- L A

- felanl 5’4’4/ i

i b3 k3 * 2

M -~ # TR s WIS e, o W B
i) ERRIIIEEIII I W 3% = S

.........

’ ::DK‘E:S‘C*:T”=if=L.JI\Jl\liﬂ“-.

¢ t,

e

= 1o
\

COCATION.

CARBSONS:

COMPUTER SYSTEMS
R

Vancouver Branch tocaronsoate: 4,0, - June 6, 1980.

S uur«-z 19
uxrrER-DFFICEMEMORANDUM ’ w\ MC&J"

: : <
Gilbert Dy rRom: Roger Wainwright t£> z
. . 9 [{n s }

oeranTmenT: Customer Support Services

sussecT: (S/3 MIRAM

Some considerable while ago Owen Townsend'asked me if I.cou1d get
him a working paper on 0S/3 MIRAM. Well here it is at last.

Because it's dated 1/6/78 there may be some inaccuracies, but if
you're looking at the thing from the point of view of getting a
better insight than can be gleaned from standard manuals, I have
no doubt it'11 serve a useful purpose.

(I'm assuming that you won't be coding an assembler program to use
the imperatives since, as far as I know, the assembler interface
to this access method is not currently supported;)

Good luck!

. | 'éng t;&A£P<;SWJi){\3~
/sww | R. Wain righf. : .

Encl.

~INIVAC

; . 1

Ereroms
e
oy

0S/3 WORKING PAPER

NO: 854

COMPONENT: - :
Multi Indexed Random 2Access Method (MIRAM)

AUTHOR:

Goldberg, Willis.

COMPONENT NO: #

DATE:

176/73

SUBJECT: . .
Component Product Software._Description

REV. NO:

L l .

4 SECTION "NO:

SPECIFIC CARBONEES:

=@racT: o

This paper deécribes a separate new disk access method for CS/3. This

" method is specifically designed to iﬂclude sﬁpport for .2NS'74 COROL

.(relatfve and indexed I/d) and also to éupport'the IRAM file sfructure-

. 2ppendix A - glossary of terms -

Jppendix B - DTF layout; DSECT label definitions; -DTF field definitions

Changes in this revision are denoted by a vertical line in the right-hand

margin.

gy 5 A Ot IR

"08/5 | DOCUMENTATION | compONENT: MODULE:: |PAeE:

/

1 . {

;-

[

TABLE OF CONTENTS

i

=@
1

1.0 INTRODUCTION
1.1 Scope
l.2 Purpose
2.0 COMPONENT DESCRIPTION
3..0 HARDWARE REQUIREMENTS
4.0 INTERFACE REQUIREMENTS
4.1 'Related Software Components
4.2 " Data Base
4.3'_ Operatér Interfaée
4.4 User Interfaces
4.4.1 Declarative Macro
4.4. 2 Imperative Macros
= W5 " FUNCTIONAL DESCRIPTION
5.1 File Format
5.2 .Function‘and Subroutine Procedures
6.0 PERFORMANCE
7.0 COMPATIBILITY
8.0 CONVERSION
9.0 DOCUMENTATION AND SUPPORT
1D.0 RESTRICTIONS
11.0 MAINTAINABILITY AND RELIABILITY
12.0 RELATED DOCUMENTS

13.0 STANDARDS DEVIATIONS
APPENDIX A GLOSSARY

¢;:§3-£.APPENDIX B DTF LAYOUT

ey

U%V

/QF ‘-‘D0é8§E§%§$ION ‘ COMPONENT

MODULE :

1.1

INTRODUCTION)

MIRAM (enhanced IRAM) provides additional facilities_beyond
those of IRAM, which is described in Working Paper #675. It
is a cgmpléte disk access .method, based on data recérds that
do not move from original plaééménﬁ 1o¢a£iéh: and based on
direét addressing by use of file relative record numbe;.
Scope ' |
MIRAM.is a comprehensive disk access method in which a:

single processor brovides the essentidl operations. for

SaM, DAM, and multi-key ISAM processing; including capabilities

for deletion, variable length records and duplicate keys.

The processor will be'able to process files created by IR2AM,
but programs which interfaéevwith IRAM will have to hndetgo
changes in qrder to interfacé with MIRAM due to its new
declarative and imperativé macro architecture. MIRAM will
be able éb create files which can be accessed by IRAM as
long as the resulting files involves no functionality which
IRAM does not provide (e.g. deletion, multi-key, Qariable
length récords). |

Purpose

MIRAM is developed for the support of disk access for RPG
in the IBM System/3 manner, for ANS'74 COBCL relative and
indexed files, and for projected use by SUL and Library

hanaling progréms.

PAGE: 3

0S/3 |. DOCUMENTATION ‘ COMPONENT: MODULE: - |PAGE: 2

2.0 oM N SCRIP

—

v
———

i

A single processor handles all functions, permitting the user.

'to intermix input and output, sequential and random, keyed
and unkeyed operations. Within a single job, the uéer can
employ all functionms. | o ' L
The file may be used for strictly_non-indexed purposes, for
indexed and non-indexed combined, or as.an index facility
alone, independent of data. Up to five separate index
structures can be requested. Key sizes may range fraom

1 through 80 bytes. Keys may be individua;ly specified

as allowing for duplication, and allowing for change during
upcdate. A duplicate key series is returned sequentially

in FIFO order (first in first out).

Means are provided to establish a position in the file, from
which sequential retrieval ean be requested. Once established,
this position can be disestablished, changed, or held constant
during digressions into random operations. The "held" position .
is unchanged by output,'hpdate; delete, and random retrieve
with hold.

The pesition is changed by success (or undefined by failure)
during operations of select, sequential retrieve, and random

retrieve without hold.

UNIVAC .| _ SOFTWAR '
0%/3 l DOCUMENTA%ION COMPONENT MODULE : PAGE: 3

-E:..“-’-. When the user elects to have variable léngth records, the
| first 4 bytes of his record must be dedicated to control
purposes. Bytes 1 and 2 must.contain the record size in
binary. For example, a value of 44 would-leave 40 bytes
for user data. :
If the user wishes to émploy the-delete facilityror inter-
mix keyed and unkeyed records, he must call for a record
control byte (RCE).. For variable length records, if.the
RCB is elected, byte 3 of the record would be used by the
system as the RCB. For fixed length records, if the RCB
is élected, the user must predicate his déta buffer size
on the one byte larger record slot size. However, his
.f:,”_a' specification of record size is not to include the RCB.
MIRAM provides a new declarative macro and a new set of
recérd handling imperativé macros. The imperétiﬁe macros
are more specific than those of IRAM, because they do not
depend on mode settingéiplaced in the DTF. The basic
operations are the same as before, with deletion added.
. Output a new recora. |
. Input an existing record.
. Select a position for sequential.
. Update an existing record.
. Delete an existing record.
The index—oniy facility can be used to force several ihdex
. . entries to point to a single data regord, or.to cause indexing
b to a data record not containing the key(s) on which it is
indexed. The index-only funcﬁions operate only on the index

entry, which consists of the key and 3 byte pointer.

UNJVAC .| _ SOFTWARE
0&/% l DOCUMEN‘%A ION COMPONENT ¢ MODULE ¢ PAGE: 4

)

o Output
When deletion capability is elected, the processor has new .
functionality for the random output of new records. If
the user directs a record to a p01nt beyond current f11e
end, any resulting gap will be fllled w1th v01d_records.
If he directs a record to point short of fi1e~eud,the
o?eration will be rejected if a non-void record is found
at.that éoint. |
In MIRAM, the user may output records to a file that con-
tains index records or index entries, directing that they
not be indexed. Such records will be marked'as unkeyed.
Either keyed or unkeyed records may be directed to selected
positions, or to end of file. There is a switch that can
e be set to cause a follow up to.a record output that in- '
terrupts sequential input. Follow up consists of re-
retrieving the last retrieved sequental record.
If there is keyed outout, there will be a report as to the
duplication of keys that has resulted.
‘For output, the new record must always be provided in a
work space. After output, the relative record uumber of
the newly placed record is available to the user. |
Input
The input macrorprovides for choosing random or sequential,
and keyed, index-only or unkeyed. There is also a choice
for random with~hold, which will prevent the loss of a

oo

current sequential position. If keyed or index-only 1npu§.'

is used, there will be a report stating that the next record

of the key set has/has not a duplicate key.

UNJVAC - 0 E A #
Oé(é DOCUMENTATION COMPONENT MODULE PAGE: 5

= . The user is required to forecast the use of the input
record: for information, for changes, or for total.
replacement. For total replacemént, the record will not
be moved from the buffer to workspace. When "infqrmation*
is forecast, update or delete is not aildwed to follow.
Recognizable void records are bypassed in sequential;
treated #s no-finds in random.”
A successful random-without-hold can be followed by
sequential progress to records beyond.
Select
New functionality has been added to the selection process.
BOF and EOF are now available. Other specifications are
- . | equal (EQ), greater than (G‘I’) and greater or e_qual (GE) .
= Failure to satisfy the request will result in a no-find
report, whether caused by an empty file or other reasoné.
If the request is selépt-by—key or index-only, success will
be accompanied by a report statiné'that the record beyond
has/has not a duplicate key in the set referenced. |
By a spécial means, the user may select by key, using only
the n leftmost bytes of argument; where n is less than
declared key size. |
Changing the key bf reference is done thru the SELECT,macrd.
Update
MIRAM update of keyed records is considerably more complex
than IRAM, since kéys are permitted to qhange. This may

e . require that index adds and deletions be effected.

UNJVAC - | SOFTHAR |
Og‘./‘é DOCUMENTA?ION COMPONENT MODULE: PAGE: 6

= Variable records are permitted in MIRAM. Record size may
be changéd during update, but not to exceed slot size, nor .

to fall below the size that will encompass all keys.

Delete

The function to delete is new. It consists of marking

the record as void, and of also voiding any index entries

pointing fo it. |

Erase

The function to erase is new. The user can erase an

entire file, thus simulating the INIT specification on

the //LFD job control statement. In addition, for files

which contain only unkeyed records, the user can erase -

all records starting with a specified relative record

number.

UNIVAC -| _ SOF 'ﬁt
%% l DOC U NTATION COMPONENT MODULE

PAGE: 9

22‘-":": ‘ 0 HARDWARE REQUIREMENTS

A MIRAM file must reside on from one to eight disk packs
of the same type. |
A program using one or more MIRAM flles (and in addztlon
any IRAM files) must be linked to one of the two resident-
processing modules. There is the "maximum" module which
will permit all functions, and also a "non-indexed"
module which can be linked in when index operations will
not be performed.

D3$M11ll - maximum module

D3SM@PF - non-indexed module:

For each file, the program must provide at least the

B following:
=0 .
= Register Save Area 72
DTF Area ' ' (approx. 400)
Record Work Area SLOT SIZE .
Key Argument Areal " LARGEST KEY SIZE+3
(6 MINIMUM)
Seek Address_Area2 ' 4
Contiguous Buffer Area:
Min index bufferl 256&_
Min data buffer 256>

1. Required only if keyed or index-only opeiaticns are to
be performed.
2. Always regquired.

3. All buffers must be multiples of 256 bytes. See BFSZ

il
®

keyword description for minimum value determination. The

puffer areas must start on a half-word boundary.

0S/5 . |. DOCUMENTATION COMPONENT: MODULE

'7”]PAGE: 8

4.0 INTERFACE REQUIREMENTS | o :
= The MIRAM processor system utilizes 0S/3 Transient Managemenﬁl'

for activation of selected processing functions, and the
System Access Technique (SAT) for all I/0 requirementé and
to maintaih a device independent que of operation.

'All user interfaces are maintained through the DTFMI
(Define the File Multi-Index) declarative macro, and

" selected imperative macro instructions. These interfaces

are detailed in Section 4.4.
‘Operator communication is maintained through output of
error and status information .to the operator console and/or

system message log.

4.1 Related Software Components

MIRAM requires file initialization and termination procédure‘

supplied via the file OPEN and CLOSE transient facilities.
These functions are initiated by the usérs OPEN and CLOSE

imperative macro instructions.

Linkage to the SAT processor is provided through the DTF
table:; ghe address of the SAT processor is established

duripg file initialization.
4.2 Data Base
‘All files to be accessed by the MIRAM processor system must
have been created by the MIRAM or IRAM proéessérs. Files
created under any other 0S/3 access methods are not compatible
with MIRAM prdCessing requirements; MIRAM files are not

accessed through other 0S/3 access methods, except for IRaM,

i and then only if the file was created with functionality.

provided by IRAM. .

P, G gEv——— :JL! [T RN

it S - ! LA A LAJRICIANEREN B 28 J W Vitieitl 8] 1V i ¥ ' $ MWisr

4.3 .Operator Interface
= Operator caommunication will be limited té the display, by
B the MIRAM system, of appropriate error/status messages. Aall
communication is supplieq by tﬁe 0S/3 DMS message handling
routine. These me;sages are outlined in the 0S/3 ﬁser |
Guide (UP-8068, current version, Appendix B).
4.4 Useﬁ Interfaces . u |
4.4.1 Declarative Macro (DTFMI)

The DTFMI macro instruction is pfovided for definition of
file characteristics. The following list outlines alllof

these keyword parameters, and detailed descriptions of each
keyword follow it, with additional keyword spellings provided
in parentheses. (Appropriate PNOTE's will be generated if

errors are detected in keyword processing).

‘SBFEWSﬁ S
DOCUMENTATION COMPONENT ! ‘

MODULE PAGE: 10
Format: .
LABEL OPERATION OPERAND .

- filename DTFMI . ' ~ EXC N -

' EXCR
SRDO
S >
ACCESS = SRD
. SUPD
n - sapp~ -
,BFSZ=n%

,EDFA-symboi]
,ERRO=symbol] *
,INDA=symbo§] *
,INDs=§] *
,I0Al=symbol *
,10A2=symbo1:|
IORG=(r)] *
,KARG—symbol

C KEYn_(o, [NDUP]

[,Locx-No]

,MODE= (SEQ
RAN
' RANH -

E,OPTN=YES] *

[,PROC=(KEY
UNK
B INDO

[,rcB=N0]

[, RCFM= {s }]

T,RCSZ=n *
i,SKAD=symbol *
[, vMT=0NE]
[, vRFY=YES]
[work=YES]

%*

F_"_1F'1 ' U U

B

*pdditional spellings are provided.

Us/5. | DOCUMENTATION | coMpONENT: | MODULE! - | PaceE: I

— PARAMETERS:

. ACCESS=EXC - Exclusive use of the file is requested. No other
access of the file will be granted once it is dedicated
to the requesting DTF.

EXCR - Exclusive Read use of the file is requested. The DTF
declares itself as the exclusive update, add owner of
the file but will allow it to be shared with others
performing read functions. :

SRDO - Shared Read-Only access to the file is requested. The
DTF declares itself as a reader but will only tolerate
other readers to have access to the f;le.

Shared Read access to the file is requested. This

SRD -
declaration identifies an intention to perfdrm only read
access to the file. It indicates a willingness to share
the file with ‘any other type of access (read, update or
add). A

\ 7

SUPD - Shared Update access to the file is requested. This
™ specification identifies an intent to update the file but
declares that it will not be extending it. The file can
be shared by other reader DTFs.

|
»’:‘:‘ - SADD - Shared Add access to the file is requested. The DTF
! declares an intention of extending the file. The
| o ~ file may be shared with other readers.
i
!
i

—— e m— e e —

fEFSZ=n ~ Specifies the size of the data buffer in the file,
¢ (BLKSIZE where n is the size, in bytes. This keyword is always
i BKSZ) required. Size must be at least 256 as well as a

o multiple of 256.
The minimum value can be.determined as follows:

e If the slot length is less than or equal to 256 and
evenly divisible into 256, the size is 256.

e If the slot length is greater than'256_and a multiple
of 256, the size is equal to the slot length.

A e If the slot length is not evenly divisible into 256.
. 7 and not a multiple of 256, the size can be calculated
. by adding 255 to the slot length and rounding p‘to

L3

the next multiple of 256.

._... EOFA=symbol - Specifies the address of a routine the user has

ety (EOFADDR) coded to handle end-of-data for a sequentlal by key or
consecutively processed f£ile, where symbol is

the symbolic address to which data ‘management transfers
control on sensing the end of data. .

1
A

UNIVAC - SOFIWAR l
Ogl'% ’ DOCUMENTA%ION ‘ COMPONENT: MODULE: PAGE: .,

E PARAMETERS: (Cont'd)

ERRO=symbol - Specifies the address of the user's error-handling ro..ne
(ERROR) to which Data Management transfers control for all

: ' conditions of error or exception to exact performance of
the requested function. When Data Management transfers
control, filenameC contains information on the reasons
for the error. (See UP-8068, Data Management User Guide
Table B-1 for error messages, and Table B-3 under DTFIS
for significance of bits in fllenamec) If omitted,
control returns to the user inline.

INDA=symbol - Specifies the location in main storage in which index
blocks are processed during keyed operations, where

(INDAREA) symbol (address) is the location. Must be half-word
aligned. The length of the area is specified by the
INDS keyword. This area must immediately precede the
primary I/0 buffer (IQAl). 1In order for index operations
(keyed or index only) to be permitted, all of the index
related keywords must be specified: INDA, INDS, KARG, and
KEY1l. If any are missing, it will be assumed that index
operations were not intended to be employed, and no index
operations will be permitted. (See KEYn keyword for
single exception to this rule.) |

e INDS=n ~ Specifies length of index area in main storage (INDA
= keyword) , where n is the length, in bytes. The leng
(INDSIZE) must be at least 256 bytes and in addition, a multipl

of 256. Requlred for all index operations.

IOAl=symbol - Required to specify the location of the I/0 area where
symbol (address) is the location. Must be half-word:

(IOAREAL) aligned. Must be greater than or equal to 256 bytes,
a multiple of 256, and consistent with the BFSZ speci-
fication. Must immediately follow the index buffer
(INDA) if it is specified. Must immediately precede
the secondary I/0 buffer (IOA2) if it is specified, unles

- index operations are not to be performed. - A file which

can perform index operatlons must have all buffers con-
tlguous.

IOA2=symbol - Specifies the location of additional I/0 area, where

symbol (address) is the location. Must also be halfword

(IOAREA2) aligned and of the same size as the required area specifi

. by the IOAl keyword. If index operations can be per-

formed, this buffer must.immediately follow the primary
1/0 buffér (IOAIL). USé of a secondary buffer.is onl
permitted when performing seguential output (keyed or
unkeyed) or unkeyed sequential input operations.

l‘
UN%V%C ‘ DOéB MEN A$ION ‘ COMPONENT ¢

MODULE: PAGE: 13
T IORG=(r) - Required to specify the general register to be used to
"""" . (IOREG) point to the current record when the user is not

referencing records in the work area, where r is the
number of general register. Registers 2 through 12 are
available. Either IORG or WORK must be specified, but
not both. (If both specified, WORK will be used).

KARG=symbol - Specifies the field in the user's program where he will
(KEYARG) place the keys to effect retrieval of records, where
. symbol (address) is the location of this field. The

length of the KARG area is egqual to largest key length

plus 3 (6 minimum). Required for all index operations.

Revne (1], [£ i [{ksgz}]

Specifies one of up to 5 keys for an indexed file
(14n £€5). Permitted size(s) is 1 through 80 bytes.
Location (1) specifies the number of bytes preceding
the key. If location is omitted, @ assumed for fixed
records, 4 for variable. DUP specifies that duplicate
keys are allowed (NDUP indicates they are not allowed
and is the default). CHG specifies that key can change
during update (NCHG indicates it cannot and is the de-
fault.) Required for all index operations unless user
wishes to "accept" the key specifications that were
employed to create the file. 1In that case, no KEYn
spec;flcatlons should be present.

LOCK=NO - Specifies that the file lock applied to a lockable file
at OPEN time be set for read-only and that no output
functions be allowed to the file. If omitted from the
DTF for a lockable file, a write-only lock is set, and
no other task may have access to the file while it is
open under this DTF. Ignored if specified for a non-
locable file. '

(A lockable file is one which has been assigned the 6-
character prefix to the file ID, using the LBL job contro
statement).

MODE SEQ - DTF is set for sequential operations should corresponding
positional parameter be defaulted on OUTPUT or INPUT

macros. {(Default case).

RAN - Random operations
RANH - Random with hold (if appropriate) operations

eoiee,

COMPONENT:hIMODULE:

PAGE: 14

OPTN=YES -
(OPTION)

Specifies that the sequentially processed file is an
optional file: one the user anticipates will not in-
variably be present for every program execution. When
specified for file not allocated to a device by the job
control DVC statement, transfers control to the user's

- EOFA routine on the first issue of an input function or

PROC = KEY -

INDO

RCB=NO -

RCFM=FIX -

(RECFORM)

VAR -
RCSZ=n -
(RECSIZE)

inline and with no error upon issuing an output function.

DTF is set for keyed operations (index and data) should
corresponding positional parameter be defaulted on
OUTPUT, INPUT, or SELECT macros. (Default case)

Noh-keyed operations (data only)

Index only operations

This specification only applies to files which are
being newly created and it indicates that each record

is not to contain a record control byte. Therefore,
the DELETE macro will not be permitted. (The default

is that each_record will contain an RCB.) At close

time, the format label will be marked to indicate
whether or not the RCB is present. For existing files,
the format label indication will override this DTF speci-
fication. The RCB is also necessary in order to cre

a mixed file (e.g., one which contains unkeyed recoriif
as well as keyed or index only records).

Specifies that fixéd length records will be used. This
is the default case should the keyword be omitted.

Specifies that variable length records will be used. The
record size specification will pertain to a slot size
where the first 4 bytes of the slot are overhead, and the
first data byte is the fifth of the slot.

Specifies the length of each record, where n is the lengt
measured in bytes. This keyword is always required.
(If variable records, specify the maximum size).

The record size specification should include the 4 byte
overhead required for variable length records but should
not include the 1l byte RCB required for the delete or
intermix (i.e., keyed and unkeyed records) capabilities.
(If the RCB is requested along with variable length
record support, the third byte in the 4 byte overhead
will be used as the RCB.)

“08/5" | DOCUMENTATION | comPONENT: IMopuLe: - - |PAcE: 1s

- SKAD=symbol - Specifies the location in the user's program into which
== (SEEKADR) he loads the relative disk address for use in processing
files by relative record number. The form of the record
address is a 4 byte value. The first record is relative

record #1, This keyword is always required.

VRFY=YES -~ Specifies that Data Management is to check parity of
(VERIFY) - ‘output records after they have been written to disk.
Necessarily increases execution time for output functions
by about one rotation period per block. If bad parity
. is detected, Data Management sets the output parity
check flag (byte 2, bit 2) in filenameC and transfers
control to the user's error routine or to him inline.
If omitted, no output parity verification will be done.

VMNT=ONE - Specifies that the file is to be processed with only one
"volume online at any time. A file which is created in
this manner must be processed likewise and files can
only be processed with one volume online at a time if
they were created that way. Non-keyed random operations
will not be permitted.

WORK=YES -~ Specifies to Data Management that the user will be
e (WORKA) processing input or output records in a work area and
g»"_;&. not in the I/0 area. The IORG Keyword cannot be
’ specified when the WORK Keyword is specified. The
address of the work area is specified with each issue
of the appropriate macro. Required for all output
and keyed update and delete functionms.

UN V C' 0 A o
. Oélé | DOCUMENTATION 1 COMPONENT MODULE : PAGE: 16

4.4.2 Imperative Macros .

All functional capabilities are initiated by issuing the
appropriate imperative macro instruction. Imperative mécros
are supported to perform file initialiiation and termination,
I/0 processing, and dynamic file table modification. All

. ‘error and exception conditions are reported to the user as
defined by the ERRO keyword parameter.

4.4.2.1 OPEN Macro

ihe OPEN imperative macro initializes the data file and DTF
table for subsequent processing. Standard labels are pro-
cessed and validated; the DTF table is validated and completed

for subsequent file access. If the DTF supports index op-

== erations, OPEN establishevs KEYl as the initial key of :ef-‘
erence. '
FORMAT : ‘
E.abel] OPEN f:i(.i)ename-l [, cens ,filename-n]

. 1
positional parameter l: always required.
REPLIES:

Reports'of_unsuccessful completion are:

. Invalid DTF ~
Invalid DTF specification
Illegal Record Size
Illegal Block size
Illegal key specifications
Open issued to an opened file
v FCB not found/invalid
- Format - 1 label not found :
EEEE) Partition invalid for specified DTF ‘i

MENTA ION COMPONENT: MODULE PAGE: 17

Flemeome

regieesd

o vman’

3;'..'..-.-.
e

4.4.2.3

CLOSE Macro

Upon completion of file processing, the CLOSE macro is
issued to complete and/or terminate processing of the
file. All standard file labels are created or uédated.
Further access of the file is inhibited.

FORMAT:

[labe{] CLOSE filename-1 [,....,filename—n]
(Ill) :
. positional parameter 1: always required
REPLIES:
Reports of unsuccessful completion are;
NONE

FEOV Macro

The FEOV macro provides.the capability to terminate processing

on the current volume of the file for files processed with

only one volume online at any time (see VMNT keyword parameter)
If the FEOV macro is i;sued for a file with all volumes mounted
the macro is ignoréd.“

FORMAT :

[labe 1] FEOV filename
(1)

positional parameter l: always required

When FEOV is issued, the current volume is closed and a mount

message is issued requesting that the next volume of the file

be mounted. The new volume of the file is opened for processir

subsequent macros continue processing on the new volume.

fin
i

' DO ﬁ?R%ION ‘ COMPONENT: - ﬁbnu:.s: lPAGE: 1'3

REPLIES: . .
Reports of unsuccessful completion are:
Hardware error accessing FCB or ERB

4.4.2.4 OUTPUT Macro

The OUTPUT macro provides for placement of a new record

in a file.

FORMAT: _ o .
E.abe l] OUTPUT £ilename ¢ workareal , UNK ¢+ 1 SEQ
(1) (2) REY RAN
1l g INDO RANH

positional parameters 1 and 2: always required
positional parameters 3 and 4: The concept of a "long-form"
and "short-form™ macro will be introduced here. The long-form

implies that certain optional parameters are all specified

(e.g., for the OUTPUT macro, parameters 3 and-4). The sho
‘form implies that none'of these special optional parameters
are specified. 1If a mgcro has more than one long-form para-
meter, and if one is specified but ndt all, the macro will not
be expanded. If the éhort-fdrm is employed, the defaults will
be obtained from indicators within the DTF. These indicators
| can be set by use of the PROC and MODE keywords of DTFMI.
They can be changed by use of the PROC and MODE kéywo:ds of
the APPLY macro. Use of the long-form of thé macro will also
change these indicators in accordance with the long-form

parameter specifications.

o) e P oY o T (PR |

UNIVAC - é'd#i@'/lﬁg - |
0s/ DOCUMENTATION COMPONENT MODULE : PAGE: 19

« SEQ

P
A

record is not to be indexed. (Primarily for files
without keyed records or index-only entries, but if
the RCB exists, may be used to place a non-indexed
record in a file which contains keyed records and/or
index-only entries.

record is to be indexed according to the key(s) of
the file specification. There will be one index
entry (which points to the record via a relative
record number) £for each key in the file.

an index entry (which consists of a key and 3 byte
pointer) will be added to the file. Both the key
and pointer must be supplied. (Positional parameter
4 is ignored).

 record is to be placed at end-of-file and its record ’

number made available to the user.

record is to be placed in a relative slot according
to the record number given in SKAD. However, this
operation is sensitive to the presence or absence of
the RCB. When present, an attempt to overlay an

existing record will be rejected, with an error report.

Also, placement beyond file end will cause any gap
created to be filled with void records. When absent,
these two services are not available.

(same as RAN specification).

HiE

FAtEN

it

vvrvﬂ)”TJTKEEﬂfﬂTHT]UN COMPONENT ¢ MODULE: ’ lPAGE:Z&

The execution of OUTPUT does not affect the current se-

If the user has caused settihg of the OUTF action switch

guential position or current reference key.

(see APPLY macro), there is a follow up to the new record
placement; consisting of revertingvto the current sequential
record and making that record available again.
REPLIES:
Reports of unsuccessful completion are:
Illegal record size
Illegal key value
Overlay of existing record (if record control byte press
Undefined sequential positions, and OUTF requested
Insufficient file space ‘

If the operation is successful, status will note the keys

where legal duplication has occurred. Also, the record

number (of the new record) will be placed in the seek add¥ess

field.-

-y Y| G Y

!

WA | ot

ION COMPONENT : MODULE PAGE: 21

L

q 4,2.5 INPUT Macro

The INPUT macro makes a record available for processing. It
also permits the user to state his intentions with respect

to subsequent processing.

FORMAT : B 5
[label] . INPUT filename . | Jworkarea INF UNK SEQ
_ (1)) (%) MOD »h1|I{ KEY)){ RAN
1l [} REP JINDO RANH

positional parameter l: always required

.positional parameter 2: if specified, the recoréiwill be mo§ed
from the buffer to the area; otherwise, the record will be |
pointed to, in the buffer, by a specified register. Must be

specified if there is intent to update a keyed record or when

e retrieving via the INDO specification.
positional parameter 3: optional specificaticn: default is INF
. INF - indicates an intent to retrieve the record
’ for information purposes only:; no intent to
update or delete the record.
. MOD - indicates an intent to modify the record in part.
It is assumed that the user wants to inspect the
record before changing it. Workarea or the I/0
register will be employed according to user
specification.
.; REP - indicates an intent to replace the entire record.
The record will not be moved into the workarea, as
. it is assumed that the user already has a replace-
. ment in the workarea which cannot be overlayed.
positional parameters 4 and 5: long-form parameters (see
positional parameters 3 and 4 under OUTPUT macro des-
crlptlon).
. _ . UNK - calls for unkeyed retrieval’

o . KEY - calls for keyed retrieval. Record is retrieved
based on a specified key argument.

I DO é?ﬁ'ION ‘ COMPONENT : MODULE lPAGE: 22 l

= . INDO - calls for retrieval of an inaex entry (key and .
' pointer) based on a specified key argument.

. SEQ - calls for a sequential access based on current
sequential position (keyed sequential if KEY
or INDO specified; next higher record number if
UNK specified). Current sequential position will
be modified. : '

. RAN - calls for a random access per an argument provided
by the user (in KARG for KEY or INDO; in SKAD for
UNK). Current sequential position will be modified.

. RANH - sqme as RAN specification except that the current
sequential position will be held (not modified).

REPLIES:

Reports of unsuccessful completion are:
Required work area not provided
Record not found

End of file reached
Sequential position undefined.

&,E"%‘ ' If the operation is successful, status will show whether .
or not the succeeding tecord has a duplicate key in the
current reference set. Status will aléo show whether or not
the acquired record ié.a kéyed record.

The record number (of the acquired record) will be placed

in the seek address field.

g o el e L T W T T

UN VAC . SOFTWAR
é l DOCUMEN%AEION COMPONENT MODULE: - PAGE: 23
EE «4.2.6 SELECT Macro

Ar'“:"
i

(

The SELECT macro prepares for making records available in

sequential order by key or by record number. It can also

be used to change the key of reference.

FORMAT: _ & -

. ‘ EQ)
E.abel] SELECT filename GT PKEY UNR
(1)){{GE /2 |\kREF/|) |(®REY
' 1l

BOF

EOF
L i

INDO

positional parameter 1l: always required

positional parameter 2: required unless KREF specification

in positional parameter 3 is used (in which case, positional
parameter 2 is optional).

EQ - a no-find is returned unless an equal-key record
is found, or a non-void record is found at the
given logation.

GT - a find is reported if a non-void record can be
found with value greater than the given key or
record number.

GE - a find is reported if either EQ or GT is satisfied.

BOF - for UNK, operates as a GE request with SKAD=1.
For KEY or INDO, operates as a GE request with
RARG=§.

EOF - for UNK operétes as a request for highest numbered
record; for KEY or INDO as a request for hlghest
keyed record or index entry.

positional parameter 3: not required.

PKEY - selection is based on n leading bytes of the
KARG space, n<key size. When this parameter is
- used, register @ must be preset with the value of
“n. Cannot be specified in conjunction with the
UNK specification. If not specified in conjunctic
with KEY or INDO, the £full key will be used.

vo/5 . |- UOLURENTATION | COMPONENT : MODULE: PAGE: z<

il

. KREF - indicates that the key of reference is to be
' changed. Register @ must be preset with a
value n, where 1<n<5. 1In addition, n must
not exceed the number of keys in the file. This
specification can be used in conjunction with
positional parameter 2, if first, a key of
_ reference change and. then, a sequential prepar-
ation is desired.

positional pérameter 4:\ lohg-form parameter. (See positional

parameters 3 and 4 under OUTPUT macro description).

. UNK - preparation is to be based on relative record
number. Except for BOF and EOF, preparation
is further based on the value given in SKaAD.

. KEY - preparation is to be based on the current
reference key. Except for BOF and EOF,
preparation is further based on the value
given in KARG.

. INDO - (same as KREY specification)

s , REPLIES:
If the select operation is unsuccess_ful, a no=-find is re- ‘
ported. . The current sequential position becomes undefined,
precluding a following sequential input. (Reference to an
empty file also produceé the no-find). If the operation is
successful, the record -number (of the record pointed to) will
e be placed in the seek address field, and for a SELECT which
employs the index, the key (of the record pointed to) will be

placed in the key argument field.

== . @

o (S VP BTN

0S/5

.| DOCUMENTATION

COMPONENT ¢ | MODULE:

'PAGE: 25

= 4.4.2.8

Eabel] v i
(1)

UPDATE Macro

The UPDATE macro causes the most recently retrieved record

to be updated.

FORMAT:
Eabel] UPDATE filename ' 'wakarea
' (1) (2)
g

positional parameter l: always required

positional parameter 2: workarea must be used in all cases

where the existing record is keyed or an index-only entry.

REPLIES:

Reports of unsuccessful completion are:.
Record was obtained for lnformatlon
Illegal record size
Illegal key value

DELETE Macre

The DEL?TE macro is used to void the record most recently
acquired. Marks the subject record as void, and voids any
index entries-pointiné_to the record. Cannot be used for
files without the RCB.

FORMAT:

DELETE filename

1
positional pafameter l1: always required
REPLIES:

None

S e U TN

=

The ERASE macro is used to erase an entire file or to eras‘

part of a file (which contains only non-indexed récords)

starting from a given relative record number. The RCB is not
required to perform these functions.
FORMAT:

[%abe¥]- ERASE filename ¢ ALL
: (1) PART
1

positional parameter 1l: always requi%ed
positional parameter 2: always required

. ALL - Causes the entire file to be discarded. Can
be used on file which contains any kind of
record (e.g., keyed, unkeyed, index-only).

« PART - Causes all records, beginning with a user

S specified record number (in SKAD), to be
discarded. The record, which corresponds
to the record number in the seek address .
field, and all records whose record numbers
are greater in value, will be discarded.
This form of the ERASE macro can be issued
against a file which contains only unkeyed
records (i.e., no keyed records or index
only entries).

REPLIES:

Reports of unsuccessful completion are:

Invalid Macro error (if ERASE PART is specified
and file contains keyed records or index entries).

SP'-:F"?\" LJNI\

Uo/ o 1 UULUNMENTAL LUN ‘ COMPONENT ¢ |MODULE: | PAGE: 27

i
i

= 64.2. 10 APPLY Macro

Hlii

The APPLY macro is used to apply changes to the NTF, which
will have an effect on subsequent processing. The changes
will be effective until changed by another APPLY macro call.

Code will be generated in line at assembly time.

FORMAT: ,
, ' . IORG=
[label] APPLY filename| - ., | WORK= g
(1) [ouTF=
1 \ MODE=
| PROC=

positional parameter l: always required
positional parameter 2: always required

« IORG=(r) - Will either change the I/O register
being employed or change the DTF
from workarea to I/0 register mode.

. (See IORG keyword in DTF description
&z ' for additional information).

. WORK=YES - Will change the DTF from I/O register
to workarea mode. (See WORK keyword
in DTF description for additional
information).

. OUTF=YES - Will set an indicator such that following
an add to the file, the last record re-
trieved will be read back in oxrder to
duplicate the conditions which existed
before the add. (OUTF=NO will turn off
the indicator).

. MODE= | SEQ - Will change the DTF indicators which -
RAN are used for the short-form macros.
RANH (See MODE keyword in DTF description, anc

positional parameters 3 and 4 under OUTPIU
macro description). .

. PROC= | UNK - Will change the DTF indicators which are
' KEY used for the short-form macros. (See
INDO PROC keyword in DTF description, and
) positional parameters 3 and 4 under OUTP!
. macro description).

SPERRVLALINN

Y/ J

VULUHILIVI AT LUN l COMPONENT ¢ lﬂUDULt: rFKGE: 28

5.1

"which references a partition, will cause an initial allocation

‘time be extended to receive an allocation. Then, if a keyed

FUNCTIONAL DESCRIPTION

MIRAM provides two processing modules. The modules are "
reentrant; so they are limited to modifying core locations

in the file DTF area, and user areas that are defined in the
DTF. |

There are also se&eral transients that are called as their
services are required. 1In generél,‘these are used to perform
services that are infrequently needed.

File Format

All MIRAM files consist of two partitions, a data and an
index partition. 1Initially, there will be no allocations

made to either of the partitions. The first output function

made to that partition. For example, if the first record c.puf

to the file is unkeyed, the data partition only will at that

record or index only entry is output to the file, the index

partition will be extended to rece;ye an allocation.’

BLK 1 BLK 2 BIX 3 BLK 4
l‘: ' 'La —

s1 s2 . s3 sS4 s5

The data partition consists of 256 byte unkeyed physical

blocks. User record slots are required to be of uniform size,
and'the.sizexchosen is not required to conform to the>physica1
block size. .Consequently, it is possible for records to span

physical block boundaries as illustrated by the above diag‘n.

SPERRY=S=uny

Y

0873 ‘ DOCUMENTATION ‘ COMPONENT: |MODULE: PAGE: 29

A3

i

’ The index partition has 256 byte keyed blocks. In both
. partitions, the processing programs make use of the SAT

facility for tranéferring several physical blocks with a

single access.

Part of the work in the index partition is done by hardware

key search, and part by multi-block transfers. The fine

level of index is treated as a chain of multi-sector blocks,‘

not formatted for search. A three-sector fihe block is

diagrammed below:

INACTIVE
o p C ¢
ACTIVE ENTRIES ‘ CONTROL———j

Ay

S, e Gesmgmn \ 4 JL 2 B ed% §4¢

08/3” ! ,DOEﬁﬁéﬁ?ﬁION ‘ COMPONENT: |mopuLe: PAGE: 5,

Bl File Format (Cont'd)

Each active entry consists of a key plus a 3-byte pointer
which gives the file relative record number of a data '
record. The number of active entries varies from block

to block. The control area consists of three fields,

totalling 6 bytes:

aqN
N

N
7

ACTIVE BYTES

FLAG CHAIN TO NEXT FINE

- e

— 11— & 3

L4

The coarse and mid levels of index are formatted for hard-
ware key search. Areas subject to search may have in-
sufficient entries to £ill out a track. Hence, there must
be suitable dummy entries to prevent false hits. A
partially filled coarse/mid sector is diagrammed below:

=3 | H (256 byte block)
: : °
) : , .

~—
ACTIVE ENTRIES

For hardware search, the high key entry of the sector must
be in first position. Remaining entries are in descending
sequence. The final byte of the sector is used to contain
the current number of active bytes.

When there are multiple keys, each has its own coarse
level in the index partition. All hardware searchable
sectors must have a front key area equal in size to the
longest key of the group. For shorter keys, the storage
space is filled out with appended FF bytes.

For handiing of keys vhere duplicates are allowed, in the

coarse and mid levels of index, an extra byte between the key
and pointer is used.

_0S/5" | DOCUMENTATION | compoNENT: MODULE : - | pace:

13
.

5.2 . Function and Subroutine Procedures
E%? .1 Addition of New Keved Records

This function performs two actions; placement of an index .
entry in fine level index, and placement of the new data
record at the end of the data string. The processor first
assures sufficient index space, then tests for orderly/
disorderly load, and calls in the indicated transient. A
The transient handles all index mecdification, and returns
to the processor. Processor coding handles the placement
of the data record, using the same code as for placement
in a non-indexed case.

If there are multiple keys, the processor follows another
path. On this path, there is no checking for a high key
situation. The processor calls n times on the transient

- that will add anywhere. If all keys are added success-
fully, the path then leads to processor-code which appends
the new data record to the data string.

If an illegal duplicate key is found, a transient is called
to undo the part of the process already done. This deletes
any index entries already made.

5.2.2 Random Retrieval

‘This function retrieves a record by key or by relative
record number. All coding for this action is resident in
the processor. If it is keyed retrieval, a subroutine
conducts the index search. At conclusion, the main line
coding uses the reported relative record number to
retrieve the desired record.

Random retrieval can be followed by an update or delete
function. '

5.2.3 Preparation for Sequential Retrieval

The SELECT instruction allows the user to set the low limit
of a range of records to be retrieved in key sequence or
consecutive sequence. If key sequence is demanded, a
transient is called to perform the key search.

..
- . - - - -

. . T - -
. . A g

SELECT does not provide a record to the user. Instead, the
user's first input function provides the first record of the
range.

==

VJi J

DULUNILINVIEAT IUN ‘ COMPFUNENTs lﬂUUULt;

' FRAGL: .

5.2.4

p

friewey

5.2.5

5.2.6

Sequential Retrieval

After an input function, the user may issue an update or
delete function. Else he may issue another input function,
passing on without update. Sequential input coding is
resident. While in a sequential mode, the user may also
request that a new record be added. This requires that
Data Management perform the add, then revert to the
sequential mode as though there had not been this dis-
turbance. This action is performed in a transient,
because of the large amount of coding required.

Deleting a Record .

Coding to mark the record is resident. Any required'index

modification is transient.

Updating a Record

Coding to update a record is resident. Any required index
modification is transient.

Erasing. all or part of a file

'Coding.to erase is resident.

‘0S/3" | DOCUMENTATION | compoNent: ~ |MODULE: | PAGE: 33

= PERFORMANCE

Every effort has been made to provide best possible
performance under the constraints imposed by small buffer
sizes.

First priority has been assigned to performance during
retrieve operations. Consecutive retrieve is accomplished
without reference to index, and takes advantage of any

extra buffer space provided by the user. Random keyed
retrieve coding is part of the resident keyed modules, to
avoid burdening each retrieve with a transient call. Keyed
search from coarse to fine level is expected to cost 3
accesses for most records of a sizeable file, and 2 accesses
for the remainder.

By the design chosen, operatlons that, add new records to

the file maintain the index in usable form. This eliminates
the cost of an index sort at program termination. However,
the record-by-record cost of this method is greater than

the immediate cost of placing a new record without index
maintenance. It is believed that the index maintenance method
will show good results, particularly when a file is subject
to growth by daily addition of records.

;

!
i

Disorderly load is essentially a random add process where
the user gives a series of add commands without inter-

spersing commands that would require writing an incomplete
data buffer to free the space for other use. Thus, there

is some performance advantage in the concerted series of
adds.

4
‘:
H
i

Orderly load is estlmated to be better than twice as fast
as disorderly.

This results from elimination of search for the place to
put an index entry, and from the concerted series advantage
mentioned.

weirsane

=;==ﬂ==v=&ﬂ T SILY,

vo/2 . | DULUMENTATION | COMPONENT - |MoDULE: " |PAGE: 32

7.0 COMPATIBILITY

== MIRAM must provide file and record handling services for
disk files such that 0S/3 COBOL can provide the functions
available to the user of ANS'74 COBOL. MIRAM must also
be able to access and create IRAM files.

8.0 CONVERSION

Other software components requiring modifications are COBOL,.
SORT, DATA UTILITIES. These camponents must be capable of
accepting a user's specifications for a MIRAM file and
providing the interfaces to process the file according to

the user's wishes. They must be modified to produce suitable
MIRAM DTF tables, and to provide suitable imperative calls.

9.0 DOCUMENTATION AND SUPPORT

Sections added to the User Guide UP-8068 and the Proérammer
Reference UP-8159, will describe the MIRAM facility, and
explain its use.

Program listings and flowcharts will be maintained to
assist in program support.

10.0 RESTRICTIONS

immr -« Search keys may not exceed 80 bytes.

. Buffers must start on half-word boundaries.

. Search-keys may not contain any FF bytes on fixed
sector disks unless these disks have the "binary
key" feature.

11.0 MAINTAINABILITY AND RELIABILITY

0S/3 Physical IOCS is the agency that detects and attempts
to correct hardware errors during disk reference. When an
uncorrectable error occurs, this fact is reported through
the chain: PIOCS to SAT to MIRAM to the user of MIRAM.
At termination of a user program, a CLOSE ALL transient is
called, to close any files found to be still open. Proper
closing of MIRAM files is vitally necessary when there has
¢ been sequential loading or sequential retrieval with up-
dating. In these cases, MIRAM will frequently be in a
delayed-write status, where changes in content of the
buffer in main memory have not yet been written to disk.

IWAR
MENTATION ‘ COMPONENT: MODULE: PAGE:

083" | Dot

2.0 RELATED DOCUMENTS

il

IRAM CPSD (W.P. #675), PD A-43058 (ISAM) and PD A-43061
(SAT) may be read for background information on error -
handling, multi-partition files, and VIOC. However, they
currently contain no reference to MIRAM as such.

* Otherwise, there are the IBM System 3 manuals listed
below: ' '

GC21-7571-2 Disk Concepts and Planning Guide
GC21-7512-6 Control Program Reference Manual
GC21-7562-2 Model 10 Disk System

SC21-7504-5 System 3 RPG II Refereéence Manual
SC21-7595-0 System 32 RPG II Reference Manual

13.0 . STANDARDS DEVIATIONS

This component is designed to provide compatibility of
services to ANS'74 COBOL and IBM System 3. Deviations
from any applicable Sperry Univac Standards are not
established at this time. Adoption of the solidly packed
data string with records spanning physical block ends is
not a usual practice in Univac Data Management Systems,
However, this is not known to violate a Sperry Univac

‘ Standard. :

The method was adopted in order to provide conservation of
disk space in the System 3 manner. . It also helps in support
of the System 3 concept of handling a file with different
size buffers at different times - a concept that negates

the more common concept of a fixed size logical block.

.......

unygc ‘ 0'9 WARE

ENTATION COMPONENT ¢ MODULE ¢ PAGE:

oeceavens
[yo—
o~
o

APPENDIX A

1
i

{

i At P DUOUUUIVIEIN TAL TUIN ‘|componEnT: - | moouLs |PacEs

Glossary of Terms:
= A.
appender string

¥ A string of records that is enlarged only by placing a2 new

S . record at end-of-string.]
B.
block]
. The portion of a file transfefred-into or out of main

storage by a single access.

block splitting '

A technique for maintenance of'inserter~strings. When

insertion into a block causes overflow, a fresh block fs

chained into sequence, and the records are "split" between
@. the two blocks.

buffer

An area in main storage for handling a block of data. Must not.

be smaller than the blocks to be handled.

c.

Consecutive sequence . B .

The_sequence in which records of.a stringiareforigicelly passed

to Data Management by che user. In spome cases, differshfrom

ascending key sequence. .

coarsezlevel

The level of a hierarchical index system that has the least

number of entries, which subdivide the file into large sections.-

L)
Dovcorzsoe o = o - .-
- h

== . @irect addressing ' ’

Retrieving.-a specific block or récord from disc storage by a '
single acbess,;using~nume:ic values given in a field.

- - - - - [
-_— -
- - - - -eo - ™ o -

E.

extent.

A set of contigudus tracks on di§c assigned exclusively to
one file. Several extents may bé‘reéuired to éroviae space
enough for a file.. _-- o | .
Fo. .
field. ToomTIema

One or more contiguous characters,'normally comprising a single
unit of information. .

file . | | - -

A delimited storage space having an ;dentifying filename; QEJIL
for,subdivi&ing the entire data mass into manageable groups.
'Also. the daéa resi@ing in sﬁeh a storage space.

fine level " o o : : .

The level cf'hierarchical index systems thaé has the greatest
number of entries, providing the.most_deiailed‘subdivisibns of
" the file. | o

Lo,

.insertér string

A string of records_thét may be enlargeq by placing a new

record between existing records.

th

— e . . : SEEFY-

UNIVA

-

4

h!

s

SﬁFE §
DOCUM NTA 10N COMPONENT ! MODULE ¢ PAGE:

Lt

........

|
e

i

it
.;l

M.

mid- level

Any level of hierarchical index system that falls between

the coarse and fine levels.

P.

partition

A file subdivision, which is reéuired to have uniform block
specifications. 0S/3 data management providés partition-
relative block addressing, and indiv%dual partition extension
capabilities. |
pointer

A field containing a value for direct addressing.

R.

record

The collection of contiguous characters designated by the
user to data management as such, for handling as a unit.
Record size must not exceed block size.

S.

slot

A filing space that may or may not be occupied by a record.
Slots are uniform size, number consecutively from 1 to n.

For variable size records, slot length is.maximum record size
+ 4. For fixed size records, if there is an RCB, slot length
is record size + l; otherwise, slot length is record size.
string df records

A series of records having exclusive use of the blocks

occupied, and retrievable in sequence by a series of "get"

. 05/3 ‘DO UMENTATION ‘ COMPONENT: |MODULE: 'PAGE:

instructions.

v. ®
volume

The largest physical unit for data storage, such as a tape

reel or disc pack.

UNIVAC | SOFTWARE .
05/3 DOCUMENTATION COMPONENT: |MODULE: PAGE

........

APPENDIX B

‘H" be supplied)

SPECIFICATIONS DISTRIBUTION

=
ATKINS, J. E-126
BENEDETTO, J. 1C1-HE/6
BEJARANO, R, A-2
BRENNAN, J. A-2
BURDICK, W. M8-152 (COVER ONLY)
CAROSELLL, J, = A-2
FAZMM, P. . 18-153
FINK, W. E8-126
FREEDMAN, B, M11-119
GROSSHAN, R. E2-1288
HARTSEL, R. (3) Mg-152
HEITRER, J. E2-128B (COVER ONLY)
HUNT, W, M11-111
HOGAN, F. A2
HUX, R, A-4 (COVER ONLY)
=@ | o JEANS, € A2
- LADSON, R, A-l
LINDINGER, J. E8-126
LUDHIG, R, M8-149
MACKSON, D. E2-528B (COVER ONLY)
MC FADDEN, M.(2) M8-152
PRATT, R. M-
REYNOLDS, W.(2) M11-107
SCHHALM, E. C2-NW/15
SCOTT, B. - E2-128B
SWEENEY, J. M11-111
THEODORE, M, M11-111

MASCIANTONIO, M. A-2
0S/3 DEVELOPMENT(7) M8-142

cmsn”co...muwncmou

s

‘z Distribution . FroM vive & exm: o Buttschardt X3019

Locanon & bate: Blue Bell, /0/)1//77 .-

oteantment € ms: 0S/3 Software Development

("~ - . sussce: OS/3 RELEASE
: : UNIT SPECIFICATIONS

* The followzng unit spec1f1catlon is be;ng submitted for your
review and approval: -

MULTI-mpested Remwdom meesss (i ihm)

Please document your comments on the standard Documentation

_Review Form (sample enclosed) and/or in the review document
itself. 1In the latter case, reference your comments on the
Documecntation Review Form. ’

A A design review meetlng is scheduled for thls facillty

A on /117/77, in CLbSCROAM H A m aﬂ.m

Due to the limited nature of the changes descrlbed by
this spec1f1cat10n, no design review meecting will be
schcduled. .)

The purpose of the design review meeting will be to discuss
the functions and interfaces of the enhancements. It will
not be directed toward the implementation techniques except
as they relate to the interfaces with other components.

Please subrﬁ:L.t all comm.ents to _L,_(A)MLLT/'U by ” /'0177

After consideration of these comments and those raised in the.
design review, the specification. wzll be updated and formal
approval will be requested.- .

Thosc persons whose names arce asterisked on the Distribution
List are cxpected to respond. Others on the list are 1nv1Led
to respond if they desire to do so.

. E 2] ‘QE‘_::,\UQ

v-—v\.

r. ButLgchade Munager
05/3 Software Development

UD 40008 NIV, 10-73

e L el es .

SPERRY=FLINIVAC

C. L3

INTERCOMMUNICATION

T0: P, Fazah rRoMm name s exn: F. Buttschardt 3019
F. Hogan
R. Hux . LocATION & paTe: Blue Bell
R. Ludwig

R. F. Frankson DEPARTMENT & M.S: 0S/3 Developmént

o | - susect 0S/3 RELEASE &G0 O
SPECIFICATION APPROVAL

-~

The following unit-specificatibn is being submitted for your
final review and approval: _ ‘ :

MIRAM

This specification was previously submitted for review by
your department and comments that were returned to us have
been reviewed and, where appropriate, incorporated into this
version. The remaining comments have been addressed
directly with the reviewers.

Please sign the attached papproval form and forward to
T. Gannon by: //A1/7§&. '

Questicbns _,r_'ggarding this specification should be directed ‘to:
i ,

E. L

F Bumnhd ope{f—

F. Buttschardt, Manager
0s/3 software Development

FB/lor

Distribution*
R. Boos

R. Bejarano
J. Benedetto
J. Lindinger
W. Reynolds

M. McFadden(2)
D. Mackson

E. Schwalm

J. Sweeney

0S/3 Development
{ " *Specification attached

ESF’EEFZF?{*JK LJPQI\AD&: ' _ PROGRAMMING DOCUMENTATION

R v COMPULER SYSIEMS
L Company Confidential

,. IR A - | Pager
;‘:M RAM

M- g5

Original Issue Date Revision No. Revz/fon Date Type of Documentation

i

Rel.6.0 unit Specification

SPECIFICATION APPROVAL

P.G. Fazah, Director
Software Integrity and Services

F. Lee Hogan, Director
Software Design and Control

R.E. Hux, Director
Languages

R.M. Ludwig, Director .
« Basic Systenms .

R. F. Frankson
Major Systems

