

B CREROCRRMMING

UNIVAC'I
"Otn, Ayitomation Sytom

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Table
Of Contents

| ELEMENTS OF THE UNIVAC DATA AUTOMATION SYSTEM

Input-Output Unitscovutiniiiiiiiiiiiinineendnennn,
The Univac Central Computer...........ccoviiinienennnannn

The Memory Unit....c.iuiiniiiiiniiiieeinnneneenneennns
The Control Unit....ivviiiiin it enenenseennnnes

Il INTRODUCTION TO CODING

Arithmetic Instructions - List Ac.iiiriirinnnnnn
Illustrative Example et i ittt

Student Exercisesveeveeeinnenneeeens P

Rule for Multiplicationccciiiiiiiinnnnnnnnes
Rule for Divisioniiiiitiniiinenrnneeennennennn

Student Exercises..........ciiiiiiinnnirneneersennnns .
The Control Unitvviviritirininnneeenereenonnnnnas
Transfer of Control InsStructionseeeeeeeennns

Illustrative Examplecoiiiiiiiiiiiiininnn,

Student EXercisescuuiirriiuneorsenernnasnennens

111 INTRODUCTION TO FLOW CHARTS

Illustrative Examplettt ronnnnns
Student Exercisescuieiiviereerrtorannsonanenss e

IV MODIFICATION OF INSTRUCTIONS

Tterative Codingttt eiiiinnieinnvnenneneneios
Iterative Flow Chart Symbols iviviiinnns

............

...........

ooooooooooo

ooooooooooo

...........

ooooooooooo

...........

ooooooooooo

...........

...........

...........

...........

ooooooooooo

ooooooooooo

...........

ooooooooooo

18

20
27
29
29
32
32
33
33
34
35
36
40
42

44

50
52

55

59
64

v

Vil

v

Vi

MODIFICATION OF INSTRUCTIONS (con't.)

Illustrative Exampleciiiuiiininnrinernnronronsensnannss 65
Student EXercisese.iviiierenrtieresserncesssosonnnasssass 68
Function Table Look-Upiiitiiiiiiiiiiiiiiinienienanenas 68
Illustrative Example ettt it e 68
Function Table Look-Up in Flow Chartsoiiiiunen, 70
Shift InsStructionsvuiitie it eereunenonencooneeseesesenensens 71
Student Exercisescciieeveeeeennnnns S N 76
ITEM PROCESSING 77
The Jtem ...ovtttiitiiiititenneenenonsonsesnseeseesseeneanansens 77
The Field ...iiiiiin ittt ittt ttteonrnnnsoesoensnsennanonnnens 7
Representing Fields on Flow Chartscciviiiiiiiniiinns 78
Illustrative Example ittt iiiiiinnnnnnnn 79
Working Storagecuiiiiiiiiiiiiii ittt ittt 81
Jtem Registers ...uuiiiiiniiiiiiiinieneiiiinernoinennesennnannns 83
Student EXerciseuvivieiiitenrieteieetaeerorionnsennnnannnns 85
Field Selection Instructionsccuv.. e eeeaeereaaan 86
Illustrative Example i e e 87
Student Exercisesiiiitirieneeeornneneessesoesenneeenens 88
SUBROUT INES AND VARIABLE CONNECTORS 90
Common Subroutinesvetiiieennenreineeeereeteeeronneeneens 90
Tllustrative Exampleottt iiitiineinnnisnnnnnnnns 90
Variable Connectorscciuteivioinrnreseessoonrssosscnnnnees 98
Student EXerciseuouitiiiiiiitiiieeeeeieeeoeeeenerennnenenns 103
Subroutinesciiiiiiiiiiiaan e v eserateesattaseatnannns 104
DETAILED DESCRIPTION OF INSTRUCTIONS 106
Transfer of Control Instructionsc.cveiiviinrnenennnnnen 106
Shift INStIUCLIONS «vvervee it tenrenearoteeeroassoneesenesnnesnens 108
Multiword Transfer InStrucCtionsiveverereerntnecnnennnnnns 108
Arithmetic InStrUCEIOoNS ...ttt ittt nernnenonenoeeeonensannns 109
L0 S b 1N 2 112
Undesired Overflowcciiiiiiiiiiinernneeenoeennunnnnnennns 120

Student EXercCoSes v vviitnineeteneeonesneseoesnenaseasosssasenas 120

PAGE

ViIl INPUT - OUTPUT 122
Character Representationciiieeirieerenenncnerenaennnns 123
The Uniservococuiiiiiiiiiiiiiinninninnennn. secevvanscrnanes 125
Buffering and Backward Read iiiiieiiiienennnn. 126
Tape InStruCtionS . ..ieuiienenrnenonneeeeonneennenoeeeenennnnns 127
Tape Instructions on Flow Chartsccitiiieniennnnnnnn. 131
SentInels ...t i i i i i et i et it e 131
The Instruction Tapevviiiiiiiiiii i ineneneneneennannnnas 132
Servo Deltaciiiiiiniiinnnnnnns Ceeeet et raneroanesas 132

Illustrative Examplettt iiiiiiineinnnnn 133
Student Exercisecviouuiiitiininitiineenienrnneennnnnnnns 140
IX EFFICIENT USE OF BUFFERS 142
Preselectionciiiiiininriiiiiennenionessneenesnnnanas 143
Illustrative Example P 143
Student Exerciseciiiiiiiiiiiit it rinensnnnnnn. 150
Standby Block Method it it 150
Student Exerciseciiiiitiiiiitinint it tterarannnaa 152
X SUPERVISORY CONTROL PANEL OPERATIONS 153
The 10m InStructioneeeeiuveroneneennieicnnsannnesnnaens 154
Conditional Transfer Breakpointscoveevvennennnnnn.. 154
Printing from the Supervisory Control Panel veeeee. 155
The All Conditional Transfer Breakpoint Selector Button ceve .. 156
Interrupted Operationcuuiuiiiniiiiiniimeeresonnsonann 157
Other Breakpoints coicer it neenororennseennnnnoonanns 158
Manual Alteration of Instructions in the Memory 158
The Fill Operationc..veiiiiniiiuniiiinnnenreeenanenesans 158
O 0 O 159
Generating Data ittt iiiiiiiiiiiiienns 159
Debugging Procedureciitiiiiiiiiiimieneienansnnenn. 159
The Empty Operation e ettt e e, 160
Memory DUump ... iiiit iiitiitt ittt ii et esenooecsnennesnneann 160
Verifying the Outputot ittt iiiiiennnns 161

Summary of Procedures to follow for Test Running a Routine ... 161

X1

X1l

X1l

PREPARATION AND DISPOSITION OF DATA 163
Keyboard to Tape Recordingcotiiiiiininiinivnninnennns 163
Univac Unityperiutiitiiniininnienernseensonnenssnnonnns 163
Univac Verifierciiiiiiiiiiniinnt tiennecnoneennnnanss 164
Card-To-Tape Recordingociieiitiiniiniinneennennennanas 165
Univac 80 Column Card-to Tape Convertercoeevuu. 165
Univac 90 Column Card-to Tape Converterooveeuveas 168
Paper to Magnetic Tape Recordingccviueiieinenenen. 169
Univac High-Speed Printerttt iiiennnnnn, 169
Tape to Punched Cardsciiuiiiiiiiiiirinniinnnrnennenaenns 171
Magnetic to Paper Tape i iiiiiiiiiiiiiiiiiniennn. 172
OPERATIONAL ROUTINES 173
Tape Summaryuiieiieiniiitioniseoiassnssnsonsserssrsasres 174
Table Look Upiiiiiiiiiiiiiiironronniensestsnasasensnonas 178
Explosion Calculationcciieiitieiinneeonnencnrenennnnns 181
INSURING ACCURACY OF PROCESSING 187
Operator ACCUTACY . ..cvivtniutnnusennsoeonsoenensssosaaasnannns 189
Rerun .ttt i i i i e e et e e st 189
Computer ACCUTACY .uvvtintiniinrene senrensonanoonnsencon sonsas 189
Type of Failuresi ittt iieiinte citenentennneanen 190
Error Detectioniveuiiineineesonnereenoenosneennonnas 190
Programmed Error Detection Diagnostic Routines 190
Duplicate Runsc0iiuiiiiiiiniiiinneeororeneenennnnnns 191
Programmed Checks ittt ittt 191
Built in Checks ...ttt ittt iienetnneenaenannnnnns 192
Built in Checks of the Univac Central Computer 192
Odd Even Checkcuiuiiiiiiiiniiiiiiniitiinnenrennnennnns 192
Duplicated CiTCULLTY ...iittintiiiiiiiiirinennnneeenenennans 193
Logical Checksi.iiiiiiiiiii it ittt iiineann, 193

haer ~

Elements of the Univac

Data Automation System

To determine the elements of a data processing system, we will examine the steps
in the manual solution of a data processing application. Consider a company that
keeps a record of its stock in a ledger. Each day a clerk is supplied with a sales
form. On this basis of the form the clerk brings the inventory up to date by writing
a new column in the ledger.

INVENTORY OF STOCK I1TENS ‘ STOCK ITEMS SOLD
svock | OATE { oATE /3
INPUTD |l f5 [[e [ar"rees
7{19|13 [7 !
g [17|0 q 4
AT 72N
14 Yy N 71 »
523119 S, vwk,_& 18 2
>
PROCESSING > g
INYENTORY OF STOCK ITEMS g
sTock | PATE T {
KUMBER }/ % 4% ; (
AL ial/] .
OUTPUT> g7
9|8 l1g)4
BT
FIGURE 1-1 L~J& 12319119 R RN
READ THE FIRST
INVENTORY
STOCK NUMBER
1S THERE A SALES
ITEM FOR IT? WRITE THE
INVENTORY
YES | NO | QUANTITY IN THE
NEW COLUMN
SUBTRACT THE
SALES QUANTITY
FROM THE INVENT-
READ THE ORY QUANTITY
NEXT ONE
IS THIS THE
LAST INVENTORY
STOCK NUMBER? PUT THE
NO | YES LEDGER
FIGURE 1-2 AWAY

Thus, the clerk must be able to perform arithmetic;

FIGURE 1-3

he must be able to make logical decisions;

FIGURE 1-4

he must be able to remember information;

READ THE FIRST
INVERTORY

STOCK NUMBER

. SUBTRACT THE ‘

‘SALES QUANTITY

FROM THE INVENT-
ORY QUANTITY

IS THERE A SALES
ITEM FOR 177

YES NO

IS THERE A SALES
ITEM FOR IT?

YES | NO

|

READ THE
NEXT ONE

SUBTRACT THE
SALES QUANTITY
FROM THE INVENT-

ORY QUANTITY

REMEMBER

THE STOCK
NUMBER

FIGURE 1-5

REMEMBER
THE STOCK
NUMBER

g

WRITE THE
INVENTORY

NEW COLUMN

QUANTITY IN THE

REMEMBER
THE DIFFERENCE

and he must either execute the steps in the sequence shown or do something
logically equivalent to this sequence of steps.

FIRST,
DO THIS
THEN,
DO THIS ﬁ
THEN
0o OR THEN,
THIS THIS l""'" DO THIS
THEN,
DO THIS
THEN,
DO THNIS
THEN
DO OR NOW, STOP
_ THIS | THIS
FIGURE 1-6
This example involves six elements.
1 Input 4 Memory
2 Arithmetic 5 Control
3 Logical Decisions 6 Output

Contrasted to the manual system, the Univac Data Automation System keeps the
inventory recorded on magnetic tape. Initially the tape would have been prepared
by means of the Univac Unityper, a modified typewriter that produces, in addition
to typewritten copy, the recorded tape.

INVENTORY OF S{

L~

sTock | DATE
NUMBER | /
4151%
7119|1111
117011/
9 18 15114

14 24 D412/

~J5 123119119

SOURCE DOCUMENT

INVENTORY
TAPE

UNITYPER

FIGURE 1-7

Instead of a sales form, a sales tape is produced daily, also by the Unityper. In-
stead of the clerk, the Univac Central Computer does the processing.

UNIVAC

- PROCESSING

FIGURE 1-8

The inventory tape is read by means of a tape handling mechanism called a Uniservo.

INVENTORY
TAPE

[

UNISERVO

UNIVAC

FIGURE 1-9

The sales tape is read from another Uniservo.

The clerk brought the inventory up to date by writing a new column in the ledger.
The Central Computer brings the inventory up to date by writing an updated inven-
tory tape on a third Uniservo. '

In this application the Central Computer requires three Uniservos - two for reading
and one for writing. Reading and writing requirements vary from application to
application. To provide maximum flexibility, the Central Computer has access to a
bank of 10 Uniservos, any of which can be used for reading or writing.

In the manual solution, the column the clerk writes in the ledger on any one day,
that is, the inventory output, becomes the inventory input on the next day. The
sales form continues to originate each day from outside the data processing sys-
tem.

Similarly, in the Univac System, the updated inventory tape written one day be-
comes the next day’s inventory tape; while the sales tape continues to originate
each day from outside the system. Once the inventory tape has initially been uni-
typed it need never be unityped again, since it is kept up to date by the Central
Computer.

DATA PROCESSING SYSTEM

SOURCE
DOCUMENT

UNITYPER

™

INVENTORY
TAPE

UNIVAC

U NIVAC

<

3\

\= = IE BANK OF
—~, ‘ UN1SERVOS

LR

UPDATED
INVENTORY TAPE

FIGURE 1-10

INPUT OUTPUT UNITS

" In many cases, input data does not come, and output data is not desired, in tape
form. The Univac Data Automation System includes several input units to convert
data from some other form to tape, and output units to convert tape data to some
other form.

INPUT UNITS

The Unityper has already been discussed as an input unit.

The Univac Card-to-Tape Converter converts data punched on cards to tape.

CARD-TO-TAPE CONVERTER
FIGURE 1-11

The Univac PTM converts data punched on paper tape to magnetic tape.

W v
e
o
) "

FIGURE 1-12 PAPER-TO-MAGNETIC TAPE CONVERTER

OUTPUT UNITS

The Univac High-Speed Printer,

FIGURE 1-13 HIGH-SPEED PRINTER

The Univac Tape-to-Card Converter.

FIGURE 1-14 -TAPE -TO- CARD CONVERTER

The Univac MTP converts magnetic to paper tape.

i tIt L
SRNE DA EaNs

BV YUY G L]
S 24ne 2984 Nady 9
LR R B :

FIGURE1-15 MAGNETIC -TO-PAPER TAPE CONVERTER

KEYBOARD INPUT OUTPUT

Besides using tape, the Central Computer can also accept and produce small volume
data directly by means of a keyboard and a typewriter.

The Central Computer accepts data directly from an operator’s key strokes on the

Supervisory Control Keyboard.

The Central Computer produces printed data directly on the Supervisory Control
Printer, which is a modified typewriter.

THE UNIVAC CENTRAL COMPUTER

To satisfy the requirements of an automatic data processor, the Univac Data Auto-
mation System must not only be able to accept input and produce output, but must
also incorporate the other functions of a data processor, memory, control, arithme-

tic and logical decision.

SUPERVISORY
CONTROL
KEYBOARD

UNIVAC
CENTRAL
COMPUTER

FIGURE 1-16

FIGURE 1-17
SUPERVISORY
CONTROL PRINTER

1

These functions are performed by the Central Computer of the Univac System. The
memory function is performed by the Central Computer’s memory unit; the control
function, by the Central Computer’s control unit; and the arithmetic and logical
decision functions, by the arithmetic unit.

THE MEMORY UNIT

In the manual system described above, all information necessary to the processing
is made available to the clerk in some form.

1. The stock number and inventory and sales quantities are on the ledger
page and sales form.

2. The date of the current updating is on a calendar.
3. The instructions for updating the inventory are in a procedures manual.
The above information can be classified as:

1. data,
2. constants,

3. instructions.

Similarly, in the Univac System, all necessary information is made available to the
Central Computer; the data, on an input tape; the constants and instructions, on an
instruction tape.

However, to have the information available is not sufficient for the clerk to do the
processing. While processing, the clerk must remember the information bearing on
the current processing step. Moreover, the clerk must remember the results of any
calculation done at least until he writes the results in the ledger. Similarly the

te

Central Computer must ‘‘remember’’ the data, constants and instructions that it

reads from tape, and must ‘‘remember’’ the results of calculations until it writes

them on the output tape. The Central Computer ‘‘remembers’’, or stores, informa-

tion in its memory unit. The memory is divided into cells. Any cell can be used to

12

store data, constants or instructions. The 63 characters used to represent informa-
tion are shown below.

FIGURE 1-18
CHARACTERS

One cell can store one *‘word’’, a word being any permutation of twelve characters.
The following are examples of words.

JOHNAJAJONES
JUNEAI 0A} 926
012345678901
A00100€00200

The positions of the characters in a word are named as follows.

FIRST DIGIT POSITION OR SIGN POSITION
SECOND OR MOST SIGNIFICANT DIGIT POSITION
THIRD DIGIT POSITION

FOURTH DIGIT POSITION

FIFTH DIGIT POSITION

SIXTH DIGIT POSITION

SEVENTH DIGIT POSITION

EIGHTH DIGIT POSITION

e N{NTH DI1GIT POSITION

TENTH DIGIT POSITION

pe—emee ELEVENTH DIGIT POSITION

— TWELFTH OR LEAST SIGNIFICANT DIGIT POSITION

Y I EEEEEEREEE

LLT T T T TP TTl]

FIGURE 1-19

If a word represents an algebraic quantity, the sign of the quantity must be in the
sign position. A plus sign is represented by a zero; a minus sign, by a minus.

FIGURE 1-20
WORD AS A SIGNED QUANTITY

The memory size is 1000 cells. For the purpose of referring to words in the
memory, each cell is given a distinct address. A word in the memory is distin-
guished from all other words in the memory by the address of the cell in which it
is stored. The cells are addressed consecutively from 000 to 999.

Once a word has been transferred to a cell, it remains in that cell until another
word is transferred to take its place.

Figure 1-21 is a stylized version of the memory unit storing instructions, data and
constants.

o © ~
s~ §~ s &7 § S~ v s
) S o D S Q ~ o
)))) o) Y A
~ ~N © ~ S \Y S &
/))& /¢ S/ /4
S/s/S/s/s s/ &/
< /é? S /o? /@ /5 /5 /c
000 001 002 003 00y l(, 997 998 999

et 70 e
FIGURE 1-21

THE CONTROL UNIT

The code for an instruction is represented in six characters. Consequently, two
instructions, called an instruction pair, are represented in one word.

LEFT HAND RIGHT HAND
INSTRUCTION INSTRUCTION

FIGURE 1-22
INSTRUCTION PAIR

WORD

The function of the control unit is to select, in the proper sequence, each instruc-
tion in the memory, interpret it and execute it. Instructions are selected in pairs,
one word, at a time. The left hand instruction (LHI) is executed, and then the right
hand instruction (RHI).

The selection of instruction pairs is performed in a sequential manner. That is, if
the instruction pair just executed is in cell 019, the next pair to be executed is
in cell 020.

Initially the control unit begins the sequential execution of instruction pairs with
the pair in cell 000. Thus, to have instructions executed in sequence, it is only
necessary to represent the first instruction in the LHI of the word in cell 000;
the second in the RHI of the word in cell 000; the third in the LHI of cell 001;
and so on.

:s’r LEFY HAND RIGHT HAND lsT l"STRUCT'o"

orY INSTRUCT1ON INSTRUCT 10N 2ND INSTRUCTION

\ 1 3RD INSTRUCTION

CONTROL) 000 —__—~MTH INSTRUCTION

001 { .~ 5TH INSTRUCTION

FIGURE 1-23 l 002 , "6 TH INSTRUCTION
Ay S YRS S ¥/

THE ARITHMETIC UNIT

The arithmetic unit has characteristics in common with a desk calculator in that
it contains an adder to produce the sum or difference of two words, a multiplier
the product, and a divider to produce their quotient. In addition, to enable the
Central Computer to make logical decisions, the arithmetic unit contains a com-
parator, which inspects two words to determine their equality or relative magnitude.

To operate on a word in the memory, the Central Computer must transfer the word
to the arithmetic unit. To provide storage for such words, the arithmetic unit con-
tains four registers named A, X, L and F. The arithmetic registers are identical
to memory cells except that they are auxiliary to the memory. The registers serve
the arithmetic unit in the same way as dials serve a calculator, each register stor-
ing either a word to be operated on or the result of an operation.

Figure 1-24 is a stylized version of a portion of the arithmetic unit.

FROM

MEMORY r 4 F 4 I 4
‘ rX rA rL rf
J / / /
ARITHMETIC / 4 / _to me
UNIT L—| [[MENORY
FIGURE 1-24 > § SI6NAL
A P _ T0
1 o H CONTROL
& 3 wmiIT
R

The memory, control and arithmetic units and their interrelations are shown here:
(The 60 word registers I and O, used for input and output and the multiword regis-
ters V and Y will be described in detail in a later chapter).

G2-1 340914

17

chapter 2

Introduction to Coding

The preparation of a problem for its solution by The Univac Data Automation Sys-
tem is called programming. Programming is done in three steps.

1. Process Charting - The layout of the data processing system in terms of
input, output and processing.

2. Logical Analysis - The analysis of the processing into a sequence of
““small” logical steps.

3. Coding - The translation of the logical analysis into instructions.

PROCESS CHARTING
Figure 2-1 is a process chart.

In this manual all problems requiring logical analysis and coding are given in dis-
cursive form. All the problems specify three things - input, processing and output
and could be put in process chart form which is the usual basis for analysis and cod-
ing.

< INPUT

UP DATE ON 4 PROCESSING
HAND AMOUNT

PROCESS CHART
FIGURE 2-1

r——-‘—_-————

UPDATED

INVENTORY <°UTPUT

CODING

Computers usually perform a function in a series of operations. Each operation is
executed under the influence of an instruction. An instruction specifies at least
two things.

1. the operation to be performed.
2. the data to be operated on.

The data is usually specified in terms of the storage in which the data is to be

found. For example, the data might be specified in terms of the address of the cell
in which it is stored.

A computer might perform the function of adding two quantities together and record-
ing the sum in three operations.

1. Select one quantity.
2. Add the second quantity to the first.
3. Record the sum.

If one quantity is in cell 880; the other, in 881; and if the sum is to be stored in
cell 882; the instructions to cause the computer todo the above operations mightbe:

1. BRING 880
2. ADD 881
3. CLEAR 882

where BRING, ADD and CLEAR are code for the operations to be done; and 880,
881 and 882, the addresses of the cells in which the data is stored.

In the central computer of the Univac Data Automation System an instruction con-

sists of six characters, named as follows,

FIRST SECOND THIRD FOURTH FIFTH SIXTH
INSTRUCTION DIGITS
FIGURE 2-2

The first and second instruction digits indicate what operation is to be performed;
the fourth through sixth digits, the address of the word affected by the operation.
The third digit is normally a zero. (This digit is ignored in the execution of the
1nstruction.)

I
WHAT T0 DO..TO0.... THE WORD AT |THlS ADDRESS
FIGURE 2-3

The instruction

500880

tells the central computer to perform the operation indicated by **50”" on the word
in cell 880.

ARITHMETIC INSTRUCTIONS - LIST A

An “m’’ is used to symbolize the fourth through sixth instruction digits. Paren-
theses are used to symbolize *‘the contents of’’. The symbol

(m)

20

means ‘‘the contents of cell m’’. An “‘r’’ is used to symbolize ‘“‘register’’. The
symbol

rA

t

means ‘‘register A’’. An arrow is used to symbolize “‘is (are) transferred to’’. The
symbol

(m)—pmrA

means ‘‘(m) are transferred to rA’’.

To process data, the computer must read the data from tape and store it in the
memory. There are instructions that, when executed, do the reading. These in-
structions will not be discussed at this time. Instead, reading data will be in-
dicated by the words, “*‘Read Data’’.

INSTRUCTION ~ OPERATION MNEMONIC
BOm (M) A, 1X Bring

Transfer (m) to rA and rX, or bring (m) to rA and rX.

INSTRUCTION OPERATION MNEMONIC
COm (rA)~=»-m; O—>rA Clear

Transfer (rA) to m. Transfer a word of zeros to rA, or clear rA.

One of the possible uses of these instructions is to transfer a word from one cell
to another. If the word in cell 880 is to be transferred to cell 881, the sequence
of instructions might be

B00880 C00881

INSTRUCTION OPERATION MNEMONIC

HOm (rA)=————>-m Hold

Transfer (rA) to m.

The mnemonic is to hold (rA) after the transfer to memory. The HOm instruction
differs from the COm instruction only in that (rA) remains unchanged.

21

of1T2[3]u]s]e]7]efo]o]i] eeo
[oT2]s«]s[6]7[efo o] 1]2] e
[oTa]u]s]e]7[8]o o]]2]3} ra

[ofTsefrTeoo] 1[2]]¢]} rx

[off2]s]u]s]e]7]s]e[o]1]

Tof2]3]u]s]el7Te] o] o] 1]2] c 0 0 8 8 l

o[1[2]s]u]s 67 8] e]o]!

o iT2[es]s e 7[8] o]0 ']

[o]tf2]s]u]s]6]7[e]e]0]1]
(o] iT2fs]s]se7 e o o]

FIGURE 2-4
[oi0cooo0000 YaDDEEEGDEOOCRNE

[o]i]2]3]u]s]e]7]8]9]o 1] rX

INSTRUCTION OPERATION

JOm (rX)——p-m
Transfer (rX) to m.

One of the possible uses of these instructions is to duplicate the contents of a
certain cell in several other cells. If the contents of cell 880 are to be duplicated
in cells 881, 882 and 883, the instructions might be

B00880 H00881
J 00882 C00883

or: B00880 J 00881
Joo882 J00883

H
or: B00880 B00881
HO00882 HO00883

etc.
INSTRUCTION OPERATION MNEMONIC
AOm (m)=—-1X; (rA) + (rX)=——s-rA Add

Add (rA) and (m), and transfer the sum to rA.

22

A[ATaTaTaTaTATATATATATA]
D000D00R00A0

880

a81

882

teJefc[cfefefefe]efefe]e]
[o]o]o]o]o]o]o]o]o]o]o]o]
(elefefefefefefe]efefe]e]
[FIFIFTFIFpr]FlrIF]FIF]F]

880

881

882

683

rh

X

[A[aTaTaTaTA]A]ATATATATA]

EEEEEEEEEEEE) H{0/ 0| 8)8

(e[eeTeTefc[e[ce e e]c]

[o[o]oooo[oo]0]0]o]0]

(ATATATATATATATATATATATA
[a]aTa]afafATAl £TATATA]A
0 8 8 2 (AJA[ATATATATATATATATATA]
0 (alafaTalalalaalaTaTal4]

860

882

883

rA

rX

(e[e[cfe]e]ele]e]e]e]e]e]
(o]ofo]o]o]ofo]e 0000}

(A[aTaTaTaTaTATATaTaTATA]

ATATATATATATATAATATA[A]
[T aT AL AL Al T[]]
(alala[ala] aT AT AT AT AT AT] C 0 0 8 8
(alalala[ala[ala[a]a[a] 4]

[o[o[ofolo[o] o o pfof0f0]
[afaT T afal aTaTaTaT AT o] A
[aTATAT ATAT AT AT T AT AT AT 4]

[AJa]aTalaTaTa]a[a]ala]A]
[a]afafafa[a[afa[aTa]a]x]
(alafaalafaalalaa]a]e]
(A[a]ATATATATATATATATATA]

o[o]o|o|o|o|o[o]o[o|o]oj

(ATATATATATATATATATAT Ao}

FIGURE 2-5

The mnemonic is to add (rA) and (m). The computer executes the AOm instruction
as follows. (m) are transferred to rX. (rA) and (rX) are added. The sum is trans-
ferred to rA.

To add the contents of cell 880 to the contents of cell 881 and store the sum in

882, the sequence of instructions might be

B00880 A00881
C00882

ofi2s[s]se[7Tso[o]1]
{olz]s]us]e]7]s]efo] 1 {2]
[ofs]+]s]e]7Teoo] 1]2]3]
{o]¢4[s]e[7]eoof]2]3]4] -
[o]sTe]7]s]o o] 1T23]4]s]

g

@
@

g

>

<
>

880

{o]if2]s[u]sfe]7][s[s[o]1]
Lol2[a]s]s] 6] 7] 8] oo]2
(ofe]u]se] 7] 8] oo I2]3]
Lof 23] s]e] 7 s]o]o]1
Lol1]2fs]«] sTe]7[e]s[o]1]

881

882

rA

rX

NORBNE6E0B0N
RERFEREREEET
EEEEEIBEERT
DEE0DRDBERNE

ﬂﬂalulslshlslslolnlz!’

882

rA

rx

wo [Q[ZR[ELe[s ls]e[1]
w [l 1]
we [o[a[[e[eZI7[e[F S 1]
+ [S[e[o]e[o s e[eTo o[
OBEE0BGE0a0N. FIGURE 2-6

~

000000000000

~
>

or B00880 A00881
H00882

if it is desired to preserve the sum in rA.

24

INSTRUCTION OPERATION

XOm (tA) + (1X)—=rA
Transfer the sum of (rA) and (rX) to rA.

When executing the XOm instruction the computer ignores m.

One of the possible uses of the XOm instruction is to add the same number to a

sum more than once. Assuming that a quantity is in cell 880, the sequence of
instructions to build up three times the quantity might be

B00880 X00000
X00000

[oJoJo i 2]oJo]o]o]1]2]0 880
(o[[z]+ se]7 e o]]
(of2[s]s[s]s[7]s]o]o] 1]2]

rA

2

[Telo [Tzlo e[e[1[Z[5]
ofoJo]i]2]oJoJoJoi]2]o

ofoJoTiT2]JoJoJoJoi]2]0

8e0

rA

X

[oJefe]iT2[oJofofo] t]2]o]
[ofofo]z[¥]cfofofo[2]4]o
X [oTefo1T2]o oo fe]iT2]0

[ofofo 1 2]oofofo] i 2]o] =eo
Lol e[e e[5] =
[oToToT T2 o o oo 2]0]

FIGURE 2-7

25

INSTRUCTION OPERATION MNEMONIC

SOm -(m)—-»tX;‘r(rA) + (rX)m——i-r A Subtract

Subtract (m) from (rA). Transfer the difference to rA.

The mnemonic is to subtract (m) from (rA). The computer executes the SOm in-
struction as follows. Minus the (m) are transferred to rX. (rA) and (rX) are added.

The sum is transferred to rA.

es0 [o]aJo]o[ofo[o]ofo]1]5]0

s [ofo]o]o]o]ofofo]o]ufs]0

rx {als]i]2]3]s[cfo]1]2]3]4]

SIGN
CHANGER

[ofo]o]ofofo]o]o]o]i]s]o]

[oJo]oTo]oJo]o]o]o]3]o]o]

FIGURE 2-8
If the contents of a cell are negative, minus the contents would be positive.

INSTRUCTION OPERATION
50m (m)—>SCP

Print (m) on the Supervisory Control Prianter (SCP).

sso [A[L]e]u]a]xIxTs[r]aTv]o

ALPHAXXBRAVO

FIGURE 2-9

26

INSTRUCTION OPERATION
90m Stop

Stop operation
In executing the 90m instruction, the computer ignores m.
ILLUSTRATIVE EXAMPLE:

Reading the data stores the ON HAND quantity of a commodity in cell 880, the
ON ORDER quantity in cell 881, and the EXPECTED REQUIREMENTS for the
next 60 days in cell 882. Print (on hand) + (on order) — (required). (Data will
frequently be stored in memory starting at cell 880 because of programming con-
venience. Reasons for this will be described in a later chapter.)

LOGICAL ANALYSIS

1. Read the data.

2. Add the on order to the on hand.

3. Subtract the required from the sum.

4. Print the difference.

5. Stop.

CODING
000 READ } Read the data
DATA

001 B00880 Add the on order to the on hand
A00881

002 $00882 Subtract the required from the sum
C00883

003 500883 Print the difference
900000 Stop

The following is a description of the thinking that might have accompanied this

coding.

Since the computer executes instruction pairs by starting with the pair in cell 000

27

and moving sequentially through the instruction pairs following, the instruction
pairs should be stored in logical sequence, starting in cell 000. Furthermore,
since the computer executes the LHI of an instruction pair before the RHI, the
first instruction of a pair to be executed should be coded as the LHI.

The logical analysis shows that the first step is to read the data. This step is
shown by writing ‘‘Read Data’’ in cell 000.

The next step in the analysis is to add the on order quantity tothe on hand quantity.
The computer will add two quantities if it is given an AOm instruction. But the
AOm instruction adds those quantities stored in rA and m. The onhand and on order

quantities are in cells 880 and 881. Before the quantities can be added together
one must be stored in rA. To store a quantity in rA, the BOm instriction can be
used. To store the on hand quantity in rA the LHI in cell 001 should be:

B00880

At the completion of the B00880 instruction the on hand quantity will be in rA. To
add the on order quantity to (rA), the instruction needed is

A00881

which should be the RHI of cell 001.

After the execution of the AOm instruction the computer will have stored the sum
of the on hand and on order quantities in rA. The next step is to subtract the re-
quired quantity from the sum. This step calls for an SOm instruction where the
minuend is in rA and the subtrahend is in the memory. This situation is present,
so a S00882 instruction will subtract the required quantity from the sum of the on
hand and on order in rA.

The next step is to print the difference. The 50m instruction prints the contents
of a cell, but the difference is in rA. Therefore, the contents of rA must be stored
in a cell. This storage can be done by means of the COm instruction. The cell
specified by the COm instruction must not contain anything necessary to the execu-
tion of the remainder of the coding. Cell 883 meets this requirement, and the in-
struction could be C00883. The execution of this instruction transfers the differ-
ence to cell 883. Then the execution of the instruction, 500883, will print the
difference on SCP.

The last step is to stop the operation. The execution of a 90m instruction does this.

28

It is customary to draw a line under 90m instructions to separate the coding into
related segments.

STUDENT EXERCISES

1. Reading the data stores a quantity in cell 880. Store the quantity in cells
881 and 882.

2. Reading the data stores two quantities in cells 880 and 881. Interchange the
quantities.

3. Reading the data stores five receipt amounts in cells 880 - 884. Print the
sum of the receipt amounts.

4. Reading the data stores four quantities, A, B, C and D, in cells 880 - 883. If

AvBo
A+B—Cg
A+B—-C+D

i

E
F
G
print E, F and G.

5. Reading the data stores four quantities, A, B, C, and D, in cells 880 - 883. If
R=2A-B+3(C+D)
print R.
»ARlTHME.T|C INSTRUCTIONS - LIST B

" INSTRUCTION ‘ OPERATION MNEMONIC
LOm (m)=——pr L., rX Load

Transfer (m) to rL and rX, or load rLL and rX with (m).

INSTRUCTION OPERATION

. KOm (rA) »rL; O >rA

Transfer (rA) to rL. Transfer a word of zeros to rA.

In executing the KOm instruction, the computer ignores m.

29

INSTRUCTION OPERATION MNEMONIC

POm £m) s gLy - s Precision
(rL) x (rX)=—>rA [11 MSD], rX [11 LSD] Multiply

Multiply (rL) by (m). Transfer the 11 most significant digits of the product to rA;
the 11 least significant digits to rX.

The execution of the POm instruction produces a precise 22 digit product. The
mnemonic is to precision multiply (rL) by (m). The computer executes the POm
instruction as follows. (m) are transferred to rX. Three times the absolute value of
(rL) are transferred to rF. (The reason for this is described in a later chapter.)

(rL) are multiplied by (rX). The 11 most significant digits of the product are trans-
ferred to digit positions 2-12 of rA; the 11 least significant digits, to positions
2-12 of rX. The sign of the product is transferred to the sign positions of rA and rX.

INSTRUCTION OPERATION MNEMONIC

MOm fL) [—> Multiply
t (rL) x (rX)—-rA [11 MSD rounded],

tX [11LSD + .51

Multiply (rL) by (m). Transfer the product to rA.

The execution of the MOm instruction produces an 11 digit rounded product in rA.
The mnemonic is to multiply (rL) by (m). The computer executes the MOm instruc-
tion in the same way as it executes the POm instruction. except that, after the
operation associated with the POm instruction is complete, five is added to the
most significant digit of (rX), and if a carry is produced, it is added to the least
significant digit of (rA).

INSTRUCTION OPERATION MNEMONIC
NOm — (m)—rX; H Y
| (rL) x (rX)—srA [11 MSD rounded],

tX [11 LSD + .5]

Negative Multiply

Multiply (rL) by minus (m). Transfer the product to rA.

The mnemonic is to negative multiply (rL) by (m). The computer executes the NOm

instruction as follows. Minus (rX) are transferred to rX. The remainder of the opera-

30

tion is exactly as in the execution of the MOm instruction. The following figure
shows the difference in the effect of the execution of the POm, MOm, and NOm

instructions.
({8
{oTsJoJoJoJoTo o oo Jo 1]
GIVEN -
[oTs ToToTofoToTo oo o]t]
' rA rx
P0880: (s]t JoJofoJeoJofofo]1] [o]eJoTofofoJoJoJo]o o]1]
rA . rX
M0880: |°IH'I°I°I°I°]°1°[°I°@I lo|oloJo|o|ololo|l!
rA . rX
N0880: KHelilofofofolofofofo]2] s efoTo oTo oTo o a1]

IN ALL CASES i
(2[7ToToTo oo 0 o 0 0]3s]

FIGURE 2-10
INSTRUCTION OPERATION MNEMONIC
DOm , (m)e—p-tA; Divide

(rA) = (rL)==»rA [rounded],
tX [unrouded]

Divide (m) by (rL). Transfer the rounded quotient to rA and the unrounded quotient
to rX. [(rL) must be larger in absolute value than (m)]

The execution of the DOm instruction produces an 11 digit rounded quotient in rA
and an 11 digit unrounded quotient in rX. The mnemonic is to divide (m) by (rL).
The computer executes the DOm instruction as follows: (m) are transferred to rA.
(rA) are divided by (rL). The unsigned, unrounded, 12 digit quotient is transferred
to rX. Five is added to the least significant digit of (rX) and the sum is transferred
to rA. (rA) and (rX) are shifted right one digit position. The sign of the quotient is
transferred to the sign position of rA and rX.

tL. 030000000000

For example: 101 012345678917
In executing D00101:

411522630566 12 digit quotient without sign
+000000000005
411 522635571
Shift 1 place right and insert sign
rA, ’ : r§(:
041152263057 041152263056

31

THE DECIMAL POINT

The computer fixes the decimal point between the sign and most significant digit
positions. Because every algebraic numberbegins with a signfollowedby a decimal
point, as far as the computer is concerned, every algebraic quantity lies between
plus one and minus one, the largest being

+.99999999999-
the smallest

—.99999999999

How can algebraic quantities of magnitude one or larger, or minus one or less, be
represented? This problem is really no different in kind than the similar one pre-
sented by an ordinary desk calculator. Like the computer, the calculator fixes the
decimal point at some specific place, usually immediately after the least signi-
ficant digit position. Yet operators have no difficulty in treating fractional quanti-
ties on a calculator. Such quantities are handled as follows. All quantities are
entered into the calculator as whole numbers, and decimal points are assumed in
the numbers to create the fractional quantities. During the calculation the assumed
decimal points are ignored. After the calculation is complete, the decimal point is
assumed in the result according to certain rules. The same kind of solution applies
to the computer. Decimal points can be assumed in a word wherever wanted. At the
end of the calculation the following rules apply.

RULE FOR ADDITION AND SUBTRACTION

To add two words, or to subtract one word from another, the decimal point must
be assumed in the same place in both words. The word that represents the sum
will have the assumed decimal point in the same place as it is assumed in the
words entering the calculation.

A carat indicates the assumed decimal point.

$3600.05 036000500000 000000360005
156.23 001 56/\2 300000 00000001 56,\23
$3756.28 03756/(2800000 000000375628

32

RULE FOR MULTIPLICATION

When multiplying one word by another, if the assumed decimal point is m digit
positions to the right of the fixed decimal point in one word, and n positions to the
right in the other, the product will have the assumed point m plus n positions to
the right.

RULE FOR DIVISION

When dividing one word by another, if the assumed point is m positions to the right
of the fixed point in the dividend, and n positions to the right in the divisor, the
quotient will have the assumed point m minus n positions to the right.

For example, if

A= OXXXXAXXXXXXX m=4
and B = OXXXXXXXXXXX n=3
then
AB = OXXXXXXX,?(XXX m+n =7
and A-B = OXAXXXXXXXXXX m—n =1
If the assumed point is p positions to the left of the fixed point, 153;9 positions

to_the right. The fact that assuming the decimal point p places to the right of the
fixed point is equivalent to multiplying the word by 10P makes the proof of the
above rules immediate.

For example

031200000000
031,\200000000

.312 (no assumption made)
.312 x 102 = 31.2 (where the assumption is p = 2)

When n and/or m are zero the above rules give the following results. If m and n
are zero then m plus n and m minus n are zero. Thus, if in two words, the decimal
point is assumed at the fixed decimal point, the assumed decimal point in the
product or quotient of the words will be at the fixed point.

If n is zero, then m plus n and m minus n equal m. Thus, if the point is assumed m
positions to the right of the fixed point in a given word, and is assumed at the
the fixed point in a second given word; the product of the given words, and the
quotient of the first word divided by the second, will have the assumed decimal
point m positions to the right. For example, if

33

A = OXXXXXXXXXXX m=9
and B = OXXXXXXXXXXX n=0
then

AB = OXXXXXXXXX,?(X m+n=9 .
and A+ B = OXXXXXXXXXXX m—n=9

STUDENT EXERCISES

1. If A has the form OAXXXXXXXXXXX; and B, the form OAXXXXXXXXXXX; what is
the form of AB and A = B?

2. If A has the form OXXXXXXXIQ(XXX; and B, OXXXAXXXXXXXX; what is the form
of AB and A +-B?

3. If A has the form OXXXXXXXXX,?(X; and B,/QXXXXXXXXXXX; what is the form
of AB and A=-B?

4. Reading the data stores three quantities of form

0QQQQQAQRAAARQQ

in cells 880 - 882. Print the product of the quantities.

5. Reading the data stores

DATA FORM CELL
Quantity A 000AAAAAAAAA 880
Quantity B 000BBBBBBBBB 881
Quantity C 0p0CCCCCCCCC 882
Quantity D 000DDDDDDDDD 8,83
If
E = AB
AB
F = 9C
-AB _
9c D

print E, F and G.

34

i\%‘

6. Reading the data stores

. DATA FORM CELL
Income OITIIILII000 880
Number of Dependents 0ONN00000000 881
Deductions other than OOQMAAOOO 882

for Dependents

A deduction of $600 is allowed for each dependent. The tax is twenty percent of

taxable income. Print the tax in form

000000TTTTTT
THE CONTROL UNIT

The function of the control unit is to select instructions from the memory and
execute them in proper sequence. The control unit is made up of three registers.

1. The Static Register (SR), a half word register.
2. The Control Register (CR), a one word register.
3. The Control Counter (CC), a one word register.

To execute an instruction the computer must transfer the instruction to the Static
Register, the only place in the computer where an instruction can be interpreted.
Since the computer can only execute one instruction at a time, only one instruction
canbe stored in SR at any one time. Thus, SR is built with a six character capacity.

The computer transfers instructions from the memory to the control unit one word
at a time and uses the Control Register to store the instruction pair while the

instructions are waiting to be executed.

Having transferred an instruction pair from a given cell to CR, the computer must
store the address of the cell immediately following the given cell in order that,
when the instruction pair in CR has been executed, it will know in what cell to
find the next pair. The computer stores this address in the threeleast significant
digits of the word in the Control Counter.

In short,

1. SR is an interpretive device,

2. CR contains the current instruction pair_

3. CC contains the address of the next instruction pair.

35

In Univac the extraction and execution of instructions is performed in four steps
which are identified by the first four letters of the Greek alphabet:

STEP

DESCRIPTION

The right hand six digits of CC are duplicated in
SR. The memory address section of SR now con-
tains the address of the next instruction pair.

The effector circuits of SR now cause the contents
of the memory cell as specified by the address
section of SR to be duplicated in CR.

A one is added in the least significant digit posi-
tion of CC (digit position 12).

The Left Hand Instruction now in CR is duplicated
in SR, and being in SR causes the effector circuits
to execute it: that is, interpret it as an instruction.

The Right Hand Instruction in CR is duplicated in
SR, and executed.

The computer automatically steps through the cycle and then after completing the
5 step, begins on a. The important thing to note is that if CC = 000000000000
initially, the computer executes the Left Hand Instruction found in memory cell
000, then the Right Hand Instruction in that cell. Then, LHI of cell 001, RHI of
001, LHI of 002, RHI of 002, etc. Also note that instructions are executed only

when they are in SR during stages y or 3.

TRANSFER OF CONTROL INSTRUCTIONS

Having executed the instruction pair in cell *'k’’, it is sometimes advantageous

for the next instruction pair to be in a cell other than cell “*k+1°’. This breaking

of the computer’s sequential operation is called transfer of control.
p q P

INSTRUC

UOm

TION

OPERATION MNEMONIC

000000000 (CR)y——>CC Unconditional Trans-
fer of Control

Transfer control to m. Sequential operation is broken at cell k

and resumes at cell m.

36

The mnemonic is unconditional transfer of control to m, since the execution of the

UOm instruction results in transfer of control regardless of the conditions present
in the computer. The computer executes the UOm instruction as follows. CC con-
tains the address of the next instruction pair. If the execution of the UOm instruction
is to transfer control to m, the execution must transfer the address part of the UOm
instruction to CC. Actually, the UOm instruction is executed by transferring the
three leastsignificant digits of (CR) to the three least significant digit positions of
CC. This method of execution will achieve the purpose of the UOm instruction pro-
vided that the address part of the UOm instruction is the threeleast significant
digits. of the word in which the UOm instruction appears. In effect, this fact means
that the UOm instruction should be coded as a RHI.

oo [coJo]efs]r]ufo]ofo]o]e]

Clofo]sjs|ljujofojo|oje

cc [ofoJofooJofoJofofo[iT1]

(c]oJofes] Tu]ofofo o] ¢]

U, 0{0|0/| 06 GEDNDNOEOBEE

00000000 0 [oJoJo]ofo]o]o]o]0]0]o]s

FIGURE 2-11

If a UOm instruction is properly coded in cell k, when the instruction pair in cell
k has been executed, the next pair of instructions to be executed are not in cell
k+1, but in cell m.

Consider the followiné.

EEIEIIIE [Tofo[000 JoTofofo f 1o] IBIOIOIalshclelﬂMalalol
LI RHI
CONTROL UNIT

|

/
EPEEEERRRE CEEEFEERRRRE CEFPREEERERE (TTTTTITII T
ARITHMETIC UNIT

m[::‘ se1{ 010000 000000
o0 C00881 00006 eggm

FIGURE 2-12

MEMORY UNIT

37

Assume that the computer has just completed beta time. During beta time the con-
tents of cell 010, C00881U00006, were transferred to CR, and (CC) were increased
by one.

ﬂﬂﬂﬂnﬂ Iolololololololololom °|°|°'3[8lllulolololo[e
CONTROL UNIT Lt RHI

l°J0I7i°l°I°f0i;l°I010I0] l-lOI3IOIOI°lorl):ilolololol IOIOISIOIOIOIOI;IOIOIOI°I HEREEE iFl 111
ARITHMETIC UNIT

w]
0|o|c00881 UOOOOGI

FIGURE 2-13

8s81| 010000 000000

MEMORY UNIT

CR contains the current instruction pair, and the three least significant digits of
(CC) specify that the next instruction pair is in cell 011. On gamma time C00081
is executed.

SR cc CR
clojoja|s}1 [oTeJefoToTofoJooJo] 1T 1] |c|o[o|8|6|||u|o|o|o]o|s|
LKA RH |

CONTROL UNIT

rA

rX r
—iclolelofolelofo|c o NEERBARNEANNAE |0|0|3I0I0IonI0|olt»|ol<_r]ol | HREEN IFI |RREE
ARITHMETIC UNIT ‘

FIGURE 2-14

MEMORY UNIT

Delta time, U00006.

ulololo]s o|o|ololololu|o|olole lclolq:.'l‘?lsllclzIOIORL?IOIGI
CONTROL UNIT

rx

rA rL rf
[oTofelofoToJoJoJoJoJo[o] [-Tels[o[ofofoolofofole] [oTof2fofeJofofofofofefe} [T TTTTTTITTT]
ARITHMETIC UNIT

mm ss1] 007000 000000

FIGURE 2-15

MEMORY UNIT

38

The three least significant digits of (CC) no longer specify that the next instruction
pair is in cell 001, butinstead specify thatthe pair is in cell 006. The computer’s
sequential operation has been broken, and control has been transfetred to cell
006. With the instruction pair in cell 006 the sequential opera¢tion will resume and

continue until another transfer of control or stop instruction is executed.

INSTRUCTION OPERATION
00m - Skip

Pass control to the next stage of the three stage cycle.

In executing the OOm instruction, the computer ignores m. The execution of the
OOm instruction does not alter the contents of any cell or register. One use of the
OOm instruction is as follows. The situation may arise where the next instruction
to be coded is both a LHI and a UOm instruction. To be coded properly, the UOm
instruction should be coded as a RHI. Yet the computer cannot skip a stage of its

four stage cycle and must have some instruction to execute on gamma time. The
00m instruction is used in such situations.

In contrast to the UOm instruction are the conditional transfer of control instruc-
tions.

INSTRUCTION OPERATION MNEMONIC

QOm If (rA) = (rL), then QOm acts Equality Transfer of
as UOm; if not,as OOm Control

If (rA) are identical to (rL), interpret QOm as UOm; if not, as OOm.

The mnemonic is: on equality of (rA) and (rL), control is transferred.

INSTRUCTION OPERATION MNEMONIC
TOm If (rA) > (rL), then TOm acts as Threshold Transfer
UOm; if not, as OOm of Control

If (rA) are greater than (rL),
interpret TOm as UOm; if not, as OOm.

The mnemonic is: if (rA) are greater than the threshold set up by (rL), control is
transferred.)

39

Does the TOm Instrugtion

(rA) (rL) Transfer Control?
012 345 678 910 009 761 835 011 Yes
-12 345 678 910 009 761 835 011 No
012 345 678 910 -99 999 999 999 Yes
-12 345 678 910 -99 999 999 999 Yes

For purposes of the TOm instruction an order of magnitude has been assigned to
all characters. In figure 1-18, reading down the first column, then down the second,
then the third, and finally the fourth, is equivalent to reading the characters in

their ascending order of magnitude. The smallest character is i, the largest is = .

Does the TOm Instruction

(rA) (rL) Transfer Control?
OBCDEFGHIJKL 023456789ABC Yes
- BCDEFGHIJKL 023456789ABC No
OBCDEFGHIJKL -DEFGHIJKLMN Yes
- BCDEFGHIJKL - DEFGHIJKLMN Yes

If (rA) and (rL) have signs, the TOm instruction treats both quantities as signed
numbers. If either word has no sign, the TOm instruction treats the words in their

entirety.
Does the TOm Instruction
(rA) (rL) Transfer Control?
0123456789AB 234567890ABC No
34567890ABCD -567890ABCDE Yes
67890ABCDEFG 7890ABCDEFGH No

The function of the conditional transfer of control instructions is to allow the
computer to choose between different processing possibilities dependent on the
nature of the data.

Illustrative Example

Reading the data stores

DATA FORM _ CELL
Account Number O0AAAAAAAAAAAA 880
Delinquent Account Number oDDDDDDDDDDDD 881

4o

If the account number is equal to the delinquent account number print

ANOACREDITA

If not, print

CREDITAGOOD.

LOGICAL ANALYSIS

1. Read the data
2. Is the account number equal to the delinquent account number?

2a.No 2b. Yes
3. Print CREDIT GOOD 3. Print NO CREDIT
4. Stop
CODING
000 READ Read the data
DATA
001 B00880
L00881 Is the account number equal to
002 — the delinquent account number?
Q00004 ’
003 500005 Print CREDIT GOOD.
900000 Stop:
004 500006 Print NO CREDIT
900000 Stop
005 CREDIT
v GOOD. Constants
006 ANOACR
EDIT.A

For ease in writing, a LHI or RHI consisting of six zeros in customarily written
as —. It is also customary to draw a line under all transfer of control instructions.

The following is a description of the thinking that might have accompanied this

coding.

4l

After the read data and the execution of the BOm and LOm instructions, the proper
quantities are in rA and rL, and the QOm instruction can be coded. But the next
instruction to be coded is a LHI. Since the QOm instruction can be interpreted as
a UOm instruction, to be properly coded, the address part of the QOm instruction
must be the three least significant digits of the word in which the QOm instruction

appears. The simplest way to achieve this situation is to code a OOm instruction
for the LHI.

It makes no difference what cell is specified by the QOm instruction as long as
the processing called for by the condition of equality begins in that cell. To con-
serve memory space it is convenient not to specify any cell at this time, and in-
stead, code the processing called for by the condition of inequality, which must
begin in cell 003.

The execution of a 50m instruction is required to print CREDIT GOOD. It makes
no difference what cell is specified by the 50m instruction as long as the word

CREDITAGOOD.

is stored in it. It is convenient not to specify any cell at this time, and instead
continue the coding. The 90m instruction completes this logical branch of the coding.

The next free cell is cell 004, which can be specified by the QOm instruction. A -
50m instruction and a 90m instruction in cell 004 complete the coding.

The next free cells are cells 005 and 006, which can be specified by the 50m in-
structions.

STUDENT EXERCISES

1. Reading the data stores:

DATA FORM CELL
Pay 000000PPPEPP 880
Deduction 00000000DDPD 881

If the deduction does not reduce the pay to less than $15, make the deduction;
otherwise, print the deduction. In either case, print the pay.

2. Reading the data stores in cell 880, a charge in the form:

OOOOOOCCCCACC

42

If the charge is greater than or equal to $150.00, apbly a discount of three percent,
and print the resulting charge. Otherwise, print the original charge.

3. Reading the data stores

DATA ' FORM CELL
Stock Number NNNNNNNNNNNN 880
. On Hand . 00000000000 881
Sold 000000SSSSSS 882
Minimum Required 000000 RRRRRR 883

Update the on hand. If the sales reduce the on hand below the required, print the

stock numher.

4. Reading the data stores

DATA o FORM CELL
Quantity Ordered ~0000QQQQQQ00 880
Unit Price ~ OPPPP 0000000 881

If the quantity is greater than or equal to 100, apply a discount of 40%. Otherwise,
- apply a discount of 30%. Print the charge.

43

chapter 3

Introduction
to Flow Charts

EXAMPLE
Reading the data stores:

DATA : . FORM CELL

Days of Medical Absence OAAAOOOOOOOOO 880

Days of Allowable Medical 0LL000000000 881
Leave Remaining n

Hourly Rate of Pay ORRR,BROOOOOO 882

Update the medical leave, and print the employee’s medical pay iﬁ form

00000000PPPP

4y

. LOGICAL ANALYSIS

1. Read data.

2. Is medical absence equal to zero?

2a No. 2b Yes.

3. Is medical leave equal to zero?
_ 3a No. 3b Yes.

4. Is medical leave greater than medical absence?

4a No. 4b Yes

5. Store medical leave in storage. 5.Store medical absence

in storage.

6. Store zero in medical leave. 6.Reduce medical leave

7. Multiply storage by eight. by medical absence.

8. . Multiply product by rate.

9. Print product. 9. Print zero.
10. Stop.

This analysis is preéise but bulky. As the size and complexity of problems in-

crease such written analyses would become less and less helpful because of the

" large amount of writing necessary.

The analysis can be made clearer by putting the steps in boxes and using arrows

to indicate the sequence of steps.

18 NEDICAL ves
sTART Lol mEAD DATA [—af ABSENCE EQUAL
To zERO?
lno
YEs
18 MEDICAL LEAVE
EQUAL TO ZERO? PRINT ZERO
¥
18 MEDICAL LEAVE|YES | STORE MEDICAL REDUCE WEDICAL
QREATER THAN ABSENCE (N |—>iLEAVE BY MEDICAL —
.| nevieaL aBsences S$TORAGE ABSENCE
)
STORE ‘MEDICAL _4 STORE ZERO IN
LEAVE I STORAQE MEOICAL LEAVE
NULTIPLY $TORAGE | _[MULTIPLY PRODUCT
&n.“ > oy RaTE > PRINT PRODUCT sToP

45

This solution to the problem of picturing the analysis is superior but would still
result in a massive chart for a large problem. A further reduction can be made by
using letters to denote the quantities processed and arithmetic symbols to define
the processing. The use of symbols requires a legend on the analysis to define
each letter so there will be no confusion as to the nature of the quantities.

START READ OATA |—o| 18 A = 07 |3
‘no
18 L =07 = PRINT O
luo
181> A2 Pe{aTORE A 1N s STORE L=A IN L T
Iuo
STORE L IN 8 STORE 0 IN L

;

PRINT 8RS sTOP

LEGEND

A = MEDICAL ABSENCE
L = MEDICAL LEAVE
R = PAY RATE

FIGURE 3-2

- An analysis involves, at most, three types of processing.

1. Transfer of data.
2. Arithmetic operations.
3. Logical decisions.

sTART —»{ READ DATH isA=07 PES

1:0

Co] '
sL=0 Mo = stop
0 |
isL>ar PR srore A s STORE L-A 1N L PRINT 828
Iuo
STORE L W 8 ARITHMETIC
OPERATION
STORE 0 14 L i
FIGURE 3-3

u6

To further reduce the size of the analysis, transfers and arithmetic operations will
. be shown in rectangles. The distinguishing feature of a transfer or arithmetic

operation is the inclusion of an arrow in the rectangle to indicate the substitution
of one quantity for another.

Decisions are shown in flattened ovals. The distinguishing features of a decision
are:

1. The inclusion of a colon in the oval to indicate the comparison of one
quantity with another

and 2. Two arrows coming out of the oval to indicate that, on the basis of the
decision, one of two possible paths of processing will be followed.

Each of these paths is labelled with the condition which must exist for that path
to be followed.

The decision *‘is A=0"’(yes or no) will be shown as

FIGURE 3-4

If the two quantities are equal, the next step follows the arrow labelled with the
equal sign; if unequal, it follows the arrow labelled with the unequal sign.

<

The decision *‘is L > A”’ (yes or no) will be shown as

“. FIGURE 3-5

u7

If L is greater than A, the next step follows the arrow labelled with the ‘‘greater
than’’ sign (>); if L is not greater than A (i.e., less than or equal to A), the next
step is written following the arrow labelled with the “‘less than or equal to’’ sign(<).

START o] READ DATA »CA 10 >i_
X \

L=A = |
LEGEHD J
y
A - MEDICAL ABSENCE)
L - MEDICAL LEAVE 0 —p L 8RS 9> SCP =p=f STOP
R = PAY RATE
FIGURE 3-6

To reduce the length of the arrows indicating the sequence of steps, ‘‘fixed con-
nectors’’ are used. A fixed connector is a numbered circle. When an arrow leads to

“’@ FIGURE 3-7

the next step follows the arrow leading out of the fixed connector enclosing the same

@—— FIGURE 3-8

a fixed connector,

number.

Thus,

0—>»SCP [

FIGURE 3-9

us

CODING

000 READ read data
DATA
001 B00880
L.00012 A:0
002 —
Q00011
003 B00881
Q00011 } L:0
004 L00880
T00009 L:A
005 K00000 >S5
C00881 0—>L
(2) o6 mMooo13
K00000
007 M00882 8RS—=SCP
€00883
008 500883
900000 Stop
009 S00881 } Lo AL
00881
010 —
U00006
011 500012 0=—>SCP
900000 Stop
012 —
N
013 000080
~—
ILLUSTRATIVE EXAMPLE
Reading the data stores
DATA FORM CELL
Year-to-Date FICA Earnings OOOOOOEEEE;\EE 880
Year-to-Date FICA Tax 00000000TTTT 881
Current Pay 000000PPPPPP 882

Update the year-to-date FICA earnings and tax, and print the current FICA tax in form

00000000CCCC

50

FLOW CHART

READ DATA [}
>
Goo-e:D—oew —k

=

LEGEND

E : 4200

0 » SCP 1 SToP

®

1. 0226P ==pp- SCP [TH(=t T

E = YEAR TO DATE FICA EARNINGS
T = YEAR TO DATE FICA TAX

P - CURRENT PAY

CODING

00

B 4200 e £ 4. 50-T=p-SCP [~ 94.50 —pp» T
FIGURE 3-12
000 READ read data
DATA
001 B0OSSO
L00015
s E : 4200
Q00014
003 B00015
S00880
004 L008S2 4200-E: P
T00010
005 B00015
00880 } 4200—E
006 BOOOL6
500881 } 94.50 — T—>SCP
007 C00883
B00016
008 500883 } 94.50>T
C00881
009 900000 Stop
e
010 B00880
A00882 } E+P—>E
011 C00880
Mooo17 } .0225 P—>=SCP
012 H00883
A00881 T + C—>T
013 —
V00008

51

014 500018 0—>SCP

900000 Stop
015 —
420000
016 ——
009450
017 002250
o
018 —
—N

STUDENT EXERCISES

Flow chart and code the following.

N1,

Reading the data stores a quantity of form

+QQQQRQRQQRQRQQQ,

in cell 880. If the quantity is negative,print

AANEGATIVE.A
if positive, but less than 500,

AAASMALL.AAA

if greater than or equal to 500, but less than 1000,

AAAMEDIUM.AAA

if greater than or equal to 1000,

AAALARGE.AAA

. Reading the data stores three quantities of form

0QQQQQQQQQQQ,
in cells 880 - 882.

Print the smallest of the quantities.

52

3. Reading the data stores

DATA FORM CELL
Badge Number " NNNNNNNNNNNN 880
Bond Deduction 00000000 DDADD 881
Cumulative Bond Deduction 0000000 CCC/S:C 882
Bond Price 0000000 PPPPP 883

Update the cumulative bond deduction, and if a bond can be purchased, print the
badge number and the bond price.

4. Reading the data stores

DATA | FORM CELL
Salesman’s Number NNNNNNNNNNNN 880
Quantity Sold - - 0000QQQQ,0000 881
Unit Price 0PBPP0000000 882

. If more than 50 units are sold, a discount of 10% is applied to the entire order. The
salesman receives a 5% commission on the charge to the customer. Print the sales-
man’s number and commission in form

’

OOOOOOOCCCIQC

5. Reading the data stores a employee’s pay of form

000000 PPPEPP

in cell 880. The percentage tax is given in the following table.

PAY TAX PERCENTAGE
$ 1 - 1499 1%
1500 - 2999 2%
3000 - 4499 3%
4500 - 5999 4%
6000 or over 5%

Deduct the tax, and print the net pay in form

000000 NNNNNN

53

6. Reading the data stores

DATA FORM CELL
Year-to-Date Sales 0000SSSSSSSS 880
Year-to-Date Commission 000000 CCCCACC 881
Current Sales OOOOOO'AAAAAAA 882

The salesman’s basic commission is 5% of sales with an extra 2% for total sales
in excess of $50,000. Update the year to date sales and commission, and at the
point where year to date sales exceed $20,000 print

AQUOTAAMET.A

7. Reading the data stores

DATA FORM : CELL
Inventory Quantity 000000QQQQQQ 880
Sales Quantity 000000SSSSSS . 881
Minimum Requirements 000000RRRRRR . 882

Update the inventory. If the inventory quantity falls below the minimum require-
ments, print the quantity needed to restore the inventory to its minimum level.
This quantity is to be in form

000000PPPPPP,

54

chapter 4

Modification

of Instructions

Both data and instructions are stored in the memory. The computer recognizes an

"instruction as such only when it is in SR. At no other time does the computer
make distinction between data and instructions. Both are simply words stored in
the memory. This arrangement enables a word which has been interpreted as in-
structions at one time in-a program to be processed as data by other instructions
in the same program, thus allowing the computer to modify its own instructions.
The following is an example of the modification of instructions.

55

CODING

000 500003

S
001 B00000

A00005
002 C00000

U00000
003 AAELEC

TRONIC
004 ACOMPU Constants

TER.AA
005 000001

900000

The execution of this coding will print:

ELECTRONIC COMPUTER.

and stop the computer.

First four stage cycle

Beta time - The contents of cell 000

500003000000
are transferred to CR.
Gamma time - The LHI

500003

is transferred to SR and executed, printing the contents of cell 003:

ELECTRONIC

Delta time - The RHI
000000

is transferred to SR and executed, skipping to the next stage.

56

Second four stage cycle

Beta Time - The contents of cell 001

B00000A00005

are transferred to CR.

Gamma time - The LHI
B00000

is transferred to SR and executed, transferring the contents of the cell
specified, cell 000,

500003000000

to rA and rX. This word is treated as an instruction pair only when it is
in CR; at all other times it is treated as data or a constant. This word,
which was treated as an instruction during the first four stage cycle, is
now treated as data being processed by an instruction in SR.

Delta time p The RHI

A00005
is transferred to SR and executed, transferring the contents of cell 005

to rX, adding the contents of

- : rA: 500003000000
and rX: 000001900000

and transferring the sum
500004900000

to rA.
Thitd four stage cycle

Beta time - The contents of cell 002

C00000U00000

are transferred to CR.

Gamma time - The LHI

C00000

57

is transferred to SR and executed, transferring the contents of rA:
500004900000

to the cell specified, cell 000.

Delta time - The RHI
U00000

is transferred to SR and executed, transferring control to cell 000.

Fourth four stage cycle

Beta time - The contents of cell 000, which now contains the word
500004900000

are transferred to CR.

Gamma time - The LHI
500004

is transferred to SR and executed, printing

COMPUTER

Delta time - The RHI
900000

is transferred to SR and executed, stopping the computer.

On delta time of the second four stage cycle the computer added a positive 11
digit quantity.

000001900000
to an 11 digit quantity with a five in the sign position

500003000000

to arrive at an eleven digit sum with a five in the sign position

500004900000

This sum resulted because of the following characteristics of the adder.

58

Of two words to be added at least one must have an actual sign, 0 or -, in the
sign position. If neither has a sign, the computer stalls and lights a neon on the
Supervisory Control Panel, thus indicating that an error, called an adder-alpha-
betic error, has occurred.

For purposes of the addition, any character in the sign position other than a minus
sign is treated as a plus sign, when the other word to be added has a legitimate
sign. For example, the character A would be treated as a plus sign. When the sum
is transferred to rA, the sign position will contain, not the sign of the sum, but the
" character A. In any digit position other than the sign position, the addition of

1. two numbers produces an algebraic sum,
2. a number and an alphabetic produces the alphabetic,
3. two alphabetics produces an adder alphabetic error.

ITERATIVE CODING
Example

Reading the data stores a credit account number of form
AAAAAAAAAAAA
in cell 820, and 60 delinquent account numbers of form

DDDDDDDDDDDD

in cells 880 - 939. If the credit account number is equal to one of the delinquent
account numbers print

ANOACREDIT. A
if not,
CREDITAGOOD .

NO CRED T~ SCP

FLOW CHART

START READ DATA

LEQEND

X

A = A CREDIT ACCOUNT NUMBER l——b‘CREDIT Q00D =t~ 3CP
Dy ~ THE FIRST DELINQUENT ACCOUNT NUMBER

D, = THE SECOND DELINQUENT ACCOUNT NUMBER

0

3

= THE THIRD DELINQUENT ACCOUNT NUMBER

Dgo = THE 6OTH DELIKQUENT ACCOUNT NUMBER

FIGURE 4-1

59

CODING

000 READ
DATA
001 L00820
C—
002 B008SO
Q00063
003 B008S1
Q00063
004 B00882
Q00063
061 B00939
Q00063
062 500064
900000
@ 063 500065
900000
064 CREDIT
AGOOD.
065 ANOACR
EDIT.A

The coding shows that each delinquent account number is processed the same way.
The coding to process one delinquent account number, after executing the L00820,

takes the form

where XXX is the address of the delinquent account number being processed.
Since there are 60 delinquent account numbers to be processed, and since each
delinquent account number is in a different cell, the above instructions are repeated
60 times. However, the above instructions can be stored only once and can be used
to process all 60 delinquent account numbers by modifying the address specified

read data
A: Dy
A . D2
A D3
A: D60

CREDIT GOOD - SCP
stop

NO CREDIT = SCP
stop

constants

B00XXXQ00063

by the BOm instruction and transferring control to repeat the processing.

000

001

READ

B00880

002 ¢&——

DATA }

L00820

Q00008

60

read data

Does the credit account number match
the current delinquent account number?

003 B00001 B0880L0820 —-rA

.
004 ——— Take the next delinquent account number.
>
005 A00010 . add 000001 000000
C00001 B0881 L0820-0001
006 —y
U00001
007 &——v>
—
008 500012 NO CREDIT = SCP

900000 stop

009 “—
010 000001

L‘j
011 < — constants
—

012 ANOACR
EDIT.A

This coding allows the credit account number to be compared to the delinquent
account numbers in succession as long as there is inequality. If the credit account
number is not one of the delinquent account numbers, cell 001 will ‘eventually
contain the instruction pair

B009391.00820

After each iteration the contents of cell 001 can be compared for identity with
the above word. This comparison determines the end of the processing, much as a
student reading an assignment might check each page number to see if he has

completed the assignment.

000 READ read data
DATA }
001 [B00880
LOOSZO] Does the credit account number match
002 the current delinquentaccount number?
Q00008

6l

003 B00001
L00009
004 ——u
Q00007
005 A00010
C00001
006
— V00001
007 500011
900000
008 500012
900000
009 B00939
100820
010 000001 -
011 CREDIT
AGOOD.
012 ANOACR
EDIT.A

Is the current delinquentaccount number
the last delinquent account number?

Take the next delinquent account number.

CREDIT GOOD — SCP
stop

NO CREDIT =»SCP

stop

constants

By custom, lines of coding that are subject to alteration are enclosed in brackets

to distinguish them from lines which do not vary. This custom is of help in check-

ing coding for correctness, both before and after it is run on the computer.

The principle shown in this example is called iterative coding.

Care must be taken in stopping the iteration at the right time. In the coding on

page 61 the constant used to determine if all delinquent account numbers have
been processed is

B00939L.00820

In the following coding the constant is

000

001 [B008SO

002

READ
DATA
100820]
c.—-"j
Q00007

B00940L.00820

read data

Does the credit account number match
the current delinquent account number?

62

AN

003 B00001

100008
004 A00009

Q00006
005 C00001

100001
006 500010

900000
007 500011

900000
008 B00940

1.00820
009 000001

>
010 CREDIT

AGOOD.
011 ANOACR

EDIT.A

Is the current delinquentaccount number
the last delinquent account number?

Take the next delinquent account number.
CREDIT GOOD —»SCP
stop

NO CREDIT = SCP
stop

constants

The reason for the difference in constants is that,in the coding on page 61, the

execution of the QOm instruction, which determines if all delinquent account

numbers have been processed, precedes the execution of AOm instruction, which

alters the address to process the next delinquent account number; while in the

coding on page 62, the execution of the AOm instruction precedes the execution

of the QOm instruction.

Item Just Processed

1st
2nd
3rd

58th
59th
60th

(rA) During Execution of QOm Instruction

In Coding on Page 61 In Coding on Page 62
B00880L00820 B00881L00820
B00881L00820 B00882L00820
B00882L00820 B00883L00820
B00937L00820 B00938L00820
B00938L00820 B00939L00820
B00939L00820 B00940L00820

Iterative coding conserves memory space in that fewer instructions need be stored

in the memory to do the processing.

63

The memories of computers are limited in capacity because of the high costs for
memory per digit stored. Consequently, the more processing that can be done per
instruction stored, the greater is the area of the memory freed for the storage of
data and other instructions. Iterative coding is a powerful technique in the efficient
programming of computers.

ITERATIVE FLOW CHART SYMBOLS

In a word flow chart, the solution might appear as:

TAKE THE FIRST DOES THE ACCOUNT
DELINQUENT NUMBER MATCH YES
READ DATAP ACCOUNT NUMBER -@ THIS DELINQUENT NO CREDIT—>5CP
{TEM ACCOUNT NUMBER?

NO

IS THIS DELINQUENT
ACCOUNT NUMBER ITEM
THE LAST DELIN-
QUENT ACCOUNT
NUMBER ITEM?

N

TAKE THE NEXT
DELINQUENT

FIGURE 4-2 ACCOUNT NUMBER 1

I TEM

YES
—>{CREDIT GOOD»SCP|

A set of data is represented by a capital letter. The set of delinquent account
numbers might be represented as D.

To distinguish between units in a set, numeric subscripts are used. In the set D

D; represents the first delinquent account number.
Dy represents the second delinquent account number.

D3 represents the third delinquent account number.

Dgo i'epresents the 60th delinquent account number.

Only one unit in a set is processed at a time and may be identified by an alpha-
betic subscript. For example, Dj might represent the delinquent account number
currently being processed from the set D. The alphabetic subscript is used be-
cause, although only one unit is processed at a time, it cannot be stated specific-
ally which unit is being processed at a given time.

64

Units are processed sequentially. Unit Dy is processed first, Dy, second; Dg,
third; etc. In general, after unit D; has been processed, unit Dj ,] is to be pro-

cessed. The operation

—_—f it] —

FIGURE 4-3
provides this sequence. The operation box has a double line on the left to dis-
tinguish it from an operation which processes data. The initial condition for the
sequence is that i be equal to one so that Dj=D1. Initial conditions of the pro-
cessing are shown in an assertion flag placed immediately after the start symbol.

ILLUSTRATIVE EXAMPLE

Reading the data stores 60 receipt amounts of form

000000RRRRRR

in cells 880-939, Print the sum of the amounts.

TAKE THE FIRST
DELINQUENT ACCOUNT
NUMBER | TEM.

DOES THE ACCOUNT
NUMBER MATCH THE CURRENT
DELINQUENT ACCOUNT
NUMBER?

READ . A
DATA

NO CREDIT—>SCP

START >

CRED{T GOOD>SCP

1S THE CURRENT
DELINQUENT ACCOUNT NUMBER
{TEM THE LAST DELINQUENT
ACCOUNT NUMBER ITEM?

TAKE THE NEXT
DELINQUENT ACCOUNT
NUMBER ITEM.

LEGEND

A AN ACCOUNT NUMBER
D A SET OF DELINQUENT ACCOUNT NUMBER [ITEMS

D, THE iTH ITEM IN D, i= 1,...,60

FIGURE 4-4

65

FLOW CHART

i=1
$=0
>t READ DATA ->®->S+Ri—>s »(i : eo} S ety SCP
P\
LEGEND
. [[>®
‘R = SET OF RECEIPT AMOUNTS

Ry = ITH AMOUNT IN R, ! =.1,..., 60

FIGURE 4-5

The following is a description of the thinking that might have accompanied the
flow chart.

Flow chart the general processing

READ DATA }—u| S+ R—>S |—n

FIGURE 4-6

Specify the general. Initially, i is equal to one; and the sum, equal to zero.

START »| READ DATA

Y

FIGURE 4-7

After the first amount is processed, the computer should advance to the second
amount.

Y

START }-L 5] READ DATA {—>| S + Rj—S

i+ le—i f—

FIGURE 4-8

66

The second amount should be processed in the same way as the first.

FIGURE 4-9

won

i 1
S 0

START ~READDATA——®-. S + RS || 1 41— —@

Thus, specifying the general sets up the iterative loop.

Finally, providing the exit from the iterative loop and flow charting the ending

routine completes the flow chart, which is shown in figure 4-5.

000 READ
DATA } read data
@ 001 [B00880
A00007 } S4+R =S
002 C00007
B00001
003 L00008
Q00006 } i:60
004 A00009 . :
‘ © C00001 } it ine
005 <>
U00001 .
006 500007 S ~—»SCP
900000 stop
007 [L-; <] } S
008 B00939 |
A00007 } constants
009 000001
—

67

STUDENT EXERCISES

1. Reading the data stores 60 quantities of form

+QQQRQRQRQQQAQQ,

in cells 880-939. . Print the number of negative quantities.
2. Reading the data stores

1. a pay of form

O‘OOOAOOPPPI;\PP
in cell 880
and 2. ten deductions of form
QOOOAOOOODI/}:DD

in cells 881 - 890.

Each deduction is processed as follows. If the deduction will not reduce
the pay below $15, it is applied. If the deduction will reduce the pay below
$15, it is not applied but is printed instead. When all deductions have been
processed, print the pay.

3. Reading the data stores, 60 quantities of form.

oooo(loQQQQéQ,\

in cells 880 - 939. . Print the subtotal of each group of ten quantities and
the total of the quantities.

FUNCTION TABLE LOOK-UP

ILLUSTRATIVE EXAMPLE

Reading the data stores

1. an employee’s base pay of form
00000BBBBBB0

in cell 880,

68

2. the employee’s shift of form
000000000008

in cell 881, where S is a key and can take values 1-6,

3. six percentages of form

~ ORPP00000000
in cells 821 - 826.

The f:mployee is paid a shift differential, each shift drawing a different percentage
of base pay. The shifts and the cells in which the applicable percentages are
stored are in the following rellat.ionship.

SHIFT CELL

821
822
823
824
825
- 826

(<N, I - N USRS I

Print the pay in form

000000AAAAAA

The problem could - be solved by testing the shift key against each possible value,
and on the basis of the tests, choosing the appropriate percentage. However, if this
approach were used, the majority of the coding would be concerned, not with the
"problem of computing the pay, but with choosing the appropriate percentage, which
is merely preparatory to the problem solution. The following approach eliminates
this disadvantage. The table in the example shows that the shift key is in a one
to one relationship with the units digit of the address of the cell in which the
appropriate percentage is stored. If S represents the shift key; and m, the address
of the appropriate cell; the following holds.

m= 820+8S
‘ This.relationship, or function, can be used to derive the appropriate cell directly

from the shift key.

69

000 READ
DATA read data
001 B00881
A00006 Derive cell from shift.
002 C00003
)
003 | L00880
I: M008;S:| Print pay.
004 C00882
500882
005 900000 stop
—>
006 L00880 }
constant
M00820
Since this coding uses a function to look up the appropriate percentage from a

table, it is an example of the technique called **function table look-up’’. Function
table look-up is a programming principle that makes use of a relationship between
the data and the addresses of the cells in which the data is stored to increase

computer efficiency with respect to the conservation of both memory space and
computer time.

FUNCTION TABLE LOOK-UP IN FLOW CHARTS

If a capital letter is used to represent the table, the table entries can be represent-
ed by subscripts. The entry desired depends on the argument with which the table
is entered. If P represents the percentage table in the above example; and S, the
shift key; the entry desired can be represented as Pg.

START READ DATA |we—eii P B == SCP
LEGEND
8 - SHIFT
P - A SET OF PERCENTAGES
P; - THE ITH PERCENTAGE IN P, | = I,..., 6
B - BASE PAY
FIGURE 4-10

70

SHIFT INSTRUCTIONS
n is used to represent a variable second instruction digit.
INSTRUCTION OPERATION

Onm Shift (rA), excluding sign, n positions left.

With the exception of the sign digit, shift (rA) left n
digit positions. Transfer zeros to the vacated positions.

When executing the Onm instruction, the computer ignores m. Characters shifted
beyond the capacity of rA are lost.

INSTRUCTION OPERATION

~nm Shift (rA), excluding sign, n positions right.
With the exception of the sign digit, shift (rA) right n digit positions.

Transfer zeros to the vacated positions.

When executing the -nm instruction, the computer ignores m. Characters shifted
beyond the capacity of tA are lost.

[els["IATs[e[oT]e]s]

ro [ofr]e]c]ofo e e[o]o] of0]

rA [0fofofofofofofoa]s]c{o]

FIGURE 4-11

INSTRUCTION OPERATION

;nm Shift (rA) left n positions
Shift (rA) left n digit positions. Transfer zeros to the vacated positions.

When executing the ;nm instruction, the computer ignores m. Charcters shifted be-
yond the capacity of rA are lost.

71

INSTRUCTION OPERATION

.nm Shift (rA) n positions right.

Shift (rA) right n digit positions. Transfer zeros to the vacated positions.

When executing the .nm instruction, the computer ignores m. Characters shifted be-

yond the capacity of rA are lost.

ra [o]iTz]s]vJa]e]c[o]o]e]e]

ra [a]sJc]ofe]s]s]o] o] of o]o]

ra [ofoJoJoJoJofo]o[a[8]c]0]

FIGURE 4-12

EXAMPLE

Reading the data stores

1. the weight, in pounds, of a package of form
00000WWWW000,.
in cell 820

and 2. 60 shipping rates in dollars and cents per pound, of form

O%ROOOOOOOO

in cells 900 - 959.

72

For WEIGHT ‘ apply rate stored in CELL

0000 - 0099 900
0100 - 0199 901
0200 - 0299 902
5900 - 5999 959

Print the cost to ship the package.

FLOW CHART
READ DATA |—iR W —- SCP
LEGEND
W - WEIGHT
R - A SET OF RATE ITEMS
Ry - THE ITH ITEM INR, | = I,..., 60
FIGURE 4-13
CODING

The table in the example shows that the thousands and hundreds digits of the
weight are in a one to one relationship with the tens and units digits of theaddress
of the cell in which the appropriate rate is stored. Thus, the address of the appro-
priate cell is 900 added to the two most significant digits of the weight. Dividing
the weight by 100 will give the quantity to be added to 900, since the table in-
tervals are 100 pounds. However, since the weight may not be multiple of 100, the
quotient may also contain a fractional part. If the weight were 4627,

4627
— = 46.27

100
’ l t___fractional part

integral part

Thus if W is the weight, the quantity to be added to 900 is the integral part of

73

represented by

()
100/ IP

If m represents the appropriate cell, the function is

If the computer divides the weight by 100, both the integral and fractional parts of
the quotient will be transferred to rA. The parts might be separated by use of a
shift instruction.

In the following coding no divide instruction is actually used, since division by
100 can be performed by moving the assumed decimal point two positions to the

m=1900 +{ W)
(100 P

left.
000 READ DATA } read data
001 B00820
50000
002 A00006
C00003 Ry W = SCP
003 L.00820
[- Moomg
004 C00821
500821
005 900000 stop
000000
006 L.00820 constant
M00900°
EXAMPLE

Reading the data stores

1. the weight in pounds of a package of form

0000WWWWWWO000

in cell 820

It

and 2. 60 shipping rates per pound of form

ORRR000000000

in cells 900 - 959

For WEIGHT apply rate stored in CELL

00000 - 00249 . 900
00250 - 00499 901
00500 - 00749 902
14750 - 14999 959
Print the cost to ship the package.
FLOW CHART See Figure 4-13
CODING

If W represents the weight;and m, the appropriate cell; the function is

m = 1900 +f'(w) |

1P
In the following coding a multiply rather than abldi'vide instruction is used, because
for a known number, it is always faster for the computer to multiply by the recipro-
cal of the number than to divide by the number itself.

000 - READ } read data
DATA
001 L00820
' P00006-
002 A00007 ”
C00003 Ry W =>=SCP
°003 l:fo,oszo :l
: MOO9WW
004 C00821
500821
005 900000 .. stop
006 000000
. - .400000 ~ constants
007 L00820
M00900

75

STUDENT EXERCISES

1. Reading the data stores

DATA FORM CELC
Quantity A +AAAAAD00000 880
Quantity B +00000BBBBBB, 881

Print the sum of the quantities in form
+0000SSSSSSS,

2. Reading the data stores three quantities, A, B and C, of form

AAAAABBBBACCCCA '
in cell 880. Print the quantities, each in form

00000000QQQQ,

76

chapter§

[tem Processing

THE ITEM

A unit of data is called an item. For example, each delinquent account number in
the set of delinquent account numbers in the example on page 59 is a unit of data,
or an item.

THE FIELD

Up to this point an item has been a single piece of information. In general, an item
consists of more than one piece of information, called fields, and is generally com-

posed of more than one word. An inventory item may contain at least the following
fields. |

Stock number.
Description

On hand quantity

On order quantity
Minimum requirements

N WV b W N

Unit price

77

An inventory item might have the form

word 0: NNNNNNNNNNNN
DDDDDDDDDDDD
OHHHHHHH 0000
000000000000
ORRRRRRR 0000
OPPPPP000000

ke N

where N - Stock number
D - description
H - on hand quantity
O - on order quantity
R - minimum requirements

P - unit price

REPRESENTING FIELDS ON FLOW CHARTS

Fields are represented by superscripts to the item symbol. If 1 is the set of in-
ventory items; and Ij, the ith item in I,

l]iN is the stock number of I;
I? - the description of I
l? - on hand quantity of Ij
I? - on order quantity of I;
Il; - minimum requirements of I;
Ili) - unit price of Ij
WRITING DATA

Up to this point problems have been such that the results of processing, or output
data, have been small in quantity, and the SCP has been used to print the output
data. Generally, output is large, and printing it directly from the computer would
be inefficient, since a printer operates much more slowly than a computer.

78

Computer output is generally recorded on tape. There are instructions, called write
instructions, which when executed, perform the writing. Write instructions will not
be described here. Instead, writing data will be indicated by the words, *'Write
Data’’,

Just as it is generally inefficient to read input data an item at a time, it is general-
ly inefficient for a computer to write output an item at a time. Instead, output
items are grouped in the memory and are written on tape as a group.

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 880-939, 6 ten word job items of the form:

NNNNNNN00000
0000000CCCLC
0000000LLLLL
000000 OMMMMM
000000000000
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

where - job number
- contract price
labor cost

- material cost

OO =Z

- overhead cost

X - other data
For each job item produce a two word profit item of form:

NNNNNNN00000
OOOOOOOAAAAAA

79

where N - job number
A - profit

Write the profit items.

FLOW CHART [7=1

START #{ READ DATA —.@
(::)-AJ?-a-r? >

LEGEND

J - SET OF JOB ITENS
Jy = ITH ITEM INJ, | = l,.00,6
J} - NUMBER OF

4§ - PRICE OF y,

J7 - MATERIAL COST OF J,

Jj = LABOR COST OF J,

Jf - OVERHEAD COST OF 4,

P - SET OF PROFIT ITEMS

Py = ITH ITEM P, | = 1,00, 6

P] - NUMBER OF P, FIGURE 5-1
P$ - PROFIT OF P,

CODING
000 READ DATA read data
@ 001 [B0088O] . PN
i C00940 i i
002 [B00881
| $00882]
003 [S00883
| soogss] I R R]
004 [C00941 '
i B00001
005 L00014

Q00012 i:6

80

006 A00015

C00001
007 B00002
A00016
008 C00002
B00003 | _
009 A00016 i+ 1—i
C00003
010 B00004
A00017
011 C00004
000001
012 WRITE _ write data
DATA
013 900000 stop
: 000000
014 B00930
C00950
015 000010
000002
016 000010
000010
017 000002
000000

WORKING STORAGE

A considerable portion of the above coding is composed of the instructions in cells
004" - 011, the instructions that alter the addresses of the processing instructions.
This alteration is necessaty so that after processing ome item, the next will be
processed. This set of instructions is called the item advance coding. The reason
for the many instructions in the item advance coding is that each time an item is
addressed by a processing instruction, that address must be modified to refer to
the next item. The more an item is addressed in the processing, the longer the
item advance coding will become. This disadvantage is removed by using working
storage.

Using the previous method of item advance, the processing coding is initially
directed toward the first item in the set.

PROCESS ING

FIGURE 5-2

ITEM | 1 TEM 2 ITEM 8 I TEM U ITEM b ‘3

81

When the first item has been processed, the direction of the processing is changed
from the first to the second item.

PROCESSING

I TEM | ITEM 2 ITEM 3 ITEM 4 ITEM 5 i

FIGURE 5-3

When the second item hasbeen processed the direction of the processing is changed
to the third item, then the fourth item, etc.

A different approach to this problem is as follows. Initially the processing is direct-
ed toward the first item as shown in Figure 5-2. When the first item has been pro-
cessed, instead of changing the direction of the processing to the second item,
the second item is transferred to the location of the first.

PROCESSING

ITEM 2 ITEM 2 | ITEM 38 ITEM 4 ITEM 6 g

FIGURE 5-4

Thus, the second item can be processed with the same set of instructions. When
the second item has been processed the third item is transferred to the first item
location, etc.

82

PROCESSING

ITEM 3 ITEM 2 ITEM 3 ITEM 4 ITEM b {

FIGURE 5-5

The area of the memory toward which the processing is directed is called working
storage, since it is the area in which the item being processed is stored.

The area in which items to be processed are stored is called the input area; the
area in which the items resulting from processing are stored, the output area.
Although working storage areas can be independent of the input and output areas,
this situation is not necessarily the case. The first item location in the input area
and the last item location in the output area are generally available for use as
working storage areas, and for conservation of memory space, these locations are
generally used.

By using working storage, the number of times an item is addressed in the pro-
cessing has no effect on the amount of item advance coding. This amount is small
since it takes few instructions to move an item to working storage.

ITEM REGISTERS

To facilitate the movement of items, the computer has two item registers:

Register V, rV, a two-word register
Register Y, rY, a ten-word register

Instructions affecting these registers are:

V m, This instruction causes the contents of memory cell m and m + 1 to be dupli-

cated in rV. For our purposes m must be a multiple of two; that is, an address like
000, 102, 504.

W m, This instruction causes the contents of rV to be duplicated in memoty cells
m and m + 1. Again, m must be a multiple of two. '

To illustrate these orders, suppose memory cell 100 contains a quantity A, and
cell 101 a quantity B. If the order V 100 is given and at any later time W 304, say,
cell 304 contains A and 305 B. The contents of rV are not destroyed upon reading
out.

83

Y m, This instruction causes the contents of cells m, m + 1, ..., m + 9 to be dupli-
cated in rY. m must be a multiple of ten.

Z m, This instruction causes the contents of rY to be duplicated in memory cells
m, m + 1, ..., m + 9. Again, m must be a multiple of ten. The contents of tY are

not destroyed upon reading out.

For example, if Y 100 is given, then a Z 310,

100: A . S 310: A

101: 'B . 311: B |
And: 102: C Then 312: C !

109:] 319:]

The following coding uses working storage to solve the preceding example. ‘

000 READ read data
DATA
@ 001 B0088O JN——pN
C00950 ! !
002 B008SL
S00882
003 S00883
S00884 36 — gL — M - jo—p4
004 C00951
V00950 J
005 [?00949 ‘] _
' Y00890
006 Z00880 o
B00005 6
007 L00012 : 1:
Q00010 . .
008 A00013 i+ 1l—i
C00005
009 000000
U00001
010 WRITE write data
DATA
011 900000 . stop
000000
012 W00950 .
Y00940
013 000002
000010

84

- The item advance coding is in cells 004-009. The variable word is in cell 005.
The BOm, LOm and QOm instructions in cells 006 and 007 test i against 6. The
variable word will be

Vee950Y00940

immediately after the last item has been processed. The Vm instruction in cell
004 and the Wm instruction in cell 005 transfer the output item just produced from
output working storage to its proper location in the output area. The Ym instruction
in cell 005 and the Zm instruction in cell 006 transfer the next input item from its
. location in the input area to input working storage. The AOm and COm instructions
in cell 008 increase the addresses of the instructions in the variable word. The
UOm instruction in cell 009 transfers control to the processing instructions.

STUDENT EXERCISE

Reading the data stores, in CellS'880-939, 6 ten word inventory items of form

0000000NNNNN
\ 000000 0HHHHH

000000000006, %%
000000 0RRRRR, £4%) !

L XXXXXXXXXXXX SN

SXXXXXXXXXXXX)
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

where N - stock numbell"_.
H - on hand quantity
O - on order quantity
R - minimum required quantity
X - other data

and in cells 820-831, 6 two word sales items of form

0000000NNNNN }
0000000QQQQQ) /

where N - stock number)
Q - sales quantity '

)

85

The inventory item in cells 880-889 and the sales item in cells 820 and 821
have the same stock number; the item in cells 890-899 and the item in cells
822 and 823 have the same stock number; the items in cells 900-909 andthe
item in cells 824 and 825 have the same number; and so on. Write the updated

inventory items. If the sales quantity for an inventory item reduces the sum of the
on hand and on order quantities below the required quantity, print the stock number
of the inventory item and the quantity needed to bring the sum back up to the re-
quired quantity in form

0000000DDDDD,

FIELD SELECTION INSTRUCTIONS

INSTRUCTION OPERATION MNEMONIC

FOm (m)—rF Fill

Transfer (m) to rF, or fill rF with (m).

INSTRUCTION OPERATION
GOm (rF)=——-m

Transfer (tF) to m.

A word may contain more than one field. The shift instructions are one means of
separating one field of a word from others. Field selection instructions are used
for the same purpose, but are faster and more versatile.

Starting with the “*i’’ and moving up the collation sequence of characters, every
other character is called odd. The remaining characters are called even. Recall

that the relative magnitude of characters can be determined by reading down the
chart, which is figure 1-18.

INSTRUCTION ' OPERATION MNEMONIC
EOm "‘odd’’ characters of (rF) extract (m)—prA .Exfract

Replace the characters of (rA) that correspond to the odd characters of (rF)
with the corresponding charactets of (m), or extract (m) into rA.

86

880 lA]D|D|RIYE|s|S -|nj.

ra {chi]riv{aTiTsTa]alala]a]
Al ¥
rf [o]oJoTofo ofoJo [T 1T 1]

sso |afofolr]efs]si-]n].1¥].
T nnunAnonnBane
e [o oo oo o o o[I Tt 1T1}

FIGURE 5-6

ILLUSTRATIVE EXAMPLE

In memory cell 100 is a quantity in the following format:
000 XXX XXX XXX -

which we desire to print on the supervisory control printer, suppressing the non-
significant zeros. That is, if 100: 000 000 690 760 we wish to print 690 760 only.

-~ 000 LO0100 _ 000 XXX XXX XXX—rL
B00006 001 - -« === --- —rA
001 -—-10000 Shift rA right one place
T00001 Transfer control if rA > L
002 HO0008" A —> tF
F00008
003 B00007°
E00100 AAA AAA AAA AAA—A
004 HO0008
005 900000 500008 ;’:;nt edited quantity
000000 b
006 001---
007 AAAAAA
AAAAAA

008 -
- Working Storage

Note that in line 001, the iterative portion of the routine, the word in rA is succes-
sively shifted to the right until the 1 lines up under the left-most non-zero digit of
the word in cell 100. The ones and dashes then can be used as an extractor, re-
placing the space symbols with the most significant digit of 100 and all digits to
its: right. The space symbols, of course, move the typewriter carriage but do not
print. If we were to print a column of numbers edited in this fashion, they would
be aligned on the least significant digit. If we wished them aligned on the most
significant digit, we would replace line 007 with ignores: iii iii iii iii.

87

STUDENT EXERCISES

1. Reading the data stores, in cell 880 and 881, two one word items of form

0AAAOBBBOCCC
A A A

where A, B, and C are numeric quantities. Print the sum of the C fields in form

00000000SSSS,
2. Reading the data stores
DATA FORM CELL
Quantity A 000AAAA00000 380
Quantity B 000000BBBBBB, 881

Print the sum of the quantities in form

000SSSSSSSSS

3. Reading the data stores in cells 880- 939,{30jxwo word census items of form\ :

OSSOOOCCCCOO
OAAAOM OIOOOG
where S - state code - .
C -city code ’
A- age ‘

-M - marital status code
I - income bracket code

G - sex code
i W

Print the number of single (marital status code S) females (sex code F),: age ;\1
‘or oldel:, living in Sheboygan (city code 1313), Wisconsin (state code 24), and
eammg $10,000 or more (income bracket code U).

88

)

' 4. Design the following items:

1. Inventory item

FIELD

Stock Number
‘Description

Unit of measure
On-hand amount
On-order amount
Minimum Reorder Level
Unit Price

2. Master Employee Item

FIELD

Badge Number

Sacial Security Number
Hourly rate of pay

- Number of exemptions

Job: description code

- Year-to-date gross pay

Year-to-date FICA tax

-3, Transaction Item

FIELD
Key

~ Transaction Code

Transaction Information

“

89

NUMBER OF CHARACTERS

8
24

(o)WY A IV IRV B

NUMBER OF CHARACTERS
8

AN NN N BN

NUMBER OF CHARACTERS

8
4
12

chapter @

Subroutines and

Variable Connectors

COMMON SUBROUTINES

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 880-939, 6 ten word job items of form

$SSSSSSSSSSS
0000000PPEPP
0000000LLLLL
0000000MMMMM
000000000600
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

where S - salesman code and can be

A - if salesman A made the contract
B - if salesman B made the contract

90

P - contract price
L - labor cost
M - material cost
O - overhead cost
X - other data

Print
1. the gross sales of salesman A,
2.
3. the gross sales of B,
and 4,
FLOW CHART
=
Ga-Gbana-an
> READ DATA

the number of contracts netting $250 or more made by A,

the number of contracts netting $250 or more made by B.

o@- 9 - df -t 2'&9.9’—& Nt 1 =Ny

[= ey

>
o, —@- 9 - oy - 249.9—> N+ 1=,

lé

N,—SCP

16, —>SCP [~ N, —S5CP |

@..(1 : s)—'— o, —»5CP

iTH ITEM IN J, | = t,00a, 6

LEGEND
J - SET OF JOB ITEMS
Ji-

J} - SALESMAN OF J,

J§ - PRICE OF y,

J§ - OVERHEAD COST OF J;
J§ - LABOR COST OF J,

m

gt -

MATERIAL COST OF J,

FIGURE 6-1

9l

000 READ
DATA
@ 001 B008SO
100030
002 000000
Q00013
003 B00027
A00881
004 C00027
B00881
005 300882
$00883
006 s00884
1.00031
007 000000
T00021
@ 008 |Y00890
700880
009 B00008
L00032
010 000000
Q00023
011 A00033
C00008
012 000000
100001
013 B00026
A00881
014 C00026
B00881
015 S00882
S00883
016 S00884
1.00031
017 000000
T00019
018 000000
V00008
019 B00028
A00034
020 C00028
100008
021 B00029
A00034
022 C00029
100008
023 500026
500028
024 500027
500029

7\

'\

92

read data

3B -39 - 0% - Y 124999

1+1—->1

Gy + JE —Ga

JE - 30— g% - J¥ : 249.99

Npo + 1 —» Ny

NB +1—->-NB

Gp — SCP; N, —,. SCP

GB —— SCP, NB — SCP

025 900000 stop

00_000
026 000000 G
u 000000 | A
027 000000
000000 ©o
028 000000 7 N,
N 000000 |
029 000000 Np
B 000000 |
030 AAAAAA
AAAAAA
031 000000
024999
032 Y00940
-200880
033 000010
000000
034 000000
000001

The coding in cells 004-007 is duplicated in cells 014-017. This duplication
can be eliminated, with the consequence that memory space will be conserved, by
means of the programming principle of the common subroutine.

In the flow chart the duplication is shown by the repetition of the relative magni-
tude test. This test can be made a common subroutine. The subroutine entrance,
or starting point, is represented by a triangle with an arrow leaving it; the exit,
by a triangle with an arrow entering it. Subroutine symbols are distinguished from
each other by letters, the letter used for a particular subroutine usually being a
mnemonic for the operation done by the subroutine. In the following the letter P is
used for ‘“profit’’.

Whenever, on a logical line of flow, it is desired that a subroutine be executed
two concentric circles containing the letter of the subroutine are drawn. This
symbol means that, once the subroutine exit is reached, the logical line of flow
continues from the point where the subroutine was entered.

93

>
JPo g9 ylym 249.9<D——» P
1<_

FIGURE 6-2

For example, in the following flow chart (Figure 6-4) after the operation, G, + J[;
—G,, the subroutine symbol

FIGURE 6-3 (::)

means ‘‘execute subroutine P, and when the subroutine exit is reached, continue
with the operation, Ny + 1=—2N,"’.

;a."eb i Yl ;\\1
{ READ DATA Bia Yoele, + Jf —eg, u,+ L=, ..@
O
>{a, + o} —>0, u.,u--ub-»@
ite 8, SCP [>{n, —> SCP[->-1a, —> SCPI--{N, ~—> scp
oy e]
i+ i ::(E:)

[:>~(§-w-ﬁ-ﬂ:umw>
lﬁE

LEGEND

J - SET OF JOB ITEMS
Jy - ITH ITEW IN 0, 1 =)y0uu, 61
J} - SALESMAN OF J;

Jf - PRICE OF 4,

J9 - OVERHEAD COST OF J;

JI - LABOR COST OF 4,

J} - MATERIAL COST OF J;

FIGURE 6-4

oy

In coding from a flow chart containing common subroutines, everytime the logical
line of flow encounters a subroutine symbol, it is necessary to code a UOm in-

" struction to transfer control to the common subroutine entrance. When the common

subroutine exit is reached, another UOm instruction is needed to transfer control
back to the point in the coding from which control was originally transferred. But
since the common subroutine may be entered from more than one point in the coding,
the address portion of the UOm instruction at the common subroutine exit cannot
be fixed, but must vary according to the point in the coding from which the common
subroutine was entered. For example, if a common subroutine can be entered by
means of a UOm instruction .in cell 005 and also by means of a UOm instruction
in cell 010, the UOm instruction at the common subroutine exit must at times be
U0)006, and at other times be U00011. In this situation the ROm instruction is use-
ful . '

INSTRUCTION OPERATION MNEMONIC
ROm 000000U0(CC)——m Record

Store a word consisting of six zeros, a U, two zeros and the three least
significant digits of (CC) in m, or record 000000UO(CC) in m.

2 |1

oz [o]ofo]ofofofufofv]afr]1]

021 ‘o]o]olo]o]olulolo]o]ole

cc [o]o]ojo]ofo]ofofo]ofo]s]

FIGURE 6-5

Ccasider the following. (alpha time has just been completed) oooooouoo

' DL BORONONONO0E nonnDNBnANAD,
CONTROL UNIT T i

nENRRERNNNOCEIRNNNRNNRERAR0NNoNNNNononoooCEaannonn

ARITHMETIC UNIT
oos | R00021 V00013 gegC:]

FIGURE 6-6

000

il

MEMORY UNIT

95

On beta time

SR cC CR
[oJoJo o] o] 5] [oTe]eT o[e[o[oTo oo [0 A glololol2]lulololo]i]s
LHI

CONTROL UNIT

ﬂﬂﬂﬂﬂﬂﬂnnﬂn Io[oIoIoIoI;llolvliIolth Ioln|o|o|o|;L|o|o|o|o|o|o| |o|o|'o|o|o|or|F0|||||||‘||||
ARITHMETIC UNIT

000 :: 21 | 000000 UOVARI
05 | R00021 100013 90 SI

MEMORY UNIT FIGURE 6-7

On gamma time

DO0OCEEEECEED NOONB0DOOROE
CONTROL UNIT

Io]o]o]olo]ﬁolo]olo]old [o|n|o|o|o|:l|o|1|i|t|2|s| uﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ |0|0|0|0|0|;l':|lll|lIllll
ARITHMETIC UNIT

w1

005 lnooozl 00013 I

MEMORY UNIT FIGURE 6-8

On delta time

DO0EB000E00E
LK) RHI
CONTROL UNIT

nnnnnAnopoornnonnonENnANNANNNNARNANNNINPCErNDNNNDD
ARITHMETIC UNIT

000 @ 021 | 000000 V00006
& W]

FIGURE 6-9

MEMORY UNIT

If cell 013 were the entrance of a common subroutine; and cell 021, the exit; and
if the common subroutine were to be entered from cell 005; the execution of the

96

UCm instruction transfers control to the common subroutine. The ROm instruction

exccuted on y Time guarantees that, when the common subroutine exit is reached,

the instruction pair

000000

U00006
will be executed, transferring control to cell 006, to continue the processing be-

gun before transferring to the subroutine.

000 READ
: DATA
, (:) - 001 B00880O }
, L00029
002 000000
Q00008 ,
003 B00026
: A00881
004 C00026
000000
005 R00021
U00013
006 B00028 }
A00030
007 C00028
U00016
008 B00025
A00881
009 C00025
000000
010 R00021
U00013
011 B00027 }
, A00030
: 012 C00027
U00016
[:Ei:> 013 B00881
S00882
014 S00883
\ S00884
015 L00031
T00021
(:) 016 LY00890]}
700880
017 BOO0Ol6
L00032
018 000000
Q00022
019 A00033
' C00016
020 000000
U00001

read data

S
Ji: A

GB + Jlr—-—éB

Ng + 1 —=Ng

Ga t JI;—""GA

NA +1——"NA

15 =08 =35 - 0¥ £ 249.99

i+ 1—i

021 000000
UOOVAR
022 500025

500027 Gp— SCP ; 64, — SCP
023 500026

500028 Gy— SCP ; 65 —SCP
024 900000

000000 stop
025 000000

000000 | Ga
026 000000
| 000000 | Gs
027 000000
B 000000 Na
028 000000 1
B 000000 | N3
029 AAAAAA

AAAAAA
030 000000

000001
031 000000

024999
032 Y00940

700880
033 000010

000000

VARIABLE CONNECTORS

The example can be flow charted in another way. (The notation from @ to @
in figure 6-10 is incomplete).

98

>
@—@- 40 - gk - gn zusM
<

Lo READ DATA -o@-a(d? : A};‘ 6, + Jf —>G,

O ©

N,+ "*"a"@

by 1oby o0
(9

6, — SCP

»lua ——> SCP [~ 6 = SCP [~ Ny, ~—> SCP

i+ |

A SET OF JOB ITEMS

LEGEND

Jd -

J; - THE
J} - THE
Jf - THE
J§ - THE
Jf - THE
J7 - THE

This flow chart has a point of indetermination at connector three. In some cases
the logical line of flow is to the operation, Ny + 1=—=N, ; in other cases, to the
operation, Ng + 1==»-Ng. Thus, connector three must be variable. That is, con-
nector three must act as a switch, sometimes switching the logical line of flow to

ITH ITEM IN J, | = |,.0u, 6
SALESMEN OF J;

PRICE OF J

OVERHEAD COST OF J,

LABOR COST OF J,

MATERIAL COST OF J,

FIGURE 6-10

99

one operation; sometimes, to the other - just as a railroad switch sometimes

switches a train to one track; sometimes, to another. A variable connector is

actually represented on a flow chart as a switch, with poles and a terminal. The
e iRl

terminal is a connector with a subscript **v’’ to the number. The poles are con-

nectors with consecutive alphabetic subscripts to the number.

N

D =@

@-»6’-4?-4';-.11‘:249.99 2 0

Gyl 1w

FIGURE 6-11

For clarity, the terminal of the variable connector should be symmetrical with the

poles.

For a variable connector to operate correctly, it must be set, just as a switch is
set. The setting of a variable connector is represented on a flow chart as a square,
called a set box, containing a period and the pole of the connector to. be set. For

example, the set box

——- -3a S

FIGURE 6-12

means that, when the logical line of flow reaches the terminal of variable con-
nector three, it will be switched to pole a. Just as the controls that operate a
railroad switch may be separated from the switch by an intervening distance, the
set box that sets a variable connector may be, and usually is, separated from the
variable connector by intervening operations. In the following flow chart, the test
for relative magnitude intervenes between the set boxes for variable connector

three and the variable connector itself.

100

i=1
Ga:szna'—'Nb:O\
START }={ READ DATA ->®-><J? : A)iﬂ Gy + J0 — G, o 3,

‘Na+ |___¢.Na-i<::>

Y

O O

=
~ Ny + 1 -—-*'Nb-i><::)

.
@’@ 9 -y - 2u9.s9>_’@

@, = SCP [N, —> SCP -9»| Gy = SCP [N, —>SCP

P4 =i

LEGEND

J = SET OF JOB ITEMS

Jp - ITH ITEM IN &, | = 1,000, 6
JT - SALESMAN OF 4,

Jf - PRICE OF y,

J§ - OVERHEAD COST OF J;

J% = LABOR COST OF J;

JT - MATERIAL COST OF J,

F1GURE 6-13

This flow chart is logically equivalent to the flow chart in figure 6-4 and can be
coded in the same way. The difference between the two is that one uses the pro-
~ gramming principle of the common subroutine; the other, the principle of the vari-
able connector. The programming principle of the variable connector is more
general than that of the common subroutine and is used many times when there
is no common subroutine. For example, it often occurs in a problem that for a
certain number of items to be processed a given operation must be performed, but
for the processing of the remainder of the items the operation is not necessary.

101

The operation can be removed from the processing coding by means of a variable

connector.

-

Variable connectors can be set by means other than the use of the ROm instruction.
Setting the variable connectors with BOm COm instruction pairs, the coding for

the example might be as follows.

000

(:) 001

002

READ
B00880

000000

DATA
L00027
Q00006

003
004
005

B00024
c00024
C00011

006
007
008

®

009
010
011

B00023
00023
C00011
B00881
500883
L00030

U00009
A00881
B00029
000000
500882

S00883
TOOVAR

A00881}
B00028

g®

012
"~ 013

014

Y00890
B00012
000000

200880
L00031
Q00021

015
0le

A00032
000000

C00012
U00001

3a) 017
018

B00025
C00025

® @

b) 019
020

B00026
C00026

A00033

A00033
000012

000012

102

read data

S
JiZA

GB + Jl;—n— 6B

3y

G+ JE—Ga

3a

P .
Ji-J?-J%-]?.24&99

i+ 1] —ei
Na + 1—=Nj}

Np + 1 —Np

021 500023 G, —= SCP ; N,—~SCP

| 500025
* 500026
023 000000 G
N 000000_| A
024 000000 Gp
B 000000 _| |
025 000000 :
B 000000 Na
026 000000 Np
L 000000_|
027 AAAAAA
AAAAAA
028 L00030
T00019
029 L00030
T00017
030 000000
, © 024999
031 'Y00940
. 200880
032 000010
000000
033 000000
000001

In this codmg variable connector three is embodied in the address Jpart of the TOm
insttuction in cell 011. This address part varies between 017 and 019, depend-
ing on whether control is to be switched to pole a or b. The variable connector is
set to pole a by the BOm COm instruction pair in cells 007 and 008 to pole b by

the pair in cells 004 and 005.

In some flow charts using variable connectors it occurs that initially a variable
connector should be set to some given state. This fact is indicated by showing the
‘notation for the setting of the variable connector, not in a set box, but in the as-
sertion flag.

STUDENT EXERCISE

Reading the data stores:

1. six ten word A items in cells 880-939

2. six ten word B items in cells 820-879
N

4

Each A item has for its first word a key, and the items are in ascending order by
key. Similar remarks hold for the B items. Create a set of 12 items, consisting of
the six A items and the six B item‘s, which is in ascending order'By key. (Such an
operation is called a ‘“*merge’’). Write the merged items.

103

SUBROUTINES

The coding that, when executed, performs a large operation is called a routine. The
coding that performs a payroll operation could be called a payroll routine.

The coding that, when executed, does a suboperation of a routine is called a sub-
routine. A payroll routine might consist of the following subroutines.

Determination of gross pay.

Determination of medical pay.

Determination of withholding tax.

Determination of FICA tax.

Determination of group insurance contribution.

Determination of union dues.

Determination of net pay.

Item advance.

Using the concept of the subroutine, a routine can be organized into

1.

a set of subroutines,

and 2. a framework, or main chain, which specifies the order in which the subrou-

tines are to be executed and performs minor processing.

For example, the payroll routine might be flow charted as follows.

-]
>
»
2

\/\/\’/

READ DATA

OETERMINATION OF
GROSS PAY

" DETERMINATION OF DETERMINATION OF
MEDICAL PAY WiTHHOLDING TAX

DETERMINATION OF
FICA TAX

DETERMINATION OF
NET PAY

OETERMINATION OF
DETERM{NA F
' OROUP INSURANCE uno: ::;:: °
CONTRIDUTIONS
_D : WRITE DATA "

I+ lepm} ———-.D

FIGURE 6-14

| 04

The subroutine concept allows the programmer to flow chart first in terms of sub-
routines. He can then flow chart each subroutine as an essentially distinct entity.
The subroutine concept not only saves memory space when used with respect to
the common subroutine, but also simplifies both the flow charting and coding of a
complex routine. Therefore, all of the following problems will be flow charted and
coded in subroutine form. Generally each subroutine performs one operation and

may be categorized as follows:

Starting subroutine - initial operations
Input subroutines

Processing subroutines

Output subroutines

Vi B W N =

Ending subroutine

In the illustrative and student exercises in this manual initial, processing, and
ending operations, because they are short, may be coded in the main chain of the
program. Whenever these operations are lengthy or detailed, however, they should
be treated as distinct subroutines.

105

chapter

Detailed
Description

of Instructions

TRANSFER OF CONTROL INSTRUCTIONS

It has been stated that for the proper execution of the instructions, UOm, QOm and
TOm, the address part of the instruction must be the three least significant digits
of the word in which the instruction appears. Up to this point this requirement has
been met by always coding a transfer of control instruction as a RHL In certain
situations it is possible and advantageous to code a transfer of control instruc-

tion as a LHI, and the above requirement can still be met.

Suppose that one processing path is to be taken if the contents of cell 820 are
greater than or equal to the contents of cell 880, and another is to be taken if
the contents of cell 820 are less than the contents of cell 880. The coding might
be ’

010 B00820
L00880
011
T00020
012 =
Q00020

106

In this coding, the LHI in cells 011 and 012 are wasted, since they are skips.
It would be more efficient if the QOm instruction were the LHI in cell 011. This
situation is possible, since the address part of the QOm will still be the three
least significant digits of the word in which it appears.

010 B00820
L.00880

011 Q00000
T00020

If the contents of cells 820 and 880 are unequal, the QOm instruction will be
interpreted as a skip, and the coding takes an already familiar form. If the contents
of the cells are equal, the following occurs.

EO0E0E BOCEQOOROEDaR| unnuuan
CONTROL UNIT

Iol||2|3|u|r;ls|7[a|9|o||| FTT11 lrf 111171 |o|||z|s|»|5l|a|7|a|s|o||| Lt |r‘| BEEREE
ARITHMETIC UNIT

o000 I:: 620 | 012345 678901

880 | 012346 67890!

oo | B00820 L008BO
o1 | Q00000 T00020 990

L

MEMORY UNIT
FIGURE 7-1

Assume that the computer has just completed beta time. (CC) specify that the next
instruction pair is in cell 012. On gamma time Q00000 is tfansferred to SR and
executed. Since (rA) are equal to (rL), the execution transfers the three least
significant digits of (CR) to CC.

. SR cc CR
GOENEE [olololo loJo ToTe Lo 2] MO0E0EEEREEN
i LHI RHI
CONTROL UNIT

rf

T r ri
EELRLERRERE (TITITITIITO GOEEEERERERY [TITTIITIIIT
ARITHMETIC UNIT

e20| 012346 678901

880 | 012345 678901
oo | B00820 Looaso

MEMORY UNIT o' L0 700020

I

i |

299

FIGURE 7-2

107

(CC) now specify that the next instruction pair is in cell 020, where the coding
for the condition of equality begins. On delta time T00020 is transferred to SR and
executed. Since (rA) are not greater than (rL), T00020 is interpreted as a skip.

SHIFT INSTRUCTIONS

Any character other than a 0-9 in the second instruction digit of a shift instruction,
Onm, - nm, ;am or .nm, causes the computer to stall and light a neon on the Super-
visory Control Panel to indicate that an instruction has been improperly coded. A
zero in the second instruction digit of a Onm instruction transforms the instruction
into a skip instruction. A zero in the second instruction digit of any other shift

instruction causes the computer to stall and light a neon indicating that it has
stalled.

MULTIWORD TRANSFER INSTRUCTIONS

REGISTER V

If the m in both the Vm and Wm instructions is odd and the least significant digit
is not equal to nine, the instructions behave as in the following example.

Example: (051) = a, (052) = b. Transfer “*a’’ and **b”’ to 063 and 064 respectively.

MEMORY
LOCATION INSTRUCTION REMARKS
020 V00051 a, b rV
W00063 a—-»063; b—— 064;
(tV) = a,b.

If the m in one instruction is odd (least significant digit not equal to nine), and
the m of the other instruction is even, the two words are transferred in reversed order.

‘Example: (051) = a, (052) = b. Transfer *'b’’ followed by ““a’’ to 054 and 055

respectively.
MEMORY
LOCATION INSTRUCTION REMARKS
020 V00051 a,b—rV
W00054 b—— 054; a——055;
(rV) =a,b

108

Example: (050) = a, (051) = b. Transfer *'b’’ followed by ‘‘a’’ to 063 and 064

respectively.
MEMORY :
LOCATION INSTRUCTION REMARKS
020 V00050 a, b——1tV
W00063 b—— 063; a — 064;
(tV) = a, b

If the m in a Vm or Wm instruction has a nine as its least significant digit, the
instruction will transfer from, or to, the last and first words in the ten-word memory
channel.

Example: (050) = a, (059) = b. Transfer “*a’’ followed by **b’’ to 100 and 101.

MEMORY
LOCATION INSTRUCTION REMARKS
020 V00059 b, a tV
V00100 . a —=100; b — 101;
(rV) = b, a.

REGISTER Y

When executing a Ym or Zm instruction, the least significant digit of m is ignored
by the computer. The transfers operate on the integral multiples of ten. Thus,
Y999 is equivalent to Y990, and Z784 to Z780.

ARITHMETIC INSTRUCTIONS

" ADD INSTRUCTIONS

Some details of the add instructions have been given on page 59 . In digit
positions 2-12, the characters, minus, apostrophe, ampersand and left parenthesis,
are treated by add instructions, not as alphabetics, but as numerics. The minus is
usually treated as a minus one (see the following illustration); the apostrophe, as
a plus ten; the ampersand, a plus 11; and the left parenthesis, plus 12.

- - &
+ 6 + — + 5
5

A 16

109

SUBTRACT INSTRUCTIONS

All rules pertaining to add instructions hold for subtract instructions. During the
execution of a subtract instruction the computer changes the sign of the word being
transferred from the cell specified to rX. Specifically, if the computer finds a zero
in the sign position of the word, it changes it to a minus; if it finds a minus, it
changes it to a zero. Actually, the computer effects this change as follows. The
first two rows in figure 1-18 form pairs of characters in each column; the next two
rows form other pairs of characters in each column; and so on. The characters,
zero and minus constitute a pair; A and B constitute a pair; and so on. No matter
what character the computer finds in the sign position it changes it to the paired
character. Thus, a minus becomes a zero, and a zero becomes a minus. Likewise,
an A becomes a B, and so on. If cell 880 contains

B12345678901
and the instruction
$00880
is executed, rX will contain
A12345678901

MULTIPLY INSTRUCTIONS

The computer performs multiplication by repeated addition. This principle can be
exemplified as follows.

7 times
7(8) = 8+8+8+8+8+8+8 = 56

Because each addition requires a given period of time, the computer conserves
multiplication time by first building three times the value of the multiplicand and
using the resulting quantity in the repeated addition.

3(8) = 24=—»(rF)
7(8) =24 +24 +8 = 56

In this manner, the computer saves the time required to perform four additions
when multiplying by seven. The number of additions required by each numeric
multiplier are as follows.

10

MULTIPLIER (rX) NUMBER OF ADDITIONS

o
o

O O N ANV R W N
B N W N =N

W

In the computer, the multiplicand is stored in rL. Thus, the computer builds up
three times (rL) and transfers this quantity to rF for storage. Since three times
(rL) may be a 12 digit number, it occupies an entire word and it has no sign. Thus,
tF i_only contains the absolute value of three times (rL). To conserve multiplication
timfe, the programmer should, whenever possible, treat the word requiring the fewest
additions as the multiplier.

In ithe sign position of a word entering into a multiplication any character other
than a minus is treated as a plus sign, and the product will have the proper sign
in the sign position. In digit positions 2-12 the product of two characters is as

shown below. MULTIPLICATION TABLE
MULTIPLICAND
ilal-10 1123)4 516 7 8 9 ’ & {
MULTIPLIER el s | alslcelo|e|r{a|u| 1|+ ¢ @
el 7y | oKL M N[O P Q| RI $] *f ?

+
~
©w
-
=
<
E 3
>
-
~
=
I

)
i Tr 1 t]= |25 [4a | 3 |0 |13 |2 |2 |52 |65 |78 | o1 |14 |17 |130 | 43] 156
al* [“Ie {22« |2 |0 |14 |28 |42 |56 |70 |4 | 98 |11z |126 | 140 | 154] 168
TN 3 || 1 |0 |15 30 |45 |60 |75 |90 |105 [120 |135 | 150 | 165 | 180
oli I +folololo |oa]lojojo|ofo]|o|o] o] of o o
1A}]/ i A - 0 1 2 314 5 [7 8 9 10 11 12

FIGURE 7-3 oo ks il | [afo|2]ale|sfofiz|w]|w]|n|a]2
slelcfr (7w o [3|6]ofwe |s|e|a|a|a|n|=n
alofmlullafia] (lo [a|s|izfie Joo o] | 36| a| m
51EINLYV 1 {1 [5(t0{15 (20 |25 |30 35 | 40 45 50 55
slFlolwllw ol o [6]w]s|a | ” w60 e| 7
elelx fufaalolo [7]ulals [sle]els n| 7| u
sfulaly [lia]as o [s]e]|a [[0 7 w8 %
94l R{Z 21 | 30 7 0 9 (18 |27 |36 |45 2 81 90 | 99 108
vl s o fa [2a [6 [0 [10]o0 |20 [a0 {50 0| 8 w || w
&lé|*|=]a ¥ 5 0 11 u 55 7 88 99 (110 | 11& | 1X
(el 2 4|4 o0 [12]2 % |48 |60 72| 8|9 |08 120 |132] 1ea

THE DIVIDE INSTRUCTION

In the sign position of a word any character other then a minus is treated as a plus
sign. In digit positions 2-12 any character, regardless of whether or not it is a
number, is treated as the number in its row.(See figure 1-18, i.e., M=4 in division).

ONE DIGIT AND TWO DIGIT INSTRUCTIONS

It has been stated that the function of the first and second instruction digits is to
represent the operation to be performed. Some instructions represent the operation
in one digit; some, in two. The former can be called one digit instructions; the
latter, two digit instructions.

Two digit instructions répresent the operation in the first and second instruction
digits; one digit instructions, in the first instruction digit. Of the ‘instructions
covered thus far, the 00m, .nm, ;am, -nm, Onm, and 50m instructions are two digit
instructions; all others are one digit instructions. The character placed in the
second instruction digit position of a one digit instruction is immaterial. A K7m
instruction is the same as a KOm instruction. By custom, if a particular digit is not
desired in the second instruction digit of a one digit instruction, a zero is placed
there. However, it is a common coding practice not to write a second instruction
digit zero. For example, B00880 would be written as B 880, but still recorded as
B00880.

OVERFLOW

The sum of two numbers with eleven significant integers in each will be a twelve
integer number if a carry is produced. If a decimal point immediately precedes the
most significant digit of each number, the carry is a whole number. In the computer
this carry would go into the sign position, but this position is occupied by the
sign. The computer makes the assumption that the absolute value of all quantities
is less than one by preventing a carry into the sign position. An attempted carry
into the sign position is called overflow.

Overflow can occur in arithmetic operations other than addition. In subtraction,

if a negative number of eleven significant integers is subtracted from a posi-

112

tive number of eleven significant integers there can be overflow.

+ .50000000000
~ (~ .50000000000)
1 .00000000000

Division in which, as far as the computer is concerned, the absolute value of the
dividend is larger than the absolute value of the divisor causes overflow, because
the quotient would be greater than one.

— .60000000000
- ..30000000000

= 2.0000000000

Similar reasoning guarantees that, in general, multiplication cannot cause over-
flow, since two fractional quantities must produce a fractional product. There are
certain uncommon exceptions to this last statement which arise because it is
possible to symbolize, in only eleven digit positions, a quantity which is greater
than one by using the characters ’, & and (-

Ovérflow occurs during gamma or delta time. The carry into the sign position is
lost. If overflow occurs on gamma time, delta time will be executed. At the end of
the: cycle during which overflow occured, the following special four stage cycle
is executed.

Alpha Time - six zeros are transferred to the static register.

Beta Time - the contents of memory cell 000 are transferred to the control
register; one is not added to the contents of the control coun-
ter.

Gamma Time - the left hand instruction of the contents of the control regis-
ter is transferred to the static register and executed.

Delta Time -the right hand instruction is transferred to the static register
and executed.

On the succeeding four stage cycle, control returnis to the pair of instructions in

the ‘memory cell specified by the contents of the control counter. The contents of

the control counter were one greater than the address of the' memory cell contain-

ing the instruction being executed when overflow occurred. If overflow occurred

duel to an instruction in memory cell k, then the instructions in memory cell k+1,
now specified by the present contents of the control counter, will be executed,
provided that neither memory cell k, nor memory cell 000, contains a transfer of
control instruction.

13

Consider how this principle might be employed in programming. Addition is some-
times used for purposes other than summation. One of these uses is to alter ad-
dresses in an iterative routine. For example, with a series of two word items,
where the first word is a social security number, the next social security number
may be selected by adding two to the address of the current social security num-
ber. There will be a limit to the number of these social security numbers with
which it is necessary to deal. When the limit is reached the computer must take
some other action.

By adding to a word each time the address is advanced, overflow will eventually
occur. The number of addresses that have been advanced can be counted by this
addition. Suppose that after processing sixty words it is necessary to take some
other action. With a two word item there will be 30 items. If a 70 is placed in the
2nd and 3rd digit positions of the word used as a counter, and 1 is added in the
3rd digit position each time 2 is added to the address, overflow will occur after
the 30th item has been processed, since 70 + 30 produces a carry. Memory cell 000
must contain some sort of instruction, usually a transfer of control instruction, to

assure that the instructions for taking the new course of action will be executed
when overflow occurs.

The add order, as has been pointed out, is being used to advance the address part
of an instruction. It will not be necessary to have another add order to increase the
word used as a countet. At the same time the address part is being advanced, the
item counter can be advanced by adding to the appropriate digits of the same in-
struction line. The variable word which contains the counter and the variable ad-
dress might initially have the following appearance,

V70882W00880

and the following constant could be added to it.

001002000000

In summary, overflow permits an alternate course of action based on the decision,
*‘have all the items in the set been processed?’”” The instruction pair stored in
memory cell 000 can be used to transfer control to, or execute, the routine which
is to be performed on reaching this limit. Consider the following example.

Each of a set of 30 two word items is to be processed. The items
will be ptrocessed in a working storage. The problem is to re-
place the contents of the working storage with successive items
of the set and when the set (stored in memory cells 880-939) is
exhausted, stop the computer.

Ly

Without utilizing overflow the item advance routine might be as follows:

[020 V00882

w00880

021 B00020
L00026

022 000000 « i:30

_ Q00025

023 A00027 i+ 1—i
C00020

024 000000 to processing
U00XXX

025 900000 stop
000000

026 V00940 :
w00880

027 000002
000000

In this coding there is one section identified with the decision i:30 and a separate
section for the operation i + lemep~i.

Employing overflow in the coding below there remains a subroutine associated with
the operation i 4 1—»i. However, the coding for the decision i:30 is not obvious.
The decision i:30 is incorporated into the coding of the operation i + 1=»i by
taking advantage of the effect of overflow.

000 B00023
’ C00000
processing
020 V70882
. w00880
021 B00020 ‘ N i+ 1—i
A00024"
022 C00020 ‘ to processing
U0 0XXX
023 900000 000000
024 001002
000000

115

The asterisk in the remarks column indicates that overflow is being used as a
control.

The routine operates as follows. Initially the BOm COm instruction pair in memory
cell 000 provides a method for storing the necessary stop instruction in memory
cell 000 without actually having to execute the stop instruction. When control
initially reaches the item advance routine, the contents of memory cells 882 and
883 are transferred to memory cells 880 and 881. The contents of memory cell 020
and the constant for advancing the address and the counter are added, and the sum
is transfetred to memory cell 020. As a result, memory cell 020 now contains

V71884W00880

Control is then transferred to processing. After processing the second item con-
trol once more returns to the item advance subroutine. Each iteration through the
item advance subroutine operates as described above with the result that the
contents of memory cell 020 are successively

V72886W00880
V73888W00880
V74890W00880

and so on until the thirtieth item is processed. At that point the contents of cell
020 are

V99940W00880

After processing the 30th item control returns to the item advance subroutine. The
contents of memory cells 940 and 941 are transferred to memory cells 880 and
881. The contents of memory cell 020 are transferred to register A. The execution
of the AOm instruction adds one to the 99 in the second and third digit positions
of the contents of register A, and ovetflow occurs. The carry is lost. On alpha
time six zeros are transfetred to the static register. On beta time the contents of
memory cell 000

900000000000

are transferred to the control register.On gamma time the left-hand instruction of
the contents of the control register

900000

is transferred to the static register and executed, thus stopping the computer.

The above is an example of ‘‘specialized overflow”. The overflow is called
specialized, because no matter in what memory cell overflow occurs, the result
is some specific operation, namely, the computer stops.

116

If overflow is used to control more than one iterative process in the same routine
and if the course of action to be taken when one of the iterative processes reaches
its limit is different from the course of action to be taken when another of the
iterative processes reaches its limit, it is obvious that specialized overflow will
not be able to handle the situation. In such a case, ‘‘generalized overflow” is
necessary. Consider the following.

ILLUSTRATIVE EXAMPLE:

Reading the data stores 60 one word credit account number items of form
0AAAAAAAAAAA

in cells 820-879, and 60 one word delinquent account number items of form
0DDDDDDDDDDD

in cells 880-939. Write 60 one word credit items of form
KAAAAAAAAAAA

where A - credit account number
K - credit key, and may take values
G - credit good
B - no credit.

i=j=1

READ A 1D K
DATA T —@{ D—B_’Ri—°@
Q }M«, 3

j+ =] @

® 1 (D) D—(i :GD:- kT
7

LEGEND)
Pt | e
A - SET OF CREDIT ACCOUNT NUMBER 1TEMS
Aj - Ith ITEM IN A, I=1,...,60
D - SET OF DELINQUENT ACCOUNT NUMBER {TEMS
D; - jth ITEM IND, j=1,...,60
R - SET OF CREDIT ITEMS
R; - ith ITEM IN R
RA - ACCOUNT NUMBER OF R FIGURE 7-4
R¥ - KEY OF Ry
CODING

It has already been demonstrated that overflow can be used to control an item
advance subroutine. The flow chart in figure 7-4 indicates that the process to be
followed when the delinquent account number item advance reaches its limit is
not the same as the process to be followed when the credit item advance reaches
its limit. Consequently, if overflow is to be used to control both item advances,
generalized overflow must be used. The following coding incorporates generalized
overflow.

17

0
o

/

000

R00004

U00002

001
002
003
004
005
006
007

000000
B00004
C00004
ﬁOOOOO

000001

A00001

000000
UOOVAg]

READ
B00820
000000

read data
DATA

Ai:D'
L00880 !

Q00017

008
009
010
011

[B40881
B00008
A00026
000000

C0088g}

000000
j + 11—

coo0008*

U00006

012
013
014

B00820
E00028

R00023

F00027

015

016

B00029

000000

C00999
000019
co0008

U00006

017
018

F00027

C00999

E00030
0003 B R%

000014

019
020
021
022
023

B00999
C40940
co0820
A00031
000000

000000

B00821
B00020

1+ 1——i

c00020"
U00015 [:::>

118

024 WRITE write data

DATA

025 900000 stop

000000
026 001001
027 100000

000000
028 G00000

000000
029 B40881

C00880
030 B00000

000000
031 001001

900001

The coding for the generalized overflow subroutine appears in memory cells 000-
004 of this coding. To see how the generalized overflow subroutine works, con-
sider one of the item advance subroutines that uses it, for example, the credit
item advance, which appears in memory cells 019-023. This item advance operates
in the same manner as the one used to demonstrate specialized overflow. When
overflow occurs the contents of the control counter are

000000000023

During the special four stage cycle that results from the overflow the following
occurs. On alpha time six zeros are transferred to the static register. On beta time
the contents of memory cell 000

R00004U00002

are transferred to the control register. The execution of the ROm instruction
transfers the word.

000000U00023

to memory cell 004. The execution of the UOm instruction transfers control to cell
002. The constant

000000000001

-

is adide‘d to the contents of memory cell 004, and the sum

000000U00024

.

is transferred to memory cell 004. On the next four stage cycle the 00 mUOm in-
struction pair just fabricated is executed, thus transferring control to memory cell
0024, where the coding for the process to be followed when the credit item ad-
vances reaches its limit begins.

119

A closer inspection of the credit item advance subroutine will reveal the following
structure. If the instruction causing overflow is considered to be stored in memory
cell k (memory cell 022 in the subroutine being considered), then the contents of
memory cell k+1 relate to the normal item advance subroutine and are not executed
when overflow occurs, and memory cell k+2 contains the coding for the beginning
of the process to be followed when the item advance reaches its limit. Investiga-
tion will reveal that the delinquent account number item advance subroutine stored
in memory cells 008-011 embodies the same structure. As a matter of fact, this
structure is general for any subroutine taking advantage of the generalized over-
flow subroutine shown in memory cells 000-004. The only caution that must be

. e

observed in the use of generalrzed overflow is that, no matter where ol how _many

t1mes ina routl e overﬂow is used for ConlIol purposes tlhew

cell contammo y the mstructlon on Wthh overffow occurs.

UNDESIRED OVERFLOW

There are many uses of arithmetic instructions in which the unplanned occurrence
of overflow would result in an incorrect solution. Although the occurrence of over-
flow can not be prevented, a minus sign coded in the second instruction digit of
an instruction on which overflow occurs will stop the computer on the completion
of the execution of the instruction.

STUDENT EXERCISES

Utilize overflow as a control.

1. Reading the data stores 60 one word quantity items of form

000000QQQQQQ
A
in cells 880-939.

a. Print the sum of the quantities.
b. Print the sum of the quantities and the subtotal of the first ten quanti-

ties, the subtotal of the next ten, and so on, up to and including the sub-
total of the last ten.

120

A

2. Reading the data stores six ten word A items in"cells 820-879 and six
ten word B items in cells 880-939.. The first word of each item is a key.
The A and B items are each arranged in ascending order by key. Write the

merged items.

121

chapter &

Input — Output

Magnetic tape is the means of introducing, and removing, large volumes of data to,
and from, the memory. The tape is metal about one half inch wide and .002 inches
thick. Data may be written on a tape, read, erased, and new data written on the
same tape reliably over 1000 times, thus curtting the cost of supplies. Magnetic
tape comes in various lengths, the longest being about 1550 feet.

Characters are recorded on tape in coded form. The code for each character con-
sists of a unique combination of magnetic and non-magnetic spots. The characters
are recorded on the tape serially, and the coded bits of any one character are re-

corded in parallel.

122

FIGURE 8-1

CHARACTER REPRESENTATION

The code for each character can be represented as a series of ones and zeros,re-
ferred to as bits,and corresponding to the magnetic and nonmagnetic spots on
tape. The basic representation of each character is given in the following figure.

123

CODE COMBINATIONS OF
THE 63 UNIVACT CHARACTERS

FIGURE 8-2

In the basic representation, from left to right, the zone of the character precedes
the excess three portion. Thus,

010100

is the basic representation of the character A.

Electronically, there is the possibility of gaining or losing a one in a bit position
when a character is transferred from one storage to another. To check for such an
occurrence, an extra bit position, called'the check bit position, precedes the basic
representation of each character. The basic representation of a character may con-
tain an odd or even number of ones. Those characters whose basic representation
contains an even number carry a one in the check bit position; those with an odd
number, a zero. When a character is transferred, the ones in its representation are
counted. If an even count results, a one has been gained or lost, and an error,
called the odd-even error, has occurred. The occurrence of an odd-even error stalls
the computer and lights an appropriate neon.

124

Thus, 1010100

is the representation of the character A,

0000100

the character one.

When a character is written on tape, one additional magnetic spot, called a sprocket
pulse, is recorded for checking purposes.

THE UNISERVO

The Uniservo is the device by which the computer reads from and writes on tape.
The Uniservos are named 1 thru 9, and —.

LEFT REEL READ-WRITE

HEAD

RIGHT REEL

FIGURE 8-3

Y

Since the right hand reel is permanently fixed, a tape to be read from or written on
is mounted on the left hand reel. The tape is connected to a pre-threaded leader
which is fastened to the right hand reel. Because of the pre-threaded leader, re-

moval of a reel and the mounting of a new reel takes only one half minute.

Since characters are written on tape serially, the meaning of the characters de-
pends on the sequence in which they were written, just as the meaning of the
frames on a movie reel depends on the sequence in which they were shot. The
permanently fixed right hand reel guarantees that, when a tape is. mounted, the
characters on the tape are in the sequence in which they were written.

Wﬁen tape is passing from the left hand to the right hand reel, the tape is said to
be moving forward; from right to left, backward.

THE BLOCK

To reduce the amount of time required for starting and stopping tapes, data-is
grouped into units called blocks. A block is the unit of data that the computer
reads or writes with the execution of a single instruction and is composed of 60
words.

125

BUFFERING AND BACKWARD READ

Data is processed by the Univac Central Computer at electronic speed. Computer
processing time may be increased by the relatively slow electro-mechanical means
employed to provide input and output. Transfer of data from tape to electronic
storage is not as rapid as transfer from one electronic storage to another, but to
overcome this, simultaneous read-write features are employed. A comparison of a
system incorporating the simultaneous read-write feature with a system not in-
corporating this feature is shown in figure 8-4. Bur&\ic_lﬂigg a system of reservoirs,
ca_ligiilly_x_fjggglﬁh_yhig_hul@g_g_msemgwgfii_gfg_,ﬁf delay in processing is avoided
by parallel operation. The Uniservos work simultaneously with the computer, thus
enabling tapes to be written, read, and rewound at the same time that the computer
is processing. A comparison of a completely buffered system with a system in-

corporating the simultaneous read-write feature in shown in figure 8-4.

READ READ READ
BLOCK | BLOCK 2 BLOCK 3
PRO- .
CESS PROCESS PROCESS
B LOCK | BLOCK 2 BLOCK 3
WRITE WRITE WRITE
BLOCK ! BLOCK 2 BLOCK 3

UNBUFFERED W1THOUT SIMULTANEOUS READ WRITE

READ READ READ READ
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
Eres PROCESS PROCESS
BLOCK BLOCK 2 BLOCK 3
WRITE WRITE WRITE
BLOCK | BLOCK 2 BLOCK 3

UNBUFFERED WITH SIMULTANEOUS READ WRITE

READ READ READ READ READ
BLOCK | [BLOCK 2 | BLOCK 3| BLOCK 4| |BLOCK 5
SRS PROCESS | PROCESS | PROCESS
BLOCK| |sLock 2 | BLOCK 3 [BLOCK v
WRITE WRITE WRITE
BLOCK | sLock 2| [sLock 3
BUFFERED
FIGURE 8-4

Many applications require more than one pass over the data. Rewind time is measur-
ed in minutes,and considerable time can be lost waiting for a tape to be rewound
in order that it can be reread. If a computer can read data from a tape while the

126

tape is moving backward, a second pass can be made without the delay for rewind.
The Central Computer of the Univac System incorporates both buffers and the
backward read feature.

THE BUFFERS

Data to be written is transferred from its location in the memory to register O(rO),
a 60 word register. The data in rO is then transferred to a Uniservo one character
at a time to be written on tape. Once rO has been filled, the computer is released
to perform other operations because the separate output control circuits direct the
write operation independently of the computer.

Data to be read is initially transferred character by character from tape and ac-
cumulated in register I (rI), a 60 word register. The data in rl can then be trans-
ferred ito the memory. Once the transfer of data from tape to rl has begun, the com-
puter is released to perform other operations.

The use of these registers between the computer and the Uniservos evables the
computer to be held up for only the small amount of time necessary to fill the out-
put buffer, rO, or to empty the input buffer, rl, or to initiate a read operation.

TAPE INSTRUCTIONS

““T”’ represents ‘‘tape’’, and ‘‘n’’ represents the Uniservo affected

INSTRUCTION OPERATION
1nm Tn =—» 1l

Read a block forward from Tn to rl.

When executing the 1nm instruction, the computer ignores m.

INSTRUCTION OPERATION

2nm r]-e—Tn

Read a block backward from Tn to rl.

When executing the 2nm instruction, the computer ignores m.

127

INSTRUCTION OPERATION
30m (rI)=» m,..., m + 59
Transfer (rI) to 60 consecutive cells starting with m.

NOTE: m must be a location ending in zero.(This applies to all tape instructions.)

The 30m instruction is a two digit instruction.

INSTRUCTION OPERATION
40m (rI) = m,..., m+ 59

Transfer (rl) to 60 consecutive cells starting with m.

The 40m instruction is a two digit instruction and is identical in effect to the 30m.
instruction.

INSTRUCTION OPERATION
3nm (rI)=» m,..., m + 59; Tn=—s=rl.

Transfer (rI) to 60 consecutive cells starting with m.
Read a block forward from Tn to rl.

INSTRUCTION OPERATION

4nm (rI) —»m,..., m + 59; 1] «=Tn

Transfer (rI) to 60 consecutive cells starting with m.
Read a block backward from Tn to rl.

Since the forward read instructions, 1nm and 3nm, read the first word of the block
first; the second word second; the third, third; and so on; until the 60th word is
read last; while the backward read instructions, 2nm and 4nm, read the 60th word
of the block first; the 59th word,second; the 58th,third; and so on; until the first
word is read last; the question arises, how is the block stored in the 60 cells tl.lat
constitute rI? The cells can be thought of as being numbered 1-60 from top to
bottom. When a forward read instruction is executed, rl is filled from the top down,
with the consequence that the first word of the block is stored in cell 1; the second
word of the block, in cell 2; the third word, in cell 3; etc.; until the 60th word is
stored in cell 60. When a backward read instruction is executed, rl is filled from

128

the bottom up, with the consequence that the 60th word of the block is stored in
cell 60; the 59th word of the block, in cell 59; the 58th word, in cell 58; and so on;
until the first word is stored in cell 1. Therefore, both forward and backward read
instructions store the block in rl in the same final configuration.

INSTRUCTION OPERATION
S5nm (m, ..., m +59) = Tn

Write the contents of 60 consecutive cells, starting with m, on Tn at 128
characters per inch.

The 5nm instruction is executed by filling rO, releasing the computer, and then
writing from rO onto the tape on Uniservo n.

INSTRUCTION OPERATION

6nm RWD Tn

Rewind Tn.
When executing the 6nm instruction, the computer ignores m.

INSTRUCTION OPERATION

7nm (m, ..., m + 59)—Tn
Write the contents of 60 consecutive cells, starting with m, on Tn at 20

characters per inch.

INSTRUCTION OPERATION

8nm RWD* Tn

Rewind Tn; set interlock. Any subsequent instruction involving Tn
stalls the computer.

When executing the 8nm instruction, the computer ignores m.

After the execution of a 8nm instruction Tn is referred to as interlocked. The func-
tion of interlock is that, once an output tape has been written and rewound, the
tape is automatically protected against the possibility of another write, which

would destroy the output data. Interlock is released by removing the tape from the
Uniservo. ' ‘

129

Another method used to protect information is to insert a metal snap ring in the
reel of an input tape. This causes the Uniservo on which the tape is mounted to be
interlocked for writing, but not for reading or rewinding, thus protecting against
the possibility of a write, which would destroy the input data.

SNIN

?
n

FIGURE 8-5
Essentially, the input-output orders are executed in the following steps:

1. Interlock Tests
This step is used to determine if:

a. the desired servo is already in use. (an input-output error has the
same effect as if the servo were in use)

b. there is another input (output) order in effect if the present order is
one of input (output).

If one of the above is true the computer waits, or is interlocked, until the
interlock causing order is completed. In the case of an error the wait is
relatively long, because the order cannot be completed, and will draw the
attention of the computer operator.

2. Initiation of the order
This varies for the orders so that for:

a. 1n,2n, 6n, or 8n, tape movement begins.
b. 30m or 40m, (rI)are transferred to the memory, completing the order.

3nm or 4nm, (rl)are transferred to memory and tape movement begins.

e

d. 5nm or 7nm, the block is transferred to rO.

3. Completion of the order
The entire block is read or written, or the tape is rewound.

130

Steps 1 and 2 require the use of the Control Unit, while step three, the greater
part of the order, takes place under the control of the input-output circuits. These
steps result in the computer being able to read, write, rewind, and process at the

same: time.

TAPE INSTRUCTIONS ON FLOW CHARTS

There is a symbol for each tape instruction.

INSTRUCTION EXAMPLE SYMBOL
1nm Tj = 1l
2nm tl «— Tj
30m, 40m 1] —]
3nm tl—]

Tj=— rl
Anm] —>]

t] - Tj
5nm, 7am P—> Tp
6nm RWD Tj
8nm ‘ RWD * Tj

In the flow chart Tp may be a reel of tape in file P; Tj, a reel in file J; etc.

SENTINELS

Genérally the amount of data on a tape is unknown and varies from one application
to the next. To determine when all the data has been processed, a sentinel conven-
tionéis used. Six Z’s in digit positions one through six are placed in the zero word
of the item immediately following the last data item and in the last word of the
block containing this item. Immediately following this block is a second block
with the six Z’s in the first six digits of the zero and the last words of the block.

131

47

49

Last 50
Data ltem 51
52
53

Sentinels

58
59

o1
02

56
57
58
59

THE INSTRUCTION TAPE

00QQQ0 QQQKKK

RRR S$88S8SS

0QQQ QQQKKK
RRRRRR $SSSSS

QQQQQQ QQQKKK
RRRRRR $S8SSS
222117 123456
ABCDEF 654321

122466 ABCDEF

222217 001950

TTTNNN LMNOPQ
987654 321012
ABCDEF GHIJKL

FM
XXXXXX LLLOOO

BBBBBB CCCCCC
HHHHHH HHHHHH

FIGURE 8-6

First
Sentinel
Block

Second
Sentinel
Block

An instruction tape may be designed to be mounted on any Univac Uniservo. For
purposes of this manual Uniservo 1 will be used.

The Uniservo to be initial read is selected by a manual operation onthe Supervisory

Control Panel. The initial read operation reads a block from the Uniservo select-
ed, the tape moving forward, and transfers the block to cells 000-059. All sub-
sequent movements of the instruction tape are ordered by instructions stored in

the memory.

SERVO DELTA

On the Supervisory Control Panel is a set of 10 buttons called Initial Tape Selec-
tor buttons and labelled with the names of the Uniservos. If a delta is coded in the

132

second instruction digit of a tape Whe computer executes the 1nstruc-

B

uon with respect to the Uniservo whose Initial Tape Selector button is depressed

ILLUSTRATIVE EXAMPLE

A tape contains a series of ten word job items of form

NNNNNNNNNNNN
0000000CCCCC
0000000LLLLL
0000000MMMMM
000000000000
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

where N - job number
C - contract price
L - labor cost
M - material cost
O - overhead cost
X - other data
There is at least one full block of data on the tape.

For each job item, produce a two word profit item of form

NNNNNNNNNNNN
0000000PPEPP

where N - job number
P - profit

Write the profit items.

SERVO ALLOCATION

h—...._,,.—_..

To solve the problem, Uniservos must be allocated to the input and output tapes.

The servo allocation might be.

UNISERVO TAPE
2 Job =
3 Profit = Tp

133

FLOW CHART

ieke=l j=2 pad .10

START | Ry - "
J Tj_'""'

R R (ii’ ®

P——Ty L RWO* T, @

e —0

-] ——) =
i:6 ool | | et g :2 RWD* T.
T =} J

o | I 2R
LEQEND
¢
J = SET OF JOB ITENS J% - MATERIAL COST OF J, Py
d; - iTH ITEM IN J, & = lyeans 6 4% - LABOR COST OF J; ol
J7 - NUMBER OF J; J§ - OVERNEAD COST OF J; Py
J§ = PRICE OF J; 4% - SENTINEL OF J ®
P"
FIGURE 8-7

©

- SET OF PROFIT ITENS

- KTH ATEN IN P, k = 1yuue, 30
- NUMBER OF P,

- AMOUNT OF Py

- SENTINEL OF P
LAST WORD OF 2ND SEMTINEL BLOCK

The following is a description of the thinking that might have accompanied this

flow chart.

The first thing to be done is to read a block of job items from T into the memory.
To effect this transfer, the block must first be read into rl.

START W11 1

FIGURE 8-8

134

(rl)imust be transferred to the memory. This transfer could be done with a 30m
instruction. However, to take full advantage of the buffer system, while the job
items stored in the memory are being processed, the next block of items should
be read from tape into rl. By using the 3nm instruction this situation canbe effected.

j=2
START Tj—tl | fl=J
Tj-—)— rl
FIGURE 8-9

With a block of job items in the memory processing can begin.

i=k=l j=2)

(==

K + |=>kK

i+ 1=>i

FIGURE 8-10

135

When a block of job items is exhausted the input item counter equals 6. To con-
tinue processing, the next block of job items, currently stored in rl, must be trans-

ferred to the memory, and the input item counter must be reset to one.

T | e)
Tj—->' v

4i+l—>~i->®

FIGURE 8-11

When the output block is filled, the output item counter will equal 30. The output
item counter is reset to one to prepare for the next output block, and the current
output block is written.

ki 30)= |——>-|<—>P——>Tp

eeeeeepd | K+ K _>®

FIGURE 8-12

The only problem remaining is to determine when all of the job items have been
processed. Any block of items but the first may be the last block. If it is, there
will be six Z’s in digit positions 1-6 of the last word of the block. If it is not,
the Z’s will not be present. An equality test can distinguish between the two con-
ditions.

vl =
Tj——>PI

i + |=>i

FIGURE 8-13

136

When the sentinel is found in the last word of the block to be processed, Ti can be
rewound, and the key of each item must be tested before processing to determine
whether or not it is a sentinel. A variable connector inserts this sentinel test.

Ikel ju2 pe3 .1,)

START T o [1—
J Tj—-> rl

- AHEE D)
©

)
0 v

D—{i_;); Er'j_’__’r‘l’ | | — i -sQ‘ : z)fu RH0* Ty [l 1y
X
LRI L

FIGURE 8-14

o &

When the key of the item to be processed is a sentinel all the data has been pro-
cessed. Sentinels must be written on Tp. The last block of output is in the memory.
A sentinel must be stored in the zero word of the item immediately following the
last data item. This sentinel item must be Py, since the output item counter always
reads one more than the last item stored. A sentinel is stored in PN and in PS,
the last word of the block. The block is written on Tp, thus writing the last block
of data, which is also the first sentinel block.

A second sentinel block must be written on Tp. Words 00 through 58 of the block

currently in the output area constitute the ‘*hash’’ desired. A constant consisting
of HHHHHHHHHHHH is placed in word 59 to insure that the last four digits of
this word will not contain numerics. This block is then written on Tp.

Tp is now complete and can be rewound. Processing is stopped, thus completing
the flow chart.

The computer cannot recognize a sentinel until the first sentinel block is in the
memory. By setting up the flow chart to take advantage of the buffer system, it

137

becomes impossible for the computer to transfer the first sentinel block from rl to
the memory without initiating apother read from Tj. The function of the second
sentinel block is to prevent the computer from reading past the data in a search
for another block to read.

MEMORY ALLOCATION

To facilitate the allocation of the memory, it is customary to store instructions by
starting at the front of the memory and working back, and to store data by starting
at the back and working forward. For this problem the memory allocation might be

CELLS DATA

940-999 Output
880-939 Input

000 R0O00O4

U00002
001 000000

000001
002 B00004

A00001
003 C00004

000000

004 [000000
UOQOVAR

005 B00007

L00010
006 000000

Q00012

30006(;]

007 [1 10000

008 A00011

C00007
009 000000

U00005

010 110000
300060

011 000000
000060

012 810000 T, — i
120000

013 320880 fl = J; T;=> 1l
000000

1@y o014 Foosso 000998] JN—pY

138

B00881
S00883
C00999
R00024

500882
S00884
000000
U00021

R00030

U00027

000000

U00014

70998
00021
00048

000000

W00940
000000

C00021
U00019

026

027
028
029
030

B00049
530940

Co0021

U00024

Y40890
B00027
A00050
000000

200880]
000000
C00027 *
U00020

031
032

033
034

320880
C00027

E00939
000000

B00051

F00052
L00053

Q00036

035

000000

U00030

036
037

820000

R00014

000000
000030

038
039
040

K00000
E00880

000000

F00052
L00053
Q00043

(

139

C_ M _ L _ 10 A
i-Ji-Ji - Ji =Py

1—k

P—T

1+1 — i

>

d———];Tr—>d

1—-i

041 B00880

C00998
042 000000

U00015
043 H00998

H00999
044 RO0022

U00021
045 530940

B00054
046 C00999

530940
047 830000

900000
048 001000

000002
049 V70998

W00940
050 010010

000000
051 Y40890

200880
052 111111

000000
053 ZZZZ7ZZZ

000000
054 HHHHHH

HHHHHH

T

p > H'—*PH

fp :
RWD * TP; Stop

Coding the resetting of an item counter consists of resetting the variable line in
the item advance routine to its initial state, as shown in cells 025, 031 and 032.

To store a sentinel in the zero word of the item immediately following the last

data item, the following coding technique is used. The address of the key is speci-
fied by the address part of the WOm instruction in cell 021. The sentinel is trans-
ferred to 998 by the HOm instruction in cell 043, The UOm instruction in cell 044
transfers control to the VmWm instruction pair, which transfers the sentinel. The
ROm instruction in cell 044 guarantees that, after the WOm instruction has been
executed, control returns to cell 045 to complete the ending routine.

STUDENT EXERCISES

1. A tape contains a series of two word consumption items of form

NNNNNNNNNNNN
000000CCCCCC,

140

where N - meter number
C - amount

There is at least one full block of data on the tape. Print the body of the following
table.

RANGE CONSUMPTION - METERS
1-100

101 - 500

501 - 1000

1001 or over

2. A tape contains a series of ten word inventory items of form

. NNNNNNNNNNNN
1 000000QQQQQQ,:
XXXXXXXXXXXX
T XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

where N ~ stock number

Q - quantity
X - other data

Another tape contains a series of two word items of form

NNNNNNNNNNNN
000000AAAAAA,

where N - stock number
‘A - quantity

The first item on the inventory and sales tapes have the same stock number; the
second item on the tapes have the same number; and so on. There is at least one
full block of data on each tape. Write the updated inventory.

141

chapter 9

Efficient Use of Buffers

Generally a computer data processing application involves more than one input.
For example, an inventory application involves, at least, an inventory tape and a
sales tape. To use the computer in such an application, the computer must main-
tain, in its memory, items from both the inventory and sales tapes. Moreover, for
computer efficiency both the reading of a block from the inventory tape and the
reading of a block from the sales tape must be bufferred. Use of multiple buffers,
one buffer for the inventory tape and another for the sales tape, is one solution to
this problem. However, a buffer is an expensive piece of hardware, and the provi-
sion of multiple buffers would increase the computer’s cost significantly. Thus, a
technique must be found which will funnel the data through one buffer, rl, without
sacrificing processing time.

142

PRESELECTION

The programming principle of preselection is one solution to the problem of buffer-
ing multiple inputs. Consider the following.

ILLUSTRATIVE EXAMPLE
A tape contains a series of ten word inventory items of form

NNNNNNNNNNNN
0QQQQQ000000
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

Where N - stock number
Q - quantity
X - other data

Another tape contains a series of two word sales items of form

NNNNNNNNNNNN
0AAAAA000000

Where N - stock number
A - quantity

The items are in ascending order by stock number on both tapes. There is at least
one full block of data on each tape. Write on updated inventory.

SERVO ALLOCATION

2 - Inventory I
3 - Sales
4 - Updated Inventory

143

FLOW CHART

Once a block of inventory items and a block of sales items have been read in the
memory, the processing can begin. But before beginning the processing, the read
into rl of the next block of data to be required by the computer should be initiated.
The question is - Will the computer next need a block of inveatory items or a block
of sales items?

The example places no restriction on the nature of the stock numbers of the items.
Thus,

1. There may be inventory items to which no sales items refer; that is, there
may be inventory items whose stock numbers are not the same as the stock

number of any sales item;

and 2. There may be more than one sales item referring to the same inventory

item.
INVENTORY TAPE SALES TAPE
M/ P —
1142 840 1142
| 38070 %z’
260
1142
160
1142
435
1160
840
1160
250
1160
5856
T ———————

FIGURE 9-1

If all the sales items in the memory refer to inventory items in the memory, there
may be more sales items not yet read into the memory which refer to the current
block of inventory items. Thus, the computer will next need another block of sales

4y

items. For example,

INVENTORY ITEM
STOCK NUMBERS

1142
1145
1149
1150
1153
1154

or

INVENTORY ITEM
STOCK NUMBERS

1142
1145
1149
1150
1153
1154

SALES ITEM
STOCK NUMBERS

1142
1142
1142

1153
SALES ITEM

STOCK NUMBERS

1142
1142
1142

1154

If some of the sales items in the memory refer to inventory items that have not yet

been read into the memory, the current block of inventory items will be processed
and written before the current block of sales items is exhausted. Thus, the com-

puter will next need another block of inventory items. For example,

INVENTORY ITEM
STOCK NUMBERS

1142
1145
1149
1150
1153
1154

From the above, it is apparent that

SALES ITEM

STOCK NUMBERS

1142
1142
1142

1165

1. When the stock number of the last sales item in the memory is less than of

145

equal to the stock number of the last inventory item in the memory, the
computer will next need another block of sales items.

2. When the stock number of the last sales item is greater than the stock num-
ber of the last inventory item, the computer will next need a block of in-
ventory items.

Based on this fact, a test for relative magnitude between the stock numbers of the
last sales and inventory items permits the initiation of the read into rl of the next
block of data to be required by the computer. Since the tape from which the read is
to be initiated is selected before the items in the memory are processed, this pro-
gramming principle is called preselection, which the following flow chart incorpor-
ates in subroutine P,

Jukel =2 3=3 owd .1;\]

"—e |
.T|—brl-bt'_’"rbil—bl o

O~(1:4 @

@ |—’T°-.u—.|">-n|—b‘r°-> Rln“l'o
40
. Y N
s, > N
- — 1 L] o Ty [1t =g o @ o i
. L

RS ® -

s ki3 Joil1—s k Folrl—p s : RD* T, s'-»s',‘o
O]
k ¢ 1ok >t 7
LEGEND

SET OF INVENTORY ITENS
JTH ITEM IR 1,] = lyaue, @
ot STOCK NUNBER OF 1
o QUANTITY OF 1
4 3 Tyt rt »@ (% = SENTINEL OF |
S .ﬁi I - LAST WORD OF 2KD SENTINEL 8LOCK
: SET OF SALES ITENS

—3—
'

—
’

8y - KTH ITEM IN S, k = |,.0u, 80
S} - STOCK NUMBER OF S,

SE - QUANTITY OF S,

8% - SENTINEL OF 8

FIGURE 9-2
As shown in the flow chart, when a block of items in the memory is exhausted, the
only operation necessary to get the next block of items into the memory is to trans-
fer the block from rl, since the preselection subroutine has already read the block

146

into rI from the proper tape. Control must then go to the preselection subroutine to
again determine from which tape 1l is to be filled.

When a sentinel is discoveredin the last word of a block, the sentinel is transferred
to the key of the last item in the block to assure the proper operation of the pre-
selection subroutine.

MEMORY ALLOCATION
820 - 879 - Sales Area

880 - 939 - Inventory Input Area
940 - 999 - Inventory Output Area

CODING
000 R00004
- U00002
001 000000
000001
002 B00004 |
A00001
003 C00004
000000
004 Pooooo IJ
» UOOVA
005 B00007
L00010
006 000000
f Q00012
007 10000 -]
300060
008 A00011
. C00007
009 000000
U00005
010 110000
300120
011 000000
~ 000060 T tl
012 810000 1
120000 fl—1; Te—>rl; tl—S$
013 330880
300820 @
014 -R00056
U00052
(:> 015 B00880O NN
L00820 I : Sy
016 6600000
Q00019
017 R00027
U00023

147

018 000000

U00015

019 Foossl]
000000

020 S00821 1?-st——»1?
00881

021 R00039
U00036

022 000000
U00015

023 Y00880
B00024

024 [240940 .
Y00890 , _

025 1200880 ' j o+ le—j
000000)

026 A00062 *«
C00024

027 Pooooo T [:>

7 U00018

028 B00063 1—j
C00024 -

029 540940 | —T,; 0 —1,
300880

030 F00064
F00939 Bz

031 LO00065
000034

032 R00056
U00052

033 000000
V00027

034 820000 RWD* T; ; I%—I}
C00930

035 000000
V00032

036 onszz]
W00820

037 B00036

038 A00066
C00036 *

039 Pooooo ﬂ [§>
U0002 A

040 B00067
C00036 [—s

041 300820 r
F00064

042 FE00789
L00065(sS . 7z

043 000000
000046

148

044 R0O0056
U00052

045 000000
U00039

046 830000
C00878

047 R0O0019
U00044

048 K00000
F00064

049 E00880
L00065

050 000000
Q00057

051 B00881
U00020

052 B00878
L00930

053 000000
T00055

054 130000
U00056

055 120000
000000

056 Pooooo
, UOOVA

057 R00025
U00023

058 B00065
H00999

059 540940
B00068

060 C€00999
540940

061 840000
900000

062 010010
000010

063 740940
Y00890

064 111111
000000

065 ZZZZ7ZZ
000000

066 001002
000000

067 V70822
W00820

068 HHHHHH
HHHHHH

———————

149

S N
RWD * Tg ; S°— 8%,

.2b

—-

N
30'16

Ts—-——rl

T, —1l
1

v 7 ———N
I—T, ; Z—IN
I—= T, ; RWD* T,

stop

STUDENT EXERCISE

A tape contains a series of ten word policy items, each item having a policy

number of form
NNNNNNNNNNNN

in the zero word. No two policy items have the same policy number. Another tape
contains a series of one word policy number items of form

NNNNNNNNNNNN

No two policy number items are the same. The items are in ascending order by
policy number on both tapes. There is at least one full block of data on each tape.
Write a tape containing the policy items for which there is a policy number item on
the policy number tape.

STANDBY BLOCK METHOD
/

The standby block method is another programming technique for the solution of
the problem of buffering multiple inputs. While requiring more memory space than
the preselection subroutine, the standby block subroutine is usually more efficient
in terms of running time.

The principle of the standby block method is to allocate to each input a 60 word
standby area as well as a 60 word input area. For example, for two input tapes,
Ta and Tb, an input area and a standby area, A and A, would be allocated to Ta;
and an input area and a standby area, B and B, to Tb.

Initially, the first block of items from T, is read into area A; the first block from
T}, into area B; the second block from T,, into R; and the second block from Tb,
into rl; giving the following configuration, which will be referred to as configura-

tion 1.
A B

Ny T

R

CONF | QURATION |

FIGURE 9-3

150

The following discussion of the operation of the standby block technique is based
on figure 9-4.

CONF | GURATION 3 CONFIQURATION 4 CONF IGURATION & CONFIGURATION 6

A 8 A 8 A 8 A B

1
. l)

rl ri rl rl

|
>|
-
>
|
>
o

i-

B
- il
A

»|
@]
>|
|

ri) ril rl rt
T,=—>! 8 L T, Ty =0 A T, —| B
CONF | QURATFON | CONFIGURATION 2 CONFIQURATION 2 CONF IGURATION |

FIGURE 9-4

If in configuration 1, the B items are exhausted first (configuration 3), (r) are
transferred to area B, and a block is read from Ty, into rl, recreating configuration 1.

If, in configuration 1, the A items are exhausted (configuration 4), the contents of
area A are transferred to area A, (rl) are transferred to area B, and a block is read
from T, into rl, creating configuration 2.

If, in configuration 2, the A items are exhausted (configuration 5), (rI) are trans-
ferred to area A, and a block is read from T, into rl, recreating configuration 2.

If, in configuration 2, the B items are exhausted (configuration 6), the contents of
area B are transferred to area B, (r]) are transferred to area A, and a block is read
from Ty, into rl, creating a configuration 1.

151

Configurations 1 - 6 exhaust the possibilities. Thus, besides the block of A items
and the block of B items currently being processed, there is always another block
of A items and another block of B items in electronic storage, either in rl or in a

standby area.

The following is an abbreviated flow chart of the standby block technique.

GET A BLOCK OF A ITEMS\

CONF | QURATION | | TO PROCESSING

r—F - >
@ > T. ol A = A SET UP FOR CONFIGURATION 2 2

: CONFIGURATION 2 |

GET A BLOCK OF B ITEHS\

CONF | GURATION | |
rlep B
OSHEEY ©®
.I CONF IGURATION 2)

e Y -
3 * 1y i L= B =3 B |=»1 SET UP FOR CONFIGURATION | -o@

FIGURE 9-5

Basically, the reason why the standby block method is faster then the preselection
technique is that it requires only one input order, a 3nm, whereas preselection
requires two: a 1nm followed by a 30m. Then, because the amounts of data in in-
put files usually differ greatly, the master file is advanced with a minimum number
of instructions besides the 3nm.

STUDENT EXERCISE

Flow chart and code the standby block technique.

152

Univac Supervisory

Control Panel Operations

The Supervisory Control Panel permits manual intervention into the otherwise
automatic operation of the computer. There are two ways in which manual opera-
tions become of use to the programmer. First, the running of a routine - the execu-
tion of the routine by the computer - requires certain manual operations, such as’

clear C and initial read. Secondly, manual operations are of use in debugging.

An error in a routine - an aspect of a routine which causes the routine, when run,
to produce unexpected results - is called a bug, and the process of eliminating
bugs from a routine is called debugging. A programmer cannot be sure that a rou-
tine is correct - that is, has no bugs - until he has run the routine against all
possible types of input and determined that the routine produces the expected out-
put. If, in such a debugging run, a bug is detected, pertinent information about the

bug can often be obtained by manual intervention into the running of the routine.

The execution of the 10m instruction is an example of a manual operation that may

be required for the running of a routine.

1563

THE 10m INSTRUCTION

INSTRUCTION OPERATION
10m SCK=>m

Transfer the word typed on the Supervisory Control Keyboard (SCK) to m.

The 10m instruction is a two digit instruction.

The SCK is a modified typewriter keyboard located on the Supervisory Control
Panel. Besides the standard typewriter keys, the SCK includes

1. keys for Univac characters not found on a typewriter keyboard,
2. a special bank of numeric keys for rapid typing of numeric information,
and 3. other keys used in the manual operation of the computer.

The computer executes the 10m instruction as follows. When the 10m instruction
is transferred to SR, the computer stalls and lights a neon, called the input ready
neon, on the Supervisory Control Panel, thus indicating that it is ready to accept
the type in of one word on the SCK. The operator types 12 characters on the SCK
and then depresses the ‘‘word release’’ key. The word typed is transferred to the
cell specified by the 10m instruction.

One use of the 10m instruction is to allow the type in of constants which vary from
one running of a routine to the next, such as the date.

CONDITIONAL TRANSFER BREAKPOINTS

There is, on the Supervisory Control Panel, a bank of 12 buttons called conditional
transfer breakpoint selector buttons. Ten of the buttons are numbered 0-9, one is
labelled *‘all”’, and one is labelled *‘release’. If a number, 0-9, is coded in the
second instruction digit of a conditional transfer of control instruction, the com-
puter can be made to stop with this instruction in the SR. To cause the stoppage
the conditional transfer selector button corresponding to the second instruction
digit of the Qnm or Tnm must be depressed. The computer makes the comparison
and indicates whether or not transfer of control will occur, stopping before the
transfer is effected. If the computer is to transfer control, the conditional transfer
neon on the Supervisory Control Panel will be lit; if not, the transfer neon will not
be lit. If transfer of control is not indicated, the operator can cause a transfer of
control by depressing a switch, called ‘“force transfer’’. If transfer of control is
indicated, the operator can prevent transfer of control by raising this switch.

154

One use of conditional transfer breakpoints is for manual control. A conditional
transfer breakpoint can be coded at a crucial point in a routine, and when the com-
puter reaches this point, the operator, by operating the transfer switch, can choose
the processing that the computer is to follow. For example, some routines are
coded for a certain number of Uniservos but provide an option for using less. The
option can be in the form of a conditional transfer breakpoint that normally does
not transfer control. If the lesser number of Uniservos is to be used, the operator
can depress the appropriate conditional transfer breakpoint selector button and
force transfer when the computer reaches the breakpoint, thus causing the computer
to follow a path other than normal.

Breakpoints are also used in bugshooting. If a bug cannot be found by desk check-
ing, conditional transfer breakpoints can be inserted at crucial points in the rou-
tine. If the associated conditional transfer breakpoint selector buttons are de-
pressed, the computer will stop everytime ‘the conditional transfer instructions are
set up in the SR. The contents of crucial cells and registers can then be investi-
gated for correctness before continuing with the routine. This investigation is
conducted after the computer has been set to operate on other than the continuous
mode and can be made as follows: (Non-continuous operation is made possible
by operating the Interrupted Operation switch, which will be described later).

PRINTING FROM THE SUPERVISORY CONTROL PANEL

By means of switches on the Supervisory Control Panel the operator can stop the
computer, set up an instruction in SR, cause the computer to execute the instruc-
tion, and still prevent the computer from losing its place in the routine whose
execution has been interrupted. Thus, if a programmer wants to know the contents
of a given cell, the operator can set up a 50m instruction, with m the given cell,
in SR and cause the computer to print the contents of the cell. The contents of a
register can be investigated in a similar fashion, as follows.

There is, on the Supervisory Control Panel, a bank of eight buttons, called type
out selector buttons and labelled M, F, L, A, X, CR, C and “‘empty’’. Only when
type out selector button M is depressed will the computer execute the 50m instruc-
tion as defined. If, for example, type out selector button A was depressed when a
50m instruction was executed, the contents of, not m, but rA would be printed.
Similarly, type out selector button F causes (rF) to be printed; L, (rL); X, (rX);
CR, (CR); and C, (CC). Thus, if a programmer wants to know the contents of a
given register, the operator can set up a 50m instruction, depress the appropriate
type out selector button, and cause the computer to print the contents of the
register.

165

Whenever printing on the SCP takes place the characters are monitored according
to the position of a function switch. Some characters cause printer action, such as
carriage return, tabulate, space, etc. There are times, however, when it is desired
to know what the character is rather than have the action take place. When the
function switch is in the Normal position action takes place whereas when the
switch is in the Computer Digit position a substitute character is printed.

THE ALL CONDITIONAL TRANSFER BREAKPOINT SELECTOR BUTTON

Depressing the conditional transfer breakpoint selector button labelled**all’’causes
the computer to stop on all conditional transfer instructions. One use of the ““all”’
button is in the debugging of a type of bug calleda closed loop. Itis notuncommon
for a routine to be coded in such a manner that a loop of instructions are created
from which there is no exit. There is a characteristic noise,created by the trans-
fer of data from one storage to another, which is amplified and emitted from a
speaker behind the Supervisory Control Panel. When a closed loop is entered, the
noise takes on a repetitious character. If the **all’’ button is then depressed, the
computer will stop on the first conditional transfer instruction encountered, if there
is one in the loop. Depressing a bar, called the start bar, on the SCK will cause
the computer to continue executing instructions until the next conditional trans-
fer instruction is reached. If this process is continued; and if each time the com-
puter stops, the programmer notes

1. the location and nature of the conditional transfer of control instruction on
which the computer stopped

and 2. whether or not the computer is going to transfer control;

the path or the closed loop through the coding will soon be determined. The con-
ditional transfer of control instruction on which the computer stopped can be de-
termined in one of two ways.

1. The operator can read (SR) from a series of neons on the Supervisory
Control Panel. Thus, the operator can tell the programmer on what con-
ditional transfer of control instruction the computer stopped, and the pro-
grammer can locate the instruction in his copy of the coding.

1656

2. (CC) can be printed. The address printed will be one more than the ad-
" dress of the cell in which the conditional transfer of control instruction

is stored.

If the closed loop does not contain any conditional transfer of control instructions,
the path of the closed loop can be determined by executing the instructions in the
loop one at a time.

INTERRUPTED OPERATION

Interrupted Operation is controlled by a five-position switch on the Supervisory
Control Panel. The positions are labelled one addition, one step, one operation,
one instruction and continuous. Of these, only the continuous and one instruction
positions are of significance here.

If the switch is on continuous, the computer is said to be ‘“on continuous’ and
operates in the following manner. When the start bar is depressed, the computer
starts executing instructions and will not stop until either a 90m instruction is
executed or a breakpoint is reached. Once the computer stops, it will not start
again until the bar is depressed. However, if the computer is placed in the one
instruction mode and the start bar is then depressed, the computer will stop at the
completion of the stage of the four stage cycle currently being executed. Thus, if
a closed loop contains no conditional transfer of control instructions, the operator
can place the computer on one instruction, and the computer will stop at the end
of the first stage of the cycle which it encounters. Depressing the start bar will
cause the computer to complete the execution of the current stage of the four stage
cycle and stop at the end of this stage of the cycle. If this process is continued;
and if each time the computer stops on gamma or delta time, the programmer notes
the location and nature of the instruction just transferred to SR; the path of the
closed loop, and possibly the reason for it, will soon be determined.

THE RELEASE CONDITIONAL TRANSFER
BREAKPOINT SELECTOR BUTTON

With the exception of the conditional transfer breakpoint selector button labelled
“‘release’’, the conditional transfer breakpoint selector buttons are such that,

te

when depressed, they remain depressed. The depression of the “‘release’ button

releases all of the buttons.

167

OTHER BREAKPOINTS

There are breakpoints other than conditional transfer breakpoints. One is the comma
breakpoint. If a comma is coded in the first instruction digit of an instruction, and
if a switch, called the comma breakpoint switch, on the Supervisory Control Panel
is locked in the down position,the computer will stop when the ,0m instruction is
transferred to SR. If the comma breakpoint switch is in the normal position, the
computer interprets a ,0m instruction as a skip.

A third breakpoint is the fifty breakpoint. If a switch, called the type out break-
point switch, on the Supervisory Control Panel is locked in the down position,
every time a 50m instruction is transferred to SR the computer will stop before
printing. If the type out breakpoint switch is put in the center position, the normal
position, the computer interprets 50m instructions as defined. The switch can also
be locked in the up position, called the skip type out position, which causes the
computer to interpret all 50m instructions as skips. The skip type out position of
the type out breakpoint switch allows the programmer to speed up the execution of
a routine by skipping type outs that otherwise would normally occur.

MANUAL ALTERATION OF INSTRUCTIONS IN THE MEMORY

It often happens that, in a debugging run, the computer will stall, or **hang up’’, on
a bug, and after a short investigation the programmer decides that, by a slight
alteration of the instructions, the bug can be eliminated. Rather than preparing a
new instruction tape to test his theory, the programmer can make the alterations
in the memory by the following manual operations.

The instruction tape is initial read. By placing the computer on one instruction,
the operator can then step the computer, stage by stage, through the instructions
that read the rest of the instructions into the memory. At this point the operator
can set up, in SR, 10m instructions to the cells the contents of which the pro-
grammer wants to modify. The execution of the 10m instructions completes the
modification, and the corrected routine can then be run by putting the computer on
continuous. It is normal operating procedure to first print out the words to be
altered.

THE FILL OPERATION

If the programmer wants to modify the contents of a series of consecutive cells,
he can use a procedure, called the fill operation, that is faster than the setting up

158

of 10m instructions in SR. By operation of the fill memory switch, the operator can
cause the computer to set up in SR a 10m instruction to the cell specified by the
three least significant digits of CC. After this 10m instruction has been executed,
the computer automatically increases (CC) by one and once more sets up a 10m
instruction to the cell specified. This process can be continued for the contents

of as many cells as the programmer wants to modify.

If the programmer wants to start the fill operation with cell 000, a word of zeros
can be transferred to CC by depressing a switch called the clear C switch De-
pression of the clear C switch is the operation referred to as ‘‘clear C”. If the
programmer wants to start the fill operation with some cell other than cell 000, .
the proper address can be transferred to CC by the SCICR operation.

SCICR

By operation at the Supervisory Control Panel, the operator can perform the oper-
ation known as SCICR (Supervisory Control Input to CR). This operation allows the
operator to type 12 characters on SCK and have the resulting word transferred to
CR. If, for example, the programmer wanted to start a fill operation at cell 029,

the operator could SCICR a 0 0m UOm instruction pair. The UOm instruction would
specify cell 029. Then, by putting the computer on one instruction, the operator
could cause the computer to execute the 0 0mUOm instruction pair. At the end of
the execution the address in CC would be 029. The operator can then begin the
fill operation at cell 029.

GENERATING DATA

To debug a routine, data must first be provided for the routine. Knowledge of the
nature of the data aids materially in locating bugs. Thus, initial data is usually
prepared by the programmer. In many cases it is not necessary for the programmer
to write out such data and have the data unityped. Instead, a rather simple routine
can be coded that, when executed, generates the data as its output. The correct-
ness of such a generator routine can be checked visually by printing the output on
the Univac High-Speed Printer.

DEBUGGING PROCEDURE

When the programmer takes his routine on the computer for a debugging run, he
should have with him all information pertinent to the routine, and always a copy of

1569

the flow chart and coding. Usual debugging procedure is to run the routine for the
first time with the computer on continuous. The routine may hang up on a bug,
enter a closed loop or run to completion. When the computer encounters a bug, the
programmer must note all-pertinent information about the bug, preferably by writing
it down. For example, if the routine were to hang up on an adder-alphabetic error,
the pertinent information would be the answers to the questions:

1. How long after the execution of the routine started did the routine hang up?
2. What instruction was the computer executing when the routine hung up?

3. What was (rA) immediately before the execution of this instruction?

4. What is the word that was being added to (rA) when the routine hung up?

When the computer is on continuous, the only part of the central computer group
that moves slowly enough for the mind of the programmer to keep up with is the
tape on the Uniservos. This tape movement can usually be predicted from the
nature of the routine, and before the debugging run the programmer should figure
out and fix in his mind every detail of the expected tape movement. During the
debugging run the programmer’s main interest should be directed toward the move-
ment of the tapes,not at the SCP. Any deviation from the expected tape movement
is usually a good indication of a bug.

THE EMPTY OPERATION

It sometimes happens that, after a bug has been detected, the programmer could
profitably utilize a record of the contents of a certain portion of the memory. If the
portion is not too large, this record can be printed on SCP by means of the empty
operation. The empty operation is initiated by depressing the type out selector
button labelled ‘‘empty’’ and operates as follows. The contents of the cell speci-
fied by the three least significant digits of (CC) are printed. (CC) are automatically
increased by one, and the contents of the next specified cell is printed. The pro-
cess can be continued until the contents of all cells wanted by the programmer
are printed.

MEMORY DUMP

If the portion of the memory, a record of which the programmer wants, is too large
to be printed in a short amount of time, a memory dump can be used to obtain the

160

record. Memory dump consists of writing the contents of the memoty on tape in
order that the tape can be printed on the High-Speed Printer. It is standard de-
bugging procedure to obtain a memory dump whenever a bug occurs and cannot
immediately be corrected.

VERIFYING THE OUTPUT

If a routine runs through the debugging run to completion, and the programmer has
been unable to detect any bugs from the tape movement, the output of the routine
must then be checked to verify that it is the output expected from the given input.
The verification can be done visually by printing the output on the High-Speed
Printer. However, it is often possible, especially if the input data has been generat-
ed, to code a routine that will accept the output of the routine to be debugged as
input, and compare it with the expected results. Such a checking routine usually
prints all pertinent information about any discrepancies on the SCP.

SUMMARY OF PROCEDURES TO FOLLOW FOR TEST RUNNING A ROUTINE

A. Prior to running the routine

1. Prepare a detailed memory allocation including working storage.
2. Prepare detailed operating instructions including:

servo allocation - inputs. instructions, blanks

a description of SCP printouts and necessary type-ins
breakpoints included in routine - how and when used
a list of servo buttons to be depressed

o B0 TP

the disposition of output

3. Code a data generator and a checking routine if applicable
4. Thoroughly desk check the routine
5. Determine the nature of tape movement

B. To run the routine

1. Mount tapes
2, Inform the computer operator of buttons and switches to be used

161

3.
4.

Initial Read the instruction tape
Place computer on continuous

C. While the routine runs’

1.
2.

Observe tapes for characteristic movement
Listen for characteristic sound of a closed loop or stoppage.

D. If the computer stalls

1.

a

Determine the type of error (neons lit, SR, CR)

Examine the contents of affected registers and memory cells (type-outs,
empty, etc.)

Determine the location of the error (type out (CC))

If the error can be corrécted and the routine continued, do so. (type-ins,
fill, etc.)

If necessary, write the contents of the memory on tape.

When appropriate,employ service routines to locate the source of the error.
Desk check the routine and list-the corrections to be made.

E. If there is a closed loop in the routine

1.

Depress ‘‘all’’ breakpoint selector button

Depress start bar (as many times as is necessary) noting the Qm and Tm
instructions and the condition of the conditional transfer neons.

When a pattern is determined proceed to D3, above.

If there are no Qm’s or Tm’s in the loop, execute the loop one instruction
at a time.

F. When tape movement is not as expected

1.
2.

Stop computer
Proceed to D5, above.

G. When the routine runs completely, check the output.

162

Preparation and
Disposition of Data

INPUT UNITS

The Central Computer of the Univac Data-Automation System efficiently accepts
large volume data only from tape; therefore, all such data is prerecorded on this

medium. In addition to computer recording, three other means are available for
recording tape.

1. Keyboard to tape recording.
2. Card-to-tape recording.
3. Paper to magnetic tape recording.

KEYBOARD TO TAPE RECORDING

UNIVAC UNITYPER

The Univac Unityper is keyboard operated and records each key stroke on tape
while also producing a printed copy. It is the primary device for recording source
documents on tape. The Unityper is desk size and consists of a modified electric

163

typewriter containing a recording head, a tape transport mechanism and housing
unit, and a power supply. The keyboard is similar to the standard typewriter key-
board with the following modifications.

1. In addition to the standard numeric keys, there is a special set of 10
numeric keys arranged to facilitate more rapid recording of numerical data.

2. All alphabetics are printed as capitals.

3. Special keys are available for representing characters peculiar to the
Univac Computer code and for controlling the operation of the Unityper.

The Unityper prints 120 characters to a line, each printed line being recorded on
tape as a blockette at a density of 50 characters per inch. A blockette is a group
of ten words. A space of 2.4 inches is left between blockettes. Any errors made
while typing a blockette, as evidenced in the printed copy, can be corrected:
singly, by backspacing the tape to the error and retyping the blockette from that
point; or for a complete blockette, by depressing the Erase Key, causing the whole
blockette to be erased and the tape to be positioned for retyping.

In some cases, the data to be recorded may not completely fill a blockette, or it
may be desirable to simplify the computer processing by insertion of spaces or
zeros between fields. Special Unityper keys provide for automatically filling a
blockette, or portions of a blockette, with zeros or spaces. This is done by first
setting the Fill Selector Switch to either the space or zero position. Then when the
Fill Key is depressed the carriage will be advanced either to the next tab stop or
to the end of the line, if no tab stops have been set. The character chosen by the
Fill Selector Switch is recorded on tape in the positions transversed by the car-
riage. The average recording rate on the Unityper is 10,000 characters per hour.

UNIVAC VERIFIER

The main function of the Uaivac Verifier is to verify the correctness of tapes pre-
pared on the Unityper. In addition, the Verifier can be used to prepare tapes in the
same way in which the Unityper is used.

The Verifier consists of three units housed in a standard size typist’s desk. The

units are the typewriter unit, the tape reader unit, and the control and checking unit.
Verification consists of comparing, digit by digit, the data on a Unityped tape with

a second typing of the source document. A printed copy, produced on the type-

writer unit, records the actions performed in the verification process.

164

The Verifier’s tape reader reads, and sets up in the thyratron memory of the con-
trol unit, the first character on tape. The operator then strikes the key of the first
character on the source document. If the character of the key struck and the
character on tape agree, the typewriter prints the character in red. If there is a
disagreement between the characters, the character is printed and then the key-
board locks. The determination of what the error is can be made by backspacing
and viewing the character from tape on a neon display. The character on tape can
be changed by use of the Correct Key, or if cotrect,may be reverified to continue
the operation. If an entire blockette requires correction, the Change One Line Key
is used. Both of these keys will switch the Verifier’'s function temporarily to
recording.

As each character is transferred from tape to the Verifier’s memory it is counted.
More or less than 120 digits from a blockette will stop the Verifier with the digit
count error neon lit.

The maximum rate of verification is 12 characters per second. Nonsignificant in-
formation can be skipped without printing or verifying at the rate of 80 characters
per second.

PUNCHED CARD-TO-MAGNETIC TAPE RECORDING

UNIVAC 80-COLUMN PUNCHED CARD-TO-MAGNETIC TAPE CONVERTER

The Univac 80-Column Punched Card-To-Magnetic Tape Converter is a device for
automatically recording data from 80-column punched cards on tape. The card to
tape conversion is a checked operation. The rate of conversion is 240 cards per
minute. Each card is recorded as a blockette. The Converter consists of three
cabinets, the tape cabinet, the card reader cabinet and the control and memory
cabinet.

A card is initially read at the first reading station of the card reader, and the
data is stored in the magnetic core memory of the control cabinet. As the data is
read it is edited by a plugboard. The edited data is then written on tape.

The tape is then read back to the beginning of the blockette just written. As this

is being done, a second reading is made of the card. Each column is read ata
different reading station from that of the first reading and stored in a different

165

position in the memory. The blockette is then read forward, and a comparison is
made between the tape recordingand the second card reading in the memory. During
this comparison, and as the tape is read back, each character is counted and its
binary code checked. If an even binary code or a digit count error is present, or if
there is disagreement between the tape and card recordings, the card will be
ejected into an error bin, and the tape will be repositioned at the beginning of the
faulty blockette for rerecording. When this occurs, the operator has the following
choices of action.

If the sequence of cards must be maintained on tape,the error card may be rein-
serted in the card reader at the head of the cards and the conversion continued. If
the error was transient, the card should be converted successfully, but if the card
again fails to convert,an adjustment may be necessary.

If card sequence is not important, the error cards can be accumulated till the end
of the run, reinserted in the card reader, and converted in a group.

If all checks pass, the card counter will be stepped and the next card converted.
The failure to feed a card is automatically detected by requiring each card fed to
generate the signal which causes the next card to be fed.

The 80 characters of each card may be rearranged in any way in the 120 character
blockette by the wiring of a detachable plugboard. If desired, up to 24 overpunched
columns (X or Y) on a card may be separately recorded as a minus and ampersand,
respectively, for the overpunches, and as the corresponding numeral for any other
punch in the column. The overpunch symbols may be distributed anywhere in the
blockette. Thus, the data may be spread over as many as 104 characters within
each blockette. Unused characters of the blockette and unpunched columns in the
card are recorded as zeros or space symbols as determined by the setting of the
Blank Column Selector, a special plugboard control. The method of complement
plugging is used as a check on the correct functioning of the plugboard during
conversion. This method requires all wires of the plugboard to emit a continuous
signal throughout the conversion.

The 80-Column Card-To-Magnetic Tape Converter can accept combinations of
punches representing 26 alphabetics, 10 numerals and 12 miscellaneous symbols.

166

All the acceptable card punches and their corresponding Univac Computer charac-
ters are listed below.

UNIVAC UNIVAC

CARD COMPUTER CARD COMPUTER

PUNCH CHARACTER PUNCH CHARACTER
No Punch A or 0 (Determined by 12-8 H
12 & blank column 12-9 |
11 - selector) 11-1 J
0 0 11-2 K
1 1 11-3 L
2 2 11-4 M
3 3 11-5 N
4 4 11-6 (o)
5 5 11-7 P
6 6 11-8 Q
7 7 11-9 R
8 8 0-1 /
9 9 0-2 S
12-1 A 0-3 T
12-2 B 0-4 U
12-3 C 0-5 Vv
12-4 D 0-6 w
12-5 E 0-7 X
12-6 F 0-8 Y
12-7 G 0-9 Z

Some punched card installations make use of triple punched columns, known as
the 407 code. A slight modification of the 80 Column Converter, an optional
feature, will translate these triple punches into Univac Computer characters, as
shown below.

UNIVAC
CARD PUNCH COMPUTER CHARACTER
3-8 #
4-8 @
Y-3-8
Y-4-8 :
X-3-8 $
X-4-8 *
0-3-8 ’
0-4-8 %

Unless the triple punch modifications are present, the 80 Column Converter will
interpret triple punched card columns as mispunches, and will eject the triple
punched card into an error bin.

167

UNIVAC 90-COLUMN PUNCHED CARD-TO-MAGNETIC TAPE CONVERTER

The Univac 90-Column Punched Card-To-Magnetic Tape Converter is a device for
reading data from 90-column punched cards and recording it on tape. The differ-
ences between the 90 and 80-Column Converters are as follows. In all other re-
spects the Converters are identical. The card data may be spread over as many as
114 characters of the blockette. The 90-Column Card-To-Magnetic Tape Converter
can accept the combination of holes representing 26 alphabetic symbols, 10 numer-
als and 7 miscellaneous symbols. All of the acceptable card punches and their
corresponding Univac Computer characters are listed below.

UNIVAC UNIVAC

CARD COMPUTER CARD COMPUTER

PUNCH CHARACTER PUNCH CHARACTER
no punch A or 0 (Determined by 3-7 H
0 0 blank column 3-5 I
1 1 selector) 1-3-5)
1-9 2 3-5-9 K
3 3 0-9 L
3-9 4 0-5 M
5 5 0-5-9 N
5-9 6 1-3 0]
7 7 1-3-7 P
7-9 8 3-5-7 Q
9 9 1-7 R
1-5-9 A 1-5-7 S
1-5 B 3-7-9 T
0-7 C 0-5-7 U
0-3-5 D 0-3-9 v
0-3 E 0-3-7 v
1-7-9 F 0-7-9 X
5-7 G 1-3-9 Y
5-7-9 z

If cards containing 4 or more punches in any column are fed into the 90-Column
Converter, they will be ejected into an error bin, unless the modified Converter
is used. The modified Converter permits cards to be converted which contain 4 or
more punches as follows.
UNIVAC
CARD PUNCH COMPUTER CHARACTER

1-3-5-7)

1-3-5-9

1-3-7-9 :

1-5-7-9 +

3-5-7-9 /

1-3-5-7-9 ;

168

PAPER TO MAGNETIC TAPE RECORDING

The Univac Paper-To-Magnetic Tape Converter, PTM, translates the five, six, or
seven level code of perforated paper tape to magnetic tape. The PTM consists of
three components housed in a single cabinet: the paper tape reader, the translator
and the control unit.

The paper tape reader reads the paper tape code into the translator unit at the rate
of 200 characters per second. As each character enters the translator it is con-
verted into the Univac Computer code. The translated characters are then stored
in a 120 character memory. When the memory is filled the 120 characters are re-
corded on tape as a blockette at the density of 128 characters per inch; a space
of an inch is left between blockettes.

OUTPUT UNITS

The computer efficiently produces large volume data only on tape. Three means
are available for converting data on tape to some other form of output.

1. Tape to printed copy.
2. Tape to punched cards.
3. Magnetic to paper tape.

TAPE TO PRINTED COPY

UNIVAC HIGH-SPEED PRINTER

The Univac High-Speed Printer is a device for large volume printing of data. The
standard printing speed is 600 printed lines per minute, with up to seven legible
carbons. The Printer accepts paper from 4" to 27" in width and up to card stock
in thickness, and has a 130 character printing line. Paper may be preprinted and
serrated. There are 51 printable characters: 26 alphabetics, 10 numerics and 15
miscellaneous symbols: #$ % * () /- +:; ., and &.

Tapes recorded in blockette form at densities up to 128characters per inchwith
a minimum of one inch between blockettes are acceptable to the Printer. These
tapes include tapes produced by the Unityper, the Verifier, the Card-to-Tape Con-

verters, the PTM, and the computer. The computer writes a tape for the High-
Speed Printer as follows.:

169

On the Supervisory Control Panel are a series of 10 buttons, called Block Sub-
division Buttons and labelled with the names of the Uniservos. If a Block Sub-
division Button is depressed, all writing done on the corresponding Uniservo will
be in blockette form. The space between blockettes on Uniservos 8, 9 and - will
be one tenth of an inch, on all other servos, one inch.

The High-Speed Printer is housed in four cabinets, the tape cabinet, the printing
cabinet, the control and checking cabinet, and the power supply cabinet.

Through the use of a detachable plugboard, the horizontal format for eachblockette
printed can be set up in such a manner that

1. any character of the blockette can be printed in any one of the 130 print
positions,
2. fields of the blockette can be printed on as many as six consecutive lines.
and 3. fields of the blockette can be printed as many as three times on any or all
of the six consecutive lines.

The plugboard also enables the suppression of the printing of nonsignificant zeros

in a numeric field.

The vertical format of printing is regulated by a 7 channel punched paper loop
located in the printing cabinet, which advances in synchronism with the paper.
The sensing of holes in certain channels of this loop will cause the paper feed to
either fast feed the paper or else to discontinue a fast feed presently in progress.
No printing occurs while the paper is being fast fed. There are two waysin which
a fast feed can be initiated: by a symbol on tape or by a hole in the paper loop.

As a blockette is read from tape to the memory, each character is counted. More or
less than 120 characters in a blockette stops the Univac High-Speed Printer and
lights the character count error neon.

As each character is transferred from tape to the memory, and from the memory to
the comparator, it is given an odd even check. An illegitimate character code
stops the High-Speed Printer and lights the odd even error neon.

The Univac High-Speed Printer also checks against

1. the failure of a character to print
2. the printing of more than one character in a print position
and 3. the printing of a character other than the character meant to be printed.

170

The occurrence of any of the above stops the High-Speed Printer and lights an

. appropriate neon.

~ MAGNETIC TAPE TO PUNCHED CARDS

The Univac Magnetic Tape-to-Card Converter transfers data from magnetic tape
to 80-column punched cards. Input to the Converter is tape recorded in blockette
form, a space of 1/10 inch between blockettes. An 80-column card is punched from
selected portions of each blockette. The conversion is checked and proceeds at
120 cards per minute. The Converter consists of three cabinets, the tape cabinet,
the card punching cabinet and the control cabinet.

A blockette is read from tape and stored in the magnetic drum memory, located in
the control cabinet. The format of the blockette on the drum is controlled by a
detachable plugboard. This plugboard is used to select the 80 characters of each
blockette for punching and the positions on the card where they are to be punched.
Any character can be punched in any column.

The edited blockette, in the drum memory, is sent to the card punch to be punched.
Columns which are not plugged on the plugboard are not punched. After ablockette
has been punched, the next blockette, having been read and edited during the
punching of the preceding blockette, is sent to the card punch.

The conversion continues in this manner until a blockette containing a printer
stop symbol is read. The blockette containing the printer stop is not punched.

As a blockette is read from tape to the Converter’s memory each character is
counted. If this count is other than 120, the Converter stops with the character
count error neon lit.

As each character is read from tape to the memory its code is checked. Ifa charac-

ter with an even number of pulses in its eode is present, the Converter stops with
the Digit Odd-Even Error Neon lit.

After each card is punched it is read at a second station in the punch unit. This
data is stored in a special section of the memory. A character by character com-
parison is then made between the data punched on the card and the data originally
read from the tape. If any inequalities are detected,the card punched is ejected
into an error bin, and the Converter stops with the appropriate error neon lit.

171

As the card data is sent to the card punch each character’s code is checked. If a
character with an even number of pulses in its code is detected, the Converter
stops with the appropriate error neon lit. If any of the above errors occur, the
Converter can be restarted to either reread the blockette or repunch the card. If
the error is transient, the conversion will be successful on the second attempt.
The conversion table showing the equivalent tape characters and card punch com-
binations is shown below.

UNIVAC UNIVAC

COMPUTER CARD COMPUTER CARD

CHARACTER PUNCH CHARACTER PUNCH

G 12-7

- 11 H 12-8
0 0 1 12-9
1 1 J 11-1
2 2 K 11-2
3 3 L 11-3
4 4 M 11-4
5 5 N 11-5
6 6 0 11-6
7 7 P 11-7
8 8 Q 11-8
9 9 R 11-9
; 12-0 S 0-2
) 11-0 T 0-3
/ 0-1 U 0-4
A 12-1 \' 0-5
B 12-2 W 0-6
C 12-3 X 0-7
D 12-4 Y 0-8
E 12-5 y4 0-9
F 12-6 none Blank

MAGNETIC TO PAPER TAPE
The Univac Magnetic-to-Paper Tape Converter, MTP, translates magnetic tape into
the five, six, or seven level code of perforated paper tape. The MTP consists of

a magnetic tape reader and a paper tape punch.

The punch operates at 60 characters per second. The MTP automatically punches
teletypewriter function codes in the paper tape.

172

Operational Routines

In this chapter there will be described solutions to problems frequently encounter-
ed in using a computer as a data processor. Each solution will be shown in an
abbreviated flow chart. The operations making the next input item available or of
recording on tape the current output item will be indicated by a double-lined box
adding 1 to a letter subscript:

This symbol will stand for all operations implied by selecting the next item of a
block. This includes getting the next block when the current one is exhausted, or
the next tape when the present one is completely read. A similar symbol will
represent the appropriate output operations.

173

TAPE SUMMARY

A frequent problem encountered in computer applications is to print a summariza-
tion of a detail tape. To illustrate the problem and its solution, a practical example
will be given. Consider a file of insurance policies, each policy represented in the
file by an item, P§; containing at least the following fields:

The insured’s occupation classification code, Pf
The age of the insured at the time of issuing the policy, p?
Type of insurance issued (the plan), P?

- N

The amount of insurance purchased (face value), P{

A table is to be produced, similar to the one illustrated in Figure 12-2, showing a
summary of the total amount of insurance and number of policies, by type of insur-
ance, by age at issue, and by occupation of insured.

Of course, not all occupations, nor all ages, nor all plans may be contained in this
file. Further, assume that the total combinations of occupation, age and plan ex-
ceed the memory capacity of the computer.

SORT BY:

1. OCCUPATION
2 AGE
3. PLAN

SORTED
POLICY

FILE

SUMMARIZE

“ FIGURE 12-1

174

OCCUPATION AMOUNT NUMBER

CODE AGE AT ISSUE PLAN INSURED OF POLICIES
A 1,230,000 850
B 2,000,000 501
C 1,600,000 350
25 4,830,000 1701
A 2,000,000 900
B 650,000 100
C 15,050,000 1500
D 205,000 73
30 17,905,000 2573
401 22,735,000 4274
A 6,365,000 1055
C 6,160,000 1231
27 12,525,000 2286
A 3,121,000 630
G 8,900,000 2461
28 12,021,000 3091
A 4,221,000 1347
29 4,221,000 1347
435 28,767,000 6724
FIGURE 12-2

The main steps in the solution are shown in Figure 12-1. The first operation is to
sort the policy file into an ascending sequence in order by, from major to minor,
occupation, age and plan. This is accomplished by one of the standard sorting
routines. The output of the sort is the sorted policy file which forms the input to
the next operation which is the summarizing run. Figure 12-3 represents the es-
sential steps in this summarization.

) P =t 0—»3, 0—b 3, 2 Pf—..iH:a, H o--.s_.,!_.®_.| PP Ho—.s‘—H 0men3, I—o@

8y + Pf s 85 Lot 844 1 -8, [N ..@

O,

~®

@——J =0 [+ A e 8 5] P] b 35— 8] [0l 84— 8] |0 8,48, —- 5, —-l Sy +8g =8y) ¢ 1em) »@
@

A—»nj H A—.qH A—atf Lol g —mif Hs.——n’]'Hs, +8y 3, I—.[a"s.,—.s, Hk . |-.JJ-.@

® -®
®

8,) ¢ —= 35 -0 A—s 8] Lol s8] Ll 8, —8] [of 3, — 0] J + 1) (s
FIGURE 12-3

175

Since the policy tape has been sorted, the policy items with given occupation, plan
and age will be adjacent to each other on the tape. The first operation, from @ to
@, is to store the occupation code, age and plan fields of the first policy item.
In addition, six tallys are set to zero which will be used in accumulating the total
face value and number of policies issued for each classification. At @ the occupa-
tion code and age and plan of the ith policy item are compared with the occupation
code and age and plan stored. They must agree, and the face value of the policy
is added to Ss, and one is added to Sg, which is the count of the number of policies
issued with classification CAP. The next policy item is selected,and control is
transferred to @ to process this item.

The keys of the second item and the ones following are compared in turn to the
keys stored. When a change of key occurs, control is transferred to the output

routine (connectors @ to @)

Each output item, Bj, consists of the following five fields:

B% = The occupation code field
B% - The age field
BY = The type of insurance field

Bf - The accumulated face value of policies with
keys CAP

B, = The total numbers of policies with keys CAP

When an item with a different plan key is found, @ is set and control is trans-
ferred to@ Non-printing characters (space symbols, A) are inserted into B
and Ba The plan, P is mserted into B®) and S5 and Sg, the totals, are 1nserted
respecnvely into B and B The next operation is the addition of S5 to S3 and Sg

to Sy (sub-totals for occupatlon code C and age A), since the plan, P, has changed.
The box

— || + I —

implies all operations necessary to place B; on the output tape. Connector@ was
set and, therefore, control is transferred to @ where Sy and Sg are reset to zero

in preparation for totaling the next plan. In addition, the new plan is stored in P,
and control is transferred to @

176

When an item is found which contains a new age key, connectors @ and @ are
set, and control is again transferred to @where an output item containing the
totals under P is formed as previously.In this case, since @ is set, an output
item containing the age totals in formed. A’s are inserted into BS’- and BIJ?. The age,
A, is inserted into B2, and the totals under classification CA, S3and Sy, are in-
serted into Bf and Blz! respectively. Then the age totals are added to S; and Sg
(the totals for class C). Connector @ then transfers control to @ where Sg3, Sy,
S5, and Sg are reset to zero, and the new age and plan are inserted into A and P.

When an item with a new occupation code is found, connectors @ and are
set, and control is transferred to @where, as shown previously, output items for
the plan and age totals are formed. Then causes an output item to be formed

for the totals under the classification code C. C is inserted into B(}; and A’s, into

B? and BIJ?. Sy and Sy are inserted into Bg and BIj1 respectively; and the output
operations, executed. Control is then transferred to @ where all the totals S; to
Sg are reset to zero, and the new occupation code, age, and plan are inserted into

C, A, and P, respectively.

The reader will note that at any time a new policy item is selected for a different
plan, age or occupation code the totals to date are placed in an output item B;, and
the totals for this category and its subcategories are reset.

The output of this summary run, then, consists of the items Bj which represent the
totals for each CAP. Printing this tape produces the table of Figure 12-2.

If it is desired to have the table list the summaries inthe order: 1. occupation code,
2. age, and 3. plan, the procedure should be modified in this fashion: Since the
output items representing the totals for the major categories follow the items with
summaries for the minor categories, each completed output tape, instead of simply
being rewound when it has been filled, should be read backwards, its items being

written on a new output tape exactly in the order they are read .

Thus, this gecond output tape now contains the major totals first, then, the minor
totals. The last reel of tape coming from the summary run should be the first one
printed, then the next to the last tape should be printed, etc. Of course, this would
give a table arranged in descending sequence. To avoid this, the sort routine
should produce a descending sequence rather than an ascending one. The summary

run itself is not changed.

177

TABLE LOOK-UP

Many data processing problems involve ‘“Table Look-Up’ operations. That is,
given a quantity x, select from among a set of quantities Y a quantity y which is
assigned to x. Wherever possible, keep the size of the table Y as small as possible.
In some cases it may be possible to reduce the table to a formula from which y can
be computed, given x. However, in some applications it is not possible to reduce
the table to a size which can be stored in the memory or to a formula. In these
cases, it is necessary to consider table look-up solutions that are completely
general as far as table size and argument interval are concerned.

Consider the following problem. A file contains a series of billing items, B, con-
taining among other things, the following fields:

1. Location code of point of origin from which item purchased was shipped, B
2. Destination code where item was shipped to, B‘%

3. Commodity classification of item, B

It is desired to obtain the shipping rate by looking this rate up in a table which is

entered by origin code, destination code, and commodity classification code.

Consider thetabletobe a file consisting of items Tj containingthe following fields:

. . 0
Point of origin code, Tj
Point of destination code, T(}
Commodity classification code, T%

BWN

. “ I
Rate for this origin, destination, and commodity, Tj

The file of items T; which constitute the table are assumed to be arranged in an
ascending sequence, from major to minor, by origin, destination and commodity.

This arrangement is effected once, andonce only, atthe time thetable is developed.

The main steps in the table look-up are shown in Figure 12-4.

178

BILLING
FILE

SORT BY
l. ORIGIN CODE
2. DESTINATION CODE
3. COMMODITY CODE

SORTED
BILLING
FILE

RATE
TABLE

MATCH
MERGE
BILLING
FILE
WITH
RATES
FIGURE 12-4

The first operation is to sort the billing items B; into an ascending sequence, from
major to minor, by origin code, destination code and commodity classification.
This is accomplished by a standard sort routine. The next operation is to match
merge the sorted billing file and the table, thus producing an output which consists
of the same billing items with the appropriate rate inserted in them.

The essential elements of the match merge operation are shown in the flow chart
which is Figure 12-5.

b
.

(a?dc :-T?dc = BI—"’RE (o T] =R Ik 1 e k P+l = —’@

A
ERROR {N
BILLANG ITEM

FIGURE 12-5

179

The table items T. are examined successively until an item with origin, destina-
tion and commodity code is encountered which matches those codes in the current

billing item Bj. When the match occurs, an output item Ry is formed by attaching

to the billing item the rate field of the table item, T§. The box—{| k+1 —»= k

implies the output operations necessary to record W, on tape, while the box
—»l i+l = i]—»selects the next billing for the table look-up.

In some applications the table look-up operation may involve an interpolation be-
tween near lying entries in the table. In this case, while the general procedures

shown in Figure 12-4 are unchanged, a modification of the match merge operation
is needed.

Assume that the billing item, Bi’ contains an argument, B?, which is the basis of
of the table look-up(this corresponds in function to the fields Bg’, B(ii, and BY, of
the previous example). Suppose further that four point interpolation is needed in

selecting the rate. That is, if the symbol Eg represents the argument of the nth
table entry, then if

a a a
En-l < Bi < En

the table values for arguments Er?-z, Ei-l, E?;., and E2+1 will be needed. The
mathematical formula using these entries and their arguments to calculate the
interpolated rate will be indicated by F(E 5, E_1, Ep, Ep q).

The flow chart shown in Figure 12-6 is the required match merge necessary to
select the required table entries E|, noted above.

(© o P v [ETE) & ety [P o Do ¥ Ryt M PR ¥)

CALCULATE RATE
BY
INTERPOLAT | ON

B} : €} S —O{F (€, Epy Eq, E,,,)—-»n{Hl,——» uﬂHlk + l——kHII + 1—-{'-—-@

ol e i =1 P

FIGURE 12-6

The first two entries of the table must correspond to arguments below the range

a c. . .
of arguments Bj. Similarly, the last two entries of the table must correspond to

180

arguments above the range of B The initial operations, performed once only, are
@to@ . These steps stored the first four entries and their arguments (T, Ty, Ty
and T,) as items Ej, Eg, E3 and Eg4, respectively. At @ the table look-up begins.
The first billing item argument Ba} is compared with the argument Eg‘. If BY is
greater, each En isdisplaced down one position with E; beingdropped and the next
T; becoming Eq. When, finally, the first Ej is located which is just greater than
(or equal to) Ba{, the four items E1, Eg, E3 and E4 contain the proper entries for
interpolation. An output item Wy is formed consisting of the billing item and the

interpolated rate, This item is sent through the output operation '

necessary to record it on tape, and the next billing item selected.

The extension of this flow chart to handle 2, 3, 5 point, or higher interpolation is
obvious.

EXPLOSION CALCULATION

The explosion calculation can be described by the following problem. A company
manufactures a number of models of a product. For each model a bill of materials
exists which lists the basic sub-assemblies or units and the number required for
each model. This data can be termed a bill of materials file consisting of items M;.
Each item represents a unit or sub-assembly for a particular model. It contains,
among other things, the following fields:

1. The model code to which this unit belongs, MI?
2. The part number of a part used on this model, MP"
3. The number of such parts used on this model, M?

This bill of materials file is kept in model code sequence to facilitate the problems
of file maintenance and the explosion run to be described.

A second file, the production schedule, is also available. This file consists of a
series of items, Pi’ containing the following fields:

1. The model code, P
2. The number of such models to be constructed, Pr;

The problem is to determine the total number of sub-assemblies required by the pro-

duction schedule. That is, the production schedule is to be *“exploded’’ into the
pieces that make up the models.

181

Figure 12-7 depicts the major operations required in exploding the production

PROD.
SCHED.
FILE

schedule.

SORT BY
MODEL CODE
SORTED BILL OF
PROD. MATERIALS
SCHED. FILE
EXPLOS | O
CALCULATION
RAW
REQMTS
FILE
SORT BY
PART NUMBER
SORTED
RAW
REQMTS
FILE
SUMMAR I ZE
BY
PART NUMBER
REQMTS
FILE
FIGURE 12-7

Assuming a random development of the production schedule, the first step is to
sort this schedule into model code order to facilitate its “*multiplication’ by the
bill of materials. This is accomplished through one of the standard sorting routines.

182

The output of this run is called the sorted production schedule which forms with
the bill of materials file the input to the explosion calculation. In this operation,
the number of units or sub-assemblies required to produce the quantity of each
model listed on the production schedule is determined. The output of this calcula-
tion is called the raw requirements file. Now, because many models contain common
sub-assemblies, it is necessary to summarize the raw requirements file.

First, of course, the file must be sorted to part number sequence not only for the
summary to follow but also for the convenience in reading the printed sub-assembly

requirements table. The summarization operation has already been described.

Figure 12-8 is a flow chart showing the method of calculating the raw requirements.

P : MY 2 I+l—>l‘—’®

ERROR 1IN
PROD. SCHED.

MiP ——= RE" 1 P] x M} e RE 1k + | —— k [i+l—>|‘———>@

({) FIGURE 12-8

At@ the model codes of the first production schedule item andthe first bill of
materials item are compared. If the model code called for by the production schedule

is the larger, it means that its corresponding bill of material items are further up
the bill of materials file. Accordingly, this file is advanced item by item until a
model code is reached equal to (or less than) the production schedule model code.
Next a test is made to detect improper model codes which may have slipped in
during the manual operations used in preparing the production schedule. Next, an

183

output item Ry is built up. The part number of the current bill of materials item is
stored in RP?, and then the number of such parts needed is calculated by multiply-
ing the number of the model to be built, P}l, by the number of this part used in that
model, M?. This field is the requirement for this part by the production forthis
model and is designated Rﬁ. The boxs{| k+1—»k |mcarries out the steps
necessary to record this requirement item on tape. The bill of materials file is

then advanced one item and this item’s model code checked against the current
production schedule item’s model code. If they agree, another extension is made.
This process continues until a bill of materials item for a different model code
turns up. This signifies that all of the extensions for current production schedule
item’s model code have been made, and the production schedule file is then ad-

vanced one item.

Having seen how a simple explosion run is performed, consider a somewhat more
involved and, thus, more practical problem. Suppose that our production schedule
consists of a series of items giving the required production per month, per
model for a certain number of months. That is, each production schedule item, Pi ,

contains the following fields:

1. Model Code, PI?
2. Number of units to be produced this month, P?
3. Coded representation of this month, P(}

Further, suppose that if a model is to be produced for a given month, each of the
sub-assemblies will have a lead time peculiar to the assembly unit. For example,
if a model is to be completed on day X, sub unit A must be available on day X-L,
or L days earlier. Thus, modify the bill of materials file so that it includes the
appropriate lead time. Each bill of materials item will now contain the fields:

The model code to which this unit belongs, MT
The part number of this unit, Mli)n

The number of such units used on this model, Ml}

- N

The amount of lead time required for this unit, ,Mli

Now compute the ‘‘phased’’ requirements. That is, determine not only what and
how many sub-assemblies are required for this production schedule, but also on
what date they are required. Figure 12-9 shows the general sequence of steps re-
quired in calculating the phased requirements.

184

PROD.
SCHED.
FILE

SORT BY
MODEL CODE

SORTED BILL OF
PROD: MATERIALS
SCHED. FILE

EXPLOSION
CALCULATION

RAW
REQMTS
FILE

SORT BY
. PART NUMBER
2. DATE

SORTED
RAW
REQMTS
FILE

SUMMARIZE BY
PART NUMBER
AND DATE

PHASED
REQMTS
FILE

PRINT

FIGURE 12-9

185

The same essential steps are found in this solution as described earlier for Figure
12-7. Of course, the explosion calculation will necessarily be different. The flow
chart of this explosion run is shown in Figure 12-10.

Error In
Production
Schedule

FIGURE 12-10. ()

At'@ the model code of the first production schedule item is stored as a key K.
Beginning at@ each production schedule item with the same model code K is
stored in the memory. These stored production items are called F, any particular
one being F . As soon as a production item is found for a different model code, go

to @ where the bill of materials file is advanced to thefirst item for model code K.

Beginning at @ start exploding the production schedule. The first stored produc-
tion item, Fp with p=1, is selected and the number of units to be produced during
month D is multiplied by the number of sub-assemblies Mr} required. Then, the lead
time, Ml1 is subtracted from the completion date, Fp»and these two fields and the
stock number of the sub-assembly are placed in an output item, R,. The box
—P” k+1=—>k P_implies the output operations necessary to record the item Ry
on the raw requirements tape. The box.>“p+ l=p]-»selects the next stored
production item, and it is processed in a similar fashion. When all of the stored

production items, Fp, have been extended the bill of materials file is advanced to
the next sub-assembly for this model and the process repeated. When all sub-
assemblies for model K have been processed this entire procedure beginning at
@ is repeated for the next scheduled model.

186

Insuring Accuracy
of Processing

In any data processing system one of the chief concerns is the accuracy of the re-
sults. In a computer data processing system, errors may be introduced in one of

three ways.

1. Erroneous data fed into the system.
2. Erroneous intervention by an operator into the system.
3. Malfunctioning of the computer.

INPUT DATA ACCURACY

187

The accuracy of output can be no better than the accuracy of the input. Input veri-
fication is designed to detect various types of errors in the input.

The first type of error is called implausible. An inplausible error stalls the com-
puter, because it is unintelligible to it, and must be detected. An alphabetic in a
numeric field is an example of an implausible error. An attempt to add the alpha-
betic to another would stall the computer. The operator is normally not familiar
with the routine and would have no means of correcting the situation. Nor could
the operator step the computer past this point. The occurrence of an implausible
error stops the system. The routine must be designed to protect itself against
implausible errors and write the error items on an error tape.

e

The second type of error is called ‘‘plausible but wrong’’. A ‘‘plausible butwrong”’
error does not stall the computer but does produce incorrect output. The reporting
of 28 hours worked in a day is an example of a “plausible but wrong’’ error. This

type of error item would also be written on an error tape.

A third type of error is called ‘*plausible but probably wrong”. The reporting of 12
hours overtime in one day is an example of a ‘‘plausible but probably wrong’’ error.
Such an error can be processed and flagged for later inspection by the payroll de-
partment.

Input errors can also be studied from the standpoint of their source. The opera-
tions performed by the Univac System may be considered the function of an organi-
zation called the data processing center. The data processing center is an organi-
zation formed to render services to such subscribers as the payroll, purchasing,
accounting and engineering departments. Errors in data exist because of introduc-
tion by either the data processing center or the subscriber. The center may alter
valid data during the transcription of data from document to tape. To minimize such
errors unityped tapes are verified on the Verifier.

The detection of input errors caused by improperly prepared source data is the sub-
ject of input verification. This run may test the input for

1. alphabetic characters in numeric fields,
2. numeric fields within certain limits,
3. key field validity

and 4. consistency of data.

The validity of keys can be determined by checking for the presence of a correct

final digit in the key. Consistency errors are typified by a case such as a medical
absence entry in a clock card item also containing a standard work week key.

188

OPERATOR ACCURACY

There are points at which an operator must manually intervene in the otherwise
automatic operation of a computer. For example, to run a routine, an operator
must mount input tapes. The stored program allows the computer to check all oper-
ator interventions for accuracy. For example, by convention, the first block of each
input tape contains, not data, but an identification of the data on the tape. By
means of this identification block, the computer can check that the data mounted
is actually the data associated with the stored routine.

RERUN

Rerun is designed to handle situations where processing is interrupted during a
run. Power failure or removal of a routine for one of higher priority are examples
of such interruptions. Rerun consists of periodically writing, or dumping, the con-
tents of the memory on tape. Then, no matter where processing is interrupted, it
can be restarted at the point of the last memory dump by using the memory dump to
reconstitute the memory. Rerun eliminates the necessity to restart an interrupted

run from the beginning, thus conserving computer time.

COMPUTER ACCURACY

In computers every pulse has a significance which, if lost, alters the content of
the whole message. A power failure of only .4 pus duration can cause the loss of a
binary one. Such a loss could change a six to a five.

DECIMAL EXCESS THREE WITH ZONE
6 001001
5 001000

If such a situation occurred when two words were being compared, the comparator
may indicate inequality when equality is the case.

If such an error occurred when the key 60032 is being checked for equality be-
tween files A and B in figure 13-1, no item following the item with key 60029
would be processed, since the computer would exhaust file B in a vain search for
equality of keys.

189

FILE A FILE B

50031 50031
50032 50032
59999 59999
60028 60028
60029 60029
60032 ——-50032 60032
60034 60034
FIGURE 13-1

No malfunction can be tolerated in a computer, since even a minute failure may

have disastrous results.

TYPES OF FAILURES

Errors can be produced by permanent or intermittent failures of equipment. A blown
fuse is an example of a permanent failure. A gradually weakening tube that some-
times overloads under the influence ofa particularpulse combination is an example

of an intermittent failure.

ERROR DETECTION

It is not possible to build a computer that will never malfunction. The only solu-
tion is to provide some means of detecting errors as they occur and preventing the
the propagation of the error. The responsibility for detecting errors can be placed
on the programmer or checks can be built into the computer.

PROGRAMMED ERROR DETECTION
DIAGNOSTIC ROUTINES

A computer can execute a routine the output of which is known. If the output is as
expected, the routine guarantees that the computer has not developed a permanent
failure. However, the routine provides no assurance that an intermittent failure
will not occur during a production run. Moreover, running time for the routine is
lost time as far as production is concerned.

190

DUPLICATE RUNS

After a computer has executed a production routine, it can execute the routine a
second time. The results of the runs can be compared, the computer usually being
used to make the eomparison. If the comparison checks out, and if a permanent
failure has not developed since the last diagnostic run, the output is correct,
Such an approach more than doubles, and may more than triple, the computer time
required to produce the output. Moreover, if the comparison does not check out, it
is impossible to know if a failure occurred during the first or second production
run or during the comparison or during any combination of the three.

PROGRAMMED CHECKS

The production routine can be programmed in such a manner that, immediately after
the execution of a subroutine, a second subroutine, checking the results of the
first for accuracy, is executed. For example,

010 BO 880
A- 881 addition
011 HO 882 '
S- 880
012 LO 881 check
Q00020

If control is transferred to cell 020, the addition was correct; if control passes to
cell 013, incorrect.

Programmed checks increase the running time of a production routine by a factor of
at least two thirds. The increase in memory space required by the programmed
checks is even more drastic. Moreover, there are operations that do not lend them-
selves to a programmed check. Selection of the next instruction to be executed and
selection of the cell specified by an instruction are examples of such operations.
By themselves, programmed checks cannot assure output accuracy.

If a computer failure occurs, the failure must be corrected before the computer can
return to operation. Thus, the fault must be located in the computer hardware. Since
programmed error detection may not stop the computer at the point when an error
occurs, this method provides little or no help to the technician in locating the
fault. The time required for the technician to locate the fault further reduces pro-
ductive computer time.

191

BUILT IN CHECKS

Checking circuits can be built into a computer in such a manner that the computer
stops the instant an error occurs and lights a neon on the control panel, thus in-
dicating the nature of the error. These circuits operate in conjunction with the
processing circuits. No computer time is lost because of the existence of checking

circuits. Admittedly, checking circuits cost money, but they save

1. productive computer time lost because of diagnostic runs,

2. productive computer time lost because of duplicate operation, either by
duplicate runs or by programmed checks,

3. productive computer time lost because runs must be subdivided to provide
memory space for programmed checks,

4. productive computer time lost because the computer does not stop the in-
stant the error occurs, thus requiring the technician to locate the fault with
little or no help from the checking routines,

5. productive computer time lost because of errors that escape programmed
checks,

6. company embarrassment caused by such errors

and 7. productive programmer time lost in the search for the elusive perfect pro-
* gram check.

Built in checks represent a fixed initial cost; checking routines, a continual, and
basically, hidden cost. It is estimated that built in checks will pay for themselves
in less than a year.

BUILT IN CHECKS OF THE UNIVAC CENTRAL COMPUTER
0DD EVEN CHECK (0-E CHECK)

The odd even checker is a reliable, inexpensive checking circuit which checks
against the proper storage of data and the proper transfer of data from one storage
to another. There is an odd even checker located

1. on the High-Speed Bus (HSB) which is the transmission line between the
registers and the memory,

2. on each of the adder inputs,
3. between the Uniservos and rl

and 4. between rO and the Uniservos.

192

In addition to the O-E checks on transfers, the regular operation of the computer is
interrupted every five seconds for the Periodic Memory Check, PMC. During PMC
the contents of the memory are read into the HSB O-E Checker. Should an even
count be registered for any of the 12,000 characters the HSB O-E Checker will
alert the error circuitry and stall the computer. PMC prevents a faulty character
from going undetected for long periods of time and possibly dropping enough pulses
to pass the odd-even check.

However, there are failures that the odd even check cannot detect. For this reason
duplicate and logical checks are also used.

DUPLICATED CIRCUITRY

Several elements of the Central Computer of the Univac System are duplicated. In
the case of storage or transmission elements, such as the registers and the HSB,
the contents of the duplicated elements are continuously compared for identity.
In the case of processing elements, such as the adder and comparator, equality
of output is the basis of the check. The duplicated elements are

the HSB,

each of the adder inputs,
the adder,

rA,

rL,

rX,

tF,

the comparator,

WoN AWM R WD

the cycling unit, which keeps track of the stage of the four stage cycle
that the computer is on,

and 10. the Time Out circuits, which determine whether Univac is on TO or Time
On.

LOGICAL CHECKS

In addition to the duplicated circuits and odd-even checkers there are a large
number of internal logical checks designed to further insure error free computation.
Logical checks are employed wherever it is not feasible to duplicate equipment or
where no data transfer is involved to make use of odd-even checks.

193

TANK SELECTOR CHECKER

This checker is a check on the fourth and fifth instruction digit set-up of SR. A
further word of explanation is necessary for this checker. There are two general
types of checking circuits: '

1) In a negative checker the efror neon is lit when an error is detected.

2) In the positive type checker, the error neon is lit first and only correct
operation will extinguish the neon in time to prevent stalling the computer.

This is a positive type checker. If the upper tank selector neon is lit and the com-
puter is stalled it means the fourth instruction digit was set up incorrectly, if the
lower neon is lit and the computer stalled it indicates that the fifth instruction
digit is incorrect. It is quite possible to have a Tank Selector Error through a
faulty program. An instruction BOOA12 for example, will show a fourth instruction
digit error. The sixth instruction digit set up is checked by circuits whick compare
the check pulse in SR against a computed check pulse.

FUNCTION TABLE INTERMEDIATE CHECKER

The Function Table Intermediate Checker is a check that the first instruction digit
was set up correctly in the Static Register. This checker also acts as a shift
selector check.

FUNCTION TABLE OQUTPUT CHECKER

This is a duplicated positive type checker, whose function it is to check on the
proper execution of instructions.

TAPE CHECK

Along with the seven information bits recorded on tape for each character, an
eighth bit called the Sprocket Channel Pulse is also recorded. When information is
being read from tape the Sprocket Channel Pulse indicates the presence of a
character and actually initiates the process of synchronizing the incoming informa-
tion with the timing of tte computer. If a Sprocket Channel Pulse is not read from
tape along with information pulses the Tape Check Error neon is lit.

194

INPUT -OUTPUT INTERLOCK CHECKER

The input-output interlock circuits are set at the beginning of any input-output
operation. and are reset when that operation has been completed successfully.
When the interlocks are set, further orders of the same type or using the same
equipment are prevented from being executed. It is essential to correct operation
of the computer that the interlock circuits function properly. This checker, when
set, indicates one of the following failures:

1) The read interlock failed to set at the beginning of the last read order.

2) The write interlock failed to set at the beginning of the last write order.

3) The Uniservo in question was set to execute a backward read when a
forward read was ordered.

INPUT SYNCHRONIZER > 720 CHECKER

Digits are recorded serially along the tape, and are thus picked up one at a time
when the tape is read. The computer counts the number of digits read and after the
720th digit (last digit of the 60th word) has been read and the space between
blocks is encountered the read is terminated. Through a failure in the input-output
control or photocell circuits a short (less than 720 digits) or a long (greater than
720 digits) block may be encountered. Either of these two cases lights the >720
error neon.

As far as the computer is concerned, a short block is defined as a read of 59 com-
plete words and at least one, but less than twelve more digits, followed by the
space between blocks. The Uniservo will then stop reading tape and set the> 720
error. A long block occurs when the computer reads a full 60 words and at least one
more digit before encountering a space between blocks. The tape stops in the next

space between blocks or photocell area, whichever is first, and sets the > 720

error. In either case setting > 720 error prevents the next read order or Supervisory

Control input or any other order affecting the Uniservo causing the error from being
executed.

THE EFFECT OF ERRORS

If an error is detected in any part of the computer other than the input-output
circuitry, the computer immediately stalls. If an error is detected in the input-out-
put circuitry, the computer stalls as soon as another attempt to use the faulty part
of the circuitry is made. For example, if an error was detected during the writing
of a block on T6, the computer would stop as soon as another write instruction or
another tape instruction involving T6 was transferred to SR. Given an error, such
a situation prevents the computer from propagating the error. In either case, as
soon as an error occurs, a neon on the Supervisory Control Panel lights, indicating
the specific error that has occurred.

195

BUILT IN CHECKS ON THE PROGRAM

Besides checking the accuracy of its operations, the computer also checks for the
occurrence of an adder-alph error, in which case, the computer immediately stalls

and lights an appropriate neon on the Supervisory Control Panel.

196

TAPE CHART

UNIVAC
TAPE PULSE UNIVAC | READ{WRITE TIME | REWIND FEET
USE SPACING IN INCHES DENSITY/ | e ke TTES) | PR oL PER REEL | peg Re UTLIZED
CHAR/IN. _PER OCK RE PER REEL | PER REEL
Univac | 5.625 / block 128 2,275 105.25 ms 3.99 min. 3.04 min. 1521
2.4 between blocks
. 2.4/ blockette
Ug'ty_‘;?r I 2.4 between blockettes
erftier 2.4 between blocks 50 500 * 313.0 ms 26.08 sec.| 24 sec. 200
.9375/ blockette
Card-To-Tape
Converterp 1.8 between blockettes 128 6,400 * 195.25 ms 3.47 min 3.03 min. 1513
2.4 between blocks
Uniprinter 36.0/ block
2.4 between blocks 20 475 409.0 ms 3.24 min 3.04 min 1520
Tape_To-Card .9375/b|0Ckette
.1 between blockettes 128 12,900 * 110.25 ms 3.95 min 3.06 min 1527
Converter
2.4 between blocks
. .9375/ blockette
High-Speed . .
'g rinf:re 1.0 between blockettes 128 8,400 * 155.25 ms 3.62 min 3.04 min 1520
2.4 between blocks

UNIVAC | Start-Stop Time : 44 ms; Interlock: 5ms; Tape Speed: 100°’ / Second.

UNIVAC:The FIRST Name in Electronic Computing Systems

U1592 Rev. 14 *"*0
, Uar

	0.000
	0.001
	0.002
	0.003
	0.004
	0.005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	back

