
TO: G.
M.
D.
B.
A.

TEACHERS' INVESTMENT AND HOUSING CO-OPERATIVE

PROGRAMMING STANDARDS MANUAL

Matus
Lee
Everett
Sameshima
Akizuki

The standards in this manual should be regularly reviewed to ensure
they are up to date, realistic and useful.

Comments and suggestions should be directed to B. Sameshima.

\,

,-
',',.

'·9

'.e

TEACHERS' INVESTMENT AND HOUSING CO-OPERATIVE

PROGRAMMING STANDARDS MANUAL

INDEX

1. Program Assignment and Program Completion.

2. Testing Procedures.

3. Programming Requirements:

Modular Programming
Cobol Coding Sheets
Reconunendations for Coding Cobol Effeciently
Coding Standards
Report Format

4. Disk File.Comments.

s. Program Documentation.

6. Operating Procedures.

7. Balancing Procedures.

8. Standard Date Procedures.

9. Program Number Composition.

10. Log Books, Libraries and Security.

11. Machine Configuration and Standard Assignments.

12. Others.

Section l
Page 1

Teachers 1 Investment an<1 Housing Co-operative
Programming Standards

Conputer nepartment Testing and Approval Standards

I 'l future, be f on~ any nel-'1 or 111od i fi ed program(s) are moved to
1 1 ~·orlu::tion, the following procerlure is to he followed in addition
to the req11i red sign-off sheet:

- a meeting to revi ev1 the nevi and/or changed program(s)
consisting of the following:

- programmer(s) involved.

- either User Representative(s).

- Systems Analyst and DP Manager or both.

- Operations supervisor.

/\lso, after researching a request, the programmer(s) should list
the steps required to complete the assignment and timing sequence
of the steps, if applicable.

As a final check off, the User Department should examine the
production output for as long as deemed necessary to ensure the
integrity of the ouput.

On jobs other than normal production which modifies any master
file, you must run a verification program before and after on that
master file(s).

On jobs which updates the master fi 1 es such as (SAVUPl) backups
must be taken prior to execution when the program is moved into
live production.

' _.-r

Section 1
Page 2

Teachers' Investment and Housing Co-operative
Programming Standards

Modification Request Form

All programming request must go through the modification request
form but naturally if an existing program crashes and production
is held up till the program is fixed then the program must be
fixed.

If an existing program is modified then the attached description
changes will be made along with an necessary documentation.

"Unit test 11 means a set of programs have to be fully tested even
though only 1 program in the set is changed. Example, report
program needs changes then strip must be run then file sorted for
report program to be tested.

"System test" will involve whole off-line processing if major
update program is modified or if major onl i ne program is modified
then corresponding offline must be run.

As the modified program becomes tested the user rep wi 11 have to
sign off that the proper modifi cat i ans were made and complete
system is still in tack.

Once a program is fully debugged and tested and ready to go into
production, operations will move the loadable into the live file
and also copy the source/copy/loadable into the saved revision
backup tape set.

If programs effect systems, then the systems flowchart for
operations must be also be changed.

On maintenance, the programmer will use the existing JCL that is
in production but one must remember to exectute the job with the
"R=T" GBL command. Also make sure JCl will work on live run
including memory size.
If too many changes are neccessary then we must create
a temporary JCL stream.

On new programs, the programmers must create the initial JCL using
the 11

// PROD" and other necessary PROC elements.
Running the job will mean only keying in RU NEWPGM,,R=T.
Thought must be given for where the new program will execute in
the existing JOB STREAM for tt1e daily and ·monthly ·operations of
the production systems.

Section 1
Page 3

Teachers' Investment and Housing Co-operative
Programming Standards

Program Assignment And Program Completion

1. New programs or modifications are assigned only by the Syster.1s
Analyst or by the D.P. Manager. If a new program, a unique
program number will be assigned.

2. After researching a request, the programmer must submit on the
modifiaction request form:

a) an estimated time and completion date.

b) list the steps required to complete the assignment and
timing sequence of when the program is moved to production, if
applicable.

3) The program numbers will be used in the following ways:

a) for source program ID.

b) to identify the program in the.Source Program Library.

c) display on the top right-hand corner of any report, the
preceding page number.

4) A program will not be considered complete until:

a) it has been thoroughly unit tested.

b) it has been thoroughly system tested on a current backup
of live files.

c) if a changed program, it has been run in parallel with
the production program, if necessary (necessity and number of
parallel runs to be determined on the situation) •

. d) written operating procedures completed for operations
and approved by operations.

e) program and systems documentation updated.

f) final source listing must be filed.

g) ·balancing procedures have been fully codumented and
explained to operations and/or user rep.

h) a meeting has taken place with the programmer involved,
user rep, systems/analyst and O.P. Manager to review the changes
to be made.

Section 1
Page 4

Teachers' Investment and Housing Co-operative
Programming Standards

Program Assignment And Program Completion (Can't)

4. i) user rep has signed modification request form.

j) operations has signed off modi fi ca ti or.s request fonn.

k) programmer immediately posts program(s) to the "Program
Library Changes, Additions and Deletions 11 sheet.

The operations department will move the program(s) to production
only after the above steps have been completed.

Section 1
Page 5

Teachers' Investment and Housing Co-operative
Programming Standards

MODIFICATIONS REQUEST FORM

DATE:
SYSTEM NAME:

REQUESTED BY:

DATE REQUIRED:

DESCRIPTION AND REASON FOR CHANGE - ATTACH DETAILED DESCRIPTION.

PROGRAMMER

APPROXIAMATELY SCHEDULED START DATE AND ESTIMATED TIME:

SCHEDULE BY D.P. MANAGER AND SYSTEM ANALYST:

OPERATIONS ACCEPTANCE SIGN-OFF:
ATTACH IF APPLICABLE COPIES OF:
Job control - new/changes
Operator instructions
Log of successful run
Memory size of programs
On-line programs

PROGRAMMING STANDARDS ACCEPTANCE

JCL OPERATIONS
instructions

DATE
moved

UNIT TEST SYSTEMS TEST PROGRAM DOC. SYSTEMS DOC.

\-'''·'

Section 2
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

Testing Procedures

1. Most testing will be performed by the operations departr:ient.

2. Each test shot must be accompanied by a test "spec" sheet.

3. The test spec sheet must include the following infonnation:

a) program number.

b) programmmer's initials.

c) estimated time to run.

d) current date of run.

e) type of test - ie. -program or systems test.
-on-line or off-line test.

f) run date requred by test.

g) charge code - for new development(mortgages, estimated time for
compiles on a daily basis.)
- for test, operations to total run logs.

h) d; .. :1sed for test.

i) tapes used for test.

j) identify read only files (ie use // LRL *SAVFILE)

k) special instructions;
-sufficiently detailed to enable the operator to perform a test
requiring operator intervention. The programmer must specify a 11
protected files which may be safely deleted during the test run.

4. Upon completion of a test run, operations will perform the
following functions:

a) record appropriate comments.

b) record the actual time.

c) i ntit i al the test spec sheet.

d) return output to the programmer.

5. Testing should be kept as short as possible without reducing
the quality of t~e testing. The.OReratinqtcharacteristic should
be strongly considered when sett1 ng up tes s.

Section 3
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

MODULAR PROGRAMMING

A modular approach to Cobol programs is desirable for the
following reasons:

1. The problem can be divided into logical self-contained
routines.

2. Each routine can be programmed separately.

3. A single "main line" routine controls the overall program
logic. This main line provides branches to and from the detailed
subroutines by means of a "PERFORM" instruction. The "main line"
routine will correspond closely to the program flowchart.

4. Program debugging and program maintenance are faci 1 i tated as
the programmer can readily isolate the routine in error. Any
major logic error in file handling is easier to detect in a
compact main 1 i ne than i_n non-modular programs.

5. If core size is an important factor, the roui ntes can be
written as Cobol sub-programs; the OVERLAY features can then be
used.

The following flowcharing considerations will aid in designing a
modular program:

1. The flowchart main line fo 11 ows the path of the average, or
most straight forward item of data.

2. The downward path of the main line will generally correspond to
the "no" or "equal to" branch fran a decision function.

3. Detailed subroutines can be charted on the same sheet, or can
be referenced and drawn on a separate sheet, dependent uron
program size and complexity.

4. The mainline will then provide an overall vie\'/ of the prograr:1's
file-handling and main processing logic.

5. The auxiliary detailed "legs" will correspond to the various
self-contained routines referred to by the mainline.

I'

Section 3
Page 2

Teachers' Investment and Housing Co-operative
Programming Standards

MODULAR PROGRAMMING (Con't)

The following coding considerations will help produce a readable
comprehensive Cobol program:

1. Coding will follow the mainline first.

2. Subroutines referenced by the flowchart mainline are designated
by the "PERFORM" verb.

3. After completion of the mainline coding, the various
subroutines should be coded separately.

4. Procedures names should by as descriptive as possible. Do not
be overly concerned with the length of the procedure name.

5. Note statements should be used to give a brief description of
routines, referenced by a PERFORM statement, when the purpose is
ambiguous.

An example of a simple file update using these concepts follows.
The flowchart or draw up main logic and procedure division are
shown.

I- 1/1:!,

_/

. Llf'derl.:.
/.-lo ~k,-

flctk ·9~ T ..

Can.!. -rc;(..5

'"""'~ "'~ .J..
. 'D~k -ra.g

Pc.-f o;-m
t,.-J •'t~

Ma~e.,..

I urn
C;,..-o+~w
or+. .

f'cr(or,,,

l-haJi11~~

·- -··_ -

l)
. "

•

Section 3
Page 4

Teachers' Investment and Housing Co-operative
Programming Standards

COBOL SAMPLE PROCEDURE DIVISION:

PROCEDURE DIVISION.
OPEN INPUT READER, MASTER-FILE-IN,

OUTPUT PRINTER, MASTER-FILE-OUT.
READ A CARO.

READ READER: AT ENO,
MOVE 9999 TO C-TAG,

·~GO TO COMPARE.
READ MASTER.

READ MASTER-FILE IN AT ENO MOVE 9999 TO D-TAG.
COMPARE.

IF 0-TAG IS LESS THAN C-TAG,
PERFORM WRITE MASTER,
GO TO READ-MASTER.

IF 0-TAG IS GREATER THAN C-TAG,
DISPLAY C-TAG, "NO MASTER FOR THIS CARO" UPON CONSOLE,
PERFORM READ-A-CARO,
GO TO COMPARE.

* NOTE EQUAL COMPARE
IF 0-TAG IS EQUAL TO 9999,

AND C-TAG IS EQUAL TO 9999,
GO TO EOJ.

* NOTE ABOVE BOTH FILES AT-ENO.
IF FIRSTSW IS EQUAL TO 11 0 11

,

MOVE "1" TO FIRSTSW,
PERFORM HEADINGS.

IF OFLOW PERFORM HEADINGS.
PERFORM UPDATE-MASTER.

* NOTE UPDATE-MASTER ADOS DETAIL TO CUMULATIVE AND REPLACES
* CURRENT WITH DETAILS.
WRITE-MASTER.

MOVE MASTER-IN TO MASTER-OUT.
WRITE MASTER-OUT.

MOVE-TO-PR INT.
MOVE 0-TAG TO P-TAG.
MOVE 0-NAME TO P-NAME.
MOVE D-AMT TO P-AMT.

PRINTING.
WRITE RPT AFTER CNTRL.
MOVE SPACES TO RPT.

EXIT.
GO TO READ-A-CARD.

* END OF MAINLINE - SUBROUTINES TO FOLLOW.
HEADINGS.

MOVE HEADl TO RPT. PERFORM PR INTI NG. MOVE HEA02 RPT. PERFORM
PRINTING.

UPDATE MASTER.

EOJ.
ADD C-AMT TO 0-AMT. MOVE C-AMT TO 0 CUR-AMT.

CLOSE READER, MASTER-FILE-IN, PRINTER, MASTER-FILE-OUT.
STOP RUN.

Section 3
Page 5

Teachers' Investment and Housing Co-operative
Programming Standards

COBOL SAMPLE PROCEDURE DIVISION:(Con't).

PERFORM T3-ROUTINE.

T3-ROUTINE SECTION.
BEG-SECTION.

PERFORM T2-ROUTINE.
MOVE T3-TOTAL TO PR-TOTAL.
MOVE ZERO TO T3-TOTAL.
PERFORM PRINTING.

T3-EXIT.
EXIT.

T2-ROUTINE SECTION.
BEG-SECTION.

PERFORM Tl-ROUTINE.
ADD T2-TOTAL TO T3-TOTAL.
MOVE ZERO TO T2-TOTAL.

T2·EX IT.
EXIT.

Tl-ROUTINE SECTION.
BEG-SECTION.

ADD Tl-TOTAL TO T2-TOTAL.
MOVE ZERO TO Tl-TOTAL.

Tl-EXIT.
EXIT.

, r
'. i
I

Section 3
Page 6

Teachers' Investment and Housing Co-operative
Programming Standards

COBOL CODING SHEETS

Certain rules for alignment of COBOL are necessary if easily
readable source programs are to be produced. With referenece to
the COBOL program sheet, consider the following:

1. DIVISION-NAMES begin in cc 8 and are followed by a period. The
remainder of the line shall be left blank.

2. SECTION-NAMES begin in cc 8 and are followed by a period. The
remainder of the line shall be left blank.

3. PARAGRAPH-NAMES begin in cc 8 and are followed by a period.
For clarity the rest of the line shall be left blank.

4. FD, 01, and 77 level entries will begin in cc 8.

5. Sentences shall begin in cc 12. Continuation of the sentence
shall begin in cc 16.

6. Because of possible lengthy data names or a number of ascending
level entries, it may not always be feasible to line up the
PICTURE, VALUE, or COMPUTATIONAL clauses as indicated. However,
to facilitate keypunching and for the most comprehensive coding,
these clauses should begin in the indicated column vlhen possible.

Section 3
Paqe 7

Teachers' Investment and Housing Co-operative
Programming Standards

RECOMMENDATIONS FOR CODING COROL EFFICIENTLY:

1. Convert fields requiring arithmetic to packed or binary format.
Univac 90/30 uses binary calculations for all arithmetic even
packed decimal fields.

2. Study decimal requirements of established files, then align
decimals of related fields.
example •.
SENDING-FIELD: 01 FIELDA PIC S999V99 COMP-3.
RECIEVE-FIELD: 01 FIELDB PIC S999V9 COMP-3.
By adding one more decimal place to FIELOB the need for aligni1ent
instructions to be generated in the Procedure Division is
eliminated. Univac 90/30 will use 3 bytes for both fields.

3. Write literals with the same number of decimal positions as the
receiving field.
example;
instead of ADD 1 TO FIELDA.

USE ADD 1.00 TO FIELDA.
Only one byte is added to the literal area but 18 bytes are
required for alignment of decimal points are saved.

4. Specify Packed fields with an ODO number of digits.

5. Avoid mixed modes when possible. To avoid multiply conversion,
move DISPLAY fields to working storage fields defined as packed or
binary.

6. Specify a sign with the picture if apllicable but not
manqatory.

7. Declare unsigned Display fields (ie. part number employee
number), as alpha numeric when these fields are used in IF
statements.

8. Using different size fields in IF statements requires extra
core.

9. Use indexing with literals, when possible. Rinary indexing
results in more efficient coding.

10. Keep statements simple.
example:
instead of IF PACKAGE IS SMOKING OR TICKING,

GO TO ACTIONA.
IF PACKAGE IS READ AND GREEN

GO TO ACTIONA ELSE GO TO ACTIONB.
ACTIONA.

MOVE PACKAGE TO BOMBREPORT, GO TO ACTIOMC.
ACTIONB.

MOVE PACKAGE TO SAFEREPORT.
USE IF PACKAGE = SMOKING OR TICKING

MOVE PACKAGE TO BOMRREPORT, GO TO ACTIONC
ESLE MOVE PACKAGE TO SAFEREPORT.

r I '·:·

Section 3
Page 8

Teachers' Investment and Housing Co-operative
Programming Standards

RECOMMENDATIONS FOR CODING COBOL EFFICIENTLY:(Con't)

11. In general, on commercial applications and on the Univac 90/30
it is safer to use numeric fields in packed format for readibilty
but if fields are greater than 6 intergers and space is to be
considered then binary is more efficient.
example
1 ength

PIC
S9
S9(3)
S9(5)
S9(6)
S9(7)
S9(8)
S9(9)
S9(10)

packed
BYTES

1
2
3
4
4
5
5
6

binary
BYTES
2
2
4
4
4
4
4 g

12. Put many comment 1 i nes in throughout the program (i e. cc 7 *)

13. Re-define I/O areas whenever possible.

14. DO redefine the print area in performing
01 PR INT-RECORD.
01 DETAIL-LINE REDEFINES PRINT-RECORD.

P IC X (40).
PIC X(05).

print routine.

02 NAME-PRT
02 FILLER
02 AMT PRT
02 FILLER

PIC ZZ,ZZZ,ZZZ.99-.
PIC X(73).

Using this and print copy routine PRINTCTL.

15. Perform the I/0 operations whenever possible. Cobol READ,
WRITE, ACCEPT AND DISPLAY macros are large.
eg. each WRITE takes 118 bytes.

PERFORM takes 20 bytes.

16. At Teachers' memory core is not a prob 1 em for of fl i ne programs
so the use of ACCEPT is good for data rather than reading a CARD
file.

17. Use the same data name in all files for like data. Prefix the
data name in each file with a file i dent i fi er.
example:
instead of N-BRANCH PIC S9(03).

SOT-BR-NO PIC S9(03).
USE N-BRANCH PIC S9{03).

SOT-BRANCH PIC S9(03).

~((- :.2

Section 3
Page 9

Teachers' Investment and Housing Co-operative
Programming Standards

RECOMMENDATIONS FOR CODING COBOL EFFICIENTLY:(Con't)

18. Use the same data name in all files for 1 i ke data. Prefix the
data name in each file with a file identifier.
example:
instead of 01 SREC.

02 N-BRANCH PIC S9(03).
01 SOT-REC. :

02 SOT-BR-NO PIC S9(03).
USE 01 SREC.

02 N-BRANCH PIC S9(03).
01 SOT-REC.

02 N-BRANCH PIC S9(03).
PROCEDURE DIVISION.

MOVE CORR SREC TO SOT-REC.
If using qualifiers then computations can be done with
corresponding clause as shown above.

19. The COMPUTE verb is recommended when a number of arithemtic
operations are being accomplished.
example:
instead of AOD JAN, FEB, MAR GIVING FIRST-QTR-TOTAL.

DIVIDE FIRST-QTR-TOTAL BY 3 GIVING QTR-AVERAGE.
USE COMPUTE QTR-AVERAGE = (JAN + FEB + MAR) I 3.

Often the use of arithmetic symbols is more intelligible than the
wordiness of several statements.

20. Optionally use figurative constants
consistent within the program.

or literals but be

example:
instead of

USE

MOVE SPACES TO PRINTLINE.
MOVE 11 11 TO PRINTLINE.
MOVE ZERO TO COUNTER.
MOVE ZEROES TO COUNTER!.
MOVE ZEROS TO COUNTER2.
MOVE 0 TO COUNTER3.
MOVE SPACES TO PRINTLINE.
MOVE ZERO TO COUNTER COUNTER! COUNTER2 COUNTER3.

21. Avoid comparison of group items; if necessary move iter:1s to be
compared into fields defined as elementary items.

22. Avoid constants for numeric numbers although in Cobol dumps
the defined constants are easily found.
example:
instead of 77. CONSTANT-I VALUE 1 PIC S9 COMP-3.

ADD CONSTANT-I TO PRINT-CTR.
USE ADD 1 TO PRINT-CTR.

Section 3
Page 10

Teachers' Investment and Housing Co-operative
Programming Standards

CODING STANDARDS

No attempt wi 11 be made to set concise standards for creating data
names. However, in order to preserve the meaningful nature of the
Cobol language, paragragh names, item names, and names for program
switches must not be ambiguous; for this reason it is preferable
to have a name that is too long rather than one that is no clear.
In the following examples, data names are given for some of the
common procedures.

example:
instead of 77 CISW

77 C2SW
PROCEDURE DIVISION.

MOVE I TO CISW C2SW.
AlOO-BGN.

PERFORM CIRTN.
PERFORM C2RTN.

ClRTN.
PR INT ClTOT.

C2RTN.
PR INT C2TOT.

PIC S9 COMP-3.
PIC S9 COMP-3.

USE 77 CONTROL-I-SW PIC S9 COMP-3.
77 CONTROL-2-SW PIC S9 COMP-3.

PROCEDURE DIVISION.
MOVE I TO CONTROL-I-SW CONTROL-2-SW.

AlOO-MAIN-LINE.
PERFORM CONTROL-LEVEL-I-RTN.
PERFORM CONTROL-LEVEL-2-RTN.
STOP RUN.

CONTROL-LEVEL-I-RTN SECTION.
BEG-SECTION.

PRINT CONTROL-I-TOTALS.
END-SECTION.

EXIT.
CONTROL-LEVEL-I-RTN SECTION.
BEG-SECTION.

PRINT CONTROL-2-TOTALS.
END-SECTION.

EXIT.

example 2:
Setting up a table could use descriptive data names.

77 BRANCH-NO PIC S9(03) COMP-4.
01 TOTAL-DOLLARS-RY-BRANCH.

05 BRANCH-ENTRY occw~s 12 TIMES.
10 BRANCH-AMT PIC S9(9)V99 COMP-4.

f; I.

Section 3
Page 11

Teachers' Investment and llousi ng Co-operative
Programming Standards

REPORT FORMAT

1. The eight postion date as indicated in the standard report
headings is standard output for the Coop users.

2. That date shall be written on the right corner of the report
preceding the page number.

3. The program IO number shall be written on the top left corner
of all reports.

4. The program run date in the form mm/dd/yy extracted form the
systems date shall be written two spaces to the right of the
program ID number.

5. The first line will contain also the bank name which is
naturally Teachers' Investment and Housing Coop and the report
title.

6. The second line wi 11 contain the branch number and name.

example:

MIS901 MM/DD/VY BANK NAME
BRANCH 999 BRANCH NAME

REPORT NAME PAGE 999

~

r . : ,)

Section 4
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

DISC OPTIMIZATION:

Univac 90/30

8418 are sectorized discs which means all I/O's are done in sectos
which are multiples of 256.

Single density 8418:

256 bytes per record (sector).
40 sectors per track.
10240 bytes per track.
404 tracks per surface.
7 active surfaces.
71680 bytes per cylinder.
28,958,720 bytes per pack.

Double density 8418:

256 bytes per record (sector).
40 sectors per track.
10240 bytes per track.
808 tracks per surface.
7 active surfaces.
71680 bytes per cylinder.
57,917,440 bytes per pack.

Section 4
Page 2

Teachers' Investment and Housing Co-operative
Programming Standards

DISC OPTIMIZATION:(Con't)

The records are read by blocks and since the discs are setorized,
all I/0 is done by accessing shole sectors (256 bytes). Therfore,
block/ record sizes should be less than or equally divisable by
256. A block size could be 10 k long but keep the block sizes
smaller ~r the program file memory constraints. If a record
needs 250 bytes then make the record 256 bytes long with a 6 byte
filler for future expansion in the record. Since the record is
evenly divisalbe by 256 then no bytes are wasted. If the block
and record was left at 250 bytes every I/0 would waste 6 bytes.

Examples of file optimization:

- record is 50 bytes long.

- If you choose:
a) 5 records per block, would waste 6 bytes per block throught the
file.

b) 100 record per block, no bytes would be wasted.
50 bytes per record, 25600 bytes per block which is 100 sectors
per read or write of a block.

,--------

\
\

Section 5
Page 1

Teachers' Investment and Housing Co-operative

Programming Standards

Programming Documentation

1 Copy Module Documentation.

a) In writing copy modules one must have as the 'firtst 3 lines.
* @W SREC,$LOK07C,TIHC91 SEQ '000001 I BY 1 '
*SOE@SY C SREC,$lOK07C,TIHC91 SAVINGS MASTER RECORD LAYOUTS
* LAST UPDAT-ED BY BRIAN SAMESHIMA ON 1979 JAN 17.

b) For all copy modules the last line must be:
* [][][] END OF SREC MODULE [][][]

c) All files layouts will be in copy code therefore documentations
will be complete as to field by field documentation and file
description such as block, record sizes. See example SREC in
copy 1 i brary.

d) All file descriptions must be in copy code. See example,
SVFILCPY in copy library.

e) All 1/0 routines must be in copy code.
programs which accesses the IMS files.
savings file.

This applies for
Example is reading

f) If any code will possible be used again then put them in well
documented copy code.

2 Program documentation.

a) In writing programs one must have the following 4 lines:
*SOE@W CIS001,$LOK06S,TIHC91 SEQ'OOOOOl I BY 1
*SOE@SY C CIS001,$LOK06S,TIHC91,CIS001 DETAIL BALANCING PRGM
*SOE@SY RU ONR(DET),,N=CISOOl,O=C,S=H
* LAST UPDATED BY BRIAN SAMESHIMA ON 1979 MAY 05.

b) For all programs the last line must be:
* [][][] ENO OF CISOOl PROGRAM [][][]

c) All special information needed in programs should be put in JCL
this will include parameters needed by programs for example
special dates which are needed. This will be beneficial for
operations documentation.

d) All one shot programs must still be fully documented.

~ding Standards.

a) Follow structured coding practi~es:
Reference - A Simplified Guide To Structured Programming

by Daniel McCracken.

b) Follow the KISS rule (KEEP IT SIMPLE STUPID).

Section 5
Page 2

Teachers' Investment and Housing Co-operative

Programming Standards

Programming Documentation (Can't)

c) In modules have only 1 entry and 1 exit point.

d) If procedure portion could be used elsewhere take the time now
and make a reusable copy module.

e) Try for table driven logic which will make maintenance more
easily done.

f) The following rules must be followed for new programs: 1 All
file record layouts must be in copy code. 2 For all programs
IIO routines must be in copy code. 3 For online programs, one
must make sure the transaction do not take advantage of the
Audconf Facility. We must do all editing and checking before
any records are written. Automatic rollback will not occur if
a transaction cancell s in a database. 4 All programs LFD 1 s
must match standard LFD 1 s for IMS files. New programs must
match LBL to LFD's. The standards are:

SELECT PRINT~FILE ASSIGN TO PRNTR PRINTER.
SELECT PRINT-FILE-I ASSIGN TO PRNTR-1 PRINTER.
SELECT RPINT-FILE-2 ASSIGN TO PRNTR-2 PRINTER.
SELECT CARD-FILE ASSIGN TO RDR CARD-READER.
DATEFILE LFD IS DATEFL.
DJFILE LFD IS DJFILE.
DSFILE LFD IS DSFILE.
NAFILE LFD IS NAFILE.
RSPKEY LFO IS RSPKEY.
RSPTRL LFD IS RSPTRL.
SAVFILE LFD IS SAVFILE.
SDTFILE LFD IS SDTFILE.
STFILE LFD IS STFILE.
BTFILE LFD IS BTFILE.
SVHSTFLE LFD IS HSTFLE.
SVTRLFLE LFD IS SAVTRL.
SDTEXTXX LFD IS SDTEXTXX.(Where XX is the number)

4 JCL standards.

a) As previously mentioned LFD must be consistant.
b) On testing, updates of master files remember to use

'R=T as gobal parameter in keying job control'.
c) Now because of 'II PROD' proc loadable must be stated 'II EXEC

CCSOOl, LOO I.
d) Standard// DVC' to '//VOL' statements are as follows:

II DVC RES for release pack REL052
II DVC 51 II VOL TIHC02
II DVC 54 II VOL TIHC90
II DVC 53 II VOL TIHC91
II DVC 54 II VOL TICH04
II DVC 55 II VOL TIHC07
II OVC 56 II VOL MICRS5

rl\ ,· • '· fl:- . '""

Section 5
Page 3

Teachers' Investment and Housing Co-operative
Programming Standards

Systems Documentation

- Systems documentation consists of:

1 User manuals created by user department.
. ~eration of user screens.
~orts for various systems. e- 2 Operations manuals created by operations.
a) daily, monthly and yearly running of jobs consisting of I/0

and special parameters needed.

3 Programmers' manuals created by programmers:
a) cross reference for job-program sequence

program-job sequence
job-run sequence
run-job sequence
source-copy sequence
copy-source sequence.

b) list of programs with comments.
c) 1 i st of JCL with comments.
d) Remarks section of programs.
e) file layouts with field documentation.
f) online documentation.
g) systems flowcharts of daily, monthly and yearly JCL.
h) RRSP/THOSP documentation.
i) Investment/terms documentation.
j) Managers documentation consisting of systems overview and

drawbacks.

- Programmers documentation is quite automatic.· All cross
references, list of file/JCL/programs and list of remarks are JCL
runs. The rest must be updated in $LOK08D,TIHC91 library and on
the AES diskettes. But if record formats change or systems
flowcharts changes they must be changed accordingly.

- All programs must include detail documentation for the remarks
section. In the remarks section is where Teachers' computer
department will keep all programs documentation including:
1 Input/output files
2 program descriptions
3 Special notes for programming and operations.
example is shown below, note what's in brackets is explanation
only.
Remarks.

*CRTSOO
*Rev note
*
*
*
*
*
*

Teachers'
Transaction report

Revision number 8.0
Original author Glen Matus
Input fi 1 es . (files, cards and .

Nafile - Name/address file
Rspkey Rspkey file used to

console in)

point

1

Section 5
Page 4

Teachers' Investment and Housing Co-operative
Programming Standards

Program Requirements (Can't)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Beginning date submitted by operator vi a console
Ending date submitted by operator via console
Bank no request- submitted by operator vi a console.

I/O file: (files only)
Savfile - THOSP master file

Output file: (files, printer and console)
Printer - THOSP tax receipts.
Console message- msgs to inform operator validity

of beginning and ending dates and
request bank.

Program descriptions: (briefly program main logic.)
The program will request which bank to run (1 or 2).
Next beginning and ending dates are requested thru
the console. The pgm seeks to the THOSP (class 16)
part of the RSPKEY file, reads it sequentially while
also rand-0mly reading the SAVFILE, NAFILE and
printing the tax receipts for each THOSP account.
when a control break is detected in the RSPKEY

file, a total page is printed showing the number of
records read, unreceipted amt and receipted amt. If
another bank was to have tax receipts then the pgm
seeks to the bank in the RSPKEY file and begins
processing for that bank. When the end of the
RSPKEY is detected the program will terminate.

Programming notes: (special information regarding pgm)
This program will be subject to changes yearly due
to government changes.

Operational notes: (parameter cards, option thru
console and program to program flow.)
This program must be run at year-end (Dec 31) or
month-end (Feb 28) depending on the government
regulations, since it updates Savfile.

Program enhancements:
Module documentation needed.

- In one shot programs the following must be fo 11 owed:
1 The program must be validated by other programmers and user rep
for program structure and checking 1 ogi c. The p.atch program must
display the fields changed giving before and after images for the
first 100 records. In testing, run printing of master records
before and after patch run. In live run, execute veri fi cation of
of all monetary fields (totals).
eg) RUN VERSAV RUN PRTTOT RUN PATCH PGM RUN PRTTOT RUN VERSAV.

Section 5
Page 5

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Requirements (con't)

- In writing new programs documentation must be completed as the
program is being written and/or updated. This means the remarks
section and the program main logic and tricky routines must be
fully documented. Remember that programmers will have 80 3
maintenance work so documenting modules before coding ensures that
ample thought must be given to the logic and will lead to good
structured programming practices and avoid spagetti programs.
ie) main logic will call a processing routine which will call 1/0
routines.

+ MA IN + + Initialize routines
+ +] + processing routines
+ L 0 G I C + + finishing routines

+
+] I/O routines
+

- In maintenance of programs where documentation was ommittted the
time must be taken then to fully document the program. Namely,
the remarks section and the progrm main logic and tricky routines.

- All temporary files must be prefixed with TEMP --

e·

Section 5
Page 6

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Error Messages

Dealing with programmers' error messages:

1 Systems errors such as reading NAFILE, there should be a valid
record but isn't so the error message is very important and should
give the bad NAFILE key and the Programmer should be given a
cal 1.

2 Not to critacal errors such as name too long the·n error message
should reflect just name but processing should continue and
programmers won't be contacted unnecessarily.

3 All errors where termination of program occurs must use cancel
macro.

- Also in 1st heading line top left hand corner must contain
program name.
eg)
Savrpt Teachers' Coop Date:May 05, 1979 Page 1
Account # Name Balance Accured int
999999-9/99 Sameshima Brian 999,999.99- 999,999.99999

fl
\'

Section 5
Page 7

Teachers' Investment and Housing Co-operative
Programming Standards

Programs Compiler Options:

To do Extended Cobol Compiles:
RU OFF,,N=program,0=?,E=?,S=? Offline compiles
RU ONR,,N=program,O=?,E=?,S=? Online reentrant compiles
RU ONS,,N=program,O=?,E=?,S=? Online serial compiles
where N is option: program name with no default but only 6 chars

0 is option: O=N null ,S source,C cross,X alphabetic cross,
· 0 object and I source no copy expansion.

defaulting to O=S for source.
where E is option: E=Y yes link,N no link defaulting to Y yes link
where S is option: S=P print immediately,H hold in spool for look

by RSP defaulting to H hold in spool.

To do Assembler Compiles:
RU ASMOFF,,N=program,E=? Assembler compile to object code
RU ASMON,,N=program Assembler compile to online subroutine
RU LNKOFF,,N=program Assembler link edit of object compile.
where N is option: program name with no default but only 6 chars
where E is option: E=Y yes link,N no link defaulting to N no link

To do RPGII Compiles:
RU RPGII,,N=program,O=? RPGII compiles
where N is option: program name with no default but only 6 chars
where 0 is option: O=N null ,S source,C cross defaulting N null.

Section 5
Page 8

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Coding standards

Structured Programming

Another feature of structured programming is the use of the state
~ables. Examples of a state-variables would be:

£.-\..Jl.JV WHERE-IN-FILE PIC 9 COMP-4.
'-- 88 AT-FIRST-RECORD VALUE 1.

88 AT-A-MIDDLE-RECORD VALUE 2.
88 AT-LAST-RECORD VALUE 3.

Y-~RSP-REAO-sw PIC 9 COMP-4.
C:::- ~RRSP-ENO-OF-FILE VALUE 1.

88 RRSP-REAO-GOOD VALUE 2.
88 RRSP-REAO-BAO VALUE 3.

You can then separate out the logic that sets these state
variables from the logic that tests them. Changing the logic of
the program becomes much simpler as the setting of the switch is
normally done in only one place. You do not have to insert new
code all over the place. Reading debug dumps is very easy. By
looking at the values of all the state variables, you can easily
figure out where you were when the job bombed. By finding a state
variable that does not look right, you have a very good idea where
to look for the bug.

There are a number of other requirements of structured programming
but they all boil down to KEEP IT SIMPLE. Avoid the GO TO except
for GO TO LOOP-START, GO TO LOOP-ENO, GO TO LOOP-EXIT, GO TO
END-SECTION and GO TO ENO-OF-JOB. Use only simple loops -
absolutely no rats' nests where control wanders al 1 over the map.
It should flow top to bottom with the exception only of loops
(clearly marked), and performs. One of the main reason for the
max 60 lines per section rule is so that the beginning and end of
a loop will always appear on the same page along with any code
that makes you jump out of the loop. If code is "performed" in a
loop, and it wishes to terminate the 1 oop, UNDER NO CIRCUMSTANCES
MUST IT JUMP OUT BY ITSELF. IT MUST SET A SWITCH THAT IS TESTED
BY THE CALLING MODULE THAT DOES THE JUMPING OUT OF THE LOOP. If
you follow this rule, you will never be surprised by program flow.
On a module by module basis, its all there. You do not need to
look at the lower levels.

Section 5
Page 9

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Coding standards

Structured Programming (Can't)

Break your code in COBOL sections -- no more than 60 lines of code
per section. The mainline logic should be a simle set of performs
-- less than 1 page. This makes the overall flow dramatically
clear. Detailed level flow is usually self evident in COBOL
programs; it is the overall flow that gives trouble.

At the front of each section should be a few lines of comments
telling what the module does. Try to make each section as
self-contained as possible. In other words, if you were to change
the code in a module, it should have no side effects on other
modules. If there are side effects, document them!!! This will
also make it easier to replace modules with more efficent versions
as time permits.

Whenever you write code, turn it into a copy module if there is
even the remotest chance that it could be used somewhere else.
This will encourage documenting the method of use of the module.
It will discourage the use of non-general purpose code.

Debug your code on a module (section) by module basis. By writing
special test driver code, you can thoroughly test your modules.
There is absolutely no way to exhaustively test a complete system.
As our systems get larger the probabilty of them being bug free
gets very remote. We must be more and more careful as our system
gets more and more complex.

"CODING is 10 3 of the work; MAINTENANCE is 903 11

WE must code with following priorities in mind:
1 Ease of maintenance.
2 Reliability.
3 Speed.

To this end we must use:
1 Structured programming.
2 Copy code for all I /0 and common functions.
3 Documentation embedded in the program code and JCL.
4 Table-driven logic.

(·

Section 5
Page 10

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Coding standards

Table Driven Logic

Table driven code is an absolute must for programs that behave
differently for different transaction codes. Table driven code is
100 % easier to debug. It is much less likely to have bugs in the
first place. It is much less likely to develop bugs when changes
(such as new tran codes or changed processing on some tran code)
are made. New tran codes can be incorporated in minutes -
without any understanding whatsoever of the COBOL code.

For a simple example lets say that we have tran codes 1 thru 4.
Tran codes 1 and 3 add to the balance, tran code 2 has no effect
and tran code 4 subtracts from the balance. Tran codes 1 and 2
require a password whereas tran code 3 and 4 do not.

We describe this with a table in working storage. It can be read
off cards, or it can be built directly with value clauses.
Table entries look like:

E p
001 . p y
002 z y
003 P N
004 N N
E - P=positive effect on balance

N=negative effect on balance
Z=zero effect on balance.

P - Y=yes password required
N=no password required.

Procedure Division.
Logic will be like:

IF EFFECT= 1 P1 ADD AMT TO BALANCE
ELSE IF EFFECT = 1M1 SUBTRACT AMT FROM BALANCE
ELSE IF EFFECT= 1 Z1 NEXT SENTENCE
ELSE GO TO BUG-IN-TABLE.

IF PASSWORD-REQUIRED = 1 Y1

. IF PASSWORD-GIVEN NEXT SENTENCE
ELSE MOVE 'NEED A PASSWORD' TO ERROR-MSG GO TO BAD

ELSE IF PASSWORD-REQUIRED = 'N' NEXT SENTENCE
ELSE GO TO BUG-IN-TABLE.

You can also see at a glance exactly what processing has been
chosen for each tran code. This means no-EDP people can look at
your code and help you debug without exhaustive systems tests.

Section 5
Page 11

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Considerations

For any program that does massive printing the following standards
should be observed so that it will be easy to fann out the
printing to a service bureau should the need arise. The program
should be written in COBOL. It should access only a single
sequential file of input data. Namely it should not read any of
the on-line data files. If any branch addresses etc are needed
they should be read through the job control stream. Any dates
required should come through control cards and not through the
"SYSOATE" feature. Avoid the use of "COMP-3" fields in the input
file. This will allow the print program to be easily modified to
run on a foreign machine reading a single input tape.

Any new design work should be walk-through tested after the
screens are designed, but before any code is written. This wi 11
test some editing and should catch "OH, COULD YOU ADO THIS
FIELD".

Also all screens and reports must be signed off and approved by
management and the users then this wi 11 catch "OH, WHAT ABOUT THIS
FIELD".

Little thought has been given to RE-RUNS. Inordinate use has been
made of update-in-place. At present if a single run bombs because
of power-surges, disc problems etc, the whole off-line system must
be re-run from scratch. Proper consideration for operational
restart procedures must be given in order to rerun or restart
jobs. We should attempt to use sequential-copy-type updates from
pack to different pack as much as possi b 1 e. If a job bombs all we
have to do rerun that job, not the whole off-line process. At
present with our disc drive shortage this is impossible but this
must be considered in the future if disc space becomes available.

~nite plus is sequential verses random processing. Read the
~, ~~s file sequentia.lly whenever possible -- bypassing the use

of the Rspkey file as an example. Usee;" ,, rve 1 alternate area"
and "apply cylinder-index area of xxx 'nd~e" speeds up ISAM
sequential reads.

All screens should have separate COA's. Fields with similar names
can be accidentally used. The problems may not show up for years
because usually the two similiar fields are overlayed on each
other. An example is MMCDA2 which will be changed when time
permits. Here "AB" and "NS" and "MM" screens all use "MMCDA2".

It may help to recompile the world every once in a while to ensure
no source modules have been destroyed. Better find out now rather
than after backup has been deleted. This will also prevent
incompatibilities between modules compiled under different
rel eases. Al ready we have encountered problems "DTECK2" source
has been lost! Hopefully if we recQmpile the world on afrelease
change then we should have the new improved advantages o the
COBOL compiler.

Section 6
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

OPERATING PROCEDURE REQUIREMENTS:

1. All jobs must have an operating procedure. Until a written
copy of the operating procedure has been approved, the run shall
be the responsibility of the programmer.

2. Each page of the procedure write-up shall show the following
information:
a) The area and the application.

b} The frequency of processing.

c) Programs - show the program number and the program names in
order of execution. Give each program, including utilities, an
item number. Start each page with item number 1. The item number
will be used as a cross reference in the following sections.

d) Forms - Define by item number the forms used with each
program.

e) Cards - Define by item number the cards used with the program.

f) Discs - Define by item number the discs used wi ht each
program.

g) Process - Define by item number and in condensed form the
function of each program.

h) Notes - Indicate by item number any information pertaining to
the program.

i} The maximum record capacity of a file shall he shown in this
section wheneveer an initial sort, merge or reorganize takes
pl ace.

3. Related programs comprising one Job step should be included
together on one page. The operating procedures for each program
must be complete on one page.

4. A written copy must be made of a 11 operating procedures. The
copy is included in the appropriate manual of operating procedures
(run book) kept in the operating are~.

Section 7
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

BALANCING PROCEDURE:

1. All jobs shall have a detailed balancing procedure if the
control clerk will have any contact with the job.

2. The balancing procedures shall have attached all reports
the control clerk will come in contact with while balancing or
auditing the job.

3 The balancing procedures shall show the following:
a) The name of the report to which the procedure pertains.

b) Detailed balancing instructions.

c) The frequency of the report.

d) The distribution of the report.

e) Any special instructions.

Section 9
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

Programming Number Composition

JCL for of fl i ne wi 11 match program names except extracts wi 11
remain the same as daily and monthly runs. Sorts, data utilities
and librarian JCL will have S, D & L respectively.
eg) RU JCRR505 Coop RRSP statement strip

RU JCRR505S Sort
RU JCRR506 Coop RRSP statement print.

Program standard for names are:

+ + + +
+ B a n k + System + Sub-System + Program number
+ C-Coop + $-Savings + I-Investent + 000-499 online
+ T-Trust + + T-Term + 500-999 of fl i ne
+ + + U-Special +
+ M-System + C-CIF + F-CIF +
+ + R-RRSP + R-RRSP + 500-699 Daily
+ + + T-THOSP + 700-799 Monthly
+ + M-Mortgage + M-Member + 800-899 Yearly
+ + + C-Commercial+ 900-999 Demand
+ + A-Account + G-General L +
+ + I-System + S-System +

Print programs savings prefix CSS900.
Savings (Inv/Terms) prefix CSS901.
Name/address prefix CCF500.
Investment prefix CSI900.
Terms prefix CST900.
Special prefix CSU900.
RRSP prefix CRR900.
THOSP prefix CRT900.
System all banks prefix MIS900.
System Coop prefix CIS900.
System Coop RRSP prefix CRS900.
Member mortgages prefix CMM900.
Commercial mortgage prefix CMC900.
Accounting prefix CAG900.

+
+
+
+
+
+
+
+
+
+
+
+

LOGBOOKS:

Section 10
Page 1

Teachers' Investment and Housing Co-operative
Programming Standards

Program library log:

1. The "Program Library Changes and Additions 11 sheet sha 11 be
coded immediately for any one of the following reasons:

a) Before revising a program.

b) Upon establishing a new program number.

c) To signify an existing program is obsolete.

2. The "Program Library Changes and Additions" sheets are the
input to the "Program Library Logbook" which contains a listing of
all programs showing the date the program was originally written,
the author's initials, the date of the last revision, the nunber
of revisions, and the last revising programmer's initials.

,. ,.. (., #'r "' ~ \ .· ~ . CROWN ZELLERBACH CANADA LIMI · . ·· •· -
(

*' .. '-.. • . CHARGE •.

. ._:.:. .. 7 DATA CENTRE• PROGRAM LIBRARY CHANGES De A.:OillTIONS • CODIE
~ -•.... •

PROGRAM
NUMBER

l"UNC·1 PGM

TION CODE

INDEX

COD&

DAT&
AUTHOR

MO, I YR,

REV. •
PGM'R,

PROGRAM DESCRIPTION.

---------•· I I I I-,.,..---------------------·---....,...------------
: 1--1 I I - -

I ___ L __ _j_ ___ ~ ______ _;_ ________ ~----~----------1 i---------t~-,--- I
I

---- I I

-·- --1 I I

-- -i I J

---------1--1-1 I I I 1-------------------------------
-·--- 1--1--1 1-----I I 1- I I

------1---1--1 ·1---1----1---- - , en -- ·----·--·- E ~----1--·-·---
- ·--.. --·------------ -
_______ _,_,_, ----- -----1----

1

e -~"'l:le.....-.;a~e::. 1 - l"G.J

.-.u.o e

·-------
·- -

FUNCTION CODE: 1: REVISION

Z: ADDITION

3: OBSOLETE

ct>
()

rt
Ill

{J'J 0
-4' ::J

foV ~

J~

e

,..

·e

Section 10
Page 3

Teachers' Investment and Housing Co-operative
Programming Standards

Programs Library

Volume # Abbr Library Pack Job Contains
-------- ---- ------------ -------- =========================== -------- ---- ------------ --------

TIHC91
RES

TIHC91
TIHC91
TIHC91
TIHC91
TIHC91
TIHC91
TIHC91
TIHC91
TIHC91

RES

ON $LOK010NLOD PKOlON Production online load mod.
OFF $LOK020FFLOD PK020FF Production offline load mod
TON $LOK03TONLOD PK03TON Test online load modules

TOFF $LOK04TOFFLOD PK04TOFF Test offline load modules.
I $LOK05I PK05I IMS source online.
S $LOK06S PK06S Offline source.
C $LOK07C PK07C Copy code.
D $LOK080 PK08D Documentation library.
P $LOK10P PKlOP Procs
B $LOK11B PKllB Batch IMS.

TB $LOK13B PK13B Test batch IMS.
J YJCS PKl Job control.

RES/SYSTEM PACKRES All system libraries.
TIHC91/USER PKWORLDl All user libraries on TIHC91
RES/USER PKWORLD2 All user libraries on RES.
EVERYTHING PKWORLD Packs everything.

In addition any library can be packed with:
RU PKl,,V=XXXXX,F=XXXXX
where V is Volume defaulting to RES
and F is file nmae defaulting to YJCS

