nca nitec

COURSE

O0O=

ADVANCED PROGRAMMING

prepared by the Training Section,
Electronic Computer Department

Memingron Rand

QUTLINE FOR COURSE 003

ADVANCED PROGRAMMING

The purpose of Advanced Programming Course 003 is to complete the basic description
of the Univac System and describe the advanced programming techniques required

for the preparation of efficient data processing routines, Each student is re-
quired to have satisfactorily completed Course 002 which is concerned with .a de~
scription of the Univac central computer and basic programming.

The subject matter of Course 003 consists of four major sections, each of whlch
is briefly described belows :

1. Advanced Programming - This area of study covers the programming techniques
commonly employed in efficient use of input-output buffers, problem reconsti-
tution, item layouts, relative coding, reduction of instruction execution
times, obtaining increases in available memory space, use of service routines
for detection and correction of programming errors.

2. Programming for Heavy Auxiliaries - This area covers by description and illus-
trative problems, programming for the heavy auxiliaries of the Univac System,

such as the Card-to-Tape Converter and the High-Speed Printer.

3. Central Computer ogic - A detailed description of the central computer's
logical construction is the subject matter of this study area. Particular
attention is given to the detailed analysis of how each instruction is exee
cuted. The checking circuits of the Univac and the method whereby the super-
visory control may be used as a programmer aid in debugging and efficiently
running data processing routines.

4, Thesis Problem - This area consists of workshop sessions wherein each student
selects a moderately complex problem for his thesis. Each student will ana-
lyze, flow-chart, ccde, and debug on the Univac System (Univac #7 - Service
Bureau, Remington Rand Inc., New York, New York) a problem involving from 600-
800 instructions. This thesis work 1s designed to provide further experience
in all phases of computer programming and -is conducted under the supervis1on
of the instruction staff assigned to his course.

A topical outline is presented below, The amount of time spent on each subject
may vary somewhat among the different instructors and classes., Items 1 and 2
above are designated under A in the outline, 3 above is topic B, and 4 is topic C.

WEEK 1

MONDAY 2 A, ANALYSIS OF COMMON CODING ERRCRS
1. Types of errors and their manifestations
2. Errors due to neglected instruction characteristics
3. Improper .overflow counts
4, Errors in flow chart logic

B, REVIEW AND INTRODUCTION TO CIRCUITRY
1. Memory and word structure
2, Binary and XS=3 notation
3. Four-stage cycle of operation
4, Description of logical circuit elements

C. THESIS PROBLEM
TUESDAY: A, DESCRIPTION OF BICR RELATIVE CODING

B. TIMING AND SYNCHRONIZATION IN UNIVAC

l. Minor cycle

2, Cycling unit

3. p and t notation

4, Synchronization of memory and registers

5. Maintenance of synchronization in memory to regis-
ter, register to register, and register to memory
transfers,

C. THESIS FROBLEM
WEDNESDAY ¢ A, BIOR RELATIVE CODING (CON'T)

B. FOUR-STAGE CYCLE
1. Descrlption of Chart U 102 and EBU-100
20 a time
3. HSB O-E checker, differences between positive and
‘negative type checkers.

C. THESIS PROBLEM
THURSDAY s A. BICR RELATIVE CODING (CONCLUDED)

B, FOUR-STAGE CYCLE (CON'T)
l. P time
2. Channel selection circuits
3, Time selection circuits

C. THESIS PROBLEM

FRIDAYs A, SPECIAL INPUT-QUTPUT TECHNIQUES
1, Preselector
2, 2=-way automatic
3. Reversal
4, 3-way automatic

B, FOUR-STAGE CYCLE (CON'T)
1e I and O time
2. Start circuit

C., THESIS PROBLEM

MONDAY s

TUESDAY s

WEDNESDAY :

THURSDAY :

FRIDAY:

WEEK 2

INPUT-OUTPUT (CONCLUDED)
1, Efficient transferd for items a sub-multiple of 60
2, Efficient transfers for items not a sub-multiple of 60
3. Variable length items

TRANSFER ORDERS - TYPE 1
l. B, Hy K as typical of 1 word transfers
2, Error indications MDS and DSS

THESTS PROBLEM

IDENTIFICATION BLOCKS AND RERUNS
1. Standard data tape format
2. Generalized two-way merge

TRANSFER ORDERS - TYPE 1 (CON'T)
1. V, W, Y, Z as typical of multi-word transfers
2. Interchange in V-W transfers
3. R order

THESIS PROBLEM

IDENTIFICATION BLOCKS AND RERUNS (CON'T)
1. Generalized two-way merge (concluded)
2. Rerun procedure for 1 output

TRANSFER ORDERS - TYPE 2
1. ony On as typical of shifts
2. Improper shifts causing a stall
3. Extract order

THESIS PROBLEM

IDENTIFICATION BLOCKS AND RERUNS (CONCLUDED)
1. Reruns with multiple output

LOGICAL CHOICE
l. Skip and U instructions

THESIS PROBLEM

REDUCING PROBLEM RUNNING TIME
1, Minimum latency tables

LOGICAL CHOICE (CONCLUDED)
1. Q and T instructions

THESIS PROBLEM

=3

WEEK 3

MONDAY ¢ A, REDUCING PROBLEM RUNNING TIME (CON'T)
1. Minimum latency coding

B. INTERRUPTED OPERATION
l. Qn, Tn, 9 and , instructions
2. Interrupted operation switch

C. THESIS PROBLEM

TUESDAY ¢ A. REDUCING PROBLEM RUNNING TIME (CONCLUDED)
1. R=U counters
2, Straight line coding

B, ARITHMETIC CIRCUITS
l. A and S instructions

C. THESIS PROBLEM

WEDNESDAY s A, CONSERVATION OF MEMCRY SPACE
1, Overlays
2. Sub-dividing runs

B, ARITHMETIC CIRCUITS (CON'T)
l., Overflow
2, A~ and S= instructions
3, 12-place addition in P time

C. THESIS PROBLEM
THURSDAY 3 A, COLLATION METHOD CF SORTING
B, ARITHMETIC CIRCUITS (CON'T)
1, Multiplication as repeated addition
2. P instruction
C., THESIS PROBLEM
FRIDAY: A, COLLATION METHOD OF SCRTING (CONCLUDED)
B. ARITHMETIC CIRCUITS (CON'T)
1. P instruction (concluded)
2, M and N instruction
3. Action ofbMQC with multiplier digits not numbers

C. THESIS PROBLEM

MONDAY :

TUESDAY:

WEDNESDAY s

THURSDAY:

FRIDAY:

A,

B.

B.

WEEK 4

FUNCTION TABLE SORTING

ARITHMETIC CIRCUITS (CON'T)
l. Theory of non-restoring division
2. D instruction .

THESIS PROBLEM

SERVICE ROUTINES
1, Classifications
2. Locator
3. Mark VIII

ARITHMETIC CIRCUITS (CON'T)
1. D instruction (concluded)
2. D- instruction

THESIS PROBLEM

SERVICE ROUTINES (CON'T)
1. Mark VIII (con't)

ARITHMETIC CIRCUITS (CONCLUDED)
1. Periodic memory check
2. Memory clear

THESIS PROBLEM

SERVICE ROUTINES (CON'T)
l. Mark VIII (concluded)
2, AC-3
3, AC-4

INPUT-QUTPUT CIRCUITS
1. Input-output problem
2., Uniservo principles
3, Additional logical elements (thyratrons, relays,
autosyns, transformers, motors)

THESIS PROBLEM

SERVICE ROUTINES (CON'T)
1, AM-2 (line merge)
2, Herb I

INPUT-OUTPUT CIRCUITS (GON'T)
1. Step=-down buffering
2. 5n instruction

THESIS PROBLEM

B

WEEK 5

MONDAY s A. SERVICE ROUTINES (CON'T)
1. Code edit
2. Analyzer

B. INPUT-OQUTPUT CIRCUITS (CON'T)
1. 5n instruction (con't)

C. THESIS PROBLEM

TUESDAY: A, SERVICE ROUTINES (CON'T)
1. Auto-monitors

B. INPUT-OUTPUT CIRCUITS (CON‘T)
1. 5n instruction (concluded)
2, Low-density recording

C. THESIS PROBLEM

WEDNESDAY 2 A, SERVICE ROUTINES (CONCLUDED)
1, Follower
2. Code search
3., Word search

B. INPUT-OUTPUT CIRCUITS (CON'T)
1. Step-up buffering
2. 1n instruction

C. THESIS PROBLEM

THURSDAY: A, HEAVY AUXILIARIES
1. Card-to-Tape Converter

B, INPUT-OUTPUT CIRCUITS (CON'T)
l. 1n instruction (con't)

C. THESIS PROBLEM

FRIDAY: A, HEAVY AUXILIARIES
1, Card-to~Tape Converter (concluded)
2, Tape=to-Card Converter

B, INPUT-OQUTPUT CIRCUITS
1, 1n instruction {(concluded
2. 2n instruction -

C. THESIS PRCBLEM

-6

WEEK 6

MONDAY ¢ A, HEAVY AUXILIARIES (CON'T)
l. High-speed printer

B, INPUT-QUTPUT CIRCUITS (CON'T)
l. 30 instruction
2. 3n instruction

C. THESIS PROBLEM
l. Unityping, code~edit and analysis

TUESDAY: A, HEAVY AUXILIARIES (CON'T)
l. High-speed printer (con't)

B, INPUT-OUTPUT CIRCUITS (CON'T)
l. 4n instruction
2. 6n and 8n instructions

C. THESIS PROBLEM
1, Proof-reading
2. Computer testing

WEDNESDAY s A, HEAVY AUXILIARIES (CON'T)
1. High-speed printer (con't)

B, INRUT-OUTPUT CIRCUITS (CONCLUDED)
1l 90 instruction
2. 10 instruction

C. THESIS PROBLEM
1. Computer testing

THURSDAY: A, HEAVY AUXILIARIES (CONCLUDED)
"1, High-speed printer (concluded)

B. SUPERVISORY CONTROL OPERATIONS
1., SCI'FILL
2. EMPTY
3. Clear C
4, General clear

C. THESIS PROBLEM
1, Computer testing

FRIDAY: A, -

B, SUPERVISCRY CONTROL OPERATIONS (CONCLUDED)
1. Starting and stopping Univac
2., Simple error analysis

C. THESIS PROBLEM
l. Post Mortem

w7-n

ANALYSIS OF COMMON CODING ERRORS

Practical problems prepared for digital computers involve upwards of several
thousand instructions, While the UNIVAC computer is self-checking, it basi-
cally detects errors in performing the indicated operation and does not
judge whether that operation, or series of operations, is correct in the
context of the complete problem, Errors may occur in these categories:

1. Improper execution of an instruction due to mechanical or elec-
tronic failure of the computer,

2, Failure of the operator to properly initiate the problem or in
performing rerun procedures,

3. Failure of the programmer to provide coding to carry out the
assigned task,

As mentioned in the first paragraph, errors of type 1 are checked in UNIVAC
by duplication of circuits or by redundant codes (odd-even check, etc). We
need not consider them further,

Errors of type 2 are not inherently checked by the computer, and can cause
disastrous consequences if allowed to perpetuate themselves, To a large
extent these errors may be avoided by requiring the program to check opera-
tor intervention. Thus, the rewinding of multiple output or input tapes with
8n orders insures that these tapes will be removed before those servos are
again called for further operations, Use of rings in those reels that con-
tain permanent information during a run prevents the accidental destruction
of information by Supervisory Control action,

Positive checks can be incorporated in the program to insure that the correct
tapes are mounted, and in their correct order, This is the purpose of iden-
tification blocks and sequence checks. Since Supervisory Control operations
are infrequent and the operator often unfamilar with the problem and its
coding, programs should be prepared in such a way as to require little opera-
tor intervention; and when this is necessary, it should be of extreme sim-
plicity. This is especially true in setup and rerun procedures,

Errors of type 3 are the main concern of this section, The first concern is
how do we recognize that a coding error exists? Assuming that a normal pro-
cedure has been followed, the prepared coding will have been desk-checked
(i.e., reviewed by one or more different coders), Unityped, and the Unityped
tape printed and checked against the original copy. Thus, we can assume that
the information on tape agrees with the coding sheets and that a preliminary
check has been performed.

A coding error may manifest itself in one or more of the following ways after
the program has been tried on the computer, or by none of them:

A. Overflow where it has not been anticipated (i.e,, on A-, S-, X-,
or D- orders)

E.

F.

Closed loops producing a characteristic sound from the HSB speaker,
Adder alphabetic errors.

Improper sequence of tape movements observable by operator or pro-
grammer, This includes doing 3n orders when rI is empty. In orders,
when rI is filled followed by 3n, reading a rewound tape backwards,
failure to detect end of tape information, and others.

Improper commands causing computer to stall,

Output results of test data not agreeing with pre-calculated results,

One should not always expect coding errors to be easily recognized, and often
the manifestation of an error may occur in a section of the problem remote from
where the error itself was made or even from the nature of the error, For ex-
ample, the following error was abstracted from a mathematical subroutine de-
signed to calculate log A.10%= B.10°, Where is the error and how was it rec-

nized?
000 11 000
30 060 instructions —» memory
001 81 000
006 K 000 a——>rL
F 119 +,03000 000000 —>»rF
007 B 104 +,18835 453000 ~~>TA
T 036 if a <.18835 453000 transfer control to
line 036.
008 03 000 SLg (rA) = + ,35453 000000—>rA
T 037 if a <.35453 000000 transfer control to
line 037.
009 03 000 SLg (rA) = +,53000 000000 —>rA
T 038 if a <.53000 000000 transfer control to
line 038,
026 K 000 zero—>»rL
F 118 E = 010000 000000 — rF

027 E 100 m.s.d. of (log 10x)/1000—>rA
Q 031 if m.s.d. = O transfer control to line 031,
028 B 125 + Lee 000000 —>rA
. .9 000 SRg (rA) =0,00000 000%ee —>rA
029 F 102 E; = 111111 111000 —>rF
E 100 log 10X —»TA
030 00 000 Skip
U (R+1) [Unconditional transfer of control to main
routiné.
031 § 118 «,10000 000000 —>rA
-1 000 SR; (rA) =-,01000 000000 —>rA
032 A 125 +.02000 000000 —>rA
C 125 +,02000 000000 —»125, zero —>rA
033 K 000 zero —>»rL
B 100 (log ;0%}/1000 —> 1A
034 01 000 SL; (rA) = (log j9x)/100 —>rA
Q 030 if log ;ox/100 = zero, transfer control to
line 030,
035 C 100 (log 1¢X)/100 —»100, zero—>rA
v 027 Unconditional transfer of control to line
027.
036 B 112 :
Unconditional transfer of control to line
039,
037 B 113 - log joko + kg —>T1A
U 039 Unconditional transfer of control to line
039.
038 B 114 - log jok3 + kg —>rA
U 039 Unconditional transfer of control to line
039,
039 B 100 - log jok + k—>»100, rA
-3 000 SRy (rA) = =-(log ;ok)/1000 —>rA
040 A 101 (b - log mk)/lOOO-——)rA
¢ 10 (b - log ;ok)/1000 —>101
10
041 B 100 log 10k + k—> rA
08 000

SLg (rA) = -k/10 —»rA

»

042 C 100 ~k/10—> 100

N 100 k;a/10 —>rA
043 01 000 SL, (rA) = kja—> rA

H 100 !

kja—>100, rA

044 K 000 kia-ﬁ>rL

G 125 +.,03000 000000 —>125
045 00 000

U 010 To continue computation

The error made itself known by a second attempt to read the instruction tape,
Since this tape had been rewound with interlock, the computer stalled. How
was the coding error located? The reasoning went something like this: The
control was somehow transferred to line 000, Since this was not intentional,
it might have been due to an unexpected overflow. As the problem analysis
seemed Lo be correct, at least as an initial assumption, the actual calcula-
tion of the log in steps 010 through 025 probably did not give the overflow,
The next point examined was the normalization subroutine designed to calcu-
late the zeros lying to the left of the most significant digit. The sub-
routine is in lines 026 to 035. The add order in line 032 was suspect.

This order adds 1 to a counter for each zero found to the left of MSD in

log j0x. The largest number of zeros would, of course, be 11, A check show-
ed that (118) was indeed correc. (~10 000 000 000); thus, (125) must not have
been set correctly. On line 006 is an F 119 instruction placing the constant
003 000 000 000 in rF, and the G 125 on line 044 is to place this constant in
cell 125 thus setting (125) to its proper initial value. The odd splitting
of the F ‘and G was due to the original omission on the coder's part of the
resetting of 125, After recognizing the omission, he went back to make the
transfer and filled in the F-G in whatever skips were available. The error,
of course, is that the multiplication of line 042 destroys the 003 000 000 000
placed in rF, and places in its stead 3lrL . Fortunately, this number caused
an overflow on line 032! The error was made on line 044 but manifested itself
by a read instruction on line 000,

Many coding errors occur because a programmer has ignored or forgotten the
peculiarities of certain UNIVAC orders, This subroutine is designed to trans-
fer 30 two-word items from memory locations 301 to 360 inclusive, to memory
locations 451 to 510 inclusive, What is the error?

000 [v 301

W 451
001 B 000

A 005
002 L 006

Q 004
003 C 000

U 000
004 00 000

90 000
005 000 002

000 002
006 VOO 361

W00 511

“q-

The obvious error, of course, is that a consecutive series of 2-word items
starting at an odd memory location cannot be transferred by the V register,
In spite of the fact that the routine avoids the interchange in rV by start-
ing from an odd location and transferring to an odd location, the item in
309, 310 splits across two channels and so 309 and 300 go into 439 and 450
rather than 309, 310 into 459, 460,

The following error may be more difficult to recognize, and its variants
are among the most frequent errors in editing and mathematical routines:
Memory locations 900-939 contain 40 quantities ¥; (i =0, 1, 2, ..., 39).

A quantity Z; = ,0065i is computed and added to Yj (i.e., Yj +Zj —>Yj).

000 L 008

M 009
001 [A- 939
c 9391
002 B 001
S 010
003 C 001
K 000
004 B 009
Q 007
005 S 0l
C 009
006 00 000
U 000
007 00 000
90 000
008 000 650
000 000
009 [039 000
000 000]
010 000 001
000 001
011 001 000
000 000

The error in this subroutine lies in reducing the instruction word A-O0
939 € 00939.

It would seem to be perfectly permissible to subtract one's from the
memory location digits successively reducing the instructions to

A-0 938 C00 938
A-0 937 CO0 937

A=0 900 COO 900

But note that when the adder performs algebraic subtraction it complements
the smaller (in absolute value) and adds. Thus

“5-

A-0 939 C00 939
-00 001 000 001

A09 062 C99 062

The presence of the minus sign following the "A" forces complementation on
A-0 939 CO0O 939. A method of doing this problem involves adding the comple-
ment of 1:

A-Z 939 CO00 939
000 999 000 999

A-Z 938 CO1 938

The “Z" prevents a carry from adding to the minus sign, The correct program
is as follows:

000 L 008

M 009
001 A-Z 939

c 939]
002 B 001

A 010
003 C 001

K 000
004 B 009

0 007
005 S 011

C 009
006 00 000

U 000
007 00 000

90 000
008 000 650

000 000
009 039 000

000 000]
010 000 999

000 999
011 001 000

000 000

Use of overflow for control purposes has produced great simplification in
coding and decreased the running time of routines, It has also brought a
certain headache with it -- improper counting., The example shown below is
a quite common error among beginning programmers. This fragment is from a
routine that is processing 10-word items, The item counter is increased
after transferring the new item to working storage. Unfortunately, the
counter is initially set too high, When the last item is transferred, the
counter overflows causing the next block of 6 items to be transferred into
the current block., Item 6 is thus lost in each block,

050 [Y5 (610) Aj—> WS

Z 600]
051 B 050
A* 055 i +l1—i
052 C 050
U ——— Transfer control to process A}
053 B 056 Return here if overflow from 051
c 050 o l—i
054 31 600 T)—>A
U i Transfer control to process A;
055 010 010
000 000
056 Y5 610
Z00 600

There is a simple scheme for correctly determining the initial value of the
counter, Suppose we use the above example, After having processed the last
item of the block, we will transfer a useless 10-word item into working
storaye and augment the counter, which should then overflow to indicate that
a new block is to be read, The counter reading just before overflow should
then be: Y9:660 Z 600, Initially, the counter musthe Yx 610 Z 600, set to
transfer the second item into working storage. If we add once to x each time
we add 1 to the channel selection digits of the Y order, then 9-x 6-1 = 5;
therefore, x =4 is the initial setting, This method can be easily extended
to any size item, for the case of 2-word items V99 660 W 600 is the reading
after processing the 30th or last item. If we use 002 002 000 000 as the
augmenting constant, 99-x =58 and x = 41, The initial setting being V41
602 W 600,

What is the possible indication of the coding error in the following routine?
It is supposed to count the number of nonsignificant zeros of the number X,
(Nonsignificant zeros would be those to the left of the 6 in the example:

000 006 350 010 except the sign).

000 K 000

K 000
001 F 008

E 009
002 00 000

Q 004
003 00 000

U ——
004 B 010

A 011
005 C 010

B 008
006 -1 000

C 008
007 00 000

U 001
008 [010 000

000 000]

009 Quantity X

010 [000 000
000 000]
011 000 000
000 001

In this example the extractor is shifted right to examine each column success-
ively. If the quantity X is zero, however, the routine will never transfer out
and becomes a closed loop.

There is yet another class of errors belonging to section 3., These are errors
of program logic and can be detected by an analysis of the flow chart. The
illustration is that of a two-way merge with multiple data reels for each in-
put. The standard sentinel convention is assumed for each input, The two
standby block input procedure is used,

Get New A\\‘

Block
O-H= e -0
@——’[rI—eY —3|"1't;->r1 —)[Y.-.ax —@

> to process Al

Ta —» rIl—> to process A,

The error in this example is in the two steps following the servo switch symbol.
As two sentinel blocks are at the end of each input tape, rI must have contained
the second sentinel block and thus not a valid set of A items. The correct ver-
sion would be:

qb | FI—>A —alTa.-——:»rI—)i rI—>A —;Fa—nl ‘————>§0 process

STUDENT EXERCISES,

Find the coding or logical errors in the following problems:

This is intended to be an ending routine that will read into the memory the
instructions for the next run, Assume the reading head on tape ¥#1 is in the
correct position and ¥I is erased,

049 LK R N 2N X
050 [B 940

L 056]
051 00 000

Q 053 ending test
052 00 000

U XXX continue with Run 1
053 11 000

30 000
054 50 055

U 000 go to Run 2
055 Begin

Run 2

056 ZZZZZZ

2272222 Sentinels
057 veneee

*eaeocse

This is intended to be an input routine that will park the current 2-word
input item in a working storage and read in a new input block when the
current block is exhausted, It is to be entered from the main routine by
R 305 U 300, Assume generalized overflow control with an increment of
000000 000001. Also rlI contains the next input block from tape 2,

300 V60 925

W 925
301 B 300

A* 306
302 C 300

U 305

This output routine is supposed to transfer a 10-word
working storage to the current position in the output
output block on tape after it is filled with 6 items,
overflow control with an increment of 000000 000001,
to be accomplished in the main routine by R 430 U 426,

600 L 609 L]

303

32 925

B 307
304 C 300

00 000
305 [input

return]
306 002 002

000000
307 V60 925 :

W 925

425 000000

010 010
426 B 430

A* 425
427 00 000

U 429
428 72 940

B 432
429 H. 430

00 000
430 [600

Z40 940]
431 [output

return]
432 Y 600

240 940

item from an output

block; then write the
Assume generalized
Output operation is
Working storage is

Reset constant,

A SURVEY OF SPECIAL INPUT-OUTPUT TECHNIQUES

1, Additional methods for efficient use of the input buffer,

Chapter 10, Section 8, of the Univac Programming Manual describes a simple yet
completely general method of keeping rI filled for multiple input tape prob-
lems, In this method each input tape requires the reserving of two blocks
within the memory and the execution of six Y-Z transfers to put the “standby"
block into working storage position, This paper assumes the reader is com-
pletely familiar with this method as described in the manual, which is here-
inafter referred to as the "“two-standby" technique,

Because of its simplicity and complete generality, the two-standby technique

was described in the elementary programming manual, However, there are other
techniques, Preselector, Reversal, and Automatic method which are of greater

efficiency and in more general use,

The Preselector Method

This method is simple in concept and extremely conservative of memory require-
ments and time, It is the preferred method for all problems where the selec-
tion of the next item for processing is based solely upon the relative magni-
tudes of the sequencing fields within the items., The principle will be illus-
trated by the following example:

Suppose we have two files of input items to a processing run, Let us call the
files A and B, Suppose further, that these are ten-word items, six to a block:
that the items within each file are arranged in ascending sequence by a key
within each item and, further, that the processing is always done on the item
from either file which has the smallest (in magnitude) key.

At the start of our problem we will have the first A and B block in the memory
and are concerned with what tape to read into rI. Let us write down the keys

of the twelve items as they might appear:

A Item Keys B Item Keys
1136 1000
1137 1010
2100 1011
2501 ' 2050
2502 2161
2600 2163

In comparing the keys of the last A and B item of the block we note that the
A item has a smaller key than B, Since the smallest item of A or B is processed
first by our routine, it is evident that A, will be used before By. But since

the A and B items are in ascending sequence within each file, we then know that
the A block will be exhausted before B; therefore, we should order the next A
block now, That is, fill rI with A, We can then begin processing Ay, Ay, =---,

B}, Bg,=== with the full confidence that when Ag has been processed the new A

block is in rI. If By had been smallest we would fill rI with B items, Of
course, after rI is transferred to the appropriate empty block, the last items
must be compared again to determine what now should fill rI,

The method is simplicity itself as shown in the following flow chart:

- > > #
(:::}——e(:gi_ijgz)——-{Process Bj -——9(:9 s 6 j t+tl—oj
rI-—» B »—9' 1—> j

. #
—-—-—-—4Process Ai ——-9<E:‘6j>—9 i+ l—>i

rI—A - l—i

O 0 © b

. > .

M : '89——9[Tb—>rI ‘
<

'_-—"“”fllh-e>r1

The reader will note in the flow chart that if the keys of the current A and
B items are identical, an A item is selected for processing first. Then, if
A and By have like keys, and A block must be read into rI since it is the A
block which is exhausted first, This can be a subtle point in some routines
and care should be taken in the treatment of the case of equal keys,

Since no standby blocks nor block transfer instructions are required, the
preselector is the best method for filling rI when it is applicable. There
is, however, a class of problems with complex processing rules that do not
admit the preselector method in these problems because the order of reading °
tape is either not dependent solely on the original contents of the tapes, or
the order of processing the items cannot be easily determined as simply the
smallest (or largest) item key first, In these cases one of the standby
block methods, which are ¢ompletely general, must be used.

The Automatic Method For Two-way Input

A study of the two-standby block method previously mentioned will make evident
to the reader that one of the two standby blocks is always empty.

The Automatic Method uses only one standby block, the other block in rI is con=-
sidered as the second. This method is thus somewhat more economical of memory
space than the two-standby block method, The following notation is used in the
flow chart and coding:

Ta an input file on UNISERVO a

A a block from tape a

rl register I

X designation of a standby block

Tg—vrl a block from tape a is read into rl

Initially, the first block from T, is read into A and the first block of Ty is
read into B, The standby block X is filled with the second block from Ty and

rI is filled with the second block from T,, Variable connectors a2 and B are

set, -
To process
new A Block

Get new - : o
A Block . rI—A —9{1‘5—-;:’1‘ —)® : >
@ X—A {:I-—)X *{ Ta——>r1 "’l-al "{ﬁ2 @

"To proecess
new B. Blockj
. Get new : | —_ 4(:%:) >
' B Block l rI“‘*B ""! Ty—r1
-- X —>B -’] rI—X ﬂ{'rb—n-l -{aag -+p1 -—)@

In coding the aufomatic method the input blocks assigned were:
A -- 940 - 999
B -- 880 - 939
X -- 820 - 879
If a new A block is needed we go to line 100, and for a new B block to line 109,

100 [y 820

Z 940] Variable conmector ¢ (ao shown)
101 Y 830
Z 950
102 Y 840
Z 960
103 Y 850 X —A
Z 970
104 Y 860
Z 980
105 Y 870
Z 990
106 3a 820 rI—X, nf—arl
B 118
107 C 100 ;} 1
B 121
106 C 109 :} P2
U

109 L3p 880
Variable connector B (B shown)

®

110 Y 830

Z 890)
111 Y 840

Z 900
112 Y 850

L xosp

Z 910 -
113 Y 860

Z 920
114 Y 870 .

Z 930/ :
115 3b 820 rI—X, T—>rl

B 119 a9

116 C 100

B 120 8
117 € 109 Pl

v ®

118 3a 940

o

119 820

120 3b 880
© @
121 Y 820

Z 880

The automatic method requires 22 words for: instructions and constants, plus
180 words for the A, B, and X input blocks. The obtaining of the next A or B
block will require either 3785 p's if the block is in rI, or 13,365 us if the
block is in X, If we assume a completely random reading sequence, then the
average will be 8575 s, Compare this to the two-standby block method de-
scribed in Chapter 10, Section 8, UNIVAC PROGRAMMING MANUAL which requires 25
words of instructions and constants plus 240 words for the A and B blocks and
their standbys, The time to obtain the next block is 15,395 ps. Obviously,
the automatic method is superior to the method described in the programming
manual,

Reversal Method for Two-way Input

The reversal method is feasible for those cases where the volumes of the two
inputs are known to be very dissimilar, Assume the A input on tape a is very
much larger than the B input on tape b, The initial setup is to fill an A
block and a B block with the first blocks from their respective tapes, placing
the second A block in rI., The following flow chart indicates the method of ob-
taining the next A and B blocks. (The symbol Ty<«—rI is a shorthand notation

for the statement "fill rI with a block from tape a, reading this tape back-

wards™.)
Get new To process
A Block new A Block
@ rI—>A 3| Ta—->rI

Get new
B Block
@)l ri—B —al Ta<—-rI —;{ rI—B ﬁ[Tbarl —-)@

To proce;}q

v

new B Bloc

<:::>—€{ rI—B -——é{k Ta__+>r1 >

In cod%ng the reversal method, the A block is assumed to be in 940-~999, the B
block in 880-939., If a new A block is needed, we go to line 100: and if a new
B block is needed, we go to line 101,

100 3a 940 rI»A, Tg—srl

U_ == To process A block
101 4a 880 rI—B, Tae—1rI
‘ 3b 880 rI—B, Th-—>rl
102 3a 880 rI—»B, Tg—»rl

U - ~ To process B block

The coding is small; 3 words, and an additional 120 words for the A and B block
storage., The time to get the next A block is 3780 ps while the time to get the
next B block is 1,53 seconds due to the tape reversals necessary to reposition
Ta°A A simple calculation shows that if the ratio of the size of the two files
is g 2 130, the reversal method is faster than the two~-standby block method and

requires less space than the automatic, Although the automatic method is always
faster than the reversal for a very small B file, the few extra seconds required
by the reversal method may be tolerable to gain the extra 79 memory cells.

The Automatic Method for Three-way Input

This method is an extension of the automatic method described for two-way input.
and uses two standby blocks in the memory with rI considered as the third. The
following brief annalysis will show that the information in the standby blocks
varies throughout the process,

Assume that initially, the A, B, and C input blocks are filled from tapes a, b,
and ¢, respectively, and that the two standby blocks labeled X and Y are filled
with the second blocks from tapes a and b, respectively, The second C block is
in rI:

A Input B Input C Input
Block Block Bloc
A B C
X Standby Y Standby
lock ' - Block
A B
rl
c

Suppose the A input block is exhausted first: (A shaded block indicates the
portion of that block processed)

A B C
X Y
A B
rl
C

the contents of X are A items, so they are transferred to the now empty A
input block., rI is transferred to X so as to be able to order the next A
block from tape a.

—] —
A B C
X Y
C B
rl
A

.

If we again exhaust the A block, we can replace it directly from rI without
disturbing the two standby blocks, If, however, the B block is exhausted
next, we fill B from the Y standby, transfer rl to Y, and order the third
B block from tape: :

A B
X Y
C A

rI

B

Thus, in this example, the standby blocks which start with A and B items soon
are changed to C and A items, Unlike the simple procedure described in the
Programming Manual where each standby block always contains only one type of
item, this method permits "floating"™ information in the standbys, The attached
flow chart indicates the general solution for this method. At the beginning,
connectors @ g, 55, Y1, are set for the initial conditions already described.

Let us investigate the logic behind the flow chart by first making a table.
showing the possible configurations of X, Y, and rl:

Configuration Contents of:
Numbgr rI X Y
1 A B c
2 A c B
3 B A c
4 B C A
5 C B A
6 C A 'B

Now suppose an A block is needed; this block will always be available in either
rI, X, or Y, After placing this A block in the A input position, we might ask

ourselves: What is the new configuration? The following table shows the con-

figuration numbers resulting from the act of obtaining an A block, B block, or

C block from each of the six possible configurations:

~8=

et new.
Block

Iy

53 |

o®
c.f.
3
®

Block

5

et ne
Block

Caa

i

k

—%zﬂ}—>x

—t T Y

'-% rI-X

oa)+
.CL2

_~%ﬁri—e>Y

e

H{ rI—C

]

To pro=
cess new.
A Block |

S

To pro=-

B°Block”

To pro=
cess new
C Block

r%irl—$>Y

>

Configuration Number Transformation Table
Original Configuration after obtaining an:
A Block B. Block C Block

1 1 3 5

2 2 4 6

- 3 1 3 6
4 2 4 .5

S 1 4 5

6 2 3 6

Note that obtaining an A block from configurations 1 or 2 leaves these configu-
rations unaltered while configurations 3, 4, 5, and 6 are altered by obtaining
an A block. By alterdtion is meant a change in position of either an A, B, or
C block., The connector @7.in the flow chart suffices to obtain the next A

block when either configuration'l or 2 exists., @, and Gy are the connectors
used where an A block is in X: a2 for configuration 3, &g for configuration 6.

Separate connectors are needed even though the A block is in X for each con-
figuration since the act of moving the A block alters the position of the B agd
C blocks in different ways, G4 and Qg5 are connectors used when the A blotk is

in Y: %4 for configuration 4 and ag for 5. A similar assignment of connectors
to configurations applies for obtaining B and C blocks, These are summariized
in the following table?

Configuration . Connectors

Number A B C

1 @y P2 Y4

2 a B4 Y2

3 Go B, Y5

4 %4 Py Y3

| > %5 P 3 Yy
o %3 Bs Yy

«=10=

Now that we have assigned the variable connector numbers for each configuration,
we note in the transformation table that obtaining an A block from configuration
6, for instance, will produce configuration 2, Now configuration 6 requires that
a3, Bs, and Y1 be set, and the resulting configuration 2, will require cornec-

tors @, P4, and ¥ 2 to be set, Thus, the connector G 3 must set P4 and Y2

as well as &, , This kind of reasoning makes evident the rationale behind the
flow chart.

The average time required to obtain an A, B, or C block is 11,622 K's, 387 words
of storage are required for the three input blocks, the two standby blocks, and
the coding and constants,

Summary

While it is evident from the foregoing discussion that the so-called preselection
method of keeping rI filled is superior to the standby block schemes in both

time and space requirements, there is occasionally a class of tape problems en=-
countered for which preselection is not suitable., For these problems, one of the
standby block methods is preferable, For two=way input the automatic method is
preferred, the reversal method being used when the second input is of very small
volume and memory space is at a premium,

For three-way input the automatic method is preferred over the two-standby block
method (Chapter 10, Sec, 8)., For more than three-way input with no great dis-
parity in the relative volumes of the inputs an extension of the two-standby
block method is superior in space and time to similar extensions in the methods
described above.

2, Arrangement of information for effiecient transfer within the computer.

Item sizes a sub-multiple of 60,

As a direct consequence of reading information in units of a block rather than
an item, it is necessary to consider the most efficient arrangement of the items
within the block., Where the item size is one, two, or ten words in length, the
usual sequential arrangement of an entire item followed by the next one in suc=-
cession clearly does not offer much room for improvement, In the case of one-
or two-word items, minimum latency considerations might require that the order
of items in the block be rearranged from the normal one for a particular run,
but such a situation would be unusual,

The above statements follow directly from the existence of one-, two-, and ten-
word registers for transferring information from an input block to an output
block or to working storage as the c¢ase may be,

In dealing with twenty- and thirty-werd items, or four-~ and six-word items, the
same remarks apply with several transfers taking the place of the one required
previously, There are cases, however, where the normal sequence of items can

be vastly improved upon, Consider the twelve-word item for example, In general,
to transfer a twelve=word item from an arbitrary position in the input block to

“ll=

working storage or to an arbitrary position in the output block requires six
V-W instruction pairs.

If this is accomplished with iterative coding, the following routine will have
to be executed six times for each item transferred:

100 V40200 W 300
101 B 100 A* 104
102 C 100 U 100
163 00 000 U XXX to processing routine
104 010002 000002

Straight line coding would offer some improvement in speed but would require 35
lines of coding per input to transfer the items to working storage and 35 lines
of coding to transfer from working storage to the output block,
The following arrangement of the twelve-word items would be far more efficient,
both with regard to memory space and execution time: (j, k is word k of item j)

Cell

200 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

210 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

220 3,1 3,2 33 3,4 3,5 3,6 3,7 38 3,9 3,10

230 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

240 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10

250 1,11 1,12 2,11 2,12 3,11 3,12 4,11 4,12 5,11 5,12
For this configuration, an item transfer would require only a Y-Z and a V-W,
Using straight line coding 19 lines per input will suffice to transfer the
item to working storage and similarly 19 lines for the output block. The

coding necessary to accomplish the transfer of items to working storage is
illustrated below,

100 00 000

U 101
101 R 1060

U 110
102 R 100

U 113
163 R 100

U 116
104 B 108

Cc 100
105 V 258

Y 240
106 W 250

Z 200
107 00 000

U XXX to processing routine

108 R 100
U 109 constant
-y
109 30 200
U XXX to preselector read
110 VvV 252
_ Y 210
111 W 250
Z 200
112 00 000
U XXX to processing routine
113 VvV 254
Y 220
114 W 250
Z 200
115 00 000
U XXX to processing routine
116 V 256
Y 230
117 W 250
Z 200
118 00 000
U XXX to processing routine
*

Use of minimum latency coding could further improve this routine. The following
examples will illustrate further applications of this technique,

1,1 1,2 1,3
2,1 2,2 2,3
3,1 3,2 3,3
4,1 4,2 4,3
1,11 1,12 1,13

3,13 3,14 4,11

1,4
2,4
3,4
4,4
1,14

4,12

1,5
2,5
3,5
4,5
2,11

4,13

15-Word Item

1,6
2,6
3,6
4,6
2,12

4,14

1,7
2,7
3,7

4,7

2,13
1,15

-13-

1,8
2,8
3,8

4,8

2,14
2,15

1,9 1,10
2,9 2,10
3,9 3,10
4,9 4,10
3,11 3,12
3,15 4,15

S-Word Item
o1 L2 1,3 1,4 21 22 23 24 3,1 3,2
3,3 3,4 41 42 43 44 5,1 5,2 5,3 5,4
6,1 6,2 6,3 6,4 7,1 7,2 7,3 7,4 8;1 8;2
8,3 84 9,1 9,2 93 94 10,1 10,2 10,3 10,4
11,1 11,2 11,3 11,4 12,1 12,2 12,3 12,4 1,5 2,5

3,5 4,5 55 6,5 7,5 85 9,5 10,5 11,5 12,5

3-Word Item

1 1,2 2,1 2,2 3,1 3,2 4,1 4,2 5,1 5,2

6,1 6,2 7,1 7,2 8,1 8,2 9,1 9,2 10,1 10,2

11,1 11,2 12,1 12,2 13,1 13,2 14,1 14,2 15,1 15,2

16,1 1:6,2 17,1 17,2 18,1 18,2 19,1 19,2 20,1 20,2

1,3 2,3 3,3 43 5,3 6,3 7,3 8,3 9,3 10,3

1,3 12,3 13,3 14,3 15,3 16,3 17,3 18,3 19,3 20,3
Thus we see that a 15-word item can always be transferred using one Y-Z, two
V-W's and one B-C, Similarly, a five-word item can be transferred by using
two V=W's and a B-C,
It is to be noted that input data from noén-Univac sources, in general, . can not be
obtained in the efficient configurations illustrated above, Therefore, the
rearrangement of the information will have to be executed by the first Univac

run on the data,

Item sizes not a multiple or sub-multiple of 6

Occasionally, an item size which cannot be contained an intergral number of
times within a block is desirable, Generally, this would be true where the
processing is done at less than tape time. Then, any reduction of the total
amount of tape required will reduce the overall processing time,

An obvious solution to this problem is to consider the item as being composed
of a series of sub-items, the length of the sub-items being a sub-multiple of

a block., In the practical case the sub-item will be ten words in length as the
time required to move many one- or two-word sub-items negates any advantage
gained in reducing the amount of tape. For example, if the number of digits
required in an item is 420 (35 words) an item size of 40 words could be used.

w-]d=

Each item is then composed of four ten-word sub-items. If it were not possible
to handle items not multiples or sub-multiples of a block, the item size would
have to be 60 words in length, The 40-word item thus saves 1/3 of the tape re-

quired and reduces the processing time up to 1/3 depending on how much the item
processing time is under the tape time,

The following flow chart is an iterative solution to the selection of an N-word
item, W, composed of p sub-items A;. Each input block, A cogtaining i’ such
sub-items, The k in WX is shown as a superscript since Wl. Weyoouo WE are, in
actuality, fields of the item W,

Get New
N Item

: . .
,,_a__)@_) 1—>k 2 i if i+1—>i

O =
' it

O P O

To Process
New W Item

Note: initially i=0

~]5=

The symbol

®

represents an appropriate subroutine which will obtain the next A block. The
reader should note that while it is not possible to use all of the input block
A for the working storage W, it is possible to use a portion of the block for
some item sizes and thereby conserving memory space, For example, consider
the possible configurations of blocks containing a forty-word item:

Block 1 Block 2 Block 3
1-1 2-3 4-1
1-2 9-4 4-2
1-3 3-1 4-3
1-4 3-2 ‘ 4-4
2-1 3-3 | 5-1
9.2 | | 3-4 5-2

(The notation j-k means the kth sub-item of the item j). Thus, only two block
~ configurations are possible. Now, if the working storage Wi, W2, W3, and w4
is positioned as follows with respect to the input block Aj;, A2, A3, A4, Aj

and A6:

wl

working storage w2 _
w3 A

w | a2

input block

A
Ag
A

Only twenty extra positions are necessary for the working storage W.

Although it would be desirable to have the read routine be the preselector, it
has not been found possible, up to this time, to suitably modify this technique
to make it work properly for the "odd" item sizes. This means that one of the
standby block methods described earlier must be employed in ordering blocks
from tape.

w]b=

Item sizes not of fixed length,

In some large volume tape problems the variation in minimum required digits for
the items of a file may be very large. This case may occur when a master infor-
mation file is laid out, If we allot to each item of the file the tape space
required for the largest possible item that can occur, we may find that a very
large portion of the file contains "blank" areas causing inefficient use of the
tape and could greatly increase the processing time,

Hence, it is desirable to let each item use as little tape space as is feasible.
If this is done, then the items on the tape may be of varying lengths., This
variable item size can be easily handled by the computer by considering each
item to be composed of a variable number of sub-items, each sub-item being of

a fixed size, All that is then necessary is to read into the memory all of the
sub-items comprising an item, The routine that selects the next sub-item from
the block (or the next block from tape) is designed in the usual manner since
the sub=item is of fixed size,

The problem next to be solved is how do we know when all of the sub-items for
a given item have been assembled? This may be done in several ways, the one
to be selected depending on the particular situation,

The first method to be described assumes that each sub-item carries the item
key word., Then, as each sub~item is selected its key word is checked for
equality with the current key word, The flow chart for this method is shown
below., A is the input block containing i/ sub-items Aj. W is the working

storage which will contain the current tape a item; this item is composed of
fields WK, K stores the key word for the current input item, K is initially
set to the value of the key word of the first input item, The key word of
each sub-item is assumed to be field Ago

Get Next
W Item

l—3k

. -k N
. Ai-qbw r*‘ll"

To Process
New W
(=

3 k +1—k ﬁ(izviDjé! i+ 1l—>i

d—> i

This method assumes that two items with the same key word is not possible, It
is also inherently assumed that the space required for repeating the key word
is not unduly excessive,

Perhaps an inherently better method is to consider the sub=-items of an item to
be of two kinds, The first sub-item may be thought of as a "header" sub-item
which contains the key word for the item, The remaining sub-items can be con-
sidered as "trailer™ sub~-items, Now, instead of requiring all sub=-items to
carry the item key word, we can simply require that each sub-item have a fixed
digit position which will contain, say, the symbol "H" if the sub-item is a
header and "T" if the sub-item is a trailer, The flow chart for selecting the
N-word item W composed of a variable number of sub-items Aj, with key as Aj.

Get Next \\

W Item

itl—si

l—>1

k *1—k To Process
= ' New W

=]
) S

©

18-

IDENTIFICATION BLOCKS AND RERUNS

1. Introductory Considerations

The governing characteristic of commercial data processing problems is the
very large amounts of information (records or items) to be fed into the com-
puter, Even some of the simpler problems may involve tape files of 20 to 25
reels per file, while large problems can demand nearly 300 reels per file.
Most often the processing of these tape files requires that the items com-
prising the file be processed in a definite sequential manner, If this is
true, then certain precautions must be exercised to insure that these items
are processed in sequence, Two techniques in common use to guarantee this
sequential processing are identification blocks and bleck counts,

The reader should bear in mind the situation encountered by an operator
during the running of a large tape probdem involving several hundred reels.
Since the contents of a reel of tape are not directly visible té the oper=-
ator, a gummed label is usually attached to each reel, Now, although each
reel has a visible identification label, what assurance have we that when
the computer calls for the fifth reel of file A to be mounted on a Uniservo
that the operator does indeed mount reel #5 of file A on that Uniservo?

Or, granting that a reel bearing a visible label "Reel ¥#5 - File A" is
mounted on the desired Uniservo, what guarantee is there that this label is
a correct description of the contents of the reel? These questions arise
because of the bias of human operations toward error. Since the computer
is self-checked in its operation, it is desirable that human intervention
in the processing chain be limited as much as possible and that such inter-
vention be done in a simple fashion, subject to check.

Assuming, now, the correct data reel has been mounted on the desired Uniservo,
can we rest assured that the items on that reel will be processed in their
correct sequence by the computer? We can provided, again, that no operator
intervention is necessary. Occasionally, it is necessary for the operator
to affect the position of the tapes mounted on the Uniservos; for example,
if a block on Uniservo #2 was read into rI incorrectly, the operator will
set into SR from SCP instructions causing the block to be re-read.* If the
number of data blocks recorded on the tapes is placed on the tape itself,
then the computer can check that the operator did not misposition the tape.
With this check made possible, a block of items cannot get lost in the pro-
cessing run, nor cah a bloé¢k be precessed twice,

To illustrate the use of identification blocks and block counts in checking
the human interventions mentioned above, a general two-way merge for ten-
word items will be described. First however, we shall describe the stand-
ard data tape format.

* This condition will not eften arise if the computer is equipped with the
automatic re-read device,

2. The Standard Data Tape Format

The first block recorded on a data tape will be the identification block of
which the first word only will be of interest to us now.® This word is the
reel identification number, designating the file of which this reel is a part,
and the sequence number of the reel within the file., For our two-way merge
the identification word has the following appearance (for the 13th reel of
the file A):

EA A AO13AAAAA

Following this ID block are the data blocks, If the reel is not the last

reel of the file, there may be up to 1981 full data blocks. Following the last
data block there will be recorded a sentinel block having the following
composition: word OO0 (the first word of the block) consists of twelve Z's

(the sentinel); word 50 also consists of twelve Z's; word 51 contains the
number of data blocks recorded onm tape plus this sentinel block, For ex-
ample, if this tape contains 1981 data blocks, word 51 of the sentinel

block looks like:

0000000001982

Word 59 (the last word of the block) will not consist of twelve P's,
Following this block will be other blocks which are provided for the pos-
sibility of the reruns to be described later, If the reel is the last reel
of a file, its identification block is in the same format noted, However,
being the last reel of a file, it may have less than 1981 full data blocks
recorded on it, Following the ID block will be as many data blocks as
needed (1981) to record the remaining items, If the items on the last
reel are a multiple of six, they will exactly fill the last data block. In
this case, the sentinel block already described will follow the last data
block, except that word 59 of the sentinel block consists of twelve P's
which serve to identify the last reel of a file, But if the data items are
not a multiple of six in number, the last data block will be only partial-
ly filled. In this case, a Z sentinel will be placed in the next word
position of the partial data block, following the last word of the last
data item. For example, if the partial block contains only three ten-
word items, word 30 will contain all Z's. In addition, the 50th word of
the block will also be a Z sentinel; amd word 51 will contain the number
of full data blocks on this tape, plus the partial data block., Word 59
of this block will consist of twelve P's. In either case, following the
partial or full sentinel block, is a second full sentinel block.

3. Description of the Generalized Two-Way Merge

Briefly, the generalized two-way merge problem is this:

* Other information in the ID block is for use in re-rums,

e

There are two multi-reel files, labeled for convenience, file A and B, Each
file consists of a series of ten-word items, the first word of each item be-
ing a key word or serial number, The items in each file are recorded on tape
in an ascending sequence by their key words, The reels comprising each file
are recorded in the standard data tape format just described. The problem is
to produce a new file, labeled C, also in standard data tape format, which
contains every item on the A and B files, arranged in ascending sequence by
their key words. Twe Uniservos will be allotted for each file:

Uniservos File
2,3 A
4,5 B
6.1 C

In this way, after reel 1 of file A, which is mounted on Uniservo 2, has been
processed, it is given a rewind instruction, When this tape is rewound, the
operator will replace it with reel 3 of file A, While reel 1 is being rewound,
reel 2, which has been mounted on servo 3, is processed by the computer; thus,
the computer need not wait for the rewinding of a reel and the mounting of a
new reel of tape, This same prodedure is used for the B and C files as well,

The complete flow chart and coding of this problem is attached,

The following list is an explanation of the flow chart symhols,

T, = Tape on Uniservo a

A = A block of 6 items from T,

g S ith item (i= 1,2,...,6) of A
Al = nth word (n = 0,1,2,...,9) of A;
fa = File and reel label for T,

Aa = Block counter for T,

A block from T, is read into rI (forward read)
Rewind T, with interlock set

The block C is written on Te

Servo interchange symbol, a, which was Uniservo
2, now becomes 3, Circle rotates 180° so that

next trip through a, which was servo 3, becomes
2 again,

Flow line followed by individual items

Flow line followed for end {(or start) of block

Flow line followed for end (or start) of tape
— Flow line followed for end (or start) of file

B

A brief description of the flow chart follows:

At the start of the problem the flag indicates that the input and output Block
counters are set to zero, and the input and output tape labels are set to one,
At connector the input file labels with their appropriate Uniservo numbers
are printed so that the operator can mount the first reel of the A file on the
Uniservo 2, the second reel on 3, the first reel of the B file on Uniservo 4,
the second on 5, and blanks on Uniserves 6 and 1. The pext step, ., is to
write the identification block on the output tape. Atq is conditional trans-
fer breakpoint 1, If breakpoint 1 has been depressed, tThe computer will stop
this point, If the operator then forces transfer, the computer will go to
e:) for the re-run procedure., The normal path through this breakpoint is to
where the tape label for tape b is tested, If the wrong T, has been mounted,
the tape will be rewound with interlock, the correct label printed on SCP, and
the computer will stall on the next read until the new tape is mounted. When
T,, is correct (or corrggted), the first data block is read into the memory and
tge computer goes to ‘ to test the Ty label, When the first data block of
T, and T;, has been regq computer goes to @ where the preselector method
is used to fill rI. ‘—)@a é—)@ is the merge proper. As each output
block C is filled, the computer godes to ',) where the output item counter is
reset, the block written on T,, and the output block counter increased. When
the 1981 data block has been written on the iape, a Z sentinel block is written
and 8 set to indicate the contents of rI, The output tape labei, Le¢, is
printed on SCP to enable the operator to label the current output tape correct-
i{. Lc is then augmented for the next output reel, the output block counter,
¢, is reset, and the output tape rewound with interlock, The output servos
are then switched and the augmented tape label is written on the new output
tape. The output operations concermed with re-~runs will be discussed later,

As each A block is exhausted, the computer goes to where the A input item
counter is reset and the next A block obtained from rI. The input bleck
counter, A a, is augmented and the new input block is examined for a sentinel
in the key word position of the last item of the block., Should this be a sen-
tinel block, the computer data block count, Aa, is tested against the block
count on the tape., If they do mot agree, the next operation is at where
all tapes are rewound and the error noted on SCP, If the counts are correct,
T, is rewound with interlock and a test is made to determine whether the last
T, has been processed. If it has not, the A input block counter is reset, the

T, input servos interchanged, and the T, tape label augmented. Ag (18)the new T,

label is examined as noted before. If th1s was the last A tape, is set to
send us later into the ending routine at A similar procedure holds for
exhausting a B input block.

4, Re-run Procedure

Next, let us examine the procedure planned for a possible re-run. A procedure
must be prepared by the programmer for the continuation of computation on his

)

problem in the event of a computer breakdown, It is always preferable to have .

a general re-run procedure which will be used for amy re-run to avoid any pos-
sibility of errors on the part of the operator. Thus, the re-run (to be ex~
plained) is designed for even the extreme cases where nothing in the computer
can be used,

o

The theory of this re-run method is quite simple: We "photograph” the memory
and register setup at the conclusion of each output tape. Thus, in the event
of a computer breakdown while processing output tape k we need only restore
the memory and reposition the tapes as they existed at the beginning of out-
put tape k., At the end of output tape k-1, after we have written the sentin-
el block, we set a variable connector é:)in accordance with the contents of
rI., Then, at ’ we augment the output tape label, L¢, and reset the output
block counter, Oc¢, At this point, we write the entire contents of the mem-
ory onto the output tape and rewind it.’

Let us now suppose a computer breakdown or an operator error occurs, or even
in some succeeding run one of the output tapes of this run proves unreadable,
In all of these cases, we need only locate the memory dump recorded on the
previous output tape. By reading this memory dump back into the computer, we
will restore the memory to the state which existed at the beginning of the
output tape which later proved unreadable, or during the writing of which the
computer or operator error occurred. The input tape labels and block counters
are used to reposition the input tapes., Hence, we have reconstructed the
problem at the beginning of an output tape,

If a re-run is to be done, breakpoint 1 is depressed and the last good output
tape is read down past the sentinel blocks (a search routine is placed in the
output tape ID block for this purpose).* The memory dumped on this output
tape is then read into the computer and control transferred to the start of
the merge routine, After writing the output tape ID block, the computer stops
on Q1 where we release the breakpoint and force transfer, At the input
tape label for Ty is checked and this tape positigned in accordance with the
reading of a obtained from the memory dump., At ‘ the T, label is checked
and this tape positioned, At rI is filled from the appropriate tape,
control then being transferred o to begin the reprocessing of this new
output tape,

* As indicated in the coding for this example, the operator will mount on
servo 1 the last completed output tape, This tape is easily identified by
the L¢ last printed on SCP, He then does Initial Read on this tape, The
instructions in cell 000 which set up in SR are ignored through manual
clearing of SR. The computer then executes the instructions in cell 00l
of the ID block which locates the memory dump at the end of this tape,

a=

Y1

k=1,Aa=Ad
La=Lb=Lc=1

2,b=!, cz%Cio‘\]
€09 o |

a,b,La,Lb»SCP

(-

FT

—’ltla——é A

¥ e

@—)[La—)L

nojor =

b—>t

—)lrI—>C

L)lrI—-:rC

‘1g+l-—->g

?')I Tt"-")I‘

?{Tr—)ﬂ
L;-»scp]‘—awn* Ty

oi==te

@ﬁr‘m& — Cx

9Gc : 6 7 k+1-—>k)@

— ‘

RO
i

@.%Ai—.»ws_)l.sz _,@

: 6 7!‘ i+l-—>i—)@

13

2 “’[Ac+l+c% P —C

-‘o{z—ecg -’l C—=>T HLC—:-SCP

B

l

RWD¥T aTpTe

16

17

1—>j

! i
e{ﬂ_———s»B ﬁ Ab+1-Ab

Tb——>rI

rI— 5B

rI—>B &

Lb->»SCP¢

0—>Ab

1——s1i

=4rI——+A

é%Aa+l+Aa

-2
1

N N Jr O
To> rIFY rI—pA P, —5T1 A; ¢ La
rT-s Aj{La.»5CPL [RUD* Tl
"Block Count Off- '
Rerun'——>» SCP RWD*T , Ty, Ty

0—Aa

STOP

5| Bl B{Lb+1—Lb

2Ta+l1—>La

-8

-
=}‘Ac+l—->Ac

==

U] :
== Z—-C1 %Z — CgHAc+l->C6

)

: Lc-,»scp;Lc+1->Lc«;[o——>Ac = Tnstpuctiongspumy o
L]
]
I
== % P1E=4
T, ¢ |
A — C—)TC -

3.

Coding for Generalized Two-way Merge
000 R2W 007
UMG 005 transfer control to generalized overflow
001 000 000
000 001
002 11 000
31 060
003 31 120 instructions —>» 000-239
30 180
004 81 000
] 008
005 B 007
A- 001
006 C 007 generalized overflow subroutine
00 000
007 [ccC cce /
ccc ccc]
008 F 193
@ B 189
009 E 194
F 195
010 E 183
c 820
011 B 190
E 185
012 F 193
E 194
013 C 821
F 082
014 B 196
E 184
015 H 822
E 186
016 C 823 ,
50 197 K2-wayA merge
017 50 198 KMOUNT A TAPES
50 820 RO A Axxx A ONAx
018 50 822 CAALTAW/xiid ~3» SCP
50 821 R AA Bxxx AONA x
019 50 823 AALTA W/xiii
50 199 K AA BLANKSA ON

020 50 217
00 000 A6A ANDA 1, RRR
021 R 142 hy
U 141 transfer control to connector 21
022 L 000 .
(:::) Q1 156 force transfer for rerun
U 098 transfer control to connector 16
024 R 026 G2
(:::) 4] 063 transfer control to connector 18
025 B 218
C 026 «G3
026 LCCC cCcCC
ccc cccl
027 00 000
T 029 transfer control if AQ ”B§
028 [12 000 T,—>rl
U 030] transfer control to connector 11
029 [14 000 Tpy—> r1
00 000]
030 B 880
@ L 940
031 00 000
T 073 transfer control if A9 > B?
032 [y 880 A; —> ws
00 000]
033 R 108 | .
U 106 transfer control to connector 12
034 [ccc ccc
ccc . ccc) i+ 1—>i (overflow if i = 6)
035 B 034
A® 219
036 C 034
U 030 transfer control to connector 11
037 B 220
i C 034 1—>3
(:::)038 30 880 rI—>A
' B 191
039 A0l 195
Cll 191 Aa +1—Aa

1=

028

interchange Ta uniservos

-] 2=

040 B 930
L 230
041 00 000
Q 043 transfer control if Ag== Z
042 00 000
U1l 026 transfer control to connector 5
043 B 931
L 191
044 00 000
Q 054 transfer control if Afl) = Aa
045 50 221 KBLOCK & COUNT
50 222 A OFF-RERUNRR} —> SCP
046 F 157
B 050
047 E 183
H 050
048 E 185
H 051
049 E 187
C 052
050 | 800 000
000 000
051 | CCC CcCC "*l
CCC ccC Tewind with imterlock T , Tb' T
052 |ccc cce 2 ¢
CCC cCcC
053 90 000 | stop
00 000
054 [82 000 rewind with interlock T,
B 939]
055 L 223 9
0 144 transfer control if A/ = P
056 K 000
C 191 0O—Aa
057 F 183
B 184
058 G 184
H 183
059 F 224
E

060 H 028
_ E 054
061 H 054
E 065
062 H 065
E 068
063 C 068
B 189
064 A- 225 La+ 1—>La
C 189
[12 000 Tg—>rl
32 880] rI—> A, Ty—>rl
066 B 880
L 189
067 00 000 0
Q 037 transfer control if A] = La
068 [B2 000 rewind T, with interlock
B 226)
069 F 216
E 183
070 C 881
50 881 KTaA LABELA SH]
071 50 227 OULDA BE--iii »->SCP
50 189 KAA Axxx
072 30 880 rIl—s A
U 065
073 Y 940 B.—>ws
00 000 J
074 R 108 «0q
U 106 transfer control to connector 12
075 [ccc cce
ccc ccdl
076 B 075
CA* 219 j + 1—>j (overflow if j= 6)
077 C 075
U 030 transfer control to connector 11
078 B 228
C 075 l—> j
079 30 940 rI—>B
B 192

-13-

080 A- 195 }Ab + 1—»Ab
C 192
081 B 990
L 230
082 00 000
Q01 084 transfer control if Bg =17
083 00 000
0. 026 transfer control to connector 5
084 B 991
L 192
085 00 000 1
0 087 transfer control if B, = Ab
086 00 000
U 045 transfer control to connector 14
087 [84 000 rewind T, with interlock
B 999]
088 L 223
0 026 transfer control if Bz =P
089 K 000
, C 192 O0-+—2>Ab
090 F 185
. B 186
091 G 186
H 185
092 F 224
E 029
093 H 029
E 087 interchange T;, uniservos
094 H 087
E 098
095 H 098
E 101
09 C 101
B 190
097 A- 225 Lb+ 1—>Lb
C 190
098 [14 000
34 940)
099 B 940
L 190

~-14-

000

100 000 ~
Q 078 transfer control if BY = Lb
101 [84 000
B 226] rewind Tb with interlock
102 F 216
E 185
103 C 991
50 991 KTb ALABELA SH
104 50 227 OULDA BE--iii —> SCP
50 190 RAA Bxx
105 30 940 rI—B
U 098
106 [24 820 Ws—>C
B 106]
107 A* 219 k + 1—>k (overflow if k = 6)
C 106
(:::> 108 [CCC CCC
ccc ccc]
109 B 229
C 106 l——>k
110 [56 820 C——T,
B 23]
111 A- 195 }Ac‘+1—->Ac
H 231
112 L 232
Q 114 transfer control if ¢ = 1981
113 00 000
U 108 transfer control to O
114 F__ 230
G 820 z——»cf
115 G 870 z——a»c8
A- 195
116 ¢ 871 Acg +1—3cl
56 820 C—>T, 6
117 B 930
L 990
118 F 042 0~ 0
T 120 transfer control if Ag > Bg
119 B 028
U121 B,

-15-

120 B 029 Bo
00 000
121 .6 000
C 162
122 B 235
E 187
123 H 128
ﬁ F 210
124 E 233
cC 821
125 50 821 RLABELA Tc==-~)
50 200 B AACxx:AAAAA (> SCP
126 B 200 1 :
A~ 225 & Le + l—=>Le
127 ¢ 200 J
C....23) .. 0—>Ac
128 [CCC cCC
ccc cec]
129 A* 234 Memory —>T,
C 128, —
130700 0060
: U 128
131 [86 000 Rewind T, with interlock
B 188
132 F 187
G 188
133 H 187
F 224
134 E 110
H 110
135 E 116 Interchange T, servos
H 116
136 E 131
H 131
137 E 141
H 141
138 E 152
H 152
139 E 153
C 153
140 C 142 .
00 000 2
(:éi) 141 [76 200 Lc~n>C?, C —>T
00 000] ¢
142 [ccec cee
0 cCC ¢CC]
143 00 000 ,
U 108 transfer control to 9

-16-

144 R 032 Y2
: U 026 transfer control to 5
145 L 230 _
Q 147 transfer control if A? =2
146 Y 880 Ai""" wSs
' U 033 '
147 Y 230 Z—>rY
00 000
148 R 107
U 106 transfer control to do Z-—-)»CO
149 Z 870 Z——>C2
B 231
150 A-- 195
c 871 Ac + 1—> cé
151 B 223
C 819 P—sC
152(56 820 | C—>T,
z 820 z—>cp
153[56 820 C—>T,
B 187]
154 R 126
4] 123 transfer control to do LC==pSCP
155 50 236 REND MERGE,R —» SCP
‘ i} 046 trancfer control to RWD* tapes
156 B 189 La—» L
L 191 A a—>A
157 F10 183 a—>t
00 000
158 R 182 N2
U 164 transfer control to 7
159 B 190 Lb —>L
L 192 Ap—A
160 F 185 be—pt
00 000 o
161 R 182 2
U 164 transfer control to 7
162 lccc ccc EI: 00 000 1a 000
ccc cecl 2: 00 00Q 1b 000
163 00 000
U 108 transfer to control to 0

164 C 237
(:::) 3 238
165 6 239
F 039
166 B 239
E 169
167 H 169
H 178
168 E 172
c 172
169 [1t 000
' 30 820] T—>rl
170 B 820 rI—>C
L 237
171 00 000
Q 177 transfer control if C(l) =L
172 [8t 000 RWD T, with interlock
B 226]
173 F 216
: E 239
174 ¢ 821
50 821 RTt A LABEL A SH
175 50 227 ULDABE--iiji {—> SCP
_ 50 237 AALxxxAAAAA
176 00 000
U 169
177 K 000
cC 237 0—>g
178 [1t 000 Ty ——sr1
30 820] rI——>C
179 B 237
A- 195 }g + J—>g
180 H 237
K 000
181 B 238
T 178 transfer control if g= A
182 [ccc cce
ccc cccl
183 [222 222 _ la
222 222
184 [333 333 }alternate a
333 333,
185 [444 444) }o
444 444
186 |555 555 }alternate b
555 555
187 [666 666 } c
666 668
188 111 111 -}alternate c
111 111

=18~

189 [RAA A0O }La
104 AMAT
190 [RAA BOO j Lb
100 AMR] -
191 [000 000 '}a
000 000] -
192 [000 000 Sb
000 000)
193 000 000
011 110
194 000 000
0Ac NBo
195 000 000
000 001
196 ,AA LTA
w/o Aii
197 R2- WAY
. AME RGE
198 RMO UNT
ATA PES
199 FKAA BLA
NKS AON
200 HAA COO }-Lc
1AL AAA
201 11 000
30 100
202 B 100
L 009
203 00 000
Q 005
204 00 000
] 001
205 21 000
30 100
206 Y 010
Z 990
207 L 008
U 990
208 31Z 960
BOO 991
209 R2W 007
UMG 005
210 111 111
Cll 111
211 31Z 000
B 991
212 A- 996
0 994
213 C 991
- U 99]

-19-

214 81 000

00 000
215 30 960

U 008
216 001 060

000 000
217 A6A AND

Al. RRR
218 BOO 930

LOO 990
219 010 010

000 000
220 Y40 890

Z00 880
221 REBL OCK

ACO UNT
222 AOF F-R

FRU NRE
223 PPP PPP

PPP PPP
224 101 111

101 111
225 000 000

100 000
226 HKTa ALA

BEL ASH
227 OUL DAB

E-- Aiii
228 Y40 950

Z0O0 940
229 Z40 820

BOO 106
230 Zz2Z 2Z2Z

227 2727
231 [000 000

000 000] }Am
232 000 000

001 982
233 ELA BEL

ATe ~--
234 001 000

000 060
235 B83 128

500 000
236 KEN DAM

ERG E.R
237 -
238 -

- working storage

239 -

=20~

6. Reruns with Two Outputs

The rerun procedure for multiple outputs described below is very similar to
the single output rerun previously described. The only complexities intro-
duced are the problems of repositioning one of the output tapes and of dif-
ferentiating between the output controlling the rerun and the tape that must
be repositioned,

The latter problem is dealt with by writing on the identification block of
every output tape the letter identifyimg the output file, When the rerun is
initiated, this information is made available to the rerun routine by the
memory dump locator (also in the identiffcation block).

The output tape which is not being rerun is treated as an input tape for
repositioning purposes.

During the repositioning, alltapes are read into the output block of the
file being rerun, The contents of the input and the other output block at
the end of the rerun routine are the same as they were at the time the mem-
ory dump was written, rI is filled by the read subroutine of the normal
instructions,

It is to be noted that the rerun must occur at a point where the contents
of the computer registers (except rI) are of no consequence as the rerun
makes no provision for restoring them, (Please refer to the coding in
Section 5.)

Unlike the single output rerun this routime requires no breakpoint option
to rerun, Breakpoint options represent a manual operation and, therefore,
a possible operator error. Since one of the output tapes contains good
information, a manual error can ruin this tape and necessitate rerunning
from an earlier point,.

To rerun, the operator merely mounts the last good output tape of the file

and does an initial read, If this is done correctly, no other manual op-
erations are required and, therefore, no further possibility of error exists,

Explanation of Flow Chart Symbols

Ta Tape mounted on Uniservo a

Tag—>rl A block from Ty is read into input buffer (forward)

rI—> A The block in the input buffer is transferred to A

Aj The ith item comprising the block A (i= 1,2,....f)

A% The keyword field of item Aj

La The label identifying the current A file reel being
processed.

21~

The number of A blocks processed on T, .
The C block is written on T,.
The symbol C? is made identical with the symbol C.

Tape C is rewound and an interlock set preventing
further tape motion until the tape reel is removed,

Servo interchange symbol. a which initially read
2 is changed to 3 and the symbol rotated 180°,

Do operations specified by subroutine Ba,

Supervisory Control Printer

«22a

I~
o]
nn

d of Probl%._@
~ o

=23~

L fr—a M

RWD* Tai('_La—ést k____‘ .

' _)Erl—aB ._.)lAb+1—> Ab

Lb+1~—>Lb @
_g{rl——éB Tb—érI

RWD* Tbk— Lb—>sC

o .

"Block Count Off-Rerun'

L— SCP RWD* Tg,Ty, To,Ty

Le Le — Ci _‘*lC% =EC Rerun Locator — C AC—T,
\ 7 - '
k:k —pk + 1—> Xk | ~
-——-—;ﬂi - - :1981)y
' . —>k C—>T,Mc + I—Ac c:19

@._f,z-—accl’ prﬁ}-—a}Ac + 1-—>Cljg »C —>T, Lc—eSCP.—-A@

ewan am

%c + F—>Le—3 0 Ac b—lelilEMORY —>T, 13
13} —sRuD* T} ~
}-——BiL— et :
f 1 21 o}
@ﬁz—m;cg Z—>Ctabe + 1>Cys [P(—-?Ckf—in*Tc 7. —> C @
e O
D e e R

el

o 1
—{Adﬂ—-—» D /Q/

D '—?Td

‘-{Ld—)SCP

—9{ Memory —» T d

0
b LA ——> Dl -—»{Di =D Rerun Locator —D '-X{D——>Td
2 +1—Q @
s . #
iﬂl > 2 *L_ >T 3 iAd + 1—> Ad -9@(1:198

—®

@)

% —Bkkd+l——>D }Q,

-—il F’—a»Dlzqf%iD --->Td

O |
N e

)lLd—)SCP

—9["End Run"—> SCP

- STOP

-27-

3\~ :
@ < @_{Tb—nz

<

r = Last Good
Output Tape

@ *[nitial Read T,—>R

—>

r‘ﬁl Memory Dum? on T,
Memory

a’_ba La, Lb—> SCP

dy Le —> SCP

sl (29)

Wy

«20-

EFFICLIENT CCDING TECHNIQUES

1. Introduction

Many data processing applications of the UN1VAC System involve routines that are
to be used repeatedly or which must process large volumes of data. It is fre-
quently desirable to reduce the running time of these routines. This can be ac-
complished by:

1. Reducing the number of instructions executed by
the computer. (Linear Coding)

2, Reducing the time spent in execution of the in-
dividual instructions. (Minimum Latency Coding)

In the discussion to follow we will consider techniques to accomplish these sav-
ings in time, It should be noted, however, that maximum success in reducing the
running time of an average routine can be achieved only by increasing the amount
of memory space devoted to the program. ..

2. Linear Coding

The instructions of a typical program can be considered to belong in one of the
following categories:

1. Instructions for starting and ending the program.

2. Instructions which read and write blocks of data
on tape.

3. Instructions which move items to (or from) work-
ing storage from (or to) data blocks.

4, Instructions which process the item.

Instructions in the first category are executed only once per run and, there-
fore, no effort need be exerted to optimize them. For a discussion of instruc-
tions in the second category the reader is referred to the paper "A Survey of
Input-Output Techniques®. The following will, therefore, be restricted to a
discussion of the instructions in categories three and four.

Let us assume first that a particular sequence of instructions has been devel-
oped which will process an item. There are then three choices available in the
development of the routines which will process a block of such items. These are:

1. Repetition of the instructions for processing an
item with the addresses modified for each separate
item in the block.

2., An auxiliary routine to modify the addresses of
the processing instructions.

-1-

3. An auxiliary routine to transfer successive items
into a working storage from which the item is pro-
cessed,

Clearly the first of these alternatives will involve the execution of the fewest
number of instructions since every instruction wair executed will bée processing
items., Note, however, that it will also require the most memory space.

Where the available memory space does not permit using straight line processing
instructions (method 1 above), a choice will have to be made between methods 2
and 3, 1In general, it has been found more efficient to transfer items to work-
ing storage than to modify processing instructions; there are some exceptions
to this rule. These exceptions tocur .generally where "odd” .sizecd items are.be-
ing processed which cannot be transferred very efficiently within the computer
and where the processing instructions have very few references to the memory
location of the item.

The reader should note that straight line techniques are also available for the
movement of items into or out of working storage. The following examples will
illustrate this:

Example 1: The R-U Counter

100 R 100
U xxx To transfer the first item
101 R 100
U xxx To transfer the second item
102 R 100
U xxx To transfer the third item
R 100
U xxx To transfer the last item
B xxx
C 100 Reset line 100
- End of block routine
Example 2: The Function Table
100 B 101
' A 102
101 C 101
U 104
102 000000
000004
104 x xxx
X XXX Transfer the first item
108 X XXX
X XXX Transfer the second item

112 X XXX

X XXX Transfer the third item
X XXX

X XXX Transfer the last item
B xxx :

C 101 Reset line 101

- End of block routine

Both of the methods illustrated are perfectly general although the method in
example 1 requires more memory space than does the method of example 2., The
number of lines of instructions executed in moving each item is the same¥* for
both. Example 2 has a disadvantage in some cases (as we shall see in the
discussion on minimum latency coding) in that it requires that each set of
coding handling successive items be stored in the memory with a fixed spacing
between the addresses.

A further example will aid in fixing these principles in the reader's mind.
Example 3

Select from the four-word stock items on T, all those items for which the ex-
pected requirements is less than the sum of the on hand and on order and write
them on Tp. The item format is:

835555 RRRRRR
HHHHHH 000000
-other data-
-other data-

where: .
S8SSSS is the stock number

RRRRRR is the expected requirements
HHHHHH 1is the on hand amount
000000 1is the on order amount

The coding which will process one item is in cells 800 - 803, The coding is
shown below.

010 F 100

B 800
011 E 101

K 000
012 B 801 ,

E 101
013 C 102

X 000

*¥0One line less 1s used in the R-U Counter than in the Function Table method
in transferring the first item only.

-3-

014 .6 000

_ A 102
015 R xxx Set exit of output routine
T 098 Transfer control if OH + 00 > R
098 F 803
B 802
099 VvV 800 .
U xxx Transfer control to output routine
100 111111
000000
101 000000
000000
102 -

- Temporary storage

This routine requires that at least 6.lines of coding be executed for each item.
Two extra lines must be provided for the item in case it is to be placed on the
output tape. A block of such items might be processed as follows:

If linear coding were to be used, a total of 122 °
lines of coding (15x8 plus the two constants in
cells 100 and 101) would have to be stored in the
-memory exclusive of the output routine. The to-
tal instruction pairs executed per block would be
only 90 (6x15) plus 2 for each output item,

If an auxiliary routine were provided to modify
the addresses of the instructions on lines 010,
012, 098, and 099 so as to be able to process
the succeeding items, the routine would begin
on line 016 and might look as follows:

016 B 010

A¥ 097
017 C 010

B 012
018 A 096

C 012
019 B 098

A 095
020 C 098

B 099
021 A 096

C 099
022 00 000

U 010
023 B 091 From overflow on line 0l6

Cc 010
024 B 094

C 012
025 V 092

W 098

-l

026 -
- End of’block routine

o

091 F40100

B 800
092 F 803

B 802
093 vV 800 ‘

U xxx
094 B 801

E 101
095 000004

000004
096 000004

000000
097 004000

000004

Here the total number of lines required for storage is 27, but the total in-
struction pairs executed per block of data is (including 4 for generalized
overflow) 196 exclusive of 2 lines for each output item.

Another alternative is to provide an iterative routine that will move items
into a working storage, such as:

016 V40804
W 800
017 V 806
W 802
018 B 016
A¥ 095
019 C 016
B 017
020 A 095
Cc 017
021 00 Q00
U 010 .
022 V 096 From overflow on line 018
W 016
023 - End of block routine
095 004004
000000
096 V40804
W 800
097 V 806
W 802

This method requires only 20 lines of storage. A total of 182 lines of coding
are executed for each block of data exclusive of output.

A last possibility is to again make use of the working storage principle, but
uses linear coding for the routine transferring each item to the working stor-
age., The following is an example using the function table technique:

016 B 017

A 096 -
017 C 017

U 018
018 V- 804

W 800
019 V 806

W 802
020 00 000

U 010
021 V 808

W 800
022 V 810

W 802
023 00 000

U 010
024 V 812

W 800
057 V 856

W 800
058 V 858

W 802
059 00 000

U 010
060 B 097

c 017 Reset line 017
061 -

- End of block routine

096 000000

000003
097 B 017

A 096

This method requires 57 lines of coding to be stored, but only 163 instruction
pairs are executed for each block of items processed (plus 2 lines for each
output item).

These results are summarized in the following table. Only the total lines for
storage or execution required in processing a block of input items are considered.

-6

Method Total Lines Stored Total Lines Executed

(excluding Gen OF) (No Output Items)
1. Linear Coding 122 90
2., lterative Alteration of 27 196
Instruction Addresses
3., Iterative Transfer 20 182
to Working Storage
4, Linear Transfer to 57 163

Working Storage

It is generally true, as the previous discussion has pointed out, that the min-
imum number of instructions to be executed per routine can be obtained by ex-
changing memory space for time. The relative merits of each method discussed
depends to a large extent on the amount of processing required for each item
and on the item size, Where memory space is not too critical, the programmer
would do well to investigate linear or semi-linear (methods 1 and 4 of the
above table) techniques for reducing problem running time.

3. Introduction To Minimum Latency

A study of UNIVAC logic reveals that the time required to execute an instruc-
tion pair falls into two categories:

1. Time spent in actual execution of the instructions.

2. Time spent in waiting for information to appear at
the read out or erase gates of the memory.

The first of these is constant and fixed by the logic of the computer. The

second of these, called latency time, depends for its duration upon the re-

lation between the Time Selection Counter (TSC) and the Time Selection Digit
(TSD) of the memory address involved. By judicious selection of memory lo-

cations, the latency time or a routine can be materially reduced.

Consider first an instruction pair that does not. involve a transfer of con-
trol. It is desirable to minimize the elapsed time between the selection
of the instruction pair at address m and the selection of the next pair at
address m + 1,

1f the TSD of m is k, then the P Time Selection Minor Cycle occurs when the
TSC is reading k. For the instruction pair in m + 1 this will occur at a
TSC reading of k+ 1. An instruction palr cannot be executed in one minor
cycle; therefore, the minimum time between P time selection will be 11 minor
cycles: ten minor cycles to step the TSC around to k and one more to k + 1.
I1f the instruction pair is not executed in this time, additional time, in
units of ten minor cycles (one Major Cycle), will elapse before the B Time
Selection Minor Cycle of m +1,

* * *
IBTs IYTO 1 1 f] 1
T T 7 H H T Y H t 1 ¥ T 4)
5 6 7 8 9 o 1 2 3 5 6 7 8 9 3 5 6 7 8 9 0o 1 2 3
Total Time 31 MC
Latency Time 23 MC
Ratio L.T./Eff.T. 2.9:1
BTS +4TO +IS B3TO0 * * * * * * OTS aTO aTon PTO * * * pTS
e — R e
5 5 7 8 9 o] 1 2 3 5 6 7 8 9 3 L 5 6
Total Time 21 MC
Iatency Time 13 MC
Ratio L.T./Eff.T. l.6:1
BTS +TO IS 3TO ¥TS aTO aTon BTO *. * Ifi’.[‘s
f } f . et } } frmmm
5 6 7 8 9 0 1 2 3 5 6
Total Time 11 MC
Latency Time 3 MC
Ratio L.T./Eff.T .3831

*Latency Time

The following examples will illustrate these concepts: (see Figure 1)

1. 025 B 086 L 087 31 NC
2, 025 L 057 B 0% 21 MC
3. 025 L 057 B 059 11 we

Example 2 interchanges the instructions in example 1 which results in sub-
stantial time savings. In example 3 a further increase in speed comes from
changing the address of the B instruction.,

The critical parameters‘involved in a calculation of the latency time are:

1. The difference between TSD's of the address
of the LH instruction and the instruction
line number (n).

2. The difference between TSD's of the address
of the RH instruction &and the. instruction
line number (m).

3. The amount of time taken up in the actual
execution of the Left and Right Hand In-
structions individually.

4. Construction of the Tables

The followihg will refer to a limited number of instructions which will act
as prototypes. For each UNIVAC instruction (except tape orders) there is a
prototype which has the same execution time.

TABLE OF PROTOTYPE INSTRUCTIONS

Prototype Instructions
B BCFGHJLRE
A AS
K . K X-00
U U
T QT
Ox Ox =x X 3X
w VW
Y Y Z
M MNP
D D

- Thus, -the previous examples would be written:

l. B1 B2
2. B2 B1
B 4

3., B2

To_éimplify tables of latency times, references to prototype instruction
pairs such as BB, AT, WU, etc., will be made as illustrated above.

EXAMPLE PROBLEM:

Prepare a table of latency times for the instruction pairs K B and B K.

K B

By v 5 dTsSforuumc & a B B « o p B
T Ton O A T0O Ton TO TS - TO Ton TO TS
— + + + +——t + t + + } + $ } t } + + 4 ——

—+-

o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 o 0 1
5TS for 21 MC

Thg earliest time at which TS could occur is at TSC 4. The last point at
which it could occur and still leave enough time (3 MC for TO, Ton, and
TO) for the instruction pair to be executed in 11 MC is 7. If m is’8 9
0, 1, 2, or 3, then the second TS is the one that occurs and the oper;tién
takes 21 MC. '

B K

~?'S ¥0 WYTS for L M] ('1['0 Taon Eo ES » %0 ('ll'on EO ‘FS

-
-+
-
-
-
-+

4 P
¥ LA

o1 2 3 4 5 6 7 89 0 1 2 3 4 5 6 7

YIS for 21 MC

For n between 2 and 7, the instruction takes 11 MC; and for n between 8, 9,
0 and 1, the instruction takes 21 MC. This problem is relatively simple
since the latency time is independent of the address of the K instruction.

STUDENT EXERCISES:

1. An A order takes 3 MC for execution, a B order takes 1 and an X order
takes 1. How long does it take to execute the following instruction pairs?
(Do not forget the TO minor cycles which follows each instruction.)

025 B 030 A 056
026 H 058 X 000
027 C 056 B 025

2., Prepare a table of instruction times for the prototype pair B n B m.

-10-

PART 1
MINIMUM LATENCY

TABLES

-11-

B

L=[B L+n

I5

Av = 21

N\

(21)

4 5 6 7 8 9 0 |

Ceow d® © — o ™ = b © ©~

L+m

A

Line L=[A L+n

AA

Av =25.5

2 3 4 5 6 7 8 9 0 |

nnnnnnnnnnnnn

- |2 -

Line L =[8 L+n A L+m]

N2 3 456 7 8 9.0 |

e Leta Lin s Ls

) 3 4 56 789 0

////////

(21)

Cwms:

ST T T

BA

Av = 23.5

AB

Av = 23.5

Line L = [K B L+m]

910 11213

@) KB

Av = |7

L+n K]

718 19101

® BK

Av = |7
LineL=[K A L+m]
6 | 71 81 91 011|273

Av = 19

LineL=[A L+n K]

4 1 516 171819107

@ AK

Av = 19
Line L = [K U L +m]
- 8 0 | | 3 |4 |5 7
8 o | {2 as e |ie |7 KU
Av = 2.5

-y -

LinelL =1K K]

LineL=[B L+n U L +m]

2 3 4 5 6 7 8 9 0 |

o« 35

w
<
[{e]

EIENENERENENENE
o1 | 1] 2020 20| 20{20 }20]20
nmmmmmenmnmn
12012 12| 1212} 22| 22|22 {2222
131313} 13| 18] 18] 23]23 23|23 BU
P | o] oo])2y f2y |24 AV = |7
1515 15| 15]15] 15| 16]15]25/25

(=]

~N OO oW N -

A ARVARYARNARVARVARYAIVARY)

Line L=1[A L+n U L+m]

2 34 56 7 8 9 0 |
10]20 {20 |20 [20 {20 {20 |20 | 20[20
P20 |20 22 21 2121
12012 1222 22 |22 |22 |22 |22 |22
13{13 (13 {13 12323 (23 [23 [2
Pl fry Lo e Jou (24 (24 (24 |2y
15{15 15|15 |15 [15}25 |25 |25 {25 ‘\‘l
1616 {16 |16 |16 |i6]i5]26 126 |26 AV - 19

iz iz izhz iz iz |z (27
18j18 {1818 |islis|is|is|i8]2s
g fiofig ftsfivfiofis figfio

€ 0O N OO O F W N -

- 15 -

a) TRANSFER
LinelL =[B L+n T L+m]

N

3 456 7 8 9 0 |
10J20{20]20{20]20] 20|20} 20|20
LE{ej2n]2|2i|2if2i{2if2i {21
12(12]12]22|22|22|22|22|22 |22
13[13]13|13}23{23|23|23|2323
P |y iy |y]ou|2u| 2y 24 |24
15[15{15|15]15{15}25|25|25 |25
16[16[16]i16]16]16|16}26]26]26
izhzhizlizlizhzliziz] 27 |27
18{18{18]|i8|18|i13{18|18]18 |28
19 ftoftafialiolioliof19olialie

(Dm\lcﬁcﬂ-f—:wN——OE:,

b) NO TRANSFER

4 1 51 61718191101

3
ST
o ®

- 16 -

a) Transfer

LineL=[A L4n T L +m)]

=]

2 34 56 7 89 0 I
12f22]22]22[22] 22122 22]22] 22
13]13]23]23] 23| 23|23]23]23]23
e] reloul 26| 2u] 26| 24 [2u | 24
15/ 15]15]15]25|25]25]25|25(25
16| 16]16]16]16]26]26]25]26]26
7zl i7]27|27]27] 27
18[18]18] 18] 18] 18] 18]28]28]28
19]19]i9]19]19]19]19]19]29]29
202020 20]20[20] 20{ 20| 20]30

2t] 21212121 21]21] 2121] 21

—O(Dm\lmm-FOJNS

b) NO TRANSFER

n=_ 213] 41 5] 6]l71 81911011

@

- 17 -

a) TRANSFER

LineL=[K T L+m]

KT

Av = 12.75

b) NO TRANSFER

- 18 -

LineL=[B L+n 0 x]

N2 34567 89 0 |

@ BO
/ Av = |6 + X
2
()

%

\

\

0B

Av = |6 +x

- 19 -

] .

0 x

L+n

Line L=[A

18 + X

AO

Av

—_— N D = N 0w N 0D

L+m]

A

Line L=[0 x

Nlg 7 8 90 1 2345

0A

18 +x

Av

7

W

— N M =+ 0 O N 0O D

- 20 -

Line L
Line L

n

= [0x K]
=[K 0x |
51 6 1 7| 8
Line L=[0x, 0x,]
5 6 7 8 9
\Zvl
>
Z
&
-
Z Z

0K

KO

00

- 21

a) TRANSFER

b) NO TRANSFER

x

- W &

~N OO o FE N

Line

© N O o Fw N = o3

L+m]

18118

13

18

1919

19

19

v

20|20

290

20

2121

21

21

2

12122

22

22

~

I3

3123

o]
9

4

iy

4

24

15

15115

I5

25

16

1616

16

~

16

17

1717

17

fa—

+m]

8

9

10

20120

20120

20

20

20

)21

21|21

21

21

21

12

12112

22122

22

22

22

13

13]13

23123

23

23

23

R

iy

14124

24

24

24

15

1515

15|15

25

25

25

16

1616

1616

16

26

26

17

1717

17117

17

17

27

I8

18] 18

18118

18

13

18

9

1919

19]19

19

19

19

3 |

4 |

5 |

6 |

7

8 |

9

@

- 22 -

ou

0T

© G

m = 2 | 3| 441576

LinelL=1[8 L+m Y]

® e

Line L = [Y A L+m]

51 6 | 7 | 8] 9 | 0| |

5

ine L = [A Ltm Y]

41516 7| 81901 |

YB

v = 26

BY

v = 26

YA

v = 28

AY

Av = 28

“Line L = [K
Line L =:[Y

21

Line L = [Y

kY

YK

Av = 21}

31

YY

Av = 31

Line L = [Y x]
Line L =:[0 x Y]

o

x= 1 1213 4%]5

(=]
~

@

- 24 -

a) TRANSFER Line L =

m= 9 0 | 2

[y T L+m]

19 | 20 | 21 |22

23 | 24 | 25 | 26 | 27 | 28

b) NO TRANSFER

Line L =

21

[y U L +m]

201 21 | 22|23 | 24 | 25

Line L = [Y w L +m]

- 25 =

Y1

Av = 22.25

YU

Av = 20.5

YW

Av = 27

WY

Av = 27

ettt

N2 345678090 |

; b

hv =228

LineL=[W L+n B L+m]
0 2 34 56 7 89 0

3 (21) _ - !

: 1
LineL=[W L+4+n A L+m]]

o E WN — O W o N O

0 2 3 4 56 7 8 9 0

i

a1y
. j#21 .

v

LineL=[A L+n W L+m]

3

D N EFE WON - O © 0N

"234567890!

21)

- 27 -

WA|

= 24.5

AW

Av ='24.5

LineL =1[W L+n 0 x]

N 56 7 8 9 0 |

Nt

4

5 (21) Y WO
° — , V Av = 17 + x
: 7 @/

9 T,

Line L=10 x) L+m]

L7 8 9 0 1 2 38 4 5 6

i),

Av = 17 + x

W & N O O F G N -

- 28 -

a) TI’ ansfer

b) NO TRANSFER

3

C © N O T FE W N —

Line L :[w

L +n

W

L+

N 5 6 7 8 9 0

m]

Line L=[W

L+n

T

L+m]

21

VAl

21

21

21

21

21

21

21

12

12

i3

22

22

22

22

22

22

22

22

13

o
9

23

23

23

23

23

23

23

It

4

i

14

24

24

24

24

24

24

15

I5

I5

5

5

25

25

25

25

25

I6

16

16

16

16

16

26

26

26

26

17

17

17

17

17

17

17

27

27

7

I8

18

13

I8

18

18

18

18

28 -

19

9

i9

19

19

19

9

19

19

<

29

20

20

29

20

29

20

20

20

[AR %)
<

9 |

0 |

- 29 -

WW

Av = 23.5

WT

Av = 20

(W L+n K

51617 189,01

= [K W L+m]
718191 0111 2] 3
LineL=(W L+n U L+m]
a2 3 4 56 7 8 9 0 |
1 9FI9II9{I9[19]i9119]13]19]13
0110]10]20120[20]20{20]20120{20
RRREE AR VARV R AR VAR R PA R WA
2 112112(12(12}22122122{22\22]|22
SPI3{13[13]13]13]23(23|23]23]23
by I] s 24 24 24 | 24
51{15|15[15]15]156{15]156])25]25]25
6 |I6|l6|ic|i6jl6|l16]16]16]26]26
[ARYARYARYARRARKARYARNAR RARNA VAL
811818({i18[18|18]18|18[18]18]13

- 30 -

WU

Av WU =

13

5. Examples of Minimum Latency Coding

It is not generally possible or desirable to program each line of a routine in
minimum times therefore, the following order of precedence should be alloted to
the sections of a data processing run,

1, Instructions which process each individual item.

2. Instructions.:which concernithe transfer of blocks
into and out of the computer.

Consider the following routine which is designed to place consecutive two-word
items into temporary storage.

MAXIMUM

100 B 110 A* 109 31

101 C 110 U 110 19

102 —_— .

103 tape read S0 MC item

. routine

109 001002 000000

110 V70300 W 200

- 111 processing . - :

112 routine " 121 seconds/tape
MINIMUM

100 B 113 A* 10%: 11

101 C 113 U- 113 12

102 tape read 23 NC item

. routine

105 001002 000000

. 56 seconds/tape
113 V70300 W 200
114 processing
115 routine

-3]1=-

Thus, the total savings obtained by changing two lines of instructions is of the
order of 65 seconds per tape processed.

Practically every routine on UNIVAC makes use of generalized overflow for control
purposes, It is, therefore, useful to have this frequently-used routine in mini-
mum form. Compare the following: ‘ :

AVERAGE
000 R 0%2 U 050 10
050 B 052 A 0B3. 21
051 C 052 U 052 _21-
052 [- - 52 MC
053 000000 000001

MINIMUM
000 R 012 U 008 8
008 B 010 A 012 11
009 C 011 U o1l 12
010 000000 000001 31 MC
011 [- -]
o12 [- -]

6. Multiplication Tables

Additional tables have been prepared for instruction pairs involving multiplica-
tion by a known multiplier. Because these tables are quite extensive, only the
most common instruction pairs, that is, BM and MB, are shown, However, as ex-

plained below, instruction times for KM and MK prototypes can also be looked up.

The tables have been prepared in a fashion similar to that used for the other
arithmetic instructions., However, multiplication is not a fixed length operation;
the number of stages required depends on the number of additions performed during
the multiplication, which in turn, depends on the multiplier digits.

Figure 2A shows the stages required for multiplication involving no additions,
i.e., multiplication by zero. A sample problem is solved for the instruction
pailr

B 2 M 6

in Figure 2B. This instruction pair requires 31 minor cycles, as shown. (The
multiplication stages are starred.)

If additions are involved, one minor cycle is added for each addition. Figure 2C
shows a sample problem
B 2 M 6

where the multiplier is a single digit "2", requiring two additions. Actually,
the additions occur somewhere between M5 and M15, but they are attached to the
end for descriptive convenience. '

>3

If an instruction of the type K is involved, instead of type B, these tables may
still be used., If K occurs as a LHI, use the appropriate table for BM with n =2,
If K occurs as a RHI, use the proper table MB with m = 7,

The following chart shows the number of additions required for various multiplier
digits.

Multiplier Digit Number of Additions
0 0
1,3 1
2,456 2
5,759 3
8 4

If the multiplier contains; mpre than one digit, the total number of additions is
equal to the sum of the additions required for all the digits. For instance,

Multiplier Number of Additions
25 5
75 6
33333333333 11

=33~

A

Stage

TO
M1
TO
M2
TO
M3
TO
M4
TO
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
TO
M15

(Multiplier —»rX)

TSD

HFOOWONOODWNFHFOOUWONOTOUODWNHFOOVONOONWNO

Stage - ' TSD Stage
pTS 0 BTS
10 1 vy TO

TS 2 TS

*$TO 3 *0 TO

‘ 4
5

* M1 (Multiplier—rX) 6 * M1

* TO 7 * TO
* M2 8 * M2

* TO 9 * TO
* M3 0 * M3
* TO 1 * TO

* M4 2 * M4
* TO 3 *'TO
* M5 4 * M5
* M6 5 * M6
* M7 6 * M7

* M8 7 * M8

* M9 8 * M9

* M10 9 * M10

* M11 0 * M11

* M12 1 * M12

* M13 2 * M13
* M14 3 * M14
* TO 4 * TO
* M15 5 * M15

aTo 6 * Al
aTon 7 * A2
BTO 8 aTO
9 a
0 B TO
BTS 1 B TS
Figure 2

-34-

PART II
MINIMUM LATENCY

TABLES

- 35

NO ADDITIONS

Line L=[B L+n M L+m] Line L=[M L+n B L+m]

N2 3 4 56 7 8 9 0 I 1 2 34 56 7 8 9 0 |

m

3

% %
: : I .
| 0
3 (41) 2
1) 3
5 4
6 S
7)
8 . 7
ONE ADDITION
Line L=[B L+n M L+m] Line L=1[M L+n B L+m]
;234567890| m"234567890|
V
REEiE. RSE.
0 0
: ONE % : Q /%/
:’: i
5 5
@ ;

- 36 -

O E W — O ®© ® N 4

LinelL=[B L+n M L+m]

| TWO ADDITIONS|

LineL=[M L4+n B L+m]

0 2 3 456 7 8 9 01

(41)

E‘ 2 3 4 5g£2%%%§%%%221 | %
; | // ;
: @ 7

LineL=[8 L+n M L+m]

THREE ADDITIONS

2
@

LineL=[M L+4n B L+m]

2 3 4 56 7 8 9 0 |

¢
e

(41)

/4

%

2347/}//;/////' m§"
. B
@

- 37 -

0 ,
SO O — N ™ F O © N~ - CEoe m O — N ®m o 10 © ~

Cewo~N©0H» O —9®m=+x SO~ OO - N®

mmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmm

/

> i

nnnnnnnnnnnn

22222222222222222222

7. Efficient Coding Example

The following problem will further illustrate the use of linear and minimum la-
tency coding. It is designed as a subroutine of a payroll computation. A net
pay 1s supplied to the routine in rA, Compute the number of bills and coins of
the various denominations required to make up a pay envelope as follows:

0 OOOOOOOXX%gx total

1 00000000000x number of $100

2 000060000000xX oo™ 820
3 000G0000000X " $10
4 00000000000x moo® %5
5 0000C000000x L
6 00000000000x v 25¢
7 00000000000x vooow 10¢
8 00000C0CC00x v 3¢
9 00000000000x oo 1¢

4] =

103 F 116 :
'H 200 ‘ Amount to 200 11

104 ,4 000
G 201 # $100 bills to 201 11
105 E 200 ‘
L 192 11
106 .3 000
X 000 - 11
107 C 142 10's digit + 143 - R, H. address 142
: F 184 : 11
108 E 200
.2 000 11
109 A 111
c 115 Unit's digit +130 - R. H. address 115 11
110 F 112
U 118 ‘ 8
111 -
U 143
112 000 000
000 011
113 -
000 002
114 -
000 001 T
11 [- - 8/17
116 000 000]
001 000
117 -
118 E 200
K 000 21
119 P 191
- 31
120 -
C 206 *I.P. ¢ x 4 = # of quarters 11
121 X “
o1 11
122 K : ,
P 193 **¥F,P, (F,P, x 10/4 =# of dimes) 41
123 C 207
X 11
124 K
P 189 I.P. (LSD x 20/10/4)=# of nickels 31
125 C 208
X 11
126 K
P 190 I.P. (LSD x 100/20/10/4) = # of pennies 31

*I.P, = Integral Part

**F,P, = Fractional Part

4D

127
128
129
130
131
132
133
134
135
136
137
138
139
140
14]
142
143
144
145
146
147
148

149

c 209

V202
Vo173
V154
Vo175
V170
Vo172
Vo178
V180
Vo182
vV o181
w202
EXIT AA

[w 204
Vo155
Vo156
Vo167
Vo158
Vo169
Vo162
Vo161

115

U 140
U 140
U 140
U 140
U 140
U 140
U 140
U 140
U 140
U 140
Y 200
SUB. AA
U 130
U 142
U 142
U 142
U 142
U 142
U 142
U 142

Pick correct comb, of 10 & 20 bills

Pick up correct comb, of 5 & 1 bills

~43=

10

18
17
16
15
14
13
12
11

21

9/18

18
17
16
15
14

13

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Vo113
V153

V 164

. 000 000

000 000

000 000

000 000

000 000

U 142
U 142
U 142
000 003

000 001

000 001

000 003
000 001
000 001
000 001
000 004

000 002

000 004
000 002
000 000
000 002
000 001

000 000

Y. V. RY

12
11
10

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203

000

000

000
000
000
000
000
000

000

000

000

004

000

000

000

000
000
000
000
000
000

000

000

000

000

204

000

000 000

000

000

000 001
000 001
000 003
000 000
000 003
000 001
000 004
000 000

000 100

000 002
000 005

000 000

U130

000 025

000 000

000 000

45,

STUDENT EXERCISES

1.

2

Code and time an efficient routine which will place into
rA the smallest of the 4 quantities in memory location
100-103,

Code and time an efficient routine which will add the
300 words in the memory starting at location 100,

Code and time an efficient routine which will check a

tape of one-word items for ascending sequence. Assume
the “standard gentinel convention is followed,

-4

COLLATION METHOD OF
SORTING

1. Flowchart Description of Collation

This section assumes the reader is familiar with the general principles of
collation as described in the paper "A Brief Description of Sorting Methods
for the Univac System.” The following discussion is intended as a further
examination into the manner by which collation is achieved on the Univac.
As the intent is instructional, the methods described are fundamental ones
basic to all collation runs, but, of course, this section is not intended
as a primer of all the shop tricks employed in speeding up collation rou-
tines., For simplicity in the presentation of these principles, two-way
collation will be described.

Plates 1-5 describe a two-way collation for ten-word items. The following
symbols used in these flow charts are defined below,

Ty Tape mounted on Uniservo a

Ta——>A The next sequentially available block from T, is
brought into the computer in a forward direction.

Ae—Ty Same as above, except the tape moves in a back-
ward direction

A The block from T, (consists of 6 items)

Ay The ith item of A (i =1, 2,..., 6). The items in

a block are numberedrfrom top to bottom.

A9 The keyword of Ay

La The label in the identification block of T,

Cy The kth C item (k =1, 2,..., 6)

C The collation of 6 C items

C—T, The C block is written on T

Z,S,Z,: Sentinels; The following collation sequence applies

X< A9 < Z <= for all A

The flow charts assume that the input tape to be sorted is in the standard
data tape format described in the section on identification blocks and re-
runs. Thils input tape is assumed to be mounted on T, but any other servo
will do (except T; or T, unless these servos are also changed).

The instructions are assumed to be in the memory.
At the start of the problem certain counters and variable connectors are

set which will be described as they are encountered. Next, an "S" sentin-
el is placed in the key word position of a block, 52 L s and this

1

block is written twice on the first output tapes, Ty and To. This is necessary
since these tapes will later be read backwards and the sentinel blocks are there-
fore needed to indicate the front efid of the tapes.

At*%”TaPe 1abe1¥kSCP s the routine requests the operator to type in the desired

inpu& tape label, La, The first block on Tz is then read into the computer and
the lable recorded on tape is compared with the label typed in by the operator.
If the labels do not agree, Tg is rewound with interlock, and the tape label and
typed label are printed on SC%, If the operator finds that he has typed incor=-

rectly, he may force "no transfer” at breakpoint 1. The routine will then re-
turn to and allow him to type the correct label. If the input tape was in-
correctly

abeled, he may mount the correct tape, force transfer on breakpoint 1
and the routine will return to 8 . When is reached we are assured that the
input tape to be sorted is the appropriate one. The tape label, La, suitably
modified to indicate that the items are sorted, will be placed on the final out-
put tape.

The logical operations between @ and are commonly referred to as the "in-
ternal sort"™., The purpose of the internal sort is to place the items of each
block in order and then (in two-way collation) to split this input into two
nearly equal. piles.

At (:) the first data block from T. is read into the computer. This block is
called "A": 1its individual items are Aj, Agy..., Ag, any one of which is iden-
tified by Aj. Next, the key word of the last A item of the block is compared
with a Z sentinel for the end of tape test. If this is not the last block on
the input tape, the items of A are arranged in ascending sequence by one of the
methods to be described later. This ordered A block is written on Ty (m = 1,
initially); one is added to A, which is the input block counter; and since the
variable connector aj, is set, the output tape designation is changed from servo
1 to 2. Control is returned to { whence it follows that each block from Tg has
its individual items ordered and 1s then written on either T, or To. When the
first sentinel block on.Ts is read, the position of the iast valid (nonsentinel)
item is determined at . Then at e the remaining item positions are filled
with Z sentinels, variable connector U» is set, and control is transferred to
where the block is sorted and written on the current output tape.

At (:) the number of blocks to be sorted, A , is examined. The purpose of this
examination 1s to determine whether the first "external sort" or merging will be
in ascending or descending order. Since the final output should be in ascending
sequence, the first merge must be an ascending one if the number of data passes
required is odd and it must be a descending one if the data passes required are
even, This fact is clarified in the following table which shows that each exter-
nal pass over the data changes its sequence. The number of data passes can be
obtained om the block counter A . If the block counter is such that control is
sent to (fS the external sort is set to do an ascending merge; but if control is
transferred to (8), a descending merge is set up.

-Dm

Cumulative Consecutive Input Input Sequence Consecutive Output - Type of Output

Data Passes Blocks in Sequence Required Where Blocks in Sequence Sequence for
Total Data Passes Total Data Passes

Odd Even 0dd Even
1 1 * A * A 2 A D
2 .2 A D 4 D A
3 4 D A 8 A D
4 8 A D 16 D A
5 B 16 D A 32 A D
6 32 A D 64 D A
7 64 D A 128 A D
8 128 A D 256 D A
9 256 D A 512 A D
10 512 A D 1024 D A

11 1024 [3) 2048 A

* Fixed because of ascending internal sort

-3-

When the items are arranged in ascending fashion from the top of the block to
the bottom, they are in descending sequence from botton to top. It is there-
fore possible to perform a descending merge first when the internal sort pro-
duced an ascending sequence for the items in a block., To avoid confusion the
item positions in the block are always numbered from top to bottom (Ap, A Dyeesy
A6 for ten-word items). To pick up the items from the bottom, the external
pass counters, i and j, are set to 6; the additive constant R,, necessary to
alter i and j for the next item is set to -1; the constant, L, to which i and

J are compared to determine when the last item of a block has been used is set
to 13 and n, the reset for i and j, is set to 6., Note in this routine the
above 1s the normal 'setup of the counters. Only if the first external merge

1s an ascending one, and then only on the first pass, are, the counters set to
the values indicated at . In either case, we first go to subroutine 1 where
sentinels are placed on the two outpyt tapes and, after setting the counters
appropriately, transfer control to _ where the external sort proper begins.

As indicated at (:), an input tape containing only one or two bloeks to be sort=-
ed must be given special treatment, Consider the c¢ase for only one block of

data, (This must ;be a partial block since the first block containing sentinels
on Tg was counted in A). Eirst, we note that the block is.already sorted, but
without the ID block. At Q thls single data block is read back into the com-
puter; control 1s sent to subroutine 4 where the ID block is written on Tg.
Control is returned to the current loop; the data block is written on T, along
with a full sentinel block; the tapes are rewound and then the routine is stopped.

If there were only two blocks of data, control would be transferred to subroutine
4 where the label. is placed on the output tape and the variaple connector is

set since only one merge 1is necessary. After returnlng to (ﬁ), an ‘ascending merge
is performed. 1t should be noted that subroutine 1 is not entered hence, no sen-

tinels are placed at the top of the output tape.
The following 1s a description of the merge:

At @:) the external collatlion begins. External collation is merely a succession
of two-way “tape" merges which are actually successive merges for many strings of
blocks., The merges alternate with each complete pass between ascending and de-
scending sequence. The prime problem in external collation is the determination
of the end of a data string, In the desirable case, the strings all consist of
the same number of blocks. This number is called the string length. By counting
each block merged and comparing this count with the string length counter, the
end of the string is easily determined. For all strings to be of equal length,
the number of data blocks to be sorted must be a power of two. Usually, this
does not occur and therefore strings of partial length will be encountered. As
shown in the following example, these partial strings are always at the beginning
or the end of a tape.

-l

Internal

f'm”Sort'If$‘\

X

XX

KX XXX XXX XXX XXX XX XXX X X X *xXX
w”wl||l||| ebxsy butpusosy

X

x
X

xX X X X X X X X X X

x
Qx'x X X X X X X X X X X X X
obzoy BuTpusISa(—

X X x X X X |W
X X X X xX X (o]
—
Q
S
sbxay butpusosy @
©
. . ©
KKK XXX XKRKKK KX 1]
0 -t
XX X XXX XXX XXX +
O
v C
) e
o O
M H
ST
o &
[a s}
-+ —
3 —
KX XXX XX XXX XXX XXX XXX XXX XXX nnuu. X <€
—

Output

X X X X X X X X X X X X X X
X X X X X X X X X

abzsy butpusssag

X X X X X x X X
XX X X X X X X X X X X X

X X

ebisy bBurpusosy

done by the items within each string
Strings of blocks are spaced to differentiaté between strings

-5-

The end of partial strings at the front of a tape can be detected by the
reading-in of a sentinel block recorded at the front of the tape. The
length (number of blocks) of the strings at the back end of the tape may

be obtained by counting the number of blocks written. Since only the count
for the last string is necessary, this is a feasible procedure.

Initially, the block counters for input,Aa and Ab, and the output block
counter Ac are set to zero. The input string length, R, is set to one
(one block strlngs) The input tapes, Ty and Tp, are set to read T; and
To, respectively, and the output tapes T; and Ty are set to T3 and Ty4.

At the two-standby block procedure for reading information from tape is

set up. The first data block from T, is read into A (-4 Ta k signifies

a backward read). The second block from T, is read into the A standby block,
A, The first block from Ty is read into B, the second Ty block is read into
rl. Y, which indicates the location to which the block im rf:will be trans-
ferred, is set to B, the B standby block.

, the variable connector(ﬁ) is encountered. The connector was set to
Bl if the first merge is to be a descending one and to P o if it is to be
ascending. At the_item with the greatest keyword is selected and sent to
working storage.” At the item with the smallest keyword is selected. In
either case, we go to Subroutine 2, where the last item selected is sent to
the current output position, Cp. Note that the output block, C, is always
filled from the top. Also note, that when each C block is wrltten on the
current output tape, T,, a count is kept by addlng one to Ac., After return-
ing from subroutine 2, the next input item is obtained to replace the one just
put in the output block C. Whenever an input block is exhausted, control is
transferred to either or . These routines set up the two-standby
block read routine so as to make available the next A or B block, as required.
In subroutine 3, we find the read routine itself.

Upon returning from subroutine 3, the appropriate input block counter, 8a or
Ab, is increased by one, and the new A or B block is obtained from the stand-
by position. As mentioned before, the end of an input string is indicated by
either the input block counter becoming equal to the string length counter, R,
or the presence of an S sentinel in the block just transferred into A or B
from the standby block position,

Since at least one block of data must be present on both Tz and Tp for the
first external merge, it is necessary to consider the end of an input string
of exactly R blocks. When an input block from one input tape is processed
completely, say the A input. QAa is increased by one for the block just pro-
cessed and the next A block is brought from the standby block, A, into posi-
tion A, Next, the input block just obtained is examined for sentinels. If

-6

none are present, it means the end of T, has not yet been reached. Assuming
this is the case, the block counter Aa i1s compared with the string gth R.

If we have reached the end of a string, control is transferred _to ., Since
€, is set initially, we will set variable connectors and to o and
Y o. Control is returned to to send out the remaining B items of the

string. When the B string is completely processed, &b = R and control is
transferred to , the end of string operations. Here the lnput and output
block counters are reset; the end of string connectors (D) are
resets and the output tape switched. The routine then re+urns to ’
merge the next strings.

At some time the end-of-tape condition will be obtained. This condition sig-
nals end of input string as well. Cognsider the case where the end of T, is
reached first., Control is sent to where the contents of E are placed in
the keyword position of Ag (Al if this is the first external merge being done
in ascending sequence). If an ascending merge is being done E= "=1", other-
wise E= [.) is then set’and control transferred to . "The £ or = in A
and the new variable connector settings force all the remaining B items of the
current string onto the output tape. Two conditions may then arise: 1) This
is the last string on Tb; or 2) There is just one more string left.

In the first casg, an S sentinel block will be read on Ty and ggntrol will be
transferred to [!} . Since ©p is set, control is shunted to , the end of
tape operations, If is set this was the last data pass and the data is

completely sor . Thérefore Z sentinels are written on T, and all tapes are
rewound, If Qia is stlll'set, there is at least one more data pass. In this

:case, the input item counters are reset. = @ ; C determines which is the

current output tape. If this were T., for instance, Aa is set to the differ-
ence between the length of a complete output string (2R) and the actual length
of the last output string. Since it is impossible to have a partial string on
back of both output tapes, Ab is reset to zero. The end of tape and end of
string connectors are reset, and then the servos are interchanged sg_that the
output tapes for this merge are the input tapes for the next. At the
contents of E and F are interchanged, since the type of merge (ascending or
descending) will pe changed, The variable connector serves to alternate
the setting of . At the input string length Counter, R, is doubled
since the output strings of the just completed merge are now the input strings.
If the new input string length is greater than or equal to half the number of
input blocks, the next merge is the last, in which case the tape label is re-
corded on the next output tape and set to write Z sentinels on T, at the
end of the next pass.]

If this is not the last merge pass, then the new output tapes must be posi-

tioned past the two. sentinel blocks. Since the two-standby block reading
scheme is employed, the reading heads must be at the front of Ty and Ty.

-7=

But, because of the slightly different rates of acceleration and deceleration
for reading backward and writing forward, it is necessary to read one block
forward if writing is to be done following a backward read. This is the pur-
pose of rewinding Ty before recording the ID block. Thus, instead of re-re-
cording sentinel blocks on the new output tapes, the tapes are repositioned
with their read-write heads forward of the sentinels.

The variable connector (E) is employed only in the exceptional case when the
first merge is an ascending one and we were consequently selecting items from
the top to the bottom of the input blocks. If this were the case, (i) was
set, and control is transferred to to reset the counters to thelr normal
form. In either case, we eventually return to & where the next pass is
started. :

This explains the case where the last strings on Ty and T were reached at
the same time. In the case where the end of Ty, and the end of the current,
but not the last, B string is reached, there is one remaining B string to
merge with no A string. Reaching the end of T, causes ’ ’ @ to be
set as in the first condition described., After the last block of th& B string
is processed, a sentinel block will not be read into position B. Sipge Ab=R,
control is transferred ‘where 2y previously set, sends us t Q, the
end of string operations. From there control is transferred to 0 begin
merging the new B string with the supposed A string. The # or thé = in Ag
forces all the B items onto the output tape yntil the Tj, sentinel block is
obtained. Then conixel is transferred to C!) , and since ©5 is still set

and from there to 6 , the end of tape operations.

2. Two Methods for Performing Internal Collation

Two methods in common use will be described as means for sorting internally
a block of items into an ascending sequence, The first of these methods is
a general one and is nearly identical with the external collation technique.
The flow chart attached displays this method as adapted for two-word items.

The essence of the method consists of dividing the input data exactly in half
and then considering it as composed of one-item strings and finally merging
the one-item strings of each half together to form two-item strings. These
two-item strings are then merged to form four-item strings and the process
continues in like manner until all items are in single sorted string.

The problem of partial strings which is encountered in external collation
is easily avoided here since there are 30 two~-word items per block and, as
32 = 25, we can simply attach two = sentinel items to the end of outr block
when it is in the memory and sort 32 items. The sentinels will end up at
the end of the sorted items and may then be omitted when the block is
written on the output tapes. This is a feasible scheme in internal colla-
tion, since the amount of time required in handling the two dummy items is
relatively small. It should also be noted that it is not necessary to

change the merging from ascending to descending at the end of each pass since
the front of the merged items is just as readily accessible as the end of the
items. This, of course, is not the case in external collation where the first
items merged are separated 2 minutes (tape rewind time for 4 tape) in time
from the last items merged. Since the last items merged in external sorting
are immediately available to the computer, efficiency dictates that the tapes
be read backwards.

The block of 30 A items to be sorted are read into the memory and a pair of
= sentinels are positioned below the last item, making a total of 32 items.

"30 A
Items .

e 52 8 0

—OOOD.=

Any one of the first 16 items is labeled Aj where i = 1, 2,..., 16. The
last 16 items are also labeled A, but any one of these is indicated by As
where j =17, 18,..., 32. The inpgt string counters are 8a and Ab, while
the string length is R. At 9 Ay (the superscript O designates the key
word of the item) is compared with A°7 the smallest being stored as the
output item C,. The string counter E-‘a orAb is increased (which one de=~
pends on whic% item was the smallest) and tested against the string length
R. When an input string is exhausted, variable connectors are set to force
into C the remaining items of the other string. At the end of both strings
control is transferred to where 1 is tested against 17. If the test
indicates inequality, there are more strings to merge and control is re-
turned to . L1f i = 17, then the last string in each set of 16 items

has merged. The input string length, R, is examined. If R = 16, then a
32-item string has just been produced and C contains the sorted A block,

If this is not the casey, R is doubled and i, j, k are reset and the 32 C
items become a new set of 32 A items. A; and Aj; are defined as above and
the merging is repeated.

It is apparent that the method just described is a perfectly general one
and is adaptable to any item size. It is, however, a lengthy one, and

the following method is generally used for larger item sizes. The method
is.illustrated by coding it for ten-word items. The input block is assumed
to be in 700-759 and the sorted items (ascending sequence)will be stored in
cells 640-699,

The basis of the method is quite simple. The first item of the block is
selected and compared with each of the remaining items of the block. The
routine assumes that the input block is already in ascending sequence and
so assumes A will be placed in 640, Ay in 630,...5 Ag in 690, unless

@0

@ [1i—s] : ‘ M= a1 a, * B

(—a {r —(o) (Go—18 Ey O

- + _
O— === D s S e O) W = S) BN

% =

0 STOP
_.ck] o ,’

otherwise instructed. The first item, A,, is selected and compared to all the
remaining items, Aj;. The routine then adds ten to the assumed output destina-
tion of A} for every A; which is found to be less than or equal to A;. At the
same time ten is subtracted from the assumed destination of each such Aj.
After testing all A; against A;, the address of the output item, in which Ay
is to be stored, is known. For example, if the sequence of the input item
codes is

Item ‘ Code
A | 176
Ao : ‘ 21
A3 87
Aq 9
As 930
Ag 21

Al will be stored in cell 680. A2 is then compared with the remaining Aj
(1 =3, 4, 5, 6) in a similar manner. Thus, A, is stored in 660.

The following coding example is the heart of the Internal Sort for ten-word
items:

Input Block 700,...,759
Output Block 640,...,699

020 L 700
021 B 710
T 025
022 B 070
S 061
023 C 070
B 041
024 A 061
C 041
025 B 720
‘ T 029
026 B 071
_ S 061
027 C 071
B 041

11~

028 A 061

C 041
029 B 730

T 033
030 B 072

s 061
031 C 072

B 041
032 A 061

C 041
033 B 740

T 037
034 B 073

S 061
035 C 073

B 041
036 A 061

C 04l
037 B 750

T 041
038 B 074

S 061
039 C 074

B 041
040 A 061

C 041
041 [y 700

Z 640
042 |B40070

L 710
043 C 041

B 046
044 A 062

C 046
045 B 042

A% 064
046 C 042

U 021
061 000000

000010
062 000000

000004

-12-

063

064

010001

710
720

730

< ok =<

740

Y 750

000010

Z 650]
Z 660
Z 670

Z 680

Z 690]

-13-

A= fyg= Ap=£8.=0
a=1,b=2, c=8, d=Y, k=|
n=l, r=Y4, 0=C, R=I

@y 8V, €

LMo -,

——4 s _.?‘__»LA — T,H A — T,j——»i A — Til__.[A —T, "TAPE LABEL" e SCP—s i, a

[T, HRONG]

>{ 26

Ly WRONG)

SORT A
ITEMS INTO.
ASCENDING ORDER

PLATE |

mmmmmm

. ' 4 3 ¥ °
Ld s I l _I.—TI_H‘A.I <) _—i_ - g 4 5_11@1 _K & “ -~
! lﬁ -~— Y AI. -

= = e e =

PLATE 3

@ 0:C 2R—AC—>Aa]—P~| 0 = Ap
=

SN vy B

l a-—»W-5|+---)+AL70 ———-a}-—-—-—)+l W.s, —C %‘*

o—

(O | oy S ey BN | e N P S Pt S LRV Y

®

Td el

rl—=A

Td — rl

rl—= A

< Te—>rl T ——rl
2R—-—ﬂ_>lr|_>A R:A/2
rl—=A el —— A
>

-6

RWD Te

24 A =—Tn E}—.@

PLATE 4

8l

§ 31vid

SERVICE ROUTINES

1. Introduction

The service routines are designed to be a practical aid to the programmer
and to improve his efficiency in the use of the computer. The routines of
interest here fall into two catagories, correctors and diagnostic routines,

The corrector routines are Mark VIII, which is a manual corrector operat-
ing from the Supervisory Control, and AC-2, AC-3, and AC-4, which are auto-
matic correctors proceeding from pseudo-instructions on tape.

In the class of diagnostic routines we have the Codedit, Codecheck, and the
Analyser which prepare, in edited form, the input coding and also to some
extent an analysis of the coding. In addition, there exist a series of rou-
tines known as the Automonitor Routines which give a detailed account of

the actual running of a program.

These routines, with the addition of certain more specialized service rou-
tines and some of the engineering test routines make up the service routines
tape which is generally available at every computer. Proper use of the serv-
ice routines will materially decrease the amount of programmer and computer
time spent on program checks and revisions.

2, Locator

The Locator is always the first routine on the service routines tape. Its
function is to read into the computer any of the routines which follow it.

After an initial read is performed, the Locator prints out WHAT BLOCK and
sets up a 10 instruction. Type in a word in the form 000 000 OOB where
BBBB is the block number of the routine desired. The Locator will in effect
perform an initial read on the routine desired and stop prior to transfer-
ring control to line 000 of that routine., To proceed with the desired rou-
tine, merely hit the start bar.

If the block number of the desired routine is not known, depress breakpoint
0 at the start of the routine. Force transfer when QO sets up in the static
register., The SCP (set at normal) will print out the block number of each
service routine on the tape.

The service routines tape is normally mounted on servo one, If it is used
on any other servo, force transfer on breakpoint one after the initial read.
The SCP will print out 9 SERVO UOO000. Type in the servo number of the
servo used in the form SSSS5SS58SSSS and the Locator will make the necessary
modifications in itself and in the particular service routine desired.

THE CORRECTORS

3. MARK VIII

It is sometimes necessary for a programmer to assemble a tape from a group of
tapes or make corrections on an existing tape. These operations occur most
frequently during the "“debugging" stage of programming. In order to avoid a
great deal of duplicated effort and to simplify these operations, we make use
of the MARK V;II service routine,

The MARK VIII routine operates from control words typed in from the Supervi-
sory Control. Its basic operation is to copy a tape or a portion of a tape
onto another tape.#

Two types of manual control are exercised by the programmer., These are Break-
point Options (BKPI), and type-ins as set up by the routine.

Breakpoint Options

To use these options depress the appropriate breakpoint selector switch and
force transfer when the computer stops on that breakpoint number,

After the reading of the MARK VIII instructions or at any time after a Clear C
operation, there are two breakpoint options available:

BKPT 1 - Change of Servos: MARK VIII (except when the special methods de-
scribed below are used) normally copies from servo 2 to servo 3. To use any
other servos, force transfer on BKPT 1, The SCP will print 9servoU00044 and
set up a 10 m instruction. Type in a word of the form IIIIIIO00000 where I is
the input servo number and O is the output servo number,

BKPT 7 -~ Change of Write Density: To change the write density from IOQ/inch to
20/inch or from 20/inch to 100/inch, force transfer on BKPT 7. The write den-
sity is not changed by the Clear C operation. After the routine changes the
write density, it prints out the new density as followss:

730100A00036 20/inch
or
5301 00A00036 100/inch

*NOTE: The procedure for correcting a tape on Univac requires that the entire
tape be recopied inasmuch as a new block inserted in the midst of other
“information will render the following block unreadable due to the posi-
tion of the erase head and the differences in the servo's read and write
acceleration times,

Control Iype-Ins

After breakpoint options, if any, have been exercised, the SCP prints out
.6blockAimit, At this point there are the following operatlons which may
be executed at the programmer s discretion:

a. Skip through a tape
b. Copy a tape

¢. Correct a tape

d. Merge tapes

- Skipping Through a Iape: There are two methods available, special and
regular,

Special Method. After the SCP types out .6blockAlmit, type in a
word” as YSOOOOOOBBBB where S is the servo number and BBBB is the
number of blocks to be skipped,

Regular Method. After the SCP types out +6blockAlmit, type in a
word as OOCOOCOOBBBB, the SCP will then print out 83next9order. Type
in S$88585SS8SSSS and the operation will be executed. When either of
these methods is employed the first word of every skipped block is
printed out on the SCP. (A switch on the Supervisory Control may be
set to skip these printouts.) In either case the control is trans-
ferred to the beginning of MARK VIII again.

Copying a Iape: There are two methods available, special and regular.

Special Method, After .6blockAlmit appears on the SCP, type in
ZXYO00O0BBBB, where X is the input servo, Y is the output servo, and
BBBB is the number of blocks to be copied.

Regular Method. After .6blockAlmit, type in OOOOOCOOBBBB, where BBBB
is the number of blocks on the:tape to be copied., The SCP will then
print out 83next9order, and set up a type in. Type in ZZ2Z2777777Z,

Correcting a Tape.

After .6blockAlmit is printed, type in OCOOOQOOBBBB, where BBBB is the
number of blocks on the tape to be copied. The SCP will then print out
83next9order, Type in the block and word number of the first word to be
corrected as follows: OOBBBBOOOOWW, where BBBB is the block number and WW
is the word number. (The first block is 0001, but the first word in the
block is 00,) The SCP will print out the old word and set up a type in,

Type in the new word, The SCP will then again type out 83next9order. Type
in the next block and word number and proceed as above until all the correc-
tions have been entered, After the last correction, type in ZZZZ7Z7Z727Z727ZZZ
instead of a block and word number, and the routine will then complete the
copying operation and proceed to the ending routine., The corrections must
be in sequence by block number, but not necessarily by word number.

Mg;ging Tapes

Tape merging is executed by a series of the above operations, taking advan-
tage of the fact that it is not necessary to rewind the tapes.

Ending Routine

Upon completion of the copy or correct operations, the computer prints
500038900end. To rewind the input tape, hit the start bar once, (To avoid
rewinding the input set up a skip instruction in the static register when
the rewind instruction appears on the next & time.) The computer will stop
with a U 044 set up in the static register, Hit the start bar once to read
the output tape backward a number of blocks equal to the block limit Jlast
typed in. To change this block 1imit, skip the U 044 and type in, when
called for, the number of blocks desired to be read back as O0O0000OBBBB.
The SCP will print the first word of every block read backwards, Upon com=
pletion of the backward reads, the computer will rewind the output tape,

When using the MARK VIII routine, the programmer should note that at any
time a Clear C operation starts the routine anew, except for changes in
write density and servo. Should manual intervention be necessary, it is
useful to know that the input block in the memory is at 100 - 159,

o B

FROM LOCATOR

FROM CLEAR €

Y

CHANGE SERVOS

SPECIAL ORDER

CHANGE DENSITY

SKIP ORDER

TYPE IN BLOCK LIMIT N +_¢<::::>

(3
\Z

SKIP N BLOCKS ON INPUT TAPE, PRINT-
ING THE FIRST WORD OF EACH BLOCK

-

COPY ORDER

| CHANGE SERVOS | TEST N}
TYPE IN
B,W ORDER
SKIP ORDER
TEST
ORDER 3

TEST)

COPY ORDER

ORDER [

20

CORRECT ORDER

COPY B-1 BLOCKS FROM

()
N

COPY TO N BLOCKS FROM THE
INPUT TO THE OUTPUT TAPE "

PRINT END _@

SKIP SR

Rwd™® INPUT STopP

TYPE |

N BLOCK LIMIT N _‘®

READ OUTPUT TAPE BACK N BLOCKS, PRINT-
ING THE FIRST WORD OF EACH BLOCK

Rwd* OUTPUT

PRINT WORD W

INPUT TO OUTPUT TAPE

OF BLOCK B

TYPE IN CORRECTION FOR
WORD W OF BLOCK B

FLOW CHART MK VII|

CODING FOR MARK VIII

000 [61 000 Rewind Service Routine Tape

R 000] 000000 U 00] —>
001 L 003 : 1 000

B 001
002 R 060

Q1 051 Force Transfer for Servo Change
003 Yii030 " £ Transfer Read and Write Orders to

Z 090 Working Storage
004 F 055

Q7 048 Force Transfer to Change Write Density
005 50 012 .6BLOC KA LMIT —3 SCP

10 080 000000 OOXXXX —» 080 (Block Limit)
006 B 080

T 025 Transfer Control if Special Order

007 R 095

U 094 Transfer Control to Read First Block
008 R 086

F 055
009 50 041 83NEXT 9ORDER -—3 SCP

10 082 Next Order —> 082
010 B 082

T 032 Transfer Control if this is a Copy Order
011 L 042

T o21 Transfer Control if this is a Skip Order
012 .6BLOC _

KALMIT
013 B 096

Q 017 Transfer Control if this is the Incorrect

Block

014 R 098

U 097 Transfer Control to Write Current Block

T

015 R 09%
U 094 Transfer Control to Read Next Block
016 H 096 Increase Block Counter
U 013
017 L 003
B 082)
018 T 000 Transfer Control if this is the Last Block
36 037
019 E 082
A 035
020 Cc 08% Fabricated Corrector Instructions—>085
U 08% -
021 B 036
L 080
022 50 100 First Word of Input Block—3 SCP
Q 000 Transfer Control if Last Block
023 R 09%
U 094 Transfer Control to Read Next Block
024 A 036 Increase Block Counter
U 022
025 H 082
.5 000
026 A 080
C 084 Prepare Servo Change Control
027 E 080
H 080 Prepare Block Limit
028 R 060
U 052 Transfer Control to Servo Change Routine
029 YZZ030
Z 090 Transfer Read, Write, and Block Control
to WS
030 R 09%
U 094 Transfer Control to Read First Block

031 'L 029
U 010 Transfer Control to Copy Test
032 L 080
Uu 013 Transfer Control to Finish Copying
033 [73 100
A 036]
034 [12 000
30 100]
035 50 100
’ 10 100
036 000000
000001
037 [53 100 Write Last Block
A 036] :
038 50 038 500038 900END —3 SCP
. 900END Stop
039 [82 000 : Rewind Input Tape
U 042] Transfer Control to Test Output Tape Option
040 101111
111111
041 83NEXT
' 9CRDER
042 9SERVO
U 044
043 50 012 »6BLOC KA LMIT ——p SCP
' 10 080 000000 Q0XXXX ——>» 080 (Block Limit)
044 B 080
L 036
045 23 000
30 100
046 50 100 First Word of Input Blogk——i SCP
Q 041 Transfer Control if Last Biock
047 S 036 Decrease Block Counter
U 045

048 B 037
_ " F 033
049 G 037
C 033 :
050 50 037 Present Write Density —% SCP
U 003
051 50 042 : 9SERVO U00044 — SCP
10 084 IIIIII 000000 — 084 (Input-Output Servos)
052 F 040
B 084
053 E 034
H 034
054 E 039
H 039
055 B 084
361111
056 E 037
H 037
057 E 033
H 033
058 E 041
H 04]
059 E 045
H 045

«10=

EXAMPLE PROBLEMS FOR MARK VIII

Problem 1:
Blks 1 through i5 of tape A— tape D
Blks 13 through 17 of tape B—>» tape D
Blks 1 through 5 of tape C—> tape D, correcting
Blk 1 word 07
Blk 3 word 05
Skip through D to test its réadability
Solution

Assume tapes A, B, C, D are mounted on servos 2, 3, 4, and 5 and that the MARK
VIIT is in the memory. The operator's actions are:

1. Type in Z25 000 000 015

2,. Hit start bar to rewind tape A

3. Clear C and hit start bar

4, Type in Y30 000 000 012

5. Type in 235 000 000 005

6., Hit start bar to rewind tape B

7. Set brkp't 1, clear C, and hit start bar

8, Force transfer, release brkp't 1, and hit start bar
9. Type in 444 444 555 555
10, . Type in 000 000 000 005
11, Type in 000 001 000 007
12. Type in correction for blk 1 word 07 of tape C

13, Type in 000 003 000 00%

~11~

14, Type in correction for blk 3 word 05 of tape C
15, Type in 2ZZ ZZZ Z7Z Z7Z

16, Hit start bar tokrewind tape C-

17, Clear SR to zeros and hit start bar

18, Type in 000 000 000 025

Problem 23
Blks 1 through 2 of tape A—» C
Blks 1 through 5 of -tape B—> C
Blk 3 of tape A—3 C
Blks 8 through 19 of tape B——>C
Skip through C to test its readability and copy at 20/inch
for printing.
Solution

Assume A, B, and two blanks are on servos 2, 3, 4, and 5, The operator's actions
ares

1. Type in Z24 000 000 002

2, Clear C and hit start bar

3. Type .in 234 000 000 00%

4, Clear C and hit start bar

5. Type in 224 00C 000 001 4

6, Hit start bar to rewind tape A
7. Clear C and hit start bar

8, Type in Y30 000 000 002

“]2=

9. Type in Z34 000 000 012

10, Hit start bar to rewind tape B
11, Clear SR to zeros and hit start bar
12, Type in 000 0CO 000 020

13, Clear C, set brkp't 7, drop interlock on T4, hit start bar

14, Force transfer, release brkp't 7, and hit start bar
15, Type in 245 000 000 020
16, Hit start bar

17. Hit start bar

=] 3=

40 AC"B

Autocorrector 3 is a single purpose routine designed to perform tape correction
only. AC-3 has several features which serve in reducing the possibility of
clerical errors as well as programmer and computer time,

Unlike MARK VIII, which operates from Supervisory Control type-ins, the AC-3

is tape controlled. Thus, when only tape correction is to be done and when a
large number of corrections are to be made, the AC-3 is more conservative of

Univac time than the MARK VIII., 1In addition to the value of tape controlled

operation, the AC-3 has several other features designed as a programmer con-

venience, They are:

a. The corrections need not be recorded on the control
tape in block number sequence as AC-3 sorts the
corrections before they are applied,

b. Before each correction is actually applied, it can
elther be printed on the SCP or writtenvon a tape,
providing a permanent record of the corrections is
made ,

¢c. In conjunction with item b, options are available
for making minor corrections to the control tape
information,

The control tape which is mounted on Uniservo 4 consists of a series of two-
word items in the following format:

OOB BBB 000 Oww
CCC CCC ccc ccc

Where BBBB is the number of the block to be corrected (1 S, BBBB S 2000),

WW is the word within that block to be corrected (00 £ WW £ 59), and

CCC CCC CCC CCC is the correction for that word., For example, if word 51
of block 27 is to be changed from BOO 301 COQO 397 to BOO 351 HOO 397 the

correction item would be

000 027 000 051
BOO 351 HOO 397

A maximum of 329 correction items can be handled at one time with AC-3. To
mark the end of the correction list on tape 4, the sentinel ZZZ ZZZ 777 ZZZ
must follow the last correction item., The remaining information following
the sentinel in the block is ignored by AC-3.

The operating instructions for AC-3 are listed below.

1. The tapes to be mounted are as follows

Uniservo : Tape
1 Service routine containing AC-3
2 Tape to be corrected (see 3)
3 Blank tape for corrected output
(see 3) ‘
4 AC-3 control tape
5 Blank tape for the correction

listing if option under step 3
is to be exercised

-14-

2.

3.

S.

Initial read Ac-3 through use of Service Routine Locator. Computer
will stop after first block of AC-3 is in the memory,

Several conditional transfer breakpoint options are now available:

a. To print the AC-3 operating instructions depress breakpoint
zero, set the SCP selector switch to normal, and operate the
start bar,

The computer will stop on a Q0. Force transfer and operate
the start bar. The AC-3 operating instructions will print
on SCP and the computer will stop again on Q0. At this
point Q0 should be released and other options, if they are
to be exercised, should have their appropriate breakpoint
buttons depressed. Operate start bar to continue.

b. To modify the Uniservos assigned to the tape to be corrected

and the blank to contain the corrected version depress break-

point one and operate the start bar,

The computer will stop on a Ql. Release breakpoint one,
force transfer and operate the start bar. Computer will
print
In Out Servo
and stall on an input ready. Type in the new Uniservo
i'designations in the following form

XXX XXX YYY YYY

where X is the input servo and Y is the output servo. The
computer will automatically modify the appropriate instruc-
tions and continue.

c. To have the correction list written on tape 5 depress break-
point 3 and operate the start bar. This option will be ex-
ercised when step 5 is reached.

The computer will then print out

block limit
and stall on an input ready., Type in the number of blocks on the
"tape to be corrected"™ in this format

000 000 00X Xxx (1 S xxxx £ 2000)

If breakpoint 3 has been depressed, computer will stop on Q3. Re-
lease breakpoint 3 and force transfer. If the correction list is
known to be correct (e.g. no errors in unityping), the SCP output
selector switch should be placed on skip to conserve computer time,
Operate the start bar to continue with AC-3.

If an SCP output is desired, the print selector switch should be
set to check and the margins set for 39 digits.

-15-

6. When the corrections have beeﬁ applied, the computer will rewind all
tapes and stop. ’

7. If the option for writing the corrections on tape 5 has been exer-
cised, the uniprinter settings should be

a, Print selector switch set to check
b. Margins set for 36 digits

Occasionally it may be desirable to modify the correction information on the
control tape without the necessity of retyping it or doing a MARK VIII correc-
tion., This, of course, could arise when an error in listing the corrections
has been made or in unityping. To expediate this correction of the control
tape, a set of additional breakpoint options have been provided. These break-
points, if option is to be exercised, should be set on step 3 above.

To modify a correction, depress the appropriate breakpoint listed below,

a. To modify the block and word number of a
correction depress breakpoint four,

b. To modify the correction itself depress
breakpoint five.

c. To skip this correction entirely depress
breakpoint six.

When the computer is about to apply a correction, it will print the old word,
the block and word number, and the new word, and will then stop on the appro-
priate breakpoint., Operate the start bar each time the computer stops on the
breakpoint until the correction to be modified is printed out. Then for mod-
ifications a and b above, force transfer, release the breakpoint and operate

the start bar. The computer will stall on an input ready. Then

a. To modify the block and word number, type in the
new block and word number in the same format as
on the control tape. This new block number must
not be less than the replaced block nhumber nor
larger than the block number of the correction
item to follow (this may require scanning the
list of corrections manually).

b. To change the correction itself, type in the new
correction. If both a block and word number and
its correction are to be changed, both breakpoints
four and five must be used.

For skipping a correction simply force transfer, release the breakpoint and
operate the start bar.

AC-3 may be rerun at any time by operating the clear C switch. This causes
the input, output, and control tapes to be rewound. Tape 5 will not be rewound.

A schematic flow chart of AC-3 is appended.

-16-

FROM LOCATOR

FROM CLEAR C

TYPE IN BLOCK LIMIT N

-

Y A
PRINT CHANGE
OPERATING INPUT-0UTPUT
INSTRUCTIONS SERVOS

FT

5b

READ ALL
CORRECTIONS
INTO
MEMORY

SELECT CORRECTION
WITH LOWEST
BLOCK NUMBER B

Y
IS THIS GORRECTION ES
A SENTINEL?

COPY TO N BLOCKS FROM

READ OUTPUT TAPE

RWD™ CONTROL

RWD INPUT AND

AND NEW WORD

THE INPUT TO THE OUTPUT TAPE BACK N BLOCKS TAPE OUTPUT TAPES
NO
PRINT OLD WORD Vv Vi .
COPY TO B-1 BLOCKS FROM <) BLOCK AND WORD . - N
e : - i 5) MAKE CORRECTION
THE INPUT TO THE OUTPUT TAPE NUMBER AND {9 0 ¢
NEW WORD FT FT FT
4 Y
TYPE IN NEW TYPE IN
BLOCK AND NEW
WORD NUMBER CORRECT I ON
SELECT CORRECTION
WITH LOWEST REMAINING .>@
BLOCK NUMBER B
WRITE ON Tg OLD WORD,
BLOCK AND WORD NUMBER, ->@ FLUW CdART AC-3

SERVICE ROUTINES

003

AC-4

Like AC-3, the Autocorrector 4 is a single purpose routine designed to per-
form tape correction only. The distinguishing feature of AC-4 over the
Mark VIII and AC-3 is that it provides a check on the corrections to be ef-
fected. As in AC-3, the correction items are recorded on a control tape
and thus computer time is conserved,

The control tape consists of a series of three-word items having the follow-
ing formats

OOB BBB 0CO OWW
XXX XXX XXX XXX
CCC CCC CCC CCC

Where BBBB is the number of the block to be corrected (1 £ BBBB £ 2000),

is the word within the block to be corrected (00 Lw< 59)9 XXX~ XXX XXX XXX
is the incorrect word and CCC CCC CCC CCC is the corréct word, For example,
if word 51 of bilock. 27 is to be corrected from BOO 301 COO0 397 to BOO 351
HOO 397 the correction item would bes

000 027 000 051
BOO 301 COO 397
BOO 351 HOO 397

Foliowing the last correction item will be the sentinel word ZZZ ZZZ 227 7ZZZ,
The remaining information in the correction data block will be ingnored.

The correction items must be recorded on the control tape in ascending order
by block number.

Briefly, the mode of operation of AC~-4 is thisz the tape to be corrected is
copied onto a blank ocutput tape until an incorrect block is located., The
word to be corrected is then compared with the word the programmer expected
to be there, as indicated by the second word of the correction item. If they
agree, the correction is made by replacing that word of the input tape by the
third word of the correction item and the process is repesated for the next
correction item, If the comparison shows a disagreement, it may indicate
either an error in listing the block and word number or in the unityping of

~18-

S

where X is the input servo and Y is the output ser-
vo, The computer will automatically modify the ap-
propriate instructions and continue,

The computer will thén print
Block Limit

and stall on an input ready. Type in the number of blocks
on the "tape to be corrected” in this format:

000 000 00X XXX (1 £ XXXX < 2000)

The computer will then proceed with corrections, comparing
word two of the correction item with the word in the desig=-
nated location before the correction is made, Step 8, below,
will cover the operation when discrepancies are detected.

When all corrections have been appiied, the input tapes will
be rewound, The output tape will be read backwards to check
its legibility and then rewound.

AC-=4 may be restarted at any time by clearing C.

If, during the application of the correction list, a discrep-
ancy 1s found between the second word of the correction item
and the word in the designated location, the following infor-
mation will print on SCP and the computer will stop:

Block and word number

The word occupying that location

The word expected to be in that location
The word to be put in that location

If the AC~4 operating instructions are desired, depress QO
and operate the Start Bar., The c¢omputer will stop on a Q0.
Force transfer, release the breakpoint and operate the
Start Bar. The operating instructions will be printed on
QQP and the computer will again stop.

Several options are now avallables

A, To disregard the discrepancy and proceed with the
correction, depress breakpoint two, and operate the
Start Bar, The computer will stop on a Q2, Force
transfer, release the breakpoint and operate the
Start Bar,

=20

To change the block or word number, depress breakpoint
three and operate the Start Bar. The computer will
stop on a Q3, Force transfer, release.the breakpoint,
and operate the Start Bar., The computer will print on
SCP

New Blk, Word

and stall on an input ready. Type in the new block
and word number. This new block number must not be
less than the old one . nor greater than the block num-
ber for the next correction item, The computer will
apply this new correction and continue in normal
operation,

To skip this correction, simply operate the Start Bar.

=21=

—aa_

FROM
LOCATOR

FROM
CLEAR C

(2)—

SELECT NEXT COR-
RECTION ITEM FOR
BLOCK B WORD W

>

PRINT
OPERATING
INSTRUCTIONS

IS THIS
ITEM A
SENTINEL?

L|=T

CHANGE

SERVOS

STOP

INPUT-OUTPUT

COPY TO BLOCK B-Ii
FROM THE INPUT
TO THE OUTPUT

COPY TO BLOCK RWD* CONTROL READ OUTPUT
N FROM THE INPUT AND INPUT 3 TAPE BACK-
TO THE OUTPUT TAPES WARD N BLOCKS
RWD* OUTPUT
TAPE

PRINT
OPERATING
INSTRUCT 1 0KS

TYPE IN
BLOCK LIMIT N

DOES INPUT OLD

WORD AGREE WITH

CORRECTION ITEM
OLD WORD?

PRINT BLOCK
AND WORD NUMBER

}

PRINT ACTUAL WORD
W OF BLOCK B

l

PRINT EXPECTED WORD
W OF BLOCK B

|

MAKE
CORRECTION

PRINT CORRECTION FOR
WORD W OF BLOCK B

SKIP THIS
CORRECTION

(2

1GNORE
DISCREPANCY

TO CORRECT
B AND W

-

TYPE IN NEW BLOCK AND
WORD NUMBER, BW

FLOW CHART
FOR AC-Y4

6 . MA-2

Occasionally, it is desirable to merge the data from two tapes on a word-by-
word basis as contrasted to the block merging accomplished by the Mark VIII.
Examples of this might be:

a. copying a subroutine into a master routine where the
subroutine does not take up an intergral number of
blocks.

b, .correcting tapes on which words have been left out
or extra words added.

c. merging data from two tapes where block-by-block
merge is not feasible.

The Automatic Line Merge, MA-2, is a service routine designed for this pur-
pose. Certain other features have been included in MA-2 to increase its
flexibility and usefulness.

The basic operation of MA-2 is to transfer words from one or two input tapes
designated A and B to an output tape C. The uniservos for A, B, and C are
specified by an initial control word. This control word and the control words
following it are normally unityped onto a control tape which is mounted on
uniservo 4 although a breakpoint option may be exercised to use another
uniservo to have the control words typed in manually through SCK., Other
breakpoint options are available for minor corrections of the control words
which are printed on the SCP before they are executed.

There are three different types of control words which MA-2 recognizes. The
first of these must be the first control word received by MA-2, It is called
an initial control word and has the following format

ABC 000 000 000

where A and B are the two input uniservo numbers (use zero for B if there is
only one input) and C the output uniservo. An initial instruction causes the
MA-2 tape instructions to be appropriately adjusted.

The second type of control word is a pseudo instruction instructing MA-2 to
perform one of the five following operations:

1. Copy N words from tape A or B to C.

2. Skip N words on tape A or B.

3. Fill tape C with N "special"” words,

4, Add the next N words from the control tape
Tor SCK) to tape C.

5. Read tape C backwards to test its readability,
also, print the total number of blocks on the
tape, the first word of each block, and then
rewind the tape with interlock.

-23=

These pseudo instructions are in the following format

LL
BBBB

C5;S, TLL OOB BBB

is a control digit specifying one of the five operations noted above.
In particular if

A copy operation is to be performed
A skip operation is to be performed
A fill operation is to be performed
An add operation is to be performed
A read back operation is to be performed

oNoRsRoNe!
o nu
> <N

is the input tape and it will be either the letter A or B for those
operations requiring an input tape.

is the output tape. It is always the letter C for those operations
requiring an output tape.

'is of significance only when a fill operation is to be done. 1In

these cases it will be a digit specifying the kind of "special” word
to be used in the fill operation. If

0 The fill word is 000 000 000 000
1 The fill word is i¥}¥ ii{ ii¥ iii
2 The fill word is 2ZZ ZZZ 2ZZ ZZZ

-1

T
T
T

as many as seven other fill words may be specified by inserting the

additional fill words in words 13 to 19 of block 3 of MA-2, If this
is done, T has the range 0 T £9. Neither S; nor S, need be spec-
ified on a fill operation. '

Together specify the number of words affected by the pseudo instruc-
tion. If the number of words to be affected are less than 60,

BBBB = 0 and OO_S LL £ 59, while if the number of words are 60 or
more BBBB = number of 60 word multiples and LL= remaining words.
For example, if the number of words, N, are

15 Then LL = 15 and BBBB * 0000
75 Then LL = 1% and BBBB = 0001
120 Then LL = 00 and BBBB = 0002

o

N
N
N

The third type of control word is the normal Univac instruction. That is,
if a control word (exclusive of the initial control word which is the servo
designator) does not have as its left-most digit the letter Z, Y, F, A, or
B it is treated as a Univac instruction and executed. In particular a
control word

620 000 900 000

-D4-

will cause tape 2 to be rewound and Univac stopped. Do not expect the con-
tents of the working registers to remain unaltered between the execution of
successive control words. This means a control word sequence

LOO 500 BOO 900
000 000 QOO0 051

will not produce the expected result of comparing (500) and (900) for equali-
ty.

The operating instructions for MA-2 are:

1. Tapes to bé mounted aré'as follows

Uniservo Tape

1 Service routine containing MA-2

4 Control tape (if options under
steps 3b and ¢ are not exercised)

A Input tape A ‘

B Input tape B (if a second input is
used)

C . Blank tape for output

2. 1Initial read MA-2 through use of Service Routine Locator.
Computer will stop after the first block of MA-2 is in the
memory. Depress breakpoint seven.

3. Several conditional transfer breakpoint options are now
available:

a. To print the MA-2 operating instructions
depress breakpoint zero, set the SCP se=-
lector switch to normal, and operate the
Start Bar.

The computer will stop on a Q0. Force
transfer and operate the Start Bar, The
MA-2 operating instructions will print on
SCP and the computer wiil again stop on
Q0. At this point QO should be released
and other options, if they are to be ex-
ercised, should have their appropriate
breakpoint buttons depressed. Operate
the Start Bar to continue.

b. To-modify the uniservo assigned to the
control tape, which is normally #4, de-
press breakpoint one ‘and operate the Start
Bar.

The computer will stop on a Ql. Force
transfer, release breakpoint one, and

25«

Ce

operate the Start Bar. The computer will print
on SCP. 4

TITTTTTTTTTT

and stall on an input ready. Type in the new
uniservo designation for the control tape in
this form:

00000000000

where X is the uniservo number. The computer
will automatically modify the approprlate in-
structions and contlnue,

To modify MA-2 for manual operation through
the SCK, depress breakpoint three and operate
the Start Bar.

The computer will stop on a Q3. Force transfer,
release breakpoint three and operate the Start
Bar. The manual operation of MA-2 is described
in step 4b.

4, The computer will then begin the word-by-word merging in the
following manner, depending on whether or not the manual op-
tion of 3¢ was exercised:

a.

If the control tape is used, the merging pro-
ceeds automatically with MA-2 selecting: its
instructions from the control tape. Just be-
fore each order is executed, it is printed on the
SCP thus providing a permanent record of the
corrections is made., The merging is stopped
only by a 90:000 instruction on the control
tape.

. 1If the manual option has been exercised, the

computer will print on the SCP
ABC

and 'stall on an input ready. Type in the
initial control word (servo specifications).

The computer will modify the appropriate tape
ihstructions and' stall again on an input ready.
Type in the next instruction. The computer
will continue calling for instructions until a
90 000 instruction is supplied.

5. The routine may be rerun at any time by clearing C. Oc-
casionally, it may be desirable to modify the instructions

-26=

on the control tape without the necessity of retyping it or
doing a Mark VII1 correction. This could, of course, arise
when an error in listing the instructions or in unityping
them has been made. A set of additional breakpoint options
have been incorporated in MA-2 to facilitate the modifica=-
tion of the control tape. These breakpoints, if their op-
tions are to be exercised, should be set on step 3 above:

a. To insert an instruction, depress breakpoint
four., Each time the computer stops on a Q4
operate the Start Bar until the instruction
just printed on SCP is the one in front of
which a new instruction is to be inserted.
When this occurs, force transfer, release
Q4 (unless further insertions are to be made),
and operate the Start Bar.

The computer will print
INSERT

and stall on an input ready. Type in the
additional order.

b. To change an instruction, depress breakpoint
five. Operate the Start Bar each time the
computer stops on-a Q% until the instruction
to be changed has just been printed on SCP,.
then force transfer, release Q5 (unless
further instruction changes are to be made),
and operate the Start Bar,

The computer will print

CHANGE

and stall on an input ready. Type in the
corrected instruction.

¢, To.delete an instruction, depress breakpoint
six, Operate the Start Bar each time the com-
puter stops on a Q6 until the instruction to
be deleted has just been printed on the SCP.
When this occurs, force transfer, release Q6
(unless further deletions are to be made),
and operate the Start Bar,

The computer will print
DELETE

andpass on to the next instruction.

-27-

Certain instruction errors are automatically detected by MA-2;

a. If a partially filled output block is still in
the computer at the time a B instruction (read
output tape backwards) is received, the com-
puter prints

TC BKS xxxx
OUTPUT BLOCK
NOT FULL

Hyy 5zz UQ0107

where xxxx 1s the total number of blocks on C
and zz + 1 is the number of words in the par=-
tially filled output block. The computer will
stop-on a Q7. If the remainder of the block is
to be filled with zeros, simply operate. the
Start Bar, .If. other corrective action is nec-
essary, force transfer;, set one of the break=-
points listed in the error conditions noted
above, and operate the Start Bar. The compu-
ter will stop on the selected breakpoint and
the operations discussed in the previous para-
graph should be followed,

b. If a copy or skip order is supplied to MA=2
without listing the input servo, the computer
will print '

ERROR SET BP

and stop., Set one of the breakpoints 4, 5,
or 6 and operate the Start Bar. The computer
will stop on the selected breakpoint and the
operations discussed for that breakpoint
should be followed.

The following examples will illustrate the use of MA=2:
Example 1

Prepare an output tape, C, containing the
following parts of input tapes A and B:

BLK 1 WOO to BLK 2 W 16 from A
BLK 1 W10 to BLK 1 W 19 from B
BLK 2 W17 to BLK 2 W 59 from A
BLK 2 W CO0 +to BLK 2 W 49 from B

Let tapes A, B, and C (blank) be mounted on
servos 2, 3, and 5, respectively., The con-
trol tape (or manual type-ins) would then
contain

=28=

Instructions . Explanation

235 000 000 000 A=Ty B=Tgz, C=Tg
.ZAC 017 000 001 Copy 77 words from A to C
YBO 010 000 000 Skip 10 words on B
ZBC 010 000 000 Copy 10 words fyom B to C
ZAC 043 000 000 ' _ Copy 43 words from A to C
YBO 040 000 000 - Skip 40 words from B to C
ZBC 050 000 000 Copy 50 words from B to C
620 000 630 000 . Rewind A and B
BOO 000.000 000 o Read C back and rewind
900 000 000 000 Stop
Example 2

Tape A contains 4 blocks. The first 6 words are

heading, the remainder is data. Transform the

heading into an identification block filling the

remainder of the block with zeros. Follow this

ID block with the data placing Z sentinels after

the data and add two sentinel blocks.

Let tape A be mounted on servo 2 and a bl}an9 C,

be mounted on servo 5. The control tape would

then contain

Instructions ‘ ' Explanation

205 000 000 000 A=Tp, C=Txg
ZAC 006 000 000 Copy 6 words from A to C
FOO 054 000 000 ‘ Fill C with 54 words of zeros
ZAC 0%4 000 003 Copy 234 words from A to C
FOO 206 000 002 . Fill C with 126 sentinel words
BOO 000 000 000 Read C back and rewind
620 000 900 000 Rewind A and stop
Example 3

. Tape A is a unityped program tape, 2 blocks in

length., In proofreading the unityping it was
found that words 33 and 34 of block 2 were left
out, and everything beyond these words, there-
fore, has been shifted, the last two words be-
ing zero. These words should be BOO 220 LOO
135 and AOO 235 TOO 120 respectively. Tape B

=29-

is a:19 block program tape. Word 12 of block 10
of tape B is to be corrected to read BOO 110 HOO
132. Tape A is to replace that part of tape B
from word 20 of block 15 to word 19 of block 17.
In addition, a block of ignores is to be attached
to the completed program tape.

Let tapes A and B be mounted on servos 2 and 3 and
a blank tape, C, be mounted on 3. The control tape
contents are:

Instructions ' Explanation

235 000 000 000 A=Ty, B=Tg, C= Ts,
ZBC 012 000 010 Copy 612 words from B to C
YBO 001 000 000 , Skip the word to be corrected

~ AOO 001 000 000 Add 1 word .to C
BOO 110 HOO: 132 Word to be added '
ZBC 007 000 005 Copy 307 words from B to C
YBO 000 000 002 Skip 120 words on B
ZAC 033 000 001 . Copy 93 words from A to C
AQ0 002 000, 000 ‘ Add 2 words to C
BOO 220 LO0O.135 Word to be added
AOQ 235 TOO 120 Word to be added
ZAC 025 000 000 Copy 25 words from A to C
ZBC 040 000. 002 Copy 160 words from B to C
FOO 100 000 001 Fill C with 60 ignore words
620 000 630 000 Rewind A and B
BOO 000 000 000 Read C back and rewind
900 000 000 000 Stop

7. HERB I

HERB 1 is a single purpose routine designed to automatically compare for
identity the contents of two tapes. Whenever the routine finds a discrep-
ancy, the two words and their block and word number is printed on SCP. An
option is provided for produc1ng an output tape that is a synthesis of the
input tapes.

~There are a number of computer operations that may warrant the use of an
auto-comparator such as HERB I. Some of these are listed below:

a. as a check on the manual operations of MK VIII such
as copying a tape or correcting a tape.

b. as a means of spotlighting the differences between
two supposed identical routines.

c. as a means of verifying the accuracy of a duplicated
unityping job and at the same time providing a cor-
rected output.

- =30~

The operating instructions for HERB I are listed below

1.

4.

S

9.

10.

The service routine tape is mounted on Uniservo 1.
The two tapes to be compared are mounted on servos
A and B (any servos may be used). If an output
tape is desired; mount a blank tape on servo C.

Set the SCP Selector Switch on computer digit. Set
the margins for

a) No output tapes 39 digits

b) Output tape: 52 digits
Initial read Herb I through use of the Service
Routine Locator. Computer will stop with the
first block of HERB 1 in the memory.

1f the output tape feature is desired, set break-
points 4 and 5.

Operate Start Bar.

Computer will stall on an input ready. Type in a
control word in the following format:

AAA BBB CCG xxx

where A and B are the uniserve numbers of the two

 tapes to be compared, C is the uniservo number of

the desired tape (C = 0 if no output tape option
is being used), and xxx is the number of blocks on
the input tapes to be compared.,

The computer will begin comparing A and B word-by-

word for identity. If C# O, the routine will copy
each A word passing the ‘identity test onto the out-
put tape. The operation of the routine when a dis-
crepancy between A and B is detected is covered in

step 10.

When the two input tapes have been compared the
desired number of blocks, the input and output (if
used) tapes are rewound and the computer stopped.

To rerun at any time clear C., This will cause A,
B and C (if used) to be rewound and the routine
will pick up at step 6.

In case a discrepancy between A and B is encounter-

ed by the routine, three words will be printed on
SCP in the following sequence:

-31=

1. word from tape A

2. block and word number
of the discrepancy

3. word from tape B

if the output tape option is not being used, the
routine returns to the comparison of the remain=-
ing words on the input tapes.

If an output tape option is used, the computer
will stop on breakpoint 4 after the printout.
The following options are now available:

a. To allow the A word to appear on the
output tape, operate the Start Bar.
The computer will stop on breakpoint
5. Operate the Start Bar. The A
word will again be printed on SCP,

b. To allow the B word to appear on the
output tape, operate the Start Bar.
The computer will stop on breakpoint
5. Force transfer and operate the
Start Bar. The B word will again be
printed on SCP,

c. To allow a new word to appear on the
output tape, force transfer and op-
erate the Start Bar. . The computer
will stall on a type in. Type in
the desired word.

After one of the above options have been exercised,
the computer will continue with the comparisons.

-32-

PROGRAMMING MANUAL FOR THE
HIGH-SPEED PRINTER

1. General Characteristics

The Remington Rand High-Speed Printer converts information stored in
the form of magnetic pulses (the Univac XS-3 code) into a visible
printed record. The speed of conversion is much greater than anything
heretofore commercially available. Some general characteristic of the
printer are listed below:

Characters printed per line 130
Lines printed per minute,

optional at 200, 400, or 600
Horizontal character spacing 10 per inch
Vertical character spacing,

optional at 6, 3, or 2 per inch
Number of different printable

characters ol
Printing format control plug board and paper loop

In brief, the High-Speed Printer operates in the following fashion.
Coded data is read from the magnetic tape in groups of 120 digits call-
ed blockettes., Each blockette is stored in a memory with the data
being in the same coded form as on the tape. A continuously revolving
shaft, on which are mounted the 130 typewheels (actually 65 double
wheels), also carries a commutator which causes to be generated se-
quentially the code for each of the characters on the typewheels,

This coded representation is sent to a 120 place comparator which also
receives in the same code the contents of the 120 place memory. When-
ever agreement occurs, which may, of course, be in many places of the
comparator at once, signals leave those places on separate wires.

Opposite each typewheel there is a hammer which can be diiven against
it. The paper, with an inked ribbon or special carbon paper in front
of it, passes between the typewheels and hammers, and it is by making
a hammer drive the local portion of the paper against a typewheel that
printing is achieved.

The comparator output signals mentioned above ultimately release the
energy which drives the hammers. Before doing so however, they pass
through a plugboard by means of which they can be routed to any de-

sired hammer. Thus any memory position can be made to print out in

any print position.

Time is allowed for one complete typewheel revolution so that every
character in the memory has a chance to print. Then the paper is
spaced, a new blockette of information is read in and the cycle re-
peated.

Physically, the High-Speed Printer is composed of four units: the
Uniservo, the Printer Unit, the Memory Unit, and the Power Supply
Unit. These units are interconnected by means of cables. Figure 1
is a picture of the printer. '

The above description of the printer implied that the magnetic tape
input must be in blockette form. On the middle right quarter of the
Univac Supervisory Control Panel is a series of ten Block Sub-
Divider Buttons. Each button corresponds to a Uniservo. When one
or more buttons are depressed, each block written on the correspond-
ing Uniservos will be in blockette form. That is, the computer will
automatically interrupt the write instructions for those Uniservos
for a short period after each multiple of 120 digits has been written.
Thus each block of 720 characters will be composed of 6 sets of 120
character blockettes, a small blank space appearing between each
blockette.

Since the Tape-To-Card Converter also requires magnetic tape record-
ed in blockette form, but at a somewhat different spacing for its
efficient operation, the Block Sub-Divider Buttons for Uniservos

1, 2, 3, 4, 5, 6, 7 contain the appropriate delays for High-Speed
Printer tapes while the buttons for Uniservos 8, 9, - have delays
appropriate for the Tape-To-Card Converter.

To prepare High-Speed Printer tapes on the Univac, the programmer
need merely depress the Block Sub-Divider Button corresponding to

the Uniservo he has selected from among those listed above to re-
ceive this output. All write orders for these Uniservos should be

5n m's. Because of the extra space needed between blockettes, a
1500' reel of tape can contain up to 7500 blockettes (= 1250 blocks).
" In making time estimates, the programmer should note that because

of the reduced number of blocks there are fewer starts and stops, and
thus a full tape recorded in High-Speed Printer blockettes can be
made by the computer in 3.5 minutes.

2. Printing Format Control Features

In addition to the ability to print the contents of a memory location
anywhere on the page, the High-Speed Printer also possesses several
other highly useful editing facilities,

Zero Suppression. It is frequently desirable to suppress the print-
ing of zeros to the left of the first significant (non-zero) digit in
a result. It may be required to do this in several areas along a line
of printing. By means of the plug board on the printer, this may auto-
matically be done in as many as 18 independent arbitrary areas(or
fields).

Fast Feed, On many forms there will frequently be areas where no
printing is to occur. Rather than step through these areas a line at
a time without printing anything, which would not only be slow but
would also require putting "blank" blockettes of information on the
tape, thus wasting tape and computer time as well, the paper can be
continuously moved at high speed from one printing area to the next.
This operation is known as "Fast Feeding™. It is controlled by means
of a punched paper loop which is placed on the printer and moves in
synchronism with the paper. The Fast Feed can be started by means of
¢ither a hole punched in the paper loop (in a certain channel) or by
any of several special coded combinations written on the magnetic
tape. It is stopped by sensing the appropriate punched holes on the
paper loop.

Multiline, Normally the contents of the memory (one blockette or 120
digits) is printed out on a single line. By means of the "Multiline"
symbol, placed at the beginning of a blockette of information, and in
conjunction with the plugboard, a blockette can be broken up and
printed out in as many as six consecutive lines. This feature may
permit great savings of tape. An obvious use is in name-and-address
printing.

Multiple Printing. By means of the plugboard, the contents of a
memory location can be printed in not just one but in two or
three places across the line. In addition, if the High-Speed
Printer is operating in Multiline, the additional printings do
not even have to be on the same line (subject to certain re-
strictions to be discussed later). Of course, no more than

130 characters can be printed on any one line.

3. Wiring For Single Line Printing

For printing of this nature; no Multiline, Multiple Printing,
or Zero Suppression; only the top panel of the plugboard is in-
volved, The complete plugboard is shown in Figure 3. The
first 5 columns of holes on the left of the top panel of the
plugboard are numbered 1-24, 25-48,. . . , 97—120 . These
holes are connected to the comparator output lines and are in
one-to-one correspondence with the 120 positions of the memory.
In the next section of the plugboard to the right, there are 130
pairs of holes, each pair corresponding to a printing position,
The two holes of a pair are vertically one above the other and
are internally connected together. (The reason for using two
holes is to have a free one into which a second jumper can be
put so that the comparator signal can be sent to more than one
point. This is necessary in Multiple and Multiline Printing.)

It is only necessary now to connect by means of jumpers the set
of 120 holes, corresponding to the memory locations, to the set
of 130 pairs of holes (that is, to one hole in each pair) cor-
responding to the hammers or printing positions. This can be
done in one-to-one or any other desired pattern. If it is not
required to print certain memory locations, or if it is known
that certain locations will always contain non-printing charact-
ers, these may be left unplugged.

For most purposes, 6, 8, or 10 inch jumpers will be found best.
Short jumpers make for a tight, neat-looking board but have

the disadvantage that it becomes difficult to enter the heart of
a heavily plugged-up area to change or add a jumper.

For electrical reasons only, it is necessary to place a few
jumpers in the Multiline section of the plugboard even though no
Multiline Printing is to be done. Connect (upper panel):

32A to 33F
33A to 34A
338 to 34B
33C to 34C
33D to 34D
33E to 34E

There is one more thing that must be done before the board can be
used, The bottom four holes of the 16th column of the board deter-
mine the line spacing, i.e., whether single space, double space or
triple space. A jumper is plugged from the bottom hole (marked
"out"”) to any one of the three above (marked "1", "“2", “3" and
corresponding to single space, double space and triple space, re-
spectively),

4, Modes of Operation

Under normal operation, the High-Speed Printer will stop printing
(and reading tape) whenever a blockette is read which contains the
printer stop symbol Z (1 11 0000). The blockette containing the
stop symbol is completely read into the memory but is not printed.
If a blockette is read into the memory which contains a printer
breakpoint symbol (3 (0 11 0001) and the breakpoint switch is in the
breakpoint position, the printer interprets the f3 as a . . The
blockette containing the 53 or 7 can be printed if desired,

When the “Print, No Read - Read, No Print" switch is placed in the
"Read, No Print" position, the printer will read a tape without
printing until a stop or breakpoint symbol is encountered., It is
also possible to skip down a tape in either the forward or back-
ward direction and stop when a Fast Feed I symbol (0 01 1111),
printer stop, or breakpoint symbol is encountered.

There are 63 possible UNIVAC code combinations, only 51 of which
appear as characters on the typewheels of the High-Speed Printer,
The other 12 characters are normally not printed and are either
completely ignored or serve as editing symbols, such as the stop
and breakpoint mentioned above.

At certain times, however, it may be desirable to have a visual
record of all the characters on the tape including the normally
non-printing ones. This can be done by operating the Computer
Digit switch. The effect of this is to cause each blockette to
print out in two lines.

On the first line only the normal printing characters appear. On
the second line, any normally non-printing symbols which may be
present in the blockette will print, and only such symbols. They
will print as regular characters and can be identified by the
following table.

Pulse Code Name Computer Digit
Print-Out
1 00 0000 Ignore 5
0 00 0001 Space 6
0 01 0000 Multiline E
1 01 1110 ¢ c
0 01 1111 Fast Feed I D
0 10 0000 Tab N
1 10 0001 Tab 0
1 10 oolo Fast Feed II P
0 10 1111 Fast Feed III .M
1 11 0000 Stop v
0 11 o001 Breakpoint W
0 11 1110 Fast Feed IV T

Note that in each pair of lines comprising a blockette, one and only
one character should be printed in every column.

5. Zero Suppression

Zero suppression is controlled by the lower panel of the plugboard.
As mentioned previously, up to 18 fields of arbitrary length may be
employed,

It should be remembered that the zeros are suppressed on read-in
to the memory, not on print-out, so that the way in which the
memory is plugged to the printing positions must be borne in mind,

Single Line Printing Only., The holes in columns 26 through 31 on
the lower panel of the plugboard (PB II) are numbered 1 to 120 and
correspond to the 120 positions of the memory, or the 120 digits
coming from the tape. To start a zero suppression field in "normal"
or Single Line Printing, plug from the hole corresponding to the
address where the first zero is to be deleted (if present) to the
first of the 18 numbered holes in column 25 (hole 25A). Then plug
from hole 23A (labeled "Start (SL)"), to hole 24A. If there is to
be more than one field to undergo zero suppression, plug the start-
ing positions of the successive fields to the 2nd, 3rd, 4th, etc.
holes in column 25 and then plug 23B to 24B, 23C to 24C, etc,

To end each field, plug from the address corresponding to the last
zero to be deleted (if everything has been zero up to that point,
of course) to successive holes in column 32, Then plug 33A to 34A,
and if several fields are to undergo zero suppression, plug 33B to
34B, 33C to 34C, etc.

The fact that the High-Speed Printer can be run in either "Multi-
line” or "Single Line" (Normal) fashion has already been discussed.
Since these two modes of operation, both of which may occur in a
run, in general produce different formats, it may be desirable to
observe one set of zero fields on single line printing and a
different set when on Multiline. There are three possible cases
to consider,

Fields for Single Line and Multiline Printing different. To do
this, plug the fields for Single Line Printing as described above,
They will not be observed when the printer is on Multiline., For
the Multiline fields, plug the starting positions successively to
holes 25R, 25Q, 25P, etc. (working upwards). Then plug 23S to 24S
(Labeled "Start (ML)"), 23R to 24R, etc., terminating one hole be-
low the topmost hole plugged in column 25 (in the Multiline group).

Plug the ending positions for the Multiline fields into holes 32R,
32Q, 32P, etc., again working upward, and then plug 33S to 34S,
33R to 34R, etc., terminating, as before, one hole below the top
hole plugged in column 32, The Multiline fields will not be ob-
served when the printer is on Single Line,

Fields for Single Line and Multiline identical. If the fields to
undergo zero suppression are exactly the same, that is, occupy the
same positions in the blockette, for Single Line and Multiline, the
plugging is simplified. Plug the fields as for Single Line. Then
run a jumper from the first unused hole in column 23 to the hole
marked "“Start (ML)" which is 24S. Likewise, run a jumper from the
first unused hole in column 33 to "End (ML", hole 34S. All the
fields will now be observed both on Normal and Multiline printing.

Some fields common to Single Line and Multiline. When only some of
the zero suppression fields are common to both Multiline and Single
Line Printing while others are distinct to one or the other, the
situation is somewhat more complex. Here "Y" jumpers must be used
for the common fields. The stem of the "Y" is plugged into the
address location and then one fork is plugged in with the upper
(Single Line) group in column 25 (or 32) and the other fork is
plugged to the lower (Multiline) section of column 25 (or 32). The
other (non-common) fields are plugged as before. The jumpers between
columns 23 and 24 and between columns 33 and 34 are run as previously.

Two more points with respect to Zero Suppression should be noted:

1. If one Zero Suppression field follows another
immediately (e.g., 22-37, 38-51), the ending
point of the first field need not be plugged.

2. If a single digit field is to undergo zero
suppression, a "Y" jumper must be used. The
stem of the "Y" is plugged into the address
location and one fork goes to column 25 (start)
while the other goes to 32 (end). If the single
digit field is followed immediately by another
field (as in algebraic sign followed by number)
then, as stated above, the ending of the single
digit field need not be plugged and a straight
jumper can be used (to plug the start).

6. Fast Feed
There are four magnetic tape symbols which may be used to initiate a
Fast Feed., They are:

Pulse Code Name Modified Unityper I and
Unityper II Symbol

0 01 1111 FF I _ @
1 10 0001 FF II

0 10 1111 FF III | ?
0 11 1110 FF IV =

The Fast Feed symbol used is not printed and it will be observed
as a Fast Feed instruction only if it is placed in the first digit
position of a blockette. The fast-feeding is accomplished before
the blockette containing the symbol is printed.

As mentioned in Section 4, it is desirable that the first block-
ette of a new form (or form group) should employ an FF I: other-
wise there is no restriction on which Fast Feed symbols are used.

When started, a Fast Feed will continue feeding paper without
printing or reading until a hole is encountered in that channel of
the Paper Control Loop corresponding to the Fast Feed symbol (e.g.,
a Fast Feed started by a FF II symbol is stopped only by encounter-
ing a hole in channel 2 of the Paper Control Loop). A Fast Feed
can also be started by punching a hole in channel 5 of the Paper
Control Loop. This type of Fast Feed is stopped only by a hole
sensed in channel 6. This "Loop Controlled" Fast Feed is useful

in taking care of "overflow" from one form to the next. A Loop
Controlled Fast Feed is never started until the first digit of the
blockette currently being read is sensed. If this should be a

Fast Feed symbol, it takes precedence over the channel 5 hole; i.e.,
the magnetic tape controlled Fast Feed is obeyed, the Loop Control-
led Fast Feed is ignored.

A special punch with sprocket hole aligning keys is used in pre-
paring the Paper Loop Control tape. To punch the start of a

Fast Feed, punch a hole in channel 5 on the line corresponding to
the first line to be skipped. To stop the Fast Feed, punch a hole
on the line where the first line of printing is to occur after the
Fast Feed. Channel 6 is used for stopping if the Fast Feed was
started with a channel 5 hole. Channel 1, 2, 3, or 4 is used for
a tape-started Fast Feed.

The longest loop the High-Speed Printer can handle is 22 inch-
es; the shortest is 11 inches. Of course, the punching for one
form can be repeated several times, if desired, (and if the form
is eleven inches long or less). Indeed, this is preferable
since greater loop life will result,

There are two restrictions that must be observed in the use of
Fast Feed:

1. A Fast Feed, whether loop or tape started, must
always cause at least one line to be skipped.

2. A channel 5 hole should never be punched on the same
line with any other hole.

During a Fast Feed operation, the paper is moved at a rate of
20"/second, or, in other words, 7200 lines per minute.

7. Multiline Printing

The Multiline symbol K (0 Ol 0000) is used to put the High-Speed
Printer into the Multiline mode of operation. It should be
placed in the first digit position of the blockette to be multi-
lined, unless there is a Fast Feed symbol required too, in which
case the Fast Feed symbol is placed first, the Multiline symbol
second.

The printer returns to normal operation at the end of each multi-
lined blockette so that even if consecutive blockettes are to be
done in Multiline, a new Multiline symbol must be placed in each.
The Multiline symbol will not be printed.

Multiline operation is entirely a function of the plugboard and
the plugging operations may be broken into three groups:

.

- 10 -

3.

Selecting the number of lines in which a blockette
is to be printed. ‘

Selecting the memory positions which are to be
printed on each line,

Selecting the printing location on each line for
each character,

Selection of the number of lines, This plugging consists of

four steps and only the upper right hand section of the plug-
board is under concern.

15

Run a jumper from the hole marked "Home" (33F)

to the hole in column 32, counting down from the top,
the number of rows corresponding to the number of
lines into which the blockettes are to be divided in
Multiline, :

For rows above the hole selected in (1), run jumpers
between corresponding holes in columns 32 and 33,

For rows including and below the hole selected in (1),
run jumpers between corresponding holes in columns 33
and 34, down to and including row E,

If the number of lines selected is 2 to 6, connect
holes 32S and 32T (marked "One Line") with a jumper;
if the number of lines selected is 1, omit the jumper
between these two holes,

The following examples will illustrate the required plugging:

Example 1: Four line printing

1. Connect 33F to 32D

. Connect 32A to 33A; 32B to 33B;
32C to 33C

Connect 33D to 34D; 33E to 34E

Connect 32S to 32T

o

2
3
4

°

Example 2: One line printing

1. Connect 33F to 32A

2. No plugging required

3. Connect 33A to 34A; 33B to 34B;
33C to 34C; 33D to 34D
33E to 34E

4, No plugging required

- 11 -

Example 3: Six line printing
1. Connect 33F to 32F
2. Connect 32A to 33A; 32B to 33B
32C to 33C; 32D to 33D
32E to 33E
3. No plugging required
4, Connect 32S to 32T

Selection of the memory locations to be printed on each line,

In Multiline work there is a set of 15 relays brought into play,
different ones of which can be energized on different lines under
the control of the plugboard. Further, by plugging the memory
locations to the contacts of these relays, the characters to be
printed out on each line can be selected simply by the relays
which have been chosen to be energized for each line.

Each relay has 12 contacts and thus can handle 12 digits. The
first step, then, is to decide how many relays are required to
print each line and to plug them accordingly. To avoid con-
fusion, relays should be chosen sequentially. Thus, if 40 digits
are to be printed on the first line, 48 digits on the second

line and 6 digits on the third line, relays 1, 2, 3, and 4 (room
for a total of 48 digits) should be plugged to operate on the
first line; 5, 6, 7, and 8 should be plugged for the second line,
and relay 9 for the third line.

This is accomplished as follows (see upper right hand portion of
the plugboard): Holes 32G, H, I, J, K, and L (labeled "ML Counter,
1, 2, 3, 4, 5, 6", respectively) give output signals in turn when
the printer is on line 1, 2, 3, etc., of a Multiline operation,
Holes 33G and 34F (internally connected together), 33H and 346G,

331 and 34H, . . ., 33U and 34T are pairs of holes going to the 15
relays coils in order. They are labeled 1 to 15 on the plugboard.
To operate relay 1 on line 1, run a jumper between holes 32G and
34F. Then to also pick up relays 2, 3, and 4 on line 1, as re-
quired in the example, run jumpers between 33G and 34G, 33H and 34H,
and 33I and 34I., This, of course, could be extended if more relays
were required to be picked up on line 1. (As many as 10 relays
may be used on any given line. This gives sufficient contacts--
120, to handle the entire memory.)

For line 2, again assuming four relays are to be picked up, plug

32H (line 2 output) to 34J (relay 5 coil). Then plug 33K to 34K,
J3L to 34L and 33M to 34M.

-12-

On line 3, only one relay is assumed required. Pick this up
by connecting 321 to 34N,

One important rule should now be noted: If, on any given line
in a Multiline operation, zero, one, or two relays are used,
then a resistor must be plugged in on that line. This is easily
done by running a jumper--

a. From the unused hole in,the pair corresponding
to the second relay in the chain (if 2 relays
are used), or
b. From the unused hole in the pair corresponding
to the single relay (if only one relay is used),
or
c. From the line output hole itself (holes 32G to L)
if no relays are used (i.e., nothing is to print
on that particular line) to one of the six holes
in the section marked "Resistors'" (holes 32M to R),

Thus, in the example above, since only one relay is used on
line 3, a jumper should be run from hole 330 to 32M. Note

- carefully that this plugging of resistors applies only to the
lines within the group size selected for the Multiline opera-
‘tion. Thus, in the above example, where a 3 line Multiline
was assumed, nothing at all need be plugged to the last three
output lines (32J, K, and L) since they will never be excited,
This should not be confused with the situation where, say, in
a 4 line Multiline it is not desired to print anything on line
2. Here, no relay need be connected to line 2, but a resistor
should be.

Having wired up the relay coils, the next step is to send the
memory locations (actually, comparator outputs) to the proper
relay contacts, The 180 relay contacts (12X15) go to 180 pairs
of holes which are located in columns 17 through 31 in the
upper plugboard panel. One column represents the contacts for -
one relay.

Now, unless the run is exclusively Multiline, the plugboard
will have already been wired for Single Line Printing, as
described in Section 3. That is, the holes in columns 1
through 5 (labeled "From Comparator") will be wired to the

-13-

paired holes in columns 6 through 16 (labeled "To Single
Lines Relays"). Thus, each memory location can, in general,
be picked up from the unused hole in the pair here. If
certain memory locations do not print in Single Line work
(and are to print in Multiline work), or if there is to be no
Single Line Printing at all, then the memory locations must
be picked up from the first five columns directly. It is
then simply a question of taking those memory locations which
are to print on the first line and plugging them sequentially
to the relays which have been assigned to the first line, and
similarly for the other lines. Remember that the holes cor-
responding to the relay contacts are paired.

As an example, suppose the first 40 memory locations are to
print in Single Line Printing in positions 1-40. Then hole"
1A would have been plugged to 6A, 1B to 6C, 1C to 6E, ., . .,
2P to 9G. Now suppose these same 40 memory locations are
also to print on line 1 of a Multiline operation. The first
4 relays (columns 17, 18, 19, and 20) would have been allo-
cated for this purpose. Then the plugging would be: 6B to
17A, 6D to 17C, 6F to 17E, . . ., 9H to 20G, Notice that
many contacts on the fourth relay are unused., Information
to print on line 2 would be plugged starting with the fifin
relay (column 21),

Selection of the printing location for each character.

The other sides of the Multiline relay contacts go to a set
of 180 pairs of holes on the lower plugboard panel (columns
7 through 21). Again, each column corresponds to a relay.
Thus, column 17 on the upper panel is the "input" side of
relay 1, while column 7 on the lower panel is the "output"
side of the same relay. The individual holes in the
columns are likewise in one-to-one correspondence. Thus,

a comparator signal entering the first (or second) hole in
column 17 of the top panel will appear at the first (and
second) hole in column 7 of the bottom panel when relay 1
is energized (i.e,, on line one).

The first five columns and the first ten holes of the
sixth column on the lower panel (making 130 holes in all)
are connected one-to-one to the 130 thyratrons which drive
the printing hammers. The procedure now is to connect

the line 1 relay outputs (however many relays may be used
for line 1) to the thyratron holes in the manner desired,
Now on line 2, some of the characters may need to be

-14-

printed in, as yet, unused positions., These are plugged directly to
the corresponding thyratrons, Other characters (or more properly,
memory locations) may need to be printed in positions already print-
ed on line 1. To do this, plug from these particular holes in the
line 2 relay output set to those unused holes of the pairs of the
line 1 relay output, where the other hole of the pair is already
plugged to the desired thyratron,

A similar procedure is followed for line 3 and the following lines.
There will always be a free hole in a relay output pair into which
a jumper from an output on a later line can be plugged to achieve
printing in the same position as the earlier line,

As an example of the above plugging, consider the following exercise: -

Print the first three memory locations in the first
three print positions on line 1; the next four memory
locations in the first four positions on line 2; and
the next 5 memory locations in the first five posi-
tions of line 3,

It is assumed that the first Multiline relay has been assigned for
line 1, the second for line 2, and the third for line 3., Further,
that the comparator outputs have been picked up and are plugged
into, in order, 17A, 17C, 17E, 18A, 18C, 18E, 18G, 19A, 19C, 19E,
196G, and 191 (all on the lower panel). The required plugging then
is (all on the lower panel):

7A to 1A, 7C to 1B, TE to 1C (line 1)

8A to 7B, 8C to 7D, BE to TF, 8G to 1D (line 2)
9A to 8B, 9C to 8D, 9E to 8F, 9G to 8H, 9I to 1E (line 3)

8, Multiple Printing

Plugging procedure for Single Line operation., By means of the paired

holes in the section of the upper panel marked "To Single Line Relays",
a memory location can be readily printed out as many as three times on
a line.

- 15 -

to do this, simply plug from the unused hole in the first position
chosen to one of the paired holes (preferably the top) in the
second place where printing is desired. If triplicating is re-
quired, run a jumper from the unused hole of the second position
to the third position,

Example: Print the contents of the first
memory location in positions 1,
61, and 121,

Plug 1A to 6A
6B to 11A
11B to 16A

If some of the memory positions for Single Line Printing are common
to Multiline Printing also, it is desirable to do the Multiple
plugging for Single Line first, then the last unused hole in a pair
may be connected to the Multiline relays.

Plugging procedure for Multiline operation., In Multiline work, a
character cannot only be printed out 3 times on a given line, but
then can be printed out up to 3 times again on any other line in
the group., This is done by “chain plugging"”, as noted above, in
the “To Multiline Relays" section of the plugboard. By comnecting
the output to contacts on relays (or a single relay), which close
on the same line, the digit may be printed up to 3 times on that
same line., Then by extending the chain of plugging to relays
which close on other lines, the same character may be repeated on
those lines. On the lower panel, the positioning of the characters
on the line is taken care of as in regular Multiline work (dis-
cussed in Section 7).

Example: Print out memory location 1 in
positions 1 and 61 on Single Line
operation.- On Multiline operation
print out memory location 1 in
positions 1, 25, and 49 on line 1,
and in positions 25 and 49 on line
20

Assume relay 1 is energized on line 1, and relay 2 on line 2. Then
the plugging is, by panel:

- 16 -

On the upper panel, plug 1A to O6A

6B to 11A
11B to 17A
178 to 17C
1M to 1TE
17F to 18A
188 to 18C
On the lower panel, plug 74 to 1A
T to 2A
7E to 3A
8A to T
8 to TF

Note that by this method it is possible to have, at most,
180 print-outs from one blockette in Multiline, since there
are only 180 relay contacts., However, there is complete
flexibility in the positioning of the information on each
line and, of course, complete independence between Single
Line and Multiline Printing.

There is another system for doing multiple printing on
Multiline which allows the entire memory to be triplicated,
if desired (i. e., produce as many as 360 print-outs from
one blockette), However, in using this method there must be
no Single Line work at all or, if Single Line operation does
occur, one must accept the same duplicating or triplicating
pattern as is plugged for the Multiline work.,

This system is particularly useful where each line of the
Multiline group is printed directly under the line above

and the group as a whole is duplicated or triplicated across
the page, This system is used as follows:

1. Plug for straight Multiline work as in Section 7,
ignoring the Multiple Printing problem (i.e., simply
plugging for one printing).

2, On the lower panel, in the "From Multiline Relays"
section, outputs going to the same print position
on different lines will have been chain plugged
together and run to one set of thyratron holes,
However, each of the outputs for the last line will
have a free hole. If only duplicating of the group
is required, run straight jumpers from these free
holes to the appropriate thyratron holes, If

-17-

triplicating is required, "Y" jumpers are
used to connect each free output hole to
two thyratrons,

Example: Print the first memory location
on line 1, the second memory
location on line 2 and the third
on line 3. On all three lines
the printing is to be in tripli-
cate, printing in columns 1, 49,
and 97, (Use the first Multiline
relay on line 1, the second on
line 2 and the third on line 3.)

On the upper panel, plug 1A to 17A

1B to 18A
1C to 19A
On the lower panel, plug 7TA to 1A
8A to TB
9A to 8B

9B to 3A and 5A ("Y" jumper)

Note that if the printer should go into Single Line Printing
and if something were plugged to print (on Single Line) in
either positions 1, 49, or 97, it would print in all three
positions., This might be all right but, if independently
some other memory location should be plugged to another of
these three points, there would be trouble. (The printer
would stop with a Print Check Error.) Thus, great care must
be exercised in using this method of Multiple Printing if
Single Line operation can also occur in the run,

9. Checking Features

The error detection circuits on the High-Speed Printer may

be considered in the three sections through which information
recorded on tape is printed: 1- reading of data from tape,
2~ storage of data in the memory, and 3- printing of the
memory,

-18-

Error detection in reading tape. FEach digit read from tape
is given a binary bit count. If the number of binary ones
present is odd the character has been read from tape cor-
rectly. If an even count is detected, the remainder of the
blockette is read, but the Odd-Even Check Error is set and
the printer stops. Nothing is printed.

Further, each blockette read from tape must contain exactly
120 digits. If a blockette is longer or shorter than 120
digits, the printer will set the 120 Check Error and stop.
Nothing will be printed.

Error detection in storage. Each of the digits coming from
the tape is placed in the proper position in the memory by
virtue of the set of 120 address lines, which are sequen-
tially excited by the function table which decodes the Main
(or Address) Counter. If an address line should fail to
rise to the signal level when it is supposed to, the corres-
ponding digit coming from tape could not enter the memory.
The Address Check circuits look for this and, if an address
line should fail to be excited at the proper time, the
Address Check Error is set and the printer stopped.

Error detection in printing. The fundamental checking of

the printing is done by means of the group of 130 check
thyratrons working in conjunction with the Al1-Out Detector,
At the end of each print cycle, all 130 check thyratrons
should be extinguished and the All1-Out Detector looks for
this, If some column fails to print when it should or prints
an incorrect character, its check thyratron will be on when
probed. This causes the machine to stop with the Print Check
Error set.

The determination of whether all check thyratrons have been
extinguished or not is made by a circuit called the All1-Qut
Detector. If this circuit should fail in a certain way, a
steady All1-Out signal would be given and printing error would
fail to stop the machine. To guard against this, the All-Out
Detector is itself checked every line and, if not functioning
properly, the printer will stop with the All-Out Detector
Error set,

In addition to the major checking circuits described above,
there are other checks applied to the control circuits and
paper feed mechanism to ensure complete accuracy of printing.
The description of these checks requires a detailed under-
standing of the printer logic.

-19-

10, Example Problem

As an example of simple plugging for the High-Speed Printer, suppose

a series of paychecks are to be printed. The desired check format is
shown in Figure 4. The blockette layout is shown in Figure 5. The
simple nature of this example permits us to do Multiline Printing only,
with one blockette per check, An explanation of the net pay field in
the blockette is called for. It is obviously desirable that the
amount of the check be printed in as unalterable a manner as possible.
This is easily done if, say, twenty dollars and fifty cents is printed
as $20.50 and not as (assuming pay up to $999.99 is permitted) $ 20.50
which would be the result from simple zero suppression. Thus, the net
pay field is assumed to be pre-edited by the UNIVAC when it is inserted
in the blockette. Thus, the above example would appear as _$2050 in
the blockette. :

A. Selection of the Number of Lines (6line Multiline):
Plug (Upper Panel)

32F to 33F
320 to 33A
32B to 33B
32C to 33C
32D to 33D
32E to 33E
328 to 32T

B. Selection of the Multiline Relays:
Line Relays Plug (Upper Panel)

1 1,2,3 326 to 34F
336 to 346G
330 to 34H
2 none 320 to 32M
3 4 5 321 to 341
337 to 34
33K to 32N

-20-

4 6,7,8,9 323 to 34K
33L to 34L
334 te 34M
33N to 34N
5 10,11 32K to 340
33P to 34P
330 to 320
6 12,13,14 32 to 340
33R toe 34R
338 to 34S

C. Comparator Outputs (Memory Locations) to Relay Contacts:

Line Field Plug (Upper Panel)
1 check number 1B to 17A
18 to 18S
1C to 17C
170 to 18U
1D to 1TE
17 to 18W
1IE to 176G
1TH to 19A
1F to 171
177 to 19C
16 to 17K
S 17 to 19E
net pay 2B to 1M
2C to 170
2D to 17Q
2E to 17S
4D to 170 (decimal pt)
2F to 17W
26 to 18A
date IN to 18C
18D to 196G
10 to 18E

18F to 191
3B to 18G (dash)
18H to 19K

1P to 181
18 to 19M
10 to 18K

18 to 190

-921-

regular pay

withholding tax

bond deduction

overtime pay

FICA tax

insurance

name

to
to
to
to

to
to

~to

to
to
to
to
to
to
1o
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

18m
16N
180
18P
18Q
18R
20A
20C
20E
206
201
20K
20M
200
20Q
208
20U
20W
21A
21C
21E
216
211

- 22A

22C
22E
226
221
22K
22M
220
220
228
22U
2w
23A
23C
23E
236

231

23K
23
230
23Q
235
23U

(dash)

to 19Q
to 19S5
to 19U

(decimal pt)

(decimal pt)

(decimal pt)

(decimal pt)

(decimal pt)

(decimal pt)

net pay

medical pay

union dues

other ded,

first adjustment

second adjustment

SH
51
5J
5K
SL
oM
SN
50
5P
9Q
SR
35S
ST
oU
SV
oW
S5X
17N
17p
17R
17T
4C
17X
168
3C
3D
3E
25R
3F
3G
3E
3F
26H
3G
3H

3R
26R
3S
3T
1H
11
1J
27D
1K
1L

-923.

to
to
to
to
to
to
to
to
to
to
to
to
to
to

to

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

23W
24A
24C
24E
24G
241
24K
24N
240
249
24S
24U
24w

~'25A

25¢C
25E
256
251
25K
25M
250
25Q
253
250
26A
26C
26E
266
261
26K
26M
260
260
265
26U
26W
27A
27C
27E
276
26A

28K
286G

1281

28K
26M

(decimal pt)

(decimal pt)

(decimal pt)

(decimal pt)

(decimal pt)

third adjustment

badge number

1U
1v
28H
1w
1X
2H
21
2J
28T
2K
2L
4M
4N
40
4P
4Q
4R
4S
4T

4, From Relay Contacts to Print Positions

Line
1

Field
check number

net pay

date

regular pay

-24-

to

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

280
280
285
28U

- 28W

20A
20C
20F
296G
201
20K
20M
290
290
20S
29U
20W
304
30C

Plug (Lower

A
7C
7E
76
71
7K
™
70
70
7S
U
™
8A
8C
SE
86
81
8K
8M
80

8Q

10A
10C

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to
to

K,
1L,
1M,
IN,
10,
1P,
2D
2F
oF
26
21
21
23
25
2T,
20,
2V,
20,
2X,
34,
3B,

9

B
()

(decimal pt)

Panel)
8s
8u
8w
9A
9C
9E

9%
91
9K
oM

9u

to
to
to
to
to
to

to
to
to
to
to
to
to
to

3T
3U
3V
3w
3X

5):4
6A
6B
6C
6D
6E
6F
6G

withholding tax

bond deduction

overtime pay

FICA tax

insurance

name

-25-

10E
106
101
10K
10M
100
100
10S
10U
10W
11A
11C
11E
116
111

12A
12¢C
12E
126
121
12K
12m

120

120
125
120
120
13A
13C
13E
136
131
13K
13M
130
130
135
13U
13W
14A
14C
14E
146
141
14K
14M
140

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

TH
7J

X
8B
2K
2L
2M
2N
8N
8p
S8R

3D

108
10D
10F
10H
10J
1oL
10P
10R
10T
lov
10X
11B
11D
11F
11H
113
4E
4F
46
4H
41
4J
4K
4L
4aM
4N
40
4p
40
4R
4S
4T

net pay

medical pay

union dues

other deductions

first adjustment

second adjustment

third adjustment

-26-

140
145
14U
14w
15A

15E
156
151
15K
15M

150

15Q
155
150

16A
16C
16E
166
161
16K
16M
160
16Q
165
16U
16W
17A
17C
17E
176

18A
18C

18E

181
18K
18m
180
18Q
18s
18U
18w
19A
19C

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to
to
to
to
to
to
to

to

to
to
to
to
to
to

4U
4v
4w
4X
SA
5B

3D
SwW
9H
9
9L
ON
9p

12B
12D
12F
12H
123
12L
12N
12P
12R
12T
12v
12X
138
13D
13F
13H

12K
19
1R
15
1T
1U
2A
2C
N
7P
R
S
16P
16T

19E to 16V
196 to 20
191 to 2P
19K to 20
badge number 19 to oT
190 to av
199 to 8x
195 to 9B
19U to 9P
10W te oF
200 to 4A
20C to 4B

5. Zero Suppression
Plug (Lower Panel)

Start Zero Field End Zero Fields

26I to 25R, 23R - to 24R 26L to 32R, 33R to 34R
274 to 25Q, 23Q to 24Q 27D to 329, 330 to 340
27TM te 25P, 23P to 24P 27TP to 32P, 33P to 34P
27S to 250, 230 to 240 286C to 320, 330 to 340
28D to 25N, 23N to. 24N 280 to 32N, 33N to 34N
2K to 25M, 23M to 34M 280 to 32M, 33M to 34M.
28P to 25L, 23L to 34L 28T to 32L, 33L to 34L
294 to 25K, 23K to 34K 290 to 32k, 33K to 34K
29E to 25J, 237 to 34] 29 to 327, 337 to 34J
29I to 25I, 231 to 34I 2L to 32I, 331 to 34I
200 to 25H, 23H to 34H 29T to 32H, 33H to 34I
30A to 256, 23S to 34S 30D to 326, 335 to 34S

6. Line Spacing

Plug (Upper Panel)
16X to 16U

. -27-

=
Figure 4 ¥
3
<
~
%
]
3
N
8
COLUMNS 10 20 30 40 50 60 70 80 80 100 {10 120 13t
11213§4]15]6 (N RN N I|I||:|| ||||I|||| l'lll]lLJllI |||I||ll ||||Lli|.] |||||a|» llLLIl'lll|ll IIIIIIII IIIIIIII lLlllIlIJJJ llllnllli ||||lJl|ll (NN E RN

YOUR EARNINGS RECORD
. check o1 weteav:[3 oate:] CHECK NO. {] pate : [1]

EARNINGS DEDUCTIONS

REG.PAY: [| withHwG. Tax:[_____] sono: |
OVERTIME :l:] Fica TaxsfF L] insk: ‘: PAY TO THE ORDER OF: | :] THE AMOUNT: | l

MED 1CAL :
ADJUSTMENTS: [][] OC3 OC 3 BADGE NO.:[]
[]
ON THE ACCOUNT OF
ADJUSTMENT EXPLANATIONS:
! - OVERPAYMENT 3 <« EXPENSE ACCOUNT THE BLANK CO‘ ’ 'NC' ’N 'Y')N'Y'
2 - UNDERPAYMENT. "4 . COMPANY STORE

Treasurer

llilllllllllllll‘lllllll[llll[l,lllllll]llll1llll|llll ll'lIllllllllI'lllllllll IRERBLEREE LA L B llllllllllllllllll‘l

PRINT WHEEL POSITIONS

1 2 3 4 5 6 7 8 9 100 12 13 4 15 16 17 18 19 20 2 22 23 24 25 2% 21 8 29 30 3 32 3B
1 25 49 3 97 1 13 23 37 49 41 13 05 97 109 121 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 1 1 1
O O0O0O0O0 0.0 O
2 26 50 4 98 2 ¥ 2
O O0O0O0O0 0.0 0
3 27 51 75 99 2 14 26 38 50 62 T4 86 98 110 1224 2 14 26 38 50 62 74 86 9s 110 122 134 146 134 170] 3 5 3 3
O 000 O T 0v0 O
4 28 52 6 100 i ST
O 0000 0 0t0 O
5 29 53 77 101 3 15 27 39 51 63 75 87 99 111 123] 3 15 27 39 o1 63 5 87 99 111 123 135 147 159 171 5 * 5 3
52 85808 TLTTIRTTTLL 0L E ¢ I B
6 30 54 78 102 6 MOME § 1
O ORO O ©) (] 0 0
7 31 55 79 103 4 16 28 40 52 64 76 88 100 112 1240 4 16 28 40 52 64 76 88 100 112 124 136 148 160 172 1 1 2
oo 858 0L LTI TLT ORI oL L T2
b 32 56 80 104 . L2 2 3
O OMO O © L O
9 33 57 81 105 5 17 29 41 33 65 17 89 101 113 125 5 17 729 41 53 65 K 89 101 113 125 137 149 161 173 gs 3 4
5388l TLLTTLLTTITLTTOILL 0T T N3
10 34 58 82 106 LK 4 5
O OO O O I 10 O/D
11 35 59 83 107 [] 18 30 12 4 66 78 90 102 114 126] 6 18 30 42 54 66 78 90 102 114 126 138 150 162 174|p 5 5 6
MR PP PO SRRSO SEOR S BEE® B Ky
12 36 60 B84 108 6 6 7

_O_OMO_O O] L uel C/D
13 37 61 85 109 7 19 31 43 95 67 79 91 103 115 127} 7 19 31 43 55 67 79 91 103 115 127 139 151 163 175 1 7 8
SR IO SPOO SRR ISP S S EEHEY Y PP S}
14 38 62 86 110 . 2 8 9
O OAO O N O
15 39 63 87 111 8 20 32 44 96 68 80 92 104 116 128 | 8 20 32 44 56 68 80 92 104 116 128 140 152 164 176 : 3 9 10
ses sl LI RITIL 0TI TTL e el LT IESS
16 40 64 88 112 N s4 10 11
O OAO O O 10
17 41 65 89 113 9 21 33 45 57 69 81 93 105 117 129§ 9 21 33 45 57 69 81 93 105 117 129 141 153 165 177 : 5 11 12
5o eI RITTTTINT T T RITLT 0T el
18 42 66 90 114 8 12/ 13
O 000 O R ‘ E
8 8 R 8 (95 u()s 10 22 3¢ 46 58 70 82 94 106 118 130 10 22 84 46 58 70 82 94 Lloe 118 130 142 154 166 178 8 13 14
2882ald DITLTOT I TORLTT 0T L8 L dlulers
8 &5) 8 (95 lé7 11 23 35 417 59 n 83 95 107 119 6 11 23 35 147 59 n 83 95yl07 119 131 143 155 167 179 [éf

L
T RSN ea S SRS Ne I tes L
O O0OO0O0O0 e S
23 47 1 95 119§ 12 24 36 48 60 T2 84 96 108 120]s 3 12 24 36 48 60 72 B4 96 108 120 132 144 156 168 180
553580 LILTOT Y8308 8808888808
24 48 72 96 120 Cour |
OO0 O0O0O0 'O
1 25 49 13 97 121 1 13 25 37 49 61 3 85 97 109 121 133 145 157 169 1 21 41 61 81 101 1 e 1
O 00 OO0 O O OO0 OO0 0|00
2 26 50 74 98 122 2 22 42 62 82 102] 2 I 2
0O 0O0O0O0O |.oooooo|o/>
3 27 31 75 gy 123} 2 14 26 38 50 62 74 86 98 110 122 134 146 158 170 3 23 43 63 83 103} 3 2 3
ceaeeell LLITTTLILTTT T [Rl6]e 5 4 & 8ls)e8
+ 20 52 76 100 124 4 24 44 64 84 104 4 3 4
00 O0O0O0O0 R [o|O0 © OAO O O|O|ON
5 29 53 77 101 125 3 15 27 39 51 63 73 a7 99 111 123 135 147 159 171 5 25 45 65 85 105 5 4 1]
sr s endd LTI RITTT LT |4Ee]e & dos & 8lory
6 30 54 78 102 126 5 6 6 6 26 46 66 86 106 6 5 6
O 0 010 0 © M : Tloooonooolc/a
ki 31 55 79 103 127} 4 16 28 40 52 64 76 «d 100 112 124 136 148 160 172 (] 7 7 7 2T 47 67 87 107 7] 7
caase sl LILTLOILTIT L] [se]e s aes & 5lo15
8 32 56 80 104 128 1 8 8 8 28 48 68 88 108 8 7 8
©00O0O0O0 M 10]|0|0 O OEO O | O
9 33 57 81 105 129 5 17 29 41 53 65 i 89 101 113 125 137 149 161 173 8 9 9 9 29 49 89 89 109 9 8 9
ol l CLTTTT LT DT T o8] & 252 & 51
10 34 58 82 106 130 9 10 10] 10 30 50 70 90 110] 10 9 10
O O O§O O © L RoJO|O O OsO O | 00
11 35 59 83 107 P~ 6 18 30 42 54 66 78 80 102 114 126 138 150 162 174 10, 11 11 11 31 51 kit 91 11 10 11
seces| (DIOITTLTNCLTT LI [#5)8) 8 5.8 & af3)662
12 38 60 84 108 11 12 12 12 32 52 72 92 112) 12 11 12
O O ORO © I o]0 O O0LO O O|O|CF
13 37 61 85 109 7 19 31 43 55 67 79 91 103 115 127 139 151 163 175 13 33 53 73 93 13] 13 12 13
g e (LIODILTLLTLT LY |58]s 5 aus 8 558
14 38 62 86 110 14 34 54 T4 04 114 14 13 14
O O O10 O L |[O]O © ONO O | O
15 39 63 87 111 8 20 32 44 56 68 80 92 104 116 128 140 152 164 176 15 35 55 75 95 115 | 15 14 15
se s s (LE0TLOTLS LT LE| |50s8)5 5 aes & 8516
16 40 64 88 112 16 36 56 76 96 116]16 15/ 18
O O 000 © N |oj]o © 0sO O O|O|0D
17 41 65 89 113 9 21 a3 45 57 69 81 93 105 117 129 141 153 165 177 17 37 57 kil 97 1171 17 186, 17
saaesal (DLLTLOLITITIILY| |22 elay
18 42 66 90 114 18 38 58 8 98 118] 18, 17 18
O O 0§0 O I0Jo 0 0 © O OOl
19 43 67 91 115 10 22 M 46 58 70 82 94 106 118 130 142 154 166 178 19 39 59 79 9% 119 18 END
s5a (TIITTITNIITTTTT S (5825558 S0
20 44 68 92 116 20 40 60 80 100 120
O 00O O E 0O 00O O0O0
21 45 69 93 117 11 23 35 47 59 7 83 95 107 119 131 143 155 167 179
segas| JIITD00LITTETTL
22 46 10 94 118 .
O 00 0O AO -
23 47 n 95 119 12 24 36 48 60 T 84 96 108 120 132 144 156 168 180
55 (LILIITILITTTTT0E
24 48 72 96 120
OO0 00O S

Lt 2® g M M O O ™

> E € S - 0 W O VYV O E B

= O M oM OO

-— -

> X & = - O W O OV O =T E "~ =

Foarwrndrray teroe FRanondd.

00 0l 10 11

0000

0001 | ,

0010 -

ool 0 ;) +
0100 ! A J /
0101 2 B K S

otieo 3 C L T

Ol Y D M u

1000 5 E N v

100l 6 F 0 W

1010 716 | P | X

101 s | W o |vY
oo | 9 | 1 | R |z
10l I I I T
o | & .

RN (

PRINTING CHARACTERS AND THEIR PULSE CODES FOR

THE HIGH-SPEED PRINTER
Figure 2

FIGURE b

2 3 4 5 6 7 8 9 10 1) 12
1) v v v]) ¥ T
ADJUSTMENT
CHECK NUMBER ‘ KEY u AMOUNT
§ N } A A)
T ¥] i
DATE , ADJUSTMENT
DAY | MONTH | YEAR KEY | AMOUNT
¥ 1 L v ¥ T U o=
ADJUSTMENT
' NET PAY (EDITED) KEY ﬂ AMOUNT
)] i] 1)
T T (] LI T (]))
0 REGULAR PAY OVERTIME PAY
[l i { i [i L} i
oy Ll v L 1] T T
-— MEDICAL PAY WITHHOLDING TAX
A) § X 1 n 1 A
¥ L v v [}] T ¥
FICA TAX UNION DUES BOND DEDUCTION
I} : i ok 1 . [i [
L 14]] L} L] 14 T
- .. ~__OTHER INSURANCE
,) J‘DEII)UC&TIO'ISB “DEDU(iTlON X
\ 1 v) v L]]
DEPARTMENT T NUMzEJ:’LOY E 0 0 0 0
4 [T [F L] -
v L] L] ¥ L v L] ¥ ¥ 1]
NAME (PART 1)
L i 3 } b i '8] 4 i
¥ v v ¥] [1 v [] 1
NAME (PART 2)
1 A L | A) i 3) Y
2 3 4 5 6 7 8 9 10 11 12

CHANGES IN UNIPRINTER AND UNITYPER I IO FIT THE 63-CHARACTER CODE

FOR PROCESSING OF DATA FOR HIGH SPEED PRINIER

R T D S MCI——m— I Cm——r—" S——————

1. Keyboard for Sugérv;sgry Contro]l and Unityper I

The keyboard and the decoding unit have been changed to allow the typing
onto magnetic tape of any of the 63 pulse code combinations. All indica-
tions of upper and lower case have been removed from the keyboard and
also one of the duplicate numeric sections, namely that one over the al-
phabetic portion. More resistors have been added in the decoding unit to
allow for the decoding of 63 characters where previously only 51 were de-
coded, No other changes in the Unityper have been made. The changes are
illustrated by the accompanying figure and table.

2. Printer Dolly of Uniprinter

A new switch has been added on the inside which has two positions: "print"
and “stall". This switch affects only the twelve new pulse code
combinations.

In the "stall" position, when one of the new characters enters the printer,
the printer stops. The operator determines the character by looking at
the neon lights and prints manually any character he desires, after which
the printer automatically proceeds,

If the switch is in the "print" position, then when one of the new charac-
ters is encountered, a ";" (semi-colon) is printed in lower case operation
or a ":" (colon) in upper case operation.

One additional change is that the tab operation is indicated by printing a
"v" in the computer digit mode of operation.

3. Iyping-In of Information for the Uniprinter

The Uniprinter operates in the same fashion as before, The programmer and
operator must remember that to make the printer "shift lock", he must de-
press the "$" key; to perform the "unshift"“ operation, he must depress the
“;" keys; and to perform a "single shift" operation, he must depress the

[11¢74 1] key.

1=

NEW UNIVAC PULSE CODE

MODIFIED UNIPRINTER

PULSE CODE MODIFIED UNIPRINTER I __Normal Comp.
AND S.C. KEYBOARD L U* Digit
‘ Case | Case :

1 00 0000 i ignore X

0 00 0001 A space space

0 00 0010 - - -

1 00 0011 o 0) 0

0 00 0100 1 1. % 1

1 00 0101 2 2 " 2

1 00 0110 3 3 # 3

0 00 0111 4 4 5 4

0 00 1000 5 5 % 5

1 00 1001 6 6 * 6

1 00 1010 7 7 & 7

0 00 1011 8 8 : 8

1 00 1100 9 9 ¢ 9

0 00 1101 ' ; : ;

0 00 1110 & ; :]

1 00 1111 s ;

Table 1 = Part 1

g,

MODIFIED UNIPRINTER

e e
Case Case
0 01 0000 r Car. Ret. /
1 01 0001 , R . ,
1 01 0010 . . ; .
0 01 0011 ; 3 : ;
1 01 0100 A a A A
0 01 0101 B b B B
0 01 0110 o c c c
1 01 0111 D d D D
1 01 1000 E e E E
0 01 1001 F £ F F
0 01 1010 G g G G
1 01 1011 H h H H
0 01 1100 I i 1 I
1 01 1101 # 3 : 3
1 01 1110 ¢ 3 3 ;
0 0l 1111 @ : p

ey

Table 1 - Part 2

MODIFIED UNIPRINTER

; N

mseome | REROTEEL Rl o
Case Case

0 10 0000 t tab \'s
1 10 0001 " 3 3 3 L *
1 10 0010. 1 ; ; ;o M=
0 10 0011) ; , A
1 10 0100 J j J J
0 10 0101 K k K K :
0 10 0110 L 1 L L {
1 10 0111 M m M M %
1 10 1000 N n N N "
0 10 1001 0 o 0 0 :i
0 10 1010 P p P P
1 10 1011 Q q Q Q
0 10 1100 R r R R
1 10 1101 % shift lock z
1 10 1110 * 3 : ; *
0 10 1111 b? unshift 8

Table 1 - Part 3

MODIFIED UNIPRINTER

e v S T —
e s Case 1 Cage
1 11 0000 P Prin, Stop Stop
0 11 0001 B Prin, Bkpt., Y
[0 11 0010 : g : ;
r‘ 1 11 0011 + +) +
q 0 11 0100 / ? /
g 1 11 0101 S] S S
1 11 0110 T t T T
0 11 Ol11 U u U U
0 11 1000 ' v v v
111 1001 W w] w
111 1010 X b X X
0 11 1011 Y y Y Y
1 11 1100 A z z A
0 11 1101 % single shift -
011 1110 = 3 H 3
111 1111

Table 1 - Part 4

* With the switch on "print", these are the characters that will

be printed; on “stall", the printer stops.

ARSI ER IR IR I E N BRI NG D .
1] 6] 5 -
% #1]1$||% & |l Clf) |{skip || TaB CeRo 1§ [oop | | BLANK SKIP
1dt2Jtailallsfled]7]llsilollo -
| e |
B M atlwil el lalic v luilz]iolie LOOP | i 1GNeRE | | ERASE
SPACE ERASE e : 1
= S ’ LOOP| | PRINT L
SHIFI- A S D .F G H J K L g @ 2 SIOP BACK . 4
LOCK 3 + SPACE
? | , <1/ s
LOOP | | FRINT |
UN= {2 PR LSV BN ML, 01 2| st 3 [fseer, [[FRAE L T
SHIFT . |1/ || sHIET ~
SPACE CONTROL BAR

New Keyboard

0ld Keyboard

Fig. 1 = Changes in Keyboard of Unityper I and Supervisory Control

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06

