
'i

U H Y U SE C A C II E

• P E R F 0 R M A N C E I M p R 0 v E M E H T s H

0 S I 3 D I S K CACHE F fl C I l I T Y

Jeff Snyder
Sperry, lllut: Uell

•

11f

I will be discussing the OS/3 Disk Cache Facility as it is supported
on System 80 Models 4, 6, and 8. I am directing my discussion of

cache towards the general operation, initialization and control of

the program and I will highlight differences between the Hodel 4/6

and Model 8 cache where they exist. If you have any questions durir19
my discussion please bring them to my attention.

The "cache" process was designed to enhance the performance of OS/3

by alleviating the bottleneck of slow access to disk data. Thia

bottleneck is caused by the physical limitations and constraints of
the system hardware and software namely:

o System overhead in handling I/O requests

o Queueing delay as I/O requests must wait issuing
o Disk seek time (moving accessor arm)

o Latency (waiting for rotation)
o Data transfer time

The cache removes this bottleneck by buffering recently used disk

data in main memory. This approach is effective because,

a) information which has been used recently is likely to be reused

and, b) information 'near' the information currently in use is likely

to be used in the near future. Consequently, operating system over­
head and queueing delays are greatly reduced while disk seek time,

latency and data transfer time from disk to main memory are eliminated

when the data being requested resides in a cache buffer.

This has a direct relevance within OS/3 because our standard

libararian format is sequentially oriented with blocks at 2~6 bytes

so that module or file processing consists of readillCjJ many blocks

one at a time. This structure affects ~any 05/3 systems software

programs such as the Librarian, Linkage Editor, Language Processors,
Output Writer and Editor.

User programs which process sequential files would also be directly

affected by the OS/3 cache. The other benefit of a cache which

buffers most rec~ntly used disk data is that certain portions of a

file (i.e. the index partition) might reside in cache for long periods
of time, thereby increasing performance.

- l -

t

I
f
I

t
;

•
Generally, this caching mechanism works by taking a one or more

block read and actually doing a multi-block read into a predefined

cache buffer (if the block did not already reside in cache) and

then passing the record back to the caller. Thereafter, all reads

of blocks near that one will be moved from the buffer to the caller

without disk access. I will explain this mechanism in more detail
later in my discussion.

The OS/l Cache consists of a symbiont and load module delivered as

programs within the OS/l Released .system software programs. The

Cache symbiont SLllllCM is loaded by systems load module by symbiont

initialization during IPL or by symbiont initialization via CM command.

The cache configuration is controlled by an entry in the YSDF system
file with the following format:

SLIDE l

"The symbiont reads this record and uses the name as a guideline to
define the buffer size and load the load module. The last four

characters of the name are examined for values of 0000 or 0100 (or

16 for Mod 4/6) through 1024. All other values are invalid and cache
would not be initialized. The values of between 100 and 1024 define
the size of the cache buffer when multiplied by 1024 bytes. The

value 0000 signals the symbiont to request the buffer size via
console message. The message would be:

SLIDE l

The operator replies NONE if cache is not to be used or a number
between 100 and 1024 to be used as mentioned earlier.

Once the cache buffer size is determined, the memory is allocated.

The buffer resides in the high end of memory if cache was initialized

at IPL time, otherwise allocation is on a first fit basis. An error

message is posted if the buffer cannot be allocated. The buffer and
tables are then initialized.

- 2 -

112

DEVICE ADDRESS

TYPE/FEATURE

MICROCODE NAME

SLIDE 1

SLIDE 2

MODEL 8

IMPL

CAC8

CA800000

HODEL 4/6

IMPL

CACH

CACSOOOO
CA740000

CMOI ENTER TllE NUMBER OF 1024 BYTE BLOCKS OF MEMORY FOO
DISK CACllE OR NONE. VALID VALUES IN THE RANGE OF 100 - 1024.

I

The entry in YSDF is initially delivered with the operating system

to force the outputting of the cache block# message (i.e., 0000 in

the last four characters). This entry can be easily updated to include

a block number by using sou (System Definition Ut1l1ty). This menu

driver utility allows for manipulating entrys in YSDF so you can

change the Cache name according to your processing n~eds. The last

four characters would be changed to values between 0100 and 1024.

The number of blocks message will be output every time cache is

initialized until you updated the cache entry in Y5DF. I would

reconunend not changing the SDF entry until you have come up with the

optimum size for your configuration.

The cache is now processing as an integral part of OS/3. You need

not concern yourself with cache now that it is processing but if

you do there are conunands for manipulating that processing.

SLIDE 1

The operator may remove DCF (Cache) from the system at any time through

use of the CANCEL command. The cache symbiont, SLi@CM. is cancelled by

keying-in the following conunand at the console:

CA CM,S,N

A message is posted:

CM06 Disk Cache operation terminated.

The memory allocated to the symbiont and the buffer will be returned

to the system for other utilization.

The operator may manually initialize Cache at any time, if is not already

in the system, by keying-in the CM command at the co!'lsole. The cache

symbiont, SLiDCM. is then loaded and proceeds to initialize the cache

via the CMOl message or via the default Y3DF entry. However, unlike

supervisor initialization, the cache buffer is not allocated at the

high end of memory. The MI MM console command will display where the

buffer is located.

- 3 -

SLIDE 3

0 CA Cl1.S.rl

o CM

0 00 c~ REr1ovE ovcu Gnvcu ovcuJ

0 ~~ rn ,\CTJVATE IWC# lnvc11 nvc11]

0 00 CM SH.T

173

e •
The next two conunands are supported on the Model 8 only. Disks

are always initialized to be cache candidates. However, the operator

is provided with the capability to control cache operation to be

selective by device. To inhibit cache activity for a particular

device and remove all cache entries for that device, the following
operator key-in is used.

00 CH REMOVE dvc# (,dvcH, ••• ,dvcH)

The REMOVE conunand must be used for disks that are updated by more

than one Model 8 System so that consist3nt copies of data are maintained
to preserve integrity.

The operator may reactivate a drive that has been removed from the
cache by keying-in the following:

00 CM ACTIVATE dvc# ,dvc#, •.• ,dvc#

The operator may monitor cache operation by keying-in an unsolicited

input message to the cache symbiont in the following format:

00 CM STAT

The following cache statistics will be printed at the console. They

reflect tbe environment since the last code initialization.

CM21 total number disc hits:
CM22 number read hits:

CM23 number writes:

CM24 number search equals:
CM25 number search HI/EQ:
CM26 number READ ERROR

CM27 number READ not cached:
CM28 Search Hit

CM29 number write through:
CMlO number unreferenced IOS:

- 4 -

Internal Processing

The internal processing of code is directly related to the size of

a block within the cache buffer. The block size is defined by

the buffer size as dictated when cache was initialized. A diagram
shows the correspondence.

CACHE BUFFER SIZE

512 TO 1024

256 TO 511

100 TO 255

CACHE BLOCKSIZE

CACHE BLOCKSIZE

MODEL 8

48

24

12

- 5 -

MODEL 4/6

60

30

10

This equates to saying, for example, that if 1024 was selected as

the cache size then every time one 256 byte record was requested,

and was not in the buffer, a maximwn of 48 would be read. This is

qualified by the fact that only one track of datd is ever handled

in one block.

Also, take special note of the situation at the 256 and 512 buffer

size specifications. An example of differences in 511 and 512 show

my point, at 511 you have almost twice as many blocks of half the

size as you do at 512. This situation could show drastic differences

in performance by'only changing the used memory by 1024 bytes.

Note the 511 could be better for interactive processing while 512

is better for batch.

The implementation of this cache in OS/3 was made comparatively

easy because all disk I/O's must come through a common supervisor

call, EXCP instruction which passes control to the Physical I/O

Control Services for action. The commands are then diagnosed to

see if the I/O is a cache candidate. The only candidates are:

o Read Data

o Write Data

o Search, Read, Greater or Equal (Mod 4/6 R8.2 only)

When one of these commands is found the cache symbiont is given

control. If the command is not one of these, the I/O is initiated

as it would if cache was not present. Once the symbiont gets

control it does further diagnosing on the read aommands. The

cache will not process the following types of reads:

- 6 -

111

____ .'...__·

READ COMMANDS NOT CACHED

l) Any Read Count, Key, data - selector

2) Read over BLOCK boundary

3) Read over track boundary

4) Multi-track reads

5) Reads With no data transfer (selector) set

61 Any read greater than SO• of BLOCK size (i.e., if block

size is 12 and 10 records are requested)

Once a reaa command has passed tnese tests it is cached. Th~

cache buffers are searched for a "hit'' on the record(s) being

read. If a hit is encountered. the data is moved to the

users butter area and the command is posted as completed with

normal status. If a hit is not encountered, a block

is read from the disk which contains the records requested. The

appropriate data rocords are moved to the users buffer and his

I/O is posted complete. The least recently used buffer is used

to contain this data. This "miss" is a critical performance

consideration because as the "miss".rate goes up, the disk I/O

increases more than it would without cache. This buffer

also becomes the most recently used and thereby would be

the last of all current buffers to be purged. This

would be true every time this buffer is access, this gives

you an idea of how certain segments could reside for extended

periods of time in cache.

All write data commands are manipulated by the cache symbiont. We

process them in a method we call "write thru" which means we update

a buffer in cache wnich has records being written. This write

thru mechanism is critical to allow for the proper support of read

caching. This says that to allow for reading blocks just written

these blocks must be kept current in the cache as well as the disk.

After this checking the write is issued. If an error occurs, then

the cache buffer is purged.

- 7 -

l
t

I
I
I

I

The search read greater or equal conunands are supported on the

Hodel 4/6 on disks 8417/19 unde~ R8.2. Only single track searches

are allowable, and even if the buffer size is not enough to hold

one track a separate buffer is used initially and then broken up

accordingly. The track is read and searched and the data is returned

or not accordingly.

This is a new function which during testing is showing a high
statistics hit rate, we would appreciate all feedback on its effect

on performance. Appropriate for applications which do excessive

PERFORMANCE

The improvement from caching in throughput or response time is

appl4cation dependent. Job and/or function execution times will

generally decrease exponentially as the cache size increases.
Batch users, which tend to process sequentially, will generally

have a higher hit rate for a particular cache than interactive
users which tend to process randomly. The reverse ii al10 true.

Therefore, one cache size will not optimise for both but one size

will give the best overall system performance.

searches. The performance you will receive from the OS/3 cache is hard to

predict but easy to document. The use of varied cache buffer sizes

while doing daily production will prov4de data to tell you which

- 8 -

size works best. Use of the cache statistics (CMSTAT), job execution

times and response times will guide you in your decision. Special

emphasis should be given to sizes near the block size definition

boundaries. These boundaries could show distinct differences in

performance.

Another consideration is to vary your cache size with your shifts.

Using a different size for day processing and another for night.

Especially if more interactive processing is done during the day

or vice versa.

By keeping logs for a few weeks or days you will be able to time

your system performance.

There are many other techniques used to achieve performance gains

on OS/3, these include modifying programs to use large block sizes,

careful file placement to reduce seek time and adding extra channels,

control units or disks.

However, these techniques require extensive and costly lllOdifications

to your system and may not be feasible. The OS/3 Disk Cache, on

the other hand, provides an easy to use free mechanism to increase

the performance of your System 80 without any changes to your

system hardware or user programs/applications.

I hope my presentation has shed light on the OS/3 Disk Cache and

that you will be able to use it to increase your productivity.

Thank you.

'

l
l
r

