Operating System/3 (0S/3)

FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to “SPERRY UNIVAC FORTRAN
Programmer Reference”, UP-8193 Rev. 1.

This update includes the following changes to the job control procedure for release 7.1:

= Specification of catalog file

L] Expanded explanations of parameters

Copies of Updating Package C are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8193 Rev. 1-C. To receive the complete manual, order UP-8193 Rev. 1.

Mailing Lists

BZ, CZ (less DE, GZ,
HA) MZ, 18U, 19U,
20U, 21U, 75U and
76U

Mailing Lists DE, GZ, HA, 18, 19, 20, 21,
75-and 76

(Package C to UP-8193 Rev. 2,

7 pages plus Memo)

Library Memo for
UP-81¢3 Rev. 1-C

September, 1981

) Operating System/3 (0S/3)
FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package B to “SPERRY UNIVAC FORTRAN |
Programmer Reference’’, UP-8193 Rev. 1.

This update incorporates several corrections: |
L Sources input cannot be accepted from tape
= A variable containing the value zero is acceptable in a DO control statement

Copies of Updating Package B are now available for requisitioning. Either the updating package alone, or the
complete manual may be requisitioned by your local Sperry Univac Representative.

. To receive the updating package alone, order UP-8193 Rev. 1-B. |

To receive the complete manual, order UP-8193 Rev. 1.

. (less DE, GZ, HA) MZ, (Package B to UP-8193 Rev. 2,
18U, 19U, 20U, 21U, Covers and 9 pages plus Memo)
75U and 76U

October, 1980

|
|

|

|

|

|

\

Mailing Lists BZ, CZ Mailing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76 Library Memo

Operating System/3 (0S/3)

FORTRAN

Supplementary Reference

This Library Memo announces the release and availability of updating Package A to “SPERRY Univac Operating
System/3 (0S/3) FORTRAN Supplementary Reference’, UP-8193 Rev. 1.

This Update includes minor corrections and modifies the formats of:

= UNIT macro instruction for card reader definition

u UNIT macro instruction for card punch definition

Copies of Updating Package A are now available for requisitioning. Either the updating package alone, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac Representative. To
receive the updating package alone, order UP-8193 Rev. 1—A. To receive the complete manual, order UP-8193 Rev. 1.

Mailing Lists Mailing Lists 18, 19, 20, 21, 75 and 76
BZ, CZ and MZ (Package A to UP-8193 Rev. 1,
18 pages plus Memo)

Library Memo

June, 1979

4

FORTRAN

S e

.

o
w}gﬁﬁﬁ‘;@& “gg?é%&
-

Environment: 90/25, 30, 30B, 40 Systems

2v=2=UNIVAC

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS

400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, 1976, 1977 — SPERRY RAND CORPORATION PRINTED IN US.A.

8192 Rev. 1 SPERRY UNIVAC Operating System/3 ¢ PSS 1

UP-NUMBER] UPDATE LEVEL PAGE
PAGE STATUS SUMMARY
‘ ISSUE: Update C — UP-8193 Rev. 1
RELEASE: 7.1 Forward
Page Update Page Update P V)
Part/Section Part/Sectio g paa i age pdate
Number Level / N Number Level Part/Section Number Level
Cover/Disclaimer B
PSS 1 Cc
Contents 1 thru 6 Orig.
1 1 B
2thru 6 Orig.
2 1thru5 Orig.
3 1thrub Orig.
4 1 thru 4 Orig.
5 B
6,7 Orig.
5 1 thru 12 Orig.
13 A
14 thru 20 Orig.
6 1,2 Orig.
3 A
4 thru 7 Orig.
. 7 1thrub Orig.
6,7 A
8 thru 21 Orig.
8 1,2 Orig.
9 1thrub Orig.
10 1,2 Orig.
3,4 A
5 thru 7 Orig.
8 A
9,10 Orig.
1 1 B
2,3 A
12 1 thrudg . [
5thru12 Orig.
Appendix A 1 thru 4 Orig.
User Comment
Sheet

All the technical changes are denoted by an arrow () in the margin. A downward pointing arrow { *) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow ()} pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

B

SPERRY UNIVAC Operating System/3 -

8193 Rev. 1 *l
PAGE

UP-NUMBER UPDATE LEVEL

1. Introduction

1.1. GENERAL

This manual is intended to introduce the experienced FORTRAN programmer to the SPERRY UNIVAC Operating
System/3 (0S/3) FORTRAN. This manual supplements the general information concerning FORTRAN
programming available in fundamentals of FORTRAN programmer reference, UP-7536 (current version).

1.2. OS/3 FORTRAN
0S/3 FORTRAN consists of:
L] an extended American National Standard Basic FORTRAN language;
.] a compiler which transforms programs written in that language into a form suitable for execution;
] a library of input/output (1/0} and data formatting routines; and
L] a library of commonly used mathematical functions and service routines.

The FORTRAN compiler accepts source programs, written in the FORTRAN language, which may reside in the

control stream or in a source program library on disc. The output of the compiler must then be processed by the -—
linker. (See system service programs user guide, UP-8062 (current version).) During this process, mathematical and

1/0 routines are taken from the FORTRAN system library and included in the executable program. User-defined
procedures, if they are required, are also included during the linker processing. These procedures may be coded in
FORTRAN or in some other language. The output of the linker is a load module which may consist of several

overlay phases. During the execution of the object program, the overlay phases may be loaded by specific calls by
FORTRAN statements, or loaded automatically by referencing a procedure in an overlay not currently in main

storage.

When it is loaded, the compiler interrogates the system to determine the amount of space available to it. It then
partitions the work space into an optimum allocation for table space and 1/O buffers.

During compilation, the compiler produces the following optional listings:

= a listing of the source program; each source statement is accompanied by compiler-generated diagnostics; for
each diagnostic, the source statement is marked at the character for which the diagnostic is produced;

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

UPDATE LEVEL

1-2

L] a main storage map showing the allocation of the variables and arrays in the program; and

= the object code in the form of a pseudo-assembly language program.

Any of the listings may be suppressed by user options.

The compiler is self-initializing and any number of FORTRAN source programs may be processed by one call of the
compiler by the job control program. If a FORTRAN source statement follows an END statement in the source
input file, it is assumed that another program is to be processed and the compiler reinitializes itself.

1.2.1. Compatibility

0S/3 FORTRAN is an extended American National Standard Basic FORTRAN system. It is a compatible subset of
iIBM DOS/360 FORTRAN IV and SPERRY UNIVAC Operating System/7 (0OS/7) FORTRAN |V, and it is a
compatible superset of the IBM TOS/DOS Basic FORTRAN system.

1.2.2. 0S/3 FORTRAN Extensions

0S/3 FORTRAN includes the following extensions to American National Standard Basic FORTRAN

{X3.10-1966):
L] Names may have up to six characters, and up to five digits may be specified for labels.
L Embedded comments are permitted.

] A double precision data type with D and G formats is provided.
a Arrays with three adjustable dimensions are possible.

s ASSIGN and assigned GO TO statements are provided.

L Optional arithmetic | F statement labels are permitted.

] PROGRAM statement is provided.

L] Logical IF and executable END statements are provided.

- Generic reference to intrinsic and standard library functions.

] OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH, LOAD, FETCH, DUMP, and PDUMP
subroutines are provided.

u Arguments and COMMON storage may be redefined by functions.

L Symbolic names may be typed by the IMPLICIT statement.

- Named COMMON blocks and an EXTERNAL statement are provided.
- End-of-file and error control are available in the READ statement.

L Format descriptors H, Z, A, T, and a literal descriptor are provided.

L An extended G edit capability exists for real and integer data types.

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

1-3

L] Print carriage control and list-directed 1/0 are available.
L] The direct access 1/0 statements DEFINE FILE, READ, WRITE, and FIND are available.
] A DATA statement is provided and block data subprograms may be named.

= Debugging aids include subscript checking, label trace, conditional compilation and formatted main storage
dumps.

1.3. SOURCE PROGRAMS

General procedures to be followed in 0S/3 FORTRAN programming are presented in the following paragraphs.’

1.3.1. Character Set

The 0S/3 FORTRAN character set consists of the FORTRAN character set and special characters as shown in Table
1—1. Each character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC
characters not shown in the table have no graphic equivalents in the 0S/3 FORTRAN character set, but these
characters can be stored internally and transmitted to and from card, tape, and disc storage.

Table 1-1. 0OS/3 FORTRAN Character Set

FORTRAN Character Set

Alphanumerics A through Z and $
0 through 9
FORTRAN Special Symbols =, ()+—=/.";
Blank written on the coding form as Aor as a blank space

SPERRY UNIVAC 90/30 System Special Character Set*

> < 1% 1:@#?___ (underscore) *'(double quote) &

*The special character set can change with the options selected for the system printer, with up to 127 characters available,
depending on printer.

1.3.2. FORTRAN Statements

0S/3 FORTRAN statements are coded on the FORTRAN coding form in columns 1 through 72. All characters in a
FORTRAN line are restricted to the FORTRAN character set, except in comments and literal constants where the
special character set may be used. Columns 73 through 80 on the form are ignored by the compiler and can be used
in any manner by the programmer. The information in these columns is printed in the source program listing.

Each FORTRAN statement is written in columns 7 through 72. The first line used for a statement must contain
either a zero or a blank character in column 6. A statement may be continued on one or more successive lines with a
nonzero or nonblank character in column 6 for each line that is a continuation. Therefore, a FORTRAN statement
may consist of one initial line followed by any number of continuation lines. The capacity of the compiler to accept
large statements is limited only by the amount of main storage available; the maximum capacity is achieved when
fong statements appear as early in the program as is practical.

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER : UPDATE LEVEL

1-4
PAGE

A statement label consists of one through five decimal digits in columns 1 through 5. The contents of these columns .
for continuation lines are ignored during program compilation (except for an X in column 1) but are shown on the .
program listing and may be used by the programmer. Leading zeros and embedded and trailing blank characters are

ignored in a statement label. Each statement label must be unique within its program unit.

A special use of column 1 is indicated by an X coded there during program debugging (Section 9), and compilation
(Section 11). :

1.3.3. Comments

The compiler provides four methods of entering comments: columns 73 through 80 and columns 1 through 5 on
continuation {ines; the comment line; and embedded comments.

A comment line is indicated by the character C in column 1. Each comment line is shown on the program listing, but
is ignored by the compiter. A semicolon in columns 7 through 71 in a FORTRAN line indicates that the information
immediately following and written on the same line is to be treated as comments; for exampie:

“C" FOR COMMENT

r
STATEMENT
NUMBER

SFORTRAN STATEMENT >
51067 10 20 30 40

) S G S | 21:131Q1121TL LLAL)l;l 1C1A1L‘1C1U1L1AJT/: lnglulAlQlEl IRIE\)lblT;L

L1

A comment following a semicolon can be continued on a succeeding line by specifying a C in column 1. A
comment following a C in column 1 may also be followed by a number of continuation lines specified by a
nonzero or nonblank character in column 6 of each succeeding line.

Example:

A i i i DDA A]lOLQ.L A/AslIllquj‘l IBLEﬁIIlNA JILTIEJB!AITAII&]NI 1 1 L I3 |
cl S LlDDLPl JFLOLRL JTLHJEI LCJAlLACIUJLLALTJIJQN IDLF.L i 1 PO RS |
Lt 11 cu181&| iRbeQTSI AN S RO TUN I SO T T T T SN S NN SNt N VU SN S S BTN SO N

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment.

1.3.4. Symbolic Names

Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

1.3.5. Source Statement Order
Table 1-2 shows the order in which the source statements of each program unit must be written.

Every executable program contains one main program and as many subprograms as required. A main program is a set
of statements and comments that is not headed by a FUNCTION or SUBROUTINE statement. Subprograms are
headed by one of those statements. The term program unit is used for any main program or subprogram. All !
program units are terminated with an END statement. .

8193 Rev. 1 SPERRY UNIVAC Operating System/3 -8

UP-NUMBER UPDATE LEVEL PAGE
. Table 1—-2, Source Statement Order
line 1 Program PROGRAM FUNCTION
Declarators: SUBROUTINE BLOCK DATA
IMPLICIT

COMMON INTEGER
DIMENSION EXTERNAL
DOUBLE PRECISION REAL

EQUIVALENCE

FORMAT Statement Function

Arithmetic Assignment
Arithmetic IF
COMMENT ASSIGN

Assigned GO TO

. BACKSPACE

CALL

Computed GO TO
Logical |F

DEFINE CONTINUE
FILE bO

. DATA FIND
ENDFILE

PAUSE
PRINT
READ
PUNCH
RETURN
REWIND
STOP
TRACE ON
TRACE OFF
Unconditional GO TO
WRITE

linen END

NOTE:

Vertical lines demarcate statements which may be intermixed; for example, FORMAT statements may
appear anywhere between the program declarator (if used) and the END line.

Horizontal lines demarcate groups of statements which must be specified in the order shown. The dotted
horizontal lines indicate that EQUIVALENCE statements must follow any of those specification state-
ments which specify items to share storage; DATA statements must follow any specification statement that
mentions an item to be initialized.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 1-6
UP-NUMBER UPDATE LEVEL PAGE
1.4. STATEMENT CONVENTIONS , .

Conventions used to illustrate FORTRAN statements throughout this manual are as follows:

L] Capital letters, parentheses (}, and punctuation marks {except braces, brackets, and ellipses) must be coded
exactly as shown. An ellipsis (a series of three periods) indicates the presence of a variable number of entries.

L] Lowercase letters and terms represent information supplied by the user.
L Information within braces { } represents necessary entries, one of which must be chosen,
] Information within brackets [] (including commas) represents optional entries that are included or omitted

depending on program requirements. Braces within brackets signify that one of the entries must be chosen if
that operand is included.

u Underlined parameters are selected automatically when a parameter is omitted. These are called defaults.

UP-NUMBER

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

2-1

2. Data Types

2.1. GENERAL

The data types available are integer, real, double precision, and literal. For additional information concerning data
types in the SPERRY UNIVAC Operating System/3 (0S/3) FORTRAN language, refer to fundamentals of
FORTRAN programmer reference, UP-7536 (current version). For additional information on the hardware
characteristics of the SPERRY UNIVAC 90/30 System affecting integer and real computation, see the processor
programmer reference, UP-8052 (current version). Data types are categorized for manipulation by the FORTRAN

program. Data may appear as constants, variables, or elements in an array. Each of these categories is explained in
this section.

2.2. CONSTANTS

A constant is a value defined by its representation in the source program. Once defined, a constant must not be
redefined during program execution. An arithmetic constant is said to be signed if it is written with a plus or minus
sign; an unsigned constant is treated as a positive constant.

2.2.1. integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of the constant is positive, it may be preceded by a
plus sign; if the value is negative, it must be preceded by a minus sign.

An integer constant has the following representation in storage:

.S integer

whnere:

Is the sign bit.

integer
Is the 31-bit binary integer with a maximum value of 2,147,483,647; if negative, the value is stored in
twos complement form.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 -2

UP-NUMBER UPDATE LEVEL | PAGE

2.2.2. Real Constants .

Real constants may be written as:

L) a basic real constant which is an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or foltowing the string, such as +0000.1701.

L] a basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example,

0000170.1E—-03 is a valid real constant.

- an integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven digits,
truncation of the excess rightmost digits results; +1701E—4 and 17010E—05 are valid real constants.

Real constants occupy one word of storage in normalized floating-point representation. The format is:

[characteristic fraction

where:

Is the sign bit.

characteristic ‘

Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which the
fraction must be muitiplied to give the real value; the characteristic is stored as an excess-64 number.

fraction
Is six hexadecimal digits representing the fractional part of the real value; the radix point is located
immediately to the left of bit 8.

78 45 1075

The maximum range for a real constant is from approximately 10~ or it may be 0.

2.2.3. Double Precision Constants

A double precision constant is similar to a real constant except that it may contain up to 16 significant digits. It is
written as:

L] a basic double precision constant, which is an optionally signed string of 8 through 16 significant digits with a
decimal point preceding, embedded in, or following the string, such as —180018101820.

L] a basic real constant, a basic double precision constant, or an integer constant followed by a double precision
exponent. A double precision exponent is expressed by the letter D followed by an optionally signed integer
constant with a maximum of two significant digits; —.180018101820D12 is a valid double precision constant.

A double precision constant may range in value from approximately 1078 through 1075, or it may have the value
0.

2.2.4. Literal Constants

A literal constant consists of one or more characters from the SPERRY UNIVAC 90/30 System character set. Each
character in a string requires'one byte of main storage.

Two methods of writing literal constants are:

1. as a Hollerith constant in the form ch1 CyenCyyyr where each c represents a constant character; or

2. as a character string enclosed in apostrophes: ’c1 c2...cn’. If the apostrophe occurs in a string, it is represented
by doubling that character.

The literal DO NOT would be represented by the Hollerith constant 6HDQ NOT and the literal constant DON'T
would be represented by ‘'DON”'T’ using the second method of writing literal constants.

2.2.5. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by a string of hexadecimal digits; the hexadecimal digits
and their equivalents are:

Hexadecimal Digit | Decimal Value | Binary Representation
. 0 0 0000
1 1 0001
2 2 0010
3 3 oon
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 1 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

8193 Rev. 1 .
rating System/3 2-3
UP-NUMBER | SPERRY UNIVAC Ope g 5y UPDATE LEVEL | PAGE
A double precision constant is stored like a real constant except that two words of main storage are used:
s characteristic fraction
0|1 718
63

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

2-4

Hexadecimal constants can be used only in DATA statements. Each hexadecimal digit occupies one half-byte of
main storage. If the constant specifies more digits than can be stored in the associated variable, it is truncated on the
left; if the constant specifies fewer digits, zeros are padded on the left.

2.3. VARIABLES
A variable is represented by a symbolic name (1.3.4) which identifies a single value. A data type is associated with a
variable and there is both a standard and an optional length specification which determines the number of bytes

assigned in main storage. The optional length specifications are shown in Table 2—1.

Table 2—1. Data Types and Optional Lengths

90/30
Standard ANSI Length Optional Length
Data Type Standard Name in Bytes Data Type in Bytes
integer x4 Integer 4 Integer «2 2
Real*4 Real 4 Real +8 8
Double Precision Double Precision 8 None

The type associated with a variable is determined by explicit type declaration statements (6.4.1), by the IMPLICIT
statement (6.4.2), or by the variable named used. Names beginning with the letters |, J, K, L, M, or N are assumed to
represent integer values; all names beginning with other letters are assumed to represent real values. Explicit type
statements have the highest precedence and the IMPLICIT statement the next highest in this convention.

In this manual, to prevent confusion when the length can differ, the complete data type will appear: a reference to
8-byte real data will be written as real*8. Note that real *8 is the equivalent of double precision, but double precision
variables have only a standard length. There is no variable type associated with literal data. The optional length
described may be specified in either the explicit type statements or IMPLICIT statement.

The internal representation of the valtes of variables is identical to that described for constants, with the exception
of integer*2 where there is no corresponding constant. The integer*2 variable occupies two bytes with the optional
sign stored in the most significant bit:

S integer

0|1 15

The maximum value of an integer*2 variable is 32,767; note, however, that the hardware cannot provide overflow
and underflow indications if this range is exceeded — numeric bits can be propagated into- the sign position by
arithmetic. For this reason, exercise discretion when using integer*2, ’

2.4. ARRAYS

An array is an ordered set of values. Each value is called an array element and the entire set is identified by a
symbolic name known as an array name. An array is described by an array declarator which is explained in Section
6. An array can be declared as having a maximum of three dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2—2. For instance, an
array named AGO with three dimensions, each four elements in size, has the declarator AGO (4,4,4). AGO is the
array name and the numbers in parentheses are subscripts. Each subscript must be an unsigned integer constant
except when a dimension is adjustable. In this last case, the subscript must be an integer variable with a length of
four bytes.

8193 Rev. 1 H
3 2-5
UPNUMBER SPERRY UNIVAC Operating System/ oroate Level | pace
. 2.4.1. Array Element Reference

Any element in an array may be referenced by using the array name followed by parenthesized subscripts in the
format:

n (s1 '52"3)

where:

Is the array name.

Is an integer expression of the form cxvtk, and both ¢ and k are integer constants, and v is an integer
variable. This provides seven kinds of subscript expressions:

v k

vtk v—k
(Y cxv+k
cxv—k

In an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of
elements is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array
declarator.

. 2.4.2. Element Position Location
General expressions for locating the position of an array element relative to the first element are presented in Table
2-2. In the table, the first byte of the array is byte O; the letters a, b, and c refer to the value of a subscript
expression in an array element reference; the subscript expression corresponds to dimensions A, B, and C in the

array declarator; the m is a multiplier determined by the number of bytes required for each array element.

Table 2—2. Relative Locations of Array Elements

Number of Declarator Subscript Relative Location of the
Dimensions Form Form Element in the Array

1 (A) (a) (a—1}*m

2 {A,B) (a,b) ({a—1)+A*(b—1))+*m

3 (A,B,C) (a,b,c) ({a—1)+A*{b—1)+A*B+*{c—1}) +m

Examples:

if an array declarator were AGO(17), if the element referenced is AGO(4), and if the elements are real types,
| then the location of the first byte of the fourth element reiative to the beginning of the array is found with the
expression (a—1)*m. In this case, (4—1)*4 = 12, or the first byte of AGO(4) is the twelfth byte from the
beginning of the array.

If the array were declared as AGO(9,10,11) and the element to be located is AGO(3,4,5), the calculation is
((2)+9+(3)+9+%10+(4)) *4, or location 1556.

8193 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER

UPDATE LEVEL

PAGE

31

3. Expressions and
Assignment Statements

3.1. GENERAL

This section discussés the use of expressions in SPERRY UNIVAC Operating System/3 (0S/3) FORTRAN
programming and describes the assignment statements. For more information, see fundamentals of FORTRAN
programmer reference, UP-7536 (current version).

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators which is evaluated as a single value during execution
of the FORTRAN program. Three different classes of expressions are possible: arithmetic, relational, and logical.
Each of these expressions, the order of evaluation, mixed-mode arithmetic, and user checks on arithmetic operations
are described in the following paragraphs.

3.2.1. Arithmetic Expressions

An arithmetic expression is always evaluated during program execution as a numeric value. |t is constructed as a

numeric constant, a variable name, an array element reference, a function reference, or combinations of these using
arithmetic operators.

3.2.2. Relaticnal Expressions

A relational expression consists of two arithmetic expressions joined by a relational operator. This type of
expression is actually a subset of logical expressions and is always evaluated as either TRUE or FALSE.

When mixed-mode arithmetic comparisons are made, the priorities of the data types are:

Data Type Priority
real*8 {double precision) 1
real*4 2
integer+*4 3
integer*2 4

The expression of the lower priority is always converted to the type of the higher priority before the comparison is
made. For example, if the relational expression consists of an integer expression and a real*4 expression, the integer
is always converted to a real*4 type before the comparison is made.

8193 Rev. 1 ‘ SPERRY UNIVAC Operating System/3

_ UP-NUMBER

UPDATE LEVEL

PAGE

3-2

3.2.3. Logical Expressions
A logical expression is:

= a relational expression,

= a logical or relational expression preceded by .NOT ., or

n two logical or relational expressions joined by .AND. or .OR..

3.2.4. Evaluation Order

An expression is evaluated according to the following rules:

1. Each operator has a priority as shown in Table 3—1, Operations are performed in this order of priority except

when modified by the other rules.

Table 3—1., FORTRAN Operators and Evaluation Order

Operation Operator Order or Priority
Function evaluation fix) 1
Exponentiation *x 2
Multiplication * 3
Division /

Addition or unary plus + 4
Subtraction or unary minus -

Greater than .GT. 5
Greater than or equal to .GE.

Less than LT

Less than or equal to .LE.

Equal to .EQ.

Not equal to NE.

Logical negation .NOT. 6
Logical product AND. 7
Logical sum OR. 8

2. Begin with the leftmost operator.

3. The current operator is compared to the operator on its right if no parentheses intervene. If the priority of the
current operator is greater than or equal to the priority of the next operator, the current operation is
performed. Otherwise, the next operator becomes the current operator and this step is repeated using it as the

basis for comparison.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 3-3

UP-NUMBER UPDATE LEVEL | PAGE

’ . 4, Upon encountering the right end of an expression, remaining operations are performed from right to left.
\ 5. Sequential exponentiation is performed from right to left. For example, X**Z*+Y is evaluated as X**(Z*»Y).

6. Expressions in parentheses are treated as single operands and are evaluated first, starting with the innermost
parenthesized expression, before the left to right comparisons are continued.

3.2.5. Mixed-Mode Arithmetic

Mixed-mode arithmetic occurs when an operation is performed on two operands which are not the same type. The
type and length of the result in such situations is shown in Table 3—2.

Table 3—2. Result Types for Mixed-Mode Arithmetic

First Operand Type |
Real*8
Integer*2 Integer*4 Real *4 (Double
Precision)
Integer«2 Integer x4 Integer+4 Real+4 Real*8
Integerx4 Integer+4 Integer+4 Real+4 Real+8
Second
Operand Real x4 Real*4 Real«4 Real*4 Real*8
Type
Real+8 Real«8 Real»8 Real«8 Real«8
{Double
Precision)

3.2.6. Arithmetic Operation User Checks
The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:
] CALL DVCHK(i}
Used to check for a division by zero after the division has been executed.
L] CALL OVERFL(i)
Executed after an arithmetic operation to check for an overflow or underflow condition.
. CALL ERROR1 or ERROR(i)
Used to set and test indicators.

See 5.6.3 for more information on these standard library subroutines.

3.3. ASSIGNMENT STATEMENTS

. A value is assigned to a variable or an array element by executing an arithmetic assignment statement. This value is
the current value unti! the variable or array element is redefined.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 3-4

UP-NUMBER UPDATE LEVEL | PAGE

3.3.1. Arithmetic Assignment Statement .

Format:

Is any type variable name or an array element name.

Is any type arithmetic expression.

Description:

The arithmetic assignment statement assigns a single value to a variable or array element. The assignment
operator (=) is read as "'is replaced by" as in: “AMR is replaced by 8.19"' for AMR=8.19.

Table 3—3 demonstrates the conversion of the expression e to the data type of the receiving variable
represented by v. The conversions are accomplished by intrinsic functions (6.1).

Table 3—3. Assignment Statement Conversions

[
Oa _ Real+8
T ta Integerx2 Integer+4 Real+4 {Double
ypes Precision)
Integer=2 None * * *
Integer+4 ** None IFIX{e) 1FIX {(SNGL{e))
v

Real+4 t FLOAT (e) None SNGL(e)
Real+8 t DFLOAT(e} DBLE(e) None

* Processing for integer=2 is identical to that used for integer=4 ,except that the high order 16 bits
of integer+4 are truncated.

**The sign is extended.

1 In these cases, e is treated as an integer=4 data type.

3.3.2. ASSIGN Statement
Format:

ASSIGNk TO i

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

3-5

where:

Is the label of an executable statement in the same program unit.

Is the name of an integer+4 variable.
Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name can
then be used in the assigned GO TO statement (4.6). Once the integer variable name has been assigned a value
by the ASSIGN statement, it can then be used for no other purpose until it is redefined. For instance, it
cannot be used in an arithmetic expression unless its value is redefined by an arithmetic assignment statement
or a READ statement.

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE

4. Control Statements

4.1. GENERAL

Control statements are executable instructions which modify the normal sequence of program execution. The
control statements used in SPERRY UNIVAC Operating System/3 (0S/3) are identical in function to those

described in the Control Statements section of fundamentals of FORTRAN programmer reference, UP-7536
{current version).

4.2. ARITHMETIC IF

Format:
. IF (e} k1,k2,k3
where:
e
Is any integer, real, or double precision expression.
k
Is a statement label in the same program unit.
Description:

The arithmetic |F control statement is used to transfer control to specified statements within the program
depending on the evaluation of an arithmetic expression.

If the arithmetic expression value is negative, control is passed to statement labeled k1 ; if 0, to the statement
labeled k2,‘ and, if the value is positive, to the statement labeled k3. If any label is missing, control is passed to
the next executable statement below the IF control statement when the conditions for the missing label are
met. Trailing commas may be omitted from the control statement when labels are not specified.

When using the arithmetic |F control statement, remember that the internal representation of real and double
precision values is an approximation. One of these value types could be stored as a nonzero approximation of
zZero.

8193 Rev. 1 4-2

UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

Examples:

"C*" FOR COMMENT

-
c
¢

[| STATEMENT
NUMBER

FORTRAN STATEMENT
7 10

IFJCAII‘H/JL/.01412101 G I e

20 30

1 ke i | R Y

Lo N S S S S S U S S S s O U G S U S S S S
l i 1 Lé I1F¢(;xlzJL),_p/A,Li o [FUN VRN SRR DNV § 1 i i L : [1
,_L__LAL*‘;;‘,4,LA;,L,LA.Ax¢,,A.1.A i H L'L [
o J IF(BETA-I1 5),,20 . . A

Statement 5 indicates that control is to be transferred to the statement labeled 10 if | is less than 1, to the
statement labeled 20 if | equals 1, or to the next executable statement following 5 if | is greater than 1.

Statement 6 transfers control to statement 15 if Y is greater than X; otherwise, control is transferred to the
next executable statement.

Statement 7 transfers control to statement 20 only when BETA is greater than 1.5.

43. LOGICAL IF
Format:
IF (e) s

where:
Is any logical expression.

Is any executable statement except a DO, END, or another logical |F statement.

Description:

The logical 1F control statement allows the execution of a statement to be dependent on the evaluation of a
logical expression.

Examples:

IlFl (IA l : lGlTl i lBi : IAINLD,L..,{ CL;L’T‘_L—[L:_LDL)_._LG‘L@L [T_lOi 12101 41

I 1 F l,_(,LAL,JGLILj LBJ).. i -LWIRJ l,lILEL j,(_l ,l,. LO i,) ,lA_L . ,l Lo b

O

i

If both relational expressions (A.GT.B, C.L.T.D) are TRUE, the GO TO control statement is executed and
control passes to statement 20. If either expression is evaluated as FALSE, the GO TO statement is ignored
and control passes to the following statement.

The WRITE statement in the example is executed if the value represented by A is greater than that represented
by B. Otherwise, control passes to the next executable statement.

s pov: 1 l SPERRY UNIVAC Operating System/3 sronre cever | oace

4.4. UNCONDITIONAL GO TO
Format:

GO TO k
where:

k

Is the label of an executable statement in the same proaram unit.

Description:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the

iabel specified.

45, COMPUTED GO TO
Format:
GO TO (k1 'kz""'kn" i
wnere:
k
Is a label of an executable statement in the same program unit.
i
Is an integer+4 variable, the value of which must be defined using an arithmetic assignment or READ
statement before the execution of the computed GO TO control statement.
Description:
The computed GO TO control statement permits the transfer of control to a statement whose labe! occupies
the position in the GO TO list which is equal to the value of i. For instance, if the value of i were 4, control
would be transferred to the statement labeled with the fourth label in the list of labels in the computed GO
TO control statement. If i, the integer variable, is negative, zero, or greater than the number of labels in the
list, control is transferred to the next executable statement following GO TO contro! statement.
Example:

"C" FOR COMMENT

[| STATEMENT

FORTRAN STATEMENT

NUMBER 5
8|7 10

20

—>

30

GO TP, (15,25.,35,45),

Al lIlT IEJM L 4 L i 1 1

LLJA

1
) U WU N gliilllllLLJLl

J 1

7

i

L

i

i

1 s 1 1 1

I3

1l i

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value is 3,
control is transferred to statement 35; and so on. Any value other than 1 through 4 resuits in a transfer of

control to the statement foliowing the GO TO control statement.

4-4
PAGE

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

l UPDATE LEVEL

4.6. ASSIGNED GO TO .

Format:

GO TO i, (K ky,munk,)

where:
i
Is the name of an integer+4 variable.
k
Is a statement label of an executable statement within the same program unit; the list of labels is
optional and may be omitted.
Description:

The assigned GO TO control statement transfers program control to the statement labeled with the current
value represented by the integer variable.

Example:

r——"C" FOR COMMENT

[| sTaT <
S~AUME;EERNT §FORTRAN STATEMENT >

5617 10 20 30

. G TO. K5, (10, 13,/)5, 17 .18 ,21) . . .

When the current value of the integer variable Kb matches one of the statement labels in parentheses, control
is transferred to the statement with that label. The value of the integer variable could have been defined only

by an ASSIGN statement (3.3.2).

4.7. DO
Format:
DO n i=m, m, m,
where:
n
Is the statement label of the terminal statement of the DO loop.
i
Is the control variable, which is an integer variable that may be referenced, but not redefined, within the
DO range.
m

Is the initial parameter, the value of which is assigned to the control variable before the first execution .

of the DO loop; this value must be less than or equal to the value of m,.

e ——

8193 Rev. 1

SPERRY UNIVAC Operating System/3 B : 4-5
UP-NUMBER pe g5y UPDATE LEVEL | PAGE
m,
. Is the terminal parameter which is compared to the control variable after each execution of the DO loop;
= when the value of the control variable is greater than the value of m,, the DO control statement is
satisfied and control passes out of the DO range.
M3
Is the incremental parameter, the vaiue of which is added to the value of control variable i after each
execution of the DO loop and before the comparison of m, and the control variable; when this
parameter is omitted, 1 is assumed.
\
|
| Description:
" A DO control statement initiates and controls the repeated execution of the group of statements within the
DO range. The DO range extends from the first executable statement following the DQ control statement to
’ the terminal statement. The terminal statement is the FORTRAN statement following the DO contro!
statement with the statement label specified within the DO control statement.
} Either positive integer constants or integer variable names may be used as parameters for the DO control
) statement. A value of ZERO may be obtained by using a variable set to ZERO.
Example:
"C*" FOR COMMENT
.
STATEMENT]| <
NUMBER SIFORTRAN STATEMENT >
51687 10 20 30
. A i i i Dlal jllll IKA=12_L4131A 13A l 1 L A 1 1 A I A1 1 l 1 1 i 1 i i !
I\ L 1 i ' i 1 1 1 N i i i " i i i i 4 i i i i 3) U S | 1 Y 1 1 1 U | i
1 1 1/12 CI&INITIIKNIUIEI 1 ' i i i l 1 i) A 1 i i 1 J A N 1 1 1 1
1 1 1/13 PlRLII”lTl J/JOADATA lm 1 l 1 pl 1 1 i 1 1 1 1 J 1 1)1 i | 1 1

The statements starting with the first executable statement following the DO control statement and ending
with statement 12 are executed three times, with K having the values 2, 5, and 8. When statement 13 is
executed, K is printed; at that time, its value is 8.

4.7.1. Transfers of Control From and To a Do Range

In FORTRAN programs, program control can always be transferred out of a DO loop without satisfying the DO
control statement parameters. However, control can be transferred into a DO range only from the extended range of
the DO loop. The extended range consists of those statements executed after the transfer of control out of the
innermost DO of a completely nested DO loop and before the transfer of control back into the DO loop. For a
complete explanation of the DO control statement, see the Control Statements section of fundamentals of
FORTRAN programmer reference, UP-7536 (current version).

4.8. CONTINUE

‘ Format:

CONTINUE

8193 Rev. 1 SPERRY UNIVAC Operating System/3 - 46
UP-NUMBER UPDATE LEVEL | PAGE

Description: ‘

The CONTINUE control statement serves as a terminal statement of a DO range when the terminal statement
would otherwise be a control statement. It produces no coding and may be used anywhere in the program,
subject to the ordering shown in Table 1—2, without affecting the logic of program execution. When used as
the terminal statement of a DO range, the CONTINUE control statement must have a statement label.

4.9. STOP

Formats:
sTOP
STOPn

where:

Is an unsigned integer constant of not more than four digits. (Although the compiler accepts values of
five digits for compatibility purposes, the console displays only the four least significant digits.)

Description:

The STOP control statement terminates job step execution and returns control to the operating system,
indicating the logical end of a program. When a STOP n control statement is executed, a message is produced
at the system console. The STOP display also appears on the printer with the n value plus a count of the

number of program check interrupts which occurred during program execution. No operator response is
necessary.

4.10. PAUSE

Formats:
PAUSE
PAUSE n

where:

Is an unsigned integer constant of not more than five digits.

Description:

The PAUSE control statement halts program execution and produces a message at the system console. The

operator then has the choice of permitting the program to resume execution at the next executable statement
or of terminating the job.

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

PAGE

4-7

4.11. END

Format:
END

Description:

The END control statement is an executable statement indicating the physical end of a program unit; it may
have a statement label. When the END control statement is executed in a main program, it is interpreted as a
STOP control statement and the display is identical to STOP. When the END control statement is executed in
a subprogram, it is equivalent to a RETURN statement (5.4.1.2).

4.12. PROGRAM
Format:

PROGRAM s

where:

Is a 1- to 6-character name that is to be assigned to the object module produced by the compiler.

Description:

The PROGRAM control statement is optionally used to name a main program. When used, it must be the first
statement present in the main program. If a PROGRAM statement is not present in a main program, the object
module is assigned the name $MAIN by default. When multiple main programs are being compiled in a single
job, each must be assigned a unique name so that they may all be accessible to the linkage editor and librarian.
Otherwise, only the last program compiled is accessible.

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

PAGE

5.1. GENERAL

5. Functions and Subroutines

When a caiculation or series of calculations is required repeatedly in a SPERRY UNIVAC Operating System/3
(OS/3) FORTRAN program, the statements used to perform the calculations can be coded once as a procedure. This
procedure can then be referenced each time the calculations are to be performed. Procedures, as explained here and
described in fundamentals of FORTRAN programmer reference, UP-7536 (current version} may be categorized by:

L whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

L] whether the procedure is referenced by the subroutine CALL statement or by the function reference; and

n whether the procedure is written by the user or supplied with the FORTRAN library.

Table 51 lists the procedures and shows their relationships within these categories.

Table 5—1. 0S/3 FORTRAN Procedures

Procedure Coding Inline Reference Code
or Subprogram By Source

Statement Subprogram Function User

function reference

External Subprogram Function User

function reference

Intrinsic Inline Function UNIVAC

function reference

Standard Subprogram Function UNIVAC

library reference

function

Subroutine Subprogram CALL User
statement

Standard Subprogram CALL UNIVAC

library statement

subroutine

A193 Rev. 1 SPERRY UNIVAC Operating System/3 5-2

UP-NUMBER UPDATE LEVEL | PAGE
Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one y
argument; they always return the value associated with their name when they are executed; and they return control

to the expression within the referencing statement. The functions are:
n statement functions,

L] external functions,

L intrinsic functions, and

= standard library functions.

Only statement functions and external functions are coded by the user.

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, the subroutine is executed, and control is then returned to the statement following the subroutine
reference. Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from
functions in the method of referencing the procedure, in that multiple values or no value can be returned, and in the
method by which control is returned to the referencing program unit.

Functions always transfer values, but subroutines may or may not. When value transfers are made, they are
accomplished by using arguments or COMMON. Arguments are included as part of the procedure definition; these
are formal or dummy arguments. Arguments are also specified in the procedure reference; these are actual
arguments. Substitutions are made by the FORTRAN compiler and a value is returned after the procedure is
executed; the return of values may also be accomplished with arguments.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure
definition. They must correspond in number, data type, and order. The argument forms permitted for actual
arguments in the user-coded procedures are shown in Table 5—2.

Table 5—2. Actual Argument Forms

Form of Actual Arguments Statenj!ent Exter_nal Subroutines
Functions Functions
Variable name Yes Yes Yes
Expression Yes Yes Yes
Function reference Yes Yes Yes
Array element name Yes Yes Yes
Array name No Yes Yes
External procedure name No Yes Yes

To use procedures in a FORTRAN program, they must be referenced as described in 5.2. The user-coded procedures
must be defined as described in 5.3 for statement functions, and 5.4 for external functions and subroutines.
Argument substitution, which applies to all procedures, user-coded or not, is explained in 5.5, and the library
procedures supplied by Sperry Univac are described in 5.6.

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL PAGE

5-3

5.2. PROCEDURE REFERENCE
Depending on whether the procedure is a function or a subroutine (Tabie 5—1), it is referenced by either the
function reference or the subroutine CALL statement.
5.2.1. Function Reference
Statement functions, external functions, intrinsic functions, and standard library functions are all referenced with
the general function reference. The function reference is used within an expression in a FORTRAN statement and
has the form:
f (a1,az,...,an)
where:
Is the symbolic name which was used to identify the user-coded function in its function definition, or
which was supplied as the function name of an intrinsic or library function.
Represents an actual argument; at least one is required.
Actual arguments must agree in type, number, and order with the dummy arguments in the function definition, but
actual argument types are not restricted by the data type of the function name. The forms permitted for actual

arguments are shown in Table 5—2 for statement functions and external functions, in Table 5—3 for intrinsic
functions, and in Table 5—4 for standard library functions.

Examples:
c* FoR CommENT
TN T ORTRAN STATEMENT >
s €7 10 20 30
s L ICEECBRTI(SUZU)FCARAFYAM
| MATCO=NORT *X%XT AWA-INT (KS ,ABL, RI.)D.

In the first example, the standard library function CBRT is referenced. In the next line, a user-coded statement
function, INT, is referenced and three actual arguments are included in the function reference. Although the
actual arguments are both integer and real types, an integer value is returned to the referencing expression
because the function name is implicitly integer.

5.2.2. Subroutine Reference (CALL Statement)-

Format:
CALL s (a;a,,....3)

where:

Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library
subroutines.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 5-4
UP-NUMBER UPDATE LEVEL | PAGE
a
Represents an actual argument. This argument list is optional and must be enclosed in parentheses when ‘
used.
Description:
All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL
statement. |t is used to transfer control to the subroutine specified by s. The maximum number of actual
arguments permitted is 511; the allowed argument forms are shown in Table 5—2 for user-coded procedures
and described in 5.6.3 for standard library subroutines.
Examples:

"C" FOR COMMENT

[| STATEMENT

NUMBER | SFORTRAN STATEMENT >

7 10 20 30
L L 1 1 CIAJALLI 1plGlNLUJM § B T | L 1 i i L 1 1 1 1 1 1 | 1 1 i i1 1
L I 1 1 CLAJéx(‘l QVLC J-IJkl (JI lNlEJRI) 1 Il)] i i 1 1 1 J I 1 L 1 1 4.

Two subroutines are referenced by the calls in the example. In the first CALL statement, control is transferred
to the subroutine PGNUM; no transfer of values is to take place, so no arguments are specified. When the next
line is executed, the standard library subroutine DVCHK is called; the actual argument INER is specified.

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the external function and the statement function. The former is coded as a subprogram
as described in 5.4, but the statement function is defined with only one FORTRAN statement.

Statement functions require at least one argument and return only one value to the referencing statement. They are
referenced with the function reference previously described. After evaluation of the statement function, control is
returned to the expression within the referencing statement.

The format of the statement function definition statement is:

f (a1 ,az,...,an) =e

where:

Is the symbolic name assigned to the statement function.

Is a dummy argument consisting of a variable name.

Is a limited arithmetic expression.

The statement function definition statement defines a function which may be referenced in a subsequent expression.

The statement function definition statement must precede all executable statements in the program unit and must .
follow all specification statements (Table 1—2).

A limited expression is an arithmetic expression which may not contain an array element reference or a reference to
a statement function that is subsequently defined. For example,

8193 Rev. 1 I

SPERRY UNIVAC Operating System/3 5-5
UP-NUMBER UPDATE LEVEL PAGE
“C" FOR COMMENT
. TAEMENT S FORTRAN STATEMENT >
5 |¢]7 10 20 30
1 i i I QIUJ l(lAl)l 1:1 12/1‘ 1OA*.lSinQLTA i(lAj)i e i Jl‘ 1 J L 1) R
i i 1 1 Al\/L& 1(1A1718131P1N1TA)1 l':l AAJ*_A*_ABA-f—JQAUl lCJPlNJTJ)I i n
is permitted, but
B S SO S .iillexA11L11114111¢11}11LJ111
NS SIS T AIVLRX 1(1A1\18141P;N1T1>1 I:x 1AJ*1*IBX+LQJUI 1(1P1N¢T1>1 T

11 1 Il QIUI l(lAl)l 1:1 121'1g*1SIQIR1TI 1<LA1>L | l i i | " L 1

is not.

The value returned by the statement function is typed by the statement function name. The name is typed according
to the rules for variables described in 2.3, or it is typed by a type statement (6.4). Note that it is the function name,
not the type of the arguments or of the expression, which determines the value type returned by the statement
function.

Dummy argument names in the statement function definition may appear as variable names in the same program
. unit. A maximum of 511 arguments may be used in the definition.

5.4. SUBPROGRAM DEFINITION

The user-coded procedures defined as subprograms are the external function and the subroutine. The definitions are
described in the following paragraphs.

5.4.1. External Functions

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition, requiring at least one argument, referenced by a function reference, and returning at least one value to
the referencing statement. After evaluation of an external function, control is returned to the expression within the
referencing statement, where computation continues using the value associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a
FUNCTION statement (5.4.1.1) and ends with an END statement (4.11).

The external function returns a value of the type determined by the procedure name, not by the data types of the
arguments. The data type of the function name is decided by the first letter of the function name (2.3), by a type
statement in the same program unit, or may be specified in the FUNCTION statement.

8193 Rev. 1 . 5-6
P-NUMBER SPERRY UNIVAC Operating System/3 opoaTE LEVEL | PacE
5.4.1.1. FUNCTION Statement ,'
Format:
t FUNCTION fxs (a1 ,az,...,an)
where:
t
Is an optional type specification used to determine the data type of the symbolic name specified by f,
and, consequentially, the data type of the value returned by the external function; when this
specification is omitted, the type is determined by type statement in the same program unit, or by the
type implicit in the function name. The permissible types are INTEGER, REAL, and DOUBLE
PRECISION.
f
Is the symbolic name used to identify the function; because system routines use a dollar sign as the third
character of the function name, avoid these names to prevent conflict. The name must be assigned a
value, using a READ or arithmetic assignment, in order to define the function value.
*s
Is an optional length specification allowing the use of the optional lengths for variables (2.3); this option
may only be used when the data type option is used and the type specified is not DOUBLE PRECISION.
a
Is a dummy argument.
Description:
The FUNCTION statement defines an external function and must be the first statement of the subprogram.
Examples:
"C" FOR COMMENT
r n
STATEMENT| <
NUMBER SSFORTRAN STATEMENT - >
&7 10 20 30
o L INTEGER FUNCTION XA (%2 (A). . . .
L1 A"AALLKL‘lljkLi‘LALJll)ll_‘LAllll 1
1 1 . RAElrLUlRLNL Loy 4,44,#44,#47Lﬁ4,‘1, [T LVL_J.,,,; i | S S
L i L EINLQL‘,L; [S U GRS U S ‘L#,L,J‘,,,,,x [U DA UG R L,L,; | SR S R S
i i A " i N l 1 L " " FENTE i A L . Lo i P A i i " i " A i
P UN AT IEN YY) (B, ., D H)
Y 1 i 1: 1 i ,L‘_LJ‘AJ__J;;_‘L,,,L i i i O SR S | TS R ‘i N S G G R WY
U G ¢ 1 lgtTlUinNl i 1 i i i i oot 1) R Y 1 L 1 i —1 i =t
1 i A " E‘LNJDA 1 L doa i [N U SR B _.L./ [P ST S S e 4 ,,,;;;,kLAJ__;__J__L_ Y .

In the examples, two external function subprograms are defined. In the first, the value returned is a 2-byte
integer. The second subprogram returns a 4-byte real value uniess the external function name YY1 is typed in
the same program unit as another data type.

UP-NUMBER SPERRY UNIVAC Operating System/3 5-7

8193 Rev. 1
UPDATE LEVEL

PAGE

. 5.4.1.2. RETURN Statement
Format:

RETURN

Description:

The RETURN statement causes control to be transferred from the subprogram used to define the external
function or subroutine to the program unit which referenced the subprogram.

5.4.2. Subroutines

User-coded subroutines are procedures which, like external functions, are separately compiled as subprograms.
Uniike external functions, however, subroutines: :

= do not require arguments;
- do not necessarily return a value to the referencing program unit;
= have no data type associated with the subroutine name;
= are defined with a SUBROUTINE statement (5.4.2.1);
= are referenced with a CALL statement (5.2.2); and
. = return control to the first executable statement following the CALL statement.

Subroutines have a maximum of 511 arguments. The argument forms permitted are shown in Table 5—2.

5.4.2.1. SUBROUTINE Statement
Format:

SUBROUTINE s (a1,a2,...,an)

where:
s
Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character of
the subroutine name since this convention is used by system routines.
a
Is a dummy argument; this argument list is optional and, when included, it is enclosed in parentheses.
Each argument may be a variable, array, or procedure name.
Description:

| The SUBROUTINE statement defines the subroutine name and dummy arguments, and must be first
. statement of the subprogram.

8193 Rev. 1 . S 5—8
stem/3
UP-NUMBER ‘ SPERRY UN'VAC operatlng Y / UPDATE LEVEL | PAGE
Example:
"C" FOR COMMENT .
[B
ﬁuf:fp'” SFORTRAN STATEMENT >
5187 10 - 20 30 40
) G W S | :LJIlllLLJlllllLklALilllllLJllllLllLllLJ
14 1 J. SLUIBLRIGAUITII KNIEA MLAITIAADIDA (AILNJJ 1y 1I1N1211 lolUlTL; IRA6AM; lCJDILl) I
) I S RAQAILI IIINL,J(A[A\)I}LIINLZL(ll I)AalDlUATL(lll)l U U S U T T W N 1 11
1.1 ILNLT16161€1Q1 AQIGIVVL’ 1CA,GLLL SR S N U SAT S SN S U S S S G | |
U N LAIAMIITL A::l IQAEA\NA*lekl [S R S SRS U WO S U VA SN SN0 NUTOT SN VS G AT S W S G
Y U S S § DA01 L' L 1I1=1] i 3 ILLI4MIITL L I U W U Y 1 1 1) S W S U P 1l 1 4 1 I | | 1
F R L ll GLLATJ(III)l l:L AIANL‘ A(AII)L+LIAN121 (AII)L LJ i 1 1 1 B I T | i 1. l 1 i 1 1 1
—_ L i ?lElTlUlgAN WIS W DU WS T N L D S S WY NSNS SN W W | l) OO WO S N T SR N S | l) S U S W 1
IS N S 'S ELN4D1 l 1 141 1 i 1 1 1 l L4 1 i 1 | i d l JE—} 1) T | i i1 L 1 | 1 i i
ke A : ! A L l A IS S 1 i i " L A L A A e " 4 A | l 1 A A, o A I | L l A il A A N
This subroutine might be referenced with a CALL such as:
CALL MATADD (A,B,C,10,10)
5.4.2.2. Subroutine RETURN Statement .

The RETURN statement (5.4.1.2) is used to return control from a subroutine subprogram. Control is always
returned to the first executable statement following the CALL statement. ’

5.5. ARGUMENT SUBSTITUTION

When a procedure is referenced, the actual arguments, if any, are substituted for the dummy arguments in the
procedure receiving control. Two methods of argument substitution are provided:

1. call by value, and

2. call by name (or call by address).

5.5.1. Call by Value

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE and FUNCTION statements are simple variables. All statement function
arguments are called by value. For a procedure reference such as

IUHHQALLJAQBMQMDXi.,.111“.1..11..1
I Il J 7 7

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

5-9
PAGE

and the procedure definition

"C" FOR COMMENT

NUmaca | SFORTRAN STATEMENT >
51617 10 20 30
1 i 1 1 glulB&oluTLI l'\!l(—:l lAl 1 <lxl 2 IYJ"\ IZI) L i i 1 1 { 1 1 i i 1 1

the compiler generates a calling sequence for the CALL or function reference, and it generates a prologue for the
SUBROUTINE or FUNCTION statement. The calling sequence consists of a transfer of control to the start of the
procedure and a list of main storage addresses containing the actual arguments. The prologue contains instructions
which perform the argument substitution. For the examples given, the prologue performs actions analogous to the

FORTRAN statements X=B,Y=C,and Z=D.

This technique allows the dummy arguments to be referenced in the procedure body as though they were simple

variables local to the procedure.

When a RETURN statement is encountered in the procedure, an epilogue is executed. This reverses the substitutions
and transmits the values of the dummy arguments to the calling program if they were redefined. For example, in the
following, the subroutine on the left is treated as if it were written like the subroutine on the right.

SUBROUTINE A(B) SUBROUTINE A

B = actual argument
GO TO 100001
100000 actual argument =B

100001 CONTINUE

RETURN GO TO 100000

; PROLOGUE START
; PROLOGUE END

; EPILOGUE START
RETURN ; EPILOGUE END

Care must be taken that the unintended redefinition of variables with multiple associations does not take place. This
can occur when variables are used in COMMON or in argument lists; for example:

L
L)
R G .lJllllllxllljlllJllllllJlJlllll
i1 1} ClAlLLLl 1X[AY4]1¥131Y1>111141111 1111111111
.
-
G S 44Ll1111|4L1|111111111111111111
[W T 111[111111llll11llllllllllLlllL
L]
a
el ‘lLlllllllllllllllllLJlJlllllllJ
—
U T S | SJUBRDIUITALNAEI AX‘ lilAl‘l}-lAlZl-};lAlBlj\l | I R W | i 1 1
-
I S T :'1111111114‘L1|11|111111111111111
J R T S | Ex!ibllillllLill JIJLJlllllllLJJIl

8193 Rev. 1 SPERRY UNIVAC Operating System/3 5-10

UP-NUMBER UPDATE LEVEL | PAGE

In the example, when the epilogue is executed, the values of the dummy arguments in the subroutine definition are

returned to the actual arguments in sequence. First, the value of A1 is substituted for Y in the referencing program .
unit, then the value of A2 is substituted for Z, and finally, the value of A3 overlays the variable Y again. The initial
substitution, Y = A1, is lost to the referencing program unit which may not be the programmer’s intention. A similar

problem can occur when two subprograms share COMMON storage and a COMMON variable occurs in the actual

argument list.

5.5.2. Call by Name

The call-by-name method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE or FUNCTION statements are declared to be arrays or procedure names. In
these cases, the prologue copies the address of the dummy argument into the procedure. Thereafter, the code
generated for the array references in the procedure must retrieve the address of the array prior to accessing the value
of the array element for computational purposes. See 6.2.1 for additional information or array declarator processing.
Procedure names are processed in the same fashion.

5.6. LIBRARY PROCEDURES

Three classes of procedures are available to the programmer as part of the FORTRAN library: intrinsic functions,
standard library functions, and standard library subroutines.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are listed in Table 5—3. Intrinsic functions are referenced with the
function reference {5.2.1) by the user’'s FORTRAN program, After control is transferred to the function and it is
evaluated, control is returned to the expression containing the function reference.

Since the compiler provides a large number of intrinsic functions, generic name references are permitted. For
example, the generic group ABS contains three members (ABS, IABS and DABS) which perform identical functions
but differ in their argument types and function values. Therefore, if ABS is referenced with a double precision
argument, the compiler will automatically generate a call to the proper member (DABS) to determine the absolute
value.

5.6.2. Standard Library Functions

The standard library functions (Table 5—4) are function subprograms supplied with the compiler. They are accessed
with a function reference (5.2.1) and return control to the referencing program unit within the expression of the
referencing statement.

Like the intrinsic functions, the standard library functions may be referenced using the generic name; for example, if
SIN is referenced using a double precision argument, the compiler will automatically reference DSIN.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

5-11

Table 5—3. Intrinsic Functions (Part 1 of 2)

Generic Number Meml‘)er Member Meml:.ter
Name Use Arguments Function Argument Function
Name Type Type
Determine the 1 ABS Real »4 Real+4
ABS absolu te value IABS Integer*4 integer =4
of the argument DABS Double precision Double precision
AINT Truncation; 1 AINT Real+4 Real=4
eliminate the DINT Double precision Double precision
fractional
portion of argument
INT Truncation; 1 INT Real+4 Integer=4
eliminate the IDINT Double precision Integer+4
fractional
portion of argument
MOD Remaindering; 2 AMOD Real+4 Real+4
defined as (Argument 2 MOD Integer»4 Integer =4
a,—[x] ay, must be DMOD Double precision | Double precision
where [x] is the nonzero.)
greatest integer
whose magnitude
does not exceed
the magnitude of
a,/a, and whose
sign is the same
asa,/a,
MAX Select the largest =2 AMAXO* Integer«4 Real+4
3 MAXO0 2 value AMAX1 Real+4 Real+4
332;((0 g Integer =4 Integer=4
MAX1* Real*4 Integer+4
DMAX1 Double precision Double precision
; MIN 2 Select the smallest =2 AMINO* Integer=4 Real»4
MINO value AMIN1 Realx4 Real+4
i m:zo E Integer+4 Integer=4
MIN1* Realx4 Integer 4
DMIN1 Double precision Double precision
Convert argument 1 FLOAT* Integer«4 Real*4
from integer DFLOAT* Integer+4 Doubte precision
to real or
double precision
Convert argument 1 IFIX* Real+4 Integer=4
from real to HFEIX* Real+4 Integer =2
integer
SIGN Replace the 2 SIGN Real+4 Real+4
algebraic sign ISIGN Integer=4 Integer=4
of the first DSIGN Double precision Double precision
argument with
the sign of the
second argument

*This function is accessible only through its member name.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Table 5—3. Intrinsic Functions (Part 2 of 2)

" Member Member Member
Generic Number i .
Use Function Argument Function
Name Arguments
Name Type Type
DIM Positive difference; 2 DIM Real*4 Real*4
subtract the smaller 1DIM Integer+4 Integer=4
of the two arguments DDIM Double precision | Double precision
from the first argument
SNGL Convert double precision 1 SNGL Double precision | Real+4
to real
DBLE Convert from real to 1 DBLE Real+4 Double precision
double precision
Table 5—4. Standard Library Functions (Part 1 of 2)
A .
General Generic Memb Math. ical rgument Fur;-cy(:\"\‘/‘:lm
Operation Name Name Definition Number Type Range Range
Trigonometric SIN 1 real +4 x| <(2'8 m real =4
{in radians) 1<y
SIN y=sin{x}
DSIN 1 real <8 [xI<(2%0 m) real <8
{in radians) SISy €1
cos 1 real +4 |x|<(218.1¥) real «4
{in rachans) — 1<y
cOSs y=cos(x}
DCOS 1 real -8 Ix] < (2% m real -8
(in rachans) SISy s
TAN 1 real-4 x| < 2'8.m real +4
{in radians) M <y €M
TAN y=tan{x}
DTAN 1 real -8 Ix| < (250) real*8
(in radians) My <M
COTAN 1 real -4 x| < (218 m real +4
coT {in radians) M <y €M
COTAN
coT y=cotan{x}
DCOTAN 1 real -8 x| <12%0.m) real -8
DCOT (in rachans) -M <y €M
{ASIN } 1 real +4 IxI< real+4 (in radians)
ARSIN -t Sy snn2
ASIN A , 2 <y <
ARSIN y=arcsin{x
DASIN 1 real -8 Ix 1< real+8 (in radians)
DARSIN - nr Sy <2
{ACOS l 1 real -4 Ix < real+4 (in radians)
ACOS ARCOS o<y <7
ARCOS y=arccos{x)
DACOS 1 real -8 Ix 1 <1 real +8 (in radians)
DARCOS oSy SsT7
ATAN 1 real -4 any real argument reat +4 {in radians)
mi2 Sy <m/2
ATAN y=arctan{x)
DATAN 1 reat-8 any real argument real =8 (in radians}
—-TR Sy <12
ATAN2 2 reai-4 any real arguments real«4 (in radians}
X3 except (0,0) - nT<y <7
ATAN2Z2 y:arctan<_>
DATANZ X2 2 real*8 any real arguments real »8 (in radians)
except (0,0} -n<y<n

8193 Rev.-1

SPERRY UNIVAC Operating System/3 A 5-13
UP-NUMBER UPDATE LEVEL PAGE
. Table 5—4. Standard Library Functions (Part 2 of 2/
A R
General Generic P P ccal rgument Function Value
Operation Name Name Definition Type and
Number Type Range Range
Hyperbolic SINH 1 real+4 |x} < 175.366 real+4
eX_e—X My €M™
SINH v=
DSINH 2 1 real+8 Ix| < 175.366 real+8
My <M
COSH 1 reai+4 |x| < 175.366 real«4
eX+e~ X 1<y<M
COSH v-
2
DCOSH 1 real «8 x| < 175.366 real+8
1<ysSM™
TANH 1 real «4 any real argument real «4
eX_e—X -1 <y €1
TANH v=
eX+e X
DTANH 1 real+8 any real argument real+8
-1 Sy €9
Exponential EXP 1 real-4 x 2 -180.218 real+4
x < 174.673 0<y<Mm
EXP y-e*
DEXP 1 real -8 x = —180.218 real+8
x < 174673 0<y <M
Natural logarithm ALOG
LOG 1 real»4 x >0 real -4
vy = —180.218
< 174673
. 'ALOG } y=log, x or * -
LOG -
DLOG yrintx 1 real -8 x >0 real -8
y 2 —180.218
y < 174673
Common logarithm ALOG10 1 real+4 x >0 real+4
LOG10 y 2 -78.268
<
ALOG10 _ v < 75.859
LOG10 Ml
DLOG10 1 real<8 x>0 real *8
y =>-78.268
y < 75859
Square root SQRT 1 real .4 x 20 real +4
o<y <Mm2
SQRT v=Jxor
DSQRT y=x1/2 1 real 8 x 20 real «8
o<y < mt2
Cube root CBRT 1 real+4 any real argument real«4
_MmIBLy <m13
CBRT y=x1/3
DCBRT 1 real*8 any real argument real+8
_mIBLygm!3 e
NOTE
M = 1653(1—167°) for realsd and 16°%(1-167 "%} for real«8

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVELJ PAGE

5—-14

5.6.3. Standard Library Subroutines

The standard library subroutines are subprogram procedures supplied with the compiler. Like user-coded
subroutines, these procedures are accessed with the CALL statement (5.2.2) and control is returned to the
referencing program unit at the first executable statement following the CALL statement. All of the standard library
subroutines may be discarded, and the user may supply his own subroutine with any of the library subroutine
names: OVERFL, ERROR, etc. Such routines must be included using an INCLUDE control card at the time the
program is linked.

The standard library subroutines are described in the following paragraphs and summarized in Table 5—5.

L] Arithmetic Overflow and Underflow Test (OVERFL)
3
The overflow check subroutine informs the programmer when the result of a computation is not within the
maximum or minimum magnitudes allowed for an integer, real, or double precision value. An overflow
indicator is set to indicate either an overflow or an underflow condition, or both. This indicator remains set
until it is reset. The actions the subroutine performs are:

- Overflow
if a computed result exceeds the maximum magnitude allowed, the overflow indicator is set and the

computed result is set to the largest permitted value. Integer overflow is ignored and does not affect the
results of the OVERFL subroutine.

— Underflow

If a nonzero result is less than the minimum magnitude allowed, the overflow indicator is set and the
result is set to 0.

The state of the overflow indicator is tested and reset by executing the OVERFL subroutine with the
following statement:

CALL OVERFL (i)

where:

Represents an integer*4 variable.

The variable is assigned a value of 1 if the test indicates an overflow condition, or if both an overflow and an
underflow condition exist. The value is 2 if the test indicates neither, or 3 if oniy an underflow condition is
detected.

The overflow indicator is automatically reset after execution of the OVERFL subroutine. Conseguently,
repeating the test yields a result of 2. Note that overflow and underflow can be tested separately.

3

8193 Rev. 1 I SPERRY UNIVAC Operating System/3 l 5-15
UP-NUMBER UPDATE LEVEL PAGE
Example:
‘ "C" FOR COMMENT
ik =
e ! EFORTRAN STATEMENT >
587 10 20 30
1 L L 1 CIALLILI lDIVLEARAFlLl 1(IIL)I i gl N N § - i l 1 \l 1 1 1 1 1 i

41 1 i bex lTLbl 1(A‘Ao.11310_u43l01)134411 1§ y—- ‘ 1 i L 1 I 1 A i

1141L1141111411ILLJlilLllllL

1
i i 1110 I\ 1) L L) JnLlPRLB CI_ELSSL 10 VERlF L}alWl lRl 1
Al e . dd JL F I GO N W UN_LDg I‘]F L D !! AIMD Q ! lgE L

U W | 1'LllLl;LxlillIlL#llllLlllel!llL

JE 1310 ST SR SR ST llelalclEISlgi JUINAD£1R1F1L101Wl lUAN_LLIYL

|
R U S | 1¢L1AlixLxlixL11¢1111L1|1111111L
i 1 1210 L1 11111;11 i lLllkll 1;11L1 ! L4 1 1
| | J
Al —_ J AN WU U UU SV VRS SN U N SR SN GRS SN NI GRS WA SIS S i J S S S T | SR

The overflow subroutine is called and the value is returried in [, If either an overflow condition or both
an underflow and an overflow condition are found, | is set to 1 and the GO TO control statement
‘ transfers contro! to statement 10. If neither condition is found, | is 2 and control is transferred to 20. If
only an underflow condition is found, | is 3 and statement 30 receives control for underflow processor.
L Divide Check Subroutine {DVCHK)
The divide check subroutine can be used to determine if a division by 0 has occurred. If it has, the invalid

divide indicator is set, and the quotient is set to 0. The state of the indicator is tested and reset by the DVCHK
subroutine. The appropriate CALL statement is:

CALL DVCHK (i)

where:

Represents an integer*4 variable.
The integer variable is set to 1 if a division by O occurs; otherwise, itis 2.

Example:

i S W ¢ CLAlLlLl lDlvlclHLKl(IIl)l L N WS WOUUN U S W i 1 l D N O W P | 1
G’lgl lleL 1(1 ' xol 3 12101) i) lIl

l#llllLlllllllll

L 1 1 i
. 11 L l lO ngLoLp[12171 L 1 ! i) WU SR S S U S | l i S | L | D
i1 LZJO C LolMTlI lNlULEl 1 H T l i S R } S N | l i 1 | 11 1

8193 Rev. 1 . 5—16
UP-NUMBER SPERRY UNIVAC Operating System/3 UPDATE LeVEL | pace
if a division by 0 was attempted, i equals 1 and program control is transferred to statement 10;
otherwise, control goes to statement 20. .
L] Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition has occurred.
Control is transferred to this subroutine by executing the following statement:

CALL ERROR (i)

where:

Represents an integer*4 variable.

This integer*4 variable is set to 1 if a function error condition exists, or 2, if no error exists. A subsequent call
of the ERROR subroutine, prior to additional function references, always returns the value 2.

Error Indicator Setting Subroutine (ERROR1)

This subroutine is used in conjunction with the ERROR subroutine; ERROR1 sets the function error indicator
tested by ERROR. The call for the ERROR1 standard library subroutine is:

CALL ERROR1

Example:

“C*" FOR COMMENT
3

FJULE;‘EER“T HFORTRAN STATEMENT >

51817 10 20 30 40

et ey IyMATIN PROGIRAM
e L ZEXRAN QY
o JCALL BRROR (T e
Loi 44 @JD‘[_INQ l(1310‘111410131 \}E 1 1 1 1 1 J N l 1 1 L 4 1 1 L4 l i i 1 YIS S N
L 4Ol CONTITNOE, o b e e
A A4 1 ELEJ;L A l 1 i 1 N | i 1 e 1 i 1 10 i R ' LJ___.LL_J_L_LV_J___L._L_J__.A DG U SR J S SRS |
B0 ey e 13ERROR CONDTTITION PROCESLING .
IR B S | :JLJlLJALJ“A)lJllllL llllllllllll‘l D S W R S |
N R RN S T SR S S
R N L B S S S
e P EUNCITION. XRAY, 1(B), JEUNCTION D EEDNIIT.ION o . . .
B S S IiFA A/LLBJ\) liAOA;rZAOL}LlloLJ i i 1 i L 1 Ll 1 i 11 1 i i 1.3 —1 L 1. i)
L RO ICAL L ECRPRL L e
L RETURN . . PSS OO S SN T S SN T ST N N ST SN S S S i PSR R N N
o oL CENYIENGE N
Lol ;L#=is‘vA LAAilAljlllJil‘ il Loy D e SO
I Q'E}Tf\)igh&xzx11;)1114111..1111;11 L4 F i
Lo BN D b P USRS VAU S ST U W NS N SO T N S S S \ L1
L TR B TR S N U U A U U YOR A0 TN SN VU WA U AN N WO N WO O WO - Lol

5—-17
PAGE

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

error is detected in the function subprogram, the ERROR1 subroutine is called and the function error
indicator is set. In the main program unit, a test is made of that indicator after the evaluation of the
XRAY function.

. In the example, the external function XRAY is written with a test for errors incorporated. When an

= Indicator Setting Subroutine (SLITE)
The SLITE standard library routine sets or resets one or more of four indicators internal to the subroutine.
This subroutine is used with the SLITET subroutine which tests the indicators. The SLITE subroutine is
executed by using the statement:

CALL SLITE (e)

where:

Is an integer expression; its value determines the indicator settings made:
e = O resets all indicators.
e=1,2, 3, or 4 sets the corresponding indicator.
e=—1, -2, —3, or —4 resets the corresponding indicator.
] Indicator Testing Subroutine (SLITET)
. The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The SLITET subroutine is
executed by the statement.

CALL SLITET (e,i)

where:

Is an integer expression with a value corresponding to the sense indicator to be tested.

Is an integer +4 variable name returning the results of the indicator test.

After execution of the SLITET standard library subroutine, if the value of the integer variable is 1, the tested
indicator is set. If e is outside the range (1 <e < 4), i is set to 2 and the indicator is not set. Execution of the
SLITET subroutine does not affect the indicator settings.

5—18
PAGE

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

I UPDATE LEVEL

Exampile:

“C" FOR COMMENT

|' 1 <&
FNUMBER JFORTRAN STATEMENT >
5

7 10 . 20 30

| U R | CAALL'ALI ISLLIITIEI(I3I)J l S TS T WA DU [N N W | l | W T SN W N |

O U | ‘111111.1L.11111111111L¢l|1111J1
L4 1 i PR TSN (SRS S S A SO WO S A W A N SN ST SN ST UG ST N SN U NN ST N WO S N
:
A4 1 ’lllllllLLJlllilllllllllllLllL]1
el 1 CIALLILI 1SLL|IlTlETn<13|4151)L111 11141 | RS W U W WO B
-
J R R G :lllllLllxllllllllllILJJIILILIIL
| O N S | Glol :rlbl_L(lllOl)llel)l’lJ'l J U U S U A T N l IS U S SV S B
-
. .
| W N G 'lJLlllLLLlllllllIllllllleIILJl
»
11 IZLO J W l L 1 1 1 L 1]) I’L&KIIL LIHI N lTLélEl—rl |
-
L]
) N N S .llllllllllllglllLllllllllllllll
[3
llllS3) S | 14_111 i i 1 1 | l\’l 1 lII-rlC'lHi lIlSI 1 IEITI 1 |
-
L]
[U | ’LLn111111111411111111LL4111111J|
I W N U | 1111111111111111141111111#111|1

L Control Information Check (SSWTCH)

This standard library subroutine allows the FORTRAN programmer to check control information during
program execution. This control information is provided prior to execution on a //SET UPSI job control card
used in the operating system. The format of the appropriate CALL statement is:

CALL SSWTCH (e,i)

where:

Is an integer expression with a value of 1 through 4 representing a switch position.

Is an integer*4 variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1. If it is not set, the value is 2. Execution
of the SSWTCH subroutine does not alter the switch setting.

= Main Storage Dump (DUMP and PDUMP)

These dump subroutines cause a dump or listing of main storage assigned to the FORTRAN program. The
subroutines are described in 9.3. .

5—-19
PAGE

8193 Rev. 1 I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

‘] Exit Subroutine (EXIT)

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
STOP statement (4.9).

a FETCH Subroutine

The FETCH subroutine loads an overlay phase but cannot be used to transfer control to a FORTRAN
subroutine or function. The transfer address of the overiay phase must specify a FORTRAN main program or
an assembly program which establishes its own cover. Processing in the calling program unit is not resumed.
The CALL statement has the format:

CALL FETCH (s}

where:

Is a phase name which must be a double precision variable containing a phase name.

If an error occurs during the attempt to load the overlay, termination and an informational message results.

Example:

“C" FOR COMMENT

r —
TATE <
. SNAUMBMEERNT;FORTRAN STATEMENT >

5 7 10 20 30

LI)

| S AL

1 1 1 B I W S | S S T l S ! i IS
1

1 1 i 1 DDU :B l LIE‘[PLR4ELCjIlg lIl OLM LDIMI AIMJEI 1 L " i i 1 i 1 1
| DATA/DNAME PHASNMOL /L
1 L 1 1 ClAlLLLl LFIETCLHL l(‘ I—DINJAMIEL)l 1 11 L 1 l i 1 1] L |

B S N | .ILLIIIJLLAIllllllillllLlllALLLJQ

= LOAD Subroutine
The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the
subprogram but is returned to the statement following the CALL statement requesting the overlay. if an error
occurs during the attempt to load the overlay, termination and an informational message results. The format

of the CALL statement is:

CALL LOAD (s)

where:

Is a phase name which is a double precision variable containing a phase name.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

5—-20

Table 5—5. Standard Library Subroutines

Subroutine CALL Statement Format Use

OVERFL CALL OVERFL (i) Tests for overflow and underflow.

DVCHK CALL DVCHK (i) Tests for invalid division.

ERROR CALL ERROR (i) Tests for function error conditions.

ERROR1 CALL ERROR1 Sets the function error indicator.

SLITE CALL SLITE (e) Sets the sense indicator(s) specified by e.

SLITET CALL SLITET (e,i) Tests specified sense indicator.

SSWTCH CALL SSWTCH (e,i) Tests the binary switch specified by e and returns a value in i.

DUMP CALL DUMP (1) Dumps main storage assigned to the program and terminates program.

PDUMP CALL PDUMP (1} Dumps main storage assigned to the program; program execution
continues.

EXIT CALL EXIT Terminates the program.

FETCH CALL FETCH (s) Loads and transfers control to overlay specified by s.

LOAD CALL LOAD (s) Loads subprogram overlays.

SPERRY UNIVAC Operating System/3 6—1

PAGE

8193 Rev. 1
UP-NUMBER

UPDATE LEVEL

6. Specification Statements

6.1. GENERAL
Specification statements in the SPERRY UNIVAC Operating System/3 (0S/3) FORTRAN are nonexecutable
statements used to describe program data and main storage allocation to the compiler. See fundamentals of

FORTRAN programmer reference, UP-7536 (current version); these nonexecutable statements must be at the
beginning of the program (Table 1-2).

6.2. ARRAY DECLARATION

An array is an ordered set of elements identified by a symbolic name and declared by an array declarator. An array
may be declared in a DIMENSION statement, a COMMON statement, or in an explicit type statement.

. 6.2.1. Array Declarator

Format:

v (i1.i2,i3)

where:
v
Is a symbolic name identifying the array.
i
Is a subscript consisting of an unsigned integer constant (or integer variable for adjustment dimensions).
An integer variable used to declare an adjustable dimension must be a dummy argument; from one to
three dimensions may be declared.
Description:

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy
argument, the array is a dummy array and the dimensions may be specified as integer variables.

An array name XRRAY with 100 elements in three dimensions would be defined with the declarator:

XRRAY (4,5,5)

' and the declarator:

MRRAY (INX,INY)

declares an array with adjustable dimensions. INX and INY are integer variables which define the size of the
array when they are evaluated.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 6-2
UP-NUMBER UPDATE LEVEL | PAGE

In the interest of efficiency, dummy arrays are processed at execution time in a special fashion. The procedure

prologue (5.5.1) saves the subscripts in dimension declarators from the argument list. The prologue then .

derives a partial solution to the equation used to locate array elements {Table 2—2}. Thereafter, the subscript
calculations in the body of the procedure can be performed with relative ease. A side effect of this technique,
however, is that it is impossible to redeclare array dimensions within a procedure; in the example

“C®" FOR COMMENT
5 ~
[s—r:uLE:EERNT §FORTRAN STATEMENT >
51807 10 20 30 40

) R W . ‘DlIMEIMASlIDNI Bl(LSI ? l l IOA> O S | L 1 1 ! l 1 1 1 1 1 1 1 1 1 1 A
e AL A(RGSLAO)

.
W T W W LI WO S 8 N S 1L141 JilllLlllllll

e SUBRDUTIMﬁlA(XuEAJ) I
.. | DIMEWNSTOA X(I,J). LDECLARES, (5..,..)‘_
.ilell..l.l.HiHHL.IHLUHLH“M
o LES
(O X,(‘IJ}J).:‘-.H-I-IUL¢LJULLL11LHJU1“11

L1 1 4 1111111111111LL111111111111111111[1

statement 10 cannot be made to behave as though the declarator were X(10,5).

6.3. DIMENSION STATEMENT
Format:

DIMENSION v, {i;)v, (iy)valiz)..v (i)
where:

v(i)

Is an array declarator.
Description:
The DIMENSION specification statement provides a means of declaring any number of arrays. Both array
names and dimensions are defined by the statement.
6.4. TYPE STATEMENTS
Two kinds of type statements can be used; the explicit type statements and the IMPLICIT type statement. In the
absence of typing with these statements, symbolic names starting with the letters |, J, K, L, M, and N are considered

to yield integer values (FORTRAN name rule); all others are considered to be real. Note that external function
procedure names may also be typed with their definition statements (5.4.1.1).

8193 Rev.-1 |

SPERRY UNIVAC Operating System/3 A 6-3
UP-NUMBER UPDATE LEVEL PAGE
6.4.1. Explicit Type Statements
Format:
t*sa.' *s,az *s,...,an %S -

where:
t
is the type specification: INTEGER, REAL, or DOUBLE PRECISION.
a
Is a variable name, an array name, an array declarator, or a function name.
*$
Is an optional length specification; this may not be specified if the type is DOUBLE PRECISION.
Description:

An explicit type specification statement defines the data type of a symbolic name. The length associated with
the type (either implicitly or by the *s option) applies to all names in the list unless specifically overriden by a

length specification for the individual name.
Exampiles:

*C" FOR COMMENT

[| STATEMENT]

IATEMENT! SFORTRAN STATEMENT >

5167 10 20 30
Lo [[REALPRB ALBLCG 1
L1 PR TES N YOSP NS W Y YN NNV O TN SHNN YU S W SN SN TSNS VO ST WO M
Ly 1 IlNJTLElGIEIRl*lZII'I;ll\)-lllll L 1K1(1\|Z|)| I B RN B A R
L1 PRI N SN VU U N R N W R Y SN B A W S A RN S SN S B T R S B B A

In the first explicit type statement, the variables A, B, and C are all typed as real+8 {or double precision) due
to the length specification. The second specification statement types I, J, and K as 2-byte integer and

additionally declares K as an array of 12 elements.

6.4.2. IMPLICIT Statement

Format:
IMPLICIT tes (a1,a2,...,an)t*s (am_.I o I)...
where:
t
Is the type, specified as INTEGER, REAL, or DOUBLE PRECISION.
*§

Is the optional length specification; this may not be specified if the type is DOUBLE PRECISION.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 . 64
UP-NUMBER UPDATE LEVEL | PAGE
a
Is a letter (A through Z and $) associated with the data type specified. The format of this specification ‘
may be either a string of letters with commas separating each (A,B,C,...), or it may be two letters
separated by a hyphen (A - D) to specify a range of letters.
Description:

The IMPLICIT specification statement permits the user to specify his own implicit type conventions for each
program unit. The IMPLICIT statement types symbolic names by the first letter of their names; $ is included
as the last of the possible characters.

If $ is to be included in a range specification, it must be last. The dollar sign indicates real data by the standard
typing convention.

Symbolic names which start with letters not covered by the IMPLICIT specification statement are typed
according to the standard convention described in 2.3. Any implicit typing, whether standard or specified by
the IMPLICIT statement, is superseded by explicit typing.

IMPLICIT statements may be preceded in the program unit only by SUBROUTINE, FUNCTION, or BLOCK
DATA declarations. The IMPLICIT statements affect the typing of all names in the program, excluding
intrinsic and double precision standard library functions (Tables 5—3 and 5-4). See also Tables 1—2 and 2—1.

Example:

"C" FOR COMMENT

ST EMENT! S FORTRAN STATEMENT >

5167 10 20 30
1 1 1 1 MP L"[I'LAL T ’RE' AL*lS (J; Dl\lF) I\l i 1 1
e *IMTEJGER*Z(MAQ.,M,M)MLNTE@ER(x $)
) O S | i A1 J_l 1 i i i 1 i 1 1 1 l i l L 1 i i 1 i i l i 1) 1 1 11

After processing the IMPLICIT statement in the example, symbolic names beginning with the letters of the
character set are typed as follows:

A through D are real*8 because of the IMPLICIT specification statement.
E is real *4 implicity and is unaffected by the IMPLICIT type statement.
F is real =8 because of the IMPLICIT statement.

G and H are real*4, and | through M are integer*4 implicitly.

N is integer*2 because of the specifications in the IMPLICIT statement.
O and P are real*4 implicitly.

Q is integer»2 because of the IMPLICIT statement.

R through T are real*4 because of the standard implicit conventions.

U and V are integer+2 because of the IMPLICIT statement.

8193 Rev. 1
UP-NUMBER

I SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

6-5

6.5.

n W is real*4 implicitly.

- X through Z and $ are integer=4 because of the IMPLICIT statement.

EQUIVALENCE STATEMENT

Format:

EQUIVALENCE (k,),(k,)....,(k)

where:

Is a list of the form a,a,,..a and each a is a variable name, an array element name, or an array name.
Each name specified in the list shares assigned storage.

Description:

6.6.

The EQUIVALENCE specification statement permits sharing of a main storage unit by two or more entities
specified within parentheses. The equivalence provided by the statement is in relation to the first or leftmost
byte of the entities specified. Array declarators {in COMMON, DIMENSION, and type statements) must
appear before the array element name is used in an EQUIVALENCE statement.

Program execution time is increased whenever a variable which does not have a proper boundary alignment is
referenced. To achieve proper alignment, a variable must have an assigned main storage address which is an
integral multiple of its length.

The first variable in each non-common EQUIVALENCE group is assigned a main storage address that is a
multiple of 8. If erroneous boundaries are present in the equivalence group, the addresses in the group are
increased successively by 2, 4, and 6 by the compiler in an attempt to correct the error.

A variable with incorrect boundary alignment is recognized during compilation and a warning diagnostic is
provided. When the program is linked, a library routine is provided which receives control when the hardware
interrupt caused by a reference to a improperly aligned variable occurs. The subroutine repeats the instruction
which caused the interrupt after moving the operand to the proper boundary.

COMMON STATEMENT

Format:

COMMON /x1 /a1 /.../xn/an

where:

Is an optional symbolic name identifying the COMMON block.

s a nonempty list of variable names, array names, or array declarators. No dummy arguments are
permitted.

8193 Rev. 1
UP-NUMBER

6-6
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Description: .

The COMMON statement allows sharing of a common main storage area by different program units. When
block names are specified, the compiler treats each block as a separate control section (CSECT) whose
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the
compiler uses a CSECT name which is not assigned by the programmer. it is the programmer’s responsibility to
ensure that every variable and array in COMMON has the proper boundary alignment. Boundary error recovery
is provided in the same manner as for the EQUIVALANCE statement but address adjustments are not
attempted by the compiler.

Every named or blank COMMON block is assigned a main storage address that is a multiple of 8. Each
COMMON variable or array is assured of proper alignment if it is placed in the block in descending lengths:
double precision first, and then real and integer=4, and finally integer=2.

6.7. EXTERNAL STATEMENT

Format:

EXTERNAL ViVpmeV

where:

Is the name of an externa! function or subroutine.

Description: .

When an external function or subroutine name is used as an actual argument to another procedure, the
EXTERNAL specification statement must be used to identify these procedures.

if an intrinsic or library function name appears in an EXTERNAL statement, that procedure is assumed to
have been written by the user and no assumptions about its properties are made by the compiler.

When the context of the FORTRAN program uniquely identifies a symbolic name to be a procedure name, the
EXTERNAL specification statement is unnecessary:

“C" FOR COMMENT

S M ENT | SFORTRAN STATEMENT »

51607 10 20 30.
B S N N Y N | l P S S S S S G S O S 1 I U GRS SH SR I Y
A, CALIL, A o e e
140 .1 FUNE Y S S SR S S G P S U S RN D S S S S S S
Iy L 1110 lClAlLlLl IBI (Al)i ! 1 1 i 1 i 1 | i 1) Li 11 1 1 i i
) 1 1] 1 3 H l Jl L 1 1 i ! e i L 1 Il 1 L1 P A o 4 L A i L A -l

8193 Rev. 1 SPERRY UNIVAC Operating System/3 6-7
UP-NUMBER UPDATE LEVEL | PAGE
In the preceding example, no EXTERNAL statement is needed, but if statements 10 and 20 were reversed in
. sequence in the source program, the following statement would be needed:
"C" FOR COMMENT
STATEMENT| =
NUMBER - | SJFORTRAN STATEMENT >
51807 10 20 30
o 1 i 1XITLE IRINIAALA AL 1 1 L i i 1 1 i 1 i i l i 1 i I S | 1
| Y N S A1¢111AA11111A1A4A‘#+11111111¢

7-1
PAGE

UP-NUMBER UPDATE LEVEL

8193 Rev. 1 I SPERRY UNIVAC Operating System/3

7. Input and Output

7.1. GENERAL

This section describes the characteristics of the input/output {I/O) system and the SPERRY UNIVAC Operating
System/3 (0S/3) FORTRAN statements required for input and output control; see also fundamentals of FORTRAN
programmer reference, UP-7536 (current version).

The FORTRAN input and output statements are READ and WRITE. These statements designate an 1/0 device and
reference an 1/0 list; they may reference a FORMAT statement. The peripheral devices are assigned unit numbers
within the user’s system. The input and output devices which may be used are card readers and punches, printers,
magnetic tape units and disc subsystems.

7.2. INPUT/OUTPUT LIST

The purpose of an 1/0 list is to identify variables, arrays, and array elements so that they may be transferred to and
from external devices. The /O list is an ordered set of items with the format:

B P

where:

Is one of the following:
1. a simple 1/0 list which may be a variable, array element, or array name;

2. two simple 1/0 lists separated by a comma;

w

a simple 1/0 list in parentheses; or

4. aDO-implied list.

7.2.1. DO-Implied Lists
Format:

(kd)

8193 Rev. 1 SPERRY UNIVAC Operating System/3 7-2
UP-NUMBER UPDATE LEVEL | PAGE
where: .
k
Isan 1/O list.
d
Is a DO specification with the form: i = m,,m,.m, where the parameter interpretation is identical to the
corresponding DO statement parameters (4.7).
Description:

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters.
Example:

(((AX(1,J,K),1=1,5) J=15),K=1.5)

If the 3-level DO-implied list in the example is used in a WRITE statement, the group of 125 elements of the

array AX are transferred to the specified external medium. The transfer would be to storage if the list were

used in a READ statement. See 2.4.1 for the general expression used to determine the location of array
elements.

7.3. SEQUENTIAL FILES
The use of the American National Standard FORTRAN 1/0 statements READ, WRITE, BACKSPACE, REWIND,
and ENDFILE is defined in the following paragraphs. The FORMAT statement, used for editing values represented

by character strings on the external media, is also desctibed.

Files referenced with the standard statements are always treated as sequential, even when they reside in disc storage.

7.3.1. Unformatted 1/O Statements

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE
statement exists as a single logical record for subsequent unformatted READ or BACKSPACE orders. The
unformatted 1/0 statements are:

WRITE (u) k
EOF| _ -
READ (u[, {END} —I1:| [,ERR Iz]) k
where:
u

Is an integer+4 constant or variable designating an 1/0O device.

EOF=I
1
Is an optional specification with I1 denoting the label of the statement to receive control if an end-of-file
condition occurs.

END=1,
Is a specification which may be substituted for EOF=I1.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7-3

ERR=l,

Is an optional specification with I2 denoting the statement to receive control if an error condition

OCCurs.

Is an 1/0 list, which may be empty for a READ statement to indicate that a record is to be skipped.

Description:

The unformatted 1/0 statements initiate and control the transfer of unformatted data between a designated
peripheral device and main storage.

Unformatted [/O is designed for high efficiency data transfer, and consequently, no data conversion operations
are performed; the variables exist on the external media in the forms specified in 2.2 and 2.3. Only minor
input validity checking is performed in keeping with this emphasis on throughput.

If the list for a WRITE statement consists of two integers followed by three double precision values, the only
valid READ statements for that record are:

READ

READ

READ

READ

READ

READ

(u) ; bypass the record
“{u) !

(u) 1l

(whL,d

(u) 1,1,D,.D

(u)1,,0,D,D

Even mare efficiency can be achieved by reducing a list to a single element. Compare the following program

segments:

“C* FOR COMMENT
'l::,fJf;‘:R” SFORTRAN STATEMENT >

5187 10 20 30 40

P —— — —
o I DIMENSTON ACL0D, B(202,0003020 o i oL
.. . .| DOPUBILE, PRECISION B . | 4 by
Lo T S R U S S St NS S ST S S S
RITE (22, A, B, C v vl v e by
R IMENSTION AC10)., B(20) 0300 ,0U0MMY(18.0)
. | DOUBILE PRECISION. B ol oottt o
e L EQUIIVALENCE, (DUMMY. A (Diupam Y (400 . B) ., . .
e, DWMMY (5D D e e e
e WARITIE, (22, DUMMY. . o+ o 0 Lo bt ik de a4

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater efficiency
in the data transfer.

UP-NUMBER

7-4

UPDATE LEVEL | PAGE

8193 Rev. 1 I SPERRY UNIVAC Operating System/3

7.3.2. Formatted READ/WRITE Statements

Formats: .
EOF
READ (u,a[{END} =I1] [,ERR=I2:|) k

where:
u
Is an integer*4 constant or variable designating an input or output device.
a
Is a label of a FORMAT statement or the asterisk (*) character (7.3.6).
E0F=I1
Is an optional specification with I1 denoting the label of the statement ot receive control if an end-of-file
condition occurs.
END=I1
Is a specification which may be substituted for EOF=l1.
ERR=I2
Is an optional specification with I2 denoting the statement to receive control if an error condition occurs.
k
Is an optional 1/0 list.
Description:

The formatted READ and WRITE statements initiate and control the transfer of formatted data between a
designated peripheral device and main storage. Data is always converted from/to character strings on external
media and the internal representations specified in 2.2 and 2.3. The presence of EOF=1 or END=l indicates
that if an end-of-file condition is encountered on input, the program is to branch to the label specified. EOF
and END are interchangeable.

7.3.3. 1/0 Compatibility Statements

The following FORTRAN |1 statements are accepted by the compiler:

READ ak

PUNCH ak

PRINT ak
where:

a

Is the statement label of a FORMAT statement or the asterisk (*) character (7.3.6).

‘ o
Is an 1/0 list.

No unit specification is made with these input/output statements because none is necessary; the compiler addresses
the appropriate device in the user’s system configuration.

. 8193 Rey. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7-5

', 7.3.4. FORMAT Statement
Format:
a FORMAT (q1t1z1t222...tn_1tnq2)
where:
a
Is the statement label of the FORMAT statement.
q
Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement it
signals end of a logical record.
t
Is a field descriptor (7.3.4.1) or a group of field descriptors specifying the data conversion or the action
to be performed.
z
3 Is a field separator (either a slash or a comma) required when more than one field descriptor is used.
| Commas are not required when they follow fields described by blank (wX), Hollerith (ch1 cz...cw) and
‘ literal (’c1 cz...cn’) descriptors; slashes end a logical record.
. The FORMAT statement specifies editing information used in transforming formatted data (character strings)
from and to internal representations. The FORMAT descriptors are presented in the following paragraphs.

Examples:

"C" FOR COMMENT

[1 STATEMENT

FORTRAN STATEMENT —>»

R | &
MM 17 10 20 30
{
1 L]lDlD FIOARMiAl-,L ;(‘L leFlIiR;SlTl LPAAIGlEl'JZL)l l) S VS U NN N B |
Il Allj FLatRlMlAATl A[A/l/l/.Il/llilL2AXIII’121A)L i J U U U S S S
J U U S AJxl1LJ;ALAL4LL111114111LJ111llll

If referenced by a WRITE statement, the first FORMAT statement causes the transfer of the literal FIRST
PAGE and provides an additional btank logical record. The second format statement skips three logical

Description:
|
|
|
|

records, then describes a record with a 12-byte integer field, two blanks and another 12-byte integer field plus
another blank record.

7.3.4.1. Field Descriptors

The field descriptors specify the kind of /O data conversion or action to be executed. FORTRAN allows the
. descriptors listed in Table 7—1.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL | PAGE

7-6 .

Table 7—1. FORMAT Statement Field Descriptors

Classification Field Descriptor
Integer riw
Real (E conversion) srEw.d
Real (F conversion) srFw.d
Double precision srDw.d
General srGw.d
Hollterith (A conversion) rAw
Hollerith (H conversion) ch,‘cz...cW
Hexadecimal rZw
Literal 'c1c2...cn
Blank wX
Record position Tp

LEGEND:

r = a repeat count, < 32767

w = the field width, << 255

s = the scale factor nP (~128 <n <127)
d = decimal positions

¢ = character

p = character position in the external record (0 < p < 255)

The specifications within the field descriptors are explained in the following paragraphs and the input and output
actions prescribed by the descriptors are described in 7.3.4.1.1 through 7.3.4.1.11.

Repeat Count

The repeat count allows a field descriptor to be repeated a maximum of 32,767 times and must be an unsigned
integer constant. The field descriptor 513 is the same as 13,13,13,13,13.

Field Width

The field width specification is an unsigned integer constant indicating the number of character positions the
data occupied (or will occupy) in the external medium. The specification must not exceed 255.

Scale Factor

Input and output using the E, F, D, and G conversion codes can be scaled up or down (multiplied or divided)
by the specified power of 10 when the scaling specification in the format nP is included in the field descriptor.
A complete description is available in fundamentals of FORTRAN programmer reference, UP-7536 (current
version).

8193 Rev. 1 I SPERRY UNIVAC Operating System/3] A

F20.0.

7.3.4.1.1. Integer Descriptor (rlw)

On input operations, if the value exceeds the range, only the least signifiéant digits are stored (with the sign, if any).
An integer, which consists of a signed integer constant where the positive sign is optional, may be preceded by or
have embedded 0’s or blanks. Blanks are interpreted as O's.

If the value exceeds the permissible range of 32,768 for integer+2 or +2,147,483,647 for integer+*4, the list element
is defined to be the least significant 16 or 32 bits.

On output, the external field is preceded by a minus sign if the value is negative and may be preceded by blanks,
space permitting, if the value is positive. If the internal value cannot be converted into the w characters specified, the
output field is set to w asterisks.

7.3.4.1.2. Real Descriptor — E Conversion (srEw.d)

On input, the external field consists of a string of digits optionally preceded by blanks or 0’s preceded by an
optional sign. Blanks are interpreted as 0's. The digit string may specify a decimal point which overrides the d
specification in the descriptor. The digit string may be followed by exponent notation E or D followed by an
optionally signed integer constant. If the integer constant is signed, the E or D may be omitted. If the number of
significant digits exceeds the precision of the list element, the value will be rounded to the correct size. If the value
exceeds the range, the maximum value will be substituted. If the value is too small for the range, a 0 will be
substituted.

On output, the external field has the following format:
s10.h1h2...hd Eszee

where:
54

Is the sign of the value, either blank or —.

Is a decimal digit.

7-7
UP-NUMBER UPDATE LEVEL | PAGE

L Decimal Positions

The specification describes the number of digits to the right of the decimal point; if none exist, a 0 must be

specified.
L Character

Any character of the SPERRY UNIVAC 90/30 System character set is permissibie.
] Character Position

See 7.3.4.1.11.
Field descriptors may be grouped by using-parentheses. The left parenthesis may be preceded by a group repeat
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting to
three levels is permitted. The result of the basic group and repeat count 2(X,215,F20.0) is X, 15, 15, F20.0, X, 15, 15, -—

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

7-8 -

Is the sign of the exponent, either blank or —.

ee
Is the 2-digit exponent.

Note the decimal point preceding the digits.

For a complete representation of all values, the w specification should provide seven or more additional field
positions than the d specification.

The rules governing the output form when w is not at least 7 greater than d are:
L] If (w — d) is 6, the O character preceding the decimal point is deleted from the output form.

n If {w — d) is b and the value is positive, both the S, and the O characters preceding the decimal point are
deleted from the output form.

L If neither of these conditions holds, the entire field is set to asterisks.

7.3.4.1.3. Real Descriptor — F Conversion (srFw.d)

For input action, refer to the E conversion description (7.3.4.1.2). On output, the external field has the following
format:

Siqlgendy, g q-Fifpefy
where:
s
Is the sign of the value, either blank or —.
i
Is a digit within the integer portion of the output value.
f

Is a digit within the fractional portion of the output value.
Sufficient space must be provided for a minus sign if the value is negative. If the integer part of the value is positive
{or 0), requiring more than (w — d —1) character positions, or is negative, requiring more than (w — d — 2) character

positions for its representation, then the E conversion is used instead of F conversion. Where neither F nor E
conversions suffice to represent the value, the entire field is set to asterisks.

7.3.4.1.4. Double Precision Descriptor (srDw.d)
For input action, refer to the E conversion description. On output, the external field has the following format:
$4 O.h1 hz"'hd Dszee

Refer to E conversion output (7.3.4.1.2). -

8193 Rev. 1
UP-NUMBER

UPDATE LEVEL

| SPERRY UNIVAC Operating System/3

PAGE

7-9

7.3.4.1.5. General Descriptor (srGw.d)

This descriptor provides the capabilities of the |, D, E, and F conversion codes. During an input operation, this
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion
code is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D
exponential form is selected for output. The G descriptor may also be used to transfer integer and double precision
data fields. For double precision data, the G descriptor is, in effect, the same as a D descriptor. For integer data, the
G descriptor is interpreted as an | descriptor. The d editing information in the format may be omitted when
transferring integer data; it is ignored when present.

7.3.4.1.6. Hollerith Descriptor — A Conversion (rAw)

This descriptor requires a corresponding variable name in the 1/0 list. The maximum number of characters that can
be transmitted to a variable is equal to the length, in bytes, of the variable. A data field is transferred between
storage and an externa! device according to the following rules:

L On input, if the descriptor specifies fewer than the maximum number of characters, the data field is
transferred to main storage and left-justified; blanks are inserted in the remaining storage positions. If the
descriptor specifies more than the maximum number of characters, only the rightmost characters of the data
field are transferred to main storage. The remaining characters are skipped.

L] On output, if the descriptor specifies fewer characters than can be represented in the variable type, the
leftmost characters of the data field are transferred from main storage. If the descriptor specifies more
characters than can be represented in the variable type, the data field, right-justified and preceded by blanks, is
transferred from main storage to the external field.

7.3.4.1.7. Hollerith Descriptor — H Conversion (ch1c2...cw)

On input, the next w characters transferred from the external device reptace the current Hollerith data specified in
the FORMAT statement. On output, the Hollerith data currently contained in the FORMAT statement is transferred
to an external device.

7.3.4.1.8. Hexadecimal Descriptor (rZw)

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item.
The number of digits associated with the data types are:

Type Hexadecimal Digits
integer*2 4

integer*4 8

real *4 8

double precision 16

On input, the hexadecimal digits are stored two to a byte, right-justified and zero filled.

On output, the hexadecimal value is stored in the output field with preceding blanks.

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

7.3.4.1.9. Literal Descriptor (‘c;c,...c.’)

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or
written from the literal data in the FORMAT statement. It is not necessary to specify an external field width. No
1/0 list item in a READ or WRITE statement is associated with this form of alphanumeric transmission. If an
apostrophe is required in a Hollerith string, two successive apostrophes must be specified. For example, the
characters DON'T are represented as 'DON"'T’. The effect of the literal format code depends on whether it is used
with an input or an output statement.

L] Input
The characters in the external field replace the literal data in the FORMAT specification in main storage. All
characters are read exactly as they appear between the outermost apostrophes. All inner apostrophes are
included in the count. For example, the FORMAT descriptor 'DON"T’ causes the next six characters to be
input. Each apostrophe in the input data field is treated as a separate character.

L] Output

All characters, including blanks, within the apostrophes are written as part of the output data. The descriptor
'‘DON"T’ causes the five characters DON'T to be output.

For example, execution of the WRITE statement causes the following line to be printed: THESE ARE
SAMPLE PROBLEMS.

7.3.4.1.10. Blank Descriptor {wX)

This descriptor omits the next w consecutive characters on input or output. Output records are blank filled at the
time they are started.

7.3.4.1.11. Record Position Descriptor (Tp)

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may
begin at any position by using the Tp descriptor. The value of p represents the start position.

For example, the format specification (T7, 13HEMPLOYEEANAME,T100,9HTELEPHONE,T40, 12HHOMEA
ADDRESS) causes record positions not specified in the field specification to be filled with blanks. However, for
print records, the position specified becomes print column t—1, because the first character of a print record 's
interpreted as the carriage control character (Table 7—2) which is not printed. Thus, a print record for the format
shown in the example would be:

S EMPLOYEE NAME 39 HOME ADDRESS 99 TELEPHONE

PRINT
POSITION

*C" FOR COMMENT
ﬁﬁ:ﬁ{” ZFORTRAN STATEMENT >
518']7 10 20 30 40
i L 1. WIRIIITIEJ L(Ajloll L lllol)l i i i 1 1 J L 1 1 1 1 1 1 1 i i i 1 i l l'J
1 i ll lo FIO;RMLAL-TI 1 (l ! 1 l-T.lH IEISIEI lAlRlEl S LALMIPIL lEl lP lRDIEIL lElMls 1 / D

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE
The following statements cause the ten characters starting from position 20 of the record to be converted according
. to the F10.3 code and stored in Y, and the five characters starting from position 1 to be converted according to the

F5.1 specification and stored in B.

"C" FOR COMMENT

.

STATEMENT
NUMBER

SFORTRAN STATEMENT >
51807 10 20 30

1 i I d RIELAlDI l(l3t }J;L)l lYl}l 1BL U Lo L 1 L I i | 1 1 1 1 ! L
B T N ll F¢DJRLM1A1TL A(.T4&401}1F1 I JOLA J3AJ ;Tll . | 1F51 1J ’ 1) i 1 1 S DY

Y U W S| IJLJLIIILLJJJJLJLJllllllllllill

7.3.4.2. Multiple Record Format Specification
The slash is both a record delimiter and a field separator. If a list of field specifications is followed by a slash, the
remainder of the record being edited is ignored on input or remains filled with spaces on output. Any editing codes

following the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also a
record delimiter if 1/0 list elements of the corresponding statement remain at the time it is scanned.

7.3.4.3. Carriage Control Conventions

The first position of a printer output record does not print, but determines the action of the printer carriage. The
. action executed for a given carriage contro! character is described in Table 7—2.

Table 7—2. Carriage Control/ Conventions

Character Meaning
0 2-line advance
+ No advance
1 Skip to top of next page
any other character, 1-line advance
including blank

NOTE:

Al actions take place before printing.

7.3.4.4. Format Interaction With the 1/O List

During the execution of an 1/O statement, the FORMAT specification is scanned from left to right. Editing codes of

the form wH, ’h1 ...hn', wX, and Tp as well as slashes are interpreted and acted upon without reference to the {/0O

list. When any other editing code is encountered, one of two possible action is taken: if a list element remains to be

transmitted, it is converted and transmitted, and the FORMAT scan continues; or if no list elements remain, both
. the current external record and the READ or WRITE statement are terminated.

8193 Rev, 1 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

7-12

A maximum of three levels of parentheses is permitted in a FORMAT statement:

label FORMAT(..{..(
123

R
322
When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record is
started and one of two possible actions is taken: if level 2 parenthetical groupings exist, the FORMAT scan is
resumed at the repeat count preceding the rightmost level 2 grouping; or the scan is resumed at the beginning of the
FORMAT.

7.3.5. Reread

Format

READ (u,a) k

where:
u
Is a constant, or an integer=4 variable, designating the reread unit.
a
Is the statement label of a FORMAT statement.
k
is an 1/0 list.
Description:

The reread form of the READ statement allows the previous record transferred to main storage to be reedited
using a different FORMAT statement. This order neither selects nor initiates action on a peripheral device.

The FORTRAN library contains a unit table which associates unit numbers with files. In this discussion, it is
assumed that unit 29 has been associated with the reread feature; actually any one or more units can be so
designated.

The reread feature is used when the program must determine the kind of information in a record. For instance,
both header and detail records may be intermixed and each kind of record may require different editing
information in a FORMAT statement. After a READ order transfers a record to main storage, the record is
identified by the program. H the correct format was applied, the program performs the necessary action on the
data; if not, the program may execute a

READ (29,label) list
in conjunction with the desired FORMAT statement.
If an EOF label is specified and the previous read encountered an end of file, control is returned to the

specified label. The reread may not, logically, follow a WRITE, BACKSPACE, REWIND, or ENDFILE
statement. An unformatted record may not be reread.

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

7-13

7.3.6. List-Directed 1/0

List-directed 1/O statements are identical in concept to formatted READ and WRITE statements except for the lack
of a specific FORMAT statement reference.

They are distinguished from other statements by the presence of the asterisk {+) character in place of the format
reference, such as in:

READ(10,*,END=30) A,B,C

These statements initiate and control the transfer of formatted data between a designated unit and main storage.

Format control is provided by the FORTRAN system based on the type of the list items and the record length
associated with the unit.

When preparing input data, the programmer must ensure that it conforms to the requirements of the list-directed
formats, specifically in regard to the use of the comma, slash, and blank characters. List-directed output records are
acceptable as list-directed input.

7.3.6.1. List-Directed Data Format
[Input

An input record consiéts of a list of constants, each demarcated by a separator. Separators are the characters:
blank (or a series of blanks)
comma (preceded and followed by zero or more blanks)
end-of-record

slash (preceded by zero or more blanks)

Since the blank is considered a separator, no embedded blanks may appear in arithmetic constants; blank,
comma, or slash may appear within a literal constant enclosed within apostrophes, and end-of-record forces a
read of the next sequential record. For card input, end-of-record is determined by the fixed length of 80
positions. For other input, such as tape or disc, the length specification given at the time the record was
written is the determining factor. The slash separator -causes termination of the READ statement. Real
constants must be associated with real list items; integer and literal constants may have any association. The

exponent identifiers E and D are considered equivalent. A repeat count may precede a constant using the
form:

r*constant

Two or more consecutive comma separators {with any number of blanks or end-of-records intervening)
indicates that the corresponding list items are not to be redefined. Multiple numbers of these “null items”’ may
be indicated by:

(separator)r=(separator)
Example:

"C" FOR COMMENT
STATEMENT]

e T SFORTRAN STATEMENT > ‘

5168|7 10 20 30
R 1 A [lNlFElGlEIPA Eli lF-lQ IGI J 4 1 1 1 i 5 1 d 1 1 1 1
o4 1 i IEADI(AUL;A*L)I Al!lBlQlCl! LD]\!E-J ALFIIIGISJHJAII i

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER l UPDATE LEVEL I PAGE

7-14

1214/

17.23961727, 12, 2+, '"HE"'S’

After the READ is executed, the values of the list items will be:
A 17.2396 (or 17.23961727 if real x8)
B 12.0

C,D unchanged

E HE’S

F 12

G 14

H,l unchanged
= Output

The output records will consist of a list of INTEGER and REAL constants, each separated by a comma.
Output records will never contain repeat items (r+constant) or literals. The maximum precision commensurate
with the list item will be represented. The format codes assumed are:

- G20.11 for REAL+*8

- G16.7 for REAL*4

- 116 for INTEGER

7.3.7. Auxiliary 1/0 Statements

Auxiliary 1/0 statements control the demarcation of files and the positioning of files to desired points of reference.

7.3.7.1. REWIND Statement
Format:

REWIND u

where:

Represents an integer+4 constant or variable designating a sequential file on tape or disc.
Description:

The REWIND statement positions the file at a point immediately preceding the first record.

SPERRY UNIVAC Operating System/3 7-15

8193 Rev. 1
UP-NUMBER

l UPDATE LEVEL | PAGE

7.3.7.2. BACKSPACE Statement
Format:
BACKSPACE u

where:

Is an integer *4 constant or variable designating a sequential file on tape.
Description:

The BACKSPACE statement activates the designated unit and causes a backspace of one record.

A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered during
format control, or the last parenthesis encountered in the format when other list items exist in the
corresponding READ or WRITE statement. This statement should be used carefully when the file was written
with list-directed /0.

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE

statement has no effect if the file associated with a unit is currently positioned immediately preceding the first
record.

NOTE:

Restrictions for the BACKSPACE statement are shown in 10.3.

7.3.7.3. ENDFILE Statement
Format:
ENDFILE u
where:
Is an integer«4 constant or variable designating an output device. The unit must specify card, tape, or
sequental disk output files.
Description:
The ENDFILE statement terminates the file associated with the specified unit.
The ENDFILE statement writes file trailer labels based upon the last data transfer. If the last data transfer was
a READ, no labels are written. If the last data transfer was a WRITE, file trailer labels are written and the tape
is repositioned to a point between the last data block and the tapemark. BACKSPACE is not considered a data

transfer — the processing mode is unaffected. The REWIND command sets the processing mode to WRITE
following its repositioning operation.

7.3.8. Sequential File Considerations

The 1/O statements may not be executed in arbitrary sequences. Table 7—3 shows instances where specific
commands are prohibited or ignored.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

7-16

Table 7—3. Ignored and Prohibited Operations Versus Specific Commands

Current Operation

Previous Operation

READ

WRITE

ENDFILE

BACKSPACE

REWIND

READ

READ after
EOF
encountered

WRITE

ENDFILE

BACKSPACE

REWIND

|
{(warning)

None

1
{warning)

LEGEND:

| — Indicates an ignored operation.

P — Indicates a prohibited operation.

Further, not all operations are permitted on all devices. Table 7--4 shows prohibited combinations.

Finally, unformatted operations are prohibited with units designating the card reader, printer, card punch, or
reread. Formatted and unformatted records can be intermixed freely on output tape and disk files, but it is a user

Table 7—4. Ignored and Prohibited Operations Versus File Type

Operation

File Type READ WRITE ENDFILE BACKSPACE REWIND

Tape * *

Disk * * P

Card reader P P P 4

Card punch P [P

Printer ‘P P P

Reread P P P P
LEGEND:

* — These operations may be prohibited when the files are defined as input only or output only. See

11.2 for further details.

P — Indicates a prohibited operation.

responsibility to read these records in the same mode as they were written.

7-17

8193 Rev. | l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

. 7.4. DIRECT ACCESS FILES

FORTRAN direct access statements are used to control disk subsystems. The term “‘direct access’ refers to the
ability of the disk to directly access a specified record of a file without accessing all preceding records.

Files can be maintained on the disk storage as sequential files in the same manner as for magnetic tape units
without using the direct accessing capability of the disk storage. For such files, the only statements required are
the sequential 1/0 statements described in 7.3. For direct access (random) files, the DEFINE FILE statement
identifies and describes its characteristics. A FIND statement causes positioning of an accessing head and, if
executed earlier in the program prior to a READ statement, eliminates much of the delay caused by the
mechanical movement of the accessing head, since the positioning operation is concurrent with program
operation. The direct access 1/0 statements may transmit either formatted or unformatted data.

7.4.1. DEFINE FILE Statement
Format:
DEFINE FILE u, (r1,m1 Xq¥q),uz(rz,mz,xz,vz),..., un(rn,mn,xn,vn)

where:
Is a file identifier, an integer constant specifying a file or unit reference number.
. Is an integer constant < 65535 specifying the number of records in the file. -

Is an integer constant specifying the maximum size of the record in the file in terms of characters
{bytes), main storage locations (bytes), or main storage units, depending on the designation chosen for x.

Is one of three possible code letters to indicate the interpretation of m.

Is an unsubscripted integer*4 variable, known as the associated variable of the file. After execution of a
READ or WRITE statement, the variable is assigned a value in the range 1 < v < r indicating the
sequential position of the next record in the file; after execution of a FIND statement, it is assigned a
value indicating the position of the desired record.

Description:

A DEFINE FILE statement is executable and dynamically describes one or more files which may be
referenced during program execution.

At the start of execution of a FORTRAN program, all direct access units are considered to be undefined, and
no READ, WRITE, or FIND references are permitted. When a DEFINE FILE is executed, the characteristics
of one or more units are registered with the system. Thereafter, further definitions of previously defined units
are ignored.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 7-18
UP-NUMBER UPDATE LEVEL | PAGE
One of the following three letters must be placed in the position designated by x: .
L
Transfer data as either formatted or unformatted; record size (m) designates bytes.
E
Transfer formatted data; record size {m) designates characters (bytes).
V)
Transfer unformatted data; record size (m) designates main storage units {4-byte words). To calculate
the record size in storage units, determine the total number of bytes required for all the items of the /0
fist and divide this total by 4. If the quotient contains a remainder, round off the result to the next
highest integer.
Example:

—"C" FOR COMMENT

SNUwaeR | ;FORTRAN STATEMENT >

3 7 10 20 30

e\ \DEFINE FILE 300,00, 0120, L FILEI) .

1 1. 1 i I 5¢(,\7A81) 121011 1U1)lFiIlLlEls'i)A St 1 L 1] J 1 1 i 1 T

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size is
specified in bytes. If the 1/O statement contajns a reference to a format, 120 bytes of formatted data is .
transferred; if not, unformatted data is transferred. File 5 contains 98 records of 80 bytes each.

7.4.2. Disk READ Statement

Format:

READ (u’ record position,fmt,END=I) k

where:

Is a file identifier represented by an integer*4 constant or variable followed by an apostrophe.

record position
Is an integer expression designating the position of the record in the file.

fmt
Is an optional specification indicating the tabel of a FORMAT statement, or it may be the asterisk (*)
character.

Is the label of a statement to which control is to be transferred when the record position is outside the
file boundaries. EOF and ERR are considered equivalent to END; the entire specification is optional.

k [

Is an 1/0 tlist.

8193 Rev. 1 |

ting System/3 7-19
UP-NUMBER SPERRY UNIVAC Operating Sy UPDATE LEVEL | PAGE
‘ Example:
“C®" FOR COMMENT
{:N‘J,f;‘:,"’ SFORTRAN STATEMENT >
51817 10 20 30 40 50
. . . | DEFINE FILE 3(l00.,5¢r2, 0, FILE3) . . i RN
P N + . " P S D S VS S S SR S G S G SO Lo P U G U S SO U ST
PPt :JFAI LAE13A=J .D‘ n " n T R S U S Y S Y S S S U SRS DU ST
1 A:VL_L_l i i i 4 U W S S S S S W SR GG G | L D U WS W SN GRS S S SHUNS VI S rs PO U L4 PR N
e L IREADI (3 FILES|, £ END =0, ALB L GO U D7 13000,
. |6A7 FAvARMIAlTI l{hjlleA/lbl' 141)1 1 1 1 1 1 1 1 1 i ’t 1 1 1 i R N W L | i 1 i 1 1 I i l 1 1
U N S | 1 1 L1 I T N W S U | 1 U S N G W OO N | l) Y U A TN VO B N T 1) WSS R U N N SO S S | | JE |

The tenth record in file 3 is transferred to main storage when the READ statement is first executed. Each
subsequent execution of the READ statement order transfers the next record in the file to main storage. The
descriptor 32F16.4 indicates that each unit of data consists of 16 bytes and 32 such units of data are to be
transferred. Thus, the 512 bytes (16 x 32) of the record are transferred to main storage.

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT
statement in the example were:

FORMAT (//32F16.4)

the first execution of the READ statement would transfer the third record in the file; the second execution
. would transfer the sixth record.

7.4.3. Disk WRITE Statement

Format:

WRITE (f' r,fmt) k

where:
f
Is a file identifier represented by an integer*4 constant or variable followed by an apostrophe.
r
Is an integer expression designating the position of the record in the file.
fmt
Is an optional FORMAT statement label or it may be the asterisk {*) character.
k

Is an 1/0 list.

7-20
PAGE

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

Example:

"C" FOR COMMENT

r 3
T o
TNUMBER | JIFORTRAN STATEMENT >

S 7 10 20 30

i1 i1 —DIEAG':H-V\\E AFLI&L}E lLll'l(lllb\LOl313151)1L1)1F1LL~1E§L‘1>1 J. i

.
I R . | L~11]111|L1111111111llilllilj;llx
DUBILE PRECIITON D v v v Ly
1 [SN S NN NN N SN SN U WA GRS S NN W USRS Y S SN NN NS NN SN NN S NS T S SO U
i FlILLﬂElL{-ll:lLijLilllllllllllllllllll
-
N
S WD U S| L-llllLLLLLLlllllLllllllllllllll

L4

Thirty-five bytes (8 + 12 + 15) are transferred from storage to the third record in the file. The format
specification indicates the number of bytes for the integer, real, and double precision information transferred.
If the WRITE statement does not specify a format label, an unformatted WRITE is executed. In this case, 16
bytes are transferred.

Variable Name Type Nlér:tt::sr of
1. Integer 4
R Real 4
D Double Precision 8

16 total

7.4.4. Disk FIND Statement

Format:
FIND(f" r)
where:
f |

Is a file identifier represented by an integer*4 constant or variable and followed by an apostrophe.

Is an integer expression designating the position of a record in the file.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7-21

Description:

The FIND statement can decrease the time required to execute an object program requiring records from disk.
This statement positions the access arms to a disk track address specified by a file identifier and record
number. During the time the arms are being positioned, execution of the object program can continue. After
positioning, a READ statement accessing the record addressed in the FIND statement may be executed, and

the record is transferred to main storage; thus, data transfer is completed more quickly when the arms are
pre-positioned to a required track address prior to the execution of a READ statement.

Example:

"C* FOR COMMENT

This example shows the relationship between a READ statement and a FIND statement. While the access arms
are being positioned, the statements between the FIND statement and the READ statement are executed.

3 L PG
S UVKENT! EFORTRAN STATEMENT >
&7 10 20 30
1 1 1 I\ Fl[lNADI l(l4’1’l 12101)1 1 l 1 i L 1 1 i 1 L 1 1 1 1 i 1 i 1 1 i
i 1 1 J:JllllllIljlllllllll,llllllLlllll
o | READ (40 200 (AL T =0 0p317,,3) 0 0

8—1

UP-NUMBER UPDATE LEVEL | PAGE

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

8. Data Initialization

8.1. GENERAL
Data initialization as it applies to SPERRY UNIVAC Operating System/3 (0S/3) FORTRAN is described in this

section; for more general information, refer to fundamentals of FORTRAN programmer reference, UP-7536 (current
version).

8.2. DATA STATEMENT
Format:

DATA Ky /hy/kylhyl,ee. b, /

. where:

k
Is a list of variable names, array names, and array element names (with constant subscripts).
h
Is a list of constants, any of which may be preceded by r« to specify a repeat count, where r is an
unsigned integer constant; items in the list are separated by commas.
Description:

The DATA statement initializes values represented by a variable, an array, or specified array elements. None of
these items should be in blank COMMON; they should be in labeled COMMON only if the DATA statement
appears in a BLOCK DATA subprogram. A DATA statement must appear after any declarative (e.g.,
COMMON, DIMENSION, or type} affecting the variables to be initialized.

There must be a basic correspondence of type and a one-to-one correspondence of items between the variable
and constant lists. The following relaxations to these rules are permitted:

= Real*4 and real*8 constants and variables may be intermixed freely. If a real*8 constant is associated
with a real*4 variable, the least significant digits are truncated; if a real*4 constant is associated with a
real+8 variable, it is padded with O's in the least significant digits.

L Hollerith, literal, and hexadecimal constants may be associated with any variable type.

‘ L If an array name appears as the last item in the variable list, the constant list is not required to
completely fill the array. An array element name specifies only one constant value.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 8-2
UP-NUMBER UPDATE LEVEL | PAGE
8.3. BLOCK DATA SUBPROGRAM .

A block data subprogram is an independently compiled specification subprogram. It is used to initialize values in
labeled common blocks. The subprogram may contain only DATA, EQUIVALENCE, COMMON, DIMENSION,
type, and IMPLICIT statements. The block data subprogram is headed by the BLOCK DATA statement. The order
of statements is governed by the rules explained in Table 1-2.

8.3.1. BLOCK DATA Statement
Format:
BLOCK DATA [s]

where:

Is the name assigned to the block data subprogram.
Description:

The BLOCK DATA statement is optionally used to name a block data subprogram. When used, it must be the
first statement present in the block data subprogram. When more than one block data subprogram is being
compiled in a single job, each block data subprogram should be assigned a unique name so that they are all
accessible to the linkage editor and librarian. Any block data subprogram compiled without the specification is
assigned the name $BLOCK by default. Therefore, only the last block data subprogram compiled is accessible
to the linkage editor and librarian when multiple block data subprograms are compiled in a single job without
using unique names.

8193 Rev. 1 I SPERRY UNIVAC Operating System/3 I 91
UP-NUMBER UPDATE LEVEL | PAGE
9. Debugging

9.1. GENERAL
The SPERRY UNIVAC Operating System/2 {0S/3) FORTRAN compiler and library provide localized and specific
diagnostics for syntax, argument, and 1/O errors, In addition, debugging aids may be inserted into the source
program to obtain label trace, subscript checking, conditional compilation, and storage dumps.
9.2. LABEL TRACE
The compiler enables the user to trace program flow by displaying the labels of executable statements as they
are encountered during program execution when trace region parameters, the TRACE ON statement, and the
TRACE OFF statement are used.
9.2.1. Trace Region Parameters
Format:

-~

// PARAM TRACE = ALL

where:

-

ALL
Specifies the entire program unit as a trace region.

When TRACE = ALL is specified, all labels in all subprograms to be compiled are traced. The TRACE ON -

statement (9.2.2) must have been executed before trace output can be initiated.

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE
Example:
“C" FOR COMMENT
STAT -
e | EFORTRAN STATEMENT >
5 1¢]7 10 20 30 40
-> //1 PJA AML 17—lplAlC£L:ilAanLl PR R Y S ST TN VAT T AT N AT SN TN S N N S A S
U W T .lllljllllllllllllllllelllLlllLll
I S S | A S NN NGNS S S TR VNN S S SN SN SN SANN A SN SHND NN SN NN T SN SN SN U SN S S W M
L 1 3 15 ZIFL 1(1A1>14/ 101}12AOL11310L Y VN SN S IV T S ¢ I | N N WO JUN WS SR W S { l
99491 AFB N U U VA S VT VO CH G (UOK NS VT S VN VT VAT WS 000 VA HAE T VS WA W S W S W U |
L1 L/ 17 AJJLL 1;-21(A1)1 | S W & L) S TR W WY NS N R W { l |V S S NN S S N S | l

In the example, labels 5, 9999, and 17 will appear in the TRACE listing.

All the labels of executed FORTRAN statements beginning with the statement labeled 5 and ending with the
statement labeled 17 are displayed if a TRACE ON statement is encountered in the program.

9.2.2. TRACE ON Statement

Format:

TRACE ON
Description:
The TRACE ON is an executable statement which enables the display of trace regions subsequently

encountered during program execution. This statement must be present if trace information is to be displayed.
It is ignored if no TRACE parameter is present.

Examples:
1.1 1' AO TRAQJEI XDJ'\L U U RO S l | W WD NN NN NN WU VR VI l I WO I U W S S T N | l
W W W § 111&11;111.1111111111L1111111L1111
L 1 1 i lFl 1(Il. L] . =

9.2.3. TRACE OFF Statement
Format:
TRACE OFF

Description:

The TRACE OFF statement disables the display of fabe! trace information until such time as another TRACE
ON statement is executed. This permits the user to control the amount of trace information generated. The
statement is treated as a CONTINUE if no TRACE parameter is present.

UP-NUMBER

8193 Rev. 1] SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

9-3

Examples:

"C" FOR COMMENT
STATEMENT

Numaer | 5FORTRAN STATEMENT >
51817 10 20 30
1 i 1 L TRIAQE lDlF(‘T— L i L l [i It 1 L L i i I\ i 1 L. 4 Y 1 1 1 4

1 1 l 1 L1 i I DTS SRS R} l Il i I S | 1 | 1 I l ! 1 1 i H | i
- 1l T’IF—J A<JA‘1GBTO 2—7 -&5 l l g Ag —; GEE

9.2.4. Trace Display
When a TRACE ON statement is executed, the line
program-unit-name TRACE LINE nnnnn ENABLED

is displayed, indicating that the TRACE ON statement at line nnnnn of the source program was executed. In a
similar fashion,

program-unit-name TRACE LINE nnnnn DISABLED
is generated for a TRACE OFF statement. When a label in a trace region is encountered, the message
program-unit-name TRACE LABEL nnnnn
is generated immediately prior to the execution of the statement. The program-unit-name is SMAIN for a main
program, or is the FORTRAN subroutine or function name; it is shown only for the first messages generated for a
given procedure.
9.3. FORMATTED MAIN STORAGE DUMPS

Format:

CALL n (ug 1.fuy0, 05,0 L f)

22’ “n''n
where:
n
Is either DUMP or PDUMP.
u
Is a variable or array element name which indicates the upper address boundary for the dispiay.
I
Is a variable or array element name which indicates the lower address boundary for the display.
f

Is an integer constant indicating the desired interpretation of the storage area.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

9-4

The u and | specifications may be interchanged; their positions in the CALL statement do not influence the dump.

The codes used for the format specification are:

f Display Interpretation

0 hexadecimal
3 integer*2

4 integer*4

5 real*4
6 real*8
9 literal

The output of these subroutines is directed to the printer. The TRACE listing is double spaced, and a 120-character
print line is required. For values other than those listed, f is treated as hexadecimal. The DUMP subroutine
terminates the program after it is executed; PDUMP returns control to the first executable statement following the

CALL.

An argument list must be present for DUMP or PDUMP.

9.4. CONDITIONAL COMPILATION

A statement may be optionaily selected for compilation by inserting an X in position 1 of the statement line (see
example). If the statement extends beyond one line the character X must also appear in position 1 of all the
continuation lines. Statements with. X in column 1 but without the parameter option activated are treated as

comment lines.
Example:

"C" FOR COMMENT

STATEMENT

NUMBER

-
c
3

FORTRAN STATEMENT

7

10

20

—>

30

PlRIkNWI l\xOLng lAlji IR)I l(‘l‘ 1 |) I S l L1 1 11 1 !

EORMAT, (2F 15 .6.)
IN | x,111|L14L1111111]1

A 1 i] ’e i i 1 1 i e Al A l 1 1 I’ 1 1 1 1 1 1 I 1 1 1 1 i 1 1

This capability is provided for printing intermediate results when debugging a program. When debugging is
complete, the statements can remain as they are in the source program to be used again as necessary. (Refer to
Section 11 for specifying the X parameter during compilation.)

9-56

UP-NUMBER PAGE

8193 Rev. 1 I SPERRY UNIVAC Operating System/3

UPDATE LEVEL

9.56. SUBSCRIPT CHECKING

The compiler evaluates array element addresses without regard to the values of the variables used as subscripts. Thus,
erroneous subscripts could result in storage accesses outside the bounds of an array. The compiler can, however, be
forced to generate code which checks the final array element address to ensure the array boundaries are not violated.
The parameter used to generate code for subscript checkingis:

// PARAM SUBCHK = ALL
where:

ALL
Specifies that all array element addresses are to be checked.

Since the subscript checking feature is time consuming, it should be used for program debugging and not in
production programs.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

101

10.1. SYSTEM PROVISIONS

10.

1/0 Configuration

Every executable program must contain an input/output control module. A simple module is provided with the
FORTRAN system. If necessary you may generate more complex modules.

The object module FP$10 is provided in the system object library and is automatically included in the executable
program by the linkage editor, unless you specifically include another |/0O module. The module provided supports

the following unit numbers:

1 — Card reader (GETCS)

3 — 120 character printer {plus a single-carriage control character)

5 — Equivalent to unit 1
6 — Equivalent to unit 3

29 — Reread unit

The LFD name FORTO3 is required for the printer.

10.2. CONFIGURING AN I/0 CONTROL MODULE

An 1/O control module may be configured using an assembler language source module

following statements:

which contains only the

10

LABEL AOPERATIONA

16

OPERAND

INAME, [. . | BTART]

i W I L1 iUlNTl

1

S IUlNlI'l_rl

{

AN EE T B thNIIlTL

‘llll

. Py
RS A S R vy

.
L1 b {114

llllll UNII-lTl

Lo |l UINL_EIN

o,

A
v by fy
[NS e
SRR NI B U O
R T T N S R U A
T S S T
AR UNEE B A B
R AR R R A
RSN ENE SN AN S A
RN WA I SNV TR S S
SRR R T A A

Lllllll 'lNlDll

8193 Rev. 1 SPERRY UNIVAC Operating System/3 10-2
UP-NUMBER UPDATE LEVEL | PAGE
START is always the first directive. The name is the name which will be assigned to the generated object module. .
This name must be used on the linkage editor INCLUDE statement when specifically including the 1/0 module.
FUNTAB, FUNEND and END are always required and must be in the sequence shown. Each UNIT macro
instruction defines a single file corresponding to a FORTRAN unit number.
The following file types may be defined:
L] Printer
L] Card reader (GETCS)
L] Card punch
L] Magnetic tape
n Sequential disk file
s Direct access disk file
u Reread unit
L] Equivalent file
The following is a sample of the assembler data for an 1/O configuration:
LABEL NOPERATIONA OPERAND A COMMENT.
10 16 .
._/fllllll Ly PRSI NN U SN ST NN N SN SEUNN NN U T NAVIN NN S0 N AN S SN S N A N ST S U T
llYlIDl ll 1 lTAlﬁlT 1 J 1 I i 1 Lll L1 11 R l 1 i 111) S N 1 ll i1 ll 1 1 1
L by P IFUNTA v e g b v by v b v Lo b by
J U B BN INTT, L lFIDIElNIIOEFﬁplblull-lxlnn,Fluunll.rx:n‘l v b Lo gy
L1 b INLT, R vI =P NT] FU T=6, FANUMBUF=2 |
[R TR UINTT, L AFLPIEIVIIICEI=lEaUIIlvl:LFIUINIIIIL—’-le;LFlMlELQL_;I_L;L_l_
PN UR RGN I UINLTl , FDEVICE-=| FUNITI=1.0,,F Ce 1 =512
L1 1 1 l 1 1 Uan"—l 1 lFlDlaVlIICIEl:lRERIEADI;IFI.UINILTl=lZiql JE L l 1) I l | S Y
lllllll FlUlNa lllI‘LllllllAllllllllllLLlllLllllllllLi
NI O A ND ao o e b b e by oy by b by gy
TN S I I O Y O S OO S I S U EUEY SO U SO IS UN ST I SR S U AR GO

10.3. UNIT MACRO INSTRUCTION FORMATS AND PARAMETERS

The hardware configuration is the only limitation on the number and types of files that may be defined. However,
only one card reader unit may be defined and at least one printer is required for routine diagnostics. Each file
definition consists of a UNIT macro instruction and the necessary keyword parameters specifying the file
characteristics. Every file required for the execution of your job must be defined in this way. The following
paragraphs describe the keyword parameters that may be used with the UNIT macro instruction that defines *
each type of file.

- 8193 Rev. 1 | SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

PAGE

16-3

10.3.1. Card Reader Definition

Only one spooled card input file is permitted for a given application.

Format:

1 10 16

UNIT FDEVICE=SPOOLIN,FUNIT=k
[,FRECSIZE=K]
FDEVICE Keyword Parameter:

FDEVICE=SPOOLIN
Specifies that this is a spooled card input file.

FUNIT Keyword Parameter:;

FUNIT=k
Is a unique 1- or 2-digit decimal integer unit number.

FRECSIZE Keyword Parameter:
FRECSIZE=k
Specifies that the record size is 1—128 bytes.
10.3.2. Printer File Definition
At least one printer file must be defined.

Format:

1 10 16

UNIT FDEVICE=PRINTER,FUNIT=k
[LFNUMBUF=2] [,FRECSIZE=k]

FDEVICE Keyword Parameter:

FDEVICE=PRINTER
Specifies that this is a printer file.

FUNIT Keyword Parameter:

FUNIT=k

Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO2 job control statement.

A
UPDATE LEVEL

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

10-4

FNUMBUF Keyword Parameter:
FNUMBUF=2
Optionally allocates two unique buffers to the unit for faster performance. In the absence of this
specification, all 1/0 is performed in demand mode.
FRECSIZE Keyword Parameter:
FRECSIZE=k
Specifies the record size in bytes. The default is 121, which will accommodate a 120-position printer
with a carriage control character.

10.3.3. Card Punch Definition

The card punch or the 8413 diskette output file is described by the following UNIT macro instruction.

Format:
1 10 16
UNIT FDEVICE=CARDOUT,FUNIT=k
[,FNUMBUF=2] [, FCRDERR=RETRY]
— [,FRECSIZE=k]

FDEVICE Keyword Parameter:

FDEVICE=CARDOUT
Specifies that this is a single card or 8413 diskette output file.

FUNIT Keyword Parameter:

FUNIT=k
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job controf statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO2 job control statement.

FNUMBUF Keyword Parameter:

FNUMBUF=2

Optionally allocates two unique buffers to the unit for faster performance. In the absence of this
specification, all 1/0 is performed in demand mode.

FCRDERR Keyword Parameter:

FCRDERR=RETRY

Causes the inclusion of optional device error recovery procedures. If omitted or if recovery fails on
retry, the program is terminated when a device error occurs.

FRECSIZE Keyword Parameter:

FRECSIZE=k
Specifies that the record size is 1-128 bytes.

10-5
PAGE

UP-NUMBER UPDATE LEVEL

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

. 10.3.4. Tape File Definition

Each tape file required for the execution of your job must be described by the following UNIT macro instruction.
Records must be variable length and unblocked.

Format:
1 10 16
UNIT FDEVICE=TAPE, FUNIT=k
INPUT
FTYPEFLE={OUTPUT: | [FNUMBUF=2]
WORK
[FBKSZ=k] [FBKNO=YES] [,FERROPT={;?(':'I?RE}]

[,FFILABL= {ELD}] [LFCKPT=YES] [,FOPTION=YES]

FDEVICE Keyword Parameter:

FDEVICE=TAPE
Specifies that this is a tape file.

. FUNIT Keyword Parameter:

FUNIT=k
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the

LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO2 job control statement.

FTYPEFLE Keyword Parameter:

FTYPEFLE=INPUT
Specifies an input file. If specified, the BACKSPACE command cannot be issued to this unit.

FTYPEFLE=OQUTPUT
Specifies an output file. If specified, the BACKSPACE command cannot be issued to this unit.

FTYPEFLE=WORK
Specifies a work file and should be specified if the tape is to be read and written.

FNUMBUF Keyword Parameter:

FNUMBUF=2
Optionally allocates two unigue buffers to the unit for faster performance. In the absence of this

specification, all 1/0 is performed in demand mode. If specified, the BACKSPACE command cannot
be issued to this unit. f

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

10-6

\

FBKSZ Keyword Parameter:

FBKSZ—k
Specifies the block size for variable-length unblocked records. The formula for a tape file is:

18.LE.k.LE.32767
The default value is 263.
FBKNO Keyword Parameter:

FBKNO=YES
Causes optional tape block numbers to be written on output and checked on input.

FERROPT Keyword Parameter:

FERROPT=IGNORE
Specifies that, when parity errors occur or improper lengths are detected on an input data block, the
block is to be processed as valid.

FERROPT=SKIP
Specifies that an erroneous record is to be bypassed and the next block is to be read.

If omitted, the system terminates the program when parity errors occur.
FFILABL Keyword Parameter:

FFILABL=NO
Specifies that the tape file is unlabeled.

FFILABL=STD
Specifies that the tape file contains system standard labels.

If omitted, the default value is NO.
FCKPT Keyword Parameter:

FCKPT=YES
Specifies that the input tape file contains OS/3 checkpoint dumps.

FOPTION Keyword Parameter:

FOPTION=YES
Indicates that the file is not a logical requirement for every execution of the program. If the file is not

defined with an LFD job control statement, the first READ reference to the file will return an end-of-
file condition.

10—
PAGE

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

+ UP-NUMBER UPDATE LEVEL

.k

. 10.3.5. Sequential Disk File Definition

Each sequential disk file required for the execution of your job must be described by the following UNIT macro
instruction. Records must be variable length and unblocked.

Format:
1 10 16
UNIT FDEVICE=SDISC, FUNIT=k
INPUT
,FTYPEFLE=< OUTPUT [,FNUMBUF=2] [,FBKSZ=k]
WORK

IGNORE
SKipP

[,FVERIFY=YES]

[,FERROPT={ }] [,FOPTION=YES]

FDEVICE Keyword Parameter:

FDEVICE=SDISC
Specifies a sequential disc file with variable-length unblocked records.

FUNIT Keyword Parameter:

. FUNIT=k

Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO2 job control statement.

FTYPEFLE Keyword Parameter:

FTYPEFLE=INPUT
Specifies an input file. This will save storage if no writes occur.

FTYPEFLE=OUTPUT
Specifies an output file.

FTYPEFLE=WORK
Specifies a work file and should be specified if the disk is to be read and written.

FNUMBUF Keyword Parameter:

FNUMBUF=2

Optionally aliocates two unique buffers to the unit for faster performance. In the absence of this
specification, all 1/0 is performed in demand mode.

A
UPDATE LEVEL

8193 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER

PAGE

FBKSZ Keyword Parameter:

FBKSZ=k
Specifies the block size for variable-length unblocked records. The formula for a disk file is:

9.LEKk.LE. 7294
The default value is 256. A formatted record may not exceed k—8 bytes.
FERROPT Keyword Parameter:
FERROPT=IGNORE
Specifies that, when parity errors occur or improper lengths are detected on an input data block, the

block is to be processed as valid.

FERROPT=SKIP
Specifies that an erroneous record is to be bypassed and the next block is to be read.

If omitted, the system terminates the program when parity errors occur.
FOPTION Keyword Parameter:
FOPTION=YES
Indicates that the file is not a logical requirement for every execution of the program. If the file is not
defined with an LFD job control statement, the first READ reference to the file will return an end-of-
file condition.
FVERIFY Keyword Parameter:
FVERIFY=YES
Specifies that the system is to check parity after every disk write. This additional security degrades
performance.

10.3.6. Direct Access Disk File Definition

Any direct access disk file required for the execution of your job must be described by the following UNIT macro
instruction. Records are fixed length and unblocked.

Format:

1 10 16

UNIT FDEVICE=DISC, FUNIT=k

[FRECSIZE=k] [FTYPEFLE={'NPUT }]
: ' OUTPUT
[LFVERIFY=YES]

FDEVICE Keyword Parameter:

FDEVICE=DISC
Specifies a direct access disk file.

. 10-8 .

8193 Rev. 1 l SPERRY UNIVAC Operating System/3] 10-9
UP-NUMBER UPDATE LEVEL | PAGE
. FUNIT Keyword Parameter:

FUNIT=k
Is a unigue 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO02 job control statement.
FRECSIZE Keyword Parameter:

FRECSIZE=k
Specifies the record size in bytes.

If omitted, the default value is 256. The actual record defined by the DEFINE FILE statement must be less
than or equal to the value specified for FRECSIZE.

FTYPEFLE Keyword Parameter:

FTYPEFLE=INPUT
Specifies an input file. This will save storage if no writes occur.

FTYPEFLE=OUTPUT
Specifies an output file.

FVERIFY Keyword Parameter:
FVERIFY=YES

Specifies that the system is to check parity after every disk write. This additional security degrades
. performance.

10.3.7. Reread Unit Definition

Any reread unit required for the execution of your job must be described by the following UNIT macro instruction.

Format:

1 |1o l 16

\ UNIT l FDEVICE=REREAD, FUNIT=k

FDEVICE Keyword Parameter:

FDEVICE=REREAD
ldentifies a reread unit.

FUNIT Keyword Parameter:

FUNIT=k
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
. control statement, and FUNIT=02 requires a // LFD FORTO02 job control statement.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 10-10
UP-NUMBER UPDATE LEVEL PAGE
10.3.8. Equivalent Unit Definition ‘

The function of an equivalent unit is to provide another reference number of a file. For example, an input file
might be referenced with both a Basic FORTRAN statement with a unit number and a statement that implies the
special name READ. An equivalent unit can be used to resolve conflicts of this type. The equivalent unit is
described by the following UNIT macro instruction.

Format:

1 |1o | 16

‘ UNIT | FDEVICE=EQUIV, FUNIT=k, FEQUIV=j

FDEVICE Keyword Parameter:

FDEVICE=EQUIV
Specifies that one unit is referenced to another unit.

FUNIT Keyword Parameter:

FUNIT=k
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the
LFD job control statement defining this file. For example, FUNIT=01 requires a // LFD FORTO1 job
control statement, and FUNIT=02 requires a // LFD FORTO2 job control statement.

FEQUIV Keyword Parameter:

FEQUIV=j
Specifies a 1- or 2-digit decimal integer unit number that was previously defined in the 1/0
configuration on a FUNIT keyword parameter. When the equivalent unit is referenced, device action
takes place on this unit.

8
UPDATE LEVEL

11-1

8193 Rev. 1 - | SPERRY UNIVAC Operating System/3

UP-NUMBER

PAGE

11. Compilation

11.1. GENERAL

The FORTRAN compiler is named FORT. It requires one work file and SCOO16 bytes of main storage plus space for
the prologue. If allocated, additional storage is used to increase the compiler capacity.

The compiler requires the extended micrologic feature. A message:

COMPILER REQUIRES 2K COS

is displayed on the printer and on the operator console if the extended micrologic feature is not present and the job
is canceled with an error code of 610.

. 11.2. COMPILATION DIRECTIVES
Compilation directives are specified on PARAM job control statements. The format of a PARAM statement is:
//APARAMAspec1 e SPEC

The following list of directives shows the directive format and provides a brief explanation of each specification.

L] LST=k

Is the sum of the following options:

1 — source code listing

2 — diagnostic listing

4 — storage allocation map
8 — object code listing

The default is LST=7.
L IN=MNAME [/FNAME]

MNAME
Is the name of the source module to be compiled

. FNAME

Is the optional filename corresponding to the LFD name for the disc file where the source resides. The
default filename is SY$SRC.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 AT 112

UP-NUMBER UPDATE LEVEL | PAGE

u OUT=(FILENAME)

OUT=NO
NO
Indicates that no object module is to be generated; filename in parenthesis is the LFD name of the file

where the generated object module will be placed. The default filename is SYSRUN.
- TRACE=ALL
See 9.2.1 for a description of this parameter.
L X
See 9.4 for a description of this parameter.
" SUBCHK=ALL

See 9.5 for a description of this parameter.

11.3. OBJECT PROGRAM STRUCTURE

The object programs produced by the compiler have a formal structure, as shown in Figure 11—1.

| { Header - Receives control
- SAVE AREA — Sixteen or 72 bytes in length
o (base register 13)
Y -
o § Base address table - Up to 64 bytes
w
| W
2 E COMMON base address table ~ Four bytes per 4K of COMMON
T 2
<>(E w Argument lists - Addresses of all actual arguments
N
P4 -—
8 :’_’ Subprogram address — One address for each unique sub-
g 8 program name
(73
g (3}
o Scalars and arrays - Scalars, equivalence sets, and
2 then arrays
w
-
Prologue and epilogue — Argument association
Program text - Executable instructions and FORMAT
text
Temporary storage and - Also contains forward jump vectors
constants {base register 12)

Figure 11—1. FORTRAN Control Section (CSECT) Structure

In addition to the just-cited CSECT, the compiler generates one additional CSECT for each COMMON BLOCK. For {
BLOCK DATA subprograms, only the COMMON CSECTs are logically produced.

11-3
PAGE

A
UPDATE LEVEL

- 8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER

11.4. CAPACITY OF THE COMPILER

The design of the compiler and its addressing environment cause limitations on the size of program units which can
be successfully processed. The capacity is sufficiently generous for most large programs. The capacities are:

] COMMON blocks (blank or named) can contain up to 65,532 bytes.

= The FORTRAN CSECT can contain up to 65,532 bytes.

C
UPDATE LEVEL

12--1
UP-NUMBER

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

PAGE

o 12. Compile, Link, and Execute
| Procedures

12.1. JOB CONTROL PROCEDURES

The FORT procedure call statement generates the necessary job control statements to compile a FORTRAN
program. Optionally, it can generate job control statements to specify the following:

] Input — source library

u Output — object library
L PARAM control statements defining the format of the compiler listing

L Automatically link and/or execute the program

The input may be embedded data cards (/$, source deck, /*} immediately after the FORT procedure call, or in a

module from the library defined by the IN parameter. Specifying a module and IN parameter option results in the
. appropriate DVC—LFD control statement sequence with an LFD name, INFPUT, and the PARAM control
statement, PARAM iN=module-name/INFPUT.,

The object code is written in $YSRUN by default, but a specific output library can be specified by the OUT
parameter. This results in the appropriate DVC—LFD control statement sequence with an LFD name, OUTFPUT,
and the PARAM control statement, PARAM OUT=0UTFPUT.

The ALTLOD parameter generates the necessary DVC—LFD control statements with an LFD name, ALTLOD, and

the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other
than YLOD.

Format: *
B N (vol-ser-no,label}
FORT PRNTR= lun IN= (RES)
/llsymbol] o FORTL B N » [.vol-ser-no) ’ (RES label)
FORTLG L 20 (RUN,label)
B (vol-ser-no,label} (* label)
(RES,label) :
_J (RUN,jabel) \ . _ { vol-ser-no
,OUT (* label) ‘[,LST—optlons] [,SCR1— {RES }]
NO ‘
| (RUN,YRUN) :
B {vol-ser-no,label)
(RES, label)
. LALTLOD= < (RUN,label)
= (*,label)
5 (RES,YRUN)

8193 Rev. 1 SPERRY UNIVAC Operating System/3 l ¢ 12-2

UP-NUMBER UPDATE LEVEL

PAGE

Label: ‘

symbol
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used.

Operation:

FORT
This form of the procedure call statement is used to compile Basic FORTRAN source program.

FORTL
This form of the procedure call statement is used to compile a Basic FORTRAN source program and
link-edit the object modules.

FORTLG
This form of the procedure call statement is used to compile a Basic FORTRAN source program, link-
edit the object modules, and execute the load modules.

Keyword Parameter PRNTR:

N
lun
N [,vol-ser-no]
20

PRNTR=

Specifies the logical unit number of the printer, and optionally, the destination-id (vol-ser-no). If a
printer device assignment set is not to be generated, the value N is coded, and the printer device
assignment set must be manually inserted in the control stream.

PRNTR=(lun[,vol-ser-no})
Specifies the logical unit member (20—29) of the printer device. Optionally, the destination-id {vol-
ser-no) can be specified.

PRNTR=(NI,vol-ser-no]) .
Indicates that a device assignment set for the printer must be manually inserted in the control
stream. This permits LCB and VFB job control statements to be used in the control stream. The
volume serial number can also be specified.

Keyword Parameter IN:

(vol-ser-no, label)

(RES)

(RES, label)

(RUN, label)
—-> (*,label)

IN=

Specifies the input file definition, to which the PARAM IN control statement connects. If omitted, the
source input is assumed to be embedded data cards (/$, source deck, /*).

IN=({vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and the file identifier {label) where the source

input is located. .

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

Cc
UPDATE LEVEL

SPERRY UNIVAC Operating System/3 12-3

PAGE

8193 Rev. 1
UP-NUMBER

. IN=(RES label)

Specifies that the source input is located on the SYSRES device, but the file identifier (label) is
user specified, not YSRC.

IN=(RUN jabel)

Specifies that the source input is located on the job’s YRUN file with the file identifier (label)
specified by the user.

IN=(* label)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

Keyword Parameter QUT:

(vol-ser-no, label)

(RES, label)

(RUN, label) \
(* label)

NO

{RUNSY$RUN)

ouT=

Specifies the output file definition to which the PARAM OQUT control statement connects. If omitted,
the object code is placed into the job’s YRUN file.

OUT=(vol-ser-no label)
Specifies the volume serial number {vol-ser-no) and the file identifier {label) where the object

. code is to be placed.

OUT=(RES label)

Specifies that the object code is to be placed on the SYSRES device, within the file specified by
the label parameter.

OUT=(RUN label)

Specifies that the object code is to be piaced on the job’s YRUN file identified by a user
specified file identifier (label).

OUT=(*,label) +

Specifies that the object code is to be placed on a catalog file identified by the file identifier
(label).

ouUT=NO
Specifies that there is to be no object code outputted.

Keyword Parameter LST:

LST=options -
Specifies the format of the compiler listing. The LST options are listed in 1 1.2

Keyword Parameter SCR1:

vol-ser-no
SCR 1—{R ES }

Specifies the volume serial number of the work file fabeled $SCR 1. If omitted, the work file is assumed
to be on the SYSRES device.

8193 Rev. 1 . C 12—-4
PERR Vv rating System/3
UP-NUMBER SPERRY UNIVAC Ope g9y UPDATE LEVEL | PAGE
Keyword Parameter ALTLOD: .

}

Exam

~N &b YN

{vol-ser-no,label)

(RES, label)
ALTLOD= < (RUN,label)

(* label)

{RES,3Y$RUN)

Specifies the volume serial number (vol-ser-no) and the file identifier (label} of an alternate load
library that contains the FORTRAN compiler. If omitted, the compiler is loaded from YSRUN.

ALTLOD=(RES,label)
Specifies that the alternate load library is located on the job’s SYSRES device, in the file identified by
the file identifier (label).

ALTLOD=(RUN label}
Specifies that the alternate load library is located on the job‘s YRUN file with the file identifier
{label) specified by the user.

ALTLOD=(* label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier (label).

ple 1a:

The following example illustrates the use of the FORT procedure call statement in its basic form:

LABEL AOPERATIONA OPERAND A
1 10

ZL/J,AQIEL FERITRNYAL L oo ot o o b by bevva boer ol o

LL/LJE@&IJ. l,L,L,,L, | § + 1 L.t lVJ,.,L Ll L I ,L,L.L,,J,J [BT 1,1

/$ 1 l 14 e by by e b e e b Loy e b
L0 b e Lea [N U BRSNS B B S U R B R R GG ST DS S e B

|, SOUIRCE] DIECK TR TR DT U B AT ST RVRRTRES BT

T B N ST O SR SRS S AT RSN o B L

Ziﬁ,,l T A Ly v v oo Lo L SRS AN SN S ST ST N SR A

Line Explanation

1 Indicates that the number of the job is FRTRN1A.

2 Indicates the name of the procedure being called (FORT). No keyword parameters specifying

special options for this compilation are used.
3 Indicates start of data.

4—-6 Represents the source deck to be compiled.

7 Indicates end of data.

8193 Rev. 1 | SPERRY UNIVAC Operating System/3 12-5
UP-NUMBER UPDATE LEVEL | PAGE
Example 1b:
The basic form generates the following control stream:
LABEL NOPERATIONA OPERAND A
10 16
//, OB F RITIRNE®] | ool v vl o baa e oo ol o

|
2V DMIG 2000 L AP LED PRNTR L o v ba o b o b o o Lo
5[.1/1 Dvie, REGI v ol oo v bt b by oo b vl
4’ L EXT 15T7LC|7151, CYLLA;;lll I VA YN0 N U U NN WO U SN S U WORU NN N W GO ST SO (N U N WA S
5 LBIL $BICIRL, L LFDI $SCRIG L b
b LLLLLEJ&JECA IFoRT, | oo by by vy b e by e o s L
7A$llllll llll llllllll11111111411111111111111
8 llllJL. llL LlllllllllllLlllll._L_l_l‘llllkllll+
9 SOUIRCE ECK oo o e v b v by b e b e b
7 S | v b by e by e b b s g
/X% 01, Ly v o v v b v o by v by e by b
Line Explanation
1 Indicates that the name of the job is FRTRN1B.
2 Indicates the default logical unit number and LFD name of the printer,
3-5 Indicates that the work file needed for compiling is, by defauit, on the SYSRES device,
has both a file label and LFD name of $SRC1, and uses the sequential access technique; that
allocation is contiguous; that three cylinders are allocated for the secondary increment; and
that one cylinder is allocated for the first extent.
6 Loads the FORTRAN compiler from YLOD.
7 Indicates start of data.
8-10 Represents the source deck to be compiled.
11 Indicates end of data.
Example 2a:

The following example illustrates the use of a FORT procedure call statement that defines all the keyword

parameters:
LABEL "OPERATION.". OPERAND o
10 16 12
‘ A_/n IJ-I&l& J_F (RnNZ ; L I : N ! 1 [F
2 O PRT PRNTR=21 ,IN=(DSC1 ,O0$SCR) , 1
3 J[lll T b0 @UxT;?(fDISxC‘Z ?‘Ulslb&IL)‘.;LST =12, Y ! | T
4 /1Z1 T T)
5

1&11111

llxl

RI1=DISC2Z ALTLOD=(DSC3 ALTLODLIB), .

|
| T U T SR IAAL‘AK‘A U U SR SR Y -

8193 Rev. 1 .
3 Rev SPERRY UNIVAC Operating System/3 12-6
UP-NUMBER UPDATE LEVEL | PAGE

Line Explanation

1 Indicates that the name of the job is FRTRN2A.

2 Indicates the name of the procedure being called (FORT). The source module name is PROGNM.
The logical unit number of the printer is 21, and the input file has a volume serial number of
DSC1, with a file label of USSRC.

3 Indicates that the output file volume serial number is DSC2, with a file label of USOBJ. The
format of the compiler listing is supplied by the LST parameter.

4 Indicates that the work file needed for compiling has a volume serial number of DSC2. The
FORTRAN compiler is located on the device with a volume serial number of DSC3 in the file
tabeled ALTLODLIB.

5 End of job.

Example 2b:
By using the keyword parameters in example 2a, the following control stream is generated.
LABEL NOPERATIONA OPERAND A
16
|,[J/1J1&1b1;lRA TR T U T S S S S S S KU S SNV S SRS R S
Z,ZI/IIDJVLJLZ‘ DllPLRNTlRXlIAAllllLAAIIlllIlllkll
o) VAVARRO\Y/ W) o) Y. Mt DSCI o o Lv oo o b v by
4AZJ_ i—m,l(_J'% /i LEDI INFPOT o ol ¢ oo bvy oo b a1 1
51/1;D1\/1C115‘ L—ll‘DlSLl&lLllllllJlllllllliliLilLJ
b lL/i LL-JbLL-x xut, /L 1LL_F;D1 &JUILFPL@I.L el o b v e g
1 [1/1 DVIC, 5]t LDAC2 0ol bl bbby
8/1/1J.E{xrrl]ST YLLi?lll 1 L1l L,L,L,J_l__L_L LAL;l_L__l. U B l,.L .11 1 ! L
Q9 /L/J LBL, $p LFDL Lilﬁ(t&lL,L,LJ- Loorvoe oy v b el
[OMSZ all—lplsfolallillllllllelexllllllll
I [l/_LIL-JblLJ L v LFD ALTLOD Lo b s L
‘2. ZL_.L@XLECM, ILLDlDLl B S S T § l,i,,,LJ,,L-.L L1 L l Y S S L,in S S S § l 1
3l//, PAIRA CNM/INFPOUT s v b a Lo wn bavaady
I‘L[J[LEAJBP TEROT . oL cs v b aa oot v oo b eraala
‘SM lllllllllllllllllLlllLlllllllll
[bZ&L__L,L,LL 1. I T AU U U U A U U SIS S GO ST TR SR U N S S SR

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

12-7

10

1

12

13—-15

16

Explanation
Indicates that the name of the job is FRTRN2B.

Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name
of PRNTR. This was obtained from line 2 in example 2a.

Indicates that the input file volume serial number is DSC1. This was obtained from the IN
parameter of line 2 in example 2a. It is assigned to the device with a logical unit number of
50, which was the first available number in the range of 50—54.

Indicates that the input file is labeled U$SSRC with an LFD name of INFPUT. This was obtained
from the IN parameter of line 2 in example 2a.

Indicates that the output file volume serial number is DSC2. This was obtained from the OUT
parameter of line 3 in example 2a. It is assigned to the device with a logical unit number of

51, which was the next available number in the range of 50—54. Logical unit number 50 was already
assigned to the device with a volume serial number of DSC1 (line 3).

Indicates that the output file is labeled USOBJ with an LFD name of QUTFPUT. This was obtained
from the OUT parameter of line 3 in example 2a.

Indicates the work file for the compiler has a volume serial number of DSC2. Because this
volume serial number was already used, this work file uses the same device logical unit number
of 1. This work file has both a file label and LFD name of $SCR1 and uses the sequential
access technique; allocation is contiguous; three cylinders are allocated for the secondary
increment; and one cylinder is allocated for the first extent. This was obtained from line 4

in example 2a.

Indicates that the alternate load library for the compiler has a volume serial number of DSC3. It is
assigned to the device with a logical unit number of 52, which was the next available number in the
range of 50—54. This was obtained from the ALTLOD parameter of line 4 in example 2a.

Indicates that the alternate load library has a label of ALTLODLIB with an LFD name of ALTLOD.
This was obtained from the ALTLOD parameter of line 4 in example 2a.

Loads the FORTRAN compiler from the file labeled ALTLOD.

PARAM control statements, which identify the processing options for the FORTRAN compiler. These

are generated in the following manner:

Line 13 — The filename INFPUT is generated automatically when the IN parameter is specified. The
module name PROGNM is generated from the label field in line 2 of example 2a.

Line 14 — The filename OUTFPUT is generated automatically when the OUT parameter is used.

Line 15 — Indicates that diagnostic error messages are to be listed. This was obtained from the
LST parameter in line 3 of example 2a.

End of job.

Optional formats of the FORT procedure call statement generate the necessary job control statements to compile
and link a FORTRAN program (FORTL) and to compile, link, and execute a FORTRAN program (FORTLG). The
keyword parameters of FORT also apply to FORTL and FORTLG.

12-8
PAGE

8193 Rev. 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

The following example illustrates the use of the FORTL procedure call statement in basic form:

LABEL AOPERATIONA OPERAND A

1 10
! /|/| lJlbIBJ 1F 1R1N131A TSR SN N SRR N S ST N B AT S AN NS BT I
a’ //l lFlDlRJ—l‘rlL l J i) I | 1 1 I i 1 H L L 11 i I 1 1 1 1 | I A S | l A 1 | L 1
3-/$ILLJJI L cooa v b b b s b e b e g b
4. T T N N [T U W N W O WY U VN Y YA U NN UM U U W O UM Y SN NN NN SN TN WO MO AN
s llillsjt)lu clEl DIECKLLIIIIIJlllllLllllllillLlllllLl
é'/*lllll | e o Logovv v b g b g bov e e b s s
7'/l‘§llilll Lo ca e v v b e e e b v g
K s by LpAIDM lelp1L13lA1 TR T O U SN SN AN N SN N MO T ST SN A N UM N SRR A
9- llllll llll lllllllllllillllLlelllJlllllll

llLlllJ llll LLJllllllllﬁllllllllLllllllllll

Line Explanation

1 Indicates the job name is FRTRN3A.

2 Indicates the name of the procedure being called (FORTL).

3 Indicates compiler start of data.

4-5 Represents source deck to be compiled.

6 Indicates compiler end of data.

7 Indicates linkage editor start of data.

8 indicates name of load module generated by linkage editor (if omitted, default=LNKLOD).

9 Indicates linkage editor end of data.

8193 Rev. 1 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | PAGE
The following example illustrates the use of the FORTLG procedure call statement in basic form:
. LABEL AOPERATIONA OPERAND A
1 10 16
1A/ TOB, FRIMRNSB! | v L b i L L
2/ FORTLI Lo o e e b e b L
31/ 1 Loy AN T T U TN U VAT [N T U U G T S S
Al vl L e AU R T (N T T I TSN U SN W U TN W T U0 U S O W A A NN Y
5-4||1l|S|bURlC1E1 DECK vl v b b b b
72 EPETUNET BT B O oo b b b b e by by
7-/*111111 Loy i e be v v bov e v v v e b v Ly
LA VA T | vy v b v b b v e by gy
7 'l S LIO.A.D;M XMPL3B v b b e L by
/O-/*lllll li1 g v b e by b by e e L
/{'/ﬁlllll L1 v b b v e s by e b v Ly 1
T} I AT Lyt by g by v by ey o by b v e oy v g
Bl 1. EXECYT/IOIN BATA el Lol |
72 PN i B AT EUTEE N B U SE SRS AU U SR
/5/%111111 L1ty TN T S N R S S T I TS S N N A NV SR U S S AR A U Y S SR A B

Line Explanation
. 1 Indicates the job name is FRTRN3B.
2 Indicates the name of the procedure being called (FORTLG).
3 Indicates compiler start of data.
4-6 Represents source deck to be compiled.
7 Indicates compiler end of data.
8 Indicates linkage editor start of data.
9 Represents input to linkage editor (e.g., specific includes, etc).
10 Indicates linkage editor end of data.
11 Indicates start of data for execution time input.
12—-14 Represents card input for execution.
15 Indicates end of data for execution.
NOTES:

7. When either the FORTL or FORTLG procedure call statements are used, the OUT parameter cannot be

. used.

2. The FORTLG procedure call statement cannot be used when generating with the shared data management
feature. Instead, use the FORTL procedure call statement and include a separate EXEC statement to
execute the load module.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 12-10
UP-NUMBER UPDATE LEVEL | PAGE
12.2. DISK COMPILATION PROCEDURE
The following example shows the job control statements needed for disk compilation. .
LABEL AOPERATIONA OPERAND A
10 16
/l/l la—l'blBl INA MIEI Lt J N | I | S | L I N I l) S B | l J I I | J_L L4t l 1
IPIRRO|GIN|IM IFlbIRlT LNI=1< D'ISIKI} SIRICIEI)L l 1 1 1 1 { 1 1 1 4 l 1 1 1 1 | 1
RN AR Lia s TN SO0 S S N T S U N U SO U O SIS N W WO NN N S N W SO O
p a1 by | T co v b e e by v by e by b

This job stream compiles the program named PROGNM in the file, SRCE, on a disk labeled DISK.

12.3. LINKING PROCEDURES

Sample job control streams for the linkage editor may be found in the OS/3 system service programs user guide,
UP-8062 (current version}. In the absence of a specific INCLUDE for a particular 1/0 configuration (e.g., INCLUDE
MY 10), the system-provided object module, FP$10, will be included automatically in the executable program. In
addition, the following points should be noted:

n All external references generated by the compiler are V-cons. The automatic overlay feature of the linker
cannot be used if the program also contains a CALL LOAD or CALL FETCH.

u The associated variable of a DAM file is updated after every reference to the file. Therefore, it must be
" addressable in every path containing a reference to the file; it is suggested that it be placed in common for this
reason.

L Mathematical library routines may be placed in an overlay phase; |/O library routines should always remain in
the root phase.

12.4. EXECUTION PROCEDURES

All files used by the program must be defined with a DVC...LFD sequence of job control statements which appear in
the job control stream prior to the execution of the program. The LFD name is FORTnn, where nn is the unit
number.

12.4.1. Diagnostics
All diagnostics are directed to the first printer unit defined. There are four classes of messages:
L TERMINATION/PAUSE:
STOP and PAUSE print the identifying number first; STOP and EXIT then print the number of program check

interrupts which have occurred during execution. PAUSE requires a GO or an EOJ response from the operator.
GO means to continue processing; EQJ means to terminate execution.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

1211

n MATHEMATICAL LIBRARY:

The mathematical library delivers a warning message when arguments are out of range and provides a

substitute for the function value. The substitute value is always zero except in the following cases:

SIN/COS

TAN/COTAN

ALOG/ALOG10

EXP/EXP10

SQRT

SINH

SINH/COSH
The message format is:

F$nn text

where nn digits identify the message. Some messages are merely warnings and program execution continues. A
severe error is followed by a traceback and the program is terminated. See system messages manual, UP-8076

SQRT(2.0)/2.0

X .GT.82E5, 1.0
X.EQ.0, 7.2E75

.EQ.0, 5.3E-79
.LT.0, ALOG(ABS(X))

X
X
for X .GT.174.6, 7.2E75

for X .L.T.0, SQRT(ABS(X})
for X .LT.-175.3, 5.3E-79

for X .GT. 175.3, 7.2E75

{current version) for the list of diagnostic messages.

12.4.2. Dumps

In the event of an abnormal termination, variables may be located in the memory dump by using the following

procedure:

L] Common Variables

Add the address of the variable given in the compilation listing to the address allocated to the common biock

by the linker to yield the address for the most significant (left-most) byte of the variable.

u Local Variables

Add the address of the variable, the value specified by ‘'VARIABLE OFFSET’ in the compilation, and the

address allocated to the object module by the linker.

] Array Elements

Use one of these procedures to locate the first element. Table 2—2 shows how to locate any array element

thereafter.

A

{

8193 Rev. 1 SPERRY UNIVAC Operating System/3 12-12
UP-NUMBER UPDATE LEVEL PAGE

information. In such cases, the debugging aids (Section 9) should be used to isolate the problem areas. The most

Sometimes, the reason a program terminates is not clear even with the diagnostic, traceback, and dump .
common error resulting in worthless or destroyed information occurs when a value is stored outside an array.

For example:

“C®" FOR COMMENT
1 ol
{S_TN“J,,‘;‘E‘.{” SlFORTRAN STATEMENT >

5187 10 2 30 40

L1 B'II.IMIEJNISIIADINI |A1(|5n)| PO SO S SN S ST G AUV SN S WA SN T ST T U NN T T WA U T
N B) S o N B T R I S R
I AI]([I[)I=IOI PO RO N TS T AT AT ST T SN S S NN A S S

N PR IR S S T Y VAN N Y S SN SO S S VA ST S SO NS U N O R AN T U B SN R RN BN
dedl LT N U S N U T SO SN T AN U0 VA TS N T S SO AT VAN A NS SO S VA N T S S U Y S T S T
o PN [U U T U S TV S VA K G WS T S T G YA S S N SO0 T WY UOU SO S VAN YOS S SN S YN WA S S

This will cause unpredictable results. To diagnose these situations, the program should be recompiled with the
SUBCHK {subscript checking) option specified.

8193 Rev. 1 SPERRY UNIVAC Operating System/3 A

UP-NUMBER UPDATE LEVEL | PAGE

¢ +

Appendix A. Compile Time Error Messages

A.1. COMPILER TERMINATION ERRORS

If an error occurs during compilation that results in a termination of the compiler, an error code indicating the
cause is printed out. Table A—1 lists the error codes, the causes, and the corrective actions that may be taken.

Table A—1. Compiler Termination Error Codes

Error c c ive Acti
Code ause orrective Action
1 Statement too long Simplify statement
. 2 Statement too recursive Simplify statement
3 Up to 511 of each of the following permitted: Simplify the program
scalar variables
arrays
entities in all COMMON statements
entities in EQUIVALENCE statements
statement labels
names in type statements
unique REAL constants
unique INTEGER constants
unigue DOUBLE PRECISION constants
unigue subprograms called
arithmetic statement functions
arguments for all subroutines and functions
4 Insufficient storage for the compiler Recompile specifying
more main storage
5 Compiler error Submit a software user
report (SUR)
6 Object program longer than 65,535 bytes Simplify programs;
shorten arrays
7 Too many argument lists or calls Simplify the program
8 Compiler error Submit a software user
report (SUR)

For faster response when submitting an SUR, include the listing, a dump, and a source module that re-creates
the error.

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

A-2

A.2. INITIAL SCAN ERRORS

Table A—2 lists the error messages that can be produced during the initial scan by the compiler.

Table A—2. Initial Scan Error Messages (Part 1 of 2)

Message Text Problem Description Corrective Action
ALLOCATION This message has several causes:
1. The names of dummy arguments 1. Correct or remove dummy
have appeared illegally in an arguments from these statements.

EQUIVALENCE, COMMON, or
DATA statement.

2. Program attempting to allocate 2. Correct statement.
numerical constants to impro-
per variable boundaries.

3. Program attempting to save a 3. Correct statement.
single numerical constant in
an array.
BLOCK DATA ONLY Variables in labeled COMMON can be Move DATA statement to a BLOCK
initialized only in a BLOCK DATA DATA subroutine.
subprogram.
DATA COUNT Data items are not in a one-to-one Correct the DATA statement.

correspondence with the list items
on a DATA statement.

DATA SIZE A literal data item is too long for Correct the DATA statement.
its corresponding list item on a
DATA statement.

DATA TYPE A violation of the basic correspon- Correct the DATA statement.
dence of type rule between a data
item and a list item has occurred
on a DATA statement.

FORMAT ID NOT ARRAY A nonarray name has been referenced Specify dimensions for the FORMAT
as a FORMAT. name.
ID CONFLICT A conflicting usage for a symbolic Correct the conflicting usage.

name in this statement has occurred
previously. An example is a variable
or array name that appears

later as a subprogram name in a
CALL statement.

ILLEGAL DO CLOSE Improper DO loop structure is indi- Correct the DO loop.
cated. Problem such as ending a
DO loop with an explicit or impli-
cit branching statement may have
occurred.

ILLEGAL LABEL Program attempting to branch to a Correct the branching statement.
FORMAT or other nonexecutable
statement.

8193 Rev. 1

SPERRY UNIVAC Operating System/3

—

UP-NUMBER UPDATE LEVEL PAGE
Table A—2. Initial Scan Error Messages (Part 2 of 2) *
Message Text Problem Description Corrective Action

LENGTH An illegal numerical length was Correct the TYPE statement.
specified in a TYPE statement,
The only legal length specifications
are 2, 4, and 8 depending on varia-
ble type.

NUMBER An illegal number has been encountered Correct the number in error.

in this statement. An example is a
hexadecimal constant with more than
16 digits.

MISSING COMMA

A comma syntactically necessary to
the preceding statement was not
found.

Supply the missing comma.

MULTIPLE DEFINED LABEL

The same label has occurred previously
on another statement.

Correct the conflicting label usage.

ORDER

The flagged statement is out of

order.

Common examples are given by placing
specification statements (DIMENSION,
etc.) physically after executable
statements (IF, etc.) in the program.

Correct the statement order in
the program.

RANGE

An IMPLICIT statement has a range of
letters specified backwards

Correct the letter range of the IMPLICIT
statement.

SUBSCRIPT RANGE

A constant subscript of an array is
outside the range implied by the
array's declaration.

Correct the subscript in error.

would be starting a variable name
with a nonletter character,

SUBSCRIPTS 1. Subscripting is illegal for non- 1. Use an array declarator before
array FORTRAN names. subscripting.
2. Illegal subscripting has been 2. Correct subscript in error.
encountered, e.g., a negative
subscript,
SYNTAX A serious statement error. An example Correct statement’s formal grammar.

TYPE CONFLICT

A real or integer term or expression
has occurred on one side or the other
of an _.AND. or .OR. operator in a
logical [F statement.

Correct the logical IF statement.

UNDIMENSIONED

An undimensioned variable has been
used in this statement as though it
were dimensioned. An open parenthe-
sis follows directly after a vari-

able name.

Correct statement or use an array
declarator for the name in error.

UNRECOGNIZABLE STATEMENT

Serious statement error, Possible
misspelled FORTRAN keyword.

Correct spelling errors, if any;
otherwise, correct statement,

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

A.3.

INITIAL SCAN WARNING MESSAGES

Table A—3 lists the warning messages that can be produced during the initial scan by the compiler.

Table A—3. Initial Scan Warning Messages

Message Text

Problem Description

Corrective Action

ARGUMENT NUMBER CONFLICT

A breach of the argument number
identity rule between definition
and reference,

Correct program to conform to the
argument number identity rule.

ARGUMENT TYPE CONFLICT

A breach of the argument type
identity rule between definition
and reference.

Correct program to conform to the
argument type identity rule.

MISSING LABEL

The statement needs a label in
order to be referenced.

Supply the missing label.

REAL*4 FUNCTION ASSUMED

The REAL*4 function is defaulted

to in case a required generic

function is not supported. An example
of such an occurrence would be
passing an INTEGER*2 argument to
the generic function ABS.

Alter program to compensate for
missing generic function if REAL*4
function is not required.

SYMBOL TOO LONG

All characters beyond the sixth in
a FORTRAN name are ignored.

Shorten the symbolic name.

— — s o —— i St ——— ——— ———— —— — T—— " S——— (— S————— —— —— A ——— ———— ——— —— —— —— ——— S ‘it S s e ‘et sy, St st S S mint e A, s

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System:

Manual Title:

UP No: Revision No: Update:

Name of User:

Address of User:

Comments:

NOTE: DO NOT USE THIS FORM TO ORDER MANUALS.

FIRST CLASS
PERMIT NO. 21
BLUE BELL, PA.

B U 5 I N E 5 s R E p LY M A l L NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

BLUE BELL, PA.
18422

I
I
P.0. BOX 500 I
I

ATTN: SYSTEMS PUBLICATIONS DEPT.

e
SPERRY == UINIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) (Revision No.) (Update Nd}
Comments:
o
£
@
c
@
L]
_ A=
(&)
From:

(Name of User)

|

}Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

|
l
|
|
|
I
|
|
|
|
l
|
l
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
I
|
|
I
|
!

e

I " || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

1Nnd

Cut along line,

—— e — i . —— —— —— —— c— —— —— — — — — — — ——— — — — — —— — — — o— o — g gr— o g gt gmmen e e o omm— a—— oo— a— g—

-

SPERRY == LUNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) {Revision No.) (Update No.)

Comments:

From:

{Name of User)

{Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

i S ——— ——— ——— —— —— —— ——— —— ——— ——— i, S——— Y——— — —— — ————— —— ——— —— — ——

I II I| | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

