
COURSE

001
INTRODUCTION TO COMPUTERS

prepared by the Training Section,
Electronic Computer Department

SECTION 1

Components of ~ Computer

CRAPI'ER 1
INTRODUCTION
TO THE UNIVAC

The Univac is an electronic computer designed to perform repetitive clerical and
mathematical computations at a high rate of speed and accuracy. In order to'make
clear the function of each component of the computer and their interrelations let
us consider the operation of a payroll clerk.

The clerk has a stack of time cards listing the hours worked by each employee of
the company. She has a second stack of cards that contains the hourly rate of pay,
number of dependents, and other fundamental information about each of the employ­
ees.

To aid her in her work she has a desk calculator which enables her to do addition,
subtraction, multiplication and division. A ledger book is also provided for
entering the desired pay data as it is computed.

In addition to the above elements, the clerk provides a supervisory element: She
selects a time card and hourly rate card for each employee and by means of the
calculator multiplies hours by rate to obtain a gross pay, subtracts from this his
witholding tax, etc., and enters the net paw in her ledger.

This payroll process can be thought of as requiring four elements: input, output,
arithmetic, and supervision. As shown in Figure 1, the time cards and hourly rate
cards are the input, the calculator accomplishes the arithmetic, the ledger entries
are the output, and the clerk is the supervision.

When we examine further the role of the clerk in this operation, we find that her
ability to turn the input of time and rate cards into the ledger entries of net
pay depends upon her remembering the individual steps of the operation, her in­
structions and the order of their execution. That is, she must remember that she
is tv subtract the witholding tax from the gross pay, and that this tax is com­
puted by multiplying the number of dependents by $13.00 and subtracting this from
tpe gross pay, multiplying the difference 'by 20%, and so forth. Her supervision
then actually consists of two functions, memory and control. This memory function
becomes even more evident if the clerk has other duties to perform as well. She
may be required to maintain the rate cards: for example, changing a man's rate of
pay when he is given a raise or adding or removing dependents upon notice.

When we try to mechanize this process, we have the option of building the super­
vision into the device so that it will do only payroll calculations, or of build­
ing into it the ability to do a small number of fundamental operations and then
storing in a memory the proper sequence of performing these operations. A com­
puter with a built-in supervision is called a Special Purpose Computer, while a
computer that stores its supervision in a memory and which allows that supervision
to be easily altered is called a General Purpose Computer.

-1-

FIGURE 1

- 2-

The Univac is such a General Purpose Computer. Its five components and their In­
terrelations are shown in Figure 2. The memory occupies a central position. It
holds for processing the data coming from the input unit. It also holds the in­
structions that tell what to do with this data. The control unit selects each
instruction from the memory in proper sequence and executes it. Instructions
might call for the hourly rate and total hours worked to be extracted from the
memory and delivered to the arithmetic unit for multiplication, the product being
returned to the memory. As the net wages are computed, they are sent to the out­
put unit for permanent recording.

In order to secure high operating speeds, these units are of electronic construc­
tion; and to assure complete accuracy, many of the units are duplicated and cross­
checked. Other checking means are used when it is not feasible to duplicate equip­
ment.

There is yet another way in which computers may be categorized which is intimate­
ly related to the concept of memory •. The basic element being processed by a com­
puter is a number. We are all familiar wit~ two ways of representing numbers:

1. The digital method, possibly the oldest, uses a unique symbol or mark
to represent each number. For example, we use the Arabic symbols with
the position concept when we say that a dozen is "12" and a dozen dozen
or gross is "144". .

2. The analog method is familiar to us in the slide rule where numbers
are represented by different distances along a stick, or by an-ammeter
which represents the number of amperes of current flow by the angle of
a pointer. Other commonly used representations are voltage levels, ro­
tation of a gear of shaft, and extension of a spring.

Computers may then be of two general types: Special Purpose or General Purpose,
depending on whether they have a stored program of alterable instructions or not.
Within each type a computer may be Digital or Analog depending upon the represent-
ation of numbers. .

The Univac is a General Purpose Digital Computer.

-3-

CONTROL
UNIT

d,

INPUT
--"- ... OUTPUT

DEVICE MEMORY ,.
DEVICE

A"

,~

ARITHMETIC
UNIT

Figure 2

-4-

SECTION 11

The Memory Unit

In order to understand the operation of the Univac, we will start with the central
unit of the five units: The memory. The physical make-up of the memory will be
discussed in Chapter 8, however, we will now describe the general characteristics
which concern the user of a computer.

The basic unit of memory in the Univac is the "word". A word always consists of
twelve characters or digits. There 63 possible characters available; any combinatlon
of twelve of these constitutes a word. The 63 characters available are shown in Figure~
but for our immediate needs we need only the numbers 0, 1, 2, ••• 9 and the letters of
the alphabet A,B,C, ••• Z and the dash symbol (-). Here are some typical words:

012345678906
-00121169876
ABCDEFG986HJ
JOHNNY-JONES

For ease of reference the digit positions of a word are numbered from left to
right. Thus, in the last example above, the character in digital position 7 is
the dash.

The memory of the Univac has the capacity to "store" or "remember" 1000 such words.
The memory may be visualized by picturing 1000 boxes, and in each box is a slip
of paper with a Univac word written on it (figure 4). In order to locate a part­
icular word we number or "address" the boxes. In Univac the boxes are numbered
c0nsecutively from 000 to 999. Thus, in Figure 4, we can speak of the word in
box 001 as being JOHNNY-JONES.

When ~ word represents ~ number, the character in digit position 1 is considered
as the sign of the number. The minus sign is the dash symbol while the plus sign
is a zero.

-61321542013
061321542013

Further, the computer considers all numbers to be less than one in magnitude.
That is, it assumes a decimal point between digit positions 1 and 2.

A later chapter will describe how numbers larger than one can be represented.

As mentioned in Section 1, a General Purpose Computer stores its instructions in
a memory. In the Univac these instructions are stored in the same 1000 word
memory as the data they are to operate upon. A Univac instruction consists of six
digits designated from left to right as "first instruction digit", "second in­
struction digit" ••• "sixth instruction digit". The fourth, fifth, and sixth in­
struction digits generally are the address of some memory box, and the first and
second instruction digits indicate what operation is to be done on the word at
that address. The instructions will be described in Chapter 2.

Since an instruction is six digits long, a Univac word can contain two instructions.
Thus, when ~ word represents instructions, The left six digits (digital positions
1-6) are called the Left Hand Instruction, while the right six digits (digital
positions 7-12) are called the Right Hand Instruction.

-5-

i II - 0 1

r , . ; A

t " I) J

11 e + / :

2 3 4 5 6

B C D E F

K L M N 0

S T U V W

63 Characters Representable
In The UNIVAC

Figure 3

-6-

7 8 9 1 &. (

G H I # ¢ @

p Q R $ * ?

-
X Y Z % -

000

SIMPLIFIED VISUAL CONCEPT

OF UNIVAC MEMORY

001

Figure 4

-7-

999

SECTICN III

The Arithmetic Unit

The arithmetic unit consists of an algebraic adder, a multiplier-divider, a com­
parator, and several special memory boxes called registers:

Register A, rA, which holds one word
ff L, rL, ff ff ff "

" F, rF," " ff "

Their interconnections are shown in Figure 5. As indicated in the drawing, the
results of any arithmetic calculation (the output of the adder and multiply­
divider) are always placed in rAe In fact, it is in these and other registers to
be described that the data processing actually takes place. The memory serves
simply as a storage for data and instructions until they are needed for processing.

-8-

TO MEMORY

SIGNAL TO CONTROL UNIT

ADDER

COMPARA

Figure 5

-9-

SECTION IV

The Control Unit

The control unit selects the instructions placed in the memory and executes them
in their proper order. The control unit cons~sts of synchronizing and effector
devices and three registers:

The Control Counter, CC, which holds ~ne word
The Control Register, CR, which holds one word
The Static Register, SR, which holds one-half word

Figure 6 depicts the interconnections between these registers. The word in the
Control Counter always has the following appearance:

oooooooooxxx

where XXX is some number between 000 and 999. This number is the address of the
next pair of instructions to be executed. A computer which stores its instruc­
tions in a memory must first locate and extract from this memory the instruction
and then execute it. Since the UNIVAC stores two instructions per word, each
memory look-up selects a pair of instructions. The Control Register is used to
hold one instruction while the other is being executed. In Univac the extraction
and execution of instructions is performed in four steps which are identified by
the first four letters of the Greek alphabet:

C1

y

Description

The right hand six digits of CC are duplicated in
SR. The memory address section of SR now contains
the address of the next instruction pair.

The effector circuits of SR now cause the contents
of the memory cell as specified by the address
section of SR to be duplicated in CR.

A one is added in the least significant digit posi­
tion of CC (digit position 12).

The Left Hand Instruction now in CR is duplicated
in SR, and being in SR causes the effector circuits
to execute it: that is, interpret it as an instruc­
tion.

The Right Hand Instruction in CR is duplicated in
SR, and executed.

The computer automatically steps through the cycle and then after completing the
S step, begins onn. The important thing to note is that if CC = 000000000000
initially, the computer executes the Left Hand Instruction found in memory cell
00~, then the Right Hand Instruction in that cell. Then, LHI of cell 001, RHI
of ¢~l, LHI of ~~2, RBI of 0~2, etc. Also note that instructions are executed
only when they are in SR during stages Vor 8. As we shall see, there are ways
of breaking this pattern of executing instructions from sequential addresses.

-10-

Figure 6

-11-

OPERATION
SELECTORS

SECTION V

Input and Output Units

C0mmercial calculati0ns almost always involve vast amounts of data, volumes far
in excess of the storage capacity of the main memory of any computer. In the
Univac System, volume storage of data is achieved through magnetic recording on
metallic tape. Initial transcription of data onto magnetic tape is achieved
through terminal equipment (Unitypers, Card-To-Tape Converters) to be described
later. The input of the Univac consists of a number of magnetic tape units
called Uniservos which will read the information recorded on tape into an input
register, rI, where it may then be transferred into the memory. These same
Uniservos will also record information on metallic tape and serve as output
units. Uniprinters, Tape-Tc-enu Converters, and High-Speed Printers serve as
terminal equipment on the output end. These devices, also to be described later,
read magnetic tape and produce a visible or hard copy of the information. Data
in the memory is first transferred to an output register, rO, from which the
Uniservos operate. Thus, only small amounts of data need be brought into the
main memory at one time for processing. After calculation, the results are re­
corded on tape and the original data replaced by new data tape.

Figure 7 shows the interconnections b$tween memory, input, and output units.

While magnetic tape forms the main input-output media, occasions arise where
directly intelligible output and input is desirable. An electric typewriter,
called the Supervisory Control Printer, connected directly to the computer and
operating under program control, permits limited volume direct output. Similarly,
a keyboard on the control console permits small volume direct input to the com­
puter under program control.

-12-

INPUT
REGISTER

READING
CIRCUITS

MEMORY

0000 •

UNISERVOS

-13-

OUTPUT
REGISTER

• • 00

.,;j!
~'

---- Figure 7

SECTION 1

Introduction and Notation

CHAPTER 2
PROGRAMMING

The Univac System responds to 43 basic instructions which are summarized in the
Appendix of the Univac Programming Manual. These instructions were selected after
a detailed study of many data processing problems to determine the most desirable
and efficient set. The complete code with the unique characteristics of many of
the instructions provides the skilled coder a highly efficient and flexible means
of problem solution.

Our purpose in this course, however, is solely the development of your comprehen­
sion of computers - as to what problems can be solved on them and a general under­
standing of how the solution is prepared. For this reason, we shall consider a
restricted set of instructions. For many of these instructions we shall describe
only their main characteristics for the sake of simplicity. As each group of in­
structions are described, sample problems will be coded to illustrate their use.
Further problems are included as student exercises; solutions of these problems
will be found in the Appendix.

Chapter 1 described the Univac instruction as consisting of 6 digits. The digits
were labeled as shown in the figure below:

x X X X X X

L 6th Instruction
Mew..o"''1

5th Instruction (c. \ \

Adl~cs.So

4th Instruction

3rd Instruction Digi] 1 ~I)t V'u(.t \."

2nd Instruction Digit \

1st Instruction Digit

In the general case, the 4th, 5th, and 6th instruction digits are a memory cell
address, while the 1st and 2nd instruction digits specify what operation is to be
done to the word at that address. The 3rd instruction digit is available for a
possible increase in memory size. We shall use the letter "m" tG designate the
4th to 6th instruction digits in the description of the instructions. The reader
should bear in mind that the configuration of characters called an instruction in
the instruction lists to follow BECOMES an instruction when they are in the
Static Register during their or S stages. At any other time they have no signifi­
cance as instructions.

-14-

SECTION 11

Instruction List A

B¢tm, This instruction, when executed by the computer, causes the word in memory
cell m to be duplicated in rAe The former contents of rA are erased. The word
will still remain in m, unaltered. This is true of all instructions reading
information from the memory or the special registers.

H~¢ m, This instruction, when executed by the computer, causes the word in rA to
be duplicated in memory cell m. rA remains unaltered, but the former contents of
m are, of course, erased.

~, This instruction, when executed by the computer, causes the word in m and
the word in rA to be sent to the adder, the sum being stored in rAe The initial
contents of rA will be destroyed, but the contents of m will remain unaltered.

siC m, This instruction is similar to the add instruction above, except the con­
tents of m are subtracted from rAe

~,~4ThiS instruction causes the computer to print on the Supervisory Control
Printer the word contained in cell m. The contents of m are not altered.
~ 1...,~t'R.\)('T'O~ WI\\ WR.lte. 0\1 lA-PE. \~O ~uh.e:s /(t.JCt1.

~, This instruction causes the computer to stop executing .instructions. Mem­
ory address m is ignored. "¢: 5.ToP

It is desirable at this point to code a simple problem to illustrate these in­
structions:

Memory location 100 contains the on hand amount of a certain stock item.
Memory location 101 contains the on order amount, while cell 102 gives
the expected requirements for the next sixty days. Compute (on hand)+
(on order) - (required), print and stop.

It is convenient to start the instructions in cell 000, though any other location
(except 100-102) will do. In this case the solution is:

Memory
Cell

001

Contents
Left Inst. Right Inst.

B¢Q 100

sod 102

500 103

A00 ldl

HOO ld3

900 (/;(/)0

Remarks

on hand-+-rA
rA + on order-+- rA
rA - required-.-rA
Store rA for printing
Print
stop

For convenience in writing remarks, the left and right hand instructions are
written on alternate lines, though if we could "look" in memory cell 000, for
example, we would see B,0GIG}OAOOIOI. As a further convenience in writing down
instructions, we never write the third instruction digit for any instruction,
nor the second instruction digit when it isn't necessary.

-15-

In the B, H, A, and S instructions we needn't specify the second instruction
digit and would write them as B 100 for example. This is solely to save effort
in writing the instructions, these omitted digits will be inserted by the oper­
ator when the instructions are placed in the memory.

Student Exercises

1. Memory locations 100-104 contain a list of receipts; print their total
and stop.

2. The following quantities are stored in the designated locations:

l~d: A
l¢l: B
1~2: C
103: D

Compute and print 2A-B + 3 (C t D) and then stop the computer.

-16-

SECTION III

Instruction List A, Continued

~ This instruction duplicates in rL, the contents of memory cell m.

M m, This is the multiply instruction. The words in.m and rL are sent to the
multiplier and the rounded product is stored in rAe The former contents of rA
are destroyed.

D m, This instruction sends the contents of m and rL to the divider, the rounded
quotient, (m) f (rL), is stored in rAe The former contents of rA are destroyed.

You will recall, in Chapter 1, we noted that Univac considers the decimal point
to lie between digit positions 1 and 2, and that digit position 1 is the sign
digit. This means that as far as the computer is concerned, every number lies
between 1 and -1. How then, can we represent numbers larger than one?

No problem is involved when addition or sUbtraction are the only arithmetical
operations involved, as we may assume a decimal point at any desired position
in the word. For example, if we let the inverted carat/\ indicate the assumed
decimal point, the assumed decimal point of a sum or difference will be in the
same position as for its factors:

$3600.05 036 oaR 500 000 000 000 360 W5

156.23 001 5~ 300 000 000 000 015 W3

$3756.2S 037 5~ sao 000 000 000 375 ~8

But for multiplication:

$15.32 x 2.5 = $38.30

Ol~ 320 000 000 x 00~500 000 000 = 000 38K 000 000

The assumed point is not in the same position for the product as for the factors.
A similar result is also true for division. A simple set of rules tells us where
the assumed decimal point of a product or quotient lies when the assumed decimal
point of its factors are known.

Rules for Positioning Decimal Points

Rule for Multiplication: If the assumed decimal point lies m places to the right
of the machine decimal point in one factor and n places to the right in the other,
the assumed decimal point of their product will be m + n places to the right of
its machine decimal point.

If the assumed decimal point of one or both factors is pegged m (or n) places to
the left of the machine decimal point, treat m (or n) as negative and apply above
rule. If the sum m + n is negative, its interpretation is that the assumed deci­
mal point lies that many places to the left of the machine point.

-17-

Rule For Division: If the assumed decimal point of the dividend lies m places to
the right of the machine point while that of the divisor lies n places right, the
assumed point of the quotient lies m-n places to the right of the machine point.
Here again negative m, n, or m-n are interpreted as meaning the assumed point
lies that number of places left of the machine point.

A = !xx XX x XXX XXX
1\

B - !:X" X XXX XXX XXX

A x B = ±XX XXX"XXX XXX

A t B = !xx XAXX XXX XXX

Student Exercises:

EXAMPLES

A = ~ XXX XXX XAXX

B ,,~ XXX XXX XXX

A x B =±xx XXX XXXI\ XXX

A + B = ±Xx XXXXXX XX"X

Indicate Position of Assumed Decimal Point

1. A = !" XX XXX XXX XXX

B = !"xx XXX XXX XXX

2. A = ~XX XXX XXX X"XX

B = tl\XX XXX XXX XXX

3. A = txx XXX XX"X XXX

B = "tXX X" XX XXX XXX

-18-

A x B =?

A ~ B =?

A x B =?

A x B =?

SECTION IV

Instruction List ~

¢O m, This is the skip instruction. It tells the computer to pass on to the
next instruction altering neither the memory or registers.

U m, This instruction is often called an unconditional transfer of control. As
mentioned in Chapter 1, this is one of the instructions that break the sequential
execution of instructions. The U m instruction tells the computer to begin exe­
cuting instructions sequentially beginning with the instruction pair in cell m.
The memory and arithmetic registers are not affected.

In detail, the U m instruction causes the memory address digits of the Control
Counter to be replaced by the address m. The U m instruction must be a Right
Hand Instruction to be executed as described. This is true only of the U, Q,
and T instructions (see below). All other instructions work equally well as
Left or Right Hand Instructions.

~, This is one of two conditional transfer of control instructions. The U m
instruction always transfers control, but the Q m instruction transfers control
only upon certain conditions. If the contents of rA and rL are identical, the
computer interprets the Q m instruction as though it were a U m. If rA is not
equal to rL, the Q m is interpreted as a skip. This instruction then allows a
choice between following one set of instructions rather than another when that
choice can be expressed by the equality of two numbers (or alpha-numbers).

T m, This is the other conditional transfer of control instruction. This in­
struction acts similarly to the Q m instruction, e',=cept that the condition for
transfer is now that rA be algebraically larger than rL. A few examples will
illustrate the principle.

rA

012 345 678 910
-12 345 678 910
012 345 678 910
-12 345 678 910

rL

009 761 835 011
009 761 835 011
-99 999 999 999
-99 999 999 999

Does T m Transfer
Control?

Yes
No
Yes
Yes

Since letters as well as numbers may be present in a word, we need to know their
relative weights (often called the collating sequence). In the comparison, the
least significant column of a word is digit position 12. The significance in­
creases as we move to the left until we reach the most significant column,
digit position 1. Bearing this in mind, for a given column, the order of mag­
nitude for the 63 Univac characters shown in Figure 3 of Chapter 1 is as follows:
for any character in the chart, all characters to its right in the same row and
all the characters in the rows below it are larger, while all characters to its
left in the same row and all characters in the rows above it are smaller. Thus,
the i (ignore) symbol is the smallest Univac character. Again, the following
examples will illustrate the principle:

-19-

rA

ABC DEF GHJ KIM
III III III AZ9
-AB 904 6DE FG7
-AB 904 6DE FG7

Example Problem #1

rL

123 456 789 ABC
III III III BZZ
000 123 456 789
-12 345 678 9AB

FICA CALCULATION

Does T m Transfer
Control

Yes
No
No
No

A year-to-date total of FICA taxable earnings, FE, is stored in memory cell 100.
A year-to-date FICA tax paid, FT, is stored in cell 101. This week 1s pay, P, is
stored in cell 102. Compute the FICA tax, T, for this week and print, bringing
the totals up~to-date. Assume that the assumed decimal points are FE = OXX XXX
XXX 1tX, FT = OXX XXX XXX ~X, P = OXX XXX XXX ~.

Memory
Cell

Contents
Left Inst. Right Inst.

000

001

002

003

004

005

006

007

008

009

010

all

012

013

B

00

B

L

H

S

B

H

A

50

M

B

00

50

100

000

014

102

099

101

100

100

098

098

016

102

000

017

014 000 000

015 000 000

016 002 000

017 NO~ FIC

L 014

Q 013

S 2-,JJ

T 010

B 015

H 098

A 099]

B

H

90

H

H

101

101

000

098

099

U 006

90 000

360 000

am 200

000 000

J

AbT AX.

-20-

Remarks

Transfer Control if FE = $3600

Transfer Control if $3600-FE:> P
$3600-FE~ Storage

$72-FT ~ Storage

Sum year-to-date FICA earnings

Sum year-to-date FICA Tax

Print Tax
Stop

• 02 X P ~Storage

P~ Storage

Print No Tax

Example Problem #2:

MEDICAL PAY CALCULATION

Memory Cell 100 contains the number of days medical absence, MA, an employee re­
ported. In memory cell 101 is stored his hourly rate of pay, R, while in cell
102 is the number of days remaining of his payable medical absence allowance,
M1. Calculate the medical pay, MP, and print, reducing the medical leave allot­
ment by the amount MA.

Assume that the assumed decimal points are:

MA: oxx" 000 000 000
M1: IxXA 000 000 000
R: oxx X"xx 000 000
MP: OXX XXX XXX XAXX

Memory Contents
Cell 1eft Inst. Right Inst Remarks

000 B 100
L 013

001 00 000
~ 012 Transfer Control if MA = a

002 B 102
T 006 Transfer Control if M1> a

003 50 013 Print Zero
00 000

004 B 102] S 100 ML-MA ~ M1
005 H 102

90 000 Stop
006 1 100

T 008 Transfer Control if ML >MA
007 1 102

00 000

}
008 M 014

H 099 8.r1 • R~Storage
009 1 099

M 101
010 H 099

50 099 Print MP
all 00 000

u 004
012 50 013 Pri,nt Zero

90 000 Stop
013 000 000

000 000 .
014 000 080

000 000

-21-.

Student Exercises:

1. Three numbers A, B, and C are stored in memory locations 100, 101,
and 102 respectively. Print the smallest and stop.

2. The following data pertaining to an employee is stored in the indi­
cated memory cells:

100: Employee's badge number, BN.
101: Weekly bond deduction, BD.
102: Size of bond to be purchased, BS.
103: Employee's bond account number, BA.
104: Cumulative bond deduction, BC.

Add this week's bond deduction to the cumulative total and
initiate purchase of a bond, if appropriate, by printing BN,
BS, and BA and make adjustments to the cumulative deductions.

-22-

SECTION I

Introduction

CHAPTER 3
FLOW CHARTS

From a logical standpoint Univac instructions (and those of most digital com­
puters) can be grouped into three categories which we might call "logical oper­
ations":

A) Transfer of information from one storage location or medium to another.
Typical of the instructions in this category are B m, H m, and L m.

B) Arithmetic manipulation of information, as typified by the instructions
A m, M m, D m.

c) Decision as to following course A or Course B, based upon the relative
magnitudes of numbers. Instructions in this category are the T m, Q m,
and redundantly, U m.

"Programming" may then be defined as the act of combining these three logical
operations to "solve" a given problem, and a "program" is the resulting combina­
tion. "Coding" is the act of translating the program into the instruction code
of a particular computer and is sometimes used to designate the completed trans­
lation as well.

When used in this sense, programming is the most involved step in preparing a
problem for a computer solution. Coding the program is very nearly a mechanical
process and in several cases computers have been successfully instructed to do
their own coding. Construction of the program is the most difficult step for
beginning students of digital computer techniques because it often requires
visualizing large parts, if not all, of the problem as a unit. To some extent a
program will reflect characteristics of the computer at hand. For example, a
problem programmed for computer X having six input-output units wili differ from
the program for computer Y with only three, though often these differences are
slight.

Because of the difficulties for the beginner in visualizing correctly all the
steps in the problem before coding it, a graphical representation of the problem
is often laid out before beginning the coding. This makes it much easier to
detect errors in procedure and correct them than if one had to work directly on
hundreds of separate instructions. We call this graphical representation a flow
chart. Essentially, flow charts consist of symbols for the logical operations
we have discussed and rules for assembling and ordering them.

-23-

Assembling and Ordering Symbols:

SECTION 11
Flow Chart Symbols

The "path of computational flow" is indicated by a directed line segment:

>

The inference that the next step in the problem will be found by moving along the
line in the direction of the arrow is obvious. Where two or more different paths
of computational flow merge to follow one common path, a "fixed connector" is
placed at the point of merging:

By numbering the fixed connectors we need not indicate a merging of flow paths
by the actual joining of the lines as shown above. This is especially advan­
tageous where the merging flow lines would have to come from widely separated
areas of the chart. Thus, A and B are identical operations.

A B

-24-

If for reason of clarity we wish to indicate that a certain conditi'Jn is true
at a certain point in the line of computational flow, a "flag" asserting the
condition is attached to the flow line:

A B

Logical Decision Symbols:

A decision between follovling one of two paths of computational fl'Jw, based up·Jn
the relative magnitudes of two quantities A and B is indicated by:

A > B

A B

A c::: B

Or, for the choice of paths based upon the equality of the two quantities:

A = B

A B

A t B

-25-

Standard practice has been to dispense with the flags in the case of a decision
operation by the following scheme:

>

Ambiguity is avoided if we remember that the condition existing on either out­
ward flow line is that obtained by replacing the colon (:) with the> or ~ symbol
where the choice is made on relative magnitude or by = or ~ when the choice is
based upon equality.

Arithmetic and Transfer Symbols:

The evaluation of a formula or straight computation is indicated inside a rec­
tangular box

.02A ~ B

Where the arrow indicates that B is now the quantity .02A, a transfer would
appear as

A -.B II

Again the arrow signifies that B is now the Quantity A.

-26-

SECTION III

Example Flow Charts

Let us illustrate the use of these flow chart symbols by drawing the flow charts
for the FICA and medical pay calculation problems of Chapter 2.

I

FICA CALCULATION

No TAX

r: _~ 3600-FE ~ WS

P .--.. WS .02P

0-4FE+ WS i ----+ FE H ... T_+_W_S 2_::~_~~>_F_T __ H WS2

MEDICAL PAY COMPUTATION
I s---c MA':t.0)= '4 O--';CP

---+ W~

...... __ 0 ---.-SCP I--___ ~

ML-MA~ ML

-27-

Student Exercises:

1. Draw the flow charts for the exercises of Chapter 2, Section IV.

2. Flow chart and code the following billing problem:

in memory cells 100 - 104 are certain order and billing
information:

100:
101:
102:

10):
104:

Quantity ordered, Q: OXX XXAO 000 000
Uni t Price, P: OXX XXX" XXO 000
Percentage Discount for:
quantities over 50, D: O"XX XOO 000 000
Salesman's number, N
Commission percentage, C: O"XX XOO 000 000

Compute the commission (on net charge), print with salesman's
number.

-28-

SECTION 1

Iterative Coding

CHAPTER 4
PROGRAMMING (CONT.)

Consider the following problem:

An account number, A, is stored in memory cell 099 while in memory cells
100-199 is stored a list of 100 delinquent account numbers. Print "No
C:redit" if A is in the delinquent list and "Credit Good" if' it is not.

Let us write down the coding necessary to determine whether A is the same as the
first delinquent account:

000

001

002

003

004

005

006

007

B 100

00 000

50 008

008 NOA CRE

009

010

all

L 099

Q 007

90 000

DIT.M

Transfer Control if A = First DA

Print "No Credit"
stop

Thus, if the computer gets to line 002 we know that the first delinquent account
is not the same as A. Now, let us write the coding necessary to compare the
second delinquent account with A:

000 B 101
L 099

001 00 000
Q 007 Transfer Control if A = Second DA

002

003

004

005

-29-

006

007 50 008 Print "No Credit"
90 000 Stop

008 NOA CRE DIT .M
DIT

009

010

all

And for the third:

000 B 102
L 099

001 00 000
Q 007 Transfer cvntrol if A = Third DA

002

003

004

005

006

007 50 008 Print "No Credit"
90 000 Stop

008 NoA CRE
DIT .M

009

010

011

And for the hundreth:

000 B 199
L 099

001 00 000
Q 007 Transfer Control if A = Last DA

002

003

004

005

006

007 50 008 Print "No Credit"
90 000 Stop

-30-

008 NO~ eRE
DIT

009

010

all

In each case you will note that the only change is in line 000, the address of
the delinquent account being advanced by one.

It is hardly a labor-saving or even feasibl~ scheme to write the 100 tests
necessary to ascertain whether A is among the bad account list. The fact, that
instructions and data are both stored in the same memory allows us to alter the
coding for testing the first account so that this same coding can be repeated,
but this time testing the second account, etc.

To do this, we write down, as before, the coding necessary to examine the first
delinquent account which is stored in cell 100. Then, by addition, we alter the
address of those instructions referring to addr~ss 100:

000

001

002

003

004

005

006

007

008

009

010

all

A

B

00

B

00

50

NoA

000

100

000

000

009

000

008

eRE

001

L 099

Q 007

H 000

U 000

90 000

DIT .M

000 000

Transfer control if A = First DA

Augment left address of
line 000 by 1

Print "No Credit"
Stop

The c·:)mputer will begin b:r testing the first delinquent account. If it is not
A, it will alter its instructions so that it can examine the second DA, etc.,
until, and if, it finds a DA = A whence it prints nNo Credit" and stops. Of
course, if A is not on the delinquent list, there is nothing so far to instruct
the machine to print "Credit Good" and stop. We wish this process to stop when
we have examined the last delinquent account (in memory cell 199) and have found
it not equal to A. This can be accomplished by examining the changing instruc­
tion line at each iteration:

-31-

000 B 100
L 099

001 00 000
Q 007 Transfer control if first DA = A

002 B 000
L 010

003 00 000
Q 006 Transfer control if last DA

004 A 009 ~AUgment left address of
H 000 line 000 by 1

005 00 000
U 000

006 50 all Print "Credit Good"
90 000 Stop

007 50 008 Print "No Credit"
90 000 Stop

008 NOa CRE
DIT .M

009 000 001
000 000

010 BOO 199
LOa 099

all CRE DIT
AGO ODe

-32-

SECTION 11

Subscript Notation And
Additional Flow Chart Symbols

Let us draw a word picture of this process so as to fix more firmly in our minds
the essential steps of the solution:

SELECT THE
FIRST

DELINQUENT

SELECT THE
" __ -f"~EXT DELINQUEN

ACCOUNT

... P_R_I_N_T_N_0...1 -0 _CREDIT ~

PRINT
CREDIT

The word flow chart is a fair description of this problem. Realistic business
problems, however, would require reams of paper for word charts and even at best
the word chart can be confusing.

In order to draw a more economical chart, we need an unambiguous way of designating
a particular delinquent account. A commonly accepted method is through the use of
subscripts. Let us call the first delinquent account DAI the second delinquent
account DA2 and so forth, the last being DAlOO. Now the symbol DAi can be read as
the ith delinquent account, i being some number between 1 and 100. Our flow chart
will now appear as:

i = 1

t-----!l ... NO CREDIT SCP

......... +CHED IT GXD--.;... SCP

-33-

The double-lined box II i + 1 -.. i (is used when altering subscripts to remind
us that we are changing instructions rather than data. Another simple example of
the iterative coding technique is the following problem:

Student

1.

A list of 100 receipts, Ri , are stored in memory cells 100 to 199.
Compute and print their sum.

000

001

002

003

004

005

006

007

008

i = 1
S - 0

B

H

L

A

00

50

000

BOO

000

006
A 100

006
B 000

007
Q 005

008
H 000

000
U 000

006
90 000

000
000 000

006
AOO 199

000
000 001

Exercises for Flow Charting and

} S + Ri-t-S

}
Transfer control if i --
i l--.,...i

Print S

] stop
S

Coding:

In memory cells 100-199 are a series of lOG inventory amounts, Mi
while in cells 200-299 are a series of corresponding sales, Si- '
That is, Sl and Ml refer to the same stock item, S2 and M2, etc.
Correct the inventory.

100

2. Do the second example in the text, where now the number of receipts
is unknown. A "Sentinel word" consisting of ZZZ ZZZ ZZZ ZZZ will
follow the last receipt.

-34-

3. A net pay, P, after taxes, is stored in memory cell 099. In
memory cells 100 •••• are stored a series of deductions, Di·
Their number is not known, but a Z sentinel follows the last
one. (note: there may be no deductions, in which case the
sentinel is in cell 100.) Each deduction is to be examined in
the following manner: If the deduction will not reduce the pay
below $15 it is to be subtracted from the pay, producing a new
net pay. If however, this deduction will bring the pay below $15
do not subtract it from the pay. Either the entire deduction is to be
taken from the payor none of it, that is, no partial deduction will
be made. The net pay is to be printed along with all deductions
that have not been made.

-35-

SECTION III

Instruction List Q

The instructions in list C permit us to alter the arrangement of the characters
in a word in an arbitrary manner. The alteration always takes place in Register
A.

On 000, This is the left shift instruction. The second instruction digit,
n = 1,2, ••• ,9, tells the computer to shift all digits of rA, except digit
position 1 (the sign) n places left, putting n zeros in the vacated positions
on the right. For example, if rA contains 012 845 ABC 968 and the instruction
04 000 is given, rA will then contain 05A BC9 680 000.

-n 000, This is the right shift instruction. The second instruction digit,
n = 1, 2, ••• ,9, tells the computer to shift all digits of rA, except digit
position 1 (the sign digit) n places to the right, putting zeros in the vacated
positions on the left. For example, if rA contains 012 345 ABC 968 and the in­
struction -4 000 is given, rA will then contain 000 001 234 5AB.

To illustrate the use of these instructions let us consider the table look-up
problem:

A shipping rate table of 100 entries is stored in memory cells 100-199.
The rate in cell 100 is the cost/pound to be levied for all it~ms of weight
o to 99 pounds. The rate in cell 101 applies to 100-199 pound items, etc.,
in memory cell 099 is the weight of an item to be shipped, within the range
of the table, in this format:

000 XXX ~OO 000

Thus, a weight of 3523 pounds would be stored in 099 as 000 352 300 000.
The rates are given in dollars and cents/pound in the following format
(the example is $2.36/lb.):

000 ~36 000 000

Compute and print the shipping charge.

In solving this problem, which occurs in a variety of forms in data processing,
let us note that the hundreds and thousands digits of (099) are in one-to-one
correspondence with the memory addresses of their corresponding rates. For ex­
ample, if the weight is between 2100 & 2199 Ibs. The appropriate rate is in cell
121. Thus, we can use the hundreds and thousands digits of the weight to locate
the applicable rate in the table. The coding for this problem is given below:

-36-

000

001

002

003

004

005

B 099

A 005

H 098

90 000

L 099

-7 000

H 002

50 098

M 100

000 XXX X 00 000 -+- rA
000 000 000 OXX --+- rA
LOa 099 MOO lXX ~ rA
rA~ 002

Rate x Weight ~ rA

Print Shipping Cost
stop

A simple modification allows us to do table look-up problems when the
table arguments are not multiples of 100. For example, suppose these
same rates applied to shipping weights in intervals of 250 pounds.
Now, if we multiply the weight by 1/250 (=.004), we have the number
of 250 pounds units, which is in one-to-one correspondence with the
memory address of the rates.

000

001

002

003

004

005

006

L 099

-5 000

H 003

H 098

90 000

000 400

007 LOa 099

M 006

A 007

00 coo

50 098

000 000

MOO 100

-37-

OOX xxx ~OO 000 ~ rA
Weight/250 = 000 OOX X 00 000 ~rA
000 000 000 OXX~rA
LaO 099 MOO lXX~rA
rA--+003

Rate x Weight~ rA

Print Shipping Cost
Stop

1/250

SECTION IV

Instruction List g (continued)

~ This instruction duplicates in rF, which is a one word register, the
contents of memory cell m.

~ This is the extract instruction. The contents of rA are selectively re­
placed by the contents of m. The word in rF, called the extractor, governs the
transfer. Of the 63 Univac characters, every other one, starting with the ig­
nore (i) extracts, in particular, the 1. Thus, if the initial contents of rA,
rF, and mare:

m: 123 ABC 789 DOE
rF: 010 110 001 101
rA: 987 6DE 017 54G

And the instruction E m is given, the contents of rA will be:

rA: 927 ABE 019 D4E

Two examples will illustrate some of the uses for this instruction.

In memory cell 100 is a quantity in the following format:

000 XXX xxx XX~

Which we desire to print on the supervisory control printer, suppressing
the non-significant zeros. That is, if 100: 000 000 690 760 we wish to
print 690 760 only.

000 L 100 000 XXX XXX XXX.-,-.. r L
B 006 001 --- --- ---~ rA

001 -1 000 Shift rA right one place
T 001 Transfer control if rA> rL

002 H 008] rA~rF

F 008
003 B 007

E 100 NYl !lbA ~ W1 ----..,.. r A
004 H 000

50 008 Print edited quantity
005 90 000 Stop;

00 000
006 001

007 f:tA Mil
tJ)A MIl

008 Working Storage

-38-

Note that in line 001, the iterative portion of the routine, the word in rA is
successively shifted to the right until the 1 lines up under the left-most non­
zerO digit of the word in cell 100. The ones and dashes then can be used as an
extractor, replacing the space symbols with the most significant digit of 100
and all digits to its right. The space symbols, of course, move the typewriter
carriage but do not print. If we were to print a column of numbers edited in this
fashion, they would be aligned on the least significant digit. If we wished them
aligned on the most significant digit, we would replace line 007 with ignores:
iii iii iii iii.

Suppose, now, that the word in 100 is in the following format:

100: 000 XXX ~X XXX

where"indicates the position of the assumed decimal point. We wish to print
this number with dec~al point, and nonsignificant zeros suppressed. That is,
if 100: 000 003 607 690 we will print 360.7690. The first step is to "spread"
the word apart and insert the decimal point, then zero suppression.

000 B 100

001 H 014

002 A 010

003 E 014

004 L 014

005 -1 000

006 H 015

007 B 013

008 H 014

009 90 000

010 000 000

all 001 III

012 01-

013 MI:l .bAA

014

015

01 000

-1 000

F all

H 014

B 012

T 005

F 015

E 014

50 014

00 000

0.0 000

100 000

~ AAA

000 XXX XX"X XXX ~ rA
OOX XXX X /\ xx XXO--+ rA
rA --+ Working Storage
000 XXX XXX XXX ---4- r A
000 XXX X.X XXX ~ rA
001 III 100 000 ---?- rF
OOX XXX x.x XXX ~ rA
rA---4-- Working Storage

Zero Suppression

~} Working Storage

-39-

SECTION 1

Introduction

CHAPTER 5
INTERNAL ITEM
PROCESSING

Most of our study of computer applications so far has concerned itself with
single units of information. In a few problems we saw that the processing
required several bits of data before the computation could begin. This leads
us to the concept of the item. An item is a set of related data, called fields,
which may be treated as a unit. The composition of an item (that is the
fields of which it is composed) may depend on the processing to be done, the
policies of a company, or the manner in which the data is obtained. Bearing
these reasons for variation in mind, examples of typical items are given below:

~ Master Employee Item

1) Name and Address
2) Badge or Employee Number
3) Rate of Pay
4) Number of Dependents
5) Type of Standard Deductions
6) Work and Pay Summaries

A Stock Inventory Item

1) Stock Number
2) Description
3) Unit of Measure
4) Lead Time for Ordering
5) Unit Cost
6) Amounts on Hand and on Order

~ Public Utility Meter Item

1) Account Number
2) Current Reading
3) Last Reading

In the Univac, an item may consist of one or more words. Certain considerations
should be observed when laying out the item:

1) Do not split a field across words if it can be avoided.
2) Fields which specify an order or sequence for the items

should be in the 'same word, beginning at the extreme left
and continuing to the right in decreasing order of sig­
nificance.

3) Fields upon which considerable calculation will be per­
formed should be in separate words if possible.

4) Keep item sizes as small as feasible, bearing in mind the number
of instructions required to "move" the item about and the possi­
bility of future expansion.

The stock inventory and utrlity meter items are pictured below to illustrate
the appearance of an item.

The item notation used throughout this course is a simple one and yet is flexi­
ble and unambiguous. A letter will stand for the set of all items of a particu­
lar kind, a subscript defining a specific item of the set. A superscript will
serve to identify the field under consideration. For example, let S stand for
all stock inventory items, then Si is the ith such item, while

S~n
1

is the Stock number of the i th inventory item

s? " " Description " " " " "
1

SU " tI Unit of Measure of the ith inventory item

Etc

Stock Inventory Item

I : : : StO~k N;ber: I
I : : Dfscripti°7 i
I :DescfiPtitn +nt): I ~~!;u~! : I
[0 : On rand: I
I 0 ~n or~er I
I Tire I 0 :uni t: cos~ 0 0 Lead ,

A

Public :ti 1 r\ M:te: :It:m : I Ac~ount:Nun~er 0 0 : 0 I
I c~rren~ Rea~ing : : I L~st Rfadi~g : I

-41-

SECTION 11

Instruction List Q

To facilitate the movement of items inside the computer, two multiple word
transfer registers have been provided.

Register V, rV, a two-word register
Register Y, rY, a ten-word register

Instructions affecting these registers are:

V m, This instruction causes the contents of memory cell m and m t 1 to be
duplicated in rV. For our purposes m must be a multiple 'of two; that is, an
address like 000, 102, 504.

~ This instruction causes the contents of rV to be duplicated in memory
cells m and m + 1. Again, m must be a multiple of two.

To illustrate these orders, suppose memory cell 100 contains a quantity A, and
cell 101 a quantity B. If the order V 100 is given and at any later time W 304,
say, cell 304 contains A and 305 B. The contents of rV are not destroyed upon
reading out.

Y m, This instruction causes the contents of cells m, m t 1, ••• , m t 9 to be
duplicated in rYe m must be a multiple of ten.

Z m, This instruction causes the contents of rY to be duplicated in memory
cells m, m + 1, ••• , m t 9. Again, m must be a multiple of ten. The contents
of rY are not destroyed upon reading out.

For example, if Y 100 is given, then a Z 310,

100: A
101: B

And: 102: C

109: J

310: A
311: B

Then 312: C

319: J

-42-

SECTION III

Working Storage

The following problem will illustrate the multiple word transfer instructions and
the most efficient means of item handling.

6 ten word items are stored in memory cells 100-159.
Then item layout is:

.Tnh Numhp-l"

Contract Price

Labor Cost
\ Material Cost

Overhead Cost

OTHER

DATA

Compute the net profit and store the job number and
profit as a two-word item in cells 160-171.

We shall solve this problem in two ways. In the first let us code the steps
necessary to process the first item (100-109) and store the desired fields in
160-161 and then process the remaining items by appropriately increasing the
address part of the instructions referring to those locations:

000 B 100

001 B 101

002 S 103

003 H 161

004 L 012

005 A 013

006 B 001

007 H 001

008 A 014

009 B 003

010 H 003

H 160

S 102

s 104

B 000

Q 011

H 000

A 014

B 002

H 002

A 015

U 000

Job Number-+ 160

)
) Net Profi t~ 161
)

Transfer C9ntro1 if last item

)
)
)
)
) Augment Addresses
)
)
)
)
)
)

-43-

all 90 000 Stop
00 000

012 B 150
H 170

013 000 010
000 002

014 000 010
000 010

015 000 002
000 000

Now, if we recode the problem, this time instead of increasing all instructions,
which refer to addresses 100-109, we simply transfer the next input item into the
position occupied by the first item.

000 B 101
S 102

001 S 103 Net Profit ;am 101
S 104

002 H 101
V 100 Store Computed Item

003 W 160
Y 110

004 Z 100 Replace 100-109 with next item
B 003

005 L 009
Q 008 Transfer if last item computed

006 A 010
H 003

007 00 000
U 000

008 90 000 Stop
00 000

009 W 170
Y 160

010 000 002
000 010

Observe that this technique uses considerably fewer steps. The point to be made
is that when a problem requires many items to be put through a process the effi­
cient method is to code the routine specifically addressed for the first input
item; then, considering the location of this item as working storage, transfer
the remaining items successively into this position for processing.

-44-

Student Exercise

1. Memory locations 100-159 contain a series of two word census
items:

ass 000 CCC COO
OAA AOM OHO OOG

Where SS
CCCC
AAA
M

is a two digit state code
" "four "city "
fI the individual's age
" " "marital status

S = Single
M = Married
W = Widowed
D = Divorced

H is the individual's race
W = White
C = Colored

G is the sex
M = Male
W = Female

Print the total number of white, single, females, 21 years of age or older in
Sheboygan (city code 1313), Wisconsin (state code 24).

-45-

SECTION IV

Variable Connectors

You recall that the fixed connector was used on a computational flow line to
indicate a merging of flow lines. Its counterpart, the variable connector, is
used where flow-lines diverge.

Suppose we have a problem to code requlrlng us to send Type A items through process
1 and then through process 2, while Type B items must go through process 1 then
process 3. The normal procedure would be to repeat process 1 along the A flow
line and B flow line:

A Items

Process 1 Process 2

B Items '1
....

Process 1 - Process 3 -
If process 1 is a complex and extensive calculation it becomes highly inefficient
to repeat it along every flow line requiring it. The suggestion immediately
presents itself of doing process 1 once only and funneling both items through it,
separating them again after completion of process 1:

A Items

Process 2

Process 1

BIt-ems Process 3

When used in this manner, process 1 is called a Subroutine. This flow chart
leaves an ambiguous si tuatio-n at the diverging flow lines, do "An i terns go to
process 2 or 3, and how is the switch actually accomplished?

-46-

The switch is called a "Variable Connector" and is indicated by:

~--........

The letters of the Greek alphabet are used to designate the variable connector.
The act of setting the connector is shown by the symbol.

--------~~~~~--------~~~

Which implies that, after passing through the box, when we encounter the con­
nector ~ it is set to read 0<1. Our example would now appear:

~ Process 2

~p_r_o_c_e_s_s __ l __ ~1 ~

~ Process 3

This makes evident that a variable connector is the same as a fixed connector,
but the number the connector transfers us to is determined when the connector
is "set".

To illustrate the use of these connectors, consider the following problem:

6 ten-word "A" items are stored in memory cells 100-159. Each item
has a serial number as its first word and the items are in ascending
order by this serial number. Similiarly, 6 ten-word "Bit items are
stored in 200-259. Merge (interfile) these items together, storing
the merged results in 300-419.

In the flow chart and coding Ai represents the ith A item, Bj the jth B item
and Ck the kth output item. The superscript SN stands for the serial number
of the indicated item.

-47-

-48-

000 B 100
L 200

001 00 ' 000
T 012 Transfer Control if AS~'->Bj~

002 y 100 Ai~Ck
Z 300

" 003 B 002
A 023

004 H 002 k'" l~k
B 012,

005 A 023;
H 012.

006 B 009
L 024

007 00 000
Q 011 Transfer Control if i = 6

008 A 025
H 009

009 y 100 i t ~i
Z 100

010 00 000
U 000 Variable Connector ~

011 V 026
W 020 Variable Connector 8 (.0(1 and .~ 2-)

012 Y 200
Z 300 Bj~Ck

013 B 012
A 023

014 H 012 k t l-~k
B 002

015 A 023
H 002

016 B 019
L 030

017 00 000
Q 021 Transfer Control if j = 6

018 A 025
H 019

019 y 200 j + l---+j
Z 200

020 00 000 Variable Connector"
U 000

021 V 028 Variable Connectory
VI 010 · ~2 and ·V'2.

022 00 000
U 002

-49-

023 000 000
000 010

024 y 150
Z 100

025 000 010
000 000

026 00 000 ~

U 012
027 90 000

00 000
028 00 000

U 002
029 90 000

00 000
030 Y 250

Z 200

-50-

SECTION 1

Characteristics of Magnet Tape

CHAPTER 6
INPUT-OUTPUT

As mentioned in Chapter 1, magnetic tape forms the principal means of introducing
and removing information from the Univac. Physically, the tape is a metallic
strip about 1/2 inch wide and .002 inches thick. It can be supplied in reels
of various sizes, the longest being about 1500 fe~t. Metallic tape is used
because of its excellent resistance to moisture variations and fire, as compared
with paper or plastic tapes. Certified tests have shown the tape to be readable
after direct contact with temperatures as high as 550°F. An outstanding
characteristic of metallic tapes is their reuseability. Information may be
recorded on a tape, read, erased and new information recorded on this same
tape, thus cutting the cost of supplies considerably. A reel of tape can be
read or written upon nearly 1000 times before showing appreciable wear.

Univac characters are recorded serially along the length of the tape at varying
densities, up to a high density of 128 characters/inch. A full reel of tape,
1500 feet, can hold as much as 1,440,000 digits, in a cubic space of less than
40 inches, providing a compact information storage medium, which is nearly
age proof, without the necessity of moisture or air conditioning. Information
recorded on tape is in block form, 720 digits or 60 words to a block. Block
recording is used to permit very high reading and recording speeds, a
necessity in data processing problems. The 60 word block was chosen as a
programming convenience. This block size permits the greatest variation of
item size which still retains an integral number of items per block. Thus,
a block may consist of

60 1 word items 6 10 word . ~
1 Lems

30 2 " " 5 12 " "

20 3 " " 4 15 " "

15 4 " tt 3 20 " "

12 5 " " 2 30 " "

10 6 " It 1 60 " "

SECTION 11

Recording 20 Tape

Three means, at present, are available for recording on tape:

Key Board to Tape Recording:

Unityper 1 is a device for converting a typist's key stroke onto magnetic tape.
This device ontains automatic checking features on the typist. By properly pre­
paring punched paper tape loops, a forced check can be made, preventing the
typist from under- or over- typing a field. These loops also provide for
automatically filling complete or partial fields with zero, space, or ignore
symbols. By operation of an erase key the typist can backspace the tape and
re-record if she detects a typing error. The output of Unityper 1 is magnetic
tape recorded at a density of 20 characters per inch. A Uniprinter may be
plugged directly to the typer to obtain a printed record of the typing (see
Uniprinter).

Unityper 11 is a smaller and simpler keyboard-to-tape recorder suitable for
volume data recording. It consists of a sl~ghtly modified Remington Electric
typewriter with an integrally attached tape mechanism and power supply and
can be mounted on the normal typist desk. As each key is struck, the
character is printed and also recorded on tape. Similar erasing and fill-
in features are provided as in the Model I Unityper, but no loops for forced
check on field size have been included. Each line of print (120 characters)
is recorded on tape as a ten word item. The recording is at a density of 50
characters/inch.

Card To Tape Recording:

The Card-To-Tape Converter, as its name implies, is a device for converting
the information on 80 column punched cards to magnetic tape. Each card is
converted to a ten word item (called a blockette) on tape. The conversion
is governed by a detachable plugboard. Thus, the columns on the card may
be plugged to any desired digit position of the 120 character blockette.
Unplugged columns and the remaining 40 columns of the blQckette may be filled
with zero or space symbols. Provision is made for separation of the over
punches in a column and recording a column as two separate digits. This is
a checked conversion, a card is ready, stored in a memory unit and then
recorded on tape. Next, the tape is backspaced to the beginning of the
blockette, the card is then reread at a different reading station. The in­
formation going to the same memory, but the memory cells and circuitry are
scrambled. During the second reading of the card the blockette alrefdy re­
corded on tape, is read and a comparison made between the recording and the
second storage of the card. Any comparison failure causes the converter to
stop. Failure to feed a card is caught by causing each card fed to generate
the impulse to feed the next card. Conversion takes place at a rate of
240 cards/minute. The tape is recorded at a character density of 128 per
inch, but due to the spacing required between blockettes on tape, a full reel
of tape will hold the information on 5000 cards.

Computer To Tape Recording:

This is accomplished by the Uniservos which are described in Section IV.

-52-

SECTION III

Reading Tape

Tape To Printed ~:

The High Spe.:d, or line printer is a device for large volume printing of the
data recorded on magnetic tape. Each ten-word item recorded on tape at 128
characters/inch printed on a 120 character line, or, if desired, through
format plugboards, selected fields of the item may be printed on as many as
six different lines. Through use of these same plugboards the digits in the
10-word item may be printed in any desired column, and provision is also
made for automatically suppressing nonsignificant zeros. A punched paper
tape loop controls the vertical format of the printing. The present model
uses continous form stock, although a cut form attachment is in development.
The rate of printing will of course depend on the vertical format to some
extent, but speeds of 300 to 600 lines peT minute are obtainable. The
speed is variable depending on the number of carbons desired. The printer
can print any of 51 characters. The checking features include an odd-
even and 120-character check on the reading from the tape, a check on the
internal memory, and a check on the proper firing of the print hammers.

The Uniprinter is an electric typewriter, identical in its action to the Super­
visory Control Printer except its input as magnetic tape, recorded at the low
density of 20 characters/inch. The Uniprinter is used where low volume
printing of extreme flexibility in form is desired. The printing rate is
about 8-10 Characters/second and the typing format is controlled by type­
writer control symbols recorded directly on the tape with the data. In this
manner, the typing format can be as variable as that obtainable from a typist.

Tape To Punched Card:

The magnetic Tape-Io-Card Converter produces an 80 column punched card from
each 10-word item recorded on tape. A plugboard allows the selection of any
80 digits of the item to be entered in any of the 80 card columns. The
checking features are the odd-even check and a 120-check on reading from tape,
memory check, and a comparison of the punched card with the data stored in
the memory. The conversion takes place at a rate of 120 cards/minute with tape
recorded at a density of 128 characters/inch.

Tape To Computer:

This is accomplished by Uniservos which are described in Section IV.

-53-

SECTION IV

Uniservo

Communication between the Univac and the auxiliaries described in Section II
and III is established through magnetic tape. The Uniservo is the means by
which the Univac reads or records magnetic tape. As many as ten Uniservos
may be connected to the Univac at the present time. They are numbered from
1 to 9, the tenth being labeled the -. A Uniservo may read or write tape
at the discretion of the program, and is two-directional in its action. In
defining the direction of tape motion we shall use the simplified picture
shown below.

Left Reel
Read-Write

Head Right Reel

A reel of tape is always mounted on the left reel. It is connected to a
pre-threaded leader which is permanently fastened to the right reel. Removal
of a:reel of tape and IOOtlnting a new reel takes about 1/2 minut-€-~ When tape
is moving from the left reel to the right reel, we say the tape is moving in
the forward direction. When tape moves from the right reel to the left, the
tape is said to be moving backwards.

SECTION V

Instruction List g

5n m, This instruction causes the computer to write on Uniservo n (n = 1, 2,
... 9,-) the block, 60 words, from memory cells m,m - l, ... m - 59. m must be
a multiple of ten. The writing is at the high tape density of 128 characters
linch, with the tape moving in a forward direction. The write instruction
is carried out in three steps:

1) The computer determines whether:

-54-

a. Another write instruction is not still in progress
b. The last write was properly executed
c. Uniservo n is free (not engaged in a rewind or read instruction)

If all of the above queries are answered affirmatively, it proceeds
to step two; otherwise, it remains at step one until all queries are
answered yes. These queries are called the write interlock tests.

2) The block in m through m t 59 is transfered to the 60-word output
register, rO, and Uniservo n is started. At this point the central
computer is released to continue executing instructions, the output
control circuits taking over control.

3) The block in rO is recorded on tape, first the word that came from
cell m, then m t 1, etc., and last to be recorded is the word from
cell m + 59. Within each word, the first character recorded is from
digit position 1, then, 2, and finally position 12. After the la&
word is recorded the tape stops and Uniservo n is free as also are
the output circuits.

7n m, This instruction is identical to the 5n m instruction, except the write
density is 20 characters to the inch. This density is used only when the tape
is to be printed on the Uniprinter.

In 000, This instruction causes the computer to read into rI in a forward
direction (the block just to the left of the read-write head on Uniservo n).
The read instruction is carried out in two steps.

1) The computer determines whether:

a. Another read instruction is not still in progress
b. The last read was properly executed
c. Uniservo n is free (not engaged in a rewind or write instruction)

If all of the above queries are answered affirmatively, the computer proceeds to
step two, otherwise it remains at step one until all queries are answered yes.
These queries are called the read interlock tests.

2) Uniservo n started, the tape moves in a forward direction, the cen­
tral computer is then released so that it may continue executing
instruction, and the input control circuits take over control of the
read order. As each character passes under the read-write head, it
is read and this information stored in the block lengths input
register, rI. At the conclusion of the read instruction rI will
appear exactly as rO appeared when the block was written. At this
point the tape stops and Uniservo n and the input circuits are
freed.

-55-

2n 000, This is the backward read instruction, and is identical to the In 000
instruction, except that the block read into rI is the one tq the right of the
read-write head, the tape moving backwards. Even though the block is read back­
wards, its appearance in rI is the same as though it were read forward.

30 m, This instruction causes the computer to transfer the block in rl to memory
cells m, m t 1, ••• , m t 59. rl is cleared only after the transfer. m must be a
multiple of ten.

This instruction is carried out in two steps:

3n m,

4n m,

1) The read interlock tests (desc!ribed under the In 000 instruction)
are performed. If they are answered yes, step 2 is executed.

2) The 60 words stored in rl are transferred to the memory beginning
with cell m, the last word in rl going to cell m + 59. After
completion of the transfer, the computer is released to continue
executing instructions.

This is a composite instruction, performing first a 30 m, and then a

This is a composite instruction, performing first a 30 m, and then a

In 000.

2n 000.

6n 000, This is the rewind instruction, causing all of the tape on the right hand
reel to be passed over to the left reel. This instruction is executed in two steps:

1) The write interlock tests are performed.
2) The Uniserve n is started, moving tape backwards. At this point

the central computer is released and the rewind control circuits
continue the rewind process.

At the conclusion of the rewind, the tape may be read forward or written upon.

8n 000, This is the Rewind with interlock instruction. Its action is identical
with 6n 000 instruction, except, at the completion of the rewind an interlock is
set for Uniservo n.

Whenever Uniservo n is called for again to either read, write or rewind it always
sends back a "busy" signal, stopping the computer on the appropriate interlock
tests. This instruction is used when a rewound tape is to be removed and a new
tape mounted in its place. The removal of the reel of tape and the mounting of a
new reel removes the busy signal for Uniservo n.

The use of buffer storages between the computer and the tape units and the separate
read and write control circuits permits high speed input and output operations, as
the computer is held up only for the small amount of time necessary to perform the
interlock tests and fill the output buffer or empty the input buffer. Further, the
interlocks prevent one from trying to use information which is being written or
read until the write or read is completed.

The following problem will illustrate the use of these orders.

A tape on Uniservo 2 contains a series of two-word inventory
records.

-56-

Stock Npmber

Inventory

The number of such items is unknown but a Z sentinel follows the last item.
An equal number of two-word items

are recorded on Tape 3.
sequence on both tapes.

Quantity Used

The stock numbers are assumed to be in the same
Produce a corrected inventory on Tape 4.

Let us label Tape 2 as T2, a block (30 items) from this tape, A, eac8 of the
thirty items Ai' and the stock number of an item Arn , the quantity Ai

Tape 3 is labeled T3, a block from the tape, B, an item of the block Bi and
the stock number and quantity Brn , B~.

000 12 000

001 33 100

002 B 100

003 00 000

004 B 101

005 H 101

006 L 019

007 A 020

008 B 004

009 H 004

010 A 020

011 00 000

012 54 100

00 000

32 200

L 018

Q 015

s 201

B 002

Q 012

H 002

A 021

B 005

H 005

U 002

B 024

T2 ---+- rI

rI ---+ A, T3 ~ rI
rI~ B, T2~rI

Transfer control

tA9 - B~~ AQ J 1 1 i

Transfer control if i = 30

-57-

'----"'-..I r I --;> A rI--;> B

~-...c. 2

=

-58-

013 H 002
V 022 1 ~ i

014 W 004
U 001

015 54 100 A ') T4
82 000

016 83 000 Rewind W/Interlock T2, T3,
84 000

017 90 000 Stop
00 000

018 ZZZ zzz
ZZZ ZZZ

019 B 158
L 018

020 000 002
000 000

021 000 002
000 002

022 B 101
S 201

023 H 101
B 002

024 B 100
L 018

Student Exercise:

A tape on Uniservo 1 contains a series of two word meter
consumption items

ConslUDption

The number of such items is unknown but a Z sentinel
follows the last item. Produce and print the follow­
ing table:

Consumption Range

1-100
101-500
501-1000

1001-over

-59-

Consumption Accounts

3600 500

T
4

SECTION VI

Filling Register I

In most phases of complex commercial applications of UNIVAC, data from several
different sources must be brought together before computation on this data can
proceed. The information coming from these different sources are recorded on
magnetic tape and each separate type of data is assigned a Uniservo which
serves as the transport device, enabling the information on the tape to be
brought into the central computer in units of sixty words, one block. As noted
in the instruction code pertaining to the input orders, Section V, all informa­
tion from the tapes must pass into the sixty-word Register I, and, thus, only a
block of data from one Uniservo may be read into the computer at a given time.
There is an instruction, the 3n m (or 4n m, for backward reading) whereby the
programmer may transfer the block of data present in rI into the memory for
processing, and simultaneously order any particular Uniservo to read another
block of data into rI, this reading being done independently of the operation of
the central computer which is free to begin calculations on the block just
transferred from rI.

Thus, if the computation necessary to process a block of information is long
enough, the time to read the information into the computer may be completely
absorbed by it. Or, if the amount of time taken up in computing on the data
is less than the time required to read the data into the machine, the computing
time is completely absorbed by the tape reading time--.---- This is true, of course,
only if continous read instructions, 3n m or 4n m~ are given. For the combina­
tion In 000 followed by 30 m, the lapse of time between the execution of the
left instruction and the right instruction will be of the order of 100 milli­
seconds, the time required to fill rI. From the standpoint of elapsed computer
time, it is desirable to do continous read instructions.

Where the processing to be done consists of bringing information into the computer
from several different tapes and in an order which is not known in advance
to the programmer, that is, in essentially a random fashion (unlike the example
of Section V where the order of reading is a block from tape 3 for each block
from tape 2), how is the programmer to make sure that the data will be brought
in at the right time and from the right tape?

For example, consider the problem basic to almost all commercial applications:

Information, consisting of a series of items containing a serial number, are
recorded on tape in ascending order by this serial number. Two such sets of
items (hereafter called A and B) are to be merged or interfiled so as to produce
one tape containing all the items present on both tapes, but arranged in as­
cending order. This is the problem pres~nted in Chapter 5 Section IV, adapted
for tape input and output.

The first block from each tape is brought inta the computer, and their first

-60-

items compared. The item with the smallest serial number is then transferred
to the first position of an output block. 1f t for example, the lowest item
in the comparison was from the A set of data, this item is placed in the out­
put block. The next A item of the block is compared with this first B item
and the smallest of these two items is sent to the second position of the out­
put block. When the output block is filled, that is, when sufficient items
have been transferred so that the output block contains 60 words, it is written
on the output tape. The next lowest item transferred will be into the first
output item position again. Soon, one of the input blocks will be exhausted,
all of its items having been transferred to the output block. Therefore, we
must bring in a new block of these item~ from tape. If we do the transfer
from tape storage to computer by the se~uence In 000 -30 m, the computer must
wait for approximately 100 milliseconds before it can execute the transfer from
rI to the memory. But, if rI already contained the right block of data, we
would be able to continue the processing by waiting only for the 5.5 millisecond
transfer from rI to the memory. Since the order in which information from the
two tapes is to be read is determined by the data on the tapes, it would seem
that the programmer cannot do continous read instructions for this kind of prob­
lem. Actually, there are several methods by which rI can be kept filled with
the proper block at the proper time, one of which, the simplest, will be de­
scribed.

This method, called "Preselection", will be illustrated by doing the two-tape
merge problem:

A tape on Uniservo 2 conta ins a series of -ten-word" A" items, arranged on tape'
in ascending order by a serial number which is the first word of each item. The
number of such items is unknown, but a Z sentinel follows the last item.

A similarly arranged set of "Bit items are recorded on a tape mounted on Uniservo
3. Interfile the items on the tapes, writing the merged data on tape 4.

Consider the possible appearance of the first six serial numbers of each tape
(one Block):

Tape 2
Serial Numbers

1025
1027
1106
2257
2450
2451

-61-

Tape 3
Serial Numbers

96
876

1541
1995
2630
3001

It is apparent, that in this merging process, the 6th A·item must appear
on the output tape before the sixth B item, as it has a lower item serial
number. But this means, since the items on each input tape are in ascending
order by their serial numbers, that the A block will be used up first.
Thus, rI should be filled with the next block from tape 2. This information
can be determined before any processing is done on the A and B items, thus
allowing one to give the instructions to fill rI as soon as the blocks are
in the computer.

The flow chart and coding for this problem are shown below. The notation
used is:

T2 Specifies the tape on Uniservo 2.

T~rI Indicates that the next block on tape 2 is read (forward
direction) into register I

r~A The block in rI becomes the block A.

A· 1 The ith item of the block A, i = 1, 2, •••• 6.

As~ The serial number of the ith A item.

Similar notation for T3, B, B., BSj, Ck , C, T4 , with C~T4 meaning the
block C is written Qn tape 4. J

-62-

rI -+- A T3~ rI I----~ r I --.... B

I------il~ B . ---"ws
J

'------HT 2 --+- r I

-63-

000 12 000 T2~rI
33 100 rl~A, T3~rI

001 30 200 rI~B
00 000

002 B 150
L 250

003 00 000
T 005 Transfer . sn so

control If A 6 >B 6
004 12 000 T2~rI

U 006
005 13 000

00 000 T3~rT
006 B 100

L 200
007 00 000

T 024 Transfer control if AS~.::> BSj
008 L 040

Q 033 Transfer control if AS~ = Z
009 y 100 Ai~WS (register Y)

B 041 .0(' 2
010 H 014

00 000
all z 300 WS~k

B 011
012 L 039

Q 022 } Transfer control if k = 6
013 A 041 k + l---+-k

H 011
014 Variable connector ar

015 B 018
L 042

016 00 000
Q 020 Transfer control if i = 6

017 A 041 }i + l __ i H 018
018 Y 100

Z 100
019 00 000

U 006
020 30 100 rl ~ A

B 043 1 • i
021 H 018

U 002
022 54 300 C~T

4
B 044 1 ... k

023 H all
u 014

024 Y 200 B~WS (register Y)
B 045 .~ 1

025 H 014-
U all

026 B 029
L 046

-64-

027 00 000
Q 031 Transfer control if j = 6

028 A 041 }j + 1 H 029 ~ j
029 y 200

Z 200
030 00 000

U 006
031 30 200 rI~B

B 047 }l • j
032 H 029

U 002
033 B all

H 035
034 y 040

00 000
-035 Z~Ck

036 5.4 300 1 Rewind wi th 82 000 interlock T
2

, T3, T4
037 83 000

84 000 Stop
038 90 000

000 000
039 Z 350

B 011
040 ZZZ ZZZ

ZZZ ZZZ
041 000 010

000 000
042 Y 150

Z 100
043 Y 100

Z 100
044 Z 300

B all
045 00 000

U 026
046 Y 250

Z 200
047 Y 200

Z 200

-65-

SECTION I

Introducti0!l

CHAPTER 7
REPRESENTATION OF
INFORMATION

The purpose of Chapters 8, 9, and 10 is to provide the reader with a basic under­
standing of the logical construction of general purpose digital computers. This
knowledge is important when questions concerning the evaluation of different com­
puters arise, and will also aid the reader in broadening his understanding of the
entire art.

I
SECTION: II

Binary Representation

We have been accustomed since our early grade school days to think about numbers
in the Arabic notation. In this notation, because of our years of usage, 1076,
is immediately significant to us as one thousand and seventy-six. And yet, the
Arabic numerals are not the only way of writing numbers. As an example, the
reader is not frequently exposed to the number MDCCCCLIIII = 1954 commonly used
as date marks in cornerstones or publications.

Implicitly understood in our writing the number 1076, is that it is a shor~cut
scheme for saying 1 x 1000 t 0 x 100 t 7 x 10 + 6x 1. Thus, the Arabic notation
is said to be a decimal or base 10 number system because one of the factors in
each product is a multiple, or power of ten:

1000
100
10

1

10 x 10 x 10
10 x 10
10
(Defined as)

In writing 1076, then, we save ourselves effort by dropping the various multiples
of ten and simply write their coefficients 1, 0, 7, 6, where the column in which
the coefficient appears indicates the appropriate ten's multiple. As many as ten
different coefficients are possible for any column: i.e. 0, 1, 2, 3, 4, 5, 6, 7,
8, or 9.

As mentioned in Chapter 1, and illustrated by the chapters following it, a number
is the basic element processed by a computer. If these numbers are expressed by
Arabic numerals, we must have devices which can represent anyone of the ten dig­
its 0, 1, ••• 9; that is, these devices must have ten stable states easily and
accurately distinguished from one another. This is an easy accomplishment if our
computer is mechanical in nature. One of the simplest of such device.s is the
notched wheel found in speedometers (more accurately, the odometer part) or adding
machines. The angular position of the wheel as referenced to a fixed mark repre­
sents one of the ten numerals. In fact, the Harvard (University) Mark 1 computer,
completed in 1944 and the first successful general purpose digital computer, is
probably the most complex application of the notched wheel. Unfortunately, me­
chanical number representation implies slow action and great bulk. Electronic
components give much faster operation and the Eniac computer built by Eckert,
Mauchly and others at the University of Pennsylvania in 1946 was the first

-66-

electronic digital computer. It repr~sented numbers decimally, but because
electronic gear (at the present state of the art) does not lend itself naturally
to decimal notation nearly 18,000 vacuum tubes were necessary to achieve a
computer of only 20-word storage.

Electronic elements lend themselves most naturally to a two-stable state scheme­
a vacuum tube either conducts current or it does not, a wire is at one voltage
level or it is not. Is it possible to represent numbers, then, using only two
numerals? It is, and this notation is called binary representation. Consider
the successive powers of two:

2° (Defined as) = 1
21 _ 2 = 2
22 _ 2 x 2 =4
23 = 2 x 2 x 2 = 8
24 = 2 x 2 x 2 x 2:: 16

etc.

It is possible to express any number as a sum of these powers of two, for example:

7 4 t 2 t 1 1 x 22 f- 1 x 21 f- 1 x 2°
1 = 1 x 23 2 21 f- x 2° 13 8 + 4 f- t 1 x 2 t- ° x 1

As in the decimal notation, we can save ourselves effort by simply writing down
the coefficients (which are either 1 or 0) and not the appropriate power of two
by which it is multiplied. Thus, in binary notation:

Decimal Number

7
13

116

Binary Equivalent

SECTION III

Binary Arithmetic

III
1101

1110100

The rules of binary addition are quite simple,

0 0 1 1
t 0 + 1 t 0 + 1

0 1 1 0 and 1 carry

The following examples will make evident the ordinary arithmetic behind these rules:

11 = 1 x 8 + 0 x 4 t 1 x 2 + 1 x 1
t 4 0 x 8 + 1 x 4 t 0 x 2 + o x 1

15 (It 0) x 8 + (0 t 1) x 4 t (1 + 0) x 2 + (1 t 0) x 1

1 x 8 + 1 x 4 ... 1 x 2 t 1 x 1

-67-

13 = 1 x 8 t 1 x 4 4- o x 2 + 1 x 1
~ 7 = 0 x 8 + ~ t ~ + .LA...1
20 (1 t 0) x 8 + (1 + 1) x 4 (0 + 1) x 2 + (1 + 1) x 1

Remembering

1 x 8

2 x 8
tI

1 x 16
1 x 16

the rules

11
+ 4

15

t

+

+ 0 x 8 + 1

for binary

1011
0100

1111

2 x 4 f-..
1 x 8
o x 4 +

x 4 + 0 x

addition,

2 + 0

these

1 x 2

2 x 2
tI

1 x 4
x 1

examples

13
.. 7

20

t 2 x 1

"
1 x 2
o x 1

are simply:

1101
= 0111

10100

Occasionally, we use the concept of complements in our ordinary decimal arith­
metic. For example, the old rule of casting out nines to check addition. The
binary complement of a number is obtained by subtracting that number from the
next highest power of two. The binary complement of 7 is 1, since 8 - 7 = 1.
The binary complement of a number expressed in binary notation is easy to obtain
by applying the following rule:

Replace all ones by zeros and all the
zeros by ones; then add 1 in the least
significant column.

Thus, 6 = 110, replacing ones by zeros and zeros by ones, we have 001 and adding
one, 010 = 2 = 8 - 6, the binary complement of 6.

Complements are used in the subtraction of binary numbers because of their sim­
plicity over direct subtraction. To illustrate subtraction using complements
consider the following case:

7 - 3 = 7 + (8 - 3) - 8 = 4

Two's complement of 3

Since we can obtain the two's complement in a simple manner, we can do sub­
tractions by performing additions if we can subtract the power of two used in
the complement from the sum obtained. This also is easily accomplished by
dropping the carry from the left-most column.

7 III
-...1.... 101

4 = 100
(Two's complement of 3)
(Dropping carry from left)

-68-

15
6

9

1111
1010

1001

(Two's complement of 6 is 0110)

(Dropping carry from left)

Multiplication of numbers expressed in binary notation is extremely simple.
The multiplication table is:

a
a
a

For example:
7
3

21

1
a
a

a
1

a

III
all

III
III

000

1
1

1

10101 = 21

Note, that at every step we are performing addition only. A means for writing
each of the partial products one column to the left at each step is the only
extra feature required for the adder to perform multiplication.

The simplest way of performing division is t.O use the long division method
taught in the lower grades. In this method, the divisor is subtracted repeat­
edly from the dividend, a ~ne being added to the quotient (which is set initially
to zero) for each subtraction. The following example will illustrate the method:

In Decimal Notation

1
6 ;T8

6

12

2
6 ;T8

6
12

6

3

6 18
6

12
6
6
a

In

-69-

Binary Notation

00110 / 10010

00001
00110 I 10010

00110

01100

00010
00110 / 10010

00110
01100
00110

0001J.
00110 / 10010

00110
--
01100
00110
--'
00110
00000

In summary then, all the arithmetic operations, addition, subtraction, multi­
plication, and division, can be performed on numbers expressed in binary no­
tation provided we can construct an adder, complementer, and shift mechanism.
In Chapter 10 the construction of these devices will be discussed.

SECTION IV

Coded Decimal Notation

The binary method of representing numbers was described in Section 11. This
is the almost universal representation used in large computers. This binary
notation may be used in two forms. In the first, called "pure binary," the
ones and zeros making up a number have a place value that represents some
power of two. For example, in the binary number 10110, the left-most one has
the value 24 or 16. The other method is called the "coded decimal" notation.
Any number between 0 and 9 may be represented by a minimum of four binary col­
umns as the following table shows.

Decimal Digit

o
1
2
3
4
5
6
7
8
9

Binary Equivalent

0000
0001
0010
6011
0100
0101
0110
0111
1000
1001

Now consider the decimal number 147. If this number were expressed in binary
notation, it would appear as 10010011. However, we could represent each of the
individual decimal digits in binary fashion and yet retain their decimal value
as regards position. Thus:

0001
1

0100
4

0111
7

This coded decimal notation is more convenient than pure binary to the user of a
computer, primarily because we can read the numbers easily. With very little
practice one can recognize the coded decimal number 0010 1000 0111 0110 as being
2876, but the same amount of practice does not yield equal results for its pure
binary form 101100111100.

Of course, we do not normally "look" at numbers in either binary or coded decimal
form. But when the input data is to be prepared for a computer, we would prefer
not to have to convert decimal numbers to binary form acceptable to the computer,
nor should we like to read the output of our computer expressed binary-wise.

-70-

For computers operating in coded decimal form, information may be introduced to
or removed from the computer in decimal form directly. With pure binary com­
puters, input and output data must be converted through a program to decimal
form. Because of this time consuming conversion data processing computers use
coded decimal notation.

Many modifications of the coded decimal notation described above are in common
use. These modifications are designed to impart certain desirable arithmetic
properties to the coded numbers. Several of these will be described.

In Univac, the excess-3 coded decimal is used. Here, a decimal digit is repre­
sented in the binary scheme by a numbe:¢ larger by 3. Thus, 6 would be repre­
sented in coded decimal form by 6 t 3 ~ 9 = 1001. This modification has two
desirable properties: Ease in obtaining the nine's complement (replace one's
by zeros, zeros by one's-nine's complements of 6 = 9-6 = 3 = 0110); and the
sum of two XS-3 numbers produce a binary carry when their decimal sum produces
carry.

The so-called 2*421 scheme also has these same two features of XS-3. In this
scheme the numbers below 5 are in normal binary notation, but 5 and above are
coded as having a 2* plus the appropriate 421 code.

The bi-quinary method uses seven binary columns per decimal digit. Its feature
is that only two binary one's are present for any digit.

The following table will illustrate these representations:

Decimal Coded Decimal Equivalent

Straight XS-3 2* 421 Bi-quinary

a 0000 0011 0000 01 00001
1 0001 0100 0001 01 00010
2 0010 0101 0010 01 00100
3 0011 0110 0011 01 01000
4 0100 0111 0100 01 10000
5 0101 1000 1011 10 00001
6 0110 1001 1100 10 00010
7 0111 1010 1101 10 00100
8 1000 1011 1110 10 01000
9 1001 1100 1111 10 10000

SECTION V

AIQhabetic ReQresentation and Checking Codes

Although numbers are the basic processing element in computers, the earlier
chapters have made evident the desirability of permitting alphabetic charac­
ters and punctuation symbols to be intelligible to the computer. This may
be accomplished in several ways with computers using a coded decimal notation.

-71-

For a full alpha-numerical representation, a character (= digit) can have any
one of 36 possible values: The numbers 0 through 9 or the letters A through Z.
By adding the minimum of two additional binary columns to our four bit coded
decimal number we can represent 64 different symbols, giving an extra 28 codes
for punctuation and other symbols. In the Univac, for example, the letter A
is represented by the XS-3 code for one plus a 01 "zone" code. Other examples
are shown in the table.

Character

3
9
D
P
T

Binary Representation

000110
001100
010111
101010
110110

\

Some computers represent alpha-numeric quantities by means of paired digits or
paired words, special commands being provided for operations with the alpha­
numeric "words."

In either scheme, two decimal digits are used to represent the full alpha­
numeric gamut:

Character

o
3
9
B
E
R

Coded Representation

00
03
09
11
14
26

In one such computer the digits within a word are paired off, a symbol in the
sign position being sufficient to tell the computer the number being acted upon
is a coded alpha-numeric quantity. Another uses two words whose addresses are
related. The same numbered columns in the two words being associated to form
the alpha-numeric character.

The tendency in new computers is to provide automatic safeguards against an er­
ror, produced by equipment failure, to propagate itself undetected. Indeed, the
principles of digital computation demands complete accuracy if the results of a
calculation run are to be meaningful. This is a point often neglected by pros­
pective computer users: They fail to realize that an error may occur in the
control portion of the device as well as the arithmetic portion.

One common checking means is to produce a certain amount of redundancy in the
coded number representation. One example already described is the bi-quinary
coded decimal notation. Here, a correct character requires a single binary
one in the "Bi" part and a single one in the "Quinary" part. Loss or gain of
a one in either part represents an illegal character which can be detected by
the computer.

-72-

In the Univac, an extra binary column is attached to each character. This
column is called the check pulse and is assigned in such a manner that an
odd number of binary one's is present for each valid character. As the
characters are processed, their binary one's are counted. If any even count
results, it means a one has been picked up or lost and the computer registers
an error and stops. Thus, the full Univac coded decimal representation of a
character is comprised of seven binary columns.

x xx XXXX
1~ ____ XS-3 numeric part

~------~----zone pulses

____________________ check pulse

As an example the zero has this binary code

1000011

The P

0101010

-73-

SECTION I

Introduction

CHAPTER 8
STORAGE OF
INFORMATION

In Chapter 7 a way was developed whereby the numbers and alphabetic characters
involved in data processing problems could be represented by a simple pattern
of ones and zeros (the binary code). Further, we saw that all of our usual
arithmetic manipulations could be performed on numbers expressed in this binary
code. As was pointed out in that chapter, the binary notation is in common use
because electronic gear is easily adapted to this two-valued method of represen­
tation. In this chapter we shall briefly describe the various techniques used
in storing or "memorizing" such binary information in computers. Storage of
binary information requires bi-stable devices. By this, we mean devices ex­
hibiting two, easily-distinguishable states and which when placed in anyone
of the states will remain in that state as long as desired.

Before describing the storage elements now in use, it is necessary to recognize
that we can store information in two basic ways, either in static or dynamic
mode.

In static storage the information to be stored is distributed throughout space.
While in dynamic storage, this information is distributed in time. Perfect, a~
yet homely, examples of each type of storage are:

For static storage, the printed page. Here, all of the data
stored (in the form of words) is available to us at the same
instant of time. We need only direct our eye to the desired
spot on the page to select any portion of the information.

For dynamic storage, we need go no further than spoken con­
versation. Here, we can obtain all of the information (in
the form of sounds) by waiting in time for our informant to
finish speaking.

Computers are often described as being serial or parallel in operation. By
serial operation it is meant that the binary digits comprising the computer
word are extracted from the memory, manipulated, and placed back into the
memory sequentially in time. Thus, in serial mode all digits pass through
essentially one set of circuits. This is economic of circuitry. While in
parallel operation, all binary bits of a word are handled simultaneously in
time. This requires considerable increase in circuitry, but other things
being equal, it is the fastest in operation. These two modes of operation
are in the main a result of the type of memory used. Static storage lends
itself naturally to parallel operation and dynamic storage to serial opera­
tion. It should be noted, however, that there are some exceptions to this
statement.

-74-

SECTION 11

Static storage Devices

Relay

One of the earliest, and probably simplest, electronic devices used in computer
memories is the relay. As shown in Figure 1, this device consists of a steel
arm sprung to avoid electrical contact with a read-out wire. The arm may be
brought into contact with the wire by applying a current through the electro­
magnet which draws the arm downwards. A latch mechanism can hold the arm down
indefinitely if desired, and then the relay does not require continous current
flow through the magnet coils. The two stable states of the relay are contact,
placing a current on the read-out wire (binary 1); or no contact, placing no
current on the wire (binary 0). The relay can be made to change state reliably
in from 1 to 10 milliseconds. Relays are not in common use now as memory ele­
ments since they are relatively slow, bulky, and quite expensive. Several
early computers using them as memory elements are still in operation.

To voltage
source

. /
o-----/O------~

Electromagnet

Magnetic Core

Read-out wire

Figure 1

The core may be thought of as being composed of elementary bar magnets oriented
in one of two directions parallel to its axis.

or

DOD DDD
DDDDDD
DODD o o -------------------------------------

-75-

In practise the core is constructd in the form of a torus with three coils
wound about it: The input winding, output winding and a probe winding.

Probe

Input -----.. ~-_O..;,;.utput

~,

Figure 2

The core has two stable states and these may be considered as representing binary
one and binary zero. To read into a core, a pulse is applied to the input coil.
The direction of the current will determine which state the coil will assume.
Vfuen the current is removed

Magnetic Field

Input

Figure 3A Figure 3B

the Core will remain in the state shown above.

To read out of a core, it is necessary to apply a pulse to the probe winding in
the direction to produce a bi~ary one. If the core is already in the one state,
the output winding will detect no change of field. If however, the core is in a
zerO state, the change in the magnetic field will cause a current to flow in the
output coil as shown in Figure 4.

Figure 4

Note however, that if a core is probed, it will always be left in the "one"
state irrespective of its initial reading. It is therefore necessary to regen­
erate the state after reading. This can be accomplished as follows:

-76-

Inpu~~ ____ ~

Figure 5

A pulse in the output (representing a zsro) is fed, after a suitable delay, to
the input winding with the Correct phasing to set the core in the zero state.
If the core was in the "one" state initially, then no change will be produced
by the probe pulse; hence, no pulse will appear at the output coil. Effective
access time to the information stored in a core is from 5-10 microseconds.

-77-

Cathode~ Tube

The most common employment of the cathode ray tube, CRT, as a binary memory
device is in the Williams type storage. The CRT is basically a small (5-7")
television picture tube •

..-phosphor
-scre~n Deflection plates:

- - - ____ .. I' -.- - -- --D -O-- ---- ---
output
~

collector

\,j beam formIng
"'f plates

Figure 1

As shown in Figure 1, the CRT contains an electron source which is a special
metal filament that emits electrons when heated. As the electrons boil out
of the filament, they are formed into a narrow beam (pencil of electrons) by
the beam forming plates. This beam may Ithen be made to strike any desired
spot on the phosphor screen by suitable_ vo~tages on the horizon"tal and ver­
tical deflection plates. In the television set we are interested in the
light emitted when the electron beam strikes the phosper, but when using
the CRT as a storage device we concern ourselves with the voltage produced
between the spot on the screen hit by the beam and a collector screen placed
just in front of the tube.

When a binary one is to be recorded, the deflection plates are charged to
that potential which will direct the electron beam to the desired spot on
the screen. The beam is then turned on and sharply focused, placing a dot
on the screen. When a zero is recorded, the beam is defocused, putting a
blurred spot on the screen. The electronic theory of CRT storage is too in­
volved for this level of discussion, but for our purposes, however, it suffices
to say that these two recorded patterns will produce different output voltages
between the screen and collector when they are read by directing a defocused
beam at the spot.

Since reading is accomplished by recording a zero on the spot, the informa­
tion read must be rerecorded on the tube as we saw with the magnetic core.

-78-

Within a few tenths of a second a spot on the tube will begin to disappear
and, thus, the data stored on a tube must be regenerated by reading and re­
recording each spot at regular intervals.

It is common practice to store approximately 1000 binary digits per tube.
Effective access time to any digit is of the order of 5-10 microseconds.

SECTION III

Dynamic Storage Devices

Magneti c Drum

The following simple experiment is the basis of magnetic drum or magnetic
tape storage. A voltmeter is connected to the ends of a coil of wire.
When a magnet with north-south poles oriented along the axis of the coil is
moved rapidly along this axis, the needle of the voltmeter is deflected in­
dicating that a current has been generated in the coil. If, however, the
magnet is oriented at right angles to the coil, no deflection of the needle
is observed. We can speak of the magnet orientation in Figure lA as repre­
senting a binary one, while the orientation of lB represents a binary zero.
A succession of

A B

Figure 1

magnetic "spots" in both orientations passing under a coil then will pro­
duce a "train" of voltage variations representing the successive orienta­
tions of the magnetic spots. Information may be recorded by passing a mag­
netizable material under this same coil while .. a voltage train representing
the binary information is fed,t.nto the coil. A small erase coi 1, one whose
axis is oriented in the direction of the magnet of Figure IB, is placed in
front of the read-write coil and energized only when writing is to be done.
This provides the "binary zero" spots.

The storage unit, in practice, consists of an aluminum cylinder coated with
iron oxide and rotated by an electric motor past a series of read-write

-79-

coils. Each coil may then read or write information on the cylindrical sec­
tion of the drum immediately under it. Any portion of a drum section is
available for reading or writing within one drum revolution. Thus, on the
average, an arbitrary spot on a drum section is under the read-write coil
and is available for reading or writing within one-half drum revolution.
This is called the access time of the drum and is usually in the order of
8-20 milliseconds. The magnetic spots have been recorded at densities as
high as 100 binary bits per square inch, and, thus, the magnetic drum is a
very cheap memory unit. It does suffer from relatively slow access times,
but the drum (as well as the acoustic delay line) can have this access time
materially reduced by planning a program in such a way that when information
is desired from the drum or is to be written upon it, the proper area of the
section is just coming under the read-write coil. This is called minimum
latency coding.

Acoustic Delay Line

Consider the situation pictures in Figure 1. When the switch is closed,
point A has a voltage level which might represent a binary one, while if
the switch is left open A can be said to be at zero voltage level repre­
senting binary zero.

switch

j/' load

Figure 1

If we operate the switch not oftener than, say, once per second and plot
the voltages of A, we would get the following configuration if the number
13 were represented:

- I • .
"" "7 b

,
5

Time in Seconds

-80-

1

1

4
J
3

1 0

2
Figure 2

I

1

4-Voltage
A

Thus, we can represent binary information by allowing only two possible volt­
ages on a wire. The minimum time between consecutive switch settings fixes
the duration of the voltage "pulses" on the line. We call the duration of a
pulse the pulse time. In the above case, since the switch setting may be
changed once per second, the voltage on the line represents one binary digit
for one second. The pulse time is then 1 second. The pulse repetition rate
or frequency is the number of binary digits or pulses which can be represented
in one second.

Now, suppose we have some kind of "black box" between line A and B as shown
in Figure 3 which prevents the voltage on line A from appearing on line B
for four seconds. We can plot the voltages of each line as shown in Figure 4.
The swi tch on line A is operated once per second to represen't 13.

E 1'1' t-I __ ~"""----I14 ~:~~~d 1 -----l-
A

- I I I

"
, , I

8 7 6

Ime in Seconds
1 1 0

- I ,
8 7 6 5

Time in Seconds

B

1

I
I

5 4

1

4

Figure 3

1 a 1

I

•
3 2 1

I I I
T , ,
3 2 1

Figure 4

+- Vol tage
on A

~ Voltage
on B

At exactly second 4, if we disconnect the switch and battery from line A and
connect A to B, as shown in Figure 5, we have a delay line. Now the voltage

~ 4 Second -,
Delay

A B

-81- Figure 5

at point A will always be the same as point B. But note that during second 5,
line B will have a voltage which existed on line A during second 1; thus,
during second 9, line B will again have this same voltage since it is being re­
introduced to the four-second delay. This same observation holds for the volt­
ages at B during seconds 6, 7, and 8. They are the same as existed at A during
seconds 2, 3, and 4. Further, these same voltages will reappear at B in this
same order every four seconds. We can think of this voltage train "circulating"
around the closed loop. The presence of the delay preventing the pulses from
mixing with one another and losing their identity. Read-out is accomplished by
tapping the wire at B. Read-in is somewhat more involved. Through the use of
a gate (Chapter 9) placed between A and B, the information emerging from the de­
lay is prevented from re-entering. In its place, the new information is fed in.
Of course, it is necessary to put amplifying and pulse shaping devices at the
juncture of A and B if the circulation is to be maintained for many cycles.

Next, let us consider the manner by which the 4 second delay in transmitting
voltages between A and B is achieved. There are several means for obtaining de­
lays in the transmission of voltages by direct electrical or electromagnetic de­
vices, but usually these methods cannot produce the 40-400~ s delays required.
The method commonly employed to secure this delay is to convert the electric
pulses (the voltage train) into sound pulses. Since sound travels more slowly
than electricity, it is possible to obtain any desired delay without bulky equip­
ment. After the sound pulses have been sufficiently delayed, they are reconverted
to electrical pulses, amplified and shaped and re~ntroduced to the delay.

The electrical pulses are converted into sound pulses through piezo-electric
crystals. This is the same basic type of crystal used in the modern phonograph
which converts the record grooves into electrical signals through the vibrations
of a needle tracking the grooves. The Crystal is cut into the form of a thin slab.
When an alternating voltage is applied to two faces of the crystal, it vibrates.
Contrariwise, when the crystal is vibrated, an alternating voltage is produced on
the crystal faces. Through an electrical process familiar in radio broadcasting,
the pulse train is converted to an alternating voltage which in turn is applied
to the crystal faces. The alternating voltages representing binary ones then
cause the crystal to vibrate and send sound wav~ into a mercury column. Mercury
is often used as the medium in which the sound wav~travel because of power and
echo considerations. As the soundwaves reach the end of the mercury column, they
vibrate a second crystal which then produces an alternating voltage between its
faces which is a replica of the input voltages. Figure 6 is a schematic diagram
of the process. The access time for information stored in an acoustic delay
line depends to a large extent on the number of words stored per line, but
typical access times are about 200~ s.

-82-

SECTION 1

Introduction

CHAPTER 9
MANIPULATION OF
INFORMATION

The purpose of this chapter is to provide an understanding of how elementary
electronic building blocks can be used to perform the data manipulation de­
scribed in Chapter 7. In particuldr, we have seen that if we can perform
addition, shifting and complementing, we are able to add, subtract, multiply
and divide numbers expressed in binary form. We shall describe the charac­
teristics of gates, buffers, and flip-flops and show how these units may be
interconnected to form adders, complementers, and comparators. Shifting is
a somewhat more involved topic and will not be discussed here.* For the sake
of simplicity we shall consider dynamic information only; that is, information
will be in the form of a voltage train--a positive voltage pulse for a binary
one and a zero voltage pulse for a binary zero. Vfuen represented in this fash­
ion, the binary number 110101 will appear as shown in Figure 1, the least sig­
nificant binary columns appearing first in time.

1 1 0 1

.....ttL
~

0 1

~~

~ Voltage
of line A

Figure 1

When the voltage of a line is at the binary one level, we speak of the line as
carrying a signal.

*See Chapter 9, Univac Programming Manual I

-83-

SECTION II

The Logical Building Blocks

The first logical element to be discussed is th~ gate. Gates form the principal
means of switching information from one path to another in computers. As their
name indicates, gates permit or prohibit the passage of pulses or signals from
one point to another. Gates are indicated by the following symbol:

S

I 1-----' ---f2

The signal or information train being gated, S, appearE on the left. The signals
controlling the gate are indicated as 1, 2, and 3. In order for the voltage
train, S, to pass through gate G, signals 1 and 2 must be present and signal 3
must be absent. Any other arrangement of signals is sufficient to prohibit S
from passing through the gate. Signal 3 is often called an inhibiting signal
(note the small circle at the point of connection with the gate which indicates
inhibition), while signals I and 2 are called permissive signals (without the
circle connection). The signals within the large circles always imply the exist­
ence of some other devices which generates them. Typically, another gate can gen­
erate such signals. In the example shown below, signal S can pass through Gl if
G2 develops no signal.

-84-

G2 can develop a signal if 1 and 2 are present and 3 absent. Gates are some­
times called ttand" circuits because they require the presence of this AND this
AND this signal in order to operate. We speak of gates being "open" when all
permissive signals are present and all inhibitory signals absent. Gates are
said to be "alerted" when some of the required signals are present. It is im­
portant to realize that every gate passes ONE signal (or information train)
under the influence of OTHER signals. The output of a closed gate is binary
zero.

The converse of gating is buffing. The buffer is indicated by a symbol ~
A typical buffing circuit is shown as:

Sl----------~.~~~--------~---I

w-----------------~ __ o

S2---------------~ B~------------~

The purpose of buffing is to combine several sources into a single line with­
out interaction among the sources. Thus, signal Sl cannot pass into S2' but
only through its buffer B to the output O. Either signal Sl or S2 can pass
into the output O. For this reason, the buffing circuit is sometimes called an
"or" circuit.

Gating signals can be applied through buffers. Thus:

S--------------~

1 2

Signal 1 or 2 may open the gate, allowing S to pass through. At least one sig­
nal must be present'to open the gate: when both signals are present, no new sit­
uation has been created.

It is not necessary to show buffing on the logical diagrams if it is understood
that such elements exist to prevent back circuits. It will be assumed that no
signal can be passed in the reverse direction of the arrows. Thus, the above
figure can be redrawn as

-85-

S ------------~M

In Chapter 8 a number of binary memory devices were discussed. An addition to
this list is the flip-flop or trigger pair. Although the flip-flop is seldom
used for large memories, it is an extremely versatile memory unit for the con­
trol and arithmetic units of a computer. It is indicated in our logical dia­
grams by the symbol

... S
FF

.. R • ..

It is a memory for one binary digit: It has two stable states, one representing
zero and the other representing one. These two states are indicated by S (set)
and R (reset). Its use is sufficiently broad that the binary notation is not
always appropriate. For example, in a binary computer it can store the sign
digit; either a t (which could be a one) or a - (which would be a zero). The
flip-flop is also useful for converting from a pulse to a static signal. For ex­
ample, one pulse may indicate when a static signal is to start and another pulse
when it is to stop. The flip-flop can be used for generating such a static sig­
nal. The duration of the signal is fixed by the interval between pulses.

When a pulse is applied to the "set" input, the flip-flop is said to b(".s"et; and·
when a pulse is applied to the "reset" input, the flip-flop is said to...;..be reset.

If the flip-flop is in the "set" state, the set output line will be at the sig­
nal level and the reset output line at the no signal level. The opposite is true
for the "reset" condition. In some logical circuits, we shall be interested in
only one of the outputs. In this case, only the necessary output will be shown.

-86-

SECTION III

Simple Logical Circuits

The circuit shown below is called a half-adder. This device will add two
binary quantities to produce a proper sum and carry:

011

+ 0 + 0 .. 1
;-

o I o and 1 carry

The two inputs to the half-adder are called the augend and addend. If no
input pulses are present, neither Gl nor G2 are open and thus the sum and
carry lines are at the binary zero voltage level. If one input is present,
G1 is still closed; but G2 is open giving a "one" sum and "zero" carry.
When both inputs are present

Augend

Addend

Carry

Gl is open giving a "one" carry and also inhibiting G2 so that a zero is
on the sum line.

By connecting a 1 pulse delay to two half-adders, a full binary adder results:

Augend

Augend

Half­
dder

-87-

-J--~- Sum

dder

Carry

Binary Adder

The one pulse delay, Dl delays the carry from either half-adder until the
next binary column is available.

The half-adder has several other important uses besides forming half of a
full b1nary adder. By letting one input to the half-adder consist of a
string of ones, the sum output will be the binary complement minus one of
the other input. This is easily seen in the following -example:

half­
adder,

0010
I-~~---~. sum

By using a half-adder and flip-flop connected as shown below, we can de­
termine whether two quantities, A and 8, are identical. Initially, the
flip-flop is

A - - S ,.
-- ..

half- - --flip-
adder flop

- R r
B A=B

reset. As A and B are fed into the half-adder, pulses will appear on the
sum line only if A and B differ in at least one column. Thus, if the flip­
flop remains reset after the last binary columns of A and B have passed
through HA, a signal is on the reset line indicating A = B. If the inputs
differed, a sum pulse would have set FF indicating A ~ B.

A magnitude comparator is shown below. The flip-flop is initially reset.
Note

A--------------~

B-----------4~~~

-88 ...

flip­
flop

L.
B A

that if A and B have an identical binary column, both G
l

and G are closed
and the flip-flop remains in its then current state. But if tte inputs dif­
fer, either Gl or G2 will be open (depending on which input has the binary
one) and thus a pulse will be sent to either the set or reset side of the FF.
After the last binary columns of the inputs have been applied to the gates,
the flip-flop will be reset if A'= B or set if A> B.

-89-

APPENDIX

SOLUTION TO STUDENT

EXERCISES

CHAPTER ~ SECTION II

Problem 1

000 B 100
A 101

001 A 102
A 103

002 A 104
H 105 Sum of Receipts ~Memory

003 50 105 Print Sum
90 000 Stop

Problem 2

000 B 102
A 103

001 H 104 C .. D ~Memory

A 104
002 A 104 3(C t D) ~!['A

S 101 3(C t D) - B "rA
003 A 100

A 100 2A - B t 3(C t D) ~ ,. rA
004 H 104

50 104
005 90 000

CHAPTER ~ SECTION III

Problem 1

~

A x B = - 1\ xx xxx xxx xxx
+

A-;B=- 1\ xx xxx xxx xxx

Problem 2

...
A x B = - xx xxx xxx x xx

1\

A -; B = .. xx xxx xxx x"xx

Problem 3

A x B = + xx xxx xxx xx,.. x

A~B=
~ - xx x) x xxx xxx

-1-

Cl-lAPTER ~ SECTION IV

Problem !.

000 B 100
L 101

001 00 000
T 004 Transfe~ Control if A> B

002 L 102
T 005 Transfer Control if A> C

003 50 100 Print A
90 000 Stop

004 B 102
T 006 Transfer Control if C > B

005 50 102 Print C
90 000 Stop

006 50 101 Print B
90 000 Stop

Problem ~

000 B 101
L 009

001 00 000
Q 008 } Transfer Control if BD = 0

002 A 104 BC ... ED ---... BC
H 104

003 L 104
B i.02

004 00 000
T 008 } Transfer Control if BS > BC

005 B 104 BC - BS'~BC
S 102

006 H 104
50 100 Print BN

007 50 102 Print BS
50 103 Print BA

008 90 000 Stop

009 000 000
000 000

CHAPTER ~ SECTION Ill-

Problem 1

CHAPTER ~ SECTION II I

Problem ~

BC-BS~ BCI--.....

~ BN ~ SCP t----...i!.~1 BA -+SCP

Problem ~

Q.P -+ WS WS -D • v'E~ WS C.ws -+SCP

000 L 100 Q~rL

M 101
001 H 099 Q.P ~WS

B 100 Q ~rA

002 L 010
T 006 Transfer Control if Q > 50

003 L 099 W~rL

M 104
004 H 099

50 099 C. WS ----.. SCP
005 50 103 N ~ SCP

90 000
006 L 099 WS ---. rL

M 102 D.WS p; rA
007 H 098

B 099
008 S 098

H 099 WS-D.WS~WS

009 00 000
U 003

010 000 500
000 000

-3-

CHAPTER ~ SECTION 11

Problem 1

i = 1

\-~ M. -So --+- MI·
I I i+l ~i

000 B 100

J s 200 M. - S·~M·
I 1 1

001 H 100
B 000

002 L 007
Q 006 Transfer Control if i - 100 -

003 A 008
H 000

} 004 B 001 i +l~i
A 009

005 H 001
U 000

006 90 000

007 B 199
S 299

008 000 001
000 001

009 000 001
000 000

-4-

Problem ~

000

OCI

002

003

004

005

006

007

008

B

00

A

B

H

50

i = 1
S = 0

100

000

007

000

000

007

ZZZ zzz
000 000

000 001

CHAPTER ~ SECTION 11

L 006

Q 005 Transfer Control if Ri= Z

H 007 j S .. Hi---S

A 008 i .. 1 • i

U 000
Print S

90 000 Stop

zzz ZZZ

000 000 J -S

000 000

-5-

CHAPTER ~ SECTION II

Problem 2

i= 1

P - Di :15 +--~ P - Dr"" P

<

000 B 100
L 009

001 H 098
Q 008 Transfer Control if D. = Z

1
002 B 099

S 098
003 L 010

> T 007 Transfer Control if P - D· - 15 1
004 50 098

00 000 Print Di
005 B 000

A all i +l--+ooi
006 H 000

U 000
007 H 099 P - D.~ P

1
U 005

008 50 099 Print P
90 000 Stop

009 'Z22 ZZZ
ZZZ ZZZ

010 000 000
001 499

all 000 001
000 000

-6-

i = 1

T 0

i
I~

30

T) SCP

24

T+l~T'·.~

i+ 1-+ i

-7-

Problem I
Chapter V
Section III

C. = ith census item
1

The supers~ripts repre­
sent the various item
fields. For example
C~ = the state code:of
the ith item.

CHAPTER ~ SECTION III

Problem 1

000 B 100
L 016

001 00 000
Q 008 Transfer Control if Cr = 24, cr = 1313

002 B 005
L 017

003 00 000
Q 007 Transfer Control if i = 30

004 A 018
H 005 } 005 V 100 i + 1 ~i

W 100
006 00 000

U 000
007 50 019 Print T

90 000 STOP
008 B 101

L 020
009 00 000

C~ ;::,. T all Transfer Control if 20
1

010 00 000
U 002

all 03 000
L 021

012 00 000 cr = S,~ = w,cr. = w Q 014 Transfer Control if
013 00 000

} T + 1
U 002

014 B 019)" T
A 022

015 H 019
U 002

016 024 000
1:31 300

017 V 158
W 100

018 000 002

} 000 000
019 000 000 T

000 000
020 002 020

000 000
021 OOS OWO

ooW 000
022 000 000

000 001

-8-

i : 1

Sl ,S2'·· .S8= a

Tl ~rI

>

i 30

rI -+ A

Sl'··S~SCP

i+l---+i

-9-

Problem I
Chapter VI
Section IV

A = A block of meter
items from Tape 1

Ai= ith meter item of
Block A

AfN = account number of
A.

C 1
Ai = consumption of A.

1

CHAPTER 6
Problem 1 SECTION IV

000 11 000 Tl)I rI
00 000

001 31 100 rI ~ A,T
l :. rI

00 000
002 B 100

L 044
003 00 000

Q 027 Transfer Control if A?n = Z
004 B 101 1

L 045
005 00 000

if AI > T 016 Transfer Control 100
006 A 033 J S:J • AI --- S 1 H 033
007 B 034 J S2 + 1 ___ S2 A 048
008 H 034

00 000
009 B 012

L 049
010 00 000

Q 014 Transfer Control if i = 30
011 A 050

} i + 1 H 012 • i
012 V 100

W 100
013 00 000

U 002
014 B 051 J1 • i

H 012
015 00 000

U 001
016 L 046

T 020 Transfer Control if AC? > 500
1

017 A 036

] S3 •
H 036 c

Ai~S3
018 B 037

A 048
] S4 •

l~S

019 H 037 4

U 009
020 L 047

T 024 Transfer Control ·f A~"> 1000 1 1 .

021 A 039 J S5 t
c

H 039 Ai --+- S5
022 B 040

A 048] S6" 1~S6
023 H 040

U 009
024 A 042

] S7 +
c

H 042 Ai ~ S7
025 B 043

} S8 + A 048 1 ,. S8
026 H 043

U 009
027 50 032

B 027
-10-

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

L 052

A 053

00 000

90 000

rAll. 01-

000 000

MO 000

rilL 01-

000 000

flAO 000

rA5 01-

000 000

MO 000

rIO 01-

000 000

MO 000

ZZ2 ZZZ

000 000

000 000

000 000

000 000

VOO 158

000 002

VOO 100

500 043

000 001

Q 031 Print Totals

H 027

U 027
Stop

00 000

Ala ellA

000 000

000 000

~50 OM

000 000

000 000

100 OM.
000 000

000 000

aVE RM

000 000

000 000

ZZZ zzz

000 100

000 500

001 000

000 001

WOO 100

000 000

WOO 100

BOO 027

000 000

-11-

DENOMINATED PAYROLL

DEMONSTRATION

Operating Instruction:

1. Set SC printer on normal, right margin to extreme right. Paper size
should permit typing at least 62 characters.

2. Mount instruction tape on Uniservo 1, and do initial read for that
servo.

3.

4.

5.

6.

7.

000

001

002

003

004

005

006

007

008

009

Routine will print headings and stop on a type-in.

Type in pay to be denominated in the following format:
000 XXX~XXO 000

(assumed decimal point)

Routine will print appropriate denominations and stop on the type-in
of Step 3. Type in next pay to be denominated.

When the last pay is to be denominated, set break point 1 and then
type in the last pay.

This pay will be denominated and computer will stop on a Ql. Force
no transfer. Computer will print a total heading,the total pay, and
the total number of denominated bills. Tape 1 will rewind and computer
will stop.

11 000
30 060

50 040
50 041

50 042 Heading ----+- SCP
50 043 .

50 044
50 045

10 100
B 101

000 XXX 1\ XXO 000 ~ p

A 100 S + p)r S
C 101

B 100
L 046

Q 000
T 017

B 102
Transfer Control if P ? Di
W) rA

00 000
R 039

U 033 Transfer control to edit Wand print

-12-

010 00 000
B 102~ T. + W ~ T.

all t 110
1 1

C 1l~
012 C 102 Zero It'W

B 006
013 L 056

Q 021 Transfer Control if i = 10
014 A 057

C 006)
015 B 011 i t 1 ~ i

A 058
016 C 011

U 006
017 J 103

S 103 P - D.----"P
1

018 C 100
B 102

019 A 057 W • 1 .. W
C 102

020 00 000
U 006

021 00 000
Ql 030 Force no transfer to print totals

022 50 059

:} 50 Heading ~or totals, S, • ~ SCP
023 50 067

000
024 B 110

00 000 Ti rA
025 R 039

U 033 Transfer Control to edit Ti and print
026 B 024

L 060
027 00 000

Q 066} Transfer Control if i = 10
028 A 058 i t 1 "i

C 024
029 00 000

U 024
030 B 061

C ooj 1 .i
031 B 062

C 01
032 50 063. rttt ttt ttt ttt --->- scp

U 004
033 H 104 rA .. WS

K 000
034 B 064

00 000

-13-

035 .1 000
T 035

036 C 105
F 105

037 B 065 t././. t.t.t. /. AA ItA - --+- rA
E 104

038 C 104 Edi ted number ~ SCP

Eoo 50 104
039 000

o~ 000 Preset return
040 ~ N>A

yM, till1
041 A/J2 o.,A

Ala .M
042 /s:J. J)J)A

2.ll. A&
043 .M .50

AA. 25A
044 4.1 OM

• 05 M .
045 alp(P(j(f

f/'/' t.t.f
046 000 020

000 000
047 000 010

000 000
048 000 005

000 000
049 000 002

000 000
050 000 001

000 000 Denominations
051 000 000

500 000
052 000 000

250 000
053 000 000

100 000
054 000 000

050 000
055 000 000

010 000
056 BOO 100

LOa 055
057 000 000

000 001
058 000 001

000 001
059 P(P(T OTA

LS- -p(p(

-14-

060 BOO 119
000 000

061 BOO 100
LOa 046

062 AOO 110
coo 110

063 rltt ttt
ttt ttt

064 1--

065 ttt ttt
tM M-

066 81 000 Stop
90 000

067 .tt ttt
ttt ttt

Fill with zeros

-15-

i = 1 Ti :()
W=O

ALL i S=O

J---~'" HEAD ING -+sCP sCP ~ P

W+ 1 --a. W

Force no
Transfer

t----~~ Total Heading
~SCP

-16-

s+ P ~S

i :: 1

s--)-SCP

ECD-13

	000
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	a-00
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16

