics maintained by ICAM using TIP /30 screen
formats. The information may (optionally) be printed for later analysis.

ICAM statistics are accumulated (by ICAM) from the time ICAM is initialized. ICAM
shutdown may not correspond to a TIP /30 shutdown (in a Global ICAM environment).

Syntax:

@ cca

® cca command [,name]
Where:

Syntax format @ is used to start the CCA program in interactive mode. CCA prompts the
user with a screen format and permits the user to execute a number of commands. Format
@ is used to execute a single CCA command and then terminate.

3-52 7002 3981-100

CCA — ICAM Statistics Display

The commands recognized by the CCA program are:
Table 3-8. CCA Commands

Display A.R.P. usage.

Display buffer usage.

Display Locap statistics (Global ICAM only).
Display Linkpak statistics (DCA ICAM only).
End execution of CCA program.

Display line information and statistics.

O o E RO W »

Display Opcom statistics.
Print all available statistics.

o] =

End execution of CCA program and logoff
TIP/30.

Display terminal information and statistics.
Display Uduct statistics (DCA ICAM only).

-

c

The optional second parameter is a starting LINE/LOCAP/TERM name which may be
used to cause the selected command to begin its display at the LINE, LOCAP, or TERM
specified.

If the CCA program is invoked with an explicit command, CCA performs that command
and then terminates (most commands require the user to press the key to exit the
command).

7002 3981-100 3-53

CCA — ICAM Statistics Display

3-54

If no command is present on the command line, CCA displays the following screen format
to simplify the entry of commands and assumes that the user wishes to run the CCA
program interactively (that is, issue one or more commands):

TFSCCAQA L ICAM c 2 STATISTICS * % 11:22 89/07/2}
CCA Information
Network - NET2 Type - GBL
Lines - 4 Terminals ~ 22
Select one of the following:
A - Arp statistics
B - Network buffer statistics
G - Locap statistics (GBL ICAM only)
K - Linkpak statistics (DCA ICAM only)
L - Line statisties
o] - Opcom statistics
T - Terminal statistics
U - Uduct statistics {DCA ICAM only)
P - Print all of the above
E - End program
Q - End program and logoff
Enter selection here --> _
Enter Locap/Line/Term --> _
'TIP/30 CCA Inquiry’ =- Version = 4.0 (89/06/20)
\ffié:Redisplay, F2/6:Next CCA, F3/7:First CCA, F4/8:Quit, Msg~Wait:End 4’/)

Note that information about the first (and possibly only) CCA (Communications Control
Area) is displayed at the top of the display.

The network password (if one exists) is displayed only if the user of the CCA programis a
Tech or Master level TIP /30 user.

The user may enter a command (the list of available commands is displayed) or may press
one of the available function keys.

Where:

selecion One of the one character commands as shown.
The standard "E" and "Q" commands are not described in further detail since
they are fairly obvious.

LOCAP/LINE/TERM
An optional LOCAPT or LINE or TERM name to indicate where to begin a
command’s display.

Some of the commands display information about LOCAPs, LINES, or
TERMINALS. This field may be used to indicate that such a display is to start
with the indicated entry.

This is helpful when the terminal that interests you most is the 114th terminal
in the CCA and you don’t have the time to scroll through the first 113
terminals,

7002 3981-100

CCA — [CAM Statistics Display

This field is interrogated by the "Global", "Line", and "Term" commands

(only).
/3 Refresh the display (retransmit the display).

121] Move forward to the next CCA (if more are defined).

More than one CCA may be defined in an ICAM network; CCA reports
statistics on all CCAs (provided the CCA was generated with the correct
keywords for statistics accumulation).

®)/E Display the first CCA in the network.

This is often used to reset the display to select the first CCA in the network
after examining other CCA information.

) /(5 Terminate the CCA program and log off TIP/30.

(EEek WATFY Fe)
(@EWAM End the CCA program.

Additionai Considerations:

The usual mode of operation is to use to select the correct CCA to examine (if there are
multiple CCAs in the ICAM) and then proceed to issue commands to display information
about that CCA.

To move to a different CCA after displaying information about another CCA, the user must
return to this main display and use the function keys to select another CCA.

7002 3981-100 3-55

CCA — ICAM Statistics Display

3.12.1. A — ARP Utilization

Activity Request Packets (ARP) are ICAM internal table entries that are used by ICAM
when scheduling network functions. There are a fixed number of these packets generated
into the CCA (a formula for predicting the number needed can be found in the appropriate
ICAM publication for your type of network).

CCA displays the usage of the available ARPs. The usage is displayed in an inverted
fashion: the number of times a certain number of ARPs was available is shown.

In effect, the usage is displayed as the penetration into the available pool of ARPs.

£$CCA1A * % ICAM M1 STATISTICS S * x 13:46 89/01/@
A.R.P. information for NET1l network
Number: 90 Available: 74 Thresh: 10 Size: 56 Defers: 0 Rejects: 0
Penetration information

Remaining Times Remaining Times Remaining Times

89 1 79 2 69 132

88 2 78 1 68 20

87 1 71 1 67 9

86 1 76 17 66 3

85 1 75 23 65 1

84 2 74 19 64 0

83 2 73 165 63 0

82 1 72 750 62 0

81 1 71 695 61 0

80 1 70 372 60 Q
F1/5:Redisplay, F2/6:Next screen, F3/7:First screen _

F9:Refresh stats, F13:Quit, F15:End, Msg-wait:Menu

= J

In this example the error field (not shown) would be blinking with the message "More
A.R.P.S to display.” because all of the A.R.P. information cannot be shown on a single
display.

The above example illustrates that there were 0 times when there were (only) 64 ARDPs
available and there was as few as 65 ARPs available only 1 time.

From such information, the system programmer is able to determine whether or not there is
an abundance of ARPs generated into ICAM.

3-56 7002 3981-100

CCA — [CAM Statistics Display

3.12.2. B — Buffer Utilization

ICAM network buffers (or simply buffers) are internal areas used by ICAM to hold data
and control characters that are being sent to a terminal or being sent by a terminal.

When the system programmer generates ICAM, he specifies the number and size of these
buffers.

It is very important to strike a reasonable balance between the number of network buffers
and their size. The size is related to the average size of input or output messages (the
TIP /30 utility program STATUS can be used to determine the average input and output
message lengths).

The buffer display in the CCA program displays the usage of ICAM buffers in the same
format as is used for the ARP penetration display.

The number of times a certain number of buffers were available is shown.

TFSCCALA ** ICAM M1 STATISTICS ** 13:46 89/01/&
Buffer information for NET1 network
Number: 35 Available: 35 Thresh: § Size: 256 Defers: 0 Rejects: Q
Penetration information
Remaining ‘ Times Remaining Times Remaining Times
34 386 24 0 14 0
33 173 23 0 13 0
32 127 22 0 12 Q
31 102 21 Q 11 0
30 74 20 a 10 0
29 58 19 0 9 0
28 S1 18 Q 8]
27 47 17 a 7 0
26 12 16 0 6 0
25 1 15 Q 5 Q0
F1l/5:Redisplay, F2/6:Next screen, F3/7:First screen _
F9:Refresh stats, F13:Quit, F15:End, Msg~wait:Menu

N J

In this example, the error field (not shown) would also be blinking with the message "More
Buffers to display."” because all of the buffer information cannot be shown on a single
display.

The above example illustrates that there were 0 times when there was (only) 24 buffers
available and there was as few as 25 buffers available only 1 time.

If this information was the result of an average period of network activity, one could

lssda that slnert 15 b6 1
conclude that about 15 buffers are wasted memory (it is important to realize that such a

conclusion should be based on several observations — not an isolated incident).

7002 3981-100 3-57

CCA — ICAM Statistics Display

3.12.3. G — LOCAP Information

The CCA "G" command displays information about the LOCAPs that are generated ina
Global ICAM network. LOCAPs exist only in a Global ICAM environment.

Each LOCAP is displayed by name along with information that ICAM maintains for each.
The appropriate ICAM manual may be useful for establishing the meaning of the

information dispiayed.

The Global command is generally used to find out what LOCAPs are configured and
whether they are available (up).

@scemm ** ICAM M1 STATISTICS ** 13:46 89/01/&

Locap information for NET1l network

Name Type Active Node Queues Sessions
TIP1 TCI No YYz 0 0
TIP2 TCI Yes YYZ 1 1
TIP3 TCI Yes ORD 1 2
ISSN DMI Yes YYZ 3 1

Fl/5:Re=-display, F2/6:Next screen, F3/7:First screen _
F9:Refresh stats, F13:Quit, F15:End, Msg-wait:Menu

- /

In the example above the error field (not shown) would not have any message (since we are
using a small network for our example and there are no more LOCAPs to display).

The information shown is more or less self-explanatory. The user could utilize the function
keys (as advertised) if there was more LOCAP information available.

The user can specify the starting point of the display by providing a LOCAP name on the
initial command screen or command line.

3-58 7002 3981-100

CCA — ICAM Statistics Display

3.12.4. K — Linkpak Information

The CCA "K" command displays information about the utilization of Linkpak areas.

Linkpaks are configured only in a DCA ICAM.

Number: 90 Available: 84

Remaining Times
89 1
88 1
87 2
86 18
{ 85 20
84 115,789
83 . 167,505
82 66,086
81 12,250
80 2,182

Fl/5:Redisplay,
F9:Refresh stats,

-

Lnkpak information for NET2 network

Thresh: 3 Size:3,072 Defers

Penetration information
More LINKPAKs to display.

Remaining Times Remain
79 508 69
78 129 68
71 32 67
76 q 66
75 1 65
74 1 64
73 1 63
72 o 62
71 0 61
70 0 60

F2/6:Next screen,
F13:Quit,

F3/7:First
F15:End,

: 0 Rejects:

ing Times

foNoNoNeoNeNeoRwieNe o)

screen _
Msg=-wait :Menu

TPSCCAlA ** ICcAM C2 STATISTICS ** 15:00 89/02/%

7002 3981-100

3-69

~ CCA — ICAM Statistics Display

3.12.5. L — Line Information

Information concerning the communications lines that are used by a CCA may be
displayed by the CCA program. Certain LINE statistics are available only for lines that are
generated in ICAM with STATS=YES specified.

Each line in the CCA is shown by name with the type, speed, number of terminals on the
line, line status (UP/DOWN), the number of messages (input and output) and reported
erTors.

The latter two values are available only if statistics were requested in the ICAM generation.

TFSCCA2A * % ICAM M2 STATISTICS * x 13:40 89/02/;3\\

Line information for NET2 network

Name Device Type Speed Terms Status Messages Errors Hit/Rate
L311 Loc Work Stn 1 Up " 13,088 11 0.1%
LIN1 Uniscope 9,600 12 Up 0 0
LIN2 Uniscope 9,600 10 Up Q Q
VLN1 UDLC ABM 56,000 Q Up 0 0

Fl1/5:Re-display, F2/6:Next screen, F3/7:First screen _
F9:Refresh stats, F13:Quit, F15:End, Msg-wait:Menu

N J

In the example above the error field (not shown) would not have any message (since we are
using a small network for our example and there are no more lines to display).

The information shown is more or less self-explanatory. The user could utilize the function
keys (as advertised) if there was more line information available.

Additional Considerations:

The user can specify the starting point of the display by providing a LINE name on the
initial command screen or command line.

3-60 7002 3981-100

e

CCA — ICAM Statistics Display

3.12.6. O — Opcom Utilization

The CCA "O" command displays information about the utilization of the ICAM resource
"Opcom”. These packets are used for console operator communication.

@CCAIA * % IcamM c 2 STATISTTICS * ¥ 15:00 89/02/m
Opcom information for NET2 network
Number: 3 Available: 3 Thresh: 0 Size: 84 Defers: 0 Rejects: 0
Penetration information
Remaining Times Remaining Times Remaining Times

2 2
1 0
0 0

Fl/5:Redisplay, F2/6:Next screen, F3/7:First screen _

F9:Refresh stats, F13:Quit, F15:End, Msg-wait:Menu

o ~ _

7002 3981-100 3-61

CCA — |ICAM Statistics Display

3.12.7. P — Print Report

The CCA "P" command is available to generate a printed copy of the current ICAM
statistics. The PRINT command prints a copy of the ICAM statistics that are available (some
information is available only in a Global ICAM network or DCA ICAM). In effect, the Print
command cycles through all the other commands, directing the output to the site printer
PRNTR by defauit.

The print command recognizes an alternate printer destination that is placed in the field
"LINE/TERM/LOCAP" on the main menu screen.

If this command is supplied on the command line, an alternate printer destination may be
specified as command line parameter 2:

@»cca P C:CCA J

The CCA program generates the printed statistics report and terminates without requiring
intervention from the terminal user.

One could easily incorporate this as a function of a background program that issues a
TIPSUB to the CCA program (with "P" as CDA parameter 1) once every few hours for
example.

3-62 7002 3981-100

CCA — |CAM Statistics Display

3.12.8. T — Terminal Information

Information concerning the communications terminals that are used in a CCA may be
displayed by the CCA program. Certain TERM statistics are availabie only for lines that are
generated in ICAM with STATS=YES specified.

Each terminal on each line of the CCA is displayed with two lines of information per

terminal.
TFSCCA3A * % ICAM M1 STATISTICS * x 13:46 89/01/09 \
Terminal information for NET1l network
Line Term Size Address Poll interval Status
- Msg-in Msg-ocut In-retransmit Out-retransmit Polls No-traffic
1311 T311 24x%80 03 11 1.0 Up
25 91 0 0 116 30
L312 T312 24X80 03 12 1.0 Down
o} . 0 o} 0 0 Q
L313 T313 24X80 03 13 1.0 Down
0 ¢} 0 0 0 0
LNO8 ARC1l 24X80 21 51 1.0 Up
0 0 0 0 45,166 45,064
ARC2 24X80 21 52 1.0 Up
0 0 o} 0 0 0
ARC3 24X80 21 53 1.0 Up
104 180 0 0 282 282
Fl/5:Re~display, F2/6:Next screen, F3/7:First, F4/8:Next line _
F9:Refresh stats, F13:Quit, F15:End, Msg-wait :Menu

- /

In the example above the error field (not shown) would have a blinking message if more
terminal information was available.

The information shown is more or less self-explanatory. The user could utilize the function
keys (as advertised) if there was more line information available.

The information for each terminal is contained on two lines of the display (the second line
contains the count of messages input and output via the terminal, the number of input and
output retransmits, the number of polls and no-traffic replies received).

Additional Consliderations:

The user can specify the starting point of the display by providing a TERM name on the
initial command screen or command line.

7002 3981-100 3-63

CCA — ICAM Statistics Display

3.12.9. U — Uduct Utilization

The CCA "U" command displays information about the utilization of Uduct buffers. Uduct
buffers are configured only in a DCA ICAM.

3-64

TFSCCAlA

Number:

o

Uduct

30 Available: 85

Remaining Times
89 33,810
88 53,898
87 39,800
26 42,675
85 46,184
84 25,024
83 9,590
82 3,402
81 856
80 180

Fl/3:Redisplay,

F9:Refresh stats,

** TCAM C2 STATISTICS ** 15:01 89/02/%

information for NET2 network

Thresh: 3 Size:

112 Defers: 0 Rejects: 0

Penetration information
More UDUCTs to display.

Remaining Times Remaining Times
79 45 69 0
78 13 68]
77 6 67 0
76 1 66 0
75 0 65 0
74 0 64]
73 0 63" 4]
72 0 62 Q
71 0 61 Y
70 0 60 0

F2/6:Next screen,
F13:Quit,

F3/7:First screen _
F15:End, Msg-wait:Menu

7002 3981-100

P

O

P

CH — 0S/3 CHANGE Command

3.13. CH — 0S/3 CHANGE Command

The CH transaction implements the OS/3 "CHANGE" console operator command (change
job’s execution queue). The CH transaction is actually a clone of the more powerful SYM
transaction. The SYM transaction program can be invoked using an alias name that is
interpreted as a specific command. When the SYM program is invoked with a transaction
name of "CH", the SYM program assumes that the OS/3 command is "CH".

The OS/3 CHANGE command syntax is documented in the operation guide for your
system.

The CH transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it had been
entered at the system console.

Example:

CH COBCOMP3,H

Change job "COBCOMP3" to High queue.

7002 3981-100 3-65

COPY — COPY Utility

3.14. COPY — COPY Utility

The COPY transaction is a clone transaction of the generalized librarian utility transaction
TLIB (see "3.90. TLIB— Librarian Services" on page 3-325) .

The COPY transaction invokes the TLIB program. When the TLIB program observes that
the transaction name is not TLIB, it uses the transaction name as the implied command.

The command line options and parameters that are supplied with the COPY transaction
code are interpreted by TLIB as parameters to the TLIB COPY command.

The end result is the ability to use COPY as an apparently stand-alone transaction.
Syntax:

COPY[,options] parameters
Where:

options Any comrmand line options (as recognized by TLIB) that pertain to the COPY
command. See description of TLIB options.

parameters Parameters required by the COPY command of the TLIB program.
Example:

COPY,X C:BUDGET.WKS SRC/BUDGET, S

This example copies an MS-DOS file (command line parameters 1 through 3) to a source
element named BUDGET in the OS/3 library defined with a logical file name of "SRC".

Command line option "X" is specified to cause the input to be "hexified" by the PC software
before the data is passed to the TLIB program.

3-66 7002 3981-100

CPAGE — Set Control Page

3.15. CPAGE — Set Control Page

The CPAGE program may be used to set the control page "XMIT" setting of a UTS-400 style
terminal. The "XMIT" setting of the control page determines the data that is transmitted to
the host computer when the terminal operator presses the key.

Syntax:
CPAGE [/opt]
Where:
opt Command line option indicating the desired setting of the XMIT option of the
control page:
A Sets the control page to transmit all ("ALL")
\% Sets the control page to transmit variable (unprotected) ("VAR")
C Sets the control page to transmit changed ("CHAN")
Example:
CPAGE,V

Addlitional Considerations:

The preferred option for TIP /30 operation is "VAR". Some IMS programs may require the
control page set to "ALL" to permit the IMS program to receive the correct input data from
the terminal.

Setting the control page to XMIT=CHAN from the TIP/30 command line has no lasting
effect because the TIP /30 Command line Processor (TCP) immediately changes the XMIT
setting from CHAN to VAR. This is because XMIT=CHAN is virtually useless except when
a screen format is in use.

7002 3981-100 3-67

CRASH — Abnormal TIP/30 Shutdown

3.16. CRASH — Abnormal TIP/30 Shutdown

The CR I program causes TIPI/BQ to shut down immediately, CRASH does not wait for

mm IClaidiTiye il

all users to log off. A JOBDUMP will be taken (assuming the IOBDUMP option was
specified in the TIP/30 job control stream). There is normally no need to take a SYSDUMP
when TIP/30 terminates abnormally unless instructed to do so by Support Department
personnel.

Syntax:
CRASH

Whers:
No paranleu?.fs FE'Quued‘“
Addltional Considerations:

The system SHUTDOWN program (if one is specified) is not scheduled. TIP/30 attempts
to properly close all files that are open at the time the CRASH program is run.

CRASH is the same as running the STOP transaction (see "3.84. STOP — Shutdown TIF/30
Immediately” on page 3-273) with the exception that a dump is generated.

3-68 7002 3981-100

PN

CREATE - Create Dynamic File

3.17. CREATE — Create Dynamic File

The CREATE program is used to make a file entry in the TIP/30 catalogue. By doing this,
the user is creating a new FCS dynamic file within the TIPSRNDM physical file.

Syntax:

CREATE [, typel aft-name, file-name

Where:
type The type of dynamic file to create:
P The file created is a permanent dynamic file and remains in the
system after the user logs off (unless it is explicitly scratched).
T The file created is temporary and will be scratched by TIP /30

when the user logs off. In the case of an HPR or other failure, this
file will be scratched during the subsequent TIP/30 initialization.

This is the default type.

aft-name The logical file name to be assigned to the file. After the file has been created,
it is automatically assigned to the user.

This is the entry in the active file table (AFT).

file-name The entry to be made in the catalogue for the new file. The catalogue-name
consists of three sections, USER-ID/CATL-ID/FILE-ID which uniquely
identify each file in the catalogue. The user must at least specify FILE-ID to
access the file.

If the USER-ID is not specified, then the user-id of the user using the CREATE
program is used. '

If CATL-ID is not specified then CATL-ID is set to FILE-ID.
In the following example assume that the USER-ID “ARC" was used to LOGON.
Example:

CREATE STRTUP, BGNFL

Will create the file "ARC/BGNFL/BGNFL" as a temporary dynamic file and assign it the
logical name of STRTUP.

7002 3981-100 3-69

D* — Delete Spooled Data

3.18. D* — Delete Spooled Data

The D* utility submits an OS/3 console command that will delete ALL spool queues for a
spedified job.

The submitted command will be logged on the OS/3 console and in the job log for the
TIP/30 job.

The command submitted is: DE SPL,ALL,JOB=xooooocx
Syntax:

D* Jobname

Wher:e:

s

jobname The job name that is to be used in the resultant command. This parameter is
mandatory!

Additional Considerations:

Refer to the description of the OS/3 operator console command "DE" in the appropriate
operating system publication. ' :

3-70 7002 3981-100

DE — 0OS/3 DELETE Command

3.19. DE — OS/3 DELETE Command

The DE transaction implements the OS/3 "DELETE" console operator command. The DE
transaction is actually a clone of the more powerful SYM transaction. The SYM transaction
program can be invoked using an alias name that is interpreted as a specific command.
When the SYM program is invoked with a transaction name of "DE", the SYM program
assumes that the OS/3 command is "DE".

The OS/3 DELETE command syntax is documented in the operation guide for your
system. :

The DE transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it had been
entered at the system console.

Note: Thereis no provision for returning any completion status.

Example:
DE COBCOMP3

The above command deletes a queued job named "COBCOMP3".

7002 3981-100 3-71

DEBUG — Set File in Test Mode

3.20. DEBUG — Set File in Test Mode

The DEBUG program places a named file in 2a READ ONLY mode for testing programs. A
command line option indicates whether the file is to be placed in debug mode or removed
from debug mode. In debug mode, any WRITE attempts from any program (at this
terminal) are ignored — the program is given good status, but the physical write operation
is not performed!

Syntax:

DEBUG, [opt] 1fn

Where:
opt The option field is used to indicate whether debug mode is to be set on or set
* off:
N Place file in debug mode.
F Remove file from debug mode (the defauit).
lfn The logical file name of the file that is to be placed in (or removed from) debug
mode.
Example:

DEBUG,N CUSTOMER

This command places the file assigned to the logical name of "CUSTOMER" in debug mode
and would ignore any subsequent write requests to the file from this terminal.

Error Conditions:

File not assigned.
Additional Considerations:

This option is only effective while the file is assigned to the user (once the file is
de-accessed the DEBUG option is no longer effective).

3-72 7002 3981-100

DEFKEY — Define Function Keys

3.21. DEFKEY — Define Function Keys

The DEFKEY utility program allows the user to specify a character sequence +ha will be

"painted" on the screen whenever a function key is pressed as a response to
system prompt:

& y

After the character sequence is painted on the screen, DEFKEY outputs an auto transmit
sequence to the terminal (this automatic XMIT may be suppressed).

The net effect of this is to simulate the keying of that character sequence.

The definition of function key contents is specified by user group. The search for the
appropriate function key contents follows the same sequence as the standard order of

U S W, ic cpamnlead Lunt tlaawe alamticra gwn -

bedr(.n in ml-.' Ld(d.lugue Luc user’s piivac sxuuy 1S seardiiedq Iirsy, meqi ewecuve Exu‘uyo ana

finally the universal group TIPY.

By utilizing the DEFKEY program, the user may assign character strings to function keys
and make it simple to enter the character strings.

The DEFKEY program stores the function key definitions in a TIP/30 dynamic file with the
name: group/FUNCTION/KEYS (where "group” is name of the group to which these
definitions apply). The function key definitions are retained in this dynamic file until the
definitions are explicitly deleted.

Syntax:
DEFKEY [grp]

Whers:

grp The name of the group desired. Default is the user’s private group.

7002 3981-100 3-73

DEFKEY — Define Function Keys

DEFKEY displays the following screen format:

Define function keys for the group: <\\\
Keys: 1 =

fun
(%)
('S TN A T T N Y NN N IR I

This screen format is presented (along with the current function key contents — if any) for
the specified group name.

The user may change any of the function key contents AND/OR change the group name. If
the group name is changed, the DEFKEY program assumes that a NEW function key set is
being created from an existing group’s definitions.

If the last non-blank character in a function key string is the backslash character (§ the
DEFKEY program interprets that as a signal that the automatic XMIT feature is NOT
desired when that function key is selected. If that function key is pressed, the character
string (without the ()) is painted on the screen and the terminal operator is then able to
make any desired aiterations and press the key.

To delete all function key definitions, press the (F) key. The DEFKEY program displays a
message on the screen instructing you to press to confirm that you want to erase the
DEFKEY function key file. Pressing any key other than cancels the delete operation.

Example:

DEFKEY EDP

This command presents the function key definitions currently in effect for the group "EDP"
and allows the user to change the definitions.

3-74 7002 3981-100

DEFKEY — Define Function Keys

Additional Considerations:

Function key 23 is a pseudo-function key indication that may be returned by some
terminals (for example, the master terminal in a UTS-400 cluster) when a power-on
confidence (POC) test is initiated — this is a hardware strapping option of the UTS-400.
SVT terminals may also return such a signal whenever the terminal is reset. The DEFKEY

program allows the user to define a transaction to be executed if and when such a signal is
received — refer to the description of the POC utility transaction for more information.

WARNING

Transactions may be defined in the TIP/30
catalogue with special 4-character names of the
form: F#nn (where nn is a two digit number 01
through 23 inclusive). These transaction names
are specially interpreted at the TIP/30 command
line to correspond to the associated function key.

Such program catalogue definitions take
precedence over any function keys defined using
the DEFKEY utility transagction.

7002 3981-100 3-75

DIE — Abort a Program

3.22. DIE — Abort a Program

3-76

® piE/identifier

@ DIE identifier

Where:

above, this value is required and may be entered either as the command line
option field or as command line parameter number 1.

Prefix notation may be used; for example: DIE *BACKS$

DIE does not act on the process that is executing; that is, you may not DIE
yourself (see "additional considerations” which follow).

identifier The userid or terminal name to be aborted. As indicated by the syntax shown

Example:
DIE JCHN
This command causes the program being executed by user JOHN to be abnormaily

terminated.

Error Conditions:

User or terminal cannot be found.

7002 3881-100

DIE — Abort a Program

Additional Consliderations:

The program is not aborted immediately if it is swapped out of memory (waiting for
terminal input for example). It will be aborted the next time it is running. One may have to
press (XM} or (MBGWAT) on the terminal executing the program to cause TIP/30 to
reschedule the program and therefore cause the abort.

In some cases, TIP /30 may not be able to abort the program at all. If this occurs, the
operator console unsolicited command "DIE" may prove somewhat more powerful
(although that is not necessarily guaranteed).

A program that is running at your terminal can be aborted by entering "@@DIE" as an input
message. The letters "DIE" must be in upper case! Whenever TIP/30 detects an input
message with the first five characters equal to "@@DIE", the executing program will be -
aborted with a "Process Cancel Exception” (a bizarre sort of suicide).

Tleia s~ =l svand $A o v 103 1 ‘
11ii8 lECuruquc ¢an pe useqa o esnp program thatisinan H‘np‘dt ICCP with no apparent

means to escape from the loop.

Another potential use is to force an abort at a specific input message to allow the
programmer to examine the program’s work areas.

7002 3981-100 ' 3-77

DIR — Display Library Directory

3.23. DIR — Display Library Directory

o
The DIR transaction displays a directory of an OS/3 library (or some subset of an OS/3

library) at the terminal. One line is displayed for each module The line shows the module
name, module type, comment and the date and time when the module was last changed.

This transaction is actually a clone of the TLIB transaction. See the description of the DIR
command in the TLIB documentation for additional information.

Syntax:
DIR file [,prefix]

Where:

file The selected library name as defined in the TIP/30 catalogue.

prefix An element name prefix to be used to select some subset of the elements in the
library. If the prefix parameter is omitted, the default is assumed to be all
elements.

Exampie:

DIR JCS,*TJ

Displays a directory of all elements with names that begin with "T]", in the library file
catalogued with the name "JCS".

3-78 7002 3981-100

DIR — Display Library Directory

' Example of DIR output:

y
/Continue?)Yes PNo
Listing: TIP/*THS,D

THSTQLMO, S VER-002.D
THSTQLC, S VER-004.D
TH3TQLCC, S VER-002.D
THS$TQLCP, S VER-Q003.D
THSTQLWP, S VER-003.D
THSTQLHW, S VER-Q003.D
THSTQLUPR, S VER~Q03.D
THSTQLUF, S VER~Q03.D
THSTQLUC, S VER=-003.D
THS$TQLU, S VER~003.D
THS$TQLSP, S VER-003.D
THSTQLS, S VER-003.D
THSTQLQP, S VER-005.D
THSTQLQ, S VER=-003.D
THS$TQLPP, S VER~-Q03.D
THSTQLP, S VER-003.D
THSTQLNP, S VER~003.D
THSTQLNF, S VER-003.D
THSTQLN, S VER-~003.D
THSTQLM, S VER=-003.D
THSTQLLP,S VER-Q003.D

\\3§?TQLL,S VER-003.D

89/02/23

HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP
HELP

FCR
FOR
FOR
FOR
FCR
FCR
FOR
FCR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FCR
FOR
FCR
FCR
FOR

23:00 DIRECTORY

 TQLMON' 84/01/13
'TQL C* 84/01/13
’7QL co’ 84/01/13
' TQL CP’ 84/01/13
' TQL WB’ 84/01/16
fTQL W’ 84/01/16
/TQL UP’ 84/01/16
' 7QL UF’ 84/01/16
/TQL UC’ 84/01/16
'TQL U’ 84/01/16
' TQL SP’ 84/01/16
’TQL S’ 84/01/16
' TQL QP’ 84/01/16
'TQL Q' 84/01/16
'TQL PP’” 84/01/16
'TQL B’ 84/01/16
'TQL NP’ 84/01/16
/ TQL NF’ 84/01/16
' TQL N’ 84/01/16
’TQL M’ 84/01/16
' TQL LP’ 84/01/16
'TQL L’ 84/01/16

14:41
16:11
16:16
16:18
11:29
11:30
11:30
11:31
11:31
11:32
11:32
11:33
11:34
11:34
11:35
11:35
11:36
11:36
11:37
11:38
11:39
11:39

7002 3981-100

3-78

DISABLE — Disable Terminais

3.24. DISABLE — Disable Terminals

3-80

The DISABLE program is used to logically disable one or more terminals in the network.
When a terminal is disabled, the TIP /30 LOGON program does not accept any input from
the terminal. If the LOGON program detects input from the terminal, a message is
displayed on the terminal indicating that the terminal has been disabled.

The SET transaction program also has this capability, but may not be appropriate for all
users because the SET program has other more powerful capabilities.

The DISABLE program displays a message explicitly confirming each terminal that is
disabled.

Syntax:

Where:

term Up to 8 positional parameters. Each parameter represents a terminal name to
be disabled.

Each terminal name may be specified by using standard prefix notation (for
example: *T3 means all terminals that have a name beginning with the
character string "T3").

- The use of prefix notation might result in the specification of the terminal that
is running the DISABLE program, If this occurs, the DISABLE program does
not consider the running terminal as matching the prefix specification.

Example:

DISABLE T103,T114,*PD
This command disables terminals T103, T114 and all terminals with names that begin with
IYPDII.
Additlonal Considerations:

The DISABLE program will not allow the user to disable the terminal that he is using to run
the disable program. The alternate transaction code ZZDWN is provided for compatibility
with IMS.

Error Conditions:
The DISABLE program may report that a terminal name is not valid. This may occur

because a terminal name was misspelled or because the terminal name is the terminal that
is running the DISABLE program.

7002 3981-100

DLL — Down Line Load Utility

3.25. DLL — Down Line Load Utility

The DLL transaction program is designed to assist the user working with the UTS-400
terminal. DLL provides the capability to down line load the UTS-400 memory from the
host. The UTS-400 may be loaded with user developed programs or programs produced
using Unisys software.

In addition, the UTS-400 may also be loaded with screen formats that have been created
with the TIP /30 Message Control System. A supplied UTS-400 program (MCS400) must be
loaded whenever the user is down line loading MCS screen formats. Refer to the section on
the Message Control System for further information on the use of down line loaded screen
formats.

The DLL program may also be called by the transaction code "DLOAD". This transaction
code is recognized by the DLL program as a request to down-line load an existing load
module to either a UTS~400, UTS-30 or UTS-40. -

It is important to note that the operation of this (DLL) program involves a staging buffer
within the program. All program and message requests are collected in this staging buffer,
then the entire buffer is loaded into the UTS-400 with a single command. The DLL
commands are as follows:

Include file/element

Add the UTS~400 object module generated by either ASM80 or UTSASM
(described later) to the staging buffer. The transfer address is set to the
address specified in the transfer record of this module.

TIP/MCS400 is a module which interfaces with MCS in the host to display
screen formats on the terminal.

Get module

Add the UTS-400 object module as generated by either MAC80, PL/M, or
UTSCOB to the staging buffer. The transfer address is set to the address
specified in the transfer record of this module.

Ntr address

The transfer address is changed to the address specified in the first parameter.
Message mcs-name,[U]

Decode and load the specified MCS message into the staging buffer. Only
heading information is normally stored. When this message has been loaded
into the terminal, the TIP/30 Message Control System will only send the data
portions, thus resulting in a complete screen.

If the second parameter is "U", this message will be stored with fillers to
represent the data fields. If you have a data entry screen for which you want

than Anbn £2alda 2 avs "y m :
the data fields o be filled with underscores, then .:vaCIf}' U™ with this

command and specify "_" as the filler character in the MCS packet when your
program calls TIPMSGO. This will result in the shortest possible XMIT time to
display the message on the terminal.

7002 3881-100 3-81

DLL — Down Line Load Utliity

Function key#,word XMIT,SOE
This equates a UTS-400 function key (8 thru (i3 with a character string of

up to 8 characters. When the function key is pressed the string will be written

on the terminal where the cursor is positioned at that time.
If the 3rd parameter is XMIT, an auto-transmit function will take place.

If the 4th parameter is SOE, a start-of-entry will be placed in front of the
character string.

Load [terminal] [[dvename]

The contents of the staging buffer will be down line loaded into the memory
of the UTS-400. After the UTS-400 has been loaded, the transfer record is sent
to the UTS~400. If no terminal is specified, then the down line load is
performed on the terminal that is in use. Note that only the master or primary
terminal of a UTS-400 cluster receives down line loading.

’dvc’ is the auxiliary device index where the prbgram is to be stored (eg:
diskette).

‘name’ is the name to be given to the program when it is stored on the
diskette.

LT [terminal] [dvename]

Same command as Load except the ime of day from the host will be loaded to
location AO6B in the format "HHMMSST’, 7 digits of hours, minutes, seconds,
and tenths.

Rfile/elt Redirect input to the given file/element. This command is very useful. The
user may make up a canned run stream for this program which may be run at
the beginning of each day to load all of the UTS~400 clusters with the screen
formats.

* This may be on the command line to DLL, for example:
"DLL <file/elt"
or the "R" command may be issued interactively to DLL.
E End execution of DLL.

Note: Only the first letter of the DLL commands (except the "LT" command) is required to
identify the command.

Exampile of DLL command stream:

Include TIP/MCS400 -MCS terminal program
Message ACCT1,U -accounting screen

Message PAY1 -payroll screen

Function 5,PAYUPDT,XMIT, SCE -send in the word PAYUPDT
Loadm ™01 -load into UTS-400 cluster
Loadm TM06 -load into UTS-400 cluster
End -end of loader

3-82 7002 3981-100

DLL — Down Line Load Utility

3.25.1. MCS400 — Message Control System

MCS400 is a UTS-400 program which is written in Intel 8080 assembler language and
supplied to the user as an ASM80 object module. It operates under the direction of TIP /30
MCS to display screen formats on the terminal and eliminate the need to continually
transmit it down the line.

This program, and messages to be used, should be loaded into the UTS-400 master when
TIP/30 is started, and any time the UTS-400 master (or controller) is initialized (ie: via a

power-on confidence (POC) test).

Function keys (£8) through (@3 can be programmed by DLL. The other function keys

perform as follows:

L)) Beeps the terminal to let you know that the program has been successfully
loaded.

3 Takes ZZname from home position, looks for "name” in the screen table, then
displays it.

&8 Displays the next screen format in the table. The screen name is displayed in
bottom right hand corner.

Does an erase display and cursor home.

Re-displays the last screen format used for this terminal. All of these
functions operate independently per terminal in the cluster.

=) Allows you to set the time of day in the terminal. The program will keep the
time of day as HHMMSST in location A06B. To set this time, enter the time at
the home position of the terminal and press the key. Time is kept in
hours, minutes, seconds, and tenths of seconds.

=) Begins the display of the time of day at the home position of the terminal.

End the display of time of day.

7002 3981-100

3-83

DLMSG — Redisplay Last Output

3.26. DLMSG — Redisplay Last Output

The DLMSG transaction is provided to redisplay the last output message sent to the
terminal, This facility is an optional feature of the TIP/30 system that normally is
configured only to provide compatibility with the corresponding facility of the Unisys
Information Management System (IMS).

The DLMSG program will report "No message was saved" if the program is invoked and
the appropriate configuration feature is not specified — see the technical note under
"Additional Considerations" below.

Syntax:
DLMSG [term]
Where:
term Optional command line parameter available only to users with SYSTEM level

(or higher) security. If this parameter is supplied and the security constraint is
met, the DLMSG will use the specified terminal name rather than the defauit
of the invoking terminal name.

" This allows system administrators to examine other terminal’s retained output
messages. '

Additlonal Considsrations:

To use the DLMSG transaction, the TIP /30 system must be configured to include the
"TIP$TOM" file.

If TIP /30 detects that a TIP$TOM file is assigned in the job control, TIP/30 retains the last
IMS normal termination output message for each terminal. The DLMSG transaction may be
used to redisplay the last retained output message.

3-84 7002 3981-100

DLOAD — Down Line Loader

3.27. DLOAD — Down Line Loader

DLOAD is a supplied program designed to assist the user working with the UTS-400
terminal. This program provides the capability of down line loading the UTS-400 memory
from the host. The UTS<400 may be loaded with user developed programs or programs
produced using Unisys software.

The DLOAD transaction requires one command line parameter specifying the load module
name of the data that is to be sent to the UTS~400 master terminal.

Syntax:

DLOAD loadm
Where:

loadm The load module name of the information that is to be sent to the UTS-400
terminal. This load module is normally supplied by the manufacturer, but
may be generated by various cross-assemblers available for this purpose.

Trailing zeroes in the load module name need not be entered.
Example:

TIP?»DLOAD U4CPM

Additional Congiderations:

This transaction is provided primarily for compatibility with IMS systems.

7002 3981-100 3-85

DOF — Display Open Files

3-86

Syntax:

DOF [jobname] [,file] [,access] [,vsn] {[,1bl]

Where:

jobname Command line parameter to specify the desired job name (default is the
current TIP /30 job).

file Optional filter to select files to be displayed by filename.
Prefix notation may be used.
Default is * (all files).

access Optional filter to select files to be displayed by access.
Prefix notation may be used.
Default is * (all types of access).

vsn Optional filter to select files to be displayed by volume serial number.
Prefix notation may be used.
Default is * (all volumes).

Ibl Optional filter to select files to be displayed by LBL name.
Prefix notation may be used.
Default is * (all LBL names).

The net effect of all of the filters (parameters 2 through 5) is as if a logical AND operation is
applied to all filters.

7002 3881-100

DOF — Dispiay Open Files

For exampile, to display all open files for the current TIP/30 job which have an LFD name
beginning with "TIP" and are open with ACCESS=5RD (not beginning with SRD, just SRD),
the following command line is required:

EP 2BDOF , *TIP, SRD j

Example Output

TIP?2»DOF , *T1IP
Lfd name Access Volume File label

TIPSSWAP EXC ARCRUN TIP$SWAP
TIPSCAT EXCR ARC103 TIPSCAT
TIPSMCS EXCR ARC104 TIPSMCS
TIPSRNDM EXCR ARC104 TIPSRNDM
TIPSB4 EXCR ARCSPL TIPSB4
TIPSJIRN EXCR REL100 TIPSJRN

_ | Y

Note: The word WAIT may appear in the Access column if the job is presently waiting for a file
lock to be released. In this case, the Volume and File Label information for the file that is
locked is displayed in the corresponding columns (subject to OS/3 considerations
described below).

In fact, the word WAIT may be used on the command line to display what file a job is
waiting for: - ‘

{IP?PDOF MYJOB, *WALT J

Additional Considerations:

There are inherent race conditions present when running this transaction since it reads
information from the system YSHR file.

7002 3281-100 3-87

DOWN — Set Line Down

3.29. DOWN — Set Line Down

This program enables the user to request that a communication line be set down (by

ICAM) TIP/ 30 will request (ICAM) to mark the corresponding line down.
Syntax:

® DOWN line-name
® DOWN term-name
Where:

line-name The ICAM name of the line that is to be set down.
term-name The ICAM name of a terminal on the line that is to be set down.

Example:

DOWN ARC3

Addltional Considerations:

This program has no effect in a GLOBAL ICAM network (since GUST actually controls the
lines and will not honour such requests).

3-88 7002 3981-100

ENABLE — Enable Terminal Input

3.30. ENABLE — Enable Terminal Input

The ENABLE program may be used to enable one or more terminals in the network. When
a terminal is disabled, the TIP /30 LOGON program does not accept any input from the
terminal. The ENABLE program may be used to enable one or more terminals that have
been disabled.

The SET program (documented in a separate section) also has this capability, but may not
be appropriate for all users because the SET program has other (more powerful)

capabilities.

The ENABLE program displays a message explicitly confirming each terminal that is

enabled.

Syntax:

ENABLE [terms, ... terms]

Where:

terms Up to 8 positional parameters. Each parameter represents a terminal name to
be enabled.
Each terminal name may be specified by using standard prefix notation (ie:
*T3 means all terminals that have a name beginning with the character string
l'r3").
The use of prefix notation might result in the specification of the terminal that
is running the ENABLE program. If this occurs, the ENABLE program will not
consider the running terminal as matching the prefix specification.

Example:

ENABLE T103,T114,*PD

This command enables terminals T103, T114 and all terminals with names that begin with
"PD".

Additlonal Considerations:

The alternate transaction code ZZUP is provided for compatibility with IMS.
Error Conditions:

The ENABLE program may report that a terminal name is not valid. This can occur because

PRI U (I | 2 1Y o~ ~ Lovemencearnl 4o A v e
a terminal name is misspelled or the terminal is the one being used to run the ENABLE
program.

7002 3981-100 3-89

EQJ — TIP/30 Shutdown

3.31. EOJ — TIP/30 Shutdown

.

The EQJ program starts end of job processing for the TIP system. TIP /30 does not allow

any new TIP/30 logons to occur and waits for transactions that are executing to finish.

The EQJ transaction also causes TIP /30 to set the status code PIB-EQOJ-PENDING in the
Program Information Block (PIB) of all TIP/30 programs that are executing. Well behaved
TIP/30 programs periodically check this flag to check whether system shutdown has been
requested.

When there are no users remaining on the system, the SHUTDOWN program (if one was
specified in the TIP/30 generation or job control) is started.

When all SHUTDOWN programs have finished, all files are closed and TIP/30 terminates
normally.

Crrradaawe
b3 41 °

EOJ [timeout] { WAIT time-to-eoj]

timeout The number of minutes to wait for transactions to complete.

If a native TIP program is waiting (eg: via TIPTIMER), the wait time will be
adjusted to be the lesser of the actual time remaining and this value.

If an IMS program is in external succession, the maximum time allowed is
reduced to this value. This value effectively overrides the TIP /30 generation
parameter TIMEOUT=.

WAIT This indicates that the EQJ program is to take effect on a delayed basis (in
"time-to-eoj" minutes).

This parameter may only be specified if the EQJ program is run in background
(see examples following).

time-to-e0j The number of minutes to defer EQJ processing. (

This parameter may only be specified if the EOJ program is run in the
background (see examples following).

The EQJ program (running in background!) delays itself (via TIPTIMER) for
the specified number of minutes and then proceeds as it normally would.

Example:

| oAT 8 remn .
OJ S = Imm EQJ;

».EOJ WAIT 30

'
o}
[o}
&
-

o

[#%)
o

minutes (use TIPGEN TIMEQUT)

».EOJ 5 WAIT 30

EOJ in 30 minutes (set TIMEOUT to 5 minutes)

3-90 7002 3981-100

EOJ — TIP/30 Shutdown

Additional Considerations:
If the EQJ program has been started in background with a delayed effective time (as shown

in the last example above), the OS/3 console operator may nullify the pending EOJ by
issuing the EQJ console command with the "OFF" option:

UNS TIP/30 EOJ OFF.

The ability to retract a delayed EQJ command is only available from the OS/3 console (and
clearly requires some haste).

7002 3981-100 3-1

ERASE — ERASE Utility

3.32. ERASE — ERASE Utility

3-92

The ERASE transaction is a clone transaction of the generalized librarian utility transaction
TLIB (see separate documentation of TLIB).

The ERASE transaction invokes the TLIB program. When the TLIB program observes that

‘the transaction name is not TLIB, it uses the transaction name as the implied command.

The command line options and parameters that are supplied with the ERASE transaction
code are interpreted by TLIB as parameters to the TLIB ERASE command.

The end result is the ability to use ERASE as an apparently stand-alone transaction.

Syntax:
ERASE[, options] parameters
Where:
options The command line may contain any command line options recognized by

TLIB that pertain to the ERASE command. See description of the options
recognized by the TLIB ERASE command.

parameters Parameters required by the ERASE command of the TLIB program.
Example:

ERASE SRC/BUDGET, S

This example erases (deletes) a source element named BUDGET in the OS/3 library defined
with a logical file name of SRC.

7002 3981-100

FCLOSE — Close File(s)

3.33. FCLOSE — Close File(s)

The FCLOSE utility transaction closes one or more online files and marks the files as
"unavailable for online use". The files are not available to online programs until a
subsequent "FOPEN" is issued (see "3.36. FOPEN — Open Online File(s)" on page 3-98).

This facility is also available as an OS/3 operator console (unsolicited) command to TIP/30
(see section "Systern Generation and Maintenance").

This program does NOT operate interactively. Up to eight LFD names (or prefixes) may be
supplied on the command line; OS/3 Data Management will be presented with a CLOSE

request for each file.
Syntax:
FCLOSE [/NOW] 1fdl (,1fd2] [,1£d43] ... [,1£ds8]
Where:
NOwW Command line option to indicate that the specified file(s) are to be forcibly
closed if necessary.

If this option is specified, files are closed immedjiately without anv regard for
the possibility that the files are in use.

WARNING

Use of this option shoulid be considered a last
resort since it may adversely affect transaction roll
back and integrity.

Programs that issue TIPFCS calls for a file that
has been forcibly closed receive "I/O error” status
until such time as the file is reopened.

1fd1...8 The LFD name of the file(s) to be closed; standard prefix notation may be
used.

Example:

FCLOSE CUSTMAST, INVMAST, ORDENTRY

This command closes the three specified files.
Error Conditions:

The LFD name specified may not be a valid LFD name (ie: not in the TIP/30 job control
strearn or TIP/30 generation).

7002 3881-100 3-93

FCLOSE — Close File(s)

Additional Considerations:

If the operation is held pending (deferred until all users have relinquished control of the
file) the user is not notified when the file is actually closed because the FCLOSE program
terminates before the actual Data Management CLOSE function is performed.

Once the FCLOSE is issued, the file is marked as unavailable for online use — new requests
to use the file will not be honoured.

The use of this program is logged on the system console and the TIP/30 job log. TIP/30
issues console message number TI076 to alert the system operator that an FCLOSE has been
issued.

3-94 7002 3981-100

FDIR — Display Abbreviated Library Directory

3.34. FDIR — Display Abbreviated Library Directory

The FDIR transaction displays a "fast" directory of an OS/3 library (or some subset of an
OS/3 library) at the terminal. The output display shows the library element name and type
code for elements in the library. The display is presented as six columns of information —
the display is constructed from left to right and from the top of the screen to the bottom.

The library element comment and timestamp is not included (this information is included
in the display produced by the related transaction "DIR").

The FDIR transaction is actually a clone of the TLIB transaction. See the description of the
FDIR command for the TLIB utility for additional information.

Syntax:

FDIR file [,prefix]

Where:

file The selected library name as defined in the TIP/30 catalogue.

prefix An element name prefix to be used to select some subset of the elements in the
library. Default (if omitted) is to list all elements.
Elements are listed without regarci to the type of the element.

Example:

FDIR TIP, *THS

Displays a directory of all elements with names that begin with "TH$", in the library file
catalogued with the logical file name "TIP".

7002 3981-100 3-95

FDIR — Display Abbreviated Library Directory

3-96

Example of FDIR output:

//Ecntinue?bYes PNo

Listing: TIP/*THS,F 89/08/07 09:45
THSTQLMO, S THSTQLC, S THSTQLCO, S
THSTQLUP, S THSTQLUF, S THSTQLUC, S
THSTQLQP, S THSTQLQ, S THSTQLPP, S
THSTQLN, S THSTQLM, S THSTQLLP, S
THSQED, S THSAPTAD, S THSAPTCU, S
THSAPTSM, S THSAPTMD, S THSDLL, S
THSMSG, S THSMAILL, S THSWMI, S
THSLOOK4, S THSSORT, S THSSET, S
THSGO, S TH$JIBQ, S TH$ACCES, S
THSBANNE, S THSBCP, S THSCPAGE, S
THSDEFKE, S TH$DOTIN, S THSDIE, S
THSLOGOF, S THSCCA, s THSFREE, S
THSFSEQ4, S THSGROUP, 8 THSHARDW, S
THSMENU, S THSMENUD, S THSHANGU, S
THSQCLEA, S THSRDR, S THSRPG, S
THSSHUTD, S THSSUBMI, S TH$SYS, s
THSFSESU, S THSFSEFK, S THSFSEC2, s
THSCAT, S THSCC, s THSDBD, S
THSEDTRS, S THSEQJ, S THSFCLOS, S
THSILLTR, $ THSJICL, S THSMENUA, S
THSNEWPA, S TH$PMDA, S THSPOC, S
THSVTOC, S THSSTATU, S THSMAIL, S

DIRECTORY
THSTQLCP, S
THSTQLU, S
THSTQLP, S
THSTQLL, S
THSAPTLD, S
THSAPTDE, S
THSSKEL, S
THSWARNG, S
THSALLCC, S
THSSYM, S
THSDOC, S
THSFSEPM, S
THSHELP, S
THSNET, S
THSSCR, S
THSRELCA, S
THSAFT, S
TH$DCF, S
THSFSE, S
THSMODE, S
TH$SWICH, S
THSXFER, S

TH$TQLWP, S
THSTQLSP, S
THSTQLNE, S
THSTQLDP, S
THSAPTLM, S
THSMAS, S
THSTQL, S
TH$PURGE, S
THSAPRB, S
THSCONNE, S
TH$DCF, S
THSFSECL, s
THSHELPE, S
THSMSGSH, S
THSDDPCN, S
THSTCB, S
THSBASIC, S
THSDD, S
THSFSEOS, s
THSMSDOS, S
THSSYMXX, S
THS5$3855, S

THSTQLW, S
THSTQLS, S
THSTQLNF, S
THSTQLD, S
THSAPTMT, S
THSLOGON, S
THSUSERS, 5
THSNEWUS, S
THSAPTPU, S
THSDEBUG, S
TH$UP, S
TH$FSEQ3, S
THSMEM, S
THSNOTE, S
THSAPT, S
THSCALEN, S
THSDISARB, S
THSFSE(6,S
THSMSGAR, S
THSTIPPR, S

TH3D413, S j

7002 3981-100

PN

FIN — Logoff TIP/30

3.35. FIN — Logoff TIP/30

The FIN program may be used to log off TIP/30. The FIN program is a clone of the
LOGOFF program and exists primarily to provide compatibility with older versions of
TIP/30.

Syntax:
FIN

Where:
No parameters are required.
Error Conditions:

If the user has not logged on, TIP /30 will not allow a logoff.
Additional Considerations:

Refer also to the description of the LOGOFF program in "3.53. LOGOFF — Log off TIP/30
System"” on page 3-180.

7002 3981-100 3-97

FOPEN — Open Online File(s)

3.36. FOPEN — Open Online File(s)

The FOPEN utility transaction opens one or more files and makes those files available for
online program use. The files to be opened may have previously been closed by the
FCLOSE transaction (see "3.33. FCLOSE — Close File(s)" on page 3-93).

This facility is also available as an OS/3 operator (unsolicited) command to TIP/30
(OPEN). This program does NOT operate interactively.

Up to eight filenames (or filename prefixes) may be specified on the command line; OS/3
Data Management will be presented with an OPEN request for each file name given.

Syntax:
FOPEN[,opt] £filel [,£file2] [,£ile3] cee [,file8]
Where:
opt Optional command line option that may be used for files accessed using CDM
(Consolidated Data Management) mode:
INIT Open file as ",,INIT"
EXTEND Openfile as ", ,EXTEND"
SRD Open file as "ACCESS=SRD"

EXCR Open file as "ACCESS=EXCR"

The use of SRD or EXCR is restricted to switching from one access to the other
(that is, no other access types can be involved —— you cannot switch from EXC
to SRD for example).

Also see "Additional considerations" which follow.
filel...8 The LFD name of the file(s) to be opened.

Standard prefix notation may be used to open multiple files with a common
prefix.

Example:

FOPEN CUSTMST, INVMST, ORDENT

Opens the three specified files.
Error Conditions:

The LFD name specified may not be a valid LFD name (a spelling error perhaps?).

3-98 7002 3981-100

,//\‘

/.\‘

FOPEN — Open Online File(s)

Additional Considerations:

Note that this program references files by the real LFD name — NOT the catalogued logical
file name.

Standard prefix notation applies to the file names; for example, *PAY implies all files with
LFD names prefixed by "PAY".

The use of this program is logged on the system console and the TIP/30 job log. TIP/30
issues console message TI076 to alert the system operator that an FOPEN has been issued.

If you intend to make use of the command line options to switch the access that TIP has to
files, be sure to NOT include an explicit DD ACCESS= statement in the job control for the
file.

The job control "/ / DD ACCESS=" specification overrides all other specifications and
makes it impossible to switch the ACCESS on the run.

7002 3981-100 3-99

FREE — De-Access a Flle

3.37. FREE — De-Access a File

The FREE program is used to release a file from assignment to a user. The effect is to
remove the file from the active file table for the terminal.
Syntax:
FREE[,type] [lfn]
Where:
type The type of FREE operation to be performed:
A All assigned files are to be freed. Any temporary dynamic files
that are assigned are scratched in this case.
F Any records held for update for the file specified are to be
released. "
X All records held for update for the user in any file are to be
released.
lfn Logical file name — as indicated in the Active File Table (AFT).
Example:

. FREE UPDATE

Release the file that was assigned with the logical name of UPDATE.
Additlonal Considerations:

A program that is being tested often may terminate in an untidy fashion: without
de-accessing files that were dynamically accessed. When this happens the user can
manually FREE the files.

If the TIP /30 command line processor (TCP) regains control, it may display the message
"Files still in AFT" to alert the terminal operator that the last program did not properly
de-access some of the files that it was using,.

3-100 7002 3881-100

FSE — Full Screen Editor

3.38. FSE — Full Screen Editor

The Full Screen Editor (FSE) is a screen format oriented editor that is designed to be both
powerful and easy to use.

FSE operates by displaying a full screen of text (17 lines) using a TIP/30 screen format. The
screen format provides a command area in addition to the display area.

The user may directly alter the text that is displayed or may enter commands to display,
find, move, copy, add, delete or modify text in the work space.

Searching and substitution commands are provided and can act on specific column ranges.

Scrolling is accomplished by using the "Forward Page" and the "Backward Page" function
keys (or commands).

FSE performs all of its work in a working copy of the data. This copy is held in a TIP/30
Edit Buffer (often called a "work space” in this documentation).

Lines in the work space are displayed with consecutive line numbers that are used as
reference points by the various commands.

Syntax:
FSE[/R] [file] [,elt] [,typel ‘[rgroup] [,buffer] [,reclen]
Where:
R Command line option to invoke FSE in "read only"” mode.
If this option is specified, FSE inhibits all forms of Write commands.
This option is provided to aid programs that invoke FSE to allow automated
use of FSE without risk of accidental library writes.
file The logical file name of the library that contains the element to be read when
FSE is invoked.
elt The name of the library element to be read when FSE is invoked.
type The element type code:
D Detailed library directory (module name, type, comment and
time stamp).
F Fast library directory (module name and type).

I Internal symbol information (for a load module).
M Macro.

N Proc via "name”.

P Proc.

S Source (default).

7002 3981-100 3-101

FSE — Full Screen Editor

3-102

group

buffer

reclen

The name of the group that is to contain the edit buffer that is created or
accessed.

The defauit group name is the user’s first elective group — as defined in the
user catalogue record.

For example: if user MARY belongs to elective groups EDP and PLANNING
her default group name is EDP.

The name of the edit buffer to be created or accessed.

Defauit is "FSES$tttt" where tttt is the name of the terminal where FSE is
running.

The length of record that is to be handled by FSE.

The default is 80 for new edit buffers; FSE uses the record length already
established for an existing edit buffer.

The record length may range from 80 to 200 (inclusive).

The FSE Write command truncates records at a maximum of 128 characters.
0S/3 supports library elements with up to 128 bytes of source text.

Addltional Considerations:

If the file, element and type parameters are specified on the initial command line FSE
attempts to read the specified element as the initial contents of the edit buffer.

If a single parameter is specified, it is assumed to be the name of a buffer (in the user’s first
elective group) to be accessed (or created if necessary).

If no command line parameters are supplied, FSE displays the following screen format to
allow easy entry of the required information:

/

TIP /30 Full Screen Editor

\

PFile:
Group:

Element: Type:

Name: Record—Length: _ A///

7002 3981-100

FSE — Full Screen Editor

FSE uses a screen format that serves a dual purpose:
1. display the current "page” of text (if any)
2. provide (at the bottom of the CRT) a command and status area.

The screen format displayed varies slightly depending on the type of text in the edit buffer;
for simplicity, this documentation assumes that the text has been declared to be COBOL
source code.

The screen format appears as follows (underscores are used in this example only to
highlight the fields):

Full Screen Editor:

+7-10 + 20 } 30 + 40 + 50- + 60mmemmtma=Tl-2+
{_] +7-10 4 20 + 30 + 40 + 50- + 60 +==—=70~2+
PEnter Cmd: _ Start line: End line: After line: :
Text @

\\\f_] Lines: Lang:_ Case:_ Patterns:_ Seq:_ Module: 4///

The screen format is actually two distinct areas. The upper area (lines 1 through 20) is used
to display the current "page" of text from the work space. Line 1 of the screen format
contains the current name of the edit buffer and is used for error or informational
messages.

The user may also use the upper area for direct modification of the text that is displayed in
that area.

The lower area (lines 21 through 24) is used to enter commands to FSE. The last line of the
screen format contains protected fields that display current status information about the
edit buffer:

Lines This field always indicates the total number of lines in the edit buffer.

Lang This fieid indicates the declared language type of the data in the edit buffer
(see description of the SE command in "3.38.48. SE — Set FSE Options” on
page 3-134 for a list of valid language codes).

Case This field indicates the current input case.

"U" — input (alphabetic) translated to upper case.

7002 3981-100 3-103

FSE — Full Screen Editor

3.38.1.

3-104

"L" — input taken literally (no translation).
Patterns A "Y" or "N" indicating whether or not pattern mode is in effect.
In pattern mode, FSE interprets search strings in a non-literal manner.

Seq A "Y" or "N" indicating whether or not FSE is to automatically sequence
(according to the declared language) on a write command.

Module The file/elt,type that is currently associated with the work space.

Note: Thereare TWO cursor resting positions (the first is near the start of line 20; the second is
near the start of line 24).

The user should be particularly careful about the placement of the cursor before pressing
the (XWT) key.

In this documentation, the command fields are referenced by the following names:
{startline} Field named "Start line:” (row 21)

{endline} Field named "End line:" (row 21)

{afterline} Field named "After line:" (row 21)

{text1} Field named "Text | ... |" (row 22)

{text2} Unnamed field "1 ... |" (row 23)

FSE Line Numbers

Line numbers are normally specified to the Full Screen Editor as a positive whole number
in the (inclusive) range of 1 to the current maximum line number in the work space. The
current maximum line number is always displayed in the lower left corner of the screen.

One exception to this rule is the use of line numbers -9 through -1 (inclusive). A negative
line number implies using the line number that was previously "stored" in the line number
register 1 through 9 (see description of the FSE "#d" command).

Another exception is the use of line number 9999. That particular value is interpreted as
"the last line in the buffer”.

Whenever FSE inserts or deletes lines in the work space, the entire work space is
renumbered. The work space lines are always whole numbers — fractional line numbers
are not used or recognized by FSE.

Note: FSE recognizes line numbers that are a maximum of four digits (the fields on the screen
are defined with'a sign — this explains why 5 screen positions exist for each field).

7002 3981-100

FSE — Full Screen Editor

3.38.2.

FSE Column Ranges
A column range is normally specified to the Full Screen Editor in one of two formats:

n A specific column number as a numeric value.

m:m A range of columns from column "m" to "n" inclusive.

The nature of each particular FSE command dictates whether a single column number or a
column range is appropriate for the command.

Column numbers in the first format (a single column) are accepted (where appropriate for
some commands) in {startline}, {endline}, {afterline}, {text1}, or {text2}.

Column numbers of the second format (a range) are only accepted in the fields {text1} and
{text2].

FSE Strings
When the Full Screen Editor command syntax requires the specification of a text string (for

example the "find string” command) the string is normally entered in the {text1} or {text2}
field provided in the lower area of the screen format.

The maximurm string length that is recognized by FSE is 64 characters (the {textl} and
{text2} fields are 72 characters to allow lines that are up to 72 characters to be added).

If the string to be entered includes significant'traﬂing spaces, it must be entered within
single or double quotes (either type of quote character is acceptable provided the same one
is used at both ends of the string). Leading spaces in a string are always significant.

" If the first non-blank character of the string is a digit (0 through 9 inclusive), the string must

be entered within quotes (otherwise the digit or digits are assumed to represent a column
number or column number range!).

If the string contains a single quote or double quote character, it is suggested that the other
quote character be used to delimit the string itself.

When a string is specified as part of a search operation (FInd, DElete, Substitute) the string
may be prefixed by an exclamation mark to indicate that a line is desired that does not
contain the string (for example: FI !ABC means find the next line not containing the
string "ABC").

When the user has set on "pattern matching" mode, some characters in strings take on
special meaning — refer to "3.38.65. FSE Pattern Matching" on page 3-146 for the
documentation of effects of pattern matching mode.

7002 3981-100 3-105

FSE — Full Screen Editor

3.38.4. FSE Command Summary

3-108

The following table is a summary of the commands that FSE recognizes. FSE commands are
limited to one or two characters. Upper case letters in the command syntax are required;
lower case characters are optional.

Table 3-9. FSE Command Summary

Ad Add lines.

BX Create comment box.

CB Copy lines before target line.

CcC Copy column range to another column.

CO Copy lines.

DE Delete lines.

DU Duplicate a set of lines.

En End editing (retain work space).

EX Execute TIP /30 command line(s).

FA Find all lines containing a string,.

F1 Find next occurrence of a string,.

M Same as FI, except place found line in middle
of screen.

F# Equate a command to a user function key
(F10-F22).

F- Same as FI, except search in backward
direction.

He Display HELP information.

In Insert empty lines into screen (after a line).

1B Insert empty lines into screen (before a line).

L List (display) lines on screen.

LL List (display) last page of work space.

MA Establish left and right margins.

MB Move lines before target line.

MC Move constant or column range to a column
range.

MO Move lines.

@) Set language to "space”.

continued ...

7002 3981-100

.

FSE — Full Screen Editor

7002 3881-100

OA

Set language "A".

oC Set language "C".

oD Set language "D".

OL Option Literal case (input text unaltered).

or Set language "P".

OR Set language "R".

oT Set language "T".

ou Option Upper case (input text mapped to
upper case).

OX Set language to "X".

Pr Print (display) lines - same as L. command.

PE Peek at a specified line.

P+ Peek at line after last peeked at line.

P- Peek at line before last peeked at line.

Qu Quit editing (discard the work space).

Re Read lines from a library module.

RC Recall (redisplay) last command entered from
keyboard.

Su Substitute old string with new string.

SA Sort ascending.

SD Sort descending.

SE Set editor defaults.

Sp Substitute old string with new string; show
changes.

SW Switch (interchange) two lines.

Up Update a range of lines.

Wr Wrrite lines to a library module.

WE Write lines to a library module and then END.

WN Write lines to a library module (NO
OVERWRITE PROMPTY).

wWQ Write lines to a library module and then QUIT.

+ Forward n lines.

Backward n lines.

continued ...

3-107

FSE — Full Screen Editor

3-108

Same as SE command.

Shift line data to the left.

Shift line data to the right.

Call FSE recursively.

Save line number in FSE register number d
1-9).

Clear FSE register number d (1-9).

(XHaIT)

In Command area (with {Cmd} field empty) —
display next screen. (Forward Page)

In Display area — update lines from display
area

3
)

7

END editing (save work space if not empty).

Refresh screen display.

Display next screen (Forward Page).

Display previous screen (Backward Page).

QUIT editor; discard work..

B|6|6|68]|6

Insert blank line ahead of line that cursor is on.
— or restore line just deleted with F6

Delete line that cursor is on.

"Split" line at cursor location.

"Join" line to following line at cursor location.

Reissue last FInd command.

EEEE

Available for user definition (via F#
command).

7002 3981-100

FSE — Full Screen Editor

3.38.5. Ad — Add Lines

The Add command allows the user to add new lines of text after a specific line number. The
user should enter "AD" as the command and may specify a {startline} (an entry in {afterline}
is synonymous). :

If a {startline} or (afterline} is not specified, FSE assumes that the lines are to be added at the
end of the work space.

If the text to be added is two lines or less the user may enter the data directly in the {text1}
and {text2} fields of the screen format and press transmit from the second cursor resting
location.

If more than two lines are to be added, the user should leave {text1} and {text2} blank and
simply specify the line number that immediately precedes the lines to be added (this line
number may be entered in {startline} or {afterline}).

FSE re-displays the screen with the contents of the specified line in protected format on the
first line of the display, and leaves the remaining 16 lines left unprotected and blank.

The user may then enter an}; desired text below the (protected) first line and press at
the first cursor resting location.

Trailing lines that are entirely blank are not added.
The {endline} is ignored by the ADD command.

If the last line added (line 17) is NOT blank, a fresh screen is displayed to allow entry of
more lines,

Pressing while in ADD mode cancels the ADD command.

Pressing (XMT) without entering any data cancels the ADD command.

Example:
pEnter Cmd: AD Start line: 10 End line: After line:

Text 05 FILLER PIC X(1l0}.
: 05 AMOUNT-C PIC s$9(7)V99.
[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates adding (only two) lines of text directly after line 10. Since the text
to be added was only one or two lines it is more convenient to code them in the text area
provided rather than issue a naked AD(10) command and then entering the text in the
upper area of the screen format.

7002 3981-100 3-109

FSE — Full Scresn Editor

3.38.6. BX — Create Comment Box

3-110

The BX command may be used to generate a comment box. This command is available for
language COBOL or ASSEMBLER.

The (startline} must be set to the line immediately preceding the desired start of the box.

The {afterline} is set to the number of interior lines in the box (3 is the default for this
value).

The first character of {text1} may be used to override the character used to draw the box ("-"
is the default).

Exampie:

pEnter Cmd: BX Start line: 12 End line: After line:

Text :=

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module: J
Generates:

all Screen Editor:bufrname \

+7-10 + 20 + 30 + 40 + 50 + 60 + 70-2+

13 :* : L)
14 o* *
15 sox* *
16 % *
17 :* *

After creating the comment box, FSE re-displays the upper screen starting with the first line
of the box and positions the cursor in the first blank on line 2 of the box (to facilitate
entering the comments).

7002 3981-100

FSE — Full Screen Editor

3.38.7. CB — Copy Lines Before

The CB command allows the user to copy a range of lines from one part of the edit work
space to a point that is "before” another line,

Enter "CB" as the command and provide the starting line and ending line to be copied.
Specify in {afterline} the line number of the line which is to follow the copied lines.

For example, to copy lines 10 through 80 before line 1, specify the command as "CB", the
{startline} as "10", the {endline} as "80" and the before line (in the field called (afterline}) as
"1". FSE copies the specified lines before line 1. The lines originally at lines 10 through 80
remain unchanged.

If a string is entered in {text1}, then only lines containing that string are copied. If a column
range precedes the string then only lines that contain the string in that column range are
copied.

indicate that the absence of the string is the desired quahﬁcanon

For example, to copy lines 10 through 80 before line 1 only if they contain the string "05" in
columns 12 through 24, enter "CB" as the command, 10 as the {startline}, 80 as the {endline},
1 as the {afterline}, and 12:2405’ in {text1} as in the following example:

Example:
pEnter Cmd: CB Start line: 10 End line: 80 After line: 1:
Text :12:24’0S5’

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3881-100 3-111

FSE — Full Screen Editor

3.38.8. CC — Copy Column Range

3-112

The CC command allows the user to copy columns of existing text to a target column
within a range of lines. The {startline} defines the first line of the range and the {endline}
defines the last line of the range.

The {text1]} line must contain the column range to be copied. This value must be entered as
a column range (ie: 1:5 or 9, etc).

The {text2} line must contain a single column number indicating the target column.

The columns of text specified by the first specification are copied to the column specified
(pushing existing text to the right as the copied text is inserted).

The default line range of this command is the 17 lines that are currently displayed in the
text area of the screen. ’

Text is not pushed past the right margin (extra text "falls off" the right edge of a line and

disappears into the bit bucket).
Example:
PEnter Cmd: CC Start line: End line: After line:
Text :1:10
:40

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustratés copying columns 1 through 10 to column 40 (effective on the lines
that are currently displayed on the screen).

7002 3981-100

FSE — Full Screen Editor

3.38.9. CO — Copy Lines After

The copy command allows the user to copy a range of lines from one part of the edit work
space to a point that is "after” another line.
Enter "CO" as the command and provide the starting line and ending line to be copied as

well as the number of the line that is just ahead of the desired location of the copied text.
The last line in the edit buffer is the default value of {afterline}.

For example, to copy lines 1 through 8 after line 17, the user would specify the command as
"CO", the {startline} as "1", the {endline} as "8" and the {afterline} as "17". FSE copies the
lines after line 17 and ahead of the line that was line 18. The lines originaily at lines 1
through 8 remain unchanged.

If a string is entered in {text1}, only lines containing that string are copied. If a column
range precedes the string then only lines that contain the string in that column range are
copied.

Of course, such a qualification string may be preceded by an exclamation mark ("!") to
indicate that the absence of the string is the desired qualification.

For example, to copy lines 1 through 8 after line 17 only if they contain the string "05" in
columns 12 through 24, enter "CO" as the command, 1 as the {startline}, 8 as the {endline},
17 as the {afterline}, and 12:24°05’ in {text1} as in the following example:

EE&BHWFMB:
PEnter Cmd: CO Start line: 1 End line: 8 After line: 17:
Text :12:24°05’ .

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3981-100 3-113

FSE — Full Screen Editor

3.38.10. DE — Delete Lines

The delete command allows the user to delete a range of lines. As a precaution, FSE does

ment allaws tha 11eer bo dalste Hmas 3 i i 1
not allow the user to delete lines UNLESS the first line (of the range) is currently being

45 LldaiTaiisy

displayed in the upper area of the display OR has been revealed by a PEEK command.

The user must enter "DE" as the command, the {startline} and an optional {endline}. The
Full Screen Editor deletes the lines from the {startline} to the {endline} inclusive.

If an {endline} is not specified, the DE command deletes only one line (the {startline}).

The delete command may be limited to lines that contain a certain string by entering a
string in {text1}. Lines may be deleted if they do NOT contain a certain string by prefixing
the string with an exclamation mark.

For example, to delete lines 10 through 20 only if they contain the string "VALUE", enter
DE as the command, 10 as the {startline}, 20 as the {endline}, and VALUE in (text1}.

Example:

PEnter Cmd: DE Start line: 10 End line: 20 After line:
Text :VALUE

(_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y¥ Module:

This example illustrates deleting lines that contain the string VALUE (5 characters) within
lines 10 through 20 inclusive.

Lines not containing the string VALUE could be deleted by specifying the string as
IVALUE

The qualification string may also make use of a column specification to select lines
containing (or not containing) the string within a specified range of columns.

3-114 7002 3981-100

FSE — Full Screen Editor

3.38.11. DU — Duplicate Lines

The duplicate command allows one or more lines to be duplicated a specified number of
times. The duplicated line(s) always immediately follow the original set of lines.

For example, to duplicate lines 5 through 8, 4 times, enter DU as the command, 5 as the
{startline}, 8 as the {endline}, and 4 in the {afterline} field:

Example:
pEnter Cmd: DU Start line: 5 End line: 8 After line: 4
Text :
(_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

As a safety feature, FSE does not allow the creafion of more than 500 new lines with a DU
command.

3.38.12. En — End Full Screen Editor

The end command signals FSE that the user has completed all desired editing. FSE
terminates normally and retains the work space for potential future editing.

FSE clears the screen and issues a message indicating that the work space is retained. The
text of this message includes the group name and buffer name of the retained work space
(edit buffer) as a reminder to the user.

(MEQWATY) is interpreted as the "E" command.

7002 3981-100 3-116

FSE — Full Screen Editor

3.38.13. EX — Execute TIP/30 Command Line(s)

The EX command "executes” one or more lines of text as if the text is a TIP/30 command
line entry. FSE uses the TIPSUB facility of TIP/30 to execute either a range of lines or one or
two lines provided in {textl} and {text2}.

This command eliminates the need to exit the editor (with the "End" command) to be able
to run other transactions.

The command line (or lines) to be executed must conform to standard TIP /30 command
line structure (no leading spaces; a valid transaction code, etc).

Comment lines (these vary according to the language of the text being edited) are executed
— note the transaction name must immediately follow the comment character (eg: "*WMI"
starting in column 1 for Assembler or column 7 for COBOL).

Example:
PEnter Cmd: EX Start line: End line: After line:
Text :WMI

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

-OR-

/1;211 Screen Editor:bufrname ﬂ\\\

+7-10 $mem20 $orm=30mmmotmmmd ummmdeem 50 4mmm 60 poee0-2+
1 :*RV TJS$SCOB74 (FRED), ,E=PAY020,F=TSTSRC, USER=FRED :
2 :%.,SYS W FRED

3

PEnter Cmd: EX Start line: 1 End line: 2 After line:
Text :

\\\i:i Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module: 4’//

3-116 7002 3981-100

FSE -—— Full Screen Editor

3.38.14. FA — Find All Lines Containing a String

The find all command is used to search for all lines that contain a given string. The lines are
displayed one page at a time and may be updated by altering them on the screen and
pressing with the cursor in the first resting location.

Pressing (F2) displays the next page of matching lines.
Entering another FSE command cancels the “find all" command.

The default starting line number for the "FA" command is the second line that is currently
displayed in the upper area of the screen format.

The default ending line number is the last line of the work space.
Example:
PEnter Cmd: FA Start line: 1 End line: After line:
Text :PIB~ :

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates locating all occurrences of the string "PIB-". All lines containing
the string are displayed (and may be selectively altered and replaced).

Additional Considerations:
The string to be found may be prefixed by a column specification to limit the search for the

string to the column range specified. The {text2]} field is not used by this command (the
search string, with or without a column range, must be in {text1}).

Example:

40:60PIC

The above command searches for "PIC" starting anywhere in columns 40 through 60
inclusive.

7002 3981-100 3-117

FSE — Full Screen Editor

3.38.15. Fi — Find Lines Containing a String

3-118

The FI command is used to search the work space (in a forward direction — toward the end
of the work space) for the next line matching a specified string. A {startline} may be given
to start searching from that point.

The FI command does not "wrap around"” when it reaches the last line of the work space.

If a line is found that matches the string, FSE re-displays the text — beginning with the line
that matched the search string.

The default {startline} for the FI command is the second line currently displayed in the
upper area of the screen.

The user may take advantage of this fact by issuing FI repeatedly to "step" through
occurrences of a string (since the second and subsequent FI commands begin looking from
the line after the first line on the screen, one automatically avoids finding the same line over
and over). :

To find, for example, the beginning of the PROCEDURE DIVISION in a COBOL program,
enter FI as the command, "1" as {startline}, and "PROCEDURE" in {text1}:

Example:
pEnter Cmd: FI Start line: 1 End line: After line:
Text :PROCEDURE

[_] Lines: 904 Lang:C Case:U Patterns:N Seg:Y Module:

A more efficient approach is to take advantage of the fact that COBOL division names must
begin in column &

PEnter Cmd: FI Start line: 1 End line: After line:
Text :8PROCEDURE

(] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

Additional Considerations:

The string to be found may be prefixed by a column specification to limit the search for the
string to the column range specified. The {text2} field is not used by this command (the
search string, with or without a column range, must be supplied in {text1}).
Example:

25LBL

Implies searching for the string "LBL" starting in column 25.

7002 3981-100

FSE — Full Screen Editor

3.38.16. FM — Find Lines Containing a String

The FM command functions in the same manner as the FI command, with one difference:

wwhon tha daodmad Moo fn ooy ; i 3 i i i
when the desired line is found, the matching line is displayed in the middle of the upper

area of the screen rather than in line 1 (hence the command mnemonic Find Middle).

If {startline} is not specified, the starting line for the search defaults to the second line that is
currently displayed in the upper area of the screen format.

3.38.17. F# — Define Function Key

Some FSE commands may be worth saving. The F# command allows the user to equate
some function keys ((Fi@) through (F22)) to an FSE command. Subsequent use of the defined
function key results in the automatic execution of the equated command.

Commands that are equated to function keys are retained until FSE is terminated (via the E

P ol . |

or Q command) or until the function key is redefined by the user.

The F# command also allows the option of permanently saving the definitions of keys F#10
through F#22 in your DEFKEY file (see also the description of the DEFKEY transaction
earlier in this manual).

For example, assume that you often wish to advance the display by just 8 lines (a sort of
half page advance).

The hard way is to enter "+" as the command and "8" in the {startline} field.

To avoid repeatedly keying this command might be to equate (say) function key #13 (a
handy lower case function key on a UTS400) to this command.

To accomplish this, enter "F#" as the command and 13 in the {startline} field. FSE responds
by displaying the foilowing screen format:

///77 TIP/ 30 Full Screen Editor ‘\\\

User Function Key Definition

Fkey: 13 Command: __ Start line: End line: After line:

Text:

Msg-Wait Return to FSE

Pl - Refresh screen

F2 - Next function key

F3 = Prior function key

F4 - Save function keys
Xmit - Update definition (1

o /

7002 3981-100 3-119

FSE — Full Screen Editor

Notice that the function key that you specified in the main FSE screen (13 in this example}
has been carried forward to this screen.

You may now proceed to fill in {startline}, {endline}, {afterline}, {text1} and (text2} as

A AAAAD S (PoALA) QAL (ATALL QS

appropriate for the command that you are assigning to the function key you have selected.

Note that the command that is equated to the function key can be quite complex and might
include text information (a search string for example).

To continue our example of half-screen forward paging, we enter:

///7 TIP/ 30 Full Screen Editor ‘\\\

User Function Key Definition

Fkey: 13 Command: +_ Start line: 8 End line: After line:

Text:

Msg=Wait Return to FSE

F1 -~ Refresh screen

F2 - Next function key

F3 - Prior function key

F4 - Save function keys
Xmit -~ Update definition {1

- /

and press to update the definition of F#13 (in this case).

At this point, the definition of F#13 is updated, but the definition of F#13 is purely local to
this session. Once you return to the FSE editing screen (more on that in a moment), you
find that pressing (Fi3) results in the automatic execution of the "+" command with "8" in
{startline}. The command is executed directly without being displayed, but it may be
“recalled” using the RC command.

To define other keys you may use (#2) or (F3) as advertised in the screen format shown
above.

To save the function keys in your personal DEFKEY file, press whenever you have
finished defining keys; such saved keys remain permanently in effect for YOU until such
time as you discard the DEFKEY file or re-save the FSE function definitions. Whenever you
use FSE, those saved function keys are automatically "live” and in effect.

To return to your FSE session (whether or not you have elected to SAVE your function key
definitions), simply press .

3-120 7002 3981-100

N

FSE — Full Screen Edlitor

3.38.18. F- — Find Backward

The F- command functions in the same manner as the FI command, with one difference: the
search proceeds from the specified {startline} in a backward direction (that is, toward the
beginning of the edit work space).

If {startline} is not specified, the start line for the search defaults to the line that precedes the
first line in the upper area of the screen format.

The F- command does NOT "wrap around" when it reaches the first line of the work space.

3.38.19. He — Help for Full Screen Editor
The H command displays help information about FSE commands.

This information is not shown here since it may change from time to time.
The same HELP information may be solicited by using the TIP /30 help processor (see
"3.42. HELP — Display Help Information” on page 3-154).

3.38.20. In — Insert Empty Lines (after)

The I command inserts the specified number of blank (empty) lines following the
(startline}. These lines can than be filled in and updated by pressing with the cursor
in the first resting location.

The {afterline} field is used to specify the number of lines to insert. If {afterline} is not
specified, one blank line is inserted.

For example, to insert 5 blank lines after line 24, enter "I" as the command, 24 as {startline},
and 5 as (afterline}.

Example:
PEnter Cmd: I Start line: 24 End line: After line: 5:
Text :

(L] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3881-100 3-121

FSE — Full Screen Editor

3.38.21. IB — Insert Empty Lines (before)

The IB command inserts a specified number of (empty) lines ahead of the specified
{startline}. These lines can then be filled in and updated by pressing with the cursor
in the first resting location.

The {(afterline} field is used to specify the number of lines to insert. If {afterline} is not
specified, one blank line is inserted.

To insert 3 blank lines ahead of line 20: enter "IB" as the command, 20 as (startline}, and 3 as
{afterline}.

Example:

bEnter Cmd: IB Start line: 20 End line: After line: 3:
Text @

\\\i_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module: 44///

3.38.22. Li — List Lines on Screen

The list command displays a range of line numbers in the upper area of the screen. The
user must enter the "L" command in the command field and may specify a (startline} or an
{endline}.

If both a (startline} value and an {endline} value are not entered, the L. command defaults to
a display starting with line 1.

If a {startline} is specified, FSE displays lines starting with the specified (startline}.

If an {endline} is specified, FSE displays lines so that the specified {endline} is the bottom
line displayed. ,

Example:
PEnter Cmd: L Start line: 128 End line: After line:
Text :

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

3-122 7002 3981-100

FSE — Full Screen Editor

3.38.23. LL — List Last Page

The list last command displays the last "page” of text from the work space. The user must

we e

enter the "LL" command in the command field — no other parameters are required or
recognized.
This command simplifies the process of moving the display to the end of the current work
space.
Example:

PEnter Cmd: LL Start line: End line: After line:

Text :

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:¥Y Module:

3.38.24. MA — Margin Set

The margin command establishes new left and riéht margins for FSE. The new left margin
column is specified in {startline} and the new right margin column is specified in {endline}.

If either field is left empty, the default margin (left or right) is used in its place.

The error message: "Margin number exceeds record length" is displayed if the right margin
is beyond the declared record length (established when FSE is invoked).

The default margins used by FSE are:

Language "COBOL™ : 7 through 72 inclusive
Language "RPG" : 6 through 74 inclusive
none of the above : 1 through 72 inclusive

The margin command may be used to gain access to columns that are normally not
accessible. For example, for COBOL text, one could set the margins to 7 and 80 and then
modify data in columns 73-80.

Example:
PEnter Cmd: MA Start line: 7 End line: 80 After line:
Text :

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3981-100 3-123

FSE — Full Scresn Editor

3.38.25. MB — Move Lines Before
The MB command is identical to the CB (copy before) command with the exception that the

moved lines are NOT left in their previous location.
The MB command requires the {startline}, {endline}, and {afterline} numbers be specified.

An optional string may be specified in the first text line to move only lines that match the
specified string.

Exampie:
PEnter Cmd: MB Start line: 44 End line: 57 After line: 208:
Text @ :

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving lines 44 through 57 (inclusive) before line 208.

3-124 7002 3981-100

FSE — Full Screen Editor

3.38.26. MC — Move Constant or Columns

The move columns (move constant) command allows the user to move a range of columns

S PRy

(YD) o cbeieary mmcendnobd bou A wmencrn AL ~
v a auuls WALIoLALEL LW A LNIEC Vi VUL U WD,

The {startline} and {endline} may be specified to limit the scope of the MC command.
Default is all lines that are currently displayed in the upper area of the screen.

The {afterline} field is not used by the MC command.

{text1} must contain the character string OR the column range that is to be moved. {text1}
may contain:

e astring representing a constant (eg: ABC or '12)
* asingle column number (eg: 13)

° a column range (eg: 10:20)

{text2} must contain a single column or a column range representing the column(s) to be
altered.

If the text to be moved is not the same length as implied by the receiving column(s), the text
is padded with spaces or truncated as appropriate.

Examplsa:

PEnter Cmd: MC Start line: 1 End line: 10 After line:
Text :PICTURE
:40
{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving the string "PICTURE" (7 characters) to column 40 of line 1
through 10 inclusive. The text that was in columns 40 through the right margin are shifted
right 7 positions to accommodate the new text (any overflow falls off the end into the bit
bucket).

Example:

PEnter Cmd: MC Start line: 10 End line: 100 After line:
Text :10:20
140
(_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving the contents of columns 10 through 20 (inclusive) to
column 40 in lines 10 through 100 (inclusive).

7002 3981-100 3-125

FSE — Full Screen Editor

3.38.27. MO — Move Lines After

The MO command is identical to the copy command "CO" with the exception that the
moved lines are NOT left in their previous location.

The move command requires the {startline}, {endline}, and {afterline} numbers be specified.

An optional string may be specified in the first text line to move only lines that match the
specified string.
Example:

pEnter Cmd: MO Start line: 44 End line: 57 After line: 208:

Text : .

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving lines 44 through 57 (inclusive) after line 208.

3.38.28. O — Set Language " "

The O command sets the language code of the text being edited to space (unspecified). The
O command has exactly the same effect as using the SE command (see "3.38.48. SE — Set
FSE Options” on page 3-134) and modifying the language field to a space.

The O command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1} or {text2} fields.

3.38.29. OA — Set Language "A"

The OA command sets the language code of the text being edited to "A" (Assembler). The
QA command has exactly the same effect as using the SE command (see "3.38.48. SE — Set
FSE Options” on page 3-134) and modifying the language field to "A".

The OA command does not require (or acknowledge) any entry in the {startline}, {endline},
(afterline}, {text1} or {text2} fields.

3.38.30. OC — Set Language "C"

The OC command sets the language code of the text being edited to "C" (COBOL). The OC
command has exactly the same effect as using the SE command (see "3.38.48. SE — Set FSE
Options” on page 3-134) and modifying the language field to "C".

The OC command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1} or {text2} fields.

3-126 7002 3981-100

FSE — Full Screen Editor

3.38.31. OD — Set Language "D"

The OD command sets the language code of the text being edited to "D" (Document). The
OD command has exactly the same effect as using the SE command (see "3.38.48. SE — Set
FSE Options” on page 3-134) and modifying the language field to "D".

The OD command does not require {(or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1} or {text2} fields. '

3.38.32. OL — Option Literal

The option literal command provides a fast and simple method to declare that subsequent
input text (including any search strings!) is to be interpreted in the case it was entered at
the keyboard.

The SE command (see "3.38.48. SE — Set FSE Options” on page 3-134) can also be used to
accomplish this change.

The OL command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1]} or {text2} fields.

Note: This setting is retained by FSE across edit sessions — this setting is not encoded in the
library header for the module.

3.38.33. OP — Set Language "P"

The OP command sets the language code of the text being edited to "P". The OP command
has exactly the same effect as using the SE command (see "3.38.48. SE — Set FSE Options”
on page 3-134) and modifying the language field to "P".

The OP command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1} or {text2} fields.

3.38.34. OR — Set Language "R"

The OR command sets the language code of the text being edited to "R" (RPG). The OR
command has exactly the same effect as using the SE command (see "3.38.48. SE — Set FSE
Options" on page 3-134) and modifying the language field to "R".

The OR command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline}, {text1} or {text2} fields.

3.38.35. OT — Set Language "T"
The OT command sets the language code of the text being edited to “T" (Text). The OT

command has exactly the same effect as using the SE command (see "3.38.48. SE — Set FSE

Options” on page 3-134) and modifying the language field to "T".

The OT command does not require (or acknowledge) any entry in the (startline}, {endline},
{afterline}, {text1} or {text2} fields.

7002 3981-100 3-127

FSE — Full Sereen Editor

3.38.36. OU — Option Upper

The option upper command provides a fast and simple method to declare that subsequent

_ input text (including any search strings!) is to be translated into upper case. That is, any

alphabetic characters in the text are automatically translated into upper case.

The SE command (see "3.38.48. SE — Set FSE Options" on page 3-134) can also be used to
accomplish this change.

The OU command does not require (or acknowledge) any entry in the {startline}, {endline},
(afterline}, (text1} or {text2} fields.

Note: This setting is retained by FSE across edit sessions — this setting is not encoded in the
library header for the module.

3.38.37. OX — Set Language "X"

The OX command sets the language code of the text being edited to "X". The OX command
has exactly the same effect as using the SE command (see "3.38.48. SE — Set FSE Options"
on page 3-134) and modifying the language field to "X".

The OX command does not require (or acknowledge) any entry in the {startline}, {endline},
{afterline], (text1]} or (text2} fields.

3.38.38. Pr — Print Lines

3-128

The Print command is identical to the List command described in a previous section. It
does not actually print the lines, but displays them on the terminal. This command is

provided because some editors interpret a "print” command as a "display on the screen”
function.

To print an entire edit work space, one must first "End" FSE (to free the edit buffer!) and
then use the TIP /30 utility program "TLIB" to print the edit buffer:

Example:

Q??)TLIB PR PAY020,,E /

To print a portion of an edit buffer (work space), the simplest procedure is to use the FSE
Write command to write the range of lines to a temporary library element (the library
"RUN" is a convenient place to hold such temporary data) and then invoke TLIB (using the
FSE EX command!) to print the temporary element.

7002 3981-100

e

FSE — Full Screen Editor

3.38.39. PE — Peek at Line

The PE command allows the user to view one or two lines without disturbing the lines that
are currently displayed in the upper area of the screen format. The command expects a
value to be entered in {startline}. This line (and the line that follows it) are displayed in
{text1} and ({text2}.

This command is useful when you think you remember a line number (how many move or
copy commands have been "off by just one line"?).

The (two) lines of text that are revealed in this manner may then be added by entering an
Add command (the text is already in the appropriate area for the Add command!).

Exampie:

pEnter Cmd: PE Start line: 87 End line: After line: : l

Text : :
k\\i_] Lines: 904 Lang:C <Case:U Patterns:N Seq:Y Module: ‘//)

This example illustrates peeking at line 87 (and 88 — if it exists).

After pressing (to enter the PE(87] command), the display might look like this (with

lines 87 and 88 displayed):
PEnter Cmd: PE Start line: 87 End line: After line:
Text : 05 FILLER PICTURE S8(7)V9S.
: 05 FILLER BICTURE X (4).

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

3.38.40. P+ — Peek Scroll Up

The P+ command is a simple method to scroll (in an ascending sense) the lines that have
been displayed with a previous PEEK command. For example, if the user issues a P+
command after issuing a PE(13) command, he is shown lines (14,15). A subsequent P+
command displays lines (15,16) and so on.

This command is useful for line fishing (but gets a little tedious if you aren’t close the first
time).

Example:

pEnter Cmd: P+ Start line: End line: After line:
Text

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3881-100 3-129

FSE — Full Screen Editor

3.38.41. P- — Peek Scroll Down

The P- command is a simple method to scroll (in a descending sense) the lines that have
been displayed with a previous PEEK command. For example, if the user issues a P-
command after issuing a PE(13) command, he is shown lines (12,13). A subsequent P-
command displays lines (11,12) and so on.

This command is useful for line fishing (but gets a little tedious if you aren’t close the first

time).
Example:
pPEnter Cmd: P- Start line: End line: After line:
Text :
{_] Lines: 304 Lang:C Case:U Patterns:N Seq:Y Module:
__

3.38.42. Qu — Quit FSE

The quit command causes the Full Screen Editor to end the editing session AND discard
the edit work space.

If changes have been made to the contents of the work space and the changes have not been
" written, FSE warns the user and asks for confirmation of the QUIT command.

The QUIT command is normally used after a write command has copied the work space to
a library (to save the contents of the work space).

Pressing () is equivalent to this command.

3-130 7002 3981-100

FSE — Full Screen Editor

3.38.43. Re — Read from Library or Edit Buffer
The read command allows lines to be read from a library element or another edit buffer.

A (startline} and/or {endline} may be specified to indicate that only a subset of the element
(or edit buffer) is to be read.

The {startline} defaults to 1 if it is not specified; {endline} defaults to 9999 (meaning the last
line of the input).

The lines that are read are copied immediately after the line number specified in the
{afterline} field of the command (or at the end of the current work space if no {afterline} is

specified).

The library name, element name and element type may be entered in {text1} in the usual
format: library/element,type.

To specify that the Read command is to read from an edit buffer, the parameters are:
name,,E (pseudo-type "E" indicates Edit Buffer).

Alternatively, the SE command (see "3.38.48. SE — Set FSE Options” on page 3-134) may be
used before using the Read command to specify the library name, element name, and type.

If these fields are provided in the {text1} line of the screen format, any omitted fields are
defaulted from the "current" information (in the lower right area of the screen format).

Example:
PEnter Cmd: R Start line: End line: After line: 100:
Text :TSTSRC/PAY020

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:TSTSRC/PAY035,S

This example illustrates reading (all lines by default) of the source element "PAY020" from
library "TSTSRC". The lines read in are placed immediately following line 100 of the work
space.

Addltional Considerations:

A read command is considered to be a "change;" of the contents of the work space and
therefore causes a subsequent Quit command to think that changes have been made.

3.38.44. RC — Recall Last Command

The RC command re-displays the last command that was entered in the command area
(lower portion) of the FSE screen format.

Camo FEE rammande claar the e low

W ARSAA R & WS WAL LA RLAL \‘g Nedlob2h LA LN. a"cn n; a a"m“ Fn £‘+. +hn pp COmII“

AT a Vi ul.\. e Nl QSN SRR T-1 8 1T AN PR3901-9 41

user to recall the last command (and therefore resubmit the ommand with or without
modification).

7002 3981-100 3-131

FSE — Full Screen Editor

3.38.45. Su — Substitute Text

The substitute command allows the user to replace one string with a different string. The
starting and ending lines may be specified to limit the substitution to just that range of
lines.

The number of lines modified is reported when the substitute command is completed.

If an optional occurrence number is NOT specified (in the {afterline} field), the substitute
command changes all occurrences that are encountered within the range specified.

If neither a {startline} nor {endline} is given then substitution takes place only within the 17
lines currently displayed in the upper area of the screen.

The {afterline} field may contain the desired "occurrence” number (all occurrences on each
inspected line is the default).

To substitute the word 'RED” with "GREEN’ in lines 30 through 80, enter "S" as the
command, 30 as {startline}, 80 as {endline}, "RED" in {text1}, and "GREEN" in (text2}.

The substitute command processes an individual occurrence of the specified string by
specifying an occurrence number in the {afterline} field. In the above example, if only the
third occurrence of RED is to be changed to GREEN, enter 3 as the {afterline}.

The substitute command may be further restricted to look only in certain columns for the
string. This is done by preceding the old string (in {text1} by a column range.

To change RED into GREEN if the string RED started in columns 15 through 21, enter
15:21RED in {text1}.

Example:

pEnter Cmd: SU Start line: 1 End line: 100 After line:
Text :15:21RED
:GREEN
(_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates performing a substitution on lines 1 through 100 (inclusive). If the
string "RED" is found in columns 15 through 21 (inclusive) of a line it is replaced with
"G‘REEN’"'

3-132 7002 3981-100

FSE — Full Screen Editor

3.38.46. SA — Sort Ascending

The sort ascending command sorts lines into ascending order using a specified column as
the start of the "sort key”. The sort uses the standard EBCDIC character set as the collating
sequence.

The sort is NOT a "stable" sort — lines that have identical "sort keys" do not necessarily
remain in their original sequence (with respect to each other).

The user must specify a {startline} and {endline} and may specify in the (afterline} field the
column that is to be considered the first column of the "sort key".

If {afterline} is omitted, the sort uses the entire line as the sort key.

A sort command is considered to be a "change" of the contents of the work space (whether

or not any lines actually are moved!) and therefore causes a subsequent Quit command to
think that changes had been made.

FSE invokes the transaction code "SORT" (see "3.81. SORT — Sort Edit Buffer" on page
3-249) to accomplish the line sorting — the SA command fails if the user does not have
proper security to run the SORT transaction.

EEXEUT”?hB:
PEnter Cmd: SA Start line: 1 End line: 40 After line: 35:
Text @ :

(1 Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example sorts lines 1 through 40 inclusive into ascending sequence, using a key that
starts in column 35.

3.38.47. SD — Sort Descending

The sort descending command sorts lines into descending order using a specified column
as the start of the "sort key”. The sort uses the standard EBCDIC character set as the
collating sequence.

This command is identical to the SA command (described in the previous section) except
that the lines are ordered in descending sequence by the specified key.

7002 3981-100 , 3-133

FSE — Full Screen Editor

3.38.48. SE — Set FSE Options

The set command allows the user to specify information about the edit work space or to
alter certain session parameters for FSE.

3-134

The following screen format is displayed when the SE command is entered. The user may
change any of the values in the unprotected fields; protected fields (suffixed by an ™" in the
discussion that follows) are shown for information only.

/

Module; File: Element: Type: _ Changed: __
Comments:
Version: ___ Language: _ Case:U_
Pattern Matching: _ Auto Sequence: _ Update Stamp:
Buffer; Group: Name:

Default string:

Line registers:

Line register display option: _

Press MSG-WAIT to return to FSE or Press XMIT to alter information ()

TIP/ 30 Full Screen Editor ﬁ\\\

Page Size: __ Left Margin: Right Margin:

/

File

Element

Type

Comments

Changed

Version

Language

The library name associated with the contents of the edit work space.

This library is the library used by default by the FSE read and write
commands.

The element name associated with the contents of the edit work space.

The FSE read and write commands assume that this is the default element
name.

The type of the library element.

FSE read and write commands use this entry as the type of the library element
to be read or written.

This field contains the current comments that are maintained in the library
directory entry for the element.

This field contains a "Y" if the edit buffer has been changed and those changes |

have not yet been written to a library element.
The current version number of the element.
The language code for the contents of the edit work space.

Specifying the language of the text in the work space establishes default
margins and dictates the number of columns that FSE displays on the

7002 3981-100

FSE — Full Screen Editor

Case

terminal.
"A" — Assembler format (margins 1-72), text automatically tabbed so that the
d

Talkal Sald atambe § na
label field starts in column 1, the opccde field starts in 10, the oyyrand fiel

starts in column 20 and comments start in column 39.
"C" — Cobol format (margins 7-72)
"D" — Documentation (margins 1-72)

"P" — Cobol format (margins 7-72) except that comment lines (* in column 7)
are NOT translated to upper case.

"R" — RPG format (margins 6-72)

“T" — Assembler format (margins 1-72), text automatically tabbed so that the
label field starts in column 1, the opcode field starts in 10, the operand field
starts in column 16 and comments start in column 40.

"X" — Upper case text (margins 1-72)

— Upper case text (margins 1-72)

If the language type is changed during an FSE session by altering the
information shown by the SE command, the margins are not reset at the same
time.

The case processing of input text (default is Upper case unless Type="D")

"U" — input forced to upper case

"L" — input may be either upper or lower case

Pattern Matching

"Y" or "N" indicating whether or not pattern matching mode is in effect.

When pattern matching mode is in effect, certain characters in strings take on
special meaning. See description of pattern matching in "3.38.65. FSE Pattern
Matching” on page 3-146.

Auto Sequence

"Y" or "N" indicating whether or not FSE is to automatically sequence each line
(according to its language code) on a write to a library.

Update Stamp

7002 3981-100

The desired type of "stamping" of updated lines. FSE marks each line that is
updated with a specific type of "update stamp".

Update stamping applies only to edit buffers that are marked as language
code A, C,PorD.

All other language codes cannot make use of update stamping.
Default depends on TIP/30 generation parameter EDiTstmp=.

"STANDARD" — implies that FSE places the current version number (3 digits)
in columns 73-75 of any line that is updated and places an asterisk in column
76 of updated lines (the asterisk reveals lines that were updated during the
last editing session).

3-135

FSE — Full Screen Editor

Group*

Name®

spaces — same as STANDARD.
"NO" — do not stamp updated lines in any manner

"DATE" — place current date in YYMMDD format in columns 73:78 of
updated lines

"USERID" — place current user-id in columns 73:80 of updated lines

none of the above — FSE takes the 8 characters in this field (a secret code??)
and uses those characters to stamp columns 73-80.

Important note! The "stamping” process takes place as a side effect of a write
command (therefore, updates that occur across more than one edit session
receive the same version number).

Since the "stamping" occurs as a side effect of a write command, it follows that
the stamping cannot be previewed by looking at columns 73-80 of the edit
buffer.

Name of the user group that "owns" this edit buffer (work space).

This normally is the user’s first elective group.

The name of the edit work space.

Default String*

Page Size

The last string used in a search expression.

This is also the default string used if one is not provided on a Find command
(FA, FL, FM, (8)).

Note that a column specification that was part of a search string (eg:
1:20'FOQ) is also retained by FSE.

The number of lines that constitutes a "page" of text.

FSE moves ahead or back this number of lines when the user uses the Page
Forward /Backward commands.

Left margin®

The current column number that is the left margin.

Right margin®

The current column number that is the right margin.

Line registers®

3-136

Line numbers that have been "saved" in FSE registers 1 through 9 (refer to #d
comrmand).

7002 3981-100

FSE — Full Screen Editor

Display option

Line register display option -— whether or not the lines that have been "saved"
in a line register (via a #d command) are to be highlighted.

If this field contains a "Y", FSE displays the register number of a saved line
number rather than the actual line number (see examples in the discussion of
the #d command).

The register number is also embellished with a trailing negative sign (to catch
your eye) and the line number field is set to reverse video (although many
terminals cannot respond to that attribute!).

Default: "Y" for all languages except RPG.

The RPG screen does not have room for a trailing minus decoration; reverse
video is the best one can expect when the language is set to "R".

S 3.38.49. SP — Substitute and Display Changes

The SP command has the same parameters and options as the regular substitute command.
The SP command however, displays the changes that it makes (in the upper area of the
screen).

When the screen gets full (after each 17 lines of changes):

e pressing key (£2) simply continues the SP command;

* entering another command terminates the SP command and proceeds to the new
command;

° the user may make additional changes (manually) in the upper area of the screen
format and press the key to make those additional changes — and then press the
(2 key to continue the original SP command.

Additional Considerations:

Since the SP command operates interactively, it does not report the number of lines that
were modified as a resuit of substitution.

N

3.38.50. SW — Switch (exchange) Two Lines

The SW command exchanges two lines. The line numbers of the two lines to exchange are
supplied as the {startline} and {endline}. The {startline} must be less than {endline}.

Exampie:

pEnter Cmd: SW Start line: 100 End line: 101 After line:
Text :

\\\iﬁ] Lines: 904 Lang:C Case:U Patterns:N Seqg:Y Module: : g‘///

7002 3981-100 3-137

FSE — Full Screen Editor

3.38.51. Up — Update Line Range

The update command displays a range of lines in the upper area of the screen format and

If a line range is not specified (a naked U command) only line one is displayed for update.

If a line range is specified that represents more than 17 lines (the maximum number of lines
that can be displayed in the upper area) FSE displays only the first 17 lines of the range.

Example:
PEnter Cmd: UP Start line: 70 End line: 74 After line:
Text :

(L] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This command would result in a display similar to the following:

Full Screen Editor:BUFFER
+7-10 + 20 + 30 + 40 + 50 + 60 fem=T0-2+
70 :--text of line 70-- :
71 :--text of line 7l--
72 :-=text of line 72—~
73 i==text of line 73--
74 :--text of line 74--

The user may now alter the text in the upper area of the screen (including typing additional
lines following the ones shown) and press to replace the original lines 70-74 with the
new text from the upper area of the screen.

3-138 7002 3981-100

'%\

FSE — Full Screen Editor

3.38.52. Wr — Write Module to Library

The write command allows text to be written out to a library element from the work space.
The library name, element name and type may be entered via a previous "SEt" command or
in the {text1} field in the lower area of the screen format.

A range of lines may be specified to be written; the default is to write the entire contents of
the work space to the indicated library element.

If the library name, element name, or type is omitted in the {text1} field FSE uses whatever
values are currently in effect (see "3.38.48. SE — Set FSE Options” on page 3-134) — as
echoed in the lower right corner of the screen format. If directory information is currently
in the work space (type code "D" or "F"), an omitted type specification defaults to "S", since
writing directories is not permitted.

To update the module comment (that is written in the library header for the element), one
can either use the SE command before issuing the Write command or specify the comment

directly in the first 20 characters of the {text2} field.

If the specified element (of the corresponding type) already exists in the library, FSE
displays an informational message indicating that the element exists and requires the user
to press the (£2) key to confirm that the element is to be overwritten.

If the user DOES NOT press (F2) (or spends more than 60 seconds thmkmg about it), the
Write command is cancelled.

Example:

PEnter Cmd: WR Start line: End line: After line:
Text :TSTSRC/PAY020

ta comment :
{1 Lines: 108 Lang:C Case:U Patterns:N Seg:Y Module:PRODSRC/PAY,S

This example illustrates writing (the entire work space) to the library "TSTSRC" as an
element named "PAY020" (note the somewhat frivolous comment provided in {text2}.

Addltlonal Considerations:

If FSE displays the error message "Error W processing write command”, it is possible that
the target library is defined in the TIP/30 catalogue with the specification WRITE=NO
(meaning that write operations are not permitted).

3.38.53. WE — Write Module to Library and End

The "write with automatic end" command performs the same function as the W command
and then performs an END command after the write has completed. This is equivalent to
issuing a W command and then separately issuing an E command.

If the specified element (of the corresponding type) already exists in the library, FSE
displays an informational message indicating that the element exists and requires the user
to press the (F2) key to confirm that the element is to be overwritten.

If () is NOT pressed (or a 60-second timeout occurs), the WE command is cancelled.

7002 3981-100 3-139

FSE — Full Screen Editor

3.38.54. WN — Write (No Overwrite Prompt)

The "write with no overwrite prompt"” command performs the same function the W
command (see previous section) with the exception that NO prompt is issued if the
specified library element already exists.

3.38.55. WQ — Write Element to Library and Quit

The "write with automatic quit” command performs the same function as the W command
(see earlier section) and then performs a QUit command after the write has been finished.
This is equivalent to issuing a W command and then separately issuing a QUit command.

If the specified element (of the corresponding type) already exists in the library, FSE
displays an informational message indicating that the element exists and requires the user
to press the (F2) key to confirm that the element is to be overwritten.

If (F2) is NOT pressed (or a 60-second timeout occurs), the WQ command is cancelled.

3.38.56. + — Forward Space Lines

The forward space command allows the user to go forward by a specified number of lines.
Enter + as the command and enter a number in the {startline} field indicating the number of
lines to move forward.

Default is one line.

EEXENT"?"?:
PEnter Cmd: + Start line: 10 End line: After line:
Text :

(_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving the display "forward" ten lines.

3.38.57. - — Backward Space Lines

3-140

The backward space command allows the user to go backward by a specified number of
lines. Enter - as the command and enter a number in the {startline} field, indicating the
number of lines to move backward.

Default is one line.

Example:
PEnter Cmd: - Start line: 10 End line: After line:
Text @

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates moving the display "back"” ten lines.

7002 3981-100

AT

FSE — Full Screen Editor

3.38.58. = — Set Options

The = command is identical to the "SE" command previously described and is provided
primarily for typing convenience.

3.38.59. < — Shift Display Left

The SHIFT LEFT command ("<") alters the visible portion of the record that is displayed in
the upper area of the screen format. The user must specify the number of columns to shift
the display in the {startline} field of the command area.

The display is shifted to the left by the number of columns specified OR until the right most
column of the record is shown on the screen.

Example:
| PEnter Cmd: < Start line: 8 End line: After line:
Text @

{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates shifting the display to the left by 8 columns. If the work space was
declared to be COBOL language, the display would now show columns 15-80 instead of the
(usual) 7-72.

3.38.60. > — Shift Display Right

The SHIFT RIGHT command (">") alters the visible portion of the record that is displayed
in the upper area of the screen format. The user must specify the number of columns to
shift the display in the {startline} field of the command area.

The display is shifted to the right by the number of columns specified OR until the left most
column of the record is shown on the screen.

Example:
pEnter Cmd: > Start line: 8 End line: After line:
Text @

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates shifting the display to the ﬁght by 8 columns.

7002 3981-100 3-141

FSE — Full Screen Editor

3.38.61. A — Call FSE Recursively

The CALL FSE command ("A") allows the user to invoke another copy or instance of FSE to

start another editing session without having to close the current editing session.

The current editing session (or instance of FSE) is saved by the system and is reactivated
when the higher level session is terminated.

This command is especially useful to permit the user to temporarily preempt the current
editing session and invoke FSE to edit something else and then return.

If desired, the FSE command line parameters to read a library element may be placed in the
first text line area (see example that follows). If no parameters are supplied, FSE is invoked
without parameters and FSE reacts by displaying the initial entry screen.

Example:
pPEnter Cmd: * Start line: End line: After line:
Text :TIP/TT-TSP,S

{1 Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

This example illustrates invoking another instance of FSE to edit the element TT-TSP from
the library TIP.

3.38.62. #d — Saving Line Numbers

FSE maintains nine "registers" (1-9) that may be assigned line numbers. These registers can-
then be used in place of absolute line numbers in other commands.

The "#d" command is used to save a line number in register "d".

For example, line number 107 can be stored in register number 5 by issuing the "#5"
command with "107" in the {startline} field of the command area.

Thereafter, the user can reference that line by specifying line number "-5". For example
LI(-5) is interpreted as "list lines beginning with the line number stored in register 5".

If {startline} is omitted, the line number that is currently the first line in the upper portion of
the display is assumed.

FSE updates the actual line number in the register to "track” the line. If the location of the
line changes due to the occurrence of a line delete or line add in front of the line, the
register is updated to reflect the line’s new position.

If a line has been noted in a register and the line itself is deleted, FSE clears the register
reference for that line.

3-142 7002 3881-100

FSE — Full Screen Edltor

Example:
l PEnter Cmd: #5 Start line: 107 End line: After line:

Text : . l
{_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module: ‘//)

Depending on an option that is present on the option page, the user may or may not
observe that saved line numbers are highlighted in the upper display.

When the line register display option is on (set to "Y"), FSE displays the register number
instead of the actual line number. The display has the "reverse video" attribute on (for
terminals with that capability) and includes a trailing minus sign (for terminals that do not
support reverse video).

Example:

Full Screen Editor:bufrname

+7-10 + 20 + 30=——u 40 + 50 + 60 Fewe=T0=2+
343 MOVE SPACE TO CUSTOMER-MASTER. :
5=z MOVE 2ERO TO CUSTOMER~NUMBER.
345

The above example shows line number 344 when it has been noted in line register #5 (many
terminals cannot display fields in reverse video — the trailing minus sign is more obvious).

3.38.63. !d — Clear FSE Registers

FSE maintains nine "registers” (1-9) that may be assigned line numbers (see previous
discussion of the #d command).

To clear one (or all) of the nine registers, the "!" command is provided.

An "!" followed by a line register number from 1 through 9 clears the specified register
number.

Specifying register zero (0) after the "!" clears all line registers.

Example:
pEnter Cmd: !1 Start line: End line: After line:
Text :

[_] Lines: 904 Lang:C Case:U Patterns:N Seq:Y Module:

7002 3881-100 3-143

FSE — Full Screen Editor

3.38.64. FSE Function Key Usage
The Full Screen Editor recognizes certain function keys as special commands. Invalid

3-144

PAYE

qu‘u.uun KEYS rE‘auu; 111 an e€1Tor IllEbbdgE on Ul(‘.' screen.

(YT

W

The interpretation of the key depends on the location of the cursor:

If the cursor is in the upper area of the display, FSE reads the text in the upper
area of the display and alters the corresponding text in the work space (if the
text was altered).

If the cursor is in the lower area of the display FSE attempts to process the
command. If there is no command, FSE assumes the default command ((F2) —
display next screen full).

Pressing is equivalent to entering an "End" command.
FSE terminates and the work space is retained.

Function key 1 causes FSE to resend the last screen that was output. This may
be important if the screen display was altered unintentionally or by the receipt
of an unsolicited message.

Function key 2 is the "Forward Page" key. When this function key is pressed
FSE displays the next "page” of source lines.

The number of lines that a "page" implies is a user-definable number of lines
(see the description of page size in "3.38.48. SE — Set FSE Options" on page
3-134).

Function key 3 is the "Backward Page" key. When this function key is pressed
FSE displays the previous "page” of source lines.

The number of lines that a "page” implies is a user-definable number of lines
(see the description of page size in "3.38.48. SE — Set FSE Options" on page
3-134).

Function key 4 signals the FSE program that the user wishes to abort the edit
session (equivalent to the QUIT command).

If changes have been made since the last time the contents of the edit work
space was written, FSE displays a warning message and requires the user to
press the (F2) key to confirm that the QUIT is to be performed.

Function key 5 causes FSE to insert one blank line ahead of the line where the
cursor is resting,

The cursor must be placed on the appropriate line in the upper area of the
screen before pressing (F5).

The cursor remains at the location where the user pressed Fg).

If (78 is pressed immediately following the use of &) (see next discussion),
FSE inserts the line that was deleted by (a bizarre but deliberate
reinstatement of a deleted line).

Note: This command may not function properly on terminals that do not
correctly emulate a UTS400 (so-called plug compatibles).

7002 3981-100

FSE — Full Screen Editor

7002 3981-100

Function key 6 causes FSE to delete the line where the cursor is resting.

The cursor must be placed on the appropriate line in the upper area of the
screen before pressing (F8).

The cursor remains at the location where the user pressed .

If (B is pressed unintentionally, simply press 8} to reinstate the erroneously
deleted line (you have one chance to do this — don’t waste it!).

Note: This command may not function properly on terminals that do not
correctly emulate a UTS400 (so-called plug compatibles).

Function key 7 causes FSE to "split" the line where the cursor is resting at the
point where the cursor is located.

The original line is turned into two lines.

The first line contains the characters up to (but not including) the character
under the cursor.

The second of the two lines contains the remaining characters of the first line.

After the line is "split"” the cursor is restored to the original split point.

Note: This command may not function properly on terminals that do not
correctly emulate a UTS400 (so-called plug compatibles).

Function key 8 causes FSE to "join" the line containing the cursor and the line
following at the point where the cursor is positioned.

This function is the inverse of {F7).
After the line is "joined" the cursor is restored to the original cursor position.

Note: This command may not function properly on terminals that do not
correctly emulate a UTS400 (so-called plug compatibles).

Function key 9 is considered as a request to reissue the last find command (FI,
FM, F-). .

This means that another search begins for the string specified in the last search
command (if the previous string included a column specification, that too is
remembered).

The direction of the previous search command is remembered and honoured
provided no other command has been entered at the keyboard (the defauit
direction is reset to "forward"” when any command other than a "find" is
issued).

Function keys 10 through 22 are user-definable. The F# command (described
in a previous section) may be used to assign a specific command (with or
without parameters) to a function key in this range.

That function key may then be pressed to invoke the command that was "soft
coded" as that key.

3-145

FSE — Full Screen Editor

3.38.65. FSE Pattern Matching

When specifying a search string, the desired string is often not explicitly known. Instead,
the user is aware of the layout or structure of the string that is desired.

For example, you may wish to search for a particular type of field name that you know is
constructed as follows: an alpha character followed by two digits followed by two more
alpha characters (such as "A12DE").

To search for that type of string explicitly is not possible — there exists a large number of
permutations of characters and digits that satisfy the stated rule.

To address this issue, FSE allows the user to enter "pattern matching mode". In this mode, it
is possible to specify search strings in an implicit manner by specifying a desired pattern of
characters.

When pattern matching mode is enabled, several characters have reserved meaning and are
not interpreted literally by FSE. These characters are referred to as "meta characters".

. (period) The period character may be used to "match" any character (essentially a wild
card character).

% (percent) The percent character may be used to "match" any alpha character ("a"
through "z" or "A" through "A" through "Z").

#(pound) The pound sign character may be used to "match" any digit (0 through 9).

* (star) The star character (asterisk) indicates that the match pattern is to allow 0 or
more repetitions of the character which preceded the star

For example: # would match 0 or more digits in a row.

"(quote)} The double quote character indicates that the character which follows is to be
taken literally and not interpreted as a reserved character in this instance.

This mechanism allows you to use the period, percent, pound, star (asterisk),
double quote, left square bracket or right square bracket characters literally in
a search string.

For example, to look for the string "A#B" when pattern matching is turned on,
specify A"#B as the search string.

[1 Square brackets are used to enclose "tag expressions”. More on that subject
follows.

With these reserved characters, some reasonably sophisticated search patterns can be

specified:

Example:

To##% % This is the example discussed at the start of this section. An alphabetic

character, followed by 2 digits, followed by two alphabetic characters.

MATCHES: A12DB Z0O0OXX R12BW

3-146 7002 3981-100

FSE — Full Screen Editor 7

* Any number of arbitrary characters (including none at all!) enclosed in
parentheses.

Note that this pattern literally implies: a (character, followed by zero or more
occurrences of any character, followed by a) character.

MATCHES: (12), (more or less), (text1), (oocoxaxx) and ()
IR Date format.
MATCHES: 86/01/05 and 05/01/87

HEW Two digits followed by a # character.
MATCHES: 37# and 12#
#% Any number of digits (including no digits) followed by a # character.

MATCHES: 37#, 124, 12345674, 000034# and #

An advanced feature of parrem matching 1 Tode is the ability to segregate a portion of
search string and assign a "tag" or a "name" to whatever ultimately matches that portion of
the search string.

Pieces of the string that are tagged may be used essentially as variables — more on this
subject in an upcoming example.

{ A left square bracket marks the start of a "tagged"” expression.
The pattern which follows is considered separately from the remainder of the
search string.

la A right square bracket followed immediately by an alphabetic character marks

the end of a "tagged" expression.

The portion of the string that matches the "tagged" expression is assigned the
one-character "tag" denoted by the alphabetic character which followed the "]"
character.

& An ampersand character (&) can be used in the replacement text to recall the
characters that were matched by the tagged expression. The ampersand
means, literaily, "what was matched".

7002 3881-100 3-147

FSE — Fuil Screen Editor

Example:
Consider the following task to perform: assume there are a number of data fields defined in

a COBOL record layout and that the definition of these fields has been copied from the

DATA DIVISION to the PROCEDURE DIVISION:

@11 Screen Editor:TT-TSP \

+7=-10 + 20 : 30 + 40 + 50 + 60-==m+ 70=-2+
225 10 CM~NUMBER PICTURE X (8). :
226 : 10 CM-STATUS PICTURE X.
227 10 CM-COMPANY PICTURE X({25).
228 : 10 CM-ADDRESS-1 PICTURE X (25).
229 : 10 CM-ADDRESS~2 PICTURE X(235).
230 : 10 CM-ADDRESS-3 PICTURE X(25).
231 10 CM-POSTAL PICTURE X(7).
232 10 CM-TELEPHONE PICTURE X({(10}.
233 : 10 CM~TELEX PICTURE X(8).
234 : 10 CM-PO-~NUMBER PICTURE X (16).
2385 10 CM-ATTN PICTURE X(25).
236 10 CM-DP~MGR PICTURE X(25).
237 10 CM-MACHINE PICTURE X (8).
238 : 10 CM-MEMORY PICTURE X (4).
239 10 CM=-DISK PICTURE X (8).
240 : 10 CM-TAPE PICTURE X(8).
241 10 CM-NO-TERMINALS PICTURE X(3). :
(] +#7-10 + 20 + 3Qem——t 40 + 50 + 60 omemT0=2+
PEnter Cmd: Start line: End line: After line: :
Text
\\\ij] Lines: 822 Lang:C Case:U Patterns:Y Seg:Y Module:TIP/TT-TSP,S 4///

The intention is to smash all of the data field descriptions to statements that initialize the
fields to spaces.

One (brute force) approach would be to move the cursor to the upper part of the FSE
display and personally remove the "PIC" part of each statement (this is an instance
where a destructive space bar is handy!) and then use a substitute command to change the
string "10..." to the string "MOVE 0 TO ".

3-148 7002 3981-100

e

FSE — Full Screen Editor

An alternative approach (which assumes that the user has first used the SE command to
turn pattern matching ON) involves only a single substitute command:

Ente

]
Text

(.1

Cmd: SU s
T#4 *(%.*x]Q .*7,
MOVE SPACES TO Q.
Lines: 822 Lang:C Case:U Patterns:Y

End line:

r
H
.
:

After line:

Seq:Y Module:TIP/TT-TSP,S

After the substitute command shown above, the lines appear as follows:

@11

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
(1
PEnte

Text

\[_]

Screen Editor:TT-TSP
+7=10 t 20 + 30 + 40 +

MOVE SPACES TO CM-NUMBER.
MOVE SPACES TO CM~STATUS.
MOVE SPACES TO CM-COMPANY.
MOVE SPACES TO CM=-ADDRESS-1.
MOVE SPACES TO CM-ADDRESS-2.
MOVE SPACES TO CM-ADDRESS-3.
MOVE SPACES TC CM-POSTAL.
MOVE SPACES TO CM~TELEPHONE.
MOVE SPACES T0O CM-TELEX.

MOVE SPACES TQO CM~-PO~NUMBER.
MOVE SPACES TO CM~ATTN.

MOVE SPACES TO CM-DP-MGR.

MOVE SPACES TO CM-MACHINE.
MOVE SPACES TO CM-MEMORY.

MOVE SPACES TO CM~DISK.

MOVE SPACES TO CM~-TAPE.

H MOVE SPACES TO CM-NO-TERMINAL.
+7-10 + 20 + 30 + 40 +

@ en s 47 se e a8 48 o3 M5 ss NS a4 au s s ew

r Cmd: Start line:

Lines: 822 Lang:C Case:U Patterns:¥Y

50 +===60 +

=50 mmmmt =0t === TO= 2+
After line: H

Seq:Y Module:TIP/TT-TSP,S

/

In the above example, note the important appearance of the space after the [%.*]Q
expression. The space character is required (in this case) to inform FSE how to determine
where the tagged expression ends (in this case the tagged expression is the field name).

7002 3981-100

3-149

GO — Restart Paused Process

3.39. GO — Restart Paused Process

The GO program may by used to reactivate a TIP /30 program which was previously

PRATTOVNR Y 7 0L e X Y Y . B P |
FAUSEQ (€1her a IoTeground Or Dackground prograim,.

When a process is "paused”, the TIP/30 scheduler simply ignores that process when it is
searching for work to do.

Paused processes are revealed by the WHOSON transaction — the terminal name is
suffixed with "/Go" to indicate that the process is awaiting a "GO".

Syntax:

@ GO/identifier

@ GO identifier
Whers:

identifier =~ Specifies the userid or terminal name to be activated.
) Prefix notation may be used; eg: GO *BACKS

Exampie:

GO *JANET

This command causes all processes running on behalf of userid "JANET" to be reactivated
("JANET" is too long to be a valid terminal name and would therefore only match on
userid).

Esrror Conditions:

No matching user or terminal can be found.
Additionai Considerations:

There is no ill effect associated with issuing a GO to a process which is not paused (other
than wasting one’s time).

3-150 7002 3981-100

GROUPS — Modify Electlve User Groups

3.40. GROUPS — Modify Elective User Groups

The GROUPS transaction may be used to alter the elective groups to which the user
belongs. This effect is temporary — the alteration lasts until it is changed again or until the
user is logged off the TIP system (either by choice or otherwise).

The "standard order of search" that TIP /30 employs to resolve transaction and file
references is:

° userid
° elective groups
e the system group "TIPY".

The GROUPS transaction allows the user to re-specify some of the elective groups.

Syntax:
GROUPS[,Q] gt,92,93,94,95,96,97,98

Where:

Q Command line option that may be used to suppress the screen format that is
usually displayed (see examples which follow).
This is the "quiet" option. Most often used when the GROUPS transaction is
called by a transaction program.

gl...g8 Up to 8 positional parameters representing desired alterations to the elective

groups to which the user belongs.

Note that only 8 parameters are allowed although there may be as many as 16
elective groups (the number depends on a TIP /30 generation option).

The 8 parameters correspond to the user’s first 8 elective groups.

Although 8 parameters are allowed, the system may have been configured to
allow a maximum number of elective groups that is less than 8. In that case,
the system configuration parameter (NumGRPS=) dictates the number of
parameters that the GROUPS transaction actually processes.

If the first parameter is an asterisk (*), the GROUPS program resets the user’s
elective groups to the groups that are set at logon time (according to the
GROUPS= or LOGONSET= specification in the user’s catalogue record) and
ignores all other parameters.

If a parameter is omitted, the implication is taken that the corresponding
elective group is not to be changed.

If a parameter contains exactly the character string NONE, the implication is
that the corresponding elective group is to be cleared to spaces.

If a parameter contains a character string other than NONE, the name will be
validated according to the user’s groupset and logonset members and the
corresponding elective group is eligible to change.

7002 3981-100 3-151

GROUPS — Modify Elective Usser Groups

Additional Considerations:

If any of the group names supplied are not valid members of the user’s logonset or various

GROUPS is, therefore, an "all or nothing” operation — either all of the group names
provided are valid or no action is taken.

Example:

TIP?P

k\ij%?’GROUPS,Q ARC, DOC, PAYROLL

J

If the "Q" command line option had not been specified, the GROUPS program would have
output information in a screen format identical to that employed by the WMI transaction

programu

-

System attributes:
GLOBAL ICAM, DMS,

User-id:
Groups:

Security:

Account number:
Terminal:

Tip Control Area:
Site name:

TIP/30 Version:
ICAM Network:
0S/3 version:

DDP, SYSTEM DEBUG.

\

13:47 THURSDAY SEPTEMBER 7 198¢

ALLINSON

ARC DOC PAYROLL

1

PCOL - SPC (24,80)
TIPTCA

A.R.C.

4.0 C40R0-000
NET1 LOCAP:
12 00 B

TIP1

/

Error Conditions:

The GROUPS transaction will report errors by displaying a message on the terminal (unless
the "Q" command line option is specified). Programs which intend to invoke the GROUPS
transaction (via TIPSUB for example) normally set the CDA-OPTION field to "Q" before
issuing the call to transfer control.

The GROUPS transaction clears the first 64 bytes of the CDA to spaces (the 8 parameter
areas) if the requested changes were NOT completed; otherwise, the CDA parameters will
be set to the user’s first 8 elective groups as set by the call to GROUPS.

3-182

7002 3981-100

HANGUP — Hangup Dial Line

3.41. HANGUP — Hangup Dial Line

The HANGUP program may be used to "hang up" the telephone line on a dial line
connection. This program will log off the user (if the user is logged on TIP/30!) and will
issue a line release request to ICAM to terminate the telephone connection. The line will
normally be configured in ICAM to immediately return to unattended auto answer state.

The HANGUP transaction is intended to be used in a dedicated ICAM environment —
HANGUP does not operate in a GLOBAL ICAM. ’

Syntax:
HANGUP

Where:
No parameters required.
Error Conditions:

If the user was logged on TIP/30 and could not successfully proceed to the LOGOFF
program, an error may be reported.

7002 3981-100 3-153

HELP — Display Help information

3.42. HELP — Display Help Information

The HELP program is a utility that displays help information for a specified online
program. The user may ask to see the help information for utility programs supplied with
TIP/30.

Help information may also be provided (by the installation administrator) for the
installation’s user programs (or any other item of interest).

Syntax:

HELP [name] [,page#] [,libname] [,prefix]

Where:

name The "name" parameter is used to identify the name of the program or item for
which help is requested. If omitted, the HELP program displays a menu
listing all items for which help is available.

page# This parameter identifies which page of help information is to be displayed

first. The default is the first page. If a page number is specified that is out of
range (including a non-numeric value), the HELP program displays the first
page of help information.

libname This parameter may be specified to identify the logical file name (LFN) of an
online library that the HELP program is to use to find the help information. If
this parameter is not supplied, the HELP program first attempts to locate the
help information in a library with an LFD of "HELP"; if an appropriate item is
not found, the search proceeds to the "TIP" library. See also "Additional
Considerations” below.

If this parameter is supplied only this library is searched for help information.

prefix This parameter can be specified to override the default library element name
prefix that the HELP program uses to construct the library element name to
locate.

If this parameter is omitted, the default prefix is "TH3". See also "Additional
Considerations" below.

Onily the first 3 characters of this parameter are relevant.
Example:

HELP VIOC

Displays the supplied help information for the program "VTOC".
Error Conditions:

The requested help information may not be available.

7002 3981-100

HELP — Display Help Information

3.42.1.

Additional Considerations:

Help information is stored as a library element with the name of the element formed as

P05 | PRSI o o 5 ¢ JOSURGIULY 7% RPN o h ¢ Y] i
follows: "TH$xxxxx" (the prefix TH$ may be overridden on the command line). The last

five characters of the element name are the first five characters of the name the user is

expected to key in as command line parameter 1. For example: THSVTOC for VTOC;
THS$SPL for SPL.

The HELP program first attempts to read this element from a library with the Jogical file
name "HELP". If the element (or file) does not exist, a second read is attempted from the
"TIP" library.

The user may therefore establish his own library containing help information by creating
elements of the correct name in a library which has a catalogued logical file name of
"HELP".

The user should avoid modifying the TIP library directly since that library is completely
rebuilt when a new release of TIP/30 is installed (and any alterations would be lost).

Cail Another Help Module

The CALL directive is used to display help that is subordinate to the help currently being
displayed.

Syntax:

/CALL code, suffix[, security]

Where:

code The 1 to 8 character value that will be keyed on the HELD screen.

suffix The 1 to 5 character suffix that will be used to generate a HELP module name
(ie. TH$suffi).

security The minimum security required to see the help defined by this directive.
Default is 255.

Additionai Considerations:
/CALL causes HELP to TIPSUB to itself.

7002 3981-100 3-185

HELP — Display Help Information

3.42.2. Chain to Another Help Module

The CHAIN directive is used to display help that is equivalent to the help currently being
displayed.

Syntax:

/CHAIN code,suffix(, security]

Where:

code The 1 to 8 character value that will be keyed on the HELP screen.

suffix The 1 to 5 character suffix that will be used to generate a HELP module name
(ie. THSsuffi).

security The minimum security required to see the help defined by this directive.
Default is 255.

Additional Considerations:
JCHAIN causes HELP to TIPXCTL to itself.

3.42.3. Display Another Help Screen Full

End the current screen full (max 22 lines). Any remaining data will be displayed on
subsequent screens. ‘ '
Syntax:

/EJECT

3.42.4. Define a Module Title

Supply data for the Title line of the HELP system’s screen format (max 60 characters).
Syntax:

/TITLE ~———e——— 60 character title -==—=——cew-

3-156 7002 3981-100

HELP — Display Help Information

3.42.5.

3.42.6.

3.42.7.

Define Help Module Security

Define the security level required to examine a HELP module.
Syntax: '

/SECUR [security]
Where:

security The minimum security required to see this help. Default is 255.

Sorted Cali/Chain Table

Indicate that the Call/Chain table is sorted in ascending order (HELP can find an entry in
the table more quickly).

Syntax:

/SORTED

Display Call/Chain Table

Display all the entries in the Call/Chain table as a 6, 7 or 8 up list on the terminal.
Syntax:

/TABLE [number] [,skip]
Where:
number The number of entries to be displayed on each line. Acceptable range is 6

through 8. Default is 8.
skip The number of screen lines to skip before the table is displayed (default is 1).

7002 3981-100 3-187

HO — 08/3 HOLD Command

3.43. HO — 0S/3 HOLD Command

The HO transaction implements the OS/3 "HOLD" console operator command. The HO
transaction is actually a clone of the more powerful SYM transaction. The SYM transaction
program can be invoked using an alias name that is interpreted as a specific command.
When the SYM program is invoked with a transaction name of "HO", the SYM program
assumes that the OS/3 command is "HO".

The OS/3 HOLD command syntax is documented in the operation guide for your system.

The HO transaction requires the same syntax as the console command. The command is
passed exactly as entered to the OS/3 command processor for execution as if it had been
entered at the system console.

Note: Thereis no provision for the return of any completion status.

Evampias
=XEmpI8:

»HO SPL,PR,JC=COBCOMP3

The example command holds the spool output for job "COBCOMP3".

3-168 7002 3981-100

IDA — Interactive Debug Aid

3.44. IDA — Interactive Debug Aid

IDA is an online utility program that permits a programmer to interactively debug TIP /30
online transaction programs. When the user activates IDA on behalf of a program, IDA is
given control by TIP/30 and then executes the user program one instruction at a time using
the hardware execute (EX) instruction.

After each user program instruction has been "executed” (by IDA), the results and effects of
that execution may be displayed on the terminal in a format similar to the assembly
language representation of the instruction.

The information presented includes:

¢ program and job region relative address
* condition code setting

* instruction mnemonic and operands

» effective addresses (operands 1 and 2)

e first four bytes of operands 1 and 2.

During program tracing and execution, the user has a private copy of the load module of
the program (regardless of the declared usage of the program in the TIP/30 catalogue).

The programmer using IDA is free to make alterations to the memory regions assigned to
the program (the CDA, WORKarea etc), to registers and to instructions themselves. IDA is
not available to users who have a security level below programmer level.

WARNING

Extremne caution must be exercised when making
alterations with IDA. Indiscriminate alteration of
memory (especially memory that is not assigned
to the traced program!) can cause the TIP/30
system to crash without warning.

To debug a program that is called directly from the TIP/30 command line, enter a question
mark ("?") character preceding the transaction code on the command line:

(IP 7P ?PAYUPD /

This technique is preferred when the program to be debugged is the first (or only one) to be
called.

Programs that are called from other programs or via IMS succession should be debugged
by altering the catalogue entry for the program (this eliminates the tedium of tracing

through au Of the pr8ﬁn1inary programs!). TTTE T oeemTmT T aiils

In order to have a program loaded with IDA, catalogue the transaction code with
DEBUG=IDA. Now, whether invoked directly or by succession, when the transaction is
loaded IDA is also loaded and given control first.

7002 3981-100 3-159

IDA — Interactive Debug Ald

3.44.1.

3-160

When IDA receives control, it displays information about the current environment
(transaction name, load module name) and prompts the terminal user for a debugging
command.

To begin debugging simply press the (XMT) key. IDA begins executing the program at the
address specified as the entry address by the Linkage Editor. At any time the user may
interrupt the display by pressing or a function key. IDA pauses and allows the
user to enter any of the IDA commands described in the following section.

IDA can be extremely useful even to programmers who are not that familiar with assembly
language programming (although a knowledge of assembler is invaluable).

Most high-level languages provide at least a VERB level or source statement address map
(in COBOL-74 or COBOL-85 this can be obtained by specifying the compiler parameter
PROVER=YES).

The COBOL Data Division map that describes the layout of various areas of the program’s
assigned storage areas can be very useful too.

IDA COMMANDS
IDA commands are detailed in this section.

An important point: the commands are all one or two characters. Commands that are
letters may be entered in upper or lower case (IDA is only case sensitive when it is looking
at a character string that is enclosed in quotes).

Unless specifically indicated otherwise, most of the values are entered in hexadecimal (that
is, 40 means X’40’ — 64 decimal).

When a general purpose register is to be identified, IDA recognizes decimal values from 0
through 15 inclusive or A through F inclusive (to mean registers 10 through 15).

There are 4 floating point registers named 0, 2, 4 and 6.

In general, IDA is not very forgiving about typing errors; in particular, imbedded spaces in
hex or decimal values are not permitted. See some of the examples which appear later for
clarification of this point.

IDA always issues a prompt when it is expecting a command. If the prompt is suffixed by
the string "(LOCK)", IDA is reminding the programmer that some serial resource is locked
by the program (for example, a file is in sequential mode).

Although IDA (for obvious reasons) must leave the resource locked while waiting for
keyboard input, you are being warned that you are potentially tying up that serial resource
and may be delaying other users who need access to that serial resource. The long and
short of it is: hurry up!

‘ﬁ}.‘_lk \‘I\") Arvemm v nd o

-

+0ffsetien
Display storage.

Display next "len" or 16 bytes from the address last used ina D or A
command.

7002 3981-100

IDA — Interactive Debug Aid

- 0ffset

Apran

AA addrn

ARrn

B pram,c

BG pram,c

7002 3881-100

IDA remembers the last address which was displayed or altered.

The user may specify a hexadecimal offset to be added to the address.
If an offset is not specified, a default value of 16 is used.

16 bytes will be displayed by default.

A hex length may be supplied (eg: +,50:5A) which results in the display of
more (or less) than the default 16 bytes.

Display previous storage.
Similar to "+0ffset" but interprets any specified offset as a negative value.
Alter storage.

Beginning at the program relative address (given as PRA) store the value
specified as 'n’.

The value may be specified as a hexadecimal string or a character string
within single quotes.

Alter storage at absolute address.

Similar to "A" command except that the "addr” is specified as an absolute
address rather than a program relative address.

Alter general purpose register.

"t" is a decimal number or a letter from "A" through "F" (inclusive) specifying
the register to change.

Specify breakpoint address.

"pra"” is the program relative address at which the user wishes to interrupt
execution of the program to be able to use other IDA commands (to display or
alter memory for example).

A maximum of 16 breakpoints are allowed.

This command is usually followed by the DISPLAY OFF command ("F") when
the user wishes to inhibit the IDA display until a specific address has been
reached.

"m" is the display mode option to be executed when the breakpoint occurs but
before prompting (usually "C", "I", or "N").

“c" is the decimal count of the number of times the breakpoint address is to be
encountered before stopping.

When a breakpoint has been reached its address is displayed as well as
information describing the display status (on/off) and the current execution
mode (Continuous or Instruction).

Set a breakpoint and immediately resume tracing or execution. This command
is identical to the "B" command with the exception that IDA does not prompt
for another command, but continues execution of the program. In effect, the

3-161

IDA — Interactive Debug Ald

3-162

C+ opl,op2

D prazlen

DA addr:len

"BG" command combines a "B" command with an implied subsequent null
command.

Breakpoint when content of byte changes. The byte at the specified location
("pra") is monitored by IDA. If the value in the byte changes, a breakpoint is
taken.

When the breakpoint is taken, the mode specified as "m" is set (typically, the
mode is specified as "I" — instruction step mode).

This command is especiaily handy to catch situations where a byte value (a
switch perhaps?) is being altered incorrectly.

Continuous Mode display.
When in this mode (the default mode when IDA is first activated), IDA traces

4l
the execution of the program until the user interrupts by pressing (MSG WAT) or

et dendad® A vttt -]
some other function key.

"The display rolls up as each instruction displayed.

Hex arithmetic!

The character immediately following the "C" must be oneof +-* / %
denoting, respectively: addition, subtraction, multiplication, division and
remainder.

The operator is assumed to be between the two supplied hex values (op1 and
op2).

The two operands must be separated by a comma.
Eg: C+ 3e4,lafb = 0001edf
/ gives the quotient after division

% gives the remainder after division

Display storage.

Display storage in hex and graphics starting at the user program relative
address given as PRA.

len is a hex count of bytes to display; the default is 16 bytes.

Display storage from absolute address.

Display storage in hex and graphics starting at the absolute address given as
" 1t
addr”.

len is a hex count of bytes to display; the default is sixteen bytes.

7002 3981-100

IDA — Interactive Debug Aid

DB

DE pra

DF

Display Breakpoint Table.
Displays current breakpoint addresses and their associated options and

Display storage (edited).

Treat the specified program relative address as if it is an instruction and
display that location as an readable instruction.

Display floating point registers.
Displays floating point registers 0, 2, 4, and 6.

Each floating point register is 64 bits wide but is displayed as left and right 32
bits.

DI r,offsetlen

DRr

G pra

7002 3881-100

Display indirect using register contents.

Display storage in hex and graphics from the address computed as the sum of
the contents of register "r" and hex offset "offset".

If "len" is not specified, 16 bytes will be displayed.
Otherwise "len" specifies a hex number of bytes to display.
Display General Purpose Register(s).

Display the contents of the specified register (either a decimal number from 0
through 15 or a hex character A through F).

If "r" is omitted, all 16 registers are displayed.
End tracing.

Tracing of the program is discontinued. The user program continues executing
in normal mode (not executed via IDA).

If a subsequent program check occurs, control will revert to IDA (for further
debugging).

End tracing with IDA and dump if subsequent program check.

Similar to the "E" command except that a subsequent program check will pass
control to PMDA instead of IDA.

Display OFF.
Turn the IDA display off.

Usually used to inhibit the tedious display of instructions while waiting to
reach a breakpoint that has been set.

GO TO address.

Alter the PSW to execute the next instruction at the specified program relative
address given as "pra”.

IDA — Interactive Debug Aid

L addr

3-164

Enter single instruction mode display.

The user is prompted for an IDA command after every instruction; forces
fhePl av mode ON

wode VNN,

Specify link address.

The user may enter a specific address which IDA is now to consider as relative
location zero.

For example, the address of the program’s work area or CDA may be specified
so that subsequent use can be made of offset addresses from that base.

To reset the link address to the start of the program, simply enter an address
of zero on an "L" command.

As a convenience to programmers using high-level languages, the following
reserved words are accepted and will be computed by IDA:

L PIB — base address is the PIB area

L CDA — base address is the CDA area

L MCS — base address is the MCS area

L WRK — base address is the work area

L IMA — base address is the IMA (for IMS programs)

L OMA — base address is the OMA (for IMS programs)

" L VOL — base address is the VOLatile area

Master level users are also able to link to the address of the GDA by using the
command: "L GDA".

Example of using L command:

»L wrk

After issuing this command, relative location zero is considered to be the start
of the program’s WORKarea.

If, for example, the COBOL Data Division map indicates that a particular field
in the work area has a displacement of 1E3 bytes from the start of the work
area, the following command could be used to display that (relative location)
in the WORKarea:

pd le3

To see more than 16 bytes (the defauit length for the D command) enter the
following (40 hex is decimal 64):

»pd le3:40

7002 3981-100

IDA — Interactive Debug Aid

O,pra

OO

S pran

Display ON.

Turn the IDA display on.

Often used as a breakpoint option.
Omit Breakpoint.

The program relative address specified by "pra” is removed (omitted) from the
breakpoint table.

Omit all Breakpoints.

All breakpoints that have been set are cancelled and removed from the
breakpoint table.

Stop program execution.

Both IDA and the traced program are immediately terminated and control
returns to the previous program on the stack.

Search for specific hex value or character string.

Search for the value "n" (up to 4 bytes) from the program relative address
"pra".

The search argument may be specified as a hexadecimal string or as a
character string enclosed in single quotes.

If the search argument is omitted, IDA will continue searching (for the last
search argument specified) from the current location.

T mnemonic

TN hexop

7002 3981-100

Translate mnemonic to opcode.

Translate an assembler mnemonic for an instruction to its internal
hexadecimal representation.

Used when one cannot remember the opcode for a assembler instruction.

Example: T MVC returns D2
Translate opcode to mnemonic.

Translate the specified hex opcode to its equivalent assembler mnemonic.
Example: TN D5 returns CLC

3-165

IDA — Interactive Debug Ald

3.44.2. IDA Command Examples

The following table summarizes the syntax of IDA commands by illustrating some
examples. ‘

Table 3-10. IDA Command Examples

(blank) Continue executing traced program.

L128 Link address zero relative to 128.

D23A Display 16 bytes at program relative address
2A.

DR Display all 16 general purpose registers.

DR 11 Display general purpose register 11.

DF Display all 4 floating point registers.

DI12 Display 16 bytes at address in general purpose
register 12.

DIC,40 Display 16 bytes at address in R12 + X"40".

BDé6,n,10 Stop at program relative address D6 on 10th
encounter and execute IDA command "n" —
display on.

ODé6 Omit breakpoint previously set at Dé.

B7A Stop at program relative address 7A.

DB Display entries in breakpoint table.

F Disable IDA trace information display.

N Enable IDA trace information display.

I Set IDA into single instruction display mode.

C Set IDA into continuous display mode.

C+ 1E45,2EC Compute: 1E45 + 2EC (hex).

C2EC Compute: 2E * C (hex).

A 23A,D200F002EQ00 | Alter memory at 23A to X"D200F002ECO0".

A 23A,/T301 Alter memory at 23A to C'T301".

ARE,1A0 Alter register E (R14) to contain 1AQ.

S 24A,47BOFO0E Search for 47BOFQ0E from address 24A.

S Search for next occurrence of previous search
argument.

S45E Search from 45E for previous search argument.

continued ...

3-166 7002 3981-100

P

IDA — Interactive Debug Aid

‘Description

Search for C1C2 frorh lbcation Zero.

TCLC Translate "CLC" to hex opcode.

TN 41 Translate X'41” to mnemonic opcode.

G128 Go to program relative address 128.

DA 2364A Display absolute location 2364 A.

DE 128 Display instruction at 128.

ED End tracing (allow PMDA dump).

E End tracing allow user program to execute
(recall IDA if subsequent program check).

Q Cancel IDA session; end traced program.

7002 3981-100

3-167

IDA — Interactive Debug Ald

3.44.3. IDA Example

3-168

(@P?)?calendar 7 1976 \

'TIP/30 Interactive Debug Aid’

Transaction code = CALENDAR, LOAD MODULE = XTS$CALQOQ

Program address = 0C0340 Relative location zero = 000698
IDA:CALENDAR (1) 2Pl cda
Program address = 0C0340 Relative location zero = 005100
IDA:CALENDAR (1) ?pd 8
» 000008 FOFOFOQOFO F1FIF7F6 40404040 40404040 - ’00001876 4
IDA:CALENDAR (1) ?Ba 8,’00001776”
p 000008 FOFOFOFOQ P1FTF7F6 40404040 40404040 - 700001776 !
IDA:CALENDAR (1) ?be

In this example, the user has invoked the CALENDAR transaction with the second
command line parameter deliberately set to an incorrect value.

Once IDA is invoked and running, IDA displays the actual program load address and the
address that is currently considered to be location zero.

The programmer issues the command 1 cda to set relative address zero to the start of the
CDA.

Using the start of the CDA as the assumed base address, the d 8 command displays 16
bytes of data (the first command line parameter is in the first eight bytes of the CDA; the
second parameter starts at offset 8).

The alter command a 8,'00001776" changes 8 bytes at location 8 (of the CDA) to the
character string 00001776. Of course, one could have been more succinct and issued the
command a d,’7 and altered the one offending byte only!

IDA is then terminated by using the E command (this discontinues IDA and lets the
program run without tracing).

7002 3981-100

ILLTRN — lllegal Transaction Handler

3.45. ILLTRN — lllegal Transaction Handler

ILLTRN is a reserved transaction name that may be defined in the TIP/30 Catalogue to
process undefined transaction codes that are entered on the TIP /30 command line.

When a user keys a transaction name on the TIP /30 command line and a spelling mistake is
made, the TIP/30 system normally reports:

\\ii?alid transaction code: XxXXXXXXX) 4///

An installation administrator may prefer to have a user-written program handle invalid
transaction codes.

To accomplish this a transaction named ILLTRN must be defined. The presence of a
definition of ILLTRN in the TIP /30 catalogue causes the TIP/30 command line processor
(TCP) to schedule the ILLTRN transaction if the transaction name that is entered is invalid.

For example, one could take the approach that a misspelled transaction code implies that
the user needs some assistance and that the best thing to do is to invoke the TIP /30 HELP
processor.

This is accomplished by defining the TLLTRN transaction in this way:

TIP?PCAT

CAT (1) ?bprog tip$¥$/illtrn from=tip$¥S$/help.
PROG catalogue record added: TIP$YS/ILLTRN
CAT (1) ?kend

TIP?P

Having done this, any user who enters an invalid transaction code finds the TIP /30 HELP
program automatically loaded.

Of course, defining ILLTRN in the group TIPY has an impact on all users of the TIP /30
system (since all users are implicitly members of the group TIPY). It is more prudent to
define ILLTRN appropriately for individual groups of users.

Additional Considerations:

The ILLTRN processing described here only applies to invalid transaction codes that are
entered at the terminal keyboard in response to the standard TIP/30 system prompt that is
issued by the TIP/30 Command Line Processor (TCP).

Programs which attempt to internally transfer control to a misspelled transaction receive
PIB-NOT-FOUND status.

7002 3881-100 3-169

VP — Installation Verification

3.46. IVP — Installation Verification

The IVP program verifies that various files required for the operation of TIP/30 are present
and accessible. Information is displayed on the terminal showing the LFD and LBL names

of the files.
Syntax:

Ive

Where:

No parameters are required.
Example Output of IVP:

TIP?Pivp

The following TIP/30 files are open:
Lfd name File label

TIPSSWAP TIP
TIP$CAT TIP

TIPSRNDM TIP
TIPSB4 TIP
TIPSJRN TIP

TIPSMCS TIP.
.RNDM
.B4
. JRN
TIP/30 Installation verification complete.

.SWAP
.CAT

MCs

3-170

7002 3981-100

JBQ — Dispiay 0S/3 Job Queue

3.47. JBQ — Display 0S/3 Job Queue

The JBQ program is a utility program that displays informatio

It is similar to the OS/3 operator command "DI IBQ -

The JBQ program recognizes the following commands:

E End the JBQ program.

HE Display command help information on the
terminal.

] Display reason job is not able to be scheduled.

H Display the high priority job queue.

L Display the Tow priority job queue (OS/3
release 8.2 and later).

N Display the normal priority job queue.

P Display the preemptive priority job queue.

Q End the JBQ program and logoff TIP/30.

The JBQ program may be executed interactively or may be given a single command via the
command line. If a single command is given on the command line, JBQ will attempt that
one command and then terminate normaily.

If used interactively, JBQ will pi'ompt the user for each command until an "End" or "Quit"
command is given.

3.47.1. Display All OS/3 Job Queues

This command causes the JBQ program to display the status of all the 0S/3 job queues:
Normal priority, High, Preemptive and Low (if configured).

All jobs in each queue will be shown; job names shown in parentheses are currently on
hold.

Syntax:

Where:

No parameters required.

7002 3881-100 3-171

JBQ — Display OS/3 Job Queue

3.47.2. End JBQ Program

This command causes the JBQ program to stop prompting the user for further commands
and terminate normally.

Syntax:

Where:

No parameters required.

3.47.3. Display Help Information

This command causes the JBQ program to display help information on the terminal. The
help information is a summarization of the recognized command syntax.

Syntax:

HE

Where:
No parameters are required.
Additlonal Considerations:

"HE" is the shortest possible string of characters that may be entered for this command.

3.47.4. Display High Priority Queue

This command displays jobs that are in the OS/3 high priority job queue. Jobs currently
held by the OS/3 operator are displayed with the job name in parentheses.

Syntax:

Where:

No parameters required.

3-172 7002 3981-100

JBQ — Display OS/3 Job Queue

3.47.5. Display Job Status

3.47.6.

This command displays the reason a queued job is not able to be scheduled (eg: device not
available, no memory, etc). The specified job name must be a job that is currently queued.

Syntax:
J jobname
Wherse:

jobname The name of the job that cannot be scheduled.
Example:

TIP?Pis nitejob
Job NITEJOB not scheduled: Waiting untll 89/200 at 23:30
TIE?®

In the above example, the job NITEJOB is awaiting deferred execution at 23:30 on the Julian
date 89/200.

Additionai Conslderatlons:

The clone transaction "JS" may be used as a shorthand notation for running JBQ with the]
command.

Eg: JS TJ$COB74

Display Low Priority Queue

This command displays the jobs that are in the Low priority job queue (available on OS/3
release 8.2 and later). Job names shown in parentheses are currently on hold.

Syniax:

Where:
No parameters required.
Error Conditions:

The Low queue may not be configured or available on the release of OS/3 that is running.

7002 3981-100 3-173

JBQ —

Display OS/3 Job Queue

3.47.7.

Display Normal Priority Queue
This command displays the jobs in the normal priority job queue.

- Syntax:

3.47.8.

3.47.9.

3-174

Where:

No parameters required.

Display Preemptive Priority Queue
This command will display jobs in the preemptive priority job queue. If the system was

generated without preemptive job scheduling the display will indicate no jobs in that
queue.

Syntax:

Where:

No parameters required.

End JBQ Program and Logoff
This command causes the JBQ program to stop prompting the user for further commands

and terminate. If the JBQ program is executing at program stack level one (ie: was NOT
called by another program) the user will be logged off the TIP /30 system.

Syntax:

Where:

No parameters required.

7002 3981-100

JCL — Job Submission Utility

3.48. JCL — Job Submission Utility

The JCL program allows the user to enter job control statements at the terminal to be
submitted directly to the OS/3 run processor. This eliminates the necessity of creating an
element in a library for quick one-time-only jobs.

The JCL program first calls the transaction code "JCLEDT" to allow the user to create (or
modify) a job control stream. This transaction code normally invokes the standard TIP /30
Full Screen Editor (FSE) but may be (individually) tailored to call any available editor.

Once the editing is complete, the user may either End or Quit the editor. If the END option
is chosen, the JCL program submits the contents of the edit buffer to the OS/3 run
processor via the input reader queue and leaves the edit buffer intact (for possible later
modification).

If the QUIT option is chosen, the JCL program prompts the user to determine whether or
not to submit the edit buffer before scratching the edit buffer. In this way, the confident
user can submit the edit buffer and coincidently discard the buffer.

Syntax:

® gcu [file/elt [,typel] [,buffer]

@ JCL [buffer]
Where:

file/eit Optional file and element to initially read into the editor’s buffer.
type The type of element to read — default is source ("S").

buffer The name of the edit buffer that will be accessed. If an edit buffer of that name
does not already exist, the JCL program will create it.

If the name is not specified, it defaults to "JCL$tttt" where "tttt" is the ICAM
name of the submitting terminal.

Example:
JCL TEST

Accesses or, if necessary, creates the edit buffer named GROUP1/TEST (where GROUP1 is

the name of the first elective group to which the user belongs). The "JCLEDT" transaction is
called and, if the user exits the editor with the "E" command, the buffer will be submitted to
the OS/3 reader.

7002 3981-100 3-175

JI — Execute System Command

3.49. Jl — Execute System Command

The JI transaction is used to submit a "console command" to the OS/3 operating system.
Exampiles of "console commands" include use of the RU and RV commands. This
transaction code is provided to provide compatibility with the command of the same name
that is available with IMS transaction processing systems.

Syntax:
JI cmd
Whers:
cmd The console command text that is to be submitted to the operating system.
Example:

JI RV TJ3SCOB74:TIPJCS,,E=PAY040

This example submits the illustrated RV command to the operating system. The following
message is displayed on the screen if the command was accepted by the operating system
(accepted — not necessarily processed successfully!)

(/;;B REQUEST NOW UNDER SYSTEM CONTROL ‘\\\

If the command is not accepted, the following message is displayed on the terminal:

INVALID COMMAND **¥* TEXT=
.. ccommand text...

3-176 7002 3981-100

JS — Display Job Status

3.50. JS — Display Job Status

The JS transaction displays the reason why a queued job is not able to be scheduled (eg:
device not available, no memory etc). The speaﬁed)ob name must be a job that is currently
queued and awaiting execution (otherwise, the JS transaction will report "Job not found" —
implying that the named job is not queued).

The]S transaction is a clone of the more general transaction named "JBQ" (refer to

"3.47.5. Display Job Status” on page 3-173). When the JBQ program detects that it has been
called by the transaction name "JS", it assumes that the desired JBQ function is "]" (job
status) and performs that one function and terminates.

Syntax:

JS Jjobname

Example:

TIP?PJs nitejob
Job NITEJOB not scheduled: Waiting until 89/200 at 23:30
TIP?D

In the above example, the job NITEJOB is awaiting deferred execution at 23:30 on the Julian
date 89/200.

7002 3981-100 3-177

LC — List TIP730 Catalogua Information

3.51. LC — List TIP/30 Catalogue Information

The LC transaction is a clone of the CAT transaction program. When the CAT program is
invoked with the transaction code "LC", it reacts by assuming the desired CAT command is
"List" and uses the command line parameters accordingly.

For additional information, see the description of the CAT program in "3.11. CAT —
TIP /30 Catalogue Manager” on page 3-11 (specifically the "List" command).

Syntax:
IC pl,p2,p3,p4

Where:

The four possible command line parameters are the same parameters that may be specified
to the CAT program "List" cornmand.
Example:

L‘C | ﬁDP X % %

This command lists all TIP/30 catalogue entries in the group "EDP".

3-178 7002 3981-100

Py

LIST — LIST Utility

3.52. LIST — LIST Utility

The LIST transaction is a clone transaction of the generalized librarian utility transaction
TLIB (see "3.90. TLIB — Librarian Services" on page 3-325) .

The LIST transaction invokes the TLIB program. When the TLIB program observes that the
transaction name is not TLIB, it uses the transaction name as the implied command.

The command line options and parameters that are supplied with the LIST transaction code
are interpreted by TLIB as parameters to the TLIB LIST command.

The end result is the ability to use LIST as an apparently stand-alone transaction.
Syntax:

LIST(,options] parameters

Whers:

options Any command line options (as recognized by TLIB) that pertain to the LIST

- command. See description of TLIB options in "3.90.2. TLIB Options" on page
3-327 and see description of options that affect the TLIB LIST command in
"3.90.11. LIST — List Input at Terminal" on page 3-341 .

parameters Parameters required by the LIST command of the TLIB program.
Example:

LIST SRC/BUDGET, S

This example lists a source element named BUDGET in the OS/3 library defined with a
logical file name of SRC. The output is listed on the terminal with automatic continuation
prompts after each screen of data.

7002 3981-100 3-179

LOGOFF — Log off TIP/30 System

3.53. LOGOFF — Log off TIP/30 System

The LOGOFF program is used to log off the TIP/30 system. Only users that are logged on
the TIP /30 system may log off — specific terminals may be designated as LOGON=NO in
the TIP /30 Generation parameters.

The LOGOFF program displays the following screen format that shows information
concerning the TIP/30 session just terminated: user-id, site name, number of terminal input
and output messages, number of file I/O operations, total time logged on, and the average

response time.
ALLINSON
Logged off at 11:56:26 on 89/07/26 Site: ARC~TORONTO
Messages Input: 3
Qutput: 5
File I/0’s: 0
Duration of session: 0:00:26
Average response time: 0.072 seconds

N /

The count of the number of I/O operations includes data files, libraries, dynamic files and
edit buffers but DOES NOT include other TIP /30 system files (such as TIP$SWAP,
TIP$CAT etc).

Syntax:

LOGOFF

Where:

No parameters are required.
Error Conditions:

An attempt to logoff is not allowed at a stack level higher than the base level (stack level 1).

3-180 7002 3981-100

LOGOFF — Log off TIP/30 System

Additional Considerations:
If the TIP /30 logoff program is invoked via a transaction code that begins with the

character "S" (the SOFF transaction for exampie), TIF automatically issues a "$$SOFF"
command to Global ICAM.

Another clone name for the LOGOFF program is FIN.

7002 3981-100 3-181

LOGON — Log on TIP/30 System

3.54. LOGON — Log on TIP/30 System

To be able to use the TIP /30 system, the user is required to identify himself to TIP/30. To
do this, the user must execute the LOGON program. The LOGON program requires the
user to supply his userid and current logon password. The user may be required to supply
an (optional) account number (this requirement is installation dependent).

The userid, password and account number supplied by the user are validated according to
information in the TIP/30 catalogue.

Syntax:
LOGON [userid] [,password] [,account]
Where:
userid Userid (maximum 8 characters) assigned to the user by the installation

administrator.
password Current password (maximum 8 characters) associated with this userid.

Alphabetic characters in the password may be entered in upper or lower case;
the LOGON program automatically converts alphabetic characters to upper
case.

account A four character accounting code to associate with this session. The account
number is defined by the installation administrator and may be optional.

For additional information, refer to the description of the USER definition
keywords DFLTACCT= and ACCT=in "3.11. CAT — TIP/30 Catalogue
Manager" on page 3-11.

Example:

ﬁcou FRED/QWERTYUT . \

Logs on a user named "FRED" who has a current password of "QWERTYUI".

3-182 7002 3981-100

LOGON — Log on TIP/30 System

Addltional Considerations:

If no command line parameters are given or there is
parameters, the LOGON program displays the following screen format to assis
LOGON correctly:

is any error in the command line
&

//’;IP/3O LOGON Friday July 13, 1984 Time: 11:07 ‘\\\
Site: -site--name-
Please logon
User-id :
Password :

Account Number :

Place cursor here (_) and press XMIT

If the TIP /30 system cannot locate the TIP /30 logon screen format (as might be the case

when TIP/30 is initially being installed), the following prompt is issued instead of the
screen format shown above.

THURSDAY JULY 13 19889 Please logon
Allinson-Ross Corporation TIP/30 Logon

Enter:User-Id/Password/Account-No Site = XXXXXXXKXXXXX
|]

The user should enter his userid, password and (if required) his account number. A
maximum of five logon attempts are allowed.

Error Conditions:
The userid may not be valid, the password may not match the current password for the

userid, or the account number may be invalid (not in the list of valid accounts for the
userid).

7002 3881-100 3-183

LOGON — Log on TIP/30 System

Additional Considerations:

If the user does not press XMIT (transmit) within 60 seconds, the LOGON program clears
the screen and terminates. The user may reenter the LOGOIN program to attempt to logon
again.

If the user fails to logon after five attempts, the LOGON program imposes a penalty — any
LOGON attempt from that terminal is not allowed for 5 minutes.

The following message is displayed at the terminal:

You are not authorized to use the system

Operations control has been notified of
your attempt to log on
and the following message is displayed at the console:

TI058 Unauthorized user attempted logon at

Subsequent attempts to logon (during the 5 minute penalty period) result in the following
message on the terminal:

Too many attempts to LOGON

This terminal has been temporarily disabled

Note: The 5 minute penalty may be rescinded by the system operator by using the following
unsolicited console command:

EXEC SET FOR xxxx ENABLE
The system may be unable to accept LOGONS at the present time (usually this is because

the console operator has issued a command to inhibit logons). This condition is usually
temporary. The user receives the following message if this is the case:

r//f LOGON requests are not allowed at this time. ﬂ\\w

3-184 ' 7002 3981-100

LOGON — Log on TIP/30 System

The user may be prohibited (by the system administrator) from being logged on more than
a certain number of terminals at the same time. In this case, the LOGON program displays
the following message:

Too many users with this User-id are logged on.
You may not access the system at this time.

The userid may have expired (the catalogue record specified the EXPIRY= keyword). The
following message is displayed:

(/’V Your User-id has expired! ﬂ\\j

| System access denied.]

If the terminal has been set in "test mode", the LOGON program issues a prompt to ask the’
user if test mode is to remain set:

(//’v Should terminal be left in test mode? PNo PYes ‘\\}

7002 3881-100 3-185

MEM — OS/3 Memory Map

3.55. MEM — OS/3 Memory Map

The MEM program is a utility which displays the current OS/3 memory utilization (map).
The program details job name, memory region in hex, size in decimal, type, executing,
program name, CPU time, account number, storage protect key, executing priority and
scheduling priority.

Syntax:

MEM[/B] [w1 {dest] [wait]

Where:

B Command line option to include operating system buffer pool information in
the display.

W Optional parameter to cause the MEM program to periodically refresh the
display on the screen until a function key or the key is pressed. The
rate at which the information is refreshed is controlled by the parameter
following the "W,

dest This parameter is used to specify a standard TIPPRINT output destmanon for
the output of the MEM program.

The defaults are:
e "AUXO0" (full screen) for interactive users

* "ROLL" (line by line output to the terminal) if the "W" command is
specified
¢ "PRNTR" for background users.

wait This parameter is used in conjunction with the "W" specification in parameter
one. A numeric value from 5 to 60 (inclusive) may be specified. The value is
taken as the number of seconds in the refresh interval.

Default value is 10 seconds (this value is also used if the value specified is not
numeric or is not within the acceptable range).

Example:

MEM W

This command invokes the MEM program to display the current OS/3 memory usage map.
Because the firsp parameter is "W", the MEM program runs continuously and refreshes the

screen display every 10 seconds until the program is terminated.

3-186 7002 3981-100

.

MEM — OS/3 Memory Map

Example of MEM Display:
~ y
ceeesenaan 0S/3 Memory Map...... e \\

Name Address Size Type Program Step CPU Acct Key Pri

SY$STDOO 000000-03C4FF 241k Supervisor

SL$SVTO0 03DECQO-03ESFF 2k Symbiont .0 (VR) 00 00

RCSSIS00 Q03E900-0476FF 35k Symbiont 1.9 (Is) Q0 G0

SLSTCAQO 04A200-04C9FF 10k symbiont .0 (Tw) 00 00

SL$DMS00 Q06EEQ00-Q711FF 9k Symbiont .0 (DM) 00 05

SLERCM00 C7BAOO-OT7ESFF 11k Symbiont .0 (cMy o©0 01

ML$3C200 07E600-122AFF 657k Symbiont .0 (c2).. 00 Q0

136000~1399FF 14k Free

13B000-2F6FFF 1776k Free
TIP32B 2F7000~3ADFFF 732k Batch Job TBSTIPQO
TIP40T 3AE0Q00-461FFF 720k Batch Job TBSTIPOO
DMs 462000-4EFFFF 568k Batch Job DBMS0000
TIPTST 4F0000~-SE7FFF 992k Batch Job TBS$TIPOO
TIPDEV SE8000-762FFF 1516k Batch Job TBSTIPOQO

GUST 763000-768FFF 24k Batch Job ML$SGIOO

34.0 TIP3 07 02,H

29.3 1TIP 05 oL,p

4.8 DBMS 04 O06,N

101.3 TIP3 03 02,H

421.3 TIP3 02 O0Ll,H
1

mrrem . n1 na Y
GUST

[N SN NN

UL Ua,H

Additlonal Considerations:

To discontinue the memory display with the wait parameter, press a function key or the
(BIWA) key.

7002 3981-100 3-187

MODE — Specify Mode of Operation

3.56. MODE — Specify Mode of Operation

The MODE program is used to set debug mode for a terminal or change the terminal
display mode to roll mode or scroll mode.

Syntax:
MODE [, opt]
Where:
opt Option field that determines the action of the MODE program.

D The presence of a "D" character anywhere in the option field

places the terminal in debug mode.

e

In debug mode, the TIP /30 Data Management interface does not
perform file operations that would result in alteration of data.
This applies to ADD, DELETE, UPDATE operations. TIP/30
returns "good"” status to the program (as if the update was
performed).

Debug mode does not apply to TIP /30 Edit Buffers or Dynamic
files, but does apply to OS/3 libraries.

S The presence of an "S" character anywhere in the option field
puts the terminal in scroll mode.

In scroll mode, line oriented output to the terminal will scroll
downward from the top of the screen display and wrap around
to the first line from the bottom.

Additional Considerations:

When a terminal is set in debug mode, the standard system prompt "TIP?»" is replaced by
"Test Mode: TIP?»" to serve as a reminder that debug mode is active.

The option field may contain either or both the characters "D" or "S" (in either order). If a
"D" is not present, Debug mode will be turned off. Similarly, if an "S" is not present, the
terminal will return to ROLL mode.

Exampie:
MODE, § - scroll mode; set off debug mode
MODE,D - sSet on debug mode; roll mode
MODE, DS - 3croll mode; debug mode

7002 3881-100

MSG — Send Terminal a Message

3.57. MSG — Send Terminal a Message

The MSG program allows a terminal user to send a one line message to a logged on TIP/30
user, a specific terminal, the computer system operator, or to all TIP/30 users who are
currently using a specific file (LFD name).

If the destination is not valid, the sender receives an error message. The message text is
restricted to a maximum of 64 characters.

If the message is directed to the computer operator, it is displayed on the system console
(TIP /30 will not wait for a reply or acknowledgement that the message has been seen!).

If the message is directed to a TIP/30 terminal, the message is sent as an unsolicited
message (the recipient will observe the Message Waiting alarm on his terminal and a
continuous beep).

The message is displayed on the screen when (MSGWAT) is pressed. The message is
displayed wherever the cursor happens to be resting when is pressed! It is a good
idea to first move the cursor to an area of the screen that is not is use.

Syntax:

MSG(/dest] text

Whers:

dest The desired destination for the message.

May be a userid, terminal name or program name (all users who match will
receive the message).

Prefix notation may be used if the destination is a userid, terminal name or
program name.

If the destination is specified without prefix notation, the MSG utility will also
attempt to match users who are using an filename (LFD) that matches the
destination.

If the destination is omitted, the message will be sent to the system console.
text The text to be sent (maximum of 64 characters).

The text does not have to be enclosed in quotes.

If quotes are included, they are treated as text.

The text of the message is translated to upper case before the text is sent.

7002 3981-100 3-189

MSG — Send Terminal a Message

3-120

Example:

MSG/BETTY INVENTORY UPDATE IS CCMPLETE.
MSG/TRM1 you can try to log on now!
MSG HOW LONG WILL THE SYSTEM BE UP?

MSG/MANUFIL MANUFACTURING FILES BEING CLOSED SOON!

Error Condltions:

The MSG program reports "Nothing found." if the program cannot send the message to at
least one destination.

Additionai Considerations:

A message that is sent to the OS/3 operator is split into two output lines if the text is too

1 £y 13 +
long for one line on the console.

In a Global ICAM environment, a message may be sent to a terminal only if that terminal is
session connected to the TIP /30 locap (via $$SON or a SESSION statement in ICAM). An
attempt to send a message to a terminal that is not currently session connected to the

TIP /30 locap is reported as "Nothing found.".

7002 3981-100

AT

MSGAR — Message Archiver

3.58. MSGAR — Message Archiver

MSGAR is a utility program that provides librarian services for TIP/30 screen formats
(sometimes called "messages"). Screen formats are stored in the TIP$MCS file and may also
be pooled in memory for fast access (refer to the TIP /30 generation parameter
MCSPOOL=).

TIP /30 screen formats are referenced by an 8 character name. A screen format also has an
associated "group” name. The type of group searching that takes place for a screen format
depends on the setting of the MCSEARCH= keyword in the user catalogue record.

Syntax:

MSGAR [, group] [command [params]]
Where:

group The name of the group that MSGAR initially considers the "operating” group.
This group name becomes the implied screen format group for the MSGAR
commands which are entered.

The default operating group is TIP$YS.

The MSGAR "Group” command may be used at any time during an
interaction with MSGAR to alter the current "operating” group.

command A summary of valid MSGAR commands follows.

params Any parameters that are required by the command.

Example:
MSGAR, EDP
Sets the "operating” group to "EDP". Subsequent MSGAR commands operate on screen

formats in the group "EDP".
Additional Considerations:

If MSGAR is invoked with command line parameters, it attempts only that command and
then terminates normally.

If MSGAR is invoked without parameters (ie. interactively) it prompts the terminal for each
command.

7002 3981-100 3-191

MSGAR — Message Archiver

3-192

The MSGAR utility recognizes the following commands:

Table 3-11. MSGAR Commands

ALTROF | Turn OFF PIB-ALT-ROW-MCS capability for a
screen format.

ALTRON | Turn ON PIB-ALT-ROW-MCS capability for a
screen format.

COBol Create COBOL copy element from a screen
format.

COpry Make a copy of existing screen format in
another group.

CUrsor Change cursor resting location for a screen
format.

DATE> Select only formats with date greater than a
supplied date.

DATE< Select only formats with date less than a
supplied date.

DATE= Select only formats with date equal to a
supplied date.

DELete Delete a screen format.

Dlrectory | Print a directory of screen format names and
information.

End End MSGAR program.

FSLOF Do NOT allow fields to span lines of a screen
format.

FSLON Allow fields to span lines of a screen format.

Group Change operating group name.

Help Display help information on terminal.

List List screen format names and information.

Move Move existing screen format to different
group.

Print Print a hard copy image of a screen format.

Quit End MSGAR program and logoff.

REName | Rename a screen format.

REStore | Restore a screen format from an OS/3 library
element.

continued ...

7002 3881-100

° RN

;’r\\\

MSGAR — Message Archiver

7002 3981-100

Restore multipie screen formats.

Create RPG II Input specifications.

RPGOut | Create RPG II Output specifications.

RPGIND | Change RPG II indicator character for screen
format.

Save Save a screen format in an OS/3 library
element.

SR Save (regardless) — ignore potential library
element overwrite prompt.

SM Save multiple screen formats.

SRM Save (regardless) multiple screen formats —
ignore potential library element overwrite
prompt.

SEOF Do NOT allow Special Emphasis = NOSEON.

SEON Allow Special Emphasis = NOSECF.

TABOF Turn auto-tabbing OFF.

TABON | Turn auto-tabbing ON.

Test Invoke MSGSHOW to test screen format.

UNIOF Turn unidirectional field flag OFF.

UNION | Turn unidirectional field flag ON.

Write Create a library element with group and

names list.

3-193

MSGAR — Message Archiver

3.58.1. ALTRxx — Toggle Alternate Row

This command enables or disables the ability to allow a screen format to be displayed at an

alternate row via the PIB-ALT-MCS-ROW field.
Syntax:

ALTRON *name
ALTROF *name

Where:

ALTRON Enable the ability to use alternate rows.
ALTROF Disable the ability to use alternate rows.

*name The name of a single screen format or a prefix specification to process several
formats.

3.58.2. COBOL — Create Cobol Copy Element

This command creates a COBOL copy element from the selected screen format. The copy
element identifies each data field with the name "FILLER" and gives the correct picture
clause according to the definition of the field in the screen format. A comment line is
generated as the last statement indicating the sum of the sizes of all error fields.

Syntax:
COBol *name {,lib {,elt]]

Where:

*name The name of a single screen format or a prefix specification to process several
formats.

file The logical file name of the OS/3 library

elt The name of the element in the library which is created containing the COBOL
statements. The element name defaults to the name of the screen format that
was specified.

If screen formats are being processed by prefix the element name must be
omitted. :

3-194 7002 3981-100

MSGAR — Message Archiver

3.58.3.

lalat-Yatd MINAMAIO Y TESTIATA QT /

COBOL TESTMSG,FPRODSRC/TESTCOB

Create a COBOL copy element in OS/3 library catalogued with the logical name of
PRODSRC and the element name TESTCOB.

COPY — Copy Screen Format

This command makes a copy of an existing screen format. The "copy” may be given a new
format name and may be placed in a different group than the original format. The original
format is not affected in any way by this command.

The existing screen format is assumed to be from the current operating group.

Syntax:

CCPy name [,newgrp] [,newname]

Whers:

name The name of an existing screen format (prefix specification is not allowed).
newgrp Optional group name for the copy.
Default is the current operating group.

newname The desired new name of the copy format. This name must be supplied if the
[newgrp] is the same as the current operating group.

Default is the name of the existing screen format.

Exampig:
COPy TFSLOGON, EDP

Create a copy of the TFSLOGON screen from the current operating group. The copy of the
screen has the same format name (TFSLOGON) but is in the group "EDP".

7002 3881-100 3-195

MSGAR — Message Archiver

3.58.4. CURSOR — Speciiy Cursor Location

3-196

This command alters the cursor resting location for a screen format. The cursor location is
specified as a row and coiumn number (reiative to 1) or may be omitted. If the row and
column are omitted, the archiver computes the resting location as the first position of the
first unprotected field. If there are no unprotected fields in the screen format, the cursor is
placed in column 1 of row 1.

Syntax:
CUrsor name [, row,column]
Where:
name The name of a single screen format (prefix specification not allowed)
[row,column]
Cursor resting location (home position is 1,1).
Example:

cursor testmsg,5,51.

Force the cursor résting location for screen format named "TESTMSG" (in the current
operating group) to row 5 column 51.

Error Condltions:

The specified screen format may not be found or the row or the column specification may
be incomplete or invalid.

7002 3981-100

MSGAR — Message Archiver

3.58.5. DATE — Select by Date

This command causes succeeding MSGAR commands to operate on a subset of the
available screen formats..

Syntax:

DATE<yymmdd
DATE>yymmdd
DATE=yymmdd

DATE> Select formats whose date is greater than "yymmdd".
DATE= Select formats whose date is equal to "yymmdd".
yymmdd The date to be used for subset selection.

3.58.6. DELETE — Delete Screen Format

This command deletes a specified screen format from the current operating group.

In order to minimize the impact of fumble-finger typists, the screen format name for this
command may NOT be specified using prefix notation.

Syntax:
DELete name
Where:
name The name of a single screen format (prefix specification not allowed)
Example:

DEL testmsg

Delete the screen format named "TESTMSG".

Error Condltlons:

The specified screen format may not be found.

7002 3981-100 3-197

MSGAR — Message Archiver

3.58.7.

3.58.8.

3-198

DIR — Directory of Screen Formats

This command produces a printout containing information known about the selected
screen formats. The information printed includes: screen name, author, date and time
created, total data field count, etc.

Syntax:
DIrectry *name [,printer]
Where:
*name A single screen format name or a prefix specification
printer The output printer destination. The default destination is PRNTR (the site
printer). The printer may also be specified as an auxiliary print device.
Example:

DIR ftest,auxl

Produce a directory listing of all screen formats which have a name NOT starting with the
string "TEST". The printout is to be directed to the auxiliary printer for the issuing
terminal.

END — End MSGAR Program

This command causes the message archiver to terminate processing normally.

Syntax:
End

Whers:

No parameters are required.

7002 3981-100

MSGAR — Message Archiver

3.58.9. FSL — Toggle Fields Span Lines

This command enables or disables the ability to allow a screen format to support fields that
span lines.

Syntax:

FSLON *name
FSLOF *name

To disable the ability to span lines
*name The name of a single screen format or a prefix specification to process several
formats

3.58.10. GROUP — Specify Operating Group

This command alters the current operating group for the MSGAR program. The current
operating group is used as the default group for other MSGAR commands. If a new group
name is not specified with this command, the Group command displays the current
operating group that is in effect.

Syntax:

Group {grpname]
Where:

grpname The desired new operating group.

If this parameter is not supplied, the current operating group is not changed
but merely reported at the terminal.

Example:

TIP?pmsgar

MSGAR (1) ?pOperating on MCS format group: TIPSYS
MSGAR (1) ?2Pg edp

MSGAR (1) ?POperating on MCS format group: EDP
MSGAR (1) ?®del foo

MSGAR (1) ?PScreen format EDP/FOO0 deleted.
MSGAR (1) 2be
TIP?p

7002 3881-100 3-199

MSGAR — Message Archiver

3.58.11. HELP — Command Help

This command causes the message archiver to display a summary of recognized commands
and required parameter syntax.

Syntax:

Help

3.58.12. LIST — List Format Summary

This command displays (on the terminal) a summary listing of information known about
the selected screen formats. The information is similar to that shown by the DIRECTORY
command.

Syntax:
List *name
Where:
*name A single screen format name or a prefix specification
Example:

LIST *test

Produce a listing of all screen formats which have a name starting with the string "TEST".

3.58.13. MOVE — Move Screen Format

3-200

This command moves an existing screen format (from the current operating group) to a

new group. An optional new format name may be specified at the same time to rename the
format as the move is taking place.

The original existing screen format (in the current operating group) no longer exists after
this command is used.

Syntax:

Move name,newgrp [,newname]

Where:

name The name of an existing screen format (prefix specification is not allowed).

7002 3981-100

MSGAR — Message Archiver

newgrp New group to move the screen format to.
newname Optional new name for the screen format.
Default is the name of the existing screen format.

Example:

Move TEST,TIPS$YS,ORDEROOL

Move the screen format "TEST" from the current operating group to the group TIPY as
screen name "ORDER001".

3.58.14. PRINT — Print Screen Format

his command creates a hard copy image of specified screen formats. The image is a

representation of the screen as it was defined to the TIP /30 Format Definition program (see
"3.89. TFD — Screen Format Definition" on page 3-283).

Data fields and heading fields are shown with original edit and control information. The
hard copy image may be routed to the site printer PRINTR (the default destination) or to an
auxiliary print device (for example: AUX1).

Syntax:
Print *name (,printer] [,case] [, NB]

Where:

*name A single screen format name or a prefix specification

printer The name of the destination printer (default is PRNTR; other examples are:
AUX1 AUX1*BYP). Any printer name recognized by TIPPRINT may be
specified.

case A choice between "Upper" and "Lower" indicating the desired case of the
printout.
"Upper"” is the default if the destination is the site printer;
"Lower" is the default when the destination is an auxiliary printer.

NB If this parameter is specified, the Print command does not attempt to print
data field codes and special heading fields in "bold" (muiti-strike).

Example:

PRINT *test,,LOWER

Produce a hard copy printout of all screen formats with a name starting with the string
"TEST" on the site printer and attempt to print lower case data.

7002 3981-100 3-201

MSGAR — Message Archiver

3.58.15. QUIT — End MSGAR Program

This command ends the message archiver. In addition, if the user was executing the
message archiver at stack level 1 (ie: the message archiver was NOT called from another
program) then the user is logged off the TIP/30 system.

Syntax:
Quit

3.58.16. RENAME — Rename Screen Format

This command renames an existing screen format. The new name must be a name that is
not currently in use.

" Syntax:
REName name, newname
Where:
name. The name of an existing screen format

newname The desired new name for the screen format

Example:

ren testmsg, xtestmsg

Change the name of screen format "TESTMSG" to "XTESTMSG".

3-202 7002 3981-100

MSGAR — Message Archiver

3.58.17. RESTORE - Restore Screen Formats

This command restores screen formats that were previously saved (by the message
archiver) in an O5/3 library element. The name of the element containing the saved screen
format need not be the same as the name of the screen format.

Syntax:
REStore name ,Eile [,elt]
RM *name ,Eile ,elt
Where:
name The name of a single screen format.

Prefix specification is only allowed with the RM (Restore Multiple) command.
file The logical file name of the OS/3 library '
elt The name of the element in the library which contains the saved screen

format(s).

Default is ‘name” with the Restore command.

Must be supplied with the RM command.

Example:

REST TESTMSG, PRODSRC/XTESTMSG

Restore (recreate) a screen format called "TESTMSG" from library "PRODSRC" element
"XTESTMSG".

7002 3981-100 3-203

MSGAR — Message Archiver

3.58.18. RPG — Create RPG |l Layout

3-204

This command creates RPG II input or output specifications from the selected screen
format.

Each data field in the screen format is defined with a unique name (for that format).

Syntax:

RPGIn *name [,lib] {[,elt]
RPGOut *name [,lib] [,elt]

Where:
name The name of a screen format
Prefix specification is allowed.
file The logical file name of the OS/3 library.
Default is RUN (the TIP job’s YRUN library).
elt The name of the element which is to be created.
Default is the name of the screen format that was specified.
If screen formats are being processed by prefix, the element name must be
omitted.
Example:

RPGOUT TESTMSG,PRODSRC/TESTCOB

Create RPG II output specifications, for the format TESTMSG, in OS/3 library catalogued
with the logical name of PRODSRC and the element name TESTCOB.

7002 3981-100

MSGAR — Message Archiver

3.58.19. RPGIND — Change RPG Il Format Id

This command changes the format identification character for a screen format.

Any input specifications created via the RPGIn command show this value.

Syntax:
RPGIND *name [,char]
Where:
name The name of a screen format.
Prefix specification is allowed.
char The character to use as the format identification character.
Default is space.
Example:

RPGIND TESTMSG,D

Change the format identification character for TESTMSG to a "D".

3.58.20. SAVE — Save Screen Format

This command saves one or more screen formats in an OS/3 library element (or elements if
the SM (Save Multiple) or SRM (Save Multiple Regardless) commands are used).

The save command is useful for taking a backup of screen formats before undertaking
extensive modifications or in preparation for transporting screen formats to another TIP/30

system.
Syntax:
Save *name ,file [,elt)]
SR *name ,file (,elt]
SM *name ,file ,elt
SRM *name (file ,elt
Where:
name The name of a screen format.
Prefix specification is allowed.
file The logical file name of an OS/3 library.

7002 3881-100 3-205

MSGAR — Message Archiver

elt The name of an element that is to be created (in the library) to contain the
screen format(s) selected.

A7 3le tlaa Qe - CY
With the Save and SR commands, the element defaults to the name of the

screen format that is being saved; if screen formats are selected by prefix the
element name must be omitted.

With the SM and SRM commands, the element name must be specified.
Example:

SAVE *TF S, BACKUP

Save all screen formats with a name starting with "TF$" into the OS/3 library catalogued
with the logical file name "BACKUP". Each element is created with the name of the screen

format it contains,

Additionai Considerations:

If the command is specified as "SR" (Save Regardless) or SRM (Save Regardless Multiple),
the MSGAR program does not prompt the user with an overwrite check (if the element
already exists). This is a dangerous command and should be used with extreme caution.

The Save and SR commands write each screen format selected into it's own library element
(default element name is the same as the screen name).

The SM and SRM commands write all screen formats selected into a single library element
(the element name must be supplied).

3.58.21. SE — Toggle Special Emphasis

This command enables or disables the ability to use the special emphasis underscore on
UTS/30 or UTS/40 terminals.

Syntax:

SECON *name

SEQF *name

Where:

SEON Enable the special emphasis underscore.

SEOF Disable the special emphasis underscore.
*name The name of a single screen format or a prefix specification to process several
formats.

3-206 7002 3981-100

MSGAR — Message Archiver

3.58.22. TABxx — Toggle Auto-Tabbing

This command enables or disables the auto-tabbing feature of a screen format.

Syntax:

TABON *name
TABCF *name

Where:

TABON Enable the auto-tabbing feature.
TABOF Disable the auto-tabbing feature.

*name The name of a single screen format or a prefix specification to process several
formats.

3.58.23. TEST — Test Screen Format

This command invokes the MSGSHOW utility (see description in "3.59. MSGSHOW —
Screen Format Testing” on page 3-209). to permit the user to test a screen format. The

MSGSHOW program is called with the specified screen format name and an underscore as
the defauit filler character to use.

Syntax:

Test name

Where:

name A single screen format name to use to invoke MSGSHOW.

7002 3981-100 3-207

MSGAR — Message Archiver

3.58.24. UNIxx — Toggle Unidirectional Fields

This command enables or disables the ability to use the unidirectional fields in a screen
format.

Syntax:

UNION *name
UNIOF *name

UNION Enable the ability to use unidirectional fields.

UNIOF Disable the ability to use unidirectional fields.
*name The name of a single screen format or a prefix specification to process several
formats.

3.58.25. WRITE — Write Screen Format Name List

3-208

This command creates an element in an OS/3 library which contains all the specified screen
format names. Each "line" of the created element contains a single group/name pair. The
write command is especially useful for creating command files for a subsequent run of the
message archiver. The element created by the write command can be edited later using the
TIP /30 Text Editor — FSE.

Syntax:

Write *name [,file] [,elt]
Where:
*name The name of a single screen format or a name prefix specification.
file The logical file name of the OS/3 library (default is "RUN")
elt The name of the element to create (defauit is "MSGAR")
Example:

WR !TF$, RUN/NONTIP

Creates an element named "NONTIP" in library "RUN" containing lines of screen format
names that do NOT begin with the string "TF$".

7002 3881-100

MSGSHOW — Screen Format Testing

3.58. MSGSHOW — Screen Format Testing

This program (via either of two transaction codes) is used to test TIP/30 screen formats:
MSGTST

Prompts the user for test data and presents it on the terminal using the named
screen format.

MSGSHOW

Displays a specified screen format (without data), waits for the user to enter
test data, then displays the data as the data would be received by a program
using the screen format.

In either case, the unformatted data screen expects the test data to be a continuous
character string. A user can cycle back and forth between screens trying various data entry
options. -

When the user’s formatted message is displayed, intentional errors may be introduced to
check error field options. Entering a circumflex as the first character in a field and pressing
the key causes the field to blink and an error message to be displayed.

MSGTST and MSGSHOW display the data received exactly as it would appear in a user
program MCS-DATA area. Note that no header information or communications characters
are received, and that the number of characters sent is a function of cursor position.

Numeric fields are returned to the program right justified and zero filled. Data characters
entered into a field which are incompatible with the field definition are replaced by blink
characters (or are blinked) by the Message Control System. The errors may be corrected
and data changed to try out various options available. Simply place the cursor after the
data and press the key.

Syntax:
® MsGTSTI,grpl format [,£fill] [, func]
@ MSGSHOW([,grp] format [,£ill] [, funcl
Where:
grp The group name associated with the screen format to be tested.
Default action is to search through all of user’s groups.
format The name of the screen format to be tested.
fill The fill character to be used while testing the screen format. Choices are:
asterisk, underscore, the word SPACE or NO to indicate a space fill character.
Default: underscore is used as fill character.
func The MCS-FUNCTION code (see description of this field in the MCS section of
the TIP /30 Programming Guide). If not specified, MCS-FUNCTION is set to
space.

7002 3981-100 3-209

MSGSHOW — Screen Format Testing

Example:

MSGSHOW TFSFSE(O3

3-210 7002 3981-100

NEWUSER — Logon as Another User

3.60. NEWUSER — Logon as Another User

here is often the necessity to terminate the current session (logoff) and start another

A~
session (logon) using a different user-id or account number. To simplify this process, the

NEWUSER program is provided.
NEWUSER enables a logged on user to logoff and logon in one step.
Syntax:

NEWUSER userid [/password] [/account]
Where:
userid Userid to log on.

password Current password associated with the userid.

account The account number to use to LOGON.

Example:

NEWUSER FRED/QWERTYUI,Al06

Logoff.the user that is presently logged on and immediately attempt to LOGON as user
"FRED" using the current password for FRED (illustrated as the string "QWERTYUI") with
an appropriate account number.

Error Conditions:

The userid may not be valid, the password may not match the current password for the
userid, or the account number may not be valid for the specified userid. If any of these
errors occur, TIP /30 presents the user with the logon screen format (the implied logoff is
usually successful).

7002 3981-100 3-211

NOTE — Display Informational Message

3.61. NOTE — Display Informational Message

The NOTE program allows a terminal user to send a message to the terminal which
invoked the NOTE program. This command is usually used within .IN files to signal
progress through the command file (see description of input redirection in the
documentation of the TIP/30 Program Control System — PCS).

Syntax:

NOTE [, W] text

Where:

text

Example:

3-212

A command line option character to cause the NOTE program to pause and
wait for any input (usually a function key or the (MSG WAT) key).

This option is often used in TIP /30 redirected input files (sometimes called
"command files") — see the description of redirected input in the
documentation of the TIP/30 Program Control System — PCS.

The text is displayed and the NOTE program waits for any input before
continuing.

The message text (64 characters maximum) that is to be displayed on the
terminal.

NOTE ALL USER-IDS HAVE BEEN CATALOGUED
NOTE,W PRESS MSG~WAIT TO CONTINUE

7002 3981-100

PAUSE — Pause Executing Process

3.62. PAUSE — Pause Executing Process

The PAUSE program may by used to suspend execution of a TIP/30 process (either a
foreground or background process).

When a process is "paused", the TIP/30 scheduler ignores that process when it is searching
for work to do.

If a paused process is the target of a DIE or PURGE request, an automatic "GO" is issued to
allow the process to die.

Paused processes are revealed by the WHOSON transaction — the terminal name appears
with the suffix "/Go" to indicate that the process is awaiting a "GO".

Syntax:
@ pAUSE/identifier
@ PAUSE identifier

Where:

identifier ~The userid or terminal name to be paused.
Prefix notation may be used; eg: PAUSE *BACKS

PAUSE will not act on the process that is executing (that is, you may not
PAUSE yourself).

Example:

PAUSE *JANET

This command pauses all processes running on behalf of userid "JANET" ("JANET" is too
long to be a valid terminal name and is therefore only a potential match for a user name).

7002 3981-100 3-213

PMDA — Post Mortem Dump Analysis

3.63. PMDA — Post Mortem Dump Analysis

PMDA is a dump analysis program that enables a programmer to interactively examine a
dump from an on-line program. PMDA is automatically invoked by TIP when a user
program aborts. PMDA creates a dynamic file containing a copy of the user program
memory areas at the time of the dump.

The dynamic file is created with a name constructed as follows:

userid/DUMPtttt/trid

where "userid" is the userid of the user executing the program that aborted, "tttt" is the
ICAM terminal name of the user terminal, and "trid" is the catalogued transaction name
that invoked the program that aborted.

If the user is an application level user, PMDA prints the dump at the site printer (see
description of the "P" command) and terminates normally. However, if the user is at
programmer level security (or higher), PMDA allows the user to enter commands to
"browse" through the dump at the terminal. The programmer level user may specify that
the dump file is to be printed and /or kept.

PMDA may be invoked directly from the terminal to browse through a previously kept
dump file (see syntax description following).

Another important func:tion"of the PMDA program is to release any files that may have
been assigned to the program.

PMDA is most often encountered as a result of a program abort condition. However, it is
possible to execute PMDA directly as a transaction to continue analysis of a previously
retained dump.

To execute PMDA interactively, the command line syntax is:

Syntax:

PMDA trid f{,tttt] {,userid]

Where:

trid The name of the transaction that aborted.

tttt The ICAM name of the terminal where the original abort occurred (default is
the current terminal).

userid The userid that was running the program at the time the program aborted

(default is the current userid).

3-214 7002 3981-100

PMDA — Post Mortem Dump Analysis

3.63.1.

PMDA recognizes the following interactive commands:

Table 3-12. PMDA Commands

Display areas of memory of the aborted
program.
E End interaction with PMDA (retain dump file).
P Print hard copy of dump.
Q fﬁm; interaction with PMDA (scratch dump
e).

Programmers generally elect to print a dump whenever a transaction program aborts. In
some cases, it is possible to first browse through the dump at the terminal and discover the
reason the program terminated abnormally (and therefore eliminate the need to print the
dump).

Some familiarity with assembler programming concepts is assumed in the following
discussion of PMDA commands.

D — Display Memory

This command displays the contents of the memory allocated to the program that aborted.
The display command has several variations to allow the programmer to specify storage or
registers to display.

D addr

Display 16 bytes in hexadecimal and graphic from the specified address.
D ABORT

Display the abort area (the 32 bytes surrounding the instruction that failed).
The word "ABORT" must be entered as illustrated.

D name [,offset]

Display 16 bytes in hexadecimal and graphic from the start of the linkage area
given by "name" plus optional offset. The recognized names are:

PIB | CDA | MCS | IMA | OMA | WORK

Offset is specified as a hexadecimal value; if omitted, the offset defaults to
Zero.

DF Display the contents of the floating point registers.
D PSW Display the abort address and the PSW at the time the program aborted.
DR Display the contents of the general purpose registers.

7002 3981-100 3-215

PMDA — Post Mortem Dump Analysis

3.63.2.

3-216

Exampie:

D 5800 - Display 16 bytes from address X"58007.
D MCS,40 - Display 16 bytes at offset X'40/
from the start of the MCS area.

E — End Program

This command ends interaction with PMDA and retains the dynamic file containing the
dump.

Syntax:

Where:
No parameters required.
Additional Considerations:
The TIP /30 dynamic file is created with a name constructed as follows:
userid/DUMPtttt/trid
"Userid" is the userid of the user executing the program that aborted, "tttt" is the ICAM

terminal name of the user terminal, and "trid" is the catalogued transaction name that
invoked the program that aborted.

To reload PMDA to resume analysis of the dump, invoke PMDA interactively as described
in "PMDA — Post Mortem Dump Analysis” on page 3-214.

7002 3981-100

PMDA — Post Mortem Dump Analysis

3.63.3. P — Print Dump

This command causes PMDA to create a printed dump for offline analysis by the
programmer. Unless an optional print destination is specified, PMDA first attempts to print
the dump to logical file name "TIPSPMDA", otherwise the dump is printed using the logical
file name "PRNTR".

The dump is formatted to assist the programmer: major areas of storage are identified in
much the same fashion as an OS/3 SYSDUMP.

When the printed report is completed, PMDA terminates after scratching the temporary
dynamic file that contained the memory contents (effectively performing an automatic "Q"
command after printing).

Syntax:
P [dest]
Where:
dest Optional parameter to override the default print destination. Any valid
TIPPRINT printer name may be specified. Defauit is first TIPSPMDA, then
PRINTR as described above.

Additional Considerations:

The TIP /30 system administrator may elect to define an additional print file in the TIP /30
generation parameters and job control (LFD PRNTRX for example) and create a catalogue
entry for logical file name "TIPSPMDA" so that PMDA printed reports are directed to a

separate printer from PRNTR:
TIP /30 Gen: FILE PRNTRX,PRINT
BUFFER=1.
TIP /30 JCL: // DVC 21
// SPL HOLD

// LFD PRNTRX

TIP/30 Catalogue: | FILE TIPY/TIP$PMDA
SECUR=255 LFD=PRNTRX.

7002 3981-100 3-217

PMDA — Post Mortem Dump Analysis

3.63.4. Q — End and Scratch Dump File

This command causes PMDA to scratch the temporary dump file and end interaction with
the user.

Syntax:

Where:

No parameters required.

3-218 7002 3981-100

POC — Terminal Reset

3.64. POC — Terminal Reset

The POC transaction handles a power-on confidence test (POC) interrupt from a terminal.
Some terminals (SVT-112x for example) send notification to the host computer when the
terminal is reset. This notification is (and always has been) translated by TIP/30 into the
pseudo function key number 23.

The TIP /30 Catalogue defines the POC transaction to invoke the TT$MOD load module.
When the TTSMOD program is called, it determines the correct screen size, whether or not
FCCs are supported, updates TIP /30 internal terminal tables if necessary, and displays a
confirmation message on the terminal.

Each site may define a TIP/30 transaction with the trid "F#23" that has the same
characteristics as POC to automatically perform this diagnosis if F#23 is received while the
TIP/30 system prompt appears on the terminal.

If a function key (even a pseudo function key like 23) is pressed while the TIP /30 command
line processor is active, TCP first checks to see if there is a transaction defined for the user
with the reserved name of the function key (eg: F#23). If there is such a transaction defined,
it is executed; otherwise, TCP proceeds to check the user’s function key definitions (see
"3.21. DEFKEY — Define Function Keys" on page 3-73).

The most common use of the POC transaction is to inform TIP /30 that an SVT-112x
terminal is being changed between 80 column and 132 column mode. The terminal

operator can change the setting of the control page and then invoke the POC transaction
directly. :

Example of POC Output:

Qhe terminal size is now set to: 24 X 80 - FCCs are supported. j
TIDP?P

7002 3981-100 3-218

PR — 0S/3 PR Command

3.65. PR — 0S/3 PR Command

The PR transaction implements a variation of the OS/3 "PR" console operator command
(start a burst mode output writer). The PR transaction is actually a clone of the more
powerful SYM transaction. The SYM transaction program can be invoked using an alias
name that is interpreted as a specific command. When the SYM program is invoked with a
transaction name of "PR", the SYM program assumes that the OS/3 command is "PR".

The OS/3 PR command syntax is documented in the

operation guide for your system.

The PR transaction submits the parameters exactly as entered to the OS/3 system as if the
command was entered on the system console.

Note: There is no provision for returning any completion status.

Example:
PR BU, FORM=STAND2

The example command begins a burst mode output writer to process Spool subfiles that
specify a form name of "STAND2".

3-220 7002 3981-100

PRINT — PRINT Utility

3.66. PRINT — PRINT Utility

The PRINT transaction is a clone transaction of the generalized librarian utility transaction
TLIB (see "3.90. TLIB — Librarian Services" on page 3-325).

The PRINT transaction invokes the TLIB program. When the TLIB program observes that
the transaction name is not TLIB, it uses the transaction name as the implied command.

The command line options and parameters that are supplied with the PRINT transaction
code are interpreted by TLIB as parameters to the TLIB PRINT command.

The end result is the ability to use PRINT as an apparently stand-alone transaction.

........

PRINT[,options] parameters

options Any command line options (as recognized by TLIB) that pertain to the PRINT
command. See description of options that affect the PRINT command in
"3.90.12. PRINT — Print Input” on page 3-343.

parameters Parameters required by the PRINT command of the TLIB program.

Example:

PRINT SRC/BUDGET, S

This example prints a source element named BUDGET in the OS/3 library defined with a
logical file name of SRC. No output specification is provided — the default output location
is the site printer (PRNTR).

7002 3981-100 3-221

PURGE — Remove Process

3.67. PURGE — Remove Process

Lo DI TRTE smpmorws i
The PURGE program may be used to forcibly remove a TIP/30 process from the system.

This action may be necessary because a terminal has been abandoned while a program that
will never timeout is running or because a program is in some sort of endless loop.

WARNING

Use of this transaction (or the corresponding
operator console command) should be used with
extreme caution.

Syntax:

® PURGE/identifier

" @ PURGE identifier

Where:

identifier The userid or terminal name to be purged.
Prefix notation may be used; eg: PURGE *BACKS$

PURGE does not act on the process that is executing (that is, you may not
PURGE yourself).

Example:
PURGE *JANET

This command causes all processes running on behalf of userid "JANET" to be purged from
the system ("TANET" is too long to be a valid terminal name and would therefore only
match a userid).

Error Conditions:

PURGE may report "No matching user or terminal can be found" if the identifier does not
match any running process.

3-222 7002 3981-100

PURGE — Remove Process

Additlonal Considerations:

Purged programs are aborted immediately without generating any sort of termination
dump (PMDA). If the program was running at an execution stack higher than 1, all
intermediate stack levels are aborted as well.

The PURGE program generates a console message to indicate that a PURGE operation has
taken place:

TI0S5 userid(term): INVOKED PURGE/identifier

Any roll back of transactions is properly handled.

The corresponding operator console command may prove to be useful when the operator
has tired of waiting for users to voluntarily logoff TIP/30.

7002 3981-100 3-223

RDR — Create RDR Spool File

3.68. RDR — Create RDR Spool File

3-224

The RDR program allows the user to create "card image” data at the terminal (or retrieve

such data from a library element) and have this data placed in a standard OS/3 Spool
reader sub file.

The RDR programn first calls the transaction named "RDREDT". This transaction code is
normally defined to invoke the standard TIP /30 Full Screen Editor (FSE) but the
transaction may be defined to call any available editor. While in the editor, the user may
take advantage of all of the capabilities of the editor to create the desired data images. In
particular, FSE can manipulate edit buffers that are 96 or 128 characters wide — the FSE
"ma” command (set margins) and the data shift commands (<) and (>) may be used to move
the editing window to the left or right.

Once editing is complete, the user may either End or Quit the editor to return control to the
RDR program. If the End option is chosen, the RDR program creates a reader subfile
containing the data that is in the edit buffer. The edit buffer is left intact (for possibie later
modification).

If the Quit option is chosen, the RDR program prompts the user to determine whether or

not to create the spool sub file before scratching the edit buffer. This way, a confident user
can create a reader sub file and have the RDR program discard the edit buffer afterward.

Syntax:
RDR[,opt] [file/elt [,type]] [,buffer]
RDR96 [, opt] [file/elt [,typel 1 [,buffer]
RDR128 [, opt] [file/elt [,typel] [,buffer]
Where:
RDR96 Altemate transaction name, to allow creation of 96 character wide reader files.

If this transaction name is used, the FSE editor is called (rather than RDREDT).
This is because FSE is the only TIP/30 editor which is able to handle line
images greater than 80 characters.

RDR128 Alternate transaction name, to allow creation of 128 character wide reader
files. If this transaction name is used, the FSE editor is called (rather than

RDREDT).

opt Command line options to control various side effects.
H Create the reader file in HOLD queue.
R Create the reader file as RETAIN sub file.

If neither option "H" nor "R" is specified, the reader file will be
marked as queued.

file/elt Optional file and element to initially read into the editor’s buffer.
type The type of element to read — default is source ("S").

7002 3881-100

RDR — Create RDR Spool File

buffer The name of the edit buffer that will be accessed.
If an edit buffer of that name does not exist, RDR will create it.

If the name is not specified, it defaults to "RDR$tttt" where "tttt" is the ICAM
name of the submitting terminal.

This name is used as the resulting LBL name of the reader sub file that is
created.

Example:
RDR TEST

This example accesses (or creates) the edit buffer named grp1/TEST (where grpl represents
the name of the first elective group to which the user belongs).

The "RDREDT" editor will be called and, if the user exits the editor with the "E" command,
the contents of the buffer will be created as a reader sub file named "TEST".

Reader sub files can be accessed by a batch program by using job control statements such as
those described below:

ForR
7/DVC30 |//DVC1301
// VOL X(INOV) or RDR128
// LBL xxx // LBL xxx
// LFD zzz // LFD zzz

7002 3981-100 3-225

RE — Display Ready Message

3.69. RE — Display Ready Message

3-226

The RE transaction clears the terminal screen and displays the current TIP /30 greeting
(ready message) information. The RE transaction is actually a clone of the more powerful
SYM transaction. The SYM transaction program can be invoked using an alias name that is

. interpreted as a specific command. When the SYM program is invoked with a transaction

name of "RE", the SYM program reacts by displaying the TIP/30 "ready message".
Syntax:

RE

Example output of RE:

<<< TIP/30 Version 4.0 C40R0-000 Ready for xxxxxxxxxxxx 89/08/01 15:59 >>>

* TIP/30 *

B S]

Note: Thestring "xxxxxxxxxxxx" represents the 12 character TIP[30 site name as specified in
the TIP/30 generation parameters for the TIP[30 system that is executing.

The two lines of greeting text is normally provided in the TIP/30 job control run-time
options.

The current date and time is shown along with the current revision level of the TIP/30

software.

7002 3881-100

RECOVER — RECOVER Element

3.70. RECOVER — RECOVER Element

The RECOVER transaction is a clone transaction of the generalized librarian utility

transaction TLIB (see "3.90. TLIB — Librarian Services" on page 3-325).

The RECOVER transaction invokes the TLIB program. When the TLIB program observes
that the transaction name is not TLIB, it uses the transaction name as the implied command.

The command line options and parameters that are supplied with the RECOVER

transaction code are interpreted by TLIB as parameters to the TLIB RECOVER (alias BACK)
command.

The end result is the ability to use RECOVER as an apparently stand-alone transaction.
Syntax:

RECOVER{,options] parameters

Where:

options Any command line options (as recognized by TLIB) that pertain to the
RECOVER command. See description of TLIB options in "3.90.2. TLIB
Options" on page 3-327 and see description of options that affect the
RECOVER command in "3.90.15. RECOVER — Activate Previous Version” on
page 3-348.

parameters Parameters required by the RECOVER command of the TLIB program.

Example:

RECOVER SRC/BUDGET, S

This example attempts to roll back a source element named BUDGET in the OS/3 library
defined with a logical file name of SRC. The most recent previous version of that element in
that library is made the active version.

Additional Considerations:

The RECOVER transaction marks the current active version of the module as "deleted” and
then "reactivates” the most recent previous version. If both steps cannot be performed, no
action is taken. Note that before using RECOVER to roll back an accidentally deleted
module, a "dummy" active module of the same name must first be written to the library.

To roll back to an earlier version, simply reissue the RECOVER command as many times as

The RECOVER transaction reports the module comment, date and time stamp of the
reactivated module.

7002 3981-100 3-227

RELOAD — Reload Program

3.71. RELOAD — Reload Program

The RELOAD program is used to indicate to TIP /30 that it must obtain a "fresh” copy of a
load module from the TIPSLOD library (or the TIP$BLK fast load file — if configured).
TIP /30 does not necessarily load a load module from the library (or TIP$BLK file) every
time the load module is needed.

When an online program is re-linked, the RELOAD transaction may be used to force
TIP /30 to "refresh" the load module before using it again.

The load module to be RELOADed may be in use when the RELOAD program is run. In
this situation, the RELOAD program informs the user that the load module is in use and
the RELOAD remains pending and is performed when all present users of the load module
are finished.

It is possible to RELOAD a RESIDENT program (one that is permanently resident in

memory —a }CL start up UpLAUll> The RELOAD program first warns the user that the load
module specified is a RESIDENT program and then requests positive confirmation that the

RELOAD is to be performed.

If a RESIDENT program is RELOADed, the resident copy in memory is marked unusable
(and whatever memory it occupied is wasted until TIP/30 shuts down).

Syntax:
RELOAD lcocadm
QVhere:
loadm The load module name (trailing zeroes need not be entered).
Example:

TIP?Preload tté$mod

TTSMODOO cleared from loadr table.

TTSMODOO cleared from reentrant control table.

TTSMODOO ver: 89/09/15 @ 10:32 (C) A.R.C TIP/30 4.0 4051 bytes
TIP?®

As the example above illustrates, the date, time stamp and library comment from the
TIP$LOD library information is shown along with the size of the load module in bytes.

3-228 7002 3981-100

RELOAD — Reload Program

Additional Considerations:
If the program is being used reentrantly then TIP /30 must wait for all current users of the
program to stop using it before a new version can be loaded.

If an attemnpt is made to reload a resident SUBPROGram, RELOAD displays an error
message and terminates without taking any action (reloading a resident SUBPROG is not
permitted!).

An alternative transaction code (ZZPCH) is provided for compatibility with other software
systems.

7002 3981-100 3-229

RPG —

RPG Editor

3.72.

3.72.1.

3-230

RPG — RPG Editor

The RPG editor is an online program which was written to aid programmers in the creation
and maintenance of programs written in the RPG II language. Using the RPG editor, a
programmer no longer has to worry about aligning fields in the proper columns. RPG has
eight screen formats; one for each of the form types used in writing RPG II programs. The
user only has to select the appropriate screen and enter the data on titled blank fields. RPG
edits and aligns the data as if it was coded on a card.

There are 10 screen formats used in the RPG editor:
e Menu
e Record list

¢ Control card format

a Anaree

hocd] PN
U QEsI1Ipio

L]

fnvrmma b
T 1OTINat

» File extension format

¢ Line counter format

¢ Telecommunications format
* Input format

¢ OQutput format

e Calculation format.

All commands are issued from the menu screen format. The remaining screen formats can
be displayed using commands from the menu.

Invoking RPG

" The RPG editor is invoked from the TIP/30 command line using this syntax:

Syniax:

® RreG
® RrRPG file/elt

Format @ is used to create a new source program; format @ is used to update an existing
element.

~~

he edit buffer can be retrieved by invoking the RPG editor

 LEIT

T iuiel

Note: In the event of a system crash
)24
J

e

7002 3981-100

RPG — RPG Edltor

3.72.2. RPG Editor Screen

These are the screen formats used by the RPG editor:

//525/30 RPG -~ EDITOR COMMAND MENU CURRENT LINE: 0‘\\\
Command: _
Line Number(s) From: To:
FILE/ELT Name: /

File Comment:

LEAVE CURSOR HERE == < >

COMMANDS -
H CONTROL CARD FORMAT . DISPLAY CURRENT LINE
F FILE DESCRITPION FORMAT S DISPLAY LAST LINE
E FILE EXTENSION FORMAT P PRINT LINES (LIST) MAX 15
L LINE COUNTER FORMAT W WRITE TO- FILE
T TELECOMMUNICATIONS FORMAT Q QUIT (AND SCRATCH EDIT BUFFER)
I INPUT FORMAT X EXIT (AND SAVE EDIT BUFFER)
o} CALCULATION FORMAT = DISPLAY FILE/ELT/COMMENT
Q QUTPUT FORMAT R READ ADDITIONAL ELEMENTS
* COMMENTS Y DISPLAY USER INSTRUCTIONS

MSG WAIT SAME AS 'Q’

//;;;/30 RPG - CONTROL SPECIFICATIONS CURRENT LINE: Oﬂ\\\

SPEC Type: H
Compilation Mode (2,3,4,) _
ERROR ANALYSIS DUMP (D,) _
CPERATCOR CONTRCL (1,) _ COL 10-14
GENERATE DEBUG CODE (1,) _ COL 16-2C
Inverted Print (D, I,J,) _ COoL 22-25
ALT COLLATING SEQ {8,) _ coL 27-30
BINARY SEARCH (1,) - COL 32-39
SIGN HANDLING {(s,I,B,)
Forms Alignment (1,) _
INDICATOR INIT. (s,) -
FILE TRANSLATION (F,) . COL 44-47
SHARED I/0 AREA (L,) _ COL 49-69
CCA NAME
SUBROUTINE (A,S,) _
Leave cursor here -- <_>
Fl: UPDATE RECORD F2: DISPLAY NEXT RECORD MSG WAITING: BACK TO MENU
F3: DELETE RECORD F4: DISPLAY PREVIQUS RECORD TRANSMIT: ADD RECORD TO FIL?//)

7002 3981-100 3-231

RPG — RPG Editor

//;;é/SO RPG - FILE SPECIFICATIONS CURRENT LINE: O‘\\

FORM TYPE: F

FILE NAME: TYPE: (I,0,C,U,D) _
DESIGNATION: (B,S,R,C,D,T) _ ECF: (E,) -
SEQUENCE : (a,D,) _ FORMAT : (F,V,D) B
BLOCK LENGTH: RECORD LENGTH:

PROCESSING MODE: (L,R,) _ KEY OR R.A. LENGTH: _
R. A. TYPE: (A,P,I,K,R) _ ORGANIZATION: (I,T,D,X,2) _
OVERFLOW IND.: (OA-OG,0V,) __ KEY START LOCATION:

EXT OR LINE CODE: (E,L,) N DEVICE:

SYMBOLIC DEVICE: ‘ LABELS: (S,N,E,K,) _
LABELS OR USER EXIT: ISAM INDEX RES. SIZE:

ADD OR UNORD LOAD: ({A,U,) N CYL OVERFLOW SPACE (X10)

OF EXTENTS: . TAPE REWIND: (R,U,N,)

FILE CONDITIONERS (Ul-U8)

Leave the cursor here -- < >
Fl: UPDATE RECORD F2: DISPLAY NEXT RECORD MSG WAITING: BACK 70O MENU
F3: DELETE RECORD F4: DISPLAY PREVIOUS RECORD TRANSMIT: ADD RECORD TO FILE
//;;é/30 RPG ~ INPUT SPECIFICATIONS CURRENT LINE: 0‘\\\
FCRM TYPE: I
FILE NAME:
SEQUENCE: (01-99,AA-22) . NUMBER: (1,N,)
OPTIONAL: (O,) _ RECORD ID: (01-99,H1-H9,L1-L9,LR)
RECCORD IDENTIFICATION CCDES: POSITION NOT c,2,D CHAR
STACKER SELECT: {1-9,) _ DATA FORMAT: (P,B,L,R,) _
FIELD: . FROM TO DEC NAME
CONTROL LEVEL: (L1-L3,) . MATCH OR CHAIN: (M1-M3,C1~C3,) —
FIELD REC RELATION: (ANY IND) __
FIELD INDICATORS: (01-99,H1~-H9,) PLUS MINUS ZERO/BLANK
COL 71-74 - - -
Leave the cursor here -~ < >
Fl: UPDATE RECORD F2: DISPLAY NEXT RECCRD MSG WAITING: BACK TO MENU
K:iiADELETE RECORD F4: DISPLAY PREVIOUS RECORD TRANSMIT: ADD RECORD TO FILE

3-232 7002 3981-100

RPG — RPG Editor

Y

//;;é/30 RPG - QUTPUT SPECIFICATIONS

FORM TYPE: O

FILE NAME:
TYPE: (H,D,T,E)

SPACE: BEFORE:
SKIP: BEFORE:
OUTPUT INDICATORS:

FIELD NAME:

EDIT CODE:

BLANK AFTER: (B,)
FIELD END POSITION:
DATA FORMAT: (P,B,L,R,
CONSTANT OR EDIT WORD:
coL 71-74

STACKER SEL/FETICH (0-9,F,)

_ AFTER: _

__ AFTER:
NOT IND

)

CURRENT LINE:

™

Leave the cursor here -- < >

Fl: UPDATE RECORD F2:
F3: DELETE RECORD F4:

N

DISPLAY NEXT RECORD
DISPLAY PREVICUS RECORD

MSG WAITING: BACK TO MENU
TRANSMIT: ADD RECOQORD TO FILE

(/;;§/30 RPG - CALCULATION SPECIFICATIONS

FORM TYPE: C

INDICATORS: NOT IND

FACTORL: -
OPERATION:

FACTOR2:

RESULT:

LENGTH:

DECIMALS:

HALF ADJ: _
RESULTING INDICATORS:

COMMENTS :

CONTROL LEVEL: (LO-L3,LR,SR,O0R,AN)

HIGH 1>2 +

LOW 1<2 -

CURRENT LINE: 0‘\\\

EQUAL 1=2 O

Leave the cursor here -- < >

Fl: UPDATE RECORD F2:
F3: DELETE RECORD F4:

.

DISPLAY NEXT RECORD
DISPLAY PREVIOUS RECORD

MSG WAITING: BACK TO MENU
TRANSMIT: ADD RECORD TO FILE

7002 3981-100

3-233

RPG — RPG Editor

69/30 RPG

NRRRRRRRREY

12.

~ LINE COUNTER SPECIFICATIONS

L

CH. NO.

CURRENT LINE:

™

Leave the cursor here -- < >

Fl: UPDATE
F3: DELETE

N

RECORD F2: DISPLAY NEXT RECCRD
RECORD F4:

DISPLAY PREVIOUS RECORD TRANSMIT:

MSG WAITING: BACK TO MENU
ADD RECORD TO FILE

ﬂp/ao RPG

- FILE EXTENSION SPECIFICATIONS

CURRENT LINE:

™

o

FORM TYPE: E
SEQ OR CHAIN FILE: (01-99,AA-22Z) CHAINING FIELD: (Cl1~-C9)
. FILE NAME FROM: TO FILE NAME:
TABLE OR ARRAY NAME: # OF ENTRIES PER REC:
OF ENTRIES PER TABLE OR ARRAY: LENGTH OF ENTRY:
DATA FORMAT: (P,B,L,R,) - # DECIMALS:
SEQUENCE: (A,D,) - ALT TABLE OR ARRAY:
LENGTH OF ENTRY: FORMAT: (P,B,L,R,) _
DECIMALS: _ SEQUENCE: (A,D,) _
COMMENTS :
Leave the cursor here -- < >
Fl: UPDATE RECORD F2: DISPLAY NEXT RECORD MSG WAITING: BACK TC MENU
F3: DELETE RECORD F4: DISPLAY PREVIQUS RECORD TRANSMITT: ADD RECORD TO FILE

3-234

7002 3981-100

RPG — RPG Editor

[/;;é/BO RPG = TELECOMMUNICATIONS FORMAT CURRENT LINE: O‘\\\

Form Type: T

FILE NAME COL 14 _
CONFIGURATION (A-L,N,0,Q-R,T~Z) =

TYPE OF STATION (R, T) - COL 17-18 __
TRANSPARENCY (N, Y,) -

SWITCHED (A,B,E,M, 8) - COL 21-47
REMOTE TERMINAL COL 52

PERMANENT ERRCR INDICATOR

(01-99,H1-H#9, L1-L9,LR)
WAIT TIME COL 58-59 _
LAST FILE (L,) COL 61-64
REMOTE DEVICE
TERMINAL NAME

M Leave cursor here == <__>
Fl: UPDATE RECORD F2: DISPLAY NEXT RECORD MSG WAITING: BACK TO MENU
\\ii: DELETE RECORD F4: DISPLAY PREVIQOUS RECORD TRANSMIT: ADD RECORD TO FILE
f/;;§/30 RPG - COMMENT SPECIFICATION CURRENT LINE: 0 ‘\\\

FORM TYPE: *

COMMENT :

(NOTE: THE FIRST CHARACTER COF THE COMMENT FIELD MUST BE AN ASTERISK *)

LEAVE THE CURSOR HERE == <_>

Fl: UPDATE RECORD F2: DISPLAY NEXT RECORD MSG WAIT: RETURN TO MENU
F3: DELETE RECORD F4: DISPLAY PREVIQUS RECORD TRANSMIT: ADD RECORD TO FILE

o _/

7002 3981-100 3-235

RPG —

RPG Editor

3.72.3.

3.72.4.

There are five ways to get a record into these displays:

* from the menu by entering (J (current line)

* from the menu by entering @) (the last line)

* from the menu by entering (8] and the line number (specific line)

e from one of the eight format displays by pressing (F3) (next record)

e from one of the eight format displays by pressing (F4) (previous record).
The current line number is not altered by updates.

Delete Line

To delete a record from the edit buffer it must be displayed on its correct format screen.
Once the record is displayed, it can be deleted by pressing the (FZ key. The line number of
all records following the deleted record are decreased by one. The current line is the record
which immediately followed the deleted record. -

Add a Line

The addition of records is done from the formatted screen. If the screen displayed at the
moment is not the correct format, the user must intercede by returning to the main menu

and selecting the correct RPG II form type. Once the data has been entered, press the X¥MT)
key.

~ The data is then validated. If all fields are valid, the record is added to the edit buffer and

3.72.5.

3-236

becomes the current line.

Update Line

To update a line, display it on the terminal in correct form type screen, make the necessary
corrections to the data and press the (£} key. The data fields are then edited. If they are all
valid the old record is replaced by the new record and the user is given update
confirmation.

If the validation fails, the fields in error are changed to blinking fields and the record is not
updated. The user may correct the fields in error and resubmit or request another screen.
Any fields which are numeric or blank only are edited by the screen formatter. Any record
in the edit buffer can be updated as long as it is in one of the eight format displays.

7002 3981-100

RPG — RPG Editor

3.72.6.

3.72.7.

3.72.8.

3.72.9.

List Lines

To list part of the edit file: enter ‘T as the command on the menu and the beginning and
end line numbers of the lines to be listed. The records are listed as they would appear on
cards except that the line numbers and program identification are not shown. A maximum
of 15 lines can be viewed at once. After these lines are listed, the next or previous 15 records
may be viewed by pressing function key 1 or 2 respectively. The current line is the last line
displayed on the terminal.

Note: If'P’ is entered without a line number, RPG editor assumes that the user wants the
current line displayed in its card format.

Ending the RPG Editor

To terminate the session enter X or Q as the command in the menu. Entering Q scratches
the buffer, entering X retains the buffer. Before entering this command the user may wish
to save his updated text by writing it to a permanent file using the W command.

Changing the Current Line

To display the current line in its format display, enter (J (a period) as the command on the
menu. : '

To display the last line in the edit file enter () (a dollar sign) as the command on the menu.
The record will be displayed in its corresponding format. The last line now becomes the
current line.

To determine the current line number enter (5 (an equal sign). The line number of the
current line is displayed.

Saving Text in a Library

To write the contents of the edit file to a library element, enter command “W" and the
filename and element name on the menu. A special comment can be inserted on the file
header by entering it next to the "comment" (maximum length is 20 characters). If this entry
is left blank, the userid is used as the text of the comment.

On a successful write to the library, the editor responds with the number of lines copied.
The edit file does not change as a result of the write command. It is important to remember
that the RPG editor works only with a copy of what is in the library file. The content of the
library file does not change unless a write command is issued and confirmed.

7002 3981-100 3-237

RU — Run 0S/3 Job

3.73. RU — Run 0S/3 Job

To RUN an OS/3 batch job which requires the use of the card reader, the TIP /30 user may
use the SYM program and enter the "RU" 0S/3 operator command (see "3.86. SYM —
Schedule OS/3 Symbiont" on page 3-276).

A more direct approach is the use of the RU program. The RU program is a clone
transaction that invokes the SYM program. The SYM program detects that it has been called
with a transaction name of "RU" and reacts appropriately.

The RU program expects (on the command line) the parameters that the user would
normally give with the OS/3 operator "RU" command. The user should keep in mind that
0OS/3 limits the length of a console command to a maximum of 60 characters.

Syntax:
RU parameters
Where:
parameters Parameters required by the RU command.
Example:
RU LOADCARD
Runs a job stream named "LOADCARD" from the system job control library.

Error Conditfons:

The user may receive a security error if he does not have sufficient security to run the "RU"
program.

3-238 7002 3981-100

P

RV — Run 0%/3 Job

3.74. RV — Run 0S/3 Job

To RUN an OS/3 batch job, the TIP user may use the SYM program and enter the "RV"
OS/3 operator command via the SYM program (see "3.86. SYM — Schedule O5/3
Symbiont" on page 3-276).

A more direct approach is the use of the RV program. The RV program is a clone
transaction name that invokes the SYM program. The SYM program detects that it has been
called with a transaction name of "RV" and reacts appropriately.

The RV program expects (on the command line} the parameters that the user would
normally give with the OS/3 operator "RV" command. The user should keep in mind that
0OS/3 limits the length of a console command to a maximum of 60 characters.

Syntax:
RV parameters
Where:

parameters Parameters required by the RV command.

Example:

RV TJSCOB74 (FRED),,E=TEST010

Runs a job stream named "TJ$COB74" from the system job control library and changes the
job name to "FRED". The keyword specification assigns a value to the job global "E".

Error Conditions:

The user may receive a security error if he does not have sufficient security to run the "RV"
program.

7002 3981-100 3-239

- 8SC — 0S/3 Operator SC Command

3.75. SC — 0S/3 Operator SC Command

3-240

To issue the OS/3 operator console command "SC" to schedule a saved job stream, the
TIP /30 user may use the SYM program (see section on "SYM") and enter the "SC" OS/3
operator command via the SYM program.

A more direct approach is the use of the SC program. The SC program is a clone transaction
name that invokes the SYM program. The SYM program detects that it has been called with
the transaction name "SC" and reacts appropriately.

The SC program expects (on the command line) the parameters that the user would
normally give with the OS/3 operator "SC" command. The user should keep in mind that
0OS/3 limits the length of a console command to a maximum of 60 characters.

Syntax:

SC parameters

Where:

parameters Parameters required by the SC command.

Example: ‘
sSC TIP/30

Schedule a previously "saved" job stream named "TIP/30".

Error Conditions:

The user may receive a security error if he does not have sufficient security to run the "SC"
program.

7002 3981-100

SCR — Scratch 0S/3 File

3.76. SCR — Scratch OS/3 File

The SCR program will scratch an OS/3 file or files. The user supplies either a file name
(LBL name) OR the expiration date OR the file name prefix of the file(s) that are to be

scratched.
Syntax:
SCR VSN= [FIlle=’...’]
[DAte=yy,ddd]
[PREfix='...."]
Where:
VSN= The volume serial number of the disk containing the file or files to be
" scratched.
This keyword may be omitted [F the FILE= keyword is specified and the
named file is already catalogued in the OS/3 catalogue (YCAT).
Flle= The LBL name of the file to be scratched.
The filename must be enclosed in quotes.
DAte= The expiration date (in julian format — yy,ddd).

When this keyword is specified, ALL files on the volume which have an
expiration date LESS than OR EQUAL to the specified date will be scratched.

Specifying DATE=99,999 will scratch all files on the volume!!

PREfix= The common prefix of the filename(s) to be scratched.
The prefix MUST be exactly four (4) characters and MUST be enclosed in
quotes.

Note: The specifications FILE=, DATE= and PREFIX= are mutually exclusive. Only one of
these keywords may be specified.

Example:

SCR VSN=REL130 PREFIX='TEST’

Scratch all files on volume REL130 that have an LBL name beginning with the four
characters "TEST".

7002 3981-100 3-241

SCR — Scratch 0OS/3 File

Additional Considerations:

A console message will be generated (TI0S5) to log the fact that the user has used the SCR
program to scratch one or more files.

3-242 ‘ 7002 3981-100

SCRATCH — Scratch Dynamic File

3.77. SCRATCH — Scratch Dynamic File

The SCRATCH transaction is used to erase a TIP/30 dynamic file that is currently assigned
to the terminal. The SCRATCH program removes the entry for the dynamic file from the
TIP /30 catalogue and releases the space currently used by the dynamic file in the
TIP$RINDM file.

Syntax:

SCRATCH[,A] 1lfn

Where:

A Command line option used to indicate that all TIP/30 Dynamic Files assigned
to this process (terminal) are to be scratched. Any OS/3 files that are currently
assigned are freed by this option (see "3.37. FREE — De-Access a File" on page
3-100). If this option is specified no file names need be supplied.

Ifn The logical file name (LFN) of the file to be scratched.

Example:

SCRATCH TEST1
SCRATCH,A

Error Conditions:

TIPFCS errors may be reported.

7002 3981-100 3-243

SET — Alter Process Attributes

3.78. SET — Alter Process Attributes

3-244

The SET program is a TIP /30 system utility that allows the user to change various

TR TR

attributes of his own or other terminal processes. Certain system attributes may also be
changed (subject to security considerations described below).

This program is intended to be used by the system programmer.
Syntax:

SET [FOR tttt] attributes

Where:

FOR tttt The terminal name associated with the process to be changed.
Default is the terminal running the SET program.

To use this clause, the user must be at least SYST level security. If this clause
is specified, it must appear before any other parameters.

attributes One or more of the following statements:

SPC Change terminal type to Unisys PC (Personal Computer) or a
compatible clone.

TTY Change terminal type to TTY (teletype).

U10 Change terminal type to U10.

U20 Change terminal type to U20.

U200 Change terminal type to U200.

U3o Change terminal type to U30.

U40 Change terminal type to U40.

U400 Change terminal type to U400.

U400F Change terminal type to U400F (U400 with character protect
feature installed).

U60 Change terminal type to U60.

BYPASS= Specify BYPASS=tttt to change bypass terminal specification in
CLUSTER definition to the terminal named "tttt". The terminal
that this statement is to apply to (the FOR terminal) must have an
existing CLUSTER specification.

Specify BYPASS="" (a space in quotes) to change the terminal to
have NO bypass terminal.

ILMON Turn TIP /30 software line monitor on.
LMOFF ~Turn TIP /30 software line monitor off.
LOGON= YES means terminal MUST logon to TIP/30.

7002 3981-100

SET — Alter Process Attributes

Exampie:

NO means terminal is NOT required to logon to TIP/30.

NOLOGONS

Temporarily prohibit TIP/30 logons system wide.

LOGONS Inverse of NOLOGONS; allow TIP/30 logons system wide.
DISABLE Disable terminal. NO input will be accepted from the terminal.
ENABLE Enable terminal (inverse of DISABLE).
Also allows penalized temﬁnal to attempt TIP/30 logon.
DEBUG ON
Make the system default to using storage protection.
DEBUG OFF
Clear "DEBUG ON". Storage protection only for programs
catalogued as DEBUG=YES.)
LF=YES Change CLUSTER TIPPRINT line feed option to YES.
F=NO Change CLUSTER TIPPRINT line feed option to NO.
LF=NULL Change CLUSTER TIPPRINT line feed option to NULL.
PROMPT= Change the TIP/30 prompt system wide.
Refer to documentation of the TIP /30 system generation
keyword parameter PROMPT= for more information.
SIZE= Set terminal size to specified rows and columns.
Choices: SIZE=(24,80) or SIZE=(24,132)
TESTON Set terminal in test mode. File updates ignored.
TEST OFF The terminal is cleared from test mode.
UNSOL= Specify NO to set the terminal to reject incoming unsolicited

messages.

Specify YES to set the terminal to accept incoming unsolicited
messages.

SET FOR T312 U200 LMOFF LOGON=YES.
SET U20 LOGON=NO.

Additional Considerations:

The user must be at least a SYSTem level user to use the "FOR" clause or to specify DEBUG,
NOLOGONS or LOGONS attribute.

7002 3881-100

3-245

SHUTDOWN — Shutdown Processing

3.79. SHUTDOWN — Shutdown Processing

3-246

The SHUTDOWN transaction is intended to be a mechanism whereby the system
administrator can schedule one or more transactions that are to be run when the TIP/30
system is shutdown in an orderly manner (see description of the EQJ transaction or
operator console command).

The SHUTDOWN transaction may be specified as the systern SHUTDOWN transaction by
specifying SHUTDOWN=SHUTDOWN in the TIP/30 generation TIPGEN statement (or via
the corresponding keyword in the TIP /30 job control stream).

The SHUTDOWN program first attempts to open a DEFKEY file named:
"SHUTDOWN/FUNCTION/KEYS" — if there is no such DEFKEY file, the program
attempts to open the library element: "TIP$LOD/SHUTDOWN,S" (the TIP$LOD library
was chosen because it is guaranteed to exist and the contents of that library are preserved
across TIP/30 releases).

SHUTDOWN "performs" each line of the input stream (whether it is a line of the DEFKEY
file or the library element) as if the line was a standard TIP/30 command line.

Since the SHUTDOWN program MUST run in background (and normally is executed at
system EQJ time) any transaction that SHUTDOWN performs must itself be capable of
running in background.

The SHUTDOWN transaction, and all transactions that are executed as a result of running
that transaction, are executed with the pseudonym userid of "CONSOLE". If a user of that
name is defined in the TIP /30 Catalogue, the security level and group memberships of that
userid take effect. If the userid "CONSOLE" is not defined, the TIP /30 system assumes a
security level of 1 (TECH) and GROUPS=ARC (membership in group TIPY is assumed as
always).

For more information about defining a "CONSOLE" userid, see the section on TIP/30
Operator Console commands.

For example, assume that the library element TIP$LOD/SHUTDOWN,S contains the
following lines:

STATUS
cca

The SHUTDOWN program issues a call to TIPSUB (in turn) to the transaction "STATUS"
and "CCA". These transactions run in background and accomplish whatever they do in
background (in this example, both programs are designed to run in background and
generate a statistical report).

A subtle point is that the SHUTDOWN program opens the library element as a ".IN" file
(see description of "Redirected input").

This means that any transactions that are "executed” by SHUTDOWN MAY be followed by
commands to that transaction. SHUTDOWN will never "see” those lines because those lines
are automatically "read" by the individual transaction.

7002 3981-100

SHUTDOWN — Shutdown Processing

The SHUTDOWN program may also be given a transaction name of "STARTUP" so that
one could have both a SHUTDOWN and a STARTUP set of procedures. The names
"STARTUP” and "SHUTDOWN" in the foregoing discussion are interchangeable.

Additional Considerations:

The SHUTDOWN program displays a message on the system console that indicates when
it is scheduling (or "performing") a particular subordinate transaction.

The TIP$LOD library is normally restricted to WRITE=NO in the TIP/30 catalogue. Before
attempting to write to this library, the system administrator may have to adjust the entry in
the TIP/30 catalogue to allow the editor to write to TIP$LOD.

If the SHUTDOWN program cannot find the appropriately named DEFKEY file or the
appropriate element in the TIP$LOD library, it simply terminates.

7002 3881-100 3-247

SOFF — Log Off TIP/30 and $$SOFF

3.80. SOFF — Log Off TIP/30 and $$SOFF

The SOFF transaction is used to log off TIP /30 and to issue a $$SOFF command (to sign off
in a GLOBAL ICAM environment).

The SOFF transaction is a clone of the TIP /30 LOGOFF program. When the LOGOFF
program detects that it has been invoked with a transaction name spelled "SOFF", it
performs an ordinary TIP/30 LOGOFF and outputs a "$$SOFF" command to the terminal.
The string "$$SOFF" is output at the home position of the terminal and is followed by the
necessary control code to cause an "auto-transmit".

In a GLOBAL ICAM environment, the auto-transmitted "$$SOFF" is intercepted by GUST
as if it was keyed in by the terminal operator.

Example:

SCOFF

Error Conditions:

An attempt to logoff will not be allowed at a stack level higher than the base level (stack
level 1).

3-248 7002 3981-100

SORT — Sort Edit Buffer

3.81. SORT — Sort Edit Buffer

The SORT program is a utility program that sorts the contents of a TIP /30 edit buffer. The
edit buffer to be sorted should contain a reasonable number of lines. The sorting technique
used is not suitable for a large number of records because the time taken to sortis nota
linear function of the number of lines in the buffer!

Data is sorted according to the standard EBCDIC collating sequence (accordmg to the
internal binary representation of each character).

This program is utilized by other TIP /30 transaction programs (USERS and FSE for
example) and is not often used directly from the TIP /30 command line.

Syntax:

SORT grp,buffer [,begin] [,end] [,coll [,dir] [,pwd]

Where:
grp The name of the group to which the edit buffer belongs.
buffer The name of the edit buffer.
begin The line number where sorting is to begin (inclusively).
Default: line 1.
end The line number where sorting is to end (inclusively).
Default: last line of buffer.
col The starting column of the data to use as a sort key.
Default: column 1.
dir The direction of sorting. May be either "A" (ascending) or "D" (descending).
Default: "A" (ascending).
pwd The password associated with the edit buffer (optional and seldom utilized).

7002 3981-100 3-249

SORT — Sort Edit Buffer

3-250

Example:

This command sorts an edit buffer named "TABLE" in the group "EDP" into ascending
sequence according to data starting in column 10.

Additional Considerations:

The sort is not a stable sort; records with identical sort keys will not necessarily remain in
their original order.

The comparison of key information is performed using the hardware instruction "CLC". As
a consequence, the SORT program may incorrectly interpret data thatis in packed or binary

Lomoommmn mte {£res mermenneal v ot bivroy tarvenn menk oy vam alomd Hal Ao mame PNl GLNORLL v LEPE P ey A QOYDT

101kt \l.U.l thllllJ.lC, PUDAU.VC JRULLIRTL AL, yau\cu 1ieias ulay LLGVC a . i U DlEll — Lllc JAJINL

program will sort X’003C’ ahead of X'003F" even though both values represent +3).

7002 3981-100

SPL — Spool File Enquiry

3.82. SPL — Spool File Enquiry

The SPL program enables the user to examine subfiles in the OS/3 spool queues. A spool
subfile may be listed at the terminal, printed at a terminal printer, released to the system
output writer or deleted.

The SPL program is able to read subfiles in the OS/3 spool queues. It has no provision for
modification of data in the subfile.

The OS/3 spool file is divided into two classes of subfile:
* Held
¢ Not Held (queued).

Subfiles that are held are the usual (default) target of the SPL program. It is possible to
direct SPL to examine subfiles that are not held, but the user should be aware that subfiles
are queued only until the OS/3 output writer opens them for processing. There is,
therefore, a potential race condition associated with queued files.

The OS/3 spool file is also divided (for each of the two classes described above) into the

following queues:

LOG Job log.

PR Local print (default queue for SPL).
PU Local punch.

RDR Local reader.

RDR96 Local 96 column reader.

SYSLOG Retained job log (if configured).

RBPIN Remote reader (if configured).

RBPPR Remote print (if configured).

RBPPU Remote punch (if configured).

DDPPR Distributed processing printer (if configured).
DDPPU Distributed processing punch (if configured).

There are 22 (2 x 11) combinations of class and queue.

To examine or manipulate a spool subfile entry, the user must always clearly establish both
the class (default is HELD) and the queue (default is PR) of the desired subfile.

7002 3881-100 3-251

SPL — Spool File Enquiry

Syntax:
SPL[/opt] [cmd [queue] [,option] [kwd= kwd= ...]]

Where:

opt ~ Command line option. The specification DEL turns on the automatic delete
option for the PRINT command (delete after printing — a dangerous option).
Also see following description of the PRINT command and the DELETE=
keyword.

cmd A recognized SPL program command (eg: DELETE, PRINT) as described in
the next sections.

queue The OS/3 spool queue to be searched (default is the print queue: PR).

option Optional additional information required by some commands.

kwd= Optional keywords that are used to qualify the selection of subfiles in the

specified queue.

The keywords may be specified in any order and may be separated from other
keywords by a comma or one or more spaces.

Additional Considerations:

The SPL program normally operates interactively; that is, the user simply keys in the
transaction code (SPL) and subsequently provides commands to perform SPL functions.

The SPL program accepts a single command (with whatever keywords are appropriate) on
the TIP/30 command line. In that case, SPL attempts only that single command and then
terminates normally.

Example:

SPL PRINT JOB=MYCCB74 USING=*BYP,AUX1l

3-262 7002 3981-100

SPL — Spool File Enquiry

3.82.1. SPL Command Summary

The following table lists the commands that the SPL program recognizes and provides a
brief description of the use of the command.

7002 3981-100

Table 3-13. SPL Command Summary

Delefe subfile.

Terminate SPL program.

Display command and operational help
information.

List subfile on terminal.

List compiler output subfile on terminal — go
directly to "error” page.

Print subfile.

Print subfile (with compression).

Print subfile with test page.

Terminate SPL program and logoff TIP /30.

Release held subfile.

Display summary of subfiles.

Display spooling statistics and options.

Write subfile to TIP /30 edit buffer.

Write subfile to library element.

Write summary information to library element
RUN/SPOOL.

3-253

SPL — Spool File Enquiry

3.82.2. SPL Security Considerations

3.82.3.

3-254

To maintain the security of the OS/3 snool file, the SPL program displ
J M } o 4 I o r

the spool queues according to the following ruies:

* MASTER level users (ie: security 1 thru 9) are able to examine any spool queue subfile;

¢ SYSTEM and PROGRAMMER users (ie: security 10 thru 29) are able to examine any
spool queue entry with form name "STAND1";

e Other spool subfiles can be examined by a user if and only if:

-~ the TIP/30 userid, elective group, or terminal name matches one of the FORM=,
CART=, REMOTE-=, FILE=, or ACCT= keyword specified (this match is implied to
be a prefix match; ie: a TIP /30 userid of "FRED" is considered a match of
JOB=FREDCOB)

Y Ll . TTD - oo wmmmala e e e el £ o ~om aa
- N LIS L / OU deUml[numoer DP&.HIW d Us 11

ms
specified (exact match of all four characters of each).

Lomle oo o
wWited> o

The account number is the 4 character account number as given on the JOB statement of the
job that created the spool subfile.

SPL Keywords

Following is a summary of the keywords that are recognized by the SPL program.
Keywords provide information that is used to select the desired subfile entry.

Unless otherwise noted, keywords which involve matching operations (such as JOB= or
PROG=) allow the use of TIP/30 standard prefix notation. For example, specifying
JOB=*FRED means matching job names that begin with the string "FRED".

Some keywords provide information to the SPL program that changes the behavmur of the
SPL program (for example: PAge=).

Upper case characters in the keyword are required characters; lower case characters are
noise characters for readability — if such characters are provided they must appear in the
proper location.

When multiple keywords are specified the SPL program treats the search as if all of the
implied conditions are ANDed together. For example, specifying:

JOB=FRED STEP=3

means the job name must equal "FRED" and the STEP number must be 3 for the subfile to
qualify for processing.

Account= Process subfiles with this job account number.

The account number is a positional parameter on the OS/3 // JOB statement
or specified using a // OPTION ACN= statement.

7002 3981-100

SPL — Spool File Enquiry

Band=

Cart=

COlumn=n

DELete=

FOrm=

Hold=

Job=

JobNo=

7002 3881-100

The SPL program compares only the first 4 characters of Account number
information.
Process subfiles with this print band name.

The cartridge name is a parameter on the // LCB statement.

An alternative keyword for Band=.

The cartridge name is a parameter on the // LCB statement.

Specify the starting column number (relative to one).
Default is 1 — implying start at column 1.

Specify (for the Print command) the number of copies desired.
Default is 1.

Turn on/off automatic delete (for the PRint command).

Specifying DEL=YES causes the SPL program to delete a subfile after it is
successfully printed (any error or interruption turns off the implied delete
specification).

An alternative way to specify this is by using an option on the command line:
SPL/DEL.

Default: DELETE=NO.

Process subfiles created with this LFD name.

This allows selection based on original LFD name.

Process subfiles that specify this form name.

This keyword allows selection based on original form name.

Process subfiles in "Held" or "not-held" class.
Indicates the class of spool queue (held or not held). Specified as "Y" or "N".
Default: Hold=Y (examine subfiles that are HELD).

Process subfiles with this job name.
Process subfiles with this job number.

The summarize SPL command displays subfile job numbers that may be
referenced by this keyword.

3-255

SPL — Spool File Enquiry

3-258

Label= Process subfiles created with this label.
This keyword allows selection based on // LBL name.

PAge=n Specdify starting page number.

The summarize SPL command displays number of pages in the subfile. This
keyword allows user to begin processing at a specific page number.

Prog= Process subfiles created by this program name.
Selection by EXEC name.

Remote= Process subfiles for this remote destination.

The value specified is a destination from the // DST statement or the
// ROUTE statement. . '

STep= Process subfiles created by this step number.

The step number within a job.

USing=term
Route SPL output to alternate terminal.

SPL is started as an asynchronous process (via TIPFORK) on the specified
terminal.

Device AUX1 is assumed.

To route printout to AUX2 of your terminal for example, specify the VIA=
keyword instead.

The user should not explicitly specify his terminal name as the term parameter
(SPL does not run in background).

This keyword is relevant only for the PRint command.

Via=term{,dvc]

Route printing to an auxiliary device on another terminal. The SPL program
directs the output to the auxiliary device specified by sending the data to the
specified terminal’s aux device.

This allows the user to "use” some other terminal (temporarily) to perform the

printing.
The difference between VIA= and USING= is that VIA= ties up your terminal
(but allows you to interrupt the printing by pressing a function key).

The default dvc is AUXI.
This keyword is relevant only for the PRint command.

7002 3¢81-100

e

SPL — Spool File Enquiry

Via=dest Alternate use of the VIA keyword to specify that the output is to a print
destination supported by TIPPRINT (see documentation of the TIPPRINT

£amli hr\

ialiliily /.

Examples of valid TIPPRINT destinations are: AUXn, d:xxxxxx, AUXnTTTT,
ROLL, AUX0.

This keyword is relevant only for the PRint command.

3.82.4. SPL Program Operation

3.82.5.

Since the first subfile that matches the specified criteria may not be the intended subfile, the
SPL program always prompts the user to determine if the found subfile is to be processed.

TAL vee OT Liva Adn 2l £3ee wla e |
When SPL finds the first subfile (Of the class and queue Sp%C;fu.u) that matches the criteria

specified by the keyword information, it displays all known information about that subfile.
The subfile that is found may not be the intended one — especially if the keyword
information was too vague.

SPL then prompts the user for confirmation that the subfile found is indeed the one
wanted. If the user replies "Yes", the command is carried out; if the reply is "No", the search
continues for the correct subfile.

While a subfile is listed at the user’s terminal, the user may press to interrupt the
display. The user is then prompted with a continuation prompt.

In response to the continuation prompt, the user may tab to the appropriate choice and
press transmit.

The user may change page number (forward or backward) and/or may change the starting
column number. To do this, specify:

pPAGE nnn [,ccc]

where nnn is the page number to proceed to and ccc is the new starting column number.

SPL Function Key Use

The SPL program recognizes the following use of function keys:
Interrupt display on terminal.
A prompt is issued with a continuation query.

Re-display last command entered (can save some typing).

ENE]

Re-execute last command entered (can save some typing).

7002 3981-100 3-257

SPL — Spool File Enquiry

3.82.6.

3.82.7.

3-258

DEL — Delete Spool Subfile

This command enables the user to select spool subfiles to be deleted.

Syntax:

DEL [queue] [,ALL] [...keywords...]

Where:

queue Optional positional parameter which specifies the desired spool queue
(default is PR).

ALL Optional positional parameter which indicates that ALL subfiles found that

match kevword criteria are to be processed

Llaailis Soy (S S0 B 38§13 WOUT LU SO A,

keywords See "3.82.3. SPL Keywords" on page 3-254.

Example:

DEL ALL JOB=COB74

This example selects ALL subfiles with a job name "COB74" in the held class for possible
deletion.

Additional Considerations:

The SPL program displays information about each subfile in turn and prompts the user for
delete verification.

E — Terminate SPL Program
This command causes the SPL program to terminate normally.

Syntax:

Whers:

No parameters required.

7002 3881-100

SPL — Spool File Enquiry

3.82.8.

3.82.9.

H — Display SPL Help
This command displays a summary of the SPL program command syntax.
Syntax:

Where:
No parameters required.
Error Conditlons:

The help information may not be available or may have been deleted.

L — List Subfile on Terminal

This command lists (displays) selected spool subfiles on the terminal. Since print lines may
be longer than the width of some terminals, the output from the list command is sensitive
to the number of columns that the terminal is defined to support.

The SPL L command truncates the display to the number of columns the destination
terminal is defined to support.

Syntax:
L [queue] [,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.
ALL Optional positional parameter which indicates that ALL subfiles found to
match are to be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254.
Example:

L JOB=COB74 PROG=LNKEDT

This example selects for listing on the terminal any entry in the (held) PR queue that hasa
job name "COB74" and a program name equal to "LNKEDT".

7002 3981-100 3-259

SPL — Spool File Enquiry

3.82.10. LE — List Error Page

3-260

The LE command begins listing a spool subfile on the terminal starting with the page that
contains the error diagnostics. This command looks in the correct location depending on
the type of print file that it is processing: page 2 for COBOL-74 compilations, last page for
assemblies, etc.

The command processing automatically searches for the correct job step for the specified
job name or job number. ‘

Syntax:
LE fqueue] [,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.
ALL Optional positional parameter which indicates that ALL subfiles found to
match are to be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254. 4
This command requires either the JOB name or JOB number be specified.

Example:

LE JOB=COB74

This example lists the error diagnostics for the job "COB74".
Additional Considerations:

This command performs (in effect) an "L" command starting at the "appropriate” page of
the appropriate step of the job (see separate section describing the L. command).

7002 3981-100

SPL — Spool File Enquiry

3.82.11. P — Print Subfile

This command prints selected spool subfiles to a designated printer destination.

The SPL program uses the VFB information that is stored in the operating system spool file
to determine how to handle carriage control operations. The system VFB information is
converted to the appropriate pseudo VFB information that is required by the TIPPRINT
interface. For more information about how TIPPRINT handles pseudo VFB carraige control,
see the documentation of the TIPPRINT subroutine in TIP/30 Programming Reference —
ARP-600-04.

Syntax:

P [queue] [,ALL] [...keywords...]

- Where:
queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.
ALL Optional positional parameter which indicates that ALL subfiles found to
match are to be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254.

Example:
P ALL JOB=COB74
This example selects for printing on the AUX1 printer subfiles in the (held) PR queue that

have job name "COB74".

Example:

P JOB=TEST VIA=C:TEST

This example command (assuming that it is executed on a properly configured PC with a
STEP/PEP interface) creates a file named C:TEST.PRN on the MS-DOS "C." drive from the
selected subfile.

The extension .PRN is automatically provided by the SPL program when it is used to create
an MS-DOS file using the STEP/PEP file transfer facilities.

Additional Considerations:
The alternative spelling of the Print command "PTR" may be used to cause the print

command to take note of the COL= keyword and to truncate the print lines at a maximum
of 80 print positions.

7002 3981-100 3-261

SPL — Spool File Enquiry

3.82.12. PC — Print Subfile with Compression

The "PC" command prints selected spool subfiles to a designated printer destination and
performs a specialized type of space compression technique.

Syntax:
PC [queue] [,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.
ALL Opfional positional parameter which indicates that ALL subfiles found to
match are to be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254.

Example:

PC JOB=TEST VIA=C:TEST

This example command (assuming that it is executed on a properly configured PC with a
STEP or PEP interface) creates a file named C:TEST.PRN on the MS-DOS "C:" drive from
the selected subfile.

The extension .PRN is automatically provided by the SPL program when it is used to create
an MS-DCS file using the STEP/PEP file transfer facilities.

3-262 7002 3981-100

SPL — Spool File Enquiry

Additional Considerations:

The space compression algorithm reduces multiple consecutive spaces with two bytes
constructed as follows:

X1D" 1 X'20 +count - 1

The first byte (X"1D’) is a special marker that indicates that this is the first byte of a
compression sequence.

The second byte is a binary value indicating the number of spaces removed. To compute
the number of spaces that are to replace the two byte compression sequence, subtract X'20’
from the value in this byte and add 1.

Example:

X’ 1D6F’

In the above example, the two bytes represent 80 removed spaces (because the difference
between X'6F and X'20" is X'4F’, which is equal to 79 in base 10).

7002 3981-100 3-263

SPL — Spool File Enquiry

Note: Two or more compression sequences can appear in series if the number of spaces removed
is a large number.

Supplied with the TIP/30 system is an MS-DOS-based program that you can use to
"decompress” a print file created with the SPL program "PC" command. The name of the
element in the TIP library that contains the PC spool output file decompression program is
TCSSPLO. To create the PC program from that library element, execute the following
command line from a PC that is connected to the TIP/30 system via a STEP or PEP board:

@»con,x TIP/TC$SPLO, ,C:D_PRESS.EXE J

Of course, you can change the name of the PC program to any name you desire. If you
execute the PC program without parameters, the following help information is displayed:

//;;age: d_press infile <outfile> ‘\\\

- if <outfile> is not specified,
the <infile> is overwritten

~ specify <prn> as the <outfile>
for output toc the printer

- specify <con> as the <outfile>
for output to the screen

3.82.13. PT — Print with Test Page

This command is a variant of the SPL "P" (print) command. The SPL program prompts the
user to determine whether or not a test page is required. If the reply is "Yes", SPL prints a .
test page (similar to the test page generated by the batch output writer) on the specified

auxiliary device. When the user (eventually) aligns the paper correctly and replies "No" to

the "Test Page?" prompt, SPL then proceeds to print whatever subfiles were specified.

Syntax:
PT [queue] {,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.

Default is PR.

3-264 7002 3981-100

PN

SPL — Spool File Enquiry

ALL Optional positional parameter which indicates that ALL subfiles found to

match are to be processed.
keywords See"3.82.3. SPL Keywords" on page 3-254
Example

PT JOB=PAYROLL FORM=CHEX

This example prints the subfile that originated from the job "PAYROLL" with form name
"CHEX". The user is prompted for test pages until he indicates the alignment is correct.

3.82.14. Q — End Program and Logoff

This command terminates the SPL program normally. If the SPL program was executing at
program stack level one (ie: not called from another program) the user is logged off TIP/30.

Syntax:

Where:

No parameters required.

3.82.15. R — Release Held Subfile

This command releases subfiles(s) that are currently on hold. This command is intended to
be a mechanism to allow the user to release a held subfile that is now to be printed.

Syntax:
R [queue] [,ALL] [..;keywords.,.]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.
ALL Optional positional parameter indicating that ALL subfiles that match are to
be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254.

7002 3981-100 ’ 3-265

SPL — Spool File Enquiry

Example:

R JOB=COB74

This example releases any subfile in the (held) PR queue that has a job name "COB74".
Additlonal Considerations:

To release all spool subfiles for a particular job, the B* transaction may be simpler to use.

3.82.16. S — Summarize SPOOL Queue Contents

This command lists (on the terminal) subfiles that exist in the specified class and queue.
Candidate subfiles must match the selection keywords.

By using this command the user can browse through the spool file to determine which
spool subfiles exist. :

Syntax:

S [queue] {,ALL] {...keywords...]

Where:

queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR.

ALL Optional positional parameter which indicates that ALL subfiles found to
match are to be processed.

keywords See "3.82.3. SPL Keywords" on page 3-254.

Example:
S H=N

This example displays a summary of information about the subfiles that are not held
(queued) in the PR queue.

3-266 7002 3981-100

SPL — Spool File Enquiry

Example of S command output:

SPL{1) ?2pS H=N J=TFM

Jcb=TFM STep=1 Prog=WRTSML FIle=PRNTR Account=A#TT FOrm=STANDL
Band=63=-STD JobNo=1985 PAge 0 of 2

Job=TFM STep=2 Prog=ASM FIle=PRNTR Account=2a#TT FOrm=STAND1
Band=63~STD JobNo=1985 PAge 0 of 17

Job=TFM STep=3 Prog=LNKEDT FIle=PRNTR Account=A#TT FOrm=STAND1l
Band=63~STD JobNo=1985 PAge 0 of 3

End of PRNTR queue HELD status.

QL(I)?) j

P S/3 Spool system.
Syntax:
ST

Where:

No parameters are required.
Example of ST command:

TIP?Pspl

'TIP/30 Spool File Utility’ = Version = 4.0 (89/09/01)

SPL(1)?bst

0S/3 Spooling Statistics

Testlines:Yes Headers:No Prtlog:Yes Prtacct:Yes

Burst:No Compress:Yes Update:Yes Recovery:Closed
Avallable space in spool file:25%

SPL(1)2»

7002 3981-100 3-267

SPL — Spool File Enquiry

3.82.18. W — Write Subfile to Edit Buffer

This command selects subfiles to be written to a TIP/30 edit buffer. The spool subfile data
is copied to an edit buffer with the specified name.

Syntax:

W [queue] {,buffer] [...keywords...]

Where:

queue Optional positional parameter which specifies the spool queue to be searched.
Default is PR. ‘

buffer Optional positional parameter which names the output edit buffer. Default is
"SPOOL".

The edit buffer is created with a group name equal to the user’s first elective
group specification.

keywords See "3.82.3. SPL Keywords" on page 3-254.

Exampie:

W ,MYCOMP JOB=COB74

This example creates an edit buffer named "MYCOMP" containing the contents of a (held)
print subfile with job name "COB74".

Additional Considerations:

This command writes only 80 columns to the edit buffer. The COL= keyword may be used
to some advantage.

3.82.19. WL — Write Subfile to Library Element

3-268

This command writes spool subfiles to a specified OS/3 library element.

Syntax:
WL [queue] [,file/elt] [...keywords...]
Where:
queue Optional positional parameter which specifies the spool queue to be searched.

Defauit is PR.

7002 3981-100

SPL — Spool File Enquiry

file/elt Optional positional parameters which specify the output library and element

name.
Default is RUN/SPOOCL

keywords See "3.82.3. SPL Keywords" on page 3-254.
Example:

WL ,TSTSRC/MYCOMP. JOB=COB74

This example writes to library TSTSRC, element MYCOMP, subfiles in the (held) PR queue
that have job name "COB74".

Additional Considerations:

This command writes only 128 columns to the specified element. The COL= keyword may
be used to some advantage.

3.82.20. WS — Write Summary to Library Element

This command writes spool sumrhary information to the OS/3 library element

RUN/SPOOL.
Syntax:
WS [queue] [...keywords...]
Where:
queue Optional positional paraméter which specifies the spool queue to be accessed.
Default is PR.

keywords See "3.82.3. SPL Keywords" on page 3-254.

Example:

WS P=LIBS

This example writes a summary of spool file information to RUN/SPOOL. Only
information concerning subfiles that specify Program=LIBS are written.

7002 3981-100 3-269

SPL — Spool File Enquiry

3.82.21. Invoking SPL from a Program

3-270

The SPL transaction may be invoked by a TIP/30 program to start SPL operations (usually
printing!) on another terminal. TIP /30 provides standard program control subroutines to
accomplish these tasks (see "Calling TIP/30 Utilities").

The procedures outlined in the above reference apply to the SPL program. There are some
other considerations that are unique for the SPL program.

SPL expects the actual command (for example: PR JOB=*AR FORM=STAND1) to appear in
the CDA-TEXT field of the CDA. The parameter fields of the CDA are more or less ignored
by the SPL program with this exception:

CDA-PARAM (1) is checked to see if it contains exactly the string "SPL MUTE" (the
characters "SPL" followed by a space, followed by the characters "MUTE"). If this is the
case, SPL assumes that it is to refrain from sending any messages to the originating
terminal. This specification prevents SPL from attempting to send "Printing completed”
messages and the like.

Example of starting SPL at another terminal:

MOVE SPACES TO CDA.

MOVE ‘PR ALL JOB=*AR FORM=STAND1 VIA=AUX1’
TO CDA-TEXT.

MOVE ’SPL MUTE’ TO CDA-PARAM (1).

folalald MOVE PIB-UID TO CDA-PARAM (2).
MOVE 7T109’ TO PIB-TID.
MOVE ’SPL’/ TO PIB-TRID.

CALL ‘TIPFORK’.
IF NOT PIB-GOOD ...

This example starts SPL on terminal T109. When SPL begins execution at that terminal, it
attempts to print all subfiles with a job name that begins with "AR" and a form name of
"STAND1" — since the program is running on T109, the specification VIA=AUXI implies
T109’s auxiliary device 1.

The appearance of "SPL MUTE" (note the embedded space!) in CDA parameter 1 informs
SPL that no informative messages are to be output by the SPL program.

The commented line illustrates moving a string to CDA parameter 2. SPL allows the calling

program to insert a string in parameter 2 to represent the userid of the caller. This allows
SPL to access subfiles that match the userid of the caller.

This subtle additional item may be needed because the userid (as it appears in the SPL
program’s PIB) is literally "*BYPtttt" when it has been invoked by TIPFORK — that userid

(instead of the user’s proper id) may prevent SPL from matching a subfile with the
intended userid.

7002 3981-100

STARTUP — Startup Processing

3.83. STARTUP — Startup Processing

The STARTUP transaction is intended to be a mechanism whereby the system
administrator can schedule one or more transactions that are to be run when the TIP /30
system is initially started.

The STARTUP transaction may be specified as the system startup transaction by specifying
STARTUP=STARTUP in the TIP/30 generation TIPGEN statement (or via the
corresponding keyword in the TIP /30 job control stream).

The STARTUP program first attempts to open a DEFKEY file named:
"STARTUP/FUNCTION/KEYS" — if there is no such DEFKEY file, the program attempts
to open the library element: "TIP$LOD /STARTUP,S" (the TIP$LOD library was chosen
because it is guaranteed to exist and the contents of that library are preserved across

TIP /30 releases).

STARTUP "performs" each line of the input stream (whether it is a line of the DEFKEY file

L e anput sueain 1e2

or the 11brary element) as if the line was a standard TIP /30 command line.

Since the STARTUP program MUST run in background (and normally is executed at
system startup time) any item that STARTUP performs must be capable of running in
background.

The STARTUP transaction, and all transactions that are executed as a result of running that
transaction, are executed with the pseudonym userid of "CONSOLE". If a user of that name
is defined in the TIP /30 Catalogue, the security level and group memberships of that
userid take effect. If the userid "CONSOLE" is not defined, the TIP /30 system assumes a
security level of 1 (TECH) and GROUPS=ARC (membership in group TIPY is assumed as
always).

For more information about defining a "CONSOLE" userid, see the section on TIP/30
Operator Console commands.

For example, assume that the library element TIPSLOD/STARTUP,S contained the
following line:

LOADGDA

The STARTUP program would TIPSUB to the transaction named "LOADGDA" (which
would also run in background) and would accomplish whatever it is intended to do (in this
case, one presumes that the program loads some information into the Global Data Area).

A subtle point is that the STARTUP program opens the library element as a ".IN" file (see
description of "Redirected input"). This means that any transactions that are "executed" by
STARTUP may be followed by commands to that transaction. STARTUP will never "see”
those lines because those lines are automaticaily "read" by the individual transaction.

The STARTUP program may also be given a transaction name of "SHUTDOWN" so that
one could have both a STARTUP and a SHUTDOWN set of procedures. The names
"SHUTDOWN" and "STARTUP" in the foregoing discussion are interchangeable.

7002 3981-100 3-271

STARTUP — Startup Processing

3-272

Additional Considerations:

The STARTUP program displays a message on the operating system console which
indicates when it is scheduling (or "performing’) a particular subordinate transaction.

The TIP$LOD library is normally restricted to WRITE=NO in the TIP /30 catalogue. Before
attempting to write to this library, the system administrator may have to adjust the entry in
the TIP/30 catalogue to allow the editor to write to TIP$LOD.

If the STARTUP program cannot find the appropriately named DEFKEY file or the
appropriate element in the TIPSLOD library, it will simply terminate gracefully.

7002 3981-100

STOP — Shutdown TIP/30 Immediately

3.84. STOP — Shutdown TIP/30 Immediately

This command causes TIP/30 to shut down immediately. It does not wait for all users to
log off.

Syniax:
STOP

Wherse:

No parameters required.
Additional Considerations:

Under normal operating conditions, this command should only be issued after an "EOJ"
command has been entered. "EQ]J" is the preferred method of shutdown (see "3.31. EOJ —
TIP /30 Shutdown" on page 3-90 and the console operator command "EOJ").

A "STOP" command may be necessary to force off users that are running programs that do
not recognize that system shutdown was requested. See the description of the field
PIB-SYSTEM in the documentation of the PIB (Process Information Block).

WARNING

Forcibly stopping the TIP/30 system may
jeopardize transactions that are in progress.
TIP/30 issues a console warning message if there
are outstanding record locks when the system is
haited by the STOP or CRASH directive. If
transaction roll back is necessary, the operations
staff must perform warm restart before using the
files involved. For more information, refer to the
discussion of recovery operations in the
documentation of TIP/30 Generation,
Maintenance and Installation.

7002 3981-100 3-273

SWTCH — Send Full Screen Message

3.85. SWTCH — Send Full Screen Message

The SWTCH program provides the capability of sending a message to one or more
terminals or logged-on users in the network. The message to be sent is limited only by the

screen size.

The SWTCH program is provided for compatibility with a similar facility provided by IMS.

The message will be sent to each destination as an unsolicited message — the recipient
must press to receive the message.

Syntax:

Where:

dest-list

msg text

3-274

SWICH dest-list ; msg text

A list of destinations to send the message.

A destination may be either a terminal name or a userid or a prefix notation
specification for either.

The word "ALL" is reserved to indicate all terminals.

There is no restriction that a destination must appear only once in the list - the
message will be sent as many times as implied by the destination list.

A comma MUST be used to separate each destination from the next item in the
list.

A semi colon (;) must be used to signal the end of the list.
Example: SWTCH mary,fred,T108;

The text of the message to be sent.

The text begins immediately following the semi colon delimiter which marks
the end of the destination list. :

The text of the message may extend over the entire screen (if desired).

7002 3981-100

A

SWTCH — Send Full Screen Message

Exampfe:

e
/pswrCH T108,7109;

TIME FOR LUNCH

LETS GO FOR A PIZZA!

Additional Considerations:

The SWTCH program displays (on line 3 of the terminal) a confirmation message indicating
the message was sent and showing any destinations which were not sent the message.

When constructing the text of the message it might be wise to deliberately avoid using line
3 of the screen. When SWTCH replies with the results, you could then repair the
destination list (if necessary), clear line 3 and then send the message again to the revised
destination list.

Error Condltions:

A destination is invalid if it is a user name and the user is not presently logged on, or if the
terminal name is not found.

7002 3881-100 3-275

SYM — Schedule 0S/3 Symbiont

3.86. SYM — Schedule 0OS/3 Symbiont

3-276

SYM is a utility program which interfaces with the operating system: OS/3. It allows the
user to submit requests to run symbionts and some other console commands in the same
manner as the OS/3 console operator. Common commands include: RV (run a program),
PR (start an output writer), HO (hold an OS/3 queue), etc.

An informational message is sent to the OS/3 operator console whenever a command is
scheduled by SYM. The message informs the operator that a command was issued and also
shows the user name and terminal name of the submitter.

The SYM program may be run interactively or may be given a single command on the
command line. If SYM is run interactively the user is prompted for each command until an
End or Quit command is given. If a command is provided on the command line, SYM

Lhncmnambo b Awsnmezba blan A el vy
attempts to execute that commana and then terminates nor mally

If the SYM program detects that it has been called via a transaction name other than "SYM"
it assumes that the transaction name is the desired command and that the parameters on
the command line are command line parameter information. This composite command is
attempted and then SYM terminates normally.

Many alternate transaction names are provided in the TIP/30 Catalogue to invoke SYM
using a specific transaction name as the command. Examples of this are: RV, BX, UNS, BE,
and so on. For an example, see "3.74. RV — Run OS/3 Job" on page 3-239.

Syntax:

command parameters

Where:

command The name of the desired symbiont or console command. OS/3 symbiont
commands may be submitted (these include commands like: RV, BE, DE, and
so on).

Refer to OS/3 console operator documentation for details concerning the use
of these commands.

Commands that are not symbionts that SYM recognizes:

End End the SYM program.

F1..F22 End the SYM program.

7002 3981-100

TN,

N

SN

SYM — Schedule 0OS/3 Symbiont

GO To issue a GO command for a paused OS/3 job.

PAuse To pause an executing OS/3 job.

81 L CATL LAY 7

Quit End the SYM program and logoff TIP /30.
SW The operator SWitch command to switch executing job priority.
UNS The operator UNS command to submit an unsolicited console

key in to a job. See also "3.92. UNS — Unsolicited Console
Keyin" on page 3-353.
parameters The appropriate parameters for the requested symbiont or consoie command.
Example of issuing a single command:
SYM PR BX,JOB=TIP30

This example starts a burst mode output writer to print any print spool files with a job
name of "TIP30".

Example of using UNS:

SYM UNS M2,S DO,L,LIN3,NET1

This example issues an unsolicited command to ICAM (in this example, it is assumed to be
named "M2") to down a line.

Example of using SW:
SYM SW MYJOB, +2

This example issues the console operator SW command to switch the executing priority of
job "MYJOB" up two levels.

7002 3981-100 3-277

SYM — Schedule OS/3 Symbiont

Example of using the SYM program interactively:

Enter Command and parameters.

SYM(1) ?bbe spl, job=ALLINSON

Enter Command and parameters.

SYM(1) 2bca FOOEY,n

FOOEY is not active. Can not CAncel.
Enter Command and parameters. .
SYM(1) ?prv testjob:j,,date=8390101
Enter Command and parameters.

SYM(1) 2pe

& /

In this example, several SYM commands are issued before the interaction is terminated by
the "End" command.

Additional Considerations:

The SYM program may be called from TIP/30 native mode programs by using a call to the
TIPSUB subroutine. More information about doing this can be found in the documentation
of the TIP/30 Program Control System — PCS.

When invoked in this manner SYM expects the command and parameters in free format in
the text area of the CDA (bytes 73 through 152; field named CDA-TEXT).

If an error is detected, byte 73 of the CDA (the fifst byte of the field CDA-TEXT) is set to
X'FF’; otherwise, byte 73 of the CDA is not altered. This facility is extremely useful for
submitting OS/3 commands from an online program.

SYM allows the user to invoke the cancel symbiont (CA) but does not allow any attempt to
cancel the currently executing TIP /30 job or any ICAM symbiont.

TIP/30 (as distributed) includes catalogue entries for a number of transactions that are
quick ways of calling SYM to perform a single function. For example, there is a transaction
named "RV" which references the SYM load module. The existence of this transaction
means that the "RV" transaction can have a low enough security to enable programmers to
use it, but that the more powerful SYM transaction could have a higher security level and
thus be unavailable to programmers.

The use of individual symbionts may be restricted by using this technique.

3-278 7002 3981-100

SYS — Display OS/3 System Status

3.87. SYS — Display 0S/3 System Status

The SYS utility program displays the current status of the OS/3 environment.

Syntax:

SYS[/delay]

Where:

delay

Example:

7002 3981-100

cmd

Command line option to set the refresh rate of the SYS program (in seconds).
Default: 20 seconds

Minimum: 3 seconds

One of the following commands:

A Similar to "J" (see below) except that symbionts and shared code
modules are also listed.

End End the SYS program.

J List jobs currently running. For each job, the memory size,
executing program, job step number, job number, elapsed CPU
seconds and execution priority values are displayed. This
command also indicates free memory regions.

Quit End the SYS program and logoff TIP /30.

w At "delay” second intervals execute the "J" function.

WA At "delay" second intervals execute the "A" function.

W jobname
Repeat the "J" function (list jobs currently running) until the
named job starts and subsequently terminates.

SYS J : display 0S/3 job information
.SYS W COB74 : start background program to monitorxr

progress of job named "COB74".

3-279

SYS — Display 0S/3 System Status

3-280

- Version = 4.0 (89/12/04) =~

Example output of SYS:

TIP?psys J ’

'System statistics’

Job Size Exec

GUST 24K MLSSGI

TIPDEV 1,516K TBSTIP

TIPTST 992K TBSTIP

DMS 568K DBMS

TIP40 720K TBSTIP

TIP32B 732K TBSTIP
Total free memory 1,776K

Step# Job# CPU
1 7303 0.1

2 7308 594.5

2 7311 122.1

1 7358 11.3

2 7364 218.5

1 7374 45.9
K

Largest region 1,768

Secs
Secs
Secs
Secs
Secs
Secs

0s5/3 13.00.54
Priority Waiting

Icam

_/

Additional Considerations:

If SYS is run as a background program with the Wait function (see second example shown
above), it notifies the initiating user with unsolicited messages when "jobname" has started
and when "jobname" has terminated.

The unsolicited message that is sent to the terminal has the format shown in the following

example:

\\szCOB74 running at 9:47:46 EXEC COBL74, STEP% 2 ¥

Y

(the word "running" is replaced by "terminated” in the message that is sent when the job

terminates).

This allows the user to continue with other interactive activities while SYS monitors the
batch job asynchronously in the background.

When SYS is running in continuous display mode, press to interrupt the display.

If SYS is entered with no command it defaults to the "J" display and interactively prompts
for subsequent commands.

7002 3981-100

P

TCB — 08/3 Task Control Blocks

3.88.

TCB — 0S/3 Task Control Blocks

The TCB transaction is a utility program which displays task control blocks that are
attached to the OS/3 operating system task switch list.

The program displays details about: job name, memory region in hex, size in hex, type,
executing load module name, CPU time, account number, storage protect key, switch list
and scheduling priority.

Priority numbers displayed are the actual displacement from the head of the switch list;
hence the first user priority is 4. For transients and the supervisor overlay area (SOA), the
number displayed in the account field is actually the transient, or SOA overlay ID. and the
name in the program field is the overlay name.

Syntax:

TCB [W] [dest] [wait]
Where:

w Optional parameter to cause the TCB program to periodically refresh the
display on the screen until a function key or the key is pressed. The
rate at which the information is refreshed is controlled by the parameter
following the "W".

dest This parameter is used to specify a standard TIPPRINT output destination for
the output of the TCB program.

The defaults are:

o "AUXO" (full screen) for interactive users

¢ "ROLL" (line by line output to the terminal) if the "W" command is
specified
e "PRNTR" for background users.

wait This parameter is used in conjunction with the "W" specification in parameter
one. A numeric value from 5 to 60 (inclusive) may be specified. The value is
taken as the number of seconds in the refresh interval.

Default value is 10 seconds (this value is also used if the value specified is not
~ numeric or is not within the acceptable range).

Example:
TCB W

This command invokes the TCB program to display the current OS/3 TCB map. Because
the firsp parameter is "W", the TCB program runs continuously and refreshes the screen
display every 10 seconds until the program is terminated.

7002 3981-100 3-281

TCB — 08/3 Task Control Blocks

3-282

Example of TCB Display:

Name
SY$sSTDCO
AREA # 1
AREA # 2
AREA # 3
AREA # 4
AREA # 5
AREA # 6
AREA # 7
AREA # 8

SL$3VTCO
RC3$1Is00
SLSTCAQQC
SLSDMsS00
SLE@CM00
ML$$C200
TIP32B
TIP4Q
DMs

\\33?TST

/<;;gtinue?)Yes PNo

Address
006420-~006493
01lEAA8=-01EB1B
006020~0064C7
0064C8~006977
006978-006E27
006E28-0Q072D7
0072D8-007787
007788-007C37
007C38~0080E7
0080E8-008597
008598~-008A47
C3DECO-Q3ESFF
03E900~0476FF
04A200-04C9FF
06EEQQ0=0711FF
07BA00-Q7ESFF
07E600-122AFF
2F7000-3ADFFF
3AE000-~461FFF
462000~4EFFFF
4F0000-5ET7FFF

veensncese0S/3 ToC.B. MaPeuwsonsoans

Size
0k
Ok
1k
1k
1k
1k
1k
1k
1k
1k
1k
2k

35k
10k
9%k
11k
657k
732k
720k
568k
992k

Type
Switcher
Spocler
S5.0.A.
Transient
Transient
Transient
Transient
Transient
Transient
Transient
Transient
Symbiont
Symbiont
Symbiont
Symbiont
Symbiont
Symbiont
Batch Job
Batch Job
Batch Job
Batch Job

Program

TO$LODPR
SVSRSLDI
SVSRSLOD
SVSRSLDI
SVSRECVO
TOS$SPEND
SVS$RSLOD
SVSRSLDI
SV$RSLOD

TB$TIPQO
TBSTIPOO
DBMS0000
TBSTIPOO

Step

SR S

CPU

.

.

f
P N .- . . PR .
OO OOWOOOOOOOOOO0 OO0

(3]
[ArIraN
oNn L

o e

118.2

Acct Key Pri
00 00
00 02
832 00 00
74 Q03 03
138 03 03
74 03 03
127 05 03
949 03 03
138 03 03
74 02 03
138 03 03
(VR) 00 02
(Is) 00 03
(TW) 00 03
(DM) 00 08
(CM) 00 04
(c2) 00 01
TIP3 07 05,8
TIP 05 04,P
DBMS (04 Q9,N
TIP3 03

Additional Considerations:

To discontinue the display with the wait parameter, press a function key or the

key.

7002 3981-100

TFD — Screen Format Definition

3.89. TFD — Screen Format Defin’ition

The TFD program provides an interactive facility which enables the user to define or
modify a TIP /30 screen format. A TIP/30 screen format is a template used by online
programs to control the display of information on a terminal.

The definition process is performed entirely online. The process is accomplished by
interacting with the TFD program. The definition requires a number of steps (referred to as

"passes”):

Pass 1 Select general format options.

Pass 1A Select colour definitions (optional).

Pass 2 Compose the format (heading and data fields).

Pass 3 Verify location and size of non-heading fields.

Pass 4 Identify protected data fields (optional).

Pass 5 Override field attributes and/or supply default data.

The user may choose to have the TFD program display HELP information before each pass
of the definition procedure. The HELP screens describe what the user must do in the
upcoming definition pass.

Screen formats (or simply: formats) are referenced by an eight character format name. This
format name must begin with an alphabetic character and cannot contain an imbedded
space, slash or comma, but any other displayable graphic character may be used.

Formats are also defined according to the user group that may access the format. An online
program simply requests the format by name; the correct group is selected by TIP/30 based
on the user running the program. Thus, a program refers to a screen format by name, but
the screen format actually supplied by MCS depends on the group membership of the user
running the program.

For example, consider an order-entry program which may be used by either
English-speaking or French-speaking users. Each user could be defined to be in either the
ENGLISH or FRENCH user group. Two formats could then be created — one with English
heading information and the other with French heading information.

The program would request the format by name and the TIP/30 system would select either
the format in the ENGLISH group or the FRENCH group depending on the group
membership of the user running the program.

An important point to realize is that the two screen formats just described must have the
data fields defined identically since there is no way the program can determine which is
being used!

TIP/30 formats contain two classes of information: heading and data fields. Heading
information is usually informational in nature and is normally (but not necessarily)
protected. Data fields contain variable information (either supplied by the program or
entered by the terminal operator).

7002 3881-100 3-283

TFD — Screen Format Definition

3-284

Unprotected data fields are usually used to enable the terminal user to enter data; protected

data fields are usually used by the program to display information that is not intended to
be changed by the user.

TIP /30 formats also provide a wide range of editing facilities on a field by field basis. A
field may be defined to have certain attributes (numeric, upper case, etc). These attributes
will be enforced by the TIP /30 Message Control System thus relieving the application
program of the burden of extensive field checking.

Syntax:

@ TFD [new grpl] [,new name] [,old grp] [,old name]

@ TrFU [cld grp] [,old name]
Where:

new grp The group name associated with the format being created.
Default: TIPYS.

new name The name of the format which is to be created.

This parameter is required.

old grp The group name associated with an existing format which is either being
updated or used as a base for defining a new format.

Default: TIP$YS.

old name The name of an existing format which is either being updated or used asa
base for defining a new format.

Additional Considerations:

The following rules are applied in the interpretation of the command line parameters:

¢ If the transaction code is TFD and parameters three and four are omitted, assume the
programmer wishes to define a new format from scratch.

¢ If all four parameters are supplied (to TFD) assume that the programmer wishes to
create a new format, but use an existing format as a starting point.

¢ If the user attempts to create a format that already exists, TFD displays the error
message "FORMAT CURRENTLY EXISTS - PRESS F4 TO UPDATE". The user may
then press the (F4) key to enter update mode. '

7002 3981-100

TFD — Screen Format Definition

» [f no parameters are supplied and the transaction code was TFD, the following screen
format will be displayed to simplify the entry of the required parameters:

-
/TFsTFDOD TIP/30 Screen Format Definition 14:28

Group Format

New screen format name:
From existing format: []

. /

» If no parameters are supplied and the transaction code was TFU (TIP /30 Format
Update), the following screen format is displayed to simplify the entry of the existing
screen group and name:

//;;;TFDOU TIP/ 30 Screen Format Update 14:;;\\

Group Format

Existing screen format: {1

7002 3981-100 3-285

~ TFD — Screen Format Definition

Example of ways to invoke TFD:

TFD EDP, TEST

EDP, TEST, TIPS$YS, TESCAL
TFD ,,PAYROLL,PAY02001

TFU PAYROLL,PAY02001

GNONON VRS
H
o

Example @ causes TFD to display a screen format which allows the user to specify the type
of definition process.

Example @ causes TFD to prepare to create a format named TEST for the group EDP.

Exampie @ prepares to create a new format named TEST (for the group EDP) using the
existing format named TF$CAL (from the group TIP$Y$) as a starting point.

Example @ or ® prepares to update an existing format named PAY02001 (for the group
PAYROLL). Note that this may be accomplished either by specifying all the command line
parameters for TFD, or by using the simplified clone transaction code TFU.

3-286 7002 3981-100

TN

TFD — Screen Format Definition

3.89.1. Display Intensities

Terminals normally support several display intensities. There usually is (at least) a normal
display and a lower intensity display (sometimes this is called "alternate brightness").
Many terminals offer additional combinations of these intensities by allowing the user to
select the intensity of both the foreground and background display.

The TIP /30 screen format definition procedure supports the following intensity
specifications and attempts to achieve the desired results depending on the capabilities of
the terminal that is using the screen format.

Light

Normal
Off

Reverse
Blinking
Flashing
Grotesque
Hideous

Shaded

7002 3981-100

"L" specifies light or low intensity. This is called "alternate brightness” on
some terminals.

"N" specifies normal intensity.
"O" specifies off intensity — the display will not be visible.

"R" specifies reverse video (the characters are formed with "dark’ lines on a
bright background). :

"B" specifies that the field is to blink — that is, alternate from high to low
intensity.

"F" specifies a combination of reverse video with the background alternating
from BRIGHT to OFF intensity.

"G" specifies a combination of reverse video with the background alternating
from BRIGHT to LOW intensity. This is a variant of Flashing.

"H" specifies a combination of reverse video with the background alternating
from LOW to OFF intensity. This is a variant of Flashing.

"S" specifies a combination of reverse video with the background in LOW
intensity,

3-287

TFD — Screen Format Definition

3.89.2. Format Definition Options

3-288

The first pass of the definition procedure requires the user to select from a variety of
definition options. The following screen format is displayed. If a new format is being
defined, standard default values will be initiaily supplied. If the user is updating an
existing format, the values placed in the screen format will be the values that were last used
to define the format.

The user should fill in the required information and press XMIT to proceed to the next pass
of the definition procedure.

Function key 1 (F1) may be used to redisplay this screen (in case the display was
inadvertently altered). Pressing Message-wait (MSG WAIT) or Function key 2 (F2) will
cancel the TFD process.

//;;$TFD01 TIP/ 30 Screen Format Definition 14:;;\\

Group: , Format: , Option character: _, SOE character: _

The format is to be output starting at screen row __
The cursor is to rest at location (row,col) __,

Partial update of format - only update screen rows ___ through .

Erase the screen before the format is output? _ (Y/N)

Set all user data fields unprotected? _ (Y/N)

Automatic TAB STOP with each unprotected data field? _ (Y/N)
HEADING intensity? _ DATA field intensity? _ (L)ight (N)ormal

Negative field intensity? _ ERROR field intensity? __ (R)everse (B)link

Format to be used on a colour monitor? _ (Y/N)

Set the CHANGE attribute ON for all data fields? _ (Y/N)

Set the RIGHT JUSTIFY attribute for all numeric fields? _ (Y/N)

Override field attributes and/or supply default data? _ (Y/N)

Are there uni-directional filelds (ie. SPS emulation)? (Y/N)

Enter the format identification character for RPG?

Generate COBOL copy bock? _ (Y/N) as library/element: /
Print the format? _ (Y/N) on printer:
Display HELP information between definition passes? _ (Y/N) () A///
option character

This defines the character that is to be used by the user to identify data fields
during pass 2 of the screen definition process (described in the next section).

This character is also used to represent "blink" characters in heading data (see
following:section describing heading definition codes).

Default: » (circumflex character).

SOE character

This defines the character which the user may use whenever a real SOE
character is desired. Since the user cannot use a real SOE character in heading
data, some character has to be sacrificed to represent an SOE.

Default: "\" (the backslash character).

7002 3981-100

TFD — Screen Format Definition

start row

This field governs the starting row of the format. The user may specify a value

between 1 and 24 inclusive. The format will automatically be transmitted

Qraliiaikiaiall

starting at the specified row (when a program outputs the format).
Default: row 01.

cursor location

These fields specify the row and column number (respectively) where the
cursor is to be placed when the program outputs the format.

By default, TFD will compute the row and column of the first character of the
first unprotected data field.

Since the desired location of the cursor is often not known beforehand, the
designer of a screen format usually lets this field default.

The MSGAR utility program has a command which allows the re-specification
of the cursor location at any time after the screen format has been created.

partial update

These fields may be entered (only when updating a format) to indicate to TFD
that you wish to only update a portion of the format. For example, entering 5,8
would inform TFU that you wished to update only lines 5 through 8
(inclusive) of the format.

Use of this facility can greatly reduce the amount of effort required to make
minor changes to an existing screen format.

erase screen

Choose "Y" or "N" indicating whether the screen is to be erased before this
format is output by a program.

Default: Yes.
'The default is probably preferable unless the user is defining an upper portion
of a split-screen application!
all unprotected

Choose "Y" or "N" indicating whether all of the data fields in the format are
unprotected.

Default: Yes

If this field is entered as "N", the format definition process will be extended to

include pass-4.

LG8 § 8 L8 Ly

auto tab stop

Choose "Y" or "N" indicating whether all unprotected data fields are to have
an automatic tab stop associated with the field.

7002 3981-100 3-289

TFD — Screen Format Definition

Default: Yes.

If this option is specified "No", users of the format will not be able to use the
TAB-FWD and TAB-BACK keys on the terminal to quickly move from data
field to data field.

If this option is specified "Yes", data fields on an FCC-style terminal will have
the TAB attribute set; on non-FCC terminals a TAB character will be
automatically inserted in the first available space preceding the field.

The user may use hard tab characters (tab set) in heading data to force a tab in
that position.
hdg intensity
This field indicates the desired intensity for heading data.
Choicesare: L, N, R, B, O, F, 5, G, or H (see "3.89.1. Display Intensities” on

e Lo LY

page 3-287).
Default: Light.

data intensity
This field indicates the desired intensity for data fields.

Choicesare: L, N, R, B, O, F, 5, G, or H (see "3.89.1. Display Intensities" on
page 3-287).

Default: Normal.

negative intensity

This field indicates the desired intensity for numeric data fields when the field
contents are a negative number.

Choices ;ire: L,N,R,B,O,F,S, G, or H (see "3.89.1. Display Intensities” on
page 3-287).

Default: Normal.

error intensity
This field indicates the desired intensity for error fields.

Choices are: L, N, R, B, O, F, 5, G, or H (see "3.89.1. Display Intensities" on
page 3-287).

Defauit: Blink.

colour monitor?

Choose "Y" or "N" to indicate whether this format is to be used on a colour
display terminal (a personal computer or a UTS-60).

Default: No.

3-290 7002 3981-100

TFD — Screen Format Definition

If this option is selected, the user will be required to select colour
combinations corresponding to display intensities in Pass-1A (which will
follow this pass).

change attribute

Choose "Y" or "N" to indicate whether the "changed" FCC attribute is to be
automatically set for all data fields. This is normally not required unless the
format is to be used on terminals that are set to TRANSMIT CHANged mode.

Default: No.
Applicable only to FCC terminals.

set right justify
Choose "Y" or "N" to indicate whether the "right justify" FCC attribute is to be
automatically set for all numeric data fields.
Default: No.
Applicable only to FCC terminals.

field override?
Choose "Y" or "N" to indicate whether format definition Pass-5 is to take place.

Pass-5 allows the user to override the attribute(s) and/or supply default data
for each individual data field.

Default: No.

uni-directional?
Does this screen format have any input-only or output-only fields?
Default: No

Iﬁput—only fields will NOT be sent data during a TIPMSGO (unless default
data was provided for the field).

Output-only fields cannot be modified as a result of an iniaut message.

RPG id character?
Does this screen format support an RPG identification character?

Specify the character (if any) to be used to identify this screen format to an
RPG program.

RPG programs may wish to have the first byte of the MCS-DATA setto a

armamifio " Alawvandaw $n failita ré doﬂ

spediic la cnaracier 1o faciiitate ;nym ions.

i

Copybook gen?

Choose "Y" or "N" to indicate whether the TFD program is to automatically
generate a COBOL style COPY element which maps out the data fields of the

7002 3981-100 3-291

TFD — Screen Format Definition

3-292

format.
Default: No.

The user may also specify the desired library and element name for the COTY
book (assuming "Yes" was selected).

TFD will invoke the MSGAR program at the end of the definition procedure to
accomplish this task.

Print format?

Help info?

The user may enter "Y" or "N" to indicate whether the TFD program is to
automatically print a hard copy listing of the format.

Default: No.
The user - may S specify the desired print destination. Default is the system

printer (PRNTR); other choices include destinations such as "TAUX1" or an
MS-DOS file name — see the documentation of the TIPPRINT facility for a
description of various TIPPRINT destination names.

TFD will invoke the MSGAR program at the end of the definition procedure to
accomplish this task.

The user may enter "Y" or "N" to indicate whether the TFD program is to
display HELP information from this point on in the definition process.

Default: "Y" for novice users (those who have logged on TIP /30 fewer than 25
times), otherwise "N".

7002 3981-100

TFD — Screen Format Definition

3.89.3. Format Colour Definition

This particular pass of the format definition process is optional and is only presented to the
user if the COLOUR MONITOR option (in the previous pass) was specified as Yes.

The following screen format is displayed:

TFSTEDO2 TIP/ 30 Screen Format Definition 14:28 \

The screen format can be defined to use up to 16 colour combinations.
Select the background and foreground colours below. The first nine colour
combinations correspond to monochrome intensities one through nine.

-

+ : +
| Monochrome display: | Colour display: |
| Intensity Field Definition Code | Foreground on Background |
| | !
| 1 Shaded S (reverse on low) | 1 __on __ 2 __on __

| 2 Off o] | 3 _on __ 4 on __ |
| 3 Normal N | 5 _on __ 6 __on ___ |
| 4 Low L | 7 __on ___ 8 __ on __

| 5 Blinking B | 9 on __ 10 _ on ___

| 6 Reverse R (reverse on bight) | 11 :: on __ 12 on ___ |
] 7 Flashing F (bright to off) | 13 __ on __ 14 __ on __ }
| 8 Flashing G (bright to low) ! 15 __on __ 16 _ on __

| 9 Flashing H (low to off) | |
|10-16 Not used in moncchrome | (1
4 + +

Standard colour codes are:
BL-black RE-red GR-green YE-yellow BU-blue MA-~magenta CY-cyan WH-white

The user must select whatever colour combinations are desired to correspond with the
"standard" intensity settings on the monochrome display.

For example, monochrome display number 4 is LOW intensity. The user could define
colour combination 4 as WH/RE (which will be used whenever LOW intensity was called
for). This specification means that any field that would normally appear as low intensity on
a monochrome display would appear on a colour monitor with a WHite foreground on a
REd background.

It is important to realize that the colour combinations that are defined here are the only
colour combinations that may be used in the screen format.

Note: If the screen format is to be used on Personal Computers with colour display adaptors, it
is far more sensible to configure PEP or STEP (the Uniscope emulation PC software) to
always select specific colours for various field attributes — see the appropriate
documentation for the PC supplied CONFIG program.

7002 3981-100 3-293

TFD — Screen Format Definition

3.89.4. Format Composition

The second pass of the definition procedure requires the user to define the desired layout of
the screen format on the terminal. If a new screen format is being defined (without using
an existing format as a starting base) TFD will simply clear the screen and wait for the user
to compose the format and press XMIT.

If a screen format is being defined with an existing format as a starting base, TFD will
display the existing format and wait for the user to modify it and press XMIT.

To define the format, the user must enter heading information and "field definitions".
Heading information is simply whatever text the user wishes to appear on the screen. Field
definitions make use of "field definition codes" and "field editing codes".

There are also a number of special heading character strings which may be used to select
standard system information to be displayed as heading data in the screen format. For
example, a common desire is to have the current date appear as part of the title information
of the format. -

As will be shown, the user need not treat this as a data field (and suffer the burden of
dealing with the current date as "another” data field); all that is required is to use the
reserved string SMMDDYY$ (for example) in the desired location of the format. The
TIP /30 output routines will automatically supply the current date (in the specified format)
in that location whenever the format is output to a terminal.

What follows now is a description of the standard field definition codes, field editing codes
and the special reserved heading strings which may be specified in the screen format.

3-294 7002 3881-100

TFD — Screen Format Definition

3.89.5. Field Definition Codes

Data fields may be defined to the TFD program by using combinations of certain characters
that are normally interpreted by TFD as field definitions. For example, a numeric field may
be defined as ZZZZ9. This is intentionally similar to COBOL-74 formatted picture clauses.

Both numeric and alphanumeric fields may contain editing codes to specify certain
automatic editing that is to be handled by the TIP/30 output routines. This editing is
transparent to the program and the programmer.

Fields may not span a line of the screen; that is, the end of a physical line of the screen (80
characters) OR the appearance of some heading data signals the end of a data field.

Note that it is possible that a specific terminal may not support some of the features
selected during the format definition. The TIP/30 output routines will accomplish
whatever is possible with the terminal that is being used. The designer of the format may
select options without much concern with the actual terminal hardware that will use the
format.

When a field definition is entered during the TFD composition pass, the user may enter the
codes as a continuous string of the appropriate length:

Uuuuuuuyuuy

or may elect to use an equivalent shorthand notation:

U(10)

The shorthand notation permits the specification of a length within parentheses after the
definition code character.

The following restrictions apply to this feature:

* the replication factor can be applied only to homogeneous fields; — mixing field
definition codes is not permitted

¢ the data field starts at the initial field definition code position

e there must not be any other characters within the implied range of the replication factor
(eg: if you specify X(30), there must be 25 spaces following the five character string:
"X@E0)".

* the characters included within the parentheses must be numeric and represent a value
from 2 to 132 inclusive. Leading zeroes are permitted.

If all these conditions are not met, TFD treats the code as headi

7002 3981-100 3-295

TFD — Screen Format Definition

3-296

ALA

E..E

F.F

Define upper case alphabetic field.
On both input and output, any alphabetic character will be automaticaily

tla s mvvetovmlawe

I P SRy - s s T vemen
translated to the equivalent upper case character.

On FCC terminals, the ALPHABETIC FCC will be set. This will prevent any
nonalphabetic character from being input.

NO software enforcement of alphabetic-only is provided on non-FCC
terminals.

Define upper case field — "blinking".

Treated the same as a "U" field, except that the field will be displayed as a
blinking field. Note that a field which is all spaces cannot blink!

Define error field.

Error fields are (by definition) output-onily areas that are typically used to
display error or informational messages. These are not real data fields.
Define upper case field — "flashing”.

Treated the same as a "U" field, except that the field will be displayed in
REVERSE video on a background that alternates from BRIGHT to OFF
intensity.

Define upper case field — "grotesque”.

Treated the same as a "U" field, except that the field will be displayed in
REVERSE video on a background that alternates from BRIGHT to LOW
intensity.

Define upper case field — "hideous".

Treated the same as a "U" field, except that the field will be displayed in
REVERSE video on a background that alternates from LOW to OFF intensity.

Define upper case field — "low intensity”.

Treated the same as a "U" field, except that the field will be displayed in LOW
intensity.

Define upper case field — "normal intensity".

Treated the same as a "U" field, except that the field will be displayed in
NORMAL intensity.

Define upper case field — "off".

Treated the same as a "U" field, except that the field will have the FCC
attribute "display off".

7002 3981-100

TFD — Screen Format Definition

9...9

2.2

7002 3981-100

Define upper case field — "reverse video".

Treated the same as a "U" field, except that the field will be displayed in
REVERSE video.

Define upper case field — "shaded".

Treated the same as a "U" field, except that the field will be displayed as
REVERSE video on a LOW intensity background.

Define upper case field.

On both input and output, any alphabetic character will be automatically
translated to the equivalent upper case character. The field may contain any
displayable graphic character.

The field will be displayed in whatever intensity was specified (in Pass-1) for

DATA fields. o

Define alphanumeric field.

Any printable characters may be input or output in this format. No translation
or checking is performed.

Define numeric digit with zero suppression.

A "Z" field definition code represents a digit of a numeric field which will be
displayed as a space on output if the digit is a leading zero. The digit will be
forced to a valid digit on input (space becomes a zero).

Define numeric digit.

A "9" field definition code represents a digit of a numeric field which will be
unconditionally displayed on output. The digit will be forced to a valid digit
on input (space becomes a zero).

Define numeric digit — blank if not input.

A "2" field definition code represents a digit of a numeric field which will be
unconditionally displayed on output. The digit will be input as a space if it
was not entered from the terminal.

If a "2" definition is used in a field, the entire field will be returned as spaces if
it is not input from the terminal. This allows the combination ZZZ,772.22 to -
be edited as ZZZ,779.99 with the additional consideration that the field will
be blank if not input.

3-297

TFD — Screen Format Definition

Example:

1010201010101 018191910162018) - 15 character upper case field

EEEEE - 5 character error field

UUUXXX - two (adjacent) alphanumeric fields
each 1s 3 characters long.

22229 - 5 digit numeric field with leading zero

suppression (on output). Ie: 34 will
display as 34 (underscores illustrate
leading spaces).

3-298 7002 3981-100

TFD — Screen Format Definition

3.89.6. Field Editing Codes

Numeric data fields may be defined to include various types of editing. The editing that
occurs is transparent to the application program that uses the screen format. The edit
characters are supplied by the TIP/30 MCS output routines and are removed on input.

comma insertion
Commas may be placed in the numeric field to specify comma insertion.
Example: 99,999

The character used in the format definition depends on a TIP/30 generation
option; If DECIMAL=COMMA was specified in the TIP /30 generation, the
comma and decimal point roles are reversed.

decimal point
A decimal point may be placed in a numeric field to indicate decimal point
alignment.
The decimal point is used on input to align the field in the program MCS area.
Example: ZZ79.99

The character used in the format definition depends on a TIP/30 generation
option; If DECIMAL=COMMA was specified in the TIP/30 generation, the
comma and decimal point roles are reversed.

leading minus

A leading minus sign may be specified to cause a (floating) leading minus sign
to appear for negative numeric values.

Example: -ZZ, 779

trailing minus
A trailing minus sign may be specified to cause negative numeric values to
appear with a minus sign after the last digit.

Example: ZZ,Z79-

parentheses

Parentheses may be placed around a numeric field to cause negative values to
be surrounded by a floating left parenthesis and a fixed right parenthesis.

Example: (ZZ,2Z9)

CR symbol

A numeric field may be suffixed by the two characters "CR" (upper or lower
case) to cause the symbol "CR" to appear as a suffix to a negative value.

Example: ZZ,ZZ9CR

7002 3981-100 3-299

TFD — Screen Format Definition

3-300

DB symbol

/ insexrtion

: insertion

A numeric field may be suffixed by the two characters "DB" (upper or lower
case) to cause the symbol "DB" to appear as a suffix to a negative val

value.
Example: Z,277,Z79DB

A numeric field may be edited with imbedded slash characters ("/"). This is
often specified for date fields.

Example: 99/99/99

A numeric field may be edited with imbedded colon characters (":"). This is
often specified for time fieids.

Example: 99:99:99

floating currency

A floating currency symbol may be specified for a numeric field. The currency
symbol (as specified in the TIP/30 generation) will be floated in front of the
first digit displayed.

Example: $ZZ,279.99

The character used while composing the format definition is the dollar sign
character. When the screen format is used, the run time MCS routines use the
character that is specified in the TIP/30 generation parameter CURRENCY=.

Tabie 3-14. Examples of MCS Editing

77999 |00127 |__ 127

Z7,999.99 {0001280(___012.80
$Z,279.99 | 000108 $1.08

99/99/99 1120480 |12/04/80
Z27Z/99/99 080480 |8/04/80
(2Z2,2Z9) |0122M |(1,224)
ZZ,7Z7Z9CR | 0122M | 1,224CR
1ZZZZ9CR [0123¢ | 1,234

Note: A negative value is represented internally in memory as a zoned numeric value with an
"11 over punch” of the right most digit. (Eg: the digits 0 through 9, as the right most
digit of a negative value, would be stored as the characters "JJKLMNOPQR" — X'D0’
through X'D9’).

7002 3981-100

TFD — Screen Format Definition

3.89.7. Heading Definition Codes

Heading information in a screen format is normally entered exactly as desired at format
definition time. Some variable information is often useful to display and is best handled as
heading data (rather than output-only data fields): current date/time, format name,

user-id, etc.

This section documents a number of reserved symbols that represent data that is to be
supplied by the TIP/30 MCS output routines.

The character strings are replaced by the appropriate data when the screen format is output
to the terminal. This reduces the amount of effort required in the application program.

Note:

An underscore character can be used to designate a "cursor resting location".
This character will (by default) be set to an unprotected underscore that is
NOT a data field.

Example: [_]

This use of the underscore does nothing more than leave an unprotected area in the screen
format as a resting place for the cursor. The "resting place” is not a field and therefore
does not enter into any calculations at run-time about how much data is transmitted from
the terminal and the subsequent indications that are given to the program.

Refer to the description of the TIPMSGI subroutine call in the MCS section of this
documentation for additional information about the input data count.

In any case, a preferable way to designate a cursor resting location may be the definition of
a final (dummy) one character field at the end of the screen format — the programs that
use the screen format would, of course, ignore whatever data appears in that field.

option character

The option character defined in Pass-1 may be utilized in heading information
to represent a "blink" character. The option character will be replaced by either
a left or right blink character (X"1C" or X"1D").

This option character defaults to the circumflex character (*).

TFD normally starts by using the left blink character and alternates with a
right blink. In the case where there are adjacent blink characters, no
alternation is done (two or more adjacent blinks will be the same type of blink

* character).

Example: This is important”
results in: «This is important»

SOE character

7002 3981-100

The character defined in Pass-1 as a substitute for an SOE may be used as a
heading character to imbed SOE characters within a screen format.

Example: Next account number \UUUUUUUU

3-301

~ TFD — Screen Format Definition

SMMDDYYS

This string of characters will be replaced by the current date in the format:

AARL /TN /NN (Q ala avem
MM/DD/YY (8 characters).

Example: Date: SMMDDYY$ == Date: 4/17/84

$DDMMMYY$

This string of characters will be replaced by the current date in the format: DD
MMM YY (9 characters) where the MMM field will be an abbreviation of the
month in English (ie: JAN, FEB, MAR ... DEC).

Example: Date: SDDMMMYY$ == Date: 17 APR 84

$YYMMDDS$

SHHMM

$USERIDS

$TID

$FRMTID$

$TRANIDS

3-302

] et Y T A warelaan < a i rmat:
This string of characters will be replaced by the current date in the format:

YY/MM/DD (8 characters).
Example: Date: $YYMMDD$ == Date: 84/04/17

This string of characters will be replaced by the current time in the format:
HH:MM (5 characters).

Example: Time: $HHMM == Time: 09:30

This string of characters will be replaced by the 8-character user-id of the user
that is logged on the terminal that is using the screen format.

Example: $USERID$ == ALLINSON

This string of characters will be replaced by the name of the terminal where
the screen format is being displayed (4 characters).

Example: $TID == T107

This string of characters will be replaced by the name of the screen format (8
characters).

Example: $FRMTID$ == PAY02001

This string of characters will be replaced by the transaction code (8 characters)
of the program currently displaying the screen format.

Example: $TRANID$ == PAYUPD

7002 3981-100

TFD — Screen Format Definition

There is often a need for a program to display certain information ONLY if the userhas a
particular security clearance. For example, a payroll inquiry program may wish to display
the salary information only if the user has a TIP /30 user security higher than (say) 65.

To facilitate this, the TFD program allows the designer of a screen format to specify that an
area of the screen is not to be displayed unless the user has a specific security.

The following reserved character strings may be specified in the format definition to
control the display of the screen format according to the user’s security.

An important point is this: once a security specification is encountered by TFD, it applies to
ALL following heading and data information until another security specification is

e i e L e o

encountered.

$<nnn This character string is a dollar sign followed by a less-than symbol followed
by a1, 2, or 3 digit number representing the security level.

The heading and data information from this point on in the screen format will
not be displayed unless the user’s security level is numerically less than or
equal to the number specified.

Example: $<65 will allow the display of following headings and data only if
the user has a security of 1 through 65.

$=nnn This character string is a dollar sign followed by an equal symbol followed by
a 1, 2, or 3 digit number representing the security level.

The heading and data information from this point on in the screen format will
not be displayed unless the user’s security level is exactly equal to the value
specified.

Example: $=1 will allow the display of following headings and data only if the
user has a security of 1.

Note that specifying $=0 effectively hides the following information from all
users of the screen format.

This technique may be used to hide fields which are not yet implemented by
the program (but someday will be filled in with data).

$> This character string is simply a dollar sign followed by a greater-than symbol.

This string is used to "turn off" the security mechanism or to "reveal” all of the
following headings and data.

7002 3981-100 3-303

TFD — Screen Format Definition

Additional Considerations:

These security specifications may be placed throughout the screen format. Note that the
screen positions that are occupied by these security specification strings are turned to
spaces (and are, therefore, "wasted").

The heading and data fields that are "concealed” by the action of a security specification
string are NOT "squeezed" out of the format — the screen space they would occupy is filled
with (protected) spaces.

Once a screen format is defined with security specification(s), it cannot be modified by a
user unless that user is able to "see" all fields in the screen format. For example, a user with
security level 15 could not modify a screen format if that format contained security
specification(s) which were numerically lower than 15.

Any attempt to update a screen format that violates the above rule would result in
TFD/TFU terminating with a "Security violation" message.

An exception to the above rule is areas that are defined as $=0 or $<0 — such areas are not
subject to security checking since no one can actually have a security level of zero!

Example of Secure Fleld Definition:

PAYROLL INFORMATION

NAME : Uguyyuyuuuuguuuuuyuyg
TITLE: Uguuyuuuyu
$<50 SALARY: $222,229.99 $>
HCOLIDAYS: 2229 days

In this example format, a user who has a TIP /30 security level that is numerically less than
or equal to 50 will "see” the heading and data assodated with the SALARY; a user with
lower security would see protected spaces where the SALARY information line could have
been.

Note the use of $> to discontinue the concealing of information.

If a screen format was defined in this manner, a user would have to have a security level
numerically less than or equal to 50 to be able to update the screen format.

This ensures that a user that has access to the TFD program cannot update an existing
screen format to circumvent the security provisions already established by another (higher
security) user!

3-304 7002 3881-100

TFD — Screen Format Definition

3.89.9. TFD Line Copy

TFD supports a type of "cut and paste” operation available during screen definition. Unlike
traditional cut and paste operations, the text that is initially identified is not deleted from
the screen — it is merely "marked”. This section déscribes the mechanics of this facility.

Note: This facility is operational only during the initial screen definition pass of the format
definition utility (pass 2).

The MARK operation involves the following steps:

1. Place the cursor anywhere in the first line that is to be "mark

2. Press the (F3) key and observe that a start-of-entry character appears in the last column
of the line above the line where the cursor was placed.

3. Move the cursor to the end of the text that you wish to "mark" and press the key

ATY
(the SOE character that was output by step 2 is removed from the screen).

Nk ST AR/ e

The screen text that was just marked may be recalled (as many times as desired) by
performing the following PASTE operation.

The PASTE operation causes previously marked text to be output on the screen. To recall
the marked text, perform the following steps:

1. Move the cursor to the desired start location of the text.

2. Press the key and observe that the text is output at the point where the cursor was
located and the cursor location has been advanced to the end of the recalled text.

The PASTE operation overlays any data that may already be on the screen but only for the
number of lines that were marked.

The example that follows illustrates the use of this procedure to copy a set of lines of screen
definition.

Assume that the screen data shown below has been manually entered on the screen during
the initial TFD format definition step:

TEST TFD MULTI-LINE COPY

Name: U(25)
Address: U(30)
U{(30)

The intent is to make several copies of the Name and Address lines (including the blank
separator line which follows the fields). Place the cursor anywhere on the line which
contains "Name: U(25)" and press the key.

7002 3981-100 3-305

TFD — Screen Format Definition

3-306

The result is the following display:

s N
TEST TFD MULTI-LINE COPY
»
Name: U(25)
Address: U(30)
U{30)

Position the cursor in the blank line which follows the second address field and press the
(XM} key.

The text from the cursor location back to the SOE character is marked by TFD and may now
be recalled as many times as needed. The SOE character is removed from the screen.

Position the cursor after the blank line which follows the second address field and press
to recall the marked lines.

/ TEST TFD MULTI-LINE COPY \

‘Name: U(25)
Address: U(30)
U(30)

Name: U(25)
Address: U(30)
Uu(30)

The cursor may be repositioned and (F4) pressed to retrieve the marked text any number of
times. The mark and paste operation may be repeated to copy different sets of lines.

7002 3981-100

TFD — Screen Format Definition

3.89.10. Identify Heading Data

screen format are indeed data fields. The TFD program has been presented with the
composition of the format — the heading information and the field definition codes and
possibly editing codes. The user and the TFD program must now agree on the size and
location of the data fields, edit information, error fields, special heading data and security
specifications.

This step is necessary because the TFD program may not be able to distinguish some
heading information from (what the user intended to be) data fields.

At the start of this pass, TFD will redisplay the composed screen format. TFD will place the

option character (as specified in Pass-1 — usually a circumflex) in each position of what it

considers to be a data field, error field, editing character, special heading field or security

specification.

Note: It is the responsibility of the person defining the screen format to make sure that any
incorrect guesses are repaired.

TFD often guesses correctly, but there are situations where a string of characters in the
format (as composed in Pass-2) will appear to be part of a data field when it is in fact
simply data (or the opposite situation).

The user should examine the entire screen and be certain that the option character (usually
a circurnflex) appears only in those areas which are not simple heading data.

If any errors are observed, the user can simply insert an option character or remove it as the
situation warrants (it is not necessary to replace an erroneous occurrence of the option
character with exactly what should be there — TFD merely uses the presence of an option
character in a particular location to indicate that the location is part of a data (or error) field.

After the screen has been corrected (if necessary), the user should press to continue
the definition process.

Pressing cancels the definition process.

7002 3¢81-100 3-307

TFD — Screen Format Defihition

3.89.11. Identify Unprotected

3-308

The fourth pass of the definition procedure is optional. It appears only if the user had
specified (during Pass-1) that all data fields are not unprotected. If all data fields are not
unprotected then the user must now indicate to the TFD program which areas of the screen
are to be protected and which areas are to be unprotected.

Although this pass materializes as a result of a question about data fields, the user may
now effectively override the protection characteristics of the entire screen. For example, it
can be convenient to "unprotect” various heading areas.

The TFD program displays the following screen format:

- A

TFS$TFDO3 TIPp/ 30 Screen Format De finition 14:28

pPlace " over the UNPROTECTED areas of the format.

\ Are most of the data fields unprotected? Y (Y/N) (] /

Enter a "Y" if most of the data fields in the screen format are to be unprotected; otherwise,
an answer of "N" is more appropriate.

TFD now expects you to place the option character (usually a circumflex) in the areas of the
screen which are to be unprotected. If you replied "Y" to the above question, TFD will
return your screen format (as composed) with the option character already in place of all
data fields. If you answered "N" to the above question, TFD will return your screen format
(as composed) without any option characters.

You must now ensure that the option character appears in ail areas of the screen format
that are to be unprotected. As was the case in Pass-3, it is not necessary to replace an
undesirable occurrence of the option character by the exact character that should occupy
that location — the absence of the option character is sufficient information for the TFD
program.

7002 3981-100

TFD — Screen Format Definition

A technique that is often employed by application programs is the inclusion of unprotected
(heading) information in a screen format (usually with a leading SOE character). When this
(heading) information is explicitly unprotected, the user of the screen format can simply

place the cursor at the end of the area and press the key.

This is a simple way to imbed "commands" in a screen format that is normally used just to
display data.

7002 3981-100 3-309

TFD — Screen Format Definition

3.89.12. Override Field Attributes

3-310

The fifth pass of the definition procedure is optional. It appears only if the user had
specified (during Pass-1) that he wished to override field attributes. This pass will step
through the format field by field, allowing the user to accept the current attributes of the
individual field or to make alterations to the field’s attributes.

Each field has a number of attributes that are associated with it as a result of the screen
format definition up to this point:

« display intensity / colour / blinking (mutually exclusive!)
* protected / unprotected

° autbmatic tabbing?

* return blanks if not entered (numeric fields only!)?

¢ automatically set changed FCC attribute?

A field has a specific display intensity (Normal, Low, etc). This intensity is translated into a
specific colour combination if the format is being used on a colour monitor and the format
was explicitly declared to be for a colour monitor (Pass-1A). The user may alter the
intensity/colour combination in this pass.

A field may be forced to have (or not have) an automatic TAB stop.

A numeric field can be forced to return spaces to the user program (if it is not entered on
input). For example, a field defined as ZZZZZ can be forced to return spaces when not
entered (even though it was not defined with the "2" field definition code).

The user can supply default data for the field (this is the only way this default data may be
specified). Default data is supplied by the TIP /30 output routines whenever the field is not
explicitly output by the program (ie: the field is past the length of data implied by
MCS-COUNT on output).

WARNING

When a screen format is updated, the default data
is not retained for lines that are being updated.
When updating a format that has default data, the
user is advised to make use of the partial update
facility to minimize the amount of default data that
must be entered again.

7002 3981-100

7

TFD — Screen Format Definition

TFD outputs the following screen format at the start of pass-5:

e N

TF$TFDC4 T I P /30 SCREEN FORMAT DEFINITION 14:28
F2=Restart, F3=Skip Fleld, ¥F4=End Definition

pIntensity:_ -or- Colour:__ on __ Blink:_ Protected:_ Tab:_ Blank:_ Changed:

Input only:_ RPG indicator: 0 Enter 0 characters of default data:

The upper portion of the screen format contain the first 19 lines of the screen format that is

being defined; the last 5 lines are temporarily used by pass-5 to solicit the attribute changes.

The user must designate the changes to be made to the attributes for the field which is
currently being processed. The current field is highlighted in the upper portion by the
appearance of blink markers on either side of the field.

The user may alter the attributes as desired and press to make the alterations and
proceed to the next field.

The available function keys are advertised by a message in the screen format:

E)

B@ B

Refresh the screen.

Restart the definition process at the beginning of Pass-2 (This is not a good key
to press by accident!)

Accept this field’s attributes and move to the next field.

Terminate Pass-5 processing.

7002 3981-100

3-311

TFD — Screen Format Definition

3-312

When the user needs to examine or alter the attributes of a field that is on or after line 20 of
the screen, TFD will "invert" the display to show the bottom 19 lines of the user’s format

and temporarily use the top 5 lines to solicit attribute changes:

TESTFDOS

PIntensity:_ =-or- Colour: _ on __ Blink:_ Protected:_ Tab:_ Blank:_ Changed:_
Input only:_RPG indicator 0 Enter 0 characters of default data:

TIP/30 SCREEN FORMAT DEFINITION 14:;;\\
F2=Restart, F3=Skip Fiald, F4=End Definition

-

/

The various attribute changes are now described in detail.

intensity

colour

blink

The intensity field will be unprotected by the TFD program if the format being
defined is not declared to be for a colour monitor. The user may change the
desired intensity of the field.

Choicesare: L, N, R, B, O, F, 5, G, or H (see "3.89.1. Display Intensities" on
page 3-287).

This field and the (following) colour field are mutually exclusive attributes —
only one of the choices will be available.

Only the field intensity attribute may be changed here. A field cannot be
changed from type U to type X or from type U to numeric {for example).

The colour field(s) will be unprotected by the TFD program if the format being
defined was declared to be for a colour monitor. The user can alter the
selection of the background:foreground colour combination.

Note that the user may only specify a combination that was already specified
during Pass-1A. You may not "create” a new colour combination at this stage.

Refer to the description of Pass-1A for the available colours and their

mnemonics.

The user may specify Y to force this field to blink.
This attribute change only applies to colour fields.

7002 3981-100

i

TFD — Screen Format Definition

protected The user may specify Y to force this field to be a protected field.

Tab The user may specify Y to cause the FCC for this field to be built with the
automatic TAB flag set on.

If Y is specified, the FCC for this field will include the ability to TAB to this
field.

blank This attribute applies only to numeric fields!

The user may specify Y to indicate that the TIP/30 input routines are to put
spaces (rather than zeroes) in the MCS-DATA area for this field if the field is
not entered by the terminal operator.

Changed The user may specify Y to indicate that the FCC for this field is to be built with
the "changed" flag set on.

IfY is specified, a terminal that has the XMIT option set to CHAN will
consider this field changed (even if the terminal operator does not alter it) and
transmit all changed fields up to and including this field.

input only The user may specify Y to indicate that this field is an input-only field.
This attribute is only applicable to SFS (Screen Format Services) emulation.

default data

The user is given the opportunity to enter up to the specified number of
characters of default data for the field.

If no data is entered, TFD will assume that there is no default data for this
field.

A special notation is allowed to enable the user to indicate that the field is to
be filled with a particular character — enter the option character as the first
character of default data and follow the option character with whatever
character is to be used as a fill character.

Eg: entering A? means fill with question marks

7002 3981-100 3-313

TFD — Screen Format Definition

3.89.13. Screen Format Summary

At the end of the format definition, TFD (or TFU) will display the screen format shown
below to provide summary information about the format that was just created or updated
(the phrase "created” will change to "updated” if an existing screen was updated).

4 N

TFSTEDOS TIP/ 30 Screen Format Defindition

Group: Format: created on XX/XX/XX at XXIXXIXX
The format contains data field characters
and error field characters.
The message format is bytes. (Re: MSGPOCL)
The cursor resting location is at row ___, column

_ | - Y,

The group and name of the screen format will be shown along with the date and time that
the format was created (or updated).

The number of bytes of DATA characters is shown. This value determines the sum of the
lengths of all the DATA fields in the screen format and, in effect, defines the length of the
data area needed by an application program that will use the format.

The number of bytes of ERROR field characters is also shown. This represents the sum of
the lengths of all ERROR fields that are in the screen format. This information is required
by the application programmer who wishes to construct and send ERROR (or
informational) messages when this format is in use at a terminal.

The number of bytes that the format occupies internally is shown. This number is
important to the system programmer who must decide on the size of buffers to be used for
TIP /30 screen format pooling (TIP /30 generation parameter MSGPOOL=).

The cursor resting location is identified as a row and column location. This will either be

the first character of the first unprotected data field (by default) or will be set to the value
selected at definition time.

3-314 7002 3981-100

TFD — Screen Format Definition

The number of DATA bytes, number of ERROR bytes, and the format size are also
displayed by the MSGAR online program and the batch program which sorts and lists the
TIP /30 catalogue and MCS file.

7002 3981-100 3-315

TFD — Screen Format Definition

3.89.14. Format Definition Example

3-316

To illustrate the definition process, assume that we wish to create a screen format that is to

appear as follows:

$FRMTIDS TIP/30 FORMAT DEFINITION EXAMPLE SCREEN

EE

Customer Name:

Address:

Postal Code:

Current Balance:

\—

Uuuuuyuuutuguuguuuuuuuyuuuuuuy

UyuuuuuyyuuuyyuuuuuUyyuuyuyuuuy
Uuguyyuuuuuuyuyuuyguyuuuyuyuyoy
UyuuyuyuuuuyuUyuuyuuuUuyuuyuyuuy

U9y 9uU9

($222,229.99)

/

This screen format is to be named "EXAMPLE" and is to be defined to be in the group
"TIPY". Some of the more important facts about the screen format are:

* The screen is to display the screen format name in the upper left corner and the current
date in the upper right hand corner

* The screen is to be used only for inquiry activity; all data fields are output-only and,
therefore, are to be protected

* The Customer name and address fields are upper case fields 30 characters long

¢ The postal code is standard Canada Post format: letter, digit, letter, a space, digit, letter,

digit

o The area code is to be displayed with parentheses around it (this is NOT parentheses
around a negative number!)

* The telephone number is to have a "hard" minus sign between the exchange and set

number (nnn-nnnn)

» The current balance field is to have a floating currency symbol, zero suppression and
surrounding parentheses if the value is negative.

In order to begin the definition of such a screen, we must invoke the
Definition program (TFD):

\\3§??>TFD

YT S/

T1? /30 For

7002 3981-100

P

TFD — Screen Format Definition

TFD determines that we did not supply any parameters on the command line and prompts
with the following screen format:

//;;;EFDOD TI.P/ 30 Screen Format Definition 14:;;\\

Group Format

New screen format name: TIPSYS_
From existing format: TIPSYS (3

- /

We wish to create a new screen format and we do not have an existing format to use as a
model, so we fill in the screen as shown below and press the key:

//;;%TFDOD TIP/ 30 Screen Format Definition 14:;;\\

Group Format
New screen format name: TIPSYS_ = EXAMPLE_
From existing format: TIPSYS_ (1

7002 3981-100 3-317

TFD — Screen Format Definition

3-318

-
/TF$TE‘DOI TIP/30 Screen Format Definition 14:28

TFD now responds with the screen format for Pass-1 (Select general format options):

Group: TIP$YS__, Format: EXAMPLE_ , Option character:

The format is to be output starting at screen row

The cursor is to rest at location (row,col)

Partial update of format - only update screen rows
Erase the screen before the format is output?

Set all user data fields unprotected?

Automatic TAB STOP with each unprotected data field?
HEADING intensity? L DATA field intensity?
Negative field intensity? N ERROR field intensity?
Format to be used on a colour monitor?

Set the CHANGE attribute ON for all data fields?

Set the RIGHT JUSTIFY attribute for all numeric fields?
Override field attributes and/or supply default data?
Are there uni-directicnal fields (ie. SFS emulation}?

Enter the format identification character for RPG?

#I

1

—_
1

Z AR 2 AW A

Generate COBOL copy book? N (Y/N) as library/element:
Print the format? N “(Y/N) on printer:

Display HELP information between definition passes?

N

SOE character: \

Egrough 24
(Y/N)

L) ight (N)ormal
R)everse (B)link

After these changes are made, we press the key.

TFD has recognized the group and format name that we specified earlier and that most of
the default values are correct.

However, ALL our data fields are to be protected, so we must alter the value specified as
the answer to the question "Set all user data fields unprotected?” to be "N" rather than the
default "Y".

For the purpose of this example we have also changed the option character from a
circumflex to the character # (as shown on line 3 of the format above).

7002 3981-100

EOS

AT,

TFD — Screen Format Definition

7002 3¢81-100

TFD now clears the screen (since we did not specify an existing screen format to useas a

starting base) and waits for us to compose our format. We enter the following into the
blank screen provided:

Qi SLATEIL ¢ jLe=

SFRMTIDS TIP/30 FORMAT DEFINITION EXAMPLE SCREEN FORMAT $DDMMMYY$
EEEEREEEEREEEEEEEEEEREEEEEEEEEEEEEEEEEER

Customer Name: UUUUUUUUYUUUUUUUUUUUULUUULUUUU
Address: UUUUUUUUULUUUUTLUUUULUYUUUUUUUY
[$101029101020162010001016 110200101010 R0ARRE10R01020101000F
ojegersaeieasistoniieasionspoojsteiosstoloroneitogesgeiss

Postal Code: U9U 9U9

Area code: (999)
Telephone: 999-9989

Current Balance: ($222,229.99)

- Y,

We have used the heading definition codes $FRMTID$ and $DDMMMYY$ to signify that

we want the format name and the current date to appear in the indicated locations on the
screen.

We have also defined the Error field (EEE...EE) where we would like it and used various
field definition and editing codes to define the various data fields.

Even though this screen format is intended to be used just to display data, we have
provided a cursor resting area — more for cosmetic appearances than any other reason.

We now place the cursor immediately to the right of the last non-blank character of our
format (in this case, right after the cursor resting location we have defined) and press
to complete Pass-2 (composition pass).

3-319

TFD — Screen Format Definition

TFD now re-displays the composed screen format with the option character (the #) in place
of all characters that TFD thinks are either part of an Error field, data field, special heading

code, security code or editing code:
@##### TIP/30 FORMAT DEFINITION EXAMPLE SCREEN FORMAT #######Q

FHRAAHERHEEERFHES LSRR A ER 4R

Customer Name: ##E#44444484444324408288445488
Address: $##F3444440REFRBLASHEREHEERES
FEERRFEH SRR EFEAHEHABHFER4448S
FRESHEHBHAHE R RIS LGB0

Postal Code: ### ###

Area code: #####
Telephone: ###-###4

Current Balance: ####$##44434%4

N\ S

TFD has correctly over struck (with the #) all fields except the area code field (TFD thinks
that the field is to have parentheses around it if its negative — we wanted the parentheses
to be "hard" heading characters).

3-320 7002 3981-100

TFD — Screen Format Definition

We must now correct TFD’s impressions! We move the cursor to the area code field and
change the first and last # back into left and right parentheses (we need not use an actual
parenthesis, but it is visually convenient!).

(2232383 TIP/30 FORMAT DEFINITION EXAMPLE SCREEN FORMAT #######;;\\
(2332322232223 S IS LSS LI LTSS
Customer Name: #####443844#88434344384848444344
Address: #####43H484FHBHSHEHEEFE RS
FRASBBLFASFHHFREEFH SRS SR SRR
FEFHFRAEAFRRETE RS ERIRAHFEBHEH
Postal Code: ### ###

Area code: (###)
Telephone: ###-####

Current Balance: ######8#3444%
<#>

. W,

and press the key.

TFD now displays the following screen format (this format actually is defined to start at
line 19 of the CRT — this temporarily overlays the bottom 5 lines of our format):

-)

TESTFDO3 TIP/ 30 Screen Format Definition 14:28

pPlace # over the UNPROTECTED areas of the format.

Are most of the data fields unprotected? Y (Y/N) (] AA///

7002 3981-100 3-321

TFD — Screen Format Definition

3-322

Since ALL of our data fields are to be protected, and we are being asked to place the #

option character over those fields which are to be u protected we now change the (default)
response from "Y" to "N" and press the (M) key.

TFD re-displays the screen format as it was originally composed (without any of the #
characters) since we replied "No" to the previous question. (Note that the defined cursor
resting location is returned with the # option character since it is assumed to be unprotected
space in the screen format).

//;;RMTIDs TIP/30 FORMAT DEFINITION EXAMPLE SCREEN FORMAT $DDMMMY;;\\

FEEEEEREREEEEEREEEEE R EEEEEEEEEEEEEEREERE

Customer Name: UUUUUUUUUUUUUUUUUUUUUUULUUUUUUU
Address: UUUUUUUUUUUUUUUUUUUUUUUUUYUULUD
9000201000 20001000 20100030004 R0Revionon010R000]010101000)
UyuyuyuuUuuuuuUUuyuuUuuyuyuuuuy

Postal Code: U3U 9U9

Area code: (999)
Telephone: 999-9999%

Current Balance: ($222,229.99)

We do not have any modifications to make; no fields are to be unprotected so we can
simply press the key.

7002 3981-100

PN

TFD — Screen Format Definition

The format definition process is now complete. The following summary screen is
displayed:

4 - | N

TFSTFDCE TIP/ 30 Screen FPormat Definition

Group: TIPSYS Format: EXAMPLE created on 06/20/84 at 13:11:31
The format contains 144 data field characters

and 40 error field characters.
The message format is 338 bytes. (Re: MSGPOOL)

The cursor resting location is at row 17, column S54.

_ _/

From following information is shown on the summary screen:

°

There are indeed 40 error field characters
The total size of the data fields (exclusive of any editing characters) is 144 bytes

The format is stored internally in 338 bytes of storage. This value may be of interest to
the system programmer when he is determining an optimum selection for the
MSGPOOL= TIP /30 generation option

The cursor resting location was computed as row 17, column 54.

The cursor resting location defaulted to the defined cursor resting location since there are
NO other unprotected fields on the screen.

One could, of course, elect to alter this cursor resting location by using the MSGAR
program:

\\3fP?>MSGAR CUR EXAMPLE 24 80 4//)

7002 3981-100 \ 3-323

TFD — Screen Format Definition

A TIP /30 program that uses this screen format might display data in the following manner:

//;;$MPLE TIP/30 FORMAT DEFINITION EXAMPLE SCREEN FORMAT 10 JaN ;;\\

Customer Name: Allinson-Ross Corporation
Address: 4250 Sherwoodtowne Blvd
Mississauga, Cntario
CANADA
Postal Code: L4Z 2Gé6

Area code: (416)
Telephone: 848-2030

Current Balance: $1,000.00

3-324 7002 3981-100

PO

TLIB — Librarian Services

3.90. TLIB — Librarian Services

TLIB is a utility transaction program that provides online librarian facilities. TLIB
manipulates OS/3 library elements, TIP/30 edit buffers, terminal auxiliary devices
(cassette, diskette, printer), and MS-DOS files on Personal Computers (PC).

To manipulate MS-DOS files, TLIB must be executed at a Personal Computer that is logged
on TIP/30 and is using the Computer Logics Personal Emulator Package (PEP) software
and hardware (or equivalent). The user is responsible for verifying that the PC has a
compatible UNISCOPE interface.

TLIB is able to manipulate library elements that are source (S), macro (M), proc (P), object
(O) or load (L).

For certain commands TLIB recognizes three pseudo library element types: directory ("D"),
fast directory ("F") and Edit Buffer ("E"). Directory type "D" implies the library header
information including module name, module type, comments, date and time stamp (similar
to a LIBS table of contents listing). Directory type "F" implies only the module name and
module type. Type "E" (Edit Buffer) indicates that the specification applies to a TIP /30 edit
buffer.

TLIB may be used interactively or may be given a single command on the command line. If
a single command is given on the command line TLIB will attempt only that command and
terminate. When used interactively, TLIB prompts the user for each command.

Syntax:

@ TLIB[/options]

@ TLIB{/options] cmd parameters

‘Syntax @ is used to start TLIB in interactive mode. TLIB prompts the terminal operator for
each command until an "end" or "quit" command is given.

Syntax @ is used to execute a single TLIB command.

7002 3981-100 3-325

TLIB — Librarian Services

3.90.1. TLIB Commands

If TLIB detects that it has been called with a transaction name other than "TLIB", it assumes

that the transaction code is the command and does not treat the first parameter as a
command (the implied command is inserted and the parameters are internally shifted right
one position).

TLIB recognizes the following commands:

Table 3-15. TLIB Commands

In interactive mode, recall last command for
cannibalization and possible re-submission.

BACK/RECOVER?* | Reactivate the previous version of an element.

cory* Copy an element or edit buffer to an element,
auxiliary device or MS-DOS file.

DELETE/ERASE* | Delete a library element.

DIR* Detailed directory of a library.

END End TLIB program.

FDIR* Fast directory of a library.

HELP Display help information on terminal.

JOB Submit an element or edit buffer to the OS/3
input reader.

LIST* List (on the terminal) an element or edit buffer.

PRINT* Print a listing of an element or edit buffer.

PUNCH Punch an element or edit buffer.

QUIT End TLIB program and logoff.

SETOF Set TLIB option OFF.

SETON Set TLIB option ON.

Note:

3-326

In the above table, commands that are suffixed with an asterisk are also implemented as
TIP/30 transactions (with the transaction name equal to the TLIB command name). The
definition of separate transaction "clone” names permits the system administrator to
restrict access to certain commands to users with appropriate security levels and also
permits the use of commands (like COPY) as stand alone transactions.

7002 3981-100

TN

TLIB — Librarian Services

3.90.2. TLIB Options

TLIB recognizes the following options (whether supplied on the command line or
referenced by a SETON or SETOF command in interactive mode). The initial state of these
options is "not in effect". Command line options are processed by TLIB from left to right.

Table 3-16. TLIB Options

A ASSEMBLER mode — use columns 1-72.
C COBOL mode — use columns 1-72.
H

I

Turn on PCXFER routine’s Hexification.

Include module comments (as first record) of
MS-DOS output.

COPY: prompt for output element comment.

Print with line numbers.

Do not print title page.

K
L
M Do not print heading lines.
N
O

COPY: Omit overwrite prompt.
DELETE/ERASE: Ignore edit buffer changed

flag.
Q Do not display any messages (Quiet mode).
R RPG mode

use columns 1-74;
columns 1-5 set to spaces.

) Scratch input edit buffer.

X Turn on PC’s hexification.

Y Use PCXFER file compression (when copying
data to an MS-DOS PC file.

1.8 PC display number for PC data transfer.

Note: Hexification (options "H" and "X") is the process of converting data bytes that are not
valid graphic characters into two graphic characters that represent the hexadecimal
portions of the character. For example, X'B3’ becomes the two graphic characters "B"” and
"3". Of course, the hexification can occur in the opposite direction too — two bytes
become one hexadecimal byte value.

Faen s s e sSas it d dwted Sl LI I

Some options are mutually exclusive (for example, the language specification options like
"R"and "C").

7002 3981-100 3-327

TLIB — Librarian Services

3.90.3. TLIB Input and Output Specifications

The following tables illustrate the various formats that the parameters to TLIB can take. P1
refers to the first parameter after the TLIB command. P2 is the next parameter and so on.

Table 3-17. TLIB Input Specifications

omitted

If parameters 1 through 3 are omitted, the
terminal is used as an input device.

Input is solicited line by line until is
pressed to signal end of input.

File/eit [,typel

Input OS/3 Library element.

Default is source type "S". Other choices are
Macro, Proc, Load module, Object module,
Directory, Fast directory, Name of Proc,
Internal Symbol Dictionary of Load module.

group/name,E

TIP/30 edit buffer specification.
Pseudo type code "E" indicates a TIP /30 Edit
Buffer.

d:ffffffff.eece

MS-DOS file specification:

d: . MS-DOS drive identifier
feffffff MS-DOS file name

eee MS-DOS file extension

AUXn,,,

Auxiliary device specification

"n" is device number (1 through F)

Some AUX devices are capable of write
operations only and cannot be specified as an
input device.

Input comes from a UNIX system.

3-328

7002 3981-100

P

TLIB — Librarian Services

Table 3-18.

TLIB Qutput Specifications

If no output specifications are provided, TLIB

output is directed to AUXO (full screen display
via TIPPRINT).

File [,element] [type]

OS/3 library element specification
Default element name is input element name
(P2)

Default type is input type (P3)

Group [,name}, E

TIP /30 edit buffer specification
Group: the edit buffer group

name: the edit buffer name (required if group
is given)

type (must be "E" for Edit buffer)

d:ffffffff.cee

MS-DOS file specification:

d: MS-DOS drive identifier
FEEFEFEE MS-DOS file name

.eee MS-DOS file extension

AUXn

Auxiliary device specification
"n"is auxiliary device number (1 through F)

printername

A printer name acceptable to TIPPRINT.
See description of TIPPRINT in the
documentation of the TIP /30 File Control
System — FCS.

queue [,Ibl1] [Ibi2] [[H or R]

0S/3 spool file specification

queue 0S/3 spool queue (RDR, RDR96,
- RDR128, RBPIN)

Ibll First part of the LBL name (max 8
characters)
Ibl2 Second part of the LBL. name

(max 8 characters).
Ibil and Ibl2 are concatenated to

form the LBL name.

R Create the spool queue entry with
RETAIN.

H Create the spool queue entry with
HOLD.

7002 3981-100

3-329

TLIB — Librarian Services

3.90.4. COPY — COPY Data

3-330

The TLIB Copy command is able to copy data to and from a wide range of locations. Not
only can standard OS/3 library elements be copied, TIP /30 edit buffers, auxiliary devices,
MS-DOS files and the OS/3 spool file can be utilized.

The COPY command recognizes the following input specifications:
e OS/3 library element

* (OS/3 library directory

e MS-DOS fileona PC

* terminal auxiliary device (cassette, UTS diskette)

e TIP/30 edit buffer

e UNIXfile .

e the terminal (entered at keyboard).

The COPY command recognizes the following output destinations:
e OS/3 library element

° MS-DOS fileona PC

e terminal auxiliary device (cassette, UTS diskette, printer)

¢ TIP/30 edit buffer

o TIPPRINT printer destination

* UNIXfile

¢ 0OS/3 RDR Spool sub file.

The combinations of input and output specifications make the syntax of the COPY
command rather cumbersome to illustrate. However, a general rule is: the first 3
parameters pertain to the input specification, parameters 4 through 7 pertain to the output
specification.

Syntax:

Copy P11 (,P2] [,P3] ,P4 [,P5] [,P6] [,P7]

7002 3981-100

P

TLIB - Librarian Servicaes

Specify the input specification for COPY (parameters P1, P2 and P3) from the following
table:

omitted If parameters 1 through 3 are omitted, the
terminal is used as an input device.

Input is solicited line by line until is
pressed to signal end of input.

File/elt [,type] | Input OS/3 Library element
Default is source type "S".

group/name,E | TIP /30 edit buffer specification
Pseudo type code "E" indicates TIP/30 Edit

Buffer.
d:ffffffff.eee MS-DOS file specification:
d: MS-DCS drive identifier
badasssess MS-DOS file name
.eee MS-DOS file extension
AUXn,, Auxiliary device specification

"n" is device number (1 through F)

Some AUX devices are capable of write
operations only and cannot be specified as an
input device.

7002 3981-100 3-331

TLIB — Librarian Services

Specify the output specification for COPY (parameters P4, P5, P6 and P7) from the

following table:

If no output specifications are provided, TLIB
output is directed to AUXO (full screen display
via TIPPRINT).

File [,element] [,typel

OS/3 library element specification
Default element name is input element name
(P2). Default type is input type (P3)

Group [,name}, E

TIP/30 edit buffer specification

Group: the edit buffer group

name: the edit buffer name (required if group
is given)

Pseudo type code must be "E" for Edit buffer.

d:ffffffff.cee

MS-DOS file specification:

d: MS-DOS drive identifier
FEFEEFEE MS-DOS file name

.eee MS-DOS file extension

AUXn

Auxiliary device specification
"n" is auxiliary device number (1 through F)

printername

A printer name acceptable to TIPPRINT.
See description of TIPPRINT in the
documentation of the TIP/30 File Control
System — FCS.

queue [,1bi1] [Ibi2] [,hoid]

0S/3 spool file specification

queue 0S/3 spool queue (RDR, RDR96,
RDR128, RBPIN)

Ibl1 First part of the LBL name (max 8
characters)
Ibi2 S Second part of the LBL name

(max 8 characters).

Ibl1 and Ibl2 are concatenated to
form the LBL name.

hold=R Create the spool queue entry with
RETAIN.

hold=H Create the spool queue entry with
HOLD.

3-332

7002 3981-100

TLIB — Librarian Services

Note: When a reader queue element is created by COPY, it may be accessed using standard
OS/3 batch utilities (such as DATA) by using job control specifying:

b//DVCBO

// DVC130,1

// VOL X(NOV) or RDR128

/ / LBL x00000cxxyyyyyyyy | // LBL xxxxxxxxyyyyyyyy

// LFD zzzzzzzz

// LFD zzzzzzzz

XXCOOXXYYYYYYYY

Represents the label name (or names) specified when the file was created.

ZZZZZZTZ,

The appropriate LFD name for the input file for the batch program.

If the reader queue entry is created in the HOLD state, it is necessary to begin the spool
queue entry and give the waiting job a GO command:

BE SPL,RDR, FILE=XXXXXXXXYYYYVYVY

GO jobname

Example of COPY commands:

' Command:

Descriptio

COPY JCS/TIP30,,SYSGEN

Copies the element TIP30 (default type "S")
from library JCS to library SYSGEN as element
name TIP30.

COPY JCS/TIP30,,SYSGEN/OLDTIP

Copies the element TIP30 (default type "S")
from library JCS to library SYSGEN as element
name OLDTIP.

COPY PG11,,E,AUX1

Copies the edit buffer PG11 to the terminal
AUX1 device (presumably a printer).

COPY JCS/TIP30,,B:/TEST/PRN

Copies library element TIP30 from library JCS
to MS-DOS file B:TEST.PRN

COPY TEST, ,E,RDR,jobxyz,cards

Copies edit buffer TEST to the OS/3 reader as
LBL name "JOBXYZCARDS"

COPY SRC/PAY040,5,C:PAY040.COB

Copy source element PAY040 from library
SRC to a PC file named C:PAY040.COB

7002 3981-100

3-333

TLIB — Librarian Services

3-334

Additional Considerations:

=

The following options affect the COPY command:

A ASSEMBLER mode -— use columns 1-72.

C COBOL mode — use columns 1-72.

H Turn on PCXFER routine’s Hexification.

I Include module comments in first record of MS-DOS output.

K Prompt for comment text if output is a library element.

8) If output library element already exists, overwrite it without issuing a
confirmation prompt.

Q Do not display any messages (Quiet).

R RPG mode — use columns 1-74;
columns 1-5 set to spaces.

S Scratch input edit buffer.

X Turn on PC’s hexification.

1.8 Specify PC display number for PC data transfer. Default is no alteration of PC
control page.

Error Conditions:

The input file, element or edit buffer may not be found or the output file may not be
available for use.

7002 3981-100

TLIB — Librarian Services

3.90.5. DELETE — Delete Library Element

This command is used to delete an element from an OS/3 library or to delete a TIP /30 edit
buffer (also see the discussion included with TLIB's RECOVER command in
"3.90.15. RECOVER — Activate Previous Version" on page 3-348).

Syntax:

® DpELete Pl [,P2] [,P3]

@ ErRase Pl [,P2] [,P3]
Where:

Specify the item to be deleted from the following table:

P,

File/elt [,type] | Input OS/3 Library element
Default is source type "S".

group/name,E | TIP/30 edit buffer specification
' Pseudo type code "E" indicates TIP/30 Edit
Buffer.

Example:

DELETE JCS/MYJOB

Deletes element "MYJOB" from library "JCS".

Additional Considerations:

ERASE may be used as a synonym for DELete.
The following options affect the DELETE command:

O If input is an edit buffer, ignore changed flag (do not prompt for overwrite
confirmation).

Q Do not display any messages (Quiet)

Error Conditions:

The specified element may not exist or the file cannot be accessed.

7002 3981-100 3-335

TLIB — Librarian Services

3.90.6. DIR — Display Library Directory

This command displays a directory of an OS/3 library (or some subset of an OS/3 library)
at the terminal. A line, containing the module’s name, type, comment and date and time
last changed, will be displayed for each module selected.

Syntax:
Dir file [,prefix] [,printer]
Where:
file The selected library name as defined in the TIP/30 catalogue.
prefix An element name prefix to be used to select some subset of the elements in the
library. If the prefix parameter is omitted, the default is assumed to be ™" —
all elements. '

printer The destination printer (default is AUX0 — full screen display). Other
possibilities are, for example, PRINTR, AUX1 or AUX1*BYP etc.
Example:

DIR TIP,*THS

Displays a directory of all elements with names that begin with "TH$", in the library file
catalogued with the name "TIP".

3-336 7002 3981-100

TLIB — Librarian Services

Example of DIR command output:

Continue?pYes PNo \\
Listing: TIP/*THS,D 89/02/23 23:00 DIRECTORY

THSTQLMO, S VER-002.D HELP FOR ’TQLMON’ 84/01/13 14:41

THSTQLC, S VER-QQ04.D HELP FOR 'TQL C’ 84/01/13 16:11

THSTQLCOC, S VER-002.D HELP FOR ’TQL CO’ 84/01/13 16:16

THS$TQLCP, S VER-003.D HELP FOR ’‘TQL CP’ 84/01/13 16:18

THSTQLWP, S VER-Q03.D HELP FOR 'TQL wp’ 84/01/16 11:29

THSTQLW, S VER~-003.D HELP FOR ’TQL W’ 84/01/16 11:30

THSTQLUP, S VER-Q03.D HELP FOR ’TQL UP’ 84/01/16 11:30

THSTQLUF, 5 VER~003.D HELP FOCR ’TQL UF’ 84/01/16 11:31

THSTQLUC, S VER-003.D HELP FOR ’TQL UC’ 84/01/16 11:31

THSTQLU, S VER-003.D HELP FOR 'TQL U’ 84/01/16 11:32

THSTQLSP, S VER-003.D HELP FOR ’TQL SP’ 84/01/16 11:32

THSTQLS, S VER-003.D HELP FOR 'TQL S’ 84/01/16 11:33

THSTQLQP, S VER-005.D HELP FOR ’TQL. QP’ 84/01/16 11:34

THSTQLQ, S VER-003.D HELP FOR ’'TQL Q’ 84/01/16 11:34

THSTQLPP, S VER-Q03.D HELP FOR ’TQL PP’ 84/01/16 11:35 o
THS$TQLP, S VER-Q003.D HELP FOR ’'TQL P’ 84/01/16 11:35

THSTQLNP, S VER-003.D HELP FOR ’'TQL NP’ 84/01/16 11:36

THSTQLNF, S VER-003.D HELP FOR ’'TQL NF’/ 84/01/16 11:36

THSTQLN, S VER-Q03.D HELP FOR ’'TQL N’ 84/01/16 11:37

THSTQLM, S VER-003.D BELP FOR ’'TQL M’ 84/01/16 11:38

THSTQLLP, S VER-0Q03.D HELP FOR ’'TQL LP’ 84/01/16 11:39

\\iﬁfTQLL,S VER-003.D HELP FOR ’'TQL L’ 84/01/16 11:39 ‘///

3.90.7. END — End TLIB Interaction

The End command terminates the TLIB program in a normal fashion.

Syntax:

End

Where:

No parameters required.

7002 3981-100 3-337

TLIB — Librarian Services

3.90.8. FDIR — Display Abbreviated Library Directory
This command displays a "fast"” directory of an OS/3 library (or some subset of an OS/3
library) at the terminal. Up to six element names are listed on each output line; the module
name and type is displayed for each module selected.

Syntax:
Fdir file [,prefix] [,printer]
Where:
file The selected library name as defined in the TIP/30 catalogue.
prefix An element name prefix to be used to select some subset of the elements in the

library. Default is list all elements.
Elements are listed without regard to the type of the element.
printer The destination printer (default is AUX0 — full screen display). Other

possibilities are, for example, PRNTR, AUX1 or AUXI*BYP etc.
Exampie:

FDIR TIP,*THS

Displays a directory of all elements with names that begin with "TH$", in the library file
catalogued with the logical file name "TIP".

3-338 7002 3981-100

TLIB — Librarian Services

Exampile of FDIR command output:

Continue?pYes PNo

TH$TQLMO, S TH$TQLC, S
THSTQLUP, S THSTQLUF, S
THSTQLQP, S THSTQLQ, S
THS$TQLN, S THSTQLM, S

THSQED, S THSAPTAD, S
THSAPTSM, S THSAPTMD, S
THSMSG, S THSTFED, S

TH$SKEL, S THS$58383, S
THS$SPL, S THS$SORT, S
TH$PMDA, S THSNEWUS, S
THSAPB, S THSAPTPU, S
TH$CMS, s TH3CPAGE, S
THSCONNE, S THSDCF, S

THSDIE, S THSDOC, S

THSCCA, S THSFREE, S

THSFSEQ4, S THSFSEQS, s
THSHELPE, S THSMEM, S
THS$MODE, S THSMSDOS, S
THSQCLEA, S THSRDR, S
TH$SHUTD, S THSSTATU, S
THSTCB, S THSTSP, S
\\3??FSEFK,S THSFSEODZ,S

Listing: TIP/*THS$,F 89/09/11

THS$TQLCO, S
THSTQLUC, §
THSTQLPP, S
THSTQLLP, S
THSAPTICU, S
THSDLL, S
THSCALEN, S
THSTQL, S
THS$SET, S
TH$GO, S
TH$BANNE, S
THSSYMXX, S
TH$DEBUG, S
THSDCF, S
THSFCLCS, S
THSFSEOQSG, S
THSMENU, S
THSNET, S
THSRPG, S
THS$SUBMI, S
TH$WHOSO, S
THSFSE, 5

15:51

DIRECTORY
THSTQLCP, S
THSTQLU, S
THSTQLP, S
THSTQLL, S
THSAPTLD, S
THSAPTDE, S
THSMAILL, S
TH$USERS, S
THSWARNG, S
THSJIBQ, S
THSBASIC, S
THSSYM, s
THS$DEFKE, S
THSEDTRS, S
THSFSEPM, S
THSGROUP, S
THSMENUA, S
THSMSGSH, S
TH$SCR, S
THS$SYS, s
THS$TLIB, S
TH$DD, S

TH$TQLWP, S
THSTQLSE, S
THSTQLNP, 5
THSTQLDP, S
THSAPTLM, S
THS$MAS, S
THSSWTCH, S
TH$IDA, S
THSJCL, S
THS$ACCES, S
THSBCP, S
THSEOJ, S
THSDOTIN, S
THSUP, S
THSFSECL, s
TH$HARDW, S
THSMENUD, S
THSNEWPA, S
THSDDPCN, S
THSTIPFL, S
THSAPT, S
THS$TIPPR, S

THSTQLW, S
THSTQLS, S
THSTQLNF, S
THSTQLD, S
THSAPTMT, S
THSLOGON, §
THSWMI, 3
THSLOOK4, S
THSPURGE, S
THSALLOC, S
THSCC, S
THSDBD, S
TH$DISAB, S
THSLOGOF, §
THSFSEC3, S
THSHELP, S
THSHANGU, S
THSNOTE, S
THSSFSCN, S
TH$RELOA, S
THSFSESU, S
THSAFT, S

/

3.90.9. HELP — Help for TLIB Commands

The Help command invokes the TIP /30 HELP system to display syntax help for the TLIB
program and it’s clone transactions (COPY, PRINT etc).

Syntax:

Help

Where:

No parameters reé;uired.

7002 3981-100

3-339

TLIB — Librarian Services

3.90.10. Job — Submit Job

This command submits the input specification (assumed to be O5/3 JCL) to the OS/3 run
processor via the local reader queue. This command should only be issued if the OS/3
supervisor has been generated with input spooling (input spooling is automatically
provided if remote spooling is specified).

Syntax:
Job Pl [:PZ] [193]

Specify the item to be submitted as a job stream from the following table:

File/elt [,type] | Input OS/3 Library element
Default is source type "S".

group/name,E | TIP /30 edit buffer specification
Pseudo type code "E" indicates TIP /30 Edit
Buffer.

Example:

J RUN/QWIKJOB, s

Submits an element named "QWIKJOB" from library "RUN" to the OS/3 reader and
invokes the run processor symbiont to process it.

Additional Considerations:

The input is submitted on the assumption that it contains valid job control statements. In
any case, once submitted, the job appears to the OS/3 system as if it was run by the system
console — there is no provision for returning any completion status or to communicate
with the job in any way.

The following options affect the JOB command:

Q Do not display any messages (Quiet)
S Scratch input edit buffer after processing.
Error Conditions:

The named element or edit buffer may not exist or the file cannot be accessed or the type
may be invalid.

3-340 7002 3981-100

TLIB — Librarian Services

3.90.11. LIST — List Input at Terminal

The LIST command displays data on the terminal.
Syntax:

List P1 [,P2] [,P3] [,printer]

Where:

Specify the item to be listed from the following table:

omitted If parameters 1 through 3 are omitted, the
terminal is used as an input device.

Input is solicited line by line until is
pressed to signal end of input.

File/elt [,type] | Input OS/3 Library element
Default is source type "S".

group/name,E | TIP /30 edit buffer specification
‘ Pseudo type code "E" indicates TIP/30 Edit

Buffer.
d:ffffffff.cee MS-DOS file specification:
de MS-DQOS drive identifier
FEEEEEEE MS-DOS file name
eee MS-DOS file extension
AUXn,, Auxiliary device specification

"n" is device number (1 through F)

Some AUX devices are capable of write

- | operations only and cannot be specified as an
input device.

printer The destination printer (default is AUX0 — full screen display). Other
possibilities are, for example, PRNTR, AUX1 or AUXl*BYP etc.
Examplie:

LIsT JCs,,D

Lists the directory of the file catalogued with logical file name "JCS".

7002 3981-100 3-341

TLIB — Librarian Services

Additional Considerations:

The following options affect the LIST command:

A ASSEMBLER mode — use columns 1-72

C COBOL mode — use columns 1-72
columns 1-6 set to spaces

Q Do not display any messages (Quiet)

R RPG mode — use columns 1-74
columns 1-5 set to spaces

S Scratch input edit buffer

Error Conditions:

Tha rnamad alomant may ot avict ar tha fila
1 0C NaIlCh CUCIINCHY T X I

incorrect.

3-342 7002 3981-100

FanN

TLIB — Librarian Services

3.90.12. PRINT — Print Input

This command creates a printed display of the input specification at the site printer, an

sriviBary SRR detes AF AR W ; : oni TIP i
auxiliary print device or any print destination recognized by the TIPPRINT interface (see

Ah A ANAL N 2 A 19 E-10

description of TIPPRINT in the documentation of the TIP /30 File Control System — FCS).

Unless inhibited by the appropriate option, output sent to the site printer is preceded by a
separator (header) page to facilitate identification of the printout.

Each TLIB print request to the site printer is breakpointed by TIP/30 and may be printed by
starting a burst mode output writer (ie: OS/3 operator command "PR BX,JOB=TIP30").

Syntax:
Print Pl [,P2] [,P3] {,printer] [,hdr] [(,case] [,plen] [(,copies]
Whers:

P1[P2] [P3]
Specify the item to be printed from the following table:

omitted If parameters 1 through 3 are omitted, the
terminal is used as an input device.

Input is solicited line by line until is
pressed to signal end of input.

File/elt [,type] | Input OS/3 Library element
Default is source type "S".

group/name,E | TIP/30 edit buffer specification
Pseudo type code "E" indicates TIP/30 Edit

Buffer.
d:ffffffff.eee MS-DQOS file specification:
d: MS-DQOS drive identifier
fEEEEEES MS-DOS file name
.eee MS-DOS file extension
AUXn,, Auxiliary device specification

"n" is device number (1 through F)

Some AUX devices are capable of write
operations only and cannot be specified as an
input device.

printer The destination printer (defaulit is the site printer PRNTR). Other possibilities
are, for exampie, AUX1 or AUX1*BYP etc.

7002 3981-100 3-343

TLIB — Librarian Services

3-344

hdr YES/NO choice of a header (separator) page. Default is "N" if the destination
is an AUX printer, otherwise, default is "Y".

n
B
®

Choice of upper case translation. Default is translate to upper case UM if

printer is the site printer, otherwise, default is no translation (" -L ").
plen The logical length of the page to be printed.

This specification is ignored for batch printers (spooled output). In such cases,
the VFB information for the printer from the TIP/30 job control is honoured.

copies The number of copies to be generated; defaultis 1 copy.

Example:
PR jcs/tip30,,auxl,n,U

Prints source element named "TIP30" from the library with catalogued logical file name
"JCS" on the terminal’s auxiliary printer. No separator page is to be printed and all
alphabetic characters are to be translated to upper case.

Additional Considerations:

The declared format of a library element, an edit buffer or an MS-DOS file (ie: COBOL or
Assembler or RPG etc) will cause the PRIN'I‘ command to produce a printout that is more
than a simple list of the lines.

Compiler page skip directives will be recognized:

¢ "/"incolumn 7 of a COBOL program.

e "EJECT" or "TITLE" in columns 10 through 14 of an assembler program.
e "/EJECT"in columns 7 through 12 of an RPG program.

» "EJECT"in columns 1 through 6 of a source module.

The following options affect the PRINT command:

A ASSEMBLER mode — use columns 1-72

C COBOL mode — use columns 1-72
columns 1-6 set to spaces

L Print WITH line numbers

M Do not print heading lines (Minus)

N Do not print title page

Q Do not display any messages (Quiet)

R RPG mode — use columns 1-74

columns 1-5 set to spaces

Scratch input edit buffer

w

7002 3981-100

e

TLIB — Librarian Services

Error Conditions:

The specified element or edit buffer was not found or the file could not be accessed or the
type is invalid.

7002 3981-100 3-345

TLIB — Librarian Services

3.90.13. PUNCH — Create Punch Output

The PUNCH command creates a PUNCH file from a library element or edit buffer or
library directory at the specified punch file (for example, LFD PUNCH).

Syntax:
PUnch Pl [,P2] [,P3] {[,punchname]
Where:

P1[P2] [P3]
Specify the item to be "punched" from the following table:

omitted If parameters 1 through 3 are omitted, the
terminal is used as an input device.

Input is solicited line by line until is
pressed to signal end of input.

File/elt [,type} | Input OS/3 Library element
Defauit is source type "S". .

group/name,E | TIP/30 edit buffer specification
Pseudo type code "E" indicates TIP/30 Edit
Buffer.

d:ffffffff.eee MS-DQS file specification:

d: MS-DOS drive identifier (A: C:
etc) ‘

ssusvnag MS-DOS file name

£ee MS-DOS file extension

AUXn,, Auxiliary device specification

"n" is device number (1 through F)

Some AUX devices are capable of write
operations only and cannot be specified as an
input device.

punchname
The destination punch. Default is the site punch (PUNCH).

3-346 7002 3981-100

P

TLIB — Librarian Services

Example:
PUN ijcs/tip30

Punches source element named "TIP30" from the library with catalogued logical file name
"JCS" to the site punch.

Additional Considerations:

The following options affect the PUNCH command:

Q Do not display any messages (Quiet)
S Scratch input edit buffer
Error Conditions:

The specified element or edit buffer was not found or the file could not be accessed or the
type is invalid. :

3.90.14. QUIT — End TLIB and LOGOFF

The QUIT command causes the TLIB program to discontinue prompting the user for more
commands and terminates the TLIB program normally.

If the TLIB program was executing at stack level one (TLIB was NOT called by another
program) the user will be logged off TIP/30.

Syntax:
Quit

Where:

No parameters are required.

7002 3981-100 3-347

TLIB — Librarian Services

3.90.15. RECOVER — Activate Previous Version

When an element of an OS/3 library is deleted, the module is not physically removed —
thio Blaem s foa d s, gpadoms Lo it ia maapload aa Inatanlley dnalpénd

tNE lprary index eniry 107 it 1S MarkKed as i0gicany Geieiea.

The RECOVER or BACK command marks the currently active element as deleted, finds the
previous version and reactivates its directory entry.

Elements that are marked as logically deleted are physically removed during a library
compress operation that must be performed by the OS/3 batch utility program LIBS (the
"pac” command).

The RECOVER or BACK command may be issued several times in succession to go back a
number of versions (assuming they still exist).

If there is not a current active version of an element (for example, if the user accidentally
deleted an element) then the user must first create a dummy current version before using

the RECOVER or BACK command.

Syntax:

® Back file,elt [,type]

® REcover file,elt [, typel

Where:

file Logical file name (LFN) of the OS/3 library to process.

elt Name of the element to recover.

type Element type. Valid choices are S(ource), M(acro) or P(roc). Default "S".
The BACK command cannot process Object or Load type elements.

Example @

TIP1?pTLIB

TLIB (1) ?PBACK JC3/MYJOB

'TIP/30 Librarian’ - Version = 4.0 (89/09/01)
JCS/MYJOB, S back to 89/01/12 14:33 Element comment
TLIB(1)?Pp

Example @

TIP1?PRECOVER JCS MYJOB

'TIP/30 Librarian’ - Version = 4.0 (839/09/01)
JCS/MYJOB, S back to 89/01/12 14:33 Element comment
TIP12p»

3-348 7002 3881-100

A /—N\\

TLIB — Librarian Services

Additional Considerations:

A successful RECOVER or BACK command reports the date and time stamp of the element
that is reactivated. RECOVER may be used as an alternative spelling of BACK. RECOVER
is also a clone transaction of TLIB (see "3.70. RECOVER — RECOVER Element" on page
3-227).

The following option affects the BACK command:
Q Do not display any messages (Quiet)
Error Conditions:

The specified element may not currently exist, the file name may be invalid or it may not be
possible to locate a "previous"” version of the element.

7002 3981-100 3-349

TLIB — Librarian Services

3.90.16. SETON — Set TLIB Option On

The TLIB command SETON is used when TLIB is being executed interactively. In the
interactive mode, TLIB prompts the terminal user for successive commands. If the desired
command can benefit from a particular option, the only way the option can be turned ON is
by first using the SETON command.

Of course, when TLIB is first invoked, one or more options may be set on via the command
line. Once TLIB begins prompting for commands, the command line option field is no
longer accessible — hence the need for an explicit command to manipulate options.

Syntax:

SETON opt, opt, opt ...

Where:

opt Each parameter represeénts up to 8 option characters that are to be set in the
ON state. See "3.90.2. TLIB Options" on page 3-327 for a table of valid option
characters.
There are seven parameters available after the command (SETON). TLIB
allows a parameter to SETON to consist of one or more option characters.
The following two commands are identical:
SETON LN,Q
SETON NLQ

Example:

TIP?PTLIB

"TIP/30 Librarian’ - Version = 4.0 (89/09/18)

TLIB(1l)?Pseton l,n

ON=(L N) OFF={ ACHIKMOQRSTUZXYZ?) DISPLAY=(?)
TLIB{1l) ?pbprint srec/pay001,s

TLIB(1l) ?pprint src/pay002,s

TLIB (1) ?pprint src/pay003,s

TLIB(1l) ?be

In this example, several Print commands are to be issued. Before the print commands,
options L (print line numbers) and N (no header separator pages) are set on.

Note: The SETON command is often used in the construction of indirect input (a .IN file) for
TLIB. See the description of redirected input in the documentation for the TIP/30
Program Control System — PCS.

3-350 7002 3981-100

TLIB — Librarian Services

3.90.17. SETOF — Set TLIB Option Off

The TLIB command SETOF is used when TLIB is being executed interactively. In the
interactive mode, TLIB prompts the terminal user for successive commands. If the desired
command requires a particular option to be OFF, the only way the option can be turned
OFF is by first using the SETOF command.

Of course, when TLIB is first invoked, all options are initially OFF. Once TLIB begins
prompting for commands, an option that was ON may be set OFF using this command.

Syntax:

SETOF opt, opt, opt

Where:

opt Each parameter represents up to 8 option characters that are to be set in the
OFF state. See "3.90.2. TLIB Options" on page 3-327 for a table of valid option
characters.
There are seven parameters available after the command (SETOF). TLIB
allows a parameter to SETOF to consist of one or more option characters.
The following two commands are identical:
SETOF LN,Q
SETOF NLQ

Example:

TIP?»TLIB

'TIP/3Q Librarian’ - Version = 4.0 (83/09/18)

TLIB(1) ?pseton L,N

ON={(L N) QFF={ ACHIKMOQRSTUXYZ?) DISPLAY=(?)
TLIB(1l)?pprint src/pay00l,s

TLIB(1l) ?pprint src/pay002,s

TLIB (1) ?bsetof N

ON=(L) QFF={ ACHB I KMNOQRSTUXYZ?) DISPLAY=(?) j

* TLIB (1) ?pprint src/payQl0,s

In this example, several Print commands are to be issued. Before the print commands,
options L (print line numbers) and N (no header separator pages) are set on. Before
printing module PAY010, however, a header page is desired, so option N is set off.

Note: The SETOF command is often used in the construction of indirect input (a .IN file) for
TLIB. See the description of redirected input in the documentation for the TIP/30

Program Control System — PCS. o

7002 3981-100 3-351

TSTCOM — Communication Test Program

3.91. TSTCOM — Communication Test Program

The TSTCOM program performs a test of the communication system by outputing a screen
full of data and placing an "auto transmit" command sequence at the end of the output
message. This results in a continuous output and input loop that can be used to simulate
reasonably heavy communication traffic for the terminal (the output message is much
larger than the input message which follows — this approximates a "typical” environment).

The program can be terminated by pressing the key or () through .

Pressing causes the program to deliberately cause a program check by calling the
TIPDUMP subroutine.

The TSTCOM program has no parameters. Enter only the transaction code.
Example of TSTCOM Output:

4 N

GGGG Q000 ole]ele] DDDD DDDD AAAA YY ¥YY
GGGGGG 000000 0000CO DDDRDDD DDDDD AARAAA YY XYY
GG 00 Q0 00 00 DD DD DD DD AA AA YYYYYY
GG GGG C0 00 CO OO0 DD DD DD DD AAAAAA YYYYy
GG GG 0000Q0C 0Q0COCC DDDRDD DDDDD AA AA Y

GGGGG Q000 0000 DDDD DDDD "AA AA Yy

«Entry Level TIP Installation test»

«Allinson-~Ross Corporation»
Today is: FRIDAY JUNE 16 1989 The time is: 16:28:51

Msg wait or F1 - F9 to terminate normally.

3-352 7002 3981-100

ST

e

UNS — Unsolicited Console Keyin

3.92. UNS — Unsolicited Console Keyin

The UNS transaction allows the user to submit an unsolicited "console" key in to an

executing OS/3 job or symbiont. This is the same capability provided by the system
operator console UNS command.

The UNS transaction is a clone of the transaction SYM (see "3.86. SYM — Schedule OS/3
Symbiont" on page 3-276). The UNS transaction is a separate transaction name to permit
the system administrator to assign specific security constraints to this functionality.

The OS/3 UNS command syntax is documented in the

Note: Thereis no provision for returning any completion status.

Syntax:

' UNS parameters
Where:

parameters

Whatever parameters that are required by the UNS command that is to be
submitted.

Example of unsolicited key Ins:

UNS TIPX STOP

UNS M2,S DO L,LIN1,NET1

7002 3981-100 3-353

UP — Set Line Up

3.93. UP — Set Line Up

This program enables the user to request that a communication line be set "up" by ICAM.
TIP /30 will request (to ICAM) that the corresponding line be marked "up”.

Syntax:

@® UP line-name

@ UP term—-name
Where:

line-name The name of the line that is to be set up.

term-name A terminal on the line that is to be set up.

Example:

UP LIN3

Additional Considerations:

This program has no effect in a GLOBAL ICAM network (since GUST actually owns the
lines and will not honour such requests).

3-354 7002 3981-100

USERS — Display User Directory

3.94. USERS — Display User Directory

L TTOYIQ L2980 32T e V0t o f e 123 T /AN cemmas I mem P WL P PR L PRy Ll |
The USERS utility displays a list of valid TIP/30 user-ids on the terminal. The "commient'

field from the user’s TIP/30 catalogue record is also displayed (this field is usually used for
descriptive information concerning the user — name, telephone extension etc.).

This information may be useful to users who wish to use the MAIL utility to send a
message to an individual whose user-id is not known or immediately obvious.

To avoid reading all of the TIP /30 Catalogue every time this program is invoked, the
USERS program maintains a list of user information in an edit buffer named

TIPY/USERLIST.
Syntax:

USERS [, C] [username]
- Where:

Cc Option to indicate that the edit buffer containing the list of user information is
to be re<created.

username Optional parameter which specifies the users to list.
Prefix notation may be used (ie: USERS *P).
Default: all users will be listed.

7002 3981-100 3-355

USERS — Display User Directory

Exampile of USERS Dispiay

o
/TFSUSRO]. TIP/30 User List Effective 89/01/10 SUSERIDS S$TID 14:49 \

=={ser== s=z=== =Identification======= ==ser== s==ssz==Identification==s==zw==
A-R=-C ALLINSON-RCSS CORPORATION

ALLEN DAVE ALLEN

BARD WILLIAM SHAKESPEARE

SMITHY JOHN J. SMITH

K‘ Fl:Refresh F2:Forward F3-Backward F3:Print Msg-Wait:Exit < > /

Pressing allows you to print the complete user listing on a printer destination of your
choice (you will be prompted for the desired printer destination).

Additlional Considerations:

The listing is sorted into ascending order by user-id if the user has access to the transaction
"SORT" (see "3.81. SORT — Sort Edit Buffer” on page 3-249). If the user does not have
access to the SORT transaction, the list appears in random order (the physical order the
user information appears in the TIP /30 catalogue).

If the TIPY/USERLIS$T edit buffer does not exist or is out of date, USERS displays the
message "Working - Please wait" and re-creates the edit buffer.

If this transaction is run in background (either as part of the system startup processing or
manually), the program does not interact with a terminal, but simply constructs a fresh
version of the edit buffer.

If the USERS program is run with a specific username as command line parameter one, the
program reads the TIP /30 Catalogue directly for the single user’s information.

3-356 7002 3981-100

WMI — Display User Information

3.95. WMI — Display User Information

The WMI (who arn I?) program displays information on the terminal showing the user-id of
the user logged on the terminal, the terminal name (as defined to the system), the current

date and time, the version

of both TIP/30 and OS/3 that is in use, and the features of

TIP /30 that are configured.

Syntax:

WMI [/SLEV]

Where:

SLEV

Command line option to cause the WMI program to include security level

information with the elective groups.

Example of WMI Qutpui:

/

User-id:
Groups:

Security:

Account number:
Terminal:

Tip Control Area:
Site name:

TIP/30 Version:
ICAM Network:
0s/3 version:

System attributes:
GLOBAL ICAM, DMS,

\\3f??)

DDP, SYSTEM DEBUG.

17:10 THURSDAY DECEMBER 21 1988 *—\\\

ALLINSON

1,ARC 1, ADMIN

1

T001 - SPC

ARCTCA

ARC TORONTO
4.0 C40R0-000
NET1 LOCAP:

13 00 s4

(24,80)

TIP1

7002 3981-100

3-357

ZZCLS — Close Online File(s)

3.96. ZZCLS — Close Online File(s)

3-358

The ZZCLS transaction is used to close online files. This transaction provides compatibility
with the master terminal command of the same name that is available with IMS transaction
processing systems.

The ZZCLS transaction permits up to 8 file names (or file name prefixes) to be specified
after the transaction name. A comma or one or more spaces may be used as a delimiter
between filenames.

Syntax:

ZZCLS file [, file]

Where:

file The LFD name of an online file that is to be closed (and made unavailable for
online use). At least one file name or prefix must be specified.

Standard TIP/30 prefix notation may be used. For example, ™PAY" means all
file names with an LFD name beginning with the three characters "PAY".

Additional Considerations:

The ZZCLS transaction program places the file name information into the Continuity Data
Area (CDA) and calls the FCLOSE transaction. All of the facilities of the FCLOSE
transaction apply except those facilities implemented via command line options. See
"3.33. FCLOSE — Close File(s)" on page 3-93 for additional information.

Example:

ZZCLS PAYMAST,APMAST, *INV

7002 3981-100

ZZDWN — Disable Terminals

3.97. ZZDWN — Disable Terminals

The ZZDWN transaction is an alternative spelling of the TIP/30 transaction program
DISABLE (see "3.24. DISABLE — Disable Terminals” on page 3-80).

Syntax:

ZZDWN terms

Where:

terms Up to 8 positional parameters. Each parameter represents a terminal name to
be disabled.

A terminal name may be specified by using standard prefix notation (ie: *T3
means all terminals that have a name beginning with the character string
cw‘r3u)‘

The use of prefix notation might result in the specification of the terminal that
is running the ZZDWN program. If this occurs, the ZZDWN program will not
consider the running terminal as matching the prefix specification.

Example:
ZZDWN T103

Error Conditions:

The ZZDWN program may report that a terminal name is not valid. This may occur
because a terminal name was misspelled or the terminal is the one being used to run the
ZZDWN program.

7002 3981-100 3-359

ZZOPN — Open Online File(s)

3.98. ZZOPN — Open Online File(s)

3-360

The ZZOPN transaction is used to open online files. This transaction provides compatibility
with the master terminal command of the same name that is available with IMS transaction
processing systems.

The ZZOPN transaction permits up to 8 file names (or file name prefixes) to be specified
after the transaction name. A comma or one or more spaces may be used as a delimiter
between filenames.

Syntax:
ZZOPN file [,file]
Where:
file The LFD name of an online file that is to be opened (and made available for

online use). At least one file name or prefix must be specified.

Standard TIP/30 prefix notation may be used. For example, “PAY" means all
file names with an LFD name beginning with the three characters "PAY".

Additional Considerations:

The ZZOPN transaction program places the file name information into the Continuity Data
Area (CDA) and calls the FOPEN transaction. All of the facilities of the FOPEN transaction
apply except those facilities implemented via command line options. See "3.36. FOPEN —

Open Online File(s)" on page 3-98 for additional information.

Example:

ZZOPN PAYMAST, APMAST, *INV

7002 3981-100

ZZPCH — Reload Program

3.99. ZZPCH — Reload Program

The ZZPCH transaction program is an alternative name for the RELOAD transaction
program (see "3.71. RELOAD — Reload Program” on page 3-228).

When an on-line program is recompiled and relinked, the programmer may use the
ZZPCH transaction to force TIP/30 to "refresh" the load module before using it again.

This transaction is provided for compatibility with the terminal command of the same
name that is available for users of Information Management System (IMS).

Syntax:
ZZPCH loadm

Where:

loadm The load module name (trailing zeroes need not be entered).

Example:

TIP?pzzpch tt$mod
TTSMODOO cleared from loadr table.
TTSMODOO cleared from reentrant control table.

TTSMODOO ver: 89/09/15 @ 10:32 (C) A.R.C TIP/30 4.0 4051 bytes
TIP?®

7002 3981-100 3-361

ZZUP — Enable Terminals

3.100. ZZUP — Enable Terminals

The ZZUP transaction is an alternative spelling of the TIP/30 transaction program
ENABLE (see "3.30. ENABLE — Enable Terminal Input” on page 3-89).

,.\

Syntax:
ZZUP terms
Where:
terms Up to 8 positional parameters. Each parameter represents a terminal name to
A terminal name may be specified by using standard prefix notation (ie: *T3
means all terminals that have a name beginning with the character string
"fr3").
The use of prefix notation might result in the specification of the terminal that
is running the ZZUP program. If this occurs, the ZZUP program will not
consider the running terrninal as matching the prefix specification.
Example: A
ZZUP T103
Error Conditions:

The ZZUP program may report that a terminal name is not valid. This may occur because a
terminal name was misspelled or the terminal is the one being used to run the ZZUP
program.

3-362 7002 3981-100

P

Glossary

This section supplies working definitions of some of the common terms used in the TIP /30
documentation. The definitions are not intended to be rigorous; they are explanations
within the context of the TIP /30 system.

A

ACK Acknowledge{ment). A signal indicating that error detection logic has failed.

ASCIH American Standard Code for Information Interchange. A set of character
representations that associates single byte binary values with external graphic
characters. See also "byte" and "EBCDIC". The ASCII character set is typically
used by communications hardware for data transmission,

asynchronous

Happening simultaneously but independently.

auxiliary device

B

Background

batch

bi-synch

bit bucket

7002 3981-100

A peripheral unit (such as a printer, diskette, or cassette) attached to a
terminal.

Asin ... process. A background process is a TIP /30 online transaction that is
running but not associated with a physical terminal.

Background processes are non-interactive programs.
Not interactive.

Bi-synchronous; a communications protocol which implies that traffic is
synchronized in both directions by acknowledgement messages.

A mythical and cavernous receptacle which is provided by hardware
manufacturers to hold any data which is deliberately or accidentally mislaid
during data manipulation.

For example, digits to the right of the decimal place that are truncated by a
move operation fall into the bit bucket.

Glossary-1

Giossary

bypass

byte

C

A terminal that has an identifiable polling address but typically has no
keyboard or display screen. Bypass terminals are often utilized to perform
printing operations since they do have memory and auxiliary device
capability.

The smallest addressable unit of storage in memory. A byte is composed of 8
bits (binary digits). The value of a byte ranges from zero to 255 (decimal) or 0
to FF (hexadecimal). Each of the characters in the computer’s character set
(either ASCII or EBCDIC) may be stored in a byte using a unique
representation from the 256 possible binary values that may be stored in a
byte.

catalogue (OS/3)

A directory of file names and corresponding volume label location
information (stored in file YCAT).

catalogue (TTP/30)

cursor

D

A directory of information about users, transaction programs, and online files.

Literally, Cathode Ray Tube. Often used to refer to the display screen of a
computer terminal.

A current position marker on a CRT. Usually a blinking rectangle or underline
character that reminds the user where the next character will appear on the
screen,

Direct Access

A file organization technique that numbers fixed size records using integers
from 1 to the highest record number.

Doubleword

Glossary-‘z

On OS/3 hardware a doubleword is 8 consecutive bytes beginning on an
address that is evenly divisible by 8 (the right most 3 bits of the address are
zero).

An area is said to be "doubleword aligned" if it begins at an address that is
evenly divisible by 8.

COBOL aligns all WORKING-STORAGE level 01 items on a doubleword
boundary.

7002 3981-100

7T

Glossary

TIP /30 aligns all of the external work areas for a transaction program (PIB,
CDA, MCS, WORKAREA) on a doubleword boundary.

dynamic file

EBCDIC

edit buffer

element

F

FCS

Foreground

Fullword

A TIP /30 pseudo-file that has the characteristics of direct access.

May be created, manipulated and erased (scratched) on demand by TIP /30
transaction programs.

Extended Binary-Coded Decimal Interchange Code. A set of character
representations that associates single byte binary values with external graphic
characters. See also "byte" and "ASCII". The EBCDIC character set is typically
used by the CPU for internal data representation.

A particular type of TIP/30 dynamic file that is used by the TIP /30 text
editors as a work space for editing.

The name of a library member or module.

File Control System. TIP/30 interface between programs and on-line files.

Asin ... process. A foreground process is a TIP /30 online transaction that is
running at a physical terminal.

On OS/3 hardware a fullword is 4 consecutive bytes beginning on an address
that is evenly divisible by 4 (the right most 2 bits of the address are zero).

An area is said to be "fullword aligned" if it begins at an address that is evenly
divisible by 4. :

A fullword can be defined in COBOL by specifying a PICTURE of 9(6)
through 9(9) COMP SYNC.

Function Key

7002 3981-100

A key on a UNISCOPE terminal keyboard (numbered F1 through F22) which
signals the host computer when pressed. NO data is sent from the terminal.

Glossary-3

Glossary

H

Halfword

hardware

hashing

On OS/3 hardware a halfword is 2 consecutive bytes beginning on an address
that is evenly divisible by 2 (the right most bit of the address is zero).

An area is said to be "halfword aligned" if it begins at an address that is evenly
divisible by 2.

A halfword can be defined in COBOL by specifying a PICTURE of 9(1)
through 9(4) COMP SYNC.
The physical computer equipment.

A technique of computing a key from a value. Typically used to map a large
number of values onto a smaller set of values.

Host computer

MS

The main computer; the computer which is running TIP /30.

A Unisys software product that provides an execution environment for
transaction programs.

IMS emulation

index

interactive

ISAM

Glossary-4

A facility of TIP/30 which enables a transaction program written to use the
facilities of IMS to run under control of TIP /30 without change or
recompilation.

A collection of keys and associated location information that can be searched
to locate an item with a given key.

Operating in "question and answer" mode.

An interactive program presents decisions for a user to make and acts
according to the response.

Indexed Sequential Access Method. A file organization method that allows
access to records either randomly by a single key or sequentially by a single
key.

Records may be fixed length or variable length (in the Unisys OS/3
implementation).

7002 3981-100

Glossary

key A portion of the data in a record which is used to index the record.

LFD The name of a file as stated in the Job Control information for the job which
refers to the file.

LFN Logical File Name. The name by which a TIP/30 program refers to a file. The
logical file name is associated with the LFD name of the file by TIP/30
catalogue information.

MIRAM Multiple Indexed Random Access Method. File organization method that is
similar to ISAM with the exception that there may be from one to five keys.

MSG-WAIT

Key on UNISCOPE terminals that signals the host computer when pressed
(INO data is sent from the terminal).

multi thread

A number of transactions concurrently sharing resources.

N

native mode
A program that uses TIP /30 facilities that is NOT running under the control of
the TIP /30 IMS/90 emulator is said to be running in this mode.

NAK Negative acknowledgement.

0S/3 Operating System 3. The control software supplied by Unisys for use on Series
90 and System 80 machines.

7002 3981-100 Glossary-5

Glossary

D
¥

prefix notation

S

A notation convention adopted by most TIP /30 utilities to allow selection by
prefix.

Eg: "™ABC" means all names with prefix "ABC"
Eg: "IXYZ" means all names NOT with prefix "XYZ"

An imbedded "?" or "." character implies that the corresponding position may
be occupied by any character (for example: *A??B matches A12B or AXYB).

single thread

SOE

software

TPS

transaction

TIP/30

Glossary-6

A method of transaction processing which allows one transaction to
monopolize resources until completion of the transaction.

(character). Start Of Entry character. On UNISCOPE terminals a character
(shaped like a pennant blowing from left to right) which marks the left most
boundary of data to be transmitted to the host computer.

Example: »

The programs which control the operation of the hardware or other
(application) programs.

Transaction Platform System. A significant subset of the TIP/30 system that is
included with System 80 Model 7E processors and available as a priced item
for other OS/3 hardware platforms.

A program that executes under the control of TIP/30.

See TIP/30.

Transaction Interface Processor — a system software product of Allinson-Ross
Corporation.

7002 3981-100

Glossary

U

unsolicited

As in ... message. A message sent to a terminal that is not necessarily a
response to a previous input message.

In effect, a message sent gratuitously by another process in the system which
arrives unexpectedly.

An unsolicited message is queued by ICAM until such time as the terminal
operator presses the MSG-WAIT key (at which time ICAM will display the
message on the terminal).

XMIT Transmit. A key on UNISCOPE terminals that sends data from the CRT to the
host computer.

7002 3981-100 Glossary-7

P

Index

$$SOFF 3-248
YCAT File Glossary-2
(0S/3) Glossary-2

A

ACCESS 3-1

Access Glossary-2
ACK Glossary-1

All Points Bulletin 3-3

CATTOYT 2.9

APB 3-3

ASCII Glossary-1

ASG 34

asynchronous Glossary-1
auxiliary Glossary-1

B

B* 3-5

BACK 3-348
Background Glossary-1
batch Glossary-1

BE 3-6

bi-synch Glossary-1
bit Glossary-1

BR 3-7

BRKPT 3-8

Broadcast message 3-3
bucket Glossary-1
buffer Glossary-3

BX 3-9

bypass Glossary-2
byte Glossary-2

7002 3981-100

CAT 3-11

catalogue Glossary-2
CCA 3-52

CH 3-65

computer Glossary-4
Control Page 3-67
COPY 3-66, 3-330
CPAGE 3-67
CRASH 3-68
CREATE 3-69

CRT Glossary-2

cursor Glossary-2

D

D* 3-70

DE 3-71

DEBUG 3-72

Debug mode 3-188
Debugging 3-159
Defining Function keys 3-73
DEFKEY 3-73

DELETE 3-335

device Glossary-1
DIJS 3-173, 3-177

DIE 3-76

DIR 3-78, 3-336

Direct Glossary-2
DISABLE 3-80
DISABLE terminal 3-80
DLL 3-81

DLMSG 3-84

DLOAD 3-81,3-85
DOF 3-86
Doubleword Glossary-2
DOWN 3-88

Dump analysis 3-214

dynamic Glossary-3

Index-1

Index

E

EBCDIC Glossary-3
edit Glossary-3
Editor

Full Screen 3-101
Element

Reactivate Library 3-348
element Glossary-3
emulation Glossary-4
ENABLE 3-89
End of job

TIP/30 3-273
EQJ 3-90
ERASE 3-92, 3-335

F

F#23 3-219
FCLOSE 3-93
FCS Glossary-3
FDIR 3-95, 3-338
File
allocate OS/3 3-2
TIP$SCAT 3-12
FIN 3-97,3-181
FOPEN 3-98
Foreground Glossary-3
FREE 3-100 ‘
FSE 3-101
Fullword Glossary-3
Function Glossary-3
Function keys
defining 3-73

G

GO 3-150
GROUPS 3-151

Index-2

H

Halfword Glossary-4
HANGUP 3-153
hardware Glossary-4
hashing Glossary-4
HELP 3-154

HO 3-158

Host Glossary-4

ICAM Statistics 3-52
IDA 3-159

[llegal Transactions 3-169
ILLTRN 3-169

IMS Glossary-4

index Glossary-4
Instruction tracing 3-159
interactive Glossary-4
ISAM Glossary-4

IVP 3-170

J

JCL 3-175

JT 3-176

Job Queue
examine 3-171

JQB 3-171

IS 3-173, 3-177

K

Key Glossary-3
key Glossary-5

7002 3981-100

Index

L

LC 3-178

LFD Glossary-5
LFN Glossary-5
Librarian 3-325
LIST 3-179, 3-341
LOGOFF 3-180
LOGON 2-1,3-182

M

MEM 3-186

MIRAM Glossary-5
MODE 3-188

mode Glossary-5

MSG 3-189
MSG-WAIT Clossary-5
MSGAR 3-191
MSGSHOW 3-209
MSGTST 3-209

multi thread Glossary-5

N

NAK Glossary-5
native Glossary-5
NEWUSER 3-211
notation Glossary-6
NOTE 3-212

O

0S/3 Glossary-5
0S/3 System Status 3-279

P

PASSWORD 2-1

Password
Logon 3-182

PAUSE 3-213

7002 3981-100

PMDA 3-214

POC 3-219

PR 3-220

prefix Glossary-6
PRINT 3-221, 3-343
PURGE 3-222

R

RDR128 3-224
RDR96 3-224
RE 3-226

‘RECOVER 3-227, 3-348

RELOAD 3-228

Remove Process from system 3-222

RPG Editor 3-230
RU 3-238
RV 3-239

S

SC 3-240
SCR 3-241
SCRATCH 3-243
Scratch a File 3-241
Scratch OS/3 File 3-243
Screen Format
Librarian 3-191
Send message 3-189
SET 3-244
SHUTDOWN 3-246
Shutdown 3-273
SIGNON 2-1
single thread Glossary-6
SOE Glossary-6
SOFF 3-181, 3-248
software Glossary-6
SORT 3-249
SPL 3-251
STARTUP 3-271
Statistics
ICAM 3-52
STOP 3-273

Index-3

Index

Submit job stream 3-175
SWTCH 3-274
SYM 3-276
Symbiont

0S/3 3-276

Schedule an OS/3 3-276
SYS 3-279

T

Table

" CAT Capabilities by Security Level 3-15
CAT Commands 3-11
Catalogue SECURITY Specification 3-14
CCA Commands 3-53
Examples of MCS Editing 3-300
FILE Definition Keywords 3-36
FSE Command Summary 3-106
GROUPSET Definition Keywords 3-39
IDA Command Examples 3-166
MSGAR Commands 3-192

- PMDA Commands 3-215

PROG Definition Keywords 3-27
SPL Command Summary 3-253
TLIB Commands 3-326
TLIB Input Specifications 3-328
TLIB Options 3-327
TLIB Qutput Specifications 3-329
USER Definition Keywords 3-20

TCB 3-281

TEST Mode 3-72

Text Editor
Full Screen 3-101

TFD 3-283

TFU 3-283

TIP Glossary-6

TIP$BLK File 3-228

TIP$CAT File 3-12

TIP/30 Glossary-6

Index-4

TLIB 3-325
TLIB Options

SETOF 3-351

SETON 3-350
TPS Glossary-6
Tracing Program execution 3-159
transaction Glossary-6
TSTCOM 3-352 -

U

Undelete 3-348
UNS 3-353

unenlicited (:h\ccnry_?

Unsolicited message 3-3

UP 3-354

USERID 2-1

USERS 3-355

Users :
Directory of 3-355

W

WMI 3-357

X

XMIT Glossary-7

Z

ZZCLS 3-358
ZZDWN 3-359
Z2ZOPN 3-360
ZZPCH 3-229, 3-361
ZZUP 3-362

7002 3981-100

Help Us To Help You

Publication Title

Form Number Date

Unisys Corporation is interested in your comments énd suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
3 Addition 1 Deletion O3 Revision O Error

Comments

Name

Title Company

Address (Street, City, State, Zip)

Telephane Number

Help Us To Help You

Publication Title

Form Number Date

Unisys Carporation is interested in your comments and suggestions regarding this manual. We will use them to
imprave the quality of your Product Information. Please check type of suggestion:
0 Addition O Deletion & Revision O Error

Comments

Name

Title Company

Address |Streat, City, State, Zip!

Telephone Number

Help Us To Help You

Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product information. Please check type of suggestion:
O Addition O Deletion 03 Revision O Error

Comments

Name

Title Company

Address {Street, City, State, Zip)

Telephone Number

BUSINESS REPLY MAIL

o N S

First Class

Permit No. 21

Blue Bell, PA

Postage Will Be Paid By Addressee

Unisys Corporation

0S/3 Systems Product information Development
PO Box 800 -E5-114
Blue Bell, PA 19422-9950

‘lll"'IIllllIl'l‘llIllll“lllllIllllllll‘l!lllllll'

BUSINESS REPLY MAIL

First Class

Permit No. 21

Blue Bell, PA

Postage Will Be Paid By Addressee

Unisys Corporation

08S/3 Systems Product Information Development
PO Box 500 -E5-114
Blue Bell, PA 19422-9990

|llll‘lllIIllllII!IIIIIllIIIIIIIIIII'||II'|IIII|III!

BUSINESS REPLY MAIL

First Class

Permit No. 21

Blue Bell, PA

Postage Will Be Paid By Addressee

Unisys Corporation

0S/3 Systems Product Information Development
PO Box 500 -E5-114
Blue Bell, PA 19422-9990

'Illll'llllllll’llll'l!lll!lllllllillllllIII!II|||Il

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

