
•

•

•
UD1 -251 Rev. J}73

ATTN: CHARLIE GIBBS

00918
CAV208M45541 UP 9169 R2

SPERRY UNIVAC UAS

SUITE 906
117 7 WEST HASTINGS ST
VANCOUVER BC V6 E ZK 3

BASIC

CAV

Programmer Reference

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) BASIC Programmer Reference", UP-9168 Rev. 1.

This update describes the following BASIC features for release 8.0:

• BATCH END-OF-DATA REACHED message

• BASIC TASK NORMAL TERMINATED message

• RCSZ parameter

All other changes are corrections or expanded descriptions applicable to features present in BASIC prior to the 8.0
release .

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-9168 Rev. 1-B. To receive the complete manual, order UP-9168 Rev. 1.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A16, BOO, B16, 18, 18U, 19, 19U,
20, 20U, 21, 21 U, 28U, 29U, 75, 75U, 76, and 76U

(Package B to UP-9168 Rev. 1,
24 pages plus Memo)

Library Memo for
UP-9168 Rev. 1-B

September, 1982

•

•

•

•

•

•

BASIC

Programmer Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) BASIC PROGRAMMER Reference", UP-9168 Rev. 1.

This update for release 7.1 includes additional information about workstation screens for BASIC.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-9168 Rev. 1-A. To receive the complete manual, order UP-9168 Rev. 1 .

Mailing Lists
BZ, CZ (less DE,
GZ, HA) MZ, 18U,
19U, 20U, 21 U,
28U, 29U, 75U
and 76U

.::::1
.. ··-11

Mailing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76
(Package A to UP-9168, Rev. 1,
11 pages plus Memo)

Library memo for
UP-9168 Rev. 1-A

DATE:

December, 1981

•

•

•

•

•

BASIC

Programmer Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
BASIC Programmer Reference", UP-9168 Rev. 1.

This revision includes minor corrections and expanded descriptions applicable to features present in BASIC prior to
the 7.1 release.

Destruction Notice: If you are going to OS/3 release 7.1, use this revision and destroy all previous copies. If you are
not going to OS/3 release 7.1, retain the copy you are now using and store this revision for future use.

Copies of UP-9168 will be available for 6 months after the release of 7.1. Should you need additional copies of this
edition, you should order them with in 90 days of the release of 7.1. When ordering the previous edition of a manual,
be sure to identify the exact revision and update packages desired.

Additional copies may be ordered by your local Sperry Univac representative .

Mailing Lists
BZ, CZ (less DE,
GZ, HA) MZ, 18U,
19U, 20U, 21U,
28U, 29U, 75U
and 76U

Mailing Lists DE,GZ,HA, 18, 19,20,
21,75 and 76

(Covers and 193 pages)

Library Memo for
UP-9168 Rev. 1

RELEASE DATE:

September, 1981

l

•

•

--

BASIC

H UP·9168 Rev. 1

©1980 - SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

•

•

UP-9168 Rev. 1

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1, 2

Contents 1 thru 5

1 1, 2
3
4,5
6
7,8

2 1 thru 8
9
10 thru 12

3 1 thru 31
32
33 thru 68

4 1 thru 6
7 thru 9
10 thru 22

5 1, 2
3
4 thru 14
15
16

6 1 thru 12
13
14thru 18
19

7 1 thru 3

8 1
2 thru 4

Appendix A 1 thru 6

Appendix B 1
2
3

Appendix C 1 thru 5

6
7 thru 12

Index 1 thru 10

User Comment
Sheet

SPERRY UNIVAC OS/3
BASIC

PAGE STATUS SUMMARY

ISSUE: Update B - UP-9168 Rev. 1
RELEASE LEVEL: 8.0 Forward

Update
Level

Orig.

B

Orig.

Orig.

Orig.
B
A
Orig.
B

Orig.
A
Orig.

Orig.
A
Orig.

Orig.
B
Orig.

Orig.
B
Orig.
B
Orig.

Orig.
B
Orig.
B

Orig.

B
Orig.

Orig.

Orig.
B
Orig.

Orig.

B
Orig.

Orig.

Part/Section
Page

Number
Update
Level Part/Section

PSS 1
Update B

Page
Number

Update
Level

All tne technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow(-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC
Preface 1

Preface

This reference manual describes the SPERRY UNIVAC Operating System/3 (OS/3) BASIC (Beginner's All­
Purpose Symbolic Instruction Code) System, which permits the user to prepare, test, and execute programs
while operating from a workstation. This manual is for the experienced BASIC programmer.

The organization of the manual is as follows:

• Section 1. System Description

Provides the reader with a general overall knowledge of the components of the BASIC system.

• Section 2. Language Elements

Discusses the elements that comprise the language used in constructing programs.

• Section 3. Source Language Statements

Describes each BASIC source language statement according to category that is available to the user in
constructing his BASIC program. The statements are presented alphabetically within each category.

• Section 4. File Support

Describes the file-related statements and access methods supported under BASIC. The file-related
statements are presented alphabetically.

• Section 5. BASIC Commands

Describes each BASIC edit command available for preparing BASIC programs. These commands allow a
user to name a program, execute a program, manipulate the source language statements in a program, and
return control to the operating system. The BASIC commands are presented in alphabetical order.

• Section 6. BASIC Program Techniques

Contains techniques used in constructing BASIC programs. These techniques include the hierarchy of
arithmetic operations and the use of programming aids such as: lists, tables, matrixes. built-in functions,
and multiline functions.

• Section 7. Errors and Debugging

Describes the various user errors that may occur in preparing a BASIC program and the required correction
facilities.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Preface 2

• Section 8. BASIC in a Batch Environment

Contains programming techniques for BASIC in a batch environment. These techniques include items of
special concern to the batch user, such as messages with a reply, source statement syntax errors, and
running of a program.

• Appendix A. Summary of BASIC Statement and Command Formats with Examples

Lists statement and command formats and descriptions. Examples are provided for each entry.

• Appendix B. Sample BASIC Session

Shows a complete terminal session.

• Appendix C. BASIC Error Messages

Contains a numerical list of OS/3 BASIC error messages.

•

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1 . SYSTEM DESCRIPTION

1. GENERAL

1.2. TERMINALS SUPPORTED BY BASIC

1."3. LOGON PROCEDURE

1.4. SOURCE PROGRAM CONSTRUCTION

1.5. BASIC SYNTAX CHECKER

1.6. BASIC COMMAND PROCESSOR
1.6.1. Program Execution
1.6.2. Program Listing
1.6.3. Saving a Program
1.6.4. File Organization of a Saved File
1.6.5. Using a Saved Program
1.6.6. Returning Control to the System
1.6.7. Deleting Program Lines
1.6.8. Pause User Program
1.6.9. Terminating BASIC

1.7. LOGOFF PROCEDURE

Contents 1

Contents

1-1

1-2

1-3

1-3

1-4

1-5
1-5
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-8

1-8

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2. LANGUAGE ELEMENTS

2.1. GENERAL

2.2. CHARACTERS

2.3. CONSTANTS

2.4. VARIABLES

2.5. EXPRESSIONS

2.6. FUNCTION REFERENCES

2.7. CHANNEL SETTER

2.8. STATEMENTS

3. SOURCE LANGUAGE STATEMENTS

3.1. INTRODUCTION

3.2. DECLARATION STATEMENTS
3.2.1. DEF Statement
3.2.2. DIM Statement
3.2.3. FNEND Statement

3.3. REMARK STATEMENT

3.4. ASSIGNMENT STATEMENT
3.5. CONTROL STATEMENTS
3.5.1. END Statement
3.5.2. FOR and NEXT Statements
3.5.3. GOSUB and RETURN Statements

3.5.4. GOTO Statement
3.5.5. IF Statement
3.5.6. ON Statement
3.5.7. PAUSE Statement
3.5.8. STOP Statement
3.5.9. RANDOMIZE Statement
3.5.10. TIME Statement
3.5.11. SYSTEM Statement

3.6. DATA INPUT /OUTPUT STATEMENTS
3.6.1. INPUT Statement
3.6.2. LIN PUT Statement
3.6.3. MARGIN Statement
3.6.4. PRINT Statement
3.6.5. READ and DATA Statements

3.6.6. RESTORE and RESET Statements

Contents 2

•
2-1

2-1

2-1

2-4

2-6

2-7

2-11

2-12

3-1

3-3
(DEF) 3-4
(DIM) 3-6 • (FNEND) 3-8

(REM) 3-9

(LET) 3-10
3-11

(END) 3-12
(FOR and NEXT) 3-13
(GOSUB
and RETURN) 3-16
(GOTO) 3-17
(IF) 3-18
(ON) 3-20
(PAUSE) 3-21
(STOP) 3-22
(RANDOMIZE) 3-23
(TIME) 3-24
(SYSTEM) 3-25

3-25
(INPUT) 3-26
(LINPUT) 3-27
(MARGIN) 3-28
(PRINT) 3-29
(READ and
DATA) 3-33
(RESTORE
and RESET) 3-35

UP-9168 Rev. 1 SPERRY UNIVAC OS/3 Contents 3
BASIC

• 3.6.7. USING Statement (USING) 3-36
3.6.7.1. Formatting String Output 3-37
3.6.7.2. Formatting Numeric Output 3-38
3.6.7.3. Use with PRINT Statement 3-39

3.7. MATRIX OPERATION STATEMENTS (MAT) 3-42
3.7.1. Matrix Dimensioning 3-44
3.7.2. MAT Addition, Subtraction, and Multiplication Statements 3-45
3.7.3. MAT Constant Statement 3-48
3.7.4. MAT Identity Statement 3-49
3.7.5. MAT INPUT Statement 3-50
3.7.6. MAT Inversion Statement 3-51
3.7.7. MAT LINPUT Statement 3-52
3.7.8. MAT Null Statement 3-53
3.7.9. MAT PRINT Statement 3-54
3.7.10. MAT READ Statement 3-55
3.7.11. MAT Scalar Multiply Statement 3-56
3.7.12. MAT Transpose Statement 3-57
3.7.13. MAT Vector Multiplication Statement 3-58
3.7.14. MAT Zeros (O's) Statement 3-59

3.8. PROGRAM SEGMENTATION 3-59
3.8.1. CALL Statement (CALL) 3-60
3.8.2. CHAIN Statement (CHAIN) 3-62
3.8.3. LIBRARY Statement (LIBRARY) 3-63 • 3.8.4. SUB Statement (SUB) 3-64
3.8.5. SUBEND Statement (SUBEND) 3-66
3.8.6. SU BEXIT Statement (SUBEXIT) 3-67

3.9. CHANGE STATEMENT (CHANGE) 3-68

4. FILE SUPPORT

4.1. INTRODUCTION 4-1

4.2. FILE DESCRIPTION 4-1

4.3. FILE STATEMENTS 4-3
4.3.1. FILE Statement (FILE) 4-5
4.3.2. INPUT Statement (INPUT) 4-10
4.3.3. LINPUT Statement (LINPUT) 4-12
4.3.4. MARGIN Statement (MARGIN) 4-13
4.3.5. Matrix 1/0 Statements 4-14
4.3.6. PR I NT Statement (PRINT) 4-16
4.3.7. READ Statement (READ) 4-18
4.3.8. RENAME Statement (RENAME) 4-19
4.3.9. RESET Statement (RESET) 4-20
4.3.10. SCRATCH Statement (SCRATCH) 4-21
4.3.11. WRITE Statement (WRITE) 4-22

e

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

5. BASIC COMMANDS

5.1. INTRODUCTION
5.1.1. Definitions

5.2. COMMANDS
5.2.1. BYE
5.2.2. DELETE
5.2.3. HELP
5.2.4. LIST
5.2.5. MERGE
5.2.6. MODIFY
5.2.7. NEW
5.2.8. OLD
5.2.9. PRINT
5.2.10. RESEQUENCE
5.2.11. RUN
5.2.12. RU NOLD
5.2.13. SAVE
5.2.14. SYSTEM

6. BASIC PROGRAM TECHNIQUES

6.1. INTRODUCTION

6.2. HIERARCHY OF ARITHMETIC OPERATIONS

6.3. USE OF LOOPS

6.4. USE OF LISTS AND TABLES

6.5. USE OF BUILT-IN FUNCTIONS
6.5.1. Mathematical Functions
6.5.2. Specialized Functions
6.5.3. String Functions
6.5.4. File Functions

6.6. USE OF MULTILINE FUNCTIONS

6.7. USE OF SUBPROGRAMS

6.8. USE OF FILES

6.9. HINTS FOR MORE EFFICIENT CODE

7. ERRORS AND DEBUGGING

7.1. GENERAL

7.2. ERRORS PREVENTING RUNNING OF PROGRAM

7.3. LOGIC ERRORS

Contents 4

•
5-1
5-1

5-2
(BYE) 5-3
(DELETE) 5-4
(HELP) 5-5
(LIST) 5-6
(MERGE) 5-7
(MODIFY) 5-8
(NEW) 5-9
(OLD) 5-10
(PRINT) 5-11
(RESEQUENCE) 5-12
(RUN) 5-13
(RUNOLD) 5-14
(SAVE) 5-15
(SYSTEM) 5-16

6-1

6-1

6-3

6-5

6-7
6-7
6-8
6-12
6-13

6-15

6-16

6-17

6-19

7-1

'!
7-1

7-2

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

8. BASIC IN A BATCH ENVIRONMENT

8.1.

8.2.
8.2.1.
8.2.2.
8.2.3.
8.2.4.

8.3.

APPENDIXES

INTRODUCTION

PROGRAMMING CONSIDERATIONS
BASIC Messages with a Reply
BASIC Commands or Source Statements
Syntax Errors in Source Statements
RU Command

BASIC BACKGROUND OPERATION

A. SUMMARY OF BASIC STATEMENT AND COMMAND FORMATS

B. SAMPLE BASIC SESSION

C. BASIC ERROR MESSAGES

INDEX

USER COMMENT SHEET

FIGURES

1-1 . BASIC System Overview

8-1 . BASIC Batch Environment Printout

B-1. Sample BASIC Session

TABLES

2-1 . List of Mnemonics

3-1 . List of BASIC Statements
3-2. Relation Symbols

4-1. BASIC File Statements

6-1 . Nested Loops

A-1. BASIC Statement and Command Formats

Contents 5

8-1

8-1
8-1
8-1
8-2
8-2

1-2

8-4

B-1

2-10

3-1
3-18

4-3

6-5

A-2

•
UP-9168 Rev. 1

1.1. GENERAL

SPERRY UNIVAC OS/3
BASIC

1-1

1 . System Description

The SPERRY UNIVAC Operating System (OS/3) BASIC (Beginner's All-Purpose Symbolic Instruction Code)
System provides the workstation user with the capability of generating, modifying, and executing programs
written in the BASIC language. The BASIC system also provides the user with the capability of saving his
programs on direct-access storage for subsequent processing and updating.

The BASIC language is an interactive programming language designed to be easy to use, yet meet the
requirements of both business and scientific programming. The BASIC language available on the OS/3
operating system complies with the American National Standard Minimal BASIC. X3.60-1978 and includes
Dartmouth features and compatibility. It provides a powerful, yet simple set of commands allowing the novice to
learn the language quickly, and yet gives the experienced programmer an extensive list of features for various
applications.

Figure 1-1 shows an overview of the BASIC system. After logging on, the BASIC system is invoked by typing in
the BASIC command at the workstation. The system then loads the BASIC compiler, responds with READY, and
the user begins to construct or modify his source program. Each BASIC statement entered is analyzed by a
syntax checker immediately for syntax errors such as invalid constants, expressions, and construction. If an error
is detected, BASIC prints a question mark (?)and the statement in error, up to the first character where the error
occurred. The user may then correct the error and proceed to the next statement.

After the user has completed his program or part of a program, he may issue the RUN command to compile and
execute the sequence of statements. The BASIC compiler performs a second syntax check for global errors
during object code generation. These errors are detected when the source program is analyzed in its entirety
rather than on an individual source line basis. Examples are illegal nesting, undefined function references, and
illegal line-number references (1.6.1). If an error is detected, BASIC prints the line number of the source
statement in error and an appropriate diagnostic message (Section 7 and Appendix C).

After compilation and execution of the program, the results are returned to the user's terminal. The user may
then use the SAVE command to save a copy of the current program in a library file. The program is stored using
the program name supplied by the user.

UP-9168 Rev. 1

?6(STATEMENT)

STATEMENT
DIAGNOSTIC

MESSAGE

SAVED
PROGRAM

FILE

SPERRY UNIVAC OS/3
BASIC

LOCAL
WORKSTATIONS

LOGON
BASIC

REMOTE
TERMINALS

BA001 OS/3 BASIC READY (VER x.x) BEGIN
•[>

SOURCE PROGRAM CONSTRUCTION
SOURCE PROGRAM MODIFICATION
SOURCE PROGRAM LISTING

ERROR

ERROR

YES

SYNTAX
CHECKER

COMPILER
PROGRAM
EXECUTION

COMPILER
SYNTAX

CHECKER

NO

LOGOFF PROCEDURE

Figure 1-1. BASIC System Overview

1.2. TERMINALS SUPPORTED BY BASIC

1-2

The BASIC system supports local and remote terminals. In this manual, local units are referred to as
workstations, and remote units are referred to as terminals.

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

1-3
Update B

• 1.3. LOGON PROCEDURE

•

•

To initially log on to the operating system, the user must enter the LOGON command in the system mode from
his terminal. This command identifies the user to the operating system.

Format:

LOGON user- id [,acct][,password]

where:

LOGON
Specifies that the user wants to log on.

user - id

a c c t

Is a 1- to 6-character alphanumeric code you enter to identify yourself to the system. The user-id is
used by the system to correctly route messages, job and command output. and to determine which
commands you may use on the system. The user-id must begin with an alphabetic character.

Is a 1- to 4-character alphanumeric code that is used for system time accounting.

password
Is a 1- to 6-character alphanumeric code that controls your access to the overall system .

For a more detailed discussion of the LOGON command, refer to the OS/3 workstation user guide, UP-8845
(current version).

1.4. SOURCE PROGRAM CONSTRUCTION

In system mode, the user invokes BASIC by issuing the following executive command:

BASIC

Control is transferred to BASIC, which immediately prints the following message:

BA001 OS/3 BASIC READY (VER x.x) BEGIN

At this time, the user is at the command level in BASIC. If a command other than NEW or OLD is entered, the
syntax checker is called immediately to process the user's first source statement.

After the compiler is called, the system responds with an asterisk, which requests source input. A line of input
consists of a single BASIC source language or a BASIC editing command, followed by the TRANSMIT function. If
an all-blank line is transmitted, BASIC simply reissues the prompt. The BASIC source language statements and
editing commands are described in detail in Sections 3, 4, and 5. Input lines may not be continued beyond one
terminal line.

BASIC distinguishes program source statements from editing commands by requiring that the source statements
be prefixed by a line number. A line number consists of 1 to 5 digits with a value between 1 and 99999. Line
numbers are used to determine the logical sequence of statements. In a BASIC program file, lines of source text
may be entered in an arbitrary sequence.

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

1-4
Update A

The lines of source text are processed by the BASIC syntax checker and syntactically correct statements are
added in source form to the user's program file. This program file, which is built up in the user's workspace, is
not saved unless the user issues a SAVE or RESEQUENCE command. Statements entered at the terminal, which
have a syntax error, initiate diagnostics and are not added to the user's program file.

BASIC editing commands are executed immediately and are not included in the user's program file. The user's
program file is compiled and executed when the RUN command is issued.

After a line of input is processed, the system responds with an asterisk on a new line requesting another line of
input from the terminal.

The maximum acceptable input line is 80 characters.

Because source statements are cataloged by line number in a user's program file, no more than one statement
can have the same specific line number. Therefore:

1.

2.

If the line number of a syntactically correct source statement matches the line number of a statement in
the current user's program file, the new statement replaces the old statement.

A null statement such as 140 followed by the TRANSMIT key deletes a statement with a matching line
number in the current user's program file.

NOTE:

The workstation screen clears if it is sitting idle for a period of time. To return to the original screen. press
function key 19 (FK19) or function/workstation mode keys simultaneously. Do not press the MESSAGE
WAITING key.

Section 6 describes the techniques that a BASIC user can employ in constructing his program. Techniques for
formatting formulas, using loops, formatting lists and tables, and using specialized functions are described with
appropriate examples.

1.5. BASIC SYNTAX CHECKER

The BASIC syntax checker analyzes single BASIC source language statements. If a syntax error is detected, the
system responds with a question mark(?) followed by a copy of the incorrect statement up to the first character
in error. The user may then retype the remainder of the source statement followed by the TRANSMIT key as the
next line of input.

Example:

The user types in the following line and then presses the TRANSMIT key:

24 IF A=B THEN GOTO 41

The system responds with:

724 IF A=B THEN

because the GOTO following THEN is incorrect.

The user may then type in the following and then press the TRANSMIT key:

41

•

•

•

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

BASIC processes the following completed statement:

24 IF A=B THEN 41

The following types of errors are detected by the BASIC syntax checker:

• Incorrect constants. identifiers, function names, line numbers, and statement verbs

1-5
Update A

• Incorrect expressions caused by unbalanced parentheses, implicit multiplication, and illegal operand­
operator-operand sequences (e.g., two operators together as in A*-B)

• Incorrect statement construction, such as no THEN clause following IF

Global syntax errors (e.g., transfer to a line number not included in a program) are detected by the BASIC
compiler.

Lines of input which are not prefixed by a line number automatically bypass the syntax checker and are treated
as commands. The BASIC command processor responds with a question mark (?) to an invalid command, which
frequently results from typing a source statement without its line number.

If the error in a rejected BASIC statement is not obvious, the user may issue a HELP command. This will result in
a short explanation of the error being displayed at the terminal. Corrective action is often suggested by the
explanation.

When errors are detected by the syntax checker, only the portion of the statement which is correct will be
displayed at the terminal. The user should complete the statement and retransmit it to BASIC. In the case where
the user does not want to correct the statement. but wants to enter a new statement or a command, he should
back up the cursor to the start-of-entry symbol (t>) and erase the line. A new statement may now be entered.

1.6. BASIC COMMAND PROCESSOR

The BASIC system provides a set of edit commands which are described in detail in Section 5. The editing
commands are integrated with the BASIC source language statements so that the user does not have to
manually switch between edit and program construction modes.

1.6.1. Program Execution

The BASIC compiler is a one-pass. load-and-go system. The compiler generates object code that provides for
program execution following the statement. The RUN command instructs the BASIC system to compile and
execute the sequence of statements currently contained in the user's program file. This sequence of statements
need not constitute a logically complete BASIC program, because the compiler automatically generates code to
terminate program execution following the last statement. The last statement in a program file must always be
an END statement. whether or not the program is logically complete.

In addition, the BASIC compiler does extensive global syntax checking. Each syntax error results in a message to
the user's terminal consisting of the line number of the source statement that caused the error and an
appropriate diagnostic.

Example:

BA039 INCORRECT NESTING OF FOR-NEXT STATEMENT
BA027 LOADER ERROR AT LINE 00020

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

1-6

As the program is loaded, a diagnostic is displayed for each error encountered; if errors are detected, the user is
returned to the syntax checker. If no compiler errors are detected, the object code is automatically executed. The
following types of global syntax errors are detected by the BASIC compiler syntax checker:

• Overflow and underflow resulting from conversion of numeric constants to floating-point internal
representation

• Reference to an undefined function and redefinition of a defined function

• References to nonexistent or invalid line number (e.g., GOTO, GOSUB, IF-THEN, ON)

• NEXT before FOR, or no NEXT matching a FOR

• Illegal nesting of FORs with same index

• Illegal nesting of FORs with different indexes

• Statements leading to unpredictable results

• Duplicate parameters in a function definition

• Illegal DEF-FNEND statement ordering

If an OLD program is being executed, and there are statements which were flagged by the syntax checker but
have not yet been corrected, the loader will display an error message:

BA026 UNCORRECTED ERROR IN SOURCE
BA027 LOADER ERROR AT LINE 00760

The user should go back and correct the lines in error before attempting to RUN the program again.

The code generated by the BASIC compiler includes tests for a number of run-time errors. Each run-time error
results in a type-out to the user's terminal consisting of the source statement that resulted in the error and an
appropriate diagnostic.

Example:

BA015 ARRAY SUBSCRIPT OUT OF RANGE
BA062 EXECUTION STOPPED AT LINE 00230
'[>

Program execution terminates automatically when a run-time error is detected. See Appendix C for a complete
list of diagnostics.

1.6.2. Program Listing

The LIST or PRINT command can be used to display all or part of a program at the user's terminal.

Example:

LIST 150 - 175

Only those lines numbered 150 to 175, inclusive, are listed. Lines of source text are listed as they were typed in.

•

•

•

•

•

•

UP-9168 Rev. 1

1.6.3. Saving a Program

SPERRY UNIVAC OS/3
BASIC

1-7
Update B

The SAVE command can be used to save a copy of the user's current program file in an OS/3 library file. The file
name, supplied by the user, is used to locate the file on the disk. The program name is used for an element name
within the library. The program is saved in source statement form. If a BASIC program with the same program
name has been previously saved on the user's disk file, the system will respond:

ISlOO FILE/MODULE ALREADY EXISTS;OK TO WRITE IT? (Y,N)

If the user responds with Y or YES, the current program file will replace the previously saved program. For
responses with an N or NO, the control will be returned to the user without overwriting the previously saved
program.

The message is repeated for a response different from Y, YES, N, or NO. For an example of saving a program,
refer to the SAVE command description in Section 5.

1.6.4. File Organization of a Saved File

All files saved by BASIC, or OLD programs recalled by BASIC, are stored in standard OS/3 library files. The user
is required to supply at least the program and file names. BASIC will check the system catalog to see if it lists the
file. If it does, the file password, if any, will be verified and the volume name listed in the catalog will be used. If
the file is not listed in the catalog, the user will be required to supply a volume name.

When the user invokes the OLD command, all lines of source are processed by the syntax checker. If a syntax
error is discovered while reading a statement from the source file, the line is written to the terminal, preceded by
a question mark, and rejected. It will then be entered into the work file with a notation that the line must be
corrected before the program may be run. The user must wait until the entire file is read before he can enter
lines from the terminal. BASIC will respond with an * when it is ready.

Programs saved by BASIC may be listed or punched using the OS/3 utility LIBS.

1.6.5. Using a Saved Program

The OLD command can be used to load a program saved on the user's OS/3 library file into his workspace.
When the OLD command is issued, the user must also supply the file information of one of the BASIC programs
saved in a library file. The saved program then becomes his active program file. The copy of the program on disk
is unchanged.

The OLD and NEW commands may be issued at any time during a BASIC session. In either case, the current
contents of the user's active program file are lost and the file is renamed.

Another command, RUNOLD, allows the user to quickly execute a saved program without the overhead of
copying the source and compiled object code to the workspace.

1.6.6. Returning Control to the System

During the BASIC session, it may be necessary for the user to return control to the system, so that certain
system commands such as FSTATUS, ASK, etc, may be issued. In order to facilitate returning control to the
system, BASIC provides the user with the SYSTEM command. The SYSTEM command causes BASIC to interrupt
to the system, and the user can subsequently return to BASIC by issuing the RESUME command.

UP-9168 Rev. 1

1.6.7. Deleting Program Lines

SPERRY UNIVAC OS/3
BASIC

1-8
Update B

Basic statements that have been stored in the work file may be removed by typing their line number, as
explained previously. A command is also available to remove several lines with a single command.

Example:

DELETE 126-129, 500

1.6.8. Pause User Program

Function key 1 may be used to pause the execution of the user program. When the terminal operator inputs
function key 1 during the execution of the user program, BASIC stops execution and the following message is
displayed on the terminal:

BA063 EXECUTION PAUSED AT LINE xxxxx CONTINUE (Y,N)7

If the user responds with Y, the user program is continued. If the user responds with N, the user program is
terminated. If the user responds with other than Y or N, the message is repeated. To pause program execution
when BASIC is requesting input, the user inputs the requested data, inputs function key 1, and ends with
TRANSMIT. BASIC then prints the pause message. To pause program execution during output, the entire
workstation screen must be full of data. At the end of the last line on the screen, the user inputs function key 1
and then inputs function key 19. The pause message is printed on the first line of the newly cleared screen .

1.6.9. Terminating BASIC

The BYE command terminates the BASIC session, and all storage space occupied by the program is released to
the system. BASIC issues a warning to the user prior to executing program termination. When the BYE
command is used, BASIC determines if the user program has been saved in the library file. If it was not saved.
the following message will be displayed on the terminal:

BA118 SOURCE MODULE NOT SAVED - TERMINATE (Y,N)7

If the user responds with Y, the following message will be displayed and the BASIC task will terminate.

BA113 BASIC TASK NORMAL TERMINATION

If the user responds with N, the BYE command will be rejected, allowing the user to save the program. The
message is reissued for any other response.

1.7. LOGOFF PROCEDURE

The LOGOFF command terminates the user session. This command must be the last issued in the task in the
following format:

LOGO FF

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2-1

2. Language Elements

2.1. GENERAL

The BASIC language is made up of elements that can be combined in various ways to construct programs and
subroutines. The language elements are divided into the following categories:

• Characters

• Constants

• Variables

• Expressions

• Function references

• Channel setter

• Statements

2.2. CHARACTERS

BASIC programs are constructed from a set of 58 distinct characters. A character is defined as a letter, digit,
delimiter, or special character.

Letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digit: 0123456789

Delimiter: Operator or separator

Operator: + - * I () < > & I

Separator: , . ; .6. .. :

Special Character: $@#?%'

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2-2

In addition, BASIC programs use open-string and string characters.

open-string character

closed-string character

letter, digit, operator, special character, period (.}, semicolon (;), and double
quote (").

letter, digit. operator, special character, comma(.), period(.}. a semicolon(;}, or
a blank (6).

Note the following conventions:

1. Blanks:

The character blank is designated in the syntax by the symbol 6. Any spaces that appear in the syntax
equations do not denote blanks in the BASIC language. Blanks are only significant in BASIC when they
appear in a comment or a string constant.

2. Quote:

The character quote (") is used to delimit the beginning and end of a closed-string constant. If a quote is
required within a closed string, use two consecutive quotes.

3. Asterisk:

Exponentiation is specified by a pair of asterisks (**). A vertical arrow (I) is also permitted, where

applicable.

2.3. CONSTANTS

Constants are used to specify data values. There are three types of constants: decimal numbers, string

constants, and line numbers.

• Decimal number

A fraction that may be optionally followed by an exponent field. A fraction is defined as a series of 1 or
more digits that may contain an optional decimal point. The decimal point may precede, follow, or be
embedded in the series of digits. The exponent field indicates the power of 10 that the fraction is to be
multiplied by and consists of the letter E followed by an optional sign and 1 or 2 digits. The sign may be+
or - and, if omitted, is assumed to be+.

Examples:

Fraction: 9, 9.' .9, 9.9

Exponent: El. E+l. E+Ol. E-1. E-01

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

• String constant:

Closed string:

A quote followed by a series of 0 to 4095 string characters followed by a quote

Example:

' ' A6B ' ' o r ' ' B I L L ' ' ' ' S ' '

Open string:

A series of 1 to 4095 open-string characters or blanks or quotes

Example:

A6B

• Line number:

2-3

A series of one to five digits without any sign, decimal point, or exponent field. It must be in the range of 1
to 99999.

Note the following conventions:

1. Decimal numbers:

All decimal numbers are converted and stored internally in floating-point format. The exponent occupies 7
bits and indicates the power to which the number 16 must be raised. The sign occupies one bit. In floating­
point format, the mantissa occupies 24 bits and contains a 6-digit hexadecimal number in normalized form.
In BASIC, if the value of the fraction part of a decimal number, disregarding the decimal point, exceeds
224-1, the number is rounded and trailing digits are lost.

Example:

12.3456789

This decimal number is acceptable, but is (effectively) rounded to the following:

12.345679

If the mantissa is nonzero, the magnitude of the floating-point number has the following range:

16 6s ~ M < 1663 (approximately lf1-1s ~ M < 191s)

Overflow and underflow conditions for numeric constants are processed as errors.

- - -----------------------------

UP-9168 Rev. 1

2. String constants:

SPERRY UNIVAC OS/3
BASIC

2-4

All string constants are stored in EBCDIC code. A 2-byte length field is prefixed to each string before it is
stored; the value of the length byte is not included. If a given string constant contains more than 4095
characters, it is truncated at the right. Note that an open-string constant, as opposed to a closed-string
constant, cannot contain a comma. Moreover, an open-string constant is permitted only as input to the
READ and INPUT statements. Note that it is not possible to enter a string constant in a program longer than
74 characters, because the maximum line length is 80 characters.

Within a closed-string constant, two consecutive quotes are interpreted as a single quote.

3. Line numbers:

A line number that is an integer between 1 and 99999 must precede each statement in a BASIC program.
The line numbers specify the logical sequence of statements in a program (ascending order). They are also
used as statement labels for transferring control during program execution.

Leading zeros in a line number are ignored in the sense that 00175 is equivalent to 175.

2.4. VARIABLES

Variables are used to designate arbitrary data values of a fixed type. In BASIC, the user may construct scalar
variables and array variables. A scalar variable is defined as a numeric variable or a string variable. An array
variable is defined as a numeric array or string array. A numeric reference may be a numeric variable or a
numeric array. A string reference may be a string variable or a string array.

• Scalar variable:

A numeric variable or string variable

Numeric variable:

A letter optionally followed by a single digit

Examples:

x. x 2

String variable:

A letter followed by a dollar sign($), or a letter followed by a single digit, followed by a dollar sign.

Examples:

A$, J$, Q6$

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2-5

• Array variable:

A numeric array variable or string array variable

Numeric array variable:

A letter followed by one or two subscript expressions enclosed in parentheses

Examples:

X(4), X(4,20), X(A+B)

String array variable:

A letter followed by a dollar sign ($)followed by one or two subscripts enclosed in parentheses

Examples:

C$(20), C$(A+B), D$(A,C)

Note the following conventions:

1. Numeric variables:

2.

Numeric variables may only be assigned decimal numeric values .

Numeric array variables:

Numeric array variables may only be assigned decimal numeric values.

The upper bounds for a 1-dimensional or 2-dimensional numeric array may be explicitly specified by a
dimension (DIM) statement (Section 3). An implicit upper bound of 10 for either dimension is implied if not
specified. In either case, the lower bound is always 0.

3. Subscripts:

A subscript may be defined using any arithmetic expression. During execution, the value used to locate the
array element referenced is computed by rounding the subscript expression to the nearest integer. If the
subscript value is not within the bounds specified (or implied) for that dimension of the referenced array,
then the user is given an error message and program execution terminates.

Two-dimensional numeric arrays are stored in row-major order.

4. String variables:

String variables may only be assigned character string values. All such variables are initialized to the null
string (zero length). A string variable may contain up to 4095 characters.

5. String array variables:

String array variables may only be assigned character string values. All elements of these string array
variables are initialized to the null string (zero length).

The rules for numeric array variables regarding bounds and subscript evaluation apply to string array
variables as well.

UP-9168 Rev. 1

2.5. EXPRESSIONS

SPERRY UNIVAC OS/3
BASIC

2-6

The expression is the BASIC facility for performing operations on data values. BASIC provides for both arithmetic
numeric expressions and string expressions. Arithmetic numeric expressions specify arithmetic calculations;
string expressions identify input/output. Unless otherwise stated, all expressions are assumed to designate
single values.

• Arithmetic expression:

A term optionally preceded by a minus(-) or plus(+) sign, or an arithmetic expression plus(+) or minus(-)
a term

Example:

A''2'B-3

Term

A factor or a term multiplied (*)or divided (/) by a factor

Example:

A" 2' B

Factor

A primary or a factor raised to a power (**) desi~nated by a primary

Example:

A'' 2

Primary

A decimal number, numeric reference, function reference, or an arithmetic expression enclosed in
parentheses

Example:

2,A,SQR(X), (C-D)

• String expression:

A string primary or a string expression followed by an ampersand(&) denoting concatenation, followed by

another string expression

Example:

''ABC' '&8$

•

•

UP-9168 Rev. 1

• String primary

SPERRY UNIVAC OS/3
BASIC

A closed-string reference or function reference

Example:

A$,SEG$(0$,6,8),' 'AB''

Note the following conventions:

1. Mixed mode expressions are treated as errors.

2. The exponentiation operator (**) may be written as a vertical arrow (I). where applicable.

3. A**B**C is compiled as (A**B)**C.

4. Parentheses may be used to factor subexpressions.

2-7

5. Overflow and underflow conditions existing during the evaluation of arithmetic expressions are treated as
errors.

6. Division by zero is treated as an error.

7. Zero to a negative power is treated as an error .

8. A negative number can be raised only to a nonzero positive integer number. The maximum value of the
positive integer is 15. Any violation of this rule is treated as an error.

2.6. FUNCTION REFERENCES

An expression may contain references to the following types of functions:

• Specific built-in functions provided within the BASIC system

• User-defined numeric and string functions

Function references consist of a function name, followed by an argument (list) enclosed in parentheses. All b~ilt­
in functions have between zero and three arguments. In each case, the arguments are evaluated and control is
tranferred to an out-of-line routine for evaluating the referenced function.

The resulting (single) numeric or string value replaces the function reference in the containing expression.

• Built-in function

A function name optionally followed by an expression or list of expressions enclosed in parentheses

• Function name

ABS, ATN, CHR$, CLK$, COS. COT, DAT$, DET. EBC, EXT, INT. LEN, LOC, LOF, LOG. MAR. MOD, NUM. .,._
PER, POS, RND, SEG$, SGN, SIN, STR$, SOR, TAN, TIM, TYP, USR$, VAL

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2-8

• User-defined function

FN followed by a letter and optional dollar sign, followed by an argument list enclosed in parentheses

Example:

FNC$(C$,Z)

• Argument list

Expression optionally followed by up to 15 expressions. A comma is used to separate one expression from
another

Example:

A,8$,' 'ABC''&' 'DEF'' ...

Note the following conventions:

1. SIN(x), COS(x). TAN(x), COT(x), and ATN(y) designate the functions sine, cosine, tangent, cotangent, and
arctangent, respectively, and the argument x and the result of ATN are angles measured in radians.

2. EXP(x) designates exponentiation, e~ Overflow occurs if x is too large (x > 174.6).

3. LOG(x) designates the natural logarithm of x. The LOG of zero or a negative number is treated as an error.

4. ABS(x) designates the absolute value of x, lxl.

5. SQR(x) designates the square root of x. A negative argument is treated as an error.

6. RND(x) designates a pseudorandom number as follows:

a. If x > 0, then RND(x) is a function of x whose value is in the open interval (0, 1).

b. If x < 0, the system supplies an arbitrary random number in open interval (0, 1).

c. If x = 0, the system supplies a pseudorandom number that is a function of the previous random
number generated by RND. If x = 0, the first time RND is called in a program. the system will supply a

fixed number in the open interval (0, 1).

d. If no argument is used, x = 0 is assumed. To generate a sequence of pseudorandom numbers, the
user would call any of these options followed by repeated calls to option c. With this option, the
RANDOMIZE statement should be used to generate a unique sequence of random numbers.

7. INT(x) designates the largest integer not exceeding x.

Example:

INT(2.985) 2. INT(-2.015) -3.

•

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

2-9
Update A

8. SGN(x) designates the sign of x.

S G N (x) = {+l , i f x > II }

". if x = "
-1,ifx<ll

9. FNA to FNZ designates one of the 26 user-defined numeric functions and FNA$ to FNZ$, one of 26 user­
defined string functions (see the DEF statement).

10. DET is a pseudofunction and may be used to obtain the value of thedeterminantofthelastmatrixinverted.

11. LEN (X$) computes the length, in characters, of the string X$. This will be a value between 0 and 4095.

12. MOD (x,y) is the modulus remainder of x divided by y: (x-y * INT (x/y))

13. POS (A$, B$, X) determines the location in string A$ of the first character of the first occurrence of the
string B$ beginning at or after position X in A$. This will return zero if B$ does not occur in A$.

14. TIM is the elapsed running time of the program in seconds, accurate to the nearest millisecond.

15. VAL (A$) returns the value of the number whose decimal representation is in string A$.

16. EBC (string) is a special function that takes a string of from one to three characters in length. It returns a value
of the EBCDIC code for its argument. The argument is a character, or a 2- or 3-letter mnemonic for a character
(e.g., EBC (ETX) = 3). See Table 2-1 for a list of mnemonics .

17. CHR$(x) returns a 1-character string consisting of the EBCDIC character with the code MOD (INT (x),
256). For example:

CHR$(193) =A.

This function does not apply to device control characters. BASIC converts to blanks (X'40') any character
with a hexadecimal value of X '00' to X'3F'.

18. CLK$ gives the time of day as an 8-character string in the form hh:mm:ss.

19. DAT$ gives the current date as an 8-character string in the form mm/dd/yy.

20. SEG$ (A$,x,y) locates the substring of A$ consisting of all characters between positions X and Y inclusive,
and returns that string. An empty string is returned if X > Y, and the appropriate beginning or end of A$ is
taken for X <=O or Y>LEN (A$).

21.

22.

23.

24.

25.

STR$ (X) converts X to its decimal representation as a string result.

USR$ is a 6-character string giving the user's logon identifier from the LOGON command.

LOC (#N) returns the current location of the file pointer for the file assigned to channel number N.

LOF (#N) returns the current end-of-file value (length of file) for the file currently assigned to channel
number N .

MAR (#N) returns the current margin size for the file currently assigned to file number N.

UP-9168 Rev. 1

Mnemonic

ACK

BEL

BS

CAN

CR

DC1

DC2

DC3

DC4

DEL

OLE

DS

EM

ENO

EQT

ESC

ETB

ETX

FF

FS

GS

HT

LCA

LCB

LCC

LCD

LCE

LCF

LCG

LCH

LCI

SPERRY UNIVAC OS/3
BASIC

Table 2-1. List of Mnemonics

Value Mnemonic

46 LCJ

47 LCK

22 LCL

24 LCM

13 LCN

17 LCO

18 LCP

19 LCQ

60 LCR

7 LCS

16 LCT

32 LCU

25 LCV

45 LCW

55 LCX

39 LCY

38 LCZ

3 LF

12 NAK

28 NUL

29 RS

5 SI

129 so

130 SOH

131 sos

132 SP

133 STX

134 SUB

135 SYN

136 us

137 VT

2-10

• Value

145

146

147

148

149

150

151

152

153

162

163

164

165

166 • 167

168

169

37

61

0

30

15

14

1

33

64

2

63

50

31 • 11

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC
2-11

26. PER (#N.AS) returns the value +1 if the operation specified by A$ is valid for channel number N, 0 if the
operation is invalid, and -1 if AS does not specify one of the operations: INPUT, LINPUT, PRINT, READ.
RENAME, RESET, SCRATCH, or WRITE. Operations may be invalid if they are applied to an unopened file or
if the user has restricted access to the file. INPUT, LINPUT, and READ are invalid if the file is empty or the
current pointer is at end-of-file (LOC=LOF). A value of +1 returned by PER ensures that the specified
operation will be allowed if it is the next operation issued against the file.

27. TYP (#N.AS) returns +1 if the file given by N currently has the type specified by AS, 0 if not, and -1 if AS
does not specify one of the operations: ANY, LIBRARY, NUMERIC, PERM, RANDOM, STRING, TERMINAL,
TTY, or WORK. The terminal has type TTY, a scratch file has type WORK, an OS/3 library file has type
LIBRARY, and an OS/3 MIRAM file has type PERM. Any open file has type ANY. NUMERIC and STRING
are provided for compatibility and will always return a value of +1. A TERMINAL file is a sequential file for
which the operations INPUT, LINPUT, and PRINT are valid. A RANDOM file is one for which the operations
READ, WRITE, and RESET are valid. Currently all BASIC files have both type TERMINAL and type RANDOM
except for the workstation file, which has type TERMINAL.

28. NUM returns the number of values input for the last vector MAT INPUT statement. If the vector has a
trimmer, NUM is not updated.

2.7. CHANNEL SETTER

The channel setter is used in file-related statements to specify which data file is to be selected.

Format:

#expression

where:

Identifies the channel setter.

expression

Is a numeric expression that is evaluated at execution time.

Programming Notes:

1. The expression is truncated to an integer. The resultant value must be in the range 0 to 4095.

2. A channel setter of zero, or an omitted channel setter, selects the terminal.

Examples:

#3, #1, #3-J

UP-9168 Rev. 1

2.8. STATEMENTS

SPERRY UNIVAC OS/3
BASIC

2-12

The statement is the smallest complete unit of information in the BASIC system. Statements may be entered into

a program, reordered, and executed.

There are two general classes of statements in BASIC: executable and nonexecutable. Executable statements
designate particular actions to be performed; nonexecutable statements specify supplementary information.

Statement:

A line number followed by an executable statement or a nonexecutable statement

Executable statement:

Assign, control, input-output, matrix, and data file statements

Nonexecutable statement:

Declaration or remark statement

Each BASIC statement entered into a program must be prefixed with a line number. These line numbers
determine the logical order of statements within a program. They are also used in several of the control

statements to effect transfers of control.

Comments may be appended to any BASIC statement by prefixing the comment with an apostrophe('). When the
syntax checker scans a source statement, any characters after the apostrophe are ignored (except when the

apostrophe is part of a string constant).

Each BASIC statement is described in detail in Section 3.
•

•
UP-9168 Rev. 1

3.1. INTRODUCTION

SPERRY UNIVAC OS/3
BASIC

3-1

3. Source Language Statements

This section describes the BASIC source language statements that are used in constructing a BASIC program.
Each statement is described in detail with examples showing the use of each statement.

The BASIC source language statements are classified as either executable or nonexecutable. The statements are
categorized as: declaration, remark, assignment, control, data input/output, matrix operations, program
segmentation, change, and file support. Statements within these categories are presented alphabetically. Table
3-1 shows the list of all the BASIC source language statements.

Table 3-1. List of BASIC Statements (Part 1 of 2)

Statement Statements

Category Executable Nonexecutable

Declaration DEF
DIM
FNEND

Remark REM

Assignment LET

Control FOR and NEXT TIME
GOSUB and RETURN
GOTO
IF
ON
STOP, PAUSE, and END
SYSTEM

Data Input/Output INPUT DATA
LINPUT
MARGIN
PRINT
READ
RESTORE and RESET
USING

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Table 3-1. List of BASIC Statements (Part 2 of 2)

Statement Statements

Category Executable Nonexecutable

Matrix Operations MAT add, subtract, multiply
MAT constant
MAT identity
MAT INPUT
MAT inversion
MAT LINPUT
MAT null
MAT PRINT
MAT READ
MAT scalar multiply
MAT transpose
MAT vector multiplication
MAT zeros

Program Segmentation CALL LIBRARY
CHAIN SUB
SUBEND
SUB EXIT

Change CHANGE

File Support FILE
INPUT
LINPUT
MARGIN
MATRIX 1/0
PRINT and USING
READ
RENAME
RESET
SCRATCH
WRITE

3-2

A BASIC program consists of any sequence of BASIC statements; each statement must be preceded by a line

number and must be written on a single line of terminal input. The maximum number of statements in a

program depends on the complexity of individual statements in a particular program. This limit is usually a

function of the amount of main storage available to load the program, and is not a limit imposed by the compiler.

In describing the statements, the following conventions are used:

1. Keywords that may be used in the statement are in capital letters.

2. Names constructed using lowercase letters and embedded hyphens designate syntactic variables.

3. Brackets, [), are used to enclose optional parameters.

4. Braces, i L are used to enclose alternatives.

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-3

5. Ellipsis, ... , following an operand parameter indicates that the user may specify more than one parameter
of that type.

Example:

READ variable-1 [,variable-2 ...)

allows the READ statement to contain one or many input variables in the READ list.

READ A

READ A,B

READ A,B,C

3.2. DECLARATION STATEMENTS

The declaration statements (DEF, DIM, and FNEND) explicitly specify the dimensions of arrays and define any
defined functions that are referenced in a program .

UP-9168 Rev. 1

DEF

3.2.1. DEF Statement

SPERRY UNIVAC OS/3
BASIC

3-4

In addition to the built-in functions, the BASIC user can define other functions via the DEF statement.

Format:

DEF FN letter [$][(param- I isl)][local-I ist][=expression]

where:

FNletter [$]

Is the name of the defined function which must consist of FN followed by a letter from A to Z. An
optional dollar sign denotes a function with a string result.

(param-list)

variable [.variable ...]

local- I isl
variable [,variable ...]

Programming Notes:

1. Any reference to a defined function for which the user has not supplied a corresponding DEF
statement is treated as an error.

2. The redefinition of a defined function is treated as an error.

3. A defined function may reference any other function except itself. Recursive definitions are not
allowed.

4. A function may be invoked only from an expression.

5. The param-list is used to pass values in one direction only and that is to the function. Variables in the
param-list are local. Variables in the param-list may be string or numeric in type. When called, the
passed parameters in the call and in the definition must have matching types.

6. If the function definition requires several statements (multiline function), the DEF statement defines
the entry into the function and requires a unique, corresponding FNEND statement that defines the
exit from the function. Branching into and out of a multiline function definition or branching to a DEF
statement is illegal.

7. A local-list can be provided for a multi line function to indicate that the variables named in the list are
to be local only throughout the function definition. Such variables may be used for any other purpose
outside the function definition; upon entry into the function, the variables are initialized to zero.

8. To give a multiline function a value, the function name must appear to the left of an equal sign in an
assignment statement.

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

9. A DEF statement within a function definition is illegal.

3-5

10. The param-list and local-list variables are restored to their original values upon exiting from the
function definition.

11. All function definitions containing local parameters must appear before they are referenced by the
main program. If a DEF statement is encountered during normal program flow, the statements
defining the function are bypassed and control passes to the next statement within the main
program.

12. If no parameters are to be passed to the function, the param-list may be omitted.

13. The function may reference variables external to it by using the same variable name as was used in
the ma in program.

14. Functions that are passed in subprogram CALLs must be defined prior to the CALL statement.

Example 1:

30 DEF FNE(X) = EXP(-X""2)

During execution, this statement would be invoked for various values of the function e - x 2 by referencing
FNE(.1), FNE(3.45), FNE(A + 2), etc. Such a definition can simplify the program when values of some
function are needed for a number of different values of the variable .

Example 2:

18 0 DEF FNA$,8$
110 PRINT ''ENTER YES OR NO' ';
120 INPUT 8$
130 IF 8$=' 'NO'' THEN 150
140 IF 8$< > ''YES' THEN 110
150 FNA$=8$

16 0 FNEND

1650 IF FNA$ = ''YES'' GOTO 2000

This multilined string function allows the user to request, accept, and answer by referencing the user
function FNAS.

UP-9168 Rev. 1

DIM

3.2.2. DIM Statement

SPERRY UNIVAC OS/3
BASIC

3-6

The DIM statement explicitly specifies the upper bounds of numeric and string arrays to reserve sufficient space
in main storage for the array. Either a 1- or 2-dimensional numeric array or a 1-dimensional string array can be
dimensioned. The lower bound for each dimension is always 0.

Format:

DIM {numeric-~imension} [·{num~ric-~imen~ion}···]
st r 1 n g - d 1 mens 1 on st r 1 n g - d 1 mens 1 on

where:

numeric-dimension
Is a letter followed by one to five digits in parentheses or a letter followed by two numbers (each
consisting of one to five digits) separated by a comma in parentheses.

string-dimension

Is a letter followed by a dollar sign ($) followed by one to five digits in parentheses; or a letter
followed by a dollar sign, followed by two numbers (each consisting of one to five digits) separated by
a comma in parentheses.

Programming Notes:

1. The duplication of an array name in a DIM statement is treated as an error.

2. The appearance of the same array name in more than one DIM statement is treated as an error.

3. If the value of a subscript of an array exceeds 10, the array name must appear in a DIM statement;
otherwise, an error occurs.

4. A DIM statement can appear anywhere in the program, and may appear after the related variable is
used, providing the number of subscripts remains consistent.

5. The upper limit on the subscripts of an array is referred to as the array dimensions or dimensions of
the array.

6. Numeric array elements are initialized to zero and string elements to null strings.

7. The DIM statement defines the maximum bounds for the array. Certain other statements may be

used to change the array bounds dynamically during execution. Changing the array bounds will limit
the set of elements that can be referenced by subscripts or matrix operations.

Example 1:

20 DIM A(25)

In this example, A is a 1-dimensional numeric array consisting of 26 numeric variables: A(O). A(l) ...
. ,A(25).

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Example 2:

21 DIM 8(20,30), R$(35)

In this example, B is a 2-dimensional numeric array consisting of 651 numeric variables:

8 (0. 0). 8 (1. 0) •...• 8 (20. 0)

8(0,1),8(1,1), ... ,8(20,1)

8(0,30),8(1,30), ... ,8(20,30)

3-7

and R$ is a 1-dimensional string array consisting of 36 string variables: R$(0), R$(1), ... ,R$(35) .

UP-9168 Rev. 1

FNEND

3.2.3. FNEND Statement

SPERRY UNIVAC OS/3
BASIC

3-8

The FNEND statement terminates a multi line function and is the only way of exiting from a multi line function. All
variables in the local-list and param-list in the DEF statement are restored to their values before the function
call.

Format:

FNEND

Programming Notes:

1. Each multiline function must terminate with exactly one FNEND statement.

2. Multiple FNEND statements for a given DEF statement are illegal.

Example:

25 DEF FNE (A, 8, C), D
30 D=A*5
35 FNE=A + B + C + D
40 FNEND

This example illustrates a multiline function. A. B, and C are the param-list variables, while D is the local­
list variable of the multiline function FNE. As shown, the multiline function must begin with a DEF
statement and terminate with an FNEND statement.

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.3. REMARK STATEMENT (REM)

3-9

REM

The REM statement provides a means for inserting explanatory remarks into a program. Although what follows
REM is ignored, its line number may be used in a control statement. Comments may also be appended to BASIC
statements by prefixing the comment with an apostrophe.

Format:

REM [character ...]

Example:

100 REM INSERT DATA IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

UP-9168 Rev. 1

LET

SPERRY UNIVAC OS/3
BASIC

3.4. ASSIGNMENT STATEMENT (LET)

The LET statement assigns a value to a variable.

Format:

[LET]

{

numer i c-1 et l
string-let

function-let

where:

numer i c-1 et

Numeric-reference = [numeric-reference= ...] arithmetic-expression.

string-let

String-reference = [string-reference= ...] string-expression.

function-let

FN letter[$]= expression.

Programming Notes:

1. The statement verb LET need not be written.

2. Mixed mode assignment is not accepted by the syntax checker.

3-10

3. Multiple assignments are allowed. The right-hand expression is evaluated and then assigned to each
of the references, from right to left, in turn. Subscripts are evaluated just prior to any assignments
within the current statement.

4. The function-let assigns a value to a multiline user-defined function. (See DEF statement.)

Example 1:

10 LET 1=2

2 0 A (I) =I =3 . 5

Statement 20 assigns I the value 3.5 and then A(I) is assigned the value of I, which is 3.5.

Example 2:

56 LET G$=H$=''THIS STRING''

This is a string-let statement that assigns the closed string constant "THIS STRING" to string variable H$,
which in turn is assigned to string variable G$.

•

UP-9168 Rev. 1

Example 3:

10 DEF FNA(A,B,C,D)
20 LET FNA=(A-B)*(C+D)
38 FNEND

SPERRY UNIVAC OS/3
BASIC

Statement 20 is a function-let statement used in the multiline function FNA.

3.5. CONTROL STATEMENTS

3-11

These statements give the programmer the ability to alter and control the normal sequence of statement
execution. Included in this group of statements are: END, FOR and NEXT, GOSUB and RETURN, GOTO, IF, ON,
PAUSE, STOP, RANDOMIZE. TIME, and SYSTEM statements .

UP-9168 Rev. 1

END

3.5.1. END Statement

SPERRY UNIVAC OS/3
BASIC

The END statement is the last statement in a BASIC program.

Format:

END

Programming Notes:

3-12

1. When the user issues the RUN command, all statements up to and including the END statement, and
any subprograms which may follow, are compiled.

2. Only one END statement may be present in a program. Any statements after the END are treated as
an error.

Example:

*30 END

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-13

FOR and NEXT

3.5.2. FOR and NEXT Statements

The FOR statement initiates a loop; the NEXT statement. whose variable matches the one specified in the FOR
statement, terminates the loop.

Format:

FOR numeric-variable=arithmetic-expression TO arithmetic-expression
[STEP arithmetic-expression]

NEXT numeric-variable

Programming Notes:

1. A FOR-NEXT loop specifies the iteration of a sequence of statements for given values of the numeric­
variable (loop index). The initial, final, and step values are given by the three arithmetic expressions
specified in the FOR statement. A step value of +1 is assumed if the STEP is omitted. These values
are calculated on each entry into the loop.

The loop index may be used in calculations within a FOR-NEXT loop. In particular, its value may be
changed by assignment and this will affect the sequence of values for which the loop is iterated.

Let i, f, s, c designate the initial, final, step, and current values, respectively, of a loop index.

Then, initially, we must have (f-1)*s ~ 0. That is, the step value, which may be negative, must move
the loop index value in the direction of the final value.

If f > i and s = 0, then program execution will continue indefinitely within the FOR-NEXT loop. The
calculations to determine loop termination are done at the top of the loop; thus, the statements in the
FOR-NEXT loop may be skipped entirely.

If control is transferred into a FOR-NEXT loop, the results are unpredictable.

2. In the NEXT statement, the numeric-variable must be the same as that following the verb FOR in the
FOR statement. If a different numeric-variable is detected (indicating an overlapping nested loop), an
error results. An error will also result because of any one of the following conditions:

a. The occurrence of a NEXT statement prior to its corresponding FOR statement.

b. A FOR statement without its corresponding NEXT statement.

c. More than one FOR statement with the same index (variable) prior to the occurrence of the
NEXT statement corresponding to the first such FOR statement (that is, loops may be nested,
but not if they use the same index).

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-14

3. The TO and STEP operand order is not checked.

Example:

10 FORl=l TO 10 STEP 2

is the same as

10 FORI = 1 STEP 2 TO 10

4. Nesting is allowed to 10 levels.

Example:

30 FOR X = 0 TO 3 STEP D
80 NEXT X

120 FOR X4=(17+COS(Z))/3 TO 3'SQR(910) STEP 1/4
235 NEXT X4
240 FOR X = 8 TO 3 STEP -1

300 NEXT X
456 FOR J = -3 TO 12 STEP 2

500 NEXT J

Note that the step size may be a fraction (1/4), a negative number (-1), or a positive number (2).
In the example with lines 120 and 235, the successive values of X4 will be .25 apart, in
increasing order. In the next example (lines 240 through 300), the successive values of X will
be 8, 7, 6, 5, 4, 3. In the last example (lines 456 through 500), J will take on values -3, -1, 1, 3,
5, 7, 9, and 11.

5. The action of the FOR statement and the NEXT statement is defined in terms of other statements as
follows:

FOR v = initial-value TO limit STEP increment

(block)

NEXT v

UP-9168 Rev. 1

is interpreted as

line 1

line 2

•

SPERRY UNIVAC OS/3
BASIC

LET own1 = limit
LET own2 = increment
LET v = initial-value

IF(v-own1)*SGN(own2)>0 THEN line 2

(block)

LET v = v + own2
GOTO line 1

(continue in sequence)

3-15

UP-9168 Rev. 1

GOSUB and RETURN

SPERRY UNIVAC OS/3
BASIC

3.5.3. GOSUB and RETURN Statements

The GOSUB statement provides a subroutine call facility.

Format:

GOSUB I ine-number

RETURN

Programming Notes:

3-16

1. The GOSUB statement transfers control to the statement whose line number is referenced. Control is
subsequently returned to the statement following the GOSUB by executing a RETURN statement.

2. A GOSUB statement inside a subroutine may be used to call another routine. This is referred to as
nested GOSUBs. It is necessary that the RETURN statement be used to exit from the subroutine. The
execution of a RETURN statement before a GOSUB statement is treated as an error.

3. GOSUB and RETURN statements need not be paired; that is, the same RETURN statement may be
used to return from several different GOSUBs.

Example:

90 GOSUB 210

91 A=3. 1

100 STOP
210

350 RETURN

The GOSUB statement (line number 90) directs the system to line number 210, which is the first statement
of a subroutine. The last statement of the subroutine is line number 350 (a RETURN statement), which
causes the system to return to line number 91 of the program.

•

•

UP-9168 Rev. 1

3.5.4. GOTO Statement

SPERRY UNIVAC OS/3
BASIC

3-17

GOTO

The GOTO statement unconditionally transfers control to the statement whose line number is referenced.

Format:

GOTO I ine-number

Programming Note:

The nonexistence of the statement whose line number is referenced is treated as an error.

Example:

19 LET J$=' 'THIS STRING''

20 GOTO 25

21 READ A$,8$,C$

2 5 K $=' 'WHAT STRING ' '

The GOTO statement (line number 20) transfers control to the assignment statement (line number 25) and
bypasses the READ statement (line number 21).

UP-9168 Rev. 1

IF

3.5.5. IF Statenient

SPERRY UNIVAC 0
BASIC

S/3 3-18

The IF statement conditionally transfers control. When the c ondition specified is true, control is transferred to
the line number referenced.

Format:

IF condition{GOTO} line-number
THEN
GO SUB

where:

condition

Is one of the following:

relation

arithmetic-expression relation arithmetic-exp
string-expression relation string-expression
END channel-setter
MORE channel-setter

Is any of the symbols listed in Table 3-2.

Table 3-2. Relation

Symbol Meaning

Is equal to

< Is less than

ression

Symbols

< = Is less than or equ al to
=<

> Is greater than

= > Is greater than or e qual to
>=

< > Is not equal to
¥-

Example

A=B

A<B

A<=B
A=<B

A>B

A=>B
A>=B

A<>B
A ¥- B

e

e

e

UP-9168 Rev. 1

Programming Notes:

SPERRY UNIVAC OS/3
BASIC

1. Mixed mode expressions across a relation are not accepted by the syntax checker.

3-19

2. When two strings of different lengths are compared, the shorter string will be padded on the right
with blanks until it is of equal length to the longer string. Thus, string comparison is always
performed on equal length strings. This results in correct collating sequence. Note that this logic of
string comparisons does not affect the actual stored lengths or values of strings. Also, null strings are
considered to be a string of all blanks in all string comparisons.

3. The condition may test two arithmetic or two string expressions against each other using the tests
listed in Table 3-2. If the condition is met, the transfer is completed.

4. The condition may also be a file test, in which case the specified file is tested to see if there are
MORE records left to be read, or if the file is at END. The channel setter specified must refer to an
open file. If the file has not been opened by a file statement, execution will be terminated.

5. If the last record of a file has been read, but not entirely processed, the IF END statement will test
true. That is, the file is considered to be at end of file if no additional READ is permitted. However,
there may still be data in the buffer that an INPUT would accept.

Example 1:

10 A$='' ASHLEY''

20 B$=' 'BOB''

30 IF A$<B$ THEN 50

40 STOP

50 PRINT A$;B$

END

In this example, string A$ is smaller in value than string 8$, although string A$ is greater in length than
string 8$. Thus, control transfers to line number 50 after executing the IF statement on line number 30.

Example 2:

40 IF SIN (X)=M THEN 80

In this example, if the sine of X is equal to M, control transfers to the statement with line number 80.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-20

ON

3.5.6. ON Statement

The ON statement provides a multibranched switch.

Format:

ON arithmetic-expression{GOTO }line-number[,line-number ...]
GOSUB
THEN

Programming Notes:

1. The arithmetic expression is rounded to the nearest integer; it is used as the index to select and
branch to one of the sequence of line numbers.

2. If the value or the arithmetic expression is less than 1 or greater than the number of line numbers
specified, a run-time error results.

3.

Example:

Once the selection has been determined, a GOTO, a THEN, or a GOSUB is performed. In the case of a
GOSUB, a RETURN will return to the next statement.

150 ON X+Y GOTO 575,490,650
2170 ON FNA(G) GOSUB 2200,2400

The first statement transfers control to line number 575, 490, or 650, depending upon whether the integer
part of the expression X+Y yields 1, 2, or 3, respectively.

The second statement will execute either a GOSUB 2200 or a GOSUB 2400, depending on whether FNA
(G) has a value of 1 or 2.

UP-9168 Rev. 1

3.5.7. PAUSE Statement

SPERRY UNIVAC OS/3
BASIC

3-21

PAUSE

The PAUSE statement interrupts program execution and causes the following message to be typed out at the
terminal:

PAUSED AT I ine-number CONTINUE(Y OR N)?

If the user responds with Nor NO, execution is terminated. If the user responds with Y or YES, execution is to be
continued at the next sequential line number.

Format:

PAUSE

Example:

• 10
• 2 f)
• 3 f)
• 4fJ
• 5 f)

PRINT ''THIS IS A TEST PROGRAM''
PAUSE
PRINT "THIS IS ANOTHER LINE"
PAUSE
END
RUN

THIS IS A TEST PROGRAM
BA063 EXECUTION PAUSED AT LINE 0fJ02fJ CONTINUE {Y,N)? ~ Y
THIS IS ANOTHER LINE
BA063 EXECUTION PAUSED AT LINE fJfJ04fJ CONTINUE {Y,N)? ~ N

t

t

UP-9168 Rev. 1

STOP

3.5.8. STOP Statement

SPERRY UNIVAC OS/3
BASIC

3-22

The STOP statement is used to halt program execution and causes the following message to be typed out at the
terminal:

EXECUTION STOPPED AT I ine-number

Format:

STOP

Programming Note:

A STOP statement may appear anywhere in the program.

Example:

· u INPUT A
·20 IF A= 18 THEN 48
•30 STOP
•49 PRINT ''KEEP GOING''
·so END

RUN
712

BA862 EXECUTION STOPPED AT LINE 88838

UP-9168 Rev. 1

3.5.9. RANDOMIZE Statement

SPERRY UNIVAC OS/3
BASIC

3-23

RANDOMIZE

This statement will generate a random seed for use by the random number generator. Its function is equivalent
to the function call RND(-1). If not used, a given sequence of calls to RND will generate the same sequence of
numbers for repeated executions.

Format:

RANDOMIZE

Example:

10 RANDOMIZE

UP-9168 Rev. 1

TIME

3.5.10. TIME Statement

SPERRY UNIVAC OS/3
BASIC

3-24

.,._ This is a nonexecutable statement specifying the maximum CPU seconds allowed for program execution. If
multiple TIME statements occur, the minimum value specified is used. When the specified time limit is reached.
the following message is displayed:

BA059 TIME UP --- PROGRAM LOOPING

Format:

TIME integer

where:

integer

Specifies an integer number of CPU seconds.

Example:

5 TIME 150

UP-9168 Rev. 1

3.5.11. SYSTEM Statement

SPERRY UNIVAC OS/3
BASIC

This is an executable statement that allows a BASIC program to issue any system command.

Format:

SYSTEM ''system command6''

Programming Notes:

3-25

SYSTEM

1. The contents of the closed string should not start with a slash and should end with at least one
space.

2. Errors that occur will be displayed on the user's terminal, but will not be reported to the BASIC
program.

Example:

193 SYSTEM ''FSTATUS YSRC, REL070 ''

3.6. DATA INPUT /OUTPUT STATEMENTS

The input/output statements permit the user to transfer data between internal storage and the terminal, print
data at the terminal (and format the data), and use the same data in a program as many times as required. The
input/output statements are: INPUT, LINPUT, MARGIN, PRINT, READ and DATA, RESTORE and RESET, and
USING.

The following subsections present these statements in their simplest form for use with terminal input/output
and program supplied data. These and additional statements are presented in Section 4.

t

UP-9168 Rev. 1

INPUT

3.6.1. INPUT Statement

SPERRY UNIVAC OS/3
BASIC

3-26

Data may be entered dynamically during the running of a BASIC program using the INPUT statement.

Format:

INPUT variable [,variable ...]

where:

variable
Is either a numeric or string variable reference. This may be either a scalar variable or a reference to

an array element.

Programming Notes:

1. The INPUT statement is similar to the READ statement, except that its data is input (dynamically)
from the user's terminal. The user is prompted for input data by a question mark(?). Insufficient data
results in additional prompting. Data must be entered according to the type of variable in the INPUT
statement. Data items entered must be separated by commas. The inputting of invalid data causes an
error message to be printed at the user's terminal. In this case, the user must retype the data starting

with the data item in error.

2. If the first four characters of the input are STOP, program execution is terminated.

Example:

20 PRINT "TYPE IN VALUES FOR X, Y, AND Z";

30 INPUT X, Y, Z

Execution of these statements causes the system to type out the following message:

TYPE IN VALUES FOR X, Y, AND Z?

The terminal device would be positioned after the question mark waiting for input values for X, Y, and Z.
Note that without the semicolon at the end of line number 20, the question mark would have been posted

on the next line.

UP-9168 Rev. 1

3.6.2. LINPUT Statement

SPERRY UNIVAC OS/3
BASIC

3-27

LINPUT

The LINPUT statement allows an entire input line to be read into a single string variable. No input checking or
conversion is performed.

Format:

LINPUT string-variable [,string-variable ...]

where:

string-variable

Is a reference to a simple string variable or a string array element.

Example:

10 LINPUT C$,H$(6,5)

This statement will cause the user to be prompted twice for input. The first input response will be stored in
its entirety in variable CS. The second response will be stored in array element HS(6,5).

UP-9168 Rev. 1

MARGIN

SPERRY UNIVAC OS/3
BASIC

3.6.3. MARGIN Statement

The MARGIN statement sets the current margin for the terminal.

Format:

MARGIN numeric-expression

Programming Notes:

3-28

1. The value of the numeric expression in the MARGIN statement is truncated, and the resulting integer

is used for the output margin length for the terminal.

2. The MARGIN statement takes effect immediately, even if a line of output is partially filled.

3. The width of a terminal line defaults to 80 characters unless reset by a MARGIN statement.

Example:

MARGIN 64

This statement sets the current margin to 64 characters. This may be useful for UNISCOPE terminals with

64 character lines.
•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-29

• PRINT

•

3.6.4. PRINT Statement

The PRINT statement results in data items being printed at the user's terminal.

Format:

PRINT, it em [{;} it em . .] [{; }]

where:

it em

Is an expression or TAB (expression).

Programming Notes:

1. The width of a printed line on a user's terminal defaults to 80 characters, but may be reset by a
MARGIN statement.

2 . Using the comma (.) or the semicolon (;), it is possible to control horizontal positioning on a printed
line. Initially, the print line is divided into fields of 15-character positions each.

a. If a comma is used after an item, the next item will be printed in the next available field. A data
item is placed at the beginning of a field. If an item cannot be placed in a field because it will
cause the line to exceed the maximum print positions for a device, then that item will be placed
in the first field on the next line. If the last item in the current PRINT statement is followed by a
comma or semicolon, and there is sufficient space remaining on the line, then the items in the
next PRINT statement will be printed on the same line. If the last item is not followed by a
comma or semicolon, then the next PRINT statement begins printing on a new line.

b. If a semicolon is used after an item, the next item will be printed in the next print position on
the line (i.e., the item following the string is printed directly connected to it).

c. For numeric items, the size of a zone depends upon the number of digits needed to represent
the data item. The zone width is always one character more than is needed for the data item. In
each case, the number is printed starting at the first position of the zone. Numbers that cannot
be represented as six or fewer digits are represented in E-notation (refer to Programming Note
5) and occupy either 11 or 12 print positions within a 13-position zone.

3. Whenever the TAB function is used in the PRINT statement, it will cause the print head to move over
to the position indicated by the integer value of the TAB expression. The use of the comma and the
semicolon remains unchanged in this type of statement. When a comma follows a variable, a fixed
field width is reserved before the next entry in the statement is recognized. The semicolon causes
this field width to be minimized. Thus, when the terminal device is being tabbed, the semicolon
should be used. The TAB expression is evaluated modulo the current margin size; a value less than or
equal to zero results in an error. If the value of the TAB expression is less than the current print
position, the current line is printed and a new line is begun.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-30

4. When a string reference is encountered that has not been assigned (a null string), the PRINT
statement will produce no printout.

5. The conventions for printing numeric data are as follows:

a. An integer number is printed as an integer.

b. In all cases, no more than six significant digits will be printed.

c. If the number is positive, the sign is not printed, but a print position is left blank.

d. Decimal numbers will be printed without an exponent part whenever possible. Decimal
numbers requiring an exponent field will be printed:

-#.#[###]E ± dd

where the mantissa may be up to six digits. Trailing zeros in the mantissa are not printed.

e. A space follows every number printed.

6. If no items are present on the PRINT statement, a line advance occurs.

Example 1:

10 FOR X = 1 TO 15
20
30

40

PRINT X
NEXT X
END

This example prints the numbers 1 to 15 on 15 lines as follows:

Col

* 61

62

63

64

65

66
67
68

69
610

611
612

613

614

615

•

UP-9168 Rev. SPERRY UNIVAC OS/3
BASIC

• Example 2:

•

•

10 FOR X = 1 TO 15
20 PRINT X.
30 NEXT X
40 END

This example prints the numbers 1 to 15 in 3 lines as follows:

Example 3:

Col

ii
66
611

Co I 16
+ 62
67
612

10 FOR X = 1 TO 15
20 PRINT X;
30 NEXT X
40 END

Co I 31
+ 63
68

613

Co I 46
+ 64
69

614

Co I 61

15
610
615

This example produces a single line of printout of the numbers 1 to 15 as follows:

61662663664665666667668669661066116612661366146615

If statement 20 were modified, the following would be printed:

20 PRINT - X;

-16-26-36-46-56-66-76-86-96-106-116-126-136-146-15

Example 4:

20 LETA=l
30 C$ ''SALESMAN''
40 A$= ''JOE''
5 0 B $ = ' '6DO KE S ' '

60 N = 4

70 PRINT A, -16,A$;8$,C$;N
80 END

The execution of statement number 70 would produce the following output line:

Co I . Co I
2 1 6
• +
1 - 1 6

Co I Co I .
31 35

• • JOE6DOKES

Co I .
46

Co I .
55

• +
SALESMAN64

3-31

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-32
Update A

Example 5: •

10 PRINT ''000000000111111111122222222223333333333''
20 PRINT ''123451789012345678901234567890123456789''
39 A$=' '• ' '
40 A = 1
50 PRINT TAB (9);A
60 PRINT TAB (19);A
70 PRINT TAB (29);A
80 PRINT TAB (10);A$;TAB(20);A$;TAB(30);A$
90 END

This example illustrates the use of the TAB function in the PRINT statement. The output of this program is
as follows:

Col 1 Col 10 Col 20 Col 30
+ + + +
000000000111111111122222222223333333333
123456789012345678901234567890123456789

1

Example 6:

lB

20
30
40

FOR X = 1 TO 25
PRINT 2**X;
NEXT X
END

This is an example of how large numbers are printed and how they are spaced when a semicolon is used in
the PRINT statement. The printout produced is as follows:

62L'l.64L'l.68L'l.616L'l.632L'l.664L'l.6128L'l.6256L'l.6512L'l.61024L'l.62048L'l.64096L'l.68192L'l.616384L'l.632768
665536L'l.6131072L'l.6262144L'l.6524288L'l.61.04858E+06L'l.62.09715E+06ll.64.1943E+06
68.38861E+06L'l.61.67772E+07L'l.63.5544E+07

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.6.5. READ and DATA Statements

3-33

READ and DATA

The READ statement assigns values to the listed variables. These values are obtained from the DATA statement.

Format:

READ {strin~-vari~ble }[·{strin~-vari~ble }···]
numer1c-var1able numer1c-var1able

DA T A { s t r i n ~ - c o n s t a n t } [· { s t r i n ~ - c o n s t a n t } . . ·]
numeric-constant numeric-constant

Programming Notes:

1. Before the program is run, BASIC takes all of the DATA statements in the order in which they appear
and creates a large data block. Each time a READ statement is encountered anywhere in the
program, the data block supplies the next available datum (or data). The string data block supplies
values for string variables, and the numeric data block supplies values for numeric variables.

2. Insufficient data results in program termination with a diagnostic message.

Example:

10 READ X,Y,Z,Xl,Y2,Q9
20 DATA 4,2,1.7
30 DATA 6.734E-3,-174.321,3.14159265
35 PRINT X,Y,Z,Xl,Y2,Q9
40 FOR K=l TO 5
50 READ B
55 PRINT B
60
71
72
73
74
75
80

NEXT
DATA
DATA
DATA
DATA
DATA
END

K

2
4
5
l.234El6

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

The execution of the above example would produce the following output:

Col
2

• 4

3. 14159

2

4

5

1.234E+16

Col
16

!2
Col
31

• 61 . 7

Col
46

• 6.006734

Col
61

• -174.321

3-34

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.6.6. RESTORE and RESET Statements

3-35

RESTORE and RESET

The RESTORE and RESET statements permit the user to read data from the beginning of a data block.

Format:

RESTORE
RESET

Example:

10 READ N
20 FOR X = 1 TO N
30 READ X

100 NEXT X
110 RESTORE
120 READ M
130 FOR J = 1 TO M
140 READ Y

200 NEXT J

300 DATA 5
310 DATA I. 0
3 1 5 DATA -01
320 DATA 3.2E+01
325 DATA 4
330 DATA -3.
400 END

In this example, the READ statements on line numbers 10 and 120 will read the same datum (i.e., the
number 5 contained in the DATA statement on line number 300). Similarly, the READ statements on line
numbers 30 and 140 will read the same data from the DATA statements on line numbers310to330.

UP-9168 Rev. 1

USING

3.6.7. USING Statement

SPERRY UNIVAC OS/3
BASIC

3-36

The PRINT USING format of the PRINT statement gives the BASIC user the ability to define the format of his
program's output. The USING clause consists of three parts: the USING keyword, the using string that contains
the format fields, and the expression-list that is used to fill in the format fields of the using string.

Format:

USING using-string,expr-l,expr-2 ,expr-n

Example:

PRINT USING ''<####=STRING FIELD.+##=NUMERIC FIELD'' ,Sl$,N

As shown, both string and numeric output can be formatted by a using string. Numeric fields begin with a$,+.
or-. and can only contain numeric output. String fields begin with< or>. and only string data can be formatted
into a string field. Each starting character has a defined function and will be explained later. The # is a place
holder and, by varying the number of place holders, the user can change the size of the format field and thus the
format of the output.

A format field begins with one of the characters $, +. -. <. or > and contains all characters up to but not
including the next $, +. -. <. or> (or to the end of the using string). The complete using string may be made up
of numerous format fields. A format field can appear anywhere within a using string and the place holders do
not have to be contiguous. If more format fields are given in the using string than variables in the variable-list,

the excess fields are ignored. If there are extra variables in the list, then the using string will be reused until the
variable-list is exhausted.

Any characters that do not have special meanings as described in this section may be embedded within format
fields. As the BASIC system edits data into the place holders, any embedded characters are copied too.

Example 1:

If variable SS contains the string:

''A=+##,B=-##,AND C$ CAN=<### OR ###''

the statement

PRINT USING S$,20,-20,' 'ABCDXYZ''

would produce the following output:

A=+20,B=-20,AND C$ CAN=ABCD OR XYZ

•

•

•

UP-9168 Rev. 1

Example 2:

SPERRY UNIVAC OS/3
BASIC

If only one variable is printed, the result would be:

Example 3:

PRINT USING S$,20

A=+20,B=

PRINT USING S$,-20,20,' 'ABCDXYZ'' ,30,-30

will output:

A=-20,8=20,AND C$ CAN ABCD OR XYZA=30,B=-30,AND C$ CAN

3.6.7.1. Formatting String Output

3-37

The BASIC user has two options for formatting the string output of the BASIC program. He can left-justify or
right-justify the output in the format field defined in the using string.

The format field must start with a <to left-justify the output. When a format field starts with this character, the
field is filled from left to right starting with the leftmost character, in this case the<. until the format field or the
string is exhausted. If the string is not long enough to fill all of the place holders, then the remaining place
holders are space-ti lied. If there are more characters in the string than there are place holders, the string is
truncated.

If the format field starts with a >. then the string is right-justified in the format field. The last place holder in the
field is replaced with the last character of the string being printed. The next to the last place holder is filled with
the next to the last character and so on from right to left until the format field is completely replaced by the
string. If the format field is longer than the string being printed, the remaining place holders, including the> are
replaced by spaces. If the string is longer than the format field, the leftmost characters of the string are omitted.

Example 1:

PR I NT US I NG ' 'J<# # # # # #J ' ' , ' ' ABC D ' '

will output:

JABCD

Example 2:

PRINT USING ''J>######J'',' 'ABCD''

will output:

ABCDI

UP-9168 Rev. 1 SPERRY UNIVAC OS/3 3-38
BASIC

3.6.7.2. Formatting Numeric Output

Through using strings, the BASIC user is given a wide variety of ways to format numeric output. The user can
dictate the number of decimal places that are printed, thus defining the accuracy of the number being output. An
exponent field can be defined in order to neatly print large numbers. The numeric field can be preceded by three
different field descriptors. A dollar sign causes the dollar sign to be right-justified against the output number.
The plus sign right-justifies a plus sign against the number if the number is positive, or a minus sign if the
number is negative. A minus sign causes a minus sign to be right-justified if the number is negative; if the
number is positive, no sign is printed. To further identify the output. the user can combine the dollar sign with a
plus or minus sign, giving s+ or $-. Examples will be given later to explicitly show each format that can be used.

Many different situations can occur when printing numbers with format fields due to the flexibility in describing
the format fields and the varying magnitude of the numbers being printed. The following paragraphs present
some of these situations and explain how each is handled.

When a numeric field is defined, the user should be aware of the expected magnitude of the number to be
printed in the field. The magnitude of a number cannot be greater than the size of the format field (number of
place holders) in which the number is to be printed. An example would be printing the number 100 in the format
field +##. In this field there are only two numeric positions, and the 100 will take three. To inform the user that
this error has occurred, the entire format field is replaced by asterisks. In this case, the output is ****.

There are two ways to avoid this problem. First. the format field can be made very large in order to accommodate
large numbers. This is an adequate solution, but can lead to another problem. BASIC will only print six
significant figures; if the user attempts to print more than six significant figures (an example would be
10000000), then the number is truncated to six figures and the remaining portion of the format field is replaced
with question marks. Output printed in this manner may not always be in good readable form. In the example
previously given, if the format field used was +#########, the output is +100000???.

A second method for printing numbers of varying magnitudes avoids using large format fields by defining an
exponent field in the format string. An exponent field is defined by five consecutive up-arrows 11111. When an
exponent field is used, the number is adjusted to fit into the defined field, and the exponent is then calculated to
give the user the magnitude of the number. If an exponent field is defined in the format string, such as
+####lit!!, then the magnitude of the number is known. The +1000000 is formatted as +1000 E+03 and the
+100000000 is printed as +1000 E+05 which tells the user exactly what was printed. As seen in the examples,
the exponent field in the format field is formatted as follows:

space E sign digit digit

If an exponent is used with a numeric format field, then any number can be printed in the field. The number is
adjusted to the field size, and the exponent holds the magnitude of the adjusted number. If this statement is
executed:

157 PRINT USING' '+##11111'' ,25,290,-300, .00001

the resu It is:

+25 E+00 +29 E+01 -30 E+01 +10 E-06

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-39

To print numbers that contain a decimal component, the user can define decimal fields in the format field. The
format field begins with a +, -. $, $+, or $-,optionally followed by any number of place holders. A decimal point
may be embedded anywhere within the place holders. The following field will contain a decimal field of three
places. "+##.###". When the decimal is printed, it is rounded to the number of positions given and then printed.
When no decimal places are given. the number is rounded to the next integer value.

Examples:

Format Field Number Printed Resulting Output

+##### +101:! +ll:ll:l

+##### -11:!0 - 10 l:l

-##### +101:! l l:l 0

-##### - l l:ll:l - l l:l l:l

$###.## +21:!. 99 $ 2 l:l. 9 9

$+###.## - 21:!. 99 $-20.99

$+###.## +21:!. 99 $+21:!.99
$-###.## +21:!. 99 $ 2 l:l. 9 9

$### AND ## CENTS +45. 51:! $45 AND 51:! CENTS
DICE - AND - 1 . 1 DICE 1 AND

$#,###.## 1234.56 $1,234.56
$#,###.## 8.94 $8.94

-#: Ol:l HOURS ## 1234 12:1:!0 HOURS 34
MINUTES MINUTES

TODAY IS THE -#TH OF 2680 TODAY IS THE 26TH OF
SEPT, 19## SEPT, 19 8 l:l

3.6.7.3. Use with PRINT Statement

The USING clause may only be used in combination with a PRINT or MAT PRINT statement. As previously stated,
a USING clause begins with the word USING. followed by a string and a list of expressions to be formatted:

USING string-expression, expression, expression, ...

Examples:

11:!6 PRINT USING A$,B,C,10,E(5)

107 PRINT USING "FILES-#DISKS-#TAPES-#",F,D,T

108 PRINT USING ''USER RESPONSE OF>#### IS INVALID'' .U$

109 PRINT USING FNB$(6), T,U,SIN(3.14159)

The USING clause need not be the only thing on a PRINT statement; unformatted expressions may be combined
with formatted data. When combining formats in this manner, it is important for the user to realize exactly where
a USING clause begins and ends. It always begins with the word USING. The end of the USING clause occurs
either at the end of the PRINT statement that contains no trailing comma or at a semicolon.

When a USING clause is encountered, BASIC formats the entire using string and the PRINT statement prints it to
the output device. Thus. when used with files, the using string, after editing, must not be longer than the margin
for the file.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Examples of combined formats are shown; the shaded areas indicate the USING clauses.

243

244

246

247 LET F$ =''IS THE<######## OF -###.#ttttt''

248 PRINT TAN(X);··········

3-40

The list of expressions to be used with a single USING clause can be extended over several PRINT statements by
ending the statements with a comma. This indicates that more expressions are to follow, and BASIC will delay
printing the output until a semicolon is found in a subsequent PRINT, or until a PRINT is executed that does not
end with a comma.

Examples:

341 PRINT USING A$,B,C,D.

342 PRINT E,F;G,H

343 PRINT USING 1$,J$,K,L(3).

344 PRINT SIN(3.14159),

345 PRINT M

346 PRINT N,O

347 PRINT P,USING Q$,R;

348 PRINT s

Variables B. C, D. E, and Fare printed under the format in AS, variables G and Hare unformatted. Variables JS,
K. array element L(3), the sine of 3.14159 and variable M are under the format in 1$, while N and 0 are
unformatted. Variables P and S are unformatted, while R is printed under the format in 0$.

The final example of the USING clause shows how the format fields are reused when insufficient format fields
exist for all of the variables to be printed.

Examples:

179 PRINT USING' '-.###ttttt IS THE<###### OF-.###ttttt' ', TAN(X), ''TANGENT'',

180 PRINT X,SIN(X),' 'SINE'' ,X,COS(X),' 'COSINE'' ,X

181 PRINT COS(X);' 'IS THE COSINE OF'' ;X

4.855E+05 IS THE TANGENT OF l.571E+00 l.000E+00 IS THE SINE OF l.571E+00

2.060E-06 IS THE COSINE OF l.571E+00

2.05959E-06 IS THE COSINE OF 1.57079

•

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC

3-41

Because statement 179 ends with a comma, the USING clause is still active. Any variables printed on a
succeeding PRINT statement will still be under format control. Statement 180 does not end with a comma,
so it terminates the format. A total of nine expressions is formatted. Statement 181 is a normal PRINT
statement.

This example shows several unique properties of USING clauses. The format string contains three format
fields:

-.###11111 IS THE
<###### OF

- . ### 11111

UP-9168 Rev. 1

MAT

SPERRY UNIVAC OS/3
BASIC

3.7. MATRIX OPERATION STATEMENTS

3-42

For ease in handling matrix operations on numeric arrays, the following MAT statements are provided in BASIC:

• MAT addition, subtraction, and multiplication statements

MAT C = A + B

Add the two matrixes A and B; store the result in matrix C.

MAT C = A - B

Subtract matrix 8 from matrix A; store the result in matrix C.

MAT C = A • B

Multiply matrix A by matrix B; store the result in matrix C.

• MAT constant statement

MAT C = CON

Set each element of matrix C to a value of 1.

• MAT identity statement

MAT C = ION

Set the diagonal elements of matrix C to 1 's, and all other elements to 0, yielding an identity matrix.

• MAT INPUT statement

MAT INPUT A.A$

Input elements of a matrix.

• MAT inversion statement

MAT C = INV (A)

Invert matrix A; store the resulting matrix in C.

• MAT LINPUT statement

MAT LINPUT A$.B$

Input lines of data into elements of matrixes using the LINPUT statement.

UP-9168 Rev. 1

• MAT null statement

MAT C$ = NUL$

SPERRY UNIVAC OS/3
BASIC

Set each element in matrix C$ to a null string.

• MAT PRINT statement

MAT PRINT A,A$
Print elements of matrix A.

• MAT READ statement

MAT READ A,A$
Read elements of matrix A from DATA statements.

• MAT scalar multiply statement

MAT C = (exp)*A

3-43

Multiply each element of matrix A by the value of the expression and place the result in matrix C.

• MAT transpose statement

MAT C = TRN(A)
Transpose matrix A and store the resulting matrix in C.

• MAT vector multiplication statement

MAT variable= v·w
Multiply vectors V and W and assign the result to a variable.

• MAT zeros (O's) statement

MAT C = ZER
Set each element of matrix C to 0.

UP-9168 Rev. 1

3.7.1. Matrix Dimensioning

SPERRY UNIVAC OS/3
BASIC

3-44

An array variable used in a MAT statement should have its upper bounds (maximum) defined in a DIM
statement.

For matrix operations, the lower bounds for each dimension of a matrix are assumed to be 1; elements in row
and column 0 are unchanged.

Example:

HHJ DIM P(3,4)

This defines 20 elements P(0,0),. .. ,P(3.4) but only 12 elements P(1, 1) P(3.4) take part in any MAT
operation.

The mathematical definition of matrix addition, subtraction, multiplication, inversion and transpos1t1on
operations require the obvious conformities of matrix dimensions; otherwise, errors will result. Details
concerning matrix dimensioning are discussed in the programming notes for each matrix operation statement.

Certain statements allow the user to implicitly or explicitly redimension a matrix. When a matrix is explicitly
redimensioned, a trimmer is used that has a form similar to the array bounds listed in a DIM statement.
Trimmers cannot change the number of subscripts of an array, but they can change the number of elements in
the array (i.e .. the user cannot change a matrix to a vector or vice versa).

When changing the number of elements in an array, the new array dimensions cannot cause it to have more
elements than the original DIM statement reserved for it. If the original DIM statement reserved (n,m) elements,
and the trimmer changes it to (a,b), the following condition must hold:

(a+l)'(b+l)~(n+l)'(m+l)

For example, if array A was dimensioned as 3.4 it could not be trimmed to 3,6, because the original matrix
contained 20 elements and the new matrix would require 28 elements (remember row and column 0).

•

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC

3.7.2. MAT Addition, Subtraction, and Multiplication Statements

These statements permit addition, subtraction, and multiplication of numeric matrixes.

Format:

MAT letter=letter+letter
MAT letter=letter-letter
MAT letter=letter"letter

Programming Notes:

3-45

1. The operator (+)denotes a matrix addition statement; the operator (-)denotes a matrix subtraction
statement; and the operator (*)denotes a matrix multiplication statement.

2. Only one operation may be performed per statement.

3. Matrix dimensions must be conformable for each operation. If dimensions are not conformable,
execution is terminated and a dimension error message is typed out at the terminal. The output
matrix will be redimensioned, if possible, to be consistent with the input matrixes.

4. The following are treated as errors:

MAT A=A*B
MAT A=B*A

5. The mathematical definition of matrix multiplication is used. Thus, each of the following conditions
must hold for MAT A=B*C:

a. Current row bound (A) = current row bound (B)

b. Current bound (A) = current column bound (C)

c. Current bound (B) = current row bound (C)

Matrix A will be redimensioned to meet these conditions.

If either B or C is a vector, it will be transposed so that A will be a vector. If both Band Care vectors,
an error will result. (See 3.7.13.)

6. The mathematical definition of matrix addition and subtraction is used. Thus, each of the following
conditions must hold for MAT A=B+C or MAT A=B-C.

a. Current row bound (A) ~ current row bound (B)
Current row bound (A) ~ current row bound (C)

b. Current column bound (A) ~ current column bound (B)
Current column bound (A) ~ current column bound (C)

Matrix A will be redimensioned to meet these conditions.

UP-9168 Rev. 1

Example:

SPERRY UNIVAC OS/3
BASIC

Hl DIM
20 FOR
30 FOR
40 READ
50 NEXT
60 NEXT

A(2, 2), 8(2, 2), C(2, 2)
I = 1 TO 2

J = 1 TO 2
A (I , J) , 8 (I , J)

J

70 DATA 1,5
71 DATA 2,6
72 DATA 3,7
73 DATA 4,8
80 PRINT
8 1 PR I NT ' 'MAT C = A + 8 ' '
82 PRINT
85 MAT
86 GOSU8
90 PRINT

C = A + 8

200

91 PRINT ''MAT C
92 PRINT
95 MAT
96 GOSU8

100 PRINT

C = 8 - A

200

101 PR I NT ' 'MAT C
102 PRINT
105 MAT C = A • 8
106 GOSU8 200
110 STOP

8 - A' '

A • B' '

200 PRINT A(l,l);A(l,2)
210 PRINT A(2,l);A(2,2)
220 PRINT 8(1,l);B(l.2)
230 PRINT 8(2.1);8(2,2)
240 PRINT C(l,l);C(l,2)
250 PRINT C(2,l);C(2.2)
260 RETURN
300 END

3-46

•

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC

The execution of the preceding program would produce the following output:

MAT C = A + B

1 2

3 4

5 6

7 8

6 8

10 1 2

MAT C B - A

1 2

3 4

5 6

7 8

4 4

4 4

MAT C A • B

2

3 4

5 6

7 8

1 9 2 2

43 50

By using the MAT PRINT statement (3.7.9), statements 200 through 250 are replaced by

2 0 0 MAT PR I NT A ; B ; C ;

3-47

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3 3-48
BASIC

3.7.3. MAT Constant Statement

This statement results in all elements of the subject matrix being set to 1.

Format:

MAT I et t e r C 0 N [(t r i mm e r)]

where:

t r i mme r

Is a new array dimension to be applied to the matrix.

Programming Notes:

1. A trimmer may optionally be used with this statement to dynamically redimension the matrix. This
trimmer may not change the number of subscripts for the matrix. The new dimensions may not cause
the new matrix to have more elements than did the original definition, or an error will result.

2. A trimmer has the same format as the dimensions on a DIM statement.

Example:

175 MAT C=CON

The elements of matrix C will be set to 1. The dimensions of matrix C are used in the operation.

•

•
UP-9168 Rev. 1

3.7.4. MAT Identity Statement

SPERRY UNIVAC OS/3
BASIC

The MAT identity statement is used to set the subject matrix to an identity matrix.

Format:

MAT letter=IDN [(trimmer)]

where:

t r i mme r
Is a new array dimension to be applied to the matrix.

Programming Notes:

3-49

1. A trimmer may optionally be used with this statement to dynamically redimension the matrix. This
trimmer may not change the number of subscripts for the matrix. The new dimensions may not cause
the new matrix to have more elements than did the original definition, or an error results.

2. A trimmer has the same format as the dimensions on a DIM statement.

3. The current row and column dimensions of the subject matrix must be equal when this statement is

executed; otherwise, an error occurs.

Example:

20 MAT B = ION (3,3)

In the statement with line number 20, matrix B is changed to a 3 x 3 matrix and then set to an identity
matrix. If B is not defined to be square, a dimension error message results.

UP-9168 Rev. 1

3.7.5. MAT INPUT Statement

SPERRY UNIVAC OS/3
BASIC

3-50

The MAT INPUT statement causes elements of the arrays in the array list to be assigned values during execution
of the program. The terminal user is prompted by means of a question mark to enter a list of values. If the array

~ name is not specified with a trimmer, or if the array name is not the last one in the list, the user must supply the
same number of values as the current array dimension requires to fill the array. The user can always enter less
than the required number of elements for the last array in the list. Therefore, the last array has a built-in trimmer

~ feature. The number of values input is stored in the function NUM.

Format:

MAT INPUT mat-name [(trimmer)] [,mat-name[(trimmer)], ...]

Programming Notes:

1. When the terminal user must enter an array in response to a MAT INPUT statement, it is quite likely
that he will not be able to fit the entire array on a single line. The user may specify that a line is to be
continued by entering a comma and an ampersand (&) following the last data item. The last line that
is not terminated by an ampersand will terminate the input:

? 1, 2, 3, &
4, 5

2. If the BASIC program is not doing vector input, then the number of data items typed must match the
number of entries in the array.

3. When doing vector input, the vector is redimensioned to the number of values input, in addition to
the value being stored in NUM. If the vector has a trimmer, however, NUM remains unchanged.

4. When inputting 2-dimensional arrays, elements in row 1 are filled first, then row 2, and so on.

5. NUM is updated only if the last variable in the list is a vector without a trimmer.

Example:

1011 MAT INPUT A(3,4),V$

•

•

•

UP-9168 Rev. 1

3.7.6. MAT Inversion Statement

SPERRY UNIVAC OS/3
BASIC

Matrixes are inverted using the MAT inversion statement.

Format:

MAT letter=INV(letter)

Programming Notes:

3-51

1. Matrix inversion in place (MAT A=INV(A)) is treated as an error. If a matrix is singular, the value of
the pseudo-function DET will be set to zero; otherwise, DET will contain the value of the determinant
for the just-inverted matrix.

2. The mathematical definition of matrix inversion is used. Thus, each of the following conditions must
hold for MAT A=INV(B):

a. Current row bound (B) = current column bound (B)

b. Current row bound (A) ;;;,, current row bound (8)

c. Current column bound (A) ;;;,, current column bound (B)

3. The matrix being inverted is destroyed during the inversion process .

Example:

550 MAT K=INV(L)

Matrix K is made to represent an inverted row-column arrangement of matrix L.

UP-9168 Rev. 1

3.7.7. MAT LINPUT Statement

SPERRY UNIVAC OS/3
BASIC

3-52

This statement causes entire lines to be read into the elements of a string array during execution of the program.
Matrixes are filled row-by-row until the entire matrix (except row and column 0) is filled.

Format:

MA T L I N P U T s t r i n g - a r r a y [(t r i mm e r)] [, s t r i n g - a r r a y [(t r i mm e r)] , . . .]

Example:

325 MAT LINPUT A$(5),C$

•

•
UP-9168 Rev. 1

3.7.8. MAT Null Statement

SPERRY UNIVAC OS/3
BASIC

3-53

This statement sets all elements of string matrix to null strings. The matrix may optionally be redimensioned.

Format:

MAT I et t e r $ NUL$ [(trimmer)]

where:

t r i mme r
Is a new array dimension to be applied to the matrix.

UP-9168 Rev. 1

3.7.9. MAT PRINT Statement

SPERRY UNIVAC OS/3
BASIC

3-54

The MAT PRINT statement causes an entire array (except for row and column 0) to be printed row-by-row. If an
array is followed by a semicolon separator, the elements of each row are printed closely packed; otherwise, the
elements of each row are printed in columns 15 spaces wide. Each row begins on a new line. If a row does not
fit on one line, it is continued on succeeding lines. If no print separator follows a vector, it is printed as a column
vector, i.e., one element per line; otherwise, it is printed as a row vector.

Format:

MAT PRINT mat-name letter [f} mat-name letter ..] []

where:

mat-name

Is the name of a string or numeric matrix.

•

UP-9168 Rev. 1

3.7.10. MAT READ Statement

SPERRY UNIVAC OS/3
BASIC

3-55

The MAT READ statement causes elements of the matrixes in the array list to be assigned values during
execution of the program. These values are obtained from the appropriate block data formed by the DATA
statements. Matrixes are filled row-by-row until the entire matrix (except for row and column 0) is filled.

Format:

MAT READ mat-name [(trimmer)] [,mat-name [(trimmer)] ...

where:

mat-name
Is the name of a string or numeric matrix.

t r i mme r
Is a new array dimension applied to the matrix.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.7.11. MAT Scalar Multiply Statement

3-56

The expression is evaluated and this result is used to multiply each element in the matrix on the right side of the
equal sign. The resultant values are assigned to the matrix on the left side of the equal sign.

Format:

MAT letter=(arithmetic-expression) 0 letter

Example:

198 MAT C = (5) • A

Each element in A is multiplied by 5 and the result is placed in matrix C. The dimensions of both matrixes
must be identical.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.7.12. MAT Transpose Statement

Matrixes are transposed using the MAT transpose statement.

Format:

MAT letter=TRN(letter)

Programming Notes:

1. Matrix transposition in place (MAT A=TRN(A)) is treated as an error.

3-57

2. The mathematical definition of matrix transposition is used. Thus. each of the following conditions
must hold for MAT A=TRN(B):

a. Current row bound (A)~ current column bound (l;J)

b. Current column bound (A) ~ current row bound (B)

Example:

308 MAT G=TRN(H)

The matrix G is the transpose of matrix H.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.7.13. MAT Vector Multiplication Statement

This statement permits the multiplication of two vectors. yielding a scalar result.

Format:

MAT variable letter • letter

Programming Notes:

1 . Both arrays used in the statement must be defined to be vectors of equal size.

2. The result must be assigned to a numeric variable.

3-58

3. The variable must be in the form letter-number (such as A 1 or 87) to explicitly denote a scalar
variable.

Example:

MAT A6 v ·w

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3.7.14. MAT Zeros (O's) Statement

This statement results in all elements of the subject matrix being set to 0.

Format:

MAT letter=ZER [(trimmer)]

where:

t r i mme r
Is a new array dimension to be applied to the matrix.

Programming Notes:

3-59

1. You can use this statement to dynamically redimension the matrix. This trimmer may not change the
number of subscripts for the matrix. The new dimensions may not cause the new matrix to have
more elements than did the original definition, or an error will result.

2. A trimmer has the same formats as the dimensions on a DIM statement.

Example:

150 MAT C = ZER(3)

The elements of matrix C are set to 0. The dimension of matrix C is changed to 3; then the operation is
performed.

3.8. PROGRAM SEGMENTATION

The statements described in this subsection allow BASIC programs to be logically and physically segmented. The
CHAIN statement allows a large program to be divided into several smaller ones that may be serially executed
occupying the same main storage region. The CALL and SUB statements allow the development of
parameterized, independent routines. The LIBRARY statement provides the mechanism for calling previously
coded and debugged routines that have been stored in OS/3 library files.

UP-9168 Rev. 1

CALL

3.8.1. CALL Statement

SPERRY UNIVAC OS/3
BASIC

The CALL statement invokes a BASIC subroutine.

Format:

CALL string-constant[:par am- I ist]

where:

string-constant
Is a subroutine name (eight alphanumeric characters maximum).

param-list
Is one of the following:

expression
variable
channel setter
function name
array

Five types of parameters may be specified in the param-list.

3-60

1. Expression (call-by-value) - Any numeric or string expression. The value is only passed to the
subroutine; no value may be returned. A simple variable may be made an expression by enclosing it
in parentheses.

Example:

A+3,5,(X),A$&8$,''ABC''

2. Variable (call-by-reference) - Any numeric or string variable. The value of the variable may be
changed by the subroutine.

Example:

X,R3,A$,X$(1,3)

3. Channel setter - A file is passed to the subroutine. Any processing may be performed on the file by
the subroutine, including reopening the file with a different name.

Example:

#1,#X+Y

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-61

4. Function name - A function is passed to the subroutine. The function may be used in any valid
context in the subroutine. The number and type of parameters for the passed function must agree
with its use in the subprogram.

Example:

FNXS,SIN

5. Array - An entire array may be passed to a subroutine. Any valid operation, including
redimensioning, may be performed by the subroutine. Note that the CALL statement only specifies
the number of dimensions, not the actual dimensions.

Example:

A(,),BS()

Programming Notes:

1. Subprograms may not be called recursively.

2. Only open files may be passed.

3. Arrays may be redimensioned in a subroutine by using them with trimmers.

4. Functions that are passed on CALL statements must be defined before the CALL statement.

Example:

100 CALL ''SUB1'':5+1,A$,#8,SIN 8(,),''YES''

UP-9168 Rev. 1

CHAIN

3.8.2. CHAIN Statement

SPERRY UNIVAC OS/3
BASIC

3-62

This statement terminates the execution of the current program and initiates execution of a specified program.
The chained program can reside in either an OS/3 library file or in a BASIC workspace file created by the
chaining program. The CHAIN statement allows a large BASIC program to be segmented and new phases to be
loaded without the terminal user being involved.

Format:

CHAIN

{::ring-expression}
[WITH #1[,#J, ...]]

where:

#N
Is a channel expression for a BASIC file containing a BASIC program.

string-expression
Is a program identifier of a BASIC program in an OS/3 library file. Its format is similar to that used on

an OLD or RUNOLD statement.

#I . # J
Is a list of channel expressions specifying those files to be passed to the chained program. The
passed files are assigned sequential channel numbers, beginning at 1. That is, in the chained
program, the first file in the list is assigned to channel 1, the second to channel 2. etc.

Programming Notes:

1. If the chained program is specified by a channel expression, the file must be a temporary or library
file; a MIRAM file is not permitted.

2. If the file containing the chained program is an OS/3 library file, the file will be closed after the
chained program is loaded.

3. Any files not included in the file list are closed before the chained program is loaded.

4. The chained program source is not copied into the BASIC workspace. When execution of a chained
program completes, the original contents of the workspace when the RUN or RU NOLD statement was
issued is still intact.

Example:

900 CHAIN #3

950 CHAIN ''PHASE2,PROGLIB,PACK43'' WITH #10. #1

UP-9168 Rev. 1

3.8.3. LIBRARY Statement

SPERRY UNIVAC OS/3
BASIC

3-63

LIBRARY

This statement informs BASIC of the names of OS/3 library files that are to be searched to find subroutines
referenced by the program.

Format:

LIBRARY file [(password)][,volume]

where:

f i I e

Is the name of an OS/3 library file.

password

Is the READ password for the file. It must be included in the statement if the file has been cataloged
with a password.

volume

Is the name of the disk pack on which the file resides. If the file has been cataloged with a volume
name, this parameter may be omitted.

Programming Notes:

1. At load time, all subroutines in the program file are loaded first. Then, if there are unresolved
subroutine names, the files specified in the LIBRARY statements are searched. If any subroutines are
not resolved in this manner, execution is terminated.

2. A maximum of four LIBRARY statements are permitted in a BASIC program.

3. If more than one library is specified, the order in which they are searched is unpredictable.

4. In order for a subroutine to be found in a library, the SUB name must match the element name with
which it was written to the library file.

5. Although multiple subroutines may be stored in the same library element, BASIC will only locate
subroutines by the element name. Consequently, the element name must be the name of the first
subroutine referenced in the program.

Example:

11!0 LIBRARY'' SUBROUTINES(RDPASS), PACK33''

UP-9168 Rev. 1

SUB

SPERRY UNIVAC OS/3
BASIC

3-64

3.8.4. SUB Statement

This statement is the first statement of a BASIC subroutine. It must follow an END or SUBEND statement or be
the first statement in a BASIC program file.

Format:

SUB string-constant (:param-1 ist]

where:

string-constant
Is the subroutine name, consisting of no more than eight alphanumeric characters. If this subroutine
is to be loaded implicitly by BASIC through the use of LIBRARY statements, this name must be the
same as its element name in the OS/3 library file.

param-list
Is the list of local variables passed to the subroutine. Each must have the same type (string or
numeric) and dimension (matrix, vector, scalar, function, or file) as the corresponding parameter in
the CALL statement. These parameters may be:

variable
channel setter
function name
array

Four types of parameters may be specified in the param-list:

1. Variable - Any numeric or string variable. The corresponding CALL statement may contain a variable
or an expression. When the caller passes a variable, subroutine references alter the value of that
variable; when the caller passes an expression, the parameter is a local value. The subroutine is not
aware of the different parameter modes. However, a returned value is lost if the subroutine is called

with an expression.

2. Channel setter - Any channel constant (#1, #30, etc). References to this channel act upon the file
passed by the caller. The file must be opened by the caller prior to calling the subroutine. Any files
opened in the subroutine that are not included in the param-list will be local to the subroutine and
will be closed upon exit.

3. FN letter [$] - Any user function may be defined in the SUB parameter list. Function result type and
the types of each function parameter must be consistent with the function passed to the subroutine
by the caller.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

3-65

4. Array reference - Any array name may be defined here. The variable type and number of dimensions
must be consistent with the passed arrays. No dimension statement for these arrays may appear in
the subroutine. Note that no dimensions are included on the SUB line, only the number of
dimensions.

Example:

A (.). X$ ()

Programming Notes:

1. Each SUB statement must define a unique subprogram name. Two or more subprograms with the
same name in the user's program will result in an error.

2. Any variables, arrays, functions, or files not declared in the SUB line are local to the subprogram.
Local arrays, functions, or files must be defined by the appropriate DIM, DEF, or FILE statement.

3. A SUB statement is only valid as the first statement in a library subprogram, or after an END or
SUBEND statement.

4. Local variables contain unpredictable values when the subroutine is entered.

5. DATA statements are local to the subroutine. The DATA pointers are reset to the beginning of the
data block on entry to the subroutine, and any READ statements issued within a subprogram will not
interfere with READS or DATA in the calling program.

Example:

ll:JB99 SUB"SUBl":X,Y$,#3,FNS,X(,)

UP-9168 Rev. 1

SU BEND

3.8.5. SUBEND Statement

SPERRY UNIVAC OS/3
BASIC

3-66

This statement is the last statement in a BASIC subroutine. If this statement is executed, control is returned to
the caller.

Format:

SUB END

Programming Notes:

1. The SUB and SUBEND statements delimit the subroutine. No statement within the subroutine may
refer to a statement before the SUB or after the SUBEND.

2. If the subroutine is loaded from a LIBRARY statement, the line numbers within the subroutine are
local to the subroutine and, in fact. may be duplicates of lines existing in the main program.

UP-9168 Rev. 1

3.8.6. SUBEXIT Statement

SPERRY UNIVAC OS/3
BASIC

3-67

SUBEXIT

The SUBEXIT statement terminates a subroutine and returns control to the caller. Unlike the SUBEND statement,
the SUBEXIT may occur anywhere within the subroutine, except within a user-defined function.

Format:

SUBEXIT

Example:

983 SUBEXIT

t

UP-9168 Rev. 1

CHANGE

3.9. CHANGE STATEMENT

SPERRY UNIVAC OS/3
BASIC

3-68

The CHANGE statement converts arithmetic and alphanumeric formats. It can change a character string into an
array of numeric values and vice versa.

Format:

CHANGE string TO array [BIT expr]

CHANGE array TO string-variable [BIT expr]

where:

string
Is any string expression, string variable, or closed string.

a r ray
Is any numeric array name.

string-variable
Is the string variable that will contain the changed array.

ex pr

Is a numeric expression specifying the number of bits per character.

Programming Notes:

1. When changing from a string to a numeric vector, the BIT expression specifies the number of bits, n,
which are used to form pseudo characters. The first n bits of the string are used to form a decimal
number. This value is converted to floating point and stored in the first entry of the array. Then
processing continues with the next n bits. If extra bits remain that would not complete a full
character, they are ignored. The total number of entries converted is stored in the zero element of the
vector.

2. When changing from a string to a vector, the vector must be large enough to accommodate all the
character values or an error results.

3. When changing from a vector to a string, the user must set element 0 of the vector to the number of
vector elements to be converted. Each element in the vector from the first to the last one the user
selects is converted to a bit string of length n. These bit strings form the new string. If element O
contains a 0, a null string is produced.

4. When changing from a vector to a string, if a converted element value cannot be represented inn bits
or is negative, a runtime error results. Attempting to create a string greater than 4095 characters
also results in an error.

5. If omitted, the BIT parameter defaults to eight. The maximum permissible value for the BIT expression
is 24.

Examples:

109 CHANGE A$ TO X(l5)
290 CHANGE Z TO B$ BIT 7

UP-9168 Rev. 1

4.1. INTRODUCTION

SPERRY UNIVAC OS/3
BASIC

4-1

4. File Support

The user can save file information permanently or retrieve it at any time using BASIC file capability. He can
update file data, reference it in a program, or write new data to the end of a file. The type and format of these
files are flexible, enabling the user to access files from both BASIC and batch programs.

4.2. FILE DESCRIPTION

Three file types are supported by BASIC: temporary files, library files, and MIRAM files. Although the file types
may vary, the actual format of a data record processed by a given statement will not change. This allows a
correctly written program to use the same statement to process a temporary, library, or MIRAM file
interchangeably as long as the record content is the same.

• Temporary files

These files are maintained entirely by BASIC and permit the user to create and read local files without the
overhead of allocating space on the disk. When a FILE statement declares a temporary file, BASIC allocates
one in its workspace. When the program or subprogram terminates, these files are erased.

1 • Library files

Library files, or library elements, may be used for permanent storage of BASIC files. These files are stored
as single librarian format elements within a SAT file, and may be accessed by the librarian, batch
programs, and other system programs.

Because library elements are sequential by nature and may not be extended or updated in place, they are
copied to the BASIC workspace and accessed there. After the BASIC program has finished with the file
(either at program or subprogram termination or when the file's channel number is reused by another FILE
statement), the data is copied from the workspace back to the file and placed at the end, automatically
deleting the old element if one exists. If no WRITE operations have taken place on the file, it will not be
written back.

• MIRAM files

Unlike library files, MIRAM files do not use the workspace; they process the data in place on disk. All types
of MIRAM files (fixed length record, variable length record, keyed, and unkeyed) can be opened, but BASIC
permits access to these files only by using the relative record number. They cannot be accessed by key.
When the file is opened, its characteristics are obtained from the label (record size, buffer size, or file type).
Although any type of MIRAM file may be accessed, all records written by BASIC will be unkeyed.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-2

Any number of MIRAM files may be open simultaneously; however, no more than 32 library and workspace
files may be open at the same time.

For a new file, BASIC will create a MIRAM file using the default MIRAM parameters. For additional
information on MIRAM, refer to the consolidated data management concepts and facilities manual,
UP-8825 (current version).

All BASIC files are controlled by several parameters defining which operations will be permissible for the file,
and how the BASIC statements will operate. These parameters are the file type (library, temporary, or MIRAM),
margin size, current location pointer, and end-of-file pointer. The file type is determined when the file is opened
by the FILE statement. At the same time, a margin setting is determined which limits the maximum record size
that can be written to the file. The current location pointer and end-of-file pointer are dynamic and change
during execution. The current location pointer is initialized to zero and points to the next record to be read or
written to the file at any given time. After a record is read or written, the pointer is advanced by one to point to
the next record. At any time during execution, the user may change the current location pointer via a RESET
statement; this will take effect on the next READ or WRITE. PRINT statements do not use the current location
pointer, but always output records using the end-of-file pointer. This pointer is set to write records immediately
following the last record in the file and is incremented once for each record written. The end-of-file pointer can
only explicitly be reset by a SCRATCH statement, which erases the entire file contents and repositions both
pointers to the start of the file.

Records in BASIC are numbered beginning with 0; the first record is at location 0, the second at location 1, and
so on. The end-of-file pointer is always set to the last record in the file plus 1, so, if the file contains 105 records,
the last record will be at location 104 and the end-of-file pointer will contain a value of 105.

BASIC files are composed of one or more records, with each record containing data in some user-defined format.
Certain BASIC statements (such as INPUT) make assumptions as to the format of the data, and will scan off data
from the records field by field. Other statements make no assumption as to the format, and allow the user to
retrieve entire records and perform the field separation and conversion himself. When outputting records to the
file, the user can format the entire record in a string variable and write it to the file (WRITE) or he can allow
BASIC to perform the formatting and editing for him via the PRINT USING capability.

In general, field separation for file records follows the same rules as for data input from the terminal. On output,
however, the user program must supply the separators that will be expected by BASIC when the file is read.
When BASIC performs the field separation functions for the user, certain restrictions apply to the format of the
data in the records. Numeric fields are composed of an optional sign, a series of digits with an optional decimal
point, and an optional exponent field. The field must either terminate the record, or end with a comma. String
fields may be either opened or closed, and must either terminate the record or end with a comma. Closed string
must begin and end with a quote(") and must be the only data in the field. Quotes required within closed strings
may be entered as two successive quote characters.

When numeric variables are read via the INPUT statement, the field used to supply the next value must be a
numeric field or a fatal error will result. With string variables this is not a problem because the string contents
may, in fact, be numeric digits.

The user must be aware of these restrictions if a file is to be created by BASIC and then read via INPUT
statements; commas for field separators must be written explicitly to the file. For example, if a BASIC program
would read data with the statement:

HJ INPUT #3: A,B,C

the record would have to look similar to:

45.2, 45.6, 54.2

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC
4-3

One statement to create this record could be:

23 PRINT #3: Al·'',"; Bl ;",";Cl

Note that because BASIC is performing field separation, and fields may either terminate the record or end with a
comma, records to supply data for this INPUT could be any of the following examples:

4 5. 2
45.6

5 4. 2

45.2, 45.6

54.2

45.2, 45.6, 54.2. 64.7

In the last example, the value 64.7 would not have been read by the INPUT statement, but would be retained for
the next INPUT (assuming the user does not reposition the file).

To uniquely identify each file, a channel number is required. The channel number to be used for a file is defined
by the user in the FILE statement and must be in the range 0 to 4095. Once a file has been defined in the FILE
statement, any future references to that channel number will initiate an access to that file. One special case of
the channel number is channel 0, which is always defined to be the terminal. Statements such as PRINT, INPUT,
and LINPUT may explicitly reference channel 0 to access the terminal, but normally no channel setter is specified
because the statements default to the terminal.

4.3. FILE STATEMENTS

There are 10 BASIC statements and 5 matrix 1/0 statements used for files. A brief description of each file
statement is shown in Table 4-1. These statements apply to all file types and perform the same function
regardless of the file. This means that a program could be written with a sequential file in mind, but may also be
used with a library file without program changes.

File Statement

FILE

INPUT

Table 4-1. BASIC File Statements (Part 1 of 2)

Use

The FILE statement is used to declare a file and assign it to a channel number. This statement
causes the file to be located on disk and opened for use. Once a file has been assigned to a
channel number. any future references to that channel will refer to that file.

One of the statements used to read data from a file is INPUT. Variables listed in the INPUT
statement are filled by scanning values from the record. More than one value may be present
in a record; each will be scanned off and assigned as needed to supply values for INPUT
requests. Multiple data values on a single record must be separated by commas.

Normally, records are read sequentially beginning with the first in order to obtain values for
INPUT requests. The user, however, may change this by resetting the value contained in the
current location pointer. This would cause a new record at the specified location in the file to
be read to supply values for the next INPUT requests.

UP-9168 Rev. 1

File Statement

LINPUT

MARGIN

Matrix 1/0

PRINT

READ

RENAME

RESET

SCRATCH

WRITE

l

SPERRY UNIVAC OS/3
BASIC

Table 4-1. BASIC Fife Statements (Part 2 of 2)

Use

4-4

Entire records can be read into a single-string variable using the LINPUT statement. This
enables the user to make use of the string and conversion functions in BASIC to strip off fields
in the record when the format of the data values is not standard.

As with the INPUT statement, LINPUT reads the file sequentially to fill the variables in the
LINPUT list, but may be forced to begin reading records at a new location within the file by
resetting the current location pointer.

All files in BASIC have a margin size that corresponds to the size of the largest record which
may be written to that file. The default margin size for all files is 256 characters. The margin
size will be set to the record size when a MIRAM file is opened. Most other files will receive
the default margin setting. The MARGIN statement may be used to change the margin value
during program execution.

When used with files, the matrix 1/0 statements may be used to perform selected operations
on all elements of the matrix (except row and column 0). The user can use trimmers to
dynamically change the array dimensions during execution.

The PRINT statement may be used with files to write string or numeric data. Records written
as a result of the PRINT statement are always appended to the file at the end, and the end-of-
file pointer changed to show a longer file. Thus, PRINT corresponds to a sequential extension
of the file.

The READ statement is similar to the LINPUT statement, but may be used with string or
numeric variables. When used with string variables, the statement functions identically to the
LINPUT statement. When used with numeric variables, a record is read that is expected to
contain a single numeric data item. This value will be converted to floating point and assigned
to the numeric variable.

As with the LINPUT statement, READ will access records sequentially unless the current
location pointer is altered, in which case it will begin reading records at the new location.

The RENAME statement provides the capability to change the name of an open file. When
used with library files, BASIC discards the original name and notes the new name for use
when the file is closed. MIRAM files may not be renamed.

The RENAME statement may also be used with temporary files to change a temporary file to a
library file (instead of scratching the file when it is closed, it will be written to a library), or a
library file may be renamed to a temporary file (it will not be written back when closed, leaving
the original copy intact). This facility may be used to create a new library element, by opening
the file as a temporary file (*), and renaming it to a library element.

The RESET statement is used to reset the current location pointer in order to change the
position in the file where INPUT, LINPUT, READ, and WRITE statements will operate. Certain
restrictions apply to the use of RESET depending on the file type.

The SCRATCH statement will erase the contents of a file. The file is not closed by this
statement, so PRINT or WRITE statements may be used to write new data to the file. Note that
when the file is scratched, the end-of-file pointer and current position pointer are both set to
the beginning of the file.

The WRITE statement is used to output variables, one per record, to the file. Either numeric or
string variables may be used with the WRITE statement. When numeric values are written,
they are converted to display format, padded with spaces if necessary to fill the record, and
written at the current file pointer. The pointer is advanced once for each record written. String
values are written in a similar manner to numeric values, except that no conversion is
required.

•

•
UP-9168 Rev. 1

4.3.1. FILE Statement

SPERRY UNIVAC OS/3
BASIC

4-5

FILE

The FILE statement is used to assign a file to a channel number. The channel number must specify an integer
value between 1 and 4095. The file name must be in a format compatible with the type of file being opened. The
three types of files supported by BASIC (temporary, OS/3 library, and MIRAM files) are assigned using the FILE
statement and either positional or keyword parameters.

• Positional'parameters must be written in the order specified and must be separated by commas. When a
positional parameter is omitted, the comma must be retained to indicate the omission, except for the case
of omitted trailing parameters.

• A keyword parameter consists of a word or a code immediately followed by an equal sign, which is, in turn,
followed by a specification. Keyword parameters can be written in any order. Commas are required only to
separate parameters.

If a previous file had been assigned to the same channel number, that file is closed before the new one is
opened.

Format:

FILE channel-setter: "string-expression"

where:

channel-setter

Identifies the channel number assigned to the file. All future references to the file use this number.

• • s t r i n g -. e x p r e s s i o n • '

NOTE:

Is a string expression identifying the file that is being opened. Its exact format varies with the
different types of files available. The string-expression must be enclosed in "(double quotes).

Shaded areas in the following formats indicate the default; underlined letters indicate that the system will accept
a portion of the keyword.

Temporary file format:

filename

where:

filename
Must be specified with an asterisk (*).

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-6

OS/3 library file positional parameter format:

mod u I en ame, f i I en ame [(read password/write password)] [, v o I ume] [,mod u I e - type]

OS/3 library file keyword parameter format:

MODULE=modulename ,f.!!.ENAME={f i le name }[,RDPASS=readpassword]
'filename'

''filename'· .

[,WRPASS=W< ;t •P• ""°''JI, VSN=" I •mo] [DEVI CE={~ETT,}J

[. TY P E=mo du I e - type]

where:

MODULE=modulename
Specifies the name of the module referenced. It can be one to eight alphanumeric characters.

f.!!.ENAME={f i I ename }
'filename'

"filename"
Specifies the name of the library file being referenced. The physical file names may be 1 to 44
alphanumeric characters. If there are spaces, commas, or parentheses embedded in the file name, it
must be enclosed in either quotation marks or apostrophes.

RDPASS=readpassword
Specifies a password used to control the read access to a file being referenced. A password is required if
the file is listed with a password in the file catalog. If the file is to be cataloged and file protection is
desired, the user must specify passwords. Passwords may be one to six alphanumeric characters.

WRPASS=writepassword
Specifies a password needed to control the write access to the file being referenced. A pasword is
required if the file is listed with a password in the file catalog. If the file is to be cataloged and file
protection is desired, the user must specify passwords. Passwords may be one to six alphanumeric
characters.

VSN=volume
Specifies the volume serial number indicating the volume on which the file the user wants to access
resides. The volume serial number is required if the file is not cataloged and may be one to six
alphanumeric characters.

D E V I C E =1:·, a•.•~.:_:·_d_· __ :,:_·,··.·r··-:_• } l·f.S.K.
DISKETTE

Specifies the type of device read from or written to by the user. addr specifies a 3-digit hexadecimal
number indicating the physical device address of the device the user wants to use. The first digit is the
channel number, the second the control unit address, and the third the device number. If a device is not
specified, the parameter will default to DISK.

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-7
Update B

TYPE=module-type
Specifies the type of module being referenced. The module-type is indicated by entering a letter
corresponding to the module-type the user wants to reference. For SAT files, the types permitted are:
source S, macro M, procedure P, load L, and object 0. For MIRAM files, specify format F, saved job
control stream J, or one of many other types. The user may also create his own module-types and
identify them with a 1- to 4-character name. A module-type can serve as a qualifier for a module. The
default is S.

OS/3 MIRAM file positional parameter format:

'filename'[(readpassword/writepassword)][,volume]

OS/3 MIRAM file keyword parameter format:

!...!J:.ENAME={f i lename }[.!.Q.PASS=readpassword][,WRPASS=writepassword]
'filename'

"filename"

1 • m~" 1 ••• l DE VI CE~{;."" }] [""~I~! s I] ['RC sz~IB" , ',.I]

where:

!....!_lENAME={f i I ename)
'filename'

"filename"
Specifies the name of the MIRAM file being referenced. The physical file name may be 1 to 44
alphanumeric characters. If there are spaces, commas, or pal'entheses embedded in the file name, it
must be enclosed in either quotation marks or apostrophes.

RDPASS=readpassword
Specifies the read access to a file being referenced. A password is required if the file is listed with a
password in the file catalog. If the file is to be cataloged and file protection is desired, the user must
specify passwords. Pa~swords may be one to six alphanumeric characters.

WRPASS=wr itepassword
Specifies a password needed to control access to the file being referenced. A password is required if
the file is listed with a password in the file catalog. If the file is to be cataloged and file protection is
desired, the user must specify passwords. Passwords may be one to six alphanumeric characters.

VSN=volume
Specifies the volume serial number indicating the volume on which the file the user wants to access
resides. The volume serial number is required if the file is not cataloged and may be one to six
alphanumeric characters.

DEV I C E={i:::~ l
DISKETTE

Specifies the type of device read from or written to by the user. addr specifies a 3-digit hexadecimal
number indicating the physical device address of the device the user wants to use. The first digit is
the channel number, the second the control unit address, and the third the device number. If you do
not specify a device, the parameter will default to DISK.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-8
Update B

!!!ll={~t} •
Specifies the overwriting of the contents of a file with new data. If YES is specified, whatever data is
presently in the file will be overwritten and a new file started. If NO is specified, the old data will
remain intact and new data will be added to the end of the file. If neither YES or NO is specified, the
parameter defaults to NO.

RCSZ={ record size}
!Rlll!!
ifllM!

Specifies the size of the record that BASIC is to process. This parameter incorporates the margin size
statement in that the following are identical:

100 FILE #1: ",MIRAMFILE,PACK"
200 MARGIN #1: 512

is equivalent to:

100 FILE #1: ",MIRAMFILE,PACK,RCSZ=512"

The default value is 256 characters.

Programming Notes:

1. The FILE statement opens a BASIC file. Files are closed when a second FILE statement is issued for
the same channel number or when the program terminates. Local files opened by subprograms are
closed when the subprogram terminates (SUBEXIT or SUBEND).

2. If the file name specifies an asterisk (*), then the file is a temporary file maintained by BASIC in its
workspace. The file is scratched when it is closed.

3. If the file name specifies an OS/3 library file, the file is copied to the BASIC workspace when it is
opened. Once in the workspace, the file is identical to a temporary file except that it will be copied
back to the library when it is closed. The library file must be copied because the format of an OS/3
library file does not permit updating records in place or extending an element.

4. If the file name specifies a MIRAM file, the file will not be copied; BASIC processes these files in
place. When the file is opened, its characteristics will be obtained from the VTOC. These will
determine the record size (MARGIN) and types of access permitted.

5. BASIC processes MIRAM files and permits access to these files only by using relative record number.

6. BASIC processes files with record sizes up to 16K bytes and buffer sizes up to 32K bytes. Within
these limits, any record sizes and buffer sizes are permitted.

7. MIRAM files must exist before they can be opened by a FILE statement. If, upon opening a file, it is
found to be empty, the default margin size is taken (256), the record and buffer sizes are set to the
margin size, and the file is assumed to have fixed length records. This is the BASIC default file
specification.

•

•

•

•

•

UP-9168 Rev. 1

8.

SPERRY UNIVAC OS/3
BASIC

4-9
Update B

A library element must exist before it can be accessed by a FILE statement. If a new element is to be
created as a BASIC file, it should be built as a temporary file with a margin not greater than 256
characters, and changed to a library element prior to being closed with the RENAME statement. (See
4.3.8.)

9. If the file has been password protected, the correct passwords must be entered in the FILE statement.

Examples:

100

200

300

400

500

600

Failure to enter the READ password (if required by the catalog) will inhibit any READ operations.
Failure to correctly enter the WRITE password (if required) will inhibit any WRITE operations. If a file
has both the READ and WRITE passwords cataloged and neither is specified by the user, access to
the file will be denied (the program could not do anything regardless because both READ and WRITE
would be inhibited).

F I LE #F9:F9$

FILE #1:' 'DATA,BASICLIB,DISK03''

FI LE #4000:''*''

F I LE #D:'' 'MIRFILE' ,DISK01''

F I LE #10: N1$&' ',LIBRARY, PACK02''

F I LE #47:' 'PAYROLL'' (A234/A432)''

UP-9168 Rev. 1

INPUT

4.3.2. INPUT Statement

SPERRY UNIVAC OS/3
BASIC

4-10

The INPUT statement allows the user to read a list of values from a record in the file. These values must be
formatted in the record just as they have to be formatted if entered at the terminal as an INPUT response. If there
are insufficient values on a given record, BASIC continues reading records until it has filled all of the variables in
the program's "input list". Unlike input from the terminal, there is no relationship between the structure of the
INPUT statements and the records in the file. Thus, example 1 and example 2 are functionally identical.

Data items read by INPUT statements are taken from fields within the records and may be numbers, open
strings, or closed strings. If the wrong type of data is supplied for a variable in the input list, a fatal error will
result. When strings are read in, leading and trailing spaces are deleted unless the string in the field is enclosed
in quotes. When quotes are used, the characters within the quotes are assigned without any editing. Note that to
output quotes to a record they must be explicitly printed as in example 3.

Format:

INPUT channel-setter variable[,variable ...]

where:

channel-setter
Selects the file to be read.

variable
Is a numeric or string variable or array element.

Programming Notes:

1. Records required by INPUT requests are retrieved sequentially beginning with the first record in the
file. The current location pointer is incremented immediately when a record is read, not when all
fields in the record have been processed. The RESET statement may be used to change the location
where the next record will be read.

2. More than one data field is permitted on a single record. If an INPUT statement does not exhaust all
fields in a record, the remaining fields are retained for subsequent INPUT statements. The remaining
fields will be lost if output is written to the file or the current location pointer is changed; subsequent
INPUT statements will force a new record to be read.

3. Numeric data fields contain leading or trailing spaces, must contain a valid number, and must end
with a comma or be the last field in the record. It is not an error to supply a numeric data field to a
string variable on INPUT; the character string consisting of the numeric digits will be used.

4. String data fields may be open or closed strings. Open-string fields may contain any valid characters
and terminate with a comma or at the end of the record. Closed strings must begin and end with
quotes ("). Leading spaces before the first quote are permitted, as are trailing spaces between the
last quote and the comma or end of record. A fatal error will result if a string data field is supplied for
a numeric variable.

•

•

•

•
UP-9168 Rev. 1

Example 1:

lBB

Example 2:

lBB

lBl

1B2

Example 3:

INPUT

INPUT

INPUT

INPUT

#l:A,B(5),C$

1: A

1: B (5)

1: C$

SPERRY UNIVAC OS/3
BASIC

1 BB LET A$=' ' ' ' ' ' ' ' (or CH R $ (EB C (' ')))

llB PRINT #124:A$ &''ABC'' & A$

12B RESET #124: LOF(#l24)-l

13B INPUT #124: R3$

This example writes a record containing

' 'ABC''

4-11

to the file. Statement 120 repositions the current location pointer to the end-of-file record minus one,
which is the new record. This value can then be read into variable R3 without losing any spaces that may
be significant. It is important to note that statement 110 was not coded as

llB PRINT #124: ;A$; ''ABC'' ;A$

because it is possible (although unlikely) that one of the three fields in the second format could fill the
record and, thus, two records could be printed:

''ABC

Concatenating all three fields ensures that they will be printed as one string.

UP-9168 Rev. 1

LINPUT

4.3.3. LINPUT Statement

SPERRY UNIVAC OS/3
BASIC

4-12

The LINPUT statement allows the user to read in entire records; each record is read into a single string variable.
Because the record contents are ignored when this assignment is made, any data may be read into a string from
the file. This permits the user to read a record and strip off fields via the string functions in cases where an
INPUT statement would not find the data in the correct format. Completely blank records are permitted and are
stored in the string variable as null strings.

Format:

LINPUT channel-setter:string-variable[,string-variable ...]

where:

channel-setter
Selects the file to be read.

string-variable
Is a string variable or string array element where the record contents are to be stored.

Programming Notes:

1. If the last statement issued to the file was an INPUT and there is still data in the record which has not
been read, LINPUT will use the remaining characters in the record instead of requesting a new
record. The next variable to use LINPUT will then force a record to be read.

2. If the last statement issued to the file was other than an INPUT, or if it was an INPUT and there is no
data remaining in the record, a new record will be read for the string variable.

3. Records required for LINPUT requests are retrieved sequentially beginning with the record at the
current location pointer and the pointer is incremented for each record read. In other words, the
record is incremented once for each variable in the LINPUT list. The RESET statement may be used to
alter the location where the next LINPUT will begin retrieving records.

4. Leading spaces in records are not removed. Trailing spaces are eliminated.

Examples:

940 LINPUT #I :A$

950 LINPUT #I :81$, C$(3,4)
960 LINPUT #4:0$(E+l)

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-13

MARGIN

4.3.4. MARGIN Statement

The MARGIN statement permits the user to change the current margin setting for a file. The initial margin
setting is determined when the file is opened. For temporary and library files the default margin is used (256
characters). Existing MIRAM files acquire a margin setting from the maximum record size specification stored in

the VTOC entry for the file.

Format:

MARGIN channel-setter:expression

where:

channel-setter
Identifies the channel number of the file to be altered .

. expression
This value will be truncated to an integer value and used as the new margin setting.

Programming Notes:

1. The current margin setting limits the maximum record size that may be written to the file. Any
attempt to exceed this limit will cause an error.

2. If the margin is changed while there is a record waiting to be completed (as a result of a PRINT
statement ending with a comma, for example), the record being formatted will be written out prior to
changing the margin.

3. The margin expression must result in a number between 1 and the following limits:

Temporary files
Library files
MIRAM files

496 characters
256 characters
16K characters

4. A temporary file or library file receives a default margin specification of 256 characters, which may
be changed at any time after the FILE statement has been issued.

5. The margin size for a MIRAM file may only be changed when the file is empty and no data records
have been formatted. This condition occurs if an empty file is opened, or immediately after a file has

been scratched.

6. When the MARGIN statement is used on a MIRAM file, the string expression in the FILE statement
must not contain any blanks.

7. The MARGIN statement and the RCSZ FILE statement parameter can't be used together on the same
file. For example:

10 FILE #l:'',MIRAMFILE,VOLUME,INIT=YES,RCSZ=512

is the same as:

10 FILE #1:",MIRAMFILE.VOLUME"

15 MARGIN #1:512

t

UP-9168 Rev. 1

Examples:

HJ MARGIN #3:88
28 MARGIN #1:28*W

4.3.5. Matrix 1/0 Statements

SPERRY UNIVAC OS/3
BASIC

4-14

To simplify the handling of matrixes when they are used with files, five matrix 1/0 statements are provided in
BASIC. These statements perform the selected operation on all elements of the matrix except those in row and
column 0. Processing for vectors begins with element 1 and continues to the last element in the vector. Arrays
are processed beginning with element 1, 1, then 1,2, continuing to 1,n, then row 2, row 3, and so on.

Supported statements include matrix .PRINT, INPUT, LINPUT, READ, and WRITE. In g~neral, the statements work
just as if each matrix element were coded in the statement. For example:

MAT PRINT #3:A;

is interpreted as:

PRINT #3: A(l,l);A(l,2);A(l,3); ... ;A(l.n);
PRINT #3: A(2,l);A(2,2);A(2,3); ... ;A(2,n);

PRINT #3: A(m,l);A(m,2);A(m,3); ... ;A(m,n)

Trimmers, when used, dynamically change the array dimensions during execution. This change is made just
prior to performing the indicated file operation.

Formats:

MAT PRINT channel-setter:matrix[separator[matrix]], ...
MAT INPUT channel-setter:matrix[(trimmer)], ...
MAT LINPUT channel-setter:string-matrix[(trimmer)], ...
MAT R EA D c h a n n e I - s e t t e r : ma t r i x [(t r i mm e r)] , ...
MAT WRITE channel -setter:matrix, ...

where:

channel -setter
Selects the previously opened file for the indicated file operation. Channel 0, the terminal, may not be
specified for MAT READ or MAT WRITE.

mat r ix
Is a string or numeric matrix name.

string-matrix
Is the name of a string matrix. Numeric matrixes are not permitted with this statement.

separator
Is a PRINT item separator, such as a comma or semicolon, and determines the spacing of the printed
elements in the record.

trimmer
Is an optional matrix trimmer expression. This specifies the new matrix dimensions to be applied
before the indicated operation is performed.

•

UP-9168 Rev. 1

Programming Notes:

SPERRY UNIVAC OS/3
BASIC

4-15

1. A trimmer may be used with the MAT INPUT, LINPUT, or READ statements to dynamically
redimension the matrix. This trimmer may not change the number of subscripts for the matrix. The
new dimension may not cause the new matrix to have more elements than did the original definition,
or an error will result.

2. The MAT PRINT statement for files uses commas and semicolons to control spacing of elements in
the records. If the matrix name is followed by a semicolon, the elements are printed closely packed. A
comma following the matrix name causes the elements to be printed in 15-character columns. Each
row begins a new line. If no print separator follows a vector, it is written as a column vector, one
element per record; otherwise, it is printed as a row vector. The rules used in printing records to files
are defined in 4.3.6.

3. The MAT INPUT, LINPUT, READ, and WRITE statements for files perform the indicated operation once
for each element in the matrix. The rules covering the file INPUT, LINPUT, READ, and WRITE
statements are defined in 4.3.2, 4.3.3, 4.3.7, and 4.3.11, respectively.

Examples:

128 DIM

122 MAT
123 MAT

124 MAT

125 MAT

126 MAT

127 MAT

128 MAT

12 9 MAT

A(7),C$(3,5) ,D(2,8),E$(5) ,K(9),J$(4),K$(2,4),R(21J)
PRINT #3:A,E$;C$

PRINT #3:D;

READ #3:R,E$

INPUT #4:K,E$(J)

LINPUT #78:K$,J$

WR I TE # 1 : K $, R, A

READ #l+l:K$(3),A(3)

LINPUT #4l:D(2,l)

t

UP-9168 Rev. 1

PRINT

4.3.6. PRINT Statement

SPERRY UNIVAC OS/3
BASIC

4-16

The PRINT statement may be used with any file accessible under BASIC to format all or portions of a record. The
list of variables specified on the statement are written one after the other according to the print separators used
between each item in the print list.

Any records written with a PRINT statement are always appended to the end of the file (the file will get longer).
As each record is written, the end-of-file pointer is incremented by one to allow reading of all records up to and
including the newly printed one. Resetting the current location pointer has no effect on the PRINT statement.

The PRINT statement is also affected by the MARGIN setting. If the user attempts to print more data in a single
record than the margin will allow, BASIC then prints as many fields as it can on the first record and continues on
a second record. No single data item longer than the margin setting can be printed.

Format:

PRINT channel -setter:[item[separator[item]] ...]

where:

channel -setter
Is the file to which this record will be written.

item
Is an expression or a TAB reference.

separator
Is a comma (.) or a semicolon(;).

Programming Notes:

1. Print separators may be used to control horizontal positioning within a record. If a semicolon is used
after an item, the next item will be printed beginning at the next position in the record. If a comma is
used, the next item will be printed beginning at the next 15-character field in the record (the record is
broken into fields of 15 characters each and the next free field is used). If there is insufficient space
in the current record, it is written out and a new record begun.

2. The TAB function may be used to advance to a specific position in the record. If the direction of the
TAB is backwards, the current record is written out and a new record begun. The function of the
comma and semicolon remains unchanged.

3. Null strings cause no data to be written to the record.

4. Numeric data is formatted either as an integer or decimal number. An integer number will be printed
as an integer. A decimal number will be printed without the exponent field whenever possible. In
either case, no more than six significant digits will be printed and a space will follow every number
printed. If the number is positive, the sign is not printed but its print position is left blank; otherwise,
a minus sign is printed.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

4-17

5. If the statement ends with a separator, the record will not be written immediately, but will be held
until another PRINT statement completes the record, or any other statement references the file.

6. If there are no items included in the list, the PRINT command will serve to write a previously
unprinted record, or to print a blank record if the buffer is empty.

UP-9168 Rev. 1

READ

4.3.7. READ Statement

SPERRY UNIVAC OS/3
BASIC

4-18

The READ statement is somewhat similar in function to the LINPUT, in that there is a one-for-one
correspondence between variables in the statement and records in the file, except that both string and numeric
variables are permitted. When used with string variables, READ will retrieve a record and assign its contents
without editing to the variable. When a numeric variable is specified, a record is read that must contain a single
numeric value. This value is converted to floating point and stored in the variable.

Format:

READ channel-setter variable-name[,variable-name ...]

where:

channel-setter
Specifies the channel number of an open file to be read. Channel 0, the terminal, may not be
referenced by this statement.

variable-name
Is a string or numeric variable or array element into which the data is to be read.

Programming Notes:

1. One record is read beginning at the current location pointer for each variable in the list. For each
record read, the current location pointer is incremented by one. Changing the current location pointer
via a RESET will select the location of the next record to be read by the READ statement.

2. READ does not check if the last operation on the file was an INPUT (as LINPUT would), but always
reads new records.

3. When reading string variables, the entire record including any leading spaces is assigned without
editing to the variable. Trailing spaces in the record will be eliminated.

4. When reading numeric variables, the entire record may contain only a single number; it will be
converted and assigned to the variable. If the record contains any data other than a single number an
error occurs.

Examples:

43 READ #43: A$,B4$,C$(H)
44 READ #44:A,87,C(l,J)

45 READ #37:D,E8$

UP-9168 Rev. 1

4.3.8. RENAME Statement

SPERRY UNIVAC OS/3
BASIC

4-19

RENAME

The RENAME statement will change the name of a BASIC file while it is contained in the workspace. In
particular, it permits a library file element to be copied or created.

Format:

RENAME channel-setter:f i le-name

where:

channel -setter

Is a channel expression identifying an open file which is to be renamed.

file-name

Is a string expression specifying an OS/3 library file or a work file. Its format is similar to the file
name used with a FILE statement.

Programming Notes:

1. Permanent MIRAM files may not be renamed. An attempt to do so will terminate execution of the
program.

2. A temporary file may be renamed to a library file in order to create a new element in a library file.

3. A library file may be renamed to a temporary file in order to prevent the original copy of the file from
being updated when the file is closed.

4. If the programmer wants to ensure that a file is not updated unless a specific condition occurs first,
he should open the library file and immediately rename it as a temporary file. Then, if an error should
occur during processing or if the terminal user should terminate the program, the library file will not
be updated. Once the program has determined that the file is complete, the file can be renamed to a
library file so that when it is closed, the library file will be updated.

5. If a program opens a library file with name A, processes the file, renames it B, and then terminates,
the original copy of A will not be modified and a new modified version will exist with the name B.

Examples:

1845 RENAME #1: "*"

2874 RENAME #N:''NEW,LIBRARY,PACKB9''

UP-9168 Rev. 1

RESET

4.3.9. RESET Statement

SPERRY UNIVAC OS/3
BASIC

4-20

The RESET statement is used to reposition the current location pointer to any location within the file. The
statement may be used with or without a record number. When the record number is omitted, RESET goes to the
beginning of the file - record 0.

Format:

RESET channel-setter[:numeric-expression]

where:

channel-setter
Selects the file to be repositioned.

numeric~expression

Is the new location of the file.

Programming Notes:

1. The numeric expression, if present, must result in a nonnegative number and the new location must
not be greater than the current value of the end-of-file pointer.

2. A RESET statement without a record number is permitted to position any file type to the start of the

file.

3. A RESET statement with a record number can be used with temporary or library files, or with MIRAM

files.

Example:

35 RESET #4

•

•

UP-9168 Rev. 1

4.3.10. SCRATCH Statement

SPERRY UNIVAC OS/3
BASIC

4-21

SCRATCH

The SCRATCH statement is used to erase the entire contents of a file. If the file is a temporary or library file, the
scratch will only operate upon the workspace; the library file itself will not be affected. If the file is a MIRAM file,
the scratch will erase the contents of the file. If there is no subsequent operation to the file, the file will be
scratched from the dis~.

Format:

SCRATCH channel-setter

Programming Notes:

1. If a MIRAM file is to be physically scratched from the disk, the SCRATCH operation should be the last
operation issued against the file by the BASIC program.

2. If a MIRAM file is to be rewritten from the beginning, then the SCRATCH operation should be issued
prior to writing to the file.

3. After a SCRATCH command, both the LOC and LOF of the file will be O.

4. SCRATCH currently has no effect for library files.

Example:

184 SCRATCH #6

UP-9168 Rev. 1

WRITE

4.3.11. WRITE Statement

SPERRY UNIVAC OS/3
BASIC

4-22

The WRITE statement writes a list of variables to the file, one value per record. String text is written without any
editing other than space filling if necessary. Numeric values are converted to display format and padded with
spaces to fill the record. Depending on the position of the current location pointer, records are either updated or
appended to the end of the file.

Format:

WR I TE ch a n n e I - s e t t e r : ex p r e s s i on [• exp r es s i on ...]

where:

channel-setter
Specifies the channel number of the open file to which records are to be written. Channel 0, the
terminal. may not be referenced by this statement.

expression
Is either a string or numeric expression to be written to a record in the file.

Programming Notes:

1. Each variable occupies one record, which is written at the position in the file specified by the current
location pointer. After each record is written, the pointer is incremented. The RESET statement may
be used to set the location where records will be written.

2. If the current location pointer is set to the end-of-file value, a new record will be added to the file and
the end-of-file pointer advanced. If the current location pointer is set less than the end-of-file value,
the record which was there will be overlaid by the new record, creating an update. The current
location pointer may not be set past the end-of-file pointer.

3. Data to be written to the file may not be greater in length than the current margin setting for the file.

4. The WRITE statement may be used with temporary files. library files, and MIRAM files.

Examples:

8718 WRITE #111:' 'RECORD ONE'',' 'RECORD TWO''

8728 WRITE #18:3,4,QS
8730 WRITE #10:A+6,B$,C4$(8) ,SEG$(0$, 1,9)

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

5-1

5. BASIC Commands

5.1. INTRODUCTION

This section contains a detailed description of the operation and editing commands provided by the BASIC
system. These commands enable the programmer to assign a name to a program, execute a program, and return
control to the system. Editing commands are distinguished from source statements by the absence of prefixed
line numbers. Once entered into the BASIC system, the editing command operates immediately on the current
contents of the user's workspace, which can contain either a new program (being constructed) or a saved
program.

The editing commands provided by BASIC provide the ability to enter, delete, list, and modify text on a single or
multiple line basis. When extensive modifications must be made, the user should consider using EDT.

5.1.1. Definitions

The following syntactic units occur several times in the specification of the editing commands:

• line-number: a series of digits in the range of 1 to 99999

I ist-items:ll ine-number{. I ~ne-~umber [,I ist-items]}l
,l1st-1tems

I i st - i t ems : {program - name , f i I e - name [< password) [, v o I ume]] }
,volume

• search-string: "characters"

Programming Notes:

1. Letter and digit are defined in Section 2.

2. A program name may contain from one to eight letters or digits, the first of which is a letter.
Embedded characters such as $, ?, #, @.%,and hyphen may be included in this program name.

3. A file name may be up to 44 characters long. The same character construction rules which apply to
program names also apply to file names.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

5-2

4. A password may be up to eight characters long. The same character construction rules which apply
to program names also apply to passwords. A password may be required if the file specified by file
name has been cataloged with a password. When reading from a file (OLD), the read password may
be required. When writing to a file (SAVE), the write password may be required. If the file is not
cataloged, or no password is listed in the catalog, then the user's password specification, if any, is
ignored.

5. A volume must be six characters and is made up of letters and digits. This name is used to locate the
disk on which the referenced file exists. If the file is cataloged and a volume name has been listed,
then the user may omit the volume entry. In any case, if a volume is listed, this overrides the catalog
volume name.

6. All library file references refer to source elements, which may have been created by the OS/3
MIRAM librarian (MLIB), OS/3 general editor (EDT), or OS/3 BASIC.

7. All references to the system apply to the OS/3 BASIC System.

8. A search string is constructed in the same way as a closed string, and allows the user to selectively
process source statements based on their content.

5.2. COMMANDS

The editing commands available to the user are given as follows:

BYE

DELETE
HELP
LIST
MERGE
MOD IF Y
NEW
OLD
PRINT
RESEQUENCE
RUN
RU NOLD
SAVE
SYSTEM

•

•

•

•

UP-9168 Rev. 1

5.2.1. BYE

SPERRY UNIVAC OS/3
BASIC

5-3
Update B

BYE

The BYE command is used to terminate BASIC. Control is returned to the system. All workspace information is
lost.

The following message is displayed on the terminal:

BA113 BASIC TASK NORMAL TERMINATION

The BYE command does not return a response.

Format:

BYE

UP-9168 Rev. 1

DELETE

5.2.2. DELETE

SPERRY UNIVAC OS/3
BASIC

5-4

This command may be used to delete one or more lines of source from the user's workspace. If no line numbers
are specified, the entire program is cleared.

Format:

DELETE [I i st - i t ems] [search-string]

Note that single lines may be deleted by typing the line number of the line to be deleted. If a search string is
specified, then the selected lines will be searched and those containing the string will be deleted.

•

•

•

UP-9168 Rev. 1

5.2.3. HELP

SPERRY UNIVAC OS/3
BASIC

5-5

HELP

Additional information about a status or error condition may be obtained by using the HELP command. Several
lines of explanation will be displayed at the terminal. If a message number is not specified, BASIC displays a
HELP message for the latest input syntax error.

Format:

HELP [message-number]

UP-9168 Rev. 1

LIST

5.2.4. LIST

SPERRY UNIVAC OS/3
BASIC

5-6

The UST command directs the system to display on the user's terminal the lines or sequence of lines referenced
in the user's workspace. If no line numbers are specified, all statements in the program will be printed. If a
search string is specified. then the selected lines will be searched and those containing the string will be printed.

Format:

LIST [list-items] [search-string]

UP-9168 Rev. 1

5.2.5. MERGE

SPERRY UNIVAC OS/3
BASIC

5-7

MERGE

The MERGE command allows the contents of a library file to be added to the current contents of the workspace.
Its function is identical to that of the OLD command, except that the workspace is not erased first.

Format:

MERGE f i I e-pa rameters

Programming Note:

If lines are read that duplicate the line numbers of lines already in the workspace, the new lines replace
the old.

UP-9168 Rev. 1

MODIFY

5.2.6. MODIFY

SPERRY UNIVAC OS/3
BASIC

5-8

_... This format is used to correct or reenter a source statement from the terminal. The format is entered as if a new
statement is being input. Any statement with the same line number is deleted and the new statement is

substituted in its place.

Format:

I ine-number statement

UP-9168 Rev. 1

5.2.7. NEW

SPERRY UNIVAC OS/3
BASIC

5-9

NEW

The NEW command erases the current contents of the user's workspace. BASIC will then respond with an
asterisk. BASIC is now in the same condition it would be in if the user had just executed it from the system.

Format:

NEW

UP-9168 Rev. 1

OLD

5.2.8. OLD

SPERRY UNIVAC OS/3
BASIC

5-10

The OLD command erases the current contents of the user's workspace, then locates and loads the specified

program into the user's workspace.

Format:

OLD file-parameters

Programming Notes:

1. Errors may occur when BASIC is trying to locate the program if the disk volume, disk file, or element
cannot be found. Errors may also occur if a password is required but not specified in the command.

2. As statements are read from the library file, each is verified by the syntax checker. Any statements in
error are displayed on the user's terminal, and are entered into the program file, with a notation that
the line is not valid. This permits the UST command to show these lines so the user may later correct

them.

3. Once all statements have been processed, control is returned to the terminal where new statements
may be added, corrections made, or editing commands entered.

4. If a RUN is issued while there are still uncorrected lines from a previous OLD command, the lines

which are in error will be rejected.

UP-9168 Rev. 1

5.2.9. PRINT

SPERRY UNIVAC OS/3
BASIC

5-11

PRINT

The PRINT command directs the system to display on the user's terminal the lines or sequence of lines
referenced in the user's workspace. If no line numbers are specified, all statements in the program will be
printed. If a search string is specified, then the selected lines will be searched and those containing the string
will be printed.

Format:

PRINT [I ist-items] [search-string]

UP-9168 Rev. 1

RESEQUENCE

5.2.10. RESEQUENCE

SPERRY UNIVAC OS/3
BASIC

5-12

This command will resequence a BASIC program. Because resequence is a complex operation requiring two
passes over the source file, it is combined with a SAVE operation and may only be used with a syntactically

correct program.

Format:

RESEQUENCE [start] [:increment] [:file parameters]

Example:

RESEQUENCE 1BB:5B:MYPROG,MYFILE,MYPACK

Programming Notes:

1. If omitted, the starting value and increment default to 100.

2. The resequence operation will not be completed if the new highest line number would be greater
than 99999 or if any line contains a syntax error.

3. An error will occur if any line of text must be expanded beyond 80 characters in order to insert the

new line numbers.

4. The contents of the workspace are not modified.

UP-9168 Rev. 1

5.2.11. RUN

SPERRY UNIVAC OS/3
BASIC

5-13

RUN

The RUN command directs the system to load and execute the program contained in the user's workspace.

Format:

RUN

UP-9168 Rev. 1

RU NOLD

5.2.12. RUNOLD

SPERRY UNIVAC OS/3
BASIC

5-14

The RUNOLD command combines the functions of the OLD command and the RUN command. It eliminates the
time-consuming step of writing the program into the workspace. Consequently, the source code is not available
for editing. Statements are read from the library file, compiled, and written directly into main storage. Because
this command is intended to be used to execute debugged programs, statement numbers are discarded to
conserve main storage.

Format:

RUNOLD file-parameters

Programming Notes:

1. Errors may occur when BASIC is trying to locate the program if the file parameters are not correct.

2. If there are any syntax errors detected, the command will be terminated. The program will not be in
the workspace, and an OLD command will have to be issued before the program can be corrected.

3. If execution errors occur, line number 0 will be displayed as the error location, because line numbers
are not saved during RUNOLD processing.

•

•

•

UP-9168 Rev. 1

5.2.13. SAVE

SPERRY UNIVAC OS/3
BASIC

5-15
Update B

SAVE

The SAVE command directs the system to save, on a OS/3 library file, a copy of the source program currently
contained in its workspace. The program name is entered in the file directory and the body of text is stored as a
source element. This element may later be retrieved using the OS/3 librarian LIBS, the OS/3 EDT program or
OS/3 BASIC.

Format:

SAVE file-parameters

Programming Notes:

1. Errors may occur if the disk volume or disk file cannot be located, or if a password is required but not
specified in the command.

2. If a program with the same name already exists in the file, BASIC will ask:

IS100 FILE/MODULE ALREADY EXISTS; OK TO WRITE:IT? (Y,N)

A response of Y will delete the old copy and overwrite it with the new program .

A response of N will terminate the command immediately and will leave the old copy of the program
intact.

UP-9168 Rev. 1

SYSTEM

5.2.14. SYSTEM

SPERRY UNIVAC OS/3
BASIC

5-16

This command serves the dual purpose of breaking into system mode without destroying the contents of the
workspace (compare with BYE) and of providing the ability to execute a system command without leaving BASIC.
If an operand is provided, that command is executed immediately. If there is no operand, the terminal user is
returned to system mode. The user may resume BASIC by issuing the RESUME command.

Format:

SYSTEM [system-command]

Examples:

SYSTEM
SYSTEM FSTATUS JOBS

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-1

6. BASIC Program Techniques

6.1 . INTRODUCTION

Constructing a BASIC program requires translation of the problem into a set of statements that the BASIC
system can use in solving the problem. To aid in selecting the proper statements needed to solve a specific
problem, a summary of statement and command formats is provided in Appendix A. Once the required
statements and commands are selected, refer to the detailed descriptions of those statements and commands in
Sections 3 through 5 to review their characteristics and restrictions.

In translating a problem into a series of statements, the user should be familiar with the hierarchy of arithmetic
operations, the use of loops, tables, lists, built-in functions, and multiline functions in BASIC. These subjects are
covered in detail in this section.

6.2. HIERARCHY OF ARITHMETIC OPERATIONS

BASIC can perform simple operations such as addition, subtraction, multiplication, division, and exponentiation.
BASIC can also evaluate numerous built-in functions and user-defined functions. The order in which the simple
operations, built-in functions, and user-defined functions are evaluated are similar to those used in standard
mathematical calculation, with the exception that all BASIC operations must be written on a single line.

The five simple operators that can be used in BASIC are:

Operator Definition Example

** Exponentiation A**B

* Multiplication A*B

I Division A/B

+ Addition A+B

Subtraction A-B

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

The hierarchy of arithmetic operations is summarized in the following rules:

6-2

1. The arithmetic expression enclosed in parentheses is evaluated first, and its value may then be used in

further computations.

Example:

X • (A+B)

In this example, the expression A+B is evaluated first and its value is then multiplied by X.

2. Where parentheses are omitted, or where the entire arithmetic expression is enclosed within a single pair
of parentheses, the order in which the operations are performed is as follows:

Operation Hierarchy

Evaluation of functions (built-in or user-defined) 1st (highest)

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Example 1:

A*B/C** SQR(D)+E

This arithmetic expression is evaluated in the following order:

a. SQR(D) Call the result T1 (function)

b. C**T1 Call the result T2 (exponentiation)

c. A*B Call the result T3 (multiplication)

d. T3/T2 Call the result T4 (division)

e. T4+E Final operation (addition)

Also, for operators of the same hierarchy (with the exception of exponentiation), the component
operations of the expressions are performed from left to right.

Example 2:

A*B/C

This arithmetic expression is evaluated in the following order:

a. A*B Call the result T1

b. T1/C Final operation

UP-9168 Rev. 1

Example: 3

A* * B * * C

SPERRY UNIVAC OS/3
BASIC

This arithmetic expression is evaluated in the following order:

a. A**B Call the result T1

b. T1**C Final operation

6-3

3. Where nested pairs of parentheses are used, the arithmetic expression within the parentheses is evaluated
before the outer operations are performed.

Example:

T 1 ,_.._
((B+((A+B) * C))+A** 2) -...-

T2 T4 .._,,_.
T3

This arithmetic expression is evaluated in the following order:

a. (A+B) Call the result T1

b. (T1 *C) Call the result T2

c. B+T2 Call the result T3

d. A**2 Call the result T4

e. (T3+T4) Final operation

6.3. USE OF LOOPS

It is sometimes necessary to construct BASIC programs in such a way that certain portions are performed more
than once, with perhaps only slight changes each time. This repeated execution of the same portion of a program
is referred to as a loop.

The use of loops can best be illustrated and explained by the following two examples. Both perform the task of
printing out a table of the first 100 positive integers together with the square root of each.

Example 1:

PRINT 1, SQR(l)

20 PRINT 2, SQR(2)

30 PRINT 3, SQR(3)

1000 PRINT 100, SQR(l00)
1010 END

Without a loop, this example requires 101 statements.

UP-9168 Rev. 1

Example 2:

HJ

28
38
40

58

LET X=l
PRINT X,

LET X=x+l
IF X<=l IHJ

END

SQR(X)

THEN 28

SPERRY UNIVAC OS/3
BASIC

6-4

With a loop, this example obtains the same table values but with only 5 statements instead of 101. Note
that statement number 10 is executed only once, whereas the sequence of statements 20, 30, and 41) are
repeated 100 times.

In general, all loops contain four: characte~istics: initialization (e.g., statement 10), the body (e.g., statement
20), modification (e.g., statement 30), and the exit test (e.g., statement 40).

Because loops are so important and because loops of the type just illustrated arise so often, BASIC
provides two statements (FOR and NEXT) to specify a loop.

Example 3:

lB FOR X=l TO 188
2B PRINT X, SQR(X)
38 NEXT X
4B END

In this example, the FOR statement initializes the loop index X to 1, the final value to 100, and the step
value to 1. Thus, the loop (statements 10 to 30) is performed 100 times and the resulting table is the same
as that produced by examples 1 and 2.

Note that the step value can be adjusted by writing the FOR statement in the following form:

lB FOR X=l TO lBB STEP 5

In this case, the resulting table contains the integer numbers 1, 6, 11, ... 96 with their corresponding
square roots. Observe that another step of 5 would cause the loop index X to exceed 100.

The STEP value may be positive or negative and may be a decimal number. If statement number 10 in
example 3 was changed to the following statement:

1frJ FOR X=llHJ TO 1 STEP- .1

the resulting table would be printed in reverse order and contain the numbers 100, 99.9, 99.8, ... , 1.1, 1.0
along with their corresponding square roots.

More complicated FOR statements may be written that permit the user to specify the initial, final, and step
values as arithmetic expressions. For example, if N and Z have been defined earlier in the program, the
user could write the following FOR statement:

UP-9168 Rev. 1

Example 4:

SPERRY UNIVAC OS/3
BASIC

100 FOR X=Z TO N STEP (N-Z)/10

6-5

The user should refer to the programming notes of the FOR and NEXT statements in Section 3 for further
details about the loop parameters.

Loops within loops may be used and are referred to as nested loops. The FOR and NEXT statements may be used
for this purpose and are illustrated in Table 6-1. As can be seen in the table, loops may be nested several levels
(maximum of 10), but are never permitted to overlap.

Table 6-1. Nested Loops

Allowed Allowed Not Allowed

~FORX
.---FOR X

~FORX
FOR Y r--FOR Y FOR Y

NEXT Y [FOR Z NEXT X

NEXT X NEXT Z NEXT Y

[FORW

NEXTW

'--NEXT Y

[FOR Z

NEXT Z

'---NEXT X

6.4. USE OF LISTS AND TABLES

In addition to the ordinary variables used in BASIC, there are variables that can be used todesignatethe elements of
a I ist or a table. These are used where a subscript or a double subscript ordinarily might be used, for example, the
coefficients of a polynomial (a0,a 1,a 2, ..•)or the elements of a matrix. The variables used in BASIC consist ofa single
letter, which is called the name ofthe list, followed by the subscripts in parentheses. Thus, the user might writeA(O),
A(1), A(2), etc, for the coefficients of the polynomial and B(1, 1), B(1,2), etc, for the elements of the matrix.

The user can enter the list A(0),A(1). ... A(10) into a program very simply by the following statements:

Example 1:

10 FOR T=0 TO 10
20 READ A(T)
30 NEXT T
40 DATA 2, 3, -5, 7, 2.2. 4. -9, 123, 4, -4, 3

Lists and tables with more than 10 subscripts require a DIM statement to indicate that more main storage
is needed. For example, a list of 15 numbers may be entered as follows:

UP-9168 Rev. 1

Example 2:

10 DIM A (25)
20 READ N
30 FOR T=l TO N
40 READ A(T)
50 NEXT T
60 DATA 15

SPERRY UNIVAC OS/3
BASIC

70 DATA 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

80 END

6-6

In this example, statements 20 and 60 could have been eliminated and statement 30 replaced by 30 FOR
T=1 TO 15. However, this program as typed allows for the lengthening of the list simply by changing

statement 60, as long as the value read in for N does not exceed 25.

A simpler way of performing the same function as lines 30 to 50 is to use a MAT statement:

30 MAT READ A (N)

Matrix A will be redimensioned to the current value of N; a value will then be assigned to each element of

A from 1 to N.

A table consisting of three rows and five columns could be entered into a program by writing the following

statements:

Example 3:

10 FOR T=l TO 3
20 FOR J=l TO 5
30 READ B(T,J)

NEXT J
NEXT T

40
50
60
70
80

DATA 2. 3, - 5.
DATA 4, - 7' 3.
DATA 3,-3,5,7,8

-9. 2

4, -2

Here again, the user may enter a table with no dimension statement, and the system will handle all the
entries from 8(0,0) to B(10, 10). If a table with a subscript greater than 10 is entered without a DIM
statement, an error message specifying a subscript error is generated. This is easily rectified by entering

the following statement (assume a 20 by 30 table is required):

5 DIM 8(20,30)

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Here, again, a single statement can replace lines 10 to 50:

MAT READ 8(3,5)

6-7

The single letter denoting a list or a table name may also be used to denote a simple variable without
confusion. However, the same letter may not be used to denote both a list and a table in the same program.
The form of the subscript is flexible. The user might have the list item B(l+K) or the table items B(L,K) or
Q(A(S, 7),B-C).

6.5. USE OF BUILT-IN FUNCTIONS

The built-in functions provided in BASIC consist of:

• mathematical functions (SIN, COS, TAN, COT, ATN, EXP, LOG, ABS, and SQR);

• specialized functions (INT, RND, SGN, TIM, DET, LEN, MOD, POS, VAL, and EBC);

• string functions (CHR$, CLK$, DAT$, SEG$, STR$, and USR$); and

• file functions (LOC, LOF, MAR, PER, TYP, and NUM).

Examples of each function are provided.

6.5.1. Mathematical Functions

• SIN(x), COS(x), TAN(x), COT(x), and ATN(x) designate the functions sine, cosine, tangent, cotangent, and
arctangent, respectively, and the argument x is an angle measured in radians.

Example:

lll X=3 .14159/2
21! Yl=SIN(X)
31! Y2=COS(X/2)
41! Y3=TAN(X/3)
Sil Y4=COT(X/6)
61! PRINT X,Yl,Y2,Y3,Y4,
71! END

In this example, X is rr/2 (90 degrees), Y1 is the sine of 90 degrees, Y2 is the cosine of 45 degrees, Y3 is
the tangent of 30 degrees, and Y4 is the arctangent of 15 degrees.

• EXP(x) designates exponentiation ex

lll E=EXP (X""2)

In this example, E is ex 2

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

• LOG(x) designates the natural logarithm of x, ln(x).

lB A=LOG(Y**lB)

In this example, A is 1 O ln(Y).

• ABS(x) designates the absolute value of x, lxl.

10 B=ABS(-X*Y)

In this example, B is 1-X*YI.

• SQR(x) designates the square root of x:VX.-

lB C=SQR(A**2+B**2)

In this example, C i~

6.5.2. Specialized Functions

• INT(x) designates the largest integer not exceeding x.

By definition, the following relationships hold:

If x > 0, then INT (x) ,::;;; x

If x = 0, then INT (x) = 0

If x < 0, then INT (x).::;;; x

lB X=INT(2.985)
2B Y=INT(-2.015)
3B Z=INT(X-Y)

In this example X is 2, Y is -3, and Z is 5 (i.e., Z=INT(2-(-3))).

6-8

The INT function can be used to round to any specific number of decima I places. For example, INT(X* 1 O+ .5)/10
will round X correct to one decimal place, INT(X*100+.5)/1 OOwill round X correct to two decimal places, and
INT(X*10**D+.5)/10**D will round X to D decimal places.

• RND(x) generates a pseudorandom number as follows:

If X > 0, then RND(x) is a function of X whose value is in the open interval [O, 1).

If X < 0, the system supplies an arbitrary random number on the open interval [0, 1).

If X = 0, the system supplies a pseudorandom number, which is a function of the previous random
number generated by RND. If X = 0, the first time RND is called in a program, the system will supply
a fixed number in the open interval [O, 1).

If X is not specified (i.e., RND), then RND(O) is assumed.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-9

To generate a sequence of pseudorandom numbers, the user would call any of these options followed by
repeated calls to option c.

5 X=8
18 FOR L=l TO 28
28 PRINT RND(x),
38 NEXT L
48 END

• RANDOMIZE may be used to cause RND to supply arbitrary random numbers. It is equivalent to call RND
(-1). The execution of the previous program would cause the following 20 random numbers to be output:

1" RANDOMIZE

Col 1 Col 16 Col 31 Col 46
~763242E-85 ~258198 ~753869 ~567854
.747568 .448211E-"1 .554667E-"1 .252568
.816485E-Bl . 52"82 .99271 .841932
. 397855E-"1 .58698 .8"1253 .882914

If the user wants 20 random 1-digit integers, statement 20 is changed as follows:

28 PRINT INT(24.RND(x)+5);

This results in the following output:

~o I 1

8 2 7 5

Co I 78
t

5 7 8 8 2 4 8 5 9 8 5 8 5 8 8 7

Col 61

~589682
.442911
.572162
.793956

The user can vary the type of random numbers desired. If the user wants 20 random numbers ranging from
5 to 24 inclusive. statement 20 is changed to the following:

28 PRINT INT(24.RND(x)+5);

In general, if random numbers are chosen within the range A~RND(x)<A+B, the random function is used
as follows:

I NT (B • RN D. (x) +A)

• SGN(x) designates the sign of x.

SGN ,(x)=

llJ

28
38
48

{

+l. if x > 8}
8. if x = 8
-1, if x < 8

X=SGN(8)
Xl=SGN(-1.82)
X2=SGN(Xl)
X3=SGN(-Xl)

The following example assigns 0 to X, -1 to X1. -1 to X2, and + 1 to X3.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-10

• DET designates the value of the determinant of the last matrix to be inverted, or a value of zero if it could
not be inverted.

10 DIM A(3,3), 8(3,3)

20 MAT READ A

30 MAT B = I NV (A)

40 MAT PRINT B

50 ''THE VALUE OF ITS DETERMINANT IS'' ;DET

• LEN (XS) returns the length of the string argument.

10 LET A$=' ' ABC ' '

20 LET B$=A$&A$

30 PRINT LEN (A$), LEN (8$), A$, 8$

40 END

would print out

3 6 ABC ABCABC

• MOD (X,Y) computes the modulus remainder

590 MOD (X,Y) = X - Y (I NT (X/Y))

600 FOR l=l TO 5

610 PRINT I; ''MODULO 2 EQUALS ' ' ; MOD (I , 2)

620 NEXT I

999 END

This program would print

MODULO 2 EQUALS 1
2 MODULO 2 EQUALS 0

3 MODULO 2 EQUALS 1

4 MODULO 2 EQUALS 0

5 MODULO 2 EQUALS

• POS (A$, 8$, X) begins searching A$ at X for the string 8$ and returns the position of 8$ in AS.

10 LET X$= ''THIS STRING IS A TEST''

20 PRINT ''ENTER BEGIN, STRING:'';

30 INPUT Q,Q$

40 PRINT POS(X$,Q$,Q)
50 GOTO 20

60 END

UP-9168 Rev. 1

If run, this would result in:

ENTER BEGIN, STRING;?

3

ENTER BEGIN, STRING~?

13

ENTER BEGIN, STRING;?

0
ENTER BEGIN, STRING;?

SPERRY UNIVAC OS/3
BASIC

1 , IS

5, IS

4,DUMMY

STOP

• TIM returns the elapsed running time in seconds, accurate to milliseconds.

LET A=TIM 10

20

30

40

50

FOR l=l to 1000

NEXT I

PRINT ''ELAPSED TIME IS'', TIM-A
END

This would print

ELAPSED TIME IS .903999

• VAL(Q$) returns the value of the number whose decimal representation is in 0$.

10 LET F9$=' '4334. 57''

20 PRINT VAL(F9$), VAL(SEG$(F9$,3,5))
99 END

This program would print

4334.67 34

6-11

In this example, the SEG$ function creates a substring of characters 3, 4, and 5 (which are 34.), and
performs the VAL function on this substring.

• EBC (string) obtains the EBCDIC value for a single EBCDIC symbol. Certain symbols cannot be typed and
must be entered as 2 or 3 character mnemonics. To interpret a lowercase letter, you must prefix the letter
in question with LC (e.g., LCE interprets lowercase e). Table 2-1 lists these mnemonics, along with the
decimal value which the EBC function will return. EBC is a compile-time, rather than a run-time, function.
Examples of using the function follow:

EBC(l)=241

EBC(B)=l94
EBC(CR)=l3

EBC(NUL)=0

UP-9168 Rev. 1

6.5.3. String Functions

SPERRY UNIVAC OS/3
BASIC

6-12

• CHR$(x) returns a 1-character string consisting of the EBCDIC character with the code MOD(INT(x).256).
This function may be used to embed special characters or control sequences in printed output:

10 PRINT ''THIS SENTENCE IS UNDERLINED'';
20 PRINT CHR$(13);
30 PRINT
99 END

THIS SENTENCE IS UNDERLINED

Line 20 uses the decimal value of a carriage return, 13, to move the teletype print head back to the start of
the output line without skipping down one line (no line-feed is used). This could have also been done by:

20 PRINT CHR$ (EBC(CR));

• CLK$ gives the time of day in string format.

An 8-character string in the form "hh:mm:ss" is returned.

lB PRINT ''THIS PROGRAM WAS RUN AT:' 'CLK$
20 PRINT

99 END

If executed, this program would begin by printing

THIS PROGRAM WAS RUN AT: 14:05:30

• DAT$ may be used to obtain the current date as an 8-character string in the form yy/mm/dd.

10 PRINT ''THIS PROGRAM WAS RUN AT'' ;CLK$;' 'ON'' ;DAT$
20 PRINT

99 END

This program would begin by printing

THIS PROGRAM WAS RUN AT 14:06:10 ON 80/06/24

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-13
Update B

• SEG$(A$,X,Y) allows the user to obtain substrings of a larger string. All characters between positions X
and Y inclusive of A$ will be returned as a new string. If X>Y, then a null string is returned. The
appropriate beginning or end of A$ is returned in the case where X <=O or Y>LEN(A$).

1. If CLK$ is 14: 10:05, then SEG$(CLK$, 1,5) would be 14: 10.

2. The function call SEG$(81 $,2.4095) would always return a string consisting of all but the first
character of 81 $.

3. The function call SEG$ (C$, 1,LEN(C$)-1) would always return a string consisting of all but the last
character of C$.

• STR$ (x) may be used to convert a floating point number to its decimal representation. This function
returns a string.

•

10
20

LET N2=6.35
PRINT STR$(N2),

This would print

6.35 6

SEG$(STR$(N2),2,2)

Notice that STR$(VAL(A$))=A$ and VAL(STR$(X)) = X. STR$ and VAL are inverse functions.

USR$ designates the logon-id of the user who is currently executing the program. This is a 6-character
string derived from the user-id stated on the LOGON command.

6.5.4. File Functions

• LOC (#n) returns the current location of the file pointer for the file assigned to channel n. This function is
useful if a program must remember the location in the file to be referenced later.

10 FILE #3: "PROG.DISKFILE,PACK37

(processing)

20 READ #3: A6$
21 LET R=LOC(#3)-1

. (process record in A6$)

30 RESET #3: R
31 WRITE #3: A6$

In this example, the current location pointer is in some unknown position when statement 20 is executed,
but the record at that position must be read, changed, and written back. Statement 21 obtains the current
position and decrements it because the READ statement automatically increments the location pointer. The
record can then be processed. To overwrite a record, the file is reset back to the record by statement 30
and written by statement 31 .

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-14

• LOF (#n) returns the current value of the end-of-file pointer for the file assigned to channel n. This value is
equivalent to the number of records in the file.

170 FILE #2:",'ERRORS',SYSRES

180 FORl=l TO LOF(#2)

190 WRITE #2:A$(1)

200 NEXTI

In this example, the value of LOF is used to control a FOR loop. Each record in the file is written from the
corresponding array element in A. This same function can be accomplished with the file IF statement:

170 FILE #2: ''.ERRORS'. SYSRES

180 1=1

190 IF END #2 THEN 230

200 WR I TE # 2: A (I)

210 1=1+1

220 GOTO 190

230

• PER (#n,A$) allows the user to determine if a file operation will be permitted if executed against the
specified file. The function specified by string expression AS is tested against the file assigned to channel
n. a +1 is returned if the function is permitted, 0 if not, and -1 if an invalid function statement is used.

210 PRINT ''ENTER NAME OF FILE TO PROCESS:'';

220 INPUT N1$

230 FILE #3:N1$

240 IF PER(#3,''INPUT'')=l GOTO 300

250 PRINT "FILE CAN'T BE READ, ENTER CORRECT FILE WITH PASSWORD"

260 GOTO 210

3BB PRINT "FILE NAME ACCEPTED"

continue processing

This would result in:

ENTER NAME OF FILE TO PROCESS:? sq,myfile,mypack

FILE CAN'T BE READ, ENTER CORRECT FILE WITH PASSWORD

ENTER NAME OF FILE TO PROCESS:? sq.myfile(pass),mypack

FILE NAME ACCEPTED

In this example, the user must enter a file for the program to process. The program will later read the file
using INPUT statements. To avoid program termination should BASIC not permit this. the PER function
tests if INPUT is accepted for the file. The most likely reason for it not being accepted is the failure to enter
the correct READ password.

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-15

• TYP (#n,A$) allows the user to test the file type of a file. The string expression A$ specifies one of the
possible file types to test against the file at channel n; a +1 is returned if the file has that type, 0 if not, and
-1 if an illegal file was specified by A$.

388 IF TYP (#3,"LIBRARY") = 1 GOTO 338

318 PRINT ''SPECIFY ONLY LIBRARY FILES WITH THIS PROGRAM''
328 GOTO 218

338 PRINT ''FILE ACCEPTED''

This example is a continuation of the last example and shows how a program that is designed to run using
only library files can test user-supplied files.

• NUM can be used with MAT INPUT of vectors to determine how many elements of the vector were entered.

• 11 e DIM V(lBB)
*728 PRINT ''ENTER LI ST OF
•739 MAT INPUT v
•749 S=O
•759 FOR I = 1 TO NUM
*768 S=S+v (I)
• 778 NEXT I
• 788 PRINT ''SUM OF NUMBERS
•799 END
*RUN

ENTER LIST OF NUMBERS
71,9,8,2,3,4,8,&

74 5 . 2 e , 16

NUMBERS''

IS:''; S; ''AVERAGE IS:'';S/NUM

SUM OF NUMBERS IS: 116, AVERAGE IS 11.6

In this example, a vector is used to accept a variable number of input values from the terminal. The NUM
function is then used to determine how many elements of the vector are to be processed. An ampersand
(&) was used on the first line of input from the terminal because the entire list would not fit on one line.

6.6. USE OF MULTILINE FUNCTIONS

Multiline functions are defined using a combination of DEF and FNEND statements. The user should refer to the
programming notes on the DEF and FNEND statements in Section 3 for further details concerning the
construction of multiline functions.

Example:

118 DEF FNA(N)T,H
128 REM THIS MULTI LINE FUNCTION COMPUTES
138 REM THE FACTORIAL OF N
148 T=l
158 IF N<=l GOTO 198
168 FOR H=2 TO N
1 78 T=T*H
188 NEXT H
198 FNA=T
288 FNEND

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

If this multiline function is called within the following sequence of statements:

19

20

30

40

FOR J=0 TO 9

PRINT J;"!6=";FNA(J)

NEXT J

END

the printed output appears as follows:

Co I 1
+
O! 6=61

l! 6=61

2! 6=62

3! 6=66

4! 6=624

5! 6=6120

6! 6=6720

7! 6=65040

8!6=640320

9!6=6362881!

6.7. USE OF SUBPROGRAMS

6-16

Subprograms provide a mechanism by which independent. parameterized routines can be developed and called

with minimal program overhead.

The following example shows a simple subprogram that translates strings, which may contain lowercase
characters, to all uppercase. The calling program need only issue a CALL statement selecting the subprogram
and stating which string is to be converted. Upon return from the routine, the string will contain only uppercase
characters. Although this main program converts a file from uppercase/lowercase text to all uppercase, other
programs could use the subprogram for other purposes if it were saved in a common library.

Example:

100 FILE #4: "TEXT,LIBFILE(RDPASS)"

110 FOR l=l TO LOF (#4)

120 LINPUT #4:L$

130 CALL "UPPER":L$

140 RESET #4:LOC(#4)-1

150 WRITE #4:L$

160 NEXT I

170 END

500 SUB ''UPPER'' :S$

519 DIM C(l28)

520 CHANGE S$ TO C

530 FOR l=l TO C(0)

540 IF C(I)>EBC(Z)-64 GOTO 600

551! IF C(I)<EBC(A)-64 GOTO 61!0

5 6 0 C (I)=C (I)+6 4

600 NEXT I

610 CHANGE C TO S$

620 SUBEND

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6-17

This example also makes use of the CHANGE statement to separate each character of the string and
convert each to its EBCDIC value. Each character value can then be tested for lowercase and, if true,
changed to uppercase by adding decimal 64, which is the decimal difference between the EBCDIC
characters A and a. After the individual characters have been processed, they are combined into a string
via the CHANGE function.

6.8. USE OF FILES

Several examples of programs using files are presented in this subsection.

The following BASIC program uses several files to operate on library elements. The purpose of this program is to
read a COBOL program, locate any references to the COBOL 'COPY' verb, and insert the copied modules inline.

Example 1:

lee PRINT ''ENTER COBOL PROGRAM NAME ANO COPYLIB FILE NAME'';

2ee INPUT P$, C$

300 FILE #l:P$
4ee RENAME #1:' '*''

see LINPUT #l:Rl$

6ee IF POS (Rl$,' 'IDENTIFICATION DIVISION'' ,1)

1ee RESET #1

see FILE #2:"*"

e THEN seee

This portion of the program queries the terminal user for the COBOL program name and the name of the
file where the copy elements can be found. The file is opened and immediately renamed to temporary file
to prevent overwriting the original module on errors. The first record is then read and tested to see if it is a
valid COBOL program. If not, the user is notified. Otherwise, the file is reset so it can be reread from the
beginning.

Example 2:

ieee FOR I = 1 TO LOF (# 1)

11ee LINPUT #l:Rl$

1200 LET C = POS (Rl$, ' 'COPY'', 7) + 1

13ee IF C-l>e THEN 3eee
14ee WRITE #2: Rl$

lSee NEXT I

1600 RENAME #2: P$

1700 GOTO 9999

The program file is now read, one line at a time, and tested for the COPY verb. If the record is other than a
COPY, it is written to the output file. Otherwise, a separate section of code is used to process the copy.
Finally, the output file is renamed to the original file name so that when it is closed it will be written in
place of the original.

UP-9168 Rev. 1

Example 3:

SPERRY UNIVAC OS/3
BASIC

3000 CALL "FINDNOSP": Rl$, C+4, C2

3109 LET C+ = POS (Rl$&" "," ",C2)

3290 IF SEG$ (Rl$, C3-l, C3-l) <> ''.'' THEN 3400

3300 LET C3=C3- l

3400 LET N$ = SEG$ (Rl$, C2, C3-l)

3500 Fl LE #3: N$& "," &C$

3609 RENAME #3: ''*''

3790 FOR J =l TO LOF (#3)

3800 LINPUT #3: R2$

3999 WRITE #2: R2$

4090 NEXT J
4100 GOTO 1509

6-18

Once a COPY statement has been found, the copied module name must be isolated. This is concatenated
onto the file name and the library element is opened. It too is renamed to a temporary file so it is not

overwritten. Each statement of the element is then added to the output file.

Example 4:

8009 PRINT ''THIS IS NOT A COBOL PROGRAM, TRY AGAIN''

8190 GOTO 100

9999 END

These statements complete the main program.

The subprogram FINDNOSP must also be written. Its purpose is to find the first nonblankcharacter in a string.
It is called with three parameters, a string to search, the column beginning the search, and a variable into
which the result is placed. The subprogram scans the string and returns the column of the first nonblank
character in the string after the column specified by parameter 2; the result is returned in parameter 3. If

nonblanks are not found, zero is returned.

Example 5:

19909 SUB ''FINDNOSP'': S$. B, E

10109 FOR E = B TO LEN (S$)

10200 IF SEG$ (S$, E, E) <> '' GOTO 19999

19300 NEXT E

10400 E = 0

19999 SUBEND

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

6.9. HINTS FOR MORE EFFICIENT CODE

6-19
Update B

The following suggestions for writing BASIC programs improve the execution time and reduce main storage
requirements:

• Use intrinsic system functions instead of BASIC code whenever possible.

• Use FOR loops rather than maintaining counters in BASIC.

• Use string functions, such as POS and SEG$, rather than maintaining an array of characters stored one
character per word.

• Use MAT statements to process matrixes, rather than indexing with FOR loops.

• Rather than using several LET statements to compute a result, combine them into a single LET statement.
This avoids saving temporary values and is especially helpful for string manipulation.

• When using DATA statements, combine several values onto one statement rather than using one value per
statement. The result is a faster RUN compilation.

• Use the RCSZ parameter on file parameter strings rather than using the MARGIN statement. This results in
a much faster execution time .

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

7-1

7. Errors and Debugging

7.1. GENERAL

There are two basic categories of error:

1. those that prevent the running of the program; and

2. those that permit the program run, but cause wrong answers or no answers to be printed. (These latter
errors are called logic errors).

7.2. ERRORS PREVENTING RUNNING OF PROGRAM

It may occasionally happen that the first run of a new program is free of errors and gives the correct answers.
But it is much more common that errors are present and have to be corrected. Errors that prevent the running of
the program are detected by the syntax checker, the editing command processor, the system monitor processor,
the run-time error routines, and the post-compilation routines. (The errors reported by all of the system
components mentioned, except the syntax checker, are listed in Appendix C. This appendix also suggests, for
each error, the procedure to correct the error condition.)

The syntax checker detects improper syntax in each statement and reports the error by printing a question mark
(?) on the terminal followed by a copy of the incorrect statement, up to but not including the first character in
error.

Example:

Ill FOR N=I, 7

Because the comma is not permitted in a FOR statement. the system responds with the following message:

? Ill FOR N=l

and waits for the user to complete the statement.

The user types in the following response:

TO 7

Now, the following corrected, complete statement is successfully processed by the system:

Ill FOR N=I TO 7

UP-9168 Rev. 1

7.3. LOGIC ERRORS

SPERRY UNIVAC OS/3
BASIC

7-2

Logic errors are those that permit the program to run but cause wrong answers or no answers to be printed. In
either case, after the errors are discovered, they can be corrected by changing, inserting, or deleting statements
from the program. A statement is changed by typing it correctly with the same line number. A statement is
inserted by typing it with the new line number. A statement is deleted by either typing the line number and

pressing the TRANSMIT key or using the DELETE command.

Corrections to a BASIC program can be made at any time either before or after a run. In addition, line numbers
may be typed in out of sequence because BASIC arranges them in ascending order once they are read.

The following program reads in a series of numbers and finds the largest and smallest numbers in the series.

The program also computes the average of the series.

Example:

10 INPUT N,A

20 L=S=A

30 FOR T=2 TO N

40 INPUT X

50 A=A+X

60 IF X >=L THEN 90

70 L=X

80 GOTO 110

90 IF X >=S THEN 110

100 S=X

110 NEXT T

120 A=A/N
130 PRINT "SMALL=": S. "LARGE=": L, "AVERAGE="; A

140 END

The user types in the following data values when this program is executed:

5 . 1

2

3

4

5

The resulting output appears as:

SMA LL=6.l LARGE=6.l AVE RAG E=6.3

•
UP-9168 Rev. 1 SPERRY UNIVAC OS/3

BASIC
7-3

The value for LARGE is obviously incorrect. After examining the program, it becomes evident that the IF
statement on line number 60 should be changed as follows:

68 IF X<=L THEN 98

After this correction is made and the program is reexecuted with the same input data, the resulting output
appears as:

SMALL=61 LARGE=65 AVERAGE=63

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

8-1
Update B

8. BASIC in a Batch Environment

8.1. INTRODUCTION

Although primarily used in an interactive environment, BASIC can run effectively as a batch program. The
requirements are simple. The user would merely enter on cards exactly what he would key in at the workstation
during an interactive session, including everything from LOGON to LOGOFF. The user must store this routine as
a file either on the spool file, using the spooler IN command, or on a library file via the librarian, using EDT or the
interactive service COPY command. Once stored, the user can run the routine by issuing the ENTER command.

8.2. PROGRAMMING CONSIDERATIONS

The batch mode differs from the interactive mode in the following ways:

• BASIC messages with a reply

• BASIC commands or source statements

• Syntax errors in source statements

• RU command

8.2.1. BASIC Messages with a Reply

BASIC assumes a Y response for the following messages with a reply:

BA064 EXECUTION PAUSED AT LINE xxxx CONTINUE (Y /N)? [>

IS100 FILE/MODULE ALREADY EXISTS; OK TO WRITE IT? (Y,N) [>

BA118 SOURCE MODULE NOT SAVED -TERMINATE (Y/N)? [>

8.2.2. BASIC Commands or Source Statements

BASIC prints all input commands and source statements .

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

8.2.3. Syntax Errors in Source Statements

8-2

When an error is found in a source statement, a syntax message error number is printed on the line following
the prompt message.

Example:

Input: 29 IF A> 18 THEN GO TO 188

Output: ?28 IF A> 18 THEN

Output: ERROR MSG # = BA132

8.2.4. RU Command

If BASIC finds a syntax error in a source statement. the RU command is ignored. This error condition will be
reset by issuing a NEW, an OLD, or RUNOLD command.

Example:

Input: 18 A=l

Output:

Input: 28 A=A+l

Output:

Input: 38 IF A> 18 THEN GO TO 68

Output: ? 38 IF A > 18 THEN

Output: ERROR MSG # = BA132

Input: 48 PRINT A

Output:

Input: 58 GO TO 28

Output:

Input: 68 END

Output:

Input: RU

Output: BA826 UNCORRECTED ERROR IN SOURCE

Output:

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OSl3
BASIC

8.3. BASIC BACKGROUND OPERATION

The following is an example of a BASIC background operation:

11 DATA FILEID=xxx

8-3

II FIN

The card deck of the BASIC batch session is read into the spooler and entered by using the console as follows:

Input: IN (spooler command)

Output: IR02 SPOOL FILE BASIC CREATED

~
ENTER Q=RDR,HOLD=N,FILE=xxx Input:

~
stating of BASIC background

Figure 8-1 illustrates how the system handles BASIC in a batch environment:

UP-9168 Rev. 1

INPUT
CARDS

SPERRY UNIVAC OS/3
BASIC

IS22 OS/3 INTERACTIVE SERVICES
LOGON YOSUKE

8-4

IS19 LOGON ACCEPTED AT 17:14:29 ON 88/82/22, REV xx.S3.R
IS27 TODAYS BULLETIN IS:

BASIC
BA081

10 A=l

TO TYPE IN COMMANDS, DEPRESS 'FUNCTION' AND
'SYSTEM-MODE' KEYS SIMULTANEOUSLY, THEN TYPE
THE COMMAND AND DEPRESS TRANSMIT.

OS/3 BASIC READY (VER x.x) BEGIN

28 B=A+l

38 PRINT A;B

48 END

P~INT

18 A=l
28 B=A+l
38 PRINT A;B
48 END

RU
• 1 2

SAVE MURATA,YSRC,REL878

BYE

LOGO FF
IS73 LOGOFF ACCEPTED AT 17:15:44 ON 88/82/22

Figure 8-1. BASIC Batch Environment Printout

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

A-1

Appendix A. Summary of BASIC
Statement and
Command Formats

Table A-1 contains a listing of all of the BASIC statements and commands with examples of each.

Table A-1. BASIC Statement and Command Formats (Part 1 of 5)

Operation Operand Format Type Use

BYE Command Terminates BASIC and returns to
SYSTEM.

CALL string-constant[:param-list] Subprogram Statement Initiates a call to a subprogram.

CHAIN {string-expression} Subprogram Statement Initiates compilation and execution of
channe 1- setter another program segment.

[WI TH channel-setter, ...]

~
CHANGE {string TO array } General Statement Converts a string to a vector or vice

array TO string-variable versa.

[BIT expression]

DATA {string-constant}· Input/Output Statement Supplies values for subsequent READ
numeric-constant statements.

~ DEF FN I et t er [$] [(par am- Ii st)] Declaration Defines the entry point into a user
function.

[. Io ca I - I is t]

[expression]

DELETE [I in e number - Ii st] [· 'search - string' '] Command Deletes lines from the BASIC program
in the workspace.

DIM letter[S](integer[.integer]) •... Declaration Defines arrays or vectors and specifies
subscript bounds.

END Control Statement Defines the last statement in the main
program and terminates execution.

FI LE channel-setter:string-expression Input/Output Statement Defines and opens a data file.

FNEND Declaration Defines the end of a multiline user
function and returns control.

FOR numeric-variable=numeric-expression Control Statement Initiates a loop and specifies values for
loop index.

TO numeric-expression
[STEP numeric-expression]

GOSUB I ine-number Control Statement Transfers control to a subroutine and
saves return address.

GOTO I ine-number Control Statement Transfers control to another statement
in the program.

e e

Examples

BYE

I 7 CALL . 'SUBR'' :3+4,A,B()
18 CALL ''FIND'' :#3.SIN. (A)
19 CALL ''SEND'':C(,),K(3,4),B$

23 CHAIN '' PROGRAM2, CHA I NL I B, PACK34''
24 CHAIN A$ WITH #3
25 CHAIN #4 WITH #l,#4,#J8

34 CHANGE A$ TO v
35 CHANGE M TO B3$
36 CHANGE G TO Kl$ BIT 12

45 DATA l,3,6,IE3,-.34,17.3E34
47 DATA ''STRING ONE' ' , STRING TWO, OTHER STR
49 DATA FOURTH STRING. 33. ' ' FIFTH STRING''

54 DEF FND (X,Y)=SQR(X""2+Y""2)
55 DEF F NS$ (X, Y $)=SE G $ (Y $, X, X) & ' ' ' '
56 DEF FNQ
57 DEF FNG$.1.J,K
58 DEF FNE (A.B,C),W,Z

DELETE 10
DELETE 100-132
DELETE ''INSTRUCTIONS''
DELETE 1-100 "REM"

67 DIM A(3), B (4, 5)
68 DIM G$(45)
69 DIM C(IOO), H$(2,40)

78 END

82 FI LE #3:

83 FI LE #I:'' SQ, ERRORS, SPOOL3''
84 FILE # 7 : ' ' C 0 B 0 LP GM, L I BF I LE (/WR PASS) ' '
85 FI LE #J:A$

88 FNEND

93 FOR 1=3 TO 10
94 FOR J2=1 TO POS(A$,B$. I)
95 FORK=J2 TO L3 STEP 4

102 GO SUB 943

Ill GOTO 130

e

c
-c
cD
~

Ol
CD

:JJ
en
:c:

(/)
-c
m
:JJ
:JJ
-<

OJ c
)> z
(/) -
c=i~

(")

0
(/)
-......
w

)>
I

N

e e

Table A-1. BASIC Statement and Command Formats (Part 2 of 5)

Operation Operand Format Type Use Ex•mplea

IF Format 1: Control Statement Compares two exPfessions according 1 Zll IF AS="Y-H" THEN 341
to the "test" specified and, if true. 122 IF SIN(X)=8.5 GOTO 43

exprusio1t test upression performs the GOTO or GOSUB. A file 123 IF END #3 GOSUB 231

rOTO }
Ii ne • numbar condition may also b& tested.

GOSUI
THEI~

Format 2:
{END } ch1nntl·Sttter

MO Rf

rOTO }
Ii ne • num~e r

GO SUB
THEN

INPUT [ch an n e I - set t er :) var i ab I e - n amt •.•. Input/Output Statement Solicits input from the terminal or 130 INPUT A.BS
reads a file and assigns values to the 140 INPUT #I: 0(3.4).J
variables listed.

LET Format 1: Assignment Assigns values to numeric or string 143 LET A$=SEG$(AS.3.4)
n um er i c - var i ab I e variables or to a function. 145 LET 8(3.4)=SIN(Y)

[=n ume r i c • var i ab I e ...) 147 LET FND=B(3,4)'A(4)+1
=n ume r i c • express i on

Format 2:
string·variable

[=st r in & ·var i ab I e ... I
=strin&·expression

Format 3:
FNletter[SJ=expression

LIBRARY string-constant Subprogram Statement Specifies names of subprogram libraries 155 LI BRA RY '' SUBL I BRA RY. PAC Kl 1''
to be searched. 157 LIBRARY ' ' CA TA L 0 GED SUB L I BR ARY (AL LOWD) ' '

LIST (line-number-list)[''search-string'') Command Displays lines of a BASIC program to LIST 3-4, 18. 198-288
the terminal. LIST ' 'PR I NT' '

LIST 1-198 ·'REM''

MARGIN [ch an n e I - s e t t e r :] n ume r i c • exp res s i on Input/Output Statement Changes the current margin setting for 168 MARGIN 12 8
the terminal or a file. 164 MARGIN #3: 64

MAT letter=letter+letter Matrix Operations Adds two matrixes and places the re- 174 MAT A=B+C
suit in a third matrix. 175 MAT V=W+Z

MAT I et t er=CON [(trimmer)] Matrix Operations Sets all elements of the matrix to the 178 MAT A=CON
value 1. The matrix may optionally be 179 MAT V=CON(I)
redimensioned.

MAT letter=IDN[(trimmer)) Matrix Operations Sets the matrix to an identity matrix. 185 MAT H=IDN (3. 3)
The matrix may optionally be redimen- 188 MAT J=IDN
sioned.

MAT letter=INV(letter) Matrix Operations Performs the matrix inversion function 190 MAT Q=INV(R)
on square matrixes.

MAT I et t e r=I et t er• I et t er Matrix Operations Multiplies two matrixes and places the 198 MAT U=V'W
result in a third. 199 MAT A=V'B

e
c
1' co -~
:a
~

en
"ti
m
:a
:a
-<

me >z
~<
<">)lo

(")

0
en

' w

t

Table A-1. BASIC Statement and Command Formats (Part 3 of 5)

Operation Operand Format Type Use

MAT I etter$=NUL$[(trimmer)) Matrix Operations Sets all elements of a string matrix to
null strings. The matrix may optionally
be redimensioned.

MAT letter=(numeric-expression)'letter Matrix Operations Multiplies all elements of a matrix by a
scalar value.

MAT I et I e r=I e It e r-1 et t er Matrix Operations Subtracts two matrixes and places the
result in a third matrix.

MAT letter=TRN(letter) Matrix Operations Transposes rows for columns in a ma-
tr ix.

MAT letter=ZER[(trimmer)] Matrix Operations Sets all elements of the matrix to the
value 0. The matrix may optionally be
redimensioned.

MAT INPUT [channel-setter:] Matrix Operations Solicits input from the terminal or a
I et t er [$] [(t r i mme r)] , ... file and assigns values to each ele-

ment of the matrix.

MAT LINPUT [channel-setter:] Matrix Operations Solicits input from the terminal or a
I e t t e r $ [(t r i mme r)) , ... file and assigns complete lines of data

to each element of the string matrix.

MAT PRINT [channel-setter:) Matrix Operations Displays a matrix to the terminal or a
letter[$)[separator] file. Spacing is determined by the

separator.

MAT READ [channel-setter:) Matrix Operations Reads values in.for each element of
I e t t e r [$) [(t r i mm e r)) , .. the matrix from DATA statements or

from a file.

MAT WRITE channel-setter:letter[$), ... Matrix Operations Writes each element of the matrix to a
record in the file.

MERGE element. I ibrary[(password)) Command Reads in an existing program on disk
[• v o I ume] without deleting the original contacts

of the workspace.

NEXT numeric-variable Control Statement Terminates a loop initiated by a FOR
statement.

NEW Command Deletes the contents of the BASIC
workspace so that a new program
may be written.

OLD element, I ibrary[(password))[.volume] Command Deletes the contents of the BASIC
workspace when located and reads in
an old program from disk.

ON numer it-expression Control Statement The value of the numeric expression

rOTO }
line-number ... selects which line number in the list

GOSU8 will be used with the GOTO or GOSUB
THEN statement.

e e

Examples

281 MAT DS=NULS
205 MAT F$=NUL$(1,J)
296 MAT G$=NUL$(3)

212 MAT D=(J+4)'E
213 MAT V= (SIN (U)) • W

2 2 I MAT D=F-E

234 MAT D=TRN(F)

244 MAT S=ZER
247 MAT E=ZE R (3, 4)

253 MAT INPUT #3:8$

255 MAT LINPUT #3: AS
256 MAT LINPUT DS

262 MAT PRINT A. B; C;
265 MAT PRINT #8: 8$,

272 MAT READ A
2 77 MAT READ 8 $ (3)
279 MAT READ #J+3 :D(3, 4)

2 8 I MAT WR I TE #3: A,8
2 8 3 MAT WR I TE #l:K$,Y

MERGE SU8R, SU8Ll8, SU8PAK

292 NEXT I
293 NEXT J 5

NEW

OLD PRINTSIN,PROGRAMLl8.DISKPK
OLD COMPUTE,CATALOGUEDFILE

328 ON J. (4+1) GOTO 120.388,129,438
Ill ON K GOSU8 10,28.38.58,!B,48

e

c
-0
cO
CTI
co
:c
<»
:<

en
;:g
:c
:c
-<

tD c
)> z
en --< ("))>

(")

0 en
.......
w

1

e e

Table A-1. BASIC Statement and Command Formats (Part 4 of 5)

Operation Operand Format Type Use

PAUSE Control Statement Suspends execution of the program
and queries the terminal user to deter-
mine whether to continue or not.

PRINT [line·number-list](""search-string··1 Command Displays lines of a BASIC program to
the terminal.

PRINT (channel -setter:] Input/Output Statement Displays the value of each expression
expression[separator], ... listed according to the format specified

by the separators. Display is to a file or
a terminal.

RANDOMIZE General Statement Obtains a random seed for the random
number generator.

READ [channel -setter:]variable, ... Input/Output Statement Assigns values to each of the variables
listed from DATA statements or by
reading records from a file.

REM any characters for a comment General Statement Used for an inline comment.

RESEQUENCE start [: inc r] [: f i I e - par ams] Command Resequences the program as it is
saved to a library file using the starting
line number and increment.

RESET [channel-setter:[numeric-expression]] Input/Output Statement Repositions the file or the DATA state-
ment pointer.

RETURN Control Statement Returns from a subroutine which was
called via GOSUB.

RUN Command Initiates compilation of a program in
the workspace.

RUN OLD element, Ii lename((password)][.volume] Command Initiates compilation of an old program
stored on disk.

SAVE element, f i lename[(password)][,volume] Command Saves the BASIC program contained in
the workspace on disk.

SCRATCH channel -setter Input/Output Statement Deletes the contents of the BASIC file.

STOP Control Statement Terminates execution in the program.
May be placed anywhere within the
program as opposed to ENO, which
must be last.

sue string-constant :pa rams Subprogram Statement Defines the entry into a subprogram
and specifies any passed parameters.

Examples

332 PAUSE

PRINT 3-4' 19' 198-299
PRINT "LINPUT"
PRINT "END" 9088-99999

345 PRINT ' 'THE ANSWER IS' ' ; Al
354 PRINT I , J . K
356 PRINT TA e (I) ; I ;

362 RANDOMIZE

371 READ A,e,C
373 READ #4:A$(45)
377 READ #I: Al. e7$, c (2 ' 3)

3 9 I REM THIS PROGRAM COMPUTES THE wve
392 REM FOR AN ARRAY
393 REM
394 REMARK

RE SEQ 108: 50: RESPROG, PROGL le, PACK57

382 RESET
384 RESET #3
388 RESET #I : VJ

3 9 5 RETURN

RUN

RUNOLD COMPUTE, CATALOGUEDF I LE

SAVE COMPUTE.CATALOGUEDFILE(PSWORD)

403 SCRATCH #3
484 SCRATCH #1-2

412 STOP

4 2 I sue "FINDSPAC"

e

VALUES

c
"'ti
cO
~

Ol
CXl

:xJ

~

en
"'ti
m
:xJ
:xJ
-<

CD C
)> z
en --< ("))>

(")

0
en
" w

)>
I en

Table A-1. BASIC Statement and Command Formats (Part 5 of 5)

Operation Operand Format Type Use

SUB END Subprogram Statement Indicates the last statement in the
subprogram and returns control to the
CALL statement when executed.

SUBEXIT Subprogram Statement Returns control to the CALL statement
from anywhere within the subpro-
gram.

SYSTEM [system command] Command Returns control to system, or executes a
single system command without leaving
BASIC.

SYSTEM st r in g Control Statement Issues a system command from a run-
ning BASIC program.

TI ME integer General Statement Changes the CPU time limit placed on
an executing program.

USING using·str ing.expression[,expression], ... Input/Output Statement Defines format string and edited ex-
pressions.

WR I TE channel -setter:expression, ... Input/Output Statement Writes records to a file, one per ex-
pression listed.

e e

Examples

437 SU BEND

449 SUBEXIT

SYSTEM
SYSTEM FSTATUS PROGRAMLIB.PACK33

476 SYSTEM"' RUN' '&Pl$

TI ME 129

12 7 PRINT USING A$,B,C
14 5 MAT PRINT USING · · #. ##11111 · · . e
167 PRINT #7:USING Cl$,F$;G

523 WRITE #3:A,SIN(X).8$

e

c
-0
(o -O>
00

::JJ
CD
<

(J)
-0
m
::JJ
::JJ
-<

Ille
}> z
(J) --<
(") }>

(")

0
(J)

' w

t en

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

B-1

Appendix B. Sample BASIC Session

An example of a complete session is provided in Figure B-1 to aid the new user when learning BASIC. The
designation IN: denotes text, which is supplied by the user, and OUT: designates responses from the system.

1. IN: LOGON USRl
2. OUT: IS22 OS/3 INTERACTIVE SERVICE
3. OUT: IS19 LOGON ACCEPTED AT 13:37:22 ON 80/05/30, REV 7.0S.21
4. IN: BASIC
5. OUT: BA001 OS/3 BASIC READY (VER 7.0) BEGIN
6.

7.

8.

9.

10.
1 1 .

1 2 .

OUT:
IN:
OUT:
IN:
OUT:
IN:
OUT:

13 . IN:

*

.

.

.

10 PRINT ''PROGRAM TO COMPUTE AREA OF A CIRCLE GIVEN RADIUS''

20 PRINT ''ENTER CIRCLE RADIUS:'';

30 INPUT R

40 A=3.14159 R""2
14. OUT: ?40 A=3 .14159
15. IN: 40 A=3.14159 " R"'2
16. OUT: '
17. IN: 50 PRINT "AREA OF A CIRCLE IS":A,"CONTINUE?";
18. OUT: "
19. IN: 60 INPUT C$
20. OUT:'
21. IN: 70:1F C$=''YES'' THEN 200
22. OUT: '
23. IN: 80 END
24. OUT: '
25. IN: RUN
26. OUT: BA024 UNDEFINED LINE 00200
27. OUT: '
2 8 . I N: LIST 70
29. OUT: 7 0 I F C $=' ' YES ' ' THEN 2 0 0
30. OUT:'
3 1 . I N : 7 0 I F C $=' ' YES ' ' THEN 2 0

Figure 8-1. Sample BASIC Session (Part 1 of 3)

UP-9168 Rev. 1

32. OUT: *

SPERRY UNIVAC OS/3
BASIC

B-2
Update B

33. IN: RUN

34. OUT: PROGRAM TO COMPUTE CIRCLE GIVEN RADIUS

35. OUT: ENTER CIRCLE RADIUS:!>

3 6. IN: 1

37. OUT: AREA OF A CIRCLE IS 3.14159 CONTINUE?!>

38. IN: YES

39. OUT: ENTER CIRCLE RADIUS:!>

40. IN: 2
41. OUT: AREA OF A CIRCLE IS 12.5664 CONTINUE?!>
42. IN: NO

43. OUT: *

44.

45.

46.

47.

48.

49.

Lines

1-3

4-6

7-12

13-14

15-16

17-24

25

26-27

28-33

34-35

36

37-38

39-40

41-43

IN:

OUT:

IN:

OUT:

IN:

OUT:

BYE

BA118 SOURCE MODULE NOT SAVED - TERMINATE (Y/N)?t>
y

BA113 BASIC TASK NORMAL TERMINATION

LOGO FF
IS73 LOGO FF ACCEPTED AT 08:15:00 ON 81/10/23

Description

These lines constitute the log-on procedure. A user has logged on with a user-id of USR1.

The BASIC compiler is invoked.

Program lines 10, 20, and 30 are entered and verified by the syntax checker.

Line 40 is entered, but is incorrect, so it is rejected by the syntax checker. The statement up to
and including the constant 3.14159 is correct, but there is an error after the constant.

The user corrects the error by inserting a multiplication operator between the constant and the
variable R. The line is accepted and verified.

The rest of the program is entered.

A RUN command is entered to execute the program.

An error is detected by the compiler at line 70. Execution is inhibited and the user's terminal is
returned to compilation mode.

Line 70 is displayed and the reference to line 200 is corrected to use line 20. Execution is
again attempted.

The program begins execution by displaying a heading line and a request for input.

Data is supplied for the INPUT statement at line 30.

The answer is computed and displayed, along with the question, as to whether to continue or
not. The user requests continuation.

The program again requests input and is supplied a value of 2.

A second answer is computed and displayed. This time the user selects not to continue the
program, and so it terminates.

Figure 8-1. Sample BASIC Session (Part 2 of 3)

•

•

•

UP-9168 Rev. 1

Lines

44

45-46

47-48

Description

SPERRY UNIVAC OS/3
BASIC

To terminate the BASIC compiler, the BYE command is used.

B-3

The user entered the BYE command without saving this program in the library file. BASIC
responds with a BA 118 message. The user does not want to save the program and replies
with Y.

A LOGOFF command is issued to end the session.

Figure 8-1. Sample BASIC Session (Part 3 of 3)

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-1

Appendix C. BASIC Error Messages

BASIC error messages for interactive and batch environments are short and self-explanatory. The error
messages are listed here in numerical order. The listing includes possible causes of an error and suggested
procedures to follow in response to a message. When used in conjunction with the HELP command messages,
these error message explanations can help you locate and correct programming errors. For details on using the
HELP command, see 5.2.3.

NOTE:

All error messages for OS/3 BASIC are listed in this appendix. These messages are not included in the system
messages manual.

Error Message/HELP Command Message

BAOOO XXX VY BASIC TASK ABNORMAL TERMINATION BA005 MISSING FILE PARAMETER

BAOOl

BA002

BA003

BA004

BASIC HAS TERMINATED ABNORMALLY, WHERE XXX IS
BAS/C'S MOST RECENT ERROR AND YY IS THE DATA
MANAGEMENT ERROR CODE (IF ANY). IF THE PROBLEM
PERSISTS, SAVE ALL RELEVANT DATA AND CONTACT
YOUR SPERRY UNIVAC REPRESENTATIVE.

OS/3 BASIC READY (VER XX.XX) BEGIN
OS/3 BASIC INITIAL MESSAGE

BASIC EDITING COMMAND UNRECOGNIZABLE
EITHER AN INVALID COMMAND HAS BEEN ENTERED OR
A BASIC STATEMENT HAS BEEN ENTERED WITHOUT A
LINE NUMBER. VALID COMMANDS ARE:

OLD NEW SAVE
PRINT HELP BYE
LIST SYSTEM PRINT
MERGE RESEQUENCE

INVALID LINE RANGE

RUN
DELETE
RU NOLD

VALID LINE RANGES CONSIST OF SINGLE LINE NUMBERS
(A, B) OR RANGES OF LINES (A-B). A LINE NUMBER
CONSISTS OF AN INTEGER IN THE RANGE 1-99,999.

INVALID SEARCH STRING
A SEARCH-STRING CONSISTS OF ANY CHARACTER STRING
ENCLOSED IN QUOTATION MARKS. IF A QUOTE APPEARS
IN THE STRING, IT MUST APPEAR AS "".

BA006

BA007

BA008

BA009

THE FILE PARAMETER FORMAT IS:
1) MIRAM:'"ELEMENT',FILENAME(PASSWORD), VOL"
2) LIB :"ELEMENT,FILENAME(PASSWORD), VOL"
SEE BASIC PROGRAMMER'S REFERENCE FOR DETAILS.

ENTER FILE NAME
THE USER HAS ENTERED A SAVE, OLD, OR RUNOLD
COMMAND WITHOUT SPECIFYING A FILE NAME.
SUPPLY THE NAME IN RESPONSE TO THIS MESSAGE.

ILLEGAL VAL ARGUMENT
THE STRING PASSED TO THE VAL FUNCTION DID NOT
CONTAIN A VALID NUMBER. THE CONTENTS OF THE
STRING MUST BE EITHER AN INTEGER OR A DECIMAL
NUMBER IN SCIENTIFIC NOTATION. NO EXTRA
CHARACTERS MAY BE SUFFIXED TO THE STRING.

LOG OF A NON-POSITIVE NUMBER UNDEFINED
THE LOG FUNCTION HAS ENCOUNTERED A NON­
POSITIVE ARGUMENT THE LOGARITHM OF THIS
NUMBER IS UNDEFINED; EXECUTION IS CANCELLED.

SQUARE ROOT OF A NEGATIVE NUMBER UNDEFINED
THE SQR FUNCTION ENCOUNTERED A NEGATIVE ARGUMENT.
THE SQUARE ROOT OF THIS NUMBER IS UNDEFINED;
EXECUTION IS CANCELLED.

t

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-2

Error Message/HELP Command Message

BAOlO EXPONENT UNDERFLOW, EXECUTION CONTINUES BA020 START AND INCREMENT WILL EXCEED 99999
THE RESULT (OR INTERMEDIATE RESULT) OF A THE STARTING NUMBER AND INCREMENT USED IN A
COMPUTATION IS LESS THAN THE SMALLEST NUMBER RESEQUENCE COMMAND CANNOT BE USED AS THEY ARE
THE HARDWARE IS CAPABLE OF HANDLING. THE BECAUSE THEY WOULD CAUSE ONE OF THE NEW LINE
NUMBER IS APPROXIMATELY 10 ** -78. ZERO IS NUMBERS TO EXCEED THE MAXIMUM LINE NUMBER IN
SUPPLIED AND EXECUTION CONTINUES. OS/3 BASIC. USE A DIFFERENT START OR INCREMENT

AND REISSUE THE COMMAND.
BAOll EXPONENTIATION ERROR

INVALID OPERANDS WERE USED WITH THE A**B OR BA021 ERROR IN SOURCE - RESEQUENCE TERMINATED
A1B FUNCTION. THIS ERROR CAN OCCUR IF "A" IS ONE OR MORE OF THE SOURCE STATEMENTS READ IN BY
NEGATIVE AND "B" IS NOT AN INTEGER BETWEEN AN OLD COMMAND WITH ERRORS HAVE NOT BEEN CORRECTED.
1 AND 15 OR -1 AND -15. ONLY VALID PROGRAMS IN THE WORKSPACE MAY BE RE-

SEQUENCED. THIS ERROR INDICATES THAT AT LEAST ONE
BA012 MATRIX DIMENSIONS ARE INCORRECT FOR FUNCTION LINE IS SYNTACTICALLY INCORRECT.

THE ROW OR COLUMN DIMENSION OF THE MATRICIES IN
THE MATRIX STATEMENT IS INCORRECT. CHECK DIM BA022 GOTO OR GOSUB TO UNDEFINED LINE NUMBER
STATEMENT FOR THE MATRICIES IN QUESTION. A GOTO, GOSUB, OR THEN STATEMENT HAS REFERENCED A

LINE NUMBER WHICH DOES NOT APPEAR IN THE PROGRAM.
BA013 SAME MATRIX APPEARS ON BOTH SIDES OF EQUAL SIGN

THE SAME MATRIX MAY NOT BE REFERENCED ON BOTH BA023 REFERENCED SUBROUTINES NOT FOUND IN LIBRARIES
SIDES OF AN EQUAL SIGN IN A MAT STATEMENT; A NEW ALL USER SPECIFIED LIBRARIES HAVE BEEN SEARCHED,
MATRIX MUST BE GENERATED. BUT THE SUBPROGRAM LISTED IN THE ERROR MESSAGE

COULD NOT BE FOUND.
BA014 INVALID TRIMMER IN MATRIX STATEMENT

EITHER THE TRIMER DID NOT RESULT IN A POSITIVE BA024 UNDEFINED LINE XXXXX
NUMBER, OR THE RESULTANT ARRAY REQUIRED MORE THE LINE NUMBER REFERENCED IN A GOTO, GOSUB,
STORAGE THAN THE ORIGINAL ARRAY. ON, OR IF-THEN STATEMENT IS NOT PRESENT IN THE

PROGRAM OR FUNCTION. INSERT THE REQUIRED LINE
BA015 ARRAY SUBSCRIPT OUT OF RANGE OR REMOVE THE REFERENCE TO IT.

AN ARRAY SUBSCRIPT, WHICH IS OUT OF THE RANGE
SPECIFIED BY THE DIMENSION STATEMENT, HAS BEEN BA025 END STATEMENT IS MISSING OR MISPLACED
DETECTED. THE SUBSCRIPT IS EITHER LESS THAN ALL BASIC PROGRAMS MUST HAVE AN END STATEMENT AS
ZERO OR GREATER THAN THE NUMBER SPECIFIED AS THE THE LAST LINE. INSERT AN END STATEMENT AND RERUN.
UPPER LIMIT IN THE DIM STATEMENT. IF NO DIM
STATEMENT IS USED, THE UPPER LIMIT IS 10. BA026 UNCORRECTED ERROR IN SOURCE

ONE OF THE STATEMENTS FLAGGED DURING THE PREVIOUS
BA016 FILE STATEMENT INVALID FOR FILE #0 OLD COMMAND HAS NOT BEEN ELIMINATED OR CORRECTED.

THE CHANNEL SETTER SPECIFIED WITH THE FILE THE NUMBER OF THAT LINE IS SHOWN.
STATEMENT RESULTS IN A VALUE OF 0. CHANNEL
0 (THE TERMINAL) CANNOT BE DEFINED BY A FILE BA027 LOADER ERROR AT LINE XXXXX (IN AAAAAAAA)
STATEMENT. WHEN THE ERROR WAS DETECTED, THE BASIC COMPILER

WAS AT THE LINE NUMBER GIVEN BY XXXXX. THIS
BA017 STRING EXCEEDS 4095 CHARACTERS MESSAGE IS DISPLAYED IN CONJUNCT/ON WITH ANOTHER

A STRING OPERATION HAS PRODUCED A STRING WITH ERROR MESSAGE.
A LENGTH IN EXCESS OF 4095 CHARACTERS. THE
MAXIMUM NUMBER OF CHARACTERS PERMITTED IN A BA028 SECOND DEFINITION OF AN ARRAY NOT ALLOWED
STRING IS 4095. TWO DIMENSION STATEMENTS HAVE BEEN USED TO DEFINE

THE SAME VARIABLE. REMOVE ONE OF THE STATEMENTS
BA018 CHANGE ERROR AND RERUN.

THE CHANGE OPERATION SPECIFIED BY THE FLAGGED
STATEMENT IS NOT VALID. POSSIBLE CAUSES OF THIS BA029 NUMBER OF SUBSCRIPTS FOR ARRAY INCORRECT
ERROR ARE AN INVALID VECTOR OR VECTOR SIZE, THE VARIABLE THAT HAS CAUSED THE ERROR HAS
INVALID BIT EXPRESSION, INVALID STRING RESULT, OR BEEN DIMENSIONED WITH A DIFFERENT NUMBER OF
INVALID VALUE ENCOUNTERED DURING CONVERSION. SUBSCRIPTS THAN WERE FOUND IN THE REFERENCE

TO IT.
BA019 GIVEN LINE EXCEEDS 80 CHARS WHEN RESEQUENCED

THE LINE SHOWN, WHEN RESEQUENCED, IS LARGER BA030 BASIC SOURCE LINES OUT OF ORDER
THAN 80 CHARACTERS. THIS IS AN INFORMATIONAL MESSAGE THE LINES OF SOURCE IN A BASIC PROGRAM READ IN
IN THAT THE COMPLETE RESEQUENCED LINE IS WRITTEN BY A RUNOLD OR CHAIN STATEMENT ARE NOT IN ORDER.
OUT (AND CAN BE MODIFIED BY EDT), BUT IF THE PROGRAM THIS IS MANDATORY. AN OLD COMMAND WILL BRING THIS
IS LATER READ IN BY BASIC, IT WILL BE FLAGGED PROGRAM INTO THE WORKSPACE FOR CORRECT/NG, AND A
WITH AN ERROR FOR BEING OVER 80 CHARACTERS LONG. SAVE COMMAND WILL SAVE THE PROGRAM.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-3

Error Message/HELP Command Message

BA031 GOTO INTO OR OUT OF FUNCTION DEFINITION BA041 PARAMETER TYPE MIS-MATCH
A FUNCTION MAY NOT REFERENCE PROGRAM LINES THAT THE TYPE OF PARAMETER PASSED TO A FUNCTION/SUB-
DO NOT OCCUR WITHIN THE BODY OF THE FUNCTION, PROGRAM CONFLICTS WITH THE TYPE DEFINED FOR THE
NOR MAY STATEMENTS OUTSIDE THE FUNCTION DEFINITION FUNCTION/SUBPROGRAM. FOR EXAMPLE, A NUMERIC
REFERENCE STATEMENTS WITHIN THE FUNCTION BODY. VARIABLE WAS PASSED WHEN A STRING VARIABLE WAS
THIS APPLIES TO GOTO, GOSUB, ON, AND IF STATEMENTS. EXPECTED. COMPARE THE LINE IN ERROR AND

THE DEFINITION; CORRECT THE DISCREPANCY.
BA032 FUNCTION DEFINITION WITHIN A FUNCTION

BASIC HAS DETECTED A FUNCTION WITHIN THE BODY BA042 DIMENSIONS INCONSISTENT IN SUB CALL
OF ANOTHER FUNCTION DEFINITION. CHECK FOR A THE TYPE OF VARIABLES USED IN THE SUB AND CALL
MISSING FNEND STATEMENT OR RESTRUCTURE THE LINES DIFFER. EITHER A SCALAR WAS USED WHERE AN
FUNCTION. ARRAY WAS EXPECTED OR THE NUMBER OF SUBSCRIPTS IN

THE SUB AND CALL LINES DIFFER.
BA033 SECOND DEFINITION OF THE SAME FUNCTION

THE SAME FUNCTION HAS BEEN DEFINED TWICE WITHIN BA043 # OF FUNCTION PARAMS INCONSISTENT IN CALL
THE PROGRAM. REMOVE ONE DEFINITION AND CORRECT THE NUMBER OF PARAMETERS PASSED TO A SUBPROGRAM
THE PROGRAM. RERUN. DOES NOT AGREE WITH THE NUMBER STATED ON THE SUB

BA034 NUMBER OF PARAMS IN FUNCTION CALL INVALID
LINE, OR DOES NOT AGREE WITH ANOTHER CALL TO
THE SAME PROGRAM.

A MAXIMUM OF 16 PASSED PARAMETERS AND LOCAL
VARIABLES MAY BE SPECIFIED ON A FUNCTION DEFINITION BA044 FUNCTION DEF MUST PRECEDE USE IN "CALL"
LINE. REDUCE THE NUMBER AND RERUN. IN ORDER FOR A USER FUNCTION TO BE PASSED TO A

BA035 DEF MUST PRECEDE REFERENCE IF LOCALS ARE USED
SUBPROGRAM, IT MUST BE DEFINED. MOVE THE DEFINITION
INTO LOWER NUMBERED LINES BEFORE THE CALL.

WHEN LOCAL VARIABLES ARE USED JN A MULTJLINE
USER FUNCTION, THE DEFINITION MUST OCCUR AT A BA045 SUBROUTINE CALLING ITSELF
LOWER NUMBERED LINE THAN THE FIRST REFERENCE TO A CALL STATEMENT HAS BEEN FOUND WHICH REFERENCES
THAT FUNCTION. MOVE THE FUNCTION DEFINITION THE SUBPROGRAM IN WHICH IT RESIDES. RECURSIVE CALLS
AND RERUN. OF ANY KIND ARE PROHIBITED.

BA036 SIMPLE VARIABLE INCONSISTENT WITH CALL BA046 NUMBER OF ARGUMENTS INCONSISTENT
THE CALL AND SUB LINES DIFFER IN THE SPECIF/CA- THE NUMBER AND TYPE OF ARGUMENTS PASSED IN THE
TION OF A SIMPLE VARIABLE TO BE PASSED TO THE CALL STATEMENT DO NOT AGREE WITH THE NUMBER AND
SUBPROGRAM. REMOVE THE INCONSISTENCY AND RERUN. TYPE ON THE SUB LINE.

BA037 FUNCTION ASSIGNMENT DOES NOT MATCH FUNCTION NAME BA047 SUB NAME IS GREATER THAN 8 CHARACTERS
THE NAME OF THE FUNCTION BEING ASSIGNED DIFFERS THE NAME USED ON A SUB OR CALL STATEMENT MUST BE A
FROM THE NAME OF THE FUNCTION FROM WHICH IT STRING CONSTANT WHICH IS NOT LONGER THAN 8 CHARS.
APPEARS. ONLY THE FUNCTION BEING DEFINED MAY CORRECT THE SPELLING OR SHORTEN ITS LENGTH.
BE ASSIGNED A VALUE.

BA048 SUBROUTINE LIMIT OF 30 EXCEEDED
BA038 "FNEND" FOUND WITHOUT FUNCTION DEFINITION BASIC WILL NOT ACCEPT MORE THAN 30 SUBPROGRAMS.

THE FNEND STATEMENT WAS DETECTED, BUT IT WAS NOT COMBINE SEVERAL SUBPROGRAMS OR CHANGE LOGIC TO
AT THE END OF A FUNCTION. REMOVE THE STATEMENT ELIMINATE A FEW.
OR PUT IT IN THE CORRECT PLACE AND RERUN.

BA049 A SUB STATEMENT OCCURRED BEFORE AN END
BA039 INCORRECT NESTING OF FOR-NEXT STATEMENT SUBPROGRAMS MUST OCCUR AFTER THE MAIN PROGRAM.

A FOR OR NEXT STATEMENT WHICH WAS NOT NESTED THIS MEANS THAT THEY MUST IMMEDIATELY FOLLOW AN
CORRECTLY WAS DETECTED. POSSIBLE CAUSES ARE: END STATEMENT OR ANOTHER SUBPROGRAMS SUBEND
1) A FOR STATEMENT WITH THE SAME INDEX AS THE STATEMENT.

PREVIOUS FOR IN THE NEST.
2) A NEXT THAT DOES NOT HAVE THE SAME INDEX AS BA050 STATEMENT FOLLOWING END/SUBEND NOT SUB/REM

THE FOR IMMEDIATELY PRECEDING IT. THE ONLY PERMISSIBLE STATEMENT FOLLOWING AN END
3) A NEXT STATEMENT THAT DOES NOT FOLLOW ANY STATEMENT IS A SUB OR REM STATEMENT. CORRECT AND

PROPER FOR STATEMENT. RERUN.

BA040 FUNCTION ASSIGNMENT MUST APPEAR WITHIN FUNCTION BA051 SECOND DEFINITION OF SUB - DEFINITION IGNORED
A VALUE MUST BE ASSIGNED TO A MULTILINE FUNCTION TWO SUBPROGRAMS WITH THE SAME NAME HAVE BEEN
BEFORE THE FNEND STATEMENT. THE FUNCTION VALUE ENCOUNTERED DURING THE COMPILATION PROCESS. THE
MAY NOT BE DEFINED OUTSIDE THE BODY OF THE FUNCTION. SECOND SUBPROGRAM WILL BE EQUALED. THE SECOND

SUBPROGRAM MAY HAVE BEEN FOUND IN A LIBRARY
ELEMENT AS A RESULT OF A LIBRARY SEARCH. THIS
IS A NON-FATAL ERROR.

t

t'

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-4

Error Message/HELP Command Message

BA052 SUB: FNX PRECEDES "CALL" BA064 ACTIVE SUBROUTINES EXCEED 16 LEVELS
A SUB STATEMENT DECLARING A PASSED FUNCTION A MAXIMUM OF 16 LEVELS OF SUBPROGRAM CALLS MAY
CANNOT OCCUR BEFORE THE STATEMENT THAT CALLS BE ISSUED. INVESTIGATE FOR A POSSIBLE PROGRAM
IT (AND DEFINES THE FUNCTION PARAMETERS). LOOP.
RELOCATE THE SUBPROGRAM SO THAT IT OCCURS
AFTER AT LEAST ONE STATEMENT THAT CALLS IT. BA065 #0 INVALID ON CHAIN

CHANNEL 0, THE TERMINAL, MAY NOT BE USED AS THE
BA053 FUNCTION EXPECTED IN CALL OR SUB LINE FILE FROM WHICH THE CHAINED PROGRAM CAN BE READ.

A PREVIOUS CALL STATEMENT PASSED A FUNCTION A DATA MANAGEMENT, TEMPORARY, OR LIBRARY FILE
REFERENCE. THIS CALL DID NOT PASS A FUNCTION. MUST BE USED.
THE PARAMETER TYPES MUST REMAIN THE SAME.
RESOLVE THE CONFLICT AND RERUN THE PROGRAM. BA066 CHAIN ERROR - INVALID NAME OR PASSING BAD FILE

THERE ARE TWO POSSIBLE CAUSES FOR THIS ERROR.
BA054 "SUBEND" OR SUBEXIT" NOT IN A SUB THE LIBRARY ELEMENT SPECIFIED IN THE CHAIN STATEMENT

A SUBEND OR SUBEXIT WAS ENCOUNTERED THAT WAS NOT DOES NOT EXIST, OR ONE OF THE CHANNEL NUMBERS
IN A SUBPROGRAM. THE SUBEND MUST BE THE LAST OF FILES TO BE PASSED TO THE NEXT PROGRAM SEGMENT
STATEMENT IN A SUBPROGRAM. IS INVALID.

BA055 "SUBEXIT" NOT ALLOWED IN FUNCTION DEFINITION BA067 ERROR ON READ FROM FILE (INVALID NUMBER)
A SUBEXIT STATEMENT WAS ENCOUNTERED WITHIN A A READ STATEMENT ATTEMPTED TO READ A NUMERIC
MULTILINE FUNCTION DEFINITION. IT CAN ONLY VARIABLE. THE RECORD THAT WAS READ DID NOT
BE ISSUED FROM THE SUBPROGRAM LEVEL. CONTAIN NUMERIC DATA.

BA056 "FNEND" STATEMENT MISSING BA068 INPUT DATA INCORRECT, RE-ENTER
A USER DEFINED MULTILINE FUNCTION EXISTS IN THE DATA ENTERED FOR AN INPUT STATEMENT DOES
THE PROGRAM WITHOUT A CLOSING FNEND STATEMENT. NOT MATCH THE DATA TYPES REQUIRED FOR THE
LOCATE THE FUNCTION AND INSERT THE STATEMENT. PROGRAM. THE ENTIRE LINE MUST BE RE-ENTERED.

THIS MESSAGE COULD ALSO BE CAUSED BY TOO MUCH

BA057 FUNCTION HAS NOT BEEN DEFINED OR TOO LITTLE DATA IN THE INPUT RESPONSE.
THE FUNCTION REFERENCED ON THE LINE IN ERROR
HAS NOT BEEN DEFINED. DEFINE THE FUNCTION OR BA069 INVALID TAB EXPRESSION FOR PRINTING
REMOVE THE REFERENCE TO IT AND RERUN. THE ARGUMENT OF THE TAB FUNCTION WAS LESS THAN

ONE.
BA058 LIMIT OF 4 "LIBRARY" STATEMENTS EXCEEDED

BASIC WILL SEARCH AT MOST FOUR LIBRARIES FOR BA070 PRINT TO FILE > MARGIN SIZE
SUBPROGRAMS; THE PROGRAM HAS ATTEMPTED TO USE THE PROGRAM ATTEMPTED TO PRINT A STRING, NUMBER.
MORE THAN FOUR. OR USING STRING WITH A LENGTH GREATER THAN THE

CURRENT MARGIN SETTING. CHANGE THE MARGIN SIZE
BA059 TIME UP - PROGRAM LOOP! NG OR REDUCE THE LENGTH OF THE EXPRESSION PRINTED.

THE TIME LIMIT SPECIFIED IN THE TIME STATEMENT
HAS BEEN EXCEEDED. IT MAY BE LOOPING OR IT MAY BA071 INVALID OPERATION FOR FILE TYPE
REQUIRE MORE TIME. THE OPERATION TO BE PERFORMED AGAINST THE FILE

CONFLICTS WITH THE FILE TYPE.

BA060 RETURN WITHOUT MATCHING GOSUB CALL
THE PROGRAM HAS ATTEMPTED TO RETURN FROM A BA072 SET MARGIN FOR OMS FILE NOT AT RECORD 0
SUBROUTINE THAT WAS NOT CALLED BY A GOSUB A MARGIN STATEMENT WAS ISSUED AGAINST A DATA
STATEMENT. MANAGEMENT FILE WHILE IT STILL HAS DATA IN IT.

THE MARGIN STATEMENT MAY ONLY BE USED WHEN THE
BA061 EXPRESSION OUT OF COMPUTED GOTO RANGE FILE IS EMPTY.

THE CALCULATED EXPRESSION IS NOT A VALID NUMBER
FOR THIS COMPUTED GOTO. IT IS EITHER TOO LARGE BA073 INVALID MARGIN SIZE
OR NON-POSITIVE. THE COUNT OF LINE NUMBERS IN THE MARGIN EXPRESSION SPECIFIED ON THE FLAGGED
THE STATEMENT DETERMINES THE LARGEST VALUE THE STATEMENT RESULTED IN A NUMBER LESS THAN 0 OR
EXPRESSION MAY HAVE. GREATER THAN 4095. THIS ERROR COULD ALSO HAVE

RESULTED FROM ATTEMPTING TO SET THE SIZE OF THE
BA062 EXECUTION STOPPED AT LINE XXXXX MARGIN GREATER THAN THE LIMIT FOR THE FILE TYPE.

A STOP STATEMENT HAS BEEN ENCOUNTERED OR AN
ERROR DETECTED AT THE LINE NUMBER GIVEN BY XXXXX. BA074 OPERATION NOT PERMITTED TO FILE

THE OPERATION TO BE PERFORMED AGAINST THE FILE
BA063 EXECUTION PAUSED AT LINE XXXXX CONTINUE (Y.N) CONFLICTS WITH THE FILE TYPE.

A PAUSE STATEMENT HAS BEEN ENCOUNTERED AT LINE
XXXXX. ANSWER "YES" TO CONTINUE EXECUTION;
ANSWER "NO" TO TERMINATE THE PROGRAM.

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-5

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-6
Update B

Error Message/HELP Command Message

BAlOO 1/0 ERROR WHILE ACCESSING V.T.O.C. BAlll LIBRARY FILE DOPEN ERROR
AN 110 ERROR HAS OCCURRED WHILE ACCESSING THE VTOC AN 110 ERROR HAS OCCURRED WHILE OPENING THE
FOR THE DISK VOLUME SPECIFIED. RETRY OR INVES- LIBRARY FILE.
TIGATE FOR POSSIBLE HARDWARE PROBLEM.

BA112 BATCH END-OF-DATA REACHED
BAlOl 1/0 ERROR ON WRITE TO FILE BASIC PROGRAM RUNNING IN ENTER STREAM

AN 110 ERROR HAS OCCURRED WHILE WRITING TO A DATA HAS ENCOUNTERED AN END-OF-DATA CONDITION.
MANAGEMENT FILE. INVESTIGATE FOR POSSIBLE HARD- RERUN PROGRAM WITH ENOUGH DATA TO
WARE PROBLEM OR RETRY THE PROGRAM. SATISFY INPUT REQUESTS.

BA102 DATA FILE FULL, DATA NOT ADDED BA113 BASIC TASK NORMAL TERMINATION
CANNOT ACQUIRE ANY ADDITIONAL SPACE. BASIC TASK HAS TERMINATED NORMALLY.

THIS MESSAGE IS INFORMATIONAL ONLY.
BA103 INVALID BLOCK SIZE OR RECORD SIZE

BASIC CANNOT PROCESS THE FILE DUE TO A CONFLICT BA114 ELEMENT IS NOT IN THE LIBRARY FILE
WITH THE BLOCK OR RECORD SIZE FOR THIS FILE. IF THE ELEMENT REQUESTED BY THE COMMAND IS IN THE
THE FILE ALREADY EXISTS, CHECK THAT THE BLOCK FILE SPECIFIED. CHECK THE SPELLING OF THE PROGRAM
SIZE OR RECORD SIZE IS NOT 0 OR GREATER THAN 65K. NAME AND VERIFY THAT THE PROGRAM IS ON THE FILE.

ALSO BE SURE THE CORRECT MODULE TYPE HAS BEEN USED
BA104 ERROR PROCESSING USER FILE LABEL (P FOR PROCS).

THE FILE BEING ACCESSED CONTAINS USER FILE LABELS.
THESE CANNOT BE PROCESSED BY BASIC. BA115 TANGENT/COTANGENT OUT OF RANGE

THE RESULT OF A TAN OR COT FUNCTION EVALUATION
BA105 INVALID KEY LENGTH CAUSED AN OVERFLOW CONDITION. MACHINE INFINITY

FILES CONTAINING KEYS CANNOT BE PROCESSED BY BASIC. IS SUPPLIED AND EXECUTION CONTINUES.

BA106 INTERNAL ERROR IN FILE ACCESS ROUTINE BA116 ARGUMENT TOO LARGE FOR EXP(X) FUNCTION
AN INTERNAL ERROR HAS BEEN DETECTED IN THE FILE A VALUE HAS BEEN USED WITH THE EXPONENTIAL FUNCTION
ACCESS ROUTINE IN BASIC. WHICH WILL PRODUCE A RESULT GREATER THAN THE

HARDWARE IS CAPABLE OF HANDLING. THE MAXIMUM
BA107 1/0 ERROR WHILE READING DATA FILE POSSIBLE VALUE FOR THE EXP ARGUMENT IS APPROX-

AN 110 ERROR HAS OCCURRED WHILE READING FROM THE IMATEL Y 174.6.
DATA FILE.

BA117 NO MEMORY AVAILABLE FOR FILE 1/0 BUFFER
BA108 1/0 ERROR WHILE WRITING DATA Fl LE AN AREA OF MAIN STORAGE COULD NOT BE ACQUIRED

AN 110 ERROR HAS OCCURRED WHILE WRITING TO THE FOR THE DATA FILE 110 BUFFER.
DATA FILE.

BA118 SOURCE MODULE NOT SAVED - TERMINATE (Y,N)?
BA109 *FATAL GETBUF/FREEBUF ERROR SOURCE PROGRAM REMAINS IN THE DISK WORKSPACE

BASIC COULD NOT ACQUIRE SYSTEM BUFFER POOL. WHEN A BYE COMMAND IS ENTERED. IF THE SOURCE
BASIC TASK WILL ABNORMALLY TERMINATE. MODULE NEEDS TO BE SAVED, ENTER "N" FOLLOWED

BY THE APPROPRIATE SAVE COMMAND. IF IT IS
BAllO SYSTEM COMMAND REJECTED NOT NEEDED, ANSWER "Y" TO TERMINATE THE BASIC

BASIC SYSTEM COMMAND HAS BEEN REJECTED. CHECK SESSION.
THE SYSTEM COMMAND STRING.

•

•

•

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-7

HELP Command Message for Syntax Error

BA119

BA126

BA127

BA128

BA129

BA130

BA131

BA132

BA133

BA134

RECURSIVE FUNCTION CALLS NOT ALLOWED
A FUNCTION OR SUBPROGRAM MAY NOT CALL ITSELF
DIRECTLY OR INDIRECTLY (VIA ANOTHER FUNCTION
OR SUBPROGRAM).

MG#BSBVD
EACH BASIC STATEMENT MUST BEGIN WITH A VALID
LINE NUMBER. THIS LINE NUMBER MUST BE IN THE RANGE
1 TO 99999, AND MUST NOT CONTAIN A DECIMAL POINT
OR AN EXPONENT. ENTER A VALID LINE NUMBER.

MG#INSVD
BASIC INSTRUCT/ON EXPECTED. VALID INSTRUCTIONS WHICH
MAY BEGIN A STATEMENT ARE:
LET IF GO
PAUSE STOP END
DEF FNEND SUB
LIBRARY REM DATA
RESTORE READ INPUT
PRINT MARGIN SCRATCH
RANDOMIZE DIM MAT
SUBEXIT

MG#COPEX

ON
FOR
SU BEND
FILE
LINPUT
CHAIN
TIME

RETURN
NEXT
CALL
RESET
WRITE
CHANGE
SYSTEM

A COMPARISON OPERATOR IS EXPECTED AT THIS POINT.
VALID COMPARISON OPERATORS ARE: =,<,>,=>,>=,
=<,<=,<>

BA135

BA136

BA137

BA138

MG#MIXMD BA139
MIXED MODE COMPARISON IS INVALID. A NUMERIC
EXPRESSION MAY ONLY BE COMPARED TO ANOTHER NUMERIC
EXPRESSION, OR A STRING EXPRESSION TO ANOTHER
STRING.

MG#ISSTE BA140
AN IF STATEMENT MUST END WITH A "GOTO LINE-NUM",
"GOSUB LINE-NUM", OR "THEN LINE-NUM".

MG#GOINS
THE "GO" INSTRUCTION MUST BE FOLLOWED BY A "TO" OR
A "SUB", AS IN "GOTO" OR "GOSUB".

MG#LNENB
A LINE NUMBER IS EXPECTED HERE.

MG#GOEPN
THE WORD "GOTO" OR "GOSUB" IS EXPECTED NEXT. THE
GENERAL FORMAT OF AN "ON" STATEMENT IS:

ON NUM-EXPR GOTO LINE-NUM,LINE-NUM, ...
ON NUM-EXPR GOSUB LINE-NUM,LINE-NUM, ...

MG#EDOPR
AN END OR MORE OPTION REQUIRES THAT A CHANNEL
SETTER FOLLOW. ENTER "#N" TO COMPLETE THE "END"
OR "MORE" OPTION.

BA141

BA142

MG#LNBSR
A LINE NUMBER OR SERIES OF LINE NUMBERS IS
EXPECTED HERE. IF A SERIES OF LINE NUMBERS
ARE PRESENT, THEY MUST BE SEPARATED BY COMMAS.
THE GENERAL FORMAT OF AN "ON" STATEMENT IS:

ON NUM-EXPR GOTO LINE-NUM,LINE-NUM, ...
ON NUM-EXPR GOSUB LINE-NUM,LINE-NUM, ...

MG#MIXAS
MIXED MODE ASSIGNMENTS ARE NOT PERMITTED. AN
EXPRESSION WITH A NUMERIC VALUE MAY ONLY BE
ASSIGNED TO A NUMERIC VARIABLE, AND EXPRESSIONS
WITH STRING VALUES MAY ONLY BE ASSIGNED TO
STRING VARIABLES. STRING VARIABLES ARE
DISTINGUISHED FROM NUMERIC VARIABLES BY THE
PRESENCE OF A DOLLAR SIGN: A$,l3$ - STRING
AND A,l3 - NUMERIC.

MG#EQUSN
AN EQUAL SIGN IS REQUIRED BETWEEN VARIABLES, OR
BETWEEN VARIABLES AND THE ASSIGNED EXPRESSION:

LET VAR1=VAR2= ... =VARN=EXPRESSION

MG#EXPAS
THE EXPRESSION TO BE ASSIGNED TO THIS VARIABLE IS
NOT PRESENT OR IS INCOMPLETE. AN EXPRESSION OR
ANOTHER VARIABLE MUST FOLLOW THE EQUAL SIGN.

MG#EQSEP
AN EQUAL SIGN IS EXPECTED HERE. A POSSIBLE CAUSE FOR
THIS ERROR COULD BE AN ATTEMPT TO ASSIGN A VALUE TO AN
EXPRESSION. VALUES MAY ONLY BE ASSIGNED TO VARIABLES
OR FUNCTION NAMES.

MG#SPNMV
A SIMPLE NUMERIC VARIABLE NAME, FOLLOWED BY AN ASSIGNMENT
IS EXPECTED AFTER THE "FOR" INSTRUCTION. THE
GENERAL FORMAT OF THE "FOR" INSTRUCTION IS:

FOR VAR=EXPR TO EXPR
FOR VAR=EXPR TO EXPR STEP EXPR

MG#ONLAL
THE ONLY VALID INSTRUCTIONS AT THIS POINT ARE
"TO" OR "STEP''. THIS ERROR COULD ALSO BE THE
RESULT OF NOT SPECIFYING A "TO" EXPRESSION.
THE GENERAL FORMAT OF THE "FOR" INSTRUCT/ON IS:

FOR VAR=EXPR TO EXPR
FOR VAR=EXPR TO EXPR STEP EXPR

MG#SDTOA
THIS IS THE SECOND TIME "TO" APPEARED IN THIS
STATEMENT. IT IS ALLOWED ONLY ONCE. THE
GENERAL FORMAT OF THE 'FOR" STATEMENT IS:

FOR VAR=EXPR TO EXPR
FOR VAR=EXPR TO EXPR STEP EXPR

t

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-8

HELP Command Message for Syntax Error

BA143

BA144

BA145

BA146

BA147

BA148

BA149

MG#SDSTA
THIS IS THE SECOND TIME "STEP" APPEARED IN THIS
STATEMENT. IT IS ALLOWED ONLY ONCE. THE
GENERAL FORMAT OF THE "FOR" STATEMENT IS:

FOR VAR=EXPR TO EXPR
FOR VAR=EXPR TO EXPR STEP EXPR

MG#SMPRQ
A SIMPLE NUMERIC VARIABLE NAME IS EXPECTED HERE.
THE GENERAL FORMAT OF THE NEXT STATEMENT IS:

NEXT VAR

MG#FUNCD
A FUNCTION DEFINITION MUST BEGIN WITH THE FUNCTION
NAME. A FUNCTION NAME BEGINS WITH "FN" IMMEDIATELY
FOLLOWED BY A LETTER.
THE GENERAL FORMAT FOR A DEFINITION IS:

DEF FCN-NAME
DEF FCN-NAME(PARAM-LIST)
DEF FCN-NAME LOCAL-LIST
DEF FCN-NAME (PARAM-L/ST) LOCAL-LIST

AN ASSIGNMENT MAY BE MADE AT THE END OF ANY OF
THESE FORMATS, FOR EXAMPLE:

DEF FCN-NAME(PARAM-LIST)=EXPR
* PARAM-LIST SPECIFIES PARAMETERS TO BE PASSED
TO THE FUNCTION.
* LOCAL-LIST SPECIFIES LOCAL VARIABLE NAMES.
* IF THE FUNCTION CAN BE DEFINED IN ONE LINE, AN
"FNEND" STATEMENT IS NOT NEEDED.

MG#STMEV
A STATEMENT MUST END HERE, OR A VALUE ASSIGNMENT
MUST BE MADE. REFER TO "HELP BA145" FOR A
GENERAL DESCRIPTION OF A FUNCTION DEFINITION

MG#PRLPR
THE PRESENCE OF A LEFT PARENTHESIS HERE MEANS YOU
ARE TRYING TO LIST PASSED PARAMETERS FOR THIS
FUNCTION. THESE ARE SPECIFIED BY A LIST OF
VARIABLE NAMES (A,B2,C$,Z1$,F, .. .) SEPARATED BY
COMMAS. THE LIST MUST TERMINATE WITH A RIGHT
PARENTHESIS. REFER TO "HELP BA145" FOR A GENERAL
DESCRIPTION OF A FUNCTION DEFINITION.

MG#CMAFN
A COMMA AFTER THE FUNCTION NAME OR THE LIST OF
PARAMETERS INDICATES THAT YOU ARE TRYING TO STATE
THE NAMES OF THE LOCAL VARIABLES, SPECIFIED BY
A SERIES OF VARIABLE NAMES SEPARATED BY COMMAS
REFER TO "HELP BA145" FOR A GENERAL DESCRIPTION OF
A FUNCTION DEFINITION.

MG#SBDST
A SUBPROGRAM DEFINITION MUST BEGIN WITH A STRING
CONSTANT STATING THE NAME OF THE SUBPROGRAM.
THIS IS FOLLOWED BY A COLON, AND THEN AN OPTIONAL
LIST OF PASSED PARAMETERS:
SUB-STRING:FUNCTION,FUNCTION
SUB-STRING:FILE-NUM,FILE-NUM, ...
SUB-STRI NG:MA TRIX-NA ME, MA TRIX-NAME
SUB-STRING:VAR, VAR

BA150

BA151

BA152

BA153

BA154

BA155

BA156

MG#FNFMM
ANOTHER FILE-NUMBER, FUNCTION-NAME, MATRIX, OR
VARIABLE-NAME IS EXPECTED AFTER THE COMMA. IF
NO MORE ARE TO BE SPECIFIED, REMOVE THE EXTRA
COMMA; OTHERWISE DEFINE THE EXTRA NAME.

MG#STEDC
THE STATEMENT MUST END HERE, OR A COMMA MUST BE
USED TO SEPARATE THE LIST OF NAMES.

MG#MRDEP
A MA TRIX DEFINITION IS EXPECTED HERE. THIS MAY
BE EITHER A VECTOR, SPECIFIED BY A VECTOR NAME
FOLLOWED BY A LEFT-PAREN AND RIGHT-PAREN: V()­
OR AN ARRAY, SPECIFIED BY A MATRIX NAME
FOLLOWED BY A LEFT-PAREN, A COMMA, AND A RIGHT­
PAREN: A(,). TO CORRECT THIS, ENTER A COMMA
OR A")".

MG#CALST
THE "CALL" STATEMENT MUST BEGIN WITH A STRING
CONSTANT STATING THE NAME OF THE SUBPROGRAM TO
BE CALLED. THIS IS FOLLOWED BY A COLON, AND THEN
A LIST OF VARIABLES, EXPRESSIONS, FUNCTIONS, OR
MATRICIES OR FILES TO BE PASSED. THE GENERAL
FORMAT IS:

CALL-STRING: #N

MG#STMEC

VAR
FUNCT
EXPR
MATRIX

,#N
VAR
FUNCT
EXPR
MATRIX

, .. .ETC

THE CALL STATEMENT MUST BEGIN WITH A STRING
CONSTANT STATING THE NAME OF THE SUB-PROGRAM
TO BE CALLED. THIS IS FOLLOWED BY A COLON, AND
THEN A LIST OF PASSED PARAMETERS. THE GENERAL
FORMAT OF THE CALL STATEMENT IS:

CALL-STRING-#N ,#N
VAR VAR
FUNCTION FUNCTION
EXPR EXPR
MA TRIX MA TRIX

MG#FNIDT
A FUNCTION NAME HAS JUST BEEN DETECTED. IT
COULD BE AN EXPRESSION CONTAINING A FUNCTION
VALUE TO BE PASSED. IN WHICH CASE IT SHOULD
BE FOLLOWED BY A LEFT PAREN. IT COULD ALSO
BE THE NAME OF A FUNCTION TO BE PASSED. IN
WHICH CASE IT MUST BE THE LAST ITEM IN THE
STATEMENT, OR FOLLOWED BY A COMMA. THE
ERROR WAS CAUSED BY THE FUNCTION NAME NOT
BEING AT THE END OF A LINE, OR NOT FOLLOWED
BY A LEFT PAREN OR COMMA

MG#MXIDT
A MATRIX REFERENCE HAS JUST BEEN DETECTED IN
WHICH AN ENTIRE MATRIX IS TO BE PASSED TO A
SUBPROGRAM. TO DO SO, THE COMMA MUST BE
FOLLOWED BY A RIGHT-PAREN - A3(,) OR F$(.).

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-9

HELP Command Message for Syntax Error

BA157 MG#LIBST BA164 MG#ILSYM
A "LIB" STATEMENT IS COMPOSED OF A LIST OF AN ILLEGAL SYMBOL HAS BEEN FOUND IN THE INPUT.
LIBRARIES TO BE SEARCHED FOR SUBPROGRAMS. THIS COULD BE THE RESULT OF FINDING A CHARACTER
THESE ARE STATED AS STRING CONSTANTS, WHICH IS NOT IN THE BASIC CHARACTER SET, OR
SEPARATED BY COMMAS. THE FORMAT FOR THIS AN INVALID VARIABLE NAME OR NUMERIC CONSTANT.
STATEMENT IS: A NUMERIC CONSTANT IS MADE UP OF A FRACTIONAL

LIB STRING,STRING, ... PART AND AN OPTIONAL EXPONENT PART. THE
FRACTIONAL PART MAY CONTAIN AT MOST ONE BA158 MG#CHINP DECIMAL POINT, AND MUST BEGIN WITH A DIGIT OR

THE CHANNEL SETTER(#) IMPLIES THAT YOU ARE A DECIMAL POINT. THE EXPONENT PART MUST
TRYING TO DEFINE A FILE TO BE PASSED TO THIS CONSIST OF THE LETTER E FOLLOWED OPTIONALLY
SUBPROGRAM. IT MUST BE FOLLOWED BY A NUMERIC BY A SIGN AND ONE OR TWO DIGITS. THE EXPONENT
CONSTANT TO BE CORRECT - #3, #17.5, ETC. MUST NOT BE GREATER THAN ElO OR LESS THAN E-70.

BA159 MG#CHEPC BA165 MG#TABPU
A CHANNEL EXPRESSION IS COMPOSED AS FOLLOWS: "TAB" MAY NOT BE USED WITH "PRINT USING''.

#NUMERIC-EX PR: ANY TAB EXPRESSION IS INVALID WHILE IN PRINT USING
WHERE NUMERIC-EXPR IS THE CHANNEL TO BE MODE.
REFERENCED.

BA166 MG#PULST
BA160 MG#FLSTD A PRINT USING LIST HAS BEEN FOUND IMMEDIATELY AFTER

A "FILE" STATEMENT DEFINES THE FILE NAME AND ANOTHER PRINT USING LIST, WITHOUT A TERMINATOR FOR THE
ASSOCIATED CHANNEL NUMBER TO BE USED WITH IT: FIRST LIST. A "PRINT USING" LIST

FILE #N."'EXTERNAL-FILE-NAME" CONSISTS OF THE KEYWORD "USING", FOLLOWED BY A
WHERE #N IS THE ASSOCIATED CHANNEL NUMBER. STRING EXPRESSION, A LIST OF VARIABLES TO BE
SEE UP-9168 FOR DETAILS ON "EXTERNAL-FILE-NAME''. PRINTED, AND FINALLY A SEMICOLON OR END-OF-LINE.

ANOTHER "PRINT USING" LIST MAY NOT APPEAR UNTIL BA161 MG#RSSTC
THE FIRST LIST IS TERMINATED. SEMICOLON IS

A "RESET" STATEMENT MAY OPTIONALLY CONTAIN A EXPECTED HERE, THEN THE NEXT USING.
CHANNEL SETTER, AND IF ONE IS CODED, A NUMERIC
FILE POSITION MAY ALSO BE SPECIFIED. THE BA167 MG#MARGN
STATEMENT MUST EITHER END HERE, OR A CHANNEL THE "MARGIN" STATEMENT IS EXPECTED TO END HERE.
EXPRESSION MUST FOLLOW. EXTRA CHARACTERS ARE PRESENT IN THE INPUT LINE.
THE GENERAL FORMAT FOR A "RESET" STATEMENT IS: THE FORMAT FOR A MARGIN STATEMENT IS:

RESET MARGIN NUMERIC-EXPR
RESET #N MARGIN #N:NUMERIC-EXPR
RESET #N:NUMERIC-EXPR

BA168 MG#SCRCH
BA162 MG#CHSRS THE "SCRATCH" STATEMENT IS EXPECTED TO END HERE.

THE CHANNEL STATEMENT IN A "RESET" STATEMENT MUST EXTRA CHARACTERS ARE PRESENT IN THE INPUT LINE.
EITHER END THE STATEMENT OR BE FOLLOWED BY A THE FORMAT FOR A "SCRATCH" STATEMENT IS:
COLON (:) AND ANOTHER EXPRESSION. THE GENERAL SCRATCH
FORMAT OF THE RESET STATEMENT IS: SCRATCH #N

RESET
RESET #N BA169 MG#CHAIN
RESET #N:NUMERIC-EXPR THE "CHAIN" STATEMENT MUST END HERE, OR THE NEXT

WORD MUST BE "WITH''. THE GENERAL FORMAT OF A BA163 MG#RIWST CHAIN STATEMENT IS:
A "READ" OR "WRITE" STATEMENT IS COMPOSED OF AN CHAIN #N
OPTIONAL CHANNEL SETTER FOLLOWED BY A LIST OF CHAIN #N WITH #N,#N, ...
VARIABLE NAMES (IN THE CASE OF A "READ"), CHAIN "EXTERNAL-FILE-NAME"
OR A LIST OF EXPRESSIONS (IN THE CASE OF A CHAIN "EXTERNAL-FILE-NAME" WITH "EXT-FIL-NAME", ...
"WRITE"). EACH VARIABLE OR EXPRESSION MUST BE
SEPARATED BY A COMMA ("READ"), OR COMMA OR BA170 MG#LSOFL
SEMICOLON ("WRITE"). THE GENERAL FORMAT IS: WHEN A LIST OF FILES TO BE PASSED TO THE

INPUT VARJ, VAR2, .. ., VARN CHAINED PROGRAM IS SPECIFIED, EACH FILE NUMBER IN
INPUT #N:VARJ, VAR2, .. ., VARN THE LIST MUST BE SEPARATED BY A COMMA.
READ VAR1,VAR2, .. ., VARN
READ #N: VARJ,VAR2, ... ,VARN
WRITE VAR1.VAR2, .. .,VARN
WRITE VARJ;VAR2; ... ;VARN
ETC.

t

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-10

HELP Command Message for Syntax Error

BA171 MG#CHAIS BA178 MG#MIOST
IN THIS FORM OF THE "CHANGE" INSTRUCTION, A STRING MATRIX 110 STATEMENTS MAY INPUT OR OUTPUT MORE
IS BEING CONVERTED TO A NUMERIC ARRAY. FOLLOWING THAN ONE MATRIX IN A SINGLE STATEMENT. EACH
THE STRING EXPRESSION, THE KEYWORD "TO", AND THEN A MATRIX IN THE LIST TO BE PROCESSED MUST BE
NUMERIC MATRIX NAME CONSISTING OF A SINGLE LETTER SEPARATED BY COMMAS AND THERE MUST BE NOTHING
IS REQUIRED. EITHER ENTER THE WORD "TO" OR A AFTER THE LAST MATRIX IN THE LIST. EITHER END
PROPER MATRIX NAME TO CORRECT THE ERROR. THE STATEMENT HERE OR ENTER A COMMA AND ANOTHER
THE GENERAL FORM OF THE "CHANGE" STATEMENT IS: NAME.

CHANGE STRING-EXPR TO LETTER
CHANGE STRING-EXPR TO LETTER BIT EXPR BA179 MG#CMAUS
CHANGE LETTER TO STRING-VAR A COMMA MUST APPEAR AFTER THE "USING" KEYWORD.
CHANGE LETTER TO STRING-VAR BIT EXPR ENTER A COMMA AND COMPLETE THE STATEMENT.

BA172 MG#CGEIS BA180 MG#MTNMR
IN THIS FORM OF THE "CHANGE" INSTRUCTION, A A MATRIX NAME IS REQUIRED FOR THE "MAT PRINT"
NUMERIC ARRAY IS BEING CONVERTED TO STRING. STATEMENT. THIS MAY BE A NUMERIC MATRIX (SINGLE
FOLLOWING THE NUMERIC ARRAY, THE KEYWORD "TO", LETTER), OR A STRING MATRIX (LETTER FOLLOWED BY A
AND THEN A STRING VARIABLE NAME ARE REQUIRED. DOLLAR SIGN). ENTER THE NAME AND COMPLETE THE
EITHER ENTER THE KEYWORD "TO" OR A STRING STATEMENT.
VARIABLE NAME TO CORRECT THE ERROR.

BA181 MG#THEST
BA173 MG#EARDM THE STATEMENT MUST EITHER END HERE OR A COMMA OR

EACH ARRAY TO BE DEFINED IN A "DIM" STATEMENT SEMICOLON MUST BE TYPED TO CONTINUE THE LIST OF MATRIX
CONSISTS OF A SINGLE LETTER, OPTIONALLY NAMES. IF MORE THAN ONE MATRIX NAME IS DESIRED
FOLLOWED BY A DOLLAR SIGN ($) FOR STRING EACH NAME IN THE LIST MUST BE SEPARATED BY A COMMA
ARRAYS. THE VECTOR DEFINITION CONSISTS OF OR SEMICOLON.
A LEFT-PAREN, AN INTEGER IN THE RANGE 1-99999,
AND A RIGHT-PAREN. AN ARRAY DEFINITION BA182 MG#VARNM
CONSISTS OF A LEFT-PAREN, AN INTEGER, A COMMA, A VARIABLE NAME HAS BEEN FOUND WHICH INDICATES
ANOTHER INTEGER, AND A RIGHT-PAREN. THE THAT A SCALAR RESULT IS REQUIRED. THIS FORMAT
GENERAL FORMAT FOR A DIMENSION STATEMENT IS: OF THE MAT STATEMENT REQUIRES TWO NUMERIC

DIM VECTOR-NAME(INTEGER) VECTORS BE MULTIPLIED TO GIVE A SCALAR RESULT.
DIM ARRAY-NAME(INTEGER,INTEGER) THE FORMAT IS:
DIM STRING-NAME(INTEGER) .. ETC MAT LETTER-NUMBER= VECT-NAME * VECT-NAME

MORE THAN ONE ARRAY MAY BE DECLARED IN A DIM EXAMPLE: MAT Al=B*C
STATEMENT, BUT THE SAME NAME CANNOT BE DIMENSIONED
MORE THAN ONCE IN ANY PROGRAM. BA183 MG#LTVSB

THE LAST VALID SYMBOL FOUND IN THE INPUT LINE
BA174 MG#EITDM WAS A MATRIX NAME. THIS MUST BE FOLLOWED BY AN EQUAL

EITHER THE DIM STATEMENT MUST END HERE, OR SIGN, AND THEN EITHER A MATRIX COMPUTATION OR A
A COMMA AND ANOTHER ARRAY DEFINITION MUST FOLLOW. FUNCTION ASSIGNMENT. IF THIS IS TO BE A MATRIX
MORE THAN ONE VECTOR OR ARRAY MAY BE DEFINED IN COMPUTATION, THEN A NUMERIC MATRIX NAME MUST
ONE DIM STATEMENT, BUT A NAME MAY NOT APPEAR IN FOLLOW THE EQUAL SIGN; OTHERWISE ONE OF THESE
MORE THAN ONE DIM PER PROGRAM. FUNCTIONS MUST BE USED: ZER, CON, ION, /NV,

TRN.
BA175 MG#MATMX

A MATRIX STATEMENT MUST BEGIN WITH A MATRIX BA184 MG#MIVTM
NAME, OR THE MATRIX INSTRUCTIONS READ, WRITE, IN A "MAT TRN" OR "MAT /NV", THE FUNCTION NAME MUST
INPUT, L/NPUT, OR PRINT. BE FOLLOWED BY A MATRIX NAME WITHIN PARENTHESES.

BA176 MG#TIMST BA185 MG#OSTFC
TIME STATEMENT REQUIRES POSITIVE INTEGER VALUE THE ONLY MA TRIX STRING FUNCTION AVAILABLE
FOR A TIME LIMIT. IS NUL$, AND ITS FORMAT IS:

MAT LETTER$=NUL$
BA177 MG#OPMIO

OPERANDS FOR MATRIX 110 STATEMENTS MUST CONSIST OF BA186 MG#OVDSB
A SINGLE LETTER OPTIONALLY FOLLOWED BY A DOLLAR THE ONLY VALID SYMBOLS WHICH MAY FOLLOW THE
SIGN($) IN THE CASE OF A STRING MATRIX. FOR A MATRIX NAME HERE ARE+, -, OR *:
MAT LINPUT STATEMENT, A STRING MATRIX NAME IS MAT LETTER= LETTER + LETTER
REQUIRED. A MATRIX NAME JS REQUIRED HERE. MAT LETTER= LETTER - LETTER

MAT LETTER = LETTER * LETTER

e

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-11

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

C-12

HELP Command Message for Syntax Error

BA204 MG#FCADR
THIS FUNCTION REQUIRES ADDITIONAL PARAMETERS BE
PASSED TO IT. ENTER THE ADDITIONAL PARAMETERS, THE
RIGHT-PAREN, THEN CONTINUE THE STATEMENT.

BA205 MG#OPNAL

BA206

AN OPERATOR(+, -, *, /, **, &) MAY NOT BE CODED HERE.
THE EXPRESSION REQUIRED IN THIS INSTANCE MUST BE A
SIMPLE OR SUBSCRIPTED VARIABLE NAME. NO
COMPUTATION IS PERMITTED IN THIS TYPE OF EXPRESSION.

MG#UNMPA
UNMATCHED PARENTHESES HAVE BEEN FOUND IN THIS
EXPRESSION. THE ENTIRE EXPRESSION WILL NEED TO BE
SCANNED, AND THE POSITION AND NUMBER OF PARENS
ADJUSTED ACCORDINGLY.

BA207

BA208

MG#EBCOP
"EBC" OPERAND INVALID. VALID ARGUMENTS FOR THE
EBC FUNCTION ARE:

ACK BEL BS CAN CR DCJ DC2 DC3 DC4
DEL OLE DS EM ENQ EDT ESC ETB ETX
FF FS GS HT LF NAK NUL RS SI
so SOH sos SP STX SUB SYN us VT

OR ANY SINGLE CHARACTER.

MG#UARPL
A UNARY PLUS SYMBOL IS NOT ALLOWED AT THIS POINT.
AT THIS POINT IN THE EXPRESSION, OPERATORS(+, -, *, I, **),
LEFT-PARENS, OR FUNCTION REFERENCED ARE NOT PERMITTED.
A VARIABLE NAME OR CONSTANT MAY BE CODED HERE.

•

UP-9168 Rev. 1

Term

A

ABS function

Addition operator

Ampersand operator

Argument list

Arithmetic expression

Arithmetic operations, hierarchy

Array variable

Assignment statement

Asterisk operator

ATN function

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

B

2.6 2-8 Batch processing
6.5 6-7 background operation
6.5.l 6-8 BASIC in a batch environment

6.2 6-1
batch environment printout

2.2 2-1 differences between batch mode
and interactive mode

2.6 2-8 messages requiring a reply
RU command

2.5 2-6 syntax error messages

6.2 6-1 Built-in functions

2.4 2-5
ABS

3.4 3-10 ATN

2.2 2-1 CHR$

2.6 2-7 CLK$
6.5.l 6-7

cos
COT

DAT$

description
DET

EBC

Index 1

Index

Reference Page

8.3 8-3
8.1 8-1
8.2.2 8-1
8.3 8-4
Fig. 8-1 8-4

8.2 8-1
8.2.l 8-1
8.2.4 8-2
8.2.3 8-2

2.6 2-8
6.5 6-7
6.5.1 6-8
2.6 2-7
6.5.l 6-7
2.6 2-7
6.5.3 6-12
2.6 2-7
6.5.3 6-12
2.6 2-7
6.5.1 6-7
2.6 2-7
6.5.1 6-7
2.6 2-7
6.5.3 6-12
6.5 6-7
2.6 2-7
6.5.2 6-10
2.6 2-7
6.5.2 6-11

UP-9168 Rev. 1

Term

Built-in functions (cont)
EXP

file
INT

LEN

LOG

LOF

LOG

mathematical
MOD

NUM

PER

POS

RND

SEG$

SGN

SIN

specialized
SQR

STR$

string
TAN

TIM

TYP

URS$

VAL

BYE command

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

c
2.6 2-7
6.5.1 6-7 CALL statement
6.5.2 6-8
2.6 2-7
6.5.2 6-8 CHAIN statement
2.6 2-7
6.5.2 6-10
2.6 2-7 CHANGE statement
6.5.4 6-13
2.6 2-7
6.5.4 6-14 Channel setter
2.6 2-7
6.5.1 6-8 Characters
6.5.1 6-7 delimiter
2.6 2-7 digit
6.5.2 6-10 letter
2.6 2-7 open-string character
6.5.4 6-15 special character
2.6 2-7 string character
6.5.4 6-14
2.6 2-7 CHR$ function
6.5.2 6-10
2.6 2-7
6.5.2 6-8 CLK$ function
2.6 2-7
6.5.3 6-13
2.6 2-7 Code, hints for efficient code
6.5.2 6-9
2.6 2-7 Command processor
6.5.1 6-7 deleting program lines
6.5.3 6-12 file organization of a saved file
2.6 2-7 pause user program
6.5.1 6-8 program execution
2.6 2-7 program listing
6.5.3 6-13 returning control to the system
6.5.4 6-13 saving a program
2.6 2-7 terminating BASIC
6.5.1 6-7 using a saved program
2.6 2-7
6.5.2 6-11 Commands
2.6 2-7 BYE
6.5.4 6-15 command format summary
2.6 2-7 definitions
6.5.3 6-13 DELETE
2.6 2-7 HELP
6.5.2 6-11 introduction

LIST
5.2.l 5-3 MERGE
Table A-1 A-2 MODIFY

NEW
OLD
PRINT
RESEQUENCE
RUN
RU NOLD
SAVE
SYSTEM

Index 2

Reference Page

3.8.1 3-60
Table A-1 A-2

3.8.2 3-62
Table A-1 A-2

3.9 3-68
Table A-1 A-2

2.7 2-11

2.2 2-1
2.2 2-1
2.2 2-1
2.2 2-2
2.2 2-1
2.2 2-2

2.6 2-7
6.5.3 6-12

2.6 2-7 e 6.5.3 6-12

6.9 6-19

1.6.7 1-8
1.6.4 1-7
1.6.8 1-8
1.6.l 1-5
1.6.2 1-6
1.6.6 1-7
1.6.3 1-7
1.6.9 1-8
1.6.5 1-7

5.2.l 5-3
Appendix A
5.1.1 5-1
5.2.2 5-4
5.2.3 5-5
5.1 5-1
5.2.4 5-6
5.2.5 5-7
5.2.6 5-8
5.2.7 5-9
5.2.8 5-10
5.2.9 5-11
5.2.10 5-12
5.2.11 5-13
5.2.12 5-14
5.2.13 5-15
5.2.14 5-16

UP-9168 Rev. 1

Term

Constants
decimal numbers
definition
line numbers
string constants

Control statements
END
FOR
GOSUB
GOTO
IF
NEXT
ON
PAUSE
RANDOMIZE
RETURN
STOP
SYSTEM
TIME

COS function

COT function

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

2.3 2-2
2.3 2-2 Data input/output statements
2.3 2-3 DATA
2.3 2-3 INPUT

LINPUT
MARGIN

3.5.1 3-12 PRINT
3.5.2 3-13 READ
3.5.3 3-16 RESET
3.5.4 3-17 RESTORE
3.5.5 3-18 USING
3.5.2 3-13
3.5.6 3-20 DATA statement
3.5.7 3-21
3.5.9 3-23
3.5.3 3-16 DAT$ function
3.5.8 3-22
3.5.11 3-25
3.5.10 3-24 Debugging

2.6 2-7 Declaration statements
6.5.1 6-7 DEF statement

DIM statement
2.6 2-7 FNEND statement
6.5.1 6-7

DEF statement

DELETE command

Deletion
DELETE command
deleting program lines

Delimiter
operator
separator

DET function

Digit

DIM statement

Division operator

Index 3

Reference Page

D

3.6.5 3-33
3.6.1 3-26
3.6.2 3-27
3.6.3 3-28
3.6.4 3-29
3.6.5 3-33
3.6.6 3-35
3.6.6 3-35
3.6.7 3-36

3.6.5 3-33
Table A-1 A-2

2.6 2-7
6.5.3 6-12

7.1 7-1

3.2.1 3-4
3.2.2 3-6
3.2.3 3-8

3.2.l 3-4
Table A-1 A-2

5.2.2 5-4
Table A-1 A-2

5.2.2 5-4
1.6.7 1-8

2.2 2-1
2.2 2-1

2.6 2-7
6.5.2 6-10

2.2 2-1

3.2.2 3-6
Table A-1 A-2

6.1 6-1

UP-9168 Rev. 1

Term

E

EBC function

END statement

Error messages

Errors
description
error messages
logic
preventing running of program

Execution, program

EXP function

Exponentiation operator

Expressions
arithmetic expression
description
string expression

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

2.6 2-7 Factor
6.5.2 6-11

File description
3.5.1 3-12
Table A-1 A-2 File functions

description
Appendix C LOC

LOF
MAR

7.1 7-1 NUM
Appendix C PER
7.2 7-1 TYP
7.3 7-2

File INPUT statement
1.6.1 1-5

2.6 2-7 File LINPUT statement
6.5.1 6-7

File MARGIN statement
6.1 6-1

File MAT INPUT statement
2.5 2-6
2.5 2-6
2.5 2-6 File MAT LINPUT statement

File MAT PRINT statement

File MAT READ statement

File MAT WRITE statement

File name

File PRINT statement

File READ statement

File RENAME statement

File RESET statement

Index 4

Reference Page

F

2.5 2-6

4.2 4-1

2.6 2-7
6.5.4 6-13
6.5.4 6-14
6.5.4 6-13
6.5.4 6-15
6.5.4 6-14
6.5.4 6-15

4.3.2 4-10
Table A-1 A-3

4.3.3 4-12

4.3.4 4-13
Table A-1 A-3

4.3.5 4-14
Table A-1 A-4 e
4.3.5 4-14
Table A-1 A-4

4.3.5 4-14
Table A-1 A-4

4.3.5 4-14
Table A-·1 A-4

4.3.5 4-14
Table A-1 A-4

5.1.1 5-1

4.3.6 4-16
Table A-1 A-5

4.3.7 4-18
Table A-1 A-5

4.3.8 4-19

4.3.9 4-20
Table A-1 A-5

UP-9168 Rev. 1

Term

File SCRATCH statement

FILE statement

File statements
FILE
general
INPUT
LINPUT
MARGIN
matrix 1/0 statements
overview
PRINT
READ
RENAME
RESET
SCRATCH
WRITE

File support

File WRITE statement • Files
description
library files
MIRAM files
statements
support
temporary
use

FNEND statement

FOR statement

Formats
commands
statements
summary of formats

Formatting output
numeric output
string output

Functions
built-in
file
mathematical
multi line
references
specialized
string

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

4.3.10 4-21
Table A-1 A-5

GOSUB statement
4.3.1 4-5
Table A-1 A-2

GOTO statement

4.3.1 4-5
4.3 4-3
4.3.2 4-10
4.3.3 4-12
4.3.4 4-13
4.3.5 4-14
Table 4-1 4-3
4.3.6 4-16
4.3.7 4-18
4.3.8 4-19
4.3.9 4-20
4.3.10 4-21
4.3.11 4-22

4.1 4-1

4.3.11 4-22
Table A-1 A-6

HELP command

4.2 4-1
4.2 4-1
4.2 4-1
4.3 4-3
4.1 4-1
4.2 4-1
6.8 6-17

3.2.3 3-8
Table A-1 A-2

3.5.2 3-13
Table A-1 A-2

Table A-1 A-2
Table A-1 A-2
Appendix A IF statement

3.6.7.2 3-38 INPUT statement
3.6.7.1 3-37

INT function
6.5 6-7
6.5.4 6-13
6.5.1 6-7
6.6 6-15
2.6 2-7
6.5.2 6-8
6.5.3 6-12

Index 5

Reference Page

G

3.5.3 3-16
Table A-1 A-2

3.5.4 3-17
Table A-1 A-2

H

5.2.3 5-5

3.5.5 3-18
Table A-1 A-3

3.6.1 3-26
Table A-1 A-3

2.6 2-7
6.5.2 6-8

UP-9168 Rev. 1

Term

L

Language elements
channel setter
characters
constants
description
expressions
function references
statements
variables

LEN function

LET statement

Letter

Library files

LIBRARY statement

Line number

LINPUT statement

LIST command

Lists, use

LOC tu nction

LOF function

LOG function

Logic errors

LOGOFF procedure

LOGON procedure

Loops
nested loops
use

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

MARGIN statement
2.7 2-11
2.2 2-1
2.3 2-1 MAT addition statement
2.1 2-1
2.5 2-6 MAT constant statement
2.6 2-7
2.8 2-12 MAT identity statement
2.4 2-4

MAT INPUT statement
2.6 2-7
6.5.2 6-10

MAT inversion statement
3.4 3-10
Table A-1 A-3 MAT LINPUT statement

2.2 2-1

4.2 4-1
MAT multiplication statements

MAT null statement
3.8.3 3-63
Table A-1 A-3 MAT PRINT statement

1.4 1-3
2.3 2-3 MAT READ statement
5.1.l 5-1

3.6.2 3-27 MAT scalar multiply statement

5.2.4 5-6 MAT statement
Table A-1 A-3

6.4 6-5 MAT subtraction statement

2.6 2-7 MAT transpose statement
6.5.4 6-13

M

MAT vector multiplication statement
2.6 2-7
6.5.4 6-14 MAT zeros statement

2.6 2-7 Mathematical functions
6.5.l 6-8 ABS

ATN
7.2 7-1 cos

COT
1.7 1-8 description

EXP
1.3 1-3 LOG

SIN
SQR

Table 6-1 6-5 TAN
6.3 6-3

Matrix dimensions

Index 6

Reference Page

3.6.3 3-28
Table A-1 A-3

3.7.2 3-45

3.7.3 3-48

3.7.4 3-49

3.7.5 3-50
Table A-1 A-4

3.7.6 3-51

3.7.7 3-52
Table A-1 A-4

3.7.2 3-45

3.7.8 3-52

3.7.9 3-54
Table A-1 A-4

3.7.10 3-55
Table A-1 A-4

3.7.11 3-56

3.7 3-42
Table A-1 A-3

3.7.2 3-45

3.7.12 3-57

3.7.13 3-58

3.7.14 3-59

6.5.1 6-8
6.5.1 6-7
6.5.1 6-7
6.5.l 6-7
2.6 2-7
6.5.1 6-7
6.5.l 6-8
6.5.1 6-7
6.5.1 6-8
6.5.l 6-7

3.7.1 3-44

UP-9168 Rev. 1 SPERRY UNIVAC OS/3
BASIC

Index 7

UP-9168 Rev. 1

Term

p

Password

PAUSE statement

Pause user program

PER function

POS function

Primary

PRINT command

PRINT statement

Processor

Program segmentation
CALL statement
CHAIN statement
introduction
LIBRARY statement
SUB statement
SUBEND statement
SUBEXIT statement

Program techniques

Programs
deleting program lines
execution
listing
pausing program execution
saving a program
terminating BASIC
using a saved program

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

5.1.1 5-2 RANDOMIZE statement

3.5.7 3-21
Table A-1 A-5 READ statement

1.6.8 1-8
Relation symbols

2.6 2-7
6.5.4 6-14 REM statement

2.6 2-7
6.5.2 6-10 Remark statement

2.5 2-6 RESEQUENCE command

5.2.9 5-11
Table A-1 A-5 RESET statement

3.6.4 3-29
Table A-1 A-5 RESTORE statement

See command RETURN statement
processor.

RND function
3.8. l 3-60
3.8.2 3-62
3.8 3-59 RU command
3.8.3 3-63
3.8.4 3-64 RUN command
3.8.5 3-66
3.8.6 3-67

RUNOLD command
6.1 6-1

1.6.7 1-8
1.6.1 1-5
1.6.2 1-6
1.6.8 1-8
1.6.3 1-7
1.6.9 1-8
1.6.5 1-7

Index 8

Reference Page

R
3.5.9 3-23
Table A-1 A-5

3.6.5 3-33
Table A-1 A-5

Table 3-2 3-18

3.3 3-9
Table A-1 A-5

3.3 3-9

5.2.10 5-12
Table A-1 A-5

3.6.6 3-35
Table A-1 A-5

3.6.6 3-35

3.5.3 3-16
Table A-1 A-5 • 2.6 2-7
6.5.2 6-8

8.2.4 8-2

5.2.11 5-13
Table A-1 A-5

5.2.12 5-14
Table A-1 A-5

UP-9168 Rev. 1

• Term

s
Sample session

SAVE command

Saving a program
file organization
SAVE command

use

Scalar variable

SEG$ function

SGN function

SIN function

Source program construction

Special characters

Specialized functions
description
DET
EBC
INT
LEN
MOD
POS
RND
SGN
TIM
VAL

SQR function

Statements
assignment
change
control
declaration
description
executable

1/0
matrix operation
nonexecutable

SPERRY UNIVAC OS/3
BASIC

·Reference Page Term

program segmentation
remark

Appendix B summary of formats
Fig. B-1 B-1

STOP statement
5.2.13 5-15
Table A-1 A-5

String
array variable

1.6.4 1-7 built-in functions
1.6.3 1-7
5.2.13 5-15
1.6.5 1-7 character

constant
2.4 2-4 expression

2.6 2-7
primary expression
variable

6.5.3 6-13
String built-in functions

2.6 2-7 CHR$
6.5.2 6-9

CLK$
2.6 2-7
6.5.1 6-7 DAT$

1.4 1-3 SEG$

2.2 2-1 STR$

URS$
2.6 2-7
6.5.2 6-10
6.5.2 6-11 STR$ function
6.5.2 6-8
6.5.2 6-10
6.5.2 6-10 SUB statement
6.5.2 6-10
6.5.2 6-8
6.5.2 6-9 SUBEND statement
6.5.2 6-11
6.5.2 6-11

SUBEXIT statement
2.6 2-7
6.5.1 6-8

Subprograms
3.4 3-10
3.9 3-68 Subtraction operator
3.5 3-11
3.2 3-3 Syntax checker
2.8 2-12
2.8 2-12 SYSTEM command
Table 3-1 3-1
3.6 3-25
3.7 3-42 System overview
2.8 2-12
Table 3-1 3-1

SYSTEM statement

Index 9

Reference Page

3.8 3-59
3.3 3-9
Appendix A

3.5.8 3-22
Table A-1 A-5

2.4 2-5
See string
built-in
functions.
2.2 2-2
2.3 2-3
2.5 2-6
2.5 2-7
2.4 2-4

2.6 2-7
6.5.3 6-12
2.6 2-7
6.5.3 6-12
2.6 2-7
6.5.3 6-12
2.6 2-7
6.5.3 6-13
2.6 2-7
6.5.3 6-13
2.6 2-7
6.5.3 6-13

2.6 2-7
6.5.3 6-13

3.8.4 3-64
Table A-1 A-5

3.8.5 3-66
Table A-1 A-6

3.8.6 3-67
Table A-1 A-6

6.7 6-16

6.1 6-1

1.5 1-4

5.2.14 5-16
Table A-1 A-6

1.1 1-1
Fig. 1-1 1-2

3.5.11 3-25
Table A-1 A-6

UP-9168 Rev. 1

Term

T

Tables, use

TAN function

Temporary files

Term

Terminals supported by BASIC

Terminating BASIC
BYE command

LOGOFF procedure

TIM function

TIME statement

TYP function

SPERRY UNIVAC OS/3
BASIC

Reference Page Term

6.4 6-5 URS$ function

2.6 2-7
6.5.l 6-7 User-defined function

4.2 4-1 USING statement
description

2.5 2-6
formatting numeric output

1.2 1-2 formatting string output
use with PRINT statement

1.6.9 1-8
5.2.l 5-3
1.7 1-8

2.6 2-7
6.5.2 6-11

3.5.10 3-24
Table A-1 A-6

2.6 2-7
6.5.4 6-15

VAL function

Variables
array
scalar

Volume

Index 10

Reference Page •
u

2.6 2-7
6.5.3 6-13

2.6 2-8

3.6.7 3-36
Table A-1 A-6
3.6.7.2 3-38
3.6.7.l 3-37
3.6.7.3 3-39

•
v

2.6 2-7
6.5.2 6-11

2.4 2-5
2.4 2-4

5.1.1 5-2

I

I
I
I

•' I I
I
I
I
I
I
I
I
I
I
I
I
I

. I .,
c:

~I -=I :l

ul

S?EF«Y+ UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in im~roving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD ·--

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL. PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

•

•

l
r ...

I SFe~v+uNIVAC
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

. I .,
~I

·~I

•

:;,

ul
I
I
I
I

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

I
I
I
I
I

!•
I
I
I
I
I
I
I
I
I
I
I
I
I

FOLD I --!

FOLD

111111 NO POSTAGE I
NECESSARY I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

lF MAILED I
INTHE

UNITED STATES

l
I
I
I
I
I
I
I
I 1• I
I
I
I
I
I
t

•

.;
.!: • ... ::i
u

•

SFE~v+uNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

•

•

•

•

•

