

UNIVAC~I

VotaA-oRfht ¥OM

01958, 1959 • SPERRY RAND CORPORATION

~ID ... 7I.rur.L ~
DIVISION Of SPE RRY RAN D CORPORATION

Table

Of Contents
ELEMENTS OF THE UNIVAC DATA AUTOMATION SYSTEM

Input-Output Units
The Univac Central Computer .. .

The Memory Uni t ...•..
The Control Uni t
The Ari thmetic Uni t

PAGE

1

7
10

12
15
16

I I INTRODUCTION TO CODING 18

Arithmetic Instructions - List A........ 20
Illustrative Example..... 27

Student Exercises .. 29

Arithmetic Instructions - List B " 29
The Decimal Point ... 32

Rule for Addition and Subtraction.... 32
Rule for Multiplication ... 33
Rule for Division........ 33

Student Exercises... 34
The Control Unit .. 35
Transfer of Control Instructions 36

Illustrative Example... 40
Student Exercises ... 42

III INTRODUCTION TO FLOW CHARTS 44

I llustrati ve Example .. 50
Studen t Exercises•........... 52

IV MODIFICATION OF INSTRUCTIONS 55

I tera ti ve Coding ... 59
I terati ve Flow O1art Symbols 64

PAGE

IV MODIFICATION OF INSTRUCTIONS (con't.)

Illustrati ve Example•....................... 65
St uden t Exercises .. 68

Function Table Look .. Up ... 68
Illustrative Example '.................................. 68

Function Table Look-Up in Flow Charts 70

Shi ft Instructions ...•... 71
Student Exercises .. 76

v ITEM PROCESSING 77

The Item 77

The Field .. 77
Representing Fields on Flow Charts. 78

Illustrative Example. 79

Working Storage .. 81
Item Registers ... 83

Student Exercise ... 85
Field Selection Instructions ~.. 86

Illustrati ve Example ... 87
Student Exercises .. 88

VI SUBROUTINES AND VARIABLE CONNECTORS 90

Conunon Subroutines ... '90
Illustrati ve Example ... 90

Variable Connectors .. 98
Student Exercise ... 103

Subroutines .. 104

VI I DETAILED DESCRIPTION OF INSTRUCTIONS 106

Transfer of Control Instructions•... 106
Shift Instructions ...•.........................•............... 108
Multiword Transfer Instructions 108
Ari thmetic Instructions .. 109
Overflow ... 112

Undesi red Overflow ... 120
Student Exercises 120

PAGE

VI II INPUT - OUTPUT 122
123
125
126

IX

X

Character Representation
The Uni servo•...
Buffering and Backward Read

Tape Instructions .. .
Tape Instructions on Flow Charts
Sentinels .. .
The Instruction Tape

Servo Del ta < •••••••••••••••••••••••••••••••••••

Illustrati ve Example
Studen t Exerci se 0 ••••••••••••

EFFICIENT USE OF BUFFERS

Presele ction 0 •••••••••••••••••••••••••••••••••••• 0 • 0 •

Illustrative Example -... 0 •• 0 •••••••••••••••••••••••••

Student Exercise o •••••• 00 ••

Standby Block Method 0 ••

Student Exercise

SUPERVISORY CONTROL PANEL OPERATIONS

127
131
131
132

132
133
140

142

143
143

150
150
152

153

The 10m Instruction 0 •••••••••••• 0 • • .. • • • • • • • • • • • • • • • • 154

Condi tional Transfer Breakpoints •........................... 0 154

Printing from the Supervisory Control Panel 000 ••••• 0.... 155
The All Conditional Transfer Breakpoint Selector Button 0.00.. 156
Interrupted Operation157
Other Breakpoints 158
Manual Alteration of Instructions in the Memory 158
The Fill Operation ... 158
SCICR 159
Generating Data.. 159
Debugging Procedure ... 159

The Empty Opera tion '. 160
Memory Dump 160
Veri fying the Output 161

Summary of Procedures to follow for Test Running a Routine ... 161

XI

X II

XIII

PREPARATION AND DISPOSITION OF DATA

Keyboard to Tape Recording

Univac Uni typer .. .

Univac Veri fier
Card-To-Tape R'ecording•....................•..........

Univac 80 Column Card-to Tape Converter

PAGE

163

163

163

164
165

165
Univac 90 Column Card-to Tape Converter•. 168

Paper to Magnetic Tape Recording '. 169

Uni vac High -Speed Prin ter 169

Tape to Punched Cards ..• 171

Magnetic to Paper Tape .. 172

OPERATIONAL ROUTINES 173

Ta pe Summary•....................• , .•.• -.. 174
Table Look Up•.....•........•........•... 178
Explosion Calculation.... 181

INSURING ACCURACY OF PROCESSING 187

Operator Accuracy•................•.. '. 189

Re run 189

Computer Accuracy 189

Type of Failures 190

Error Detection ... 190

Programmed Error Detection Diagnostic Routines 190
Duplicate Runs ... 191
Programmed Checks .. 191

Bui 1 t in Checks .. 192
Built in Checks of the Univac Central Computer 192

Odd Even Check ... 192

Duplicated Circuitry............................ 193

Logical Checks ...•... 193

chapter 1

Elements of the Univac

Data A.utomation System

To determine the elements of a data processing system, we will examine the steps
in the manual s'olution of a data processing application. Consider a company that
keeps a record of its stock in a ledger. Each day a clerk is supplied with a sales
form. On this basis of the form the clerk brings the inventory up to date by writing
a new column in the ledger.

INPUT-'"

PROCESSING-...

OUTPUT-'"

FIGURE 1·1

•
READ THE FIRST

INYENTORY
STOCK NUMBER

IS THERE A SALES
.. _____ ~ ITEM FOR IT? .. WRITE THE

.... I NYENTORY

READ THE

NEXT ONE

.4 ~

YES NO .-..... tJIQUANTITY IN THE
~------------~ NEW COLUMN

SUBTRACT THE
SALES QUANTITY

FROM THE IN YEN T-
ORY QUANTITY ,

IS THIS THE
LAST I NYENTORY
STOCK NUMBER?

~ ~

.. --------------.. ~~No~~I~YE~S~~
PUT THE
LE D GE R

AWAY FIGURE 1·2

2

: SUBTRACT THE
SALES QUANTITY

Thus, the clerk must be able to perform arithmetic; FROM THE I N V E NT-

FIGURE 1-3

he must be able to make logical decisions;

FIGURE 1-4

he must be able to remember information;

READ THE FIRST
INVENTORY

STOCK NUMBER

IS THERE A SALES
ITEM FOR IT?

YES NO

ORY QUANTITY

(S THERE A SALES
ITEM FOR IT?

NO

WRITE THE
INVENTORY

__ .alQUANTITY IN THE
~~~~----.--~ NEW COLUMN 

READ THE 

NEXT ONE 

SUBTRACT THE 
SALES QUANTITY 

FROM THE INVENT­
ORY QUANT I TY 

FIGURE 1-5 

3 



and he must either execute the steps in the sequence shown or do something 

logically equivalent to this sequence of step's. 

....oIIIIl 

THEN, " 
DO THIS 

+ 
THEN .... 

r DO OR 

THIS I THIS 

~~ 

THEN, 
DO THIS 

THEN, 
DO THIS 

.. ~ 

DO 
THIS 

FIGURE 1·6 

This example involves six elements. 

1 Input 
2 Arithmetic 

3 Logical Decisions 

4 Memory 
5 Control 

6 Output 

FIRST, 
DO THIS 

THEN, .. 
DO THIS ,.. 

~ ~ 

, 
THEN 

OR NOW, STOP 

I THIS ~ 

Contrasted to the manual system, the Univac Data Automation System keeps the 

inventory recorded on magnetic tape. Initially the tape would have been prepared 

by means of the Univac Unityper, a modified typewriter that produces, in addition 

to typewritten copy, the recorded tape. 



STOCK SOURCE DOCUMENT 

INVENTORY 

UNITYPER 

FIGURE 1·7 

Instead of a sales form, a sales tape is produced da~ly, also by the Unityper. In­

stead of the clerk, the Univac Central Computer does ~he processing. 

UNIVAC 

PROCESSING 
FIGURE 1·8 

5 



The inventory tape is read by means of a tape handling mechanism called a Uniservo. 

INVENTORY 

TAPE 
UNISERVO UNIVAC 

FIGURE 1-9 

The sales t.ape is read from another Uniservo. 

The clerk brought the inventory up to date by writing a new column in the ledger. 

The Central Computer brings the inventory up to date by writing an updated inven­
tory tape on a third Uniservo. 

In this application the Central Computer requires three Uniservos - two for reading 

and one for writing. Reading and writing requirements vary from application to 

application. To provide maximum flexibility, the Central Computer has access to a 

bank of 10 Uniservos, any of which can be used for reading or writing. 

In the manual solution, the column the clerk writes in the ledger on anyone day, 

that is, the inventory output, becomes the inventory input on the next day. The 

sales form continues to originate each day from outside the data processing sys­

tem. 

Similarly, 10 the Univac System, the updated inventory tape written one day be­

comes the next day's inventory tape, while the sales tape continues to originate 

each day from outside the system. Once the inventory tape has initially been uni­

typed it need never be unityped again, since it is kept up to date by the Central 

Computer. 

6 



DATA PROCESSING SYSTEM 

SALES 
TAPE 

UNIVAC 

UNITYPER 

UPDATED 

SOURCE 
DOCUMENT 

BANK OF 
UNISERVOS 

I NVENTORY TAPE 

FIGURE 1-10 

INPUT OUTPUT UNITS 

In many cases, input data does not come, and output data is not desired, in tape 

form. The Univac Data Automation System includes several input units to convert 

data from some other form to tape, and output units to convert tape data to some 

other form. 

INPUT UNITS 

The Unityper has already been discussed as an input unit. 

7 

/ 



The Univac Card-to-Tape Converter converts data punched on cards to tape. 

CARD-TO-TAPE CONVERTER 

FIGURE 1·11 

The Univac PTM converts data punched on paper tape to magnetic tape. 

FIGURE 1·12 PAPER-TO-MAGNETIC TAPE CONVERTER 

8 



OUTPUT UNITS 

The Univac High-Speed Printer. 

FIGURE 1-13 HIGH-SPEED PRINTER 

The Univac Tape-to-Card Converter . 

FIGURE 1-14 . TAPE -TO- CARD CONVERTER 

9 



The Univac MTP converts magnetic to paper tape. 

FIGURE 1·15 MAGNETIC -TO-PAPER TAPE CONVERTER 

KEYBOARD INPUT OUTPUT 

Besides using tape, the Central Computer can also accept and produce small volume 

data directly by means of a keyboard and a typewriter. 

The Central Computer accepts data directly from an operator's key strokes on the 

Supervisory Control Keyboard. 

The Central Computer produces printed data directly on the Supervisory Control 
Printer, which is a modified typewriter. 

THE UNIVAC CENTRAL COMPUTER 

To satisfy the requirements of an automatic data processor, the Univac Data Auto­

mation System must not only be able to accept input and produce output, but must 

also incorporate the other functions of a data processor, memory, control, arithme­

tic and logical decision. 

10 



FIGURE 1-16 

FIGURE 1-17 

SUPERVISORY 

CONTROL PRINTER 

, , 

SUPERVISORY 
CONTROL 

KEYBOARD 

UNIVAC 
CENTRAL 

COMPUTER 



These functions are performed by the Central Computer of the Univac System. The 

memory function is performed by the Central Computer's memory unit; the control 

function, by the Central Computer's control unit; and the arithmetic and logical 
decision functions, by the arithmetic unit. 

THE MEMORY UNIT 

In the manual system described above, all information necessary to the processing 

is made available to the clerk in some form. 

1. The stock number and inventory and sales quantities are on the ledger 

page and sales form. 

2. The date of the current updating is on a calendar. 

3. The instructions for updating the inventory are in a procedures manual. 

The above information can be classified as: 

1. data, 

2. constants, 

3. instructions. 

Similarly, in the Univac System, all necessary information is made available to the 

Central Computer; the data, on an input tape; the constants and instructions, on an 
instruction tape. 

However, to have the information available is not sufficient for the clerk to do the 

processing. While processing, the clerk must remember the information bearing on 

the current processing step. Moreover, the clerk must remember the results of any 

calculation done at least until he writes the results in the ledger. Similarly the 

Central Computer must "remember" the data, constants and instructions that it 

reads from tape, and must Ct remember" the results of calculations until it writes 

them on the output tape. The Central Computer ccremembers", or stores, informa­

tion in its memory unit. The memory is divided into cells. Any cell can be used to 

12 



store data, constants or instructions. The 63 characters used to represent informa­

tion are shown below. 

FIGURE 1-18 

CHARACTERS 

i 

Il 

-
-0 

1.1 

2 

3 

4 

5 

6 

7 

8 

9 

, 
& 

( 

r 

, 

. 

. , 
A 

B 

C 

0 

E 

F 

G 

H 

I 

# 
¢ 

@ 

t t 

" (3 

I . . 
) + 
J I 

K S 

L T 

M U 

N V 

0 W 

P X 

Q y 

R Z 

$ % 

* = 
? NOT 

USED 

One cell can store one ccword", a word being any permutation of twelve characters. 

The following are examples of words. 

JOHN~J~JONES 

JUNE~I 0~1926 

0123'1-5678901 
AOOIOOC00200 

13 



The positions of the characters in a word are named as follows. 

-

~ , 

FIRST DIGIT POSITION OR SI'GN POSITION 
SECOND OR MOST SI'GNIFICANT DI'GIT POSITION 
THIRD DIGIT POSITION 
FOURTH DIGIT POSITION 
FIFTH DIGIT POSITION 
SIXTH DIGIT POSITION 
SEVENTH DIGIT POSITION 
EIGHTH DIGIT POSITION 
NINTH DIGIT POSITION 
TENTH DIGIT POSITION 
ELEVENTH DIGIT POSITION 
TWELFTH OR LEAST SI'GNIFICANT DIGIT POSITION 

I I I I I I I I I III I 

FIGURE 1-19 

If a word represents an algebraic quantity, the sign of the quantity must be in the 

sign position. A plus sign is represented by a zero; a minus sign, by a minus. 

FIGURE 1- 20 

WORD AS A SIGNED QUANTITY 

The memory Size is 1000 cells. For the purpose ·of referring to word s in th e 

memory, each cell is given a distinct address. A word in the memory is distin­
guished from all other words in the memory by the address of the cell in which it 

is stored. The cells are addressed consecutively from 000 to 999. 

14-



Once a word has been transferred to a cell, it remalnS In that cell until another 

word is transferred to take its place. 

Figure 1-21 is a stylized version of the memory unit storing instructions, data and 

constants. 

FIGURE 1-21 

THE CONTROL UNIT 

The code for an instruction IS represented in SIX characters. Consequently, two 

instructions, called an instruction pair, are represented in one word. 

FIGURE 1 .. 22 

INSTRUCTION PAIR 

LEFT HAND 
INSTRUCT I ON 

(I I i I 
WORD 

The function of the control unit is to select, in the proper sequence, each instruc­

tion in the memory, interpret it and execute it. Instructions are selected in pairs, 

one word, at a time. The left hand instruction (LHI) is executed, and then the right 

hand instruction (RHI). 

The selection of instruction pairs is performed in a sequential manner. That is, if 

the instruction pair just executed is in cell 019, the next pair to be executed is 

in cell 020. 

15 



Initially the control unit begins the sequential execution of instruction pairs with 

the pair in cell 000. Thus, to have instructions executed in sequence, it is only 

necessary to represent the first instruction in the LBI of the word In cell 000; 

the second in the RBI of the word in cell 000; the third in the LHI of cell 001; 

and so on. 

CONTROL 

FIGURE 1·23 

THE ARITHMETIC UNIT 

LEFT HAn 
IUTRUCTlOIi 

RlaHT HAND 
I UTRUCT I 011 

1ST INSTRUCTION 
INSTRUCTION 
INSTRUCTION 
INSTRUCTION 

5TH INSTRUCTION 
6TH INSTRUCTION 

The arithmetic unit has characteristics In common with a desk calculator in that 

it contains an adder to produce the sum or difference of two words, a multiplier 

the product, and a divider to produce their quotient. In addition, to enable the 

Central Computer to make logical decisions, the arithmetic unit contains a com­

parator, which inspects two words to determine their equality or relative magnitude. 

To operate on a word in the memory, the Central Computer must transfer the word 

to the arithmetic unit. To provide storage for such words, the arithmetic unit con­

tains four registers named A, X, Land F. The arithmetic registers are identical 

to memory cells except that they are auxiliary to the memory. The registers serve 

the arithmetic unit in the same way as dials serve a calculator, each register stor­
ing either a word to be operated on or the result of an operation. 

Figure 1-24 is a stylized version of a portion of the arithmetic unit. 

ARITHMETIC 
UNIT 

FIGURE 1 ·24 

FROM 
MEMORY 

TO THE 
£t----401~--4f-----40--..... MEMORY 

SI6UL 

-_e. TO 
co_nOL 

U_I T 

The memory, control and arithmetic units and their interrelations are shown here: 

(The 60 word registers I and 0, used for input and output and the multiword regis­

ters V and Y will be described in detail in a later chapter). 

16 



17 



chapter 2 

Introduction to Coding 

The preparation of a problem for its solution by The Univac Data Automation Sys­

tem is called programming. Programming is done in three steps. 

1. Process Charting - The layout of the data processing system 1fi terms of 

input, output and processing. 

2. Logical Analysis - The analysis of the processing into a sequence of 
ct small" logical steps. 

3. Coding - The translation of the logical analysis into instructions. 

PROCESS CHARTING 

Figure 2-1 is a process chart. 

In this manual all problems requiring logical analysis and coding are given in dis­

cursive form. All the problems specify three things - input, processing and output 

and could be put in process chart form which is tile usual basis for analysis and cod­
ing. 

18 



PROCESS CHART 

FIGURE2-1 

CODING 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

UP DATE ON 
HAND AMOUNT 

~ INPUT 

~PROCESSING 

~OUTPUT 

Computers usually perform a function in a series of operations. Each operation is 

executed under the influence of an instruction. An instruction specifies at least 

two things. 

1. the opel'ation to be performed. 
2. the data to be operated on. 

The data is usually specified in terms of the storage in which the data is to be 

found. For example, the data might be specified in terms of the address of the cell 

in which it is stored. 

A computer might perform the function of adding two quantities together and record­

ing the sum in three operations. 

1. Select one quantity. 

2. Add the second quantity to the first. 

~. Record the sum. 

19 



If one quantity is in cell 880; the other, in 881; and if the sum is to be stored in 

cell 882; the instructions to cause the computer to do the above operations might be: 

1. BRING 880 
2. ADD 881 

3. CLEAR 882 

where BRING, ADD and CLEAR are code for the operations to be done; and 880, 

881 and 882, the addresses of the cells in which the data is stored. 

In the central computer of the Univac Data Automation System an instruction con­

sists of six characters, named as follows. 

FIRST SECOND THIRD FOURTH FIFTH 

INSTRUCTION DIGITS 
FIGURE 2- 2 

SIXTH 

The first and second instruction digits indicate what operation is to be performed; 
the fourth through sixth digits, the address of the word affected by the operation. 
The third digit is normally a zero. (This digit is ignored in the execution of the 
'instruction. ) 

l ________ J l'------r-! -----",J 
The instruction 

500880 

tells the central computer to perform the operation indicated by ct 50" on the word 

in cell 880. 

ARITHMETIC INSTRUCTIONS - LIST A 

An urn" is used to symbolize the fourth through sixth instruction digits. Paren­

theses are used to symbolize t t the contents of". The symbol 

(m) 

20 



means "the contents of cell m". An "r" IS used to symbolize "register". The 
( symbol 

rA 

means cCregister A". An arrow is used to symbolize ccis (are) transferred to". The 

symbol 

means "(m) are transferred to rA". 

To process data, the computer must read the data from tape and store it in the 

memory. There are instructions that, when executed, do the reading. These 10-

structions will not be discussed at this time. Instead, reading data will be in­
dicated by the words, cCRead Data". 

INSTRUCTION OPERATION MNEMONIC 

BOrn (m~rA, rX Bring 

Transfer (m) to rA and rX, or bring (m) to rA and rX. 

INSTRUCTION OPERATION MNEMONIC 

COm Clear 

Transfer (rA) to m. Transfer a word of zeros to rA} or clear rAe 

One of the possible uses of these instructions is to transfer a word from one cell 

to another. If the word in cell 880 is to be transferred to cell 881, the sequence 

of instructions might be 

B00880 C00881 

INSTRUCTION OPERATION MNEMONIC 

HOm (rA}----I~ .... m Hold 

Transfer (rA) to m. 

The mnemonic is to hold (rA) after the trans~er to memory. The HOm instruction 

differs from the COm instruction only in that (rA) remains unchanged. 

21 



880 

881 

rA 

rX 

8 o o 8 

/0/1/2/3\1I/5/6/7/8/9/0/1j 

10/2/3\11/5/6/7/8/9/0/1/2/ 

FIGURE 2- 4 

INSTRUCTION 

JOm 

8 o I!IDSEJDIIDDDI1BD 880 

I 0 \2\3\ 11\5/6/7/8/9/ 0/1 /2/ 881 

I 0 /3/ 11/5/6/7/8/9/ 0 /1 /2 /3/ rA 

I 0 / 11/5/6/7/8/9/ 0 /1 /2/3 /11 / rX 

c o o 8 8 1 

880 

881 

"""'''''''''''''''',+10/0/0/0/0/0/0/0/0/0/0/0/ 

10/1/2/3/11/5/6/7/8/9/0/1/ 

rA 

rX 

OPERATION 

(rX)~m 

Transfer (rX) to m. 

One of the possible uses of these instructions is to duplicate the contents of a 

certain cell in several other cells. If the contents of cell 880 are to be duplicated 

in cells 881, 882 and 883, the instructions mi.ght be 

B00880 H00881 
J 00882 C00883 

or: B00880 J 00881 

J 00882 J 00883 

H 
or: B00880 1100881 

H00882 H00883 

etc. 

INSTRUCTION OPERATION 

AOm (m)~rX; (rA) + (rX)---...rA 

Add (rA) and (m), and transfer the sum to rA. 

22 

MNEMONIC 

Add 



B o o 8 8 

880 

8Bl 

IAIAIAIAIAIAIAIAIAIAIAIAI 

IBIBIBIBIBIBIBIBIBIBIBIBI 

B82 I c I c I c I c I c I c I c I c I c I c I c I c I 

883 I DID I DID I DID I DID I DID I DID I 

rA 

rX 

J o o 8 8 

8BO IAI AI AI AI AI AI AI AI AI AI AI AI 

881 IAI AI AI AI AI AI AI AI AI AI AI AI 

BB2 IAIAIAIAIAIAIAIAIAIAIAIAI .... 

BB3 I DID 1 DID I DID 1 DID I 0 I DID I D I 

rA 

FIGURE 2-5 

880 

o IBtBIBIBIBIBIBIBIBIBIBIBI 881 

Iclclclc(clclclc)clclclcl 882 

I D ID I DID I DID I DID I DID I DI D I 883 

I E I Eli! I E I E I E I E I E) E I E I E I E I rA 

IFIFIFIFlrfFIFIFIFIFIFIFI rX 

2 
IAIAIAIAIAIAIAIAIAIAIAIAI 880 _.'1 A I A I A I A 1 A I A I A 1 A I A 1 A I A 1 A I BBI 

Ie/ c I c I c Ie/ c I c I c I c Ie/ c I c I 882 

IDIDIDlolDIDIDlolololDIDI BB3 

IAIJIAIA/AIAIAIAIAIAIAIAI ~ 

rX 

c o o 8 I 8 I 3 

IAIAIAIAIAIAIAIAIAIAIAIAI B80 

I A I A I A I A / A I A I A I A I A I A I A fA I 881 

IAIAIAIAIAIAIAIAIAIAIAIAI B82 

_ •• 1 AlAI AI AI AI AI AlAI AI AI AlAI 883 

""""""""11""" 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I rA 

IAIAIAIAIAIAIAIAI~ rX 

23 



The mnemonic is to add (rA) and (m). The computer executes the AOm instruction 

as follows. (m) are transferred to rX. (rA) and (rX) are added. The sum is trans­

ferred to rA. 

To add the contents of cell 880 to the contents of cell 881 and store the sum in 

882. the sequence of instructions might be 

880 

881 

B00880 A00881 
C00882 

882 I 0 131 ~ 151 61 71 sl 91 0 II 12131 

rA 

rX 

c 

or 

o o 8 

880 101112131~lsI6\7IsI910\11 

881 10 12131 ~ Isl6171s191 0 II 121 

682 10131s18101211116171911131 

rX I 0 1213111 1516171819 I 0 II 121 

ADDER 

8 2 

I II I IIII II I I 

B00880 A00881 
H00882 

if it is desired to preserve the sum in rA. 

860 

10 12131 ~ Isl6171s191 0 II 121 881 

lo131~ls16171s191ol "2131 862 

I 0 I ~ I sl 6171s191 0 II 1213 I ~ I rA 

1 0 lsi 6171s191 0 II 12\31 ~ lsi rX 

8 

loll\2131~lsI617IsI910111 

10 \2131 ~ 151617\s191 o}t12( 
~/ 

FIGURE 2-6 

8 1 

880 

881 

882 

rA 

rX 



INSTRUCTION OPERATION 

XOm (rA) + (rX)~rA 

Transfer the sum of (rA) and (rX) to rA. 

When executing the XOm instruction the computer ignores m. 

One of the possible uses of the XOm instruction is to add the same number to a 

sum more than once. Assuming that a quantity is in cell 880, the sequence of 

instructions to build up three times the quantity might be 

B00880 XOOOOO 
XOOOOO 

B I 0 I 0 I 8 I 8 1 0 1 

880 

rA 

rX 

x o o o o o 

FIGURE 2-7 

25 

o 

lo111213141516171!l1910111 

/01213141516171819101112/ 

101 0 I 0 II 1210 I 0 I 0 I 0 II 121 0 I 

o o o 

8BO 

rA 

rX 

880 

rA 

rX 

o 

I 0 I 0 I U II 12 I 0 I 0 I 0 I 0 II 121 0 I 880 

1I_lItlolo 10131610101010131610 I rA 

101 0 I 0 II 12 10 10 I 0 I 0 II 1210 I rX 



INSTRUCTION OPERATION MNEMONIC 

SOm Subtract 

Subtract (m) from (rA). Transfer the difference to rA. 

The mnemonic is to subtract (m) from (rA). The computer executes the SOm in­

struction as follows. Minus the (m) are transferred to rX. (rA) and (rX) are added. 

The sum is transferred to rA. 

880 

rX lit lall 12131111 tiD II 1213111 I 

S 0 0 I 8 I 8 I 

ADDER 

0 I 
10 1.0 I 0 10 I 0 I 0 I 0 I 0 I 0 11151 0 I 

FIGURE 2·8 

SIGH 
CHANGER 

880 

rlt 

rX 

If the contents of a cell are negative, minus the contents would be positive. 

INSTRUCTION OPERATION 

50m (m) ......... SCP 

Print (m) on the Supervisory Control Printer (SCP). 

880 

5 o o 8 8 o 

ALPHAXXBRAVO 

FIGURE 2· 9 

26 



INSTRUCTION OPERATION 

90m Stop 

Stop operation 

In executing the 90m instruction, the computer ignores m. 

ILLUSTRA TIVE EXAMPLE: 

Reading the data stores the ON HAND quantity of a commodity in cell 880, the 

ON ORDER quantity in cell 881, and the EXPECTED REQUIREMENTS for the 

next 60 days in cell 882. Print (on hand) + (on order) - (required). (Data will 

frequently be stored in memory starting at cell 880 because of programming con­

venience. Reasons for this will be described in a later chapter.) 

LOGICAL ANALYSIS 

1. Read the data. 
2. Add the on order to the on hand. 
3. Subtract the required from the sum. 

4. Print the difference. 

5. Stop. 

CODING 

000 READ } Read the data 

DATA 

001 B00880 } Add the on order to the on hand 
A00881 

002 S00882 Subtract the required from the sum 

C00883 } 003 500883 Print the difference 

900000 Stop 

The following is a description of the thinking that might have accompanied this 

coding. 

Since the computer executes instruction pairs by starting with the pair in cell 000 

27 



and moving sequentially through the instruction pairs following, the instruction 

pairs should be stored in logical sequence, starting in cell 000. Furthermore, 

since the computer executes the LHI of an instruction pair before the RHI, the 

first instruction of a pair to be executed should be coded as the LHI. 

The logical analysis shows that the first step is to read the data. This step 1S 

shown by writing "Read Data" in cell 000. 

The next step in the analysis is to add the on order quantity to the on hand quantity. 

The computer will add two quantities if it is given an AOm instruction. But the 

AOm instruction adds those quantities stored in rA and m. The on hand and on order 

quantities are in cells 880 and 881. Before the quantities can be added together 
one must be stored in rAe To store a quantity in rA, the BOrn instruction can be 

used. To store the on hand quantity in rA the LBI in cell 001 should be: 

B00880 

At the completion of the B00880 instruction the on hand quantity will be in rAe To 

add the on order quantity to (rA), the instruction needed is 

A00881 

which should be the RHI of cell 001. 

After the execution of the AOm instruction the computer will have stored the sum 
of the on hand and on order quantities in rAe The next step is to subtract the re­
quired quantity from the sum. This step calls for an SOm instruction where the 
minuend is in rA and the subtrahend is in the memory. This situation is present, 

so a S00882 instruction will subtract the required quantity from the sum of the on 

hand and on order in rAe 

The next step is to print the difference. The 50m instruction prints the contents 

of a cell, but the difference is in rAe Therefore, the contents of rA must be stored 

in a cell. This storage can be done by means of the COm instruction. The cell 

specified by the COm instruction must not contain anything necessary to the execu­

tion of the remainder of the coding. Cell 883 meets this requirement, and the in­

struction could be C00883. The execution of this instruction transfers the differ­

ence to cell 883. Then the execution of the instruction, 500883, will print the 

difference on SCP. 

The last step is to stop the operation. The execution of a 90m instruction does this. 

28 



It is customary to draw a line under 90m instructions to separate the coding into 
related segments. 

STUDENT EXERCISES 

1. Reading the data stores a quantity In cell 880. Store the quantity in cells 

881 and 882. 

2. Reading the data stores two quantities in cells 880 and 881. Interchange the 

quantities. 

3. Reading the data stores five receipt amounts In cells 880 - 884. Print the 
sum of the receipt amounts. 

4. Reading the data stores four quantities, A, B, C and D, in cells 880 - 883. If 

E = A· l + B, 
f 

F = A + B - C: 

G=A+f3 C+D 

print E, F and G. 

5. Reading the data stores four quantities, A, B, C, and D, in cells 880 - 883. If 

R = 2A - B + 3 (C + D) 

print R. 

ARITHMETIC INSTRUCTIONS - LIST B 

INSTRUCTION OPERATION MNEMONIC 

LOrn (m)___����_rL, rX Load 

Transfer (m) to rL and rX, or load rL and rX with (m). 

INSTRUCTION OPERATION 

KOm (rA)--...rL; O~rA 

Transfer (rA) to rL. Transfer a word of zeros to rAe 

In executing the KOm instruction, the computer ignores m. 

29 



INSTRUCTION OPERATION MNEMONIC 

POrn ~m} Precision 

(rL) x (rX}-.....rA [11 MSD], rX [11 LSD] Multiply 

Multiply (rL) by (m). Transfer the 11 most significant digits of the product to rA; 

the 11 least significant digits to rX. 

The execution of the POrn instruction produces a precise 22 digit product. The 

mnemonic is to precision multiply (rL) by (m). The computer executes the POrn 

instruction as follows. (m) are transferred to rX. Three times the absolute value of 

(rL) are transferred to rF. (The reason for this is described in a later chapter.) 

(rL) are multiplied by (rX). The 11 most significant digits of the product are trans­

ferred to digit positions 2-12 of rA; the 11 least significant digits, to positions 
2-12 of rX. The sign of the product is transferred to the sign positions of rA and rX. 

INSTRUCTION 

MOm 

OPERATION 

(~)--+-rX; ] .~ -~_~Ir.,.,.,l.lE;;: 

(rL) x (rX}--....rA [11 MSD rounded] , 

rX [11 LSD + .5 ] 

MNEMONIC 

Multiply 

Multiply (rL) by (m). Transfer the product to rA. 

The execution of the MOm instruction produces an 11 digit rounded product in rA. 

The mnemonic is to multiply (rL) by (m). The computer executes the MOm instruc­

tion in the same way as it executes the POrn instruction. except that, after the 

operation associated with the POrn instruction is complete, five is added to the 

most significant' digit of (rX), and if a carry is produced, it is added to the least 

significant digit of (rA). 

INSTRUCTION 

NOm 

OPERATION 

- (m)-. r X; ~!~fttfr!?t~"5) 

{rL} x (rX) ....... rA [11 MSD rounded], 

r X [11 LSD + .5] 

MNEMONIC 

Negative Multiply 

Multiply {rL} by minus (m). Transfer the product to rA. 

The mnemonic is to negative multiply (rL) by (m). The computer executes the NOm 

instruction as follows. Minus (rX) are transferred to rX. The remainder of the opera-

30 



tion IS exactly as in the execution of the MOm instruction. The following figure 

shows the difference in the effect of the execution of the POrn, MOm, and NOm 

instructions. 

GIVEN 

rA 

P0880: 
rA 

MOSSO: 

rA 

N 0880: o 8 II I 0 I 0 I 0 I 0 1010 I 0 10 12 I 

IN ALL CASES 

INSTRUCTION 

DOm 

rF 

1217101010101010101010131 

FIGURE 2·10 

OPERATION 

(m) ..... rA; 

rL 

1019101010101010101010111 

880 

10 Jg 10 1010 10 10 10 10 10 I 0 II I 

rX 

rX 

10GIoioioioioioioioloIII 

rX 

03101010101010101010111 

MNEMONIC 

Divide 

(rA) • '(rL)~rA [rounded], 

rX [unrouded] 

Di vide (m) by (rL). Transfer the rounded quotient to rA and the unroundedquotient 

to rX. [(rL) must be larger in absolute value than (m)] 

The execution of the DOm instruction produces an 11 digit rounded quotient in rA 

and an 11 digit unrounded quot.ient in rX. The mnemonic is to divide (m) by (rL). 

The computer executes the DOm instruction as follows: (m) are transferred to rAe 

(rA) are divided by (rL). The unsigned, unrounded, 12 digit quotient is transferred 
to rX. Five is added to the leas't significant digit of (rX) and the sum is transferred 

to rAe (rA) and (rX) are shifted right one digit position. The sign of the quo,tient is 
transferred to the sign position of rA and rX. 

For example: 
In executing 000101: 

411522630566 

+0000,0'005 \ 

411522630571 

h'f '1 " h d ' , S 1 t 1 P ace rig t an 1nsert s1gn 
JI , 

rA rX 

041152263057 041152263056 

31 

rL030000000000 
101 012345678917 

12 digit quotient without sign 



THE DECIMAL POINT 

The computer fixes the decimal point between the sign and most significant digi~t 

positions. Because every algebraic number begins with a sign followed by a decimal 

point, as far as the computer is concerned, every algebraic quantity lies between 

plus one and minus one, the largest being 

+.99999999999-

the smallest 

-.99999999999 

How can algebraic quantities of magnitude one or larger, or minus one or less, be 

represented? This problem is really no different in kind than the similar one pre­

sented by an ordinary desk calculator. Like the computer, the calculator fixes the 

decimal point at some specific place, usually immediately after the least signi­

ficant digit position. Yet operators have no difficulty in treating fractional quanti­

ties on a calculator. Such quantities are handled as follows. All quantities are 

entered into the calculator as whole numbers, and decimal points are assumed in 

the numbers to create the fractional quantities. During the calculation the assumed 

decimal points are ignored. After the calculation is complete, the decimal point is 

assumed in the result according to certain rules. The same kind of solution applies 

to the computer. Decimal points can be assumed in a word wherever wanted. At the 
end of the calculation the following rules apply. 

RULE FOR ADDITION AND SUBTRACTION 

To add two words, or to subtract one word from another, the decimal point must 

be assumed in the same place in both words. The word that represents the sum 

will have the assumed decimal point in the same place as it is assumed in the 
words entering the calculation. 

A carat indicates the assumed decimal point. 

$3600.05 
156.23 

$3756.28 

03600,,0500000 
001562300000 

" 
037562800000 

" 

32 

00000036001\05 

000000015623 
1\ 

000000375628 
1\ 



RULE FOR MULTIPLICATION 

When multiplying one word by another, if the assumed decimal point is m digit 

positions to the right of the fixed decimal point in one word, and n positions to the 

right in the other, the product will have the assumed point m plus n positions to 

the right. 

RULE FOR DIVISION 

When dividing one word by another, if the assumed point is m positions to the right 

of the fixed point in the dividend, and n positions to the right in the divisor, the 

quotient will have the assumed point m minus n po~itions to the right. 

For example, if 

and 

then 

A = OXXXXXXXXXXX 
" 

B = OXXXXXXXXXXX 
1\ 

AB = OXXXXXXXXXXX 
" 

and A+ B = OXXXXXXXXXXX 
" 

m=4 

n = 3 

m-n = 1 

J!J.h>....assumed l?oinLis. p. positigHs . to_the left, of-!he fixedj?~, i!~-=-p positiof!.s 

~the right. The fact that assuming the decimal point p places to the right of the 

fixed point is equivalent to multiplying the word by lOP makes the proof of the 

above rules immediate. 

For example 

0,21200000000 

031200000000 

" 

.312 (no assumption made) 

.312 x 102 = 31.2 (where the assumption is p = 2) 

When n and/or m are zero the above rules give the following results. If m and n 

are zero then m plus nand m minus n are zero. Thus, if in two words, the decimal 

point is assumed at the fixed decimal point, the assumed decimal point in the 

product or quotient of the words will be at the fixed point. 

If n is zero, then m plusn and m minus n equal m. Thus, if the point is assumed m 

positions to the right of the fixed point in a given word, and is assumed at the 
the fixed point in a second given word; the product of the given words, and the 

quotient of the first word divided by the second, will have the assumed decimal 

point m positions to the right. For example, if 

33 



l'\ 

A = OXXXXXXXXXXX 
A 

and B = OXXXXXXXXXXX 
A 

then 

AB = OXXXXXXXXXXX 
" 

and A..;. n = OXXXXXXXXXXX 
" 

STUDENT EXERCISES 

m=9 

n = 0 

m + n = 9 

m- n = 9 

1. If A has the form O"XXXXXXXXXXX; and B, the form O"XXXXXXXXXXX; what is 

the form of AB and A -:- B? 

2. If A has the form OXXXXXXXXXXX; and B, OXXXXXXXXXXX; what is the form 
A. A 

of AB and A -:- B? 

3. If A has the form OXXXXXXXXX}X; and B, RXXXXXXXXXXX; what is the form 

of AB and A+B? 

4. Reading the data stores three quantities of form 

O"QQQQQQQQQQQ 

in cells 880 - 882. Print the product of the quantities. 

5. Reading the data stores 

DATA 

Quantity A 

Quantity B 

Quantity C 

Quantity D 

If 

E = AB 

AB 
F = .9C 

G 
= AD _ 

.9C 

print E, F and G. 

D 

FORM 

o,POAAAAAAAAA 

o,POBBBBBBBBB 

q,OOCCCCCCCCC 

O"OODDDDDDDDD 

CELL 

880 

881 

882 

883 
f ' 



f \ 

6. Reading the data stores 

. DATA FORM CELL 

Income o I I I 11 It! 10 0 0 880 
Number of Dependents OONNOOOOOOOO 

1\ 
881 

Deductions other than OOQ~1\AAOOO 882 
for Dependents 

A deduction of $600 is allowed for each dependent. The tax is twenty percent of 

taxable income. Print the tax in form 

OOOOOOTTTTATT 

THE CONTROL UNIT 

The function of the control unit 1S to select instructions from the memory and 

execute them in proper sequence. The control unit is made up of three registers. 

1. The Static Register (SR), a half word register. 

2. The Control Register (CR), a one word register. 

3. The Control Counter (CC), a one word register. 

To execute an instruction the computer must transfer the instruction to th(! Static 

Register, the only place in the computer where an instruction can be interpreted. 

Since the computer can only execute one instruction at a time, only one instruction 

can be stored in SR at anyone time. Thus, SRis built with a six character capacity. 

The computer transfers instructions from the memory to the control unit one word 

at a time and uses the Control Register to store the instruction pair while the 

instructions are waiting to be executed. 

Having transferred an instruction pair from a given cell to CR, the computer must 

store the address of the cell immediately following the given cell in order that, 

when the instruction pair in CR has been executed, it will know in what cell to 

find the next pair. The computer stores this address in the three least significant 

digits of the word in the Control Counter. 

In short, 

1. SR is an interp~C!~l.!!... devi£,e, 
2. CR contains the current instruction pa!L 
3. (:~ contains the address o~,.next ill.s.ttuctionpair. 

35 



In Univac the extraction and execution of instructions is performed in four steps 
which are identified by the first four letters of the Greek alphabet: 

STEP DESCRIPTION 

a 

(:3 

y 

The right hand SiX digits of CC are duplicated in 
SR. The memory address section of SR now con­
tains the address of the next instruction pair. 

The effector circuits of SR now cause the contents 
of the memory cell as specified by the address 
section of SR to be duplicated in CR. 

A one is added in the least significant digit posi­
tion of CC (digit position 12). 

The Left Hand Instruction now in CR is duplicated 
in SR, and being in SR causes the effector circuits 
to execute it: that is, interpret it as an instruction. 

The Right Hand Instruction in CR is duplicated in 
SR, and executed. 

The computer automatically steps through the cycle and then after completing the 
8 step, begins on a. The important thing to note is that if CC = 000000000000 
initially, the computer executes the Left Hand Instruction found in memory cell 
000, then the Right Hand Instruction in that cell. Then, LHI of cell 001, RBI of 
001, LHI of 002, RHI of 002, etc. Also note that instructions are executed only 
when they are in S~ during stages y or 8. 

TRANSFER OF CONTROL INSTRUCTIONS 

Having executed the instruction pair in cell ttk", it is sometimes advantageous 

for the next instruction pair to be in a cell other than cell ttk + 1 ". This breaking 

of the computer's sequential operation is called transfer of control. 

INSTRUCTION OPERATION MNEMONIC 

UOm 000000000 (CR~CC Unconditional Trans­
fer of Control 

Transfer control to m. Sequential operation is broken at cell k 

and resumes at cell m. 

36 



The mnemonic is unconditional transfer of control to m, since the execution of the 

UOm instruction results in transfer of control regardless of the conditions present 

in the computer. The computer executes the UOm instruction as follows. CC con­

tains the address of the next instruction pair. If the execution of the UOm instruction 

is to transfer control to m, the execution must transfer the address part of the UOm 

instruction to CC. Actually, the UOm instruction is executed by transferring the 
three least significant digits of (CR) to the three least significant digit positions of 

CC. This method of execution will achieve the purpose of the UOm instruction pro­

vided that the address part of the UOm instruction is the three least significant 
digits. of the word in which the UOm instruction appears. In effect, this fact means 

that the UOm instruction should be coded as a RHI. 

I c 10 101818111 u I 0 I 0 I 0 I 0161 010 I u I 0 o o o 6 CR 

cc 

FIGURE 2-11 

If a UOm instruction is properly coded in cell k, when the instruction pair in cell 

k has been executed, the next pair of instructions to be executed are not in cell 

k + 1, but in cell m. 

Consider the following. 

SR CC CR 

10 1010 I 0 I 0 10 10 10 1010 I 1101 1810101818111s10101818101 
LH I RH I 

CONTROL UNIT 

rA rX rL rF 

1010171010101010101010101 1-10/31010101010101010101 1010131010101010/0/010/01 II I I I I I I 1 I I /1 

ARITHMETIC UNIT 

8811~IO~ 

999~ 

MEMORY UNIT 
FIGURE 2-12 

37 



Assume that the computer has just completed beta time. During beta time the con­
tents of cell 010, C00881U00006, were transferred to CR, and (CC) were increased 
by one. 

SR 

101010101 Ijo/ 

CONTROL UNIT 

CC 

10 /0 /0/ 0 I 0 \ 0 \ 0 I 0/ 0 10 81 
CR 

clololslsltlulolololol6 
LHI RHt 

rA rX rL ~F 

11"""0"""10""'17'-10""'10""'1-"011"""0;-:;'10""'/0""'10"'"1""'01"'01 I-Iola/%lololololololol 101013/0/0/0/010101010101 ///11/1 i //1// 

ARITHMETIC UNIT 

881~ 

010~ 999c==J 
MEMORY UNIT 

FIGURE 2-13 

CR contains the current instruction pair, and the three least significant digits of 
(CC) specify that the next instruction pair is in cell 011. On gamma time C00081 
is executed. 

SR CC CR 

DIll II \ c \ 0 10 \s\S/tl u \ 0 \ 0 \ 0 \ 0 \ 61 
LH I RH I 

CONTROL UNIT 

rA rX rL rF 

1-101310101010"10101010101 101013101010/010/010Iiilol 111/1/ I III III 
ARITHMETIC UNIT 

ooo~ 881 

999r===J 
MEMORY UNIT 

FIGURE 2-14 

Delta time, U00006. 

SR CC CR 

dDdElld 01010/01010101010101016 \clololslsltlulolololol61 
LHI RHI 

CONTROL UNIT 

rA rl rL r F 

\1"""0"""\0'-\0""/""'0/-"0/"-0"""10""'10"'/0""/'"o/r-oT"""1lo/ 1-10131010101010101010101 1010131010101010101010101 1111///1 II III 

ARITHMETIC UNIT 

MEMORY UNIT 

oooc==J 
010~ 

881~ 
999r===J 

FIGURE 2-15 

38 



The three least significant digits of (CC) no longer specify that the next instruction 

pair is in cell 001, butinstead specify that the pair is in cell 006. The computer's 

sequential operation has been broken, and control has been transferred to cell 

006. With the instruction pair in cell 006 the sequential operation w ill resume and 

continue until another transfer of control or stop instruction is executed. 

INSTRUCTION OPERATION 

OOm Skip 

Pass control to the next stage of the three stage cycle. 

In executing the OOm instruction, the computer ignores m. The execution of the 

OOm instruction does not alter the contents of any cell or register. One use of the 

OOm instruction is as follows. The situation may arise where the next instruction 

to be coded is both a LHI and a UOm instruction. To be coded properly, the UOm 

instruction should be coded as a RHI. Yet the computer cannot skip a stage of its 

four stage cycle ~nd must have some instruction to execute on gamma time. The 
OOin instruction is used in such situations. 

In contrast to the UOm instruction are the conditional transfer of control instruc­

tions. 

INSTRUCTION 

QOm 

OPERATION 

If (rA) = (rL), then QOm acts 
as UOm; if not,as OOm 

MNEMONIC 

Equality Transfer of 
Control 

If (rA) are identical to (rL), interpret QOm as UOm; if not, as OOm. 

The mnemonic is: on equality of (rA) and (rL), control is transferred. 

INSTRUCTION 

TOm 

OPERATION 

If (rA) > (rL), then TOm acts as 

UOm; if not, as OOm 

If (rA) are greater than (rL), 

interpret TOm as UOm; if not, as OOm. 

MNEMONIC 

Threshold Transfer 

of Control 

The mnemonIC IS: if (rA) are greater than the threshold set up by (rL), control IS 

transferred. 

39 



Does the TOm Instrufi)tion 
(rA) (rL) Transfer Control? 

012 345 678 910 009 761 835 011 Yes 

-12 345 678 910 009 761 835 011 No 

012 345 678 910 - 99 999 999 999 Yes 

-12 345 678 910 - 99 999 999 999 Yes 

For purposes of the TOm instruction an order of magnitude has been assigned to 

all characters. In figure 1-18, reading down the first column, then down the second, 

then the third, and finally the fourth, is equivalent to reading the characters in 

their ascending order of magnitude. The smallest character is i, the largest is = • 

Does the TOm Instruction 
(rA) (rL) Transfer Control? 

o BCDEFGHIJKL 023456789ABC Yes 

- BCDEFGHIJKL 023456789ABC No 

OBCDEFGHIJKL -DEFGHIJKLMN Yes 

- BCDEFGHIJKL - DEFGHlJKLMN Yes 

If (rA) and (rL) have signs, the TOm instruction treats both quantities as signed 

numbers. If either word has no sign, the TOm instruction treats the words in their 

entirety. 

(rA) 

0123456789AB 
34567890ABCD 
67890ABCDEFG 

(rL) 

234567890ABC 
-567890ABCDE 
7890ABCDEFGH 

Does the TOm Instruction 

Transfer Control? 

No 
Yes 

No 

The function of the conditional transfer of control instructions is to allow the 

computer to choose between different processing possibilities dependent on the 

nature of the data. 

Illustrative Example 

Reading the data stores 

DATA 

Account Number 

Delinquent Account Number 

FORM 

OAAAAAAAAAAAA 

ODDDDDDDDDDDD 

4-0 

CELL 

880 

881 



If the account number is equal to the delinquent account number print 

~NO~CREDIT~ 

If not, print 

CREDIT~GOOD. 

LOGICAL ANALYSIS 

1. Read the data 

2. Is the account number equal to the delinquent account number? 

2a.No 2b. Yes 
3. Print CREDIT GOOD 3. Print NO CREDIT 

4. Stop 

CODING 

000 READ 
DATA 

001 B00880 
L00881 

002 ~ 

QOOO04 

003 500005 
900000 

004 500006 
900000 

005 CREDIT 
GOOD. 

006 ~NO~CR 

EDIT.~ 

Read the data 

Is the account number equal to 
the delinquent account number? 

Print CREDIT GOOD. 

Stop' 

Print NO CREDIT 
Stop 

Constants 

For ease in writing, a LHI or RHI consisting of six zeros in customarily written 

as~. It is also customary to draw a line under all transfer of control instructions. 

The following is a description of the thinking that might have accompanied this 

coding. 

4-1 



After the read data and the execution of the BOrn and LOrn instructions, the proper 

quantities are in rA and rL, and the QOm instruction can be coded. But the next 

instruction to be coded is a LHI. Since the QOm instruction can be interpreted as 

a UOm instruction, to be properly coded, the address part of the QOm instruction 

must be the three least significant digits of the word in which the QOm instruction 

appears. The simplest way to achieve this situation is to code a OOm instruction 

for the LHI. 

It makes no difference what cell IS specified by the QOm instruction as long as 

the processing called for by the condition of equality begins in that cell. To con­

serve memory space it is convenient not to specify any cell at this time, and in­

stead, code the processing called for by the condition of inequality, which must 

begin in cell 003. 

The execution of a 50m instruction is required to print CREDIT GOOD. It makes 

no difference what cell is specified by the 50m instruction as long as the word 

CREDIT L\GOOD. 

IS stored in it. It is convenient not to specify any cell at this time, and instead 

continue the coding. The 90m instruction completes this· logical branch of the coding. 

The next free cell is cell 004, which can be specified by the QOm instruction. A 

50m instruction and a 90m instruction in cell 004 complete the coding. 

The next free cells are cells 005 and 006, which can be specified by the 50m in­
structions. 

STUDENT EXERCISES 

1. Reading the data stores: 

DATA 

Pay 

Deduction 

FORM 

OOOOOOPPP~PP 

OOOOOOOODDADD 

CELL 

880 

881 

If the deduction does not reduce the pay to less than $15, make the deduction; 
otherwise, print the deduction. In either. case, print the pay. 

2. Reading the data stores in cell 880, a charge in the form: 

OOOOOOCCCC~C 

ij2 



If the charge is greater than or equal to $150.00, apply a discount of three percent, 
and print 'the resulting charge. Otherwise, print the original charge. 

3. Reading the data stores 

DATA 

Sto~~ Number 
,On Hand 

Sold 

Minimum Required 

FORM 

NNNNNNNNNNNN 
000000000000 

1\ 

OOOOOOSS SS SS , 1\ 

000000 RRRRRR 
1\ 

CELL 

880 
881 
882 
883 

Update the on hand. If the sales reduce the on hand below the required, print the 
stock number. 

4. Reading the data stores 

DATA 

Quantity Ordered 
Unit Price 

FORM 

OOOOQQQQQQOO 
- A 
OP,~PP 0000000 

CELL 

880 
881 

If the quantity is greater than or equal to 100, apply a discount of 40%. Othetwise, 

apply a discount of 30%. Print the chatige. 

4-3 



chapter 3 

Introduction 

to Flow Charts 
EXAMPLE 

Reading the data stores: 

DATA 

Days of Medical Absence 

Days of Allowable Medical 
Leave Remaining 

Hourly Rate of Pay 

FORM 

OAA"OOOOOOOOO 

o L LOOOOOOOOO 
1\ 

ORRRRROOOOOO 
" 

Update the medical leave, and print the employee's medical pay in form 

00000000 PP"PP 

CELL 

880 

881 

882 



LOGICAL ANALYSIS 

1. Read data. 

2. Is medical absence equal to zero? 

2a No. 2b Yes. 

3. Is medical leave equal to zero? 

3a No. 3b Yes. 

4. Is medical leave greater than medical absence? 

4a No. 4b Yes 

5. Store medical leave in storage. 5. Store medical absence 
in storage. 

6 .. Store zero in medic·al leave. 6. Reduce medical leave 

7 . Multiply storage by eight. by medical absence. 

8. . M~ltiply product by rate. 

9. Print product. . 9. Print zero. 

10. Stop. 

This analysis is precise but bulky. As the size and complexity of problems in­

crease such written analyses would become less and less helpful because of the 

hirge amount of writing necessary. 

The analysis can be made clearer by putting the steps in boxes and using arrows 

to indicate the sequence of steps. 

18 MEDICAL 
YES 

START f...- UAD DATA --to AlSENCE EQUAL 
TO ZEROt 

, NO 

18 MEDICAL LEAVE YES 

EQUA L TO ZERot ~ PRINT ZERO 

, NO 

IS MED I CAL LEAVE YES STORE MED I CAL REDUCE MED I CAL 
IREATER THAM f--Io ABSEMCE 1M ~ LEAVE IV .MEDICAL I--
MEDICAL AIIUCEt STORAGE AIIENCE 

.,-
NG 

STOREMED I CAL ~ 
STORE ZERO 1M 

LEAVE 1M STORAGE MEDICAL LEAVE 

I 

1 1 ~ 

MULTIPLY noulE 
~ 

MULTIPLY PRODUCT ..... PRINT PRODUCT f...- STOP IV EIUT IV RATE 

FIGURE 3·1 



This solution to the problem of picturing the analysis is superior but would still 

result in a massive chart for a large problem. A further reduction can be made by 

using letters to denote the quantities processed and arithmetic symbols to define 

the processing. The use of symbols requires a legend on the analysis to define 

each letter so there will be no confusion as to the nature of the quantities. 

STUT RUD DATA 

LEGEND 

A - MEDICAL ABSENCE 
L - MEDICAL LEAVE 
R - PAY RATE 

FIGURE 3· 2 

An analysis involves, at most, three types of processing. 

1. Transfer of data. 

2. Arithmetic operations. 

3. Logical decisions. 

FIGURE 3-3 

4-6 

STORE L-A IN L 



To further reduce the size of the analysis, transfers and arithmetic operations will 
,be shown in rectangles. The distinguishing feature of a transfer or arithmetic 

operation is the inclusion of an arrow in the rectangle to indicate the substitution 

of one quantity for another. 

Decisions are shown in flattened ovals. The distinguishing features of a decision 

are: 

1. The inclusion of a colon in the oval to indicate the comparison of one 

quantity with another 

and 2. Two arrows coming out of the oval to indicate that, on the basis of the 
decision, one of two possible paths of processing will be followed. 

Each of these paths is labelled with the condition which must exist for that path 

to be followed. 

The decision tt is A = 0" (yes or no) will be shown as 

FIGURE 3-4 

If the two quantities are equal, the next step follows the arrow labelled with the 

equal sign; if unequal, it follows the arrow labelled with the unequal sign. 

The decision Cfis L > A" (yes or no) will be shown as 

FIGURE 3-5 

4-7 



If L is greater than A, the next step follows the arrow labelled with the "greater 

than U sign (»; if L is not greater than A (Le., less than or equal to A), the next 
step is written following the arrow labelled with the "less than or equal to" sign(~). 

LEGEND 

A - MEDICAL ABSENCE 
L - MEDICAL LEAVE 
R - PAY RATE 

FIGURE 3-6 

To reduce the length of the arrows indicating the sequence of steps, ccfixed con­

nectors" are used. A fixed connector is a numbered circle. When an arrow leads to 

a fixed connector, 

FIGURE 3-7 

the ne~t step follows the arrow leading out of the fixed connector enclosing the same 

number. 

FIGURE 3-8 

Thus, 

o--....scp 

FIGURE 3-9 

4-8 



CODING 

000 READ read data 

DATA 

001 B00880 

l LOOO12 A:O 
002 ~ 

QOO011 

003 B00881 } QOO011 L:O 

004 L00880 

TOOO09 L:A 

005 KOOOOO L-...s 
C00881 O"'L 

CD 006 MOOO13 

KOOOOO 

007 M00882 8RS~SCP 

C00883 

008 500883 

900000 Stop 

009 S00881 } C00881 
L - A-..L 

010 ~ 

UOOOO6 

011 500012 O------SCP 

900000 Stop 

012 c-----. 
~ 

013 000080 
~ 

ILLUSTRATIVE EXAMPLE 

Reading the data stores 

DATA FORM CELL 

Year-to-Date FICA Earnings OOOOOOEEEEEE 880 
1\ 

Year-to-Date FICA Tax OOOOOOOOTTJT 881 

Current Pay OOOOOOPPPPPP 
1\ 

882 

Update the year-to-date FICA earnings and tax, and print the current FICA tax in form 

OOOOOOOOCCfC 

50 



FLOW CHART 

o--,sCP 

1·0225._S •• HT-H:---+T~ 

LEGEND 
91~. 50-T ~SCP 

E - YEAR TO DATE FICA EARNINGS 
T - YEAR TO DATE FICA TAX 
P - CURRENT PAY FIG U R E 3-12 

CODING 

000 READ read data 
DATA 

001 B00880 

l LOOO15 
002 ") 

E : 4200 

QOOO14 
003 BOOO15 

! S00880 
004 L00882 4200 - E : P 

TOO010 
005 BOOO15 } 4200~E C00880 
006 BOOO16 

} S00881 94.50 - T -+-SCP 
007 C00883 

BOOO16 

} 008 500883 94.50.......:r 
C00881 

009 900000 Stop 
~ 

010 B00880 } A00882 E+P~E 

011 C00880 
MOOO17 } .0225 P~SCP 

012 H00883 
A00881 T+C~T 

013 
UOOO08 

51 



014 500018 O------SCp 

900000 Stop 

015 ~ 
420000 

016 '-----t 

009450 

017 002250 

018 ~ 

STUDENT EXERCISES 

Flow chart and code the following. 

'i 1. Reading the data stores a quantity of form 

±QQQQQQQQQQQ" 

in cell 880. If the quantity is negative,print 

~~NEGATIVE. ~ 

if positive, but less than 500, 

if greater than or equal to 500, but less than 1000, 

~~~MEDIUM.~~~ 

if greater than or equal to 1000,

\
-l 2. Reading the data stores three quantities of form

OQQQQQQQQQQQ"

in cells 880 - 882.

Print the smallest of the quantities.

52

3. Reading the data stores

DATA

Badge Number

Bond Deduction

Cumulative Bond Deduction
Bond Price

FORM

NNNNNNNNNNNN
000000000000

1\

OOOOOOOCCCCC
" 0000000 PP~PP

CELL

880

881
882

883

Update the cumulative bond deduction, and if a bond can be purchased, print the
badge number and the bond price.

4. Reading the data stores

DATA

Salesmant s Number
Quant.ity Sold

Unit Price

FORM
NNNNNNNNNNNN

00 0 0 QQQQ ,,0 0 0 0
OP~PPOOOOOOO

CELL

880
881
882

If more than 50 units are sold, a discount of 10% is applied to the entire order. The
salesman receives a 5% commission on the charge to the customer. Print the sales­

man's number and commission in form

OOOOOOOCCCCC
1\

5. Reading the data stores a employee's pay of form

o OOOOOPPPP»P

In cell 880. The percentage tax is given in the following table.

PAY TAX PERCENTAGE

$ 1 - 1499 1%
1500 - 2999 2%
3000 - 4499 3%
4500 - 5999 4%
6000 or over 5%

Deduct the tax, and print the net pay in form

OOOOOONNNNNN
"

53

6. Reading the data stores

DATA

Year-to-Date Sales

Year-to-Date Commission

Current Sales

FORM

OOOOS S S S S SI\S S

000000 CCCC/\CC

OOOOOOAAAAAA
"

CELL

880
881
882

The salesman's basic commission is 5% of sales with an extra 2% for total sales

in excess of $50,000. Update the year to date sales and commission, and at the

point where year to date sales exceed $20,000 print

7. Reading the data stores

DATA

Inventory Quantity

Sales Quantity

Minimum Requirements

~QUOTA~MET .~

FORM

OOOOOOQQQQQQ/\

OOOOOOS S S S S S 1\

OOOOOORRRRRR"

CELL

880
881
882

Update the inventory. If the inventory quantity falls 'below the mInImum require­

ments, print the quantity needed to restore the inventory to its minimum level.

This quantity is to be in form

OOOOOOpppppp 1\

54-

chapter 4

Modification

. of Instructions

Both da~a and instructions are stored in the memory. The computer recognizes an

. instruction as such only when it is in SR. At no other time does the computer

make distinction between data and instructions. Both are simply words stored in

the memory. This arrangement enables a word which has been interpreted as in­

structions at one time ina program to be processed as data by other instructions

in the same program, thus allowing the computer to modify its own instructions.

The following is an' example of the modification of instructions.

55

CODING

000 50000l
~

001 BOOOOO

AOOO05

002 COOOOO
UOOOOO

003 ~~ELEC

TRONIC

004 ~COMPU Constants
TER.~~

005 000001

900000

The execution of this coding will print:

ELECTRONIC COMPUTER.

and stop the computer.

First four stage cycle

Beta time - The contents of cell 000

500003000000

are transferred to CR.

Gamma time - The LHI

500003

is transferred to SR and executed, printing the contents of cell 003:

ELECTRONIC

Delta time - The RBI

000000

is transferred to SR and executed, skipping to the next stage.

56

Second four stage cycle

Beta Time - The contents of cell 001

BOOOOOA00005

are transferred to CR.

Gamma time - The LHI

BOOOOO

is transferred to SR and executed, transferring the contents of the cell
specified, cell 000,

500003000000

to rA and rX. This word is treated as an instruction pair only when it is

in CR; at all other times it is treated as data or a constant. This word,

which was treated as an instruction during the first four stage cycle, IS

now treated as data being processed by an instruction in SR.

Delta time p The RHI

A00005

is transferred to SR and executed, transferring the contents of cell 005

to rX, adding the contents of

r A: 500003000000
and rX: 000001900000

and transferring the sum

500004900000

to rA.

Third four stage eye Ie

Beta time - The contents of cell 002

COOOOOUOOOOO

are transferred to CR.

Gamma time - The LBI

COOOOO

57

is transferred to SR and executed, transferring the contents of rA:·

500004900000

to the cell specified, cell 000.

Delta time - The RBI

UOOOOO

is transferred to SR and executed, transferring control to cell 000.

Fourth four stage cycle

Beta time - The contents of cell 000, which now contains the word

500004900000

are transferred to CR.

Gamma time - The LHI

500004

is transferred to SR and executed, printing

COMPUTER

Delta time - The RHI

900000

is transferred to SR and executed, stopping the computer.

On delta time of the second four stage cycle the computer added a positive 11
digit quantity.

000001900000

to an 11 digit quantity with a five in the sign position

500003000000

to arrive at an eleven digit sum with a five in the sign position

500004900000

This sum resulted because of the following characteristics of the adder.

58

Of two ~ords to be added at least one must have an actual sign, 0 or -, in the

sign position. If neither has a sign, the computer stalls and lights a neon on the

Supervisory Control Panel, thus indicating that an error, called an adder-alpha­

betic error, has occurred.

For purposes of the addition, any character in the sign position other than a minus

sign is treated as a plus sign, when the other word to be added has a legitimate

sign. For example, the character A would be treated as a plus sign. When the sum

is transferred to rA, the sign position will contain, not the sign of the sum, but the

character A. In any digit position other than the sign position, the addition of

{

I. two numbers produces an algebraic sum, '

2. a number and an alphabetic produces the alphabetic,

3. two alphabetics produces an adder alphabetic error.

ITERATIVE CODING

Example

Reading the data stores a credit account number of form

AAAAAAAAAAAA

in cell 820, and 60 delinquent account numbers of form

DDDDDDDDDDDD

in cells 880 - 939. If the credit account number is equal to one of the delinquent

account numbers print
~NO~CREDIT . ~

if "not,
CREDIT~GOOD .

FLOW CHART

LEGEND

A - A CRED IT ACCOUNT IIUMBER "-----~CREOIT GOOO-to-SCP
D I - THE FIRST DEL IIiQUENT ACCOUNT NUMBER
D2 - THE SECOND DELINQUENT ACCOUNT MUMBER
D 3 - THE TH I RD DEL INQUENT ACCOUNT NUMBER

Deo - THE 80TH DEL INQUENT ACCOUNT NUMBER

FIG U R E 4·1

59

CODING 000 READ } DATA read data

001 L00820

l L..
~ A: Dl

002 B00880
QOO063

003 800881 } A: D2
QOO063

004 B00882 } A: D3
QOO063

061 B00939
A: D60 QOO063

062 500064 CREDIT GOOD ~ SCP

CD
900000 stop

063 500065 NO CREDIT -+- SCP
900000 stop

064 CREDIT

l ~GOOD.

065 ~NO~CR
constants

EDIT.~

The coding shows that each delinquent account number is processed the same way.

The coding to process one delinquent account number, after executing the L00820,
takes the form

BOOXXXQ00063

where XXX is the address of the delinquent account number being processed.

Since there are 60 delinquent account numbers to be processed, and since each

delinquent account number is in a different cell, the above instructions are repeated

60 times. However, the above instructions can be stored only once and can be used

to process all 60 delinquent account numbers by modifying the address specified

by the BOrn instruction and transferring control to repeat the processing.

000 READ } read data
DATA

001 B00880

l L00820 Does the credit account number match
002 C) the current delinquent account number?

QOOO08

60

003 BOOOOI
(

)

004 (
)

~
005 AOO010

COOOOI
006 ~

UOOOOI
007 (,

)

<----,
008 500012

900000

009 c::=::>
(

OJ
010 000001

(::> 011 (
'/

'---:,
012 ~NO~CR

EDIT.~

B0880L0820 ~rA

Take the next delinquent account number.

add 000001 000000
B0881 L0820 ..a001

NO CREDIT SCP

stop

constants

This coding allows the credit account number to be compared to the delinquent
account numbers in succession as long as there is inequality. If the credit account

number is not one of the delinquent account numbers, cell 001 will eventually

contain the instruction pair

BQ0939L00820

After each iteration the contents of cell 001 can be compared for identity with
the above word. This comparison determines the end of the processing, much as a

student reading an assignment might check each page number to see if he has

completed the assignment.

000 READ } read data

DATA
001 [B00880

L00820J } Does the credit account number match
002 ~ the current delinquent account number?

QOOO08

61

003 BOOOOI

004 ~

005 AOO010

006 ~
007 500011

008 500012

009 B00939

010 000001

011 CREDIT

012 L\NOL\CR

LOOO09

QOOO07

COOOOI

UOOOOI

900000

900000

L00820

<.
~

L\GOOD.

EDIT.L\

}
}

Is the current delinquent account number

the last delinquent account number?

Take the next delinquent account number.

CREDIT GOOD ~ SCP
stop
NO CREDIT SCP
stop

constants

By custom, lines of coding that are subject to alteration are enclosed in brackets

to distinguish them from lines which do not vary. This custom is of help in check­

ing coding for correctness, both before and after it is run on the computer.

The principle shown in this example is called iterative coding.

Care must be taken in stopping the iteration at the right time. In the coding on

page 61 the constant used to determine if all delinquent account numbers have
been processed is

B00939L00820

In the following coding the constant is

000 READ

001 [B00880

002 '---:>

} DATA

L00820J

QOOO07

B00940L00820

read data

Does the credit account number match

the current delinquent account number?

62

"-

003 BOOO01'

LOOO08 Is the current delinquent account number
004 AOOO09 the last delinquent account number?

QOOOO6
005 COOOOI Take the next deJinquent account number.

UOOOOI
006 500010 CREDIT GOOD SCP

900000 stop

007 500011 NO CREDIT SCP

900000 stop
008 B00940

LOO820
009 000001

(
:> constants

010 CREDIT
~GOOD.

011 ~NO~CR

EDIT.~

The reason for the difference in constants is thattin the coding on pag"e 61, the

execution of the QOm instruction, which determines if all delinquent account

numbers have been processed, precedes the execution of AOm instruction, which

alters the address to process the next delinquent account number; while in the

coding on page 62, the execution of the AOm instruction precedes the execution

of the QOm instruction.

Item Just Processed

1st

2nd

3rd

58th
59th
60th

(rA) During Execution of QOm Instruction

In Coding on Page 61

B00880L00820
B00881L00820
B00882L00820

B00937L00820
B00938L00820
B00939L00820

In Coding on Page 62

B00881L00820
B00882L00820
B00883L00820

B00938L00820
B00939L00820
B00940L00820

Iterative coding conserves memory space in that fewer instructions need be stored

in the memory to do the processing.

63

The memOrIes of computers are limited in capacity because of the high costs for

memory per digit stored. Consequently) the more processing that can be done per

instruction stored) the greater is the area of the memory freed for the storage of

data and other instructions. Iterative coding is a powerful technique in the efficient

programming of computers.

ITERATIVE FLOW CHART SYMBOLS

In a word flow chart, the solution might appear as:

FIGURE4-2

TAKE THE FIRST
DELI NQUENT

ACCOUNT NUMBE R
ITEM

DOES THE ACCOUNT
NUMBER MATCH

THIS DELINQUENT

ACCOUNT NUMBER?

NO

IS THIS DELINQUENT
ACCOUNT NUMBER ITEM
THE LAST DELIN­
QUENT ACCOUNT
NUMBER ITEM?

NO

TAKE THE NEXT
DELINQUENT

ACCOUNT NUMBER
ITEM

NO CRED I T-..sCP

CREDIT GOO~SCP

A set of data is represented by a capital letter. The set of delinquent account

numbers might be represented as D.

To distinguish between units in a set, numeric subscripts are used. In the set D

D1 represents the first delinquent account number.

D2 represents the second delinquent account number.

D3 represents the third delinquent account number.

D60 represents the 60th delinquent account number.

Only one unit in a set is processed at a time and may be identified by an alpha­

betic subscript. For example, Di might represent the delinquent account number

currently being processed from the set D. The alphabetic subscript is used be­

cause, although only one unit is. processed at a time, it cannot be stated specific­

ally which unit is being processed at a given time.

Units are processed seeJ.uentially. Unit D1 is processed first, 02, second; D3,

third; etc. In general, after unit Di has been processed, unit Di + 1 is to be pro­

cessed. The operation

FIG U R E 4-3

provides this sequence. The operation box has a double line on the left to dis­

tinguish it from an operation which processes data. The initial condition for the

sequence is that i be equal to one so that Di = D 1. Initial conditions of the pro­

cessing are shown in an assertion flag placed immediately after the start symbol.
--.,,~. ~, ,--.-,.-,.--

ILLUSTRATIVE EXAMPLE

Reading the data stores 60 receipt amounts of form

OOOOOORRRRRR
"

in cells 880 - 939. Print the sum of the amounts.

i= 1

i+l--..j

LEGEND

A AN ACCOUNT NUMBER
D A SET OF DELINQUENT ACCOUNT NUMBER ITEMS
Di THE iTH ITEM IN 0, i= 1, ••. ,60

65

FIGURE 4-4

FLOW CHART

READ DATA S-+SCP

LEGEND
i + 1---... i _____j~

R - SET OF RECEIPT AMOUNTS
R I - I TH AMOUNT IN R, I •. I , ••• , 60

FIGURE 4-5

The following IS a description of the thinking that might have accompanied the

flow chart.

Flow chart the general processing

EJ-1 READ DATA ~I S + Rj-S ~
FIGURE 4-6

Specify the general. Initially, i is equal to one; and the sum, equal to zero.

1

S 0

FIGURE 4- 7

After the first amount is processed, the computer should advance to the second

amount.
1

S 0

READ DATA

FIGURE 4-8

66

The second amount should be processed in the same way as the first.

1 FIGURE 4-9

S 0

READ DATA S + Ri~S + 1 .. i

Thus, specifying the general sets up the iterative loop.

Finally, providing the exit from the iterative loop and flow charting the ending

routine completes the flow chart, which is shown in figure 4-5.

000 READ } DATA read data

CD 001 [800880
A00007] } S+Ri-+-S

002 COOO07
BOOOOI

003 LOOO08 } i : 60
QOOO06

004 AOOO09 } i + l-...i
COOOOI

005 ~
UOOOOI

006 500007 S SCP
900000 stop

007 [~] } S ~
008 BOO 939 } AOOO07 constants
009 000001

<---:>

67

STUDENT EXERCISES

1. Reading the data stores 60 quantities of form

± QQQQQQQQQQQ"

in cells 880 - 939 •. Print the number of negative quantities.

2. Reading the data stores

1. a pay of form

in cell 880

and 2. ten deductions of form

OOOOOOOODQ,DD
• A 1\

in cells 881 - 890..

Each deduction is processed as follows. If the deduction will not reduce
the pay below $15, it is applied. If the deduction will reduce the pay below
S15, it is not applied but is printed instead. When all deductions have been
processed, print the pay.

3. Reading the data stores, 60. quantities of form.

OO.O.O.OO.QQQQQQ"

in cells 880. - 939 •. Print the subtotal of each group of ten quantities and

the total of the quantities.

FUNCTION TABLE LOOK-UP

ILL US T RAT IV E EXA M P L E

Reading the data stores

1. an employee's base pay of form

O.OOOo'BBB~BBo'

in cell 880.,

68

2. the employee's shift of form

OOOOOOOOOOOS

in cell 881., where S is a key and can take values 1-6,

3. six percentages of form

O~PPOOOOOOOO

in cells 821 - 826.

The fmployee is paid a shift differential, each shift drawing a different percentage

of b~se pay. The shifts and the cells in which the applicable percentages are

stored are in the" following re"lationship.

SHIFT

1

2

3
4
5
6

Print the pay in form

CELL

821
822

823

824

825

826

OOOOOOAAA1\AA

T~e problem could· be solved by testing the shift key against each possible value,

and on the basis of the tests, choosing the appropriate percentage. However, if this

approach were used, the majority of the coding would be concerned, not with the

problem of computing the pay, but with choosing the appropriate percentage, which

is merely preparatory to the problem solution. The following approach eliminates

this disadvantage. The table in the example shows that the shift key is in a one

to one relationship with the units digit of the address of the cell in which the

appropriate percentage is stored. If S represents the shift key; and m, the address

of the appropriate cell; the following holds.

m = 820 + S

This relationship, or function, can be used to derive the appropriate cell directly
from the shift key.

69

000 READ
DATA read data

001 B00881
AOOO06 Derive cell from shift.

002 COOO03 , .,
003 I LOO880

MOO82S1 Print pay.
004 C00882

500882
005 900000 stop

c
)

006 L00880 } M00820
constant

Since this coding uses a function to look up the appropriate percentage from a

table, it is an example of the technique called tc function table look-up". Function

table look-up is a programming principle that makes use of a relationship between

the data and the addresses of the cells in which the data is stored to increase

computer efficiency with respect to the conservation of both memory space and
computer time.

FUNCTION TABLE LOOK-UP IN FLOW CHARTS

If a capital letter is used to represent the table, the table entries can be represent­

ed by subscripts. The entry desired depends on the argument with which the table

is entered. If P represents the percentage table in the above example; and S, the

shift key; the entry desired can be represented as P s .

READ DATA

LEGEND

S - SHIFT
P - A SET OF PERCENTAGES
PI - THE ITH PERCENTAGE IN P, I • I, ••• , 6
B - BASE PAY

FIGURE 4-10

70

SHIFT INSTRUCTIONS

n is used to represent a variable second instruction digit.

INSTRUCTION OPERATION

Onm Shift (rA), excluding sign, n positions left.

With the exception of the sign digit, shift (rA) left n
digit pos.itions. Transfer zeros to the vacated positions.

When executing the Onm instruction, the computer ignores m. Characters shifted

beyond the capac.ity of rA are lost.

INSTRUCTION OPERATION

-nm Shift (rA), excluding sign, n positions right.

With the exception of the sign d.igit, shift (rA) right n digit positions.

Transfer zeros to the vacated positions.

When executing the -nm instruction, the computer ignores m. Characters shifted

beyond the capacity of rA are lost.

rA I 0 II 12181 ~ I~~ I B I c I D 19161 al

0 4 0 0 0 0

rA lolAIBICIDl916lalolololo\

7 0 0 0 0
rA lololololololololAIBlclDI

FIGURE 4·11

INSTRUCTION OPERATION

;nm Shift (rA) left n positions

Shift (rA) left n digit positions. Transfer" zeros to the vacated positions.

When executing the ;nm instruction, the computer ignores m. Charcters shifted be­

yond the capacity of rA are lost.

71

INSTRUCTION OPERATION

. nm Shift (rA) n positions right .

Shift (rA) right n digit positions. Transfer zeros to the vacated positions.

When executing the .nm instruction, the computer ignores m. Characters shifted be­

yond the capacity of rA are lost.

rA loltl2lsl'dAlalclol9lslal

• 5 0 0 0 0 .,
rA IAlalclolslslalololololol

• 8 0 0 0 0

rA lololololololololAIBlclol

FIGURE 4-12

EXAMPLE

Reading the data stores

1. the weight, in pounds, of a package of form

OOOOOWWW"OOO/_

in cell 820

and 2. 60 shipping rates in dollars and cents per pound, of form

O~ROOOOOOOO

in cells 900 - 959.

72

For WEIGHT

0000 - 0099

0100 - 0199

0200 - 0299

5900 - 5999

apply rate stored in CELL

900
901

902

959

Print the cost to ship the package.

FLOW CHART

READ DATA

LEGEND

W - WEIGHT
R - A SET OF RATE ITEMS
R i-THE i TH I TEM IN R, I = I, ••• , 60

FIGU R E 4-13

CODING

The table in the example shows that the thousands and hundreds digits of the

weight are in a one to one relationship with the tens and units digits of the address

of the cell in which the appropriate rate is stored. Thus, the address of the appro­

priate cell is 900 added to the two most significant digits of the weight. Dividing

the weight by 100 will give the quantity to be added to 900, since the table in­

tervals are 100 pounds. However, since the weight may not be multiple of 100, the

quotient may also contain a fractional part. If the weight were 4627,

4627
100

46.27

t t fractional part

~ntegral part

Thus if W is the weight, the quantity to be added to 900 is the integral part of

73

represented by

W

100

If m represents the appropriate cell, the function is

m = 1900 +~)
,~ IP

If the computer divides the weight by 100, both the integral and fractional parts of
the quotient will be transferred to rA. The parts might be separated by use of a

shift instruction.

In the following coding no divide instruction is actually used, since division by

100 can be performed by moving the assumed decimal point two positions to the

left.

000 READ
DATA

001 B00820

.50000
002 A00006

003

004

C00003

fL0082~ I
L M009'!.!l
C00821

500821
005 900000

000000
006 L00820

M00900'

EXAMPLE

Reading the data stores

} read data

Rw W SCP

stop

} constant

1. the weight in pounds of a package of form

OOOOWWWWW~OOO

in cell 820

7~

and 2. 60 shipping rates per pound of form

O¥ROOOOOOOOO

in cells 900 - 959

For WEIGHT apply rate stored in CELL

00000 - 00249
00250 - 00499
00500 - 00749

14750 - 14999

900
901
902

959
Print the cost to ship the package.

FLOW CHART

CODING
See Figure 4-13

If W represents the weight; and m, the appropriate cell; the function is

m = 1900 + i (--L)
,250 lp·

In the following coding a multiply rather than a divide instruction is used, because

for a known number, it is always faster for the computer to multiply by the recipro­

cal of the number than to divide by the number itself.

000 READ }
DATA

read data

001 L00820
POOO06,

002 AOOO07
COOO03

'003 tQ0820 MOO9~
RW W -"SCP

004 C00821
500821

005 900000 stop

'-- ,
006 000000

4490000 constants
007 L00820

M00900

75

STUDENT EXERCISES

1. Reading the data stores

DATA

Quantity A

Quantity B

FORM

±AAAA~OOOOO

±OOOOOBBBBBB"

Print the sum of the quantities in form

+OOOOSSSSSSS"

2. Reading the data stores three quantities, A, Band C, of form

in cell 880. Print the quantities, each in form

OOOOOOOOQQQQ"

76

CELC

880

881

chapter 5

I tern Processing

THE ITEM

A unit of data is called an item. For example) each delinquent account number in

the set of delinquent account numbers in the example on page 59 is a unit of data,

or an item.

THE FIELD

Up to this point an item has been a single piece of information. In general, an item

consists of more than one piece of information, called fields, and is generally com­

posed of more than one word. An inventory item may contain at least the following

fields.

1. Stock number.

2. Description

3. On hand quantity

4. On order quantity

5. Minimum requirements

6. Unit price

77

An inventory item might have the form

word

where

0: NNNNNNNNNNNN

1: DDDDDDDDDDDD
2: OHHHHHHH 0000

" 3: OOOOOOOO,pOOO

4: ORRRRRRROOOO
" 5: OP~PPPOOOOOO

N - Stock number

D - description

H - on hand quantity

o - on order quan ti ty

R - minimum requirements

P - uni t price

REPRESENTING FIELDS ON FLOW CHARTS

Fields are represented by superscripts to the item symbol. If I is the set of in­

ventory items; and Ii, the ith item in I,

IN is the stock number of Ii
i

I~ - the description of Ii
1

I~ - on hand quantity of Ii
1

I? - on order quantity of Ii
1

I~ - minimum requirements of Ii
1

I~ - unit price of Ii
1

WRITING DATA

Up to this point problems have been such that the results of processing, or output

data, have been small in quantity, and the SCP has been used to print the output

data. Generally, output is large, and printing it directly from the computer would

be inefficient, since a printer operates much more slowly than a computer.

78

Computer output is generally recorded on tape. There are instructions, called write

instructions, which when executed, perform the writing. Write instructions will not

be described her~. Instead, writing data will be indicated by the words, "Write

Data" .

Just as it is generally inefficient to read input data an item at a time, it is general­

ly inefficient for a computer to write output an item at a time. Instead, output

items are grouped in the memory and are written on tape as a group.

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 880-939, 6 ten word job items of the form:

where N -
C -
L -
M -
0 -
X .

job number

contract price

labor cost

material cost

overhead cost

other data

NNNNNNNOOOOO
OOOOOOOCCCACC
OOOOOOOLLLALL
OOOOOOOMMM~M

OOOOOOOOOOpO
XXXXXXXXXXXX
XXXXXXXXXXXX.
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

For each job ite'm produce a two word profit item of form:

NNNNNNNOOOOO
0000000 AAAAA

"

79

where N - job number

A - profit

Write the profit items.

FLOW CHART

LEGEIID

J - SET OF JOB ITEMS
J, - I TH I TEM III J, , • 1, ••• , 6

J? - IIUMBER OF J,

"f - PRICE OF ",
"T - MATERIAL COST OF ",
J~ - LABOR COST OF J,
"1 - OVERHEAD COST OF J I
P - SET OF PROFIT ITEMS
P, - 'TH ITEM P, , • 1, ••• ,6

p? - IIUMBER OF PI
pT - PROFIT OF P,

CODING

000 READ
DATA

FIGURE 5-1

read data

001 [

002 [

003 [

B00880
C00940] J~--. p~

004 [

005

B00881

S00883

C00941

L00014

S00882

S00884

BOOOOI

]
]
]

eLM 0 A J. - J. - J. - J .-P.
1 1 1 1 1

Q00012 : 6

80

006 AOOO15
COOOOI

007 BOOO02
AOOO16

008 COOO02
BOOO03

009 AOOO16 i+1-i

COOO03
010 800004

AOOO17
011 COOO04

UOOOOI
012 WRITE write data

DATA
013 900000 stop

000000
014 800930

C00950
015 000010

000002
016 000010

000010
017 000002

000000

W'~KING 5T'~AGE

A considerable portion of the above coding is composed of the instructions in cells

004" - 011, the instructions that alter the addresses of the processing instructions.

This alteration is necessary so that after processing one item, the next will be

processed. This set of instructions is called the item advance coding. The reason

for the many instructions in the item advance coding is that each time an item is

addressed by a processing instruction, that address must be modified to refer to

the next item. The more an item is addresse d in the processing, the longer the

item advance coding will become. This disadvantage is removed by using working

storage.

Using the previous method of item advance, the processing coding IS initially

directed toward the first item in the set.

PROCESSING

FIGURE 5-2

ITEM 2 ITEM 3 I TEM ~ ITEM 5

81

When the first item has been processed, the direction of the processing is changed

from the first to the second item.

PROCESSING

ITEM I ITEM ij ITEM 5

FIGU RE 5-3

When the second item has been processed the direction of the processing is changed

to the third item,' then the fourth item, etc.

A different approach to this problem is as follows. Initially the processing is direct­

ed toward the first item as shown in Figure 5-2. When the first item has been pro­
cessed, instead of changing the direction of the processing to the second item,

the second item is transferred to the location o.f the first.

PROCESSING

ITEM 3 ITEM ij ITEM 5

FIGURE 5-4

Thus, the second item can be processed with the same set of instructions. When

the second item has been processed the third item is transferred to the first item

location, etc.

82

PROCESSING

ITEM lI- ITEM 5

FIGURE 5-5

The area of the memory toward which the processing is directed is called working

storage, since it is the area in which the item heing processed is stored.

The area in which items to be processed are stored is called the input area; the

area in which the items resulting from processing are stored, the output area.

Although working storage areas can be independent of the input and output areas,

this situation is not necessarily the case. The first item location in the input area

and the last item location in the output area are generally available for use as

working storage areas, and for conservation of memory space, these locations are

generally used.

By using working storage, the number of times an item is addressed in the pro­
cessing has no effect on the amount of item advance coding. This amount is small
since ii: takes few instructions to move an item to working storage.

ITEM REGISTERS

To facilitate the movement of items, the computer has two item registers:

Register V, rV, a two-word register
Register Y, rY, a ten-word register

Instructions affecting these registers are:

V m, This instruction causes the contents of memory cell m and m\ + 1 to be dupli­
cated in rV. For our purposes m must be a multiple of two; that is, an address like
000, 102, 504.

W m, This instruction causes the contents of rV to be duplicated in memory cells
m and m + 1. Again, m must be a multiple of two.

To illustrate these orders, suppose memory cell 100 contains a quantity A, and
cell 101 a quantity B. If the order V 100 is given and at any later time W 304, say,
cell 304 contains A and 305 B. The contents of rV are not destroyed upon reading
out.

83

Y m, This instruction causes the contents of cells m, m + 1, ... , m + 9 to be dupli~ .
cated in rY. m must be a multiple of ten.

Z m, This instruction causes the contents of rY to he duplicated in memoty cells
m, m + 1, ... , m + 9. Again, m must be a multiple of ten. The contents of rY are
not destroyed upon reading out.

For example, if Y 100 is given, then a Z 310,

100: A
101: 'B

And: 102: C

109: J

310: A
311: B

Then 312: C

319: J

The following coding uses working storage to solve the preceding example.

000 READ read data

CD
DATA

001 B00880 Jr:r-P~
C00950

I I

002 B00881
S00882

003 S00883
eLM o A

S00884 Ji-Ji-J i - J .--P.
I I

004 C00951
V00950

005 rOO~4~
YOO890]

006 Z008~0

} BOOO05
i : 6

007 LOOO12
QOO010

008 AOOO13 i+1~i

COOO05
009 000000

UOOOOI
010 WRITE write data

DATA
011 900000 stop

000000
012 W00950

Y00940
013 000002

000010

8~

The item advance coding is in cells 004-009. The variable word IS In cell 005.
The Bam, Lam and QOm instructions in cells 006 and 007 test i against 6. The
variable word will be

W"'50Y00940

immediately after the last item has been processed. The Vm instruction in cell
004 and the Wm instruction in cell 005 transfer the output item just produced from
output working storage to its proper lc;>cation in the output area. The Y m instru ction
in cell 005 and the Zm instruction in cell 006 transfer the next input item from its
location in the input area to input working storage. The AOm and Cam instructions
in cell 008 increase the addresses of the instructions in the variable word. The
UOm insttuct~on in cell 009 transfers control to the processing instructions.

STUDEI\IT EXERCISE

Reading the data stores, in cells' 880-939, 6 ten word inventory items of form

where N - stock num ber\

H - on hand quantity

a - on order quantity

OOOOOOONNNNN
00000 0 O»HHHH~tit\
000000000080 ~<~!"\. , A ,,:;,~ ""

OOOOOOORRRRR" \)~
XXXXXXXXXXXX I
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX'
XXXXXXXXXXXX
XXXXXXXXXXXX

R - minimum required quantity

X - other data

and in cells 820-831, 6 two word sales items of form

OOOOOOONNNNN
OOOOOOOQQQQQ

where N- stock numb"er

Q - sales quantity
J

85

The inventory item in cells 880-889 and the sales item in cells 820 and 821
have the same stock number; the item in cells 890-899 and the item in cells
822 and 823 have the same stock number; the items in cells 900-909 and the
item in cells 824 and 825 have the same number; and so on. Write the updated

inventory items. If the sales quantity for an inventor} item reduces the sum of the

on hand and on order quantities below the required quantity, print the stock number

of the inventory item and the quantity needed to bring the sum back up to the re­

quired quantity in form

OOOOOOODDDDD"

FIELD SELECTION INSTRUCTIONS

INSTRUCTION

FOm

INSTRUCTION

GOm

OPERATION

(m~rF

Transfer (m) to rF, or fill rF with (m).

OPERATION

(rF)---+o-m

Transfer (rF) to m.

MNEMONIC

Fill

A word may contain more than one field. The shift instructions are one means of

separating one field of a word from others. Field selection instructions al'e uSed

for the same purpose, but are faster and more versatile.

Starting with the Hi" and moving up the collation sequence of characters" every

other character is called odd. The remaining characters are called even. Recall -- -that the relative magnitude of characters can be determined by reading down the

chart, which is figure 1-18.

INSTRUCTION OPERATION MNEMONIC

EOm "odd" characters of (rF) extract (m)--+-rA Extract

Replace the characters of (rA) that correspond to the odd characters of (r :F)

with the corresponding characters of (m): or extract (m) into rAe

86

880

E o o 8 8 o
rF 10 I 0 I 0 I 0 10 101 0 I 0 II II II II I

I

FIGURE 5-6

ILLUSTRATIVE EXAMPLE

In memory cell 100 is a quantity in the following format:

000 XXX XXX XXX /\ .

which we desire to print on the ~upervisory control printer, suppressing the non­
significant zeros. That is, if 100: 000 000 690 760 we wish to prin.t 690 760 only.

<. 000 L00100 000 XXX XXX XXX- rL
BOOO06 001 - - - - - - - - -~ rA

001 -10000 Shift rA right one place
TOOOOI Transfer control if rA > rL

002 HOOOOS- rA-rF
FOOO08

003 BOOO07'
E00100

~~~ ~~~ ~~~ ~~~-rA 
004 HOOOOS 

50000S Print edited quantity 
005 900000 

Stop; 
000000 

006 001---
---- .. -

007 ~~~~~~ 

~~~~~~ 

OOS
Working Storage

Note that in line 001, the iterative portion of the routine, the word in rA is succes­
sively shifted to the right until the 1 lines up under the left-most non-zero digit of
the word in cell 100. The ones and dashes then can be used as an extractor, re­
placing the space symbols with the most significant digit of 100 and all digits to
its· right. The space symbols, of course, move the typewriter carriage but do not
print. If we were to print a column of numbers edited in this fa"shion, they would
be aligned on the least significant digit. If we wished them aligned on the most
significant digit, we would replace line 007 with ignores: iii iii iii iii.

87

STUDENT EXERCISES

1. Reading the data stores, in cell 880 and 881, two one word 'items of form

° AAAOBBBOCCC"
1\ " "

where A, B, and C are numeric quantities. Print the sum of the C fields in form

2. Reading the data stores

DATA

Quantity A
Quantity B

° ° 000 0 0 0 S S S S",

FORM

00 OAAI\AA 0 00 0 0
OOOOOOBBBBBB",

Print the sum of the quantities in form

00 os S S SS SSASS

1".

CELL

880
881

3. Reading the data stores in cells 880- 939, (30 \wo word census items of form
\, .. ./ '-,

where S - state code
C - city code

A- age

, M - marital status code

I - income bracket code

G - sex code

OSSOOOCCCCOO
I r '-

OAAAO~ O,~ OOO~'~·

.' ' \

Print the number of single (marital status code S) females (sex code F), {~~~11
". . ,"",..".,.", ...

or olde~, living in Sheboygan (city code 1313), Wisconsin (state code 24), and
earning $10,000 or more (income bracket code U).

88

4. Design the following items:

1. Inventory item

FIELD

Stock Number
'Description

Unit of measure

On-hand amount
On-order ,amount

Minimum Reorder Level

Unit Price

2. Master Employee Item

FIELD

Badge N urn ber
Social Security Number

Hourly rate of pay

Number of exemptions

Job description code

Year-to-date gross pay

Year-to-date FICA tax

:. ' 3. Transaction Item

'FIELD

K"~y
. Transaction Code
Transaction Information

89

NUMBER OF CHARACTERS

8

24
1

5
5
5
6

NUMBER OF CHARACTERS

8

9
4
2

2

7

6

NUMBER OF CHARACTERS

8

4
12

chapter 6

Subroutines and

Variable Connectors
COMMON SUBROUTINES

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 880-939, 6 ten word job items of form

ssssssssssss
oooooooppP,.pp
OOOOOOOLLL"LL
OOOOOOOMMM"MM
000000000000

If.

XXXXXXXXXXXX
XXXXXXXXXXXX
xxx xxx xxx xxx
xxxxxxxxxxxx
xxxxxxxxxxxx

where S - salesman code and can be

A - if salesman A made the contract
B - if salesman B made the contract

90

j

Print

P - contract price
L - labor cost
M - material cost
o - overhead cost
X - other data

1. the gr0ss sales of salesman A,
2. the number of contracts netting $250 or more made by A,
3. the gross sales of B,

. and 4. the number of contracts netting $250 or more made by B.

FLOW CHART

I • I
Ga • Gb • Na • Nb • 0

READ DATA

L-____________________ ~ 2

.I + I~i i------------------------_+(

LEGEND

J - SET OF JOB ITEMS

J 1 - iTH ITEM IN J, I • 1, ••• , 6
JT - SALESMAN OF J 1
J.Y - PRICE OF J 1
J? - OVERHEAD COST OF J i
J~ - LABOR COST OF J 1
JT - MATERIAL COST OF J 1

FI G U R E 6-1

91

000 READ

001 800880

002 000000

004 C00027

005 :;00882

006 S00884

007

CD 008

009

010

--~011

012

014

015

016

017

018

019

020

021

022

023

024

000000

[Y00890

B00008

000000

A00033

000000

B00026

C00026

S00882

S00884

000000

000000

B00028

C00028

C00029

500026

500027

DATA

LOO030

QOOO13

A00881

B00881

S00883

L00031

T00021

Z00880]

L00032

Q00023

C00008

UOOOOI

A00881

B00881

S00883

L00031

T00019

U00008

A00034

U00008

A00034

U00008

500028

500029

J

92

read data

J~ : A

p
-GB GD + J i

L JM. 249.99 J~ - J? - J i - i'

i : 6

. l_i 1 +

L JM: 249.99 J~-J~-Ji- i

N + l_NB B

G
A

_ , Scpo NA_ SCP

GB - , SCpo NB - SCP

025 900000 stop
00 000

026 000000
GA 000000

027 000000 GB 000000
028 000000

000000
NA

029 000000 NB
000000

030 AAAAAA
AAAAAA

031 000000
024999

032 Y00940
-Z00880

033 000010
000000

034 000000
000001

Tbe coding in cells 004 - 007 is duplicat.ed in cells 014 - 017. This duplication

can be eliminated, with the consequence that memory space will be conserved, by

mc:~ans of the programming principle of the common subroutine.

In the flow chart the duplication is shown by the repetition of the relative magni­

tu de test. This test can be made a common subroutine. The subroutine entrance,

or starting point, is represented by a triangle with an arrow leaving it; the exit,

b) a triangle with an arrow entering it. Subroutine symbols are distinguished from

ea,ch other by letters, the letter used for a particular subroutine usually being a

mnemonic for the operation done by the subroutine. In the following the letter P is
used for tfprofittt.

Whenever, on a logical line of flow, it is desired that a subroutine be executed

two concentric circles containing the letter of the subroutine are drawn. This

symbol means that, once the subroutine exit is reached, the logical line of flow

continues from the point where the subroutine was entered.

93

J ~ - J ~ - J ~ - J 7 249.99

<

FIGURE 6-2

For example, in the following flow chart (Figure 6-4) after the operation, G A + J~
1

..... G A' the subroutine symbol

FIGURE 6-3 ®
means tC execute subroutine P, and when the subroutine exit is reached, continue
with the operation, NA + l N A".

i • I
6 • 6

..... ------II~ 2

LEGEIID

~ - SET OF JOB ITEMS
~, - I TH I TEM III J, , • I, ••• , 6 I

~T - SALESMAII OF ~,

~f - PRICE OF ~I

~f - OYERHEAD COST OF ~,

~l - LABOR COST OF ~,

J, - MATERIAL COST OF J,

FIGURE 6-4

94-

In coding from a flow chart cQntaining common subroutines, every time the logical

line of flow encounters a subroutine symbol, it is necessary to code a UOm in­

struction to transfer control to the com'moo subroutine entrance. When the common

subroutine exit is reached, another UOm instruction is needed to transfer control

back to the point in the coding from which control was originally transferred. But

since the common subroutine may be entered from more than one point in the coding,

the:, address portion of the UOm instruction at the common subroutine exit cannot

bf! fixed, but must vary according to the point in the coding from which the common

subroutine was entered. For e~ample, if a common subroutine can be entered by

means of a UOm instruction in cell 005 and also by means of a UOm instruction

in cell 010, the UOm instruction at the commpn subroutine exit must at times be

UQ<)006, and at other times be U00011. In this situation the ROm instruction is use­

ful.

INSTRUCTION

ROm

OPERATION

OOOOOOUO(CC)---..m

MNEMONIC

Record

Store a word consisting of six zeros, aU, two zeros and the three least

significant digits of (CC) in m, or record OOOOOOUO(CC) in m.

R 010 o 2 1

021

cc 1010101010101010101010161

FIGURE 6-5

Ccnsider the foflowing, (alpha time has just been completed) oooooouoo

SR

1010/0/0/0/5/
C4)NTROL UNIT

CC

10101 010 10 10 10 I 0 I 0 10/0151
CR

IAloioisialoicioiolol2161
LHI RHI

rA rX rL rF

[2]>101010101010101010101 101010101010101715131215\ 10iAloioioioioioioioioioi lololololololollllllilid
AltiTHMETIC UNIT

] 021~0~0~

MIEMORY UNIT
005 ~~ 999 r==J

FIGURE 6-6

95

On beta time

SR CC CR

\ 0 \ 0 \ 0 \ 0 \ 0\5\ 101010101010101010101011
LHI RHI

CONTROL UNIT
rA rl rL rF

1010101010101010101010101 10101010101010 17111a 1211i! lolA 101010101010101010101 101010101010101111111"11 "

ARITHMETIC UNIT

MEMORY UNIT FIGURE 6-7

On gamma time
SR CC CR

011111 10101010101010101010101.1

CONTROL UNIT

rA rl rL rF

101010101010101010101 01 ~ 101.0 101010101017 hll It 1.1 I. IA 1010101010101.1010(01 10101010101 ijO ItI"" III!

ARITHMETIC UNIT

~IL--___ J
0C!i {ru'O"21 UOO!!iJ

MEMORY UNIT FIGURE

On delta time

SR cc CR

II.U·· 01010101010101010101113 IRlolololzlllulololol "31
LHI RHI

CONTROL UNIT

, rA rl rL rF

1.1.1010101010101 010101 ~ 10101010101010171.1.121.1 Itla 1.1.10101.10101.10101 10101 ij 01 iolol d d d d I!

ARITHMETIC UNIT

02'~
"" 1 ___ :l....J

MEMORY UNiT FIGURE 6-9

If cell 013 were the entrance of a common subroutine; and cell 021, the exit; and

if the common subroutine were to be entered from cell 005; the execution of the

96

UC m instruction transfers control to the common subroutine. The ROm instruction

executed on y Time guarantees that, when the common subroutine exit is reached,

th(; instruction pair
000000

UOOO06
wi] I be executed, tra~sferring control to cell 006, to continue the processing be-

gUfi before transferring to the subroutine.

000 READ

CD
DATA read data

001 B00880
LOO029 J~ : A

002 000000
QOOO08

003 BOO026
AO.O 881 GB +J1-6B

004 COO026
000000 @ 005 ROO021
UOOO13

006 BOO028
AOO030

NB + I-NB 007 COO028
UOOO16

008 BOO025
A00881

GA + J~-GA 009 COO025
000000

010 ROO021 @ UOOO13
011 BOO027

AOO030
NA + I-NA 012 COO027

C}> UOOO16
013 B00881

S00882
014 S00883 POL M. 4

S00884 J i - J i - J i - J i . 2 9.99

015 LOO031
TOO021

0 016 Y00890
Z00880

017 BOOO16
LOO032 6

018 000000 1 :

QOO022
019 AOO033

COOO16
1 + l----..i

020 000000
UOOOOI

97

1

021 000000 [? UOOVAR
022 500025

500027 GA - SCP ; 6A -SCP
023 500026

500028 GB - SCP; 6 B -SCP
024 900000

000000 stop
025 000000

000000 GA
026 000000

000000 GB

000000
000000 NA

000000
NB 000000

029 AAAAAA
AAAAAA

030 000000
000001

031 000000
024999

032 Y00940
ZOO880

033 000010
000000

VARIABLE CONNECTORS

The example can be flow charted in another way. (The notation from ® to @.
in figure 6-10 is incomplete).

98

i = I
Ga = Gb = "a ~ ~b = 0

READ DATA

i + I~ j ~-----------------------..

LEGEND

J - A SET OF JOB ITEMS
J I - THE I T HIT E MIN J, i • I, ••• , 61

JT - THE SALESMEN OF J j

Jf - T~E PRICE OF J 1
Jf - THE OVERHEAD COST OF J,
J~ - THE LABOR COST OF J j

JT - THE MATERIAL COST OF J,

F' GURE 6-10

This flow chart has a point of indetermination at connector three. In some cases

the logical line of flow is to the operation, NA + l~NA; in other cases, to the

operation, NB + l~NB. Thus, connector three must be variable. That is, con­

nector three must act as a switch, sometimes switching the logical line of flow to

99

one operation; sometimes, to the other - just as a railroad switch sometimes

switches a train to one track; sometimes, to another. A variable connector is

actually represented on a flow chart as a switch, with poles and a terminal. The

terminal is a connector with a subscript ttv" to the number. The pole$ are con­

nectors with consecutive alphabetic subscripts to the number.

FIGURE 6-11

For clarity, the terminal of the variable connector should be symmetrical with the

poles.

For a variable connector to operate correctly, it must be set, just as a switch is

set. The setting of a variable connector is represented on a flow chart as a square,

called a set box, containing a period and the pole of the connector to, be set. For

example, the set box

- I.3a •

FIGURE 6-12

means that, when the logical line of flow reaches the terminal of variable con­

nector three, it will be switched to pole a. Just as the controls that operate a

railroad switch may be separated from the switch by an intervening distance, the

set box that sets a variable connector may be, and usually is, separated from the

variable connector by intervening operations. In the following flow chart, the test

for relative magnitude intervenes between the set boxes for variable connector

three and the variable connector itself.

100

i = I
Ga = Gb = "a = "b = 0

READ DATA

+ I~i~--~'~
LEGEND

J - SET OF JOB ITEMS
J, - I TH ITEM IN' J, • I, ••• , 6
JI

i - SALESMAN OF J,

Jf - PRICE OF J,

Jf - OVERHEAD COST OF J,

J~ - LABOR COST OF J,
JT - MATERIAL COST OF J,

FIGURE 6-13

This flow chart is logically equivalent to the flow chart in figure 6-4 and can be

coded in the same way. The difference between the two is that one uses the pro-

, gramming principle of the common subroutine; the other, the principle of the vari­

able connector. The programming principle of the variable connector is more

general than that of the common subroutine and is used many times when there
is no common subroutine. For example, it often occurs in a problem that for a

certain number of items to be processed a given operation must be performed, but

for the processing of the remainder of the items the operation is not necessary.

101

The operation can be removed from the processing coding by means of a variable

connector.

Variable connectors can be set by means other than the use of the ROm instruction.

Setting the variable connectors with BOrn COm instruction pairs, the coding' for

the example might be as follows.

000 READ
DATA

read data CD 001 B00880
LOO027 s

002 000000 J i : A

QOOO06
003 BOO024

A00881
004 COO024 GB + J~-6B BOO028
005 COOOll .3b UOOO09
006 B00023 l A00881 GA+J~-GA 007 COO023

BOO029
008 COOOll

000000 .3a

(0 009 B00881
500882

010 500883 J~ - J9 - J~ - J~ : 249.99 500883 1 1 1 1

@ 011 LOO030
TOOVAR

Y00890

013 BOOO12
LOO031 6 014 000000
QOO021

015 AOO032
COOO12 i + 1_i

016 000000

--c9
UOOOOI

017 BOO025
AOO033 NA + 1----- NA 018 COO025

~
UOOO12

019 BOO026
AOO033 NB + 1---toNB 020 COO026
UOOO12

102

021 500023 GA~SCP; NA-SCP
500025

\ 022 500024 GB---"SCP; NB------SCP
500026

023 000000
GA 000000

000000 Gs

025 000000
NA

026 000000 NB
000000

027 AAAAAA
AAAAAA

028 LOO030
TOOO19

029 LOO030
TOOO17

030 000000
024999

031' Y00940
Z00880

,/ 032 000010
000000

03'3 000000
000001

In this coding variable connector three is embodied in the address part of the TOm
~ "'-

instruction in cell OIl. This address part varies between 017 and 019, depend-

ing on whether control is to be switched to pole a or b. The variable connector is

set to pole ,a by the BOrn COm instruction pair in cells 007 and 008 to pole b by

the pair in cells 004 and 005.

In some flow charts using variable connectors it occurs that initially a variable

connector should be set to some given state. This fact is indicated by showing the

notation for the setting of the variable connector, not in a set box, but in the as­

sertion flag.

STUDENT EXERCISE

Reading the data stores:

1. six ten word A items in cells 880-939
/

2. six ten word B items in cells 820-879
"-

Eacl:t A item has for its first word a key, and the items are in ascending order by

key. Similar remarks hold for the B items. Create a set of 12 items, consisting of

the six A items and the six B item's, which is in ascending order' by key. (Such an

operation is called a tcmerge"). Write the merged items.

103

SUBROUTINES

The coding that, when executed, performs a large operation is called a routine. The

coding that performs a payroll operation could be called a payroll routine.

The coding that, when executed, does a suboperation of a routine is called a sub­

routine. A payroll routine might consist of the following subroutines.

1. Determination of gross pay.

2. Determination of medical pay.

3. Determination of withholding tax.

4. Determination of FICA tax.

5. Determination of group insurance contribution.

6. Determination of union dues.

7. Determination of net pay.

8. Item advance.

U sing the concept of the subroutine, a routine can be organized into

1. a set of subroutines,
and 2. a framework, or main chain, which specifies the order in which the subrou­

tines are to be executed and performs minor processing.

For example, the payroll routine might be flow charted as follows.

DETERMIMATIOII OF

.. OSS PAY

DETERM I NAT I ON OF

FICA TAX

DETERMIMATIOII OF

NET PAY

FIGURE 6-14

10""

DETERMINATION OF

UNION DUEl

The subroutine concept allows the programmer to flow chart first in terms of sub­

routines. He can then flow chart each subroutine as an essentially distinct entity.

The subroutine concept not only saves memory space when used with respect to

the common subroutine, but also simplifies both the flow charting and coding of a

complex routine. Therefore, all of the following problems will be flow charted and

coded in subroutine form. Generally each subroutine performs one operation and

rna y be categorized as follows:

1. Starting subroutin~ - initial operations

2. Input subroutines

3. Processing subroutines

4. Output subroutines

5. Ending subroutine

In the illustrative and student 'exercises In this manual initial, processing, and

ending operations, because they are short, may be coded in the main chain of the

program. Whenever these operations are lengthy or detailed, however, they should

be treated as distinct subroutines.

105

chapter 7

Detailed

Description

of Instructions
TRANSFER OF CONTROL INSTRUCTIONS

It has been stated that for the proper execution of the instructions, UOm, QOm and

TOm, the address part of the instruction m\lst be the three least significant digits

of the word in which the instruction appears. Up to this point this requirement has

been met by always coding a transfer of control instruction as a RHI. In certain

situations it is possible and advantageous to code a transfer of control instruc­

tion as a LHI, and the above requirement can still be met.

Suppose th'at one processing path is to be taken if the contents of cell 820 are

greater than or equal to the contents of cell 880, and another is to be taken if

the contents of cell 820 are less than the contents of cell 880. The coding might

be

010 B00820
L00880

011

T00020

012

Q00020

106

In this coding, the LHI in cells 011 and 012 are wasted, since they are skips.

It would be more efficient if the QOm instruction were the LHI in cell 011. This

situation is possible, since the address part of the QOm will still be the three

least significant digits of the word in which it appears.

010 B00820
L00880

011 QOOOOO

T00020

If the contents of cells 820 and 880 are unequal, the QOm instruction will be

interpreted as a skip, and the coding takes an already familiar form. If the contents

of the cells are equal, the following occurs.

SR CC CR

10101010111 II 101.01010101010101 01011121 Iq 10101010 101T 10 10 101 21 01
lHI RHI

CONTROL UNIT
fA rX fl rF

,0 II 12131 ,,151617ta 191 0 III I I I I I I I I I I I I I '01 Ii 2131 ,,1511117111191 01 Ii I I I I I I I I I I I I I

ARITHMETIC UNIT

010

MEMORY UNIT 011 ________ -

FIGURE 7·1

Assume that the computer has just completed beta time. (CC) specify that the next
instruction pair is in cell 012. On gamma time QOOOOO is transferred to SR and
executed. Since (rA) are equal to (rL), the execution transfers the three least
significant digits of (CR) to CC.

SR CC CR

II11m8111 B.IIIID.llllfll I q 10 101 01 01 01 T 1 01 01 0121 01
lHI RHI

CONTROL UNIT
rA rX rl rF

10 Ii 12hl~1s161718191old I I, I 1 1 1 1 I 1 I II I lolJ)21311Q5111171alillolll I III I 1 I I I I I I I

ARITHMETIC UNIT

010

MEMORY UNIT 011 - __

FIGURE 7·2

107

(CC) now specify that the next instruction pair 1S in cell 020, where the coding
for the condition of equality begins. On delta time T00020 is transferred to SR and
executed. Since (rA) are not greater than (rL), T00020 is interpreted as a skip.

SHIFT INSTRUCTIONS

Any character other than a 0-9 in the second instruction digit of a shift instruction,

Onm, - nm, ;nm or .nm, causes the computer to stall and light a neon on the Super··

visory Control Panel to indicate that an instruction has been improperly coded. A
zero in the second instruction digit of a Onm instruction transforms the instruction

into a skip instruction. A zero in the second instruction digit of any other shift

instruction causes the computer to stall and light a neon indicating that it has

stalled.

MUL TIWORD TRANSFER INSTRUCTIONS

REGISTER V

If the m in both the Vm and Wm instructions is odd and the least significant digit
is not equal to nine, the instructions behave as in the follow ing example.

Example: (051) = a, (052) = b. Transfer Ha" and Ctb" to 063 and 064 respectively.

MEMORY
LOCATION

020

INSTRUCTION

V00051
W00063

REMARKS

a, b I rV
a-063; b- 064;

(rV) = a, b.

If the m in one instruction is odd (least significant digit not equal to nine), and
the m of the other instruction is even, the two words are transferred in reversed order .

. Example: (051) = a, (052) = b. Transfer ttb" followed by eta" to 054 and 055
respecti vely.

MEMORY
LOCATION

020

INSTRUCTION

V00051
W00054

108

REMARKS

a,b_rV
b- 054; a-055;

(rV) = a,b

Example: (050) = a, (051) h. Transfer Hb" followed by tta" to 063 and 064

MEMORY
LOCATION

020

respectively.

INSTRUCTION

V00050
W00063

REMARKS

a, b_rV
b- 063; a-064;

(rV) = a, b

If the m in a Vm or Wm instruction has a nine as its least significant digit, the
instruction will transfer from, or to, the last and first words in the ten-word memory
channel.

Example: (050) a, (059) b. Transfer ~~a" followed by ttb" to 100 and 101.

MEMORY
LOCATION

020

INSTRUCTION

V00059
W00100

REGISTER Y

REMARKS

b, a • rV
a -100; b-l01;

(rV) = b, a.

When executing a Y m or Zm instruction, the least significant digit of m is ignored
by the computer. The transfers operate on the integral multiples of ten. Thus,
Y999 is equivalent to Y990, and Z7~4 to Z780.

ARITHMETIC INSTRUCTIONS

ADD INSTRUCTIONS

Some details of the add instructions have been given on page 59 . In digit

pos.itions 2-12, the characters, ~inus, apostrophe, ampersand and left parenthesis,

are treated by add instructions, not as alphabetics, but as numerics. The minus is

usually treated as a minus one (see the following illustration); the apostrophe, as

a plus ten; the ampersand, a plus 11; and the left parenthes.is, plus 12.

&

+ 6 + - + __ 5_
5 ~ 16

109

SUBTRACT INSTRUCTIONS

All rules pertaining to add instructions hold for subtract instructions. During the

execution of a subtract irrstruction the computer changes the sign of the word being

transferred from the cell specified to rX. Specifically, if the computer finds a zero

in the sign position of the word, it changes it to a minus; if it finds a minus, it

changes it to a zero. Actually, the computer effects this change as follows. The

first two rows in figure 1-18 form pairs of characters in each column; the next two

rows form other pairs of characters in each column; and so on. The characters,

zero and minus constitute a pair; A and B constitute a pair; and so on. No matter

what character the computer finds in the sign position it changes it to the paired

character. Thus, a minus becomes a zero, and a zero becomes a minus. Likewise,

an A becomes a B, and so on. If cell 880 contains

B12345678901

and the instruction

S00880

is executed, rX will contain

A12345678901

MULTIPLY INSTRUCTIONS

The computer performs multiplication by repeated addition. This principle can be

exemplified as follows.

7 times ---------------7(8) = 8+8+8+8+8+8+8 = 56

Because each addition requires a given period of time, the computer conserves

multiplication time by first building three times the value of the multiplicand and

using the resulting quantity in the repeated addition.

3(8) = 24--+-(rF)

7(8) = 24 + 24 + 8 = 56

In this manner, the computer saves the time required to perform four additions
when multiplying by seven. The number of additions required by each numeric

multiplier are as follows.

110

MUL TIPLIER (rX) NUMBER OF ADDITIONS

0 0

1 1

2 2

3 1

4 2

5 3
6 2

7 3
8 4
9 3

In the computer, the multiplicand is stored in rL. Thus, the computer builds up

three times (rL) and transfers this quantity to rF for storage. Since three times

(rL:) may be a 12 digit number, it occupies an entire word and it has no sign. Thus,

rF :only contains the absolute value of three times (rL). To conserve multiplication

tim,e, the programmer should, whenever possible, treat the word requiring the fewest

additions as the mul tiplier.

In :the sign position of a word entering into a multiplication any character other

than a minus is treated as a plus sign, and the product will have the proper sign

in the sign position.

shown below.

FIGURE 7-3

In digit positions 2-12 the product of two characters is as

MULTIPLICATION TAILE

MIlL TI'lICAIID

i I!. - 0 I 2 3 4 5 6 7 8 9 . & (

MULTIPlIR r I A B C D E F G H I .,. I (ij; .
t " I) J K L M N 0 P Q R $

,.
?

I fJ I + / s T. U V W x y z % =

i r t I 25 41!. 3 0 13 26 39 52 65 78 91 104 117 130 143 156

I> . " fJ 22 4(2 0 14 28 42 56 70 84 98 112 126 140 154 168

- I : 35 50 1 0 15 30 45 60 75 90 105 120 135 150 165 11Kl

0 ;) + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 A J / i I> - 0 1 2 3 4 5 6 7 8 9 10 11 12

2 B K S . (I> 0 2 4 6 8 10 12 14 16 18 20 22 24

3 C L T 7 10 i 0 3 6 9 12 15 18 21 24 27 30 33 36

4 D ·M U 4 11> (0 4 8 12 16 20 24 28 32 36 40 44 48

5 E N V 1 1(11 0 5 10 15 20 25 30 35 40 45 50 55 5'

6 F 0 W 14 20 . 0 6 12 18 24 30 36 42 48 54 60 66 72

7 G P X 11 2i> 9 0 7 14 21 28 35 42 49 56 63 70 n 84

8 H Q y 11> 2(8 0 8 16 24 32 40 48 56 64 72 IKl 88 96

9 I R Z 21 30 7 0 9 18 27 36 45 54 63 72 81 90 99 108 . .,. $ % 2i> 3i> 6 0 10 20 30 40 50 60 70 IKl 90 100 10' II'

& ~ . = 2& 3(5 0 11 22 33 44 55 66 77 88 99 110 11& 12(

(fa ? 28 40 4 0 12 24 36 48 60 72 84 96 1(18 120 132 144

III

THE DIVIDE INSTRUCTION

In the sign position of a word any character other then a minus is treated as a plus

sign. In digit positions 2-12 any character, regardless of whether or not it is a
number, is treated as the number in its row. (See figure 1-18, i.e., M=4 in division).

ONE DIGIT AND TWO DIGIT INSTRUCTIONS

It has been stated that the function of the first and second instruction digits is to

represent the operation to be performed. Some instructions represent the operation

in one digit; some, in two. The former can be called one digit instructions; the

la"tter, two digit instructions.

Two digit instructions represent the o~eration in the first and second instruction
digits; one digit instructions, in the first instruction digit. Of the 'instructions
covered thus far, the OOm, .nm, ;nm, -nm, Onm, and 50m instructions are two digit
instructions; all others are one digit instructions. The character placed in the
second instruction digit position of a one digit instruction is immaterial. A K7m
instruction is the same as a KOm instruction. By custom, if a particular digit is not
desired in the second instruction digit of a one digit instruction, a zero is placed
there. However, it is a common coding practice not to write a second instruction
digit zero. For example, B00880 would be written as B 880, but still recorded as
B00880.

OVERFLOW

The sum of two numbers with eleven significant integers in each will be a twelve

integer number if a carry is produced. If a decimal point immediately precedes the

most significant digit of each number, the carry is a whole number. In the computer

this carry would go into the sign position, but this position is occupied by the

sign. The computer makes the assumption that the absolute value of all quantities

is less than one by preventing a carry into the sign position. An attempted carry

into the sign position is called overflow.

Overflow can occur in arithmetic operations other than addition. In subtraction,

if a negative number of eleven significant integers is subtracted from a posi-

112

tive number of eleven significant integers there can be overflow.

+ . 50000000000

- (.50000000000)

1 .00000000000

Division in which, as far as the computer is concerned, the absolute value of the

dividend is larger than the absolute value of the divisor causes overflow, because

the quotient would be greater than one .

. 60000000000

. 30000000000 = 2.0000000000

Similar reasoning guarantees that, in general, multiplication cannot cause over­

flow, since two fractional quantities must produce a fractional product. There are

cer~ain uncommon exceptions to this last statement which arise because it is

possible to symbolize, in only eleven digit positions, a quantity which is greater

than one by using the characters " & and (.

Overflow occurs during gamma or delta time. The carry into the sign pOSItiOn is
los(. If overflow occurs on gamma time, delta time will be executed. At the end of
the; cycle during which overflow occured, the following special four stage cycle
is executed.

Alpha Time - six zeros are transferred to the static register.

Beta Time - the contents of memory cell 000 are transferred to the control
register; one is not added to the contents of the control coun­
ter.

Gamma Time - the left hand instruction of the contents of the control regis­
ter is transferred to the static register and executed.

Delta Time - the right hand instruction is transferred to the static register
and executed.

On ,the succeeding four stage cycle, control returns to the pair of instructions in
the: memory cell specified by the contents of the control counter. The contents of
the: control counter were one greater than the address of the' memory cell contain­
ing. the instruction being executed when overflow occurred., If overflow occurred
due! to an instruction in memory cell k, then the instructions in memory cell k + 1,
now specified by the present contents of the control counter, w ill be executed,
provided that neither memory cell k, nor memory cell 000, contains a transfer of
control instruction.

113

Consider how this principle might be employed in programming. Addition is some­

times used for purposes other than summation. One of these uses is to alter ad­

dresses in an iterative routine. For example, with a series of two word items,

where the first word is a social security number, the next social security number

may be selected by adding two to the address of the current social security num­

ber. There will be a limit to the number of these social security numbers with

which it is necessary to deal. When the limit is reached the computer must take

some other action.

By adding to a word each time the address is advanced, overflow will eventually

occur. The number of addresses that have been advanced can be counted by this

addition. Suppose that after processing sixty words it is necessary to take some

other action. With a two word item there will be 30 items. If a 70 is placed in the

2nd and 3rd digit positions of the word used as a counter, and 1 is added in the

3rd digit position each time 2 is added to the address, overflow will occur after

the 30th item has been processed, since 70 + 30 produces a carry. Memory cell 000
must contain some sort of instruction, usually a transfer of control instruction, to
assure that the instructions for taking the new course of action will be executed
when overflow occurs.

The add order, as has been pointed out, is being used to advance the address part
of an instruction. It will not be necessary to have another add order to increase the
word used as a counter. At the same time the address part is being advanced,. the
item counter can be advanced by adding to the appropriate digits of the same in­
struction line. The variable word which contains the counter and the variable ad­
dress might initially have the following appearance,

V70882W00880

and the following constant coulCl be added to it.

001002000000

In summary, overflow permits an alternate course of action based on the decision,
"have all the items in the set been processed?" The instruction pair stored in
memory cell 000 can be used to transfer control to, or execute, the ro utine which

is to be performed on reaching this limit. Consider the following example.

Each of a set of 30 two word items is to be processed. The items
will be processed in a working storage. The problem is to re­
place the contents of the working storage with successive items
of the set and when the set (stored in memory cells 880-939) is
exhausted, stop the computer.

II ~

Without utilizing overflow the item advance routine might be as follows:

[020 V00882

BOO020 021

022 000000 i : 30

023 AOO027 i+ l-i
COO020

024 000000 to processing
UOOXXX

025 900000 stop
000000

026 V00940
W00880

027 000002
000000

In this coding there is one sec,tion identified with the decision i:30 and a separate

section for the operation i + l ____ i.

Employ.ing overflow in the coding below there remains a subroutine associated with

the operation i + l i. However, the coding for the decision i:30 is not obvious.

The d¢cision i:30 is incorporated into the coding of the operation i + l~i by

taking :advantage of the effect of overflow.

[000 BOOO'23
cooooo]

processing

[020 V70882
W00880

021 Boooio i + l-i
A00024);(

022 COO020 to processing
UOOXXX

023 900000 000000

024 001002
000000

115

The asterisk In the remarks column indicates that overflow IS being used as a
control.

The routine operates as follows. Initially the BOrn COm instruction pair in memory
cell 000 provides a method for storing the necessary stop instruction in memory
cell 000 without actually having to execute the stop instruction. When control
initially reaches the item advance routine, the contents of memory cells 882 and
883 are transferred to memory cells 880 and 881. The contents of memory cell 020
and the constant for advancing the address and the counter are added, and the sum
is transferred to memory cell 020. As a result, memory cell 020 now contain s

V71884W00880

Control is then transferred to processing. After processing the second item con­
trol once more returns to the item advance subroutine. Each iteration through the
item advance subroutine operates as described above with the result that the
contents of memory cell 020 are successively

V72886W00880
V73888W00880
V74890W00880

and so on until the thirtieth item is processed. At that point the contents of cell
020 are

V99940W00880

After processing the 30th item control returns to the item advance subroutine. The
contents of memory cells 940 and 941 are transferred to memory cell s 880 and
881. The contents of memory cell 020 are transferred to register A. The execution
of the AOm instruction adds one to the 99 in the second and third digit positions
of the contents of register A, and overflow occurs. The carry is lost. On alpha
time six zeros are transferred to the static register. On beta time the contents of
memory cell 000

900000000000

are transferred to the control register. On gamma time the left-hand instruction of
the contents of the control register

900000

is transferred to the static register and executed, thus stopping the computer.

The above is an example of "specialized overflow". The overflow is called
specialized, because no matter in what memory cell overflow occurs, the result
is some specific operation, namely, the computer stops.

116

If overflow is used to control more than one iterative process in the same routine
and if the course of action to be taken when one of the iterative processes reaches
its limit is different from the course of action to be taken when another of the
iterative processes reaches its limit, it is obvious that specialized overflow will
not be able to handle the situation. In such a case, Hgeneralized overflow" is
necessary. Consider the following.

ILLUSTRATIVE EXAMPLE:

Reading the data stores 60 one word credit account number items of form
OAAAAAAAAAAA

in cells 820-879, and 60 one word delinquent account number items of form
ODDDDDDDDDDD

in cells 880-939. Write 60 one word credit items of form
KAAAAAAAAAAA

where A - credit account number
K - credit key, and may take values

G - credit good
B - no credit.

1= j = I

LEGEND

- SET OF CREDIT ACCOUNT NUMBER ITEMS

A I - I th I TEM I N A, I = 1, ... ,60

o - SET OF DEL I NQUENT ACCOUNT NUMBER ITEMS
OJ - jth ITEM IN 0, j = 1, ... ,60

R - SET OF CREDIT ITEMS

RI - ith ITEM IN R

Rt - ACCOUNT NUMBER OF R I

R f - KEY 0 F ~ I

CODING

FIGURE 7-~

It has· already been demonstrated that overflow can. be used to control an item
advance subroutine. The flow chart in figure 7-4 indicates that the process to be
followed when the delinquent account number item advance reaches its limit is
not the same as the process to be followed when the credit item advance reaches
its limit. Consequently, if overflow is to be used to control both item advances,
generalized overflow must be used. The following coding incorporates generalized
overflow.

117

n
<I 000 ROOO04

UOOO02
001 000000

000001
002 BOOO04

AOOOOI
003 COOO04

II. 004 [000000
OOOOOOJ

UOOVAR
005 READ read data

GXD
DATA

006 B00820 Ai : Dj
L00880 }

007 000000
QOOO17

008 r40881
C00880]

009 BOOO08
000000 }

010 AOO026 j + I-j
cooooa *

011 000000
UOOO06

012 B00820

} FOO027 _ R~
013 EOO028 g

1

C00999

@) (3) 014 ROO023
UOOO19

015 BOO029
COOO08

I-j

016 000000
UOOO06

017 FOO027

} EOO030
B-R~ G> 018

C00999 1

UOOO14
019 B00999

020 [C40940
000000

B0082J
021 C00820

022 AOO031 BOO020.} i + l~i
COO020

D> 023 000000
UOOO15

118

024 WRITE write data
DATA

025 900000 stop
OOQOOO

026 001001
000000

027 100000.
000000

028 GOOOOO
000000

029 B40881
C00880

030 BOOOOO
000000

031 001001
1)00001

The coding for the generalized overflow subroutine appears in memory cells 000-
004 of this coding. To see how the generalized overflow subroutine works, con­
sider: one of the item advance subroutines that uses it, for example, the credit
item :advance, which appears in memory cells 019-023. This item advance operates
in the same manner as the one used to demonstrate specialized overflow. When
overflow occurs the contents of the control counter are

000000000023

Duriryg the special four stage cycle that results from the overflow the following
occu~s. On alpha time six zeros are transferred to the static register. On beta time
the c'ontents of memory cell 000

R00004U00002

are transferred to the control register. The execution of the ROm in struction
transfers the word.

000000U00023

to memory cell 004. The execution of the UOm instruction transfers control to cell
002. ;The constant

000000000001

is aqded to the contents of memory cell 004, and the sum

000000U00024

is transferred to memory cell 004. On the next four stage cycle the 00 m UOm in­
struction pair just fabricated is executed, thus transferring control to memory cell
0024~ where the coding for the process to be followed when the credit item ad­
vances re/aches its limit begins.

119

A closer inspection of the credit item advance subroutine will reveal the following
structure. If the instruction causing overflow is considered to be stored in memory
cell k (memory cell 022 in the subroutine being considered), then the contents of
memory cell k + 1 relate to the normal item advance subroutine and are not executed
when overflow occurs, and memory cell k + 2 contains the coding for the beginning
of the process to be followed when the item advance reaches its limit. Investiga­
tion will reveal that the delinquent account number item advance subroutine stored
in memory cells 008-011 embodies the same structure. As a matter of fa ct, this
structure is general for any subroutine taking advantage of the generalized over­
flow subroutine shown in memory cells 000-004. The only caution that must be
observed in the .. use of sen era Ii zed overflow is that,-~omatter -wher~'~r-h~~--~-;':;y
time-~ lri--a-ro'iti~'e'-~~~fT~~i~u~ed_ for~ontrol p~rposes,-the-~~;broutrne~-=Iie-=­
fpllowe-a- w-hen overfi~w '~cc~rs _~ll~t be coded two memory cells bel~~~h~ memory
cell _~9ntalnlng-flje iristructi~n ()n which ~yern(nv"o~cur~ ~ - .,.- ---..... - .. --.

UNDESIRED OVERFLOW

There are many uses of arithmetic instructions in which the unplanned occurrence

of overflow would result in an incorrect solution. Although the occurrence of over­

flow can not be prevented, a minus sign coded in the second instruction digit of

an instruction on which overflow occurs will stop the computer on the completion

of the execution of the instruction.

STUDENT EXERC ISES

Utilize overflow as a control.

1. Reading the data stores 60 one word quantity items of form

OOOOOOQQQQQQ
/'\

in cells 880-939.

a. Print the sum of the quantities.

b. Print the sum of the quantities and the subtotal of tlte first ten quanti­

ties, the subtotal of the next ten, and so on, up to and including the $ub­

total of the last ten.

120

2. Reading the data stores six ten word A items irf~ells 820 - 879 and six

ten word B items in cells 880-939 .. The first word of each item is a key.

The A and B items are each arranged in ascending order by key. Write the

merged items.

121

chapter 8

Inpu t - Output

Magnetic tape is the means of introducing, and removing, large volumes of data to,
and from, the memory. The tape is metal about one half inch wide and .002 inches
thick. Da'ta may be written on a tape, read, erased, and new data written on the
same tape reliably over 1000 times, thus cutting the cost of supplies. Magnetic
tape comes in various lengths, the longest being about 1550 feet.

Characters are recorded on tape in coded form. The code for each character con­

sists of a unique combination of magnetic and non-magnetic spots. The characters

are recorded on the tape serially, and the coded bits of anyone character are re­

corded in parallel.

122

u _II 11111111
N 1111 1111

11111111
v 11111111
A II II 1111
e II 111111

2 3 ~ S 5 6 7

FIGURE 8-1

CHARACTER REPRESENTATION

The code for each character can be represented as a series of ones and zeros,re­

ferred to as bits, and corresponding to the magnetic and nonmagnetic spots on

tape. The basic representation of each character is given in the following figure.

123

CODE COMBINATIONS OF

THE 63 UNIVAC 1 CHARACTERS

FIGURE 8-2

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00 01

i r

II ,

-
0 ;

1 A

2 B

3 C

4 0

5 E

6 F

7 G

8 H

9 I

, #
& ¢

(@

10 "
t 1:

" (j

I ..
) +
J I
K S

l T

M U

N V

0 W

P X

Q y

R Z

$ %

* =

? NOT
USED

In the basic representation, from left to right, the zone of the character precedes

the excess three portion. Thus,

010100

is the basic representation of the character A.

Electronically, there is the possibility of gaining or losing a one in a bit position
when a character is transferred from one storage to another. To check for such an

occurrence, an extra bit position, called'the check bit position, precedes the basic

representation of each character. The basic representation of a character may con­

tain an odd or even number of ones. Those characters whose basic representation

contains an even number carry a one in the check bit position; those with an odd

number, a zero. When a character is transferred, the ones in its representation are

counted. If an even count results, a one has been gained or lost, and an error,

called the odd-even error, has occurred. The occurrence of an odd-even error stalls

the computer and lights an appropriate neon.

124-

Thus, 1010100

is the representation of .the character A,

0000100

the character one.

When a character is written on tape, one additional magnetic spot, called a sprocket

pulse, is recorded for checking purposes.

THE UNISERVO

The Uniservo is the device by which the computer reads from and writes on tape.

The Uniservos are named 1 thru 9, and -.

LEFT REEL

FIGURE 8- 3

READ-WRITE
HEAD

RIGHT REEL

Since the right hand reel is permanently fixed, a tape to be read from or written on

is mounted on the left hand reel. The tape is connected to a pre-threaded leader

w ich is fastened to the right hand reel. Because of the pre-threaded leader, re­

moval of a reel and the mounting of a new reel takes only one half minute.

Since characters are written on tape serially, the meaning of the characters de­

pends on the sequence in which they were written, just as the meaning of the

frames on a movie reel depends on the sequence in which they were shot. The

permanently fixed right hand reel guarantees that, when a tape is. mounted, the

characters on the tape are in the sequence in which they were written.

When tape is passing from the left hand to the right hand reel, the tape is said to

be. moving forward; from right to left, backward.

THE BLOCK

To reduce the amount of time required for starting and stopping tapes, data' is

grouped into units called blocks. A block is the unit of data that the computer

reads or writes with the execution of a single instruction and is composed of 60

words.

125

BUFFERING AND BACKWARD READ

Data is processed by the Univac Central Computer at electronic speed. Computer

processing time may be iacreased by the relatively slow electro-mechanical means

employed to provide input and output. Transfer of data from tape to electronic

storage is not as rapid as transfer from one electronic storage to another, but to

overcome this, simultaneous read-write features are employed. A comparison of a

system incorporating the simultaneous read-write feature with a system not in~

corporating this feature is shown in figure 8-4. BJ.r_~~~_~i~ste!!!_QLr.~Ji~.rY~!!S,

c~lt~~_~l?~ffers'_~w.bi~.h_hold...~.t.e£e.r.Y_~_"QfEat~!_._~ delay in processing is avoided

by parallel operation. The Uniservos work simultaneously with the computer, thus

enabling tapes to be written, read, and rewound at the same time that the computer

is processing. A comparison of a completely buffered system with a system in­

corporating the simultaneous read-write feature in shown in figure 8-4.

READ
BLOCK I

PRO­
CESS
B LOCK I

WR I TE
BLOCK I

READ
BLOC K 2

PROCESS
BLOC K 2

WR ITE
BLOC K 2

UNBUFFERED WITHOUT SIMULTANEOUS READ WRITE

I REA. READ READ
BLOCK I BLOC K 2 BLOCK 3

PRO-
PROCESS PROCESS CESS

BLOCK
I

BLOCK 2 BLOC K 3

WR ITE WR ITE
BLOCK I BLOCK 2

UNBUFFERED WITH SIMULTANEOUS READ WRITE

I 'EA' READ READ READ 1 READ
BLOCK I BLOC K 2 BLOC K 3 BLOC K II- BLOC K 5

PRO- PROCESS PROCESS PROCESS CESS
B L?CK BLOCK 2 BLOC K 3 BLOC K II-

WRITE I WRI TE ,I WR ITE
BLOCK I BLOC K 2 BLOC K 3

BUFFERED
FIGURE 8-4

READ
BLOC K 3

READ
BLOC K

WR ITE
BLOC K

PROCESS
BLOC K 3

• 1

,1

WR ITE
BLOC K 3

Many applications require more than one pass over the data. Rewind time is measur­

ed in minutes,and considerable time can be lost waiting for a tape to be rewound

in order that it can be reread. If a computer can read data from a tape while the

126

tape is moving backward, a second pass can be made without the delay for rewind.

The Central Computer of the Univac System incorporates both buffers and the

backward read feature.

THE BUFFERS

Data to be written is transferred from its location in the memory to register 0 (rO),

a 60 ",,:ord register. The data in rO is then transferred to a Uniservo one character

at a time to be written on tape. Once' rO has been filled, the computer is released

to perform other operations because the separate output control circuits direct the

write operation independently of the computer.

Data to be read is initially transferred character by character from tape and ac­

cumulated in register I (d), a 60 word register. The data in rI can then be trans­

ferred :to the memory. Once the transfer of data from tape to rI has begun, the com­

puter is released to perform other operations.

The use of these regist~rs between the computer and the Uniservos evables the

computer to be held up for only the small amount of time necessary to fill the out­

put buffer, rO, or to empty the input buffer, rI, or to initiate a read operation.

TAPE INSTRUCTIONS

"T" represents Htape'\ and Hn" represents theUniservo affected

INSTRUCTION OPERATION

1nm Tn ~rI

Read a block forward from Tn to rI.

When ~xecuting the 1nm instruction, the computer ignores m.

INSTRUCTION OPERATION

2nm

Read a block backward from Tn to rI.

When executing the 2nm instruction, the computer ignores m.

127

INSTRUCTION OPERATION

30m (rl) m, ... , m + 59

Transfer (rl) to 60 consecutive cells starting with m.

NOTE: m must be a location ending in zero.(This applies to all tape instructions,)

The 30m instruction is a two digit instruction.

INSTRUCTION OPERATION

40m (rl) m, ... , m+ 59

Transfer (rl) to 60 consecutive cells starting with m.

The 40m instruction is a two digit instruction and is identical .in effect to the 30m.

instruction.

INSTRUCTION OPERATION

3nm (rl) m, , m + 59; Tn~rl.

Transfer (rI) to 60 consecutive cells starting with m.

Read a block forward from· Tn to rl.

INSTRUCTION OPERATION

4nm (rl) --...m, ... , m + 59; rI ~Tn

Transfer (rl) to 60 consecutive cells starting with m.

Read a block backward from Tn to rl.

Since the forward read instructions, 1nm and 3nm, read the first word of the block

first; the second word second; the third, third; and so on; until the 60th word is

read last; while the backward read instructions, 2nm and 4nm, read the 60th word

of the block first; the 59th word, second; the 58th~ third; and so on; until the first

word is read last; the question arises, how is the block stored i~ the 60 cells that

constitute rI? The cells can be thought of as being numbered 1-60 from top to

bottom. When a forward read instruction is executed, rI is filled from the top down,

with the consequence that the first word of the block is stored in cell 1; the second

word of the block, in cell 2; the third word, in cell 3; etc.; until the 60th word is

stored in cell 60. When a backward read instruction is executed, rl is filled from

128

the bottom up, with the consequence that the 60th word of the block is stored in

cell 60; the 59th word of the block, in cell 59; the 58th word, in cell 58; and so on;

until the first word is stored in cell 1. Therefore, both forward and backward read

instructions store the block in rI in the same final configuration.

INS TR UCTION OPERATION

5nm (m, ... , m + 59) ~Tn

Write the contents of 60 consecutive cells, starting with m, on Tn at 128
characters per inch.

The 5nm instruction is executed by filling rO, releasing the computer, and then

writing from rO onto th~ tape on Uniservo n.

INSTRUCTION OPERATION

6nm RWD Tn

Rewind Tn.

When executing the 6nm instruction, the computer ignor~s m.

INSTRUCTION OPERATION

7nm (m, ... , m + 59)~Tn

Write the contents of 60 consecutive cells, starting with m, on Tn at 20

characters per inch.

INSTRUCTION OPERATION

8nm RWD* Tn

Rewind Tn; set interlock. Any subsequent instruction involving Tn

stalls the computer.

When executing the 8nm instruction, the computer ignores m.

After the execution of a 8nm instruction Tn is referred to as interlocked. The func­

tion of interlock is that, once an output tape has been written and rewound, the

tape is automatically protected against the possibility of another write, which
would destroy the output data. Interlock is released by removing the tape from the

Uniservo.

129

Another method used to protect information is to insert a metal snap ring in the

reel of an input tape. This causes the Uniservo on which the tape is mounted to be

interlocked for writing, but not for reading or rewinding, thus protecting against

the possibility of a write, which would destroy the input data.

Ring ___ ~

FIGURE 8-5

Essentially, the input-output orders are executed in the following steps:

1. Interlock Tests
This step is used to determine if:

a. the desired servo is already 10 use. (an input-output error has the

same effect as if the servo were in use)

b. there is another input (output) order in effect if the present order is

one of input (output).

If one of the above is true the computer waits, or IS interlocked, until the

interlock causing order is completed. In the case of an error the wait is

relatively long, because the order cannot be completed, and will draw the

attention of the computer operator.

2. Initiation of the order
This varies for the orders so that for:

a. 1n,2n, 6n, or 8n, tape movement begins.

b. 30m or 40m, (rI)are transferred to the memory, completing the order.

c. 3nm or 4nm, (rI) are transferred to memory and tape movement begins.

d. 5nm or 7nm, the block is transferred to ro..

3. Completion of the order

The entire block is read or written, or the tape is rewound.

130

Steps 1 and 2 require the use of the Control Unit, while step three, the greater

part of the order, takes place under the control of the input-output circuits. These
steps result in the computer being able to read, write, rewind, and process at the

same'time.

TAPE INSTRUCTIONS ON FLOW CHARTS

There is a symbol for each tape instruction.

INSTRUCTION

1nm

2nm

30m,40m

3nm

4nm

5nm,7nm

6nm

8nm

EXAMPLE SYMBOL

Tj --+- rI

rI -+- Tj

rI ~J

rI ----- J
Tj--.. rI

rI ~ J
rI ..- Tj

P --+- Tp

RWD Tj

RWD· Tj

In the flow chart Tp may be a reel of tape in file P; Tj, a reel in file J; etc.

:SENTINELS

Generally the amount of data on a tape is unknown and varies from one application
to die next. To determine when all the data has been processed, a sentinel conven­
tion iis used. Six Z's in digit positions one through six are placed in the Zero word
of t~e item immediately following the last data item and in the last word of the
block containing this item. Immediately following this block is a second block
with'the six Z's in the first six digits of the zero and the last words of the block.

131

00 ~
46 QQQ
47 RRRRRR SSSSSS
48 QQQQQQ QQQKKK
49 RRRRRR SSSSSS First

Last
Item {

50 QQQQQQ QQQKKK Sentinel
Data 51 RRRRRR SSSSSS Block

52 ZZZZZZ 123'1056
53 ABCDEF 65'10321

Sentinels -
'58 122'1056 ABCDEF
59 ZZZZZZ 001950

00 TTTNNN LMNOPQ
01 98765'10 321012
02 ABCDEF GHIJKL

Second
Sentinel

56 Block
57 LLLOOO
58 CCCCCC
59 HHHHHH

FIGURE 8-6

THE INSTRUCTION TAPE

An instruction tape may be designed to be mounted on any Univac Uniservo. For

purposes of this manual Uniservo 1 will be used.

The Uniservo to be initial read is selected by a manual operation on the Supervisory

Control Panel. The initial read operation reads a block from theUniservo select­

ed, the tape moving forward, and transfers the block to cells 000 - 059. All sub­

sequent movements of the instruction tape are ordered by instructions stored in

the memory.

SERVO DELTA

On the Supervisory Control Panel is a set of 10 buttons called Initial Tape Selec­
tor buttons and labelled with the names of the Uniservos. If a delta is coded in the

, ~'" -....--,.."-""-'"" .. ~.~"-

132

~ecoo~ instruc~.~_~L~ . .Qt~ .. _~P~~ instruction,. t~~.illl~~cutes the i~sn:~~~~ ...
tion with respect to the U niservo_.l!ho~.£J~iti~ aQe_.sel~~!~_~_utton ,is depressed. \

ILLUSTRATIVE EXAMPLE

A tape contains a series of ten word job items of form

where N - job number

NNNNNNNNNNNN
OOOOOOOCCC"CC
o 0 0 0 0 0 0 L L L"L L
OOOOOOOMMMMM

1\
0000 000000,,00
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

C - contract price
L - labor cost

M - material cost
o - overhead cost
X - other data

There is at least one full block of data on the tape.

For each job item, produce a two word profit item of form

where N - job number

P - profit

Write~ the pr.ofit items.

NNNNNNNNNNNN
OOOOOOOPP~PP

SERVO ALLOCATION

-~

To solve the problem,Uniservos must be allocated to the input and output tapes.
The servo allocation might be.

UNISERVO

2

3

133

TAPE

Job = Tj

Profit = T P

FLOW CHART

i • k • I j. 2 p. 3 .1.

LEGEND

~ - SET OF ~Ol ITEMS

~ i - i TN I TEM III ~, i • 1, ••• , &

~? - IIUMIER OF ~i
~~ - PRICE Of ~i

~T - MATERIAL COST OF ~i
~~ - LAlOR COST Of ~I

~f - OYElHEAD COST OF ~ I
~. - SEIITIIIEL OF ~

FIGURE 8-7

P - SET OF PROFIT ITEMS

Ple - KTII ITEM III P, Ie • I, ••• , 30

P~ - IUMIER OF Pic

P: - AMOUn OF Pic

p' - SEIITIIIEL OF P
pH LAST WORD OF UD SUT I MEL BLOCK

The following 1S a description of the thinking that might have accompanied this

flow chart.

The first thing to be done is to read a block of job items from Tj into the memory.

To effect this transfer, the block must first be read into rl.

2

FIGURE 8-8

(rI) ,must be transferred to the memory. This transfer could be done with a 30m

instruction. However, to take full advantage of the buffer system, while the job

items stored in the memory are being processed, the next block of items should

be tead from tape into rI. By using the 3nm instruction this situation can be effected.

,;, 2

FIGURE 8·9

rl~J

Tj --... rl

With a block of job items in the mernory processing can begin.

FIG UR E 8·10

135

When a block of job items is exhausted the input item counter equals 6., To con­

tinue processing, the next block of job items, currently stored in rI, must. be trans­

ferred to the memory, and the input item counter must be reset to one.

r I II J
T·~ rI

FIGURE 8-11

When the output block is filled, the output item counter will equal 30. The output

item counter is reset to one to prepare for the next output block, and the current

output block is written.

I~k p----I~

3

FIGURE 8-12

The only problem remaInIng is to determine when all of the job items have been

processed. Any block of items but the first may be the last block. If it is, there

will be six Z's in digit positions 1-6 of the last word of the block. If it is not,

the Z's will not be present. An equality test can distinguish between the two con­

ditions.

1--..1

+ I i t---.......

FIGURE 8-13

136

When the sentinel is found in the last word of the block to be processed, Tj can be

rewound, and the key of each item must be tested before processing to determine

whether or not it is a sentinel. A variable connector inserts this sentinel test.

FIG U R E 8-14

When the key of the item to be processed is a sentinel all the data has been pro­
cessed. Sentinels must be written on T p. The last block of output is in the memory.

A sentinel must be stored in the zero word of the item immediately following the

last data ite'm. This sentinel item must be Pk, since the output item counter always
reads one more than the last item stored. A sentinel is stored· in pN and in p S,

the .last word of the block. The block is written on T p' thus writing t~e last block
of data, which is also the first sentinel block.

A second sentinel block must be written on Tp. Words 00 through 58 of the block
currently in the output area constitute the Hhash" desired. A constant consisting
of IIHHHHHHHHHHH is placed in word 59 to insure that the last four digits of
this word will not contain numerics. This block is then written on T p.

T P is now complete and can be rewound. Processing is stopped, thus completing

the flow chart.

The computer cannot recognize a sentinel until the first sentinel block is in the

memory. By setting up the flow chart to take advantage of the buffer system, it

137

becomes iJIlpossible for the computer to transfer the first sentinel block from rl to

the memory without initiating another read from Tj. The function of the second

sentinel block is to prevent the computer from reading past the data in a search

for another block to read.

MEMORY ALLOCATION

To facilitate the allocation of the memory, it is customary to store instructions by

starting at the front of the memory and working back, and to store data by starting

at the back and working forward. For this problem the memory allocation might be

@C0

CELLS

940- 999
880- 939

000 ROOO04

001 000000

002 BOOO04

003 COOO04

004 [000000

005 BOOO07

006 000000

007 [110000

008 AOOOll

009 000000

010 110000

011 000000

012 810000

013 320880

014 ~00880

UOOO02

000001

AOOOOI

000000

UOOVA~
LOOOIO

QOO012

30006~
COOO07

000005

300060

000060

120000

000000

C0099~

138

DATA

Output
Input

T.--..- rI
J

rI -.. J; Tj~ rI

Jfo!~pfo!
1 1

015 B00881 S00882

016 S00883 S00884

017 C00999 000000

018 R00024 U00021

R00030 U00027

000000 U00014

f
70998 W00940l

022 00021 000000

023 00048 C00021 *
024 000000

025 B00049 C00021

026 530940 U00024

027 [Y40890 Z00880]

028 B00027 000000

029 A00050 C00027 *

030 000000 U00020

031

032 C00027 F00052

033 E00939 L00053 I
034 000000 Q00036

035 000000 U00030

036 820000 000000

037 R00014 U00030

038 KOOOOO F00052

039 E00880 L00053

040 000000 Q00043

139

A L JO -+-- P k
C JM - J. - i J -. 1 • 1 1

P-Tp

. 1 - i 1 +

[J>
T -rI rI-J; j

1-1

.lb

J~ : Z

041 800880 J~ -P~
C00998

042 000000
UOOO15

043 H00998 z- pS
H00999

044 ROO022 z- pN
UOO021 k

045 530940 p- Tp; H_pH
800054

046 C00999 p- Tp;
530940

047 830000 RWD * T ; Stop
900000 p

048 001000
000002

049 V70998
W00940

050 010010
000000

051 Y40890
Z00880

052 111111
000000

053 ZZZZZZ
000000

054 HHHHHH
HHHHHH

Coding the resetting of an item counter consists of resetting the variable line in
the item advance routine to its initial state, as shown in cells 025, 031 and 032.

To store a sentinel in the zero word of the item immediately following the last

data item, the following coding technique is used. The address of the key is speci­
fied by the address part of the WOrn instruction in cell 021. The sentinel is trans­
ferred to 998 by the Ham instruction in cell 043. The UOm instruction in cell 044
transfers control to the VmWm instruction pair, which transfers the sentinel. The
Ram instruction in cell 044 guarantees that, after the WOrn instruction has been
executed, control returns to cell 045 to complc::te the ending routine.

STUDENT EXERCISES

1. A tape contains a series of two word consumption items of form

NNNNNNNNNNNN
000 0 0 0 CCCCCC"

14-0

where N - meter number
C - amount

There is at least one full block of data on the tape. Print the body of the following

table.

RANGE

1 - 100
101 - 500

501 - 1000

1001 or over

CONSUMPTION METERS

2. A tape contains a series of ten word inventory items of form

where N , stock number

Q - quantity

X - other data

NNNNNNNNNNNN
00000 OQQQQQQI\'
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

Another tape contains a series of two word items of form

where N - stock number

A - quantity

NNNNNN~NNNNN

00 0 0 0 0 AAAAAA,..

The first item on the inventory and sales tapes have the same stock number; the

second item on the tapes have the same number; and so on. There is at least one
full block of data on each tape. Write the updated inventory.

1 4-1

chapter 9

Efficient Use of Buffers

Generally a computer data processing application involves more than one input.

For example, an inventory application involves, at least, an inventory tape and a

sales tape. To use the computer in such an application, the computer must main­

tain, in its memory, items from both the inventory and sales tapes. Moreover, for

computer efficiency both the reading of a block from the inventory tape and the

reading of a block from the sales tape must be bufferred. Use of multiple buffers,

one buffer for the inventory tape and another for the sales tape, is one solution to

this problem. However, a buffer is an expensive piece of hardware, and the provi­

sion of multiple buffers would increase the computer's cost significantly. Thus, a

technique must be found which will funnel the data through one buffer, rI, without

sacrificing processing time.

14-2

PRESELECTION

The programming principle of preselection is one solution to the problem of buffer­

ing multiple inputs. Consider the following.

ILLUSTRATIVE EXAMPLE

A tape contains a series of ten word inventory items of form

Where N - stock number

Q - quantity

X - other data

NNNNNNNNNNNN
OQQQQ~OOOOOO

XXXXXXXXXXXX
XXX;XXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

Another tape contains a series of two word sales items of form

Where N - stock number

A - quantity

NNNNNNNNNNNN
OAAAA~OOOOOO

The items are in ascending order by stock number on both tapes. There is at least

one full block of data on each tape. Write on updated inventory.

SERVO ALLOCATION

2 - lnven tory

3 - Sales
4 - Updated Inventory

14-3

FLOW CHART

Once a block of inventory items and a block of sales items have been read in the

memory, the processing can begin. But before beginning the processing, the read

into rI of the next block of data to be required by the computer should be initiated.

The question is - Will the computer next need a block of inventory items or a block

of sales items?

The example places no restriction on the nature of the stock numbers of the items.

Thus,

1. There may be inventory items to which no sales items refer; that is, there

may be inventory items whose stock numbers are not the same as the stock

number of any sales item;

and 2. Ther~ may be more than one sales item referring to the same inventory

item.

INVENTORY TAPE SALES TA PE

" ... 2
36070 8,,0

I 1 ... 2 J

r::~
250

I IIJ2
150

" ... 2

~-I:J
... 35

1160
8 ... 0

1150
250

I I 50
... 3218 585

FIGURE 9-1

If all the sales items in the memory refer to inventory items in the memory, there

may be more sales items not yet read into the memory which refer to the current

block of inventory items. Thus, the computer will next need another block of sales

items. For example,

or

INVENTORY ITEM

STOCK NUMBERS

1142
1145
1149
1150
1153
1154

INVENTORY ITEM

STOCK NUMBERS

1142
1145
1149
1150
1153
1154

SALES ITEM

STOCK NUMBERS

1142
1142
1142

1153

SALES ITEM

STOCK NUMBERS

1142
1142
1142

1154

If some of the sales items in the memory refer to inventory items that have not yet

been read into the memory, the current block of inventory items will be processed
and written before the current block of sales items is exhausted. Thus, the com­

puter will next need another block of inventory items. For example,

INVENTORY ITEM

STOCK NUMBERS

1142
1145
1149
1150
1153
1154

From the above, it is apparent that

SALES ITEM

STOCK NUMBERS

1142
1142
1142

1165

1. When the stock number of the last sales item in the memory is less than Or

14-5

equal to the stock number of the last inventory item In the memory, the

computer will next need another block of sales items.

2. When the stock number of the last sales item is greater than the stock num­

ber of the last inventory item, the computer will next need a block of in­

ventory items.

Based on this fact, a test for relative magnitude between the stock numbers of the

last sales and inventory items permits the initiation of the read into rl of the next

block of data to be required by the computer. Since the tape from which the read is

to be initiated is selected before the items in the memory are processed, this pro­

gramming principle is called preselection, which the following flow chart incorpor­

ates in subroutine P.

\i
\ J

~-----~t8

LEGEND

I - SET OF I MHuon ITEMS

I J - .iT" I TEM 1M I, J • I, ••• , e
11 - STOCK MUNIER OF I J
Ij - QUANTITY OF IJ
II - SEUIMEL OF I

I H _ LAST WORD OF 2MD SENT IMEL BLOCK

• - SET OF SALES ITEMS

Ik - KU ITEM 1M I, k • I, •••• 30

s~ - STOCK MUMIER OF Sk

S: - QUANTITY OF Sk

Sl - SEMTINEL OF S

FIGURE 9-2
As shown in the flow chart, when a block of items in the memory IS exhausted, the

only operation necessary to get the next block of items into the memory is to trans­

fer the block from rl, since the preselection ~.!!"bIoll,ti.!!~ has already read the h>lilck

14-6

into d from the proper tape. Control must then go to the preselection subroutine to

again determine from which tape d is to be filled.

When a sentinel is discovered in the last 'Word of a block, the sentinel is transferred

to the key of the last item in the block to assure the proper operation of the pre­
selection subroutine.

MEMORY ALLOCATION

CODING

000

001

002

003

004

005

006

007

008

00-9

010

011

012

013

014

6) 015

016

017

820 - 879 - Sales Area

880 - 939 - Inventory Input Area

940 - 999 - Inventory Output Area

ROOO04
UOOO02

000000
000001

800004
AODOOI

COOO04
000000

EOOOOO
UOOVAJ

800007
LOOOI0

000000
QOOO'12 r 10000
300060]

AOOOll
COOO07

000000
UOOOOS

110000
300120

000000
000060 T,----"rl

810000 1

120000 rI-l· T -rl· rI-S
330880 'S@ 300820
ROOOS6

UOOOS2
B00880

I~ SN L008201 J k

®
~H.H) 000

QOOO19
ROQ027

UOO023

14-7

018 000000

@(8 019

CD 020

ROO039

[9
~40940 024

025 Z00880

026 AOO062

CD 027

029 540940

030 FOO064

031 LOO065

0) 032

035 000000

[}> 036

037

038 AOO066

(]) 039

041 300820

042 E00789

043 000000

uooo15

1
ooooo~
C00881

800024

YOO89~
000000

")~(

COO024

300880

EOO9391

QOO034

UOO027

C00930

COO036

FOO064

L00065 \

QOO046

I ~8

Q Q SA_ I. I. - k J J

. I-j J +

@)

T ·rI-I. 1- 0'

T . IS_I~ RWD * i'

rI-S

Ss . z
'- .

044

046

047

@ 048

049

050

051

~ 052

053

054

055

R00056

000000

830000

ROOO19

KOOOOO

E00880

000000

B00881

B00878

000000

130000

CD 056 ~OOOOO

057 R00025

058 B00065

U00052

U00039

C00878

UOO044

FOO064

LOO065

000057

UOO020

L009301

TOO055

U00056

000000

UOOVA~
U00023

059 540940 H00999

060

061

062

C00999

840000

010010

B00068

540940

900000

063 Z40940 000010

064 111111 Y00890

065 ZZZZZZ 000000

066

067

068

001002

V70822

HHHHHH

000000

000000

W00820

HHHHHH

14-9

RWD * T . SS N S' -S 30

.2b

N
I,:Z ,

I-T

I-T

stop

0; Z_IN
1

o ; RWD * T o

STUDENT EXERCISE

A tape contains a series of ten word policy items, each item having a policy

number of form

N.NNNNNNNNNNN

in the zero word. No two policy items have the same policy number. Another tape

contains a series of one word policy number items of form

NNNNNNNNNNNN

No two policy number items are the same. The items are In ascending order by

policy number on both tapes. There is at least one full block of data on each tape.

Write a tape containing the policy items for which there is a policy number item on

the policy number tape.

STANDBY BLOCK METHOD

The standby block method is another programming techni9u~ for the solution of

the problem of buffering multiple inputs. While requiring more memory space than

the preselection subroutine, the standby block subroutine is usually more efficient

in terms of running time.

The principle of the standby block method is to allocate to each input a 60 word

standby area as well as a 60 word input area. For example, for two input tapes,
Ta and Tb, an input area and a standby area, A and A, would be allocated to Ta;

and an input area and a standby area, Band 8, to Tb.

Initially, the first block of items from Ta is read into area A; the first block from

Tb, into area B; the second block from Ta , into A; and the second block from Tb,

into rI; giving the following configuration, which will be referred to as configura­

tion 1.

'i" T

D
RI

Q
CONFIGURATION I

FIGU R E 9-3

150

The following discussion of the operation of the standby block technique is based
on figure 9-4.

COMFIGuttATIOM 3 COMF I GURAl I ON ~ CONFIGURATION 6 COMF 1 GURAl 1 OM e

B A A A B

0 0 0 0
i i i I i i i i

0 0 0 0)

i i i i i i i i

D 0 D 0
1"1 rl rl 1"1

Tb-O ;.-[] T·-O Tb-8
COMFIGURATI'OM I C_MFIGURATlh 2 CONFIGURATltN 2 COMF 1 GURA TI ON I

FIGUR E 9-4

If in configuration 1, the B items are exhausted first (configuration 3), (rl) are

transferred to area B, and a block is read from Tb into rI, recreating configuration 1.

If, in configuration 1, the A items are exhausted (configuration 4), the contents of

area A are transferred to area A, (rl) are transferred to area B, and a block is read

from T a into rI, creating configuration 2.

If, in configuration 2, the A items are exhausted (configuration 5), (rl) are trans­

ferred to area A, and a block is read from Ta into rI,recreating configuration 2.

If, in configuration 2, the B items are exhausted (configuration 6), the contents of

area B are transferred to area B, (rl) are transferred to area A, and a block is read

from Tb into rI, creating a configuration 1.

151

Configurations 1 - 6 exhaust the possibilities. Thus, besides the block of A items

and the block of B items currently being processed, there is always another block

of A items and another block of B items in electronic storage, either in rI or in a

standby area.

The following is an abbreviated flow chart of the standby block technique.

eET A .LOCK OF A I TENS

TO PROCESS I NG

SET UP FOR CONF I GURAl I ON 2

CONF I OURA TI ON 2

GET A .LOCK OF • ITEMS

CONF I GURAl I ON I

SET UP FOR CONFIGURATION I

FIGUR E 9-5

Basically, the reason why the standby block method is faster then the preselection

technique is that it requires only one input order, a 3nm, whereas preselection

requires two: a 1nm followed by a 30m. Then, because the amounts of data in in­

put files usually differ greatly, the master file is advanced with a minimum number

of instructions besides the 3nm.

STUDENT EXERCISE

Flow chart and code the standby block technique.

152

chapterlO

Univac Supervisory

Control Panel Operations

The Supervisory Control Panel permits manual intervention into the otherwise

automatic operation of the computer. The're are two ways in which manual opera­

tions become of use to the programmer. First, the running of a routine - the execu­

tion of the routine by the computer - requires certain manual operations, such as·

clear C and initial read. Secondly, manual operations are of use in debugging.

An error in a routine - an aspect of a routine which causes the routine, when run,

to produce unexpected results - is called a bug, and the process of eliminating

bugs from a routine is called debugging. A programmer cannot be sure that a rou­

tine is correct - that is, has no bugs - until he has run the routine against all

possible types of input and determined that the routine produces the expected out­

put. If, in such a debugging run, a bug is detected, pertinent information about the

bug can often be obtained by manual intervention into the running of the routine.

The execution of the 10m instruction is an example of a manual operation that may

be required for the running of a routine.

153

THE 10m INSTRUCTION

INSTRUCTION OPERATION

10m SCK-...m

Transfer the word typed on the Supervisory Control Keyboard (SCK) to m.

The 10m instruction is a two digit instruction.

The SCK is a modified typewriter keyboard located on the Supervisory Control

Panel. Besides the standard typewriter keys, the SCK includes

1. keys for Univac characters not found on a typewriter keyboard,

2. a special bank of numeric keys for rapid typing of numeric information,

and 3. other keys used in the manual operation of the computer.

The computer executes the 10m instruction as follows. When the 10m instruction

is transferred to SR, the computer stalls and lights a neon, called the input ready

neon, on the Supervisory Control Panel, thus indicating that it is ready to accept

the type in of one word on the SCK. The operator types 12 characters on the SCK

and then depresses the H word release" key. The word typed is transferred to the

cell specified by the 10m instruction.

One use of the 10m instruction is to allow the type in of constants which vary from
one running of a routine to the next, such as the date.

CONDITIONAL TRANSFER BREAKPOINTS

There is, on the Supervisory Control Panel, a bank of 12 buttons called conditional

transfer breakpoint selector buttons. Ten of the buttons are numbered 0-9, one is

labelled "all", and one is labelled "release". If a number, 0-9, is coded in the

second instruction digit of a conditional transfer of control instruction, the com­

puter can be made to stop with this instruction in the SR. To cause the stoppage
the conditional transfer selector button corresponding to the second instruction

digit of the Qnm or Tnm must be depressed. The computer makes the comparison

and indicates whether or not transfer of control will occur, stopping before the

transfer is effected. If the computer is to transfer control, the conditional transfer

neon on the Supervisory Control Panel will be lit; if not, the transfer neon will not
be lit. If transfer of control is not indicated, the operator can cause a transfer of
control by depressing a switch, called Hforce transfer". If transfer of control IS

indicated, the operator can prevent transfer of control by raising this switch.

15~

One use of conditional transfer breakpoints is for manual control. A conditional

transfer breakpoint can be coded at a crucial point in a routine, and when the com­

puter reaches this point, the operator, by operating the transfer switch, can choose

the processing that the computer is to follow. For example, some routines are

coded for a certain number of Uniservos but provide an option for using less. The

option can be in the form of a conditional transfer breakpoint that normally does

not transfer control. If the lesser number of Uniservos is to be used, the operator

can depress the appropriate conditional transfer breakpoin t selector button and

force transfer when the computer reaches the breakpoint, thus causing the computer

to follow a path other than normal.

Breakpoints are also used in bugshooting. If a bug cannot be found by desk check­

ing, conditional transfer breakpoints can be inserted at crucial points in the rou­

tine. If the associated conditional transfer breakpoint selector buttons are de­

pressed, the computer will stop every time 'the conditional transfer instructions are

set up in the SR. The contents of crucial cells and registers can then be investi­

gated for correctness before continuing with the routine. This investigation is
conducted after the computer has been set to operate on other than the continuous
mode and can be made as follows: (Non-continuous operation is made possible
by operating the Interrupted Operation switch, which will be described later).

PRINTING FROM THE SUPERVISORY CONTROL PANEL

By means of switches on the Supervisory Control Panel the operator can stop the

computer, set up an instruction in SR, cause the computer to execute the instruc­

tion, and still prevent the computer from losing its place in the routine whose

execution has been interrupted. Thus, if a programmer wants to know the contents

of a given cell, the operator can set up a 50m instruction, with m the given cell,

in SR and cause the computer to print the contents of the cell. The contents of a

register can be investigated in a similar fashion, as follows.

There is, on the Supervisory Control Panel, a bank of eight buttons, called type

out selector buttons and labelled M, F, L, A, X, CR, C and H empty". Only when

type out selector button M is depressed will the computer execute the 50m instruc­

tion as def,ined. If, for example, type out selector button A was depressed when a
50m instruction was executed, the contents of, not m, but rA would be printed.

Similarly, type out selector button F causes (rF) to be printed; L, (rL); X, (rX);

CR, (CR); and C, (CC). Thus, if a programmer wants to know the contents of a

given register, the operator can set up a 50m instruction, depress the appropriate

type out selector button, and cause the computer to print the contents of the

register.

ISS

Whenever printing on the SCP takes place the characters are monitored according

to the position of a function switch. Some characters cause printer action, such as

carriage return, tabulate, space, etc. There are times, however, when it is desired

to know what the character is rather than have the action take place. When the

function switch is in the Normal position action takes place whereas when the

switch is in the Computer Digit position a substitute character is printed.

THE ALL CONDITIONAL TRANSFER BREAKPOINT SELECTOR BUTTON

Depressing the conditional transfer breakpoint selector button labelled U all" causes

the computer to stop on all conditional transfer instructions. One use of the U all"

button is in the debugging of a type of bug called a closed loop. It is not uncommon

for a routine to be coded in such a manner that a loop of instructions are created

from which there is no exit. There is a characteristic noise, created by the trans­

fer of data from one storage to another, which is amplified and emitted from a

speaker behind the Supervisory Control Panel. When a closed loop is entered, the

noise takes on a repetitious character. If the "all" button is then depressed, the

computer will stop on the first conditional transfer instruction encountered, if there

is one in the loop. Depressing a bar, called the start bar, on the SCK will cause

the computer to continue executing instructions until the next conditional trans­

fer instruction is reached. If this process is continued; and if each time the com­

puter stops, the programmer notes

1. the location and nature of the conditional transfer of control instruction on

which the computer stopped

and 2. whether or not the computer is going to transfer control;

the path or the closed loop through the coding will soon be determined. The con­

ditional transfer of control instruction on which the computer stopped can be de­

termined in one of two ways.

1. The operator can read (SR) from a series of neons on the Supervisory

Control Panel. Thus, the operator can tell the programmer on what con­

ditional transfer of control instruction the computer stopped, and the pro­

grammer can locate the instruction in his copy of the coding.

156

2. (CC) can be printed. The address printed will be one more than the ad­

dress of the cell in which the conditional transfer of control instruction

is stored.

If the closed loop does not contain any conditional transfer of control instructions,

the path of the closed loop can be determined by executing the instructions in the

loop one at a time.

INTERRUPTED OPERATION

Interrupted Operation is controlled by a five-position switch on the Supervisory
Control Panel. The positions are labelled one addition, one step, one operation,
one instruction and continuous. Of these, only the continuous and one instruction
positions are of significance here.

If the switch is on continuous, the computer is said to be Hon continuous" and
operates in the following manner. When the star t bar is depressed, the computer
starts executing instructions and will not stop until either a 90m instruction is
executed or a breakpoint is reached. Once the computer stops, it will not start
again until the bar is depressed. However, if the computer is placed in the one
instruction mode and the start bar is then depressed, the computer will stop at the
completion of the stage of the four stage cycle currently being executed. Thus, if
a closed loop contains no conditional transfer of control instructions, the operator
can place the computer on one instruction, and the computer will stop at the end
of the first stage of the cycle which it encounters. Depressing the start bar will
cause the computer to complete the execution of the current stage of the four stage
cycle and stop at the end of this stage of the cycle. If this process is continued;
and if each time the computer stops on gamma or delta time, the programmer notes
the location and nature of the instruction just transferred to SR; the path of the
closed loop, and possibly the reason for it, will soon be determined.

THE RELEASE CONDITIONAL TRANSFER

BREAKPOINT SELECTOR BUTTON

With the exception of the conditional transfer breakpoint selector button labelled

ttrelease", the conditional transfer breakpoint selector buttons are such that,

when depressed, they remain depressed. The depression of the "release" button

releases all of the buttons.

157

OTHER BREAKPOINTS

There are breakpoints other than conditional transfer breakpoints. One is the comma

breakpoint. If a comma is coded in the first instruction digit of an instruction, and

if a switch, called the comma breakpoint switch, on the Supervisory Control Panel

is locked in the down position. the computer will stop when the ,Om instruction is

transferred to SR. If the comma breakpoint switch is in the normal position, the

computer interprets a ,Om instruction as a skip.

A third breakpoint is the fifty breakpoint. If a switch, called the type out break­

point switch, on the Supervisory Control Panel is locked in the down position,

every time a 50m instruction is transferred to SR the computer will stop before

printing. If the type out breakpoint switch is put in the center position, the normal

position, the computer interprets 50m instructions as defined. The switch can also

be locked in the up position, called the skip type out position, which causes the

computer to interpret all 50m instructions as skips. The skip type out position of

the type out breakpoint switch allows the programmer to speed up the execution of

a routine by skipping .type outs that otherwise would normally occur.

MANUAL ALTERATION OF INSTRUCTIONS IN THE MEMORY

It often happens that, in a debugging run, the computer will stall, or "hang up", on

a bug, and after a short investigation the programmer decides that, by a slight

alteration of the instructions, the bug can be eliminated. Rather than preparing a

new instruction tape to test his theory, the programmer can make the alterations

in the memory by the following manual operations.

The instruction tape is initial read. By placing the computer on one instruction,

the operator can then step the computer, stage by stage, through the instructions

that read the rest of the instructions into the memory. At this point the operator

can set up, in SR, 10m instructions to the cells the contents of which the pro­

grammer wants to modify. The execution of the 10m instructions completes the

modification, and the corrected routine can then be run by putting the computer on
continuous. It is normal operating procedure to first print out the words to be

altered.

THE FILL OPERATION

If the programmer wants to modify the contents of a series of consecutive cells,

he can use a procedure, called the fill operation, that is faster than the setting up

158

of 10m instructions in SR. By operation of the fill memory switch, the operator can

cause the computer to set up in SR a 10m instruction to the cell specified by the

three least significant digits of CC. After this 10m instruction has been executed,

the computer automatically increases (CC) by one and once more sets up a 10m

instruction to the cell specified. This process can be continued for the contents

of as many cells as the programmer wants to modify.

If the programmer wants to start the fill operation with cell 000, a word of zeros

can be transferred to CC by depressing a switch called the clear C switch De­

pression of the clear C switch is the operation referred to as U clear C". If the

programmer wants to start the fill operation with some cell other than cell 000,.

the proper address can be transferred to CC by the SeICR operation.

SCICR

By operation at the Supervisory Control Panel, the operator can perform the oper­
ation known as SeICR (Supervisory Control Input to CR). This operation allows the

operator to type 12 characters on SCK and have the resulting word transferred to

CR. If, for example, the programmer wanted to start a fill operation at cell 029,

the operator could SCICR a 0 Om UOm instruction pair. The UOm instruction would

specify cell 029. Then, by putting the computer on one instruction, the operator

could cause the computer to execute the OOm UOm instruction pair. At the end of

the execution the address in CC would be 029. The operatQr can then begin the

fill operation at cell 029.

GENERATING DATA

To debug a routine, data must first be provided for the routine. Knowledge of the

nature of the data aids materially in locating bugs. Thus, initial data is usually

prepared by the programmer. In many cases it is not necessary for the programmer

to write out such data and have the data unityped. Instead, a rather simple routine
can be coded that, when executed, generates the data as its output. The correct­
ness of such a generator routine can be checked visually by printing the output on

the Univac High-Speed Printer.

DEBUGGING PROCEDURE

When the programmer takes his routine on the computer for a debugging run, he

should have with him all information pertinent to the routine, and always a copy of

159

the flow chart and coding. Usual debugging procedure is to run the routine for the

first time with the computer on continuous. The routine may hang up on a bug,

enter a closed loop or run to completion. When the computer encounters a bug, the

programmer must note all-pertinent information about the bug, preferably by writing

it down. For example, if the routine were to hang up on an adder-alphabetic error,
the pertinent information would be the answers to the questions:

1. How long after the execution of the routine started did the routine hang up?

2. What instruction was the computer executing when the routine hung up?

3. What was (rA) immediately before the execution of this instruction?

4. What is the word that was being added to (rA) when the routine hung up?

When the computer is on continuous, the only part of the central computer group

that moves slowly enough for the mind of the programmer to keep up with is the

tape on the Uniservos. This tape movement can usually be predicted from the
nature of the routine, and before the debugging run the programmer should figure

out and fix in his mind every detail of the expected tape movement. During the

debugging run the programmer's main interest should be directed toward the move­

ment of the tapes. not at the SCP. Any deviation from the expected tape movement
is usually a good indication of a bug.

THE EMPTY OPERATION

It sometimes happens that, after a bug has been detected, the programmer could

profitably utilize a record of the contents of a certain portion of the memory. If the

portion is not too large, th.is record can be printed on SCP by means of the empty

operation. The empty operation is initiated by depressing the type out selector

button labelled" empty" and operates as follows. The contents of the cell speci­

fied by the three least significant digi ts of (CC) are ,prin ted. (CC) are automatic all y

increased by one, and the contents of the next specified cell is printed. The pro­
cess can be continued until the contents of all cells wanted by the programmer
are printed.

MEMORY DUMP

If the portion of the memory, a record of which the programmer wants, is too large

to be printed in a short amount of time, a memory dump can be used to obtain the

160

record. Memory dump consists of writing the contents of the memory on tape in
order that the tape can be printed on the High-Speed Printer. It is standar d de­
bugging procedure to obtain a memory dump whenever a bug occurs and cannot
immediately be corrected.

VERIFYING THE OUTPUT

If a routine runs through the debugging run to completion, and the programmer has

been unable to detect any bugs from the tape movement, the output of the routine

must then be checked to verify that it is the output expected from the given input.

The verification can be done visually by printing the output on the High-Speed

Printer. However, it is often possible, especiallyifthe input data has been generat­

ed, to code a routine that will accept the output of the routine to be debugged as

input, and compare it with the expected results. Such a checking routine usually

prints all pertinent information about any discrepancies on the SCP.

SUMMARY OF PROCEDURES TO FOLLOW FOR TEST RUNNING A ROUTINE

A. Prior to running the routine

1. Prepare a detailed memory allocation including working storage.

2. Prepare detailed operating instructions including:

a. servo allocation - inputs. instructions, blanks

b. a description of SCP printouts and necessary type-ins

c. breakpoints included in routine - how and when used

d. a list of servo buttons to be depressed

e. the disposition of output

3. Code a data generator and a checking routine if applicable
4. Thoroughly desk check the routine

5. Determine the nature of tape movement

B. To run the routine

1. Mount tapes
2. Inform the computer operator of buttons and switches to be used

161

3. Initial Read the instruction tape

4. Place computer on continuous

C. While the routine runs'

1. Observe tapes for characteristic movement
2. Listen for characteristic sound of a closed loop or stoppage.

D. If the computer stalls

1. Determine the type of error (neons lit, SR, CR)
2. Examine the contents of affected registers and memory cells (type-outs,.

empty, etc.)

3. Determine the location of the error (type out (CC))

4. If the error can be corrected and the routine continued, do so. (type-ins,
fill, etc.)

5. If necessary, write the contents of the memory on tape.
6. When appropriate. employ service routines to locate the source of the error.

7. Desk check the routine and list -the corrections to be made.

E. If there is a closed loop in the routine

1. Depress HaIP' breakpoint selector button

2. Depress start bar (as many times as is necessary) noting the Qm and Tm

instructions and the condition of the conditional transfer neons.

3. When a pattern is determined proceed to D3, above.

4. If there are no Qm's or Tm's in the loop, execute the loop one instruction

at a time.

F. When tape movement is not as expected

1. Stop computer
2. Proceed to D5, above.

G. When the routine runs completely, check the output.

162

chapter11

Preparation and

Disposition of Data

INPUT UNITS

The Central Computer of the Univac Data-Automation System eff.iciently accepts

large volume data only from tape; therefore, all such data is prerecorded on this

medium. In addition to computer recording, three other means are available for

recording tape.

1. Keyboard to tape recording.
2. Card-to-tape recording.

3. Paper to magnetic tape recording.

KEYBOARD TO TAPE RECORDING

UNIVAC UNITYPER

The Univac Unityper is keyboard operated and records each key stroke on tape

while also producing a printed copy. It is the primary device for recording source
documents on tape. The Unityper is desk size and consists of a modified electric

163

typewriter containing a recording head, a tape transport mechanism and housing

unit, and a power supply. The keyboard is similar to the standard typewriter key­
board with the following modifications.

1. In addition to the standard numeric keys, there is a special set of 10

numeric keys arranged to facilitate more rapid recording of numerical data.

2. All alphabetics are printed as capitals.

3. Special keys are available for representing characters peculiar to the

Univac Computer code and for controlling the operation of theUnityper.

The Unityper prints 120 characters to a line, each printed line being recorded on

tape as a blockette at a density of 50 characters per inch. A blockette is a group

of ten words. A space of 2.4 inches is left between blockettes. Any errors made

while typing a blockette, as evidenced in the printed copy, can be corrected:

singly, by backspacing the tape to the error and retyping the blockette from that

point; or for a complete blockette, by depressing the Erase Key, causing the whole

blockette to be erased and the tape to be positioned for retyping.

In some cases, the data to be recorded may not completely fill a blockette, or it

may be desirable to simplify the computer processing by insertion of spaces or

zeros between fields. Special Unityper keys provide for automatically filling a

blockette, or portions of a blockette, with zeros or spaces. This is done by first

setting the Fill Selector Switch to either the space or zero position. Then when the
Fill Key is depressed the carriage will be advanced either to the next tab stop or

to the end of the line, if no tab stops have been set. The character chosen by the

Fill Selector Switch is recorded on tape in the positions transversed by the car­

riage. The average recording rate on the Unityper is 10,000 characters per hour.

UNIVAC VERIFIER

The main function of the Uilivac Verifier is to verify the correctness of tapes pre­

pared on the Unityper. In addition, the Verifier can be used to prepare tapes in the

same way in which the Unityper is used.

The Verifier consists of three units housed in a standard size typist's desk. The

units are the typewriter unit, the tape reader unit, and the control and checking unit.

Verification consists of comparing, digit by digit, the data on a Unityped tape with

a second typing of the source document. A printed copy, produced on the type­

writer unit, records the actions performed in the verification process.

164-

The Verifier's tape reader reads, and sets up in the thyratron memory of the con­

trol unit, the first character on tape. The operator then strikes the key of the first

character on the source document. If the character of the key struck and the

character on tape agree, the typewriter prints the character in red. If there is a

disagreement between the characters, the character is printed and then the key­

board locks. The determination of what the error is can be made by backspacing

and viewing the character from tape on a neon display. The character on tape can

be changed by use of the Correct Key, or if correct, may be reverified to continue

the operation. If an entire blockette requires correction, the Change One Line Key

is used. Both of these keys will switch the Verifier's function temporarily to

recording.

As each character is transferred from tape to the Verifier's memory it is counted.

More or less than 120 digits from a blockette will stop the Verifier with the digit

count error neon lit.

The maximum rate of verification is 12 characters per second. Nonsignificant in­

formation can be skipped without printing or verifying at the rate of SO characters

per second.

PUNCHED CARD-TO-MAGNETIC TAPE RECORDING

UNIVAC 80-COLUMN PUNCHED CARD-TO-MAGNETIC TAPE CONVERTER

The Univac SO-Column Punched Card-To-Magnetic Tape Converter is a device for

automatically recording data from SO-column punched cards on tape. The card to

tape conversion is a checked operation. The rate of conversion is 240 cards per

minute. Each card is recorded as a blockette. The Converter consists of three

cabinets, the tape cabinet, the card reader cabinet and the control and memory

cabinet.

A card is initially read at the first reading station of the card reader, and the

data is stored in the magnetic core memory of the control cabinet. As the data IS

read it is edited by a plugboard. The edited data is then written on tape.

The tape is then read back to the beginning of the blockette just written. As this

is being done, a second reading is made of the card. Each column is read at a

different reading station from that of the first reading and stored in a different

165

pOSItiOn 1fl the memory. The blockette is then read forward, and a comparison is

made between the tape recording and the second card reading in the memory. During

this comparison, and as the tape is read back, each character is counted and its

binary code checked. If an even binary code or a digit count error is present, or if

there is disagreement between the tape and card recordings, the card will be

ejected into an error bin, and the tape will be repositioned at the beginning of the

faulty blockette for rerecording. When this occurs, the operator has the following

choices of action.

If the sequence of cards must be maintained on tape. the error card may be rein­

serted in the card reader at the head of the cards and the conversion continued. If

the error was transient, the card should be converted successfully, but if the card

again fails to convert,an adjustment may be necessary.

If card sequence is not important, the error cards can be accumulated till the end

of the run, reinserted in the card reade.r, and converted in a group.

If all checks pass, the card counter will be stepped and the next card converted.

The failure to feed a card is automatically detected by requiring each card fed to

generate the signal which causes the next card to be fed.

The SO characters of each card may be re-arranged in any way in the 120 character

blockette by the wiring of a detachable plugboard. If desired, up to 24 overpunched

columns (X or Y) on a card may be separately recorded as a minus and ampersand,

respectively, for the overpunches, and as the corresponding numeral for any other

punch in the column. The ~verpunch symbols may be distributed anywhere in the

blockette. Thus, the data may be spread over as many as 104 characters within
each blockette. Unused characters of the blockette and un punched columns in the
card are recorded as zeros or space symbols as determined by the setting of the

Blank Column Selector, a special plugboard control. The method of complement

plugging is used as a check on the correct functioning of the plugboard during

conversion. This method requires all wires of the plugboard to emit a continuous

signal throughout the conversion.

The SO-Column Card-To-Magnetic Tape Converter can accept combinations of

punches representing 26 alphabetics, 10 numerals and 12 miscellaneous symbols.

166

All the acceptable card punches and their corresponding Univac Computer charac-

ters are listed below.

'UNIVAC UNIVAC

CARD COMPUTER CARD COMPUTER

PUNCH CHARACTER PUNCH CHARACTER

No Punch t1. or 0 (Determined by 12-8 H
12 & blank column 12-9 I
11 selector) 11-1 J

0 0 11-2 K
1 1 11-3 L
2 2 11-4 M
3 3 11-5 N
4 4 11-6 0
5 5 11-7 P
6 6 11-8 Q
7 7 11-9 R
8 8 0-1 /
9 9 0-2 S

12-1 A 0-3 T
12-2 B 0-4 U
12-3 C 0-5 V
12-4 D 0-6 W
12-5 E 0-7 X
12-6 F 0-8 Y
12-7 G 0-9 Z

Some punched card installations make use of triple punched columns, known as
the 407 code. A slight modification of the 80 Column Converter, an optional

feature, will translate these triple punches into Univac Computer characters, as

shown below.

CARD PUNCH

3-8
4-8

Y-3-8
Y-4-8
X-3-8
X-4-8
0-3-8
0-4-8

UNIVAC
COMPUTER CHARACTER

I/:
@

$
*

Unless the triple punch modifications are present, the 80 Column Converter will
interpret triple punched card columns as mispunches, arid will eject the triple

punched card into an error bin.

167

UNIVAC 90-COLUMN PUNCHED CARD-TO-MAGNETIC TAPE CONVERTER

The Univac 90-Column Punched Card-To-Magnetic Tape Converter is a dev.ice for

reading data from 90-column punched cards and recording it on tape. The differ­

ences between the 90 and SO-Column Converters are as follows. In all other re­
spects the Converters are .identical. The card data may be spread over as many as
114 characters of the blockette. The 90-Column Card-To-Magnetic Tape Converter
can accept the combination of holes representing 26 alphabetic symbols, 10 numer­

als and 7 miscellaneous symbols. All of the acceptable card punches and the.ir

corresponding Univac Computer characters are listed below.

UNIVAC UNIVAC
CARD COMPUTER CARD COMPUTER

PUNCH CHARACTER PUNCH CHARACTER

no punch Il. or 0 (Determined by 3-7 H
0 o blank column 3-5 I
1 1 selector) 1-3-5 J

1-9 2 3-5-9 K
3 3 0-9 L

3-9 4 0-5 M
5 5 0-5-9 N

5-9 6 1-3 0
7 7 1-3-7 P

7-9 S 3-5-7 Q
9 9 1-7 R

1-5-9 A 1-5-7 S
1-5 B 3-7-9 T
0-7 C 0-5-7 U

0-3-5 D 0-3-9 V
0-3 E 0-3-7 W

1-7-9 F 0-7-9 X
5-7 G 1-3-9 Y

5-7-9 Z

If cards contain.ing 4 or more punches .in any column are fed into the 90-Column
Converter, they will be ejected into an error bin, unless the modified Converter
is used. The modified Converter permits cards to be converted which conta.in 4 or

more punches as follows.

CARD PUNCH

1-3-5-7
1-3-5-9
1-3-7-9
1-5-7-9
3-5-7-9
1-3-5-7-9

168

UNIVAC
COMPUTER CHARACTER

+

/

PAPER TO MAGNETIC TAPE RECORDING

The Univac Paper-To-Magnetic Tape Converter, PTM, translates the five, six, or

seven level code of perforated paper tape to magnetic tape. The PTM consists of

three components housed in a single cabinet: the paper tape reader, the translator

and the control unit.

The paper tape reader reads the paper tape code into the translator unit at the rate

of 200 characters per second. As each character enters the translator it is con­

verted into the Univac Computer code. The translated characters are then stored

in a 120 character memory. When the memory is filled the 120 characters are re­

corded on tape as a blockette at the density of 128 characters per inch; a space

of an inch is left between blockettes.

OUTPUT UNITS

The computer efficiently produces large volume data only on tape. Three means

are available for converting data on tape to some other form of output.

1. Tape to printed copy.
2. Tape to punched cards.

3. Magnetic to paper tape.

TAPE TO PRINTED COpy

UNIVAC HIGH-SPEED PRINTER

The Univac High-Speed Printer is a device for large volume printing of data. The

standard printing speed is 600 printed lines per minute, with up to seven legible

carbons. The Printer accepts paper from 4" to 27" in width and up to card stock

in thickness, and has a 130 character printing line. Paper may be preprinted and

serrated. There are 51 printable characters: 26 alphabetics, 10 numerics and 15

miscellaneous symbols: '# $ % * () / - + : ; . , ' and &.

Tapes recorded in blockette form at densities up to 128characters per inch with

a minimum of one inch between blockettes are acceptable to the Printer. These

tapes include tapes produced by the Unityper, the Verifier, the Card-to-Tape Con-

verters, the PTM, and the computer. The computer wri"tes a tape for the High­
Speed Printer as follows.'

169

On the Supervisory Control Panel are a series of 10 buttons, called Block Sub­

division Buttons and labelled with the names of the Uniservos. If a Block Sub-.

division Button is depressed, all writing done on the corresponding Uniservo will

be in blockette form. The space between blockettes on Uniservos 8, 9 and - will
be one tenth of an inch, on all other servos, one inch.

The High-Speed Printer is housed in four cabinets, the tape cabinet, the printing

cabinet, the control and checking cabinet, and the power supply cabinet.

Through the use of a detachable plugboard, the horizontal format for each blockette

printed can be set up in such a manner that

1. any character of the blockette can be printed in anyone of the 130 print
positions,

2. fields of the blockette can be printed on as many as six consecutive lines.

and 3. fields of the blockette can be printed as many as three times on any or all

of the six consecutive lines.

The plugboard also enables the suppression of the printing of nonsignifican.t zeros

in a numeric field.

The vertical format of printing is regulated by a 7 channel punched paper loop

located in the printing cabinet, which advances in synchronism with the paper.

The sensing of holes in certain channels of this loop will cause the paper feed to

either fast feed the paper or else to discontinue a fast feed presently in progress.

No printing occurs while the paper is being fast fed. There are two ways in which

a fast feed can be initiated: by a symbol on tape or by a hole in the paper loop.

As a blockette is read from tape to the memory, each character is counted. More or
less than 120 characters in a blockette stops the Univac High-Speed P.rinter and

lights the character count error neon.

As each character is transferred from tape to the memory, and from the memory to

the comparator, it is given an odd even check. An illegitimate character code

Stops the High-Speed Printer and lights the odd even error neon.

The Univac High-Speed Printer also checks against

1. the failure of a character to print

2. the printing of more than one character in a print position

and 3. the printing of a character other than the character meant to be printed.

170

The occurrence of any of the above stops the High-Speed Printer and lights an

appropriate neon.

MAGNETIC TAPE TO PUNCHED CARDS

The Univac Magnetic Tape-to-Card Converter transfers data from magnetic tape

to SO-column punched cards. Input to the Converter is tape recorded in blockette

form, a space of 1/10 inch between blockettes. An SO-column card is punched from

selected portions of each blockette. The conversion is checked and proceeds at

120 cards per minute. The Converter consists of three cabinets, the tape cabinet,

the card punching cabinet and the control cabinet.

A blockette is read from tape and stored in the magnetic drum memory, located in

the control cabinet. The format of the blockette on the drum is controlled by a

detachable plugboard. This plugboard is used to select the SO characters of each

blockette for punching and the positions on the card where they are to be punched.

Any character can be punched in any column.

The edited blockette, in the drum memory, is sent to the card punch to be punched.

Columns which are not plugged on the plugboard are not punched. After a blockette

has been punched, the next blockette, having been read and edited during the

punching of the preceding blockette, is sent to the card punch.

The conversion continues In this manner until a blockette conta1fllflg a printer

stop symbol is read. The blockette containing the printer stop is not punched.

As a blockette is read from tape to the Converter's memory each character is

counted. If this count is other than 120, the Converter stops with the character

count error neon lit.

As each character is read from tape to the memory its code is checked. If a charac­

ter with an even number of pulses in its code is present, the Converter stops with
the Digit Odd-Even Error Neon lit.

After each card is punched it is read at a second station in the punch unit. This

data is stored in a special section of the memory. A character by character com­

parison is then made between the data punched on the card and the data originally

read from the tape. If any inequalities are detected, the card punched is ejected

into an error bin, and the Converter stops with the appropriate error neon lit.

171

As the card data is sent to the card punch each character's code is checked. If a

character with an even number of pulses in its code is detected, the Converter

stops with the appropriate error neon lit. If any of the above errors occur, the

Converter can be restarted to either reread the blockette or repunch the card. If

the error is transient, the conversion will be successful on the second attempt.

The conversion table showing the equivalent tape characters and card punch com­

binations is shown below.

UNIVAC

COMPUTER

CHARACTER

o
1
2
3
4
5
6
7
8

9

)

/
A
B
C
D
E
F

CARD
PUNCH

11
0
1
2
3
4
5
6
7
8
9

12-0
11-0

0-1
12-1
12-2
12-3
12-4
12-5
12-6

MAGNETIC TO PAPER TAPE

UNIVAC

COMPUTER CARD
CHARACTER PUNCH

G 12-7
H 12-8
I 12-9

J 11-1
K 11-2
L 11-3
M 11-4
N 11-5
0 11-6
P 11-7
Q 11-8
R 11-9
S 0-2
T 0-3
U 0-4
V 0-5
W 0-6
X 0-7
y 0-8
Z 0-9

none Blank

The Univac Magnetic-to-Paper Tape Converter, MTP, translates magnetic tape into

the five, six, or seven level code of perforated paper tape. The MTP consists of

a magnetic tape reader and a paper tape punch.

The punch operates at 60 characters per second. The MTP automatically punches

teletypewriter function codes in the paper tape.

172

chapter 12

Operational Routines
In this chapter there will be described solutions to problems frequently encounter­

ed in using a computer as a data processor. Each solution will be shown in an

abbreviated flow chart. The operations making the next input item available or of

recording on tape the current output item will be indicated by a double-lined box

adding 1 to a letter subscript:

This symbol will stand for all operations implied by selecting the next item of a
block. This includes getting the next block when the current one is exhausted, or

the next tape when the present one is completely read. A similar symbol will

represent the appropriate output operations.

173

TAPE SUMMARY

A frequent problem encountered in computer applications is to print a summariza­

tion of a detail tape. To illustrate the problem and its solution, a practical example

will be given. Consider a file of insurance policies, each policy represented in the

file by an item, pL containing at least the following fields:

1. The insured's occupation classification code, pf
2. The age of the insured at the time of issuing the policy, pT

3. Type of insurance issued (the plan), pi
4. The amount of insurance purchased (face value), pf

A table is to be produced, similar to the one illustrated in Figure 12-2, showing a

summary of the total amount of insurance and number of policies, by type of insur­

ance, by age at issue, and by occupation of insured.

Of course, not all occupations, nor all ages, nor all plans may be contained in this
file. Further, assume that the total combinations of occupation, age and plan ex­

ceed the memory capacity of the computer.

SORT BY:

1. OCCUPATION

2 AGE

3. PLAN

SUMMARIZE

17l1-

FIGURE 12-1

OCCUPATION AMOUNT NUMBER

CODE AGE AT ISSUE PLAN INSURED OF POLICIES

A 1,230,000 850
B 2,000,000 501
C 1,600,000 350

25 4,830,000 1701
A 2,000,000 900
B 650,000 100
C 15,050,000 1500
D 205,000 73

30 17,905,000 2573
401 22,735,000 4274

A 6,365,000 1055
C 6,160,000 1231

27 12,525,000 2286
A 3,121,000 630
G 8,900,000 2461

28 12,021,000 3091
A 4,221,000 1347

29 4,221,000 1347
435 28,767,000 6724

FIGURE 12-2

The main steps in the solution are shown in Figure 12-1. The first operation is to
sort the policy file into an ascending sequence in order by, from major to minor,
occupation, age and plan. This is accomplished by one of the standard sorting
routines. The output of the sort is the sorted policy file which forms the inpu t to
the next operation which is the summarizing run. Figure 12-3 represents the es­
sential steps in this summarization.

~~--+.~

~--~.~

FIGURE 12-3

175

Since the policy tape has been sorted, the policy items with given occupation, plan

and age will be adjacent to each other on the tape. The first operation, froOl CD to

@' is to store the occupation code, age and plan fields of the first policy item.

In addition, six tallys are set to zero which will be used in accumulating the total

face value and number of policies issued for each classification. At @ the o'ccupa­

tion code and age and plan of the ith policy item are compared with the occupation

code and age and plan stored. They must agree, and the face value of the policy

is added to S5, and one is added to S6, which is the count of the number of policies

issued with classification CAP. The next policy item is selected, and control is

transferred to 0 to process this item.

The keys of the second item and the ones following are compared in turn to the

keys stored. When a change of key occurs, control is transferred to the output

routine (connectors ® to @)

Each output item, Bj, consists of the following five fields:

Bj The occupation code field

oj The age field

o~ The type of insurance field
J

B~ The accumulated face value of policies with
J

keys CAP

B~ The total numbers of policies with keys CAP

When an item with a different plan key is found, @ is set and control is trans"

ferred to ®. Non-printing characters (space symbols, ~) are inserted into Bj
and B,. The plan, P, is inserted into B~, and S5 and S6, the totals, are inserted

respectively into B i and B~. The next operation is the addition of S5 to S3 and S6

to S4 (sub-totals for occupation code C and age A), since the plan, P, has changed.
The box

..

implies all operations necessary to place Bj on the output tape. Connector@ was

set and, therefore, control is transferred to ® where S 5 and S6 are reset to zero

in preparation for totaling the next plan. In addition, the new plan is stored in P,
and control is transferred to G)

176

When an item is found which contains a new age key, connectors ® and @ are

set, and control is again transferred to ® where an output item containing the

totals under P is formed as previously. In this case, since @ is set, an output

item containing the age totals in formed. ~'s are inserted into B j and B J. The age,

A, is inserted into B~, and the totals under classification CA, S 3 and S4' are in­

serted into B f and B1 respectively. Then the age totals are added to S1 and S2

(the totals for class C). Connector @ then transfers control to 0 where S3, S4,

S5, and S6 are reset to zero, and the new age and plan are inserted in to A and P.

When an item with a new occupation code is found, connectors ® and @ are

set, and control is transferred to ® where, as shown previously, output items for
the plan and age totals are formed. Then @ causes an output item to be fonned

for the totals under the classification code C. C is inserted into B5; and ~'s, into

Bf and B1· S1 and S2 are inserted into B) and B j respectively~ and the output

operations, executed. Control is then transferred to CD where all the totals S1 to

S6 are reset to zero, and the new occupation code, age, and plan are inserted into

C, A, and P, respectively.

The reader will note that at any time a new policy item is selected for a different

plan, age or occupation code the totals to date are placed in an output item B j' and

the totals for this category and its subcategories are reset.

The output of this summary run, then, consists of the items B j which represent the

totals for each CAP. Printing this tape produces the table of Figure 12-2.

If it is desired to have the table list the summaries in the order: 1. occupation code,

2. age, and 3. plan, the procedure should be modified in this fashion: Since the

output items representing the totals for the major categories follow the items with

summaries for the minor categories, each completed output tape, instead of simply

being rewound when it has been filled, should be read backwards, its items being

written on a new output tape exactly in the order they are read .

Thus, this ~econd output tape now contains the major totals first, then, the minor

totals. The last reel of tape coming from the summary run should be the first one

printed, then the next to the last tape should be printed, etc. Of course, this would

give a table arranged in descending sequence. To avoid this, the sort routine

should produce a descending sequence rather than an ascending one. The summary

run itself is not changed.

177

TABLE LOOK-UP

Many data processing problems involve ccTable Look-Up" operations. That is,

given a quantity x, select from among a set of quantities Y a quantity y which is

assigned to x. Wherever possible, keep the size of the table Y as small as possible.

In some cases it may be possible to reduce the table to a formula from which y can

be computed, given x. However, in some applications it is not possible to reduce

the table to a size which can be stored in the memory or to a formula. In these

cases, it is necessary to consider table look-up solutions that are completely

general as far as table size and argument interval are concerned.

Consider the following problem. A file contains a series of billing items, Bi , con­

taining among other things, the following fields:

1. Location code of point of origin from which item purchased was shipped, B~

2. Destination code where item was shipped to, B~

3. Commodity classification of item, 31

It is desired to obtain the shipping rate by looking this rate up in a table which is

entered by origin code, destination code, and commodity classification code.

Consider the table to be a file consisting of items Tj containing the following fields:

1. Point of origin code, Tj

2. Point of destination code, T~
3. Commodity classification code, Tj

4. Rate for this origin, destination, and commodity, Tj

The file of items Tj which constitute the table are assumed to be arranged in an

ascending sequence, from major to minor, by origin, destination and commodity.

This arrangement is effected once, and once only ,at the time the table is developed.

The main steps in the table look-up are shown in Figure 12-4.

178

SORTED
BILLING

FILE

BILLING
FILE

MATCH
MERGE

I.
2.
3.

SORT BY
ORIGIN CODE
DESTINATIOH CODE
COMMOD I TV CODE

BILLING
FILE
WITH

RATES

RATE
TABLE

FIG U R E 12-4

The first operation is to sort the hilling items Hi into an ascending sequence, from

major to minor, by origin code, destination code and commodity classification.

This is accomplished by a standard sort routine. The next operation is to match

merge the sorted billing file and the table, thus producing an output which consists

of the same billing items with the appropriate rate inserted in them.

The essential elements of the match merge operation are shown in the flow chart

which is Figure 12-5.

FIGURE 12-5

179

The table items Tj are examined successively until an item with origin, destina­

tion and commodity code is encountered which matches those codes in the current

billing item B i . When the match occurs, an output item Rk is formed by attaching

to the billing item the rate field of the table item, TJ. The bOx...f I k + 1 k ~
implies the output operations necessary to record Wk on tape, while the box

--i I i + 1 i ~ selects the next billing for the table look-up.

In some applications the table look-up operation may involve an interpolat~on be­

tween near lying entries in the table. In this case, while the general procedures

shown in Figure 12-4 are unchanged, a modification of the match merge operation
is needed.

Assume that the billing item, B., contains an argument, Bi, which is the basis of

of the table look-up(this corres;onds in function to the fields BP, Bt and B1, of

the previous example). Suppose further that four point interpolation is needed in

selecting the rate. That is, if the symbol E~ represents the argument of the nth
table entry, then if

E~-l < B~ 2. E~

a a a: a
the table values for arguments E n-2 , En-I, En' and En+ I will be needed. The
mathematical formula using these entries and their arguments to calculate the

interpolated rate will be indicated by F(E n-2' En-I, En, En+ l).

The flow chart shown in Figure 12-6 is the required match merge necessary to

select the required table entries En noted above.

CALCULATE RATE
BY

I NTERPOLA TI OM

FIGURE 12-6

The first two entries of the table must correspond to arguments below the range

of arguments B~. Similarly, the last two entries of the table must correspond to

180

arguments above the range of B,. The initial operations, performed once only, are

<D to CD . These steps stored the firs t four entries and their arguments (T l' T 2' T 3

and T 4) as items Et, E2, E3 and E4, respectively. At CD the table look-up begins.

The first billing item argument B~ is compared with the argument E:. If B~ is

greater, each En is displaced down one position with E 1 being dropped and the next

Tj becoming E4. When, finally, the first E~ is located which is just greater than

(or equal to) B~, the four items E 1, E2, E 3, and E4 contain the proper entries for

interpolation. An output item Wk is formed consisting of the billing item and the
interp~lated rate, This item is sent through the output operation"{l k + l k J---...
necessary to record it on tape, and the next billing item selected.

The extension of this flow chart to handle 2, 3, 5 point, or higher interpolation is

obvious.

EXPLOS ION CA LCULAT I ON

The explosion calculation can be described by the following problem. A company

manufactures a number of models of a product. For each model a bill of materials

exists which lists the basic sub-assemblies or units and the number required for

each model. This data can be termed a bill of materials file consisting of items Mi.

Each item represents a unit or sub-assembly for a particular model. It contains,

among other things, the following fields:

1. The model code to which this unit belongs, MT
2. The part number of a part used on this model, Min
3. The number of such parts used on this model, "Mr

This bill of materials file is kept in model code sequence to facilitate the problems

of file maintenance and the explosion run to be described.

A second file, the production schedule, is also available. This file consists of a

series of items, P j' containing the following fields:

1. The model code, pT
n

2. The number of such models to be constructed, P j

The problem is to determine the total number orsub-assemblies required by the pro­
duction schedule. That is, the production schedule is to be Ctexploded" into the

pieces that make up the models.

181

Figure 12-7 depicts the major operations required 10 exploding the production

schedule.

PROD.
SCHED.

FILE

[
SORT BY

MODEL CODE
--.-------'

SORTED
PROD.

SCHED.

EXPLOSION
CALCULATION

SORT BY
PART NUMBER

SUMMARIZE
BY

PART NUMBER

RAW
REQMTS

FILE

SORTED
RAW

REQMTS
FILE

REQMTS
FILE

BILL OF
MATERIALS

FILE

FIGURE 12-7

Assuming a random development of the production schedule, the first step is to

sort this schedule into model code order to facilitate its "multiplication" by the

bill of materials. This is accomplished through one of the standard sorting routines.

182

The output of this run is called the sorted production schedule which forms with

the bill of materials file the input to the explosion calculation. In this operation,

the number of units or sub-assemblies required to produce the quantity of each

model listed an the production schedule is determined. The output of this calcula­

tion is called the raw requirements file. Now, because many models contain common

sub-assemblies, it is necessary to summarize the raw requirements file.

First, of course, the file must be sorted to part number sequence not only for the

summary to follow but also for the convenience in reading the printed sub-assembly

requirements table. The summarization operation has already been described.

Figure 12-8 is a flow chart showing the method of calculating the raw requirements.

ERROR III
PROD. SCHED.

P~XM?_RD1lk+ '~kHli + I~I ~

FIGURE 12-8

At CD the model codes of the first production schedule item and the first bill of

materials item are compared. If the model code called for by the production schedule

is the larger, it means that its corresponding bill of material items are further up

the bill of materials file. Accordingly, this file is advanced item by item until a

model code is reached equal to (or less than) the production schedule model code.

Next a test is made to detect improper model codes which may have slipped in

during the manual operations used in preparing the production schedule. Next, an

183

output item I\ is built up. The part number of the current bill of materials item is

stored in Rpn, and then the number of such parts needed is calculated by multiply­

ing the numkber of the model to be built, pr, by the number of this part used in that

model, Mr. This field is the requirement for this part by the production for this

model and is designated R~. The box-.11 k+ l k ~arries out the steps

necessary to record this requirement item on tape. The bill of materials file is

then advanced one item and this item's model code checked against the current

production schedule item's model code. If they agree, another extension is made.

This process continues until a bill of materials item for a different model code

turns up. This signifies that all of the extensions for current production schedule

item's model code have been made, and the production schedule file is then ad­

vanced one item.

Having seen how a simple explosion run is performed, consider a somewhat more

involved and, thus, more practical problem. Suppose that our productio~ schedule

consists of a series of items giving the required production per month, per

model for a certain number of months. That is, each production schedule item, P.,
J

contains the following fields:

1. Model Code, PI?

2. Number of unit~ to be produced this month, pj
3. Coded representation of this month, P~

Further, suppose that if a model is to be produced for a given month, each of the

sub-assemblies will have a lead time peculiar to the assembly unit. For example,

if a model is to be completed on day X, sub unit A must be available on day X-L,

or L days earlier. Thus, modify the bill of materials file so that it includes the

appropriate lead time. Each bill of materials item will now contain the fields:

1. The model code to which this unit belongs, MT

2. The part number of this unit, Ml n

3. The number of such units used on this model, M~
4. The amount of lead time required for this unit, M i

Now compute the Hphased" requirements. That is, determine not only what and

how many sub-assemblies are required for this production schedule, but also on

what date they are required. Figure 12-9 shows the general sequence of steps re­

quired in calculating the phased requirements.

SORTED
PROD;

SCHED.

SORT BY
MODEL CODE

I.

PROD.
SCHED.

FILE

EXPLOSION
CALCULAT I ON

RAW
REQMTS

FILE

SORTED
RAW

REQMTS
FILE

SUMMARIZE BY
PART NUMBER

AND DATE

PHASED
REQMTS

FILE

BILL OF
MATERIALS

FILE

FIGURE 12-9

185

The same essential steps are found in this solution as described earlier for Figure

12-7. Of course, the explosion calculation will necessarily be different. The flow

chart of this explosion run is shown in Figure 12-10.

FIGURE 12-10.

At CD the model code of the first production schedule item is stored as a key K.

Beginning at CD each production schedule item with the same model code K is

stored in the memory. These stored production items are called F, any particular

one being F n. As soon as a production item is found for a different model code, go

to ® where the bill of materials file is advanced to the first item for model code K.

Beginning at @ start exploding the production schedule. The first stored produc­

tion item, Fp with p = 1, is selected and the number of units to be produced during
month D is multiplied by the number of sub-assemblies M~ required. Then, the lead

time, Mi is subtracted from the completion date, F g, and these two fields and the

stock number of the sub-assembly are placed in an output item, Rk . The box

~·I k + 1 k ~implies the output operations necessary to record the item Rk

on the raw requirements tape. The box-41 p + 1-... p J..,selects the next stored

production item, and it is processed in a similar fashion. When all of the stored

production items, F P' have been extended the bill of materials file is advanced to
the next sub-assembly for this model and the process repeated. When all s ub­

assemblies for model K have been processed this entire procedure beginning at

CD is repeated for the next scheduled model.

186

chapter 13

Insuring Accuracy

of Processing

In any data processing system one of the chief concerns is the accurac.y of the re­

sults. In a computer data processing system, errors may be introduced in one of

three ways.

1. Erroneous data fed into the system.

2. Erroneous intervention by an operator into the system.

3. Malfunctioning of the computer.

INPUT DATA ACCURACY

187

The accuracy of output can be no better than the accuracy of the input. Input veri­

fication is designed to detect various types of errors in the inpu t.

The first type of error is called implausible. An implausible error stalls the com­

puter, because it is unintelligible to it, and must be detected. An alphabetic in a

numeric field is an example of an implausible error. An attempt to add the alpha­

betic to another would stall the computer. The operator is normally not familiar

with the routine and would have no means of correcting the situation. Nor could

the operator stee the computer past this point. The occurrence of an implausible

error stops the system. The routine must be designed to protect itself against

implausible errors and write the error items on an error tape.

The second type of error is called tfplausible but wrong u
• A Hplausible butwrong U

error does not stall the computer but does produce incorrect output. The reporting

of 28 hours worked in a day is an example of a Ctplausible but wrong" error. This

type of error item would also be written on an error tape.

A third type of error is called ccplausible but probably wrongu
• The reporting of 12

hours overtime in one day is an example of a C cplausible but probably wrong" error.

Such an error can be processed and flagged for later inspection by the payroll de­

partment.

Input errors can also be studied from the standpoint of their source. The opera­

tions performed by the Univac System may be considered the function of an organi­

zation called the data processing center. The data processing center is an organi­

zation formed to render services to such subscribers as the payroll, purchasing,

accounting and engineering departments. Errors in data exist because of introduc­

tion by either the data processing center or the subscriber. The center may alter

valid data during the transcription of data from document to tape. To minimize such

errors unityped tapes are verified on the Verifier.

The detection of input errors caused by improperly prepared source data is the sub­

ject of input verification. This run may test the input for

1. alphabetic characters in numeric fields,

2. numeric fields within certain limits,

3. key field validity

and 4. consistency of data.

The validity of keys can be determined by checking for the presence of a correct

final digit in the key. Consistency errors are typified by a case such as a medical
absence entry in a clock card item also containing a standard work week key.

188

OPERATOR ACCURACY

There are points at which an operator must manually intervene in the otherwise

automatic operation of a computer. For example, to run a routine, an operator

must mount input tapes. The stored program allows the computer to check all oper­

ator interventions for accuracy. For example, by convention, the first block of each

input tape contains, not data, but an identification of the data on the tape. By

means of this identification block, the computer can check that the data mounted

is actually the data associated with the stored routine.

RERUN

Rerun is designed to handle situations where processing 1S interrupted during a

run. Power failure or removal of a routine for one of higher priority are examples

of such interruptions. Rerun consists of periodically writing, or dumping, the con­

tents of the memory on tape. Then, no matter where processing is interrupted, it

can be restarted at the point of the last memory dump by using the memory dump to

reconstitute the memory. Rerun eliminates the necessity to restart an interrupted

run from the beginning, thus conserving computer time.

COMPUTER ACCURACY

In computers every pulse has a significance which, if lost, alters the content of

the whole message. A power failure of only .4 IlS duration can cause the loss of a

binary one. Such a loss could change a six to a five.

DECIMAL

6
5

EXCESS THREE WITH ZONE

001001
001000

If such a situation occurred when two words were being compared, the comparator

may indicate inequality when equality is the case.

If such an error occ urred when the key 60032 is being checked for equality be­

tween files A and B in figure 13-1,. no item following the item with key 60029

would be processed, since the computer would exhaust file B in a vain search for

equality of keys.

189

FILE A FILE B

50031 50031
50032 50032
59999 59999
60028 60028
60029 60029
60032 --+-50032 60032
60034 60034

FIGURE 13-1

No malfunction can be tolerated in a computer, Slfice even a minute failure may

have disastrous results.

TYPES OF FAILURES

Errors can be produced by permanent or intermittent failures of equipment. A blown

fuse is an example of a permanent failure. A gradually weakening tube that some­

times overloads under the influence of a particular pulse combination is an example

of an intermittent failure.

ERROR DETECTION

It is not possible to build a computer that will never malfunction. The only solu­

tion is to provide some means of detecting errors as they occur and preventing the

the propagation of the error. The responsibility for detecting errors can be placed

on the programmer or checks can be built into the computer.

PROGRAMMED ERROR DETECTION

DIAGNOSTIC ROUTINES

A computer can execute a routine the output of which is known. If the output is as

expected, the routine guarantees that the computer has not developed a permanent

failure. However, the routine provides no assurance that an intermittent failure

will not occur during a production run. Moreover, running time for the routine is

lost time as far as production is concerned.

190

DUPLICATE RUNS

After a computer has executed a production routine, it can execute the routine a

second time. The results of the runs can be compared, the computer usually being

used to make the comparison. If the comparison checks out, and .if a permanent

failure has not developed since the last diagnostic run, the output is correct.

Such an approach more than doubles, and may more than triple, the computer time

required to produce the output. Moreover, if the comparison does not check out, it

is impossible to know if a failure occurred during the first or second production

run or during the comparison or during any combination of the three.

PROGRAMMED CHECKS

The production routine can be programmed in such a manner that, immediately after

the execution of a subroutine, a second subroutine, checking the results of the

first for accuracy, is executed. For example,

010 BO 880

} A- 881
011 HO 882

addition

S- 880

} 012 LO 881
QOO020

check

If control is transferred to cell 020" the addition was correct; if control passes to

cell 013, incorrect.

Programmed checks increase the running time of a product.ion routine by a factor of

at least two thirds. The increase in memory space required by the programmed

checks is even more drastic. Moreover, there are operations that do not lend them­
selves to a programmed check. Selection of the next instruction to be executed and

selection of the cell specified by an instruction are examples of such operations.

By themselves, programmed checks cannot assure output accuracy.

If a computer failure occurs, the failure must be corrected before the computer can

return to operation. Thus, the fault must be located in the computer hardware. Since

programmed error detection may not stop the computer at the point w hen an error

occurs, this method provides little or no help to the technician in locating the
fault. The time required for the technician to locate the fault further reduces pro­

ductive computer time.

191

BUILT IN CHECKS

Checking circuits can be built into a computer in such a manner that the computer

stops the instant an error occurs and lights a neon on the control panel, thus in­

dicating the nature of the error. These circuits operate in conjunction with the

processing circuits. No computer time is lost because of the existence of checking

circuits. Admittedly, checking circuits cost money, but they save

1. productive computer time lost because of diagnostic runs,

2. produ.ctive computer time lost because of duplicate operation, either by

duplicate runs or by programmed checks,

3. productive computer time lost because runs must be subdivided to provide

memory space for programmed checks,

4. productive computer time lost because the computer does not stop the In­

stant the error occurs, thus requiring the technician to locate the fault with

little or no help from the checking routines,

5. productive computer time lost because of errors that escape programmed

checks,

6. company embarrassment caused by such errors

and 7. productive programmer time lost in the search for the elusive perfect pro-

• gram check.

Built in checks represent a fixed initial cost; checking routines, a continual, and

basically, hidden cost. It is estimated that built in checks will pay for themselves

in less than a year.

BUILT IN CHECKS OF THE UNIVAC CENTRAL COMPUTER

ODD EVEN CHECK (O-E CHECK)

The odd even checker is a reliable, inexpensive checking circuit which checks

against the proper storage of data and the proper transfer of data from one storage

to another. There is an odd even checker located

1. on the High-Speed Bus (HSB) which is the transmission line between the

registers and the memory,

2. on each of the adder inputs,

3. between the Uniservos and rI

and 4. between rO and the Uniservos.

192

In addition to the O-E checks on transfers, the regular operation of the computer is
interrupted every five seconds for the Periodic Memory Check, PMC. During PMC
the contents of the memory are read into the HSB O-E Checker. Should an even
count be registered for any of the 12,000 characters the HSB O-E Checker will
alert the error circuitry and stall the computer. PMC prevents a faulty character
from going undetected for long periods of time and possibly dropping enough pulses
to pass the odd-even check.

However, there are failures that the odd even check cannot detect. For this reason

duplicate and logical checks are also used.

DUPLICATED CIRCUITRY

Several elements of the Central Computer of the Univac System are duplicated. In

the case of storage or transmission elements, such as the registers and the HSB,

the contents of the duplicated elements are continuously compared for identity.

In the case of processing elements, such as the adder and comparator, equality

of output is the basis of the check. The duplicated elements are

1. the HSB,

2. each of the adder inputs,

3. the adder,

4. rA,

5. rL,
6. rX,

7. rF,

8. the comparator,
9. the cycling unit, which keeps track of the stage of the four stage cycle

that the computer is on,

and 10. the Time Out circuits, which determine whether Univac IS on TO or Time
On.

LOGICAL CHECKS

In addition to the duplicated circuits and odd-even checkers there are a large
number of internal logical checks designed to further insure error free computation.
Logical checks are employed wherever it is not feasible to duplicate equipment or
where no data transfer is involved to make use of odd-even checks.

193

TANK SELECTOR CHECKER

This checker is a check on the fourth and fifth instruction digit set-up of SR. A
further word of explanation is necessary for this checker. There are two general
types of checking circuits:

1) In a negative checker the error neon is lit when an error is detected.

2) In the positive type checker, the error neon is lit first and only correct
operation will extinguish the neon in time to prevent stalling the computer.

This is a positive type checker. If the upper tank selector neon is lit and the com­
puter is stalled it means the fourth instruction digit was set up incorrectly, if the
lower neon is lit and the computer stalled it indicates that the fifth instruction
digit is incorrect. It is quite possible to have a Tank Selector Error through a
faulty program. An instruction BOOA12 for example, will show a fourth instruction
digit error. The sixth instruction digit set up is checked by circuits which compare
the check pulse in SR against a computed check pulse.

FUNCTION TABLE INTERMEDIATE CHECKER

The Function Table Intermediate Checker is a check that the first instruction digit
was set up correctly in the Static Register. This checker also acts as a shift
selector check.

FUNCTION TABLE OUTPUT CHECKER

This is a duplicated positive type checker, whose function it IS to check on the
proper execution of instructions.

TAPE CHECK

Along with the seven information bits recorded on tape for each character, an
eighth bit called the Sprocket ChanneJ Pulse is also recorded. When information is
being read from tape the Sprocket Channel Pulse indicates the presence of a
character and actually initiates the process of synchronizing the incoming informa­
tion with the timing of d:e computer. If a Sprocket Channel Pulse is not read from
tape along with information pulses the Tape Check Error neon is lit.

194-

INPUT - OUTPUT INTERLOCK CHECKER

The input-output interlock circuits are set at the beginning of any input-output
operation, and are reset when that operation has been completed succes sfull y.
When the interlocks are set, further orders of the same type or using the same
equipment are prevented from being executed. It is essential to correct operation
of the computer that the interlock circuits function properly. This checker, when
set, indicates one of the following failures:

1) The read interlock failed to set at the beginning of tbe last read order.

2) The write interlock failed to set at the beginning of the last write order.

3) The Uniservo in question was set to execute a backward read when a
forward read was ordered.

INPUT SYNCHRONIZER> 720 CHECKER

Digits are recorded serially along the tape, and are thus picked up one at a time
when the tape is read. The computer counts the number of digits read and after the
720th digit (last digit of the 60th word) has been read and the space between
blocks is encountered the read is terminated. Through a failure in the input-output
control or photocell circuits a short (less than 720 digits) or a long (greater than
720 digits) block may be encountered. Either of these two cases lights the> 720
error neon.

As far as the computer is concerned, a short block is defined as a read of 59 com­
plete words and at least one, but less than twelve more digits, followed by the
space between blocks. The Uniservo will then stop reading tape and set the> 720
error. A long block occurs when the computer reads a full 60 words and at least one
more digit before encountering a space between blocks. The tape stops in the next
space between blocks or photocell area, whichever is first, and sets the > 720
error. In either case setting> 720 error prevents the next read order or Supervisory
Control input or any other order affecting the Uniservo causing the error from being
executed.

THE EFFECT OF ERRORS

If an error is detected in any part of the computer other than the input-output
circuitry, the computer immediately stalls. If an error is detected in the input-out­
put circuitry, the computer stalls as soon as another attempt to use the faulty part
of the circuitry is made. For example, if an error was detected during the writing
of a block on T6, the computer would stop as soon as another write instruction or
another tape instruction involving T6 was transferred to SR. Given an error, such
a situation prevents the computer from propagating the error. In either case, as
soon as an error occurs, a neon on the Supervisory Control Panel lights, indicating
the specific error that has occurred.

195

BUILT IN CHECKS ON THE PROGRAM

Besides checking the accuracy of its operations, the computer also checks for the
occurrence of an adder-alph error. in which case, the computer immediately stalls

and lights an appropriate neon on the Supervisory Control Panel.

196

UNIVAC I TAPE CHART

TAPE PULSE BLOCKS PER REEL UNIVAC I READ WRITE TIME ~EWIND FEET
SPACING IN INCHES DENSITY / TIME UTILIZED

USE CHAR/IN. (*BLOCKETTES) PER BLOCK PER REEL PER REEL PER REEL

Univac I 5.025/ block 128 2,275 105.25 ms 3.99 min. 3.04 min. 1521
2.4 between blocks

2.4/ blockette
Unityper II 2.4 between blockettes

Verifier
2.4 between blocks 50 500 =Ie 313.0 20.08 sec. 24 sec. 200 ms

Card-To-Tape
.9375/ blockette

Converter
1.8 between blockettes 128 6,400 =0: 195.25 ms 3.47 min 3.03 min. 1513

2.4 between blocks

Uniprinter 30.0 / block

2.4 between blocks 20 475 409.0 ms 3.24 min 3.04 min 1520

Tape-To-Card .9375/ blockette

Converter .1 between blockettes 128 12,900 =0: 110.25 ms 3.95 min 3.00 min 1527

2.4 between blocks

High-Speed
.9375/ blockette

1.0 between blockettes 128 8,400 =0: 155.25 ms 3.02 min 3.04 min 1520
Printer

2.4 between blocks

UNIVAC I Start-Stop Time: 44 ms; Interlock: 5 ms; Tape Speed: 100" I Second.

U1592 Rev. lA ··\~NTfO

U N I V A C L The FIRST Name in Electronic Computing Systems

. f

	0.000
	0.001
	0.002
	0.003
	0.004
	0.005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	back

