
BASIC

UNIVAC

H

UP-9169
Rev. 2

RELEASE
LEVEL: 8.0 Forward

This document contains the latest information available at the time of
preparation. Therefore, it may contain descriptions of functions not
implemented at manual distribution time. To ensure that you have the latest
information regarding levels of implementation and functional availability,
please consult the appropriate release documentation or contact your local
Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this
document No contractual obligation by Sperry Univac regarding level, scope, or
timing of functional implementation is either expressed or implied in this
document It is further understood that in consideration of the receipt or
purchase of this document, the recipient or purchaser agrees not to reprod~
or copy it by any means whatsoever, nor to permit such action by others
any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS
are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY
UNIVAC UTS 400 Text Editor. It was printed and distributed by the Customer
Information Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa.,
19406.

@]981 -
SPERRY CORPORATION PRINTED IN U.S.A.

A LOGON PROCEDURE

• SOURCE PROGRAM CONSTRUCTION

LANGUAGE ELEMENTS
Characters
Constants
Variables
Expressions
Function References
Statements

SYNTAX CONVENTIONS

STATEMENT FORMATS

COMMAND FORMATS

LOGOFF PROCEDURE

USER COMMENT SHEET

Contents

l

2
2
2
3
4
5
6

6

8

10

10

-
l

This summary contains information for use in preparing BASIC programs to be
compiled by the BASIC compiler, as implemented on the SPERRY UNIVAC
Operating System/3 (OS/3).

Detailed information is covered in the BASIC programmer reference, UP-9168
(current version).

LOGON PROCEDURE

For initial connection with the operating system, the user must enter the LOGON
command in the system mode from a terminal. This command identifies the
user to the operating system and initiates the user task. The format of the
LOGON command is:

where:

LOGON user-id [,acct][,password]

user-id

acct

Is a 1- to 6-character alphanumeric code identifying the user
to the system. The user-id is used by the system to correctly
route messages as well as job and command output and to
determine which commands may be used on the system. The
user-id must begin with an alphabetic character.

Is a 1- to 4-character alphanumeric code used for system time
accounting.

password
Is a 1- to 6-character alphanumeric code that controls user
access to the overall system.

SOURCE PROGRAM CONSTRUCTION

After logging on and being accepted by the system, the user calls BASIC by
issuing the following executive command:

BASIC

Control is transferred to BASIC, which immediately responds:

BAOOl OS/3 BASIC READY (VER xx.xx) BEGIN

-t this time the user is at the command level 1n BASIC. If a command other than
NEW or OLD 1s entered, the syntax checker 1s called immediately to process the
first source statement.

After the compiler is called, the system responds with an asterisk, which
indicates a request for source input. A line of input consists of a single BASIC
source language or a BASIC editing command, followed by the TRANSMIT
function.

LANGUAGE ELEMENTS

Characters

letter ABCDEFGHIJKLMNDPQRSTUVWXYZ

digit 0123456789

delimiter +-*/()<>&t
(operator)

delimiter ,.; t::,.":

(separator)

special $@#?' %
character

open-string letter, digit operator, special character, period (.). or
character semicolon (;)

string character letter, digit, operator, special character, period (.),
semicolon (;), comma (,), or a blank (tJ.)

NOTES:

1. The character blank, which may be used in constructing the BASIC
programs, is designated in the syntax by the symbol !J.. Any spaces
that appear in the syntax equations do not denote blanks in the BASIC
language. Blanks are significant in BASIC only when they appear in a
comment or in a string constant.

2. The character quote (") delimits the beginning and end of a closed­
string constant. If a quote is required within a closed string, use two
consecutive quotes.

3. Exponentiation is specified with a pair of asterisks (**). A vertical A
arrow r is also permitted for exponentiation, where applicable. W

Constants

decimal number A fraction followed by optional exponent field.

Fraction:

Series of one or more digits containing optional
decimal point preceding, following, or embedded in
series of digits.
Examples:
85 85 .. 85 85.6438

Exponent:

Indicates the power of 10 by which the fraction is to
be multiplied and consists of the letter E followed by
optional sign and one or two digits. Sign is + or-; if
omitted, + is assumed.
Examples:
E5 E+ 14 E+8 E-04 E-2

closed string Quote followed by a series of 0 to 4095 string
characters followed by a quote. • Example: "ABZ154tJ.84"

open string A series of 1 to 4095 open-string characters, blanks,
or quotes.
Example: A!J.B

line number Series of one to live digits without sign, decimal
point, or exponent field. It must be in the range 1 to
99999.

2

LANGUAGE ELEMENTS (cont)

NOTES:

1. All decimal numbers are converted and stored internally in f/oating­
point format. The exponent occupies seven bits and indicates the
power to which the number 16 must be raised. The sign occupies one
bit. In floating-point format, the mantissa occupies 24 bits and contains
a 6-digit hexadecimal number in normalized form In BASIC, if the
value of the fraction part of a decimal number, disregarding the
decimal point, exceeds 22•-1, the number is rounded and trailing
digits are lost. For example:

2.

12.3456789

is acceptable, but is (effectively) rounded to

12.345679

If the mantissa 1s nonzero, the magnitude of the floating-point number
has the following range:

16-65 ,:; M < 1663 (approximately J0-18 ,,;: M < J075)

Overflow and underflow conditions for numeric constants are
processed as errors.

All string constants are stored in EBCDIC code. A 2-byte length field is
prefixed to each string before it is stored; the value of the length byte
is not included. If a given string constant contains more than 4095
characters, it is truncated at the right. Note that an open-string
constant, as opposed to a closed-string constant, cannot contain a
comma. Moreover, an open-string constant is permitted only as input to
the READ and INPUT statements. Note that it 1s not possible to enter a
string constant longer than 74 characters in a program, because the
maximum line length is 80 characters.

3. A fine number is an integer between 1 and 99999, and must precede
each statement in a BASIC program. The line numbers specify the
logical sequence of statements in a program (ascending order). They
are also used as statement labels for transferring control during
program execution.

Leading zeros in a line number are ignored.

Variables

scaler variable Defined as a numeric variable or a string variaQle.

numeric variable A letter optionally followed by a single digit.

Examples: X X2

string variable A letter followed by a dollar sign ($), or a letter
followed by a single digit followed by a dollar sign.

Examples: A$ Q6$

array variable Defined as a numeric array variable or a string array
variable.

numeric array A letter followed by one or two subscript expressions
variable enclosed in parentheses.

Examples: M(2) P(8,92) X(A+B)

st1 ing array A letter followed by a dollar sign ($) followed by one
variable or two subscript expressions enclosed In

parentheses.

Examples: M$(2) C$(A+B) D$(A,C)

3

LANGUAGE ELEMENTS (cont)

NOTES:

1. Numeric variables may only be assigned decimal numeric values.

Numeric array variables may only be assigned decimal numeric values.

2. A subscript may be defined using any arithmetic expression. During
execution, the value used to locate the array element referenced is A
computed by rounding the subscript expression to the nearest integer. W
If the subscript value is not within the bounds specified (or implied) for
that dimension of the referenced array, then the user is given an error
message and program execution terminates.

Two-dimensional numeric arrays are stored in row-major order.

3. String variables may only be assigned character string values. All such
variables are initialized to the null string (zero length.)

4. String array variables may only be assigned character string values. All
elements of these string array variables are initialized to the null string
(zero length).

The rules for numeric array variables regarding bounds and subscript
evaluation apply to string array variables as well.

Expressions

arithmetic Defined as a term optionally preceded by a minus
expression (-) or plus(+); or an arithmetic expression plus(+)

or minus (-) a term.

Example: A**2*B-3

term A factor or a term multiplied (*) or divided (/) by a
factor.

Example: A**2*B

factor A primary or a factor raised to a power (**)
designated by a primary.

Example: A**2

primary A decimal number, numeric reference, function
reference, or an arithmetic expression enclosed in
parentheses.

Example: 2 A RND(X) (C-D)

string expression A string primary or string expression followed by an
ampersand (&) denoting concatenation, followed by
another string expression.

Example: "ABC" &B$

string primary A closed-string reference or function reference.

Example: A$ SEG$ (D$,6,8) "AB"

NOTES:

1. The exponentiation operator(**) may be written (where applicable) as e
a vertical arrow I.

2. A**B**C is compiled as (A **B)**C.

3. Parentheses may be used to factor subexpressions.

4. The following are treated as errors:

• Mixed mode expressions

4

LANGUAGE ELEMENTS (cont)

NOTES (cont):

• Division by zero

• Zero to a negative power

• Overflow and underflow conditions existing during the
evaluation of arithmetic expressions

A negative number can only be raised to a nonzero positive integer
number. The maximum value of this positive integer is 15. Any
violation of this rule is treated as an error.

Function References

Numeric Valued Functions

SIN(x) sin(x) CV

COS(x) cos(x)©

TAN(x) tan(x)©

COT(x) cot(x)©

ATN(x) tan· 1(x)0

EXP(x) eX

LOG(x) ln(x)

ABS(x) Ix\

SQR(x) Vx
RND(x) {', > o, fuo<ti>o oh '" ~.II }

if x < 0, new random seed on (0,1)
if x = 0, random on (0, 1)
if no argument x = 0 assumed

INTul Largest int~r ,;;; x
SGN(x)

{+1, if x >0 }
0, if x = 0
-1, if x < 0

FNA to FNZ User-defined numeric function
(argument list)

DET Determinant value of last matrix inverted

LEN(A$) Number of characters in string A$

MOD(x,y) X-Y*INT(X/Y)

POS(A$,B$,X) Position of B$ within A$ starting at X

TIM Seconds since RUN command was issued

VAL(A$) Value of string in A$

EBC(string) EBCDIC value of 3-character maximum string

LOC (#N) File pointer location for file in channel N

LOF (#N) End·of-file value for file in channel N

MAR (#N) Margin size for file in channel N

PER (#N,A$) See BASIC programmer reference, UP-9168 (current
version).

5

LANGUAGE ELEMENTS (cont)

Function References (cont)

TYP (#N.A$)

NUM

STR$(x)

USR$

CHR$(x)

CLK$

DAT$

SEG$ (A$,x,y)

FNA$ to FNZ$
(argument list)

NOTES.

CD x in radians

<i!Result in radians

Statements

statement

executable statement

nonexecutable
statement

NOTES·

Numeric Valued Functions

See BASIC programmer reference, UP-9168 (current
version).

Number of values last vector MAT INPUT statement

String Valued Functions

Character string representation of value of x

User's LOGON command identifier

EBCDIC character code MOD(INT(x).256)

Military time of day in form hh:mm:ss

Date in form mm/dd/yy

Substring of A$ from position x for length of y

User-defined string functions

Line number followed by an executable statement or
nonexecutable statement

Assign, control, input/output, matrix, or data file
statement

Declaration or remark statement

1. Each BASIC statement entered into a program must be prefixed with a
line number. These line numbers determine the logical order of
statements within a program. They are used in several of the control •
statements to effect transfers of control.

2. Each BASIC statement is summarized in this reference and described
in detail in the BASIC programmer reference, UP-9168 (current
version).

SYNTAX CONVENTIONS

In describing the statements, the following conventions are used:

I. Keywords that may be used in the statement are shown in capital
letters.

2. Names constructed using lowercase letters and embedded hyphens
designate syntactic variables.

3. Brackets, []. are used to enclose optional parameters.

4. Braces, \ \, are used to enclose alternatives.

6

- '

SYNTAX CONVENTIONS (cont)

5. Ellipsis, . ., following an operand parameter indicates that the
programmer may specify more than one parameter of that type. For
example, the syntax

READ variable [.variable ...]

allows the statements

READ A

READ A,B

READ A,B,C

to contain many input variables in the READ list.

The following syntactic units occur several times in the specification of the
editing commands:

NOTES:

line-number: a series of one to live digits

line-number-list: list-item [,list-item ...]

{

line-number }
line-number ~ ro t line-number

list-item:

range: line-number {increment}

increment: a series of one to four digits

filename:

{

letter [jletter t .. ·]}
1 d1g1t {

$character[character ...]

1. A line-number-list may contain list-items that reference single lines and
others that reference a sequence of lines (all lines between the first
and second line numbers specified, inclusive).

Example:

120, 200-250, 300

This list references those lines numbered 120, 200 to 250 inclusive,
and 300.

2. A line number range specifies the starting line number and an
increment for calculating successive line numbers.

3.

Example:

100 (10)

The range specified is 100, 110, 120, .

In general, a file name consists of from one to eight letters or digits, the
first of which is a letter. The length of the file name can be a maximum
of 44 characters. Embedded characters, such as., $, #, @, or-, may
be included in this file name.

4. Except for the command verb and commands in which file names are
specified, blanks are ignored.

7

STATEMENT FORMATS

Format Examples

CALL stnng-constantj:param-list] 17 CALL "SUBR":3+4,A,B()
18 CALL "FIND":#J,SIN,(A)
19 CALL "SEND":C(,J,K(3,4),B$

CHAIN l string-expression f 23 CHAIN "PROGRAM2,CHAINLIB,PACK34"
channel-setter 24 CHAIN AS WITH #3
(WITH channel-setter, I 25 CHAIN #4 WITH #I,#4,#J8

CHANGE l string TO array f 34 CHANGE A$ TO V
array TO strmg-vanable 35 CHANGE M TO BJ$
[BIT expression[36 CHANGE G TO Kl$ BIT 12

DATA lstrmg-constant f ... 45 DATA 1,J,6,IE3,-.34,17.3E34
numeric-constant 47 DATA "STRING ONE",STRING TWO

49 DATA THIRD STRING,33

DEF FNletter[$J[(param·list)] 54 DEF FND(X,Y)=SQR(X**2+Y**2)

[.locaHist] 55 DEF FNS$(X,Y$)=SEG$(Y$,X,X)$""

jexpress1onJ
56 DEF FNQ
57 DEF FNG$,l,J,K
58 DEF FNE(A,B,CJ,W,Z

DIM letter[$Jlinteger[,integer]) 67 DIM A(3),B(4~)
68 DIM G$(45)
69 DIM C(I00),H$(2.40)

END 78 END

FILE channel-setter:stnng-express1on 82 FILE #3:"*"
83 FILE #R:"SQ,ERRORS,SPOOL3"
84 FILE #7:"COBLPR,LIBFILE(/WRPASS)"
85 FILE #J:AS

FNEND 88 FNEND

FOR numenc-variable=numenc-express1on 93 FOR 1=3 TO IO
TO numeric-expression 94 FOR J2=1 TO POS(A$,B$,1)

(STEP numenc-express1on/ 95 FOR K=J2 TO l3 STEP 4

GOSUB line-number 102 GOSUB 943

GOTO line-number 111 GOTO 130

IF Format 1: 120 IF A$="YES" THEN 340
122 IF SIN(XJ=0.5 GOTO 43

expression test expression 123 If END#3 GOSUB 230
{GOTO } line·number

GOSUB
THEN

Formal 2:

l END t channel-setter
MORE

{GOTO } line·number
GOSUB
THEN

INPUT [channel-setter:]vanable-name, .. 130 INPUT A,B$
140 INPUT #l:D(3,4),J

LET Format 1 143 LET A$=SEG$(A$,3,4)
145 LET B(3.4J=SIN~)

numeric-variable 147 LET FND=B(J.4J'A(4)+1
[=numeric-variable I
=numeric-variable

Format 2:

string-variable
[=string-variable I
·--=string-expression

Format 3

FNletter/$]::-=expresswn

LIBRARY string-constant. 155 LIBRARY "SUBLIBRARY,PACKll"
157 LIBRARY "CATALOGEDSUBLIBRARY(ALLOWO)"

MARGIN fchannel-setter:)numenc-express1on 160 MARGIN 120
164 MARGIN #3:64

8

STATEMENT FORMATS (cont)

Format Examples

MAT \etter=letter+letter 174 MAT A=B+C
175 MAT V=W+z

MAT letter=CON[(t11rnrner)J 178 MAT A=CON
179 MAT V=CON(I)

MAT letter=IDN[(tr1rnrner)) 185 MAT H=IDN(3,3)
188 MAT J=IDN

MAT letter=INV(letter) 190 MAT Q';'INV(R)

MAT letter=letter*letter 198 MAT U=V*W
199 MAT A=V*B

MAT letter$=NUL$[(t11rnrner)] 201 MAT D$=NUL$
205 MAT f$=NUL$(1,J)
206 MAT G$=NUL$(3)

MAT letter=(numenc-expression)*letter 212 MAT D=(J+4)*E
213 MAT V=(SIN(U))*W

MAT letter=letter-letter 221 MATD=f-E

MAT letter= TRN(letter) 234 MAT D=TRN(f)

MAT letter=ZER[(tnrnrner)] 244 MAT S=ZER
247 MAT E=ZER(3,4)

MAT INPUT [channel-setter:) 253 MAT INPUT #3:8$
letterJ$Jl(tnrnrner)J, ...

MAT LINPUT [channel-setter:) 255 MAT LINPUT #3:A$
letter$[(tnrnrner)J, .. 256 MAT LINPUT DS

MAT PRINT [channel-setter:) 262 MAT PRINT A,B:C:
letterJ$JlseparatorJ, .. 265 MAT PRINT #8:8$

MAT READ [channel-setter:) 272 MAT READ A
letter[$Jl(tnrnmer)J,.. 277 MAT READ 8$(3)

279 MAT READ #J+3:D(3,4)

MAT WRITE channel-setter:letter[$J,.. 281 MAT WRITE #3:A,B
283 MAT WRITE #l:K$,Y

NEXT numeric-variable 292 NEXT I
295 NEXT JS

ON numeric·express1on 320 ON J*(4+1) GOTO 120,300,120,430

{GOTO } line-number, 111 ON K GOSUB 10,20,30,50, 10,40
GOSUB
THEN

PAUSE 332 PAUSE

PRINT)channel-setter:) 345 PRINT "THE ANSWER IS";A3
express1on(separator] ... 354 PRINT l,J,K

356 PRINT TAB(l);I;
RANDOMIZE 362 RANDOMIZE

READ !channel-setter:Jvariable, ... 371 READ A,B,C
373 READ #4:A$(45)
377 READ #l:A3,B7$,C(2,3)

RESET !channel-setter·[numer1c-express1on 11 382 RESET
384 RESET #3
388 RESET #l:V3

REM !any characters for a comment) 391 REM THIS PROG COMPUTES WVB VALUES
392 REM FOR AN ARRAY
393 REM
394 REMARK

RETURN 395 RETURN

SCRATCH channel-setter 403 SCRATCH #3
4D4 SCRATCH #1-2

STOP 412 STOP

SUB string-constant:params 421 SUB "f\NDSPAC"

SU BEND 437 SUBEND

SU BEX IT 449 SUBEXIT

SYSTEM string 476 SYSTEM "RUN"&Pl$

9

STATEMENT FORMATS (cont)

Fomut Examples

US ING us1ng-str1ng,expression[,express1on], ... 127 PRINT USING A$,B,C
145 MAT PRINT USING "#.##111",B
167 PRINT #?:USING C1$,F$;G

WRITE channel-setter:expression, ... 523 WRITE #3:A,SIN(X),B$

COMMAND FORMATS

Format Examples

BYE BYE

DELETE ii ine-nu mber-l1st] ["search-string "J DELETE IO
DELETE 100-132
DELETE "INSTRUCTIONS"
DELETE 1-100 "REM"

LIST [line-number·lis!Jl"search·stnng"I LIST 3-4,10,100-200
LIST "PRINT"
LIST 1-100 "REM"

MERGE element,library[lpassword)Jl,volume] MERGE SUBR,SUBLIB,SUBPAK

NEW NEW

OLD element,hbraryl(password)Jl,volume) OLD PRINTSIN,PROGRAMLIB,DISKPAK
OLD COMPUTE,CATALOGUEDFILE

PRINT [hne·number·list]["search·stnng''] PRINT 3-4,10,100-200
PRINT "LINPUT"
PRINT "END"9000-99999

RESEQUENCE start[:incremen!Jl:file·params] RESEQ I00:50:RESPROG,PROGLIB,PACK57

RUN RUN

RUNOLD element,filename[lpassword)Jl,volume] RUNOLD COMPUTE,CATALOGUEDFILE

SAVE element,filenamel(password)JI, volume I SAVE COMPUTE,CATALOGUEDFILE(PSWRD)

SYSTEM [system command) SYSTEM
SYSTEM FSTATUS PROGRAMLIB,PACK33

TIME TIME 120

LOGOFF PROCEDURE

The LOGOFF command terminates the user session. Its purpose is to end the
task and to return to the operating system any input/output devices used by
the task.

This command, the last issued in the task, has the following format:

LOGOFF

10

