
ie

H

Introduction
to the
Assembler

UNIVAC

(

UP-8030 Rev. 1

\

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its contents. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

AccuScan, FASTRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE,
UNISERVO, and UNIVAC are trademarks of the Sperry Rand

Corporation.

©1974, 1976 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

preface

This manual is one of a series designed to introduce

the software available with the SPERRY UNIVAC

Operating System/3 (OS/3). The actual programming

procedures required to use the software described are

not included in this introductory series. Such detailed

information is beyond the scope and intent of these

manuals and is included in the appropriate User Guide

and/or Programmer Reference.

assembly language
and assemblers

Historically, the trend in programming computer

systems has been away from machine language and

toward high level programming languages. The first

step along the way was the use of a mnemonic

representation for each machine language instruction.

This language was termed a "mnemonic machine

language" (or an "assembly language"), and the

program that translated the assembly language into

code which could be executed was an "assembler".

Today's assemblers are more advanced programs,

programs which are capable of much more than those

first assemblers. No longer is the assembly process

merely a one-for-one substitution of machine code

for mnemonic instructions. Now assemblers translate

very sophisticated assembly languages and the

combination of language and modern processing has

resulted in important advantages to the user. The

advantages inherrent in the UNIVAC OS/3 Assembler

are described below.

2

UNIVAC OS/3 Assembler

The UNIVAC OS/3 Assembler is an expandable,

multi-phase language processor system that offers all

the advantages of assembly language programming:

• mnemonic operation codes

• symbolic addressing and automatic storage

assignment providing relocatable programs and

program sectioning

• flexible data representation

• assembler control and conditional assembly

• macro and proc facilities

• source code correction facilities

With the UN IV AC OS/3 Assembler, however, these

capabilities and facilities have been enhanced by the

design of the assembler and the assembly language.

Processing power has been increased without

excessive penalties in the main storage occupied by

the assembler. The UNIVAC OS/3 Assembler is a

multi-phase processor written in a number of loadable

sections and read into main storage as overlays during

the assembly process. Should more than the

minimum amount of storage be available, the

assembler will expand to occupy the excess by

extending its table areas and creating larger input and

output.buffers - greatly reducing assembly times.

The UNIVAC OS/3 Assembler is a logical extension of

the assemblers used with the UNIVAC 9200/9300

Series Systems and it supports the capabilities found

in the IBM System 360/20 assemblers. Programs

written for these computer systems can be assembled

and executed with UNIVAC OS/3, and UNIVAC

OS/3 programs are upwardly compatible with the

UNIVAC OS/7 Assembler as well.

3

4

The compatibility of the UNIVAC OS/3 Assembler is

just one of its features. Many enhancements were 19
made to its assembly language, its directives, its

ability to represent data, its conditional assembly

capabilities, its macro facility, and its programming

aids.

UNIVAC
90/30

SYSTEM

UNIVAC OS/3 ASSEMBLER FEATURES

CONPITIONA!. AS$1!MBLY

MACRO l'ACll.ITY

PROGRAMMING AIDS

CHARACTER SET
INSTRUCTION Rf:l'ERTOIAE
VAAIAlilLE FORMAT

STORAGE Dl!FINlTION
CCW PE!Fli'flTION
SYMSOL.Ql!f INITION
A$S6Mlll. Y CONTROL
REGISTeR A$SIGNMl!NT
LINKING ANl)SECTIONING
LISTING CONTROL
IN!'UT ANO OUTPUT COlfTRO\.

FIVfi.TERMS
J3 oil/fAi'QRMATS
VARIABLE! SYMBO!;S
SEOU·ENCI! SYMll!)Ls

ASSEMEIL Y LANGUAGE
MACfilO 01!.l'IN!Tl.QNS

l>FlOC OR MACAO fORMAT
CONofl'IONA4 ASHMBLY
MACRO 41BRARY

ASSEf,!lJLER.Ul;TtNGS
EXTE!NlllVI! OIAGNGSTIC$.
SOURCECORRl!CTION .
FACILITY

ASSEMBLY LANGUAGE

The UNIVAC OS/3 assembly language is an

enhanced, modern assembly language. It is one of the

most flexible and expressive assembly languages

available for a small scale computer system. This

assembly language offers:

• Up to 148 instructions

•

There are 83 to 148 assembly language

instructions in six formats available to the

UNIVAC OS/3 user.

A 54-character set

The character set available in the assembly

language contains: 26 alphabetic characters; the

decimal digits, the four special letters ? $ # @,

and 14 special characters:

+ - * I , = () . blank & ' > <

5

6

• Variable formats

The format of the assembly language source

code instructions can be varied by using the

ICTL input control assembler directive. This

directive allows the UNIVAC OS/3Assemblerto

accept source code which does not begin,

continue, or end in the usual columns of the

coding form.

All this is possible in an assembler language that is

flexible enough to allow data in the instructions to be

represented by five kinds of terms and 12 operators

which can be used in absolute, relocatable, and

complex expressions.

ASSEMBLER DIRECTIVES

In addition to the large repertoire of assembly

language instructions available to the UNIVAC OS/3

programmer, there are three other levels of

programming control: the assembler directives

outlined here; the conditional assembly directives

exp I a ined under the "Conditional Assembly"

heading; and the macro facility directives described

under the "Macro Facility" heading.

The assembler directives are written within the user's

assembly language programs and are used to control

the operations of the UNIVAC OS/3 Assembler.

There are 26 assembler directives:

• two to define storage or constants (DS and DC)

• one to define channel command words (CCW)

• one directive for symbol definition (EOU)

• one directive for deleting an operation code

(OPSYM)

7

8

• five to direct the assembly process (START,

END, ORG, L TORG, and CNOP) e
• two that control base register assignments

(USING and DROP)

• five linking and sectioning directives (ENTRY,

EXTRN, CSECT, DSECT, and COM)

• four to control the listings printed by the

assembler (TITLE, EJECT, PRINT, and

SPACE)

• five for source code input and output control

(ISEO, ICTL, REPRO, PUNCH, and COPY)

The use of these assembler directives gives the

UN IV AC OS/3 user programmer complete control of

the assembler so that more efficient and more

powerful assembly language programs can be

designed.

DATA REPRESENTATION

The many forms of data representation available to

the UNIVAC OS/3 user is another capability of the

UNIVAC OS/3 Assembler -an extension that enables

user programs to be coded with less effort because

data does not have to be modified to make it fit into

a limited number of possible formats.

As mentioned, data can be expressed in five kinds of

terms in assembly language instructions. These terms

are:

• Self-defining terms (SOT)

Self-defining terms are fixed values coded by

the user programmer that specify immediate

data, masks, and so forth. SDTs may be

specified as binary, hexadecimal, decimal, or

character formats. The following example

shows a binary SOT appearing in a compare

instruction:

LABEL 60PERATION6 OPERAND
10 16

---~~---~~~ .. ,,. ___ ,__,_~ ~~-~---···-+-~-J i_l_-1. l
___ AJ_~~L1

.i9P, LQ10,0P1Q/_l.
~LL.L_L.J ... L.J_LL_l_i_i._J_i__l

9

10

• Literals

Literals have their values specified by the user

programmer and computed by the assembler.

They are provided to save programming steps

since they may be used to specify constants

without coding a DC assembler directive. There

are 12 kinds of literals, allowing the user

programmer to specify everything from

relocatable symbol literals to binary normalized

floating-point doubleword literals. A packed

decimal literal is shown in the following

arithmetic instruction:

LABEL ~OPERA TIONL\ OPERAND
10 16

.J .. L-L.L.J __ _L_L__L__L .J_1_L ... l

l--i.---'-_.__'--'---'--'--'1---1'-'-'--'--'--"-f--4-'-'= ~ p,, I_= :P1 I l $1 I 1't I I I

t

• Symbols

The user programmer can also use symbols in

the assembler language instructions. Symbols

are alphanumeric characters which are assigned

a value by the assembler. RLSU in the

preceding example is a symbol.

• Location counter reference

A reference to the value of the assembler's

location counter is another type of term

permitted in assembly language programs. The

following branching instruction contains an

asterisk, which is a reference to the value of the

location counter. This instruction tells the

assembler to branch to a location at the

location counter value plus 10 bytes.

LABEL 1\0PERATIONL\ OPERAND
10 16

11

12

• Length attribute

LABEL

The length assigned to a term, instruction, or

storage area may be used as a term in the

assembly language. In the following example,

the length of the ORIG symbol is referenced:

1~,0PERATIONL'.l OPERAND
HI 16

___ LL .. l ... L_l_-1 L._L_Lj_ L_..L...L.L J_LL

_ FJ~Pif1(Ji:.r'--L~1!B)_L,l~~J?L:L~1

Any type of term may be combined to form an

expression by using one or more of the 12 operators

available in the UNIVAC OS/3 assembly language.

•

t

Data used in, or established by, the assembler

directives can take all the forms used within assembly

language instructions. Actually more possible forms

of data representation are available when using the

assembler directives because by using the DC

assembler directive, constants can be defined in

character, hexadecimal, binary, packed or zoned

decimal, floating-point, binary address values, base

register and displacement address, and external

address formats.

Additional data representations are possible at the

conditional assembly and macro facility levels. The

directives used at these levels can use data in all the e forms discussed so far (again with the exception of

the literals). In addition, the macro facility permits

the use of variable and sequence symbols. Variable

symbols may be symbolic parameters, set symbols,

labels of DO directives, or system variable symbols.

Sequence symbols are used to define branch

destination points in conditional assembly directives.

Variable and sequence symbols are further described

in subsequent sections.

13

14

CONDITIONAL ASSEMBLY

One of the advantages of the UNIVAC OS/3

Assembler is the conditional assembly facility. By

using the conditional assembly techniques outlined

here, the user programmer can design one source

program that can be assembled to produce one of

several object programs depending on the current

requirements.

The conditional assembly facility uses techniques and

directives that exclude lines of coding from the

output of the assembly process, that include sets of

coding lines more than once, and that establish and

alter values used to determine the course of assembly.

Conditional assembly is possible within macro

definitions and at any point within a program.

There are several techniques available to the UNIVAC

OS/3 user programmer:

• Conditional assembly with variable symbols

A variable symbol can represent:

a symbolic parameter, or the label or an

operand of a macro instruction; by varying

the label or an operand of a macro

instruction, the programmer can vary the

code generated when the macro is

processed;

a set symbol, which is a value set by one of

the conditional assembly SET directives

and used as a counter, a switch, or a value

to control the sequence of object code

generation;

the label of a DO conditional assembly

directive; or

one of the system variable symbols, i.e.,

symbols used within macro definitions to

access the current program section name, a

count of the number of macro instructions

15

16

processed; to refer to a positional

parameter by its position within the

operand field of the macro instruction; to

substitute the date, time, or Julian date of

the assembly; or to generate a null

character string.

• Branching

Both conditional and unconditional branch

facilities are provided by the UNIVAC OS/3

Assembler. Branching is accomplished by using a

sequence symbol to define a branch destination

point and then using an AGO or Al F branching

directive. The ANOP directive is provided to

facilitate branching to a point in the program

where no statement is available to define the

branch destination.

• Repeating code

•

The generation of object code from one set of

source code lines can be repeated by using the

DO, ENDO, or ACTR conditional assembly

directives. These directives allow the user

programmer to avoid repetitive coding; DO and

ENDO are used to control conditional or

repeated generation and ACTR is used to limit

the number of conditional assembly directives

executed within a macro or a source program.

Conditional assembly with attributes

Symbols and macro instruction operands are

assigned attributes as the source code is

assembled. These attributes - type, length,

scaling, integer value, count, and number - may

then be used as variables in conditional assembly

directives to control the assembly process.

The conditional assembly techniques provided by the

UNIVAC OS/3 Assembler give the user programmer

source code flexibility while ensuring that the object

code generated by the assembler is precisely tailored

to the data processing operations to be performed by e the user's program.

17

18

MACRO FACILITY

The single most important advantage of a modern

assembler is the macro facility. By using one macro

instruction in the source code, many lines of code can

be automatically included in the object program

produced by the assembler. Macros may be written in

either macro or proc format. The macros called by

the macro instructions can be written by the user or

can be supplied in the UNIVAC OS/3 macro library.

The macros can be divided into three groups:

• System interface macros

These macros are supplied in the system library

and by using them, the UN IV AC OS/3 user

programmer may access interfaces supplied by

Sperry Univac between his program and all the

system's supervisor and job control functions,

data management software, maintenance

routines, and communications facilities.

• Shorthand macros

The macro library supplied to UNIVAC OS/3

users includes various shorthand macros that the

user may call instead of writing his own

sequences of code. The library contains macros

for such common chores as calling standard

subroutines or performing functions like moving

large groups of characters in main storage.

• User-written macros

To make it easier for the UN IV AC OS/3 user

programmer to write his own macros, the macro

facility features include:

conditional assembly within macro

definitions

the ability to write macros in either macro

or proc format

the ability to nest macro instructions

the capability of copying lines of code

from library sources

19

20

The macro facility provided with the UNIVAC OS/3

Assembler is a highly sophisticated programming

device that makes the assembly language more

convenient without sacrificing control over the

program structure. The macro facility simplifies

program debugging, modification, and

standardization for the UN I VAC OS/3 user.

PROGRAMMING AIDS

The UNIVAC OS/3 Assembler provides many aids to

facilitate assembly language programming. The

assembler provides program listings, diagnostics, and a

source correction facility to reduce the user's efforts

to write and debug assembly language programs.

During the assembly process, the assembler can be

directed to produce several types of listings including:

• an options listing, to identify the assembler and

date and time of assembly, and to produce a list

of all the assembler options used;

• a listing containing all the External Symbol

9 Dictionary Items used in the program;

• a program listing showing both the source and

the object code;

• a cross reference listing in which each symbol in

the source program is listed with the numbers of

the defining instruction and all referencing

instructions; and

• an extensive diagnostic listing.

The diagnostic listing provided by the UNIVAC OS/3

Assembler provides a detailed account of the errors

the assembler encounters; the instruction line

number, an error code, and a detail message are

printed for each error. Every effort has been made to

make th is diagnostic service comprehensive by

extending the number of possible messages and by

including information to help the user programmer

locate errors in the source code.

21

22

A source correction facility is also available to

UN IV AC 0 S/3 users. This facility allows the

programmer to use library service directives to cause

the assembler to select source code from the control

stream. The programmer can use the source

correction facility to temporarily correct or update

his source programs without a separate library

services run, thereby eliminating an entire job step

and further reducing the programming effort

necessary to develop and maintain UNIVAC OS/3

assembly language programs.

summary

The UNIVAC OS/3 Assembler offers a flexible

assembly language, comprehensive assembler

directives, complete data representation, conditional

assembly features, programming aids, and a versatile

macro facility. And yet these features and capabilities

are offered in a package small enough to run on a

minimally configured UNIVAC 90/30 System. Such

power and flexibility at such a low cost makes the

UNIVAC OS/3 Assembler unique.

A detailed description of the features and capabilities

of the UNIVAC OS/3 Assembler, complete with

illustrations and examples drawn from actual practice

is available in the UNIVAC Operating System/3

Assembler User Guide. A review of the programming

used with the assembler, written for experienced

personnel, is also available; see the UNIVAC Opera-

- ting System/3 Assembler Programmer Reference.

23

