

@1958' SPERRY RAND CORPORATION

ANOTHER SERVICE OF •••

MANAGEMENT SERVICES AND OPERATIONS RESEARCH DEPARTMENT

DIVISION Of SPERRY RAND CORPORATION

FOREWORD The Univac II Data Automation System ..•........ i

INTRODUCTION •• .II •• •• 1

Chapter I Wh.at is MATH-MATIC Pseudo-code 2

Chapter II How to Write MATH-MATIC Pseudo-code 8

Chapter III MATH-MATIC Repertoire 13

Functional Call Words M 14
Control Sentences 15
Input-Output Sentences 20

Chapter IV Data Preparation and Formats 27

Data Preparation 27
Arrangement of Elements Within an Array 28
Use of the Data Conversion Routine •. .. 29
Formats 31

Chapter V Computer and Compiler Sections 35

Purpose 35
Computer and Compiler Sentences 35
The Directory 36
Compiler Section 37
Compute r Section••...•....•.......... 38

Chapter VI Operating Instructions and Service Routines 41

Operating Instructions 41
Edited Record. • . . • • 42
Service Routines 44

Appendix 46

Definitions•............ 46
Repertoire of ARITH-MATIC Operations 47
Repertoire of MATH-MATIC Sentences 51
Modified Unitype r Keyboard 53
MATH-MATIC Printouts 55

FORE-v\TORD

T:H:E UNI'V".A.C I I D.A. T.A. .A. UT01\l[.A. TION S"YSTE1\l[

he Un i v a c II Data Automation
System is a complete and well
balanced data proce ssing sys-

tem. It will accept and prepare in­
formation through a wide variety of
standard data-recording media. The
user gains versatility most economi­
cally since the C e n t r a 1 Computer,
that unit which performs the actual
proce ssing, can read and write infor­
mation directly through the magnetic
tape which is one of the most rapid
input-output media in use today. Pe­
ripheral equipments convert all re­
corded data into the form acceptable
to the Central Computer, or from the
form prepared by the Central Com­
puter (Univac II System code on mag­
netic tape) to the de sired form. In
this way, the system has a dual ad­
vantage. First, the Central Compu­
ter need not be hampered in its pro­
cessingtask by the necessity of work­
ing directly with input-output media
unworthy of its lightning-fast internal
ope rating speeds. Secondly, the Cen­
tral Computer need not be involved
in conversionprocesswhich canmost
economically be handled by peripheral
equipments on an off-line basis.

From a wide variety of a v ail a b 1 e
equipments each Univac II System
user chooses the units which, when
molded into a system, be st meet his

i

ove rall data pro c e s sin g require­
ments.

A V A I LAB L E EQ UIPMENT SAND
THEIR FUNCTIONS

The Univac II Central Computer

,-~; . . !
~--------------.. '

FIGURE 1

The Univac II Central Computer in
Figure I is the heart of the Univac II
Data Automation S y s tern. It per­
forms all arithmetic and logicaloper­
ations.

In the execution of a typical dfl.ta pro­
cessing task the Central Computer
performs the following basic opera­
tions:

1. Step-by-step instructions, stat­
ing specifically the operations to
be pe rformed on the data, are

read by the C en t r a 1 Computer
from magnetic tape and stored
inte rnally within the C e n t r a 1
Computer. Obeying the stored
instructions, the Central Com­
pute r then automatically

2. Rea d s the data from magnetic
tape and store s it inte rnally.

3. Performs all operations upon the
data indicated by the instruc­
tions. and stores the results in­
ternally.

4. Reads the results from storage
and write s them on mag net i c
tape.

All operations are self-checked to en­
sure that they are performed with the
unwavering accuracy and dependabi­
lity that has become associated with
the name UNIVAC.

The Univac II Control Group

Two control units are directly CO!l­

nected to the Central Computer. and
each in its own way, provides some
indication of the actions of the Central
Computer.

Univac Supervisory Control Console

FIGURE 2

ii

The Univac Supervisory Control Con­
sole (Figure 2) provides the operator
with a continuous picture of the oper­
ations taking place within the Central
Computer. It also provide s vis u a 1
indication whenever an error occurs
in a~y ope ration, identifying the faulty
circuit for the maintenance techni­
cian.

Although the Central Compute r is de­
signed to operate automatically, there
are occasions when manual interven­
tion may be de sirable. The Univac
Supervisory Control Console includes
a keyboard by means of which the op­
erator can type information directly
into the Central Computer. A group
of switche s and buttons on the Con­
sole allows the interruption of auto­
matic operations and the institution of
change s in their course or the sub­
stitution or insertion of other oper­
ations.

Univac Supervisory Control Printer

FIGURE 3

The Univac Supervisory Control Prin­
ter (Figure 3) is a modified electric
typewriter which prints information
directly from the Central Computer.
Its primary function is to provide the
operator, in easily readable form l in­
formation concerning the processing
being performed wit h i n the Central
Computer. This unit is sometimes
employed for printing processing re-

suIts; however, it is used for this pur­
pose only when the information to be
printed is not lengthy.

Univac Input Device s

The function of Univac II input device s
is to convert information from its ori­
ginal form into Univac II System code
recorded on magnetic tape. These
device s are completely independent
of the Central Com put e r, so that
while the input device s prepare data
for future use by the computer, the
compute r,itself, is free to carryon the
current processing problems. This
ability to ove rlap input preparation and
compute r processing represents a
large saving of time and thus money,
for the use r.

Uni vac Unitype r II

FIGURE 4

The Univac Unitype r II (Figure 4) is a
device by means of which information
legible to its human ope rator can be
recorded on magnetic tape. This de­
vice is somewhat larger than, though
similar in appearance to, an electric
typewriter. The 26 letters of the al-

iii

phabet, 10 numerals, and some spe­
cial Univac II System Symbols are
repre sented on the keyboard of this
device in an array similar to the fa­
miliar typewrite r keyboard patte rn.

Striking a Unitype r II key cause s:

1. A pattern of magnetic spots re­
pre senting the Univac II System
Code for the characte r repre­
sented on the key to be recorded
on a magnetic tape mounted in
the upper portion of the device,
and

2. That character to be printed on a
piece of copy paper mounted on
the carriage.

Thus, recording information on mag­
netic tape with the Unitype r II invol ve s
little more than a retyping of the in­
formation. Information is tape - re­
corded by the Unityper II at a density
of 50 characters per inch with a 2.4
inch spacing between each consecutive
120 characters.

Univac Verifier

FIGURE 5

The Univac Verifier (Figure 5) is a
unit of pe riphe ral equipment which
can operate in anyone of two capa­
cititie s:

1. As a primary input device which
records information on magnetic
tape by means of a typewrite r
keyboard in ve ry much the same
manner as the Unityper II.

2. As a proof reading device which
corroborate s information recor­
ded on tape and permits the cor­
rection of detected errors.

Its primary use is as a proof reading
and correcting device. Information is
recorded by the Verifier at a record­
ing density of 50 characters per inch
with a 2.4 inch spacing between each
120 characters.

Univac Pun c he d Card-to-Magnetic
Tape Converter

FIGURE 6

The Univac Punched Card-to-Magnetic
Tape Converter (Figure 6) consisting
of a card Reading Unit, a Control Unit
and a Tape Unit, allows the entry of
information into the Univac System
in pun c he d card form. Ca.rds are
loaded into the intake bin of the Card
Rea din g Unit, and the information
read from the ca rds is recorded on
magnetic tape. The entire process is
accomplished automatically and its
operation is completely self-checked
to ensure complete accuracy of the re­
corded information. The Converter
is equipped with a removable plug-

iv

board which allows automatic rear­
ranging of information during the con­
version process.

Univac Pun c he d Card-to-Magnetic
Tape Converters are offered in two
models. One handles standard 90-
column punched cards; the othe r
handles standard 80-column punched
cards. Both models operate at a max­
imum conversion rate of 240 cards
per minute and record information
at adensity of128 characters per inch
with a 1. 8 inch space between each
120 characters, and a 2.4 inch space
between each 720 characters.

Univac Paper Tape-to-Magnetic Tape
Converter

FIGURE 7

The Univac Paper Tape-to-Magnetic
Tape Converter (Figure 7) is a de­
vice consisting of a Perforated Tape
Re ad e r, a Translator and Control
Unit, and a Magnetic Tape Recorder.
T his equipment allows information
recorded on paper tape to be entered
directly into the Univac II System.
Reels or message lengths of punched
paper tape generated by teletypewri-
ters, automatic typewriters, adding
or bookkeeping machines with tape
punchers attached, and punched card
to perforated tape converters may be
mounted on the Tape Reader. Infor-

mation con t a in e d on tape s is au­
tomatically translated into Univac II
System Code and recorded on mag­
netic tape. Del e t ion of c e r t a i n
punched paper tape symbols, and ad­
dition of some Univac II System Sym­
bols may be accomplished automati­
cally during the conve rsion proce s s.
The entire operation is completely
self-checked to ensure complete ac­
curacyofthe conversionprocess. The
Univac Paper Tape-to-Magnetic Tape
Converter operates at a m a x i mum
conversion rate of 200 characters per
second and records information at a
density of 128 characters per inch,
placing a one inch space between each
120 characters, and a 2.4 inch space
between each 720 characters.

Univac Input-Output Device s

Univac Uniservo

FIGURE 8

The Univac Uniservo (Figure 8) is the
device through which the Central Com­
pute r c ornmunic ate s with it s magnetic
tapes. A rnaxirnum of 16 Uniservo~

may be directly connected to the Uni­
vac II Central Compute r. Each Uni-

v

se rvo contains a "read-write II head
and mechanism for moving the mag­
netic tape past the head at a speed of
100 inches per second. Each Uniser­
vo is capable of reading tape moving
in the forward direction, reading tape
moving in the b a c k war d direction,
writing on tape moving in the forward
direction, and r e win din g its tape.
Reading from anyone Unise rvo, writ­
ing on any othe r Unise rvo, rewinding
the tape on any humbe r of the remain­
ing Uniservos may be carried on si­
multaneously with Central Computer
processing. Uniservo operations are
controlled by the Central Computer
through programmed instructions.

Univac Output Device s

2nivac II output device s allow the sys­
tem to prepare processed results in
a wide variety of forms. They auto­
matically convert information con­
tained on tape s produced by Central
Computerprocessing into the desired
form. All of the se output device s op­
erate with complete independence of
the Central Com put e r. Thus, the
corn put e r is free to handle furthe r
proce s sing while the res u It s of the
previous problem are being conver­
ted. This ability to overlap conver­
sion and proce ssing ope rations repre­
sents a great saving in time and mon­
ey for the user.

Univac Uniprinter

FIGURE 9

The Univac Uniprinter (Figure 9) con­
sists of a Tape Reader and a Printing
Unit which is a modified electric type­
writer. Areelof magnetic tape, con­
taining the information to be _printed,
is mounted on the Tape Reader. As
information is read from the tape, it
is printed by the electric typewrite r.
The Univac Uniprinter, which accepts
tapes recorded at 2.5 characters per
inch, prints at a rate of 10 characters
per second, and is usually used for
low volume output printing, such as
the preparation of management re­
ports.

Univac High- Speed Printer

FIGURE 10

The Univac High- Speed Printer (Fig­
ure 10) is used for large volume print­
ing. This four unit assembly, con­
sisting of a Tape Reader, a Storage
Unit, a control Unit, and a Printe r,
reads magnetic tape and converts the
information r e cor de d the reon into
printed copy. The High- Speed Prin­
ter prints an entire line at a time.
Each line may contain as many as 130
characters, and printing is accom­
plished at a maximum rate of 600 line s
per minute. A removable plugboard
mounted in the control Unit controls
the format of the p r in ted page and
affords wide flexibility in the arrange­
ment of the printed information, re­
ducingthe editing and thus the proces-

vi

sing time required of the Central Com­
puter. The entire operation of this
device is completely self-checked to
ensure that each character printed is
the e~act one recorded on the magne­
tic tape. It accepts information tape­
recorded at a density of from 50 to 12.8
characters per inch with at least one
inch space between each 12.0 charac­
ters.

Univac Magnetic Tape-to-Card Con­
verter

FIGURE 11

The J~nivac Magnetic Tape-to-Card
Converter (Figure 11) con sis t s of
three units: a Tape Unit, a Card Punch
Unit and an Electronic Cabinet con­
taining the circuitry nece ssary to con­
trol and c he c k the Tap e and Card
Punch Units. This piece of equipment
reads information from magnetic tape
and con v e r t s the information into
standard punched cards at a rate of
12.0 cards per minute. A removable
plugboard permits the selection and
rearrangement of information during
the conversion proce ss. The Univac
Magnetic Tape-to-Card Converter ac­
cepts information tape-recorded at a
densityof 12.8 characters per inch with
at least one tenth inch space between
each 12.0 characters and 2.. 4 inch space
between each 72.0 characters. Its en­
tire operation is corn pie tel y self­
checked to ensure proper conversion.

Univac Magnetic Tape-to-Paper Tape
Conve rte r

FIGURE 12

The Univac Magnetic Tape-to-Paper
Tape Converter (Figure 12) consists

vii

of a Magnetic Tape Unit, a Translator
and Control Unit, and a Paper Tape
Punc h. It punches information re­
corded on magnetic tape into paper
tape. The punched paper tapes may
then be used directly to send infor­
mation via a te letypewrite r.

As with all Univac II equipment the
ope ration of the Magnetic Tape -to­
Paper Tape Converter is completely
self-chec ked to ensure accurate con­
version. This conversion is accom­
plished at a maximum rate of 60 char­
acters per second. It accepts infor­
mation recorded at a density of 128
characte rs pe r inch with at least a 1
inch space between each 120 charac­
ters.

INTRODUCTION

The MATH-MATIC system was
developed in res p 0 n s e to the
need for an algebraic language

compiler for Univac. Today vast and
complex mathematical problems may
be solved in hours or minutes by the
computer, once the many lines of com­
puter code are prepared. The length
of time consumed in learning to write
a specialized computer code and then
in producing and debugging a fin­
ished program was a major obstacle
to efficiency. MATH-MATIC is de­
signed to overcome this obstacle and
make UNIV AC easily available to pro­
grammer and non-programmer alike
for a wide range of mathematical ap­
plications. The system accepts as its
input an orderly presentation of the
problem in a pseudo- code which close­
ly resembles English sentences and
mathematical equations. Anyone who
can state his problem logically can
write aMATH-MATIC program forit.
The system relieves the user of the
burdensome details of storage allo­
cation, keeping track of addresses,
and arranging for segments of code
on the running tape. The system has
access to an extensive library of com­
puter- coded subroutines for quickly
calculating mathematical functions,
and performing the necessary input­
ou tpu t and control operations. The
system assembles these subroutines
into a running program which will pro­
duce the desired results without fur­
ther human intervention.

This manual is a complete practical

1

guide for the use r of the system. For
detail s on the inte rnal ope ration of the
system and pe rtinent information on
how to add to the subroutine library,
see the MAT H -MATIe PROGRAM­
MER I S MANU AL. (To be issued
later). In the first chapter of the pre­
sent manual, we have tried to impart
over-all familiarity with the use of the
system and its pseudo code. Chapter
II follows with the specific formats and
rules for the sentences and Chapter III
contains the com pIe t e repertoire
of MATH-MATIC expressions, and
their formats and rules. T his re­
pertoire is extensive, and may be ex­
panded very easily. Chapter IV pro­
vides all the information needed in the
preparation of input data. Chapte r V
gives procedures to follow if a special
problem goe s beyond the pre sent re­
pertoire; in most cases, this chap­
ter may be omitted. Chapter VI
contains the operating instructions for
Ct MA TH-MA TIC compilation and pro­
blem run, and other general informa­
tion about the system. Normal and
err 0 r printouts which occur during
compilations and problem run s are
found in the Appendix.

We feel that this approach will lead
to quick and efficient utilization of the
system by people with mathematical
training who have had little or no pro­
gramming experience. Those with
more training in the programming
field will find the flexibility and scope
of the pseudo- code adequate to handle
the most intricate problem.

I

~:H:.A.. T IS J.v.[.A.. T:H:-J.v.[.A.. TIC FSE"U"DO CODE

MAT H -M A TIC pseudo-code is
a set of words, numbers, and
symbols arranged to give a com­

plete, logical statement of a problem.
The primary unit of pseudo-code is
the sentence. There are three types
of sentences; input-output, control,
and equation. Input- output sentenc es
cause data to be read into the memory
from tape, or information in the mem­
ory to be written on tape. Control
sentences determine the various paths
taken through the program during run­
ning. Ordinarily, the sentences,
which are numbered in ascending or­
der, are executed in that order. Con­
trol sentences can alter this chain of
execution in any way the user desires.

Equation sentences are stated as ex­
plicit algebraic equations subject to
certain conventions listed in Chapter
II. The left member of the equation
must be the dependent variable, fol­
lowed by an equal sign. On the right
side of the equation appear the va­
rious mathematical functions of the
independent variables that are needed
to calculate the value of the dependent
variable. Some examples of equation
sentences follow;

(10) X = (IS*Y+3*Z)jSIN A

(6) XII) = A(I)+B(J, I) .

(11) VARIANCE = SUMSQUARESj
10-MEAN2 .

Input-output and control sentence stake
the form of English imperative state­
ments. The first word of the input­
output or control sentence tells the
system the general type of command

2

being given. The remaInIng words in
the input-output or control sentence
give further details about this com­
mand, and supply the names of rele­
vant parameters and variables. Some
examples of input-output and control
sentences follow;

(1) READ A B r::

(20) IF X> Y JUMP TO SENTENCE
8 .

(12) EXECUTE SENT E NC E 4
THRU 8 .

(6) VARY J I (1) 20 SENTENCE
11 THRU IS .

Certain conventions and rules regard­
ing the insertion of space s, paren­
theses, and periods into input-output
and control sentences are necessary
for the system to inte rpret the pseudo­
code correctly. The se rule s are listed
in detail in Chapter II. The user should
note the flexibility in naming a vari­
able; any single letter or combination
of letters and numbers (starting with
a letter) up to 1.2 digits can be handled.
Constants may be stated as integers,
fractions, decimals, or in power of
ten form. One, two or three dimen­
sional arrays of numbers can be read
in from tape or constructed in mem­
ory. The elements of the array are
referred to by the familiar notation
of subscripts; these, in turn, may be

variables or constants. Four exarn­
pIes follow in which typical problems
are described and the Mat h -M at i c
pseudo-code statements of the prob­
lems are given.

Sample Problem 1:

Solve:

y - X
3

(2+X) - ~3P
- 3 Cos A

for P running from 0.2 to 0.8 in
increments of 0.2, A running from
0.35 to 1. 05 in increments of .175
and X running from 1. 8 to 3. 8 in
increments of 0.5

A MAT H - MAT I C pseudo-cude
statement of this problem is as fol­
lows;

(1) V A R Y PO. 2 (0 . 2) O. 8
SENTENCES 2 THRU 5 .

(2) V A R Y A 0.35 (0. 1 75) 1. 05
SENTENCES 3 THRU 5 .

(3) V A R Y Xl. 8 (0. 5) 3. 8
SENTENCES 4 THRU 5 .

(4) Y = X 3 *(2+X)/(3*COS A)-4
ROOT (3*P) .

(5) WRITE AND EDIT Y X A P .

(6) STOP.

Sentence 1 will set P to its initial va­
lue, 0.2, and will insert following sen­
tence 5 a control operation which will
add the increment, 0.2, to P and re­
turn control to sentence 2. When P
exceeds its limit value of O. 8, control
will jump to the next operation fol­
lowing this control, in this case sen­
tence 6. Sentences 2 and 3 will per­
form similar functions for A and X.
The range components in these three
sentences indicate that sentence 3 lies
within the range of sentence 2, and
sentence 2 lies within the range of sen­
tence 1. This ne sting of loops means
that X, the variable of the innermost
loop, will take on all of its values,

3

for each value of A and P. When the
value of X exceeds its limit value, A
will be inc remented and X will be re­
set to its initial value. P will be in­
c remented and A and X will be re set,
each time A exceeds its limit. In this
way 100 values of Y will be computed
and written. Sentence 6 will supply
the nece ssary sentinels for the output
and stop the program.

Sample Problem 2:

We have m samples of 10 values each
of a statistical variate. A sentinel of
ZI S follows the last sample on the tape.
We wish to calculate the mean and va­
riance of each sample and edit the out­
put for a uniprinter.

10

LXi
MEAN = ..:..i....;=1 __

10

fX;
VARIANCE = --'-..i=...:...1 __

10

2
- (MEAN)

We will let the system allocate the
input and output servos. The Math­
Matic pseudo-code for this problem
would be:

(1) READ-ITEM X(10) IF SENTINEL
JUMP TO SENTENCE 11 .

(2) SUM = 0 .

(3) S UMSQUARES = 0 .

(4) VARY I 1 (1) 10 SEN TEN C E 5
THRU 6 .

(5) SUM = SUM+X(I) .

(6) S~SQUARES = SUMSQUARES+
X(I) .

(7) MEAN = SUM/I0 .

(S) VARIANCE = SUMSQUARESjlO­
"!ViEAN2

(9) WRITE AND EDIT FOR UNIPRIN­
TER MEAN VARIANCE

(10) JUMP TO SENTENCE 1

(ll) STOP.

Sentences 1 and 9 are input-output
statements; sentences 4, 10, and 11
are control statements. The re st are
all equations. The 10 -quantity array
read in by sentence 1 will occupy 20
words of storage, since all numbers
inside the Math-Matic system are in
2 word floating decimal form. There­
fore, every time sentence 1 is execu­
ted, the next 20 word item is moved
to the current item position. These
items are automatically read from the
input tape in 60 word blocks, when­
ever necessary. The user should con­
sider the input items available one at
a time as the READ sentence is execu­
ted.

The V A R Y in sentence 4 gives I an
initial value of 1 and ins e r t 5 after
sentence 6 a routine which will incre­
ment I by 1 and return control to sen­
tence 5, until I exceeds the limit, 10;
then control passes to sen ten c e 7.
That is, sentence s 5 and 6 are execu­
ted 10 times, with I = 1, 2, ... , 10.
The system automatically place 5 a
sentinel on the output tape following
the last valid output item, checks the
readability of the out put tap e, and
prints out the number of blocks of out­
put on the tape. The supe r sc ript sym­
bol 2 which appears in sentence s 6 and
8 can be unityped. The method of uni­
typing them is discussed later in the
chapter.

Sample Problem 3:

A is a 50X12 matrix, and B is a 12X20
matrix. We want to calculate matrix

4

D = AxB. We wish to produce two sets
of output, one edited for printing and
the other unedited for future calcula­
tions. We also wish to print out the
element of D with the largest absolute
value. We prepare the 240 elements
of ~) on a tape arranged continuously,
one row afte r anothe r. The individu­
al rows of A follow on the same tape
and a sentinel of Z' 5 is placed in the
first word after the last valid item.
We have arbitrarily chosen Servo 3
for the input tape, and we will allow the
system to select the output se rvos for
us. The following is a Math-matic
pseudo-code for this problem;

(I) READ-ARRAY B(l2,20) SERVO
3 .

(2) LARGE ST = 0 .

(3) READ-ITEM A(12) SERVO 3 IF
SENTINEL JUMP TO SENTENCE
15.

(4) V AR Y I 1 (1) 20 SEN TEN C E 5
THRU 9.

(5) D(I) = 0 .

(6) VARY J 1 (1) 12 SENTENCE 7

(7) D(I) = D(I) + A(J) *B (J, I) .

(8) IF ID(I) I > LARGE ST, JUMP TO
SENTENCE 13.

(9) IGNORE.

(10) WRITE-ARRAY D(20)

(11) WRITE-ARRAYCONVERTED
D (20)

(12) JUMP TO SENTENCE 3

(13) LARGEST = D(I) .

(14) JUMP TO SENTENCE 9

(15) PRINT-OUT LARGEST.

(16) STOP.

Sentences 1, 3, 10, and 11 are input­
output sentences; 2, 5, 7, and 13 are
equations, and the rest are control
sentences. Sentence 1 reads in the
entire B matrix; sentence 3 reads in
one row at a time of the A matrix.
When the sentinel item of A is reached
the computer shifts to finishing up op­
erations. Sentence 2 give s an initial
value to the current large st element.
Sentence s 8, 13, and 14 keep "LAR­
GE ST" up-to-date by substituting for
it any element whose absolute value
is greater. Sentence 5 gives each
liD" element a starting value of zero
before the summation in sentence 7
calculate s the true value. Sentence 4
gives I an initial value of 1, and places
after sentence 9 a routine which will
inc rement I by 1 and return to sen­
tence 5 until I exceeds the limit, 20;
then this routine lets control pass to
the next sentence. That is, sentences
5 to 8 are repeated for I = 1, 2, ... 20.
Similarly, sentence 7 is repeated for
J = 1, before control moves on to sen­
tence 8. Sentence 15 p r i n t s out, in
floating decimal form, the 1 a r g est
element of D and sentence 16 tells the
system the problem is finished. The
system then automatically checks the
readability of the information on the
output tapes and prints out the num­
ber of b 1 0 c k s on each. The w 0 r d
"CONVER TED" in sentence 10 means
edited with a properly placed decimal
point. The system as sume s WRI TE' s
(WRITE-ITEM's WRI T E -ARRAY's)
are for high speed printer unless
otherwise specified.
Sample Problem 4:

We have 2 input tape s; one contains
n set s of value s of A, Band C with a
sentinel of Z's after the last set. Be­
ginning with the block after the senti-

5

nel, this same tape contains m sets
of values of F, G, Hand N. Again:
a sentinel follows the last set. The
other input tape contains p sets of va­
lues of D and E; P = max(m, n). We
wish to evaluate Xl where,

Xl = (7000*Y*A*Sinex)3

BD + CE

where the value of a is typed in during
the problem run. Y as sume s all the
values 1. 0, 1. I, 1. 2, ... 3.0 for each
set of values of A, B, C, D, and E,
and the first set of value s of D and E
goes with the first set of A, B, and C.

We also wish to evaluate X2 where,

~-G+logl 0 (D+N)
=

F 2 • 6*eH

where the first set of values of D and
E now goe s with the first set of va­
lues of F, G, H, and N. Edited output
is desired, consisting of A, Y, D, E
and Xl in the first case, and F, D, E,
and X 2 in the second. Only one output
tape is to be used.

The following is a Math-Matic pseudo­
code for this problem;

(1) TYPE-IN ALPHA.

(2) READ A, B, C SERVO 4 STORAGE
A IF SENTINEL JUMP TO SEN­
TENCE 8 .

(3) READ D E SERVO 5 .

(4) VARY Y 1 (0. 1) 3 SENTENCE 5
THRU 6 .

(5) Xl = (7*10
3

*Y*A*SIN ALPHA) 3 /
(B POW O+C POW E) .

(6) WRITE AND EDIT A, Y, D, E Xl
SERVO 6 .

(7) JUMP TO SENTENCE 2 .

(8) C LO S E - INP UT AND REWIND
SENTENCE 3 .

(9) CLOSE-OUTPUT SENTENCE 6 .

(10) REA D F G H N S E R V 0 4
S TOR AGE A IF SEN TIN E L
J U M P TO SEN TEN C E 15 .

(11) EXECUTE SENTENCE 3 .

(12) X2 = (3 ROOT (E-G)+LOG (D+N) I
(F2 . b*EXP H) .

(13) WRITE EDIT F DE X2 SERVO 6 .

(14) JUMP TO SENTENCE 10 .

(15) STOP.

Sentences 1,4,7,14 and 15 are control
state:ments. Sentences 5 and 12 are
equations; the rest are input-output
state:ments. Sentence 8 will rewind
servo 5 and reset Sentence 3 so that
the next ti:me it is executed the first
D. E pair will be brought into storage.
Sentence 9 clears whatever output
ite:ms re:main in :me:mory on to servo
6 and places a sentinel on that tape.
so that anothe r output :may be written
on it. Sentence 11 causes sentence 3
to be executed, after which control
goes to sentence 12. It would have
been per:missible, and :more efficient
to repeat the READ instruction of sen­
tence 3 at sentence 11. READ's in
this pseudo-code are ordinary
READ's, not READ-ITEM's or READ­
ARRAY's because the variables are
listed singly rather than being grouped
in subscripted arrays.

6

A nu:mbe r in power of ten for:m appears
at the beginning of sentence 5 and a
deci:mal exponent appears at the end
of sentence 12. The unityping of these
superscript exponents is discussed in
the next section of this chapter. The
specific rules for the expressions in
control, input-output, and equation
sentences appear in the next chapter.

The letters, digits and sy:mbols ap­
pearing in the sentences of the sa:mple
proble:ms are all on the ordinary uni­
typer keyboard in the sa:me for:m ex­
cept for the sup e r s c rip t s and the
greaterthan (» and less than «) sy:m­
boIs. These 15 sy:mbols (including.
superscript :minus, deci:mal point and
slash) have equivalents on the ordinary
keyboard whose pulse patterns will be
correctly interpreted by the syste:m.
For exa:mple, superscript 2 is repre­
sented by a "t" on the keyboard. A
list of these equivalents appears in
the appendix to this :manual. How­
ever, a :modified keyboard :may be ob­
tained fro:m Re:mington Rand Univac
which will produce the intended super­
script or other special sy:mbol on the
typed copy. The use of the list of
equivalent for >, <. and nu:merical
exponents brings everyMATH-MATIC
pseudo-code within range of the or­
dinary Unityper keyboard. No special
training is required to type pseudo­
code or to check it.

The experienced progra:m:mer will
occasionally desire to write a progra:m
for a special proble:m which goes be­
yond the present MATH-MATIC re­
pertoire. There are two types of code
other than MATH-MATIC pseudo-code
which :may be e:mployed; the inter:me­
diate code of MATH-MATIC, known
as Arith-Matic pseudo-code, and the
fa:miliar Univac code. called C-IO.
A group of line s of A r i t h - Mat i c
pseudo-code :may be inserted into the

body of a MATH-MATIC pseudo-code
bymeans of a "COMPILER" sentence.
A "COMPUTER" sentence causes a
similar insertion of any number of
lines of Univac C-lO code. These are
discussed thoroughly in Chapter V.
Both COMP UTE R and COMPILER
-Eections may refe r to any variable ap­
pearing elsewhere in the problem or

7

to any constant, by means of a direc­
tory. Examples and rules of the two
sections and the directory appear in
Chapter V. Because of the flexibili­
ty and scope of the MAT H - MAT I C
pseudo-code, these special sections
will rarely be needed, and the Chap­
te r on them may be safely omitted by
those not familiar with UNIVAC.

II

HOVV TO VVR:rTE ~.A.TH-~.A.T:rC PSE1:.:TDO-CODE

Certain formal rules must be fol­
lowed in writing Mat h - Mat i c
pseudo-code. These rules are

the minimum consistent with the two
objective s of the pseudo-code; avoid­
ing logical ambiguity in the system and
stating the problem intelligibly for the
future reference of the user. Those
rules and formats which apply to par­
ticular sentence s and functional call
words are given in Chapter III along
with a complete repe rtoire of the sen­
tence s and functional call words.

All rule s and formats m\lst be strictly
adhered to, or error printouts or mis­
interpretations by MATH-MATIC will
result. Some of the errors can be
rectified by type-ins but the user
should not depend on this. Thorough
study of the rule s, and a careful check
of the pseudo-code are strongly rec­
ommended for efficient use of compi­
ling time. We repeatthe last example
of the previous chapter with some mi­
nor change s in the numbe ring of the
sentence s.

(2) TYPE-IN ALPHA.

(2A) READ ABC SERVO 4 STOR­
AGE A IF SENTINEL JUMP TO
SENTENCE 8.

(3) READ D F SERVO 5 •

(4) VARY Y 1 (0.1) 3 SENTENCE 5
THRU 6 •

(5) Xl = (7*103*Y*A*SIN ALPHA) 3 /
(B POW D+C POW E) •

8

(6) WRITE AND EDIT A Y D E Xl
SERVO 6 .

(7) JUMP TO SENTENCE 2A .

(8) C LO S E - INP UT AND REWIND
SENTENCE 3 •

(9) CLOSE-OUTPUT SENTENCE 6 •

(10) READ F G H N SERVO 4
S TOR AGE A IF SEN TIN E L
JUMP TO SENTENCE 20.

(11) EXECUTE SENTENCE 3 •

(12) X2 = (3 ROOT (E-G)+LOG (D+N)) /
(F2 • 6*EXP H) •

(13) WRITE EDIT F D F X2 SERVO 6 •

(16) JUMP TO SENTENCE 10 •

(20) STOP.

The following rule s apply to all sen­
tence s:

1. Every sentence must start with a
sentence number enclosed in pa­
renthe se s and followed by a space.
The sentence number may be any
integer from 1 to 999, with or
without an appended alphabetic.
e. g., (65), (270) , (3A) , (9lQ) ,
(8l0N).

2. The sentence numbers must be in
ascending order, but need not be
consecutive. (Note the last two
sentences of the example). Sen-

tence 3 precedes sentence 3A, and
sentence 3A precedes sentence 4.

3. When writing MAT H - MAT I C
pseudo-code, the user ITlay ignore
entirely the positions of the words
and sentence s within UN I V A C
words and blockettes. Sentence,
words and name s of variable s ITlay
begin in any part of a word or
bloc kette, and ITlay ove rlap the
following word or blockette.

4. Every sentence ITlust end with a
spa c e, followed by a pe riod ..
"6. ". Any nUITlbe r of spac e s ITlay
appear directly before the period
and any nUITlber of spaces Il'lay
COITle between the period of one
sentence and the left parenthe sis
of the next sentence nUITlber. In
the exaITlple, each line is filled
with spaces after the period, so
that the sentence s ITlay appear one
under another.

5. The last sentence in a pseudo-code
ITlust be "6S TOP6. ".

6. When sentence nUITlbers appear as
references, as in sentence 5, 8,
and 9, they should not be sur­
rounded by parenthe se s.

7. A deciITlal quantity with no integral
part should be stated with a zero
preceding the deciITlal point; e. g. ,
O. 3561, and O. 0024, not. 356 and
.0024. This rule avoids the unin­
tentional use of a space -period
cOITlbination which would tell the
systeITl to end the sentence.

8. A variable ITlay be any letter, or
any cOITlbination of letters and di­
gitsbeginningwith a letter. A va­
riable ITlay not consist of ITlore
than 12 digits and letters.

9

9. Aconstant ITlay appear as aninte­
ger, deciITlal, fraction, or in pow­
er of ten notation~ 300, 300.00,
3000/10 and 3*10 are alliegi­
tiITlate forITls of the saITle nUITlbe r.
No ITlO re than 11 digit s ITlay .be
written in anyone nUITlber.

RULES FOR WRITING EQUATIONS

1. Every equation ITlust begin with
6X6=6 ••• , whe re "X" is anyone
variable (with 0 r without sub­
sc ripts). Space s ITlust surround
both the va ria b I e and the equal
sign.

2. The re st of the equation consists
of operation signs, functional call
words, variables, nUITlbers, and
exponents. Space s ITlust not be
used except to separate functional
call words froITl their arguITlents.
as IISIN6ALPHAII and IIB6POWW"
in sentence 5.

3. Allowable operation signs are +,
, *(Multiplication), /(division),

1 .. 1 (absolute value sign), and
pairs of parenthe se s, which have
the usual algebraic significance
of causing the operations inside
theITl to be perforITled first. One
equation ITlay contain up to 100
operation signs, functional call
words and exponents.

4. The asterisk (*) for ITlultiplication
ITlust appear wherever a product
is de sired. The systeITl cannot
infer a product froITl the position
of the nUITlbe r and v a ria b I e s •
e. g., 5*A ITlust be written, not
5A or 5. A.

5. Whenever in the absence of paren­
theses a choice exists regarding
the order in which to perform in­
dicated operations {e. g., should

A*B+C be considered (A*B)+C or
A*(B+C)?), the system gives pri­
ority to these 3 classes in order.

a. functional call words and ex­
ponentiation.

b. * and /.

c. + and -

Within each class the order of ex­
ecution is left to right. Two brief
example s will illustrate:

X/y* Z me~ns (X/Y) * z

LOGilA*B+C means (B*LOGilN
+ C.

6. Parenthe se s should always be used
to clarify the order of execution.
No harm re suIts from the inclu­
sion of unnecessary parentheses
as long as they are pro per 1 y
paired.

7. Positive or negative numerical ex­
ponents are expressed directly as
superscripted integers, decimals

f · X5 X- 3 or ractlons; e.g., ,
X 3• 47 , X3/5. Literal exponents
require functional call words, like
"POW" in sentence 5.

8. Any va ria b 1 e appearing on the
right side of an equation must have
been given a value by a previous
sentence. Y, ALPHA, A, B, C,
D and E are right hand variable s
in sentence 5. Y was defined by
the VARY in sentence 4, ALPHA
by the TYPE - IN of sentence 1,
and A through E by the READ's of
sentence s 2A and 3. Sentence 5
itself define s Xl.

9. The one variable on the left side,
or any of the va ria b 1 e s on the
right side, may be subscripted as

10

long as the array (from which an
element is being selected) is de­
fined e 1 sew her e by aRE AD -
ARRAY, READ-ITEM, WRITE­
ARRAY, WRITE-ITEM or CaN­
T AIN sentence.

10. The MATH-MATIC system will
consider a variable subscripted if
a left parenthe se s immediately
follows the variable. The sub·
scripts are assumed to follow in
order, separated bycommas, with
a right parenthesis following the
last subscript. The subscripts
may be constants, variable s, or
functions of variable s involving
only the four basic arithmetic op­
erations.

Examples:
X(I, J, K) Y(3*A+l,5)

X(J,3,I) Y(A+B+C+2, D)

X(2*I) Y(Q*R)

11. The subscripted variable, inclu­
ding the parenthe se s and the sub­
script functions may not exceed 12
digits.

Rule s for input-output sentence s

1. If the variable s are listed indivi­
dually, as in sentences 2A, 3, 6,
10, and 13, a READ or a WRITE
sentence must be used. If the va­
riable s appear as a subsc ripted ar­
ray, as in the second sample prob­
lem of the previous c h a pt e r, a
READ-ARRAY .. RE AD - IT EM,
WRITE-ARRAY, WRITE-ITEM,
or CON T A I N sentence must be
used. The se are called the sub­
script input-output sentences.

2. In any ordinary input-output sen­
tence, up to 50 variables may be
listed.

3. The subscripts in a subscript in­
put-output sentence must be inte­
gers' and not variables. There
may be one, two or three sub­
scripts; their product, which de­
termines the number of elements
in the array, must not exceed 250.*

4. SERV06(l through 9 or -) or
S TORAGE6 (A through Z, but not
W) or both SERV06 and STOR­
AGE6, either one fir s t, may be
specified in any input-output sen­
tence. Both specifications must
appear after the list of variables,
or after the subscript array.

5. The system will assign a new servo
to any input or output sentence in
whichno servois specified. Since
one servo must be reserved forthe
running program tape, a maximum
of nine se rvo s are available to the
input-output sentence s. Unle ss
the use r de sire s to give two input­
output sentences the same servo,
there is no need to specify servos.

6. The use r may put seve ral input s on
the se rvo, seve ral output s on one
se rvo, or he may use an output as
an input later in the problem. He
may also use the same input more
than once. To accomplish any of
these duplications, the same servo
must be specified in the sentence
involved. Also the appropriate "IF
SENTINEL" option or CLOSE-IN­
PUT or CLOSE-OUTPUT sentence
must be used to position tape s or
insert sentinels. See the next
chapter for details.

7. The system will assign an adequate
storage area to every input-output
or CONTAIN sentence regardless
of whether "STORAGE" is speci­
fied in the sentence. There is a
'Tlaxi:numof 660 words (330 quan­
titie s) a v ail a b 1 e fo r stor age

However, the system requires an
indete rminate amount of storage
for constants and partial re suIts.
The user must establish a safe
limit under 660 words for all in­
put-output and CON T A I N sen­
tence s combined. An error print­
out during compilation will inform
the user if the pseudo-code has
exceeded the limit of 660 words.
If the Univac II Master tape is em­
ployed, the storage maximum is
increased to 1700 words.

8. If two input, output, or CO NT AIN
sentences can be safely assigned
the same storage area, then the
user should specify the same stor­
age because this will save memory
space and inc rease tape handling
efficiency. Sentence 2 and 10 of
the sample problem at the begin­
ning of this chapter illustrate this
point.

9. Except in the case of edited output,
the storage letter named by the
user applie s to the entire area that
the system reserves for the sen­
tence. Where 15 or fewer quanti­
tie s are being edited, a storage
letter named by the user applies
to the edit block, and not to the
s tor age area of the quantities.
Where 16 or more quantitie s are
being edited, the s tor age letter
applie s to the storage area of the
qua n tit i e s, and not to the edit
block. In this case one edit block
is shared by all edit sentences (of
16 or more quantities) regardless
of storage des i g nat ion s by the
user.

10. Whenever two output sentences of
16 or more quantities, edited or
unedited, h a v e the same list of
variables or the same subscript
array, the system assigns the
same s tor age area to the set of
quantitie s in the two sentence sun-

*For UNIVAC II. this limit is increased to 800.

11

less the user specifies different
areas.

11. ~IF SEN TIN E L J U M P .•• , IF
SENTINEL RESET AND JUMP ••• ,
or l::JF SENTINEL REWIND AND
JUMP .•. , option may be inclu­
ded in any READ6 or READ-ITEM6
sentence. If present, this phrase
must appear at the end of the sen­
tence.

12. The dash in the middle of the ex­
pressions READ-ARRAY, READ­
ITEM, WRITE-ARRAY, WRITE­
IT EM, C LOS E - IN PUT, and
C LOS E -0 U T PUT mu st not be
omitted or changed to a space.

13. A space must appear between all
words and all variable s in any in­
put-output sentence. Any number
of unnece ssary space s may be in­
cluded, and commas may be subs­
tituted for spaces at any time.

14. A maximum of 40 input-output sen­
tences in one pseudo-code is per­
mitted •.

15. In any WRITE, WRITE-ITEM, or

12

WRITE-ARRAY sentence, whether
edited or not, the output will be
written for the high speed printer
unless the phrase "FOR UNIPRIN­
TER" appears in the sentence.

16. "CONVERT" and "FOR UNIPRIN­
TER" may not appear in the same
output sentence.

Rules governing control sentences

1. All words, variables, and signs of
comparison must be preceded and
followed by space s. Commas or
semicolons may be substituted for
spaces at any time, except im­
mediately following the first word
in the sentence.

2. A variable used as a subscript may
appear in any sentence whose for­
mat include s variable s. X(3,4)
and X(I, J) are subscripted vari­
ables. I and J in the latter ex­
pression are variables used as
subscripts. Subscripted va ria­
bles may app ear only in IF and
PRINT-OUT sentences.

III

lVL.A. T:H:-JYL.A. TIC R,EPER, TOIR,E

The first part of this chapter is de­
voted to a complete list of formats
of the functional call words, con-

trol sentences, and input-output sen­
tences pre sen t 1 Y available to the
MATH-MATIC system. In this list no
attempt has been made to indicate all
the options and parameters allowed in
each call word or sentence. In the
second part of this chapter, contain­
ing the functions and rules of each call
word and sentence, the range of allow­
able options and parameters is dis­
cussed in detail. A list in the appendix
shows every individual option avail­
able in the pseudo- code. The user is
advised to refer to Chapter IV on "Data
Preparation and Formats" when writ­
ing input-output sentences in pseudo­
code. Otherwise, the discussions of
functions and rules of call-words and
sentences and the general rules given
in Chapter II contain all the necessary
information for writing pseudo-code.

FUNCTIONAL CALL WORDS

TRIGONOMETRIC FUNCTIONS

Pseudo-code Call-word Function

1. SIN6A sine A

2. COS6A cosine A

3. TAN6ALPHA tangent ex

4. COT6A cotangent A

5. SEC6B secant B

6. CSC6B cosecant.B

13

7. ARCTANl0(tan- l X

HYPERBOLIC FUNC TIONS

Pseudo-code Call-word Function

8. SINH~A sinh A

9. COSH~A cosh A

10. TANH6A tanh A

EXPONENTIAL AND LOGAru­
THMIC FUNC TIONS

Pseudo-code Call-word Function

11. A6POW6B AB

12. Al'i.INTPOW6B AB
(B integral)

13. N6ROOT6A {IA

14. SQR6A vA

15. EXP6A e A

16. LOG6A loglOA

17. LN6A logeA

CONTROL SENTENCES

1. CONT AIN X(m, n).

Z. EXECUTE SENTENCE F THRU
L.

3. IF X = Y JUMP TO SENTENCE
F.

4. JUMP TO SENTENCE F.

5. PRINT-OUT X Y Z.

6. TYPE-IN ABC.

7. VARY X Xo (Xi) XL SENTENCE
F THRU L.(increment type).

8. VARY X Y Z X O' YO' ZO,Xl , Yl ,
ZIt ••• , X n , Y n' Zn, SENTENCE F
THRU L. (list type) •

9. IGNORE,

10. STOP,

INPUT-OUTPUT SENTENCES

1. READ ABC.

2. READ-ARRAY X(m, n).

3. READ-ITEM X(m, n, p).

4. WRITE ABC.

5. WRITE-ARRAY X(m, n, p).

6. WRITE-ITEM X(m, n).

7. WRITE EDIT ABC.

8. WRITE-ARRAY EDIT X(m, nl.

9. WRITE-ITEM EDIT X(m, n, p).

10. CLOSE-INPUT SENTENCE F.

11. CLOSE-OUTPUT SENTENCE F.

FUNCTIONAL CALL WORDS

Tri2'onometric Functions:

Call word Function

SIN6A sine A

COS6A cosine A

14

TAN6A tangent A

COT6A cotangent A

SEC6A secant A

CSC6A cosecant A

ARCTAN6A arctan A

Rules:

1. A is expected to be in radians, ex­
cept in the case of ARC T AN6A,
where the result will be in radians.

2. If A is a function r athe r than a sin­
gle variable, it must be in paren­
theses, e. g., SIN6(A+B), TAN~
(2*A) •

3. The user is responsible for seeing
that the parameters of functional
call words do not take on values
during the problem run which would
cause the function to become infi­
nite, such as A=O in CSC6A. An
error printout will occur and the
computer will stop.

Hyperbolic Functions:

Call-word Function

SINH6A sinh A

COSH6A cosh A

TANH6A tanh A

Rules:

1. A is expected to be in radians.

2. If A is a function rather than 2:. sin­
gle variable, it must be in paren­
theses e. g., SI~H6(A +B':'C).

Exponential and Lo!;,arithmic
Functions:

Call-word Function

MPOW6B AB

A6INTPOW6B AB

N6ROOT6A {fA

SQR6A VA

EXP6A e A

LOG6A loglOA

LN6A logeA

Rules:

1. B, with the call word I N T PO W ,
must take on integral values, with
IBI < 100. N must be a positive in­
teger or must take on integral
values, with N < 10.

2. If A, B, or N is a function rather
than a single variable or constant,
it must be in parentheses: e. g. ,
(3*A)6PO W 6(B+C), EXP6((A) 2+
(B) 2).

3. The user is responsible for seeing
that the parameters of functional
call words do not take on values
during the problem run for which
the fUnction is infinite or under­
fined, such as A= --3 in SQR6A or
LOG6A. An error printout will
occur and the computer will stop.

CONTROL SENTENCES

CONTAIN

Formats:

(n) CONTAIN X(m, n) •

(n) CONTAlNX(m, n, p) STORAGE A.

15

Example:

(5) CONTAIN X(20) STORAGE A.

Functions:

This sentence causes MATH-MATIC
to set aside adequate storage for the
subscript array in the sentence. If
the elements of a subscript array are
referred to in an equation without the
sub s c rip t array appearing in any
READ-ITEM, READ-ARRAY,
WRITE-ITEM or WRITE-ARRAY sen­
tence, a CONTAIN sentence must be
written for the subscript array.

Conventions:

1. The CONT AlN sentence may ap­
pear anywhere in the pseudo-code
before the S TOP sentence.

Rules:

1. The subscript array in a CONT AlN
sentence may imply from one up to
250 elements. A list of variables
may not appear in a CONTAIN sen­
tence.

EXECUTE

Formats:

(n) EXECUTE SENTENCE F.

(n) EXECUTE SENTENCES F THRU
L.

Example:

(15) EXECU TE SENTENCE 23 THRU
30.

Function:

When sentence n is executed, control
is transferred to sentence F. In the
"EXECUTE SENTENCE F" case, af-

ter sentence F is executed, control is
transferred to the sentence follow -
ing n. In the "F THRU L" case, af­
ter sentence L is executed, control is
transferred to.the sentence following
n.

Conyentions;

1. The ranges of two EXECU TE sen­
tences may overlap each other.

2. If two EXECUTE ranges have the
same last sentence, the one exe­
clUed, last during running deter­
mines what sentence control re­
turns to after sentence L is exe­
cuted. An example follows;

(2) EXECUTE SEN TEN C E 5
THRU 10.

(3)

(4)

(5)

(7) IF A> BJUMPTO SENTENCE
12.

(10)

(12) EXECUTE SENTENCE 10.

(13)

If at sentence 7 control is transferred
to sentence 12, then after sentence 10
is executed, control returns to sen­
tence 13, not sentence 3.

Rules;

1. Sentence n, F and L may occur in
any order in the pseudo-code but
in order of execution F must pre­
cede Land n must be outside the
range F to L.

16

IF

Formats;

(n) IFX> YJUMPTOSENTENCE F.

(n) IFX < Y JUMP TO SENTENCE F.

(n) IF X = Y JUMP TO SENTENCE F.

(n) IF X > = Y JUMP TO SENTENCE
FIF V < W JUMP TO SENTENCE
G.

(n) IF X = < Y JUMP TO SENTENCE
F IF V = W JUMP TO SENTENCE
G IF P > Q JUMP TO SENTENCE
H.

Examples;

(6) IF Z > = 10 JUMP TO SENTENCE
13.

(9) IF A(7, 7) < B(7, 7) JUMP TO SEN­
TENCE 11 IF X > = 7.175*10- 9

JUMP TO SENTENCE 17.

(39B) IF Z > W JUMP TO SENTENCE
24C.

(107Q) IF P(2,4,4) = > 6. 66479*1011

JUMP TO SENTENCE 79.

(41) IF A > B JUMP TO SENTENCE
47 IF H < 0.759431 JUMP TO
SENTENCE 23A IF A = B
JUMP TO SENTENCE 26.

Functions;

When an "IF" sentence with one "if"
clause is executed, a test is perform­
ed for the indicated condition. If the
condition is met (e. g., in the first ex­
ample, if X is greater than y) control
is transferred to sentence F. If the
condition is not met, control moves to
the next sentence after n. If there is
more thanone clause inthe "IF" sen­
tence, the conditions indicated in the

clauses are tested in the order in which
the clauses are written. With each
one, if the condition is met, control
is transferred to sentence F (or G,
H, etc.). If the condition is not met,
the next clause is tested until the
clauses are exhausted. Then control
moves to the next sentence after n.
The phrase "IF6X6>6=6Y6" in
pseudo-code means "IF X 2 Y"or if X
is equal to or greater than Y.

Conventions:

1. Any number of "if" clauses may be
included in an "IF" sentence.

2. The two quantities being compared
in an if clause may be any ordinary
ot subscripted variable with or
without absolute value signs or any
integer, decimal, or power of ten
form.

3. The comparison symbol between
the two compared quantities may
consist of anyone or any two of the
three symbols, <, =, or >. If two
of these symbols are used, they
may appear in either order.

4. If either of the compared quantities
has absolute value signs, MATH­
MATIC takes the absolute value of
both when it performs the compar­
ison; e.g., "IF61xj6> 6 Y 6." functions
like "IF6.jxl6.) 6. IYl 6.. " "IF6.\xI6.)206."
functions the way it appears.

Rules:

1. The sentences F, G, H, etc., may
come before or after sentence n,
but they must appear somewhere
in the pseudo- code.

JUMP

Format:

(n) JUMP TO SENTENCE F.

17

Example:

(lO)JUMP TO SENTENCE 3A.

Function:

When this sentence is executed, con­
trol is transferred to sentence F.

Rules:

1. Sentence F may come before or
after sentence n but it must ap­
pear somewhere in the pseudo­
code.

PRINT-OUT

Format:

(n) PRINT-OUT ABC ••• N.

Example:

(10) PRINT-OUT ALPHA BETA X(K).

Function:

When this sentence is executed, the
values of listed variables will be print­
ed out on the supervisory control
printer in two word floating decimal
form. See Chapter IV on "Formats"
for a discussion of two word floating
decimal form.

Rules:

1. Any number of ordinary or sub­
scripted variables up to 50 may be
listed in a PRINT-OUT sentence.

TYPE-IN

Format:

(n) TYPE-IN ABC ••• N.

Example:

(10) TYPE-IN X Y Z.

Function:

When this sentence is executed, two
type-ins will be set up on the super­
visory control printer for each of the
listed variables. The operator is ex­
pected to type-in the values of the list -
ed variables in two word floating dec -
imal form. See Chapter IV on IIFor_
mats ll for a discussion of two word
floating decimal form.

Rules:

1. Any number of ordinary (not sub­
scripted) variables up to 50 may be
listed in a TYPE-IN sentence.

VARY (increment type)

Formats:

(n) VARY X Xo (Xi) XL SENTENCES
F THRU L.

(n) VARY X Xo (Xi) XL Y YO (Yi) YL

SENTENCES F THRU L.

(n) VARY X Xo (Xi) XL Y YO (Yi) YL

Z Zo (Zi) ZL SENTENCES F
THRU L.

Examples:

(27C) VARY X 5 (0.01) 10 SENTEN -
CES 31 THRU 34.

(9) VARY DX 3. 17493 (3. 14l4'~10 - S)
A SENTENCES 17 THRU 20.

(1S) VARY Y7 0 (5) 100 YS 100 (10)
300 Y9 50 (2) 90 SENTENCES
51 THRU 5IB.

(3) VARY Y I (l0-7)ICI SENTENCES
5 THRU 6.

Functions:

The IIVARY II sentence of the incre-

IS

ment type whose formats are given
above creates the mechanism by which
sentences F through L are executed
repeatedly, each time for different
val u e s of X, X and Y, 0 r X, Y and Z.
The first time sentences F through L
are executed, X = X o, Y = YO and Z =
ZOo Each time sentences F through
L are repeated, X. is added to X, Y;

1
is added to Y and Zi is added to Z.
Sentences F through L are repeated
until the values of the variables ex­
ceed their limits, i. e., until X > XL'
y > y L' and Z > ZL' Then control
passes to the sentence after L.

When sentence n is executed, the var­
iables are given their initial values;
X is set equal to X

O
' and if Y and Z

are also being variea, Y is set equal
to YO and Z equal to Z00 Control then
goes to the next sentence after n. Af­
ter sentence L is executed, each var­
iable is incremented; X is set equal
to X +Xi , and if Yand Z are being var­
ied, Y is set equal to Y +Y i and Z is
set equal to Z+Zi' The variable X is

then tested against its limit XL. If
more than one variable is being var­
ied, the variable named last in the
sentence is tested against its limit.
If X ~ XL' control is transferred back
to sentence F so that sen ten c e s F
through L may be repeated. If X >
XL, control moves to the next sen­
tence after L. If Xi is negative, or if
XL is less thanXO' the above inequal­
ities are reversed; that is, when X 2
XL' control is returned to sentence F
and when X < XL, control passes to
the next sentence after L.

Conventions:

1. The initial value XO, increment
Xi, and limit XL, of the variable
X may themselves be any previ­
ously defined variable with or \7ith-r
out absolute value signs, or any in­
teger, dec i mal or power of ten
form.

Rules:

1. No more than three variables may
be varied by a VARY sentence.

2. Sentences n, F and L may be in
any order in the pseudo-code but
in order of execution L must corne
after F and n must be outside the
range F to L.

3. A VARY sentence and its range of
execution sentences F through L
may be executed any number of
times. The ran g e of one VARY
sentence may be entirely included
in the range of another vary sen­
tence, but two ranges of execution
should not overlap each other.

VARY (list type)

Formats:

(n)

(n)

VARY XXO Xl X2 .•. Xn SE0fTE:N­
CES F THRU L.

VARY X Y Z Xo YO Zo Xl Yl Zl

X 2 Y 2 Z2·· .. Xn Y n Zn SENTEN­
CES F THRU L.

Examples:

(3) V A RY X 1 1. 1 1. 3 1. 6 1. 85 1. 95
2.2 2.7 4.1 SENTENCES 7 THRU
12.

(21) V A R Y P Q R - 4 -1 2 -1 3 7 5 1 9
SE:"JTE0fCES 25 THRU 25 E.

Functions:

The VARY sentence of the list type sets
up the mechanism by which sentences
F through L are executed repeatedly,
each time for a different set of values
of the variable s X, Y, and Z. After
the last set of val u e s, X , Y n' and
Zn, has heen used, controPpasses to
the sentence after L.

19

When sentence n is executed, X, Y,
and 2 are g i v e n their initial values
X O' YO and Z00 After sentence Lis

ex e cut ed, the next set of values is
moved into the positions of the varia­
bles and control returns to sentence
F. When the sets of values are ex­
hausted, con t r 0 1 moves to the next
sentence after L.

BuIes:

1. The values of the variables, XO,
YO, ZO, Xl, Yl, etc. mustbenum­
bers, not variables. The values
may be in integer, dec i mal or
power of ten form.

2. One, two, or three variables may
be varied by a VARY sentence of
the list type.

3. A maximum of 50 values of all the
variables may be listed.

4. It is the user's responsibility to
have an integral number of sets of
value s listed, i. e., the number of
values mustbe evenly divisible by
the number of variables.

5. Sentences n, F, and L may appear
in any order in the problem state­
ment, but in 0 r de r 0 f execution
sentence n must precede sentence
F and sentence F must pre c e de
sentence L.

IGNORE

Example:

(10) IG:::'-JORE.

Function:

This sentence is not executed during
the problem run. It is used in con­
junction with a VARY sentence as an

artificial last sentence of the range of
execution of the V A R Y sentence. It
is needed only when it is desired to
transfer control to a point beyond the
last functioning sentence of the range
but before the '.i.ncrementation of the
VARY sentence.· Sample problem 3
of Chapter I illustrates the use of an
IGNORE statement.

STOP

Example:

(27B) STOP.

Function:

This sentence mu st be the last sen­
tence of the MATH-MATIC pseudo­
code. When this sentence is executed,
MATH-MATIC places an appropriate
sen tin e 1 on each output tape, and
p r i n t s out the number of blocks of
output on each tape. Every servo used
in the problem is rewound and "END
OF RUNM" is printed out. The com­
puter stops.

Rules:

1. The S TOP sentence must be the
last sentence in the pseudo-code.
Only the special COMPUTER and
COMPILER sections, if any are
used, may follow the STOP sen­
tence.

INPUT-OUTPUT SENTENCES

. READ

Formats:

(n) READ ABC.

(n) READABC IF SENTINEL JUMP
TO SENTENCE F.

(n) READ ABC IF SENTINEL RE-

20

SET AND JUMP TO SENTENCE
F.

(n) READ ABC IF SENTINEL RE­
WIND AND JUMP TO SENTENCE
F.

. Example:

(5) READ ABC SERVO 3 STORAGE
A IF SENTINEL REWIND AND
JUMP TO SENTENCE 20.

Functions:

This sentence will assign a new set of
values to the listed variables each time
it is executed. These sets of values,
or input items, must be on tape. The
user must read Chapter IV for instruc­
tions on how to prepare his input data.
D uri n g compilation a print-cut will
tell the user which servo to mount the
input tape on; if a servo has been
specified, su c h as SERV0603 in the
example, this specified servo num­
ber will be printed out. Each of the.
three "I F 6 SEN TIN E L 6" options
means that every time the sentence is
executed, the fir s t word of the new
input item is compared with a word of
z .. Z' s the us u a 1 UNIVAC sentinel.
If the first word does not equal Z .. Z' s,
control moves to the next sentence af­
ter (n). If the first word does equal
Z •• Z' s, what occurs before control
goes to sentence F depends on which
of the t h r e e options was employed.
With "RESET6oAND6oJUMP" MATH­
MA TIC expects to find further input
on the same tape, and the next time
t his READ sentence is executed, a
new set of values for the listed varia­
bles will be read into the me m 0 r y
starting with the next block on the tape.
With i1REWIND6oAND6oJUMP" MA TH­
MATIC expects the same input, whose
sentinel has just been reached, to be
used again. Accordingly, the .servo
is r e w 0 un d, and the next time this
READ sentence is executed, the first

set of values will be read in again.
With "JUMP" MATH-MATIC does not
expect the READ sentence to be ex­
ecuted again and therefore t a k e s no
action. However, a subsequent READ
or READ-ITEM sentence specifying
the sam e s e r v 0 will automatically
start reading val u e s from the next
block on the tape, or from the first
block if the servo has been rewound.
I n all t h r e e "IFLS ENTINELL •.• "
cases, when the sentinel is reached,
control is transferred to sentence F.

Rules:

1. Sentence Fmaycomebeforeor af­
ter sentence n, but it must appear
somewhere in the pseudo-code.

2. A list of from one up to 50 varia­
bles may appear in a READ sen­
tence. No subscript arrays may
be used with a READ sentence.

3. If s e r v 0 or storage is specified,
the words must appear after the
list of variables.

4. If one of the "IFLSENTINELL ••• "
options is used, the w 0 r d s must
appear at the end of the sentence.

5. Two READ sentences having any
variables in common must specify
the same s tor age area and the
common variables must occupy the
same relative position in the two
areas. READ A X B STORAGE A
and READ A X C STORAGE A is
permissible; READ· AB C and
READ D A F, regardless of stor­
age specification, is not permiss­
ible.

READ-ARRAY

Format:

(n) READ-ARRAY X(m, n).

21

Examples:

(1) READ-ARRAY X(lO, 10) •

(6) READ-ARRAY X(2, 3,.4) SERVO 4
STORAGE B.

Functions:

Regardless of where this sentence ap­
pears in pseudo-code, it will be ex­
ecuted before the running pro g ram
begins. It will read from tape into
memory, the values of the number of
elements implied by the subscript ar­
ray. In the first example there are
lOxlO = 100 elements of 200 words; in
the second example there are 24 ele­
ments or 48 words imp lie d by the
array. The user must read Chapter
IV for instructions on how to prepare
his input data, and how to arrange the
elements within an array. During
compilation MA TH- MA TIC will print
out the servo reserved for the array;
if a servo is specified in the pseudo­
code, as SERVOL4 is in the second
example, this servo number will be
printed out.

Rules:

1. Each READ-ARRAY sentence may
be executed only once.

2. Any subscripted array with one,
two, orthree subscripts, implying
from one to 250 elements. may ap­
pear in a READ-ARRAY sentence.
A list of variables may not appear
in a READ-ARRAY sentence.

3. If servo is specified, the words
must appear after the subscript
array.

4. No "IFLS ENTINELL" options are
allowed with a READ-ARRAY sen­
tence.

5. A maximum of s even READ­
ARRAY's in one problem statement
is allowed.

6. The complete name of the subscript
array, including the parentheses
and commas, must not exceed 12
digits in length.

READ-ITEM

Formats:

(n) READ-ITEM X(m, n) •

(n) READ-ITEMX(p) IF SENTINEL
JUMP TO SENTENCE F.

(n) READ-ITEM ALPHA (m, n, p) IF
SENTINEL RESET AND JUMP
TO SENTENCE F.

(n) READ-ITEM B (rn, n) IF S ENTI­
NEL REWIND AND JUMP TO
SENTENCE F.

Example:

(22A) REA D -I T EM MATRIX(3,12}
SERVO 8 STORAGE E IF
SENT INE L REW IND AND
JUMP TO SENTENCE 60.

Functions:

Each time this sentence is executed,
it will assign a new set of values to
the elements of the subscript array.
These sets of values, or input items,
must be on tape. The user must read
Chapter IV for instructions on how to
prepare his input data, and on how to
arrange the elements within an array.
During compilation, a printout tells
the user on which servo to mount the
input tape; if a servo is specified, as
in the example, the specified servo
number is printed out. Each of the
t h r e e "IF6SENTINEL6 ••. " options
means that every time the sentence is

22

executed, the first word of the new in­
put item is compared with a word of
Z .. Z' s, the usual UNIVAC sentinel.
If the first word does not equal Z .. Z' s,
control moves to the sentence follow­
ing n. I F the first word does equal
Z .. Z' s, what occurs before control
goes to sentence F depends on which
of the t h r e e options was employed.

With "RESET6AND6JUMP" MATH­
MA TIC expects to find further input on
the sarne tape, and the next tirne this
READ-ITEM sentence is executed, a
new set of values for the elements of
the array will be read into memory
starting from the next block 0 n the
tape. With "REWIND AND JUMP" .•.
MA TH-MATIC expects the same in­
put, whose sen tin e 1 has just been
reached, to be used again. Accord­
ingly the servo is rewound, and the
next time this READ-ITEM sentence
is executed, the first set of values for
the elements of the array will be read
in again. With "JUMP","MATH­
MATIC does not expect this READ­
ITEM sentence to be executed again
and does nothing. However, a subse­
quent READ or READ-ITEM sentence
specifying the same servo will auto­
matically start reading values from
the next block on the tape, or from the
first block if the servo has been re­
wound. In all three "IF6S ENTINEL"
••• cases con t r 0 1 is transferred to
sentence F.

Rules:

1. Sentence F may corne before or
after sentence n, but sentence F
rnust a p pea r sornewhere in the
pseudo-code.

2. If servo or storage is specified,
the words must appear after the
name of the subscript array.

3. The co mp 1 e t e name of the sub-

script array, including the paren­
theses and commas, must not ex­
ceed 12 digits in length.

4. Any subscripted array with one,
two, or three subscripts implying
from 0 n e to 250 elements, may
appear in READ-ITEM sentence.
A list of variables may not appear
in a READ-ITEM sentence.

WRITE

Formats:

(n) WRITE X Y Z.

(n) WRITE FOR UNIPRINTERX Y Z.

(n) WRITE EDIT X Y Z.

(n) WRITE EDIT FOR UNIPRINTER
X Y Z.

(n) WRITE CONVERT X Y Z.

Examples:

(12) WRI T E CON V E R TAB X Y N
SERVO 5 STORAGE G.

(5B) WRITE ALPHA SERVO 9.

Functions:

Each time the WRITE sentence is ex­
ecuted, the current values of the listed
variables are written on tape. The
writing is for the high speed printer
unless the "FOR6UNIPRINTER" op­
tioh is used. The values of the var­
iables are in two word floating decimal
form unless "EDIT" or "CONVER TIl
has been specified in the sentence.
"EDIT" and "CONVERT" c au s e the
values of the variable to be edited into
special forms before being written on
tape. D uri n g compilation, MA TH­
MA TIC prints out the number of the
servo assigned to this output sentence.

23

If a servo has been specifed in the
sentence, the specified servo number
is printed out. MATH-MATIC ar­
ranges to place sentinels on the output
tape when the problem run is com­
pleted. The information on the tape
is checked for readability and the num­
ber of output blocks on the tapeis
printed out. The sentinel operation
fills the last block on the tape with
Z .•• Z I S for unedited output and with
printers s top s (~I s) for edited out­
put. The last section of Chapter IV
discusses output item sizes and edited
forms.

Rules:

1. Any number of variables up to 50
maybe listed in a WRITE sentence.
A subscript array may not be used
in a WRITE sentence.

2. If servo or storage is specified,
the specification must appear after
the list of variables.

WRITE-ITEM

Formats:

(n) WRITE-ITEM X(m, n, p).

(n) WRITE-ITEM FOR UNIPRINTER
X(m, n, p).

(n) WRITE-ITEM EDIT X(m, n, p).

(n) WRITE-ITEM CONVERT X(m, n,
pl.

(n) WRITE-ITEM EDI T FO R UNI­
PRINTER X(m, n, p).

Examples:

(17) WRITE-ITEM A(8,9) SERVO 6.

(23B) WRITE-ITEM ED IT Z(5, 5, 5)
STORAGE F SERVO 3,

Functions;

Each time the WRITE-ITEM sentence
is executed, the current values of the
elements of the subscript array are
written on tape. The writing is for
high speed printer unless the "FORll
UNIPRINTER" option is use d. The
values of the elements are in two word
floating decimal form unless "EDIT"
or "CONVERT" has been specified in
the sen ten c e. "EDIT" and "CON­
VER T" cause the values of the ele­
ments to be edited into special forms
before being written on tape. During
compilation, MATH-MA TIC prints out
the number of the servo assigned to
this output sentence. If a servo has
been specified in the sentence, the
specified servo number is printed out.

MA TH-MA TIC arranges to plac e sen­
tinels on the output tape when the pro­
blem run is completed. The informa­
tion on the tape is checked for reada -
bility and the number of output blocks
on the tape is printed out. The sentinel
operation fills the last b 1 0 c k on the
tape with 2 ••• 2's for unedited output
and withprinter's stops (2: IS) for edite:l
output. Ou tpu t item sizes, edited
forms, and the arrangement of ele­
ments within an array are all dis­
cussed in Chapter IV.

Rules;

1. Any subscripted array with one,
two, or three subscripts, implying
from one to 250 elements, mayap­
pear in a WRITE-ITEM sentence.
A list of variables may not appear
in a WRITE-ITEM sentence.

2. The complete name of the subscript
array, including the parentheses
and commas, m us t not exceed 12
digits in length.

3. If s e r v 0 or storage is specified,

24

the specification must appear after
the name of the subscript array.

WRITE-ARRA Y

Formats;

(n) WRITE-ARRAY X(m, n, p) •

(n) WRITE-ARRAY FOR UNIPRINTER
X(tn, n, p) •

(n) WRITE-ARRAY EDIT X(m, n, p).

(n) WRITE-ARRAY CONVERT X(m, n,
p) •

(n) WRITE-ARRAY ED I T FOR UNI­
PRINTER X(m, n, p) •

(n) WRITE-ARRAY EDIT AND CON­
TAIN X(m, n, p).

Examples;

(8) WRITE-ARRAY A(10,12) S TOR­
AGE A SERVO 6.

(16) WRITE-ARRAY CONVERTED
RT(25) SERVO 2.

Functions;

Each time the WRITE-ARRAY sen­
tence is executed, the current values
of the elements of the subscript array
are written on tape. The writing is
for the high sp~ed printer unless the
"FORllUNIPRINTER" option is used.
The values of the elements are in two
word floating dec i mal form unless
"EDIT" or "C 0 N V E R T " has been
specified in the sentence. "EDIT" and
"CONVER T" cause the values of the
e 1 em e n t s to be edited into special
forms before being written on tape.
During compilation, MATH-MATIC
prints out the number of the servo as­
signed to this output sentence. If a
servo has been specified in the sen­
tence, the specified servo number is
printed out.

MATH-MATIC arranges to place sen­
tinels on the output tape when the pro­
blem run is completed. The informa­
tion on the tape is checked for reada­
bility and the number of output blocks
on the tape is printed out. The s en­
tinel operation fills the last block on
the tape with Z ... Z 's forunedited out­
put and with printer's stops (2; IS) for
edited 0 u t put. Output item sizes,
(particularly w hen WRITE-ARRAY
differs fro m WRITE-ITEM), edited
forms, and arrangements of elements
within an array are all discussed in
Chapter IV. If the user des ire s to
perform further calculations on ele­
ments which have been e d i ted and
written, he must use a WRITE-ITEM
EDIT sentence or a WRITE-ARRA Y
EDIT AND CONTAIN sentence. If the
user does not wish to perform further
calculations on the elements, a
WRITE-ARRAY EDIT sen ten c e is
permissible and will save s tor age
space.

Rules:

1. Any subscripted array with one,
two, or three subscripts, implying
from one to 250 elements, mayap­
pea r in a WRITE-ARRAY sen­
tence. A list of variables may
not a p pea r in a WRITE-ARRAY
sentence.

2. The complete name of the subscript
array, including the parentheses
and commas, must not exceed 12
digits in length.

3. If servo or storage is specified,

CLOSE-INPUT

Formats:

(n) CLOSE-INPUT SENTENCE F.

(n) CLOSE-INPUT AND R E WI ND
SENTENCE F.

Example:

(6) CLOSE-INPUT AND REWIND
SENTENCE 2.

Function:

When the "CLOSE-INPUT" sentence
with no "REWIND" is executed,
MA TH-MATIC expects further input
on the servo assigned to the input sen­
tenceF. The next time input sentence
F is executed, values will be read into
the memory s tar tin g with the next
block on the tape.
When the "CLOSE-INPUT AND RE­
WIND6" sentence is executed, MA TH­
MATIC expects the input of sentence
F to be used again. Accordingly, the
servo assigned to sentence F is re­
wound and, the next time s entenc e F
or another input sen ten c e with the
same servo is executed, values will
be read into memory starting with the
first block on the tape.

Rules:

1. Sentence F may corne before or
after sentence n, but it must be an
input sentence.

the specification must appear after CLOSE-OUTPUT
the name of the subscript array.

4. Further calculations may not be
performed on elements which have
been edited and written in a
WRITE-ARRAY EDIT or WRITE­
ARRAY CONVERT sentence.

25

Formats:

(n) CLOSE-OUTPUT SENTENCE F.

(n) CLOSE-OUTPUT AND REWIND
SENTE:0J"CE F.

Example:

(I7A) CLOSE-OUTPUT AND REWIND
SENTENCE 11.

Functions:

When a "CLOSE-OUTPUT" sentence
with no "REWIND" is executed, a sen­
tinelitem filled with Z .•• Z' s is placed
on the output tape of sen ten c e F.
MA TH - MA TI C then prints out the
number of blocks of output, written by
sentence F. A later output sentence
may now add data to the same tape.

When a "CLOSE-OUTPUT AND RE­
WIND" sentence is executed, a sen­
tinelitem filled with Z ••. Z' s is placed
on the output tape of sentence F, and
the output servo is rewound. MA TH­
MA TIC checks the readability of the
information writtenby sentence F, and
prints out the number of blocks of out-

put written by sentence F. The data
on this servo may now be used as in­
put by a later READ or READ-ITEM
sentence. Any of the three "IF SEN­
TINEL ••• II options may be included in
this later READ or READ-ITEM sen­
tence since a sentinel item of Z ••. Z's
was placed on the output (now the in­
put) tape.

Rules:

1. Sentence F may come before or af­
ter sentence n in the pseudo-code,
but sentence F must be an output
sentence.

2. If the user desires to use an output
later as an input, the original out­
put sentence must be a WRITE or
a WRITE-ITEM sentence, not a
WRITE-ARRAY sentence, and it
must be unedited.

Note: When using MATH-MATIC with UNIVAC II, the limit on input and out­
put subscript arrays is increased from 250 to 800 quantities.

26

D.A. T.A. PREP.A..R.A.. TION .A..ND FORlY.J:.A TS

I. DATA PREPARATION:

The MATH-MATIC system uses a
two word floating decimal mode of
computation. The user may write

the input data for the READ, READ­
ITEM and READ-ARRAY sentences
directly in the two word floating de­
cimal form, or he may prepare his
input data in a simpler form and use
the Data Conversion routine to con­
vert the data into the two word float­
ing decimal form. For the purpose
of input data preparatioll, the ele­
ments of an array in a 'READ-ITEM'
ofa 'READ-ARRAY' sentence may be
cons ide red input variable s, and an in­
put array of n elements may be con­
sidered an n-variable input item.

There are three forms in which the
value s of input variable s may be pre­
pared before entering the Data Con­
version routine: integer, decimal,
and power of ten form. Except for
one special case of the power of ten
form, each value occupie s one UNI­
VAC word space-filled to the right.

Some examples of integer input va­
lues are:

5M/\/\/\M6Mt::,

1 636M6M/\/\/\

8l5l56.M6M6

-3666M66666

210000000066

+68936.6.66666

27

Some examples of decimal input va­
lues are:

1 7. 8 6.6.6.6.6.6.N\

-.003846.6.6.6.6

+160. 2496.M6

.00552666666.

o. 166366M66.

129546.87312

A power of ten form value may occupy
one or two UN I V A C words. If two
words are used, the first word con­
tains the significant digits and the sec­
ond word contains the ten and its ex­
ponent. The exponent must be a posi­
tive or negative integer. The first di­
git of the second word must be a mul­
tiplication sign (*). Some examples
of powe r of ten form are;

278* 10366Mt::,

-91.45*10 666

64831. 259M6

*1011M6MM

-3.591726666

*10- 86.6.6.6.M6.

}
}

2 word
power of
ten form

2 word
power of
ten form

The following rule s apply to all three
forms:

1. No more than 11 significant digits
may be written in one UN I V A C
word.

2. A plus sign may be placed in the
first digit of the UNIV AC word con­
taining the significant digits. The
plus sign, however, is not neces­
sary.

3. No space s may be written in front
of or between the significant digits.
the decimal point, the ten and its
exponent, and any +, - or * signs.

4. Space s must fill each word to the
right; if the digits and symbols fill
the UNIVAC word, space-filling is
not needed.

Each set of data is prepared one input
item followed directlyby another. No
spa<;e is left between the items, and
items maybe divided between blocks.
Two items in one set of data must con­
tain the same number of input values
but are not necessarily written in the
same number of UNIVAC words, be­
cause of the variable size powe r of ten
form.

Each set of data must have a sentinel
word of Z •• ZI S in the word following
the last valid item. Each additional
set of data on the same tape must be­
gin in new block.

The user may prepare his sets of data
ondifferenttapes. The converted da­
ta may be written all on one tape, or
on as many tape s as is de sired.

The user is cautioned that the pro­
cess of converting input data may ex­
pand the data to as much as 4 times
its original length on tape. Since a
full UNIVAC tape holds approximately
2000 blocks (at high density), the user
should not convert more prepared data
blocks on to one tape than the tape can
hold.

28

If the input sentence is a READ sen­
tence, calling for a list of variables,
the values in each prepared input item
should be in the same order as the
variables. For example, if the input
sentence says READ~MXM3, each
input item consists of 3 values; the
first value represents A, the second
value X, and the third value B.

II. Arrangement of elements within
an array

This discussion a p pi i e s to all sub­
script arrays whether input, unedited
output or edited output. Item padding,
overlay blocks, and forms of the num­
bers depend on the pseudo-code sen­
tence and are all discussed elsewhere
in this chapter, but the elements are
always arranged within the array in
the same order.

In a subscript array with one subscript
the elements are arranged in ascend­
ing order. In any reference to a sub­
scripted variable with one subscript
the subscript denotes the position of
the element in the array; 1. e., X(15)
is the 15th element.

In a subscript a r ray with two sub­
scripts, the values of the elements are
arranged one complete row after an­
other. In any reference to a subscrip­
ted variable with two subsc ripts, the
first subscript represents the row,
and the second subscript represents
the column in the array.

In a subscript array with three sub­
scripts, the values of the elements
are arranged one complete plane after
another, and within each plane, one
complete row after another. In any
reference to a subscripted variable
with three subscripts the first sub­
script represents the plane, the sec­
ond subscript represents the row, and
the third subscript represents the col­
umn in the array.

In the case of the array X(20), there
are 20 elements arranged as follows;
X(I), X(2), X(3), ••• , X(20).

In the case of the array B(8, 7), there
are 8 rows and 7 columns, or 56 ele­
ments running from B(I, 1) to B(8, 7).
The 56 value s are arranged in the fol­
lowing orde r: B (I, 1), B (I, 2), •.• B (I, 7);
B(2, 1), B(2,2) ••• B(2,7) B(3,I) •••
B(8, 1) ••• B(8, 7).

In the case of the array ALPHA(3, 4, 5)
there are 3 planes, 4 rows, and 5 col­
umns, or 60 elements running from
ALPHA(1, 1, 1) to ALPHA(3, 4, 5). The
60 value s are arranged within the to­
tal array as follows: ALPHA(1, 1, 1),
ALPHA(I, l~ 2) ••• ALPHA(1, 1, 5); AL­
PH A(l, 2, 1) ••• ALPH A(I, 2, 5), AL­
PH A(I, 3, 1) ••• ALPHA(2, 1, 1) ••• AL­
PHA(3, 1, 1) .•. ALPHA(3, 4, 5).

III. Use of the Data Conversion Rou­
tine

The Data Conversion routine takes in­
put in integer, decimal, and power of
ten form and converts it to the two
word floating decimal form MAT H -
MATIC requires for its internal oper­
ations. The-Data Conversion routine
also arrange s the input items for the
system by padding the incomplete item
size s, establishing ove rlay block in
the large input items, and providing
sentinels for each set of input data.
If the use r doe s not want to make use
of the D a t a Conversion routine, he
must prepare his data in the two word
floating decimal form and he must in­
clude the necessarypadding, overlays
and sentinels himself.

The user may convert his d a t a any
time prior to the problem run. For
convenience, the Data Con v e r s ion
routine will appear at the beginning of
every compiled program, as well as
being separately available. Thus the

29

user may convert and properly dis­
tribute his data immediately before
running. The control words for the
data conversion routine may be typed
in at the supe rvisory control at the
time of conversion, or may be pre­
pared on tape. In all cases, the rou­
tine prints out the number of blocks in
each set of con v e r ted input data,
checks the readability of each con­
verted tape and rewinds all tapes.

To convert data independently of the
problem run mount the Data Conver­
sion routine on any servo t, and de­
press servo selector key t. Initial
read servo t. Immediately upon
starting the progra.m the follow print­
out occurs.

CONTROL~TAPE

A type-in is set up. If the tape con­
trol option is being used, type in:

XXXXXXXXXXXX

where X is the number of the servo
containing the control tape.

The Data Conversion routine converts
all the data and goe s into the Conver­
sion Ending routine.

If the type-in control option is being
used, type in

S CP~CONT ROL~

The se print-outs and type-ins follow:

PRINT-OUT

READ6SENTNCE

ITEM6SIZE 6 6 6

SERVOS 66666/\

XXXX6BLOCKS6
ON6SERV06P 66

TYPE-IN

READJ\(\!\J\!\MJ\ or READ-ARRAYM or READ­
ITEMM6; ZZZZZZZZZZZZ if there are no fur­
ther data.

X6M!\M66J\M where X is the number of vari­
ables or elements in each input item; if X > 9,
type in XXM66MJ\6M or XXX/\MMMM.

AAAAAABBBBBB where A is the servo con­
taining the prepared data and B is the servo
desired for the converted data; A f: B.

No type-in called for; the routine has finished
converting the set of data and is ready for an­
other one.

One set of these printouts and type-ins
takes place for each set of input data.
The printouts and type-ins continue
until a word of Z ••• Z' s is typed in
after READb.SENTNCE has printed
out. Then the Conversion Ending rou­
tine is entered.

If more than one set of prepared input
data is on one tape, the same servo
A will be typed in more than once. If
the userdesires to put more than one
set of converted data on one tape, the
same servo B will be typed in more
than once.

If tape control is used, the first block on the control tape must be in the form:

HEADER666666

HEADER66666/\

HEADER666666

READ66666666

X6/\666666666

AAAAAABBBBBB 1

3 word
header
item;
may be
anything

as many of the se
groups are there
are sets of data (up to 18)

30

Type of read sentence
item size
Servo A for prepared
data
Servo B for converted
data.

. l
J

last group
AAAAAABBBBBB

zzzzzzzzzzzz sentinel

6 6 insignificant words for the re st of the block.

The first 3 words in the block may be
any head e r the user wishes. The
three word groups are the same as
the three type-ins described above.
The following printouts occur each
time a three word group is processed:

XXXX6BLOCKS6

ON6SERV06B66

The Conversion Ending routine func­
tions automatically afte r the last set
of data has been converted. Every
tape which has had con v e r ted data
written on it is checked for readability
and all tape s are rewound. The Com­
puter stops after "END6CONVERT6"
is printed out.

To run the Data Conversion routine
on the compiled running tape, mount
the running tape on any se rvo, t, and
depre ss the s e r v 0 selector key for
servo t. Set break point #1 and ini­
tial read servo t. Force transfer on
break point #1 and the following print­
out occurs:

CONTROL6TAPE

If transfer is not forced, the problem
run will be started i m me d i ate 1 y .
From this point the options printouts
and type-ins are the same aswhenthe
Data Conversion routine is run sepa­
rately.

31

Again, after the Conversion Ending
routine take s place, "E N D II CON -
V E R T ll" print out and the computer
stops, leaving the running tape posi­
tioned for the problem run. All other
servos are rewound. At this point the
user need remove only those tapes
which should be blank in order to re­
ceive output during the problem run.
The user should select the servo B's
of the control words so that each set
of converted data is placed on the ser­
vo specified for it in the pseudo-code
or in the compilation. Then those
tape s may remain whe re they are at
the end of the Conversion Ending rou­
tine. After the servo set-up is
checked for conformity with the com­
pilation printouts, the start bar should
be hit to begin the problem run.

IV. Formats

The MATH-MATIC system expects
all values which are read in or used
in calculation during the problem run
to be in two wo rd floating dec i mal
form:

QXXXXXXXXXXX 11 significant digits

QOOOOOOOOOEEE ten I S exponent

This form rep res e nt s the number
+ XXXXXXXXXXX * 10 ± E E E The --' .
first digit after the sign in the first

word must be non-zero, u nl e s s the
value its elf is zero. Some exam­
ples of two word flo at in g decimal
form follow:

036100000000} __
36.1

000000000002

017487000000}
= .00017487

-00000000003

-8466613719l}
= -84.666137191

000000000002

OOOOOOOOOOOO}= 0

000000000000

-15400000000
}= -15,400,000,000

000000000011

Unedited output is also in two word
floating decimal form.

All in put sand 0 u t put s handled in
RE AD, RE AD-IT EM, unedited
WRITE and unedited WRITE-ITEM
sentences are arranged in allowable
item sizes by means of padding and
block overlays. If the Data Conver­
sion routine is bypassed, the user
must arrange the padding and block
ove rlays in his input data. In all other
cases MATH-MATIC arranges the
items according to the following rule s;

1) The numbers of variables which
make up allowable item size s are I,
2, 3, 4, 5, 6, 10, 15, 30, 35, 40, 45, 50, 55
60, 65, 70, 75, 80, ••• , 235, 240, 245 and
250. If the numbe r of variable s in
the actual item is not one of the al­
lowable item size, the item is padded
at the end with the numbe r of dummy
variables needed to make it an allow­
able item size: e. g., a 7 variable item

32

will have 3 dummy variable s at the
end to make up a 10 variable item.
Each dummy variable consists of 2
words of zeroes since the values are
expected to be in two word floating
decimal form. A 74 variable item
will be padded at the end with one
dummy variable (2 words) to make up
a 75 variable item, which is an allow­
able item size.

2) If the number of variables in the
item is 30 or Ie ss, the following chart
gives the distribution of items per
block:

No. of No. of No. of items
variables words per block

1 2 30
2 4 15
3 6 10
4 8 7
5 10 6
6 12 5

10 20 3
15 30 2
30 60 1

In the 4 variable (8 word) case the 7
items occupy the first 56 words of the
block, leaving 4 insignificant words
at the end of the bloc k. In the othe r
case s on the above chart the items
fill each block entirely.

3) If the numbe r of variable s in the
item is greater than 30, each item
will occupy more than one block. To
determine the number of blocks oc­
cupied by each item, divide the num­
ber of variables, n, by 30. Call the
quotient of the division q and the re­
mainder r. For example, if n = 85,
q = 2 and r = 25. If n is evenly divi­
sible by 30, (r=O), the item entirely
fills q blocks and no overlay is used.
If r f:. 0, the item occupie s q+l blocks.
Every block in the item except the
next to last block is filled with 30 va-

lues of variables. The next to last
block contains r value s of variable s
at the beginning of the block and in­
significant words in the remainder
of the block. When the items are read
into the memory, the last block will
overlay the insignificant words ofthe
next to last block. For example, an
85 variable item would be arranged in
3 blocks as follows; the first 30 vari­
able s in the first block, the next 25
variable s in the second block, and the
last 30 variable s in the third and last
block. The third block will overlay
the last 10 words of the second block.

For RE AD - AR RAY and unedited
WRITE-ARRAY sentence the values
of the variable s are in two word float­
ing decimal form. The value s of the
one set of data for a READ-ARRAY
sentence are arranged consecutively
on tape without padding or overlays.
The first 30 value s in the set of data
fill the first block. Any further va­
lue s start from the beginning of the
second block. Any values in excess
of 60 start in the third block, and so
forth. The values in each output item
of an edited or an unedited WRITE­
ARRAY sentence are arranged con­
secutively on tape without overlays.
Each of them occupie s an integral
number of blocks on tape. Any item
size from one up to 30 variable s is
padded to 30 va ria b 1 e s to fill one
block. Any item size from 31 to 60
variable s is padded to 60 variable s
to fill two blocks, and so forth. If
the item size is multiple of 30, such
as 30, 60, 90, 120 etc., no padding
is needed. In an unedited WRITE­
ARRAY sentence the padding consists
of i r reI e van t value s from anothe r
storage area. The padding in an edi­
ted WRITE-ARRAY item occupying
one block, also consists of irrelevant
numbers, but if the item 0 c cup i e s
more than a block, the padding con­
sists of spaces.

33

The values of the variables in each
item of an edited WRITE or edited
WRITE-ITEM sentence are written
consecutively without overlays.
The re will be padding at the end of
each item if the number of variables
is not an allowable edited item size.
The padding consists of spaces regard.­
less of item size. The allowable
edited item sizes are 5,10, 15,30,60,
90, 120, 150, 180, 210, 240, and 270.
The numbe r of items pe r bloc k fo r the
item sizes of 30 or less are given in

the following chart:

No. of No. of No. of items
variables words per block

5 10 6
10 20 3
15 30 2
30 60 1

Each item size greate r than 30 oc­
cupies the integral number of blocks
required at 30 values per block. For
example, a 130 variable item is given
20 variables of padding (40 words of
spaces) to make an allowable 150 va­
riable it e m which will 0 c cup y 5
blocks. The user is reminded of the
50 variable limit in a list of variable s
and the 250 variable limit in a sub­
script array.

If it is desired to perform further
calculations with values of variables
which have been edited a W R I T E -
EDIT, WRITE-ITEM EDIT or WRITE­
ARRAY EDIT AND CONT AIN sentence
must be used. A W R I T E - A R RAY
EDIT sentence may not be used if fur­
ther calculations are de sired. If fur­
ther calculations are not desired, a
WRITE-ARRAY EDIT sentence is re­
commended for efficiency in use of
storage space.

For W"RITE EDIT FOR UNIPRINTER
and WRITE-ITEM EDIT FOR UNI­
PRINTER sentences, there are five
additional allowable edited item size s
1, 2, 3, 5 and 6. The following chart
gives the number of edited items per
output block;

No. of No. of No. of items
variables- words per block

1 2 30
2 4 15
3 6 10
4 8 7
6 12 5

In the case of a 4 variable item, the
7 items occupy the first 56 words of
each block, leaving four words of
spaces at the end of each block. In
each of the other case s the block is
filled with edited values.

The "EDIT" form is:

±. XXXXXXXXXXX(+EE)

This form rep res e n t s the number
+. XXXXXXXXXXX * 10±EE. Some
~xamples of the "EDIT" form are:

+.16543397800(+3)

-. 81654000000(+0)

+. 5004l913644(-10)

If EE > 99 in the floating decimal
value, an error printout occurs and
the value is transfe rred to output stor­
age unmodified.

The "CONVERT" form is;

:!:XXXX. XXXXXXX(if EE LO) or

±.OOOXXXXXXXXXXX(if EE < 0)

Some examples of the "CONVERT"
form are:

+75.163000000

-.26499300000

+.00000817143000

IfEE > 10 in the floating decimal va­
lue, an error printout occurs and the
value is transferred to output storage
unmodified.

If non-numeric words are picked up
by either the EDIT or the CONVERT
routines, the words will be transfer­
red to output storage unmodified.

Note: When using MATH-MATIC with UNIVAC II, the limit on input and out­
put subscript arrays is increased from 250 quantities to 800 quantities. Also
the maximum input-output storage is increased from 660 words to 1700 words.

34

CO::M:PUTER .AND CO::M:PILER SECTIONS

I Purpose

Occasionally a problem will go be­
yond the present MATH-MATIC
repertoire. The user can write

COMPUTER or COMPILER sentences
in his pseudo-code to handle these
special problems. Each COMPILER
sentence calls for the insertion of a
number of ARITHMATIC operations
into the pro b I e m statement. Each
COMPUTER sentence calls for the in­
sertion of a number of UN I V A C in­
structions into the problem statement.
The sets of inserted instructions are
called the COMPUTER or COMPILER
sections. For each COMPUTER or
COMPILER sentence in the pseudo­
code there must be a corresponding
COMPUTER or COMPILER section.
These sections of UNIVAC instruc­
tions and ARITH-MATIC operations
are prepared on the pseudo-code tape
following the STOP sentence, and af­
ter the DIRECTORY, if one is needed.
Each COMPUTERor COMPILER sec­
tion must begin in a newblockandmay
be any numbe r of bloc ks in length. A
sentinel blockwith Z ... Z's in the first
and last words must follow the last
COMPUTER or COMPILER section.
The DIRECTORY is a list of constants
and variables referred to in the COM­
PUTER and COMPILER sections. The
DIRECTORY begins the next block af­
ter the STOP sentence and precedes
the COMPUTER and COMPILER sec­
tions. The next part of this chapter
gives the r u Ie s and conventions of
COMPUTER and COMPILER sen­
tences. The rest of this chapter gives
rules and e x a mp Ie s of the DIREC-

35

TORY, COMPUTER Sections, and
COMPILER Sections. The repertoire
of ARITH-MATIC operations appears
in the appendix of this manual.

II COMPUTER and COMPILER Sen­
tences

A. FORMAT

(n) COMPUTER-XXX.

(n) COMPUTER-XXX S TO RAG E Y
(ttt) STORAGE Y(ttt) SERVO s.

(n) COMPILER-XXX.

(n) COMPILER-XXX STORAGE Y(ttt)
SERVO s STORAGE Y(tttl.

where XXX is the COM PUT E R or
COMPILER label, Y the storage area
designation, ttt the storage area size,
and s the servo number.

B. EXAMPLES

(3) COMPUTER-3B STORAGE A(60)
SERVO 7 STORAGE BOO) STORAGE
C(60) SERVO - •

(46) COMPILER-SB7 STORAGE 1(60)
SERVO 3.

C. FUNCTION

A COMPUTER or COMPILER sen­
tence informs MATH-MATIC that a
COMPUTER 0 r COMPILER section
appears aft e r the STOP sentence.
The machine code produced by the sys­
tem for these sections will be inserted

in the running program for execution
as sentence (~. Storage areas and
associated s e r v 0 s, if needed in the
COMPUTER or COMPILER sections,
must be specified in the sentences.

D. CONVENTION S

1. For each COMPUTER or COM­
PILER section there must be a
corresponding COMPUTER 0 r
COMPILER sentence.

2. The label (XXX) of the COMPU­
TER or COMPILER s entenc e
must match the label of the head­
er of the COMPUTER or COM­
PILER Section.

3. The storage area (Y), if one is
used, is designated by an alpha­
betic character other than W.

4. The storage area size (ttt) is the
number of UNIV AC words needed
for s tor age. (ttt) may be any
even number up to 500.*

5. The servo number (s) maybe any
available servo from 1 through 9
and - •

6. The 1 abe I (XXX) may be num­
eric, alphabetic, or a combina­
tion of nu mer i c sand alpha­
betics. The label may be one,
two, or three digits in length.

7. If a read or write order appears
in the COM PUT E R or COM­
PILER section, the stora.ge area
and the servo must be specified
in the corresponding sentence.

8. Any amount of English descrip­
tion may be used in these sen­
tences to describe the function
of the COMPUTER a nd COM­
PILER sections. This descrip­
tionfollows the storage area and

s e r v 0 assignment, but comes
before the space period (~.)which
ends the sentence. I n writing
this description, care must be
taken not to use words of more
than 12 digits.

III The DIRECTORY

The DIRECTORY is a list of constants
and variables referred to in COMFU­
TER and COMPILER sections. Any
variable, which the user wishes to re­
fer to in a COMPUTER or COMPILER
section and which appears elsewhere
in the pseudo- code, must be listed in
the DIRECTORY. The first entry in
the DIRECTORY after the header is
referred to by the address "WOl" in the
COMPUTER and COMPILER sections;
the sec 0 n d entry is "W02, " and so
forth. Each one word en try in the
DIRECTORY represents a two word
floating decimal quantity.

Address in COM-
PUTER and COM-

Example PILER sections

DIRECTORY 6.6.6. Header

66. 6. 6.6. 6.6. 6. 6. 6.M WOl

-27.746.6. 6. 6.6.6. W02

X 6. 6. 6. 6. 6. 6. 6. 6. 6.M W03

Y 6. 6. 6. 6. 6. 6. 6. 6. 6.M W04

81*10- 8 6.6.6.6. 6. W05

ALPHA 6. 6. 6. 6. 6.M W06

END 6.DIRECTRY Sentinel

A. CONVENTIONS

1. The DIRECTORY is a means of·
cross-referencingvariables and
constants a In 0 n g COMPUTER

*On UNIVAC II, this limit is raised to 1600.

36

and COMPILER sections and the
pseudo-c 0 de sentences. 0 n e
DIREC TORY must suffice for all
cross- referencing needs in each
problem statement.

2. The DIRECTORY must begin in
a new block immediately follow­
ing the pseudo- code sentences
and must precede the COMPU­
TER and COMPILER sections.

3. TheDIRECTORY must start
with the header, "DIRECTORY
6M," and must finish with the
sentinel, "E N D lillIRECTRY. "
(Note the missing 0). The sen­
tinel m us t immediately follow
the last valid entry in the DIE.­
ECTORY.

4. A maximum of 99 entries, cor­
responding to the address WOl
to W99, are permitted inthe
DIRECTORY. In the above ex­
ample the last entry, "ALPHA,"
has the address W06.

5. All entries in the DIRECTORY
must beg i n at the 1 eft of the
U N I V A Cwo r d and m u s t be
space·-filled to the right.

6. The con s tan t s in the DIREC­
TORY may be integers, deci­
mals, or in power of ten form.

7. A set of consecutive entries in
the DIRECTORY are not always
given consecutive storage loca­
tions by MATH-MATIC, and the
user is cautioned a g a ins t de­
pending on this. A set of con­
secutive entries in the DIREC­
TORY will be given consecutive
storage locations only if none of
the entries in the set appears in
an input or output sentence else­
where in the pseudo-code state­
ment.

37

The user should regard the DIR­
ECTORY as a cross-referencing'
device rather than as a storage
area.

IV COMPILER section

A COMPILER section consists of
ARITH-MATIC operations. The rep­
ertoire of ARITH-MATIC operations
appears in the appendix of this manu­
al. The operations in the COMPILER
section will be executed during the
problem run at the point in the pseudo­
code where the corresponding COM­
PILER sentence appears.

EXAMPLE

The COMPILER sen ten c e is given
first, then the COM PI L E R section
corresponding to the sentence.

The s entenc e

(10) COMPILER-ABC SERVO 3
STORAGE D(80).

Operation number
for reference in
the C()MpILER~

The section .:::.s.:::.e.:::.c.::,:ti:,.::o:..:,n=--____ _

COMPILER-ABC

GM I 0 03080 D 00 MOOO

TS 0 W 04000W 05 MOOI

AAOD16W02W06 M002

ALLD 20D76 W 04 M003

01CN000035M

o 2 CN 0 0 MOO 2M

AM 0 D5 OD40D 30 M004

ENDl1COMPILER

CO~VE~TIO~S

1. Each CO:\lPILER section must
begin in a new block and must
come after the pseudo-code sen­
ten c e s and after the DIREC­
TORY.

2. The first word of the COMPILER
section must be a header which
is exactly the same as the first
word of the corresponding COM­
PILER sentence.

3. The COMPILER section may in­
clude any number of blocks, and
the first word after the last valid
operation must be the sentinel,
"ENDL\COMPILER. "

4. The symbolic addres ses in the
ARITH-MATIC operations must
be one of the following:

a) Wad d res s ref err i n g to
entries in the DIRECTORY.

b) symbolic address referring
to the storage area(s) speci­
fied anywhere in the pseudo­
code. "D16" in op era t ion
M002 is an example of this.

5. The operations in a COMPILER
section are numbered consecu­
tively relative to the first opera­
tion. The first operation is
numbered MOOO. The XXCN I s
do not take operation numbers.
The operation numbers are for
userls reference only, and should
not a p pea r in the COMPILER
section,

6, An IIXXCNII with a 110 11 in the 7th
digit position calls for a trans­
fer of control to the pseudo-code
sentence whose number appears
in the 8th through the lath digit

38

positions. The OlC~ in the ex­
ample transfers control to sen­
tence 35. If the sentence num­
ber has an appended alphabetic,
the alphabetic will be in the 11th
digit position. For example, a
transfer to sentence 7B would be
written as XXCN000007BL\.

7. An IIXXCN II with an IIMII in the
7th digit po sition calls for a
transfer of control to another op­
eration within the COMPILER
section. The operation number
to which control is being trans­
ferred appears in the 8th through
the 10th digits of the IIXXCN. II
The I I 0 2 C ~ I I in the e x amp 1 e
transfers con t r 0 1 to operation
M002 in the COMPILER section,
the AAO operation.

V COMPUTER sections

A COMPUTER sec t ion consists of
UNIVAC instructions. The instruc­
tions in a COMPUTER section will be
executed during the problem run at the
point in the pseudo- code w her e the
corresponding COMPUTER sentence
appears.

EXAMPLE:

The COM PUT E R sentence is given
first, the n the COMPUTER section
corresponding to the sentence.

The sentence

(17) COMPUTER-2 SERVO 6 STOR­
AGE B(70).

Line number for
reference in the
COMPUTER sec-

The section -"'ti"-"o"-"n"--_____ _

COMPUTER- 2M

VOW001WOB010 M001

BOM001A 0 MOO 4 M002

AOM001UOM006 M003

CONSTANTSO 0 2 The two following
lines remain un -
modified.

00000000000 2 M004 unmodified
during

1 1 1 11 1 1 1 1 000 M005 compilation

LOOOSTQOMOOI M006

000000 TOO 1CN M007

000000000000 MOOS

56 BO lOBO BOOS M009

HO W 103 FOW006 MOIO

GO WOO 3 1 0 B009 MOll

o 0 0 0 0 0 Q 0 0 2CN M012

000000000000 MOl3

BOB 004 C OOOST M014

ENDl':.OWNl':.l':.l':.l':.l':. ARITH- MATIC
sentinel

STORAGEO 000 1 number of "S T"
lines reserved

0lCN000030M

o 2 C NO 0 0 0 0 6M

ENDl':.COMPUTER MATH-MATIC
sentinel

CONVENTIONS:

1. Each COM PUT E R section must
begin in a new block and must corne

after the pseudo- code sentences
and after the DIRECTORY.

2. The first word of the COMPUTER
section must be a header which is
exactly the same as the first word
of the COMPUTER sentence.

3. The COMPUTER section may in­
clude any number of blocks.

4. The two sen ti n e 1 s, "ENDl':.OWN
l':.l':.l':.l':.l':." and l'ENDl':.COMPUTER"
must immediately follow the last
valid instruction of the COMPU­
TER section. 11 S TORAGEOOnnn"
and XXCN references, 11 needed,
are placed between the two sen­
tinels.

5. The s y m b 01 i c addresses in the
UNIV AC instructions lie in the 3rd
through 6th digit positions and the
9th through 12th digit positions of
instruction. E a c h symbolic ad­
dress must be one of the follow ..
ing three types:

a) M in the 3rd or 9th digit posi­
tion; the reference is to another
line in the COMPUTER section.
The conditional transfer in line
M006 of the example is to line
MOOI.

b) W in the 3rd or 9th digit posi­
tion; The ref ere n c e is to an
en try in the DIRECTORY. If
"W" is in the 3rd digit position,
the 5th and 6th digit positions
will con t a i n the DIRECTORY
reference. For example, the
left half of line MOOI refers to
WOL The 4th digit position must
be "0" or "1." A "0" refers to
the first word in the two word
floating dec i mal value of the
DIRECTORY entry. A "I" re­
fers to the sec 0 n d word (the
ten 1 s exponent) of the two word
floating decimal value of the DI­
RECTORY entry. The "WI03"in

39

line MOIO referstothetenls ex­
ponent of WO 3 in the DIREC­
TORY. The II WO 03 11 in line
MOll refers to the significant
d i gi t s of W03 in the DIREC­
TORY. Similarly, if the 9th
digit is W, the 11th and 12th
digits contain the DIRECTORY
reference, and the 10th digit
must be "0 II or "l. II

c) Any other letter in the 3rd or
9th digit positions must be the
same as a storage area that has
bee n specified somewhere in
the pseudo-code. The two Bls
in line M009 of the example re­
fer to the storage area reserved
by the COMPUTER sentence.

6. Any transfers of control to within
the COMPUTER section are made
with M ref ere n c e s, as in line
M006.

Any transfers of control to other
pseudo- code sentences call for the
use of XXCN, as in lines M007 and
M012. Wherever anXXCN appears
in a COMPUTER section before the
"END60WNMAMII sen tin e I, the

left half of the word containing the
XXCN must be a skip instruction,
and the entire word following must
be skip instructions.

Each XXCN ref err e d to in the
COM PUT E R section before the
IIEND60WNt\t\Mt\" sentinel m us t
appear at the beginning of a word
placed between the E~mOWN66t\66

40

and the END6C 0 M PUT E R s en­
tinels. In the 8th through the 10th
digit positions of these words ap­
pears the number of the sentence
to which control is to be trans­
ferred. If the number of the sen­
tence to w h i c h control is trans­
ferred has an appended alphabetic,
the appended alphabetic appears in
the 11th digit position.

8. If the user wishes to maintain a
UNIVAC word undisturbed by seg­
mentation he should use an "XXS Til
address. Lines M006 and MOl4 in
the example refer to 1I00ST.11 If
more than one "XXS Til is desired
in one COMPUTER sec t ion, the
"XXS TI Sll must be numbered in or­
der; OOST, OlST, 02ST, etc. If
any IIXXST's" are used, the word
II S TORAGEOOOnn" must appear
immediately following the sentinel
IIEND60WN6M66." The II n n II in
II S TORAGEOOOnnll is the number of
XXSTl s in the COMPUTER sec­
tion.

9. If the user desires to keep several
consecutive lines anywhere in his
COMPUTER sec t ion unmodified
throughout compilation, he should
insert the word "C 0 N STAN T S
X X X II just before the unmodified
lines. The word "CONSTANTS
XXX" does not take an "M" refer­
ence and will not appear on the
compiled running tape. "XXX" is
the number of lines following that
are not to be modified.

"VI

OPER.ATING INSTRUCTIONS .AND SERVICE ROUTINES

I OPERATING INSTRUCTIONS

ToperformaMATH-MATIC compila­
tion mount tapes on the following ser­
vos:

SERVO TAPE

I MA TH-MATIC MAS TER

2

3

4:

5

6

7

8

9

BLANK

BLANK

BLANK

BLANK

MATH-MATIC LIBRARY

BLANK

PROBLEM S T A TEMENT
IN MATH-MATIC PSEU­
DO-CODE

BLANK

No breakpoints

E:'-JD PHAS E I

END PHASE 2

I ~:c~ ~~~
SE:'-JTENCE #nnnn SERVO t put-ou t.

put sen-
. . . tence

END PHASE 3

END PHASE 4

E:0JD SWEEP 1

END SWEEP 2

END SWEEP 3

E:0JD SWEEP 4

XXX BLOCKS OF RUN:'-JING TAPE ON
SERVO 7.

BLOCK SUBDIVIDE S E R V 0 3 FOR
EDITED RECORD

Block subdivide Servo 3 XXX BLOCKS OF EDITED RECORD
ON SERVO 3.

Set Supervisory Control Printer on
Normal END MATH-MA TIC COMFILA TION

Initial read Servo 1

The following normal printouts will
take place;

41

The edited record should be removed
from Servo 3 for printing. The com­
piled running tape may be left on S er­
vo 7 or it may be mounted on any other
servo for the problem run.

To perform the problem run, the user
should mount his prepared input tapes
and blanks for his output tapes accord­
ingto the compilationprintouts. Out­
put servos should be block subdivided
if high speed printing is intended. The
servo selector key for the servo on
which the run n i n g tape is mounted
should be depressed. This servo is
then initial read to begin the problem
run. The only normal printouts dur­
ing the pro b 1 em run are those re­
questeci oy the pseudo-code. At the
completion of the problem run, the fol­
lowing printouts will take place:

OOOOOOOOOXXX

BLOCKS OF OUTPUT SERVO T

.

.
END OF RUN.

(One set for each completed output.)

Each output tape is backward read and
checked for readability, and all tapes
are rewound.

All error printouts and correction op­
tions during compilation and during
the problem run are discussed in the
appendix (!If this manual.

II THE EDITED RECORD

The Edited Record provides a com­
plete r e cor d of the transition from
MATH-MATIC pseudo-code sentences
through ARITH-MATIC pseudo-code
operations into the final Univac C-lO
running program. This Record will
aid the user in detecting logical flaws
in his pro g ram, and enable him to
trace them back to the original pseudo­
code sentences.

42

Upon completion of compilation the
following will be p r i n ted out on the
Supervisory Control typewriter:

XXX BLOCKS OF EDITED RECORD
ON SERVO 3.

(XXX specifies the number of blocks
on the tape). The tape on s e r v 0 3
should then be removed and printed on
the High Speed Printer.

The general format of the record is
as follows:

1. The following header identifies
the print-out itself:

MATH-MATIC RECORD

2. The second header indicates the
MA TH-MA TIC input:

MATH-MATIC PSEUDO CODE

Under this header, the MATH-MATIC
pseudo-code appears as written by the
user.

3. The third header is:

INPUT AND OUTPUT STORAGE
AND S ER VO ALLOCATION

Under this designation is given input
and output sentences of the system as
well as the variables contained in them
as listed for storage purposes. This
part of the record is divided into two
sections.

A. The first section contains a list of
all the input and output information
broken down into five columns.

Column 1: Specifies the sentence
number of the input or out­
put pseudo-code sentence.

Column 2: The header of this column
is SEN T. N A ME. The
first word of every input or
output sentence is listed in
this column.

Column 3: This is headed SYMBOLIC
ADDRESS and given the
symbolic name of the area
in memory in which the in­
put or output data will be
stored.

Column 4: This col u m n is headed
ACTUAL ADDRESS and
under it is the actual ad­
dress in Univac memory in
w h i c h the d a t a will be
stored during the Univac
run.

Column 5: The header of this column
is SERVO ALLOCATION
In this columnis listed the
servo number from which
data will be rea d or to
which data will be written
during the Univac run.

B. The second sectionof INPUT AND
OUTPUT STORAGE AND SERVO AL­
LOCA TION will contain the storage
address for every variable or constant
used in the problem. These will be
listed in three columns.

Column 1: This is headed PAR A M -
ETER. In this column is
lis ted the name of each
variable or constant.

Column 2: The header of this column

43

is SYMBOLIC ADDRESS.
Under it, the symbolic line
number of the variable will
be listed.

Column 3: ACTUAL ADDRES S is the
header of the third column.
This is a list of the line as­
signed to the parameter in
the memory of Univac dur­
ing the problem run.

4. The fourth of the main headers is
"PERMANENT ARI TH -MATIC
CONTROL S. "

Under this header is listed the Univac
code which is turned out by the ARITH­
MA TIC compiler for every problem.
This coding is used to control the pro­
blem d uri n g the problem run. The
four different parts of the control sec­
tion are labeled:

A. MEMORY CLEAR.

B. SPECIAL READS FOR DATA

C. SEGMENT CONTROL

D. FLOATING DECIMAL ARITH­
METIC

E. CONSTANTS

In the next section of the record, the
MATH-MATIC sentence is listed with
its corresponding ARITH-MATIC and
Univac code.

Each sentence will begin a new half
page of High Speed Printer paper. At
the top of the page the MA TH- MA TIC
sentence number and the first word of
the sentence will appear. Following
the sentence number and name are two
columns with the following headers:

ARITH-MATIC OPERATIONS

UNIVAC CODE

In column one the ARITH-MATIC op­
erations which cor res po n d to the
MATH-MATIC sentence are listed and
numbered.

In column two the Univac instructions
which cor res p 0 n d to the MAT H -
MATIC sentence will be listed with
their line numbers.

On the right side of the page substitu­
tion information will be lis ted only
when two similar ARITH-MATIC op­
erations appear in the same segment.
The format of this information is:

SUBSTITUTION FOR XXX

BEGINS YYY

ENDS ZZZ

XXX is the call-word of the ARITH­
MA TIC operation.

YYY is the line number of the Univac
coding where the operation begins,

ZZZ is the line number of the Univac
where the operation ends.

The only coding that is listed in col­
umn 2 for a substituted operation will
be coding to transfer the parameters
to the proper storage locations and ef­
fect a transfer to the actual routine.
This routine to perform the desired
function is located at the end of the
segment.

The ARITH-MATIC operations are
numbered consecutively from zero to
99999. Univac instructions are num­
bered consecutively up to 999. The
Univac addresses begin after the last
add res s ass i g ned to the storage

44

blocks. When the number of instruc­
tions exceed 999 a new segment be­
gins. Each segment is labeled.
SEGMENT XXX a ppe a r s under the
header UN I V A C CODE and the line
numhering will begin anew.

When a MATH-MATIC sentence in­
volves an iterative loop or specifies
a ran g e of sentences for any other
reason, part of the coding produced
for that sentence is of necessity in­
serted at the end of the specified
range, rather than innormal se­
quence. When this occurs, the word
INS ER T identifies the disassociated
section of coding at the end of the spec­
ifie d range and a de s c ri ption of the na­
ture of the ARITH-MATIC operations
and UN I V A C instructions as sociated
with the wordINSERTappears next to
it. Under this heading, the usual
three-column listings of the ARITH­
MATIC pseudo-code and Univac code
is presented.

III SERVICE ROUTINES

Service routines associated with the
MA TH-MATIC system are described
briefly in this section. Details and
operating instructions for these ser­
vice routines will appear in the MATH­
MATIC PROGRAMMER'S MANUAL.
The PROGRAMMER'S MANUAL will
also contain the rules and conventions
of writing glossaries and subroutines
for theMATH-MATIC Library, and a
detailed description of the Master and
Library tapes and the present library
glossaries and subroutines. With the
information in the PROGRAMMER'S
MANUAL the user can take advantage
of the service routines to get more
efficient use of the system.

a. Librarian

The Librarian routine is part of the
MA TH-MA TIC Library tape. It per­
mits the user to make changes, ad-

ditions, and deletions in the glossaries
and subroutines of the MATH-MATIC
Library. The user must write the new
glossaries and subroutines according
to the rules of the MATH-MATIC sys­
tem. The Librarian routine automat­
ically inserts the new glossaries and
subroutines into the Library at the ap­
propriate positions. With the Librar­
ian the user may expand the MA TH­
MATIC and ARITH-MATIC rep e r­
toires to facilitate han d lin g of his
s pe cia I problems. The Librarian
routine pro d u c e s a complete new
Library tape ready for use in compil­
ation.

b. Pseudo-code Edit

The Pseudo-code Edit routine edits
the problem statement in MATH­
MA TIC P s e u d 0 - cod e into a form
which, when printed on the high speed
printer, may be read and understood
easily. Superscript s y m b 0 I s are
translated into the actual numerical
exponents and the pseudo-code sen­
tences are lined upon the p r i n ted
page. The Pseudo-code Edit routine
will simplify the task of checking the
problem statement on the tape. This
routine is available separately.

c. Error Bypass

The MA TH-MA TIC system is equipped
with the ability to detect various types
of errors that might appear in a
pseudo-code problem statement. In
most cases these errors can be cor­
rected during compilation by super­
visory control type-ins. There are,
however, certain errors which cannot
be corrected convenientlyduring com­
pilation, but necessitate correction of
the original problem statement. This
requires t hat compilation b e inter­
rupted, and restarted fro m the be­
ginning after the problem statement
has been corrected.

45

Phases I and II of the system contain
options which permit the user to by­
pass errors that require rewriting the
pro b Ie m, and continue compilation
through that phase. The user must,
however, stop at the end of that phase
and correct the pseudo-code. These
error by pas s options save the user
from making several attempts to com­
pile in order to locate all of his pseudo­
code errors.

d. Locator

The locator routine will appear at the
beginning of the MA TH-MATIC master
tape. It will enable the user to inter­
rupt and to restart compilation at any
phase or s wee p. With instructions
typed in by the user on the supervisory
control, the locator will collect all of
the intermediate output lists on one
tape when compilation is interrupted,
and redistribute these lists to the ap­
propriate servos at the restart of com­
pilation.

e. Automonitor

Occasionally the existence of a logical
error in the pseudo-code pro b 1 em
statement is revealed only by the in­
correct output produced by the pro­
blem run. In order to locate the er­
ror, the user will want to see the re­
sults of intermediate calculations dur­
ing the problem run. The Automonitor
routine on the MATH-MATIC Master
tape will permit the user to compile a
special running tape in which specified
ranges of cod i n g will be monitored
during the problem run. The user can
select which ranges he wishes moni­
tored and whether the intermediate re­
sults should come out on tape or on the
supervisory control.

.APPENDIX

I DEFINITIONS

The following is a set of definitions of terITlS used frequently in the text.

1. ARGUMENT - A quantity or syITlbol of a quantity which is the subject of
a ITlatheITlatical or logical ope ration. An ArguITlent is also called an ope r­
and.

ExaITlple s;

SIN ALPHA
IF A = 10

ALPHA is an arguITlent
A and 10 are arguITlents

2. BINARY OPERATION - An operation sYITlbol which operates on two ar­
gUITlents.

ExaITlples:

A+B
A-B
A*B

+ is a binary ope ration
- is a binary operation
* is a binary operation

3. CHARACTER - Any of the 63 syITlbols recognized by UNIVAC. Those in­
clude the letters of the alphabet, the cardinal nUITlbers, punctuation ITlarks,
and SOITle other sYITlbols.

4. CONSTANT - Any integer, deciITlal nUITlber, or nUITlber in a power of ten
forITl containing 11 or less nUITleric characters.

5. CONTROL· WORD - The first word in any input-output or control sentence.

6. EXPRES SION - A group of constants, variables and operations having
ITlatheITlatical ITleaning. Expressions are usually enclosed in parentheses.

7. FUNCTIONAL CALL-WORD - A syITlbol of a ITlatheITlatical function appear­
ing in an equation sentence.

ExaITlple s:

COS BETA COS is the functional call word for the function co­
sine.

8. OPERAND - See ARGUMENT

9. SENTENCE - A collection of words and sYITlbols expressing a cOITlITland
which MATH-MATIC can execute. There are three types of sentences:

46

a. EQUATION - A collection of constants, variables, operations, and
functional call words which define a new value of a variable in the
MATH-MATIC SYSTEM.

b. CONTROL - A group of words, operands and symbols which deter­
mine the path through the MATH-MATIC pseudo- code.

c. INPUT-OUTPUT - A collection of words and variables interpreted by
MATH-MATIC as a command involving tapes and/or data.

10. SUBSCRIPT - An integer or variable, enclosed by parentheses or com­
mas, used to index another variable.

Examples:

X(I, 5) I and 5 are subscripts

11. SUBSCRIPTED VARIABLE - Any variable with one, two, or three sub­
scripts attached to it.

A(6, J) is a subscripted variable.

II REPERTOIRE OF ARITH-MATIC OPERATIONS

MATHEMATICAL OPERATIONS

AAO (A) (B)(C)
ASO(A)(B)(C)
AMO(A) (B) (C)
ADO (A) (B) (C)
TSO(A)OOO(B)
T CO (A) 000 (B)
TT a (A) 000 (B)
T'AT (A) 000 (B)
HSO(A) OOO(B)
HCO(A)OOO(B)
HT a (A) 000 (B)

ANI(A) OOO(B)
EXP(A)OOO(B)
APN(A) (N) (B)
GPN(A)nnn(B)
X+A(N) (loglOA) (B)
S QR(A) 000 (B)
RNA(A) (N) (B)
G RN(A) nnn(B)
LAU(A) (loglOB) (c)

DESCRIPTION

A+B-C
A-B-C
A'~B-C

A+B-C
sin A-B A in radians
sin A-B A in radians
tan A-B A in radians
arctan A-B B in radians
sinh A-B A in radians
cosh A-B A in radians
tanh A-B A in radians

-A-B
eA_B
AN_B· ,
An_B;
AN_B
VA. • B
~ .B;
'\VA • B;
logBA-C;

N integral and N < 100
n positive and integral

N integral and < 100
nnn integral

A)O

In all the above operations, (A) means the relative address of A.

47

CONTROL OPERATIONS

AAL(Xi) (~X) (Lx)
OICNOO(K)M

ALL(Xi) (6.X) (Lx)
OICNOO(K)M.
02CNOO(N)M.

ATL(Xi) (6.X) (Lx)
OICNOO(K)M

AGL(Xi) (6.X) (Lx)
OICNOO(K)M

QUO(A.)(B)OOO
OlCNOO(K)M

QUA(A) (B)OOO
OICNOO(K)M

QTO(A) (B)OOO
OICNOO(K)M

QT A(A)(B)OOO
OICNOO(K)M

o
QZOAAAt(W)OOOO

R
OICNOO(K)M
02CNOO(N)M

UOOOOOOOOOOO
OICNOO(K)M

JTCOOOOOOOOO
OICNOO(K)M
02CNOO(N)M

DESCRIPTION

Xi + 6.X-Xi
If Xi < Lx, transfe r control to Opn. K
If Xi2Lx transfer control to next
Opn.

Xi + 6.X--Xi
If Xi 2 Lx transfe r control to Opn. K
If Xi < Lxtransfer control to Opn. N

Xi + ~X-Xi
If Xi ~Lx transfer control to Opn. K
If Xi > Lx transfer control to next
Opn.

Xi + 6.X-c
If Xi2Lx and c > Lx, or if

Xi ~Lx and c < Lx, c-Xi
transfer control to next Opn. ; other­
wise c-Xi and transfer control to
Opn. K.

If A =B transfer control to Opn. K
If A 1: B transfer control to the next
operation.

IfthelAI=laltransfer control toOpn. K
If the IAI = lal transfer control to the
next operation.

If A> B transfe r control to Opn. K
If A ~a transfer control to the next
operation.

IfIAI> lal transfer control to Opn. K
IfIAI~ IBltransfer control to the next
operation.

AAAis the address of the input, t is
the servo of the input, (K) is the Opn.
number of the input GMI, W is used
to rewind servo t, R is used to reset
servo t, Control is transferred to
Opn. N if Z •.. Z' s are detected on
the input tape; otherwise, control
passes to the next operation.

Transfer control to Opn. K

Control is transferred to Opn. K upon
entering a JTC. Computation then
proceeds from Opn. K to Opn. N.

48

CONTROL OPERATIONS

03C~OO(P)M
ROOOOOOOOOOO

I~FUT-OUTPUT OPERATIONS

R
G TH(~) t(~) NNNMMM

GMIBBtS SSAAA

GMNO(~)tSSSAAA

GMOO(~)tSS SAAA

GMSBBtXXXAAA

GMTBBtXXXAAA

GMUBBtXXXAAA

49

DESCRIPTION

Ope rat ion N must be a special
pseudo-operation whose call word is
ROO. The ROO is set to transfer
control to Opn. P only upon entering
the JTCj if the ROO operationis ex­
ecuted other than going through a
JTC, it will act as a skip. If set by
a JTC. the operating containing the
ROO is reset to a skip upon trans­
ferring control to Opn. p.

DESCRIPTION

(R) read, (W) write, or (S) skip NNN
blocks (B) backward or (F) forward
on servo t, starting address MMM.

Read from servo t into storage area
BB S S S words and place the current
S S S word item in AAA.

Write the array of item size S S S
beginning with address AAA on ser­
vo t at (H) high density or (L) low
density.

Write S S S words starting with ad­
dress AAA on servo t at (H) high or
(L) low density.

Pick up XXX words beginning with
address AAA edit them and place
them in an output block beginning with
address BB. When the output block
is filled, write it on servo t.

Pick up XXX words beginning with
address AAA. Convert them and
place them in output block beginning
with address BB. When the output
block is filled, write it on servo t.

Pick up XXX words beginning with
address AAA edit themfor uniprin­
ter and place them in output block
beginning with address BB. When

GASBBtXXXAAA

GATBBtXXXAAA

FILBBtS S SO(~) z
OlCNOO(K)M

CLOO(~) tOOOOOO
OlCNOO(K)M

SPECIAL OPERATIONS

GMMAAAOS SBBB

50

the output block is filled, write it
on servo t.

Pick up the array of item size XXX
beginning with address AAA. Edit
it and place it in output area begin­
ning with address BB. Write the
array from output area to servo t.

Pick up the array of item size XXX
beginning with address AAA. Con­
vert it and place it in output area be­
ginning Vlith address BB. Write the
array from the output area on servo
t.

Z = 1; high speed printer unedited.
Z -= 2; high speed printer edited.
Z = 3; uniprinter unedited.
Z = 4; uniprinter edited.
BB is the output area, t is the servo,
and S S S is the output item size. The
remainder of the output block or an
entire output item, whichever is lar­
ger, is filled with sentinels and writ­
ten on servo t. The sentinels are
Z ••• Z I S for unedited output and IS

for edited output. The number of
blocks on the output tape is printed
out and the output tape is backward
read, checked, and rewound. Oper­
ation K is the write operation.

The GMI in Opn. K is reset to start
reading from the beginning of the
block. If W is used, servo t is re­
wound.

DESCRIPTION

Pick up S S words beginning with
memory add res s AAA and place
them in an area beginning with ad­
dress BBB.

Print out in two word floating deci­
mal form one, two, or three values
with addr~sses AAA, BBB, CCC.

Type in two word floating decimal
form into addresses AAA, BBB, or
CCC one, two, or three values.

GWSttttt ••• 00

S BIAAAIII S S S

SBOAAAIIIS S S

NON-OPERATIONAL SENTINELS

XXXBLMSTGM
A 0 0 0 0 0 0 00 040
BOO 0 0 0 0 00 05 0
F00000000120

PRE6.S TG6.ON6.t

BOOOOOOOOOO
WKG6. S TO RAG E6.

F00000000120
END6.S TO RAG E6.

BEGINLOOPXXX

END6.LOOP6.XXX

END6.CODINGM

Rewind servos ttt ••• and stop.

Pick up the AAA-l element of the
subscripted array that begins with
address III and place it in storage

address SSS.

Pick up from S S S the AAA-l ele­
;-~J.cnt and place it in the subscripted
array beginning with address III.

DESCRIPTION

XXX=numbe r of sto rage areas
listed. A, B, etc. are the storage
areas. The last three digits give the
size in number of words of the area.

t is the servo containing pre-read
input
Storage area for pre-read

Storage area for working storage
data
No further storage listings; next line
is operation #0.

Indicates the beginning of an itera­
tive loop and is to precede the first
operation constituting the loop. XXX
represents the loop number.

Indic ate s the end of an ite rati ve loop
and is inserted following the last
operation of the loop. XXX is the
loop number.

Indicates the end of ARITH-MATIC
pseudo-code.

III REPERTOIRE OF MATH-MATIC SENTENCES

The following is list of sample MATH-MATIC pseudo-code sentences illus­
trating most of the combinations of options available in the input-output and

51

control sentences. The rules in chapter II and III are recommended whenever
a que stion arise s in writing pseudo-code.

1. READ ABC.
2. READ ABC IF SENTINEL JUMP TO SENTENCE 8 .
3. READ ABC D E IF SENTINEL RESET AND JUMP TO SENTENCE 10 •
4. READ C D E F IF SENTINEL REWIND AND JUMP TO SENTENCE 24 .
5. READ X Y SERVO 4 .
6. READ X Y 2 A B F D STORAGE A.
7. READ A X B Y SERVO 1 STORAGE Q .
8. READ ABC STORAGE 2 SERVO - IF SENTINEL RESET AND JUMP

TO SENTENCE 73E .
9. READ-ARRAY X(6, 6) .
10. READ-ARRAY X(6, 8) SERVO 2 STORAGE C .
11. READ-ITEM X(8, 10) •
12. READ-ITEM A(5, 5, 5) IF SENTINEL JUMP TO SENTENCE IDA.
13. READ-ITEM BET A(40) SERVO 8 STORAGE B IF SENTINEL REWIND

AND JUMP TO SENTENCE 3 .
14. WRIT E ABC .
15. WRITE FOR UNIPRINTER ABC.
16. WRITE EDIT ABC.
17. WRITE CONVERT ABC.
18. 7{RITE EDIT FOR UNIPRINTER ABC.
19. WRITE ABC SSRVO 6 .
20. WRITE FOR UNIPRINTER A X B Y STORAGE F .
21. WRITE AND EDIT X Y 2 SERVO 4 STORAGE Y •
22. WRITE CONVERTED A B D G F L N STORAGE K SERVO 3 .
23. WRITE-ARRAY X(20) .
24. WRITE-ARRAY FOR UNIPRINTER MATRIX(5, 10) .
25. WRITE-ARRAY EDIT 2(5,5,3) .
26. WRITE-ARRAY CONVERT AB(7,4) .
27. WRITE-ARRAY EDIT FOR UNIPRINTSR C(9) •
28. WRITE-ARRAY EDIT AND CONT AIN X(5)
29. WRITE-ARRAY CONVERT AND CONT AIN A(lO, 10) .
30. WRITE-ARRAY EDIT FOR UNIPRINTER AND CONT AIN B(25).
31. WRITE-ARRAY A(6, 6, 6) SERVO 1.
32. WRITE-ARRAY EDITED 2(5,5) STORAGE A .
33. WRITE-ARRAY AND CONVERT 2(4,2,2) SERVO 6 .
34. WRITE-ARRAY EDIT FOR UNIPRINTER AND CONT AIN X(8, 8) SERVO

3 STORAGE N .
35. WRITE-ITEM X(lO, 10) •
36. WRITE-ITEM FOR UNIPRINTER X(5, 5)
37. WRITE-ITEM EDIT A(110) .
38. WRITE-ITEM CONVERT B(65) .
39. WRITE-ITEM EDIT FOR UNIPRINTER C(50, 3)
40. WRITE-ITEM X(lO, 10) SERVO 5 .
41. 'NRITE-ITEM FOR UNIPRINTER X(lO, 5) SERVO 7 .
42. WRITE-ITEM EDITED C(40) STORAGE L .
43. WRIT~-ITEM AND CONVERT F(4, 4, 4) SERVO 4 STORAGE D .
44. WRITE-ITEM EDIT FOR UNIPRINTER X(6, 6) STORAGE P SERVO 6 .

52

45. CLOSE-INPUT SENTENCE 10 .
46. CLOSE-INPUT AND REWIND SENTENCE 1 •
47. CLOSE-OUTPUT SENTENCE 24D •
48. CLOSE-OUTPUT AND REWIND SENTENCE 6 .

Control sentences

1. CONTAIN X(25) •
2.. CONTAIN A(7, 7) STORAGE A •
3. EXECUTE SENTENCE 24 .
4. EXECUTE SENTENCE 3 TO 10 .
5. IF A < 17.3, JUMP TO SENTENCE 17 .
6. IF A = B, JUMP TO SENTENCE 12A .
7. IF A > 10, JUMP TO SENTENCE 14 .
8. IF A < B JUMP TO SENTENCE 3, IF A = B, JUMP TO SENTENCE 6,

IF A > B JUMP TO SENTENCE 35 •
9. IF ALPHA = BET A JUMP TO SENTENCE 15 IF ALPHA> BET A JUMP

TO SENTENCE 29 •
10. IF IAI < IB\JUMP TO SENTENCE 5.
11. IF IAI = IBIJUMP TO SENTENCE 6.
12. IFIBI> IAPJUMP TO SENTENCE 29.
13. IFIALPHAI= IBETArJUMP TO SENTENCE 6 IFIALPHAI> IBETA\JUMP

TO SENTENCE 24.
14. IF A(I) < B JUMP TO SENTENCE 25 •
15. IF A(5, 4) = 23 JUMP TO SENTENCE 7 •
16. IF C > X(4, 3, J) JUMP TO SENTENCE 5 •
17. IF AU) < B(J) JUMP TO SENTENCE 34 IF A(I) = B(J) JUMP TO SEN-

TENCE 51 IF AU) > B(J) JUMP TO SENTENCE 68 •

18_. IF A = > B JUMP TO SENTENCE 10 •
19. IF A(I) = < B(J) JUMP TO SENTENCE 10 •.

ZOo JUMP TO SENTENCE 3G .
Zl. PRINT-OUT A B X Y •
Z2. TYPE-IN ALPHA, BET A, K.
23. VARY X 10 (0.05) 25 SENTENCE 7 TO 15 •
2.4. VARY X 10 (D) 25 Y 0 (L) ALPHA SENTENCE 20 THRU 21 •
2.5. VARY I 1 (1) 10 J 11 (1) 20 K 1 (1) LASTV ALUE SENTENCE 10 THRU 15 .
26. VARY X I, 3, 6, 10,11. 5, 15 SENTENCE 6 TO 19E .
27. VARY X Y Z 1 2 3 2 4 7 5 9 26 SENTENCE 1 TO 25 •
28. STOP.
29. IGNORE.

I~ MODIFIED UNITYPER KEYBOARD

With a modified UNITYPER keyboard, the digit or symbol in the first column
may be unityped directly on the tape, and the typed digit or symbol appears on
the hard copy. The modified UN IT Y PER keyboard may be obtained from
Remington Rand Univac at nominal cost. These digits and symbols do not ap­
pear on the ordinary UNITYPER Keyboard. The characte r in the second column
must be typed in this case. MATH-MATIC interprets the characters as the
digit or symbol in the first column.

53

INTENDED DIGIT OR SYMBOL
ON MODIFIED KEYBOARD

superscript 0

superscript 1

superscript Z

superscript 3

supe r sc ript 4

superscript 5

superscript 6

supe r sc ript 7

8upe r sc ript 8

superscript 9

supe rsc ript

superscript

superscript /

> (greater than)

< (less than)

54

CHARACTER ON
ORDINARY KEYBOARD

l:

fj

t/

t

"

S

0/0

¢

?

f

&

@

V MATH-MATIC PRINT-OUTS

This section contains both the normal and error print-outs which may occur
during compilation and running of the program tape. Each print-out contains
a carriage return in the first digit position of the first word so that the Sup­
ervisory Control Printer may be operated on normal. The print-outs are
listed according to Phase, Glossary, Sweep, A-3 Routines, System Restric­
tions, and Running Program Tape Errors. The exact form of the print-out,
except for the carriage return, is listed in the first column. The second col­
umn contains a description of the error that caused the print-out, and the third
column the procedure that must be taken in order to correct the error.

The print-outs of Phase 1 are cataloged and will always begin with the word
PRT-OUT XX followed by SENT. NO. nnnn, where XX is the number of the
print-out and nnnn the number of the sentence where the error occurred. A
breakpoint option permits the user to by-pass those errors that require a re­
writing of the pseudo code. Selecting this option allows the user to error
check the remaining sentences of his problem, but does not allow him to go on
to Phase 2.

The print-outs of Phase 2 are listed as main body and Glossary. :The print­
outs cataloged as main body are those which are common to all types of sen­
tences.. Glossary print-outs are those which are common to a particular sen­
tence type. The first word of a Glossary print-out will contain the name of the
Glossary in which the error occured and the second word the number of the
sentence.. A breakpoint option is provided for those print-outs that require a
rewriting of the pseudo code. In selecting this option the user may not go on
to Phase 3 before correcting his errors.

Since there are few error print-outs in Phase 3, Phase 4, and Sweep 1, the
print-outs are listed only by Phase and Sweeps. Sweeps 2, 3, and 4 have no
error print-outs. A- 3 Routine print-outs only occur from compiler sections.
Running program entors arise from the improper manipulation of data, that
is. calculations that lead to division by zero, taking the arc sine of a quantity
greater than one, etc.

The user is strongly advised to carefully analyze his error before taking steps
to correct it and to examine the pseudo code to ascertain whether or not other
portions of the problem will be affected by any changes made.

55

NORMAL PRINT-OUTS

PRINT-OUT

1. END PHASE 1

2. NO DIRECTORY
LISTED

3. END PHAS E 2

4. SENT. NO. nnnn
SERVO t

5. REMOVE SERVO
4 MOUNT BLANK

6. END PHAS E 3

7. END SWEEP 1

8. END SWEEP 2

DESCRIPTION

Phase ~l of compilation has been
completed.

A computer or compiler sen­
tence is listed in the pseudo
coding but the COMP sections do
not have an accompanying DIR­
ECTORY.

Phase 2 of compilation has been
completed.

The prepared input or output
data required by sentence num­
ber nnnn will be either mounted
or written on servo t.

During compilation data, which
is needed for the running pro­
gram tape, is now on servo 4.

PROCEDURE

NONE

NONE

NONE

Mount data on servo
t if input is required,
or mount a blank on
servo t if output is
being written on ser­
vo t during the pro­
blem run.

Remove the tape on
Servo 4 and save it
for the problem run,
and mount a blank
tape to continue com­
pilation.

Phase 3 of compilation has been NONE
completed.

SWEEP 1 of compilation has been NONE
completed.

Sweep 2 of compilation has been NONE
completed.

56

9. END SWEEP 3

1O.END SWEEP 4

11. XX BLOCKS OF
RUNNING TAPE
ON SERVO 7

12. XX BLOCKS
OF EDITED
RECORD ON
SERVO 3

13. END MATH­
MATIC COM­
PILATlON

PHASE 1

PRINT-OUT

1. PRT-OUT 01
SENT. NO. nnnn
NO PAREN

2. PRT-OUT 02
SENT. NO. nnnn
NXT SENT NO.
PAREN MSNG

3. PRT-OUT 03
SENT. NO. nnnn
NXT SENT. NO.
PAREN BUT NO
SPACE

4. PRT-OUT 04
SENT. NO. nnnn
NXT SENT. NO.
EQUAL SIGN
SPACE MSNG

Sweep 3 of compilation has been NONE
completed.

Sweep 4 of compilation has been NONE
completed.

Servo 7 which is now the running NONE
program tape contains XX blocks
of C -10 coding.

Servo 3 contains XX blocks
of the EDITED RECORD.

Compilation has been completed.

DESCRIPTION

The first. sentence in the pseudo
code has no left paren; nnnn will
be spaces and not the number of
the first sentence.

NONE

NONE

ERROR PRINT-OUTS

PROCEDURE

Hit start bar to con­
tinue.

The sentence number of the sen- Hit start bar to con-
tence following nnnn has no tinue.
right paren after the sentence
number.

The sentence number of the sen- Hit start bar to con-
tence following nnnn has no tinue.
space after the right paren of
the sentence number.

A space is missing either before Hit start bar to con-
or after the equal sign of sen- tinue.
tence number nnnn. This print-
out occurs only in sentences
that are equations.

57

PRINT-OUT

or

PRT-OUT 04
SENT. NO. nnnn
EQUAL SIGN
SPACE MSNG

DESCRIPTION

5. PR T-OUT 05 A space period (L.) signifying
SENT. NO. nnnn the end of the pseudo-code sen-
SPACE PERID tence is ftmnd by MATH-MATIC,
NO PAREN but a left paren indicating the
(XXXXXXXXXXXX) beginning of a new sentence has
(yyyyyyyyyyyy) not been found. Therefore,

where X ... X
and Y ••• y. is that
portion of the
pseudo-code where
the error occurred.

6. PRT-OUT 06
SENT. NO. nnnn
NXT SENT. NO.
(00000000 nnnn)

or
(nnnnLMLLLLN
INCORRECT
TYP-IN CORR

7. PR T-OUT 07
SENT. NO. nnnn
SENT. NAME
(X ••• XMMAM)
INCORRECT
TYP-IN CORR

NEXT WORD

either the left par en of the sen­
tence number following nnnn has
been omitted, or a decimal
point exi s t s within SEN T. NO.
nnnn.

If the left paren is missing •...

If a decimal point exists within
sentence nnnn, that is, between
the sentence number and the
space period which indicates
the end of the sentence •••

The sentence number Jollowing
sentence nnnn is either less
than or equal to nnnn; or it con­
tains an alphabetic as its first
digit; or it is greater that 999 Z.

This print-out results only from
errors associated with the first
word of a statement. The word
X ••• XLLLLLM was not found in
the MATH-MATIC catalog, and,
therefore, must be incorrectly
spelled or a word which is not
yet part of the repertoire.

58

PROCEDURE

Hit start bar to begin
processing the sen­
tence after SENT.
NO. nntm.

Set breakpoint 8 and
force transfer.
MA TH-MATIC will
continue processing
SENT. NO. nnnn.

Type in:
X •••• XLLLLLLMD,
where X is the cor­
rect form of the sen­
tence number.

PRINT-OUT

8. PRT-OUT 08
SENT. NO. nnnn
PSEUDO WORD
(X ••• XMI\MM)
INCORRECT
TYP-IN CORR

NEXT WORD

DESCRIPTION

If the print-out resulted from the
latter, the problem must be re­
written within the present reper­
toire.

If the sentence name is incorr­
ectly spelled, the corrections
are to be typed in a word at a
time in answer to the print-out
"NEXT WORD." Upon typing in
the last correction and in answer
to "NEXT WORD, " a word of
spaces must be typed in to term­
inate She correction routine.

PROCEDURE

If,for example, EXECTEMAM/\ Type in:
is printed out ••••

If, however, READXMMAM is
printed out and resulted from
ommitting the space between
READ and X •••

This print-out results only from
errors associated with functiq:nal
call words. The word printed
out was interpreted as a func­
tional call word and was not found
in the catalog. To continue the
problem run, the correct form of
the call word and in some cases
its associated arguments must be
typed in. It is of utmost impor­
tance to check the original pseudo
coding to determine the exact
cause of the error.

Corrections are to be typed in a
word at a time in answer to
"NEXT WORD". Upon making the
last correction and in answer to
"NEXT WORD", type in a word of
spaces to terminate the correction
routine.

59

EXECUTE~~~~~
~~~~~~~~~~~~ 

Type in: 

READ~~~~~~~~ 
~~~~~~~~~~~ 
~~~~~~~~~~~~ 



PRINT-OUT DESCRIPTION 

Examples of common errors as­
sociated with funcitonal call 
words. 

PSEUDO WORD 
PRINTED. OU T 

(l) C S S AMAAAMA 

A mispelled func­
tional call word. 

CORRECT FORM 
OF THE PSEUDO 
WORD 

(1) COS6ALPHA 

PROCEDURE 

(l) Type in 

COS66666666[., 
6t:.6666666["["[" 

(2) O. 123EXP~ (2) O. 123+EXP60. 5 (2) Type in: 

Operation sign 
missing -between 
0.123 and EXP 

(3) -0. 779MAAA 

-0.7794 is the 
converted expon­
ent and the error 
resulted from 
om.itting the op­
eration sign be­
tween the expon­
ent and the func­
tional call.word. 

(3) X-0.7794+ 
SIN6B 

O. 12366666[.,[., 
+6666[.,6666[.,[., 
EXP6666666[.,[., 
666666666[.,[.,[., 

(3) Type in: 

-0. 779466[.,[.,/'::, 
+666666666[.,[., 
SIN6666[.,66[.,/'::, 
66666666[.,[.,[.,/'::, 

(4) ALPHAROOTM6 (4) ALPHMROOT6X (4) Type in: 

Omitting a space 
between the first 
argument of a two 
argument functional 
call word. 

NOTE: 
The omission of a space between the 
secoltd argument of a two argument 
call word cannot be corrected by 
type-ins, that is, if A~6M666M 
is printed out and the intended form 

60 

ALPHM66[.,[.,[.,[., 
ROOT6666666[" 
6666666666[.,[., 



PRINT-OUT 

9. PR T-OUT 09 
SENT. NO. 
nnnn TYPE­
IN INCOR­
RECT TYP­
IN CORR 
AGAIN 

NEXT WORD 

10. PR T-OUT 10 
SENT. NO. 
nnnn DECI 
ALPHA 
(. X ••• XMI\MI\) 
TYP-IN CORR 

DESCRIPTION 

is A6POW6B, this would indicate a 
space was omitted between POW 
and B. To by-pass this error, SCICR 
to the error by-pass routine. Setting 
breakpoint 1 and forcing transfer will 
permit an error check of the remain­
ing sentences. The memory location 
of the error by-pass routine is pro­
Yided with the MA TH- MA TIC master 
tape. 

This print-out will result only from 
incorrectly typing in the sentence 
name or functional call word related 
to PRT-OUT 07 and PRT-OUT 08 
above. 

The pseudo word. X •• eo XI\I\I\/\!\!\ has 
an alphabetic after the decimal point. 
All decimaled quantities must be 
t;lumeric. 

This print-out will also result when a 
pseudo word appearing in a statement 
contains as its first digit a decimal 
point. 

PROCEDURE 

Check the 
pseudo-code 
and make cer­
tain the error 
has been pro­
perly analyzed, 
and then type­
in again the 
cOl'rection as­
sociated with 
the error. 

Type in: 

o. X ••• XMMA 

Type in: 

X ••• X6AMAM 

11. PR T-OUT 11 
SENT. NO. nnnn 
LFT NUMBER 
NUMERIC 
TYP-IN CORR 

The left member of an equation 
is a numeric quantity, that is, 
it contains a numeric in its 
first digit position. 

Type in: 

12. PR T-OUT 12 
SENT. NO. nnnn 
PAREN NOT 
PAIRED 
REWRITE 

The parens of sentence nnnn 
not properly paired. To insure 
accurate results in the other 
phases, the pseudo-code must 
be re-written before continuing. 

61 

X ••• XMM/\M 

Hi t start bar and 
MATH-MATIC will 
rewind all tapes 

or 

Set breakpoint 1; 



PRINT-OUT DESCRIPTION 

13. PRT-OUT 13 The absolute signs of sentence 
SENT. NO. nnnn nnnn are not properly paired. 
ABS SIGN 
NOT PAIRED 
REWRITE 

14. PR T-OUT 14 MATH-MATIC has detected a 
SENT. NO. nnnn pseudo word of more than 12 
PSEUDO WORD digits in sentence nnnn. A 

(XXXXXXXXXXXX)common error associated with 
(YYYYYYYYYYYY)this print-out is the omission 
TOO LONG of a space or operation !Sign be-
REWRITE tween pseudo words. X ••• X and 

and Y ••• Y will give that portion 
of the pseudo code where the 
error occurred. 

15. PR T-OUT 15 
SENT. NO. nnnn 
SUB VARBLE 
(X.' •• XM!\MM) 
NUMERIC 
REWRITE 

16. PRT-OUT 16 
SENT. NO. nnnn 

The subscripted variable of sen­
tence nnnn is numeric instead of 
alphabetic. 

The numerical exponent of sen­
tence nnnn is not of the power of 

62 

PROCEDURE 

force transfer; and 
MA TH- MA TIC will 
begin processing the 
sentence following 
nnnn. 

Hit start bar and 
MATH-MATIC will 
wind all tapes 

or 

Set breakpoint l~ 
force transfer; and 
MATH-MATIC will 
begin processing the 
sentence following 
nnnn. 

Hit start bar and 
MA TH- MA TIC will 
rewind all tapes. 

or 

Set breakpoint 1; 
force transfer; and 
MATH-MATIC will 
begin processing the 
sentence following 
nnnn. 

Hit start bar and 
MA TH- MA TIC will 
rewind all tapes 

or 

Set breakpoint 1; 
force transfer; and 
MATH-MATIC will 
begin processing the 
sentence following 
nnnn. 

Hit start bar and 
MA TH-MATIC Will 



PRINT-OUT 

NUM. EXP. 
INCORRECT 
REWRITE 

17. PRT-OUT 17 
SENT. NO. nnnn 
REWRITE 
PSEUDO CODE 
END PHASE 01 

18. WRONG TAPE 
ON SERVO -6 
MOUNT AT-3 
LIBRARY 

19. PRT-OUT 19 
DIRECTORY 
OR COMP 
SECT MIS SING 
REWRITE 

20. PRT-OUT 20 
DIRECTORY 
TOO LONG 
REWRITE 

21. PRT-OUT 21 
DIRECTORY 
WORD XXX 
NUM. EXP. 
INCORRECT 

DESCRIPTION PROCEDURE 

ten form. The only exponents rewind all tapes. 
permitted in statements are 
those in the power of ten notation. or 

This print-out will result only 
when an error requiring a re­
writing of the pseudo-code has 
been encountered, and the pro­
grammer by using breakpoint 1 
decided to error check the re­
maining pseudo-code. 

Make necessary corrections and 
begin a new MATH-MATIC com­
pilation. 

The MATH-MATIC library tape 
is not mounted on Servo 6. 

Set breakpoint 1; 
force transfer; and 
MATH-MATIC will 
begin processing the 
sentence after nnnn. 

Hit start bar· to re­
wind all·tapes. 

Hit start bar to re­
wind all tapes. 
Mount the library 
tape and begin a new 
compilation. 

A computer and/or compiler sen- Hit start bar to re­
tence is listed in the pseudo code wind tapes. 
sentences, signifying that a direct-
ory and/or COMP section will fol-
low the pseudo code. Neither the 
directory or the COMP section was 
found in the first block following 
the pseudo code sentences. 

The directory contains more than Hit start bar to re-
99 entries, exclusive of header and wind tapes. 
sentinel. The directory may be 
shortened by listing some of the 
constants within a COMP section. 

The only exponents permitted ln 
the directory are those of the 
power of ten notation. 

If the error can be corrected by 

63 

Type in: 



PRINT-OUT 

(x ••• X ) 
TYP-IN CaRR 

where X ... X is 
incorrect word 

22. PRT-OUT 22 
DIRECTORY 
REWRITE 
DIRECTORY 

23. PRT-OUT 23 
DIRECTORY 
BREAKPOINT 
OPTION 

PHASE 2 

PRINT-OUT 

1. ARGMT MSNG 
SENT. NO. nnnn 
REWRITE 
( sN\MI\I\MMI\) 

DESCRIPTION PROCEDURE 

typing in the correct power of 
ten format ••• 

If the error cannot be corrected 
by typing in a new word ••• 

This print-out will occur only 
if the programmer elected to 
force transfer on breakpoint 
option in order to check the 
remainder of the directory. 

This print-out will result only 
if a word of spaces is typed in 
instead of a new word in PR T­
OUT 21. 

If the breakpoint option is elect­
ed, PR T-OUT 22 will result after 
the directory is error checked. 

X ... XMM!\M 
where X ... X is the 
corrected word. 

Type in: 
!\!\!\!\t\M!\!\!\1\6 

PRT -OUT 23 will 
occur giving the 
programmer a 
breakpoint option. 

Hit start bar to re­
wind tapes. 

Hit start bar to re­
wind tapes. 

or 

Set breakpoint 1; 
force transfer to 
continue error 
checking the DIREC­
TORY. 

ERROR PRINTOUTS 

DESCRIPTION 

The argument before or after an 
operation symbol of the equation 
listed as sentence number nnnn 
is missing; s is the operation 
symbol that has a missing argu­
ment. 

NOTE; In selecting the break­
point 2 option, set comma break­
point to stop compilation at the 
end of Phase 2. The breakpoint 
option permits the user to error 
check his pseudo coding. The 
errors must be corrected before 
a new compilation may be attempt­
ed. 

64 

PROCEDURE 

Hit start bar to re­
wind tapes. 

or 

Set breakpoint 2; 
force transfer to 
by-pass the error. 



PRINT OUT 

2. WORD MSNG 
SENT. NO. nnnn 
REWRITE 

3. PAREN MSNG 
SENT. NO. 
nnnn REWRI TE 

4. OPERATION 
SYMBOL MSNG 
SENT. NO. nnnn 
REWRITE 

5. WORD AFTER 
STORAGE 
MISSING 
SENT. NO. nnnn 
TYP-IN CORR 

6. WORD AFTER 
SERVO 
MISSING 
SENT. NO. nnnn 
TYP-IN CORR 

DESCRIPTION 

The sentence listed as number 
nnn is incomplete in that the 
GLOSSARY required by the 
sentence expects more infor­
mation than is tontained in the 
statement. 

See NOTE of Print-Out I for 
breakpoint option. 

PROCEDURE 

Hit start bar to re­
wind tapes. 

or 

Set breakpo~nt 2; 
force transfer to by­
pass the error. 

The parentheses of sentence num- Hit start bar to re-
ber nnnn are improperly paired, wind tapes. 
that is, they are not closed. 

See NOTE of Print-Out I for 
breakpoint option. 

An operation symbol is missing 
between two arguments of the 
equation listed as sentence num­
ber nnnn. 

See NOTE of Print-Out I for 
breakpoint option. 

The pseudo word STORAGE of 
sentence number nnnn is not 
followed by a storage area 
designation. 

or 

Set breakpoint 2; 
force transfer to by­
pass the error. 

Hit start bar to re­
wind tapes. 

or 

Set breakpoint 2; 
force transfer to by­
pass the error. 

Type in: 

XMMM/\MM 

where X is the 
alphabetic storage 
area designated. 

The pseudo word SERVO of sen- Type in: 
tence number nnnn is not followed 
by a servo number. XI\MMMI\I\M 

65 

where X is the cor­
rect servo number. 



GLOSSARY 

PRINT-OUT 

1. CLOSE-INPUT 

or 

CLOS E-OUTPUT 
SENT. NO. nnnn 
SENT. REF. 
MISSING 
TYP-IN CORR 

2. CLOSE-INPUT 

or 

CLOSE-OUTPUT 
SENT. NO.nnnn 
WORD AFTER 
AND MSNG 
TYP-IN CORR 

3. CLO S E-INPU T 

or 

CLOSE-PtJ' TPUT 
SENT. NO. nnnn 
FORMAT 
INCORRECT 
TYP-IN CORR 

4. CONTAIN 

or 

READ-ARRAY 
SENT. NO.nnnn 
VARIABLE 
~X ••• X) 
NOT ALPHA 
TYP-IN CORR 

5. CONTAIN 

or 

DESCRIPTION 

A CLOSE..,QUTPUT sentence 
must make a reference to some 
output sentence. This print-out 
will result when the sentence 
number of an output sentence is 
omitted from the CLOSE-OUT­
PUT sentence. 

The word AND is not followed by 
REWIND indicating either an un­
intentional omission of the word 
REWIND or possibly an incom­
plete deletion. 

The sentence does not conform to 
the prescribed format. 

The variable is not alphabetic. 

The variable of the subscripted 
array is missing. 

66 

ERROR PRINTOUTS 

PROCEDURE 

Type in: 

X ••• XI\MAAAA 

where X ••• X is the 
sentence number that 
is referred to by the 
CLOSE-OUT sen­
tence. 

Type in: 

(1) REWINDMMM 
if the word was 
omitted, or 

(2) AMAAAAI\MM 
if the REWIND option 
is not desired. 

Type in the entire 
sentence, omitting 
the name of the sen­
tence, a pseudo-word 
per Univac word. 
X ••• XMI\MAA. 
When finished type in 
a word of space s. 

Type in: 

X ••• XMMM/\ 

where X ••• X is the 
correct form of the 
variable. 

Type in: 

X ••• XAMMAA 



PRINT-OUT 

READ-ARRAY 
SENT. NO. nnnn 
VARIABLE 
MISSING 
TYP-IN CORR 

6. CONTAIN 

or 

READ-ARRAY 
SENT. NO. nnnn 
PAREN MSNG 
TYP-IN CORR 

7. CONTAIN 

or 

READ-ARRAY 
SENT. NO. nnnn 
ARRAY SIZE 
(X ••• X) 
ALPHABETIC 
TYP-IN CORR 

8. CONTAIN 

or 

READ-ARRAY 
SENT. NO. nnnn 
MORE THAN 3 
SUBSCRIPTS 
REWRITE 

9. CONTAIN 

or 

DESCRIPTION 

A paren is missing from the 
subscripted array 

PROCEDURE 

where X ••• X is the 
intended variable. 

Type in: 

(1) (variable} MM 

(2) (first .ubscript)~ 

(3) (second subscript)~ 

(4) (third subscript)~ 

If there are no sec­
ond and/or third 
subscripts type in a 
word of spaces for 
the third and fourth 
words of the four 
word type-in. 

The size of the array is X ••• X, Type in: 
and it is alphabetic. In a 
READ-ARRAY sentence the array X ••• X!\MMAA 
size must be numeric. 

There are more than three sub­
scripts in the array of sentence 
number nnnn. 

See NOTE of Print-Out 1 of Phase 
2 for explanation of breakpoint 
option. 

where X ••• X Is the 
correct array size. 

Hit start bar to re­
wind tapes. 

or 

Set breakpoint 2; 
force transfer to 
by pass the error. 

There are more than 250 elements Hit start bar to re-
of the array in sentence number 
nnnn. 

67 

wind tapes. 

or 



PRINT-OUT 

READ-ARRAY 
SENT. NO. nnnn 
ARRAY SIZE 
TOO LARGE 
REWRITE 

DESCRIPTION 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

PROCEDURE 

Set breakpoint 2; 
force transfer to 
by pass the error. 

10. COMP The label of COMPUTER or COM- Typ.e in: 

11. 

12. 

LABEL OF PILER is missing. This error 
SENT. NO; nnnn usually comes about from omitting COMPUTER-XX: 
MIS SING the dash in the label. 
(COMPUTER66M) or 

or 

( COMPILER66M) 
TYP-IN CORR 

COMP 
SENT. NO. nnnn 
ALPHABETIC 
STORAGE SIZE 
(X ••• X) 
TYP-IN CORR 

COMP 
SENT. NO. nnnn 
PAREN OF 
STORG SIZE 
MISSING 
(X ••• X) 

The size of the storage area 
requested by the COMP sentence 
is an alphabetic character in­
stead of a numeric. 

A paren is missing from the 
storage area size requested by 
sentence number nnnn. 

If X ••• X is the intended storage 
size ••• 

If X ••• X is not the intended stor­
age size ••• 

COMPILER-XXX 

where XXX is the 
correct label. 

Type in: 

XXXI\MAMAM 

where XXX is the 
correct storage size. 

Set breakpoint 2; 
force transfer to 
continue. 

Hit start bar to re­
wind the tapes. 

13. COMP The storage area symbol X is not Type in: 

14. 

SENT. NO. ~nnn an alphabetic character. 
STORG AREA 
( X66MAMAAI\fIJ 
NOT ALPHA 
TYP-IN CORR 

COMP 
SENT. NO. nnnn 
SERVO NO. 
(XMMMMMN 

The servo being assigned by the 
COMP sentence is not 1 thru 9 or 
minus (-). 

68 

XAAI\M66MM 

where X is an 
alphabetic storage 
area symbol. 

Type in: 

XAMMAMAM 



15. 

16. 

17. 

PRINT-OUT 

INCORRECT 
TYP-IN CORR 

EXECUTE 
SENT. NO·. nnnn 
SENT REF 
MISSING 
TYP-IN CORR 

IF OPTN xx 
SENT. NO.nnnn 
SIGN MSNG 
TYP-IN CORR 

IF OPTN xx 
SENT. NO. nnnn 
FORMAT 
INCORRECT 
TYP-IN CORR 

DESCRIPTION 

The sentence range over which 
the sequence of execution is to 
be altered is m.issing in sentence 
number nnnn. 

The relation sign is missing from 
clause xx of the IF statement list­
ed as sentence number nnnn. 

PROCEDURE 

where X is the proper 
servo number. 

Type in: 
X ••• XM/\/\/\M 
Y ••• Y M6/\/\I\I\ 
where X ••• X and Y ••• Y 
is the sentence range. 
If the range is one sen­
tence only, type in a 
word of spaces for 
Y ••• Y. 

Type in: 
X ••• X/\M/\/\/\6 
Y ••• YMMM6 
z ... Z6666666 
where X ••• X and Z ••• Z 
are the intended var­
iables or numbers and 
y ••• Y is the intended 
relation sign or con­
bination of relation signs. 

The xx clause of the IF statement Type in IF6666N\/\/\N\ 
listed as sentence number nnnn is if there is another 
not of the format prescribed in the "IF" clause in the sen-
manual. tence. Otherwise 

type in spaces. 

18. IF The sentence number to which Type in: 

19. 

SENT. NO. nnnn control is to be transferred is 
SENT REF missing. 
MISSING 
TYP-IN CORR 

FOW 
SENT. NO. nnnn 
ARGMT MSNG 
REWRITE 
,~ /\666/\6N~ 

This print-out will result only 
where there is an argument 
missing from the multiplication 
sign (,~) in a numeric written as 
a power of ten. 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

69 

X ••• X6666666 
where X ••• X is the 
number of the sentence 
to which control is to 
be transferred. 

Hit start bar to re­
wind tapes; 

or 

Set breakpoint 2; 
force transfer to uy­
pass the error. 



20. 

21. 

PRINT-OUT 

READ 
SENT. NO. nnnn 
TOO MANY' 
VARIABLES 
REWRITE 

READ 
SENT. NO. nnnn 
SENT REF 
MISSING 
TYP-IN CORR 

DESCRIPTION 

There are more than 50 variables 
listed in the READ statement. 

See Note of Print-Out 1 of Phase 2 
for an explanation of the break­
point option. 

PROCEDURE 

Hit start bar to re­
wind tapes; 

or 

Set breakpoint 2; 
force transfer to 
by-pass the error. 

The READ statement listed as Type in: 
sentence number nnnn used the IF 
SENTINEL JUMP option but does X ••• X/\I\MM/\ 
not list the sentence number to 
which control is to be transferred. where X ••• X is the 

missing sentence 
number. 

22. READ Variable X ••• X is not alphabetic. Type in: 

23. 

24. 

SENT. NO.nnnn 
VARIABLE X ••• X/\/\MM/\ 
(X ••• X) 
NOT ALPHA where X .•• X is the 
TYP-IN CORR correct form of the 

variable. 

READ 
SENT. NO.nnnn 
INCORRECT 
ITEM SIZE 
TYPE-IN CORR 

READ 
SENT. NO.nnnn 
FORMAT 
INCORRECT 
TYP-IN CORR 

The variables of the READ sen­
tence make up an incorrect item 
size. The user may type in any 
larger acceptable item size. He 
must be sure, however, that his 
input data items are padded to 
this size. If the Data Conversion 
routine is used to prepare the 
data, the items will be padded to 
the next larger acceptable size. 

The sentence does not conform to 
the format prescribed in the man­
ual. 

70 

Type in: 

X ... XM/\/\/\M 

where X ••• X is the 
number of words 
including any 
padding of the pre­
pared input item. 

Type in the entire 
sentence, omitting 
the name of the s en­
tence, one pseudo­
word per Univac 
word. 

X ... X!\MMM 

When finished type 
in a word of spaces. 



PRINT-OUT DESCRIPTION.. 

25. READ-ITEM The variable x ••• x is not alpha-

26. 

SENT. NO.nnnn betic. 
VARIABLE 
(X ••• X) 
NOT ALPHA 
TYP-IN CORR 

READ-ITEM 
SENT. NO.nnnn 
PSEUDO WORD 
MISSING 
TYP-IN CORR 

Sentence number nnnn does not 
conform to the READ-ITEM for­
mat in that the pseudo word IF is 
missing and there appears to be 
additional information in the sen-
tence, signifying the sentence was 

PROCEDURE 

Type in: 

X ••• XMMI\M 

where X ••• X is the 
correct form of the 
variable. 

Type in: 

IFMMMI\AAA 

or 

intended to be a READ-ITEM with MAAAAAMMA 
an IF option. 

27. READ-ITEM The variable of the subscripted 
SENT. NO. nnnn array is missing. 
VARIABLE 
MISSING 
TYP-IN CORR. 

28. READ-ITEM The parens are missing-from the 

29. 

SENT. NO.nnnn subscripted variable. 
PAREN -MISSING 
(X ••• X) 
TYP-IN CORR 

READ-ITEM 
SENT. NO. nnnn 
ARRAY SIZE 
ALPHABETIC 
(X ••• X) 
TYP.:.IN CORR 

The size of the array is X ••• X 
and it is alphabetic. In a READ­
ITEM sentence the array size 
must be numeric. 

71 

If the IF option is 
not desired. 

Type in: 

X ••• XI\MI\MI\ 

where X ••• X is the 
intended variable. 

Type in: 

(1) (V ariabl e) MI\ll 
(2) (first subscript) 6. 

(3) (second subscript) 6. 

(4) (third subscript) 6. 

If there are no second 
and/or third sub­
scripts type in a word 
of spaces for the 
third and fourth 
words of the four 
word type in. 

Type in: 

X ••• X6.6.6.MN:-. 

where X ••• X is the 
array size. 



PRINT-OUT 

30. READ-ITEM 
SENT. NO. nnnn 
MORE THl\N 3 
SUBSCRIPTS 
REWRITE 

31. READ-ITEM 
SENT. NO. nnnn 
ARRAY SIZE 
TOO LARGE 
REWRITE 

32, READ-ITEM 
SENT. NO. nnnn 
SENT REF 
MISSING 
TYP-IN CORR 

33. READ-ITEM 
SENT. NO. nnnn 
INCORRECT 
ITEM SIZE 
TYP-IN CORR 

DESCRIPTION 

The array of sentence nnnn con-
tains more than three subscripts. 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break-
point option. 

There are more than 250 elements 
in the array listed in sentence 
number nnnn. 

See NOTE of Print-out 1 of 
Phase 2 for an explanation of 
the breakpoint option. 

The sentence number to which 
control is to be transferred if 
missing. 

The item size of the array of 
sentence number nnnn is n@'t an 
acceptable size. See manual for 
acceptable item sizes. The user 
may type in any larger acceptable 
item size. He must be sure, 
however, that his input data 
items are padded to this size. 
If the data conversion routine 
is used to prepare the data, the 
items will be padded to the next 
larger 'acceptable size. 

34. SUBSCRIPT Variable X ... X is not an a1-
SENT. NO. nnnn phabetic. 
VARIABLE 
(X ••• X) 
NOT ALPHA 
TYP-IN CORR 

72 

PROCEDURE 

Hit start bar to re-
wind tape; 

or 

Set breakpoint 2: 
force transfer to by-
pass the error. 

Hit start bar to re-
wind tapes; 

or 

Set breakpoint 2; 
force transfer to by­
pass the error. 

Type in: 

X .•• X/\M/\/\M 

where X ••. X is the 
sentence number to 
which control is to 
be transferred. 

Type in: 

X ••• XAMI\I\M 

where X .•. X is the 
number of words 
including any padding 
of the prepared input. 

Type in: 

X ••• X/\I\M/\/\/\ 

where X ••• X is the 
correct form of the 
variable. 



PRINT-OUT DESCRIPTION PROCEDURE 

35. SUBSCRIPT The array contains more than Hit start bar to re­
wind tapes; SENT. NO. nnnn three subscripts. 

MORE THAN 3 
SUBSCRIPTS 
REWRITE 

36. WRITE 
SENT. NO.nnnn 
VARIABLE 
(X ••• X) 
NOT ALPHA 
TYP-IN CORR 

37. WRITE 
SENT NO. nnnn 
WORD AFTER 
(X ••• X) 
MISSING 
TYP-IN CORR 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

The variable X ••• X is not alpha­
betic. 

or 

Set breakpoint 2; 
force transfer to by­
pass the error. 

Type in: 

X ••• XMMI\M 

where X ••• X is the 
correct form of the 
variable. 

X ••• X will be either AND or FOR, Type in: 
and the word following either of 
these is missing. The omitted (1) X ••• XI\MI\I\M 
word will be either EDIT, CON-
VERT, or UNIPRINTER. where X ••• X is the 

missing word 
or 

(2) Ml\I\I\I\MI\MI\ 

If none of the options 
is desired. 

38. WRITE More than 50 variables are listed Hit start bar to re-
SENT. NO. nnnn in the WRITE statement of sen- wind tapes; 
TOO MANY tence number nnnn. 
V ARIABLES or 
REWRITE 

39. WRITE-ARRAY 
or 

WRIl'E-ITEM 
SENT. NO. nnnn 
VARIABLE 
(X ••• X) 
NOT ALPHA 
TYP-IN CORR 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

The variable X ••• X is not alpha­
betic. 

73 

Set breakpoint 2; 
force transfer to 
by-pass the error 

Type in: 

X ••• XI\I\MM/\ 

where X ••• X is the 
correat form of the 
variable. 



PRINT-OUT DESCRIPTION PROCEDURE 

40. WRITE-ARRAY X ••• X will be either AND or FOR, Type in: 
and the word following either of 

or these is missing. The omitted (l) X ••• X(\MI\I\I\/\ 
word should be either EDIT, CON-

WRITE-ITEM VERT, or UNIPRINTER where X ••• X is the 
SENT. NO. nnnn 
WORD AFTER 
(X ••• Xl 
MISSING 
TYP-IN CORR 

41. WRITE-ARRAY The variable of the subscripted 
SENT. NO. nnnn array is missing. 
VARIABLE 
MISSING 
TYP-IN CORR 

missing word 

or 

(2) (\(\M(\(\(\M(\M 

If none of the options 
is desired. 

Type in: 

X ••• X (\(\(\I\M(\ 

where X ••• X is the 
proper variable. 

42. WRITE-ARRAY A paren is missing from the sub- Type in: 
scripted array. 

or 

WRITE-ITEM 

SENT. NO. nnnn 
PAREN MSNG 
TYP-IN CORR 

43. WRITE-ARRAY 

or 

WRITE-ITEM 
SENT. NO. nnnn 
ARRAY SIZE 
(X ••• X) 
ALPHABETIC 
TYF-IN CORR 

The size of the array is X ••• X 
and it is alphabetic. In a 
WRITE-ITEM sentence the array 
size must be numeric. 

74 

(I) (variable) (\(\(\(\(\ 
(2) (first subscript) f\ 

(3) {second subscript)lI' 

(4) (third subscript) f\ 

If there are no sec­
one and/or third 
subscripts type in 
a word of spaces for 
the third and fourth 
word of the four 
word type in. 

Type in: 

X ••• X (\(\(\(\M(\(\ 

where X .•• X is the 
correct array size. 



PRINT-OUT 

44. WRITE-ARRAY 

or 

WRITE-ITEM 
SENT. NO. nnnn 
MORE THAN 3 
SUBSCRIPTS 
REWRITE 

DESCRIPTION 

The array contains more than 
three subscripts. 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

PROCEDURE 

Hit start bar to re­
wind tapes; 

or 

Set breakpoint 2; 
force transfer to by­
pass the error. 

45. WRITE-ARRAY There are more than 250 elements Hit start bar to re-

or 

WRITE-ITEM 
SENT. NO. nnnn 
ARRAY SIZE 
TOO LARGE 
REWRITE 

46. VARY 
SENT. NO. nnnn 
NUMERIC 
VARIABLE 
(X ••• X) 
TYP-IN CORR 

47. VARY 
SENT. NO. nnnn 
SENT REF 
MISSING 
TYP-IN CORR 

of the array. 

See NOTE of Print-Out 1 of Phase 
2 for an explanation of the break­
point option. 

wind tapes; 

or 

Set breakpoint 2; 
force transfer to by­
pass error. 

Sentence number nnnn is a VARY Type in: 
increment type sentence and X ••• X 
the variable is numeric inste~d of X ••• XAMI\MA 
alphabetic. 

The range of sentences or sen­
tence over which the VARY is to 
be executed is missing. 

where X ••• X is the 
correct form of the 
variable. 

Type in: 

X. • • XAAAAMA 
Y ••• Y6MAM/\ 

where X ••• X is the 
first sentence num­
ber of the range and 
Y ••• Y the second. 
If the range consists 
of only one sentence 
type in 

MMI\MMMA 

for Y ••• Y the second 
sentence number. 

48. VARY Sentence number nnnn is a VARY Hit start bar to re-
SENT. NO. nnnn list type sentence and the var- wind tapes; 

75 



PRINT-OUT 

ITEM SIZE 
INCORRECT 
REWRITE 

49. VARY 
SENT. NO. nnnn 
VARBLE HAS 
ALPHA VALUE 
(X ••• X) 
TYP-IN CORR 

50. VARY 

51. 

SENT. NO. nnnn 
ABS VALUE 
NUMERIC 
(X ••• X) 
TYP-IN CORR 

VARY 
SENT. NO. nnnn 
ABS SIGN 
MISSING 
(X ••• X) 

DESCRIPTIO~ 

iables have an incorrect number 
of values listed for them. 

Sentence number nnnn is a VARY 
list type sentence. The value 
X ••• X of one of the variables is 
alphabetic instead of numeric. A 
two word type in is provided for 
the correction. 

Absolute values may be taken of 
alphabetic variables when they 
appear in the pseudo code. 

At least two absolute signs are 
missing from sentence number 
nnnn. X ••• X should have been 
an absolute sign. However, if 
X ••• X is the pseudo word im­
mediately following the missing 
absolute sign and if the user feels 
that other errors resulting from 
the missing sign will not develop, 

The quantity from which the 
absolute sign is missing will be 
considered as a variable for 
which the absolute value is to be 
taken. 

76 

PROCEDURE 

or 

Set b-reakpoint 2; 
force transfer to by­
pas s the error. 

Type in: 

(1) X ••• XI\I\MMI\ 
(2) (~)OOoQooooeee 

where X ••• X is the 
base of the number 
and eee is its ex­
ponent. If the num­
ber is not in the 
power of ten notation 
type in a word of 
zeros for the second 
type in. 

Type in: 

X ••• XI\I\I\MM 

where X ••• X is the 
correct form of the 
variable. 

Set breakpoint 2; 
force transfer to 
continue; 

otherwise; 

Hit start bar to re­
wind tapes and re­
write the sentence. 



PHASE III ERROR PRINT OUT 

PRINT OUT 

1. SENT. REF 
(X ••• X) 

DESCRIPTION 

Sentence number nnnn is a 
CLOSE-OUTPUT statement 

INCORRECT making reference to sentence 
SENT. NO. nnnn number X .•. X, but X ..• X is 
TYP-IN CORR not a W RITE statement. 

2. VARIABLE 
(X ••• X) 
INCORRECT 
SENT. NO. nnnn 
TYP-IN CORR 

3. SENT. NO. nnnn 
VARIABLE 
(X ••• X) 
NOT DEFINED 
TYP-IN CORR 

Variable X ••• X has not been 
previously defined in any of the 
pseudo code sentences. Sen­
tence number nnnn is a VARY 
statement X ••• X is either an 
alphabetic lower limit, incre­
ment, or upper limit. The reason 
for X ••• Xl s not being defined is 
due to an incorrectly spelled var­
iable or unintentionally not 
defining the variable. 

If X ••• X is misspelled and pre­
viously defined ••• 

If X ••• X has not been previously 
defined, the error can only be 
corrected by rewriting the pro­
blem and defining the variable. 

Variable X ••• X is used as an 
argument either in sentence num­
ber nnnn or in the sentence fol­
lowing nnnn and has not been 
defined in any of the other pseudo 
code sentences. 

The variable can be defined by a 
three word type-in according to 
the following options. 

77 

PROCEDURE 

Type in: 

X ••• XI\MI\I\M 

where :X ••• X is the 
sentence number of 
the intended WRITE 
statement. 

Type in: 

X ••• X61\1\1\M/\ 

where X ••• X is the 
correct form of the 
variable. 

Type in: 

and the system will 
rewind all tapes. 



PRINT OUT DESCRIPTION PROCEDURE 

3. cont. (1) If the variable X ••• X is mis- Type in: 
spelled in sentence nnnn but 
defined elsewhere •••• X .•• X6666666 

666666666666 
666666666666 

where X ••• X is the 
correct spelling of 
the variable. 

(2) If X ••• X should be a numeric Type in: 
instead of a variable .••• 

Y ••. Y6666666 
666666666666 
666666666666 

where Y ••• Y is the 
numeric 

(3) If X ••• X should be a numeric Type in: 
written as a power of ten. 

POW60F6TEN 66 
Y ••• Y6666666 
(Q) 0 0 0 0 0 e. • • e 

where e ••• e is the 
exponent. 

(4) If X ... X is correctly spelled Type in: 
and not previously defined, but 
can be defined by the three word X .•• X6666666 
type-in ... Y •.• Y6666666 

666666666666 
However, if it cannot be defined, 
type in three words of spaces and or 
the system will rewind all tapes. 

(~) 00000 e ••• e 

if the numeric is a 
power of ten. 

4. SENT. NO. nnnn There are more than 40 input, Hit start bar to re-
TOO MANY output and contain statements in wind tapes. 
INPUT OUTPUT the problem. 
SENTENCES 
REWRITE 

-

78 



5. 

PRINT OUT 

SENT. NO. nnnn 
ALL SERVOS 
PRE-AS SIGNED 
REWRITE 

6. SENT. NO.nnnn 
SENT. NO. 
:m:m:m:m 

7. 

8. 

9. 

2 INPUTS 
(X ••• X) 

SENT. NO. nnnn 
SENT. NO. 
:m:m:mm 
2 EDITED 
WRITE-ARRAYS 
(X ••• X) 

SENT. NO. nnnn 
SENT. NO. 
:m:m:m:m 
WRNG PREREAD 
REWRITE 

SENT. NO. nnnn 
SENT. NO. 
:m:m:m:m 
OUTPUT ITEM 
TOO BIG 

DESCRIPTION 

At least one servo :must be left 
unas signed for the running pro­
gra:m tape. Co:mpilation can be 
continued by using the breakpoint 
option. 

Two input state:ments have been 
found for the sa:me variable, 
X ••• X. :m:m:m:m and nnnn are the 
sentence nu:mbers of the two 
input state:ments. 

Th~ variable, X ••• X, has been 
:mentioned i,n two write- array 
edit state:ments with contain 
state:ments. nnnn and :m:m:m:m are 
the sentence nu:mbers of the 
respective state:ments. 

The sa:me variable has been 
:mentioned in two read-array 
state:ments, or in an input 
state:ment and a read-array. 
:m:m:m:m and nnnn are the nu:m­
bers of the sentences involved 
in the error. 

A write- array or write-ite:m 
state:ment specifies an ite:m size 
larger than that of the matching 
input or read- array stat'e:ment 
listed as sentence nu:mber :m:m:m:m. 
This is not an error if there is 
another input area of sufficient 
size. If this is not the case, 
co:mpilation :must be ter:minated 
at the end of Phase 3. 

79 

PROCEDURE 

Hit start bar to re­
wind tapes; 

or 

Set breakpoint 3 ; 
force transfer to 
continue co:mpilation. 

Hit start bar to re­
wind tapes; 

or 

Set breakpoint 3; 
force transfer to 
as sign the sa:me 
storage area. 

Hit start bar to re­
wind tapes: 

or 

Set breakpoint 3: 
force transfer to 
as sign the s.a:me 
storage and servos 
to both sentences. 
Hit start bar to re­
wind tapes; 

or 

Set breakpoint 3: 
force transfer to 
o:mit the read- array 
being processed. 

Hit start bar to re­
wind tapes; 

or 

Set breakpoi,nt 3: 
to continue process­
ing the sa:me state­
:ment. 



PRINT OUT DESCRIPTION PROCEDURE 

10. SENT. NO. nnnn A contain statement specifies the Hit start bar to re-

ll. 

12. 

SENT. NO. same variable listed in another wind tapes, 
mmmm 
UNNECESSARY 
CONTAIN MAY 
BE OMITTED 

SENT. NO. nnnn 
TOO MANY 
SRVO 
TYP-IN CORR 

SENT. NO.nnnn 
SENT. NO. 
mmmm 
2 INPUT 
ADDRESSES 
FOR (X ... X) 
REWRITE 

statement, other than a write­
array edit without a contain. nnnn 
and mmmm are the numbers of 
the sentences involved in the 
error. 

All available servos have been 
assigned. If it is possible to 
double up on some servo a type 
in is provided for typing in the 
servo number. 

If, however, the remalnlng un-

or 

Set breakpoing 3; 
force transfer to 
omit this statement. 

Type in: 

tMAI\M/\!\/\!\1\ 

where t is the servo 
number 

assigned servo which is being or 
reserved for the running program 
tape is typed in the word TYP-IN Type in: 
CORR will be typed out again. 

There are two input addresses for 
the variable X ••• X. Where 
possible both sentence numbers 
nnnn and mmmm will be printed 
out. Compilation must be ter­
minated at the end of Phase 3 if 
the breakpoint option is selected. 

NOTE 

MI\I\I\MM/V\I\ 

to rewind the tapes. 

Hit start bar to 
rewind tapes, 

or 

Set breakpoint 3; 
for a transfer to 
omit the item being 
processed. 

Before selecting the breakpoint option provided with the error print outs of 
Phase 3, the user is urged to examine his error to make certain other errors 
will not result by continuing the compilation. It is very possihle at this late 
stage of compilation fo induce errors by continuing by means of the breakpoint 
option. 

80 



PHASE 4 

PRINT OUT 

1. STORG AREA 
( XMM6.6.M6.6.I\) 
NOT LISTED 
REWRITE 

2. LABEL OF 
(COMPUTER-
XXX) 

or 

(COMPILER-
XXX) 
INCORRECT 
TYP-IN CORR 

3. SENT. mmmm 
IS REFERRED 
TO BUT IS NOT 
LISTED 

SWEEP 1 

PRINT OUT 

1. IMPROPER 
CALL WORD 
(X ••• X) 
REWRITE 

2. IMPROPER 
STG AREA IN 
(X ••• X) 
TYP-IN CORR 

ERROR PRINTOU T S 

DESCRIPTION PROCEDURE 

A computer or compiler section Hit start bar to re-
makes reference to storage area wind tapes; 
X, but area X is not mentioned 
anywhere in the pseudo coded sen-
tences. 

The label XXX of the computer or Type in: 
compiler sentence listed in the 
pseudo code does not match any COMPUTER-XXX 
of the labels of the COMPUTER 
or COMPILER SECTIONS or 

COMPILER-XXX 

where XXX is the 
label of the intended 
COMPUTER or 
COMPILER section. 

A sentence of the type that makes Hit start bar to re-
reference to other sentences has wind tapes. 
made reference to sentence num-
ber mmmm, but mmmm was not 
used as a sentence number in the 
problem. 

ERROR PRINT OU T S 

DESCRIPTION 

The call word, digits 1- 3 of 
X ••• X appearing in the print 
out, cannot be found in the 
library catalog. 

PROCEDURE 

Hit start bar to re­
wind tapes. 

The storage area of X ••• X, a call Type in: 
word appearing in a COMPILER 
section, is not listed in the pseudo OOOOOOOOOXXX 
coded problem. 

81 

where XXX is the 
relative address of 
the intended storage 
area. 



3. IMPROPER 
PSEUDO WORD 
(X •.• X) 
REWRITE 

The first digit of a word in a 
COMPILER section is numeric, 
but the word is not an RG or CN 
reference or a word of skips .• 

Hit start bar to re­
wind tapes. 

ARITH-MATIC OR A-3 ERROR PRINT OUTS 
INPUT - OUTPUT ROUTINES 

PRINT-OUT 

1. WRNG SERVO 
(X ••• X) 
TYP-IN CORR 

2. IMPROPER 
ADDRESS IN 
(X ••• X) 
TYP-IN CORR 

DES CRIPTION 

The servo digit, t, of the call 
word appearing in the print out 
is not 1 through 9 or (-) minus. 

X ••• X will be one of the follow­
ing A- 3 call words. 

PROCEDURE 

Type in: 

The call word ap­
pearing in the print 
out but with the pro­
per servo designation, 

GMSBBtxxxAAA, GMT •.• , or GMU ••• 
GASBBtxxxAAA, GAT .•• , or GAU ••• 
GMIBBxxxAAA 
GMNO(t:)tsssAAA, GMO 

The address part, AAA, of the 
call word appearing in the print 
out is an odd number, if one of 
the following A- 3 call words are 
printed out as X ••• X: 

Type in: 

The call word ap­
pearing in the print 
out but with the cor-
rect address. 

GMSBBtxxxAAA, GMT ••• , or GMU ••• 
H 

GMNO(L)txxxAAA, GMO 

If GASBBtxxxAAA, GAT •.• , or GAU 
appear in the print-out, either 
digits BB are not divisible by 10 
or AAA is odd. 

If GMIBBtxxxAAA appears in the 
print out, the absolute address 
for AAA is not divisible by 10. 

82 



3. 5TH DIGIT 
I~CORRECT 

(X ••• X) 
TYP-IN CORR 

4. IMPROPER 
ITEM SIZE 
(X ••• X) 
TYP-IN CORR 

5. 8TH DIGIT 
INCORRECT 
(QZOAAAT? 
0000) 

TYP-IN CORR 

The 5th digit, or density digit, is 
not an "HII indicating high density, 
or "L" indicating low density. 

x. .. X will be'GMNO?tsssAAA or 
GMO ..• 

Type in: 

The call word ap­
pearing in the print 
out but with the cor­
rect density digit. 

If the A- 3 call word appearing on Type in: 
the print out is 

GMSBBtxxxAAA, GMT ••. or GMD ... 

GASBBtxxxAAA, GAT .•. or GAD 

the item size, XXX, is an odd 
number. Item sizes must be 
even numbers. 

If the A- 3 call word is a 

H 
GMNO(L)tsssAAA or GMO •.• , 

the item size, sss, is in error 
either because xxx is odd, if sss 
is greater than or equal to 60; or 
because sss + AAA does not com­
plete a block, if sss is greater 
than 60. 

The call word ap­
pearing in the print 
out but with the cor­
rect item size. 

If the A-3 call word is GMIBBtsssAAA, 
the item size sss is in error be-
cause it is not one of the allowable 
item sizes. See Chapter IV for 
allowable item sizes. 

If the A-3 call word is GMMA AAsssBB, 
item size sss is in error because it 
is either equal to zero, greater than 
60, or an odd number. 

The 8th digit position of the QZO Type in: 
call wbrd is neither W, R, or ( 0) 

oooooooooo( R) 0 

(W) 
zero. 

83 



MATHEMATICAL ROUTINES ERROR PRINT OU T S 

PRINT OUTS DESCRIPTION 

1. 7 - 9th DIGIT The exponent or root listed in 
INGORREC T the 7 to 9th digits of the call 
(RNAAAAnnnBBB) word appearing in the print out 

is in error because it is either 
or less than 2 or is not numeric. 

(GPNAAAnnnBBB) 
TYP-IN CORR The exponent or root nnn must 

be an integer greater than or 
equal to 2 or less than or equal 
to 999. 

SYSTEM RESTRICTION 

PRINT-OUT DESCRIPTION 

PROCEDURE 

Type in: 

ooooooooonnn 

where nnn is the cor· 
rect form of the ex­
ponent. 

PRINT OUTS 

PROCEDURE 

1. SYSTEM Sentence number nnnn after being Hit start bar to re-
RES TRIC TION 01 translated contains more than 220 wind tapes, 
SENT. NO. nnnn words or entries for Sentence File 
REWRITE 01. In 'most cases the sentence is orj 

an equation and can be rewritten as 
two smaller ones in order to cor- Set breakpoint 1; 
rect this requirement. force transfer to 

2. SYSTEM This printout will occur when 
RE S TRICTION 02 the pseudo code sentences con-
REW RITE tain more than 100 control 

statements which alter the 
sequence of execution over a 
given sentence range. 
See NOTE of Print Out 1 of 
Phase 2 for an explanation of 
the breakpoint option. 

process the sentence 
following nnnn. 

Hit start bar to re­
wind tapes, 

or; 

Set breakpoint 2; 
force transfer to by­
pass the error. 

3. SYSTEM Sentence number nnnn is an equa- Hit start bar to re-
RESTRICTION 03 tion that contains more than 100 wind tapes, 
SENT. NO. nnnn operations. Re-examine the 
REWRITE equation to see if it can be written or; 

as two smaller ones. 

See NOTE of Print Out 1 of Phase 
2 for an explanation of the break­
point option. 

84 

Set breakpoint 2; 
force transfer to by­
pass the error. 



4. 

5. 

SYSTEM 
RESTRICTION 04 
SENT. NO.nnnn 
REWRITE 

SYSTEM 
RE S TRI C TI 0 N 05 
REWRITE 

Sentence number nnnn is an 
equation containing more than 30 
redundant operations. The equa­
tion must be regrouped or 
written as two smaller equations. 

The problem in the present form 
contains too many control sen­
tences, that is, too many sen­
tences of the VARY, IF, JUMP, 
etc. types. 

Hit start bar to re­
wind tapes. 

Hit start bar to re­
wind tapes. 

6. S Y STEM This print out occurs when a Hit start bar to re-

7. 

8. 

RES TRIC TION 06 problem asks for an exceptional wind tapes. 
REWRITE amount of storage area to be set 

aside for the running program 
tape. To correct this error, re­
examine the problem to see if it 
is possible to double up on stor­
age areas or rewrite the problem 
as two smaller ones. 

SYSTEM During compilation portions of 
RES TRIC TION 07 the memory are set aside to house 
REWRITE the various files and lists pro-

duced as output from the phases 
ands sweeps. In the majority of 
cases these areas are sufficient 
in size to compile long compli-
cated pseudo code problems. 
This print-out will result only 
for the exceptional problem. 
To correct this situation re-
examine the problem to see if 
it is possible to rewrite the 
problem as two smaller ones 
and then begin a new compila-
tion, 

SYSTEM The problem contains more than 
RES TRIC TION 08 6 READ-ARRAY sentences. 
REWRITE 

85 

Hit start bar 
wind tapes. 

Hit start bar 
wind tapes. 

to re-

to re-



GENERAL DESCRIPTION OF ERROR PRINT-OUTS DURING 

THE PRO BLEM RUN 

Any error print out during the problem run is caused by one of the following 
two types of errors: 

(1) The program is handling data which is outside the acceptable numerical 
range. This usually means alphabetic material is being incorrectly 
used as input data. 

(2) The program is attempting to compute a function which is undefined 
or which is infinite, such as~3 or log (- 6) . 

The first type of error will cause RUN ERR 01 to print out on the Supervisory 
Control Printer or will cause the computer to stop on an "adder alph. 11 The 
second type of error will cause one of the print-outs from RUN ERR 02 through 
RUN ERR 07. 

By carefully examining the RECORD EDIT, the programmer can identify the 
variables involved in the calculation causing the error, and by following the 
procedure listed with the print-out, the programmer can by-pass the error. 
This action is recommended only when the programmer fully understands the 
error and is certain that bypassing the error will not harm the results of the 
run. Ordinarily, the programmer should take a memory dump to detect the 
error and correct it by rewriting the necessary portion of his pseudo coded 
problem. For details on using the RECORD EDIT in by passing running tape 
errors, see the "MATH-MATIC PROGRAMMER'S MANUAL. 11 

In RUN ERR 01, RUN ERR O~, and RUN ERR 03 the XXXX in the second word 
of the printout is the initial addre s s of the next ope ration on the prograITl tape. 
If the start bar is hit, OOOOOOUOXXXX is perforITled and the error is by passed. 
In RUN ERR 04 through RUN ERR 07 the XXXX of the left hand instruction 
printed out in the second word of the print-out is the first address of the two 
word floating decimal input which caused the error. By typing in a proper in­
put value to lines XXXX and XXXX + 1 and hitting the start bar, the operation 
in which the error occurred will be performed again. 

86 



RUNNING PROGRAM TAPE ERROR PRINT-OUTS 

PRINT-OUT 

1. RUN ERR 01 
(000000 U ox xxx) 

2. 

3. 

4. 

5. 

6. 

7. 

RUN ERR 02 
(ooooooU ox xxx) 

RUN ERR 03 
(000000 U oxxxx) 

RUN ERR 04 
( BoxxxxKooooo) 

RUN ERR 05 
( BoxxxxKooooo) 

RUN ERR 06 
( BoxxxxKooooo) 

RUN ERR 07 
( BoxxxxKooooo) 

DESCRIPTION PROCEDURE 

A quantity produced by the floating Hit start bar to by 
decimal Arithmetic has an expon- pass the operation. 
ent with 12 significant digits. 

·Division by zero is being attempt­
ed. 

Calculation of tangent A is being 
attempted for A =1r/2, 31r/2, etc. 
The result is infinite for these 
values. 

Calculation of arcsine A is being 
attempted for IAI > 1. The func­
tion is underfined in this range. 
A is in lines XXXX and XXXX + 1. 

Calculation of log A or log lOA for 
A ~ 0 is being attempted. The 
function is underfined in this 
range. A is in lines XXXX and 
XXXX + 1. 

Calculation of ~ is being at­
tempted for n even and A < O. 
The function is imaginary in this 
range. A is in line XXXX and 
XXXX + 1. 

Calculation ofvA"is being attempt­
ed for A < O. The function is 
imaginary in this range. A is in 
XXX X and XXXX + 1. 

87 

Hit start bar to by 
pass the operation. 

Hit start bar; the 
program will con­
tinue with tangent 
A = 10 10 

Type in a new value 
of A into XXXX and 
XXXX + 1; then hit 
the start bar to con­
tinue. 

Type in a new value 
of A into lines XXXX 
and XXXX + 1; then 
hit the start bar to 
continue. 

Type in a new value 
of A into linE's XXXX 
and XXXX + 1; then 
hit the start bar to 
continue. 

Type in a new value 
of A into lineS' XXXX 
and XXXX + 1; then 
hit the start bar to 
continue. 



Univac II Systems. For data-automation which involves large 
volumes of input and output. 

Univac File-Computer. For instantaneous 
random access to large-scale internal 
storage--plus computation. 

Uni vac 60 & 120 Computers· For speed ing 
and simplifying the procedures of punched­
card systems. 

Univac Scientific Systems • For complex and intricate computations of engineering and rf"search. 




	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	xBack

