
•

•

•

FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to "SPERRY UNIVAC FORTRAN
Programmer Reference", UP-8193 Rev. 1.

This update includes the following changes to the job control procedure for release 7.1:

• Specification of catalog file

• Expanded explanations of parameters

Copies of Updating Package C are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP·8193 Rev. 1-C. To receive the complete manual, order UP-8193 Rev. 1 .

Mailing Lists
BZ, CZ (less DE, GZ,
HA) MZ, 18U, 19U,
20U,21U, 75Uand
76U

Mailing Lists DE, GZ, HA, 18, 19, 20, 21,
75·and 76

(Package C to UP-8193 Rev. 2,
7 pages plus Memo)

Library Memo for
UP-8183 Rev. 1-C

September, 1981

. .

•

•

•

•

•

•

I Operating System/3 (OS/3) ; f'''' -''''"''''~''''''~'' '''"'' '"'''''''"'"''''' ''' ,, 'i
I FORTRAN I
! !

I Programmer Reference

I

l
This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC FORTRAN
Programmer Reference", UP-8193 Rev. 1.

This update incorporates several corrections:

• Sources input cannot be accepted from tape

• A variable containing the value zero is acceptable in a DO control statement

Copies of Updating Package B are now available for requisitioning. Either the updating package alone, or the
complete manual may be requisitioned by your local Sperry Univac Representative.

To receive the updating package alone, order UP-8193 Rev. 1-B .

To receive the complete manual, order UP-8193 Rev. 1.

Mailing Lists BZ, CZ
(less DE, GZ, HA) MZ,
18U,19U,20U,21U,
75U and 76U

Mailing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76
(Package B to UP-8193 Rev. 2,
Covers and 9 pages plus Memo)

October, 1980

•

•

•

•

•

•

Supplementary Reference

This Library Memo announces the release and availability of updating Package A to "SPERRY Univac Operating
System/3 (OS/3) FORTRAN Supplementary Reference", UP-8193 Rev. 1.

This Update includes minor corrections and modifies the formats of:

• UNIT macro instruction for card reader definition

• UNIT macro instruction for card punch definition

Copies of Updating Package A are now available for requisitioning. Either the updating package alone, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac Representative. To
receive the updating package alone, order UP-8193 Rev. 1-A. To receive the complete manual, order UP-8193 Rev. 1 .

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 19, 20, 21, 75 and 76
(Package A to UP-8193 Rev. 1,
18 pages plus Memo)

Library Memo

June, 1979

•

•

•

•

FORTRAN

•

Environment: 90/25, 30, 308, 40 Systems

•
H UNIVAC UP-8193 Rev. 1

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, 1976, 1977 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

819:> Rev. 1
UP-NUMBER

Part/Section

Cover/Disclaimer

PSS

Contents

1

2

3

4

5

6

7

8

9

10

11

12

Appendix A

User Comment
Sheet

Page
Number

1

1 thru 6

1
2 thru 6

1 thru 5

1 thru 5

1 thru 4
5
6, 7

1 thru 12
13
14 thru 20

1, 2
3
4 thru 7

1 thru 5
6, 7
8 thru 21

1, 2

1 thru 5

1, 2
3,4
5 thru 7
8
9,10

1
2,3

1 thru 4
5 thru 12

1 thru 4

SPERRY UNIVAC Operating System/3

Update
Level

B

c

Orig.

B
Orig.

Orig.

Orig.

Orig.
B I

Orig.

Orig.
A
Orig.

Orig.
A
Orig .

Orig.
A
Orig.

Orig.

Orig.

Orig.
A
Orig.
A
Orig.

B
A

c
Orig.

Orig.

PAGE STATUS SUMMARY

ISSUE:
RELEASE:

Update C - UP-8193 Rev. 1
7.1 Forward

Part/Section
Page

Number
Update
Level

C PSS 1

UPDATE LEVEL PAGE

Part/Section
Page

Number
Update
Level

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (•) is found. A horizontal arrow (-)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER

1.1. GENERAL

SPERRY UNIVAC Operating System/3 B 1-1

UPDATE LEVEL PAGE

1. Introduction

This manual is intended to introduce the experienced FORTRAN programmer to the SPERRY UNIVAC Operating
System/3 (OS/3) FORTRAN. This manual supplements the general information concerning FORTRAN
programming available in fundamentals of FORTRAN programmer reference, UP-7536 (current version).

1.2. OS/3 FORTRAN

OS/3 FORTRAN consists of:

• an extended AmeriCC:1n National Standard Basic FORTRAN language;

• a compiler which transforms programs written in that language into a form suitable for execution;

• a library of input/output (1/0) and data formatting routines; and

• a library of commonly used mathematical functions and service routines.

The FORTRAN compiler accepts source programs, written in the FORTRAN language, which may reside in the
control stream or in a source program library on disc. The output of the compiler must then be processed by the ~
linker. (See system service programs user guide, UP-8062 (current version).) During this process, mathematical and
1/0 routines are taken from the FORTRAN system library and included in the executable program. User-defined
procedures, if they are required, are also included during the linker processing. These procedures may be coded in
FORTRAN or in some other language. The output of the linker is a load module which may consist of several
overlay phases. During the execution of the object program, the overlay phases may be loaded by specific calls by
FORTRAN statements, or loaded automatically by referencing a procedure in an overlay not currently in main
storage.

When it is loaded, the compiler interrogates the system to determine the amount of space available to it. It then
partitions the work space into an optimum allocation for table space and 1/0 buffers.

During compilation, the compiler produces the following optional listings:

• a listing of the source program; each source statement is accompanied by compiler-generated diagnostics; for
each diagnostic, the source statement is marked at the character for which the diagnostic is produced;

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

• a main storage map showina the allocation of the variables and arrays in the ~rogram; and

• the object code in the form of a pseudo-assembly language program.

Any of the listings may be suppressed by user options.

The compiler is self-initializing and any number of FORTRAN source programs may be processed by one call of the

compiler by the job control program. If a FORTRAN source statement follows an END statement in the source

input file, it is assumed that another program is to be processed and the compiler reinitializes itself.

1.2.1. Compatibility

OS/3 FORTRAN is an extended American National Standard Basic FORTRAN system. It is a compatible subset of
IBM DOS/360 FORTRAN IV and SPERRY UNIVAC Operating System/7 (OS/7) FORTRAN IV, and it is a

compatible superset of the I BM TOS/DOS Basic FORTRAN system.

1.2.2. OS/3 FORTRAN Extensions

OS/3 FORTRAN includes the following extensions to American National Standard Basic FORTRAN

(X3.10-1966):

• Names may have up to six characters, and up to five digits may be specified for labels.

• Embedded comments are permitted.

• A double precision data type with D and G formats is provided .

• Arrays with three adjustable dimensions are possible.

• ASSIGN and assigned GO TO statements are provided.

• Optional arithmetic IF statement labels are permitted.

• PROGRAM statement is provided.

• Logical IF and executable END statements are provided.

• Generic reference to intrinsic and standard library functions.

• OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH, LOAD, FETCH, DUMP, and PDUMP
subroutines are provided.

• Arguments and COMMON storage may be redefined by functions.

• Symbolic names may be typed by the IMPLICIT statement.

• Named COMMON blocks and an EXTERNAL statement are provided.

• End-of-file and error control are available in the READ statement.

• Format descriptors H, Z, A, T, and a literal descriptor are provided .

• An extended G edit capability exists for real and integer data types.

1-2

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER

•

•
•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Print carriage control and list-directed 1/0 are available .

The direct access 1/0 statements DEFINE FILE, READ, WRITE, and FIND are available .

A DAT A statement is provided and block data subprograms may be named .

Debugging aids include subscript checking, label trace, conditional compilation and formatted main storage
dumps.

1~. SOURCE PROGRAMS

General procedures to be followed in OS/3 FORTRAN programming are presented in the following paragraphs.

1.3.1. Character Set

The OS/3 FORTRAN character set consists of the FORTRAN character set and special characters as shown in Table
1-1. Each character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC
characters not shown in the table have no graphic equivalents in the OS/3 FORTRAN character set, but these
characters can be stored internally and transmitted to and from card, tape, and disc storage.

Table 1-1. OS/3 FORTRAN Character Set

FORTRAN Character Set

Alphanumerics A through Zand$

0 through 9

FORTRAN Special Symbols =,()+-*/.';
'

Blank written on the coding form as 6.or as a blank space

SPERRY UNIVAC 90/30 System Special Character Set*

> < 1% ! : @#?_(underscore) "'(double quote) &

*The special character set can change with the options selected for the system printer, with up to 127 characters available,

depending on printer.

1.3.2. FORTRAN Statements

OS/3 FORTRAN statements are coded on the FORTRAN coding form in columns 1 through 72. All characters in a
FORTRAN line are restricted to the FORTRAN character set, except in comments and literal constants where the
special character set may be used. Columns 73 through 80 on the form are ignored by the compiler and can be used
in any manner by the programmer. The information in these columns is printed in the source program listing.

Each FORTRAN statement is written in columns 7 through 72. The first line used for a statement must contain
either a zero or a blank character in column 6. A statement may be continued on one or more successive lines with a
nonzero or nonblank character in column 6 for each line that is a continuation. Therefore, a FORTRAN statement
may consist of one initial line followed by any number of continuation lines. The capacity of the compiler to accept
large statements is limited only by the amount of main storage available; the maximum capacity is achieved when
long statements appear as early in the program as is practical.

1-3

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

t

A statement label consists of one through five decimal digits in columns 1 through 5. The contents of these columns
for continuation lines are ignored during program compilation (except for an X in column 1) but are shown on the

program listing and may be used by the programmer. Leading zeros and embedded and trailing blank characters are
ignored in a statement label. Each statement label must be unique within its program unit.

A special use of column 1 is indicated by an X coded there during program debugging (Section 9). and compilation
(Section 11) .

1.3.3. Comments

The compiler provides four methods of entering comments: columns 73 through 80 and columns 1 through 5 on
continuation lines; the comment line; and embedded comments.

A comment line is indicated by the character C in column 1. Each comment line is shown on the program listing, but
is ignored by the compiler. A semicolon in columns 7 through 71 in a FORTRAN line indicates that the information
immediately following and written on the same line is to be treated as comments; for example:

STATEMENT c FORTRAN STATEMENT NUMBER f 5 7 10 20 30 40

Q = ~QiR...l.i...l. (A)~ -,
C A1L CUL AT I- g QJU ./~_l2.J.S 'l<u.J.b...l.T I

A comment following a semicolon can be continued on a succeeding line by specifying a C in column 1. A
comment following a C in column 1 may also be followed by a number of continuation lines specified by a
nonzero or nonblank character in column 6 of each succeeding line.

Example:

l-L.....J.........1._._-j...-+6"""'-"..LL.....LL..u.<o:...L.>£·...__...,__...___,""""-'...J-J-..L..J...L..J........1-' '-'-"'=J.!.L..L......-...u..._'""-.Jf...l._jjl.J...L.L..J.<k...Ll.Lli.LL-..L.._L....L......L..J

~_,___...L.._L-4----+"=c..=...L..1...-•Ll_f...L',tJ"'-J,L"-'R?.J.., .---L.'1 T_l., '-'H_,_.,,E0...11 _i.J<lP.' L I c.. iU IL I A j T' I • D. N -.~b~F~~~~~ _L.._l

CU8£ l<b'tJT

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment.

1.3.4. Symbolic Names

Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

1.3.5. Source Statement Order

Table 1-2 shows the order in which the source statements of each program unit must be written.

Every executable program contains one main program and as many subprograms as required. A main program is a set
of statements and comments that is not headed by a FUNCTION or SUBROUTINE statement. Subprograms are
headed by one of those statements. The term program unit is used for any main program or subprogram. All
program units are terminated with an END statement.

1-4

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table 1-2. Source Statement Order

line 1 Program PROGRAM FUNCTION
Declarators: SUBROUTINE BLOCK DATA

IMPLICIT

COMMON INTEGER
DIMENSION EXTERNAL
DOUBLE PRECISION REAL

1---------------

EQUIVALENCE

1----- -
FORMAT Statement Function

Arithmetic Assignment
Arithmetic IF

COMMENT ASSIGN
Assigned GO TO
BACKSPACE
CALL
Computed GO TO
Logical IF

DEFINE CONTINUE
FILE DO

DATA FIND
ENDFILE
PAUSE
PRINT
READ
PUNCH
RETURN
REWIND
STOP
TRACE ON
TRACE OFF
Unconditional GO TO
WRITE

linen END

NOTE:

Vertical lines demarcate statements which may be intermixed; for example, FORMAT statements may
appear anywhere between the program declarator (if used) and the END line.

Horizontal lines demarcate groups of statements which must be specified in the order shown. The dotted
horizontal lines indicate that EQUIVALENCE statements must follow any of those specification state
ments which specify items to share storage; DAT A statements must follow any specification statement that
mentions an item to be initialized .

1-5

8193 Rev. 1

UP-NUMB EA
SPERRY UNIVAC Operating System/3

1.4. STATEMENT CONVENTIONS

Conventions used to illustrate FORTRAN statements throughout this manual are as follows:

UPDATE LEVEL PAGE

• Capital letters, parentheses (), and punctuation marks {except braces, brackets, and ellipses) must be coded
exactly as shown. An ellipsis {a series of three periods) indicates the presence of a variable number of entries.

• Lowercase letters and terms represent information supplied by the user.

• Information within braces {}represents necessary entries, one of which must be chosen.

• Information within brackets (] {including commas) represents optional entries that are included or omitted
depending on program requirements. Braces within brackets signify that one of the entries must be chosen if
that operand is included.

• Underlined parameters are selected automatically when a parameter is omitted. These are called defaults .

1-6

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBER

2.1. GENERAL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

2. Data Types

The data types available are integer, real, double precision, and literal. For additional information concerning data
types in the SPERRY UNIVAC Operating System/3 (OS/3) FORTRAN language, refer to fundamentals of
FORTRAN programmer reference, UP-7536 (current version). For additional information on the hardware
characteristics of the SPERRY UNIVAC 90/30 System affecting integer and real computation, see the processor
programmer reference, UP-8052 (current version). Data types are categorized for manipulation by the FORTRAN
program. Data may appear as constants, variables, or elements in an array. Each of these categories is explained in
this section.

2.2. CONST ANTS

A constant is a value defined by its representation in the source program. Once defined, a constant must not be
redefined during program execution. An arithmetic constant is said to be signed if it is written with a plus or minus
sign; an unsigned constant is treated as a positive constant.

2.2.1. Integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of ttie constant is positive, it may be preceded by a
plus sign; if the value is negative, it must be preceded by a minus sign.

An integer constant has the following representation in storage:

IJ integer

wnere:

Is the sign bit.

integer
Is the 31-bit binary integer with a maximum value of 2,147,483,647; if negative, the value is stored in
twos complement form.

2-1

8193 Rev. 1
UP-NUMBER

2.2.2. Real Constants

SPERRY UNIVAC Operating System/3

Real constants may be written as:

UPDATE LEVEL PAGE

• a basic real constant which is an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or following the string, such as +0000.1701.

• a basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example,

0000170.1 E-03 is a valid real constant.

• an integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven digits,
truncation of the excess rightmost digits results; +1701 E-4 and 1701 OE-05 are valid real constants.

Real constants occupy one word of storage in normalized floating-point representation. The format is:

u characteristic traction

where:

s
Is the sign bit.

characteristic
Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which the
fraction must be multiplied to give the real value; the characteristic is stored as an excess-64 number.

fraction
Is six hexadecimal digits representing the fractional part of the real value; the radix point is located
immediately to the left of bit 8.

The maximum range for a real constant is from approximately 10-78 to 1075 or it may be 0.

2.2.3. Double Precision Constants

A double precision constant is similar to a real constant except that it may contain up to 16 significant digits. It is
written as:

• a basic double precision constant, which is an optionally signed string of 8 through 16 significant digits with a
decimal point preceding, embedded in, or following the string, such as -180018101820.

• a basic real constant, a basic double precision constant, or an integer constant followed by a double precision

exponent. A double precision exponent is expressed by the letter D followed by an optionally signed integer
constant with a maximum of two significant digits;-.180018101820012 is a valid double precision constant .

2-2

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

A double precision constant is stored like a real constant except that two words of main storage are used:

IJ characteristic J fraction (

(631

A double precision constant may range in value from approximately 1o-78 through 107 5 , or it may have the value

o.

2.2.4. Literal Constants

A literal constant consists of one or more characters from the SPERRY UNIVAC 90/30 System character set. Each
character in a string requires· one byte of main storage.

Two methods of writing literal constants are:

1. as a Hollerith constant in the form wHc
1

c
2

... cw, where each c represents a constant character; or

2. as a character string enclosed in apostrophes: 'c1 c2
... en'. If the apostrophe occurs in a string, it is represented

by doubling that character.

The literal DO NOT would be represented by the Hollerith constant 6HDO NOT and the literal constant DON'T
would be represented by 'DON"T' using the second method of writing literal ·constants.

2.2.5. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by a string of hexadecimal digits; the hexadecimal digits

and their equivalents are:

Hexadecimal Digit Decimal Value Binary Representation

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100 I
5 5 0101

I 6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
c 12 1100
D 13 1101
E 14 1110
F 15 1111

2-3

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Hexadecimal constants can be used only in DAT A statements. Each hexadecimal digit occupies one half-byte of
main storage. If the constant specifies more digits than can be stored in the associated variable, it is truncated on the
left; if the constant specifies fewer digits, zeros are padded on the left.

2.3. VARIABLES

A variable is represented by a symbolic name (1.3.4) which identifies a single value. A data type is associated with a
variable and there is both a standard and an optional length specification which determines the number of bytes
assigned in main storage. The optional length specifications are shown in Table 2-1.

Table 2-1. Data Types and Optional Lengths

90/30
Standard ANSI Length Optional length

Data Type Standard Name in Bytes Data Type in Bytes

lnteger*4 Integer 4 lnteger•2 2
Rea1*4 Real 4 Real*8 8
Double Precision Double Precision 8 None

The type associated with a variable is determined by explicit type declaration statements (6.4.1), by the IMPLICIT
statement (6.4.2), or by the variable named used. Names beginning with the letters I, J, K, L, M, or N are assumed to
represent integer values; all names beginning with other letters are assumed to represent real values. Explicit type

statements have the highest precedence and the IMPLICIT statement the next highest in this convention.

In this manual, to prevent confusion when the length can differ, the complete data type will appear: a reference to
8-byte real data will be written as rea1*8. Note that real*8 is the equivalent of double precision, but double precision
variables have only a standard length. There is no variable type associated with literal data. The optional length
described may be specified in either the explicit type statements or IMPLICIT statement.

The internal representation of the valCJes of variables is identical to that described for constants, with the exception
of integer*2 where there is no corresponding constant. The integer*2 variable occupies two bytes with the optional
sign stored in ·the most significant bit:

u integer

The maximum value of an integer*2 variable is 32,767; note, however, that the hardware cannot provide overflow
and underflow indications if this range is exceeded - numeric bits can be propagated into- the sign position by
arithmetic. For this reason, exercise discretion when using integer*2.

2.4. ARRAYS

An array is an ordered set of values. Each value is called an array element and the entire set is identified by a
symbolic name known as an array name. An array is described by an array declarator which is explained in Section
6. An array can be declared as having a maximum of three dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2-2. For instance, an
array named AGO with three dimensions, each four elements in size, has the declarator AGO (4,4,4). AGO is the
array name and the numbers in parentheses are subscripts. Each subscript must be an unsigned integer constant
except when a dimension is adjustable. In this last case, the subscript must be an integer variable with a length of
four bytes.

2-4

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

2.4.1. Array Element Reference

Any element in an array may be referenced by using the array name followed by parenthesized subscripts in the
format:

where:

n

s

Is the array name.

Is an integer expression of the form c*v±k, and both c and k are integer constants, and v is an integer
variable. This provides seven kinds of subscript expressions:

v k
v+k v-k

c*v c*v+k
C*V-k

In an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of
elements is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array
declarator.

2.4.2. Element Position Location

General expressions for locating the position of an array element relative to the first element are presented in Table
2-2. In the table, the first byte of the array is byte O; the letters a, b, and c refer to the value of a subscript
expression in an array element reference; the subscript expression corresponds to dimensions A, B, and C in the
array declarator; them is a multiplier determined by the number of bytes required for each array element.

Table 2-2. Relative Locations of Array Elements

Number of Declarator Subscript Relative Location of the
Dimensions Form Form Element in the Array

1 (A) (a) (a-1)•m

2 (A,B) (a,b) ((a-1)+A•(b-1))•m

3 (A,B,C) (a,b,c) ((a-1)+A•(b-1)+A•B•(c-1)) •m

Examples:

If an array declarator were AG0(17), if the element referenced is AG0(4), and if the elements are real types,
then the location of the first byte of the fourth element relative to the beginning of the array is found with the
expression (a-1)*m. In this case, (4-1)*4 = 12, or the first byte of AG0(4) is the twelfth byte from the

beginning of the array.

If the array were declared as AG0(9, 10, 11) and the element to be located is AG0(3,4,5), the calculation is

((2)+9*(3)+9*10*(4))*4, or location 1556 .

2-5

----------------------- ---

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBEFI

SPERRY UNIVAC Operating System/3

3.1. GENERAL

UPDATE LEVEL PAGE

3. Expressions and
Assignment Statements

This section discusses the use of expressions in SPERRY UNIVAC Operating System/3 (OS/3) FORTRAN
programming and describes the assignment statements. For more information, see fundamentals of FORTRAN
programmer reference, UP-7536 (current version).

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators which is evaluated as a single value during execution
of the FORTRAN program. Three different classes of expressions are possible: arithmetic, relational, and logical.
Each of these expressions, the order of evaluation, mixed-mode arithmetic, and user checks on arithmetic operations
are described in the following paragraphs .

3.2.1. Arithmetic Expressions

An arithmetic expression is always evaluated during program execution as a numeric value. It is constructed as a
numeric constant, a variable name, an array element reference, a function reference, or combinations of these using
arithmetic operators.

3.2.2. Relaticnal Expressions

A relational expression consists of two arithmetic expressions joined by a relational operator. This type of
expression is actually a subset of logical expressions and is always evaluated as either TRUE or FALSE.

When mixed-mode arithmetic comparisons are made, the priorities of the data types are:

Data Type

rea1*8 (double precision)
real*4
integer*4
integer*2

Priority

1
2
3
4

The expression of the lower priority is always converted to the type of the higher priority before the comparison is
made. For example, if the relational expression consists of an integer expression and a real*4 expression, the integer

is always converted to a rea1*4 type before the comparison is made.

3-1

13193 Rev. 1

UP·NUMBEFI
SPERRY UNIVAC Operating System/3

3.2.3. Logical Expressions

A logical expression is:

• a relational expression,

• a logical or relational expression preceded by .NOT., or

• two logical or relational expressions joined by .AND. or .OR ..

3.2.4. Evaluation Order

An expression is evaluated according to the following rules:

UPDATE LEVEL PAGE

1. Each operator has a priority as shown in Table 3-1. Operations are performed in this order of priority except
when modified by the other rules.

Table 3-1. FORTRAN Operators and Evaluation Order

Operation Operator Order or Priority

Function evaluation f(x) 1

Exponentiation ** 2

Multiplication * 3

Division I

Addition or unary plus + 4

Subtraction or unary minus -

Greater than .GT. 5

Greater than or equal to .GE.

Less than .LT.

Less than or equal to .LE.

Equal to .EO.

Not equal to .NE.

Logical negation .NOT. 6

Logical product .AND. 7

Logical sum .OR. 8

2. Begin with the leftmost operator.

3. The current operator is compared to the operator on its right if no parentheses intervene. If the priority of the
current operator is greater than or equal to the priority of the next operator, the current operation is
performed. Otherwise, the next operator becomes the current operator and this step is repeated using it as the
basis for comparison.

3-2

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

4. Upon encountering the right end of an expression, remaining operations are performed from right to left.

5. Sequential exponentiation is performed from right to left. For example, X**Z**Y is evaluated as X**(Z**Y).

6. Expressions in parentheses are treated as single operands and are evaluated first, starting with the innermost
parenthesized expression, before the left to right comparisons are continued.

3.2.5. Mixed-Mode Arithmetic

Mixed-mode arithmetic occurs when an operation is performed on two operands which are not the same type. The
type and length of the result in such situations is shown in Table 3-2.

Table 3-2. Result Types for Mixed-Mode Arithmetic

' First Operand Type I

1
!
I Rea1*8

I lnteger*2 lnteger*4 Real*4

I
(Double
Precision) I

lnteger*2 lnteger*4 lnteger*4 Real*4 l Real*S

lnteger*4 lnteger*4 lnteger*4 Rea1*4 Real*S
Second

I
I

Operand Real*4 Rea1*4 Real*4 Real*4

I
Real*S

i
Type

Real*8 Real*S Real*S Real*B

I
Real*S

(Double
Precision) I

3.2.6. Arithmetic Operation User Checks

The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:

• CALL DVCHK(i)

Used to check for a division by zero after the division has been executed.

• CALL OVERFL(i)

Executed after an arithmetic operation to check for an overflow or underflow condition.

• CALL ERROR1 or ERROR(i)

Used to set and test indicators.

See 5.6.3 for more information on these standard librarv subroutines.

3.3. ASSIGNMENT STATEMENTS

A value is assigned to a variable or an array element by executing an arithmetic assignment statement. This value is

the current value until the variable or array element is redefined.

3-3

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

3.3.1. Arithmetic Assignment Statement

Format:

v=e

where:

v
Is any type variable name or an array element name.

e
Is any type arithmetic expression.

Description:

UPDATE LEVEL PAGE

The arithmetic assignment statement assigns a single value to a variable or array element. The assignment
operator (=) is read as "is replaced by" as in: "AMR is replaced by 8.19" for AM R=S.19.

Table 3-3 demonstrates the conversion of the expression e to the data type of the receiving variable
represented by v. The conversions are accomplished by intrinsic functions (6.1).

Table 3-3. Assignment Statement Conversions

e

Real*S
Data lnteger*2 lnteger*4 Reah4 (Double

Types
Precision I

lnteger*2 None . . .
lnteger*4 .. None IFIX(e) IFIX (SNGL(e))

v

Real*4 t FLOAT(e) None SNGL(e)

i Real*S t DFLOAT(e) DBLE(e) None

* Processing for integer•2 is identical to that used for integer•4 ,except that the high order 16 bits
of integer•4 are truncated.

•*The sign is extended.
t In these cases, e is treated as an integer•4 data type.

3.3.2. ASSIGN Statement

Format:

ASSIGN k TO i

3-4

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

where:

k
Is the label of an executable statement in the same program unit.

Is the name of an integer*4 variable.

Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name can
then be used in the assigned GO TO statement (4.6). Once the integer variable name has been assigned a value
by the ASSIGN statement, it can then be used for no other purpose until it is redefined. For instance, it
cannot be used in an arithmetic expression unless its value is redefined by an arithmetic assignment statement

or a READ statement .

3-5

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4. Control Statements

4.1. GENERAL

Control statements are executable instructions which modify the normal sequence of program execution. The
control statements used in SPERRY UNIVAC Operating System/3 (OS/3) are identical in function to those
described in the Control Statements section of fundamentals of FORTRAN programmer reference, UP-7536

(current version).

4.2. ARITHMETIC IF

Format:

where:

e
Is any integer, real, or double precision expression.

k
Is a statement label in the same program unit.

Description:

The arithmetic IF control statement is used to transfer control to specified statements within the program

depending on the evaluation of an arithmetic expression.

If the arithmetic expression value is negative, control is passed to statement labeled k
1

; if 0, to the statement

labeled k
2

; and, if the value is positive, to the statement labeled k
3

. If any label is missing, control is passed to

the next executable statement below the IF control statement when the conditions for the missing label are
met. Trailing commas may be omitted from the control statement when labels are not specified.

When using the arithmetic IF control statement, remember that the internal representation of real and double
precision values is an approximation. One of these value types could be stored as a nonzero approximation of

zero .

4-1

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Examples:

STATEMENT~~~~~~~-·

20 30

I
~..__..___._-'='-..+---f!:=.l--l...>...Ju=.1.......-LL-'-"---'--'-'-~~C:..O...X...'--~.....___.___..___.___.___._~~~......_....___~,____L_~__L______L____L____.l.__J

~ • l .._ _ J_ 1. 1.. -1 _ L .._ ~ l l J._ L •

T F (B 1 f TA - I . S- l O

Statement 5 indicates that control is to be transferred to the statement labeled 10 if I is less than 1, to the
statement labeled 20 if I equals 1, or to the next executable statement following 5 if I is greater than 1.

Statement 6 transfers control to statement 15 if Y is greater than X; otherwise, control is transferred to the
next executable statement.

Statement 7 transfers control to statement 20 only when BETA is greater than 1.5.

4.3. LOGICAL IF

Format:

IF (e) s

where:

e
Is any logical expression.

s
Is any executable statement except a DO, END, or another logical IF statement.

Description:

The logical IF control statement al lows the execution of a statement to be dependent on the evaluation of a
logical expression.

Examples:

I F (A :_1.~1__'_J?_L_~_i_'Yi_P_J_· J_~J__:__J._L ~L·_J_:QJ _lg_§ i._1 Ti t>I I 2, q
I ,FL(AL-1GLJ:L·J~JJ__j_WB_JI_1Ii.f:1 LC IP1)1A_1 __ ,_J _L_l___L___L__L__L___l

If both relational expressions (A.GT.B, C.L.T.D) are TRUE, the GO TO control statement is executed and
control passes to statement 20. If either expression is evaluated as FALSE, the GO TO statement is ignored
and control passes to the following statement.

The WRITE statement in the example is executed if the value represented by A is greater than that represented
by B. Otherwise, control passes to the next executable statement.

4-2

•

•

•

•

•

•

8193Rev.1
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

4.4. UNCONDITIONAL GO TO

Format:

GO TO k

wnere:

k

Is the label of an executable statement in the same orogram unit.

Descnotion:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the
label soecified.

4.5. COMPUTED GO TO

Format:

wnere:

k
Is a label of an executable statement in the same program unit.

Is an integer*4 variable, the value of which must be defined using an arithmetic assignment or READ
statement before the execution of the computed GO TO control statement.

Description:

The computed GO TO control statement permits the transfer of control to a statement whose label occupies
the position in the GO TO list which is equal to the value of i. For instance, if the value of i were 4, control
would be transferred to the statement labeled with the fourth label in the list of labels in the computed GO
TO control statement. If i, the integer variable, is negative, zero, or greater than the number of labels in the
list, control is transferred to the next executable statement following GO TO control statement.

Example:

rl
STATEMENT c FORTRAN STATEMENT NUMBER 0

5 6 7 10 20 30

j ~~_j_ :1}9 i_ I S JiS ~ 3 6_il_j_~ S~ _J_I_J_T E1M I I I I I I
f f

l
T

l l _J_ l _j_ _j_

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value is 3,
control is transferred to statement 35; and so on. Any value other than 1 through 4 results in a transfer of
control to the statement following the GO TO control statement.

4-3

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4.6. ASSIGNED GO TO

Format:

where:

k

Is the name of an integer*4 variable.

Is a statement label of an executable statement within the same program unit; the list of labels is

optional and may be omitted.

Description:

The assigned GO TO control statement transfers program control to the statement labeled with the current

value represented by the integer variable.

Example:

t
STATEMENT .:,

NUMBER g:FoRTRAN
s 6, 7 10

STATEMENT~~~~~~~-

20 30

When the current value of the integer variable K5 matches one of the statement labels in parentheses, control
is transferred to the statement with that label. The value of the integer variable could have been defined only
by an ASSIGN statement (3.3.2).

4.7. DO

Format:

where:

n

Is the statement label of the terminal statement of the DO loop.

Is the control variable, which is an integer variable that may be referenced, but not redefined, within the
DO range.

Is the initial parameter, the value of which is assigned to the control variable before the first execution
of the DO loop; th is value must be less than or equal to the value of m

2
•

4-4

•

•

•

•

•

•

8193Rev.1

UP-NUMBER
SPERRY UNIVAC Operating System/3 B 4-5

UPDATE LEVEL PAGE

Is the terminal parameter which is compared to the control variable after each execution of the DO loop;
when the value of the control variable is greater than the value of m

2
, the DO control statement is

satisfied and control passes out of the DO range.

Is the incremental parameter, the value of which is added to the value of control variable i after each
execution of the DO loop and before the comparison of m

2
and the control variable; when this

parameter is omitted, 1 is assumed.

Description:

A DO control statement initiates and controls the repeated execution of the group of statements within the
DO range. The DO range extends from the first executable statement following the DO control statement to
the terminal statement. The terminal statement is the FORTRAN statement following the DO control
statement with the statement label specified within the DO control statement.

Either positive integer constants or integer variable names may be used as parameters for the DO control
statement. A value of ZERO may be obtained by using a variable set to ZERO.

Example:

"C" FOR COMMENT

ATEMENT i
UMBER o FORTRAN

5 f 7 10
STATEMENT~~~~~~--1111>-

20 30

:::: :2 9 3

The statements starting with the first executable statement following the DO control statement and ending
with statement 12 are executed three times, with K having the values 2, 5, and 8. When statement 13 is
executed, K is printed; at that time, its value is 8.

4.7.1. Transfers of Control From and To a Do Range

In FORTRAN programs, program control can always be transferred out of a DO loop without satisfying the DO
control statement parameters. However, control can be transferred into a DO range only from the extended range of
the DO loop. The extended range consists of those statements executed after the transfer of control out of the
innermost DO of a completely nested DO loop and before the transfer of control back into the DO loop. For a
complete explanation of the DO control statement, see the Control Statements section of fundamentals of
FORTRAN programmer reference, UP-7536 (current version).

4.8. CONTINUE

Format:

CONTINUE

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating Systam/3

UPDATE LEVEL PAGE

Description:

The CONTINUE control statement serves as a terminal statement of a DO range when the terminal statement
would otherwise be a control statement. It produces no coding and may be used anywhere in the program,
subject to the ordering shown in Table 1-2, without affecting the logic of program execution. When used as
the terminal statement of a DO range, the CONTINUE control statement must have a statement label.

4.9. STOP

Formats:

STOP

STOPn

where:

n
ls an unsigned integer constant of not more than four digits. (Although the compiler accepts values of
five digits for compatibility purposes, the console displays only the four least significant digits.)

Description:

The STOP control statement terminates job step execution and returns control to the operating system,

4-6

•

indicating the logical end of a program. When a STOP n control statement is executed, a message is produced •
at the system console. The STOP display also appears on the printer with the n value plus a count of the
number of program check interrupts which occurred during program execution. No operator response is
necessary.

4.10. PAUSE

Formats:

PAUSE

PAUSE n

where:

n

ls an unsigned integer constant of not more than five digits.

Description:

The PAUSE control statement halts program execution and produces a message at the system console. The
operator then has the choice of permitting the program to resume execution at the next executable statement
or of terminating the job.

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4.11. END

Format:

END

Description:

The END control statement is an executable statement indicating the physical end of a program unit; it may
have a statement label. When the END control statement is executed in a main program, it is interpreted as a
STOP control statement and the display is identical to STOP. When the END control statement is executed in
a subprogram, it is equivalent to a RETURN statement (5.4.1.2).

4.12. PROGRAM

Format:

PROGRAM s

where:

s
Is a 1· to 6-character name that is to be assigned to the object module produced by the compiler.

Description:

The PROGRAM control statement is optionally used to name a main program. When used, it must be the first
statement present in the main program. If a PROGRAM statement is not present in a main program, the object
module is assigned the name $MAIN by default. When multiple main programs are being compiled in a single
job, each must be assigned a unique name so that they may all be accessible to the linkage editor and librarian.
Otherwise, only the last program compiled is accessible .

4-7

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

5. Functions and Subroutines

5.1. GENERAL

When a calculation or series of calculations is required repeatedly in a SPERRY UNIVAC Operating System/3
(OS/3) FORTRAN program, the statements used to perform the calculations can be coded once as a procedure. This
procedure can then be referenced each time the calculations are to be performed. Procedures, as explained here and
described in fundamentals of FORTRAN programmer reference, UP-7536 (current version) may be categorized by:

• whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

• whether the procedure is referenced by the subroutine CALL statement or by the function reference; and

• whether the procedure is written by the user or supplied with the FORTRAN library .

Table 5-1 lists the procedures and shows their relationships within these categories.

Table 5-1. OS/3 FORTRAN Procedures

Procedure Coding lnline Reference Code
or Subprogram By Source

Statement Subprogram Function User
function reference

External Subprogram Function User
function reference

Intrinsic lnline Function UNIVAC
function reference

Standard Subprogram Function UNIVAC
library reference
function

Subroutine Subprogram CALL User
statement

Standard Subprogram CALL UNIVAC

library statement
subroutine

5-1

819'.l Rev. 1

.JP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one
argument; they always return the value associated with their name when they are executed; and they return control

to the expression within the referencing statement. The functions are:

• statement functions,

• external functions,

• intrinsic functions, and

• standard library functions.

Only statement functions and external functions are coded by the user.

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, the subroutine is executed, and control is then returned to the statement following the subroutine
reference. Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from
functions in the method of referencing the procedure, in that multiple values or no value can be returned, and in the
method by which control is returned to the referencing program unit.

Functions always transfer values, but subroutines may or may not. When value transfers are made, they are
accomplished by using arguments or COMMON. Arguments are included as part of the procedure definition; these
are formal or dummy arguments. Arguments are also specified in the procedure reference; these are actual
arguments. Substitutions are made by the FORTRAN compiler and a value is returned after the procedure is
executed; the return of values may also be accomplished with arguments.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure
definition. They must correspond in number, data type, and order. The argument forms permitted for actual
arguments in the user-coded procedures are shown in Table 5-2.

Table 5-2. Actual Argument Forms

Form of Actual Arguments
Statement External

Subroutines
Functions Functions

Variable name Yes Yes Yes

Expression Yes Yes Yes

Function reference Yes Yes Yes

Array element name Yes Yes Yes

Array name No Yes Yes

External procedure name No Yes Yes

To use procedures in a FORTRAN program, they must be referenced as described in 5.2. The user-coded procedures
must be defined as described in 5.3 for statement functions, and 5.4 for external functions and subroutines.
Argument substitution, which applies to all procedures, user-coded or not, is explained in 5.5, and the library
procedures supplied by Sperry Univac are described in 5.6.

5-2

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

5.2. PROCEDURE REFERENCE

Depending on whether the procedure is a function or a subroutine (Table 5-1), it is referenced by either the
function reference or the subroutine CALL statement.

5.2.1. Function Reference

Statement functions, external functions, intrinsic functions, and standard library functions are all referenced with
the general function reference. The function reference is used within an expression in a FORTRAN statement and
has the form:

where:

f

a

Is the symbolic name which was used to identify the user-coded function in its function definition, or

which was supplied as the function name of an intrinsic or library function.

Represents an actual argument; at least one is required.

Actual arguments must agree in type, number, and order with the dummy arguments in the function definition, but

actual argument types are not restricted by the data type of the function name. The forms permitted for actual

arguments are shown in Table 5-2 for statement functions and external functions, in Table 5-3 for intrinsic
functions, and in Table 5-4 for standard library functions.

Examples:

"C" FOR COMMENT

ATEMENT ~
UMBER o FORTRAN

5 f 7 10
STATEMENT ...

20 30

In the first example, the standard library function CBRT is referenced. In the next line, a user-coded statement

function, INT, is referenced and three actual arguments are included in the function reference. Although the

actual arguments are both integer and real types, an integer value is returned to the referencing expression

because the function name is implicitly integer.

5.2.2. Subroutine Reference (CALL Statement)

Format:

where:

s
Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library

subroutines.

5-3

8193 Rev. 1

UP-NUMBER

a

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Represents an actual argument. This argument list is optional and must be enclosed in parentheses when

used.

Description:

All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL
statement. It is used to transfer control to the subroutine specified by s. The maximum number of actual
arguments permitted is 511; the allowed argument forms are shown in Table 5-2 for user-coded procedures
and described in 5.6.3 for standard library subroutines.

Examples:

STATEMENT c FORTRAN STATEMENT NUMBER f 5 7 10 20 30

l -1 -1 -1 C/\L_lLl _lP_lGj_N_lU _tj_ ..J.. l -1 _l .l .l -1 J .l ..J.. _l_ _l __l _l _l_

-1 _l CAL LJ DVC_}-1 k (I NEJR) _l _l _l _l ..J.. _l _l_ J ...!. _l_ _l_ _l _l _l _l_

Two subroutines are referenced by the calls in the example. In the first CALL statement, control is transferred
to the subroutine PGNUM; no transfer of values is to take place, so no arguments are specified. When the next
line is executed, the standard library subroutine DVCHK is called; the actual argument INER is specified .

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the external function and the statement function. The former is coded as a subprogram
as described in 5.4, but the statement function is defined with only one FORTRAN statement.

Statement functions require at least one argument and return only one value to the referencing statement. They are
referenced with the function reference previously described. After evaluation of the statement function, control is
returned to the expression within the referencing statement.

The format of the statement function definition statement is:

where:

f
Is the symbolic name assigned to the statement function.

a
Is a dummy argument consisting of a variable name.

e
Is a limited arithmetic expression.

The statement function definition statement defines a function which may be referenced in a subsequent expression .
The statement function definition statement must precede all executable statements in the program unit and must
follow all specification statements (Table 1-2).

A limited expression is an arithmetic expression which may not contain an array element reference or a reference to
a statement function that is subsequently defined. For example,

5-4

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

"C" FOR COMMENT rTEMENT ~
UMBER o FORTRAN STATEMENT---------...

5 f 7 10 20

L · o *S RT (A)

B PNT

is permitted, but

AVR PNT)

RT (A)

is not.

UPDATE LEVEL PAGE

30

u (P N T)

The value returned by the statement function is typed by the statement function name. The name is typed according
to the rules for variables described in 2.3, or it is typed by a type statement (6.4). Note that it is the function name,
not the type of the arguments or of the expression, which determines the value type returned by the statement
function.

Dummy argument names in the statement function definition may appear as variable names in the same program
unit. A maximum of 511 arguments may be used in the definition.

5.4. SUBPROGRAM DEFINITION

The user-coded procedures defined as subprograms are the external function and the subroutine. The definitions are
described in the following paragraphs.

5.4.1. External Functions

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition, requiring at least one argument, referenced by a function reference, and returning at least one value to
the referencing statement. After evaluation of an external function, control is returned to the expression within the
referencing statement, where computation continues using the value associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a

FUNCTION statement (5.4.1.1) and ends with an END statement (4.11).

The external function returns a value of the type determined by the procedure name, not by the data types of the
arguments. The data type of the function name is decided by the first letter of the function name (2.3). by a type
statement in the same program unit, or may be specified in the FUNCTION statement .

5-5

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE

5.4.1.1. FUNCTION Statement

Format:

where:

t

f

*s

a

Is an optional type specification used to determine the data type of the symbolic name specified by f,
and, consequentially, the data type of the value returned by the external function; when this
specification is omitted, the type is determined by type statement in the same program unit, or by the
type implicit in the function name. The permissible types are INTEGER, REAL, and DOUBLE
PRECISION.

Is the symbolic name used to identify the function; because system routines use a dollar sign as the third
character of the function name, avoid these names to prevent conflict. The name must be assigned a
value, using a READ or arithmetic assignment, in order to define the function value.

Is an optional length specification allowing the use of the optional lengths for variables (2.3); this option
may only be used when the data type option is used and the type specified is not DOUBLE PRECISION.

Is a dummy argument.

Description:

The FUNCTION statement defines an external function and must be the first statement of the subprogram.

Examples:

r"C" FOR COMMENT

ATEMENT i
UMBER oFORTRAN

5 6 7 10
STATEMENT ...

20 30

i
1--~_.___~_,_-+-+---'~-'--~ -L--~-'----~-'-----'----'--'---'----L--L--~--'---____i_____L_----.L ____ L_--.J. __ __l__...1_ _._ _ __l___.l______ 1--~

l._ ___ _l ___ __l____j__l __ ~ _____ l _..L _..._ _L __,,__ l l -- l_ _ _l_ _ _L

+~_!_ _ __1_-t_ _ _L_i _ _i_ ___ ~ --'"---L--"----~--L _L _,_ -~--"- , _ "_ L 1 _i _L __ ...l._ __ l

!

---~~-'----~---+---+ir~,_N~,J)~1 ___L ___ L_..L ___ _.... __ _,, ___ _.... __ _..._ ___ _J_ --L __ ..J__ ~- - --~- l. _ _L ._ ___ _..__ ___i...__..._ ___ ~_.;_ __ L _ __l___ __ .:....___.,______.i.___.____..

I

In the examples, two external function subprograms are defined. In the first, the value returned is a 2-byte
integer. The second subprogram returns a 4-byte real value unless the external function name YY1 is typed in
the same program unit as another data type.

5-6

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

5.4.1.2. RETURN Statement

Format:

RETURN

Description:

UPDATE LEVEL PAGE

The RETURN statement causes control to be transferred from the subprogram used to define the external
function or subroutine to the program unit which referenced the subprogram.

5.4.2. Subroutines

User-coded subroutines are procedures which, like external functions, are separately compiled as subprograms.
Unlike external functions, however, subroutines:

• do not require arguments;

• do not necessarily return a value to the referencing program unit;

• have no data type associated with the subroutine name;

• are defined with a SUBROUTINE statement (5.4.2.1);

• are referenced with a CALL statement (5.2.2); and

• return control to the first executable statement following the CALL statement .

Subroutines have a maximum of 511 arguments. The argument forms permitted are shown in Table 5-2.

5.4.2.1. SUBROUTINE Statement

Format:

where:

s

a

Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character of
the subroutine name since this convention is used by system routines.

Is a dummy argument; this argument list is optional and, when included, it is enclosed in parentheses.
Each argument may be a variable, array, or procedure name.

Description:

The SUBROUTINE statement defines the subroutine name and dummy arguments, and must be first

statement of the subprogram .

5-7

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

Example:

r•c• FOR COMMENT

ATEMENT i
UMBER oFORTRAM STATEMEMT--------1~

5 t: 7 10 20

SU5R~UTINE

REAL INl(I)

UPDATE LEVEL PAGE

30 -'O

buT R~W C~L)

I N T E GE R Ri~_i_µ_s~_f._J__J___._L_L__,___.__ _ _L___L___.____,___,___,-"--_.__._..__.____.__~~___.__~

LI IT = ROW*Cl9L

l--'--'---'---'-+---+-D~l9~ _ _J_I I JI= I I I) IL, I ,MI ,TI I I I I I I _l____L __ l__i____l___.l_J__j1__L-L--_L___j.___L-L---'---l----L-l

UT (1Il ,=, ,IN, I, (I1) ,-t,I,N,2J,r), I I I I I I I

RETURN

This subroutine might be referenced with a CALL such as:

CALL MATADD (A,B,C,10,10)

5.4.2.2. Subroutine RETURN Statement

The RETURN statement (5.4.1.2) is used to return control from a subroutine subprogram. Control is always
returned to the first executable statement following the CALL statement. -

5.5. ARGUMENT SUBSTITUTION

When a procedure is referenced, the actual arguments, if any, are substituted for the dummy arguments in the
procedure receiving control. Two methods of argument substitution are provided:

1. call by value, and

2. call by name (or call by address).

5.5.1. Call by Value

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE and FUNCTION statements are simple variables. All statement function
arguments are called by value. For a procedure reference such as

5-8

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-9

UPDATE L.EVEL. PAGE

and the procedure definition

rl
STATEMENT i

STATEMENT NUMBER o FORTRAN
5 t: 7 10 20 30

...l. ...l.. ...l.. ..l. S'.i.U}3_if<l0..l.UT I },.LE..l. ~..l. (1X_u_ y ~r_J .i. ..l. .l. l _l_ ..l. l_ .l. _l L _l_

the compiler generates a calling sequence for the CALL or function reference, and it generates a prologue for the
SUBROUTINE or FUNCTION statement. The calling sequence consists of a transfer of control to the start of the
procedure and a list of main storage addresses containing the actual arguments. The prologue contains instructions
which perform the argument substitution. For the examples given, the prologue performs actions analogous to the
FORTRAN statements X = B, Y = C, and Z = D.

This technique allows the dummy arguments to be referenced in the procedure body as though they were simple
variables local to the procedure.

When a RETURN statement is encountered in the procedure, an epilogue is executed. This reverses the substitutions
and transmits the values of the dummy arguments to the calling program if they were redefined. For example, in the
following, the subroutine on the left is treated as if it were written like the subroutine on the right.

SUBROUTINE A(B)

100000

100001

RETURN

SUBROUTINE A
B =actual argument
GO TO 100001
actual argument = B
RETURN
CONTINUE

GO TO 100000

; PROLOGUE START
; PROLOGUE END
; EPILOGUE START
; EPILOGUE END

Care must be taken that the unintended redefinition of variables with multiple associations does not take place. This
can occur when variables are used in COMMON or in argument lists; for example:

•
• •

c
•
•

E

8193 Rev. 1

UP·NUMBEFI
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

In the example, when the epilogue is executed, the values of the dummy arguments in the subroutine definition are
returned to the actual arguments in sequence. First, the value of A 1 is substituted for Y in the referencing program
unit, then the value of A2 is substituted for Z, and finally, the value of A3 overlays the variable Y again. The initial
substitution, Y =A 1, is lost to the referencing program unit which may not be the programmer's intention. A similar
problem can occur when two subprograms share COMMON storage and a COMMON variable occurs in the actual
argument list.

5.5.2. Call by Name

The call·by·name method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE or FUNCTION statements are declared to be arrays or procedure names. In
these cases, the prologue copies the address of the dummy argument into the procedure. Thereafter, the code
generated for the array references in the procedure must retrieve the address of the array prior to accessing the value
of the array element for computational purposes. See 6.2.1 for additional information or array declarator processing.
Procedure names are processed in the same fashion.

5.6. LIBRARY PROCEDURES

Three classes of procedures are available to the programmer as part of the FORTRAN library: intrinsic functions,
standard library functions, and standard library subroutines.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are I isted in Table 5-3. Intrinsic functions are referenced with the
function reference (5.2.1) by the user's FORTRAN program. After control is transferred to the function and it is
evaluated, control is returned to the expression containing the function reference.

Since the compiler provides a large number of intrinsic functions, generic name references are permitted. For
example, the generic group ABS contains three members (ABS, IABS and DABS) which perform identical functions
but differ in their argument types and function values. Therefore, if ABS is referenced with a double precision
argument, the compiler will automatically generate a call to the proper member (DABS) to determine the absolute
value.

5.6.2. Standard Library Functions

The standard library functions (Table 5-4) are function subprograms supplied with the compiler. They are accessed
with a function reference (5.2.1) and return control to the referencing program unit within the expression of the
referencing statement.

Like the intrinsic functions, the standard library functions may be referenced using the generic name; for example, if
SIN is referenced using a double precision argument, the compiler will automatically reference DSIN.

5-10

•

•

•

•

•

•

8193 Rev. 1

UP·NUMBEFI

Generic
Name

ABS

AINT

INT

MOD

~MAX ~
MAXO

~MIN f
MINO

SIGN

SPERRY UNIVAC Operating System/3

Table 5-3. Intrinsic Functions (Part 1 of 2)

Number Member
Use

Arguments
Function

Name

Determine the 1 ABS
absolute value IABS
of the argument DABS

Truncation; 1 AINT
eliminate the DINT
fractional

portion of argument

Truncation; 1 INT
eliminate the IDINT
fractional
portion of argument

Remaindering; 2 AMOD
defined as (Argument 2 MOD
a1-(x] a2, must be DMOD
where [x] is the nonzero.)
greatest integer

whose magnitude

does not exceed
the magnitude of
a1 /a 2 and whose
sign is the same
asa 1/a2

Select the largest ;;;.2 AMAXO*

value AMAX1

1 MAX f
MAXO

MAX1*
DMAX1

Select the smallest ;;;.2 AMINO*

value AMIN1

1 MIN ~
MINO

MIN1*
DMIN1

Convert argume'nt 1 FLOAT*
from integer DFLOAT*
to real or

double precision

Convert argument 1 IFIX*
from real to HFIX*
integer

Replace the 2 SIGN

algebraic sign ISIGN

of the first DSIGN

argument with
the sign of the
second argument

*This function is accessible only through its member name.

5-11

UPDATE LEVEL PAGE

Member Member
Argument Function

Type Type

Rea1*4 Real*4
lnteger*4 lnteger*4
Double precision Double precision

Real*4 Real*4
Double precision Double precision

Real*4 I nteger*4
Double precision lnteger*4

Rea1*4 Real*4
lnteger*4 lnteger*4
Double precision Double precision

lnteger•4 Real•4
Real•4 Real•4

I nteger•4 I nteger•4

Real•4 lnteger•4
Double precision Double precision

I nteger•4 Real •4

Real•4 Real•4

I nteger•4 I nteger•4

Real •4 I nteger•4
Double precision Double precision

Integer •4 Real•4

lnteger•4 Double precision

Real•4 I nteger•4
Real•4 lnteger•2

Real•4 Real•4
lnteger•4 lnteger•4
Double precision Double precision

8193 Rev. 1

UP-NUMBER

Generic
Name

DIM

SNGL

DBLE

General

Operation

Trigonometric

SPERRY UNIVAC Operating System/3

Table 5-3. Intrinsic Functions (Part 2 of 2)

Number
Member Member

Use
Arguments

Function Argument

Name Type

Positive difference; 2 DIM Real•4
subtract the smaller IDIM lnteger•4
of the two arguments DDIM Double precision

from the first argument

Convert double precision 1 SNGL Double precision

to real

Convert from rea I to 1 DBLE Real•4

double precision

Table 5-4. Standard Library Functions (Part 1 of 2)

Generic Member Mathematical
Argument

Name Name Definition
Number Type Range

SIN 1 real •4 lxl<12
18

1TI

(in radians)

SIN y=s1n(x)

DSIN 1 real •8 lxl<12 50 1T)

(1n radians)

cos 1 real •4 lxl < 12 18 .111

(1n radians)

cos y=-cos(x)

DCOS 1 real •8 lxl < 12 50 1TI

(1n radians)

TAN 1 real ·4 lxl < 12 18 m
(in radians)

TAN y=tan(x)

DTAN 1 real ·8 lxl < 1250 1T)

(1n radians)

I COTAN l 1 real •4 lxl < 12 18 m
COT {1n radians)

(COTAN l y=-cotan(x)
COT

lxl < 12 50
1T) I DCOTAN l 1 real ·8

DCOT (1n radians)

(ASIN l 1 real ·4 Ix I< 1

l
ARSIN I ASIN

ARSIN
y=arcs1n(x·) I DASIN l 1 real •B Ix I< 1

DARSIN

(ACOS l 1 real •4 Ix I< 1

I ACOS l
ARCOS

ARCOS
y-=arccos(x)

IDACOS l 1 real ·8 Ix I~ 1

DARCOS

ATAN 1 real .4 any real argument

ATAN y=arctan!x)

DA TAN 1 real •8 any real argument

ATAN2 2 real .4 any real arguments

y=a,cta"(~)
except ID,Ol

ATAN2

DATAN2 2 real ·B any real arguments

except I0,0)

5-12
UPDATE LEVEL PAGE

• Member

Function
Type

Real•4
lnteger•4
Double precision

Real•4

Double precision

Function Value
Type and

Range

real .4

-1 ~y~l

real .. g

-1~y ~ 1

real •4

-1 ~y~l

real··a • -1 ~y~1

real .4

-M ~ y <M

real *8

-M~ y <M

real ·4

-M ~ y <M

real ·8

-M ~ y <M

real .. 4 (1n radians)

-1112<v ~ rt/2

real •8 (1n radians)

- TT 12 ~ y ~Tr/2

real •4 (1n radians)

0 ~ y ~Tr

real •8 (in radians)

0 ~ y ~Tr

real •4 {1n radians)

rr/2 ~ y ~rr/2

real --B (1n radians)

-TT/2 ~ y ~TT/2

real •4 (1n radians)

- Tr~ y ~Tr • real •8 (1n radians)

- rr ~ v ~rr

•

•

•

8193 Rev.-1

UP-NUMBER

General

Operation

Hyperbolic

Exponential

Natural logarithm

Common logarithm

Square root

Cube root

NOTE

Generic

Name

SINH

COSH

TANf'

EXP

I ALOG l
LOG

IALOG10l
LOG10

SORT

CBRT

SPERRY UNIVAC Operating System/3

Table 5-4. Standard Library Functions (Part 2 of 2)

Member Mathematical
Argument

Name Definition
Number Type Range

SINH 1 real •4 lxl < 175.366

ex-e-x
y= ---

DSINH
2

1 real •8 lxl < 175.366

CDSH 1 real •4 lxl < 175366

eX+e-x

v= ---
DCOSH

2
1 real •8 lxl < 175.366

TANH 1 real •4 any real argument

ex-e-x
y= ---

eX+e-x
DTANH 1 real •8 any real argument

EXP 1 real ·4 x;;, --180 218

x < 174.673°
x y=e

DEXP 1 real •8
x;;, -180.218

x ~ 174.673

I ALOG l
LOG 1 real •4 x > 0

y 00 log
8

x or

DLOG
y=ln(x)

1 real •8 x > 0

I ALOG10 l 1 real•4 x > 0

LOG10

y=fog10x

DLOG10 1 real•B x > 0

SORT 1 real .4)(~ 0

v=..fX or
DSORT y=x 1 /2 1 real •8 x~O

CBRT 1 real •4 any real argument

y=x 1 /3

DC8RT 1 real•8 any real argument

M ~ 156311-16-6) for real•4 and 166311-16-
14

1 for real•8

A

UPDATE LEVEL

Function Value

Type and

Range

real•4

-M ~ y <M

real .. 8

-M < y <M

real .. 4

1 ~ y <M

real •8

l~y <M

real•4

-1 <v <1

real •8

-1 <v <1

real •4

0 < y <M

real ,.g

0 ~ y <M

real •4

y ;;, -180218

y < 174.673

real •8

y ;;, -180.218

y < 174.673

real .. 4

y ;;, -78.268

y < 75.859

real•8

y >-78.268

y < 75.859

real •4

0 < y < Ml/2

real •8
O~ y < Ml/2

real •4

-Mli3<v<M1/3

real•8

-Ml/3,,;;y<M1/3

5-13
PAGE

8193 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-14
UPDATE LEVEL PAGE

5.6.3. Standard Library Subroutines

The standard library subroutines are subprogram procedures supplied with the compiler. Like user-coded
subroutines, these procedures are accessed with the CALL statement (5.2.2) and control is returned to the
referencing program unit at the first executable statement following the CALL statement. All of the standard library
subroutines may be discarded, and the user may supply his own subroutine with any of the library subroutine
names: OVERFL, ERROR, etc. Such routines must be included using an INCLUDE control card at the time the
program is linked.

The standard library subroutines are described in the following paragraphs and summarized in Table 5-5.

• Arithmetic Overflow and Underflow Test (OVER FL)

l
The overflow check subroutine informs the programmer when the result of a computation is not within the
maximum or minimum magnitudes allowed for an integer, real, or double precision value. An overflow
indicator is set to indicate either an overflow or an underflow condition, or both. This indicator remains set
until it is reset. The actions the subroutine performs are:

Overflow

If a computed result exceeds the maximum magnitude allowed, the overflow indicator is set and the
computed result is set to the largest permitted value. Integer overflow is ignored and does not affect the
results of the OVER FL subroutine.

Underflow

If a nonzero result is less than the minimum magnitude allowed, the overflow indicator is set and the
result is set to 0.

The state of the overflow indicator is tested and reset by executing the OVERFL subroutine with the
following statement:

CALL OVERFL (i)

where:

Represents an integer*4 variable.

The variable is assigned a value of 1 if the test indicates an overflow condition, or if both an overflow and an
underflow condition exist. The value is 2 if the test indicates neither, or 3 if only an underflow condition is
detected.

The overflow indicator is automatically reset after execution of the OVERFL subroutine. Consequently,
repeating the test yields a result of 2. Note that overflow and underflow can be tested separately.

•

•

•

•

•

•

8193 Rev. 1

UP-NUMBER

•

SPERRY UNIVAC Operating System/3

Example:

r"C" FOR COMMENT

ATEMENT i
UMBER o FORTRAN

5 f 7 10

G

3

0

STATEMENT------~~-
20

(

cESS U

UPDATE LEVEL PAGE

30

The overflow subroutine is called and the value is returned in I. If either an overflow condition or both
an underflow and an overflow condition are found, I is set to 1 and the GO TO control statement
transfers control to statement 10. If neither condition is found, I is 2 and control is transferred to 20. If
only an underflow condition is found, I is 3 and statement 30 receives control for underflow processor.

Divide Check Subroutine (DVCHK)

The divide check subroutine can be used to determine if a division by 0 has occurred. If it has, the invalid
divide indicator is set, and the quotient is set to 0. The state of the indicator is tested and reset by the DVCH K
subroutine. The appropriate CALL statement is:

CALL DVCHK (i)

where:

Represents an integer*4 variable.

The integer variable is set to 1 if a division by 0 occurs; otherwise, it is 2.

Example:

CALL DVCHk(I)

Gi!J Tb (I o Z 0)

10 gT~P 27

5-15

8193 Rev. 1

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

If a division by O was attempted, i equals 1 and program control is transferred to statement 10;

otherwise, control goes to statement 20.

• Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition has occurred.
Control is transferred to this subroutine by executing the following statement:

CALL ERROR (i)

where:

Represents an integer*4 variable.

This integer*4 variable is set to 1 if a function error condition exists, or 2, if no error exists. A subsequent call
of the ERROR subroutine, prior to additional function references, always returns the value 2.

• Error Indicator Setting Subroutine (ERROR1)

This subroutine is used in conjunction with the ERROR subroutine; ERROR1 sets the function error indicator
tested by ERROR. The call for the ERROR1 standard library subroutine is:

CALL ERROR1

Example:

r"C• FOR COMMENT

ATEMENT -i
UMBE~ oFORTR,U~ STATEMENT--------

5 t: 7 10 20

i:

30 40

l----'----'---'--L--~·~·~_.1_~_i_~_,_~~L-J--'---'----'---'--'---'---'---L____l.__l_-'--'--~1__._.__.__,_~ _ _,__L__.L_.t___.__c--L_L_~~-'--'

t--'--'-' ~'--'---+--+l~~lR~1N~,--'-'--'-~'-'~'--'-'~'~I ~'--'---'-'~l____L__J____L_~_._~~~--'-__._~_L_-"----L i
I

5-16

•

•

•

•

•

•

8193 Rev. 1
UP-NUMBER

•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

In the example, the external function X RAY is written with a test for errors incorporated. When an
error is detected in the function subprogram, the ERROR1 subroutine is called and the function error
indicator is set. In the main program unit, a test is made of that indicator after the evaluation of the
XRAY function.

Indicator Setting Subroutine (SLITE)

The SLITE standard library routine sets or resets one or more of four indicators internal to the subroutine.
This subroutine is used with the SLITET subroutine which tests the indicators. The SLITE subroutine is
executed by using the statement:

CALL SLITE (e)

where:

e
Is an integer expression; its value determines the indicator settings made:

e = 0 resets all indicators.

e = 1, 2, 3, or 4 sets the corresponding indicator.

e = -1, -2, -3, or -4 resets the corresponding indicator.

Indicator Testing Subroutine (SLITET)

The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The SLITET subroutine is
executed by the statement.

CALL SLITET (e,i)

where:

e
Is an integer expression with a value corresponding to the sense indicator to be tested.

Is an integer*4 variable name returning the results of the indicator test.

After execution of the SLITET standard library subroutine, if the value of the integer variable is 1, the tested
indicator is set. If e is outside the range (1 ,,,;;; e,,,;;; 41. i is set to 2 and the indicator is not set. Execution of the
SLITET subroutine does not affect the indicator settings .

5-17

8193 Rev. 1
UP-NUMBER

Example:

10

SPERRY UNIVAC Operating System/3

STATEMENT~~~~~~--·

20

ALL SLI"TE(3)

CALL
. .
Gb ~b

.
•

UPDATE LEVEL PAGE

30

• Control Information Check (SSWTCH)

This standard library subroutine allows the FORTRAN programmer to check control information during
program execution. This control information is provided prior to execution on a //SET UPSI job control card
used in the operating system. The format of the appropriate CALL statement is:

CALL SSWTCH (e,i)

where:

e
Is an integer expression with a value of 1 through 4 representing a switch position.

Is an integer*4 variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1. If it is not set, the value is 2. Execution
of the SSWTCH subroutine does not alter the switch setting.

• Main Storage Dump (DUMP and PDUMP)

5-18

•

•

These dump subroutines cause a dump or listing of main storage assigned to the FORTRAN program. The •
subroutines are described in 9.3.

•

•

•

8193 Rev. 1
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Exit Subroutine (EXIT)

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
STOP statement (4.9).

• FETCH Subroutine

The FETCH subroutine loads an overlay phase but cannot be used to transfer control to a FORTRAN
subroutine or function. The transfer address of the overlay phase must specify a FORTRAN main program or
an assembly program which establishes its own cover. Processing in the calling program unit is not resumed.

The CALL statement has the format:

CALL FETCH (s)

where:

s
Is a phase name which must be a double precision variable containing a phase name.

If an error occurs during the attempt to load the overlay, termination and an informational message results.

Example:

r"C' FOR COMMENT

ATEMENT ~
UMBER o FORTRAN

5 f 7 10 20 30

1-.J.._J.___.l.__L_.__..+-=J.=£::::.L:B"""-=L"'"-l'IE=-, ...LtP~, R E J_sI1S 1I1 QtJ, g~-'-'A"'-M-'L, i=:,__L_~"---'-----'------'----'-_l._....J.-__l

D NAME/'-p <2i QJ 1 I
~~~~=i-~F=E~~~~"'~'~(D~,~N1~AM~~=-c+')~~L_L__L~_--L-J~-'-"~ 

• LOAD Subroutine 

The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the 
subprogram but is returned to the statement following the CALL statement requesting the overlay. If an error 
occurs during the attempt to load the overlay, termination and an informational message results. The format 

of the CALL statement is: 

CALL LOAD (s) 

where: 

s 
Is a phase name which is a double precision variable containing a phase name . 

5-19 



8193 Rev. 1 

UP-NUMBER 

Subroutine 

OVER FL 

DVCHK 

ERROR 

ERROR1 

SLITE 

SLITET 

SSWTCH 

DUMP 

PDUMP 

EXIT 

FETCH 

LOAD 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

5-20 

Table 5-5. Standard Library Subroutines • CALL Statement Format Use 

CALL OVER FL (i) Tests for overflow and underflow. 

CALL DVCHK (i) Tests for invalid division. 

CALL ERROR (i) Tests for function error conditions. 

CALL ERROR1 Sets the function error indicator. 

CALL SLITE (e) Sets the sense indicator(s) specified by e. 

CALL SLITET (e,i) Tests specified sense indicator. 

CALL SSWTCH (e,il Tests the binary switch specified bye and returns a value in i. 

CALL DUMP (I) Dumps main storage assigned to the program and terminates program. 

CALL PDUMP (I) Dumps main storage assigned to the program; program execution 
continues. 

CALL EXIT Terminates the program. 

CALL FETCH (s) Loads and transfers control to overlay specified by s. 

CALL LOAD (s) Loads subprogram overlays. 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

6. Specification Statements 

6.1. GENERAL 

Specification statements in the SPERRY UNIVAC Operating System/3 (OS/3) FORTRAN are nonexecutable 
statements used to describe program data and main storage allocation to the compiler. See fundamentals of 
FORTRAN programmer reference, UP-7536 (current version); these nonexecutable statements must be at the 
beginning of the program (Table 1-2). 

6.2. ARRAY DECLARATION 

An array is an ordered set of elements identified by a symbolic name and declared by an array declarator. An array 
may be declared in a DIMENSION statement, a COMMON statement, or in an explicit type statement. 

6.2.1. Array Declarator 

Format: 

where: 

v 

Description: 

Is a symbolic name identifying the array. 

Is a subscript consisting of an unsigned integer constant (or integer variable for adjustment dimensions). 
An integer variable used to declare an adjustable dimension must be a dummy argument; from one to 
three dimensions may be declared. 

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy 
argument, the array is a dummy array and the dimensions may be specified as integer variables. 

An array name XR RAY with 100 elements in three dimensions would be defined with the declarator: 

XRRAY (4,5,5) 

and the declarator: 

MRRAY (INX,INY) 

declares an array with adjustable dimensions. I NX and I NY are integer variables which define the size of the 
array when they are evaluated. 

6-1 



8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 6-2 
UPDATE LEVEL PAGE 

In the interest of efficiency, dummy arrays are processed at execution time in a special fashion. The procedure • 
prologue (5.5.1) saves the subscripts in dimension declarators from the argument list. The prologue then 
derives a partial solution to the equation used to locate array elements (Table 2-2). Thereafter, the subscript 
calculations in the body of the procedure can be performed with relative ease. A side effect of this technique, 
however, is that it is impossible to redeclare array dimensions within a procedure; in the example 

r•c• FOR COMMENT 

ATEMENT i 
UMBER oFORTRAH STATEMEHT--------ilJll>• 

5 f 7 10 20 30 

statell¥!nt 10 cannot be made to behave as though the declarator were X(10,5). 

6.3. DIMENSION STATEMENT 

Format: 

where: 

v(i) 

Is an array declarator. 

Description: 

40 

The DIMENSION specification statement provides a means of declaring any number of arrays. Both array 
names and dimensions are defined by the statement. 

6.4. TYPE STATEMENTS 

Two kinds of type statements can be used; the explicit type statements and the IMPLICIT type statement. In the 
absence of typing with these statements, symbolic names starting with the letters I, J, K, L, M, and N are considered 
to yield integer values (FORTRAN name rule); all others are considered to be real. Note that external function 
procedure names may also be typed with their definition statements (5.4.1.1 ). 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

6.4.1. Explicit Type Statements 

Format: 

where: 

t 

Is the type specification: INTEGER, REAL, or DOUBLE PRECISION. 

a 
Is a variable name, an array name, an array declarator, or a function name. 

A 6-3 
UPDATE LEVEL PAGE 

Is an optional length specification; this may not be specified if the type is DOUBLE PRECISION. 

Description: 

An explicit type specification statement defines the data type of a symbolic name. The length associated with 
the type (either implicitly or by the *S option) applies to all names in the list unless specifically overriden by a 
length specification for the individual name. 

Examples: 

30 

In the first explicit type statement, the variables A, B, and Care all typed as real*8 (or double precision) due 
to the length specification. The second specification statement types I, J. and K as 2-byte integer and 
additionally declares K as an array of 12 element:.. 

6.4.2. IMPLICIT Statement 

Format: 

where: 

t 

Is the type, specified as INTEGER, REAL, or DOUBLE PRECISION . 

*S 

Is the optional length specification; this may not be specified if the type is DOUBLE PRECISION. 



8193 Rev. 1 

UP-NUMBER 

a 

SPERRY UN IV AC Operating System/3 
UPDATE LEVEL PAGE 

Is a letter (A through Z and $) associated with the data type specified. The format of this specification 
may be either a string of letters with commas separating each (A,B,C, ... ), or it may be two letters 
separated by a hyphen (A - D) to specify a range of letters. 

Description: 

The IMPLICIT specification statement permits the user to specify his own implicit type conventions for each 
program unit. The IMPLICIT statement types symbolic names by the first letter of their names;$ is included 
as the last of the possible characters. 

If $ is to be included in a range specification, it must be last. The dollar sign indicates real data by the standard 
typing convention. 

Symbolic names which start with letters not covered by the IMPLICIT specification statement are typed 
according to the standard convention described in 2.3. Any implicit typing, whether standard or specified by 
the IMPLICIT statement, is superseded by explicit typing. 

IMPLICIT statements may be preceded in the program unit only by SUBROUTINE, FUNCTION, or BLOCK 
DATA declarations. The IMPLICIT statements affect the typing of all names in the program, excluding 
intrinsic and double precision standard library functions (Tables 5-3 and 5-4). See also Tables 1-2 and 2-1. 

Example: 

STATEMEHT~~~~~~--1~-

20 30 

1Mr'L1.CI1"' 

After processing the IMPLICIT statement in the example, symbolic names beginning with the letters of the 
character set are typed as follows: 

• A through Dare real*B because of the IMPLICIT specification statement . 

• Eis rea1*4 implicity and is unaffected by the IMPLICIT type statement . 

• Fis real*B because of the IMPLICIT statement . 

• G and Hare real*4, and I through Mare integer*4 implicitly . 

• N is integer*2 because of the specifications in the IMPLICIT statement . .. 0 and Pare real*4 implicitly. 

• Q is integer*2 because of the IMPLICIT statement . 

• R through Tare real*4 because of the standard implicit conventions . 

• U and V are integer*2 because of the IMPLICIT statement. 

6-4 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

• 

• 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Wis rea1*4 implicitly . 

X through Zand$ are integer*4 because of the IMPLICIT statement . 

6.5. EQUIVALENCE STATEMENT 

Format: 

where: 

k 

Description: 

Is a list of the form a
1 

,a
2

, ... ,am and each a is a variable name, an array element name, or an array name. 
Each name specified in the list shares assigned storage. 

The EQUIVALENCE specification statement permits sharing of a main storage unit by two or more entities 
specified within parentheses. The equivalence provided by the statement is in relation to the first or leftmost 
byte of the entities specified. Array declarators (in COMMON, DIMENSION, and type statements) must 
appear before the array element name is used in an EQUIVALENCE statement. 

Program execution time is increased whenever a variable which does not have a proper boundary alignment is 
referenced. To achieve proper alignment, a variable must have an assigned main storage address which is an 
integral multiple of its length. 

The first variable in each non-common EQUIVALENCE group is assigned a main storage address that is a 
multiple of 8. If erroneous boundaries are present in the equivalence group, the addresses in the group are 
increased successively by 2, 4, and 6 by the compiler in an attempt to correct the error. 

A variable with incorrect boundary alignment is recognized during compilation and a warning diagnostic is 
provided. When the program is linked, a library routine is provided which receives control when the hardware 
interrupt caused by a reference to a improperly aligned variable occurs. The subroutine repeats the instruction 
which caused the interrupt after moving the operand to the proper boundary. 

6.6. COMMON STATEMENT 

Format: 

where: 

x 

a 

Is an optional symbolic name identifying the COMMON block. 

Is a nonempty list of variable names, array names, or array declarators. No dummy arguments are 

permitted . 

6-5 



8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Description: 

The COMMON statement allows sharing of a common main storage area by different program units. When 
block names are specified, the compiler treats each block as a separate control section (CSECT) whose 
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the 
compiler uses a CSECT name which is not assigned by the programmer. It is the programmer's responsibility to 
ensure that every variable and array in COMMON has the proper boundary alignment. Boundary error recovery 
is provided in the same manner as for the EQUIVALANCE statement but address adjustments are not 
attempted by the compiler. 

Every named or blank COMMON block is assigned a main storage address that is a multiple of 8. Each 
COMMON variable or array is assured of proper alignment if it is placed in the block in descending lengths: 
double precision first, and then real and integer*4, and finally integer*2. 

6.7. EXTERNAL STATEMENT 

Format: 

where: 

v 
Is the name of an external function or subroutine. 

Description: 

When an external function or subroutine name is used as an actual argument to another procedure, the 
EXTERNAL specification statement must be used to identify these procedures. 

If an intrinsic or library function name appears in an EXTERNAL statement, that procedure is assumed to 
have been written by the user and no assumptions about its properties are made by the compiler. 

When the context of the FORTRAN program uniquely identifies a symbolic name to be a procedure name, the 
EXTERNAL specification statement is unnecessary: 

r•c• FOR COM"4ENT 

ATEMENT ~ 
UMBER o FORTRAN 

5 f 7 10 

I 0 C 

STATEMENT~~~~~~---1•• 

20 30. 

6-6 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

In the preceding example, no EXTERNAL statement is needed, but if statements 10 and 20 were reversed in 
sequence in the source program, the following statement would be needed: 

r"C" FOR COM'-IENT 

ATEMENT i 
UMBER o FORTRAN 

5 6 7 10 
STATEMENT-------

20 30 

6-7 



• 

• 

• 



• 

• 

8193 Rev. 1 

UP-NUMBER 

7.1. GENERAL 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

7. Input and Output 

This section describes the characteristics of the input/output {1/0) system and the SPERRY UNIVAC Operating 
System/3 (OS/3) FORTRAN statements required for input and output control; see also fundamentals of FORTRAN 
programmer reference, UP-7536 (current version). 

The FORTRAN input and output statements are READ and WRITE. These statements designate an 1/0 device and 
reference an 1/0 list; they may reference a FORMAT statement. The peripheral devices are assigned unit numbers 
within the user's system. The input and output devices which may be used are card readers and punches, printers, 
magnetic tape units and disc subsystems. 

7.2. INPUT/OUTPUT LIST 

The purpose of an 1/0 list is to identify variables, arrays, and array elements so that they may be transferred to and 
from external devices. The 1/0 list is an ordered set of items with the format: 

where: 

a 
Is one of the following: 

1. a simple 1/0 list which may be a variable, array element, or array name; 

2. two simple 1/0 lists separated by a comma; 

3. a simple I /0 list in parentheses; or 

4. a DO-implied list. 

7.2.1. DO-Implied Lists 

Format: 

(k,d) • 

7-1 



8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

where: 

k 

d 

Is an 1/0 list. 

Is a DO specification with the form: i = m
1 

,m
2

,m
3 

where the parameter interpretation is identical to the 

corresponding DO statement parameters (4.7). 

Description: 

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters. 

Example: 

( ( (AX(l ,J,K ),1=1,5),J=1,5),K=1,5) 

If the 3-level DO-implied list in the example is used in a WRITE statement, the group of 125 elements of the 
array AX are transferred to the specified external medium. The transfer would be to storage if the list were 
used in a READ statement. See 2.4.1 for the general expression used to determine the location of array 
elements. 

7.3. SEQUENTIAL FILES 

The use of the American National Standard FORTRAN 1/0 statements READ, WRITE, BACKSPACE, REWIND, 
and ENDFILE is defined in the following paragraphs. The FORMAT statement, used for editing values represented 
by character strings on the external media, is also described. 

Files referenced with the standard statements are always treated as sequential, even when they reside in disc storage. 

7.3.1. Unformatted 1/0 Statements 

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE 
statement exists as a single logical record for subsequent unformatted READ or BACKSPACE orders. The 
unformatted 1/0 statements are: 

WRITE (u) k 

READ (u [ {~~~} =11] [ER R=IJ) k 

where: 

u 

Is an integer*4 constant or variable designating an 1/0 device. 

EOF=1 1 
Is an optional specification with 11 denoting the label of the statement to receive control if an end-of-file 
condition occurs. 

END=l1 
Is a specification which may be substituted for EOF=l 1 . 

7-2 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 7-3 

UPDATE LEVEL PAGE 

ERR=12 

k 

Is an optional specification with 12 denoting the statement to receive control if an error condition 
occurs. 

Is an 1/0 list, which may be empty for a READ statement to indicate that a record is to be skipped. 

Description: 

The unformatted 1/0 statements initiate and control the transfer of unformatted data between a designated 
peripheral device and main storage. 

Unformatted 1/0 is designed for high efficiency data transfer, and consequently, no data conversion operations 
are performed; the variables exist on the external media in the forms specified in 2.2 and 2.3. Only minor 
input validity checking is performed in keeping with this emphasis on throughput. 

If the list for a WRITE statement consists of two integers followed by three double precision values, the only 
valid READ statements for that record are: 

READ (u) bypass the record 

READ (u) I 

READ (u) 1,1 

READ (u) 1,1,D 

READ (u) 1,1,D,D 

READ (u) 1,1,D,D,D 

Even more efficiency can be achieved by reducing a list to a single element. Compare the following program 
segments: 

•c• FOR COMMENT 

30 40 

0 

{ ID! u MM I y I ( I I I I I) ' BJ 

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater efficiency 
in the data transfer. 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

7.3.2. Formatted READ/WRITE Statements 

Formats: 

READ 

where: 

u 
Is an integer*4 constant or variable designating an input or output device. 

a 
Is a label of a FORMAT statement or the asterisk(*) character (7.3.6). 

EOF=l1 
Is an optional specification with 11 denoting the label of the statement ot receive control if an end-of-file 
condition occurs. 

END=1 1 
Is a specification which may be substituted for EOF=1 1• 

ERR=l2 , 
Is an optional specification with 12 denoting the statement to receive control if an error condition occurs. 

k 
Is an optional 1/0 list. 

Description: 

The formatted READ and WRITE statements initiate and control the transfer of formatted data between a 
designated peripheral device and ·main storage. Data is always converted from/to character strings on external 
media and the internal representations specified in 2.2 and 2.3. The presence of EOF=I or END=I indicates 
that if an end-of-file condition is encountered on input, the program is to branch to the label specified. EOF 
and END are interchangeable. 

7.3.3. 1/0 Compatibility Statements 

The following FORTRAN 11 statements are accepted by the compiler: 

READ a,k 

PUNCH a,k 

PRINT a,k 

where: 

a 
Is the statement label of a FORMAT statement or the asterisk(*) character (7.3.6). 

k 
Is an 1/0 list. 

No unit specification is made with these input/output statements because none is necessary; the compiler addresses 
the appropriate device in the user's system configuration. 

7-4 

• 

• 

• 



• 

• 

• 

• 8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

7.3.4. FORMAT Statement 

Format: 

where: 

a 

q 

t 

z 

Is the statement label of the FORMAT statement. 

Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement it 
signals end of a logical record. 

Is a field descriptor (7 .3.4.1) or a group of field descriptors specifying the data conversion or the action 
to be performed. 

Is a field separator (either a slash or a comma) required when more than one field descriptor is used. 
Commas are not required when they follow fields described by blank (wX). Hollerith (wHc

1 
c

2 
•.• cw) and 

literal ('c
1 

c
2 

... cn ')descriptors; slashes end a logical record. 

Description: 

The FORMAT statement specifies editing information used in transforming formatted data (character strings) 
from and to internal representations. The FORMAT descriptors are presented in the following paragraphs. 

Examples: 

"C" FOR COMMENT 

ATEMENT ~ 
UMBER 0 FORTRAN 

5 (; 7 10 
STATEMEHT~~~~~~--1 .... ~ 

20 30 

If referenced by a WRITE statement, the first FORMAT statement causes the transfer of the literal FIRST 
PAGE and provides an additional blank logical record. The second format statement skips three logical 
records, then describes a record with a 12-byte integer field, two blanks and another 12-byte integer field plus 
another blank record. 

7.3.4.1. Field Descriptors 

The field descriptors specify the kind of 1/0 data conversion or action to be executed. FORTRAN allows the 
descriptors listed in Table 7-1 . 

7-5 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Table 7-1. FORMAT Statement Field Descriptors 

Classification Field Descriptor 

Integer rlw 

Real (E conversion) srEw.d 

Real (F conversion) srFw.d 

Double precision srDw.d 

General srGw.d 

Hollerith (A conversion) rAw 

Hollerith (H conversion) wHc1c2 ... cw 

Hexadecimal rZw 

Literal 'c1c2 ... cn' 

Blank wX 

Record position Tp 

LEGEND: 

r = a repeat count, ~ 32767 

w =the field width,~ 255 

s = the scale factor nP (-128 ~ n ~ 127) 

d =decimal positions 

c = character 

p = character position in the external record (0 < p < 2551 

A 7-6 
UPDATE LEVEL PAGE 

The specifications within the field descriptors are explained in the following paragraphs and the input and output 
actions prescribed by the descriptors are described in 7 .3.4.1.1 through 7 .3.4.1.11. 

• Repeat Count 

• 

The repeat count allows a field descriptor to be repeated a maximum of 32,767 times and must be an unsigned 
integer constant. The field descriptor 513 is the same as 13,13,13,13,13. 

Field Width 

The field width specification is an unsigned integer constant indicating the number of character positions the 
data occupied (or will occupy) in the external medium. The specification must not exceed 255. 

• Scale Factor 

Input and output using the E, F, D, and G conversion codes can be scaled up or down (multiplied or divided) 
by the specified power of 10 when the scaling specification in the format nP is included in the field descriptor . 
A complete description is available in fundamentals of FORTRAN programmer reference, UP-7536 (current 
version). 

• 

• 

• 



• 

• 

• 

. 8193 Rev. 1 

UP-NUMBER 

• Decimal Positions 

SPERRY UNIVAC Operating System/3 A 7-7 
UPDATE LEVEL PAGE 

The specification describes the number of digits to the right of the decimal point; if none exist, a 0 must be 
specified. 

• Character 

Any character of the SPERRY UNIVAC 90/30 System character set is permissible. 

• Character Position 

See 7 .3.4.1.11. 

Field descriptors may be grouped by using parentheses. The left parenthesis may be preceded by a group repeat 
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting to 
three levels is permitted. The result of the basic group and repeat count 2(X,215,F20.0) is X, 15, 15, F20.0, X, 15, 15, ..,_ 
F20.0. 

7.3.4.1.1. Integer Descriptor (rlw) 

On input operations, if the value exceeds the range, only the least significant digits are stored (with the sign, if any). 
An integer, which consists of a signed integer constant where the positive sign is optional, may be preceded by or 
have embedded O's or blanks. Blanks are interpreted as O's. 

If the value exceeds the permissible range of ±32,768 for integer*2 or ±2, 147,483,647 for integer*4, the list element 
is defined to be the least significant 16 or 32 bits. 

On output, the external field is preceded by a minus sign if the value is negative and may be preceded by blanks, 
space permitting, if the value is positive. If the internal value cannot be converted into thew characters specified, the 
output field is set tow asterisks. 

7.3.4.1.2. Real Descriptor - E Conversion (srEw.d) 

On input, the external field consists of a string of digits optionally preceded by blanks or O's preceded by an 
optional sign. Blanks are interpreted as O's .. The digit string may specify a decimal point which overrides the d 
specification in the descriptor. The digit string may be followed by exponent notation E or D followed by an 
optionally signed integer constant. If the integer constant is signed, the E or D may be omitted. If the number of 
significant digits exceeds the precision of the list element, the value will be rounded to the correct size. If the value 
exceeds the range, the maximum value will be substituted. If the value is too small for the range, a 0 will be 
substituted. 

On output, the external field has the following format: 

where: 

Is the sign of the value, either blank or-. 

h 
Is a decimal digit. 



8193 Rev. 1 

UP-NUMBER 

ee 

SPERRY UNIVAC Operating System/3 

Is the sign of the exponent, either blank or -. 

Is the 2-digit exponent. 

Note the decimal point preceding the digits. 

UPDATE LEVEL PAGE 

For a complete representation of all values, the w specification should provide seven or more additional field 
positions than the d specification. 

The rules governing the output form when w is not at least 7 greater than d are: 

• If (w - d) is 6, the 0 character preceding the decimal point is deleted from the output form. 

• If (w - d) is 5 and the value is positive, both the s
1 

and the 0 characters preceding the decimal point are 
deleted from the output form. 

• If neither of these conditions holds, the entire field is set to asterisks. 

7.3.4.1.3. Real Descriptor - F Conversion (srfw.d) 

For input action, refer to the E conversion description (7.3.4.1.2). On output, the external field has the following 
format: 

where: 

s 
Is the sign of the value, either blank or -. 

Is a digit within the integer portion of the output value. 

f 
Is a digit within the fractional portion of the output value. 

Sufficient space must be provided for a minus sign if the value is negative. If the integer part of the value is positive 
(or 0), requiring more than (w - d -1) character positions, or is negative, requiring more than (w - d - 2) character 
positions for its representation, then the E conversion is used instead of F conversion. Where neither F nor E 
conversions suffice to represent the value, the entire field is set to asterisks. 

7.3.4.1.4. Double Precision Descriptor (srDw.d) 

For input action, refer to the E conversion description. On output, the external field has the following format: 

Refer to E conversion output (7.3.4.1.2). 

7-8 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

7.3.4.1.5. General Descriptor {srGw.d) 

UPDATE LEVEL PAGE 

This descriptor provides the capabilities of the I, D, E, and F conversion codes. During an input operation, this 
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion 
code is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D 
exponential form is selected for output. The G descriptor may also be used to transfer integer and double precision 
data fields. For double precision data, the G descriptor is, in effect, the same as a D descriptor. For integer data, the 
G descriptor is interpreted as an I descriptor. The d editing information in the format may be omitted when 
transferring integer data; it is ignored when present. 

7.3.4.1.6. Hollerith Descriptor - A Conversion {rAw) 

This descriptor requires a corresponding variable name in the 1/0 list. The maximum number of characters that can 
be transmitted to a variable is equal to the length, in bytes, of the variable. A data field is transferred between 
storage and an external device according to the following rules: 

• On input, if the descriptor specifies fewer than the maximum number of characters, the data field is 
transferred to main storage and left-justified; blanks are inserted in the remaining storage positions. If the 
descriptor specifies more than the maximum number of characters, only the rightmost characters of the data 
field are transferred to main storage. The remaining characters are skipped. 

• On output, if the descriptor specifies fewer characters than can be represented in the variable type, the 
leftmost characters of the data field are transferred from main storage. If the descriptor specifies more 
characters than can be represented in the variable type, the data field, right-justified and preceded by blanks, is 
transferred from main storage to the external field . 

7.3.4.1.7. Hollerith Descriptor - H Conversion {wHc1c2 ... cw) 

On input, the next w characters transferred from the external device replace the current Hollerith data specified in 
the FORMAT statement. On output, the Hollerith data currently contained in the FORMAT statement is transferred 

to an external device. 

7.3.4.1.8. Hexadecimal Descriptor {rZw) 

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item. 
The number of digits associated with the data types are: 

Type Hexadecimal Digits 

integer*2 4 

integer*4 8 

rea1*4 8 

double precision 16 

On input, the hexadecimal digits are stored two to a byte, right-justified and zero filled . 

On output, the hexadecimal value is stored in the output field with preceding blanks. 

7-9 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

7.3.4.1.9. Literal Descriptor ('c1 c2 ... c0 
') 

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or 
written from the literal data in the FORMAT statement. It is not necessary to specify an external field width. No 
1/0 list item in a READ or WRITE statement is associated with this form of alphanumeric transmission. If an 
apostrophe is required in a Hollerith string, two successive apostrophes must be specified. For example, the 
characters DON'T are represented as 'DON"T'. The effect of the literal format code depends on whether it is used 
with an input or an output statement. 

• Input 

The characters in the external field replace the literal data in the FORMAT specification in main storage. All 
characters are read exactly as they appear between the outermost apostrophes. All inner apostrophes are 
included in the count. For example, the FORMAT descriptor 'DON"T' causes the next six characters to be 
input. Each apostrophe in the input data field is treated as a separate character. 

• Output 

All characters, including blanks, within the apostrophes are written as part of the output data. The descriptor 
'DON"T' causes the five characters DON'T to be output. 

For example, execution of the WRITE statement causes the following line to be printed: THESE ARE 
SAMPLE PROBLEMS. 

•c• FOR COMMENT 

ATEMENT i 
UMBER 0 FORT RAH 

5 i: 7 10 20 30 40 

7-10 

• 

• 
10 A E SAMPLE PR L E:M$ I) 

7.3.4.1.10. Blank Descriptor (wX) 

This descriptor omits the next w consecutive characters on input or output. Output records are blank filled at the 
time they are started. 

7 .3.4.1.11. Record Position Descriptor (T p) 

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may 
begin at any position by using the Tp descriptor. The value of p represents the start position. 

For example, the format specification (T7, 13HEMPLOYEELINAME,T100,9HTELEPHONE,T40, 12HHOMELI 
ADDRESS) causes record positions not specified in the field specification to be filled with blanks. However, for 
print records, the position specified becomes print column t-1, because the first character of a print record :s 
interpreted as the carriage control character (Table 7-2) which is not printed. Thus, a print record for the format 
shown in the example would be: 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

The following statements cause the ten characters starting from position 20 of the record to be converted according 
to the F10.3 code and stored in Y, and the five characters starting from position 1 to be converted according to the 
F5.1 specification and stored in B. 

"C" FOR COMMENT rTEMENT ~ 
UMBER oFORTRAN 

5 6 7 10 20 30 
STATEMENT-

READ (3 B 

7.3.4.2. Multiple Record Format Specification 

The slash is both a record delimiter and a field separator. If a list of field specifications is followed by a slash, the 
remainder of the record being edited is ignored on input or remains filled with spaces on output. Any editing codes 
following the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also a 
record delimiter if 1/0 list elements of the corresponding statement remain at the time it is scanned. 

7 .3.4.3. Carriage Control Conventions 

The first position of a printer output record does not print, but determines the action of the printer carriage. The 
action executed for a given carriage control character is described in Table 7-2. 

Table 7-2. Carriage Control Conventions 

Character Meaning 

0 2-line advance 

+ No advance 

1 Skip to top of next page 

any other character, 1-line advance 
including blank 

NOTE: 

All actions take place before printing. 

7.3.4.4. Format Interaction With the 1/0 List 

During the execution of an 1/0 statement, the FORMAT specification is scanned from left to right. Editing codes of 
the form wH, 'h ... h ', wX, and Tp as well as slashes are interpreted and acted upon without reference to the 1/0 

1 n 
list. When any other editing code is encountered, one of two possible action is taken: if a list element remains to be 
transmitted, it is converted and transmitted, and the FORMAT scan continues; or if no list elements remain, both 
the current external record and the READ or WRITE statement are terminated. 

7-11 



SPERRY UNIVAC Operating System/3 7-12 8193 Rev, 1 
UP-NUMBER UPDATE LEVEL PAGE 

~-'-~~~~~~~~~~~~~~~~~~~~~~~~-'-~~~~-'-~~~~~ 

A maximum of three levels of parentheses is permitted in a FORMAT statement: 

label FORMAT( .. ( .. ( .. ) .. ) .. ( .. ( .. ) .. ) .. ) 
1233223321 

When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record is 
started and one of two possible actions is taken: if level 2 parenthetical groupings exist, the FORMAT scan is 
resumed at the repeat count preceding the rightmost level 2 grouping; or the scan is resumed at the beginning of the 
FORMAT. 

7 .3.5. Reread 

Format 

READ (u,a) k 

where: 

u 
Is a constant, or an integer*4 variable, designating the reread unit. 

a 
Is the statement label of a FORMAT statement. 

k 
Is an 1/0 list. 

Description: 

The reread form of the READ statement allows the previous record transferred to main storage to be reedited 
using a different FORMAT statement. This order neither selects nor initiates action on a peripheral device. 

The FORTRAN library contains a unit table which associates unit numbers with files. In this discussion, it is 
assumed that unit 29 has been associated with the reread feature; actually any one or more units can be so 
designated. 

The reread feature is used when the program must determine the kind of information in a record. For instance, 
both header and detail records may be intermixed and each kind of record may require different editing 
information in a FORMAT statement. After a READ order transfers a record to main storage, the record is 
identified by the program. If the correct format was applied, the program performs the necessary action on the 
data; if not, the program may execute a 

READ (29,label) list 

in conjunction with the desired FORMAT statement. 

If an EOF label is specified and the previous read encountered an end of file, control is returned to the 
specified label. The reread may not, logically, follow a WRITE, BACKSPACE, REWIND, or ENDFILE 
statement. An unformatted record may not be reread. 

• 

• 

• 



• 

• 

• 

8193Rev.1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 1-13 

UPDATE LEVEL PAGE 

7.3.6. List-Directed 1/0 

List-directed 1/0 statements are identical in concept to formatted READ and WRITE statements except for the lack 
of a specific FORMAT statement reference. 

They are distinguished from other statements by the presence of the asterisk ( *) character in place of the format 
reference, such as in: 

READ(10,*,END=30) A,B,C 

These statements initiate and control the transfer of formatted data between a designated unit and main storage. 
Format control is provided by the FORTRAN system based on the type of the list items and the record length 
associated with the unit. 

When preparing input data, the programmer must ensure that it conforms to the requirements of the list-directed 
formats, specifically in regard to the use of the comma, slash, and blank characters. List-directed output records are 
acceptable as list-directed input. 

7 .3.6.1. List-Directed Data Format 

• Input 

An input record consists of a list of constants, each demarcated by a separator. Separators are the characters: 

blank (or a series of blanks) 

comma (preceded and followed by zero or more blanks) 

end-of-record 

slash (preceded by zero or more blanks) 

Since the blank is considered a separator, no embedded blanks may appear in arithmetic constants; blank, 
comma, or slash may appear-within a literal constant enclosed within apostrophes, and end-of-record forces a 
read of the next sequential record. For card input, end-of-record is determined by the fixed length of 80 
positions. For other input, such as tape or disc, the length specification given at the time the record was 
written is the determining factor. The slash separator ·causes termination of the READ statement. Real 
constants must be associated with real list items; integer and literal constants may have any association. The 
exponent identifiers E and D are considered equivalent. A repeat count may precede a constant using the 
form: 

r*constant 

Two or more consecutive comma separators (with any number of blanks or end-of-records intervening) 
indicates that the corresponding list items are not to be redefined. Multiple numbers of these "null items" may 
be indicated by: 

(separator)r* (separator) 

Example: 

30 

1-1 I 



8193 Rev. 1 

UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 

12 14 / 

17.23961727, 12, 2*, 'HE"S' 

After the READ is executed, the values of the list items will be: 

A 17 .2396 (or 17 .23961727 if real *8) 

B 12.0 

C,D unchanged 

E HE'S 

F 12 

G 14 

H,I unchanged 

Output 

7-14 
UPDATE LEVEL PAGE 

• 

The output records will consist of a list of INTEGER and REAL constants, each separated by a comma. 
Output records will never contain repeat items (r*constant) or literals. The maximum precision commensurate • 
with the list item will be represented. The format codes assumed are: 

G20.11 for REAL*8 

G16.7 for REAL*4 

116 for INTEGER 

7.3.7. Auxiliary 1/0 Statements 

Auxiliary 1/0 statements control the demarcation of files and the positioning of files to desired points of reference. 

7.3.7.1. REWIND Statement 

Format: 

REWIND u 

where: 

u 
Represents an integer*4 constant or variable designating a sequential file on tape or disc. • Description: 

The REWIND statement positions the file at a point immediately preceding the first record. 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

7.3.7.2. BACKSPACE Statement 

Format: 

BACKSPACE u 

where: 

u 
Is an integer*4 constant or variable designating a sequential file on tape. 

Description: 

The BACKSPACE statement activates the designated unit and causes a backspace of one record. 

A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered during 
format control, or the last parenthesis encountered in the format when other list items exist in the 
corresponding READ or WRITE statement. This statement should be used carefully when the file was written 
with list-directed 1/0. 

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE 
statement has no effect if the file associated with a unit is currently positioned immediately preceding the first 
record. 

NOTE: 

Restrictions for the BACKSPACE statement are shown in 10.3. 

7.3.7.3. ENDFILE Statement 

Format: 

ENDFILE u 

where: 

u 
Is an integer*4 constant or variable designating an output device. The unit must specify card, tape, or 
sequemial disk output files. 

Description: 

The ENDF I LE statement terminates the file associated with the specified unit. 

The ENDFILE statement writes file trailer labels based upon the last data transfer. If the last data transfer was 
a READ, no labels are written. If the last data transfer was a WRITE, file trailer labels are written and the tape 
is repositioned to a point between the last data block and the tapemark. SACKSPACE is not considered a data 
transfer - the processing mode is unaffected. The REWIND command sets the processing mode to WRITE 

following its repositioning operation . 

7.3.8. Sequential File Considerations 

The 1/0 statements may not be executed in arbitrary sequences. Table 7-3 shows instances where specific 
commands are prohibited or ignored. 

7-15 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Table 7-3. Ignored and Prohibited Operations Versus Specific Commands 

Current Operation 

Previous Operation READ WRITE ENDFILE BACKSPACE 

READ I 

READ after 
EOF 
encountered p p p 

WRITE p 

ENDFILE p p p 

BACKSPACE 

REWIND I 
(warning) 

I 
None (warning) 

LEGEND: 

I - Indicates an ignored operation. 

P - Indicates a prohibited operation. 

UPDATE LEVEL PAGE 

REWIND 

I 

I 

I 

Further, not all operations are permitted on all devices. Table 7.,_4 shows prohibited combinations. 

Table 7-4. Ignored and Prohibited Operations Versus File Type 

Operation 

File Type RE;AD WRITE ENDFILE BACKSPACE REWIND 

Tape * * 

Disk * * p 

Card reader p p p p 

Card punch p p p 

Printer p p p . 
Reread p p p p 

LEGEND: 

* - These operations may be prohibited when the files are defined as input only or output only. See 
11.2 for further details. 

P - Indicates a prohibited operation. 

Finally, unformatted operations are prohibited with units designating the card reader, printer, card punch, or 
reread. Formatted and unformatted records can be intermixed freely on output tape and disk files, but it is a user 
responsibility to read these records in the same mode as they were written. 

7-16 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

7.4. DIRECT ACCESS FILES 

FORTRAN direct access statements are used to control disk subsystems. The term "direct access" refers to the 
ability of the disk to directly access a specified record of a file without accessing all preceding records. 

Files can be maintained on the disk storage as sequential files in the same manner as for magnetic tape units 
without using the direct accessing capability of the disk storage. For such files, the only statements required are 
the sequential 1/0 statements described in 7.3. For direct access (random) files, the DEFINE FILE statement 
identifies and describes its characteristics. A FIND statement causes positioning of an accessing head and, if 
executed earlier in the program prior to a READ statement, eliminates much of the delay caused by the 
mechanical movement of the accessing head, since the positioning operation is concurrent with program 
operation. The direct access 1/0 statements may transmit either formatted or unformatted data. 

7.4.1. DEFINE FILE Statement 

Format: 

where: 

u 

m 

x 

y 

Is a file identifier, an integer constant specifying a file or unit reference number. 

Is an integer constant:'( 65535 specifying the number of records in the file . 

Is an integer constant specifying the maximum size of the record in the file in terms of characters 
{bytes), main storage locations (bytes), or main storage units, depending on the designation chosen for x. 

Is one of three possible code letters to indicate the interpretation of m. 

Is an unsubscripted integer*4 variable, known as the associated variable of the file. After execution of a 
READ or WRITE statement, the variable is assigned a value in the range 1 :'( v :'( r indicating the 
sequential position of the next record in the file; after execution of a FI ND statement, it is assigned a 
value indicating the position of the desired record. 

Description: 

A DEFINE FILE statement is executable and dynamically describes one or more files which may be 

referenced during program execution. 

At the start of execution of a FORTRAN program, all direct access units are considered to be undefined, and 
no READ, WRITE, or FIND references are permitted. When a DEFINE FILE is executed, the characteristics 
of one or more units are registered with the system. Thereafter, further definitions of previously defined units 
are ignored . 

7-17 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

One of the following three letters must be placed in the position designated by x: 

L 

E 

u 

Transfer data as either formatted or unformatted; record size (m) designates bytes. 

Transfer formatted data; record size (m) designates characters (bytes). 

Transfer unformatted data; record size (m) designates main storage units (4-byte words). To calculate 
the record size in storage units, determine the total number of bytes required for all the items of the 1/0 
list and divide this total by 4. If the quotient contains a remainder, round off the result to the next 

highest integer. 

Example: 

30 

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size is 

7-18 

• 

specified in bytes. If the 1/0 statement contains a reference to a format, 120 bytes of formatted data is • 
transferred; if not, unformatted data is transferred. File 5 contains 98 records of 80 bytes each. 

7.4.2. Disk READ Statement 

Format: 

READ (u' record position,fmt,END=I) k 

where: 

u 

Is a file identifier represented by an integer*4 constant or variable followed by an apostrophe. 

record position 

fmt 

k 

Is an integer expression designating the position of the record in the file. 

Is an optional specification indicating the label of a FORMAT statement, or it may be the asterisk ( *) 

character. 

Is the label of a statement to which control is to be transferred when the record position is outside the 
file boundaries. EOF and ERR are considered equivalent to END; the entire specification is optional. 

Is an 1/0 list. • 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Example: 

40 50 

The tenth record in file 3 is transferred to main storage when the READ statement is first executed. Each 
subsequent execution of the READ statement order transfers the next record in the file to main storage. The 
descriptor 32F16.4 indicates that each unit of data consists of 16 bytes and 32 such units of data are to be 
transferred. Thus, the 512 bytes (16 x 32) of the record are transferred to main storage. 

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT 
statement in the example were: 

FORMAT (//32F16.4) 

the first execution of the READ statement would transfer the third record in the file; the second execution 
would transfer the sixth record. 

7.4.3. Disk WRITE Statement 

Format: 

WRITE (f' r,fmt) k 

where: 

f 
Is a file identifier represented by an integer*4 constant or variable followed by an apostrophe. 

r 
Is an integer expression designating the position of the record in the file. 

fmt 
Is an optional FORMAT statement label or it may be the asterisk ( *) character. 

k 
Is an 1/0 list . 

7-19 



8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Example: 

30 

Thirty-five bytes (8 + 12 + 15) are transferred from storage to the third record in the file. The format 
specification indicates the number of bytes for the integer, real, and double precision information transferred. 
If the WRITE statement does not specify a format label, an unformatted WRITE is executed. In this case, 16 
bytes are transferred. 

Variable Name Type 
Number of 

Bytes 

1. Integer 4 

R Real 4 

D Double Precision 8 

16 total 

7.4.4. Disk FIND Statement 

Format: 

FIND{f' r) 

where: 

f 

Is a file identifier represented by an integer*4 constant or variable and followed by an apostrophe. 

Is an integer expression designating the position of a record in the file. 

7-20 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Description: 

The FIND statement can decrease the time required to execute an object program requiring records from disk. 
This statement positions the access arms to a disk track address specified by a file identifier and record 
number. During the time the arms are being positioned, execution of the object program can continue. After 
positioning, a READ statement accessing the record addressed in the FIND statement may be executed, and 
the record is transferred to main storage; thus, data transfer is completed more quickly when the arms are 
pre-positioned to a required track address prior to the execution of a READ statement. 

Example: 

STATEMENT~~~~~~--~ 

20 30 

FINi 

This example shows the relationship between a READ statement and a FIND statement. While the access arms 
are being positioned, the statements between the FIND statement and the READ statement are executed . 

7-21 



----~~-------------

• 

• 

• 



• 
8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

8. Data Initialization 

8.1. GENERAL 

Data initialization as it applies to SPERRY UNIVAC Operating System/3 (OS/3) FORTRAN is described in this 
section; for more general information, refer to fundamentals of FORTRAN programmer reference, UP-7536 (current 
version). 

8.2. DATA STATEMENT 

Format: 

DATA k1/h1/,k2/h2/, ... ,k/hn I 

• where: 

• 

k 

h 

Is a list of variable names, array names, and array element names (with constant subscripts). 

Is a list of constants, any of which may be preceded by r* to specify a repeat count, where r is an 
unsigned integer constant; items in the list are separated by commas. 

Description: 

The DATA statement initializes values represented by a variable, an array, or specified array elements. None of 
these items should be in blank COMMON; they should be in labeled COMMON only if the DATA statement 
appears in a BLOCK DATA subprogram. A DATA statement must appear after any declarative (e.g .. 
COMMON, DIMENSION, or type) affecting the variables to be initialized. 

There must be a basic correspondence of type and a one-to-one correspondence of items between the variable 
and constant lists. The following relaxations to these rules are permitted: 

• Real*4 and real*B constants and variables may be intermixed freely. If a real*B constant is associated 
with a rea1*4 variable, the least significant digits are truncated; if a rea1*4 constant is associated with a 
real*B variable, it is padded with O's in the least significant digits. 

• Hollerith, literal, and hexadecimal constants may be associated with any variable type . 

• If an array name appears as the last item in the variable list, the constant list is not required to 
completely fill the array. An array element name specifies only one constant value. 

8-1 



8193Rev.1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

8.3. BLOCK DATA SUBPROGRAM 

A block data subprogram is an independently compiled specification subprogram. It is used to initialize values in 
labeled common blocks. The subprogram may contain only DATA, EQUIVALENCE, COMMON, DIMENSION, 
type, and IMPLICIT statements. The block data subprogram is headed by the BLOCK DATA statement. The order 
of statements is governed by the rules explained in Table 1-2. 

8.3.1. BLOCK DAT A Statement 

Format: 

BLOCK DATA [s] 

where: 

s 
Is the name assigned to the block data subprogram. 

Description: 

The BLOCK DATA statement is optionally used to name a block data subprogram. When used, it must be the 
first statement present in the block data subprogram. When more than one block data subprogram is being 
compiled in a single job, each block data subprogram should be assigned a unique name so that they are all 
accessible to the linkage editor and librarian. Any block data subprogram compiled without the specification is 
assigned the name $BLOCK by default. Therefore, only the last block data subprogram compiled is accessible 
to the linkage editor and librarian when multiple block data subprograms are compiled in a single job without 
using unique names. 

8-2 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMB EA 

9.1. GENERAL 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

9. Debugging 

The SPERRY UNIVAC Operating System/2 (OS/3) FORTRAN compiler and library provide localized and specific 
diagnostics for syntax, argument, and 1/0 errors, In addition, debugging aids may be inserted into the source 

program to obtain label trace, subscript checking, conditional compilation, and storage dumps. 

9.2. LABEL TRACE 

The compiler enables the user to trace program flow by displaying the labels of executable statements as they 
are encountered during program execution when trace region parameters, the TRACE ON statement, and the 

TRACE OFF statement are used . 

9.2.1. Trace Region Parameters 

Format: 

II PARAM TRACE= ALL 

where: 

ALL 
Specifies the entire program unit as a trace region. 

When TRACE = ALL is specified, all labels in all subprograms to be compiled are traced. The TRACE ON 
statement (9.2.2) must have been executed before trace output can be initiated . 

9-1 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Example: 

r•c• FOR COMMENT 

ATEMENT ~ 
UMBER o FORTRAN 

5 t: 7 10 

II 

20 

:: A l L 

In the example, labels 5, 9999, and 17 will appear in the TRACE listing. 

UPDATE LEVEL PAGE 

30 40 

All the labels of executed FORTRAN statements beginning with the statement labeled 5 and ending with the 
statement labeled 17 are displayed if a TRACE ON statement is encountered in the program. 

9.2.2. TRACE ON Statement 

Format: 

TRACE ON 

Description: 

The TRACE ON is an executable statement which enables the display of trace regions subsequently 
encountered during program execution. This statement must be present if trace information is to be displayed. 
It is ignored if no TRACE parameter is present. 

Examples: 

10 

9.2.3. TRACE OFF Statement 

Format: 

TRACE OFF 

Description: 

The TRACE OFF statement disables the display of label trace information until such time as another TRACE 
ON statement is executed. This permits the user to control the amount of trace information generated. The 
statement is treated as a CONTINUE if no TRACE parameter is present. 

9-2 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

Examples: 

"C" FOR COMMENT rTEMENT i 
UMBER o FORTRAN 

5 f 7 10 20 

-1.2.7. 

9.2.4. Trace Display 

When a TRACE ON statement is executed, the line 

program-unit-name TRACE LINE nnnnn ENABLED 

UPDATE LEVEL PAGE 

30 

is displayed, indicating that the TRACE ON statement at line nnnnn of the source program was executed. In a 
similar fashion, 

program-unit-name TRACE LINE nnnnn DISABLED 

is generated for a TRACE OFF statement. When a label in a trace region is encountered, the message 

program-unit-name TRACE LABEL nnnnn 

is generated immediately prior to the execution of the statement. The program-unit-name is $MAIN for a main 
program, or is the FORTRAN subroutine or function name; it is shown only for the first messages generated for a 

given procedure. 

9.3. FORMATTED MAIN STORAGE DUMPS 

Format: 

where: 

n 
Is either DUMP or PDUMP. 

u 
Is a variable or array element name which indicates the upper address boundary for the display. 

Is a variable or array element name which indicates the lower address boundary for the display. 

f 
Is an integer constant indicating the desired interpretation of the storage area. 

9-3 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

The u and I specifications may be interchanged; their positions in the CALL statement do not influence the dump . 

The codes used for the format specification are: 

f Display Interpretation 

0 hexadecimal 

3 integer*2 

4 integer*4 

5 real*4 

6 real*8 

9 literal 

The output of these subroutines is directed to the printer. The TRACE listing is double spaced, and a 120-character 
print line is required. For values other than those listed, f is treated as hexadecimal. The DUMP subroutine 
terminates the program after it is executed; PDUMP returns control to the first executable statement following the 
CALL. 

An argument list must be present for DUMP or PDUMP. 

9.4. CONDITIONAL COMPILATION 

A statement may be optionally selected for compilation by inserting an X in position 1 of the statement line (see 
example). If the statement extends beyond one line the character X must also appear in position 1 of all the 
continuation lines. Statements with. X in column 1 but without the parameter option activated are treated as 
comment lines. 

Example: 

"C" FOR COMMENT rTEMENT ~ 
UMBER o FORTRAN 

5 f 7 10 20 30 

This capability is provided for printing intermediate results when debugging a program. When debugging is 
complete, the statements can remain as they are in the source program to be used again as necessary. (Refer to 
Section 11 for specifying the X parameter during compilation.) 

9-4 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

9.5. SUBSCRIPT CHECKING 

UPDATE LEVEL PAGE 

The compiler evaluates array element addresses without regard to the values of the variables used as subscripts. Thus, 
erroneous subscripts could result in storage accesses outside the bounds of an array. The compiler can, however, be 
forced to generate code which checks the final array element address to ensure the array boundaries are not violated. 
The parameter used to generate code for subscript checking is: 

II PARAM SUBCHK =ALL 

where: 

ALL 
Specifies that all array element addresses are to be checked. 

Since the subscript checking feature is time consuming, it should be used for program debugging and not in 
production programs . 

9-5 



• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

10. 

10.1. SYSTEM PROVISIONS 

UPDATE LEVEL PAGE 

1/0 Configuration 

Every executable program must contain an input/output control module. A simple module is provided with the 
FORTRAN system. If necessary you may generate more complex modules. 

10-1 

The object module FP$10 is provided in the system object library and is automatically included in the executable ~ 
program by the linkage editor, unless you specifically include another 1/0 module. The module provided supports 
the following unit numbers: 

1 - Card reader (GETCS) 

3 - 120 character printer (plus a single-carriage control character) 

5 - Equivalent to unit 1 

6 - Equivalent to unit 3 

29 - Reread unit 

The LFD name FORT03 is required for the printer. 

10.2. CONFIGURING AN 1/0 CONTROL MODULE 

An 1/0 control module may be configured using an assembler language source module which contains only the 
following statements: 

LABEL f'iOPERATIONf'i OPERAND 
10 16 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 10-2 

UPDATE LEVEL PAGE 

START is always the first directive. The name is the name which will be assigned to the generated object module. • 
This name must be used on the linkage editor I NC LU DE statement when specifically including the 1/0 module. 

t 

FUNTAB, FUNEND and END are always required and must be in the sequence shown. Each UNIT macro 
instruction defines a single file corresponding to a FORTRAN unit number. 

The following file types may be defined: 

• Printer 

• Card reader (GETCS) 

• Card punch 

• Magnetic tape 

• Sequential disk file 

• Direct access disk file 

• Reread unit 

• Equivalent file 

The following is a sample of the assembler data for an 1/0 configuration: 

LABEL OOPERATIONli OPERAND COMMENT 
10 16 

10.3. UNIT MACRO INSTRUCTION FORMATS AND PARAMETERS 

The hardware configuration is the only limitation on the number and types of files that may be defined. However, 
only one card reader unit may be defined and at least one printer is required for routine diagnostics. Each file 
definition consists of a UNIT macro instruction and the necessary keyword parameters specifying the file 
characteristics. Every file required for the execution of your job must be defined in this way. The following 
paragraphs describe the keyword parameters that may be used with the UNIT macro instruction that defines• 
each type of file. 

• 

• 



• 

• 

• 

. 8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

10.3.1. Card Reader Definition 

Only one spooled card input file is permitted for a given application. 

Format: 

1 10 

UNIT 

FDEVICE Keyword Parameter: 

FDEVICE=SPOOLIN 

16 

FDEVICE=SPOOLIN,FUNIT=k 
[ ,FRECSIZE=k] 

Specifies that this is a spooled card input file. 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number. 

FRECSIZE Keyword Parameter: 

FRECSIZE=k 
Specifies that the record size is 1-128 bytes . 

10.3.2. Printer File Definition 

At least one printer file must be defined. 

Format: 

1 10 

UNIT 

FDEVICE Keyword Parameter: 

FDEVICE=PRINTER 

16 

FDEVICE=PRINTER,FUNIT=k 
[,FNUMBUF=2] [,FRECSIZE=k] 

Specifies that this is a printer file. 

FUNIT Keyword Parameter: 

FUNIT=k 

A 
UPDATE LEVEL PAGE 

Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

10-3 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 A 

UPDATE LEVEL PAGE 

t 

FNUMBUF Ke~ord Parameter: 

FNUMBUF=2 
Optionally allocates two unique buffers to the unit for faster performance. In the absence of this 
specification, all 1/0 is performed in demand mode. 

FRECSIZE Keyword Parameter: 

FRECSIZE=k 
Specifies the record size in bytes. The default is 121, which will accommodate a 120-position printer 
with a carriage control character. 

10.3.3. Card Punch Definition 

The card punch or the 8413 diskette output file is described by the following UNIT macro instruction. 

Format: 

1 10 

UNIT 

FDEVICE Keyword Parameter: 

FDEVICE=CARDOUT 

16 

FDEVICE=CARDOUT,FUNIT=k 
[,FNUMBUF=2] [,FCRDERR=RETRY] 

[,FRECSIZE=k] 

Specifies that this is a single card or 8413 diskette output file. 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

FNUMBUF Keyword Parameter: 

FNUMBUF=2 
Optionally allocates two unique buffers to the unit for faster performance. In the absence of this 
specification, all 1/0 is performed in demand mode. 

FCRDERR Keyword Parameter: 

FCRDERR=RETRY 
Causes the inclusion of optional device error recovery procedures. If omitted or if recovery fails on 
retry, the program is terminated when a device error occurs. 

FRECSIZE Keyword Parameter: 

FRECSIZE=k 
Specifies that the record size is 1-128 bytes. 

10-4" 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

10.3.4. Tape File Definition 

Each tape file required for the execution of your job must be described by the following UNIT macro instruction. 
Records must be variable length and unblocked. 

Format: 

1 10 

UNIT 

FDEVICE Keyword Parameter: 

FDEVICE=TAPE 

16 

FDEVICE=TAPE, FUNIT=k 

[ ,FTYPEFLE= { ~i:UT} J [,FNUMBUF=2] 

[,FBKSZ=k] [,FBKNO=YES] [,FERROPT= {~~~~RE} J 
[ ,FFILABL= {~~D} J [,FCKPT=YES] [,FOPTION=YES] 

Specifies that this is a tape file . 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

FTYPEFLE Keyword Parameter: 

FTYPEFLE=INPUT 
Specifies an input file. If specified, the BACKSPACE command cannot be issued to this unit. 

FTYPEFLE=OUTPUT 
Specifies an output file. If specified, the BACKSPACE command cannot be issued to this unit. 

FTYPEFLE=WORK 
Specifies a work file and should be specified if the tape is to be read and written. 

FNUMBUF Keyword Parameter: 

FNUMBUF=2 
Optionally allocates two unique buffers to the unit for faster performance. In the absence of this 
specification, all 1/0 is performed in demand mode. If specified, the BACKSPACE command cannot 
be issued to this unit . 

10-5 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

t 
FBKSZ Keyword Parameter: 

FBKSZ=k 
Specifies the block size for variable-length unblocked records. The formula for a tape file is: 

18.LE.k.LE.32767 

The default value is 263. 

FBKNO Keyword Parameter: 

FBKNO=YES 
Causes optional tape block numbers to be written on output and checked on input. 

FERROPT Keyword Parameter: 

FERROPT=IGNORE 
Specifies that, when parity errors occur or improper lengths are detected on an input data block, the 
block is to be processed as valid. 

FERROPT=SKIP 
Specifies that an erroneous record is to be bypassed and the next block is to be read. 

If omitted, the system terminates the program when parity errors occur. 

FFILABL Keyword Parameter: 

FFILABL=NO 
Specifies that the tape file is unlabeled. 

FFILABL=STD 
Specifies that the tape file contains system standard labels. 

If omitted, the default value is NO. 

FCKPT Keyword Parameter: 

FCKPT=YES 
Specifies that the input tape file contains OS/3 checkpoint dumps. 

FOPTION Keyword Parameter: 

FOPTION=YES 
Indicates that the file is not a logical requirement for every execution of the program. If the file is not 
defined with an LFD job control statement, the first READ reference to the file will return an end-of
file condition. 

10-6 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

10.3.5. Sequential Disk File Definition 

Each sequential disk file required for the execution of your job must be described by the following UNIT macro 
instruction. Records must be variable length and unblocked. 

Format: 

1 10 16 

UNIT FDEVICE=SDISC, FUNIT=k 

[ ,FTYPE FLE= { ~~f :UT} J [,FNUMBUF=2] [,FBKSZ=k] 

[ FERROPT= {IGNORE}] [,FOPTION=YES] 
' SKIP 

[,FVERI FY=YES] 

FDEVICE Keyword Parameter: 

FDEVICE=SDISC 
Specifies a sequential disc file with variable-length unblocked records. 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=Ol requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

FTYPEFLE Keyword Parameter: 

FTYPEFLE=INPUT 
Specifies an input file. This will save storage if no writes occur. 

FTYPEFLE=OUTPUT 
Specifies an output file. 

FTYPEFLE=WORK 
Specifies a work file and should be specified if the disk is to be read and written. 

FNUMBUF Keyword Parameter: 

FNUMBUF=2 
Optionally allocates two unique buffers to the unit for faster performance. In the absence of this 
specification, all 1/0 is performed in demand mode . 

10-7 

t 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 A , 10-8 

UPDATE LEVEL PAGE 

FBKSZ Keyword Parameter: 

FBKSZ=k 

Specifies the block size for variable-length unblocked records. The formula for a disk file is: 

9.LE.k.LE. 7294 

The default value is 256. A formatted record may not exceed k-8 bytes. 

FERROPT Keyword Parameter: 

FERROPT=IGNORE 
Specifies that, when parity errors occur or improper lengths are detected on an input data block, the 
block is to be processed as valid. 

FERROPT=SKIP 
Specifies that an erroneous record is to be bypassed and the next block is to be read. 

If omitted, the system terminates the program when parity errors occur. 

FOPTION Keyword Parameter: 

FOPTION=YES 
Indicates that the file is not a logical requirement for every execution of the program. If the file is not 
defined with an LFD job control statement, the first READ reference to the file will return an end-of
file condition. 

FVERIFY Keyword Parameter: 

FVERIFY=YES 
Specifies that the system is to check parity after every disk write. This additional security degrades 
performance. 

10.3.6. Direct Access Disk File Definition 

Any direct access disk file required for the execution of your job must be described by the following UNIT macro 

instruction. Records are fixed length and unblocked. 

Format: 

1 10 16 

UNIT FDEVICE=DISC, FUNIT=k 

[ { INPUT }] [,FRECSIZE=k] ,FTYPEFLE= OUTPUT 

[,FVE RI FY=YES] 

FDEVICE Keyword Parameter: 

FDEVICE=DISC 
Specifies a direct access disk file. 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

FRECSIZE Keyword Parameter: 

FRECSIZE=k 
Specifies the record size in bytes. 

If omitted, the default value is 256. The actual record defined by the DEFINE FILE statement must be less 
than or equal to the value specified for FRECSIZE. 

FTYPEFLE Keyword Parameter: 

FTYPEFLE=INPUT 

Specifies an input file. This will save storage if no writes occur. 

FTYPE FLE=OUTPUT 
Specifies an output file. 

FVERIFY Keyword Parameter: 

FVERIFY=YES 
Specifies that the system is to check parity after every disk write. This additional security degrades 
performance. 

10.3. 7. Reread Unit Definition 

Any reread unit required for the execution of your job must be described by the following UNIT macro instruction. 

Format: 

1 10 

UNIT 

FDEVICE Keyword Parameter: 

FDEVICE=REREAD 
Identifies a reread unit. 

FUNIT Keyword Parameter: 

FUNIT=k 

16 

FDEVICE=REREAD, FUNIT=k 

Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement, and FUNIT=02 requires a I I LFD FORT02 job control statement. 

10-9 



SPERRY UNIVAC Operating System/3 10-10 8193 Rev. 1 

UP-NUMBER UPDATE LEVEL PAGE 

t 
10.3.8. Equivalent Unit Definition 

The function of an equivalent unit is to provide another reference number of a file. For example, an input file 
might be referenced with both a Basic FORTRAN statement with a unit number and a statement that implies the 
special name READ. An equivalent unit can be us~d to resolve conflicts of this type. The equivalent unit is 
described by the following UNIT macro instruction. 

Format: 

1 10 16 

UNIT FDEVICE=EOUIV, FUNIT=k, FEOUIV=j 

FDEVICE Keyword Parameter: 

FDEVICE=EOUIV 
Specifies that one unit is referenced to another unit. 

FUNIT Keyword Parameter: 

FUNIT=k 
Is a unique 1- or 2-digit decimal integer unit number that must be the same as that specified on the 
LFD job control statement defining this file. For example, FUNIT=01 requires a I I LFD FORT01 job 
control statement. and FUNIT=02 requires a I I LFD FORT02 job control statement. 

FEOUIV Keyword Parameter: 

FEOUIV=j 
Specifies a 1- or 2-digit decimal integer unit number that was previously defined in the 1/0 
configuration on a FUNIT keyword parameter. When the equivalent unit is referenced, device action 
takes place on this unit. 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 

11.1. GENERAL 

SPERRY UNIVAC Operating System/3 

11. 

R 11-1 
UPDATE LEVEL PAGE 

Compilation 

The FORTRAN compiler is named FORT. It requires one work file and 5C00
16 

bytes of main storage plus space for 
the prologue. If allocated, additional storage is used to increase the compiler capacity. 

The compiler requires the extended micrologic feature. A message: 

COMPILER REQUIRES 2K COS 

is displayed on the printer and on the operator console if the extended micrologic feature is not present and the job 
is canceled with an error code of 610 . 

11.2. COMPILATION DIRECTIVES 

Compilation directives are specified on PARAM job control statements. The format of a PARAM statement is: 

//l:-PARAMt:.spec
1 

, ••• ,spec
0 

The following list of directives shows the directive format and provides a brief explanation of each specification. 

• LST=k 

k 
Is the sum of the following options: 

1 - source code listing 
2 - diagnostic listing 
4 - storage allocation map 
8 - object code listing 

The default is LST=7. 

• IN=MNAME [/FNAME) 

MNAME 
Is the name of the source module to be compiled 

FNAME 

Is the optional filename corresponding to the LFD name for the disc file where the source resides. The 
default filename is $Y$SRC. 



8193 Rev. 1 
UP-NUMBER 

• OUT=( FILENAME) 

OUT=NO 

NO 

SPERRY UNIVAC Operating System/3 A 
UPDATE LEVEL PAGE 

Indicates that no object module is to be generated; filename in parenthesis is the LFD name of the file 
where the generated object module will be placed. The default filename is $Y$RUN. 

• TRACE=ALL 

See 9.2.1 for a description of this parameter. 

• x 

See 9.4 for a description of this parameter. 

• SUBCHK=ALL 

See 9.5 for a description of this parameter. 

11.3. OBJECT PROGRAM STRUCTURE 

The object programs produced by the compiler have a formal structure, as shown in Figure 11-1. 

.... 
w 
Cl> 
II. .... II. 
0 w 

Cl> 
w II. 
.J II. 
1111 0 
<I: .... 
a: z 
<I: <I: 
> .... 

Cl> 

1 
z 
0 
(J 

0 z 
<I: 
r:i: 
::E 
w .... 

1 

Header 

SAVE AREA 

Base address table 

COMMON base address table 

w Argument lists 
N 
iii 
.... Subprogram address 
(J 
w 
Cl) 
(J 

Scalars and arrays 

Prologue and epilogue 

Program text 

Temporary storage and 
constants 

Receives control 

Sixteen or 72 bytes in length 
(base register 13) 

Up to 64 bytes 

Four bytes per 4K of COMMON 

Addresses of all actual arguments 

One address for each unique sub
program name 

Scalars, equivalence sets, and 
then arrays 

Argument association 

Executable instructions and FORMAT 
text 

Also contains forward jump vectors 
(base register 12) 

Figure 11-1. FORTRAN Control Section (CSECT) Structure 

In addition to the just-cited CSECT, the compiler generates one additional CSECT for each COMMON BLOCK. For 
BLOCK DATA subprograms, only the COMMON CSECTs are logically produced. 

11-2 

• 

• 

• 



• 

• 

• 

• 8193 Re11. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

11.4. CAPACITY OF THE COMPILER 

A 
UPDATE LEVEL PAGE 

The design of the compiler and its addressing environment cause limitations on the size of program units which can 
be successfully processed. The capacity is sufficiently generous for most large programs. The capacities are: 

• COMMON blocks (blank or named) can contain up to 65,532 bytes. 

• The FORTRAN CSECT can contain up to 65,532 bytes . 

11-3 



• 

• 

• 



• 

• 

8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 c 12-1 
UPDATE LEVEL PAGE 

12 . Compile, Link, and Execute 
Procedures 

12.1. JOB CONTROL PROCEDURES 

The FORT procedure call statement generates the necessary job control statements to compile a FORTRAN 
program. Optionally, it can generate job control statements to specify the following: 

• Input - source library 

• Output - object library 

• PA RAM control statements defining the format of the compiler listing 

• Automatically link and/or execute the program 

The input may be embedded data cards (/$, source deck, /*) immediately after the FORT procedure call, or in a 
module from the library defined by the IN parameter. Specifying a module and IN parameter option results in the 
appropriate DVC-LFD control statement sequence with an LFD name, INFPUT, and the PARAM control 
statement, PARAM IN=module-name/INFPUT. 

The object code is written in $Y$RUN by default, but a specific output library can be specified by the OUT 
parameter. This results in the appropriate DVC-LFD control statement sequence with an LFD name, OUTFPUT, 
and the PA RAM control statement, PARAM OUT=OUTFPUT. 

The AL TLOD parameter generates the necessary DVC-LFD control statements with an LFD name, AL TLOD, and 
the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other 

than $Y$LOD. 

Format: 

{

FORT } 
//[symbol] FORTL 

FORTLG [ l . N \] [ ~ (vol-ser-no,label) ~ ] 

PRNTR= ({~" l [,vol-ser-no]) ,IN= :~~~'.label) 
20 ) (RUN,label) 

(vol-ser-no,labell (*,label) . 

,OUT= 

(RES,label) 
(RUN,label) 
(*,label) 
NO 
(RUN,$Y$RUN) 

. [ {vol-ser-no }] [,LST=opt1ons] ,SCR1= RES 

• [ ~ 
(vol-ser-no,label) ~] 
( R ES,label) 

,AL TLOD= (RUN,label) 
{*,label) 
(RES,$Y$RUN) 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 c 12-2 

UPDATE LEVEL PAGE 

Label: 

symbol 
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used. 

Operation: 

FORT 
This form of the procedure call statement is used to compile Basic FORTRAN source program. 

FORTL 
This form of the procedure call statement is used to compile a Basic FORTRAN source program and 

link-edit the object modules. 

FORTLG 
This form of the procedure call statement is used to compile a Basic FORTRAN source program, link-

edit the object modules, and execute the load modules. 

Keyword Parameter PRNTR: 

Specifies the logical unit number of the printer, and optionally. the destination-id (vol-ser-no). If a 
printer device assignment set is not to be generated, the value N is coded, and the printer device 

assignment set must be manually inserted in the control stream. 

PRNTR=(lun[.vol-ser-no]l 
Specifies the logical unit member (20-29) of the printer device. Optionally, the destination-id (vol-

ser-no) can be specified. 

PRNTR=(N[.vol-ser-no]l 
Indicates that a device assignment set for the printer must be manually inserted in the control 
stream. This permits LCB and VFB job control statements to be used in the control stream. The 

volume serial number can also be specified. 

Keyword Parameter IN: 

~
(vol-ser-no, label)~ 

IN= (RES) 
(RES, label) 
(RUN, label) 
(*,label) 

Specifies the input file definition, to which the PARAM IN control statement connects. If omitted, the 
source input is assumed to be embedded data cards(/$, source deck,/*). 

I N=(vol-ser-no,label) 
Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the source 
input is located. 

IN=(RES) 

Specifies that the source input is located on the SYSRES device in $Y$SRC. 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 c 12-3 

UPDATE LEVEL PAGE 

IN=(RES,label) 
Specifies that the source input is located on the SYSRES device, but the file identifier (label) is 

user specified, not $Y$SRC. 

IN=(RUN,label) 
Specifies that the source input is located on the job's $Y$RUN file with the file identifier (label) 

specified by the user. 

IN=(* ,label) 
Specifies that the source input is located on a catalog file identified by the file identifier (label). 

Keyword Parameter OUT: 

OUT= 

(vol-ser-no, labell 
(RES, label) 
(RUN, label) 

(*,label) 
NO 
(RUN$Y$RUN) 

Specifies the output file definition to which the PARAM OUT control statement connects. If omitted, 

the object code is placed into the job's $Y$RUN file. 

OUT=(vol-ser-no,label) 
Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the object 

code is to be placed. 

OUT=(RES,label) 
Specifies that the object code is to be placed on the SYSR ES device, within the file specified by 

the label parameter. 

OUT=(RUN,label) 
Specifies that the object code is to be placed on the job's $Y$RUN file identified by a user 

specified file identifier (label). 

OUT=(* ,label) 
Specifies that the object code is to be placed on a catalog file identified by the file identifier 

(label). 

OUT=NO 
Specifies that there is to be no object code outputted. 

Keyword Parameter LST: 

LST=options 
Specifies the format of the compiler listing. The LST options are listed in 11.2. 

Keyword Parameter SC R 1: 

SCR 1={vol-ser-no} 
RES 

Specifies the volume serial number of the work file labeled $SCR 1. If omitted, the work file is assumed 

to be on the SYSR ES device. 



- - -- -----------------,..-------------
8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 c 12-4 

UPDATE LEVEL PAGE 

Keyword Parameter AL TLOD: 

( vol-ser-no,label) 
( R ES,label) 

AL TLOD= (RUN,label) 
{*,label) 
(RES,$Y$RUN) 

Specifies the volume serial number (vol-ser-no) and the file identifier (label) of an alternate load 
library that contains the FORTRAN compiler. If omitted, the compiler is loaded from SYSRUN. 

AL TLOD=(RES,llabel) 

Specifies that the alternate load library is located on the job's SYSRES device, in the file identified by 
the file identifier (label). 

AL TLOD=(RUN.,label) 

Specifies that the alternate load library is located on the job's $Y$RUN file with the file identifier 
(label) specified by the user. 

AL TLOD={* ,labE!I) 

Specifies that the alternate load I ibrary is located on a catalog file identified by the file identifier (label). 

Example 1a: 

7 

The following example illustrates the use of the FORT procedure call statement in its basic form: 

LABEL i10PERATION6 OPERAND 
10 16 

L __j_ l__l _J __ J_ LL L--1 _l__L__L __ L l l l l L _I L1 l J l l I 

_LLL _l j L j l _ J __ L L-1 l 1 l l l L l L L l__L l l l l l l l l 1 l l 

_J____[_ I I I I _L___j___l___i_L _L_l__L_l_J_ _L_l j_ _l _l_ _J__i_ L l 

l____[___J____ ___I___ I I I I I I I I I I I I I __L_J____i_l____i_ _ ___[_ _ _J_ ___ l L L_l___L 'j _L __j___ 

.__,.__..~~~_..___..__J______j____l____n_l____1__ _ _l___j______j___J___j__ _ __J___J___J___l______i_ I I I I _l___j__l_Ll ___j____J__ __ L__j_ J _l 

Line Explanation 

Indicates that the number of the job is FRTRN1A. 

2 Indicates the name of the procedure being called (FORT). No keyword parameters specifying 
spe1cial options for this compilation are used. 

3 Indicates start of data. 

4-6 Represents the source deck to be compiled. 

7 Indicates end of data. 

• 

• 

• 



..---------------------

• 

• 

• 

SPERRY UNIVAC Operating System/3 8193 Rev. 1 

UP-NUMBER UPDATE LEVEL PAGE 

Example lb: 

The basic form generates the following control stream: 

I 

2. 

LABEL 60PERATION6 
10 16 

.. 1 1 .. -1 

OPERAND 

l L _i L__l__l 1 l .... L L_J 

l _ j _j l 

l__ t L_J l [ l .l L l 

j _J _ L l l j l l l l 

Li L J Ll j_ 

, 1 1 i L _1 

.3 ..._...__.~~-~~ .____L~~--l___j I I I 1_i_i_.1____l_ _ _J_ __ _L _ _L_j__l_J l - L j J _ _i _L_j_ __ _LJ__j__ 

41f--1<-~"==~--'-"''~-"""""-'-4-'-'~~LL!>O!!L4J.-l__L___;___l_ 
51'-"_._....,._.,ouo::i........i;~q=.i.L.:UU--"---i'~.._........_J.>C..l---'1~-........1..:....1_.__._L.......lo..._._...._.__._ .............. _.._ ............. _.__._._.__._........._ 

lo II'--'-~-"""...._,_,"""".,... 

1 _L__i_1 _ _i _ __L_i___l__L__l_L_l__LJ_j___l____i__j_~~~.i...i.. _l__i__l___j_j___j____l__l___l__ 

8 t----'--'--'-----'--'--~ -.--.......-~ ._____.-+-~l___j_j__L_i___i__L____L____L_~...,___~__.___.__,__~_i___L__1 __i._i__.~1~,~~~ L~ 

91----'L........L..cl>o=>ooUL..""""-,.,,_~~ ...... ~.,.____+--~----'-----L----'--_L~~~~~~~.......Ll__~,_,_____L____L_---'--'--'--~--'----L-'~'--'----Ll__L 

Line Explanation 

2 

3-5 

6 

7 

8-10 

11 

Example 2a: 

Indicates that the name of the job is FRTRN 1 B . 

Indicates the default logical unit number and LFD name of the printer. 

Indicates that the work file needed for compiling is, by default, on the SYSRES device, 
has both a file label and LFD name of $SRC1, and uses the sequential access technique; that 
allocation is contiguous; that three cylinders are allocated for the secondary increment; and 
that one cylinder is allocated for the first extent. 

Loads the FORTRAN compiler from $Y$LOD. 

Indicates start of data. 

Represents the source deck to be compiled. 

Indicates end of data. 

The following example illustrates the use of a FORT procedure call statement that defines all the keyword 
parameters: 

LABEL ·.OPERATION OPERAND 
10 16 

I 1-L-1-LL--=-J=.t...._...J.C~µ_u=--.lls..=i.-+-__.__~__J_----...L_----'--~---'----'------~-'----'---'

l l-L-"'---"--..L..l.l:==-...._,,"--+-l'-J>o£!1L-l'-L--'--lfL--+'-~~~ ....... _,__,~"-=------'---"'-........ ~-¥"o<..:S:~""--L.LL...-9J-~~------'~----

31'--"--'-"-'--'---'---''--'--+--if-J---'--'--'--f"9:>o<J...l...._.~_,_,,._.""-='"--9-"=-i-='-''"'"-"'J.L.....W~=..l-'--'-"-....... 9'--.__._~~------'--'-.....__. ........ 
41L..J.!.~___l_.1......L--'----li-4-.J......L_J_L.+o....-Li.LL.....il£J.:o<J ....... 4-1µ-'"=l.!...i.l::"""'-"'~il-Ul~=u.<~~..:...=~ou.==ao<U....1.....1.. 
51'--":U.....L.......l.-'-..J........J'-+-+-.L.......l.--'---'--1'-+--'-.l........I..--'-..___.~~---'---'-.......... -'-_._ ............ __._~_._ ........... ~~.__.__._.._._.__.__ 

72 

12-5 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Line Explanation 

lndic:ates that the name of the job is FRTRN2A. 

2 lndic:ates the name of the procedure being called (FORT). The source module name is PROGNM. 
The logical unit number of the printer is 21, and the input file has a volume serial number of 
DSC1, with a file label of U$SRC. 

3 lndic:ates that the output file volume serial number is DSC2, with a file label of U$0BJ. The 
format of the compiler listing is supplied by the LST parameter. 

4 lndic:ates that the work file needed for compiling has a volume serial number of DSC2. The 
FORTRAN compiler is located on the device with a volume serial number of DSC3 in the file 
labeled AL TLODLIB. 

5 End of job. 

Example 2b: 

By using the keyword parameters in example 2a, the following control stream is generated. 

LABEL /\OPERATION/\ OPERAND 
10 16 

1 l 1 j l 1 l l l l l l l l l l l l ' l l l I l l l l I l I 

PRJ ... ~.T1R. j l j I I I I l I l l ' I I ' I I I I I I I l I 

l J l 1.1 j J l I l l l l I l I I l l l I l l l 

1 l l I 1 l l l l 1 j l j l l l j 

11l1111lLLJJ]_1 

L_i l>SC 12.1 l J _[ l 1 L L l l_l l _l J l_ l _l J l 1 L [_ 1 1 l L 

i_L1 'Y L j L j 1 L_L__j_ _j___[__j_ _ _L LL L Ll _j I _J L. L l _l. 11 

j LFDl 1 1_1J _j l L l l._1 l L_lj_j_ 

_J l l _l _l j j 1. _j _j 1 l 1 j 

L__l j_ J 1 J .. L.1 L J _ _i _!__ L l j j 

LL L .LI L _j_ L____l _l J_j_ 

1 1 J _ j l _J 

J l l. 1- _ l 1 L J. [ L 1 _L__l _l_ L_L__l__t [_ l l l I 1 1 J L J. [ L l L l 1 _L 

12-6 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Line Explanation 

Indicates that the name of the job is FRTRN2B. 

2 Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name 
of PRNTR. This was obtained from line 2 in example 2a. 

3 Indicates that the input file volume serial number is DSC1. This was obtained from the IN 
parameter of line 2 in example 2a. It is assigned to the device with a logical unit number of 
50, which was the first available number in the range of 50-54. 

4 Indicates that the input file is labeled U$SRC with an LFD name of INFPUT. This was obtained 
from the IN parameter of line 2 in example 2a. 

5 Indicates that the output file volume serial number is DSC2. This was obtained from the OUT 
parameter of line 3 in example 2a. It is assigned to the device with a logical unit number of 
51, which was the next available number in the range of 50-54. Logical unit number 50 was already 
assigned to the device with a volume serial number of DSC1 (line 3). 

6 Indicates that the output file is labeled U$0BJ with an LFD name of OUTFPUT. This was obtained 
from the OUT parameter of line 3 in example 2a. 

7-9 Indicates the work file for the compiler has a volume serial number of DSC2. Because this 
volume serial number was already used, this work file uses the same device logical unit number 
of 51. This work file has both a file label and LFD name ot $SCR1 and uses the sequential 
access technique; allocation is contiguous; three cylinders are allocated for the secondary 
increment; and one cylinder is allocated for the first extent. This was obtained from line 4 

10 

in example 2a. 

Indicates that the alternate load library for the compiler has a volume serial number of DSC3. It is 
assigned to the device with a logical unit number of 52, which was the next available number in the 
range of 50-54. This was obtained from the AL TLOD parameter of line 4 in example 2a. 

11 Indicates that the alternate load library has a label of AL TLODLIB with an LFD name of AL TLOD. 
This was obtained from the AL TLOD parameter of line 4 in example 2a. 

12 Loads the FORTRAN compiler from the file labeled AL TLOD. 

12-7 

13-15 PA RAM control statements, which identify the processing options for the FORTRAN compiler. These 
are generated in the following manner: 

Line 13 - The filename INFPUT is generated automatically when the IN parameter is specified. The 
module name PROGNM is generated from the label field in line 2 of example 2a. 

Line 14 - The filename OUTFPUT is generated automatically when the OUT parameter is used. 

Line 15 - Indicates that diagnostic error messages are to be I isted. This was obtained from the 
LST parameter in line 3 of example 2a. 

16 End of job. 

Optional formats of the FORT procedure call statement generate the necessary job control statements to compile 
and link a FORTRAN program (FORTL) and to compile, link, and execute a FORTRAN program (FORTLG). The 
keyword parameters of FORT also apply to FORTL and FORTLG. 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

The following example illustrates the use of the FORTL procedure call statement in basic form: 

LABEL i'.OPERATIONL'. OPERAND 
10 16 

I I I I I I I 

,.,___...._._~~~t--if-'-~~~t-f~~~~~'~~1~1~~~~~~~~~-~~~~~~~~~~~ 

t--'--_.__._~_Li_-L-.f·-+-~__.._...._.-+-........... P~L~3~A--'-'-..___.___.._..___._......_...__._......_..___._......_....__........._~......_...__._......_~......_~ 

Line Explanation 

Indicates the job name is FRTRN3A. 

2 Indicates the name of the procedure being called (FORTL). 

3 Indicates compiler start of data. 

4-5 Represents source deck to be compiled. 

6 Indicates compiler end of data. 

7 Indicates linkage editor start of data. 

8 Indicates name of load module generated by linkage editor (if omitted, default=LNKLOD). 

9 lndi1cates linkage editor end of data. 

12-8 

• 

• 

• 



• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

The following example illustrates the use of the FORTLG procedure call statement in basic form: 

LABEL i:',QPERA TION,0, OPERAND 
10 16 

1. II 
.;l. 

3. 

tf. 
~. 

II 
I 

L 

s 
I I 

I I I 

t--"-''-'--'--'----'--'--.+---11----'---'--'---'-+--+-.J__L I I I I I I 

-~~~~-+---+~ //A,T1Ai I I 

• t-'~-~__.__._~..._~__,__.__,____.._+-+-'~-'--'--~..L.J____J_j__~l-1.._,__.___,____L_..L....JL....1.-L--'--'---J__-'--L-.l--1._~_,____..__.__.._ 

Explanation 

Indicates the job name is FRTRN38. 

Indicates the name of the procedure being called (FORTLG). 

Indicates compiler start of data. 

Represents source deck to be compiled. 

Indicates compiler end of data. 

Indicates I inkage editor start of data. 

Represents input to linkage editor (e.g., specific includes, etc). 

Indicates linkage editor end of data. 

Indicates start of data for execution time input. 

Represents card input for execution. 

Indicates end of data for execution. 

1. When either the FORTL or FORTLG procedure call statements are used. the OUT parameter cannot be 
used. 

2. The FORTLG procedure call statement cannot be used when generating with the shared data management 
feature. Instead, use the FORTL procedure call statement and include a separate EXEC statement to 
execute the load module. 

12-9 

t 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

12.2. DISK COMPILATION PROCEDURE 

The following example shows the job control statements needed for disk compilation. 

LABEL t.OPERATIONt. OPERAND 
10 16 

This job stream compiles the program named PROGNM in the file, SRCE, on a disk labeled DISK. 

12.3. LINKING PROCEDURES 

Sample job control streams for the linkage editor may be found in the OS/3 system service programs user guide, 
UP-8062 (current version). In the absence of a specific INCLUDE for a particular 1/0 configuration (e.g., INCLUDE 
MYIO). the system-provided object module, FP$10, will be included automatically in the executable program. In 
addition, the following points should be noted: 

• All external references generated by the compiler are V-cons. The automatic overlay feature of the linker 
cannot be used if the program also contains a CALL LOAD or CALL FETCH. 

• The associated variable of a DAM file is updated after every reference to the file. Therefore, it must be 
addressable in Eivery path containing a reference to the file; it is suggested that it be placed in common for this 

reason. 

• Mathematical library routines may be placed in an overlay phase; 1/0 library routines should always remain in 
the root phase. 

12.4. EXECUTION PROCEDURES 

All files used by the program must be defined with a DVC ... LFD sequence of job control statements which appear in 
the job control stream prior to the execution of the program. The LFD name is FORTnn, where nn is the unit 

number. 

12.4.1. Diagnostic:s 

All diagnostics are directed to the first printer unit defined. There are four classes of messages: 

• TERMINATION/PAUSE: 

STOP and PAUSE print the identifying number first; STOP and EXIT then print the number of program check 
interrupts which have occurred during execution. PAUSE requires a GO or an EOJ response from the operator. 
GO means to continue processing; EOJ means to terminate execution. 

12-10 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

MATHEMATICAL LIBRARY: 

The mathematical library delivers a warning message when arguments are out of range and provides a 
substitute for the function value. The substitute value is always zero except in the following cases: 

SIN/COS 

TAN/COT AN 

ALOG/ALOG10 -

EXP/EXP10 

SORT 

SINH 

SINH/COSH 

SORT(2.0)/2.0 

X .GT. 82E5, 1.0 

X .EO. 0. 7.2E75 

X .EQ. 0, 5.3E-79 
X .LT. 0, ALOG(ABS(X)) 

for X .GT. 174.6, 7.2E75 

for X .LT. 0, SORT(ABS(X)) 

for X .LT. -175.3, 5.3E-79 

for X .GT. 175.3, 7.2E75 

The message format is: 

F$nn text 

where nn digits identify the message. Some messages are merely warnings and program execution continues. A 
severe error is followed by a traceback and the program is terminated. See system messages manual, UP-8076 
(current version) for the list of diagnostic messages. 

12.4.2. Dumps 

In the event of an abnormal termination, variables may be located in the memory dump by using the following 
procedure: 

• Common Variables 

Add the address of the variable given in the compilation listing to the address allocated to the common block 
by the linker to yield the address for the most significant (left-most) byte of the variable. 

• Local Variables 

Add the address of the variable, the value specified by 'VARIABLE OFFSET' in the compilation, and the 
address allocated to the object module by the linker. 

• Array Elements 

Use one of these procedures to locate the first element. Table 2-2 shows how to locate any array element 
thereafter . 

12-11 



8193 Rev. 1 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

t 
Sometimes, the reason a program terminates is not clear even with the diagnostic, traceback, and dump 
information. In such cases, the debugging aids (Section 9) should be used to isolate the problem areas. The most 
common error resulting in worthless or destroyed information occurs when a value is stored outside an array. 

For example: 

~
"C" FOR COMMloNT 

';,~e:ee,;n JFORTRAN STATEMENT---------
5 6 7 10 20 30 

• I I 

I a I 

I f I 

This will cause unpredictable results. To diagnose these situations, the program should be recompiled with the 
SUBCHK (subscript checking) option specified. 

12-12 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Appendix A. Compile Time Error Messages 

A.1. COMPILER TERMINATION ERRORS 

If an error occurs during compilation that results in a termination of the compiler. an error code indicating the 

cause is printed out. Table A-1 lists the error codes, the causes, and the corrective actions that may be taken. 

Table A-1. Compiler Termination Error Codes 

Error 
Code Cause Corrective Action 

1 Statement too long Simplify statement 

2 Statement too recursive Simplify statement 

3 Up to 511 of each of the following permitted: Simplify the program 

scalar variables 
arrays 

entities in all COMMON statements 
entities in EQUIVALENCE statements 
statement labels 
names in type statements 
unique REAL constants 
unique INTEGER constants 

unique DOUBLE PRECISION constants 
unique subprograms called 
arithmetic statement functions 
arguments for all subroutines and functions 

4 Insufficient storage for the compiler Recompile specifying 
more main storage 

5 Compiler error Submit a software user 
report (SUR) 

6 Object program longer than 65,535 bytes Simplify programs; 
shorten arrays 

7 Too many argument lists or calls Simplify the program 

8 Compiler error Submit a software user 
report (SUR) 

For faster response when submitting an SUR, include the listing, a dump, and a source module that re-creates 
the error. 

A-1 

t 



8193 Rev. 1 

UP-NUMBER 

t 

SPERRY UNIVAC Operating System/3 

A.2. INITIAL SCAN ERRORS 

UPDATE LEVEL PAGE 

Table A-2 lists the error messages that can be produced during the initial scan by the compiler. 

Table A-2. Initial Scan Error Messages (Part 1 of 2) 

Message Text Problem Description Corrective Action 

ALLOCATION This message has several causes: 

1. The names of dummy arguments 1. Correct or remove dummy 
have appeared illegally in an arguments from these statements. 
EQUIVALENCE, COMMON, or 
DAT A statement. 

2. Program attempting to allocate 2. Correct statement. 
numerical constants to impro-
per variable boundaries. 

3. Program attempting to save a 3. Correct statement. 
single numerical constant in 
an array. 

BLOCK DATA ONLY Variables in labeled COMMON can be Move DATA statement to a BLOCK 
initialized only in a BLOCK DATA DATA subroutine. 
subprogram. 

DATA COUNT Data items are not in a one-to-one Correct the DATA statement. 
correspondence with the I ist items 
on a DATA statement. 

DATA SIZE A literal data item is too long for Correct the DATA statement. 
its corresponding I ist item on a 
DAT A statement. 

DATA TYPE A violation of the basic correspon- Correct the DATA statement. 
dence of type rule between a data 
item and a I ist item has occurred 
on a DATA statement. 

FORMAT ID NOT ARRAY A nonarray name has been referenced Specify dimensions for the FORMAT 
as a FORMAT. name. 

ID CONFLICT A conflicting usage for a symbolic Correct the conflicting usage. 
name in this statement has occurred 
previously. An example is a variable 
or array name that appears 
later as a subprogram name in a 
CALL statement. 

ILLEGAL DO CLOSE Improper DO loop structure is indi- Correct the DO loop. 
cated. Problem such as ending a 
DO loop with an explicit or impli-
cit branching statement may have 
occurred. 

ILLEGAL LABEL Program attempting to branch to a Correct the branching statement. 
FORMAT or other nonexecutable 
statement. 

A-2 

• 

• 

• 



• 

• 

• 

8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

.UPDATE LEVEL PAGE 

Table A-2. Initial Scan Error Messages (Part 2 of 2) 

Message Text Problem Description Corrective Action 

LENGTH An illegal numerical length was Correct the TYPE statement. 
specified in a TYPE statement. 
The only legal length specifications 
are 2, 4, and 8 depending on varia-
ble type. 

NUMBER An illegal number has been encountered Correct the number in error. 
in this statement. An example is a 
hexadecimal constant with more than 
16 digits. 

MISSING COMMA A comma syntactically necessary to Supply the missing comma. 
the preceding statement was not 
found. 

MULTIPLE DEFINED LABEL The same label has occurred previously Correct the conflicting label usage. 
on another statement. 

ORDER The flagged statement is out of Correct the statement order in 
order. the program. 
Common examples are given by placing 
specification statements (DIMENSION, 
etc.) physically after executable 
statements (IF, etc.) in the program. 

RANGE An IMPLICIT statement has a range of Correct the letter range of the IMPLICIT 
letters specified backwards statement. 

SUBSCRIPT RANGE A constant subscript of an array is Correct the subscript in error. 
outside the range implied by the 
array's declaration. 

SUBSCRIPTS 1. Subscripting is illegal for non- 1. Use an array declarator before 
array FORTRAN names. subscripting. 

2. Illegal subscripting has been 2. Correct subscript in error. 
encountered, e.g., a negative 
subscript. 

SYNTAX A serious statement error. An example Correct statement's formal grammar. 
would be starting a variable name 
with a nonletter character. 

TYPE CONFLICT A real or integer term or expression Correct the logical IF statement. 
has occurred on one side or the other 
of an .AND. or .OR. operator in a 
logical IF statement. 

UNDIMENSIONED An undimensioned variable has been Correct statement or use an array 
used in this statement as though it declarator for the name in error. 
were dimensioned. An open parenthe-
sis follows directly after a vari-
able name. 

UNRECOGNIZABLE STATEMENT Serious statement error. Possible Correct spelling errors, if any; 
misspelled FORTRAN keyword . otherwise, correct statement. 

A-3 

t 



8193 Rev. 1 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

A.3. INITIAL SCAN WARNING MESSAGES 

UPDATE LEVEL PAGE 

Table A-3 lists the warning messages that can be produced during the initial scan by the compiler. 

Table A-3. Initial Scan Warning Messages 

Message Text Problem Description Corrective Action 

ARGUMENT NUMBER CONFLICT A breach of the argument number Correct program to conform to the 
identity rule between definition argument number identity rule. 
and reference. 

ARGUMENT TYPE CONFLICT A breach of the argument type Correct program to conform to the 
identity rule between definition argument type identity rule. 
and reference. 

MISSING LABEL The statement needs a label in Supply the missing label. 
order to be referenced. 

REAL*4 FUNCTION ASSUMED The REAL *4 function is defaulted Alter program to compensate for 
to in case a required generic missing generic function if REAL *4 
function is not supported. An example function is not required. 
of such an occurrence would be 
passing an INTEGER*2 argument to 
the generic function ABS. 

SYMBOL TOO LONG All characters beyond the sixth in Shorten the symbolic name. 
a FORTRAN name are ignored. 

A-4 

• 

• 

• 



I 
I 
I 
I 
I 

•! 
I 

• 

• 

Comments concerning this manual may be made in the space provided below. Please fill in the requested information. 

Manual Title:--------------------------------------

UP No:-----------~ Revision No: ------------ Update:--------

Name of User:------------------------------------~ 

Address of User:-------------------------------------

Comments: 

NOTE: DO NOT USE THIS FORM TO ORDER MANUALS. 



FOLD 

Bus IN Es s RE p Ly MA IL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POST AGE WI LL BE PAID BY 

UNIVAC 
P.O. BOX 500 
BLUE BELL, PA. 

19422 
ATTN: SYSTEMS PUBLICATIONS DEPT. 

FOLD 

• 

• 



I 
I 
I .: 

Q) 

c 

"' 

·~ u 

• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

sr->Er=«Y+ UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST GLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPEHRY UNIVAC I ATTN., SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.. --------------·------------------------------------
FOLD 

• 

• 



• 

• 

.; 
c: 

Cl 

-~ ~ :l 
u 

• 

UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

eu:SINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPEHRY UNIVAC I ATTN., SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.. 

I 
I 
I 
I 
I 

·--------------------------------------------------! 
FOLD I 

I 
I 
I 
I 
I 
I 
I 

• 

• 


