
~~ me ~.,Leb
~ ~
&~~
~~

1J~a7~
~~~ 
,£J~ "&u./~~ 





1. 

~ TO le 
LOCATION. 

CARBONS: 

I E:a.· 
~ 

tNTER•OFFICE MEMORANDUM 

L--vN TU 
. I l~ /AcV 

. '(-

~ilbert Dy FFIOM: Roger Wainwright o~r~ 

H.O. - June 6, 1980. · Vancouver Branch LOCATION & CATE: 

oePARTMeNT: Customer Support Services 

SUB..IECT: OS/3 MIRAM 

Some considerable while ago Owen Townsend· asked me if I could get 
him a working paper on OS/3 MIRAM. Well here it is at last • 

. Because it's dated 1/6/78 there may be some inaccuracies, but if 
you~re looking at the thing.from the point of view of getting a 
better insight than can be gleaned from standard manuals, I have 
no doubt it'll serve a useful purpose. 

(I'm assuming that you won't be coding an assembler program to use 
the imperatives since, as far ·as I know, the assembler interface 
to this access method is not currently supported;) 

/sww 
Encl. 





NO: 854 

\ 

OS/3 WORKING PAPER 

COMPONENT: AUTHOR: 
Multi Indexed Random kcess Method (~IRAM) Goldberg,·willis. 

COMPONENT NO: !·· PATE: : 
1/6/7~ . 

SUBJECT: . REV, . , 
Component Product Software ,Description . 1 . 

. SECTION.NO: 

SPECIFIC CARBONEES: 
. 

. 
·• 

'--=-AfRACT ==:· • "e;-= .• 
• 

This paper describes a separate new disk access method for OS/3. This 

method is specifically designed to inclu~e support for.~NS'74 COBOL 
. 

NO: 

. (relative and indexed I/O) and also to support ·the IRAM file structure •. 

.1>.pp~ndix A - glossary of terms 

Jppendix B - DTF layout; DSECT label defi.-nitions; -DTF field definitions 

Changes in this revision are denoted by a vertical line ·in the right-hand 

margin. 





.. 1 

=-- ---1.0 

1.1 

1.2 

2.0 

3.0 

4.0 

4.1 

4.2 

4.3 

4.4 

4 .4 .1 

4.4.2 

~~-~-0 
5.1 

5.2 

6.0 

7.0 

8.0 

9.0 

lD.O 

11.0 

12.0 

13. 0 

\ COMPONENT: 

TABLE OF CONTENTS 

INTRODUCTION 

Scope 

COMPONENT DESCRIPTION 

HARDW JIRE REQUIREMENTS 

INTERFACE REQUIREMENTS 

Related Software components 

Data Base 

Operator Interface 

User Interfaces 

Declarative Macro 

Imperative Macros 

FUNCTIONAL DESCRIPTION 

File Format 

Function and Subroutine Procedures 

PERFORMANCE 

CCMPATIBILITY 

CONVERSION 

DOCUMENTATION AND SUPPORT 

RESTRICTIONS 

MAINTAINABILITY AND RELIABILITY 

RELATED DOCUMENTS 

STANDARDS DEVIATIONS 

APPENDIX A 

::~:--APPENDIX B t. .•• --

GI.DSSARY 

DTF LAYOUT 
-c::=-

I MODULE:.~ 
I 
I 

I ' 

I PAGE: i 



------------------------



• 
1.0 

·=- e 

. SOFTWARE · 
· DOCUMENTATION MODULE: IPAGE: COMPONENT: 

INTRODUCTION 

MIRAM (enhanced IRAM) provides additional facilities beyond 

those of IRAM, which is described in Working Paper #675. It 

is a complete disk access.method, based on data records that 

do not move from original plac·ement location; and based on 

direct addressing by use of file relative record number. 

l 

1.1 Scope 

·- -/C'::::::a,W 
-.:.:--:-

MIRAM is a comprehensive disk access method in which a· 

single processor provides the essential operations· for 

SAM, DAM, and multi-key ISAM processing; including capabilities 

for deletion, variable length records and duplicate keys. 

The processor will be.able to process files created by IR.AM, 

but programs which interface with IRAM will have to undergo 

changes in order to interface with MIRAM due to its new 

declarative and imperative macro architecture. MIRAM will 

be able to create files which can be accessed by IRAM as 

long as the resulting files involves no functionality which 

IRAM does not provide (e •. g. deletion, multi-key, variable 

leng,th records). 

1.2 Purpose 

I·-· 

MIRAM is developed for the support of disk access fo~ RPG 

in the IBM' System/3 manner, for ANS'74 COBOL relative and 

indexed files, and for projected use by SUL and Library 

handling progr~s. 



2.0 

-

COMPONENT: MODULE: I PAGE: 2 

COMB:?NENT DESCRIPTION 

A single processor handles all functions, permitting the usere 

to intermix input and output, sequential and random~ keyed 

and unkeyed operations. Within a single job, the user can 

employ all functions • 

•.. .. 

The file may be used for strictly non-indexed purposes, for 

indexed and non-indexed combined, or as an index facility 

alone, independent of data. Up to five separate ~ndex 
. 

structures can be requested. Key sizes may range from 

1 through 80 bytes. Keys may be individually specified 

as allowing for duplication, and allowing for change during 

update. A duplicate key series is returned sequentially 

in FIFO order (first in first out). 

Means are provided to es~ablish a position in the file, from 
e 

which sequential retrieval can be requested. Once established, 

this position can be disestablished, changed, or held constant 

during digressions into random operations. The "held" position . 

is unchanged by output, ·update, delete, and random retrieve 

with hold. 

The position is changed by success (or undefined by failure) 

during operations of ·select, sequential retrieve, and random, 

retrieve without hold. 

-----. ,, - ·- ---



UNIVAC . 
OS/3 

~- -
SoFrQA~~ 

DOCUMENTATION COMPONENT: MODULE: IPAGE: 

When the user elects to have variable length records, the 

first 4 bytes of his record must be dedicated to control 

purposes. Bytes 1 and 2 must contain the record size in 
-binary. For example, a value of 44 would· leave 40 bytes 

for user data. 

If the user wishes to employ the delete facility or inter

mix keyed and unkeyed records, he must call for a record 

control byte (RCB). For variable length records, if the 

RCB is elected, byte 3 of the record would be used by the 

system as the RCB. For fixed length records, if the RCB 

is elected, the user must predicate his data buffer size 

on the one byte larger record slot size. However, his 

specification of record size is not to include the RCB. 

MIRAM provides a new declarative macro and a new set of 

record handling imperative macros. The imperative macros 

are more specific than those of IRAM, because they do not 

depend on mode settings placed in the DTF. The basic 

operations are the same as before, with deletion added. 

• Output a new record • 

• Input an existing record • 

• Select a position for sequential. 

• Update an existing record. 

• Delete an existing record. 

The index-only facility can be used to force several index 

3 

entries to point to a single data reco~d, or to cause indexing 

to a data record not containing the key(s) on which it is 

indexed. The index-only functions operate only on the index 

entry, which consists of the key and 3 byte pointer. 
.I 



UNIVAC . 
OS/3 

-· c:::::::: 

COMPONENT: MODULE: IPAGE:4 

Output 

When deletion capability is elected, the processor has new ~ 

functionality for the random output of new records. If 

the user directs a record to a point beyond current f i1e 

end, any resulting gap will be filled with void records. 

If he directs a record to_ point short of file end the 

operation will be rejected if a non-void record is found 

at that point. 

In MIRAM, the user may output records to a file that con-

tains index records or index entries, directing that they 

not be indexed. Such records will be marked as unkeyed. 

Either keyed or u~eyed records may be directed to selected 

positions, or to end of file. There is a switch that can 

be set to cause a follow up to.a record output that in-

terrupts sequential inp-\lt. Foll~w up consists of re

retrieving the last _retrieved sequental record. 

If there is keyed output, there will be a report as to the 

duplication of keys that has resulted. 

For output, the new record must always be provided in a 

work space. After output, the relative record number of 

the newly placed record is avai·lable to the user. 

Input 

The input macro provides for choosing random or sequential, 

and keyed, index-only or unkeyed. There is also a choice 

for random with-hold, which will prevent the loss of a 

current sequential position. If keyed or index-only inpu~ 

is used, there will be a report stating that the next record 

of the key set has/has not a duplicate key. 

.t 



~=~A 

--- . 

··=--e ··--·-
· ··--

s~~~~~ft~ 
DOCUMENTATION MODULE: I PAGE: 5 COMPONENT: 

The user is required to forecast the use of the input 

record: for information, for changes, or for total 

replacement. For total replacement, the record will not 

be moved from the buffer to workspace. When "inf~rmation" 

is forecast, update or delete is not allowed to follow. 

Recognizable void records are bypassed in sequential1 

treated as no-finds in random. 

A successful random-without-hold can be xollowed by 

sequential progress to records beyond. 

Select 

New functionality has been added to the selection process. 

BOF and EOF are now available. Other specifications are 

equal (EQ}, greater than (GT), and greater or equal (GE). 

Failure to satisfy the request will result in a no-find 

report, whether caused by an empty file or other reasons. 

If the request is select-by-key or index-onlY, success will 

be accompanied by a report stating that the record beyond 

has/has not a duplicat~ key in the set referenced. 

By a special means, the user may select by key, using only 

the n leftmost bytes of argument, where n is less than 

declared key size. 

Changing the key of reference is done thru the SELECT macro. 

Update 

MIRAM update:of keyed records is considerably more complex 

than IRAM, since keys are permitted to change. This may 

require that index adds and deletions be effected. 



-· ~ 

COMPONENT: MODULE: PAGE: 6 

Variable records are permitted in MIRAM. Record size may 

be changed during update, but not to exceed slot size, nor 

to fall below the size that will encompass all keys. 

Delete 

The function to delete is new. It consists of marking 

the record as void, and of also voiding any index entries 

pointing to it. 

Erase 

The function to erase is new. The user can erase an 

entire file, thus simulating the INIT specification on 

the //LFD job control statement. In addition, for files 

which contain only unkeyed records, the user can erase 

all records starting with a specified relative record 

number. 



UNIVAC · OS/3 

····--·~·o -· 

.. -~ 
f.'~-=-·-

sBFrQ~~E 
DOCUMENTATION COMPONENT: 

HARDWARE REQUIREMENTS 

MODULE: I PAGE: 7 

A MIRAM file must reside on from one to eight disk packs 

of the same type. 

A program using one or more MIRAM files (and in addition 

any IRAM files) must be linked to one of the two resident · 

processing modules. There is the "maximum" module which 

will perniit all functions, and also a "non-indexed" 

module which can be linked in when index operations will 

not be performed. 

D3$Mlll - maximum module 

D3$M~~~ - non-indexed module· 

For each file, the program must provide at least the 

following: 

Register Save Area 

DTF Area 

Record Work Area 
. 1 

Key Argument Area 

Seek Address Area2 

Contiguous Buffer Area: 

Min index buf fer1 

Min data buffer 

72 -
(approx. 400) 

SLOT SIZE 

LARGEST KEY SIZE+3 
(6 MINIMUM) 

4 

1. Required only if keyed or index-only operations are to 

be performed. 

2. Always required. 

3. All buffers must be multiples of 25·6 byt~s. See BFSZ 

keyword description for minimum value determination. The 

buffer areas must start on a half-word boundary. 



~== 
~~ 

r.:::::::. ........ -

4.0 

4.1 

COMPONENT: MOD UL - 'J PAGE: s 

INTERFACE REQUIREMENTS 

The MIRAM processor system utilizes OS/3 Tcansient Managemen. 

for activation of selected processing functions, and the 

System Access Tec~ique (.SAT) for all I/O requirements and 

to maintain a device independent mode of operation. 

All user interfaces are maintained through the DTFMX 

(Define the File Multi-Index.l. declarative macro, and 

· selected imperative macro instructions. These interfaces 

are detailed in Section 4.4 • 

. Qpera tor" 'C:ommuni"cation is mai~tain~d through output of 

error and status information.to the operator console and/or 

system message log. 

Related Software Cbmponents 

MIRAM requires file initialization and termination procedure49 

supplied v~a the file OPEN and CLOSE transient facilities. 

'Ihese functions are initiated by the users OPEN and CLOSE 

imperative macro instructions. 

Linkage to the SAT processor is provided through the DTF 

table: the address of the SAT processor is established 

during file initialization. 

: 

4.2 Data Rase 

All files to be accessed by the ~processor system must 

have been created by the MIRAM Qr IRAM processors. Files 

created under any other OS/3 access methods are not compatible 

with MIRAM processing requirements: MIRAM files are not 

accessed through other OS/3 access methods, ex~ept for IRAM~ 

and then only if the file was created with functionality . 

provided by IRAM. 

~--._ .. ~L, .... '" 



=a --
4.3 

4.4 

4.4.1 

JJV""UflL.11 In I .L Vl1 vvr1r vn i;;.n 1 • I.,.., ...... • 

Operator Interface 

Operator communication will be limited to the display, by 

the MIRAM' system, of appropriate error/status messages. All 

corrununication is supplied by the OS/3 OMS message handling 

routine. These messages are outlined in the OS/3 User 

Guide (UP-8068, current version, Appendix· B). 

User Interfaces . 

Declarative Macro ( DTFMI) 

The DTFMI macro instruction is provided for defin.itio·n of 

file characteristics. The following list outlines all of 

these keyword parameters, and detailed descriptions of each 

keyword follow it, with additional keyword spellings provided 

in parentheses. (Appropriate PNOTE' s will be generated if 

errors are detected in keyword processing). 

: 



t;::.:::. 
~ 

~·····-

COMPONENT: 

Format: 

LABEL OPERATION 

filename DTFMI 

*Additional spellings are provided. 

MODULE: 

OPERAND 

PAGE: 10 

EXC 

EXCR 

SRDO 

ACCESS = SRD 

,BFSZ=n* 

SUPD 

SADD 

[ ,EOFA=symbol] * 
[ ,ERRO=symbol] * 
[,INDA= symbol] * 
[,INDS=n] * 

,IOAl=symbol * 
[ , IOA2=symbol] * 
[ ,IORG= (r)] * 
[,KARG=symbol] * (l . 
[,KEYn=E 1 [1 J 1[fo:~>[p~<; 
[,LOCK=NO] 

[,MODE= {~}] 
(!OPTN=YES] * 

CPROC1~}] 
[,RCB=NO] 

[,RCFMs ~}]* 
,RCSZ=n * 
,SKAD=symbol * c, VMNT=ONE] 

[, VRFY=YES] * 
[, WORK=":!ES] * 



-OS/3-. ( DOCOMENTATION I COMPONENT:. JMODULE: I PAGE: 11 

• 

I- I 

PARAMETERS: 

ACCESS=EXC - Exclusive use of the file is requested. No other 
access of the file will be granted once it is dedicated 
to the requesting DTF. 

EXCR - Exclusive Read use of the file is requested. 
declares itself as the exclusive update, add 
the file but will allow it to be shared·with 
performing read functions. 

The' DTF 
owner of 
others 

SRDO - Shared Read-Only access to the file is requested. The 
.DTF declares itself as a reader ~ut will only tolerate 
other readers to have access to the file. 

SRD - Shared Read access to the file is requested. This 
declaration identifies an .intention to perform only read 
access to the file. It indicates a willingness to share 
"the file with any other type of access (read, update or 
add). 

'· / 
SUPD -. '-

but 
can 

c::.~ 1. j 

"··--. ! 

Shared Update access to the file is requested. This 
specification identifies an intent to update the file 
declares that it will not be extending it. The file 
be shared by other reader DTFs. 

SADD - Shar-ed-Add- ac.cess -to the -file -is-reque-sted. 
declares an intention of extending the file. 
file may be shared.with other readers. 

. 
The DTF 

The ._ .. j 

I 

I 
' ' 
j 

I 
i 
.I 

: BFSZ=n 
. (BLKSIZE 

BKSZ) 

/1 I . _, 

- Specifies the size of the data buff er in the 
where n is the size, in bytes. This keyword 
required. Size must .be at least 256 as well 
mu~tiple of 256. 

file, 
is always 
as a 

The minimum value can be determined as follows: 

• If the slot length is less than or equal to 256 and 
evenly_ divisible into 256, the size is 256. 

• If the slot length is greater than 256 and a multiple 
of 256, the size is equal to the slot length. 

• If the slot length is not evenly divisible into 256. 
and not a multiple of 256, the size can be calculated 
by adding 255. to the slot length and rounding f:'f_)to 
the next multiple of 256. Q 

EOFA=symbol -
(EOFADDR) 

Specifies the address of a routine the user has 
coded to handle end-of-data for a sequential by key or 
consecutively processed file, where symbol is 
the symbolic address to which data·management transfers 
control on sensing the end of data. ~ ----



COMPONENT: MODULE: PAGE: 
12 

PARAMETERS: (Cont'd) 

ERRO=symbol - Specifies the address of the user's error-handling ro~ne 
(ERROR) to which Data Management transfers control for all 

conditions of error or exception to exact performance of 
the requested function. When Data Management transfers 
control, filenarnec contains information on the reasons 
for the error. (See UP-8068, Data Management Oser Guide 
Table B-1 for error messages, and T.able B-3 under DTFIS 
for significance of bits in filenameC). If omitted, 
control returns to the user inline. · 

INDA=symbol - Specifies the.location in main storage in which index 
blocks are processed during keyed operations, where 

(INDAREA) symbol (address) is the location. Must be half-word 
aligned. The length of the area is specified by the 

INDS=n 

(INDSIZE) 

INDS keyword. This area must immediately precede the . 
p_rim~;:-...YJLO_Q..uf_fe~jI_QAJ..l- In order for index operations 
(keyed or index only) to be permitted, all of the index 
related keywords must be specified: INDA, INDS, KARG, and 
KEYl. If any are missing, it will be assumed that index 
operations were not intended to be employed, and no index 
operations will be permitted. (See KEYn k~yword for 
single exception to this rule.) 

Specifies length of index area in main storage (INDA 
keyword), where n is the length, in bytes. The leng~ 
must be at least 256 bytes and in addition, a multipfr' 
of 256. Required for all index operations. 

IOAl=symbol - Required to specify the location of the I/O area where 
symbol (address)- is the location. Must be half-word· 

(IOAREAl) aligned. Must be. greater than or equal to 256 bytes, 
a multiple of 256, and consistent with the BFSZ speci
fication. Must immediately follow the index buffer 
(INDA) if it is specified. Must immediately precede 

IOA2=symbol -

(IOAREA2) 

the secondary I/O buffer (IOA2) if it is specified, unles 
index operations are not to be performed.· A file which 
can perform index operations must have all buffers con
tiguous. 

Specifies the location of additional I/O area, where 
symbol (address) is the location. Must also be halfword 
aligned and of the same size as the required area specif. 
by the IOAl keyword. If index operations can be per
formed, this buffer must.immediately follow the primary 
I/O buffer (IOAl} •. Use of a secondary buffer.is only 
perrni tted wh~~ perf orrning segue·nti.al output (keyed or 
unkeyed) or unkeyed sequential input operations • 

............... ...._.. • .1l ........ . 



=• -- IORG=(r) 
(!OREG) 

S8F;~N~~ 
DOCUMEN~ATION COMPONENT: MODULE: I PAGE: 13 

Required to specify the general register to be used to 
point to the current record when the user is not 
referencing records in the work area, where r is the 
number of general register. Registers 2 through 12 are 
available. Either IORG or·woRK must be specified, but 
not both. (If both specified, WORK will be used). 

KARG=symbol - Specifies the field in the user's program where he will 
(KEYARG) place the keys to effect retrieval of records, where 

symbol (address) is the location of this field. The 
length of the KARG area is equal to largest key length 

KEYn= (s, [ 1 ;l~s [b~}Tmf ~~~}f)ed for all index operations. 

LOCK=NO 

Specifies one of up to 5 keys for an indexed file 
Cl ~n ~5). Permitted size(s) is 1 through 80 bytes. 
Location (1) specifies the number of bytes preceding 
the key. If location is omitted, ~· assumed for fixed 
records, 4 for variable. DUP specifies that duplicate 
keys are allowed (NDUP indicates they are not allowed 
and is the default). CHG specifies that key can change 
during update (NCHG indicates it cannot and is the de
f~ult.) Required for all index operations unless user 
wishes to "accept" the key specifications that were 
employed to crea~e the file. In that case, no KEYn 
specifications should be present. 

- Specifies that the file lock applied to a lockable file 
at OPEN time be -set for read-only and that no output 
functions be allowed to the file. If omitted from the 
DTF for a lockable file, a write-only lock is set, and 
no other task may have access to the file while it is 
open under this DTF. Ignored if specified for a non
locable file. 

(A lockable file is one which has been assigned the 6-
character prefix to the file ID, using the LBL job contro 
statement). 

MODE = SEQ - DTF is set for sequential operations should corresponding 
positional parameter be defaulted on OUTPUT or· INPUT 
macros. (Default case). 

RAN - Random operations 
RANH - Random .. with hold (if appropriate) operations 



.·::-..::.. 

UNI.VAC 
. 0Sf3 . 

OPTN=YES 
(OPTION) 

ION COMPONENT: MODULE: 'PAGE: 14 

- Specifies that the sequentially processed file is an ~ 
optional file: one the user anticipates wil.l not in-• 
variably be present for every program execution. When 
specified for file not allocated to a device by the job 
control DVC statement, transfers control to the user's 
EOFA routine on the first issue of an input function or 
inline and with no error upon issuing an output function. 

PROC = KEY - DTF is set for keyed operations (index and data) should 
corresponding positional parameter be defaulted on 
OUTPUT, INPUT, or SELECT macros. (Default case) 

RCB=NO 

UNK - Non-keyed operations (data only) 

INDO - Index only operations 

- This specification only applies to files which are 
being newly created and it indicates that each record 
is not to contain a record control byte. Therefore, 
thel5ELETE macro will not be permitted. (The default 
is thaLeach-record will contain an RC.B...) At close 
time, the format label will be marked to indicate 
whether or not the RCB is present. For existing files, 
the format label indication will override this DTF speci
fication. The RCB is also necessary in order to ere~ 
a mixed file (e.g., one which contains unkeyed recor-., 
as well as keyed or index only records). . 

RCFM=FIX 
(RECFORMl 

- Specifies that fixed length records will be used. This 
is the default case should the keyword be omitted. 

VAR - Specifies that variable length records will be used. Th 
record size specification will pertain to a slot size 
where the first ~ bytes of the slot are overhead, and 
first data byte is the fifth of the slot. 

RCSZ=n 
(RECSIZE) 

- Specifies the length of each record, where n is the leng 
measured in bytes. This keyword is always required. 
(If variable records, specify the maximum size). 

The record size specification should include the 4 byte 
overhead required for variable length records but should 
not include the l·byte RCB required for the delete or 
intermix (i.e., keyed and unkeyed records) capabilities. 
(If the RCB is requested along with variable length 
record support, the third byte in the 4 byte overhead 
will be used as the RCB.) 



• 

~f-··--:• ·-

DOCUMENTATION COMPONENT: MODULE: PAGE: 15 

SKAD=symbol -
(SEEKADR) 

Specifies the location in the us~r's program into which 
he loads the relative disk address for use in· processing 
files by re la ti ve record number. The form of the record 
address is a 4 ~yte value. ~he first record is relative 
record il. This keyword is· always required. 

VRFY=YES - Specifies that Data Management is to check parity of 
(VERIFY) 'output records. after they have been written to disk. 

Necessarily increases execution time for output functions 
by about one rotation period per block. If bad parity 
is detected, Data Management set~ the output parity 
check flag (byte 2, bit 2) in filenameC and transfers 
control to the user's error routine or to him inline. 
If emitted, no output parity verification will be done. 

VMNT=ONE - Specifies that the file is to be processed with only one 

WORK=YES -
(WORKA) 

·volume online at any time. A file which is created in 
this manner must be processed likewise and files can 
only be processed with one volume online at a time if 
they were created that way. Non-keyed random operations 
will not be permitted. 

Specifies to Data Management that the user will be 
processing input or output records in a work area and 
not in the I/O area. The IORG Keyword cannot.be 
specified when the WORK ·Keyword is specified. The 
address of the work ~ea· 15 -specified with each issue 
of the appropriate macro. Required for all output 
arid keyed update and delete functions. 



-.....-.U
0
N-.-.--. IV(A~C-----.-------..-.:;;:~~------- -- --
S 3 COMPONENT: MODULE: I PAGE: 16 

4.4.2 

4.4.2.l 

Imperative Macros 

All functional capabilities are initiated by issuing the 

appropriate imperative macro instruction. Imperative macros 

are supported to perform file initialization and termination, 

I/O processing, and dynamic file table modification. All 

. error and exception conditions are reported to the user as 

defined by the ERRO keyword parameter. 

OPEN Macro 

FORMAT: 

OPEN filename-1 
(1) 

1 

positional parameter 1: always required. 

REPLIES: 

Reports of _unsuccessful completion are: 

Invalid DTF 
Invalid.DTF specification 
Illegal Record Size 
Illegal Block size 
Illegal· _key specifications 
Open issued to an opened file 
FCB not found/invalid 
Format - 1 label not found 
Partition invalid for specified DTF 

~ •••• , filename-n] 



·········• 
:=::-W4.4.2.2 

=-=--!::::;;:: 

~~~;~~~b 
DOCUMENTATION COMPONENT: MODULE: PAGE: 17

CLOSE Macro

Upon completion of file processing, the CLOSE macro is

issued to complete and/or terminate processing of ·the

file. All standard file labels are created or updated.

~urther access of the file is inhibited.

FORMAT:

[label] CLOSE fi m>ame- l [•.... 'f ilename-n.J
1

.positional parameter 1: always required

REPLIES:

Reports of unsuccessful completion are:

NONE

FEOV Macro

The FEOV macro provides. the capability to terminate processing

on the current volume of the file for files processed with

only one volume online at any time (see VMNT keyword parameter)

If the FEOV macro is issued for a file with all volumes mounted

the macro is ignored. -·

FORMAT:

~abel] FEOV

positional parameter 1: always required

filename
(1)
1

When FEOV is issued, the current volume is closed and a mount

message is i·ssued requesting that the next volume of the file

be mounted. The new volume of the file is opened for processir

subsequent macros continue processing on the new volume.

4.4.2.4

COMPONENT: MODULE: I PAGE: 18

REPLIES:.

Reports of unsuccessful completion are:

Hardware error accessing FCB or ERB

OUTPUT Macro

The OUTPUT macro provides for placement of a new record

in a file.

OUTPUT filename
(1)
1

,

positional parameters 1 and 2: always required

positional parameters 3 and 4: The concept of a •1ong-form"

and "short-form" macro will be introduced here. The long-form

implies that certain optional parameters are a11 specified

(e.g., fqr the OUTPUT macro, parameters 3 and 4). The shol

form implies that none of these special optional parameters

are specified. If a macro has more than one long-form para

meter, and if one is specified but not all, the macro will not

be expanded. If the short-form is employed, the defaults will

be obtained from indicators within the DTF. These indicators

can be set by use of the PROC and MODE keywords of DTFMI.

They can be changed by use of the PROC and MODE keywords of

the APPLY macro. Use of the long-form of the macro.will also

change these indicators in accordance with the long-form

parameter specifications.

UNIVAC ·
OS/3 •

····-·a ·-.
sBF~~ft~

DOCUMENTATION COMPONENT: MODULE: PAGE: 19

• UNK

• KEY

• INDO

• SEQ

• RAN

• RANH

record is not to be indexed. {Primarily for files
without keyed records or index-only entries, but if
the RCB exists, may be us.ed to place a non;..indexed
record in a file which contains keyed records and/or
index-only entries.

record is to be indexed according. to the key(s) of
the file specification. There will be one index
entry {which points to the record via a relative
record number} for each key in the file.

an index entry {which consists of a key and 3 byte
pointer} will be added to the file. Both the key
and pointer must be supplied. (Positional parameter
4 is ignored). ·

record is to be placed at end-of-file and its record
number made available to the user.

record is to be placed in a relative slot according
to the record number given in SKAD. However, this
operation is sensitive to the presence or absence of
the RCB. When present, an a ttemp.t to overlay an
existing record will be rejected, with an error report.
Also, placement beyond file end will cause any gap
created to be filled with void records. When absent,
these two servi~es are not available.

(same as RAN specification}.

-···---

-···-

COMPONENT: MODULE: PAGE: 2

The execution of OUTPUT does not affect the current se-
9

quential position or current reference key.

If the user has caused setting of the OUTF action switch

(see APPLY macro), there is a follow up to the new record

placement; consisting of reverting to the current sequential

record and making that record available again.

REPLIES:

Reports of unsuccessful completion are:

Illegal record size
Illegal key value
Overlay of existing record (if record control byte pres
Undefined sequential positions, and OUTF requested
Insufficient file space

If the operation is successful, stat~s will note the keys

where legal duplication has occurred. Also, the record

number (of the new record} will be placed in the seek ad.ess

field.·

=~-=- tt.4.2.5

s8F~QR~~
DOCUMENTAiION COMPONENT: MODULE: I PAGE: 21

INPUT Macro

The INPUT macro makes a record available for processing. It

also permits the user to state his intentions with.respect

to subsequent processing.

FORMAT:

[label J . INPCT filename
(1) J

[

workarea
on
~ 1

positional parameter 1: always required

positional parameter 2: if specified, the record will be moved

from the buffer to the area; otherwise, the record will be

pointed to, in the buffer, by a specified register. Must be

specified if there is intent to update a keyed record or when

retrieving via the INDO specification.

positional parameter 3:. optional specification; default is INF

~ INF

• MOD

• REP

indicates an intent to retrieve the record
for information purposes only; no intent to
update or delete the record.

indicates an intent to modify the record in part.
It is assumed that the user wants to inspect the
record before changing it. Workarea or the I/O
register will be employed according to user
specification. ·

indicates an intent to replace the entire record.
The record will not be moved into the workarea, as
it is assumed that the user already has a replace
ment in the workarea which cannot be overlayed:

positional parameters 4 and 5: long-form parameters {see
positional parameters 3 and 4 under OUTPUT macro des
cription)~

• UNK

• KEY

calls for unkeyed retrieval

calls for keyed retrieval. Record is retrieved
based on a specified key argument.

--- -----UTT.(l Qw
0::,/ j.

--r::::.-=:.

·===

DOCUMENTATION COMPONENT: MODULE: I PAGE: 22

• INDO -

• SEQ

• RAN

• RANH

REPLIES:

calls for retrieval of an index entry (key and ~
pointer) based on a specified key argument. ~

calls for a sequential access based on current
sequential position (keyed sequential if KEY
or INDO specified1 next higher record number if
UNK specified). Current seq~ential position will
be modified.

calls for a random access per an argument provided
by the user (in KARG for KEY or INDO; in SKAD for
UNK). Current sequential pos~tion will be modified.

sqme as RAN specification except that the current
sequential position will be held (not modified).

Reports of unsuccessful completion are:

Required work area not provided
Record not found
End of file reached
Sequential position undefined.

If the operation is successful, status will show whether tt'
or not the s~cceedinq record has a duplicate key in the

current reference set-. Status will also show whether or not

the acquired record is.a keyed record.

The record number (of the acquired record) will be placed

in the seek address field.

,::::>=::1 - , _ __;LI

•
111\. II\ I

=• = 4.2.6

SoFtQ11~~ DOCUMEN~ATION COMPONENT: MODULE:

SELECT Macro

The SELECT macro prepares for mak.ing records available in

sequential order by key or by record number. It can also

be used to change the key of· reference.·

SELECT

\ ~ilename} (1) J
l.

EQ
GT
GE
BOF
EOF

)

positional parameter l: always required

positional parameter 2: required unless KREF specification

in positional parameter 3 is used (in which case, positional

parameter 2 is optional).

• EQ

• GT

• GE

• BOF

• EOF

a no-find is returned unless an equal-key record
is found, or a non-void record is found at the
given location.

a find is reported if a non-void record can be
found with value greater than the given key or
record number.

a find is reported if either EQ or GT is satisfied.

for UNK, operates as a GE request with SKAD=l.
For KEY or INDO, operates as a GE request with
KARG=i.

for UNK operates as a request for highest numbered
record; for KEY or INDO as a request for highest
keyed record or index entry~

positional parameter 3: not required.

• PKEY selection is based on n leading bytes of the
KARG space, n < key size. When this parameter is
used, register ~ must be preset with the value of

·n. Cannot be specified in conjunction with the
UNK specification. If not specified in conjunctic
with KEY or INDO, the full key ~ill be used.

___ , Jl I lfl 11• ,

-os13- . . DOCOMENTATION ··--- COMPONENT: MODULE: PAGE: ~'-

• KREF

.•

indicates that the key of reference is to be
changed. Register ~ must be preset with a tt
value n, where l~n~S. In addition,. n must
not exceed the number of keys in the file. This
specification can be used in conjunction with
positional parameter 2, if first, a key of
reference change and then, a sequential prepar-
ation is desired. ·

positional parameter 4: long-form parameter. (See posi~ional

parameters 3 and 4· under OUTPUT macro description).

• UNK

• KEY

• INDO

REPLIES:

preparation is to be based on relative record
number. Except for BOF and EOF, preparation
is further·based on the value given in SKAD.

preparation is
reference key.
preparation is
given in KARG.

to be based on the current
Except for BOF and EOF,

further based on the value

(same as KEY specification)

If the select operation is unsuccessful, a no..;.find is re-

ported •. The current sequential position becomes undefined,

precluding a following sequential input. (Reference to an
-

empty file also produces the no-find). If the operation is

successful, the record --number (of the record pointed to) will

be placed in the seek address field, and for a SELECT which

employs the index, the key (of the record· pointed to) will be

placed in the key argument field.

i=a4· 4.2. 1 -··

, r.::.A
f§J94 4 2 8 ·- . . .

DOCO~iENTAT I ON I COMPONENT: I MODULE: I PAGE: 25 .

UPDATE Macro

The UPDATE macro causes the most recently retrieved record

to be updated.

FORMAT:

~abel]
\

workarea}
(g)
. jJ

\

filename} .
(1)
l

UPDATE ,

positional parameter 1: always required

positional parameter 2: workarea must be used in all cases
.

where the existing record is keyed or an index-only entry •.

REPLIES:

Reports of unsuccessful completion are:.

Record was obtained for information
Illegal record size
Illegal key value

DELETE Macre

The DELETE macro is usea to void the. record most recently

acquired. Marks the subject record as void, and voids any

index entries·pointing_to the record. Cannot be used for

files without the RCB.

DELETE lfilenamef
(1)

. 1

positional parameter 1: always required

REPLIES:

None

4.4.2.9 ERASE Macro

The ERASE macro is used to erase an entire file or to eras~

part of a file (which contains only non-indexed records)

starting from a given relative record number. The RCB is not

required to perform these functions.

FORMAT:

[label]
positional

positional

• ALL

• PART

REPLIES:

ERASE \filename , {~ I. (1) . PART
l

.
parameter 1: always requi~ed

parameter 2: always required

causes the entire file to be discarded. Can
be used on file which contains any kind of
record (e.g., keyed, unkeyed, index-only).

Causes all records, beginning with a user
specified record number ·c in .SKAD) , to be
discarded. The record, which corresponds
to the record number in the seek address
field, and all records whose record numbers
are greater in value, will be discarded.
This form of the ERASE macro can be issued
against a file which contains only unkeyed
records (i.e., no keyed records or index
only entries).

Reports of unsuccessful completion are:

Invalid Macro error (if ERASE PART is specified
and file contains keyed records or index entries).

·-----------.. ---·-· ----· ·- .. - ... _ ..

-os13- ·I DOCUMENTATION \ COMPONENT: I MODULE: I f'AGf.: 27

~ .4.2.10

. .

APPLY Macro

The APPLY macro is used to apply changes to the nTF, which

will have an effect on subsequent processing. The changes

will be effective until changed by another APPLY macro call.

Code will be generated . line at assembly time. in

FORMAT:

~abel] APPLY filename ., J IORG= WORK=
(1) OUTF=
1 l MODE=

P~OC=

positional parameter 1: always required

positional parameter 2: always required

• IORG= (r)

• WORK=YES

• OUTF=YES

• MODE= { ![}

Will either change the I/O register
being employed or change the DTF
from workarea to I/O register mode.
{See IORG keyword in DTF description
for additional information).

Will change the DTF from I/O register
to workarea mode. (See WORK keyword
in DTF description for additional
information).

Will set an indicator such that following
an add to the file, the last record re
trieved will be read back in order to
duplicate the conditions which existed
before the add. (OUTF=NO will turn off
the indicator) •

Will charige the DTF indicators which
are used for the short-form macros.
(See MODE keyword in DTF description, anc
positional parameters 3 and 4 under OUTPt
macro description) •

Will change the DTF indicators which are
used for the short-form macros. (See
PROC keyword in DTF description, and
positional parameters 3 and 4 under OUTP1
macro descriptio~).

. .

U~I .:>

5.0

5.1

. I UUl,Ul"lt[i I A I l UN I COMPONENT: IMUDULt: I r'AGE: 28

FUNCTIONAL DESCRIPTION

MIRAM provides two processing modules. The modules are

reentrant: so they are limited to modifying core locations

in the file DTF a~ea, and user areas that are defined in the

DTF.

There are also several transients that are called as their

services are required. In general, these are used to perform

services that are infrequently needed.

File Format

All MIRAM files consist of two partitions, a data and an

index partition. Initially, there will be no allocations

made to either of the partitions. The first output function

·which references a partition, will cause an initial allocation

made to that partition. For example, if the first record ~pu

to the ~ile is unkeyed,· the data partition only will at that

time be extended to receive an allocation. Then, if a keyed

record or index only entry is output to the file, the index

partition will be extended to receive an allocation.
. ~

BLK 1 BLK 2 BLK 3 BLK 4

f T I I + II ! 11 t~ ~.
Sl S2 53 S4 SS

The data partition consists of 256 byte unkeyed physical

blocks. User record slots are required to be of uniform size,

and the size· chosen is not required to conform to the physical

block size. Consequently, it is possible for records to span

physical block boundaries as illustrated by the above dia~.

SPEr-«Y=}=UNI

=--a
.. -

'·--t"'·=•
;:;;;- ..

. .

... e
. t:::-
1 ':;::::::

~UilWf\Kts
DOCUMENT A 11 ON COMPONENT: MODULE: PAGE: 29

The index partition has 256 byte keyed blocks. In both

partitions, the processing programs make use of the SAT

facility for transferring several physical blocks with a

single access.

Part of the work in the index partition i·s done by hardware

key search, and part by multi-block transfers. The fine

level of index is treated as a chain of multi-sector blocks,

not formatted for search. A three-sector fine block is

diagrammed below:

INAcrJ:VE

l I I I I I I Ll><f c~
---------A;-CT--J:VE-----ENTR---IE~~~---------------CONTROL___j

•

UN!VA~
OS/3

,.5.1

.i=::::.. __ ... _
··•:.':'"' .

. .

~UrlWAKt
DOCUMENT A I I ON COMPONENT: l MODULE:- ----- I PAGE: 30 ..

..
File Format {Cont'd)

Each active entry consists of a key plus a 3-byte pointer
which gives the file relative record number of a data
record. The number of active entries varies from block
to block. The control area consists of three fields,
totalling 6 bytes:

<--2--~

ACTIVE BYTES

FLAG CHAIN TO NEXT FINE

~ l~ -<---3 -----~

The coarse and mid l~vels of index are for.matted for hard
ware key search. Areas subject to search may have in
sufficient entries to fill out a track. Hence, there must
be suitable dummy entries to prevent false hits. A
partially filled coarse/mid sector·is diagrammed below:

(256 byte bloclc)

(.____ ___ ~--~
- y-

ACT:IVE ENTRIES

For hardware search, the high key entry of the sector must
be in first position. Remaining entries are in descending
sequence. The final byte of the sector is used to contai.n
the current number of active bytes.

When there are multiple keys, each has its own coarse
level in the index partition. All hardware searchable
sectors must have a front key area equal·in size to the
longest key of the group. For shorter keys, the storage
space is filled out with appended FF bytes.

. .
For handlinq of keys where duplicates are allowed, in the
coarse and mid levels of index, an extra byte between the key
and pointer is used.

~--....._, a I If\ 11~

s.2
.:=..39 === 1 -..:::r •

s.2.2
_a
r;:::::~~

. .

5.2.3

--c·=

~ur1n~"'
DOCUMEN 1 A I I ON ' COMPONENT: MODULE: I PAGE: 31

Function and Subroutine Procedures

Addition of New Keyed Records

This function performs two actions~ placement of an index
entry in fine level index, and placement of the new data
record at the end of the data string. The processor first
assures sufficient index space, then tests for orderly/
disorderly load, and calls in the.indicated transient.
The transient handles all index modification, and returns
to the processor. Processor coding handles the placement
of the data record, using the same code as for placement
in a non-indexed case.

If there are multiple keys, the processor follows another
path. On this path, there is no checking for a high key
situation. The processor calls n time~ on the transient
that will add anywhere. If all keys are added success
fully, the path then leads to processor· code which appends
the new data record to the data string.

If an illegal duplicate key is found, a transient is called
to undo the part of the process already done. This deletes
any index entries already made.

Random Retrieval

This function retrieves a record by key or by relative
record number. All coding for this action is resident in
the processor. If it is keyed retrieval, a subroutine
conducts the index search. At conclusion, the main line
coding uses the reported relative record number to
retrieve the desired record.

Random retrieval can be followed by an update or delete
function.

Preparation for Sequential Retrieval

The SELECT instruction allows the user to set the low limit
of a range of records to be retrieved in key sequence or··
consecutive sequence. If key sequence is demanded, a
transient is called to perform the key search.

~---~- -

SELECT does not provide a record to the user. Instead, the
user's first iripit function-provides the first record of the
range.

5.2.4

5.2.S

5.2.6

5.2.7
~:::=.

~=--=
"="'

:

··-· ~

MU1JUL.t:. i

Sequential Retrieval

After an input function, the user may issue an update or
delete function. Else he may issue another input function,
passing on without update. Sequential input coding is
resident. While in a sequential mode, the user may also
request that a new record be added. This requires that
Data Management perform the add, then revert to the
sequential mode as though there h~d not been this dis
turbance. This action is performed in a transient,
because of th~ large amount of coding required.

Deleting a Record

Coding to mark the record is resident. ·Any required index
modification is·transient.

Uodating a Record
-

Coding to update a record is resident. Any required index
modification is transient.

Erasing. all or part ·of ·a file

Coding to erase is resident.

=~ --~.,

. . .

DOCUMENTATION COMPONENT: MODULE: PAGE: 33

PERFORMANCE

Every effort has been made to provide best possible
performance under the constraints imposed by small buffer
sizes.

First priority has been assigne~ to performance during
retrieve operations. Consecutive retrieve is accomplished
without reference to index, and takes advantage of any
extra buffer space provided by the user. Random keyed
retrieve coding is part· of the resident keyed modules, to
avoid burdening each retrieve with a transient call. Keyed
search from coarse to fine level is expected to cost 3·
accesses for most records of a sizeable file, and 2 accesses
for the remainder.

By the design chosen, operations that.add new records to
the file maintain the index in usable form. This eliminates
the cost of an index sort at program termination. However,
the record-by-record cost of this method is greater than
the immediate cost of placing a new record without index
maintenance. It is believed that the index maintenance method
will show good results, particularly when a file is subject
to growth by daily addition of records.

Disorderly load is essentially a random add process where
the user gives a series of add commands without inter
spersing commands that would require writing an incomplete
data buffer to free the space for other use. Thus, there
is some performance advantage in the concerted series of
adds.

Orderly load is estimated to be better than twice as fast
as disorderly.

This results from elimination of search for the place to
put an index entry, and from the concerted series advantage
mentioned •

•

-OS/3-. ·I DOCOMENTATION ' COMPONENT: f MODULE: I PAGE: 34

7.0

a.a

9.0

10.0

;:···--
-.;::.=~ -··

. .

11.0

..

COMPATIBILITY

MIR.AM must provide file and record handling services for
disk files s~ch that OS/3 COBOL can provide the functions
available to the user of ANS 1 74 COBOL. MIR.AM must also
be able to access and create IRAM files.

CONVERSION

Other software components requiring modifications are COBOL,
SORT, DATA UTILITIES. These components must be capable of
accepting a user's specifications for a MIRAM file and
providing the interfaces to process the file according to
the us~r•s wishes. They must be modified to produce suitable
MIRAM_DTF tables, and to provide suitable imperative calls.

DOCUMENTATION AND SUPPORT

Sections added to the User Guide UP-8068 and the Programmer
Referenee UP-8159, will describe the MIR.AM facility, and
explain its use.

Program listings and flowcharts will be maintained to
assist in program support.

RESTRICTIONS

· • Search keys may not exceed 80 bytes.

•

•

Buffers must start on half-word· boundaries •

Search.keys may not contain any FF bytes on fixed
sector disks unless these disks have the "binary
key" feature.

MAINTAINABILITY AND RELIABILITY

OS/3 Physical IOCS is the agency that detects and attempts
to correct hardware errors during disk reference. When an
uncorrectable error occurs, this fact is reported through
the chain: PIOCS to SAT to MIRAM to the user of MIRAM. .
At termination of a user program, a CLOSE ALL transient is
called, to close any files found to be still open. Proper
closing of MIR.AM files is vitally necessary when there has
been sequential loading or sequential retrieval with up
dating. In these cases, MJ:RAM will frequently be in a
delayed-write status, where changes in content of the
buffer in main.memory have not yet been written to disk.

·e

~ ... ~. ti

. '

_12.0
=-a -·

13.0

. .

--{;;:;;:::
-~ I

COMPONENT: MODULE: PAGE:

RELATED DOCUMENTS

IRAM CPSD (W.P. #675), PD A~43058 (ISAM) and PD A-43061
(SAT) may be read for background information on error ·-
handling, multi-partition files, and VTOC. However, they
currently contain no reference to MIRAM as such.

• Otherwise, there are the IBM System 3 manuals listed
below: ·

GC21-7571-2
GC2l-7512-6
GC21-7562-2
SC21-7504-5
SC21-7595-0

Disk Concepts and Planning Guide
Control Program Reference Manual
Model 10 Disk System
System 3 RPG II Reference Manual
System 32 RPG II Reference Manual

STANDARDS DEVIATIONS

This component is designed to provide compatibility of
services to ANS'74 COBOL and IBM System 3. Deviations
from any applicable Sperry Univac Standards are not
established at this time. Adoption of the solidly packed
data string with records spanning physical block ends is
not a usual practice in Univac Data Management Systems.
However, this is not known to violate a Sperry Univac
Standard.

·The method was adopted in order to provide conservation of
disk space in the System 3 manner. . It also helps in support
of the System 3 concept of handling a file with different
size buffers at differen~ ti.mes - a concept that negates
the more common concept of a fixed size logical block •

' .

35

" . ·-

=a --
•

. .

-@.

~oFrQ~~E
DOCUMENTATION COMPONENT: MODULE: I PAGE:

.. . .,.

APPENDIX A

~S/3 oocurVlENTAT1.oN · 1 co ONl:HT• I MOOULCI . .
- . \

... .. .
.,

Glossary of Terms: •••

==:· e A.

•

. .

~·

appender string
.

A·string of records that is enlarged only by placing a new

record at end-of-string •
•

B. -
block

The portion of a file transferred into or out of main
•

storage by a single access.

block splitting

A technique for maintenance of·inserter·strings. When

insertion into a block causes overflow, a fresh block is

chained into sequence, and the records are "split" between

the two blocks.

buff er

An area in main storage for handling a block of data. Must not.

be smaller than the blocks to be handled.

e.
Conseciltive sequence .

. .
The.sequence in which records of a string.are originally passed

to Data Management by the user. In spme cases, differs from

ascending key sequence •

coarse level

The level of a .hierarchical index system that has the least
•

number of enj:.ries, which subdivide the file into large sections. ·

- . .
•.

.........-,..-•.• ti. ' 11\11\ ,,.. .

::• :-: - -h-,.,.__, ""' ·~·. - ·:

.. .

:::::::::

..

~ .

· .

•,. - --- -. - . --- .

~irect ad~essing

~~t;~eying·a. specific block or record from disc storage by a tit
.

singl~ ac~es~,~using.nume+ic values given in a field.

~'!' :.: .;. - • --·. ---·-· -:: .. -------
~xtent

A.set of contiguous tracks on disc assigned exclusively to
•

one file.. Several_.extents may be req1.lired to provide space

enough for a ~ile •.

f .•.. - ... - .. ----·
fieid·

One or more contiguous characters, normally comprising a single

unit of information.
•

file

~delimited storage space.having an identifying filename; ~sJli1
for. subdividing the entire data mass into manageable groups.

t

Also, the data residing in such a storage space.

fine level
.

. . .
The level of hierarchical index systems that has the qreatest

~umber of entries, 'providing the most detailed subdivisions of

the file.

i. •

inserter string

A string of records that may be enlarged by placinq a new

·record between ·existing records. . .

th -·-

t

=a --

-:..A
E''=w ··-~-· ..

. .

\

Sti~iU~~~
DOCUMtNTATION

M.

mid· level

COMPONENT: MODULE: I PAGE:

Any level of hierarchical index system that f al!s between

the coarse and fine levels.

P.

partition

A file subdivision, which is required to have uniform block

specifications. OS/3 data management provides partition

relative block addressing, and individual partition extension

capabilities.

pointer

A field containing a value for direct addressing.

R.

record

The collection of contiguous characters designated by the

use~ to data management as such, for handling as a unit.

Record size must not exceed block size.

s.

slot

A filing space that may or may not be occupied by a record.

Slots are uniform size, number consecutively from 1 to n •

For variable size records, slot length is maximum record size

+ 4. For fixed size records, if there is an RCB, slot length

is record size + l; otherwise, slot length is record size.

string of records

A series of records having exclusive use of the blocks

occupied, and retrievable in sequence by a series of "get"

Ul1). Y.Qv
0~1~

'
DOCUMENTATION I COMPONENT: 'MODULE: 'PAGE:

instructions.

v.
volume

The largest physical unit for data storage, such as a tape

reel or disc pack.

r.:::::.

.. ····················-···········-············-~r:r::-'• .:-:t~. UN IV

UNIVAC
OS/3

::::::..---

-- •

COMPONENT: MODULE:

APPENDIX B
Lfc ~ Svpplie_d)

t
(· .

---f:
·-

•

SPECIFICATIONS DISTRIBUTION

ATKINS .. J.
BENEDETTO .. J.
BEJARANO., R.
BRENNAN., J.
BURD I CK., w I

CAROSELLI., J.
FAZAH., P.
FINK., w I

FREEDMAN., B.
GROSSMAN., R.
HARTS EL., RI (3)

HEITNER., JI
HUNT., W.
HOGAN., F.
HUX., R.
JEANS., C.
LADSON., R.
LINDINGER., J.
LUDWIG., R.
MACKSON, D.
MC FADDEN., M.(2)
PRATT., R.
REYNOLDS., W. (2)
SCHWALM, E.
scon., B.
SWEENEY, J,
THEODORE, M.
MASCIANTONIO., M.
OS/3 DEVELOPMENT(?)

.,

E8-126
lCl-HE/6
A-2
A-2
M8-152 <COVER ONLY)
A-2
MS-153
E8-126
Mll-119
E2-128B
M8-152-

•.

E2-128B (COVER ONLY)
Mll-111
A-2 •
A-4 <COVER ONLY)

· A-2
A-4
E8-126
M8-149
E2-s28B (COVER ONLY)
M8-152
Mll-111
Mll-107
C2-NW/15
E2-128B
Mll-111
Mll-111
A-2
MS-142

-------------···~~·-"""·····-~--------"

.... . . .
~

<NTERCOrt.MUNICATION

. . ,
<t:::::::· - rnoM cm.1.1£ ~ ixn: F. Duttschardt X3019 t:::.~. Di'~tri'but.1.~on

.
LOCATION C. DATC: Dlue Dell, /iJ/'if'/7].

•

..
•.

otPAATMCNT' M.s.: 0~/3 Software Development

CUBJtCT: OS/3 RELEASE 61 Q
UNIT SPECIFICATIONS

• The following ~nit specification is being submitted for your
review and approval: ')"

JIAULl/-IAJDt~ef) R~bom /1'0't~.i _Cm JR.~~
Please document your corrunents on the standard Doc~~entati6n

.Review Form (sample enclosed) and/or in the review document
itself. In the latter case, reference your comments on the
.Documentation Review Form •

f\ttA design review meeting is scheduled for this facility

- ~on 11/'I17-, : in C-J. 'ltS_fll~ d.AFlt ~ ,,.!. ~ P. #tJ .
Due to the limited nature of the changes described by

l:Jthis specification, no design review meeting will be
scheduled. . · · ·

The purpose of the design review meeting will be to discuss
the functions and interfaces of the enhancements. It will
not be directed toward the implementation techniques· except
as they relate to the interfaces with othe+ components.

Please sub~it all comm.ents to 'J>.()J /A).f T/Jr} by // 01/77 ·.
After consideration of these comments and those raise~ in the.
design review, the specification.will be updated and formul
approval will be requested.·

Those pcr~ons who~c n~mcs urc asterisked on the Distribution
·· List arc c>:pccted to respond. Others on the list are· inviteu

to respond if they desire 'to· do so •

t::~~:~D/l~r .
··::::::· Enclosure

...
uo \-.coo ntv, \0-7>

..

,

.
-::>· A \(' » \.' dJ. -~ { ! JI! /")., ,._,~ \J J
~--~~\-~~-~-~~--~~~~~-

F. Duttuchardt, M~n~ger
OS/3 Software Development

..

. .

') "- .

SF'~r-«Y=} UNIVAC
t. • ·" i

'·········· --- INTERCOMMUNICATION

TO: P. Fazah
F. Hogan
R. Hux
R. Ludwig
R. F .- Franksop __

CC:

FROM 1NAME & Exn: F. Buttschardt 3019

LOCATION & CATE: Blue Bell

oePt.RTMENT & M.s.: OS/3 Development

SU&IECT: OS/3 RELEAS~ ,, {)
SPECIFICATION APPROVAL

The following unit specification is being submitted for your
final review and approval:

This specification was previously submitted for review by
your department and comments that were returned to us have
been reviewed and, where appropriate, incorporated into this
version. The remaining comments have been addressed
directly with the reviewers.

Please sign the,ttacped..J3-pproval form and forward to
T. Gannon by: I ~ 1 / 7 ~ •
Question~ regarding th~s specification should be directed to:
1:. L.uur. ·

F. Buttschardt, Manager
05/3 Software Development

FB/lor

Distribution*
R. Boos
R. Bejarano
J. Benedetto
J. Lindinger
w. Reynolds
M. McFadden(2)
D. Mackson
E. Schwalm
J. Sweeney

OS/3 Development
*Specification attached

-

PROGR.Alo'.~ING DOCUMENTATION

Company Confidential

Pac;ie:

Revision ?~o.· Refis/~n/~, Type of Oocumentation

'--~.-........_~~~~~~~~~~~"--~~j_==-~~~..1-~~~'-=-IP...:......;..:4;...___.1.__i~e"'"'-=-.~6.~Q unit Specification

.·

SPECIFICATION APPROVAL

P.G. Fazah, Director
Software Integrity and Services

F. ~ee Hogan, Director
Software Design and Control

R.E. Hux, Director
Languages

R.M. Ludwig, Director
Basic Systems

R. F. Frankson
Major Systems

'

