
UNISYS OS/3
Supervisor
Technical Overview

Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.
Previous Title: OS/3 Supervisor Concepts and

Facilities

Relative to Release August 1987
Level 11.0

Printed in U S America
Priced Item UP—8831 Rev. 3

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, +SPERRY, SPERRY+UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and + are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

C)

OS/3 PSS 1
SUPERVISOR

PAGE STATUS SUMMARY

ISSUE: UP-8831 Rev. 3
RELEASE LEVEL: 11.0 Forward

Page Update Page Update Page Update
Part/Section

Number Level
Part/Section

Number Level
Part/Section

Number Level

Cover

Title Page/Disclaimer

PSS 1

Preface 1 thru 3

Contents 1. 2

1 lthru5

2 lthrul2

3 lthru9

4 1

User Comment Form

0
0

0

UP-8831 Rev. 3 OS/3 Preface 1
SUPERVISOR

Preface

This manual describes the concepts behind the Operating System/3 (OS/3) Supervisor
and the facilities the supervisor makes available to OS/3 users. It presents an overview
of the supervisor that is intended for two audiences: high-level language programmers
and site administrators. The manual is organized as follows:

• Section 1. Basic Supervisor Concepts

For both audiences. Introduces the supervisor, describes its functions in terms of
tasks and multitasking, and outlines its interfaces with user software.

• Section 2. Supervisor Features and Functions

For both audiences. Describes supervisor features by functional categories.

• Section 3. Supervisor Features and High-Level Languages

For high-level language programmers. Builds upon the list of features in Section 2
by listing the languages that can call upon each feature: FORTRAN, COBOL, RPG II,
BASIC, ESCORT programming language, and job control language (JCL).

• Section 4. Choosing an OS/3 Supervisor — Ours or Yours?

For site administrators. Discusses reasons for choosing the ready-to-use supervisor
supplied with the OS/3 system or generating your own supervisor in the SUPGEN
phase of system installation.

This manual is intended as a general discussion of those supervisor features you directly
or indirectly call on, rather than as a detailed guide to all supervisor functions. (Some
parts of the OS/3 supervisor, such as spooling and job accounting, are priced
separately and therefore may not necessarily be installed in your system.) After reading
this manual, you should have a good idea of:

• what supervisor features are available through the OS/3 high-level languages; and

• the supervisor configuration, specified at system installation time, that best suits
your needs.

UP-8831 Rev. 3 OS/3 Preface 2
SUPERVISOR

For a detailed guide in using supervisor services, refer to the Supervisor
Macroinstructions User Guide/Programmer Reference, UP-8832 (current version).

Other current OS/3 publications referenced in this manual that are helpful when using
the supervisor are:

• System Service Programs (SSP) User Guide, UP-884 1

Describes various system utilities (e.g., librarian, linkage editor).

• Consolidated Data Management Concepts and Facilities, UP-9978

Describes the organization and record formats of various file types.

• Basic Data Management User Guide, UP-8068

Describes the effective use of OS/3 basic data management.

• Interactive Services Concepts and Facilities User Guide/Programmer Reference,
UP-9972

Describes the commands and operating procedures for workstation terminals.

• Spooling and Job Accounting Concepts and Facilities, UP-9975

Describes basic spooling and job accounting concepts and options available to
control spooling systems.

• System Installation User Guide/Programmer Reference, UP-8839

Describes the procedures necessary to install, tailor, and maintain OS/3 software in
a System 80 environment.

• Security Maintenance Utility User Guide, UP- 12028

Describes OS/3 system security to security administrators working in a System 80
environment.

• Operations Handbook Operator Reference, UP-8859

Describes system operator procedures.

• System Activity Monitor User Guide/Programmer Reference, UP-9983

Describes the use of the system activity monitor (SAM) for evaluating system
performance.

U

UP-8831 Rev. 3 OS/3 Preface 3
SUPERVISOR

• 1974 American National Standard COBOL Programmer Reference, UP-86 13

Describes 1974 ANS COBOL for the applications programmer.

• FORTRAN IV Programmer Reference, UP-88 14

Describes FORTRAN IV for the applications programmer.

• Report Program Generator II (RPG II) User Guide, UP-8067

Describes RPG II for both novice and experienced applications programmers.

• BASIC Programmer Reference, UP-9 168

Describes BASIC for the applications programmer.

• ESCORT Programming Language User Guide, UP-8855

Describes ESCORT programming language for applications programmers.

• Job Control User Guide, UP-9986

Describes the job control language used under OS/3.

0
0

.
0

UP-8831 Rev. 3 OS/3 Contents 1
SUPERVISOR

Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. BASIC SUPERVISOR CONCEPTS

1.1. GENERAL 1—1

1.2. TASKS AND MULTITASKING 1—1

1.3. CONTROLLING MULTIPLE TASKS 1—2

1.4. USER PROGRAM INTERACTION 1—3

1.5. EXTERNAL EVENT INTERACTION 1—4

1.6. OVERVIEW OF SUPERVISOR FEATURES 1—5

2. SUPERVISOR FEATURES AND FUNCTIONS

2.1. GENERAL 2—1

2.2. PROGRAM INITIATION AND LOADING 2-1

2.3. PROGRAM TERMINATION 2—2

2.4. TIMER SERVICES 2—2

2.5. PROGRAM LINKAGE 2—3

2.6. ISLAND CODE LINKAGE 2—3

2.7. SYSTEM INFORMATION CONTROL 2-4

2.8. CONTROL STREAM READER 2—4

UP-8831 Rev. 3 OS/3 Contents 2
SUPERVISOR

2.9. DISK AND DISKETTE SPACE MANAGEMENT 2-5

2.10. SYSTEM ACCESS TECHNIQUE 2-5

2.11. MULTIPLE-INDEXED RANDOM ACCESS METHOD 2-6

2.12. MULTIJOBBING 2—6

2.13. MESSAGE DISPLAY AND LOGGING 2-6

2.14. INTERACTIVE SERVICES 2—7

2.15. SPOOLING 2—7

2.16. PRINTERLESS SYSTEMS 2—8

2.17. JOB ACCOUNTING 2-9

2.18. DIAGNOSTIC AND DEBUGGING FACILITIES 2—9

2.19. RESOURCE MANAGEMENT
- 2—10

2.20. SECURITY 2—11

2.21. SHARED CODE MANAGEMENT 2-11

2.22. DYNAMIC BUFFER MANAGEMENT 2-12

2.23. SYSTEM MONITORING FACILITIES 2—12

3. SUPERVISOR FEATURES AND HIGH-LEVEL LANGUAGES

3.1. GENERAL 3—1

3.2. SUPERVISOR FEATURES AND LANGUAGE USE 3-2
3.2.1. Program Initiation and Loading 3—2
3.2.2. Program Termination 3—2
3.2.3. Timer Services 3—3
3.2.4. Program Linkage 3—4
3.2.5. Island Code Linkage 3—4
3.2.6. System Information Control 3—4
3.2.7. Control Stream Reader 3—5
3.2.8. Disk and Diskette Space Management 3—5
3.2.9. System Access Technique 3—6
3.2.10. MIRAM 3—6
3.2.11. Message Display and Logging 3—6
3.2.12. Spooling and Job Accounting 3—7
3.2.13. Diagnostic and Debugging Aids 3—8

4. CHOOSING AN OS/3 SUPERVISOR — OURS OR YOURS?

USER COMMENT FORM

UP-8831 Rev. 3 OS/3 1—1
SUPERVISOR

1. Basic Supervisor Concepts

1.1. GENERAL

The Operating System/3 (OS/3) Supervisor is a package of routines that form the heart
of OS/3. It is the supervisor that allows other parts of OS/3 to work together and
makes possible such useful OS/3 features as multijobbing and spooling.

As far as your user programs are concerned, the supervisor has two main functions:

• It interacts with user programs and symbionts to provide the services and control
they need.

• It acts when necessary to handle randomly occurring external events, such as
errors, that might otherwise disrupt a user program or even the entire system.
Thus, an error occurring in one job may cause only that job to be terminated,
leaving other jobs unaffected.

The supervisor is built around executable modules, or routines, each of which has a
specialized function. Those routines commonly used by the supervisor always reside in
main storage. Other less often used routines, called transients, are stored on the
SYSRES volume and are loaded in main storage only when the supervisor needs them.
This arrangement promotes supervisor efficiency: it minimizes the amount of main
storage the supervisor uses by overlaying unneeded transients with newly loaded
transients, and it eliminates the input/output time needed to load the most commonly
used routines by keeping them resident.

1.2. TASKS AND MULTITASKING

The OS/3 supervisor does much of its work through the use of tasks. A task is the
basic unit of work that can compete with other tasks for control of the central
processor. By processor control we don’t mean that the task executes machine code by
using the processor but, rather, that it acts as a logical point of control for a physical
sequence of executable machine code — a program — that does use the processor.

UP-8831 Rev. 3 OS/3 1—2
SUPERVISOR

To grasp the difference between a task and a program, picture a system in which only
one program at a time were allowed in main storage. In this case, no task control
would be needed because the program would execute and terminate without
interruption. But most programs do not continuously use the processor: you may, for
example, request input or output, in effect leaving the processor idle until the I/O
channel signals that the I/O operation has finished, at which time the program could
resume use of the processor.

If more than one program were allowed in main storage, however, processor time could
go from an idle program to one that isn’t idle and later return to the first program when
it is ready to resume processing. In OS/3, up to 256 such programs can exist
concurrently in any one job; to prevent confusion and ambiguity, each program is
controlled by a task. This ability to juggle processor control among tasks, maximizing
processor use, is called multitasking.

Programs run under tasks as follows:

i Each user job step and symbiont runs under control of one task, called the primary
task.

• Each transient runs under control of a task.

• Other system facilities, such as spooling and the integrated communications access
method (lOAM), run as tasks.

The only OS/3 routines that do not run under task control are critical supervisor
routines, such as error handling, and those routines that themselves manage tasks.

Since only one task at a time can control the processor (meaning the processor
executes the code that task defines), some mechanism is necessary to take processor
control away from one task and give it to another. In OS/3, that mechanism is the
switcher, a critical supervisor routine that maintains a list, called the switch list, of all
the tasks currently existing in the system. The switcher can take processor control
away from a task and give it back later without disrupting the task’s program and can
do this as many times or as often as necessary.

So far, we have outlined the basic requirements for multitasking: the ability to create
and maintain multiple tasks and a means of allocating processor time among available
tasks. But we need more, as the next subsection explains.

1.3. CONTROLLING MULTIPLE TASKS

If all tasks in an OS/3 system were completely independent, all would compete for
processor time on an equal basis. The system would quickly become unusable, though,
because OS/3 tasks are not independent. For example, task A requests that task B do
some work for it before it can continue. If both tasks continue to compete for
processor time, what prevents task A from resuming processor control prematurely,
before task B finishes? OS/3 solves this and related problems by using the task control
block (TCB).

UP-8831 Rev. 3 OS/3 1—3
SUPERVISOR

A TCB exists for each task in the system. It contains the physical, nonexecutable data
that corresponds to a task’s logical control of a program. It defines a task and acts as
the task’s interface with other tasks and the supervisor. By defining the task and its
limits, the TCB prevents it from being disrupted by other tasks in the system, helping to
make multitasking possible. At least one TCB exists for each user job (in the job
prologue), and a TCB exists for each active transient routine.

When the switcher transfers processor control from one task to another, it uses
information contained in the two TCBs involved. The switcher stores the problem
registers and program status word (PSW) associated with the first task in its TCB, then
loads the registers and current PSW with the same type of information contained in the
second TCB, effectively allowing the second task to pick up execution exactly where it
left off earlier.

Other control information contained in a TCB can be set to cause the switcher to ignore
its task, in effect suspending that task or making it ineligible for processor control. A
task remains in this suspended condition until the same control information is reset,
causing the task to become active or eligible once again for processor control. While a
task is suspended, all other active tasks continue to compete for processor time
through the switcher. Often a task is suspended until some needed action is taken; only
then is the task’s control information reset, and only when that task is ready to resume
processor control. It is the concept of task suspension that allows the supervisor to
control task access to the switcher and thus to keep task competition from going out of
control.

The supervisor has one other mechanism for controlling tasks, that of priority levels.
When created, a task is assigned a priority. The switcher, when looking for a task to
which it can transfer processor control, scans active tasks from those with the highest
priority on down, selecting the active task with the highest priority to get processor
control. System tasks (like transients> run at a higher priority than user jobs. Running
systems tasks at a higher priority does not adversely affect user jobs, which, in any
case, must call on them for various services. Also, system tasks running at a higher
priority can begin and finish more rapidly, thus actually improving overall system
efficiency.

1.4. USER PROGRAM INTERACTION

The supervisor’s ability to maintain multiple tasks serves it well in interfacing with user
programs. Since most supervisor services run as tasks themselves, the most common
sequence of events is as follows:

1. A user program running under control of a primary task called, for example, task A,
calls a transient routine to perform some system service. The supervisor responds
by loading the transient in a portion of main storage set aside for transients and
establishing the transient as a task with its own TCB called, say, task B.

2. The supervisor suspends task A and sets control information in the task’s TCB that
marks the task as suspended and unavailable.

UP-8831 Rev. 3 OS/3 1—4
SUPERVISOR

3. After task A gives up processor control, the switcher scans the switch list for the
highest priority task awaiting control. It may give control to task B or to some
other active task but, task A being marked unavailable for the moment, the
switcher will not return control to that task.

4. Eventually, the transient routine controlled by task B finishes. Only at this point
does the supervisor reset the control information in task A and restore it to active
status, task B having finished its work.

1.5. EXTERNAL EVENT INTERACTION

Another use of multitasking is as a response to external events. These events are called
interrupts because they interrupt normal processor flow and must be handled in some
way before processing can continue. OS/3 recognizes eight types of interrupts:

• Supervisor call — occurs in response to the SUPERVISOR CALL (SVC) machine
instruction. Though it is handled as an interrupt, your programs routinely use the
supervisor call to request supervisor services, as described in 1 .4.

• Exigent machine check — indicates a malfunction in or around the processor. If the
malfunction is in the supervisor area, the system is halted. If the exigent machine
check indicates an error in the memory area of a job region, the system continues
to run, though that memory area is marked as not usable and the job is terminated.

• Repressible machine check — indicates a malfunction in or around the processor
from which recovery is possible.

• External interrupt — generated either by the processor interval timer or the system
console interrupt key.

• Program check — occurs when the processor attempts to execute a nonexistent
instruction or to execute an existing instruction in an illegal manner.

• Program event recording (PER) — provides dynamic monitoring of executing
programs by storing information about the current instruction whenever a specified
event occurs.

• Input/output — occurs in response to signals from I/O channels.

• Restart — occurs when the restart key on the system console is pressed and can
be used to put a stopped processor in the operating state.

Some interrupts, like the supervisor call or input/output, are routinely encountered;
others, like program or machine checks, represent serious errors that the supervisor
must handle with minimal system interruption. As you will see in the following sections,
the supervisor can handle a wide variety of interrupts and program requests.

UP-8831 Rev. 3 OS/3 1—5
SUPERVISOR

1.6. OVERVIEW OF SUPERVISOR FEATURES

The services provided to your programs by the supervisor fall into the following
categories:

• Task management

• Program management

• Input/output related services

• Spooling

• Logging and accounting

• Diagnostic services

0

UP-8831 Rev. 3 OS/3 2—1
SUPERVISOR

2. Supervisor Features and Functions

2.1. GENERAL

This section presents an overview of the supervisor facilities available with your OS/3
system. Those features described here can either be used through OS/3 high-level
programs or be specified at system installation time. For a detailed discussion of how
high-level languages use the supervisor, see Section 3.

2.2. PROGRAM INITIATION AND LOADING

Before any of your programs can run, the supervisor has to load it in the portion of
main storage allocated to your job by job control. The supervisor initiation and loading
facility takes information from the job prologue (tables located in the low-order portion
of your job region) that helps it determine where to load your job. The facility then
locates your program as a load module on disk, loads it in main storage at the proper
location, links the user job step — now a primary task — at the proper execution priority,
and passes control to the task switcher.

In some high-level languages, your program/load module can load other load modules
whenever needed, often as overlays. In these cases, it is your program that directs the
loader how and where to load the new module.

Within a loaded program, the supervisor relocates, if necessary, every address constant
the program contains. This lets job control load your program anywhere in your job
region while ensuring that it will run correctly. Relocation is not limited to job control;
where the facility is available to high-level user programs, it also performs relocation.

The program initiation and loading facility is always included in your system.

UP-8831 Rev. 3 OS/3 2—2
SUPERVISOR

2.3. PROGRAM TERMINATION

The supervisor has facilities to end a job step in an orderly way even if the system
detects errors in the step. With these facilities, the supervisor causes the system
facilities assigned to a job or to a task to be relinquished for assignment to other jobs
or to other tasks. Program termination falls into two categories, normal and abnormal
termination:

• Normal termination implies normal completion of the job step and continuation of
the job. The supervisor allows all task and I/O functions to idle down prior to
terminating the program. Normal termination usually occurs when the primary task
controlling the job step detaches itself from the switch list after completion of the
step. Under some high-level languages, though, you can code a program to
terminate the job step under which it runs at any point in its logic. In some cases,
too, you can cause the supervisor to generate a main storage dump of your job
region upon normal termination of a job step.

• Abnormal termination implies that a system-detected error has occurred from which
the program cannot recover. In this case, the supervisor detaches the primary task,
delinks all outstanding I/O, and waits for all outstanding system functions to be
completed. It provides a printout of the contents of the job region if one of the
DUMP options was specified on the OPTION statement and if there is a printer
assigned to the job or there is a printer available.

(N

High-level programs usually generate the proper machine language to handle most of the
errors your program may encounter (see 2.6). You do have some options available to
let you handle errors in other ways, depending on the path your program logic takes.

Normal program termination is always included in your system. With the exception of
SYSDUMP (see 2.18), all abnormal termination facilities are always included, too.

2.4. TIMER SERVICES

Supervisor timer services fall into two types: the day clock and the interval timer. The
day clock facility maintains the current time and date in a simulated day clock, which is
contained in the resident supervisor. The interval timer generates a timer interrupt after
a certain amount of time has passed. If interrupt timer island code (see 2.6) is active at
the time, control then passes to it.

Most high-level languages get the current system date and time of day from the day
clock, although only the system operator can change them. No interval timer service is
available to high-level language programmers.

The full range of timer services is always included in your system.

C

UP-8831 Rev. 3 OS/3 2—3
SUPERVISOR

2.5. PROGRAM LINKAGE

A program may consist of several phases or routines produced by an assembler,
compiler, or other language translator and then combined by the linkage editor. Control
can be passed from one routine to another within the program. This is referred to as
direct linkage. Linkage can proceed through as many levels as necessary. During the
execution of a job step, a routine (referred to as the calling program) passes control to
another routine (the called program), which can in turn become the calling program
passing control to a third routine (the called program), etc. This branch and linking
process requires that the contents of certain registers be saved, then restored, so that
control can be returned to the calling program.

Program linkage is available from all high-level languages, in conjunction with the linkage
editor (see the System Service Programs User Guide, UP-8841 (current version)).

2.6. ISLAND CODE LINKAGE

As you know, there are eight levels of interrupts in OS/3. Some of these interrupts are
handled by system routines; however, there are four interrupts that some user programs
handle themselves. These interrupts are:

1. Program Check — An operation in your program causes a program check interrupt,
such as an addressing error, arithmetic overflow, or operation exception.

2. Interval Timer — A time interval elapses.

3. Abnormal Termination — An error occurs that makes continuation of your program
impossible.

4. Operator Communication — The operator entered an unsolicited message at the
system console or the workstation (the contents of register 1 at the time the island
code gains control indicates whether the operator entered the message from the
console or a workstation).

To handle these interrupts, all high-level languages generate closed routines called island
code, which are linked to your program at execution time. When one of these interrupts
occurs, the supervisor stores the contents of the program status word (PSW) and
general registers and then transfers control to the appropriate island code routine. If the
island code returns control to your program, the supervisor uses this stored information
to return control at the point the interrupt occurred.

The purpose of the program check, interval timer, and operator communication island
code routines is to handle program contingencies or to notify your program that the
interrupt has occurred. In the case of abnormal termination, the function of the island
code routine is to terminate either a task or a job step rather than the entire job (normal
procedure for abnormal termination if there is no abnormal termination island code
routine).

UP-8831 Rev. 3 OS/3 2—4
SUPERVISOR

You cannot, generally, write your own island code for high-level language programs.
There is little need to; the island code that high-level language processors themselves
generate is capable of handling most interrupts in an orderly way.

Island code linkage is always included in your system.

2.7. SYSTEM INFORMATION CONTROL

Each user program is assigned a variable-length storage area within the job region; this
area is called the job prologue. This area contains the primary task control block (TCB)
and other information so critical that, to preserve system integrity, application programs
can only read from or write to one 12-byte prologue field, called the communication
region, used to pass information from one job step to the next. Within the
communication region, high-level languages let you access only its last byte, called the
user program switch indicator (UPSI) byte. In most high-level languages, you can access
either the entire UPSI byte or individual bits within it. For more information on the UPSI
byte, refer to the Job Control User Guide, UP-9986 (current version).

2.8. CONTROL STREAM READER

The control stream reader allows you to access data that was entered into the system
with the job control stream. This provides a convenient method to handle small
quantities of input that would normally have been handled as a card or diskette file.
Because the data is embedded within the job control stream, there is no need to define
a card file, nor is a device assignment set required for the card reader.

This embedded data might consist of transactions or changes to be processed against a
master file, source code, or control statements to be processed by a utility routine; or it
might consist of PARAM job control statements to introduce parameters that can be
used during program execution. Refer to the job control user guide, UP-9986 (current
version) for a description of statements within embedded data.

When job control reads the job stream, it stores the embedded data in compressed
form in the job’s run library file: YRUN. During the execution of the job step, YRUN
is read into main storage and may be accessed by instructions available in all high-level
languages. Each requested record is expanded to its original form and stored in an input
area you specify.

Except for PARAM statements, each retrieved record is an exact image of the source
statement, which may be from 1 to 128 bytes. Thus, you can read 80-byte images
from punched cards or 128-byte images from diskette.

C

UP-8831 Rev. 3 OS/3 2—5
SUPERVISOR

NO TE:

Although PA RAM and other job control statements may be handled as part of an
embedded data set, they must still observe the job control statement conventions.
Remember that job control statement information cannot extend past character position
71, and that position 72 is used to indicate continuation of a statement.

The control stream reader is always included in your system.

2.9. DISK AND DISKETTE SPACE MANAGEMENT

Space management comprises a group of routines that provide an efficient and
completely automatic disk and diskette space accounting capability. These routines
relieve your programs of the responsibility of knowing the precise contents of disk and
diskette volumes. These routines also resolve competing demands for space allocation
and establish standard interfaces with job control, utility, and service programs.

Space management routines perform the following functions:

• Allocate files

• Extend files already allocated (disk only)

• Scratch files that are no longer needed

• Rename files (disk only)

• Obtain label and extent information

Space management is strictly a supervisor function and so is not available to your
high-level language programs. It is always included in your system for every disk or
diskette you select at system installation time.

2.10. SYSTEM ACCESS TECHNIQUE

The system access technique (SAT) is a specialized block level device handler provided
for both disk and magnetic tape files. Any interface between your high-level language
programs and SAT is handled automatically, relieving you of the responsibility of
managing SAT files. SAT is always included in your system.

UP-8831 Rev. 3 OS/3 2—6
SUPERVISOR

2.11. MULTIPLE-INDEXED RANDOM ACCESS METHOD

The multiple-indexed random access method (MIRAM) is a disk access technique that
lets you process a single disk file in several different ways. All disk files created by your
high-level language programs are MIRAM files, and all language processors generate
code that automatically handles file organization, relieving you of that chore. Since
MIRAM is a data management function, refer to the Consoildated Data Management
Concepts and Facilities Manual, UP-9978 (current version), for more information.

2.12. MULTIJOBBING

With its multijobbing features, the OS/3 supervisor can process concurrently up to 14
jobs for models 3, 4, 5, and 6 or 48 jobs for models 8, 10, and 20, each job
consisting of one or more job steps that are executed serially. As mentioned in 1.2, a
switch list allocates processor time to these jobs based on task priorities (each step of
each job representing a primary task), synchronization, and I/O usage. While one task is
awaiting the completion of an external event (such as completion of an I/O request), the
supervisor activates another task that is ready, thus making maximum use of the
processor. Since most programs require support other than merely processing
instructions, multijobbing provides you with an effective method to reduce processor
idle time and increase system productivity.

Every job step submitted to OS/3 is established as a primary task. The switch list has
the capacity to allow you to specify up to 60 levels of processing priority for tasks. The
maximum number of task priority levels that the supervisor will recognize is established
at system generation time. The technical limit is 60; however, a more practical number
of 3 to 15 is sufficient to achieve a high degree of processor utilization. When a task is
interrupted to perform external processing (external to the instruction processor), it frees
the processor, and OS/3 searches the switch list for the highest priority task that is not
waiting for an external event to be completed. This task could be in the same job or it
could be from any other job currently being processed.

Multijobbing is always included in your system, and system installation options let you
control the relative priorities of user and some system tasks.

2.13. MESSAGE DISPLAY AND LOGGING

Successful operation of a computer system requires frequent communication. You use
job control statements and assembler instructions to tell the CPU what to do, and how
and when to do it. The operating system tells the operator what to do and tells you
what was done and when. The operator gets a message from the supervisor (or from
you) and answers a question or performs an action.

OS/3 provides several methods by which you can communicate with the operating
system and with the console operator. These consist of a system log, display to the
operator, and display to the workstation, which can be used singly or in combination.

UP-8831 Rev. 3 OS/3 2—7
SUPERVISOR

A system log file is maintained by the supervisor spooling function. Job logs are
subfiles of the system log file and receive all log and accounting information for the job,
including messages you write to the log by using instructions in your program. Other
logs maintained by spooling include a console log for the console workstation and
additional logs, one for each active workstation.

You can display a message to the operator at the system console. The message may
be for information only, or you may request a reply by the operator. Also, you can
combine a log entry and a display. In this case, the message displayed and any reply
from the operator are written to the system log and also to a console log if one is
configured at system generation. In addition, you can display data to or receive data
from a workstation.

Not all of these facilities are available to all high-level language programmers; see 3.2. 11
for details.

2.14. INTERACTIVE SERVICES

In addition to the message display facilities discussed in 2.13, OS/3 provides you with
the means to make even more extensive use of system workstations through interactive
services. These services are discussed in the Interactive Services Concepts and Facilities
User Guide/Programmer Reference, UP-9972 (current version). Briefly, these services
include:

• Interactive job control

• Interactive data utilities

• General editor

• Screen format services

• Interactive command set

2.15. SPOOLING

Spooling is the technique of buffering data files for low-speed input and output devices
to a high-speed storage device independently of the program that uses the input data or
generates the output data. Data from card readers or from remote sites is stored on
disk for subsequent use by the intended program. Data output by the program is stored
on disk for subsequent punching or printing. The spooling function also handles diskette
files. It treats input from diskette as though it were from a card reader and output to a
diskette as though it were a card punch. In this description of spooling, any reference to
a card reader, card input, or card file also includes diskette input; any reference to a
card punch, card output, or card file also includes diskette output.

UP-8831 Rev. 3 OS/3 2—8
SUPERVISOR

Spooling enhances system performance:

• by releasing large production programs and system software from the constraint of
the slower speed devices, thereby freeing the main storage occupied by these
programs sooner; and

• by driving the slower speed devices at their rated speed on a continuous basis,
thereby making full use of the devices during the time that is normally lost to
systems overhead or to job steps not using printers.

In addition to buffering data files, spooling maintains, for each job in the system, a job
log that contains log and accounting information for the job. Spooling also maintains
individual logs for the console workstation and each additional active workstation in the
system; each of these logs records the system mode communications between the
system and a console or workstation during a work session.

The spooler is the hub of the spooling facility and is a part of the supervisor. It provides
record level input and output to and from the spool file for each element in the system
needing access to that file. It intercepts all input/output commands to the virtual printer,
punch, and card reader (which, to your programs, look no different from their real
counterpart devices) and accesses the high-speed storage device, the disk, when
necessary. Besides handling program input and output spooling, it also holds the system
log, which contains job and accounting records for each job in the system.

Besides the spooler, the spooling facility also includes:

• the spool file, on which the spooler stores all spooled input and output;

• the input reader, the spooling element that reads input to be spooled from a card
reader; and

• the output writer, the spooling element that writes spooled output from the spool
file to a printer, or card punch, and writes print or punch output to a tape, disk, or
diskette for temporary storage (redirected output).

Spooling is a supervisor option, and at system installation time you may specify options
associated with it. For more information on spooling, refer to the Spooling and Job
Accounting Concepts and Facilities Manual, UP-9975 (current version).

2.16. PRINTERLESS SYSTEMS

When the OS/3 system has a spooling facility, it can be configured and used without a
physical printer. To achieve this, supervisor initialization is modified to recognize an
“indirect” printer. Rather than producing output to a printer, such a system generates
printer files. These printer files can be used for printing on an OS/3 system that does
have a physical printer. For more information, refer to the System Installation User
Guide/Programmer Reference, UP-8839 (current version).

UP-8831 Rev. 3 OS/3 2—9
SUPERVISOR

2.17. JOB ACCOUNTING

The job accounting package consists of resident routines that are linked with the
supervisor and elements of the job step processor at system installation time. These
routines provide a count of the facilities utilized by each job step during its execution
within the system. The message logging facility of the spooling function transfers this
data from main storage to disk as part of the output spoolfile. The output writer prints
the job step and job values as part of the normal message log output for each job.
Optionally, the output writer can write the accounting information to a standard
magnetic tape file or SAT disk file for offline processing by user-developed accounting
routines or by OS/3 data utility routines. You can assign an account number by using
the JOB job control statement that is carried along with the accounting records. This
enables you to accumulate statistics from the disk or tape file for computer time and
resources charged against an account number, which could represent a project,
department, cost center, etc.

Data collected by job accounting for each job step and for the entire job includes the
time of usage for the central processing unit, the wall clock duration of the job steps,
the number of SVC calls, the amount of main storage allocated and actually used, the
number of transient calls, and the number of device calls. Job accounting is a part of
spooling, and so is available only when spooling is configured.

2.18. DIAGNOSTIC AND DEBUGGING FACILITIES

The supervisor has several facilities to help you find and remove errors from your
programs. These occur in the following categories:

• Main Storage Displays

These include snapshot dumps of selected main storage locations as well as dumps
of whole job regions (EOJ dumps and JOBDUMPs) and even the whole of main
storage (SYSDUMP). The snapshot dumps are available to some high-level language
users; the job and system dumps, to all users. System dumps are an option you
can include at system installation time, while job region and snapshot dumps are
always included.

• Checkpoint/Restart

Hardware and software malfunctions can cause your job to terminate before its
normal completion. Another reason for termination could be that the operator
cancelled your job because a high-priority job required all the facilities of the
computer. If the job is small, you can rerun it without any really great loss. But,
what if it is a long or complex job, where rerunning the job could increase both
processing time and cost, thereby reducing productivity? OS/3 has provided the
checkpoint facility, which allows you to periodically generate records containing the
operational status of your job. Each such record is called a checkpoint and is
written to a checkpoint file on disk, format label diskette, or magnetic tape. Should
a job step fail, you can use the last checkpoint written before the failure to restart
the job at the point where the checkpoint was taken rather than starting the entire
job all over again.

UP-8831 Rev. 3 OS/3 2—10
SUPERVISOR

You might want to create a checkpoint record at some specific occurrence, such as
the end of a magnetic tape reel in a multivolume input file, or after processing a
specific number of records.

The capability to generate checkpoint records is a function of the supervisor, and
the capability to use these checkpoint records to restart a job is a function of job
control (through the RST job control statement).

The checkpoint facility is available only to COBOL high-level language programmers.
It is always included in your system.

• Monitor/Trace

One means of debugging a program is the monitor/trace supervisor facility. This
routine monitors each instruction in a program before and after it is executed and
then signals if an event has occurred, such as:

— a specified main storage location has been accessed; or

— a specified location has been reached.

How the supervisor reacts to these events is determined by the high-level language
that calls the monitor. You may get a printout of the locations you specify and the
option of continuing the program or terminating it. Not all the monitor’s capabilities (
are available to all programs; see 3.2.13 for details. The monitor/trace facility is
always included in your system.

• System Debugging Aids

The supervisor has several debugging aids that can help identify system problems a
system dump by itself cannot uncover. These include a supervisor debug option
that monitors the entire operating system; a console debug option that halts
processing on an I/O, transient, or loader error; transient, symbiont, or shared code
halt routines that halt whenever a specified transient, symbiont, or shared code
module is loaded; and a soft-patch symbiont that applies temporary patches to
transients, shared code modules, object modules, load modules, and the resident
supervisor. All these debugging aids require some knowledge of how the
supervisor operates internally. All of them are always included in your system.

2.19. RESOURCE MANAGEMENT

The resource management facility is a supervisor feature that dynamically tunes the
system environment. This is a versatile facility that provides a way to balance the
system use among various batch and interactive activities.

C

UP-8831 Rev. 3 OS/3 2—11
SUPERVISOR

Resource management permits the console operator to control system use (e.g.,
memory assignment, maximum number of interactive users, and the maximum number
of batch jobs) through various resource parameters; these parameters are specified
during the system generation process. Commands are available that allow the console
operator to change these values during the operation of the system.

2.20. SECURITY

Security is a supervisor feature that includes:

• Security Maintenance Utility

Enables the security administrator to create, display, modify, and delete user
execution and command profiles. This ability allows the security administrator to
define and limit the access of interactive users to the system.

• Security Logon Service

Used to identify your attempt to gain access to the system. Logon denies system
access to those interactive and batch users not authorized by a process that
checks the system dictionary for valid user-ids, passwords, and account numbers.
(Both password and account number input are system generated.) Once you have
access to the system, logoff will end your session.

Refer to Security Maintenance Utility User Guide, UP- 12028 (current version) and to
Interactive Services Commands and Facilities User Guide, UP-9972 (current version).

2.21. SHARED CODE MANAGEMENT

Many run-time modules run as shared code, which means that one module can be used
by several jobs simultaneously. This feature not only saves main storage space but also
saves the time it would otherwise take to load a separate copy of the module for each
job that needed it. All shared code modules are provided by Unisys and are included in
the library file YSCLOD on your system resident volume. These modules include
screen format services, interactive services, data management, the general editor, the
RPG editor, BASIC, and other system programs.

Shared code management is available for system programs only, not for application
programs. The system administrator can, at his discretion, make certain shared code
modules, or groups of modules, resident. A list of resident modules can be specified at
system generation time, and this list can be modified at each subsequent IPL (initial
program load). At IPL time, the supervisor allocates main storage for the modules in the
modified list, loads them, and makes them resident. Once a shared code module
becomes resident, it remains resident until the next IPL.

UP-8831 Rev. 3 OS/3 2—12
SUPERVISOR

Shared code management is always available in your system. System installation
parameters are available to modify shared code for improved performance; for more
information on specifying resident shared code modules at IPL time, see the Operations
Handbook Operator Reference, UP-8859 (current version).

2.22. DYNAMIC BUFFER MANAGEMENT

The dynamic buffer management facility is a supervisor feature that can dynamically
allocate extra main storage to system routines needing it. With this facility, system
routines need not wait to obtain buffers that they need to continue processing. This in
turn enhances the performance of your user programs, especially those using interactive
services.

Because dynamic buffer management is limited to system routines, user programs have
no direct control over it. You can, however, specify parameters at system installation or
IPL time for its most efficient operation.

2.23. SYSTEM MONITORING FACILITIES

Unisys makes available to you facilities for recording hardware malfunctions and
monitoring your system’s normal activity. These facilities are the error log and the
system activity monitor.

The error log is a file on the system resident volume (identifier YELOG) that contains
records of hardware errors kept for the statistical and historical use of Unisys customer
engineers. When a hardware error occurs, the error logging function, which is a part of
the supervisor, stores pertinent information in the error log. (Models 3, 4, 5, and 6
require at least three resident error log buffers, while models 8, 10, and 20 require at
least six resident error log buffers.) Unisys customer engineers can read these records
from the file into main storage for processing and storage as permanent records, using
these records in maintaining customer equipment. Error logging is always included in
your OS/3 system.

Another useful system monitoring facility is the system activity monitor (SAM), a
system symbiont that monitors and records your system’s activity. It is intended for use
by the system administrator and installation manager to aid in the detection of
production bottlenecks, to optimize production job mixes, and to identify and change
system variables that influence system performance.

For more information on the system activity monitor, see the System Activity Monitor
User Guide/Programmer Reference, UP-9983 (current version). You may optionally
include the system activity monitor in your system at system installation time.

0

UP-8831 Rev. 3 OS/3 3—1
SUPERVISOR

3. Supervisor Features and High-Level
Languages

3.1. GENERAL

This section outlines those supervisor features that you can take advantage of through
the high-level languages OS/3 provides. In the following discussion, each feature has a
list of its availability in the following high-level languages:

• COBOL

• FORTRAN

• RPGII

• BASIC

• ESCORT

• JCL

For any feature, only those languages are listed that make use of that feature along with
the specific instructions or directives needed. Refer to the Preface for a complete list of
appropriate manuals with more information about a feature.

The COBOL compiler conforms to the specifications of the American National Standard
COBOL, X3.23— 1974 and contains extensions, many based on supervisor facilities, that
enhance the capabilities of COBOL beyond the basic requirements of the standard. The
FORTRAN compiler accepts FORTRAN IV, which includes the American National
Standard FORTRAN X3.9— 1966 and the IBM System 360/3 70 DOS FORTRAN IV
languages as subsets. JCL is included in this discussion together with the languages
because it, too, takes advantage of many supervisor features.

UP-8831 Rev. 3 OS/3 3—2
SUPERVISOR

3.2. SUPERVISOR FEATURES AND LANGUAGE USE

3=2.1. Program Initiation and Loading

• COBOL

Available through the CALL instruction.

• FORTRAN

Available through the CALL FETCH and CALL LOAD instructions.

• BASIC

Programs residing in an OS/3 library file may be loaded into your BASIC work
space prior to execution by means of the OLD command, or dynamically loaded at
run time using the CHAIN statement. A library file may be added to the contents of
the work space with the MERGE command.

• JCL

Used with the // EXEC statement

0
3.2.2. Program Termination

• COBOL

Normal termination of dynamically loaded programs is available through the CANCEL
instruction. Abnormal termination by the user is not available.

• FORTRAN

Normal termination is available through the CALL EXIT instruction (without a dump)
or the CALL DUMP instruction (with a dump). Abnormal termination by the user is
not available.

• ESCORT programming language

Normal termination from ESCORT language is available by use of the EXIT selection
on the menu; this returns control to interactive services. Abnormal termination by
use of the EXIT selection is also available if ESCORT language is run in supervisor
debug mode. In this case, you are given the option of obtaining a system dump.

C

UP-8831 Rev. 3 OS/3 3—3
SUPERVISOR

• JCL

Program termination is not a JCL function, but JCL allows you to generate one of
several types of dumps if abnormal termination occurs, no matter what language
the program was written in. For the dumps, you can use the 1/ OPTION DUMP,
1/ OPTION JOBDUMP, 1/ OPTION SYSDUMP, 1/ OPTION GDUMP, /1 OPTION
GJOBDUMP, and 1/ OPTION GSYSDUMP statements. In addition, you can specify
// OPTION statements that generate a program check if binary overflow (BOF),
decimal overflow (DOF), significance (SIG), or exponent underflow (XUF) errors
should occur.

3.2.3. Timer Services

• COBOL

You can access the system’s calendar date, Julian date, and time by using the
ACCEPT statement.

• RPGII

You can access the system’s calendar date and time by using the TIME operation.

• BASIC

You can set a processor time limit for your currently running program with the
TIME statement, and get the elapsed running time for a program with the TIME
function. In addition, you can access the system’s calendar date with the DAT$
function and the current time of day with CLK$ function.

• ESCORT programming language

You can access the system’s calendar date using the DATE$, DAY$, MONTH$,
and YEAR$ utility fields. The current time is available by use of the TIME$ utility
field.

• JCL

You can set a maximum execution time for your job by using the max-time
parameter in the 1/ JOB statement. Within the WRTBIG job procedure, you can
print the date and time your job was run. And, to temporarily change the system’s
calendar date until the end of a job, you can use the /1 SET DATE statement.

UP-8831 Rev. 3 OS/3 3—4
SUPERVISOR

3.2.4. Program Linkage

• COBOL

You can call a subroutine that is linked to your program and pass data to and from
it by using the CALL statement.

• FORTRAN

You can call a subroutine or function linked to your program and pass data to and
from it. For a subroutine, you use CALL and SUBROUTINE statements in the calling
and called programs, respectively. For a function, you use the function name and
FUNCTION statements, respectively.

• BASIC

You can call a subroutine with the CALL statement and define parameters to be
passed with a SUB statement entered as the first statement of the subroutine. The
subroutine can reside in the calling program file or it can reside in an OS/3 library
file named with the LIBRARY statement.

• RPGII

You can call an internal subroutine, one associated with the calling object module,
by using the EXSR, BEGSR, and ENDSR operations. You can call an external
subroutine, one compiled separately from, but linked to, the calling program, by
using the EXIT, BEGSR, and ENDSR operations. To pass data to and from an
external subroutine, you use the ULABL and RLABL operations.

3.2.5. Island Code Linkage

• FORTRAN

You can write routines to which program control passes if two types of program
exceptions are found. These are CALL OVERFL for an arithmetic overflow or
underflow and CALL DVCHK for a divide check. Under no other conditions can you
write or access any island code.

3.2.6. System Information Control

• COBOL

You can change or test the UPSI byte either as a whole or bit by bit by using the
SYSSWCH clause. You can also change or test the entire communication region by
using the SYSCOM clause.

UP-8831 Rev. 3 OS/3 35
SUPERVISOR

• FORTRAN

You can test portions of the UPSI byte by using CALL SSWTCH. The remainder of
the communications region is inaccessible to your program.

• RPGII

You can test or change the UPSI byte by using indicators Ui through U8 in your
program. You cannot change or test the remainder of the communications region.

• JCL

You can change the UPSI byte with 1/ SET UPSI and the communication region
with // SET COMREG. In addition, you can test the UPSI byte by using /1 SKIP.

3.2.7. Control Stream Reader

• COBOL

You can access the control stream by using the ACCEPT statement and the SYSIN
clause.

• FORTRAN

Most card input to your programs comes through the control stream reader. To
access it, you use the READ statement for I/O units 1 or 5.

• RPGII

You can access the control stream reader with a file description specification
statement specifying device type CTLRDR.

3.2.8. Disk and Diskette Space Management

• COBOL, FORTRAN, RPG II

You cannot directly use the space management facility in a user program; this
facility is a data management function. See the Consolidated Data Management
Concepts and Facilities Manual, UP-9978 (current version), for more information.

• JCL

You allocate and extend space for a disk or diskette file by using the /1 EXT
statement.

UP-8831 Rev. 3 OS/3 3—6
SUPERVISOR

3.2.9. System Access Technique

• JCL

You can allocate space for a SAT file by using the 1/ EXT statement. You will
usually use this statement to allocate files that are solely managed by system
programs. Examples of these are user library files handled by the SAT librarian and
checkpoint files handled by the checkpoint/restart function (3.2.13).

3.2.10. MIRAM

You can access MIRAM files from your programs. For more information, refer to the
Consolidated Data Management Concepts and Facilities Manual, UP-9978 (current
version). BASIC can read a MIRAM file written in any format but will write only unkeyed
records; see the current version of the BASIC Programmer Reference, UP-9 168, for
more information.

• JCL

You can allocate space for MIRAM files by using the // EXT statement.

3.2.11. Message Display and Logging

• COBOL

You can send messages to the system console by using the SYSLOG clause and
send messages with operator replies by using the SYSCONSOLE clause. In addition
to the above facilities, you can display messages on workstations by using one of
the following clauses:

— SYSTERMINAL — for the master workstation

— SYSWORK — for the workstation assigned to your program through JCL

— SYSFORMAT — for the workstation associated with screen format services

• FORTRAN

For a STOP or PAUSE instruction, you can specify a decimal integer that is
displayed on the system console when the instruction is executed. PAUSE displays
the integer and stops program execution until the operator continues it; STOP
displays the integer and terminates the program.

FORTRAN allows you to treat a workstation as an I/O device; consequently you
can move data into and from it with the usual FORTRAN statements.

0

UP-8831 Rev. 3 OS/3 3—7
SUPERVISOR

• RPGII

You can send information to or get information from the system console by using
the DSPLY operation and a file description specification statement with the device
name CONSOLE. With DSPLY, you can either display a message and continue
processing or display a message and cause a halt until the operator resumes
processing. During the halt, the operator may enter data that the program accepts
when it resumes processing.

You can send data to or receive data from a workstation by using screen format
services and a file description specification statement with device name WORKSTN.

JCL

Your job can send messages to the system console or to any workstation. If you
want an operator reply, you use /1 PAUSE; if not, you use 1/ OPR.

3.2.12. Spooling and Job Accounting

• COBOL

No program modifications are needed to use input and output files with spooling
configured in your system. With spooling, you have the additional capability of
copying SYSLOG and SYSCONSOLE messages (see 3.2.11) to your spool file, from
which they can later be printed or even stored on disk or magnetic tape. In
addition, you can output your own data, independent of any console display, to the
job log for your job by using the SYSLST clause.

• FORTRAN

With spooling, console messages displayed through the STOP or PAUSE instruction
(see 3.2.11) may be copied to your spool file for later output to printer, disk, or
magnetic tape. As for input or output files used by your programs, no modifications
are needed to use spooling.

• RPGII

With spooling, console messages and responses displayed through the DSPLY
operation (see 3.2.11) may be copied to the spool file for later output to printer,
disk, or magnetic tape. As for input or output files used by your programs, no
modifications are needed to use spooling.

• BASIC

With spooling, you can run BASIC in batch mode by spooling in a card file
containing exactly the statements you would use in an interactive BASIC session.

UP-8831 Rev. 3 OS/3 3—8
SUPERVISOR

• ESCORT programming language

Spooling with ESCORT language involves only printer output. No modifications to
your ESCORT program are needed to take advantage of spooling with printer
output files.

• JCL

The spooling facility stands at the center of several powerful JCL statements. You
can, for example, use 1/ SPL to output program data to a spool file on disk or
diskette, 1/ DST to send spool output to a remote device, or // DATA to load
card images to the spool file for later input to a program. In addition, the
parameters in the /1 JOB statement help you control spool output.

3.2.13. Diagnostic and Debugging Aids

• COBOL

You can use the following supervisor features in your COBOL program:

— You can get an EOJ dump, JOBDUMP, or SYSDUMP if your program goes
through abnormal termination (see the JCL description).

— You can use checkpoint/restart with the RERUN clause. (.___)

— You can use debugging statements to monitor data items or procedures while
your program is running.

• FORTRAN

You can get an EOJ dump, JOBDUMP, or SYSDUMP if your program goes through
an abnormal termination (see the JCL description). In addition, FORTRAN lets you
include a variation of the PAUSE instruction in which an operator response of
DUMP terminates the program with a dump.

• RPGII

You can use the DEBUG operation to tell you what specified indicators and fields
contain at various points in your program. You can get an EOJ dump, JOBDUMP,
or SYSDUMP if your program terminates abnormally. In addition, you can tell RPG II
to output a formatted error analysis dump if an error occurs in your program.
Run-time facilities let you display or change data while the program is executing.
The operator control feature lets the system operator take action if your program
sets any halt indicators; the operator can continue program execution, bypass the
remainder of the program cycle, or terminate the program altogether.

(D

UP-883 1 Rev. 3 OS/3 3—9
SUPERVISOR

BASIC

BASIC facilities like the syntax checker handle program and run-time errors
dynamically during the BASIC interactive session rather than through the supervisor.

• ESCORT programming language

ESCORT facilities handle program errors dynamically during the ESCORT interactive
session rather than through the supervisor. These facilities display error messages
prior to run time, warning of illogical conditions in the program being coded.

• JCL

You use the JCL options DUMP, JOBDUMP, or SYSDUMP to specify the type of
dump to be taken should your program terminate. In addition, you use the 1/ RST
job control statement to rerun a COBOL program from a checkpoint.

C

C

UP-8831 Rev. 3 OS/3 4—1
SUPERVISOR

4. Choosing an OS/3 Supervisor —

Ours or Yours?

So far we’ve shown you what makes up a supervisor and how you can use its features
in your own programs. Before you can use a supervisor, though, you have to have one
to use. And you’ve got a choice:

• Your OS/3 system comes with its own ready-to-use supervisor, named SY@BAS
(models 3, 4, 5, and 6), SY#BAS (model 8), or SY$BAS (models 10 and 20). With
it you can usually begin normal system operations immediately. In fact, the IPL
(initial program load) procedure that you use to start up your system calls this
supervisor unless you specify another.

• You can generate your own supervisor embodying some or all of the features
we’ve described. Supervisor generation is done by the SUPGEN phase of system
installation, under the control of parameters you specify.

You may be wondering whether to use our supervisor or generate your own (or more
than one; that’s possible too with system installation). SY@BAS, SY#BAS, and SY$BAS
have been designed to meet most processing requirements at an average OS/3 site.
The ready-to-use supervisor, however, may be too big or too small for your needs: too
big in having features you don’t ordinarily use and can do without; too small to satisfy
special requirements you may have.

In either case, you may want to generate your own supervisor. SUPGEN parameters
tailor a supervisor to your needs. Some parameters add modules that increase the main
storage requirements of your supervisor, while other parameters merely set defaults for
the supervisor to follow when it is in main storage and functioning.

The System Installation User Guide, UP-8839 (current version) provides details on the
three ready-to-use supervisors, all of the SUPGEN parameters, and the entire system
installation process.

C
0

0

UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

‘CUT

FOLD I

H U NOPOSTAGE —

NECESSARY I

IFMAILEDINTHE I

UNITED STATES I

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation

E/MSG Product Information Development

P0 Box 500 C1-NE6
Blue Bell, PA 19422-9990

FOLD

