UNIVACIII

TECHNICAL BULLETIN

Reference Manual




UNIVAC I1lI SUPPORT

N? 00285



UNIVAC III SUPPORT

REVISION:

SECTION:

INDEX

DATE:

PAGE:

U-3519 1
INDEX
SECTION PAGE

GENERAL INTRODUCTION INTRO 1
INPUT-OUTPUT ROUTINES

ON-LINE BINARY CARD LOADER 1-0001 1
COMPOSITE CARD LOADER 1-0002 1
CARD READER ROUTINE 1-0003 1
INTERMEDIATE TAPE HANDLING ROUTINE 1-0004 1
TAPE INPUT-OUTPUT ITEM HANDLING

ROUTINE 1-0005 1
TAPE INPUT-OUTPUT VARIABLE SIZE

ITEM HANDLING 1-0006 1

SYMBIONT ROUTINES
PUNCHED PAPER TAPE READER SYMBIONT

UTILITY ROUTINES
BOOT
WRITE SYSTEM TAPE
UPCO
INTRODUCTION
CONTROL CARDS
OPERATIONAL CONTROL
ACCO
INTRODUCTION
CONTROL CARDS
OPERATIONAL CONTROL
DECO
INTRODUCTION
GENERAL

2-0005

3-0001
3-0002

3-0003

3-0004

3-0005



UNIVAC III SUPPORT : INDEX
U-3519 2
INDEX
SECTION PAGE
DECO (CONT'D) 3-0005
CONTROL CARDS 22
OPERATIONAL CONTROL 36
SYSTEM TAPE 37

4. PROGRAM TESTING AIDES

ON-LINE MEMORY DUMP 4-0001 1
ON-LINE EDITED MEMORY DUMP 4-0002 1
TEST DATA ASSEMBLY PROCEDURES 4-0003 1

5. MATHEMATICAL ROUTINES
FLOATING POINT PACKAGE 5-0001
FLOATING ADD (OR SUBTRACT)
FLOATING MULTIPLY
FLOATING DIVIDE
DOUBLE PRECISION MULTIPLY
DOUBLE PRECISION DIVIDE
NORMALIZE

© 00 =N o g o W

FLOATING TO INTEGER
INTEGER TO FLOATING
FLOATING TO DOUBLE PRECISION
DOUBLE PRECISION TO FLOATING

=
I s

MATHEMATICAL PACKAGE 5-0002
SIN - SINE(x)
COS - COSINE(x)
TAN - TANGENT(x)
TNGT

T

TANGENT (x)



UNIVAC III SUPPORT

REVISION:

SECTION:

INDEX

DATE:

PAGE:

6.

U-3519 3
INDEX
SECTION PAGE
MATHEMATICAL PACKAGE (CONT'D) 5-0002

ASIN - ARCSINE(x) 7
ACOS - ARCOSINE(x) 7
ATAN - ARCTANGENT(x) 8
SINH - HYPERBOLIC-SINE(x) 9
COSH - HYPERBOLIC-COSINE(x) 10
TANH - HYPERBOLIC-TANGENT(x) 11
SQRT - SQUARE ROOT (x) 12
CBRT - CUBE ROOT (x) 13
EXP - X 14
TENX - 10X 14
LOGN - LOG(x) (BASE e) 15
LOGT - LOG(x) (BASE 10) 15
XTOoP - xP 16

MISCELLANEOUS ROUTINES
EDITING ROUTINES

6-0001



REVISION: SECTION:

UNIVAC III SUPPORT INTRO-

DATE: PAGE:

June 1, 1962 1

GENERAL INTRODUCTION

SUPPORT III is a dynamic expanding library of routines and subroutines designed
to facilitate the efficient utilization of UNIVAC OI. The SUPPORT III library falls
into six categories: Input, Output, Utility, Program Testing Aids, Mathematical,
and Miscellaneous. All of the routines in the library are integrated with other

UNIVAC III programs such as ALMOST, UTMOST, COBOL, BOSS IlI, FORTRAN
IV for UNIVAC II and SORT III.

As other routines become available, they will be incorporated in this manual.



UNIVAC IIT SUPPORT

REVISION:

SECTION:

1-0001

DATE:

June 1, 1962

PAGE:

Purpose:

Provide a simple, compact binary card absolute loader for the on-line

ON-LINE BINARY CARD LOADER

reader. This loader is used to load ALMOST assembly output.

Method:

Cards are loaded with interrupt prevented into the locations specified on

each card. Low-speed card reading of 175 cards per minute is employed.

Restrictions:

Card reader will only handle up to 24 words per card of object information.

Memory Space:

Program uses the first 200 octal words of storage, including the card image
which is located at 100 octal.

Input Card Form:

Input card form is standard UII binary.

Operating Procedure:

Hit general clear.

Load one card and hit run.



REVISION: SECTION:

1-0001

UNIVAC III SUPPORT

DATE: PAGE:

June 1, 1962 2

BINARY CARD FORMATS

The output of an ALMOST assembly is a deck of 80 column punched cards.
The cards are punched in binary, for loading into the UNIVAC I using the
binary loader in untranslated mode.

In an 80 column untranslated card a word is 4 columns wide 6 rows long (4x6).
Word 1 occupies columns 1-4, rows 12-3; Word 2, columns 1-4, rows 4-9;
Word 3, columns 5-8, rows 12-3; Word 4, columns 4-9; etc. In this fashion
the upper half of a card contains the odd numbered words (1, 3, 5, 7, ... 39),
the lower half of the card contains the even numbered words (2, 4, 6, ... 40).

ALMOST produces two types of cards: Data Cards (the data which the assembler
produces--instructions, constants, etc.) and a Transfer Card. The Data Cards
need not be loaded in any special order since each card carries the address of
the first data word in the first word on the card. (See Data Card Format
following.)

A Data card may contain up to and including 28 words.

The first word contains the address where the first data word will go in memory.
Word 2 is of special format to cause the card to have even parity.

Word 3 contains the sign bits for the data words; a blank for +, a punch for -.
Word 4 is always blank.

Words 5-28 contain the data words.

A Transfer Card contains the starting address of a program (where control

is transferred after the program has been loaded into memory) and the index
registers specified in the ALMOST USE statement with the contents they should
contain. The binary loader loads the program into memory, loads the index

registers specified in the transfer card with the amounts given and transfers
control to the address specified in word 1 of the Transfer Card.



UNIVAC III SUPPORT

REVISION:

SECTION:

1-0001

DATE:

June 1, 1962

PAGE:

DATA CARD
WORD
A
Vs ™~
1 3 s 7 9 n 3 S T 19 2 23 2§ 27
/
12 /uu D ol o oopolpon| o
t [ 0 0 (111] 0 )
o unp D oop copD o OOQ 000 00N OORD o
i 0 (1] |1 a 0 D{ Qoo a
2 gool ao| oo 0 1] 0 gy ooq|
3 D 0 00 D|ﬂ oo |0 0o oppdD @ O
4 0a 0 000 0 D0 OfD0 O
s 0D ao ] 0o oo | D g
6 0 OO0 ooj 0 |0 ononoojpo o0 0|0 @
7 0 oo 00 ogooopaoaooao
g go| oo d o g g
9 0 a n*uunu poogno |0 opo opood)
1-qQ § -8 9 -1213-1617-20 21-29 3S-20 29-32 33-36 37-490 44 9  s2 56
2 4 [ g o 1 4 16 I8 20 2l 22 24 26
A /
v
WORD
2 0o, 1 0 5 5 4
WORD 1 000010/000i001l000101101100
3 2 | otl 12 3 21 ‘o it123 2 | oni23 2 |\ o il 12
Col. 1 Col. 2 Col. 3 Col. 4
Bits 1 - 15 Address of First Data Word
10554 8

(see sample output listing)

Bits 16 - 24

Count of number of Data Words (C < 24)

WORD 2 'Exclusive Or' of all other words on the card
(causing the card to have even parity)

o Col. 1 Col. 2 Col. 3

Col. 4

100011{011001(00001
7 @ 5

0{0 00O
4 9 8 7 @

92 754 98754095 %

10
5 4



UNIVAC III SUPPORT

REVISION:

SECTION:

1-0001

DATE:

June 1, 1962

PAGE:

WORD 3

WORD 4

WORDS 5 - 28

Col. 5 Col. 6 Col. 7 Col. 8

o il 123 2 1 O W I23 21 0 (t12 3 2 1 o 1t 12

'
0100/000000j000000[000000

3 2
00
N
' ] ‘[ ! Sign of Data Word 16 +

Sign of Data Word 15 +
Sign of Data Word 14 +
Sign of DataWord 3 + Sign of Data Word 13 +
Sign of Data Word 2 +
Sign of Data Word 1 +

Signs of Data Words:

bit 24 =Sign of Data Word 1
bit 23 =Sign of Data Word 2

etc.
Always Blank

The Data Words

WORD 5

WORD 6

Col. 9 Col. 10 Col. 11 Col. 12
32 1L 0i11123 21001112321 oUIZ3210il,)2

10_013010100§00|0130100111110

3
] ‘

On output listing this is instruction word

Bits
24 - 21

IR9 =11 8

20-15 OP =248 =BA

14-1 AR =01

8 =arithmetic register 4

10 -1 10 bit address =O4768

Col. 10 Col. 11 Col. 12
98 76:5 4987635 4 993795499—(654

Col. 9

100101

010000/{01:0110/100100

This is an instruction word

10554

10555



REVISION: SECTION:
1-0001
UNIVAC III SUPPORT
DATE: PAGE:
June 1, 1962 5

Bits
24 -21 IR9=11
20 - 15 OP =248 = BA
14 - 11 AR =01_ = arithmetic register 4

8
10 -1 10 bit address = 06448

etc.



REVISION: SECTION:
1-0001
UNIVAC III SUPPORT
DATE: PAGE:
June 1, 1962 6
TRANSFER CARD
woRDd
e N
™ 3 s 72 ¢ )
/ 00 i} D
0 0
0 0 0
a
0 a 1]
00 a 0
0 0
DO
D
ao olaalfoo
0
i=q $-8 9-1213-16 1-20
w ] L] \eﬁe lOJ
WORD
WORD 1
<« 0's —> Starting Address
loo oooclooooo1]ooo110]/111001
32 !t o1t i2 3 2 1,0 12 3 2 |l otl12 3 2 ( © .12
Col. 1 Col. 2 Col. 3 Col. 4
1 0 6 7 1
8
WORD 2

Exclusive or (Logical Difference) of all other words on the card
(causing the card to have even parity).

000100(00O00O0 0
98 7654 9 % 7 @ 5
Col. 1 Col.

0 011110
54 49876
2 3

1
4
Col. 4



UNIVAC IIT SUPPORT

REVISION:

SECTION:

1-0001

DATE:

June 1, 1962

PAGE:

WORDS 3 and 4 Blanks

WORDS 5 - Up

Index Load Words:

Bits 24 - 21
20 -16
15 -1

WORD 5 24 2|

Index to be loaded

Zeros

Amount to be loaded

N 1S r
100100[000i001{000000{000000
ksato:nnzazlfoulzazuounzszuc..|2
IR 9 1 0 0 0 04

WORD 6 - 10
100000/000001010000{000000
. (
IR8 | 2 0 0 0 g
WORD 7 : :
0111500000{001100000000000l
IR7 ° ‘1 4 0 0 0 4
WORD 8 .‘ :
o110t00foo0o0i001f110000[000000 |
IR6 ‘1 8 0 o 0
WORD 9
0101100[000010/000000{000000 |
IR5 ‘2 0 o o0 o0 8"
WORD 10 ' ,
0100:00{000010/010000{000000

1 ]

IR 4 C2 2 0 0 0



UNIVAC III SUPPORT

REVISION: SECTIQON:

1-0002

DATE: PAGE:

June 1, 1962

COMPOSITE CARD LOADER

Purpose:

Provide a loader, moderate in scope, which will load absolute instructions or
data in a variety of octal, decimal, and alphabetic formats, using the on-line

80-column card reader.

Method:

Card formats are recognized by absence of punching in characteristic columns.
A reading speed of 350 cards per minute is employed.

Restrictions:

Blind determination of card form is made and no check is made by the loader
as to the propriety of the contents of the card., Requires blank card at end of

deck if no cards follow.,

Mapping:

Current version of the program is at 1400 - 1677 octal. Card images are at

100 8 and the read subroutine is at 1716 octal.

Input Card Forms:

(See end pages Ch. 5.)

Operating Procedure:

If program is used to make patches to a standard absolute binary deck, then

the transfer card from the absolute deck should be removed and the composite

loader substituted in its place. Behind this should be placed the composite
cards to be loaded and the index load instructions in composite card format,

followed by a composite transfer card.



REVISION: SECTION:

1-0002

UNIVAC III SUPPORT

DATE: PAGE:

June 1, 1962 2

Gl. General Formats

Let 1, 3, 7, and 9 represent digits less than or equal to the written number
(¢e.g., 3 may represent 0, 1, 2, or 3). Let A represent any character.
Following are the six word formats accepted by the loader:

0 1 2

Col.# 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

T T T 7 - 17 7 7 1 7 1 7 7 7 instruction format

7T 7T 7T 77 - 17 3 7 -3 17 1 7 7 7 field select word format

TTo1T 77 - 17 3 7 7 7 7 7 indirect address word format
(col. 15 need not be punched)

T T 7T 7T 17 - 77T 77T 7 octal data format

7T7 7T 7T7 - 999 9 99 decimal data format

77T 7 77 - A AA A alphanumeric data format

2, Description of Format

Instruction Word

1-5 location
7 sign
8-9 index (4 bits)
11 -12 operation (6 bits)
14 - 15 A field (4 bits)
17 - 20 M field (10 bits)
Indirect Address Word
1-5 location
7 sign
8-9 index (4 bits)
16 - 20 address (15 bits into bits 1 - 15)

bits 16 - 20 are cleared



UNIVAC III SUPPORT

REVISION: SECTION:
1-0002
DATE: PAGE:
June 1, 1962 3

Description of Format (Cont'd.)

Field Select Word

1-5
7
8-9
11 - 12
13
14 - 15
17 - 20

Octal

Word

1-5
7

8 -15

Decimal
Word
1-5
7
8 -13

Character

Word

1-5
7
8 -11

location

sign

index (4 bits)

left bit in octal excess three (5 bits)
right bit in octal excess three (5 bits)
M field (10 bits)

location
sign
octal representation of word

location
sign
decimal representations of word

location
sign
character representation of word

Index Loading and Transfer Cards

a. Index Card

If the location (columns 1-5) is greater than zero and less than 00020,
the data is loaded in cell zero and the corresponding index register is

loaded from cell zero.

b. Transfer Card

If the location (Columns 1-5) is zero or blank, the data is loaded in cell
zero and program control is transferred by means of a J * 0 instruction
(Indirect Addressing).



. 1-0003
UNIVAC III SUPPORT — .
June 1, 1962 1

CARD READER ROUTINE 1,0003

Purpose:

To maintain a flow of cards through the Card Reader at its rated speed of
700 cards per minute, making the images available to the program as
required in either translated or untranslated format.

Method:

To maintain its rated speed, the Card Reader is operated as a real-time
device. Since the reader is not clutched, function specifications are made
available at each interrupt so that the position of cards at the stations
within the reader will be accounted for by the reader program. The basic
dispatcher for the card reader (synchronize control routine for the reader)
maintains six buffer areas within the memory of the computer. One is the
active read-in area and of the remaining five, one is used to hold the card
currently available to the worker program, and the other four available for
the cards already committed to the reader. A '"request' for a card implies
that the buffer area containing the card image previously requested is now
released and available for a new image and that four cards have been committed
to the reader following the one currently being requested.

Restrictions:

The commitment of four cards implies that four blank cards should follow
the end of a card deck and also that, when a change from translated to
untranslated mode or vice versa is made, the succeeding four card images
will be made available in the previous mode. All ARs and IRs 1 and 2 must
be preserved by the worker program if desired, or made available to the
reader routine at the time control is transferred to the Card Routine from
the worker program.

Programming Procedures:

1. Card Request: To request a card image, the programmer should
provide the following packet of coding:

n SLJ *CDRQ Execute Card Request

n+1 ( ) Starting Location of Card Image provided
on ready return

n+2 Not Ready Return Exit

n+3 Ready Return Exit



UNIVAC TIT SUPPORT — ="
June 1, 1962 2

Location "n" contains an SLJ instruction indirectly addressing the
Card Request subroutine. If an image is not available, control will
be returned to location '"'n+2'", and the programmer provision should
be made in this location for this eventuality. If an image is available,
control will be returned to location '""n+3" and the base address of the
card image will be provided in location "n+1",

2. Release: To release control of the processor to an alternate program
when an image is not available, the programmer should provide the
following packet of coding:

) SLJ *CDRL
ptl (Return entrance)

When control is transferred to location '"p'", the Release exit, the
processor will be released to another program. When an image is
available, control will be returned to location "p+1" for further card
processing. An entry to the Request subroutine on Return will produce
an immediate ""Ready" exit.

3. Translation Mode: To specify an untranslated image, a zero should be
placed in bit 18 of CDQF (Card Request Communication word) in the
input/output communication region. When the mode is changed, four
images will be supplied in the previous mode.

4, Stacker Selection: Cards are normally directed to stackers 1 and 2,
alternating every 900 cards. Cards incurring an error or fault are
directed to stacker 0.

5. Error Recovery: When an error is detected, the card is sent to stacker
0. The operator notifies the routine by a type-in when and whether
to retry reading the card. The basic dispatcher will return to the
interrupted environment while waiting for the type-in.

NOTE 1: The Card Reader routine utilizes all arithmetic registers and
Index Registers 1 and 2. These must be preserved by the programmer if
it is necessary to retain their contents.

NOTE 2: In utilizing the Card Reader Routine with the ALMOST assembly
system, standard EQU cards should be placed ahead of the ALMOST symbolic
deck which is to be assembled. In this manner, the labels for the Card Reader
Routine will be provided.



UNIVAC III SUPPORT

REVISION: SECTION:

1 1-0004

PATE: January 15,1963 | PAGE:

U-3519

A.

INTERMEDIATE TAPE HANDLING ROUTINE

PURPOSE

To provide a set of tape handling routines at a block level of communication,

L

METHOD

Structure of the Intermediate Tape Handling Routines

The Intermediate Tape Handling Routines permit the manipulation of
UNIVAC III tapes on the block level, This permits the following
functions: Block Read Forward, Block Read Backward, Scatter Read
Forward, Scatter Read Backward, Write, Rewind after Reading, Rewind
after Writing and Position Tape (skip a given number of blocks with no
data transmission).

The checking for labels, end-of-file sentinels, end-of-reel sentinels
and by-pass sentinels is left to the user as is the implementation of
item advance,

All of the subroutines which perform the above mentioned functions
specify a Symbolic Tape Unit Reference, This Symbolic Tape Unit
Reference is the label or numeric address of a location which contains
in bits 24-21 the logical tape unit number. When BOSS I1I is loaded,
locations octal 0200 through octal 0217 contain, in order, the logical
tape unit numbers 0 through 15, The user may equate any label he
desires with these locations.

The levels of the Intermediate Tape Handling System are:
a. Intermediate Level Tape Handling Routines
b. Basic Request and Verify Routines
c. Basic Interrupt Dispatchers
The use of the Intermediate Level Tape Handling Subroutines is dis-

cussed below. The basic request and verify routine and the basic
interrupt dispatchers are described in the BOSS II1I manual,



UNIVAC III SUPPORT

REVISION: SECTION:

1-0004

paTe:January 15,1963 PAGE:

U-3519

Tape Formats

This level of tape input-output communication can accept any tape
formats, The processing of the contents of a tape is completely

at the discretion of the user as described above, It is recommended,
however, that the tape formats as described in the section on Tape
Input-Output Item Handling in this manual be used for processing at
the block level,

General Procedures

If the user of the Intermediate Tape Handling Routine wishes to
perform simple buffering, two alternating areas may be employed
for this purpose by specifying a verification cycle of 2, This causes
the return from a request for a tape operation, with a specified
reserve word R, to be delayed until the previous request with the
same reserve word specified has been completed,

Matching requests with returns is accomplished by reference to

the reserve word R within the Intermediate Level Tape Handling
Routine, The matching is done by storing the function specification
word in the reserve word R before transmitting it to the basic dis-
patcher, A unique reserve word must be provided for each tape
unit referred to by the user at the intermediate level, Each reserve
word must have an initial value of zero. Swapping of tapes and of
input-output areas may be accomplished either by modifying the
calling sequence or by providing different calling sequences.

If the user wishes to use a demand read method of processing tape,
waiting until each tape action is completed before returning to the
calling program, a verification cycle of 1 should be used. No reserve
word R is required in this case,

A verification cycle of 0 will cause the specified tape action to be
initiated, Control will then be immediately given back to the calling
program which must determine for itself when completion of the tape
action has occurred by direct communication with the appropriate
basic tape dispatcher, This is accomplished by executing a verify
calling sequence as described in the BOSS III manual,

Verification cycles greater than 2 will operate as though they
were 2,



UNIVAC IIT SUPPORT

REVISION: SECTION:

1
1-0004

pate:January 15,1963 | paGe:

U-3519

C. CODING PROCEDURES

L

Block Read Forward

n+1

n+2

n+3

n+4

SLJ

+

RDBF

Symbolic Tape Unit Reference
Address of first word of read-in area
R, V

Return Point

V is the code for the verification cycle desired: 0, 1 or 2, R s
the address of the Reserve word if V is 2, Otherwise R should
be-zereo,

Block Read Backward

n

n+1

n+2

n+3

n+4

SLJ

+

L

RDBB

Symbolic Tape Unit Reference
Address of last word of read-in area
R, V

Return Point

Scatter Read Forward

n+1

n+2

n+3

n+4

SI.d

+

RDSF

Symbolic Tape Unit Reference

Address of first word of SCAT control list
R, V

Return Point



REVISION: SECTION:
1 1-0004
UNIVAC III SUPPORT
PATE:January 15,1963 | PASE
U-3519 4
-
4, Scatter Read Backward
n SLJ RDSB
n+l + Symbolic Tape Unit Reference
n+2 + Address of last word of SCAT control list
n+3 + R, V
n+4 aee Return Point
5e Write (Gather or Block)
n SLJ WRIT
n+l + Symbolic Tape Unit Reference
n+2 + Address of first word of write—out area or

address of first word of SCAT control list

n+3 + Output block word count
(Zero for gather write)

n+4 + R, V
n+5 cos End-of-tape Return Point
n+6 .oe Normal Return Point

A block write will be simulated if a word count is specified, This
word count may not exceed 4096, A word count of zero indicates

a gather write is desired, In this case the third word of the calling
sequence is then assumed to be the address of the first word of a
SCAT control list provided by the user, The end-of-tape return

is used to indicate that the end of tape window on tape was reached
on the specified tape unit during the previous tape function, Verifi-
cation cycles and the use of a reserve word are used as described

above for tape reading,



REVISION: SECTION:
1 1-0004

UNIVAC III SUPPORT

DATE:January 15,1963 | °F B
U-3519 | 9
G, Rewind after Reading
n SLJ RDRW
n+1 + Symbolic Tape Unit Reference
n+2 coe Return Point

Normally, return to the calling program will not be made until
the rewind has been initiated by the specified tape unit, The
return will be made immediately after the request has been made
without waiting to verify initiation if a 1~bit is placed in position
16 of the second word in the calling sequence, If the second word
in the calling sequence, the symbolic tape unit reference line, is
negative, the tape will be rewound with interlock, If it is positive,
the tape will be rewound without interlock,

Te Rewind after Writing

n SLJ WRRW
n+1 hs Symbolic Tape Unit Reference
n+2 ves Return Point

8e Position Tape

n SLJ TPOS

n+1 + Symbolic Tape Unit Reference
n-+2 + Number of Blocks to be Skipped
n+3 eve Return Point

The subroutine skips the number of blocks indicated, A plus sign
on the third word in the calling sequence, the number of blocks to
be skipped, indicates skipping in a forward direction; a minus
sign on this word indicates skipping in a backward direction,



REVISION: SECTION:
i 1-0005
UNIVAC III SUPPORT — e —
DATE: PAGE:
U-3519 January 15, 1963 1

A,

B.

TAPE INPUT-OUTPUT ITEM HANDLING

Purpose

To provide a set of tape input-output item handling routines,

Method

1.

Structure of the Item Handling Subroutines

File description tables constitute the highest logical level within

the tape Input-Output system, Entries in this table are either
defined as constants by the user or compiled from given paramenters
by a special subroutine. These tables are interpreted and the
information in the files they represent is processed by a group of
subroutines which perform the functions customarily associated

with item handling operation: open, close, read, write and with the
UNIVAC III system, write-read, The item handling operators in
turn communicate to lower-level routines which act as a file dis-
patcher, The file dispatcher maintains a queue of requests generated
by the item handling operators and coordinates these requests with
the request-and-verify mechanism of the basic interrupt system,
This coordination is accomplished through the intermediate level
(block handling) tape input-output package which consists of the
following block handling functions: read, write, overwrite, position
and rewind, The levels of the item handling input-output system are
thus seen to be:

a, File description table entries

b, Item handling operators

c, TFile dispatcher subroutines

d. Intermediate level tape handling subroutines
e, Basic request and verify routines

f. Basic interrupt dispatchers

The file description table entries and the item handling operators

are discussed below, The use of the intermediate level tape handling
subroutines, in which the user must provide his own item advance
routine, is described in another section of this manual, The basic
request and verify routines and the basic interrupt dispatchers are
described in the BOSS III manual, (Section IV, Synchronizer Control),



UNIVAC IIT SUPPORT

REVISION: SECTION:
1 1-0005
DATE: PAGE:
U-3519 January 15, 1963 2

2,

Tape Formats: Labels, Data Blocks, and Sentinels

Ae

General

The input-output file structure produces and accepts tapes
whose format follows the conventions described below,
Tapes produced by the Item Handling System will contain
the standard labels, sentinels and flags described below,
Tapes read by the Item Handling System should conform

to the standard format, unless the block option is exercised,
If an input tape contains the proper flags and sentinels, the
standard file system will process items of any fixed length
and blocks containing a variable number of items provided
that the specified maxima for item length and number of items
per block are not exceeded,

Label Block
1) Label Block Processing

If a data tape is labeled, the first block must be the label
block, The presence of an address as one of the entries in
the file description table (which is described below) indicates
whether or not the file is labeled, If such an address is
present, the first block of each reel of an input file will be
read with a block-read tape order into the last twelve words
of the file description table for that file, and a subroutine
linkage will be made to the address specified, The subroutine
located at the address given is assumed to be either a standard
or special label-checking program which will verify the
contents of the label just read,

For output files, the subroutine linkage will be made at the

beginning of each reel, and the last twelve words of the file

description table for that file will be written as a block upon
return from the output label subroutine,

If the file is not labeled, a zero address is entered in the
file description table as the location of the label checking
subroutine, The first block on each reel of the file is then
assumed to be a data block in standard format as described
below,

If input labels are present but are not to be checked, a label



REVISION: SECTION:
1 | 1-0005
UNIVAC III SUPPORT | —
DATE: : PAGE:
U-3519 January 15, 1963 \[ 3
subroutine must still be provided, It can simply return
control to the input-output routine without processing or
checking the label,
(2) Label Block Layout
Word Content Information
0 -00000000 Label flag
1 AAAA First four alphanumeric
characters of file label
2 ddmmyy Date; day, month and year
in decimal characters
3 00rrr File reel number in
decimal characters
4
5
6 These words are available for use
by the individual installation
7
8
9
10 AAAA Last four alphanumeric characters
of file label
11 ~00000000 Label flag

Ce Data Blocks
(1) General
Data Blocks consists of one or more logical items of

fixed length and two data descriptor words, one at each
end of the block, The data block and data descriptor word



REVISION: SECTION:

1 1-0005

UNIVAC IIT SUPPORT

DATE:Japuary 15,1963 | PAGE:
U-3519 4

formats are shown and described below,

(2) Data Block Layout

Segment separators occur on tape between the initial
data descriptor word and the first item of the block,
between items within the block, and between the last
item and the terminal data descriptor word, When
writing, the data descriptor words are automatically
prepared by the file dispatcher, When reading, the
first data descriptor word encountered (depending on
the direction the tape is being read) is placed in the
item descriptor word position of the first and last item
buffer area.

The data descriptor words are principally used as
position markers for restart purposes, It should be
noted that if the block mode is being used, the block
will consist of two data descriptor words and the data
area, which is considered as one item by the item pro-
cessing routine, In this case there will be only two
segment separators on tape for this block, If a block
mode of operation is desired, it is recommended that
the intermediate tape handling routines be utilized,
They are described in another section of the manual,

(a) Data Descriptor Words

Data descriptor words consist of a one word marker
at each end of a block, This marker is composed
of two parts; the channel increment and the block
number, The channel increment is located in the
upper half of the data descriptor word and will be
the number of items in this block in the case of a
scatter read-gather write system or the number

of words in the block in the case of a block-read
block-write system,

The block number is in the lower half of the marker
word and will be the true block number for this reel,
modulo 4096, Both of these entries in the data des-
criptor word will be expressed in pure binary, 12
bits in each entry, The sign of the data descriptor
word is positive,



|

REVISION: SECTION:
1 1-0005
UNIVAC IIT SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 5
(b) Items
The data area within the block may consist of one

(3)

or more items, The number of items per block
and the item size must not exceed the maximum
size as stated in the file description table, The
item size also must not exceed 511 words, The
output produced by this system will consist of fixed
size items and fixed size blocks. An exception in
block wize may occur preceding sentinel blocks or
bypass blocks, where short blocks may occur.

(c) Item Chain Words and Item Descriptor Words

Preceding each item area are two words, the

item

chain word and the item descriptor word., The chain
word contains the address of the next available input
or output item area in the buffer pool, The item
descriptor word is used to control and analyze tape
format, The data descriptor word for a block is
placed in the item descriptor word of the first and

last item area,

The item descriptor words in the other item areas
used for this block will not be used, Under normal
usage, the user does not need to make reference to
the item chain word or the item descriptor word,
The item address given the user by this system will
be the address of the actual data item., It should be
noted that neither item descriptor words nor item

chain words appear on tape,
Data Block Processing

(a) Item Handling

When a request for an input or output item advance

has been honored, the starting address of the

next

item buffer area will be found in the first location
of the file description table associated with that

file, The user can then load an index registe

r with

this address or can access the data indirectly using
the label of the file description table as the operand,

When an FRD (read) operator is given, the current

item area will be released back to the pool.

When



REVISION: SECTION:

1-0005

UNIVAC IIT SUPPORT

DATE: PAGE:

January 15, 1963 6

U-3519

an FRW (write) operator is given, the item whose
starting address is in the first location of the file
description table associated with that file is placed
on the output list for that file, The item area will
be released when the tape write operation involving
that item area is completed, When a FWRD (write-
read) operation is given,the item whose starting
address is given in the first location of the input file
description table specified,is placed on the output list
for the specified output file, The specified input file
will then be advanced as described above, When a
write tape operation is completed, the item areas
involved will be returned to the pool for that file,

(b) Block Option

An input tape fileywhich does not contain standard
labels, flags and sentinels, may be read by exercising
the block option, Such a file should use a pool in which
the maximum block size is given as the size of the item,
The blocks on this file will be processed in the block
mode, and the use of read and write operators will
provide the user with the address of the first word of
each block, Analysis of the contents of the block then
becomes the responsibility of the user, Sentinel checking,
label checking and item advance must be provided by the
user when using the block option,

d. Sentinels

Three types of sentinels exist in this system., They are the end-of-
file sentinel, the end-of-reel sentinel and the bypass sentinel. The
end-of-file and the end-of-reel sentinels each consist of a one word
block., The high order 2 bits and sign of this one word are a special
flag signifying what kind of a sentinel it is, The low order 22 bits
of this word will be a block count of all of the label blocks, data
blocks and sentinel blocks in this reel to this point including the
sentinel block,

Bypass sentinels are used to indicate that a portion of the data on
a tape does not pertain to the file which contains that tape. Two
bypass sentinels will appear before and after the block or blocks
containing this extraneous information, These blocks are ignored



REVISION: SECTION:
1 1-0005
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 7

when encountered by the item handling routine and the information
contained in them will not be given to the user, These bypassed
blocks are generally used for memory dumps,

/—‘—W—W

bypass sentinel

inter-block gap This diagram shows how bypass

sentinels are used to indicate
bypass sentinel that a portion of a tape contains
information which does not pertain
to the file which contains that tape.

inter-block gap

bypass block 1

R
M\A

bypass block n

inter-block gap

bypass sentinel

inter-block gap

bypass sentinel

W\W



REVISION: 1 SECTION:
1-0005
UNIVAC III SUPPORT
DATE: PAGE:
8
U-3519 January 15, 1963
W

item n
segment separator
data descriptor This diagram shows the end of a

block followed by two end-of-reel
sentinels .

inter-block gap

end-of-reel sentinel

inter-block gap

end-of-reel sentinel

L/\""\J



]
REVISION: 1 SECTION:

1-0005
UNIVAC IIT SUPPORT B
DATE: ’ PAGE:
January 15, 1963 | 9
U-3519 ]
W

item n

segment separator

data descriptor This diagram shows the end of a

block followed by two end-of-file
sentinels.

inter-block gap

end-of-file sentinel

inter-block gap

end-of-file sentinel

L“_’\——’——‘/\J



UNIVAC III SUPPORT

REVISION: 1 SECTION:

1-0005

DA PAGE:

TE:
January 15, 1963

U-3519

10

S — e,

data descriptor

segment separator

item 1

segment separator

item 2

segment separator

item 3

—~—
— ]

item n-1

segment separator

item n

segment separator

data descriptor

W

This diagram shows a data block
containing n items with associated
data descriptors and segment
separators,



UNIVAC IIT SUPPORT

U-3519

REVISION: | secTioN:
1 1-0005
DATE: PAGE:
January 15, 1963 11

number of words (block mode) or

number of items (scatter mode)
i ) 1 4 1 i i L I 1 4

block number (modulo 4096)

L i A i 4. '} A i '}

data descriptor

10 block count in binary
i 1 [} 1 'y L A 1 A F A L 1 Il [ 1 1 A 1 | 1
end-of-reel sentinel
11 block count in binary
2 L ] 'l 1 'y 1 i 1 A A 1 i L L 1 1 1 ' 1 L
end~-of-file sentinel
01
I i i i. i 1 1 1 1 A A ) 1 [ 1 1 ] i } 1 1

bypass sentinel



UNIVAC IIT SUPPORT

REVISION: SECTION:
1 1-0005
DATE: PAGE: 12
U-3519 January 15, 1963

3. File Description Table

Ae

General

The characteristics of each file to be processed by a program
utilizing the Item Handling Subroutines must be provided by the
user, These characteristics are described in a table called the
File Description Table, This table consists of 24 words in the
case of a labeled file and 16 words in the case of an unlabeled
file, The entries in this table marked by an asterisk must be
supplied by the user, The other entries are used internally

by the Item Handling Subroutine, The values of the entries
supplied by the user are dynamically alterable and may be
changed whenever the file is not open. The label of the first
entry in the table will be the ''file label'" as used in the calling
sequences described in the section on file operators,

File Description Table

File Label current item location
i maximum item length*
2 maximum number of items per block*
3 pool control label*
4 location of current item chain word
5 location of last item
6 block position
7 item position counter
8 dispatching factor*
9 status indicators¥*
10 symbolic tape unit reference*
1 block dispatch count
12 eight character
13 label identification (two words)*
14 current reel number (decimal)
15 address of label check routine
16-27 twelve word area for label

The entries marked by an asterisk must be supplied by the user,



UNIVAC IIT SUPPORT

REVISION: SECTION:

1 1-0005

DATE: PAGE:

U-3519 January 15, 1963 13

The following bit positions in word File +9 have the specified
functions as status indicators:

2%
3%

[o JIEN B or IV} ]

usage zero=input, 1 = output

block option zero=no, l=yes

input end notice zero=last reel only; 1=every reel
output end notice zero=none; l=every reel

open for output zero=no; l=yes

open for input zero=no; l=yes

not used

di;spatching- rate zero=less than two blocks

ML es 1=two-blocks

The bit positions marked by an asterisk must be supplied by the user.
It should be noted that an entry of +0 would be normal.

c¢. Detailed Description of the File Description table Entries

File: The currentitem location is maintained in the least significant

File+l:

15 bits of the first word in the file description table, the file
label word. This permits the user to address the current
data by loading an index register with the contents of the file
label word.

The first read operation on an input file establishes the first
item location. Subsequent read operations provide new data
locations. Each read operation releases the item area used
on the previous read. The input-close operation releases the
last item area used and any remaining unused areas. It should
be noted that the open input operation does not provide a data
location.

The open operation on an output file establishes the address of
an available (empty) item area. Each subsequent write opera-
tion assigns the previously supplied item area to an output block
and makes available the location of a new, empty item area.
The close operation on an output file releases the last unused
item area to the pool.

The write-read operation assigns the item area currently
available for that input file, to the block in preparation by the
output file. A new input data location is then made available.
The empty item area location specified in the output file label
word is left undisturbed by the read-write operation. The
two files used by a write-read operation must share the same
pool.

Item length is the length in words of the largest item in the file.
Normally, all items are the same length. For scatter-gather
mode, no item may exceed 511 words.



REVISION: SECTION:

1 1-0005

UNIVAC IIT SUPPORT

DATE: PAGE:

January 15, 1963 14

U-3519

File + 2: For input, this parameter represents the number of
items in the largest block in the file, Normally, all
blocks contain the same number of items. For output,
this parameter determines the standard number of
items to be placed in a block.

File + 3: The pool used by the file is specified here. Files
with similar item length normally share the same
pool. Files with widely divergent item lengths should
specify separate pools. The number of item areas re-
quired in a pool is dependent on block size and the dis-
patching factor for input, and on block size only for
output. See below under File + 8.

File + 4: For input, the file system attempts to maintain a number
of items in advance of processing requirements. These
unprocessed items are chained together through item
chain words. The location of the chain word for the cur-
rent item is maintained at this location in the file table
and is used by each read operation to locate the next
item to be made available to the user. For output, this
word contains the address of the chain word for the
first item in the output block being prepared. Each
write operation adds a new item to the chain. The out-
put file dispatcher extracts the specified number of
items from the beginning of the chain to prepare an
output block (using this word in the file table to locate
the first unwritten item).

File + 5: When the input file dispatcher has successfully read in
a new block for the file, it chains the item area locations
assigned to the new block to the list of item area loca-
tions for items previously read. The dispatcher uses
this word of the file table to locate the end of the chain
of previously read items. Each write operation causes
the currently assigned output item area to be added to
the end of the chain of output items. The write opera-
tion uses this word of the file table to locate the end of
the chain.

File + 6: The block counter indicates how many blocks on the current
reel of the file have been read or written. The counter is
used primarily for repositioning purposes.

File + 7. The item counter indicates how many items of the current
block have been processed.



UNIVAC IIT SUPPORT

REVISION: SECTION:
1 1-0005
DATE: PAGE:
January 15, 1963 15
J-3519

R ISR A

i
7

SN

L]

Dy
!
i

Lo

s ,/'[f',

RN

File + 8:

Oy i ',':: R
A

File + 9:

For input usage, the dispatching factor represents the
number of items in excess of one block to be used for
advance reading, and, in effect, specifies how many
item areas in the pool are to be allocated to the file. A
request to read a block is made whenever the number
of available item areas associated with the file equals
or exceeds the number of items per block. The end-of-
reel conventions limit the number of advance reads to
two blocks; hence, the value specified as the dispatching
factor will automatically be limited by the "OPEN"
operation to a maximum of twice the number of items
per block.

The entry is not used for an output file. Instead, the
dispatching factor (the amount of buffering) is deter-
mined by the size of the pool used by the file. Thus,

for output, the entry should be +0. The minimum num-

ber of item areas in an output pool must be equivalent

to the number of items per block plus one, for each
output file sharing the pool. Any item areas in excess of
this number will permit the stacking of output items in
the pool for later dispatching. Dispatching will be allowed
to proceed at a natural rate unless the pool no longer has
any free item areas for new output, under which circum-
stance the previously stacked output will be forcibly dis-
patched.

The size of a pool can thus be calculated as follows:

For each input file sharing the pool, I+ D buffer
areas (where I is the maximum number of items per
block for the filé and D is the dispatching factor). For
each output file sharing the pool, I + 1 buffer areas

is minimum (where Im is the maximum number of items
per block).

- To increase output efficiency, an addition I to 2 Im

item areas per output file is suggested.

This word contains a number of 1-bit indicators which
supply miscellaneous information about the file, as
follows:

Bit 1 indicates whether the file is currently in use as
input or as output.
Bit 2 indicates whether the block option is to be used in

preparing the input-output dispatching for the file. (See
above for a description of the block option.)



UNIVAC III SUPPORT January 15,1963

REVISIDN: SECTION:

1 1-0005

DATE: PAGE:

16

U-3519

File +10:

File +11:

Bit 3 indicates whether the read operation should
yield an end—-of-file return at the end of every reel
or only at the end of the last reel of the file,

Bit 4 indicates whether the write operation should
yield an end-of-reel return or not,

Bit 5 is set on when the file is opened for output,
Bit 6 is set on when the file is opened for input,

ch 8 is- set on when the input dispatching factor has
its maximum vaIv.e of twice the number of iter . per
block, Under thesé. conditions the flfé\Wll]. norm

be reading twb\full bfqgks a.hqgfd a con ion which
must be accounted for at end o reel or f11e.

The sign bit is used for input files to indicate the
direction in which the file is being read. The sign
is negative for backward operations,

Bits 2, 3 and 4 are set on by the compiler or user
of the file, The other bits are set and interrogated
during the running of the program,

This parameter specifies the symbolic tape unit
reference and is normally a reference to a word oh
the table maintained by the tape assignment system,
The tape unit number must be found in bits 24-21
of the referenced word,

This word is used as a running counter to determine
when a request should be made to dispatch an input

or output block, An input request is made when this
counter exceeds the items-per-block (ipb) count, The
counter is initialized with the sum of the dispatching
factor and the ipb count, is reduced by the ipb count
whenever a request is made, and is increased by one
for each item read, Adjustment for short blocks is
made at each block flag by using the item counter at
File+ 7, An output request is made when this counter
equals the%zg> count, The counter is initialized at zero,
is increased by one for each item written, and is reset
at each request,



UNIVAC IIT SUPPORT

REVISION: SECTION:

1 1-0005

PATE:January 15, 1963 | PAGE: 4o

U-3519

File +12
and +13:

File +14:

File +15:

File + 16
to
File +27:

The file identification appears as eight alphanumeric
characters in these two words.

The current reel number is maintained here in
decimal digit format. An open operation sets this

~count to zero, and internal operations at the begin-

ning of each reel advance it by one. At the time of
linkage to the input label-check routine, the count
in this word should match the reel count in the
input label. This word should be used as the reel
count for an output label.

The presence of a nonzero address in this word indi-
cates that the file is labeled and that the nonzero
address is that of the appropriate label-checking
routine. If the word is binary zero, it is assumed
the file is unlabeled.

If the file is labeled, these twelve words are used as
the label area. If the file is not labeled, these twelve
words may be omitted.



UNIVAC IIT SUPPORT

REVISION:

1

SECTION:

1-0005

U-3519

pare:January 15, 1963

PAGE:

18

d. Example of a File Description Table

In this example a file description table is shown for an input
file with the following parameters:

23 words per item; 40 items per block; pool control label:
IOPOOL; 35 item areas for buffering in addition to the first
block; symbolic tape unit reference: A; label identification:
MASTERAA; starting address of label checking routine:

LBLCHECK.

INFILEA
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27

+ + + + 4+ ++F A+ F o+ o+

0
23
40

IOPOOL

0

'MAST"

'ERAA' TrL s oL

0

LBLCHECK

0

QOO OO O OO OO O

R 8 1 s

o



UNIVAC III SUPPORT

REVISION: SECTION:

1 1-0005

DATE: PAGE:

U-3519 January 15, 1963

19

C. Coding Procedures

1.

Construction of an input-output item area pool

Files containing items of similar size may use a common memory
area or pool to share their individual item areas. The pool area
may either be constructed to static specifications or dynamically
constructed through the use of a special subroutine which is provided
as part of the input-output routines. The pool control label is
attached to the first of three words known as the pool control words
which should have the following format after the pool has been con-
structed:

Pool Control Tél‘f)"ie + address of next buffer area (initially first buffer area)

+1 + address of last buffer area

+ 2 + length of individual item area in pool (not including

the item chain word or the item de-
scription word)

The length of each individual item area must be equivalent to that of
the largest item to share in the pool. The format of the buffer area
is shown below. It should be noted that the size of a buffer area is

the length of the item area plus two words, the item chain word and

'the item description word. The item chain word contains the address

of the next available buffer area in the pool. The item description
word is used to control and analyze tape format. Available item areas
are chained together via the item chain words using the pool control
words. The last item area will have a chain word of zero.

a. Dynamic Construction

Dynamic construction of a pool is accomplished with the
following subroutine linkage:

SLJ BUFC |
+ address of first word in pool area (
+ number of words allocated to pool .~
+ pool control label N

In this case the pool control words should be defined as:

Pool Control Label +0
+1 +0
+ 2 + length of individual item areas in
pool (not including the item de-
scription or the item chain word)



C. Coding Procedures

1. Input-Output Area Pool
a. General

‘Each file using the Tape Input-Output Item Handling Routine is re-
quired to have a memory area or pool specified, which will be used
for buffering purposes. Files containing items of the same or simi- .
lar length should specify the same pool area.

A pool consists of a series of buffer areas. The total size of the

pool must accommodate the specified buffering for all of the files
using this pool. It is required that these buffer areas be initially
chained together. This is accomplished through the use of a special
subroutine provided as part of the input-output routines. This rou-
tine will insert the proper chain word into each buffer area.

The size of each buffer area is the length of the largest item plus

. two words, the item chain word and the item descriptor. The item
chain word contains the address of the next available buffer area in
the pool. The item descriptor word is used to control and analyze
tape format. The length of each individual item area must be as
large as the largest item to share the pool. The last buffer area
in a chain will have a chain word which contains zero.

- Three words known as pool control words are associated with each
pool. A Pool Conirol Label is attached to the first.of these, The
pool control words will contain the following after the pool has been
initialized:

Pool Control Label + address of next buffer area
(initially the first buffer area)
+1 + address of last buffer area
+2 o+ length of individual item areas
in pool not including the item
chain word or the item descriptor
word

The number of words allocated to the pool is calculated by multiplying
the item size plus 2, times the number of items of buffering desired,i.e.,

n (i+2) = s

where n = number of items, i = item size, and s = pool size.



UNIVAC IIT SUPPORT

REVISION:

SECTION:

1-0005

DATE:

U-3519 January 15, 1963

PAGE:

20

Static Construction

Static construction of a pool is accomplished by placing the
proper item chain word (the address of the next buffer area)
in the first word of each buffer area.

The dynamic construction method, using the BUFC subroutine as
described above, is recommended.

2. Item Handling Operators

a.

Open Input Forward

SLJ FOIF
+ File
Execution of this subroutine initializes the specified file des-
cription table for reading forward. If the file is labeled, the
label is read and the label-checking routine is called. The
sign of the calling sequence specifies whether the file is to be
rewound prior to opening (-) or not (+).

Open Input Backward

SLJ FOIB
+ File

Execution of this subroutine initializes the specified file des-
cription table for reading backward. The tape is assumed to
be positioned correctly (ending sentinels will be ignored when
encountered). No label checking or rewind option is incorp-

orated in the subroutine.

Open Output
SLJ FOPO
+ File

Execution of this subroutine initializes the specified file des-
cription table for writing. The sign of the calling sequence
indicates whether the file should be rewound (-) or not (+).

If the file is labeled, the label subroutine will be called, and
the label block will be written when control is returned. The

location of an empty buffer will be made available in the first »4¢ 5

of the file description table upon return.



"UNIVAC III SUPPOR

2.

b. Coding Procedures

(1) Object time initialization of a pool is accomplished with the fol-
lowing subroutine linkage:

SLJ BUFC
+ address of first word in pool area (pool name)
+ ~ number of words allocated to pool (pool size)
+ Pool Control Label

(2) The pool control words should be coded as follows:

Pool Control Label + 0
+1 + 0
+2 + length of individual item areas in pool
(not including the item descriptoy or -
the item chain word)

(3) The pool area itself may be specified in the following manner:
pool name RES pool size (s, as defined above)
Item Handling Operators
a. Open Input Forward

S1LJ FOIF

+ File-
Execution of this subroutine initializes the specified file deseription
table for reading forward. If the file is labeled, the label is read
and the label-checking routine is called. The sign of the calling se-
quence specifies whether the file is to be rewound prior to opening:
(<) or not (+). It should be noted that the open input operation does
not provide a data location. A

b. Open Input Backward

SLJ FOIB
+ File

Execution of this subroutine initializes the specified file description
table for reading backward. The tape is assumed to be positioned
correctly (ending sentinels will be ignored when encountered). No
label checking or rewind option is incorporated in the subroutine.



REVISION: SECTION:
1 1-0005
UNIVAC III SUPPORT ; S
DATE: PAGE:
U-3519 January 15, 1963 21

d. Read

SLJ FRD
+ File
End of file (or reel) return
Normal return

Execution of this subroutine causes the location of the next
item of the file to be placed in the first word of the file des-
cription table. The buffer containing the previous item is
released to the pool. Detection of an end-of-file flag (or
end-of-reel if such option is specified) causes an appropriate
return. The end-of-reel option, if taken, requires subse-

quent use,of the ''close input reel' subroutine. 7":. /. . /.
W”’%{«}‘T j’ Stegnty prd b o L. U},f’)‘{ /uw_ R RTINS ,f;) ; )
e. Write 6% 1h4e /o R e T LY ) T b ‘ d
Weed e Bl i B V
SLJ FWR
+ File

End-of-reel return if specified
Normal return

Execution of this subroutine causes the location of the item
currently stored in the first word of the file description table
to be added to the chain of items ready for output. The loca-
tion of a new item is procured from the pool and placed in the
first word of the file description table.

If specified, an end-of-reel return will be made when such
condition is detected. At such a return, all output previously
stacked in the pool will have been written out. This permits

a limited number of blocks to be written by a closing label
routine, or a limited number of additional items to be inserted
in the output string. The '"close output reel' subroutine, which
must subsequently be used in this case, will dispatch any fur-
ther output items stacked in the pool and will write two end-of-
reel sentinels. Approximately 25 feet of tape remain on the
reel at the time of end of reel return to accommodate any
closing blocks.



REVISION: SECTION:
1 1-0005
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 22

f. Write-Read

SLJ FWRD
+ Input file
+ Output file

End return with code in ARS8
Normal return

Execution of this subroutine causes the location of the item
currently stored in the first word of the input file description
table to be added to the chain of items ready for dispatching
in the output file. The location of a new input item is made
available, as in the ''read' operation; the output buffer loca-
tion in the first word of the output file description table is
left undisturbed. Input or output end notice will be given as
specified in the respective file description tables. The code
supplied in ARS8 upon return will be 1 for input end, 2 for
output end, and 3 should both occur simultaneously.

g. Close Input Reel

SLJ FCIR
+ File

If the end—o#-reel return option is elected for an input file,
the close input reel subroutine must be executed in order to
advance to the next reel of the file. The subroutine executes
a rewind and swaps tapes.

h. Close Input File

SLJ FCIF
+ File

Execution of this subroutine causes all outstanding item buffers
to be released to their pool. Tape swapping is suspended, and
the sign of the calling sequence indicates whether the tape is
rewound (-) or not (+). The file description table is stabilized
and may subsequently be re-opened.



REVISION: | sEcTiON:
1 % 1-0005
UNIVAC III SUPPORT
DATE: PAGE:
5-3519 January 15, 1963 23

i. Close Output Reel

SLJ FCOR
+ File

Execution of this subroutine causes all output currently stacked
in the pool to be dispatched and two end-of reel sentinels to be
written. The subroutine executes a rewind and swaps tapes.

j.  Close Output File

SLJ FCOF
File

|+

Execution of this subroutine causes the last unused buffer to be
released to the pool, all output currently stacked in the pool to
be dispatched, and two end-of-file sentinels to be written. Tape
swapping is suspended, and the sign of the calling sequence in-
dicates whether the tape is to be rewound (-) or not (+). The
file description table is stabilized and may subsequently be re-
opened.

k. General Close Reel

SLJ FCLR
+ File

This subroutine performs the input and output reel closing
functions described above, determining by analysis of the file
description table whether an input function or an output function
is required. The routine isdesigned for use in programs which
do not know at the time the calling sequence is programmed
which function the file table will be performing at execution time.

1. General Close File

SLJ FCLF
+ File

This subroutine performs the input and output file closing functions
described above, determining by analysis of the file description
table whether an input function or an output function is required.



UNIVAC III SUPPORT

REVISION: SECTION: 1_0006

DATE: PAGE: 1

7-3519 January 15, 1963

As

B.

TAPE INPUT-OUTPUT VARIABLE SIZE ITEM HANDLING

Purpose

To provide a set of tape input—output variable size item handling routines,
Method
1, Structure of the variable size item handling routines

File description tables constitute the highest logical level within

the tape Input-QOutput system, Entries in this table are either defined
as constants by the user or compiled from given parameters by a
special subroutine, These tables are interpreted and the information

in the files they represent is processed by a group of subroutines which
perform the functions customarily associated with item handling
operation; open, close, read and write, The item handling operators
in turn communicate to lower-level routines which act as a file dispatcher,
The file dispatcher maintains a queue of requests generated by the item
handling operators and coordinates these requests with the request-and-
verify mechanism of the basic interrupt system, This coordination is
accomplished through the intermediate level (block handling) tape input—
output package which consists of the following block handling functions:
read, write, overwrite, position and rewind, The levels of the item
handling input-output system are thus seen to be;

fe File description table entries

be Ifem handling operators

Ce File dispatcher subroutines

de Intermediate level tape handling subroutines
€e Basic request and verify routines

f. Basic interrupt dispatchers

The file description table entries and the item handling operators are
discussed below, The use of the intermediate level tape handling sub-
routines in which the user must provide his own item advance routine,
is described in another section of this manual, The basic request and
verify routines and the basic interrupt dispatchers are described in
the BOSS III manual, (Section IV, Synchronizer Control),



UNIVAC III SUPPORT

REVISION: SECTION:

1-0006

DATE: January 15, 1963 | PAGE:
U-3519

2.

Tape Formats: Labels, Data Blocks, and Sentinels

Qe

General

The input-output file system produces and accepts tapes
whose format follows the conventions described below,
Tapes produced by the Variable Size Item Handling System
will contain the standard labels, sentinels and flags des~-
cribed below, Tapes read by the system must conform

to the standard format,

Label Block
(1) Label Block Processing

If a data tape is labeled, the first block must be the
label block, The presence of an address as one of

the entries in the file description table (which is
described below) indicates whether or not the file is
labeled, If such address is present, the first block

of each reel of an input file will be read with a block-
read tape order into the last twelve words of the file
description table for that file, and a subroutine linkage
will be made to the address specified, The subroutine
located at the address given is assumed to be either a
standard or special label-checking program which will
verify the contents of the label just read. For output
files, the subroutine linkage will be made at the beginning
of each reel, and the last twelve words of the file des—
cription table for that file will be written as a block
upon return from the out—put label subroutine,

If the file is not labeled, a zero address is entered in
the file description table as the location of the label
checking routine, The first block on each reel of the
file is then assumed to be a data block in standard
format, as described below,

If input labels are present but are not to be checked,

a label subroutine must still be provided, It can simply
return control to the input-output routine without process-
ing or checking the label,



REVISION: SECTION: 1_0006
UNIVAC III SUPPORT —
DATE: PAGE: 3
U-3519 January 15, 1963 |
(2)  Label Block Layout
Word Content Information
0 -00000000 Label flag
1 AAAA First four alphanumeric characters
of file label
2 ddmmyy Date: day, month and yecar in
decimal characters
3 00rrr File reel number in decimal
characters
4 \
6 These words are available for use by
> the individual installation,
7
8
9 ]
10 AAAA Last four alphanumeric characters of
file label
11 -00000000 Label flag

Ce

Data Blocks

@)

General

Data Blocks consist of one or more logical items of
variable length (the maximum item length must be
equal to or less than the block length) and two data
descriptor words, one at each end of the blocks The
data block and data descriptor word formats are des-
cribed below, Each item is preceded and followed by
an item descriptor word, as shown, This item des-
criptor need not be considered by the programmer to
be a part of the item, These words are placed in the
block by the handling routine on output and are expected



REVISION: SECTION: 1—0006

UNIVAC III SUPPORT

DATE: January 15, 1963 PAGE: 4
U-3519

to he present on input, Thus, the input format
required must be generated by the use of the
arla})lc SlZG Item Output Handling routmes »
Z /1{ PR /”//,, T «j([}’“’ «',.
(2) Data Block Layout

Segment separators occur on tape between the initial N
data descriptor word and the first item of the block, . ‘
and between the last item of the block and the termmal
data descriptor word, When writing, the data descriptor
words are automatically prepared by the file dispatcher,
When reading, the first data descriptor encountered
(depending on the direction the tape is being read) is
accounted for as a file position marker in order to
facilitate restart, The item descriptor words are used
to present the address of the current item in word zero
of the file description table on input, and are created
from Wészem andemon— output,

847 - O

(a) Data Descriptor Words

Data descriptor words consist of a one word marker
at each end of a block, consisting of the channel
increment and the block number, The channel
increment is located in the upper half of the data
descriptor word and specifies the number of words
in the block, The block number is in the lower half
of the word and specifies the block number within
the reel, modulo 4096, Both of these fields are 12
bit binary numbers, The sign of data descriptor
words is positive,

(b) Items

The data area within the block consists of one or

more items, The item size may. vary from one word
to-4h0d " (Fadscimu Jo "atid is always an integral
number of words,

(c) Item Descriptor Words

Preceding each item is an item descriptor word which
is used to control and analyze the tape format, This
word is not considered to be part of the item for addressing



UNIVAC IIT SUPPORT

REVISION: SECTION:

1-0006

paTe: January 15, 1963 rPAGe:

U-3519

(3)

and processing purposes. On output the user need only
indicate the item length (in wordsA as 'word oné of the file
description table in the call to the output handling routines.
Should the user wish to access the item descriptor, it is
found in the address previous to that given as the current
item address in the file description table.

The item descriptor is composed of two fields, the length
of the previous item as a binary value in the most signi-
ficant 12 bits and, the length of the next item as a binary
value in least significant 12 bits of the word, The first
item descriptor of a block has the length of the previous
item as zero, The last item descriptor of a block has
the length of the next item as zero, Under normal usage
the user does not need to make reference to the item
descriptor. The item address given the user by this system
will be the address of the first word of actual data in the
item,

Data Block Processing
(a) Item Handling

When a request for an input item advance has been
honored, the starting address of the next item area
available will be found in the first location of the file
description table associated withthat file, The user
can then load an index register with this address or
can access the data indirectly using the label of the
file description table as the operand,

When a VRD (Variable item ReaD) operator is given,
the current item area will be released back to the
pool, When a VWR (Variable item WRite operator
is given, the item whose starting address is in word
-zwevo of the file description table associated with that
file is moved to an output block area for that file,
The length of the item moved to output is determined
by wer&one of the file description table, The block
area will be released when the tape write operation
involving that block area is completed,



UNIVAC IIT SUPPORT

REVISION: SECTION:

1-0006

paTe:January 15, 1963 | rPase:

U-3519

Sentinels

Three types of sentinels exist in this system, There are the end~-
of-file sentinel, the end-of-reel sentinel and the bypass sentinels
The end-of-file and the end-of-reel sentinels each consist of a
one word block, The high order 2 bits and sign of this one word
are a flag signifying the type of sentinel, The low order 22 bits
of this word are a block count for all of the label blocks, data
blocks and sentinel blocks in the reel to this point, including the
sentinel block,

Bypass sentinels are used to indicate that a portion of the data on
a tape does not pertain to the file which contains that tape, Two
bypass sentinels will appear before and after the block or blocks
containing this extraneous information, These blocks are ignored
when encountered by the item handling routine and the information
contained in them will not be given to the user, or counted for
block count purposes, These bypassed blocks are generally used
for memory dumps.,

e File Description Table

de

General

The characteristics of each file to be processed by a program
utilizing the Item Handling Subroutines must be provided by

the user, These characteristics are described in a table called
the File Description Table, This table consists of 28 words in
the case of a labeled file and 16 words in the case of an unlabeled
file, The entries in this table, which must be supplied by the
user, are marked by an asterisk in the following table, The
other entries are used internally by the Variable Size Item
Handling Subroutine, The values of the entries supplied by the
user are dynamically alterable and may be changed whenever
the file is not opens The label of the first entry in the table will
be the‘tfile label? as used in the calling sequences described in
the section on file operators,



REVISION: SECTION: 1"0006

UNIVAC III SUPPORT ~

pave: January 15, 1963| PAcE: 7
U-3519
b File Description Table
File label current data location ww I '7; ' / r
, ;. §
+1 item length oty r - ¢ S
2 maximum block length*
+ 3 pool label*
+ 4 location of current block chain word
+ 5 location of last block chain word
+ 6 block position counter | / P
J I & SR
+ 7 item position eounter /' DA -
+ 8 dispatching factor*
+ 9 gtatus indicators*
+ 10 symbolic tape unit reference*
+ 11 block dispatch count
+ 12 eight character label
+ 13 identification (two words)*
+ 14 current reel number (decimal)
+ 15 address of label check routine*

+ 16-27 twelve word area for label



REVISION: SECTION: 1"0006

UNIVAC III SUPPORT

pate: January 15, 1963| race: 8
U-3519

The following bit positions in word File + 9 have the specified
functions as status indicatorss

The bit positions indicated by an asterisk must be supplied by

the user,
1 usage zero=input, 1=output
2 block option this bit is ignored by the Variable
Size Item Handling routines
3% input end notice zero=last reel only; l=every reel
4% output end notice zero=none; l=every reel
5 open for output zero=no; l=yes
6 open for input zero=no; l=yes
7 not used
8 ;i;ip&é;h;tg Tate zero=less-thail one bHlock

1=two bleeks
Ce Detailed description of the File Description T'able Entries

File: The current data location is supplied by the input
routines in the least significant 15 bits of the file
label word, permitting a program to locate the current
data by indirectly addressing the file label, or by loading
this word in an index register used in referencing the
item, The first read operations on an input file establishes
the first data location, Subsequent read operations produce
new data locations, Each read releases the item areas
used on the previous read, and the input-close operation
releases the last item area, Each write operation moves
the output item specified by the user in the first two words
of the file description table to the output buffer area, i.€.,
each time the user wishes to send an item to output, he
places the address of the item in the first word of the file
description table, the length of the item in the second
word (File+1), and calls the write operation, The close
operation on an output file releases the last block area
to the pool,



UNIVAC IIT SUPPORT

REVISION: SECTION: 1_0006

DATE: PAGE: 9

January 15, 1963

U-3519

File +1:

File+2:

File + 3:

File + 4:

File +5;

File + 6:

File + 7:

File+ 8:

Item length is the length in words of the current

item to be sent to output, The maximum item length

is equal to the block length. This entry is not specified
by the user for input files,

For both input and output, this entry is the maximum
block size in words,

The location of the pool control table used by the file is
specified here, Files with similar block length normally
share the same pool, Files with widely divergent block
lengths should specify separate pools, Input and output
files must not share the same pool, The number of areas
required in a pool is dependent on the dispatching factor
for input, and on block size only for output, See below
under File + 8.

For input, the file system attempts to maintain a number
of items in advance of processing requirements, The
block area locations of these unprocessed items are
chained together through chain words., The location of
the first unprocessed block is maintained at this location
in the file table and is used by each read operation to
locate the next block to be made available to the user,

When the input file dispatcher has successfully read in

a new block for the file, it chains the block arca location
assigned to the new block to the list of block area locations
for blocks previously read, The dispatcher uses this
word of the file table to locate the end of the chain of
previously read blocks, Each write operation causes the
currently assigned output area to be added to the end of
the chain of output blocks, The write operation uses this
word of the file table to locate the end of the chain,

The block counter indicates how many blocks on the current
reel of the file have been rcad or written, The counter is
used primarily for repositioning purposes,

The item counter indicates how many items of the current
block have been processed.

For input usage, the dispatching factor represents the
number of blocks in excess of one block to be used for



REVISION: SECTION: 1_0006

DATE: PAGE: 10

January 15, 1963

|
UNIVAC III SUPPORT f
|
|

advance reading, and, in effect, specifies how many
areas in the pool are to be allocated to the file, The
end-of-reel conventions limit the number of advance
reads to two blocks; hence the value gpecified as the
dispatching factor will automatically be limited by the
"OPEN" ¢peration to a maximum of two blocks,

For output usage, the dispatching factor is not explicitly
stated but implied by the size of the pool used by the

file, The minimum number of block arcas in an output

pool must be equivalent to the number of files sharing

the pool, Any areas in excess of this number will permit
the stacking of output blocks in the pool for later dispatching,
Dispatching will be allowed to proceed at a natural rate
unless the pool no longer has any free areas for new output,
under which circumstance the previously~stacked output

will be forcibly dispatched.

File+9: This word contains a number of 1-bit indicators which
supply miscellaneous information about the file, as

follows:

Bit 1 indicates whether the file is currently in use as
input or as output,

Bit 2 is not used by the Variable Item Size Handling
Routine,

Bit 3 indicates whether the read operation should yield
an end-of-file return at the end of every reel or only

at the end of the last reel of the file,

Bit 4 indicates whether the write operation should
yield an end-of-reel return or not,

Bit 5 is set on when the file is opened for output,

Bit 6 is set on when the file is opened for input,

Bits 3 and 4 are set on by the compiler or user of
the file, The other bits are set and interrogated during

the running of the program,

File+10; This parameter specifies the symbolic servo unit



REVISION: i SECTION: 1_0006
\
|

UNIVAC III SUPPORT

=] : :
ATE i PAGE ll

U-3519 January 15, 1963 j

reference and is normally a reference to a word
on the table maintained by the tape assignment
system, The servo unit number must be found in
bits 24~21 of the referenced word,

File+11l: This word is used as a counter in order to determine
when a request should be made to dispatch an input
or output block,

File+12: The file identification appears as eight alphanumeric
and +13: characters in these two words,

File+14: The current reel number is maintained here in decimal
format, An open operation sets this count to zero, and
internal operations at the beginning of each reel advance
it by one, At any label exit, the count in this word
should match the reel count in an input label, and is
used as the reel count for an output label,

File+15; The presence of a nonzero address in this word
indicates that the file is labeled and that the nonzero
address is that of the appropriate label-checking
routine,

File+16 If the file is labeled, these twelve words are used as
to the label area, If the file is not labeled, these twelve
File+27: words may be omitted,



REVISION: SECTION: 1-00003

UNIVAC IIT SUPPORT

pate: January 15, 1963| Pace: 12
U-35619

d, Example of a File Description Table

In this example a file description table is shown for an
input file with the following parameters:

400 words per block; pool labels: INPOOL; 1 block area
for buffering in addition to the first block; symbolic tape
unit reference: Aj; label identification: MASTERAA;
starting address of label checking routine; LBLCHECK,

INFILEA + 0
+ 0
+ 400
+ INPOOL
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ A
+ 0
+ 'MAST!
+ 'ERAA!
+ 0
+ LBLCHECK
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0



REVISION: SECTION: 1_0006

UNIVAC III SUPPORT

DATE: PAGE: 13

U-3519 January 15, 1963

C. Coding Procedures

1. Construction of an input-output area pool

Files containing blocks of similar length may use a common memory
area or pool, The pool may either be constructed by the user to
static specifications, or dynamically constructed through the use of
a subroutine provided as a part of the input-output routines, The
label of a pool is attached to the first of three words known as the
pool control words, which have the following format:

Pool Label + address of first buffer area
+ address of last buffer area
+ length of the individual buffer area in
this pool

The length of each block buffer area must be equivalent to that of the
largest block area in the pool, Preceding each buffer area is a chain
word in which the address of the next buffer area is located, The
chain word of the last buffer area is zero, Dynamic construction of
a pool is accomplished by coding the following subroutine linkage:

SLJ VBC
+ address of the first word in the area to become
the pool
+ number of words to be allocated to the pool
+ pool label

In this case the pool control words are defined as follows:

pool label + 0
+ 0
+ length of individual block areas in this pool

24 Item handling operators
A, Open Input Forward

SLJ  VOIF
+ File

Execution of this subroutine initializes the specified file des-
cription table for reading forward, If the file is labeled, the
label is read and the label-checking routine is called, The



UNIVAC IIT SUPPORT

REVISION: SECTION:

1~0006

DATE: January 15, 1963| PAGE:

J-3519

14

Ce

sign of the file label indicates whether the file is to be
rewound prior to opening (=) or not (+).

Open Input Backward

SLJ VOIB
+ File

Execution of this subroutine initializes the specified file
description table for reading backward, The tape is assumed
to be positioned correctly (ending sentinels will be ignored
when encountered), No label checking or rewind option is
incorporated in the subroutine,

Open Output

SL.J VOPO
+ File

Execution of this subroutine initializes the specified file
description table for writing, The sign of the calling sequence
indicates whether the file should be rewound (-) or not (+),

If the file is labeled, the label subroutine will be called, and
the label block will be written when control is returned,

Variable Size Item Read

SLJ VRD

+ File
ces End of file (or reel) return
cae Normal return

Execution of this subroutine causes the location of the next
item of the file to be placed in the first word of the file des~
cription table, The buffer containing the previous item is
released to the pool, Detection of an end-of-file flag (or
end-of-reel if such option is specified) causes an appropriate
return, The end-of-reel option, if taken, requires subsequent
use of the ''close input reel" subroutine,



| DATE: ! PAGE:
9 i
U-3519 January 19, 1.63[

REVISION: SECTION:

UNIVAC IIT SUPPORT - -

1-0006

[ I

Ceo

e

Variable Size Item Write

SLJ VWR

+ File
eas End-of-reel return if specified
cea Normal return

Execcution of this subroutine causes the item whose address

is stored in word zero of the file description to be moved to

the output block area, The number of words moved is con~
trolled by the item length stored in word one of the file des~-
cription table, When the current item to be moved to output
will not fit within the current output block area, considering
maximum block size, the current block area is dispatched

and the current item is moved to the next available block area.
If specified, an end-of-reel return will be made when such
condition is detected, At such return, all output previously
stacked in the pool will have been written out, This permits

a limited number of blocks to be written by a closing label
routine, or a limited number of additional items to be inserted
in the output string, The "close output reel'" subroutine, which
must subsequently be used in this case, will dispatch any further
output items stacked in the pool and will write two end-of-reel
sentinels, Approximately 25 feet of tape remain on the reel at
the time of end of reel return to accomodate any closing blocks,

Close Input Reel

SLJ VCIR
+ File

If the end-of-reel return option is elected for an input file, the
close input reel subroutine must be executed in order to advance
to the next reel of the file, The subroutine executes a rewind
and swaps tapes,

Close Input File

SLJ  VCIF
+ File

Execution of this subroutine causes all outstanding item buffers



REVISION: SECTION: 1_0006

UNIVAC IIT SUPPORT

PATE January 15, 1963 | PAGF 16
U-3519

to be released to their pool, Tape swapping is suspended, and
the sign of the calling sequence indicates whether the tape is
rewound (=) or not (+), The file description table is stabilized
and may subsequently be re-~opened,

h, Close Output Reel

SLJ VCOR
+ File

Execution of this subroutine causes all output currently stacked
in the pool to be dispatched and two end-of-reel sentinels to
be written, The subroutine executes a rewind and swaps tapes,

is  Close Output File

SLJ VCOF
+ File

Execution of this subroutine causes the last unused buffer to

be released to the pool, all output currently stacked in the

pool to be dispatched, and two end-of-file sentinels to be written,
Tape swapping is suspended, and the sign of the calling sequence
indicates whether the tape is to be rewound (=) or not (+)s The
file description table is stabilized and may subsequently be
re~opened,

ja General Close Reel

SLJ VCLR
+ File

This subroutine performs the input and output reel closing
functions described above, determining by analysis of the file
description table whether an input function or an output function
is required, The routine is designed for use in programs which
do not know at the time the calling sequence is programmed
which function the file table will be performing at execution
time,



UNIVAC IIT SUPPORT

U-3519

REVISION:

SECTION:

1-0006

OATE: January 15, 1963

PAGE:

17

ka

General Close File

SLJ  VCLF
+ File

This subroutine performs the input and output file closing
functions described above, determining by analysis of the
file description table whether an input function or an output

function is required,



1

UNBVAC ]]I SUPPOR

CARD TO TAPE SYMBIONT (CTS) -

PURPOSE

The purpose of CTS is to convert alphanumeric punched cards to UNIVAC,
IIT magnetic tape in standard file format.

METHOD

CTS is called and controlled by operator type ins. Type outs from CTS
indicate end-of-reel, reader errors, and reader end-of-file conditions.

Each block on tape contains from one to twenty-five items, depending on
the user's specification in the LABEL card. A blocking factor of 25 is
assumed if this specification is not present. Smaller blocks than specified
may be written prior to restart points or the end-of-file point. Each card
image becomes a 20-word item.

CTS is currently assembled to write on the tape unit specified in file 14
(tape assignment table entry 0216). This may be altered by reassembling,
changing the EQU card which defines CTSTAPE (CTSTAPE EQU 0216).
CTSTAPE may be left undefined at assembly time by removing the EQU
card. In this case, it must be defined at object time or SUCO time by an
operator type-in, (See DET card description in DECO, SUPPORT III
Section 3-0005.) Channel number (CDCH) and the tape channel priority
reservation entry CTSTENT can be changed by the user in the same manner.

CONTROL CARDS

CTS recognizes three control cards. They are the LABEL card, the END
OF FILE card, and the RESTART card. The format of each follows. Words
printed in capital letters must be punched as shown. Lower-case words re-
present fields to be supplied by the user.

1. LABEL Card

Card Columns Content

1 Z (12-0-2 punch)

2 A

3-7 LABEL

8 A

9-16 file identity (8 characters, which will be-
come words 1 and 10 of the output file label)

17 A

18 - 23 date



RpOR

NIVAC I!I SUPPOP!

AR T
¢ U"

Card Columns Content
24 A .
25 - 26 number of items (card images) per block.

If this field is blank, 25 items per block
are recorded.

27 A

28 - 29 reel number., If blank, reel number in the
file label will be 000001 (decimal).

The fields supplied by the user in the LABEL card will be pla.ced in the
appropriate words of the label block on the output tape.

RESTART Card

Card Columns Content
1 Z (12-0-2 punch)
2-8 RESTART

(\} )le'

/
A RESTART card will cause CTS to write four bypass sentinels on the Yand x
output tape. If a situation arises which requires recovery during the /n L%
card-to-tape process, the tape will be repositioned to the last restart* R <TART

point (4 bypass sentinels) when an SKARESTART type-in is given. l)«x b
END OF FILE Card feode”
Card Columns Content
1 Z  (12-0-2 punch)
2 -12 ENDAOFAFILE

When the END OF FILE card is encountered, end-of-file sentinels are
written onto the output tape, and that tape is then rewound. A RDRAEOF
message is typed out, and CTS releases control.

An END OF FILE card should be followed by 4 blank cards.

TYPEWRITER COMMUNICATION

Console type-ins and type-outs shown below are used to control the symbiont.
(k in all messages refers to the card reader channel number.)

1.

Symbiont Initialization

a. . RSACALLACTSAk



I

A Aw ey \
B e;\
i

UNIVAC m‘

supmm

U-3519

<,

This type-in will cause the symbiont (CTS) to be called into

memory. Kk is the channel designator, and its specification

in the CALL type~in is for purposes of typewriter communi=~
cation only.

After initialization, if card reader channel number, file number,
and/or tape channel priority reservation entry have been defined

'~ with a DEF card, the following will occur: CDCH, CTSTAPE,

and/or CTSTENT will type out. The operator must then type in
channel number, file number, and/or reservation entry, respec-
tively.

RSAKILLAkK1ACALLACTSAk2

This type-in will cause the symbiont currently using channel k1
to be killed, and CTS is called, assigned to channel k2. If there
are no symbionts to be killed, 0 may be entered for k1 (or the
RSACALL type In described above may be used).

Main programs may be called in the same manner, using pro-
gram name in place.of CTS, and 2 for k2.

e-ins
SKASTART
This type-in causes card reading to begin; The first five cards
are ohecked for a LABEL card. Data on cards preceding the
LABEL card is not recorded on the output file. If a LABEL card
is not found, the symbiont types out the message NOALABEL.
The LABEL card should always be preceded by four blank cards,
Sk

This type-in causes the symbiont to cease processing. The type-~
in SkAGO will cause processing to resume.

SkAGO

This type~in causes the symbiont to continue processing after a
stop.

SKARESTART

Prior to this type-in, the operator should have repositioned the

L]



UNIVAC IIT SUPPORT ~

REVISION: : “sesTioN

320001

. ——

PAGE!:

U-3519 4

input card file to the previous-RESTART card. SKARESTART
causes the symbiont to position tape prior to the last restart

point on the output file. Card reading is resumed, and the first
five cards are checked for a RESTART card. The recovery point
is written on the output file and normal operation is then resumed.

3. jzyge—Outs

. a_'_

NOALABEL

When 2 LABEL card is not found among the first five cards read,
this message is typed out. The operator may type in GO to ignore
the label, or he may put a LABEL card in the reader and repeat
the SKASTART type-in. The message may have been caused by
an illegally punched LABEL card.

NOARESTART

In the event that one of the first five cards read on recovery is

not a RESTART card, the typec-out NOARESTART occurs. When

the proper restart point in the card file is located, the SKARESTART
type-in should be repeated.

CH5AEQT

This type-out occurs when an end-of-reel condition is encountered
on the output file. End-of-reecl sentinels are recorded, and the
file is rewound. If further card to tape conversion is desired, a
LABEL card specifying the proper reel number should precede the
remainder of the card file, and after a blank tape is mounted,
SKASTART should be typed in.

RDRAEOF

This type-out occurs when an END OF FILE card is read. End-of-
file sentinels are written on the output file and the output file is
rewound.

WHAT
This type-out is the response to any illegitimate type-in.
READER

This message is typed out when a card reader error or fault oc-
curs. The cards, if any, in stacker 0 should be repositioned in
front of the remaining card file. An SkAGO will cause card reading
to proceed.

— = e ————————— ——— —— _ _ — |

.



WENBIGN e SEOTBN ‘ o
2-0002

UNIVAC IIT SUPPORT raaE;

. . U-3519 1

TAPE TQO PRINTER (TPRS)

A, PURPOSE

The purpose of TPRS is to provide a standard tape-to-printer procedure
with a.moderate amount of automatic carriage control.

B. METHOD

TPRS accepts an input file in standard data format. The tape must have
been written using standard label, bypass, end-of-file, end-of-reel, and
block sentinel conventions. Each print item (record) on the tape will con~
tain a line contral ward followed by a line image of from 1 to 32 words,

Maximum block size for the input file {s 254 data words (256 words, in-
cluding the two Data Descriptor words).

- Each page will have a standard heading and footing of six lines each, as-
suming the operator has correctly aligned the paper, The 6-line heading
and 6-line footing may be modified by the user with a carriage control
word. A 66-line form (11 inches) is assumed by the symbiont., If a dif-
ferent form length is used, its length should be indicated in a carriage
control word. .

TPRS is currently assembled to read from the tape unit specified in file
15 (tape assignment table entry 0217). This could be altered by reassem-
bling, changing the EQU card which defines TPRSTAPE (TPRSTAPE EQU
0217). TPRSTAPE could also be left undefined at assembly time by re-
moving the EQU card. It should then be defined at object time or SUCO
time by an operator type-in. (See the DEF card description in SUPPORT
III, Section 3-0005.)

The channel number (PRCH) assigned to the printer, and the tape channel
priority reservation entry TPRSTENT might also be altered in the same
manner.

C. CONTROL WORDS
1. The line control word must be the first word of each print item. It

specifies the number of words in each line image, and it controls page
and line advance. Printing begins in print position 1. '



o ATVISION %Qﬂl

'UNIVAC TIT SUPPOR — .

The format of the line control word:

Bits Content

25 0

24 - 22 not used

21 - 16  lengtheof line (< 32)
15-9 0000000

8 eject control

7-1 " line advance

If there is a.1 in bit 8 (eject control) of the control word, page
ejection will occur immediately. Ordinarily, printing will occur
on a page until the footing space is reached, at which time there
is an automatic eject to the first line after the heading space of
the next page. .

A combination of a 1 in eject control and an entry in line advance
(bits 7 - 1) causes an immediate eject to the line number on the
next page specified in bits 7 - 1.

An entry in line advance without an entry in eject control specifies
the number of lines to be spaced before printing. Thus the user :
can double-space, triple space, or print with irregular spacing,

Punch control words are indicated by 017777 in bits 1 - 13, and .
will be automatically bypassed by TPRS.

2. A carriage control word may be used if the user wishes to specify ,
‘ a non-standard page heading and footing (other than 6 lines each) '
and/or a non-standard form length (other than 66 lines). . S'

1

The format of the carriage control word:

Bits Content

25 1

24 - 22 not used

21 - 15 length of page heading, in lines
14 - 8 length of page footing, in lines
7-1 length of form, in lines



UNIVAC TIT SUPPORT

AgvisSION: IMW ‘ ;f‘j: ;
2+0002
PAGE:
U-3519 3

When this control word is used, all fields must be filled in since
this word will cause new specifications to replace the standard
heading and footing and form length, Therefore, even if the user
is modifying only page heading, for example, he must indicate 6
for page footing and 66 for form length.

When the carriage control word is used, it should be followed by

a line control word, which specifies a line length one less than
normal., The remainder of the item should be a dummy item which
is one word shorter than normal, The print image in an item con-
taining a carriage control word will not be printed. '

TYPEWRITER COMMUNICATION

The entry "K' in all typewriter messages indicated here refers to the
printer channel number, The user must designate the channel being
used,

1'

Symbiont Initialization ' .

a.

RSACALLATPRSAkK

This type-in will cause TPRS to be called into memory. The
designation here of printer channel number ("'k'") is for pur-
poses of typewriter messages only. This does not obviate

the need for defining an undefined channel number as described

under "METHOQD",

After initialization, if printer channel number, file number,
and/or tape channel priority reservation entry have been de-
fined with a DEF card, the following will occur: The mes-

‘'sages PRCH, TPRSTAPE, and/or TPRSTENT will type out,

The operator must then type in channel number, file number,
and/or reservation entry, respectively,

RSAKILLAKIACALLATPRSAkK2

This type-in will cause the symbiont currently using channel

k1 to be killed. TPRS is called and assigned to channel k2.

If there is no symbiont to be killed, 0 may be entered for ki,
or the RSACALL type~in may be used.




REVISION: SELCTIGN:

2-0002

UNIVAC TIT SUPPOR

PATGE:

U-3519

.4 .
——— e S ——— ;:m

" 2. Operator Type-ins
a, SKASTART

This causes tape movement to begin, First the tape will be

rewound and if there is a label, the eight-c¢haracter I D will

be typed out (along with date and reel number). The first .

line item will be printed. The symbiont then releases to al-

low the operator to check the form alignment. . T

b. SkaGoO
This type-in causes printing to continue after a stop.
c. SKATEST

A single line will be printed. This type-in can be used to-
gether with manual printing to set up form alignment. The
same line image will be printed each time SkATEST is re-
peated. Typing in SKAGO will cause the symbiont to continue
normal printing, beginning with the next line item.

d. Sk

The symbiont will release without further prihting, and
printing will be continued when SkAGO is typed in.

e. SKABACKAD N Ha

Llo ade ol

The symbiont will back up n pages (n = 0,1...9) and then 7» «y 7rcesn o

resume printing. Backing up is accomplished by checking . -/ % Le

for cumulative line advance on a page when the type-in oc- o a«. %L 7

curs between the head and foot of a page. When it occurs at ?

the foot of a page, TPRS will back up until the distance backed

up exceeds the distance from head to foot. If an eject bit is

found anywhere, it is assumed that this is the head of a page.

If ejects are not used, then vertical line positioning of a

page will normally not agree with that prior to backing up.

A precise number of pages backed up is not guaranteed, and? /ﬁ{( - A

the symbiont may back up more pages than specified. j ,() 4")»(\} i

X+ & A

The symbiont will print a sing.e line and then release to per- ((,\“
mit paper alignment, if desired.



£ i

¢‘~. ol @i‘ M fh .8 *'ﬁlr"!ﬁ’"’"‘ cwid
UNIVAC IIX SUPPORT

a. ‘ ENDAPRINTING

This message is typed out when an end-of-reel or end-of-file
sentinel is encountered on the input tape. The tape is not re-
wound. The print routine will release. 'A new reel may be
commenced by manually rewinding the old reel, replacing it
with the new reel, and typing in SKASTART. If the user pre-
fers, the symbiont could be called again, and the new reel
defined on another unit.

b. WHAT

This message will respond to an unrecognizable type-in. The
symbiont will release, and the operator should type in a cor-
rected message.

c. BADABYPASSASENTINEL

-

ﬁ/.’l.‘41fj»1(

This type-out occurs when an illegal bypass sentinel is en~ J
Ahe Scle At

countered on tape. It is not possible to recover since it ordi-

narily indicates that the tape was incorrectly produced, ° / A “ ,
€ Vg e
. 2
d. BADAEOFASENTINEL o e e
) Lee . K -

This message is caused by an illegal end-of-file sentinel. it et ,)
ordinarily indicates an incorrectly produced tape, and recovery ((Q 2

is not possible. (Restart is not generally necessary since -
printing is finished at this point.)

e. ILLEGALAEOFAORALABELASENTINEL

This type-out occurs when an illegal end-of-file or label senti-
nel is encountered when tape is being read backward after an
SKABACK type-in. The tape should be rewound and the sym-
biont restarted.

: f. NOASTARTATYPE-IN
This type-out requests an RSASTART type-in. Probably an

RSAGO has been used where an RSASTART was required, or
RSASTART was not typed in after symbiont initialization.



UN!VAC Tit SUPPORT

!

e

~, : . | mevisiam

PAGL:

U-3519

- TAPE-TO-PUNCH SYMBIONT - (TPCS)

PURPOSE

TPCS provides a standard tape-to-punch procedure which will punéh
translated card images from a conventional punch tape or from a com-
bined printing and punching tape.

METHOD

TPCS accepts an input file in standard data format. The tape must have
been written using standard bypass end-of-file, end-of-reel, and block
sentinel conventions. Each punch item (record) on the tape will contain
a punch control word followed by a card image of from 1 to 20 words,

Maximum block size for the input file is 254 data words (256 words in-
cluding the two Data Descriptor words).

TPCS is currently assembled to read from the tape specified in file 13
(tape assignment table entry 0215), File number could be changed by
the user by reassembling, changing the EQU card which defines
TPCSTAPE (TPCSTAPE EQU 0215). Another method would be to leave
TPCSTAPE undefined at assembly time by removing the EQU card, A
DET card should be used to indicate the symbol as operator-defined.
TPCSTAPE would then be defined by an operator type-in at object time
or SUCO time, (See the DEF card description in SUPPORT III, Section
3-0005.)

The channel number (PUCH) assigned ta the punch, and the tape channel
priority reservation entry (TPCSTENT) might also be altered in the
same manner,

PUNCH CONTROL WORD

The punch control word must be the first word of each punch item. It
specifies the number of words in each card image, and specifies the
punching mode (binary or Hollerith). Punching begins in column 1.



REVISION: Muu
o 2-0003

UNIVAC TiT SUPPORT

PAGE:

U-3519 ‘ 2

The format of the punch control word:

Bits Content

21 -16  number of words in punch item
15 punch mode

14 punch stop bit

13-1 17777

A "1" in punch mode field (position 15) indicates that punching is to be
in Hollerith code. A zero indicates binary code (24-bit words).

When there is a 1" in position 14 {punch stop bit), the card acts as a
restart card. Punching will stop, and the symbiont will release after
the "restart” card is punched. This permits the operator to mari the
position of the last card to enter the stacker for possible later restart.
It should be noted that the last card in the stacker is the card immedi-
ately preceding the "restart" card since the last card processed is
still in the punch. If a restart becomes necessary later, the operator
should remove all cards in the stacker after the marked card, in-
cluding the "restart" card, since it will be punched again.

The 17777 in positions 13 - 1 distinguishes the punch control word. A
print control has a different entry in this field, and print items will
simply be bypassed by TPCS.

D. TYPEWRITER COMMUNICATION

The entry "K' in all of the following typewriter messages refers to the
punch channel number. The user must designate the channel being used.

1. Symbiont Initialization
a, RSACALLATPCSAk

This type-in will cause TPCS to be called into memory. The
designation of punch channel number (k") is for purposes of
typewriter communication only, and its use here does not can-
cel the need for elsewhere defining an undefined channel number
as described on page 1.



I

UNIVAC IIT SUPPORT

REVISBION: . SECTIONG

2-0003

PAGE:

U-3519 . 3

After initialization, if punch channel number, file number,
and/or tape channel priority reservation entry have been
defined with a DEF, the following will occur: The messages
"PUCH", "TPCSTAPE", and/or "TPCSTENT" will be typed
out. The operator must then type in channel number, file
number, and/or reservation entry, respectively.

RSAKILLAkKIACALLATPCSAk2

This type-in will cause the symbiont currently using channel
k1 to be killed. TPCS is called and assigned to channel k2.
If there is no symbiont to be killed, 0 may be entered for k1,
or the RSACALLATPCS type-in may be used.

A main program could also be called with this type-in, Pro-
gram name would replace "TPCS".

2. Operator Type-ins

a.

SKASTART

This type-in causes the input file to rewind; the first block to
type out as the label block, and punching to begin.

Sk

This causes the symbiont to stop and release control. Punching
will continue when SKkAGO is typed in.

SkAGO
Causes the symbiont to continue after a stop.
SKARESTART

This type-in causes the symbiont to search the tape backwards
until a punch control word with a 1-bit in position 14 (punch
siop bit) is encountered. TPCS will then resume by.punching
the record thus flagged as the restart point. After typing in
SKARESTART, the operator must remember that the first
card out of the punch is not the first card from the restart
point, but it is the "restart" card, and was actually punched
previously. It is assumed, therefore, that before typing in
SKkARESTART, the operator has removed all the cards in the
stacker back to the card flagged at the previous restart.stop.



2-0003

LENGRAY s T @8 Ty AR
UNIVAC T SUPRCT

B

3. Type-outs
a. LNDAPUNCHING

wWihen an end-oi-Tile or end-ol-reel sentinel is encountercd ¢n
the inpuy tape, this message is typed out. TPOs then releuscs,
witheut rewinding the tape. A new recl may be commencea by
manually rewinding the old reel, replacing it with the new recl,
and typing in SKASTART. The new recl could be defined a3 a
different file, The symbiont would then have to be re-initialized.

b. DUNCHARESTART

This message 1s Lyped out when a punch control word with a
1-bit in posiiion 14 is encountered, The symbiont releasces,
and the operator should remove and flag the cards in the punch
stacker, and then type in SKAGO to continue,

c. WIIAT
This type-out occurs in response 1o an unrecognizable type-in,
s 1
1 i

The symbiony releases, and the operator should type |l
corrected message.



REVISION: SECTION:
’ 2-0005
UNIVAC III SUPPORT o
DATE: PAGE:
November 16, 1962 1

PUNCHED PAPER TAPE READER SYMBIONT

PURPOSE

To convert punched paper tape data to magnetic tape using 500
or 250 characters per sec paper tape reading speeds.,

METHOD

The absence of standard conventions on the part of the user as to
use and character set for punched paper tape requires that the
conversion of punched paper tape to magnetic tape provide an
untranslated and unpacked image of the input data in the output
file, The user is then free to manipulate the data image according
to his own conventions during a subsequent run, availing himself
of the higher input speed of magnetic tape.

The output of this run is in standard block format, with standard
label and sentinels. Each data block contains 256 data words
(equivalent to 256 frames of punched paper tape).

UNIVAC will make adjustment, upon request, of the number of data
words (frames) per block of the output file of the symbiont program.

The console type-ins and type-outs shown below are used to control
the symbiont,

Sk A aaaaaaaa

- k defines the paper tape reader channel number,
a is the eight character file ID desired in the output label block,
This type-in causes the symbiont to write the output label block and
commence conversion of paper tape data to the output file.

Sk 4 GO
- this type-in causes the symbiont to continue pro-

cessing after any stop. This type-in should not be used after mounting
a new reel of paper tape as no recovery point will be established.

Sk A END

- this type-in causes end-of-file sentinels to be
written on the output file, and rewind of the file,



REVISION: SECT!ION:
2-0005
UNIVAC III SUPPORT .
DATE: PAGE:
November 16, 1962 2

Skor SkAAAAA STHP

- this type-in causes the symbiont to stop
processing,

SKAFLT

- this type-out occurs when the fault indicator
of the paper tape reader is set. The Fault Indicator may be set
by an end of paper tape condition in which case the operator may
terminate the run or mount the next reel and call for continued
operation, In the event of a Reader Fault other than end of paper
tape, the operator may terminate the run or clear the fault and
recover from the start of the current paper tape reel,

Sk A ERR

- this type-out occurs when the Error Indicator
of the paper tape reader is set, The operator may terminate
the run or recover from the start of the current reel of paper
tape.

Sk A NXT

- this type-in is used to establish a recovery
point before commencing conversion of the next reel of paper
tape. After this type-in, the type-out Sk nn occurs, where nn
indicates that the reel of paper tape mounted on the reader is
the nn th reel of paper tape to be converted to the current output
file. The operator should record the value nn on the paper tape
reel to aid in recovery, should such action become necessary.

Skaws

- this type-out occurs when the paper tape
reader wired Stop Indicator is set, The group of characters
read from paper tape up to the occurrence of the wired stop
character will be written on the output file,

Sk A Rnn
- this type~-in is used to recover the run by

rerunning the conversion from the start of paper tape reel nn.
On receiving this type-in, the output file will be rewound and



UNIVAC IIT SUPPORT

REVISION: SECTION:

2-0005

DATE: PAGE:

November 16, 1962 3

read forward until the bypass block identifying the start of paper
tape reel nn is located, Conversion of reel nn to the output file

then occurs,

ska N

- this type-out responds to any illegitimate

type-in,

C. OUTPUT FILE FORMAT

1. TLabel block
Word

0

4to09

10

10

. Data Blocks
Word

0

Content
-0

aaaa

ddmmyy

000001

40

aaaa

Content

label flag

first 4 characters of
symbiont initiating type-in

date assigned hy DECO
reel number
unassigned

last 4 characters of symbiont
initiating type-in

label flag

Data Descriptor

Image of first frame

Image of last frame

Data Descriptor



REVISION: SECTION:
2-0005
UNIVAC III SUPPORT
DATE: PAGE:
November 16, 1962 4

3. Bypass and Recovery Point Blocks

These blocks, occurring in the sequence illustrated below,
are generated by the type-in Sk ANXT, providing a
recovery point,

Bypass Block -020000000
Recovery Point Block 4+ 0000nn

Bypass Block -020000000
Bypass Block -020000000

In the recovery point block, nn is the reel number of the
paper tape reel whose data blocks follow on the output file,



UNIVAC TIT SUPPORT

REVISION: SECTION:

3-0001

July 20, 1962

DATE: PAGE:

A.

C.

BOOT
Bootstrap and System Tape Loader

Purpose

To provide a system tape bootstrap routine and a loader to load specified

routines from the system tape.

Method

This routine has the capabilities of reading routines from the system tape
or from binary punched cards., Before loading the executive routine, memory

may be preset to instructions which transfer control to an error routine.

1, Bootstrapping

BOOT is loaded from the system tape by pressing the load button when
the machine is cleared and the system tape is rewound. This routine

includes the system tape search routine., If the run button is now

pressed, the executive routine is loaded using the system search rou-

tine,

2, System Tape Search

The system tape search is accomplished by scanning the system tape

forward for a symbol block corresponding to the specified symbol,

If

an end-offile is encountered before the symbol is found, the system
tape is rewound and the search continued through the file a second time

until either the specified symbol or the end-of-file is encountered.

If

the symbol is found, the corresponding program is loaded. If the sym-

bol is not found an error is indicated, Control will be transferred
the starting address of the loaded program if so indicated.

Operating Procedures

1, To load the executive routine from the system tape, perform these
functions:
a. REWIND
b. CLEAR
C. LOAD
d. PROGRAM STOP

Optional., If used will preset memory to SLJ (error routine).

e. RUN

to



UNIVAC IIT SUPPORT

REVISION: SECTION:

3-0001

DATE: PAGE:

July 20, 1962 2

Halts

To load binary routine through the card reader after having loaded
the executive routine,perform these functions:

a. REWIND
b. CLEAR
c. LOAD
d. PROGRAM STOP
Optional, If used will preset memory to SLJ (error routine).
e. REQUEST
f. RUN

To load and execute routine specified by type-in on console typewriter
after loading executive routine, perform the following functions:

a, REWIND
b. CLEAR
C. LOAD
d. PROGRAM STOP
Optional. If used will preset memory to SLJ (error routine).
e, RUN

1. REQUEST
Type-in: RX routine name
routine name must appear exactly as it appears on the system
tape.

g. RELEASE

Calling sequence to load and execute specified routine from system
tape:

LA 3, routine name
Jd LODX,

Calling sequence to load specified routine from the system tape and
return control to calling program. Load index register 1 with desired
return address.

LA 3, symbol desired

J LOAD

(control returns here)

and Loops
a, 00342-00347 busy loop

b. 00351 J $ B error or fault
c. 00333 J $ symbol not found



REVISION: SECTION:

3-0001

UNIVAC IIT SUPPORT , -

DATE: PAGE:

July 20, 1962

oV

D. Memory Space

0 J 0302
1-0177 Binary Loader
0100-0147 Scat words for search routine
0200-0217 Tape assignment table
0240-0246 TCD, LOAD, LODX communication cells
0300-0377 Search routine
NOTE: If the BOOT routine is referred to by a symbolic program written

in the ALMOST assembly system language, standard EQU cards
should be placed ahead of the symnbolic program to be assembled
and the following labels are restricted from other use in the source
program. In this manner, the labels for the BOOT routine will be
equated with proper absolute addresses,

LOAD
LODX



UNIVAC IIT SUPPORT

REVISION: SECTION:
3-0001
DATE: PAGE:
July 20, 1962 NOTES




REVISION: SECTION:

3-0002

UNIVAC IIT SUPPORT

DATE: PAGE:

July 20, 1962 1

WST (WRITE SYSTEM TAPE)

A. Purpose

To create a basic absolute system tape from binary cards.
B.  Method

This routine reads binary cards and control cards through the card reader
and writes corresponding scat records on the system tape. For each
standard binary card, a one word segment corresponding to the first word

on the card is written followed by a segment containing the words of infor-
mation from the remaining portion of the card as specified by the first

word., The transfer card and the following routine name card are written as
a separate block on the tape. The bootstrap routine is loaded into location
010000 and written therefrom onto tape, followed by the routines read from
the binary punched cards in the card reader. Only absolute binary cards may
be processed by this routine. The setting of cover registers to their proper
values is not handled by this routine and must be accomplished by the routines
themselves after they have been read in from the system tape. This routine
uses index registers 4 and 5 as cover registers and index registers 1, 2 and
3 for working registers.

Program Modification
1. To change the tape unit to be written on, modify bits 21-24 of cell 0214,

2. To prevent writing the bootstrap routine on the system tape, set the
contents of 04334 to zero.

C. Operating Procedure

1. CLEAR
2. Feed one card in card reader
3. RUN

Upon successful completion, the output tape unit will rewind and the WST pro-
gram will loop. This output tape is then ready for use as the system or
program tape, Ordinarily, rings should be removed to inhibit writing on this
reel.



REVISION: SECTION:

UNIVAC III SUPPORT 3-0002

DATE: PAGE:

July 20, 1962 2

D. Memory Space

0- 0177 binary loader
0200 - 0217 tape assignment table
010000 - 010377 bootstrap program offset from cells 0-0377
04000 - 04363 WST program and constants
04364 - 04435 Scat words to write information blocks
04436 - 06075 card images
06076 - 06121 literals

E. Card Formats

1. Routine label card. Binary equivalent of routine label is punched
in first two words of card. For example, label for AKTDNW would
be punched:

11

[ ] ]
BERN000000000000G000000000006000000000000000000000000660000G0000000000000000000000
12345678 9101112131415161718132021222324252627 28293031 3233 54 35 36 37 38 39 40 41 42 42 44 4> 46 47 48 43 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74 715 76 77 78 79 80
IR ERRR R R R R R R R R R R R R R R AR R R R R RN R AR R RN R R R AR A
B2002222222222222222222222222222222222222222222222222222222222222222222222222222
3B033333333333333333333333333333333333333333333333333333333333333333333333333333
AH4d444444484444440444444444484844048444444444444444448444444444444443444344444444
55555555555555555555555555555555555555555555555555555555555555555555555555555555
666656666666666666666666666666666665566666666666656666666666666666666666666666666
BR177777117709111900711070 7111779710070 7700771071777 791111711111117171171711171011

el3888888880588888888888888888888888608888888888083888888838888888808888888888888838

—



REVISION: SECTIAON:
3-0002
UNIVAC IIT SUPPORT
DATE: PAGE:
July 20, 1962 3
2. Routine program cards. Routine program cards and transfer cards

must be in standard binary format. See Section 1-0001 of the
SUPPORT III manual for a description of these formats.

3. End-of-file card. Below is a sample of the end-of-file card. It
contains the binary equivalent of § END-OF-FILE.

1 1

111
000FoJR000000000000000000000000000006000000000000000000000600000000000000600000000
12345678 8101112131415161718192021222324252527 28293031 42 33 58 35 36 37 38 39 4041 42 43 44 45 46 47 46 43 50 51 5253 54 5556 57 58 59 60 61 6263 64 G5 65 67 64697071 1273 4 IS 7677 18 19 30
SRR 1§l ERRERERRERRR R RRE R R R R R R R R R R R R R R R R R R R R R R R R R R R R RN
ER20002022222222222222222222222222222222222222222222222222222222222222222222221212
33033303333333333333333333333333333333333333333333333333333333333333333333333333
ARBA4444444448244448444444044444084444444404444044444444444444442443444884444444
555555555555555555555555555555555555555555555555555555555555555555555555555555535
666666666666666666666666666666666656666666666666666666666666606666666666666666666
AB7177171171111717710711171177111777111711177117171711111711711111711111171711117117111711171711

2308888888868885888806868888888888888888880888888880888806888808888888888888888888838
sBs99
172345

LX7-]

999999999999999999999999999999999
189 5 2 1 HIHBN BN



UNIVAC IIT SUPPORT

REVISION:

SECTION:

3-0002

DATE:

July 20, 1962

PAGE:

NOTE%




REVISION: SECTION:

3-0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 1

UPCO

A. PURPOSE

UPCO (UPdating COntrol) is one of the three General Program Process-—
ors associated with the BOSS III SUPPORT System, Its purpose is to pro-
vide updating services for the user's source code and object code libraries.

B. INTRODUCTION

UPCO may be used in three major area — in creating symbolic code or relocatable
object code libraries, in updating libraries, and in creating control tapes.

A new library tape is created by UPCO by including the desired library
-information with the control input. In this case there would be no additional
library input tapes to UPCO, and there would be no corrections, insertions,
or deletions. A new library tape could also be created by usmg the PRFSTO
card-to-tape symbiont. (' SO e i ‘
UPCO can create an updated library tape by selecti ing ] information from

one or more old library tapes. Control input directs the various processes
of insertion, deletion, and correction, and the control mput ‘may itself con-
tain information to be included on the updated library tape. ' The upda‘ced -

tape may then be used as library input or as a control tape for another pro o-

cessor (ACCO, DECO, or UPCO itself).- ‘{ S0 R VR
1. Input

Input to UPCO consists of the user’s relocatable library or symbolic library
tape, which is to be updated, and control information on cards or on a separate
tape which directs the updating process. All tape input to UPCO is in the
condensed PRESTO format, which means that all consecutive blanks and
zeroes have been removed. None of the original information content is lost

a. Library Tapes

A library tape may contain sets of independently compiled reloca-
table object code, or source code, arranged in groups and elements.
Elements contain either source code images (COBOL, FORTRAN,
or UTMOST), or binary card images. In either case, there may

be control cards within the element.



REVISION: SECTION:

3-0003

UNIVAC III SUPPORT

PAGE:

U-3519 2

b. Control Information

Control information defines and directs the updating of the relocatable
or the symbolic library tapes, and is contained either on a tape in
PRESTO format, or on cards, but not both.

Control input comes from a previous processor (ACCO or
UPCO), the PRESTO card-to-tape symbiont, or directly from
cards. In addition to control card images, the control input
may also contain symbolic or binary elements.

See the section on Control Cards for an explanation, in detail,
of the various types of control cards.

2. Output

a. Library Tape

The library tape (PRESTO format) which is produced by an UPCO run
will be an updated symbolic or a relocatable library tape, containing
updated and/or new information. This tape may be used as input to

another processor (ACCO, DECO, or UPCO itself).

b. List/Punch Tape

A List/Punch tape is optional in an UPCO run, and must be
specified by a tape assignment parameter card if the user wants
it. If it isnot so designated, all listing and/or punching will be
done on line.

The information which UPCO places on the tape is in the format ,
required by the combined PRINT/PUNCH tape symbiont (CPPS). b L
This tape could be printed and/or punched later by ‘€PPS con- _—

currently with a main program.

i

There are a number of optiorigl; a;ail’a‘glé £6 the user which will
control the mode of listing and punching, and the mode can be
changed for each element or group within an UPCO run. For
punching, there are only two options - punch or no punch. For
listing, options available allow the printing of selected informa-
tion such as diagnostics, error messages, control cards, or a
combination of these,



REVISION: SECTION:

3-0003

UNIVAC III SUPPORT

PAGE:

U-3519 3

The Options in a MODE control card (or in a COPY control
card) determine the printing/punching mode. Once a mode

is initiated, it will remain in effect until changed by another
MODE or COPY control card. If a mode of listing and punch-
ing is not stated, there will be no punching, and the listing
will be as specified in the ?NQR option of the MODE card.
List/Punch options will be particularized in the Control Card
Section.

3. Groups and Elements

A program (job) contains a combination of groups and elements — or a program
may consist of only one group or element. An element is the smallest program
unit and may contain binary images or source code images, including control
cards. A group is a collection of elements or other groups, and may contain
control cards, but may not contain source code or binary images unless they
are within an element.

Groups and elements are identified by names, which must be unique
within a group. Names may not exceed eight characters. - ’
P v ol i /"L/ g

Groups and elements are idéntified by the following control cards:

BOG  Groupname (Beginning of group and its name)
EOG Groupname (End of group and its name)
ELT Elementname (Beginning of element and its name)

e i
"3 wd RS

On a library tape an element is terminatéd by the ’appearance of
another ELT, a BOG, an EOG card, or an end-of-file marker.

,/ . L4 i

The BOG and EOG control cards serve as brackets around a section

of coding; they are descriptive labels for a group. All other control
cards pertinent to a group must appear within the BOG and EOG con-
trol brackets. Groups may be nested within groups, as the following
example indicates.



UNIVAC IIT SUPPORT

REVISION: SECTION:

3-0003

PAGE:

U-3519 4

— BOG
BOG
E BOG
EOG
l: BOG
EOG
EOG
—— EOG

GRP1
GRP2
GRP3
GRP3
GRP4
GRP4
GRP2
GRP1

Group 1 (GRP1) contains groups 2, 3, and 4.
Group 2 (GRP2) contains groups 3 and 4.

An ELT control card precedes the card images belonging to the ele-
ment named in its operand field (Elementname). To be part of a group,
elements must be contained within BOG and EOG control cards, and
within a group an ELT card separates succeeding elements. Elements
which are not within a group are terminated by the next BOG, ELT
card, or end-of-file marker encountered.

The following is an example of elements within nested groups:

— BOG
ELT
— BOG

—BOG
ELT
ELT
_EOG
—BOG

ELT
—EOG
__EOG
L—FroG

GRP1
ELT1
GRP2

GRP3
ELT2
ELTS3
GRP3
GRP4
ELT4
GRP4
GRP2
GRP1

Group 1 (GRP1) contains element 1 (ELT1)
and groups 2, 3, and 4.

Group 2 (GRP2) contains groups 3 and 4. GRP2
does not contain source code state-
ments in itself.

Group 3 (GRP3) contains elements 2 and 3.

Group 4 (GRP4) contains element 4.

To call ELT3 in the preceding example:

SELECT GRP1(GRP2(GRP3(ELHT3)))



REVISION: | secTioON:

| 3-0003

UNIVAC III SUPPORT — e

PAGE:
U-3519 5

or, Lo call B1.71:

SELKCT GREPL (ELTL)
or, to call GRP3

SELECT GRP1L(GRP2(GRP3))

C. CONTROIL CARIDS
1. Control Cards are wsed by programmers and operators to communicate with the BOSS
”l SURPORT System. An UIPCO control card has a free-form format similar 1o a e
FTMOST symbolic coding. The exceptions are that it must contain a 12-1-.2

punch (nonstandard purch and for use in iliustrations in the text the symbol £ wi
be nsed) (Z) in the first column, the label field may begiu in any column {()H(mm r

the 4 vunch, and the line may not contain comments.

Z LARELAOPLRATIONAOPERAND. ) o
ALY e i i
(where A indicates al least one blank),
(et oy L
If the ln!ml'hfield of a control card contains the name of a processor.
the conirol card is then made "transparent' to all other processors.
For example, ZUPCOAMODEALNOR, PUNCH. This control card muay
be passed through ACCO or DECO with no action being taken until it i
processed by UPCO. The designation of a processor is the only use
for the iabel field in any control card. "

The operation 11011 contains a system directive which specifies a pur-
ticular function to be pe rformed by ‘the processor, Tho operand field
contains one or more parameters, Willél predlcdtu the oper‘dtlon of the
system directive, The operation fldd and any parameters may be up
to eight characters i length,

Control cards for UPCO will not be passed on once that processor hus
acted upon them. The same is true for any processor, excepting con-
trol cards which define jobs. elements, groups, and data areas. such
as LT, BOG, EOG, JOB. SEG, and DATA.

The control cards for UPCO may be separated into certain divisions
according to their function, as indicated by the following descriptions.
Control cards listed in this section will have UPCO in the label field
if the cards are also applicable to ACCO or DECO.



UNIVAC III SUPPORT

REVISION: SECTION:

3-0003

PAGE:

U-3519 6

Servo Assignment Control Card

UPCO SERVO :
- )‘, e s e

When running under SUCO, all tape assignments for each UPCO
run must be specified by the use of a SERVO control card follow-
ed by tape assignment parameter cards. This SERVO card must
be the first control card in an UPCO run, and there may be only
one SERVO card per job. Any SERVO cards encountered after the
first one will cause an error message.

It should be noted that when the UPCO FINIS card specifies a suc-
cessor run, the input tape to UPCO (file #1) will also be the input
tape to the successor processor until an ASSIGN card is found
which changes it. In this case, duplicate SERVO cards and asso-
ciated tape assignment parameter cards will be generated on the
UPCO output tape. These duplicate images will be ignored by the
successor processor,

The following is an example of the use of SERVO cards and tape
assignment parameter cards in a run using all three processors,
where execution will be in UPCO—=> ACCO—=> DECO order.

Z DECO SERVO

1 INEX Control input tape
DECOUT 3 OUTPUT New system tape

4 SCRACH Scratch tape

8 INEX Reloc. obj code library
ACOUT ASSIGN 3, 1
Z ACCO SERVO

1 INEX ACCO control input
UPIN 6 INPUT UPCO control input
ACOUT 3 OUTPUT Relocatable ACCO output
SLIBRY 9 INPUT Source code library

4 SCRACH Scratch tape
UpOUT ASSIGN 3, 1
ACOUT ASSIGN 6, 3
ACOUT 3 SAVE
Z UPCO SERVO
UPIN 1 INPUT Control input tape
UPOUT 3 OUTPUT UPCO output (PRESTO)
SLIBRY 9 INEX Source code library
UpOUT 3 SAVE
ACOUT &6 SAVE
SLIBRY 9 SAVE
UPIN 1 SAVE



REVISION: SECTION:

3-0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 7

The control information for all three processors is contained on
one tape (file #1). Control input for ACCO and DECO is copied
from this tape onto the UPCO output tape (UPOUT). ACCO ob-
tains its tape assignment information from the original control
input which is still file #1. These tape assignments cause UP-~
OUT to become the control input (on file #1) for ACCQO, and the
blank tape on file #6 in UPCO now becomes ACCO output (ACOUT)
on file #3. This process is repeated between ACCO and DECO,
in that control information for DECO is copied from UPOUT onto
ACOUT, and ACOUT becomes the control input tape for DECO.,
UPOUT now becomes the DECO output tape, which will be the new
system tape.

Dismounting instructions for the original control input tape (UPIN)
will be given at the end of the ACCO run, and there will be dis-
mounting instructions for the new system tape at the end of the
DECO run.

b. Tape Designation Control Card
/‘ y

PN
e

v
UPCO TAPE File Number, Label

The TAPE control card specifies which file number is to be used

as the library tape. File number is a decimal number (0 through

15) which indicates an entry in the tape assignment table. For
.example: TAPEAG6 specifies the seventh entry in the tape assign- ‘
‘ment table. The label of the library tape will be matched against -
Label shown in the control card, and an error message will be S
typed out if they do not match. If Label is blank, UPCO assumes , <
there is no tape label, and if there is one, it will be ignored.

A TAPE card may be used whenever it is needed for specification
of a new library tape. | ' g, i, g0 V2 :

"Each file designated in a TAPE card should have been previously
defined by a tape assignment parameter card. An example of this

is:
ZUPCO SERVO
LIBRY 07 INPUT (Tape assignment parameter card)
ZUPCO TAPE 07

(balance of cards)



REVISION: SECTION:

3-0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 8

Ifa TAPE card names a file which has not been previously defined,
a message will be typed out, and processing vyi}l continue as soon

as GO is typed in. 7./ 0 Vgt on e APE ~y g
¢. Processor Termination Card
UPCO FINIS Name

FINIS indicates the end of the UPCO run; Name indicates the pro-
cessor or run to be entered next. Normally, Name would be DECO
or ACCO, providing automatic transfer to the desired processor.
Name would be left blank if the user is processing through UPCO on-
ly. In this case, at the end of the UPCO run, SUCO will type out a
message ("NEXT'") upon reaching end of job, and will spin in a stop
loop until the operator calls a new program.

d. Mode of Listing/Punching
UPCO MODE List option, Punch option

The MODE control card indicates to the processor the type of in-
formation that is to be listed or punched, whether on line or off-
line.

For the List option, one of the following should be entered:

LDNT - Diagnostics and error messages
LCTL - Control cards
LNOR - Revised information

LCOR - Revised information with the corrected (superseded)
images flagged.

LDTL - Detailed information (includes those groups and
elements which had no corrections, as well as
those which did.)

For the Punch option,

PUNCH - punch detailed information
NO PUNCH - punch nothing

Once a mode is initiated, it will remain in effect until changed by



UNIVAC IITI SUPPORT

REVISION: SECTION:

3-0003

PAGE:

U-3519 9

another MODE (or COPY) control card. If a mode of listing and
punching is not stated, there will be no punching, and the listing
will be as specified in the +™NOR-option of the MODE card.

LT

e. Control Cards for Deletion or Copying without Correction

1)

(2)

(3)

DELETE

DELETE Name
The DELETE card causes UPCO to copy from the current
position of the tape up to, but not including. Name (a group
or element name). At the completion of the DELETE opera-
tion, the tape will be positioned immediately beyond Name.
COPY

COPY Name, List option, Punch option

This control card causes UPCO to copy from the current

“location of the library tape through the end of the speci-

fied group or element.

List and Punch options are the same as those indicated for
the MODE card. The mode of listing and punching in effect
at the time the COPY card is encountered will be used for
listing and punching all information copied, up to Name.
Name will then be listed and punched in the mode indicated
in the COPY control card. This mode will remain in effect
until a new mode is established by another control card
(MODE or another COPY).

SELECT

UPCO SELECT Name
SELECT is similar to COPY. It, however, does not copy
the information from the old library tape which appears

prior to Name, but instead skips the library tape until it
finds Name, and then copies only this element or group.



REVISION: SECTION:

3-0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 10

f. Control Cards which Position a Library Tape for Correction

There are two control cards in this classification: one does
only positioning, and the other causes a copy down to a specific
position. These two control cards are. normally followed by
cards which indicate correctlons or insertions. In each case,
if New name is specified, it causes the title of the element or
group to be changed from Old name to New name on the output ‘y
llbrary tape. /roo T )‘ ' SR
Bont oy gy e LN E
If New namé has the title MATE, it causes the contents of Old
name to-become part of the preceding group or element. The
original greup or element name wiltl not exist on the new sys-
tem tape.

IS

(1) FIND
UPCO FIND Old name, New name

FIND causes the library to be positioned (without copy-
ing) at the beginning of Old name. If Old name is an ele-
ment, FIND may now be followed by COR or INS control
cards ‘ : T A R ,:.« TE Y N
(2) CHANGE - T A " S o :;\;»

.
TP
¥

CHANGE Old name, New name

CHANGE causes the library tape to be copied from its
current position to a position at the beginning of Old
name. If Old name is an element, CHANGE may be fol-
lowed by COR or INS cards.

g. Line Correction or Insertion Cards

These cards serve to permit corrections or insertions to indivi-
dual lines in an element. COR and INS cards will normally fol-
low a control card which has positioned the tape at the beginning
of an element.

(1) COR

UPCO COR n,n,



REVISION: SECTION:

3-0003

UNIVAC III SUPPORT

PAGE:

U-3519 11

where n_ and n_ are line numbers on a,listing of the ele-
ment to ]be corrected.

COR will cause the element to be copied until line n_ is
found. Lines n_ through n, will be deleted, and anv non-
control’ dards f]llowmg the COR card will be inserted at
this point. If n_ is not specified, then only line n_, will
be deleted. The effect will be just as if the control card

COR nl, nl had been specified.

INSAAAA may be used to terminate corrections if the re-
mainder of the element being corrected is to be copied.

(2) INS
UPCO INS n

INS causes the element to be copied down through and
including line n, and any non-control cards will be in-
serted at this point.

INSAAAA will cause the information following it to be in-
serted after the last line of the current element. This
form is convenient for inserting relocatable binary correct-
ions, as it eliminates any need to know the count of the bi-
nary images.

INSAAAA may also be used to terminate corrections or
insertions to an element if the remainder of the element

is to be copied.

2. Tape Assignment

o ,,.)
Tape assignment parameter cardsiar‘e placed with the beginning para-
meter information for a run. They are condensed by DECO and are
written on the system tape as part of the JOB preamble. During the
initialization of a run by SUCO, they are examined and appropriate act-
ion is taken. Tape assignment parameter cards, as they apply to a
particular job, are transparent to UPCO, and will merely be copied on-
to the output system tape for another processor.

When running under SUCO, all tape assignments for each UPCO run
must be specified by the use of a SERVO control card followed by tape
assignment parameter cards.



REVISION: SECTION:
3-0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 12

The format of the tape assignment parameter card does not comply

with rules for other control cards. The format is not variable:
Columns Entry
1-6 alias
7 blank or comma
8 -9 File number, right justified
10 blank or comma
11 - 16 Operation
17 blank
18. . . One to three-digit assignment numbers

right-justified in columns 20, 24, 28..
and separated by commas or blanks.

The file alias has no logical attachment to any symbols generated by

a program, and is carried as a mnemonic device only. Its sole use

is on tape assignment parameter cards and on correspondingly gener-
ated tape mountmg posting, and dismounting 1nstruct10ns Vl the con-
sole typewrlter B i (0T Whg 20 I e AN B
V/Jﬁ‘) ;o /\ ‘,’\z Trey .\‘: ! ;n“k‘ «‘J’”{’;’}i"
The File number (columns 8 and 9) is a decimal number (0 through 15)
which specifies an entry in the tape assignment table. For example,

file number 10 specifies the eleventh entry in the tape as51gnment table.
It 157 flzt ﬂriec??s'sau yj}t/? p_)rejceg}e/ lt,h; zje;r/oae{sl / f o ) 7 AR
’Fhe%unc&ion of thé "ass 1gnment numbers (columns 18. ) depends upon
the particular operation involved. All assignment numbers are decimal.

Tape assignment cards should appear at the beginning of the job to
which they apply.

For a description of operator messages which might appear on the con-
sole typewriter as a result of the following parameter cards, refer to
the BOSS III Programmers Guide.

a. ASSIGN

alias ASSIGN k1, k2



REVISION: SECTION:

3-0003
UNIVAC III SUPPORT —_— SRS

| PAGE:

U-3519 ‘ 13

The file entry k1 from the previous run will be assigned to file
entry k2 of the current run. This is accomplished by interchang-
ing logical unit numbers between the two file entries in the tape
assignment table. A check is made to see if the previous alias
for k1 agrees with the alias on the ASSIGN card, and if not, an
error message is produced. To ignore the ASSIGN card. type

in GO. ~ oyt fils copen o g <

-~

\ /N

The rewind-with-interlock provisions of INEX, OUTPUT and
SCRACH will not apply to a tape which has been saved with a
SAVE card, and subsequently assigned with an ASSIGN. Nei-
ther will there be mounting and dismounting instructions.

b. INPUT
alias k INPUT n

INPUT describes file k as being a protected input file, and
causes a beginning-of-job mounting message and an end-of-job
dismounting message. File k may not have been rewound with
interlock at the end of the previous job. If not, INPUT will cause
rewind with interlock at the beginning of the job in which it oc-
curs. (If a tape has been '"saved" and subsequently "assigned',
file k will only be rewound, and there will be no mounting or
dismounting instructions.) n specifies the expected number

of reels for file k, thereby permitting an early release of the
alternate, if any. An incorrect n will not cause an error,

c. INEX
alias k INEX n

INEX describes file k as being an unprotected input file, and
causes a beginning-of-job mounting message only. File k may
not have been rewound with interlock at the end of the previous
job. If not, INEX will cause a rewind with interlock at the be-
ginning of the job in which it occurs. (If a tape has been "saved"
and subsequently '"assigned", file k will only be rewound, and
there will be no mounting or dismounting instructions.) n
specifies the expected number of reels for file k, thereby per-
mitting early release of the alternate, if any. An incorrect n
will not cause an error.




REVISION: SECTION:

3~0003

UNIVAC IIT SUPPORT

PAGE:

U-3519 14

d. OUTPUT
alias k OUTPUT

OUTPUT describes file k as being a protected output file. File
k may not have been rewound with interlock at the end of the pre-
vious job. Ifnot, OUTPUT will cause rewind without interlock
at the beginning of the job in which it occurs. In either case, a
MOUNT BLANK message is produced. An end-of-job dismount-
ing message will be typed out, If a tape has been 'saved', a
dismounting message will not occur in the job in which the tape
was saved, and only rewind will occur in the job which assigned
the tape.

e. SCRACH
abgs-k SCRACH

This describes file k as being a scratch tape. File k may not
have been rewound with interlock at the end of the previous job.
If not, SCRACH will cause rewind without interlock at the begin-
ning of the job in which it occurs. If the previous job did rewind
with interlock, a MOUNT BLANK message is produced at begin-
ning-of-job. 1If a tape has been '"saved" and subsequently '"as-
signed, the reel will be rewound only and there will be no
mounting messages. y

R R R L

f. ALT
alias k ALT ki1, k2,...

This describes file k as being an alternate to files k1, k2,...1If
k1l is an input file, then there should only be the entry k1l in the
list. If k1 is an input reel, then a MOUNT message will be pro-
duced and the unit rewound with interlock if it is not dismounted.
If k1 is an output reel, then a MOUNT BLANK message will be
produced if the unit is dismounted.

g. SAVE

alias k SAVE

SAVE specifies that file k be carried over to the next run, If
file k has not been described as a SCRACH, INPUT, INEX or

OUTPUT f{ile, it causes carryover anyway. If the file is not in



REVISION: SECTION:
UNIVAC TII SUPPORT o
PAGE: -
U-3519 15
use, it causes a MOUNT message and rewind with interlock,
if appropriate.
A tape which has béen ''saved'" must be assigned (with an
ASSIGN card) in the succeedmg ]ob ,
h. DUMP ‘/),.J RREE ,;,/ '.»3;'7{, P Npdnaw Y AV T T o
\ . \) Ly )/. Y AT
a ».[ ‘1,} r " Poe f “ﬂ
k DUMP o Sdeg e e S
g 7/!‘»',4 L o

DUMP specifies that file entry (k) is the system dump tape. A dump tape
must be specified for each main program which will be run in conjunction
with symbionts, or which will use rerun.It may be any output tape which
employs standard tape conventions, i.e., ha&been wrrtten undes- conu?l of;
t‘he—TﬂYeﬂFfﬂe Label HendH ng routine. LMD ’f”t’ R AT AEE
ey M{ /f” », Ll A4
D. OPERATIONAL CONTROL

1. Nominal Tape Assignment

The following tape assignments are used for UPCO. They may not be
changed if UPCO is called by an RXAUPCO type-in. However, when
UPCO is under control of SUCO, the assignments may be changed
once in an UPCO run by the use of a SERVO card followed by appro-
priate tape assignment cards.

File No. Usage

System Tape Lo
Basic PRESTO input ¢+ &7 yord e
Print/punch tape | .
PRESTO output | = >/ T,
Library tape ., . .

. - [r L
Library tape ' » -
Library tape '

U WO

n Library tape

2. Console Functions




UNIVAC III SUPPORT

REVISION: SECTION:

3-0003

PAGE:

U-3519 16

a. SUCO Control (for automatic tape operation)

1
2
3
4.
5
6
7
8

CLEAR

REWIND

LOAD

PROGRAM STOP - sets all memory to SLJ ERR.
PROGRAM RUN

KEYBOARD REQUEST

Type in RSACALLAUPCOA2"

KEYBOARD RELEASE (Activated UPCO)

b. EXEC Control (for card operation)

S I I I

CLEAR

REWIND

LOAD

RELEASE (This causes EXEC control.)
PROGRAM STOP - sets all memory to SLJ ERR.
PROGRAM RUN

KEYBOARD REQUEST

Type in RXAUPCO

KEYBOARD RELEASE (Activates UPCO)



REVISION: I SECTION:
1

| 3-0004

UNIVAC III SUPPORT R

;(’ PAGE:

U-3519 i 1

A.

ACCO

PURPOSE

The purpose of ACCO (Assembler-Compiler COntrol), one of the
three General Program Processors associated with the BOSS III
SUPPORT System, is to direct the processing of the user's source
code through UTMOST, COBOL, and FORTRAN, and to provide a
standard input-output processing for assembling and compiling.

INTRODUCTION

ACCO permits high efficiency for assembly and/or compilation since
a number of source code routines, written in UTMOST, FORTRAN,
and/or COBOL (and stacked on one input tape). can be assembled or
compiled in one run.

There are essentially two ACCO ''passes' for each assembly or com-
pilation requested. (And within ACCO's second pass are the multiple
passes or phases of the particular assembler or compiler.) In its in-
itial pass, ACCO will perform library search and copy with correct-
ions for the COBOL, FORTRAN, or UTMOST routine. Control cards

for other processors, information included on the control input, or in-
formation extracted from library tapes outside the control of the assem-~
bler or compilers will be copied directly onto ACCO's output tape dur-
ing this initial pass. An intermediate scratch tape is used. on which
the source code for the assembly or compilation is accumulated.

When the end of the source code to be compiled or assembled is indi-
cated, ACCO will rewind the intermediate scratch tape and enter its
second pass (assembly or compilation). As the relocatable object code
is generated by UTMOST, COBOL, or FORTRAN, it will be written
onto the output tape. On completion of this process, control will return
from the compiler or assembler to ACCO, which will continue to pro-
cess the next sequential information on its input tape.

Thus, the final output includes control input not recognized by ACCO,

information not processed by ACCO, and also the compiled or assem-
bled relocatable object code.

1. Input



UNIVAC IIT SUPPORT

REVISIAON: SECTION:

3-0004

PAGE:

U-3519 2

2.

ACCO will accept three types of input: control information, source
code images, and relocatable object code. Relocatable object code
input will be copied directly onto the relocatable output tape, with no
action being taken on it during the ACCO run. All tape input to ACCO
is in the condensed PRESTO format, which means simply that all con-
secutive blanks and zeroes have been removed. None of the original
information content is lost.

a. Control Input

Control information (on either tape or cards) defines and directs
the processing of a source code program. Control card images
contain the programmer's instructions to the processors for copy-
ing tape, for changing or deleting specified code, and for assem-
bling or compiling specified source code.

Control input comes from a previous processor (UPCQ), from
the PRESTO card-to-tape symbiont, or directly from cards. The
control input may contain some or all of the source code, and
could even contain binary elements which will simply be passed
on to the relocatable output tape.

See the section on Control Cards for an explanation, in detail, of
the various types of control cards and their functions.

b. Library Tapes

Library tapes may contain numerous sets of source code or relo-
catable object code programs or subprograms arranged in ele-
ments and groups. Control information may appear within an ele-
ment or group, and will be processed in the order in which it is
encountered.

The use of the library tape input is optional with the user, and
the number of library tapes used in an ACCO run is limited only
by the number of available tape units. Only one library tape is
available to ACCO at a given time, the selection being under con-
trol of the user by means of a TAPE control card.

Output

a. Relocatable Object Code Tape



REVISION: E SECTION:
UNIVAC III SUPPORT } L
s
|

] U-3519

This output tape (in PRESTO format) may contain a combination
of the following: control card images for other processors, re-
locatable object code copied from a library tape or the control
input, and relocatable object code output of the various assem-
blies or compilations which may have taken place during the
ACCO run.

b. List/Punch Tape

A List/Punch tape is an optional output from an ACCO run. It
is specified by including a tape assignment parameter card for
file 2 with the other ACCO tape assignment cards. If the tapeis
not so designated, all listing and/or punching will be done on
line.

If a List/Punch tape is designated, the information which ACCO
places on it is in the format required by the PRINT/PUNCH tape
symbiont (CPPS). This tape could be printed and/or punched later
by CPPS, concurrently with a main program.

There are a number of options available to the user which will
control the mode of listing and punching. The mode can be
changed for each assembly or compilation. For punching, there
are only two options - punch or no punch. For listing, options
available allow the printing of selected information, such as diag-
nostics, error messages, control cards, source code language,
or a combination of these.

The options given in a MODE, UTMOST, FORTRAN, or COBOL
control card determine what information is to be printed or punch-
ed. Once a mode is initiated, it will remain in effect until changed
by a mode option in another control card. If a mode of listing and
punching is not stated, there will be punching, and the listing will
be as specified in the LNOR option. List options will vary accord-
ing to the particular assembler or compiler being used. The var-
ious options are listed in the section on Control Cards, under
MODE, COBOL, FORTRAN, and UTMOST.

3. Groups and Elements

A program (job) contains a combination of groups and elements - or a
program may consist of only one group or element., An element is the
smallest program unit; a group is a collection of elements or other



REVISION: SECTION:

3-0004

UNIVAC III SUPPORT

PAGE:

U-3519 4

groups. An element contains source code images or relocatable
code, and may also contain control cards. Groups may contain
control cards, but may not contain source code images or reloca-
table object code except as part of an element.

Groups and elements are identified by names, which must be unique
within a group. Names may not exceed (8) characters.

Groups and elements are identified by the following control cards:

BOG Groupname (Beginning of group and its name)
EOG Groupname (End of group and its name)

ELT Elementname (Beginning of element and 1ts name)
/1;:‘4: "‘, o ]')/};11‘7 2/ ’1

On a library tape an element is terminated by the appearance of
another ELT, a BOG, or an EOG card.

The BOG and EOG control cards serve as brackets around a sec-
tion of coding. These cards are descriptive labels for a group, and
should be the first and last cards of any group. All other control
cards pertinent to a group must appear within the BOG and EOG con-
trol brackets. Groups may be nested within groups, as the following
example shows. 571/ AN A S VISR B 1978 ‘Qh Vi E) s

“¥

— BOG GRP1 Group 1 (GRP1) contains groups 2, 3, and 4.

—BOG GRP2 Group 2 (GRP2) contains groups 3 and 4.
BOG GRP3
[E OG GRP3
BOG GRP4
[EOG GRP4
LEOG GRP2

L _EOG GRP1

An ELT control card precedes the card images belonging to the ele-
ment named in its operand field (Elementname). To be part of a
group, elements must be contained with ,BOG and EOG control cards.
Elements are terminated by the next BO‘% of EL2I’ encountered. The
following is an example of elements w1thm nested groups:



UNIVAC IIT SUPPORT

REVISION: i SECTION:

3-0004

PAGE:

-
\
|
|

U-3519

5

— BOG
ELT
— BOG

~BOG
ELT
ELT
- EOG
—BOG
ELT

-EOG

L EOG

——EOG

GRP1
ELT1
GRP2

GRP3
ELT2
ELT3
GRP3
GRP4
ELT4
GRP4
GRP2
GRP1

Group 1 (GRP1) contains element 1 (ELT1)
and groups 2, 3, and 4.

Group 2 (GRP2) contains groups 3 and 4.
GRP2 does not contain source code state-
ments in itself,

Group 3 (GRP3) contains elements 2 and 3.

Group 4 (GRP4) contains element 4,

To call ELT3 in the preceding example:

or, tocall ELT1:

SELECT GRP1(GRP2(GRP3(ELTS3)))

SELECT GRP1 (ELT1)

or, to call GRP3:

‘ CoAb a
Ve Sk 4//)»;\ vy

SELECT GRP1(GRP2(GRP3))

C. CONTROL CARDS

7 - Sas F-sesd PP ?

1. Control cards are used by programmers and operators to commun-
icate with the BOSS III SUPPORT System. An ACCO control card
has a free-form format similar to a line of UTMOST symbolic cod-
ing. The exceptions are that it must contain a 12-0-2 punch (Z) in
the first position, the line may not contain comments, and the label
field may begin in any column after the first.

Z LABELAOPERATIONAOPERAND



REVISION: .'sEl::':r;f](t;(:)o4
UNIVAC IITI SUPPORT —
U-3519 6

where A indicates at least one blank.

If the label field contains the name of a processor, the control card
is then made 'transparent" to all other processors. For example,
ZACCOAMODEALNOR, PUNCH, This card may be passed through
UPCO or DECO with no action being taken until it is processed by
ACCO. The designation of a processor is the only use for the label
field in any control card. (ELT, BOG, or EOG may be made trans-
parent to ACCO by using an UPCO or DECO label. This will indi-
cate to ACCO the end of an assembly or compilation. )

The operation field contains a system directive which specifies a par-
ticular function to be performed by the processor.

The operand field contains one or more parameters which define the
operation of the system directive. The operation field or any of the
parameters may be up to eight characters in length.

Many of the control cards shown in the following discussions are uni-
versal, i.e,, they are also applicable to DECO or UPCO. These

are indicated here by the appearance of ACCO in the label field.

a. UTMOST | ) A A

Py / BT

UTMOST , List
The UTMOST control card is a request for an UTMOST assembly.
It precedes the source code (or the control cards that call the
source code) which comprises the input to be assembled. The op-
tions indicate to the processor the type of information to be listed

- and punched. If a List option is not entered, the listing will be
the same as for the LNOR option. Punching will occur if a Punch
option is not given.

Available List options:
LNOR - Normal assembly listing (symbolic and relocat-

able object code representation).

LCOR - Deleted or corrected lines listed in front of
assembly output in addition to COR lines.

LDTL - Same as LCOR

g S R TR ER A
; | i AR A
option, Punch option S TT I T Sy

{



REVISION: SECTION:

UNIVAC III SUPPORT 3-0004

PAGE:

U-35619 7

LDNT - No listing, - +/ /% >
LCTL - Control cards only.

Available Punch options:

PUNCH - Relocatable object code
NO PUNCH - No punching

[ AR

b. COBOL
COBOL List option, Punch option, Class

The COBOL control card is a request for a COBOL compilation.
It precedes the source statements (or the control cards that call
the source code) which make up the input to be assembled. The
options indicate the type of information to be listed and punched.
The listing will be as for the LNOR option if a List option is not
entered in the COBOL card. If a Punch optlo y‘als not spemf&ed

punching will occur. LY 2 odos sopar ,J i a \
CC\Y&GL \"Uy P R T / J i \" N 1/ v ",.— Y R -
Available options for listing: DR AR N A‘ L :

LNOR - Source language listing’ and diagnostics.

LCOR - Deleted or corrected lines listed in front of
source language.

LDTL - Complete UTMOST listing of generated code
plus LCOR output.

LDNT - Diagnostics. .p: 5750 7 o
LCTL -~ Control cards.

Options for punching:

PUNCH - Relocatable object code
NO'PUNCH - No punching

There are two available options for Class:

1) MAIN - Indicates a main program for which there are
independently compiled subprograms.

. PRt A T g e F
¢ P o e o g



REVISION: SECTION:

3-0004

UNIVAC IIT SUPPORT

PAGE:

U-3519 8

2) SUB - Indicates a subprogram.
pooos panhan BN

c. FORTRAN
FORTRAN List option, Punch option

The FORTRAN control card is a request for a FORTRAN com-
pilation. It precedes the source code (or the control cards that
call it) which comprises the input to be compiled. The options
indicate the type of information to be listed and punched. The
listing will be as for the LNOR option if a List option is not en-
tered in the FORTRAN card. If a Punch option is not specified,
punching will occur.
Available options for listing:

LNOR - Source language listing and diagnostics.

LCOR - No listing,

LDTL - Source language plus an UTMOST-like edited
output.

LDNT - No listing.
LCTL - Control cards.

Options for punching:
PUNCH - Relocatable object code
NO'PUNCH - No punching

d. SELECT
,[; "7 SELECT Library name

A library tape which has been specified by a preceding TAPE
card will be searched for Library name. The information with-
in Library name (a group or element) is then given to the pro-
cessor for assembling or compiling,.

e. FIND

4 72 FIND Library name

A library tape which has been specified by a preceding TAPE
card will be searched for Library name. FIND may now be



REVISION: SECTION:

UNIVAC III SUPPORT 3-0004

PAGE:

U-3519 9

followed by COR or INS control cards. The FIND control card
will enable a user to correct an element prior to compiling or
assembling.

f. COR

/2.2 COR n_, n

1’ 72
where n_ and n_ are line numbers on a listing of the element
to be correcte£

The COR control card must follow a FIND control card, and
will cause the element to be copied until line n_ is reached.
Lines n_ through n_ will be deleted, and any non-control cards
following the COR card will be inserted at this point. If n_ is
not specified, then only line n, will be deleted. The effecgwill
be just as if the control card “COR n, ny had been specified.

g. INS
ACCO INS n

INS n causes the element to be copied down through and including
line n, and any non-control cards will be inserted at this point.
INS must follow a FIND card. INSAAAA will cause the informa-
tion following the INS card to be inserted after the last line of
the current element. This form may be used to insert relocat-
able binary corrections, and it eliminates any need to know the
count of the binary images.

INSAAAA may also be used to terminate corrections and insert-
ions to an element, if the remainder of the element is to be cop-
ied.
h. MODE
ACCO MODE List option, Punch option

The MODE control card indicates to the processor the type of
information that is to be listed or punched, whether on line or
off line.

For the List option, one of the following should be entered:



REVISION: SECTION:

3-0004

UNIVAC IIT SUPPORT

PAGE:

U-3519 10

LDNT - Diagnostics and error messages.
LCTL - Control cards.
LNOR - Normal source language listing.

LCOR - Deleted or corrected lines listed in front of
normal output.

LDTL - Detailed information.

For the Punch option:
PUNCH - Punch relocatable object code
NO PUNCH - Nothing is punched

Once a mode is initiated, it will remain in effect until changed
by another MODE, UTMOST, FORTRAN, or COBOL control
card, If a mode of listing and punching is not stated, there will
be punching, and the listing will be as specified in the LNOR op-
tion.

i. JOB, DATA, SEG, and CHAIN

JOB Job name

DATA  Location + Increment
SEG Segment name, Origin
CHAIN Link name

These are DECO control cards, but when ACCO encounters them,
they will cause termination of an assembly or compilation. These
cards will be copied onto the ACCO output tape. 7.+ - SRPAER Yo
T N \ ~
j. ELT, BOG, EOG

ELT Element name
BOG Group name
EOG Group name

Any of these control cards encountered within source code being
assembled or compiled will be deleted. H-eneountered..outside
steha source code set, they will be eopied onto the ACCO output.
If any. of these cards contain a processor name (UPCO or DECO)

in the label field, they will cause termination of assembly or com-
pilation, and will be copied-onto-the output tape:-



REVISION: SECTION:

3-0004

UNIVAC IIT SUPPORT

PAGE:

U-3519 11

Z “ELT - - MNCHAIN-

Z ACCO TAPE 7,SCLIBE |

Z UTMOST PRI

Z ACCO SELECT GRPONE (ELTTWO)
Z ACCO SELECT GRPTHREE

Z DE€CO -ELF- - - SUBONE

Z UTMOST Sunit g,

Z ACCO SELECT GRPTWO (ELTFOUR)
Z ACCO TFINIS

In this example, the EET MNCHAIN, card imagé wlill?!bg writ-
ten onto the output tape followed by the object code created
during the assembly of GRPONE(ELTTWO) and GRPTHREE.
Any BOG, EOG or JEISTC%‘% hwges encountered during this o
selection process,aré deléted. The DECO--EEA-SUBONE ’
card image indicate_s:,;to‘ ’ACCQ the termination of the input for
assembly. This BEA fhdd' 15 also copied onto the output tape
followed by the resultant object code of the second assembly.
This second assembly is terminated by the FINIS card image.

k. SERVO
ACCO SERVO

When running under SUCO, all tape assignments for each
ACCO run must be specified by tape assignment parameter
cards following a SERVO control card. This SERVO card
must be the first control card in an ACCO run, and there
may be only one SERVO card per job. Any SERVO cards en-
countered after the first one will cause an error message.

1. TAPE
ACCO TAPE File number, Label

The TAPE control card specifies which file number is to be
used as the library tape. File number is a decimal number

(0 through 15) which specifies an entry in the tape assignment
table. For example, TAPEAG6 specifies the seventh entry in
the tape assignment table. If Label (an eight-character ident-
ification) is present, the label of the specified library tape will
be matched against this label, and an error message typed out
if they do not match. If Label is blank, ACCO assumes there
is no label, and if there is one, it will be ignored.



REVISION: SECTION:

3-0004

UNIVAC III SUPPORT

PAGE:

U-3519 12

A TAPE card may be used whenever it is desired to specify a
. LTAYE. cps . .
new library tape. Whenever # is used, the specified file will

be rewoundg v.. V) o

Each file designated in a TAPE card must have been previous-
ly defined by a tape assignment parameter card. An example

of this is:
Z ACCO SERVO
LIBRY 07 INPUT
Z ACCO TAPE 07
(balance of cards)
m. FINIS

ACCO FINIS Name

The FINIS card must be used to terminate an ACCO run. Name
indicates the processor or run to be entered next. Normally,
Name would be UPCO or DECO, providing automatic transfer to
the desired processor. Name will be left blank if the user is pro-
cessing through ACCO only. In this case, at the end of the ACCO
run, SUCO will type out a message (""NEXT'") upon reaching end
of job, and will spin in a stop loop until the operator calls a new
program.

2. Tape Assignment

Tape assignment parameter cards are placed with the beginning para-
meter information for a run. They are condensed by DECO and are
written on the system tape as part of the JOB preamble. During the
initialization of a run by SUCO, they are examined and appropriate ac-
tionis taken. Tape assignment parameter cards, as they apply to a
particular job, are transparent to UPCO, and will merely be copied on-
to the output system tape for another processor.

When running under SUCO, all tape assignments for each UPCO run
must be specified by the use of a SERVO control card followed by tape
assignment parameter cards.

The format of the tape assignment parameter card does not comply
with rules for other control cards. The format is not variable:



REVISION: SECTION:
UNIVAC III SUPPORT -
PAGE:
U-3519 13
Columns Entry
1-6 alias
7 blank or comma
8 -9 File number, right justified
10 blank or comma
11 - 16 Operation
17 blank
18. .. One to three-digit assignment numbers right-
justified in columns 20, 24, 28..., and sep-

arated by commas or blanks.

The file alias has no logical attachment to any symbols generated
by a program, and is carried as a mnemonic device only. Its sole
use is on tape assignment parameter cards and on correspondingly
generated tape mounting, posting, and dismounting instructions via
the console typewriter.

The File number (columns 8 and 9) is a decimal number (0 through
15) which specifies an entry in the tape assignment table. For ex-
ample, file number 10 specifies the eleventh entry in the tape as-
signment table. It is not necessary to precede with zeroes.

The function of the assignment numbers (columns 18...) depends
upon the particular operation involved. All assignment numbers
are decimal.

Tape assignment cards should appear at the beginning of the job to
which they apply.

For a description of operator messages which might appear on the
console typewriter as a result of the following parameter cards, re-
fer to the BOSS III Programmer's Guide.
a. ASSIGN

alias ASSIGN k1, k2

The file entry k1 from the previous run will be assigned to file

entry k2 of the current run. This is accomplished by interchang-

ing logical unit numbers between the two file entries in the tape



REVISION: SECTION:

3-0004

UNIVAC III SUPPORT

PAGE:

U-3519 14

assignment table. A check is made to see if the previous alias
for k1 agrees with the alias on the ASSIGN card, and if not, an
error message is produced. To ignore the ASSIGN card, type
in GO.

The rewind-with-interlock provisions of INEX, OUTPUT and
SCRACH will not apply to a tape which has been saved with a
SAVE card, and subsequently assigned with an ASSIGN. Nei-
ther will there be mounting and dismounting instructions.

b. INPUT
alias k INPUT n

INPUT describes file k as being a protected input file, and
causes a beginning-of-job mounting message and an end-of-job
dismounting message. File k may not have been rewound with
interlock at the end of the previous job. If not, INPUT will cause
rewind with interlock at the beginning of the job in which it oc-
curs. (If a tape has been ''saved'" and subsequently "'assigned",
file k will only be rewound, and there will be no mounting or
dismounting instructions.) n specifies the expected number
of reels for file k, thereby permitting an early release of the
alternate, if any. An incorrect n will not cause an error,

c. INEX
alias k INEX n

INEX describes file k as being an unprotected input file, and
causes a beginning-of-job mounting message only. File k may
not have been rewound with interlock at the end of the previous
job. If not, INEX will cause a rewind with interlock at the be-
ginning of the job in which it occurs. (If a tape has been '"'saved"
and subsequently ''assigned', file k will only be rewound, and
there will be no mounting or dismounting instructions. ) n
specifies the expected number of reels for file k, thereby per-
mitting early release of the alternate, if any. An incorrect n
will not cause an error.

d. OUTPUT
alias k OUTPUT

OUTPUT describes file k as being a protected output file. File
k may not have been rewound with interlock at the end of the pre-
vious job. If not, OUTPUT will cause rewind without interlock



REVISION: SECTION:

3-0004

UNIVAC III SUPPORT

PAGE:

U-3519 15

at the beginning of the job in which it occurs. In either case, a
MOUNT BLANK message is produced. An end-of-job dismount-
ing message will be typed out. If a tape has been "saved', a
dismounting message will not occur in the job in which the tape
was saved, and only rewind will occur in the job which assigned
the tape.

e. SCRACH
alias k SCRACH

This describes file k as being a scratch tape. File k may not
have been rewound with interlock at the end of the previous job.
If not, SCRACH will cause rewind without interlock at the begin-
ning of the job in which it occurs. If the previous job did rewind
with interlock, a MOUNT BLANK message is produced at begin-
ning-of-job. If a tape has been ''saved" and subsequently 'as-
signed', the reel will be rewound only and there will be no
mounting messages.

f. ALT
alias k ALT ki, k2,...

This describes file k as being an alternate to files k1, k2,...If
k1l is an input file, then there should only be the entry k1l in the
list. If k1 is an input reel, then a MOUNT message will be pro-
duced and the unit rewound with interlock if it is not dismounted.
If k1 is an output reel, then a MOUNT BLANK message will be
produced if the unit is dismounted.

g. SAVE
alias k SAVE

SAVE specifies that file k be carried over to the next run. If
file k has not been described as a SCRACH, INPUT, INEX or
OUTPUT file, it causes carryover anyway. If the file is not in
use, it causes a MOUNT message and rewind with interlock, if
appropriate.

A tape which has been 'saved'" must be assigned (with an
ASSIGN card) in the succeeding job.



UNIVAC III SUPPORT

REVISION: SECTION:

3-0004

PAGE:

U-3519 16

h.  DUMP
k DUMP

DUMP specifies that file entry (k) is the system dump tape. A dump tape
must be specified for each main program which will be run in conjunction
with symbionts, or which will use rerun. It may be an output tape which
employs standard tape conventions, i.e., has been written under control
of the Tape File Label Handling routine.

D. OPERATIONAL CONTROL

1.

Nominal Tape Assignment

The following tape assignments are used by ACCO. If ACCO is called
by an RXAACCO type-in. these assignments are fixed and may not be
changed. Also, the control input will be from cards, not tape.

When ACCO is under SUCO control, the tape assignments may be
changed once at the beginning of the run by the use of appropriate

tape assignment parameter cards following a SERVO control card.
The dump tape must be specified as an output tape which would be
read by a system which recognizes bypass sentinels. The List/Punch
tape satisfies this requirement, but if it is not being used, a separate
output tape must be specified.

a. Tape Assignment for UTMOST
File No. Usage
System tape
PRESTO control input
List/Punch tape

0
1
2
3 PRESTO relocatable output
4 Scratch

5

- 15 Library tapes as needed



REVISION: SECTION:

3-0004

UNIVAC IIT SUPPORT

PAGE:

U-3519 17

b. Tape Assignment for COBOL

File No. Usage

0 System tape

1 PRESTO control input

2 Scratch - List/Punch tape

3 Scratch - PRESTO relocatable output
4 Scratch

5 Scratch

6 Scratch

7 COBOL library

8 - 15 Library tapes as needed

c. Tape Assignment for FORTRAN
File No. Usage

0 System tape

1 PRESTO control input

2 List/Punch tape

3 PRESTO relocatable output

4 Scratch

5 Scratch

6 Scratch

7 -15 Library tapes as needed

2. Console Functions

a. SUCO Control (for automatic tape operation)

CLEAR

REWIND

LOAD

PROGRAM STOP - sets all memory to SLJ ERR
PROGRAM RUN

KEYBOARD REQUEST

Type in RSACALLAACCOA2

8. KEYBOARD RELEASE (Activates ACCO)

B S 2 T N T S R



UNIVAC IIT SUPPORT

REVISION: SECTION:

3-0004

PAGE:

U-3519 18

b. EXEC Control (for card operation)

1.

l > w (8]

~N O

oC

CLEAR

REWIND

LOAD

RELEASE (This causes EXEC control)
PROGRAM STOP - sets all memory to SI.J ERR
PROGRAM RUN

KEYBOARD REQUEST

Type in RXAACCO

KEYBOARD RELEASE (Activates ACCO)



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 1

DECO

A. PURPOSE

The purpose of DECO (DEsignation COntrol), one of the three General
Program Processors associated with the BOSS III SUPPORT system,

is to convert the relocatable programs produced by COBOL, FORTRAN,
and UTMOST into an operational system tape - that is, a loadable in-
struction tape. ready for execution. The information on this system
tape will consist of either absolute programs or dynamically relocatable
programs.

B. INTRODUCTION

1. Input

DECO will accept three types of input: control input on tape or cards,
relocatable object code library tape(s), and system tapes. (All tape
input to DECO, except system tapes, is in the condensed PRESTO
format, which simply means that all consecutive blanks and zeroes
have been removed. None of the original information content is lost.)

a. Control Input

Control information defines and directs the preparation of a
system tape. The control information is always in a sym-
bolic format, and is contained either on tape or on cards.

Tape control input is used when automatic operation is em-
ployed (i.e., job-to-job chaining under control of SUCO).
Card input is used when DECO has been called by means of
an operator type-in. Thus control input is optionally tape or
card, but not both.

Control input may contain several types of control cards, and
may contain binary elements. Binary elements are the reloca-
table object code output of COBOL, FORTRAN, or UTMOST.
Control input comes from a previous processor (ACCO or
UPCO), from the PRESTO CTT Symbiont, or directly from



UNIVAC III SUPPORT

REVISION: SECTION:

3-0005

PAGE:

U-3519

cards. Some of the control information for a job may also
come from a relocatable object code library tape. See the
section on Control Cards for an explanation, in detail, of
the various types of control cards.

Relocatable Library Tapes

Library tapes may contain numerous sets of independently
compiled relocatable object code arranged in elements and
groups, where a group is a collection of elements or other
groups. Control information may appear within elements
or groups, and will be processed in the order in which it

is encountered. The user may thus keep control informa-
tion which is permanently associated with a job on a library
tape with that job, thereby reducing the amount of primary
control input needed to process the job through DECO.

The use of library tape input is optional with the user; con-
trol information from tape or cards is the only required in-
put. The number of library tapes used as DECO input is
limited only by the number of available tape units. Only
one library tape is available to DECO at a given time, the
selection being under control of the user by means of a
TAPE control card.

System Tape

The system tape on logical tape unit 0 may be used as input
to a DECO run. Jobs on this system tape may be copied on-
to the system tape being created by DECO under control of
KEEP control cards.

Output

DECO produces as output a system tape (loadable instruction tape)
and an optional List tape.



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 3

a. System Tape

The system tape will normally contain a bootstrap loader
(BOOT), an in-core executive routine (EXEC), a supervisory
control routine (SUCO), diagnostic aids, main programs, and
symbionts. (For detail, refer to the System Tape section.)
From this system tape, main programs and symbionts will
be loaded into memory for execution.

(1) Main Programs

Each of the main programs (jobs) processed by DECO
has been converted from relocatable object code to
absolute object code. Each job appears on a system
tape as a series of blocks which contain absolute ob-
ject code, preceded by a block with the job's related
control information.

Main programs, at execution time, will be located in
core immediately above the executive system, or as
specified in a SEG card, Main programs are not dy-
namically relocatable.

(2) Symbionts

The system tape may contain symbionts - programs
which normally control the operation of peripheral
equipment, A symbiont may operate concurrently
with a main program, other symbionts, or it may
operate alone, Symbionts are under complete control
of operator type-ins.

Symbionts may be absolute or relocatable, depending

on the definition of the user at DECO time. When a
dynamically relocatable symbiont is called into memory,
it is loaded into the highest available memory location.
Subsequently, if higher memory locations become avail-
able (by the completion of some other symbiont), all

dynamically relocatable symbionts in core will be moved



REVISION: SECTION:

3-0005

UNIVAC IIT SUPPORT

PAGE:

U-3519 4

up to overlay the vacated space. For more detailed infor-
mation on symbionts, refer to the BOSS IIl Referenee

ST , (
Manual, ! S T

Absolute symbionts, when called, will be loaded into what-
ever portion of upper memory is specified by the program-
mer with a RES card at assembly time, or a SEG card at
DECO time, Absolute symbionts are not relocated during
execution, and no relocatable programs will be loaded
above them. Therefore, it is advisable that absolute sym-
bionts be written to occupy the highest addresses practical.

b. Mapping (List Tape)

DECO provides the user with a listing which may show the
control cards used by DECO for each job, the name and loca-
tion of each element, the name and location of externally de-
fined labels, and diagnostic error messages. The user may
elect to show error messages only, by using a particular
MODE card option.

The list tape is prepared if file #2 has been specified on a
tape assignment card following a SERVO card at the beginning
of the DECO run. The information which DECO places on a
list tape is in the format required by the PRINT/PUNCH tape
symbiont. The tape would be printed later, concurrently
with some other job, with the PRINT/PUNCH symbiont. The
listing will be done on line if file #2 (the list tape) has not
been specified, (There is no punch output from DECO.)

C. GENERAL

1. Groups and Elements

A program (job) contains a combination of groups and elements -
or a program may consist of only one group or element. An
element is the smallest program unit; a group is a collection of
elements or other groups. Elements contain either control cards
or binary card images, or both. Groups may contain control



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 o

cards, but may not contain binary card images unless they are
within an element,

Groups and elements are identified by names, which may not
exceed eight (8) characters. A group name must be unique within
a group, and an element name must also be unique within a group.

Control cards for DECO follow the same free~-form format as a
line of UTMOST symbolic coding, except that they must contain
a 12-0-2 punch in column 1.

Groups and elements are identified by the following control
cards:

BOG GroupName (Beginning of group and its name)

EOG GroupName (End of group and its name)

ELT ElementName (Beginning of element and its name)
On a library tape an element is terminated by the appearance of
another ELT, a BOG, or an EOG card.

The BOG and EOG control cards serve as brackets around a
section of coding, These cards are descriptive labels for a
group, and should be the first and last cards of any group. All
other control cards pertinent to a group must appear within the
BOG and EOG control brackets. Groups may be nested within
groups.

An example of nested groups might be:

—— BOG GRP1 Group 1 (GRP1) contains groups 2, 3, and 4.
BOG GRP2 Group 2 (GRP2) contains groups 3 and 4.
BOG GRP3
EOG GRP3

EBOG GRP4
EOG GRP4
EOG GRP2

L—EOG GRP1




REVISIDN: SECTION:

3-0005

UNIVAC IIT SUPPORT

PAGE:

U-3519 6

An ELT control card precedes the card images belonging to the
element nameq in its operand field (ElementName). To be part
of a group, elements must be contained within BOG and EOG
control cards, Within a group, an ELT card separates succeed-
ing elements. Elements which are not part of a group are termi-
nated by the next BOG or ELT encountered.

The following is an example of elements within nested groups:

——BOG GRP1 Group 1 (GRP1) contains element 1 (ELT1)
ELT ELT1 and groups 2, 3, and 4.

—BOG GRP2 Group 2 (GRP2) contains groups 3 and 4.
GRP2 does not contain binary
elements in itself,

—BOG GRP3 Group 3 (GRP3) contains elements 2 and 3,
ELT ELT2
ELT ELT3
— EOG GRP3
—BOG GRP4 Group 4 (GRP4) contains element 4.
ELT ELT4
L—:EOG GRP4
EOG GRP2

L— EOG GRP1

To call an element within a group, subscripting is used. For
example, to call ELT3 in the preceding example:

SELECT GRP1(GRP2(GRP3(ELTS3)))
or, to call ELT1:

SELECT GRPI(ELT1)
or, to call all of GRP3:

SELECT GRP1(GRP2(GRP3))



UNIVAC IIT SUPPORT

REVISION: SECTION:

3-0005

PAGE:

U-3519 7

2. Binary Card Images

Binary card images appear within elements (but not within groups).
DECO recognizes five types of binary card images which are crea-
ted by UTMOST, COBOL, and FORTRAN:

Relocation card

External Symbol Reference
External Symbol Definition
End Card

Instruction Card

The order of the binary cards within an element is immaterial to
DECO.

a.

Relocation Card

A relocation card consists of one or more relocation refer-
ences. Each reference specifies a location which contains

a 15-bit address. DECO adds the current base address to

this 15-bit address (ignoring sign and masking out any over-
flow), thereby effecting relocation from the originally de-
fined base to the current base. The original base was assigned
at assembly or compilation time, In COBOL and FORTRAN,
base zero is always used. In UTMOST, base zero is used if

a base is not defined; a base other than zero can be defined
with a RES card at assembly time.

For most programs, the relocation base will be initialized
for each job at DECO time to a location immediately above
the executive routine. This address may be changed, during
DECO, by the use of a SEG card, The relocation base is
incremented within a job by the lengths of succeeding ele-
ments. This length is obtained from the END card for each
element,

For symbionts, the type of relocation employed is defined by
use of a SYM card.



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 8

b. External Symbol Reference

An entry is created in an external reference card image when
a symbol (label) is left undefined at assembly or compilation
time, This entry consists of from two to five words. (The
entry is variable in order to permit different lengths in
labels.) The first words in the entry contain the undefined
symbol, The last word in the entry specifies the location

of the word which contains the undefined field, and the low-
order bit position of this 15-bit field. The word which con-
tains the undefined field may be an indirect address word
which has been created because of the undefined symbol, or
may be an instruction which contained the undefined symbol
itself, The undefined field may contain a constant increment
or decrement as will be shown in examples following the dis-
cussion on external symbol definition. The entire external
reference entry is stored in a table called EXTREF during
the first pass of DECO.

Definition and relocation of the undefined field await a cor-
responding external definition card.

c. External Symbol Definition

An entry is created in an external definition card image when
a symbol (label) has been marked as an externally defined
symbol, (In the UTMOST language, external definition is in-
dicated by a label followed by an asterisk.)

Each entry consists of from two to five words. The first
words in the entry contain the defined symbol. The last word
in the entry specifies the 15-bit value corresponding to the
defined symbol. This may be an absolute value or an address
relative to the originally defined base. The last word may
specify relocation,

The entire external symbol definition entry is stored in the
table EXTDEF during the first pass of DECO. If relocation
is specified in the last word of the entry, it is effected by



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

adding the value for the defined symbol to the current job base
address before storing in EXTDEF. If duplicate symbol defi-
nitions occur, the first definition encountered holds and an
error message is written,

As each external symbol reference or definition is found by
DECO, that entry is placed in the appropriate table (EXTREF
or EXTDEF). After DECO has passed the entire job (all
groups and elements of a program), the EXTREF table is
matched against the EXTDEF table. As a match is made,
that external reference becomes a defined reference. A
library search will then be made for those external refer-
ences which are undefined, if library search has been speci-
fied by a LIBE card. This search is performed by using the
undefined external symbol reference label as a key. The ele-
ments within the specified group are scanned for a matching
externally defined symbol. When a match is made, the entire
element which contains the matched label is brought in as part
of the library routines for the job. Error messages will be
written for those references still undefined after the library
search, if there was one. A second pass on the job is then
made, and the values for the defined references are inserted
into the program.

The following example will illustrate how DECO handles an
external symbol reference and definition. Assume that the
following job is being processed through DECO. (For ease
of representation, symbolic coding is used in the example,)

1 £ JOB  EXAMPLE (where Z is a 12-0-2 punch)
2 % ELT PART1

(3) SA  3,SAVE+1

(4) END

(5) Z ELT PART2



REVISION: SECTION:
3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 10

(6) SAVE* RES 2

(7) END
8 Z FINIS

The coding in element PART1 will create an entry (SAVE) at
assembly time in an external reference card, and will create

an indirect address word containing the increment 1 (+00000001),
The coding in element PART2 will create an entry (SAVE) in an
external definition card.

Assume the following: that the address within PART2 for
SAVE is 0100, that the base address assigned to the job is
07000, and that the length of PART1 is 0300,

During DECO's first pass the external reference entry for
SAVE is placed in the EXTREF table, and the external defi-
nition entry for SAVE is placed in the EXTDEF table, During
the second pass, the value 07000+0300+0100 (or 07400) will be
added to a 15-bit field in the indirect address word as indicated
in the external reference entry. In this case, the final value of
07400 + 01 is given. At execution time, line 3 of the example
will make an indirect reference to the generated word which
will now contain 07401.

d. End Card

Effectively there are two kinds of end cards. One contains only
the length of the element in which it appears. The other con-
tains the transfer address (where control is to go after a job
has been loaded), the values to be loaded into the cover index
registers, as well as the length of the element or subprogram
in which the end card appears.

e. Instruction Card
An instruction card contains one or more contiguous binary data

or instruction words, together with the location of the first word
relative to the original base.



UNIVAC III SUPPORT

REVISION: SECTION:

3-0005

PAGE:

U-3519 11

3. Program Structure

Programs and subprograms may be combined in several different
ways to permit maximum efficiency. The structure of a program
will fall into one of the following classes:

a.

Single-Compilation Programs

For single-compilation programs (UTMOST, COBOL, FORTRAN)
which fit into core, DECO simply serves as a relocator. DECO
will write the program on the absolute system tape for execution
loading by BOOT.

Separately Compiled Main Programs and Independent Subroutines

This program will consist of a main program and one or more
independently compiled subprograms (or subroutines). The en-
tire program (job) will fit into one core load. Main programs
and subprograms may be written in UTMOST, COBOL, or
FORTRAN.,

There are many advantages to this programming technique:
assembly or compilation time is minimized, checked out
library subroutines may be inserted automatically, and be-
cause of the modular structure, debugging is considerably
simplified.

The following discussion will indicate how communication be-
tween separately compiled or assembled main programs and
subroutines is controlled by the programmer,

(1)  External Labels

In UTMOST, if a label in the label field is immediately
followed by an asterisk, and the line is not within a
procedure (PROC), it is an external label, and can be
referenced by other separately assembled subprograms.



REVISION: SECTION:

3-00056

UNIVAC III SUPPORT

PAGE:

U-3519 12

2) External Symbol Reference

In UTMOST, if a label in the operand field is left unde-
fined, it is an external symbol reference, and may be
defined by a corresponding external symbol definition
at DECO time. Such definitions must be in the form

of 15-bit addresses.

(3 COMMON

Within the FORTRAN language, two kinds of common
data areas may be defined. They are '"labeled COM-
MON" and ""blank COMMON?". A blank COMMON area
is used and defined within an entire job, and its con-
tents may be referenced by any link of a chain, any
element, or any segment. A labeled COMMON area
may be referenced and defined within any separately
compiled subroutine, The first subroutine which ref-
erences the labeled COMMON area will define for
DECO the position of that area. Space will be alloca-
ted in the subroutine according to this first definition
for the labeled COMMON area. Subsequent references
to this particular labeled COMMON area within a link
of a chain job, or in any segment of a segmented job,
will be treated as references to the first definition of
the labeled COMMON area, It is therefore the user's
responsibility to see that when a reference is made to
a labeled COMMON area, the subroutine which contains
the first reference to it will also be in memory,

FORTRAN will create special external symbol definition
images which define a symbol as being the name of a
COMMON area, The length of the COMMON ares is
carried in value position of its external symbol definition
image. This length is used to define the size of a pseudo-
element which becomes the common area.

This created element will be placed following the first
element containing an external symbol definition for the
labeled COMMON, Multiple definitions of a particular



UNIVAC III SUPPORT

REVISION: SECTION:

3-0005

PAGE:

U-3519

labeled COMMON may be given; however, the first one
encountered will be used to define the length of the
pseudo-element (created COMMON area). The other
definitions for this labeled COMMON area will not
cause error or error messages, but will be ignored.
It is the user's responsibility to see that the first de-
finition found will be a proper one.

For all blank COMMON, a special symbol, QCOMMON,
is generated by FORTRAN. This special name is re-
cognized by DECO and the procedure outlined above is
modified in these respects: the pseudo-element created
is placed above the longest link in a chain job or above
the library in a segmented job. The length of the pseudo-
element is taken as the maximum length specified in the
many external symbol definitions given.

It should be noted that a bit is contained in position 17 of
the value word of these special external symbol refer-
ences generated by FORTRAN, Standard external sym-
bol definition images as generated by UTMOST do not
contain this bit,

Chain Jobs

A chain job is composed of one or more programs or links.
Each link may be composed of one or more independently com-
piled subroutines. Only one link will be in core at a given
time. Normally, chain jobs will be used for FORTRAN com-
piled programs.

Chaining permits these independent links to communicate
with each other through '"blank COMMON", a common data
area. The subprograms within a link may communicate with
each other through '"labeled COMMON!". (Refer to COMMON,
Section C. 3)



REVISION: SECTION:
3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 14

A link in a chain is defined by the insertion of a CHAIN control
card image in front of the binary elements composing the link.

The control card is of the format,
CHAIN LinkName

where LinkName can be alphabetic or numeric to conform with
current FORTRAN usage.

Within a link, any other link within a chain job may be called
by,
LA 3, LinkName
J LODX

where LinkName is the address of the first word of a two-word
constant containing the alphabetic name of the link being called.

During the first DECO pass, each link is processed as for a

job consisting of a separately compiled main program and sub-
routines. After each link is processed, the library search is
made, excluding the special symbol QCOMMON (blank COMMON
area), and the length of the link is remembered. The EXTDEF
table is then reset, and the next link is processed. After all
links have been processed through the first pass of DECO, the
externally defined variable QCOMMON will be assigned the core
location above the highest location used by any link. An area
equal to the maximum length in the many QCOMMON definitions
will be reserved, beginning at this location.

The following example will illustrate the make-up of a chained
job:

JOB JOBX

CHAIN LINK1

ELT ELTA



REVISION: SECTION:

UNIVAC IIT SUPPORT 3-0005

PAGE:

U-3519 15

LA 3, LINKB
J LODX
LINKB 'LINK2'

CHAIN LINK2

ELT ELTB

LA 3, LINKA

J LODX
LINKA 'LINK1'

FINIS

When JOBX is called, LINK1 will be loaded. At some time
during its execution, LINK2 may be called and loaded, over-
laying LINK1. Similarly, during execution of LINK2, LINK1
may be called, and would then overlay LINK2.

d. Segmented Jobs

Many computer applications require that various sections of
a program be brought into core only when they are needed.
The segmentation provisions of DECO provide this facility.
This is the most powerful way to operate the computer, and
also places the greatest burden on the user in planning his
overlays and cross referencing.

A segment is defined as a collection of binary elements which
comprise a single core load. In this case, 'core load'" means
a program or subprogram which may occupy part or all of the
memory space allocated to a job. There may be one or more
segments in core at any given time.



REVISION: SECTION:

3-0005

UNIVAC IIT SUPPORT

PAGE:

U-3519 16

A segment's starting point is defined with a SEG control card
of the following format:

SEG SegName, Origin

Origin may be symbolic (any previously defined externally de-
fined label), blank, or an actual location. When Origin is
blank, the segment will be loaded into the normal location
immediately above the executive routine.

When a job containing segments is called, the first segment
will be automatically loaded into core. The loading process
is halted when the symbol block of the second segment is en-
countered. From this first segment, any other segment(s)
may be called into core. Thereafter, any segment in core
may call any other segment, in one of two ways:

LA 3, SegName
J LODX

where SegName is the address of a two-word constant con-
taining the alphabetic name of the segment being called.

This will load the segment (SegName), and transfer control
to a location specified in a "main' program in the segment.

X 1, (ROSIE)
LA 3, SegName
J LOAD

The segment will be loaded, and control will go to ROSIE,
ROSIE can be any location within any segment now in core,
including the called segment (SegName).

In either of the above cases, the calling segment can be com-
pletely overlayed by the called segment.



REVISION: SECTION:

3-0005

UNIVAC IIT SUPPORT

PAGE:

U-3518 17

As each segment is processed by DECO, the external symbol
definitions and external symbol references are placed in the
appropriate tables. After the entire job has been processed
through DECO's first pass, if a library search has been speci-
fied by a LIBE card, an automatic library search is made for
any undefined external symbol references. This search is
made within the group indicated on the LIBE card, on the file
specified by the last TAPE card image, using the label in the
undefined external symbol reference as the key. Elements
called in as a result of this search are relocated above the
highest memory used by any segment. At the end of the first
DECO pass, this library information is written onto an inter-
mediate tape. During DECO's second pass, the library in-
formation on the intermediate tape is written onto the system
tape as part of the first segment. It should be noted that when
the first segment is loaded, the library portion will be located
in higher memory, apart from the segment itself, which is
ordinarily loaded into an area just above the executive routine.

If the user requires a library routine only within a particular
segment, he may call it with a SELECT card, and this library
routine will be loaded with this particular segment., It will
not be included with the high-core common library area, If
more than one segment requires a library routine, the library
routine should NOT be called by a SELECT, but should be in-
cluded in the high-core library routines.

The FORTRAN externally defined '"blank COMMON!" symbol
QCOMMON will be located above the library routines,

The processing of inter-subroutine or inter-segment communi-
cations operates on the entire job, It is the user's responsibi-
lity to see that when an external symbol reference to another
segment is made, that segment is in core.

An example of a segmented job follows., For ease of represen-
tation, symbolic coding is used.



UNIVAC IIT SUPPORT

REVISION: SECTION:
3-0005
PAGE:
U-3519 18

(1)
(2)
(3)
(4)
(%)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(13)

(14)
(15)
(16)

(17)

(18)
(19)
(20)

(23)
(24)

(25)

START

A*
B*
C*
D*

JOB
TAPE
LIBE
SEG
LA

RES
RES
RES
RES
END
SEG

LA

1LX
LA

LA

LX
LA

SLJ
LA

SEG

EXAMPLE
6
PAYROLL
SEG1
3,SEG2
LODX

500

500

1498

2000
START
SEG2,B

1,A+12

L, ($+3)
3,SEG3
LOAD

1, (3+3)
3,SEG4
LOAD

TAX

SEG3,C+2

binary elements

SEG

SEG4,D

binary elements

FINIS



UNIVAC III SUPPORT

REVISION: SECTION:
3-0005
PAGE:
U-3519 19

Line 2

Line 3

Line 4:

specifies that the logical tape unit number in the 7th entry of
the tape assignment table is to be the library tape.

specifies that the automatic library search is to be limited to
the group called PAYROLL,

Note this line is redundant, and name of this first segment will
be the job name (EXAMPLE).

Lines 5 and 6 cause SEG2 to be loaded and control to be transferred to

SEG2Z.

Lines 7 - 10: The values 500, 500, 1498, and 2000 will define the relative

Line 11,

Line 12

Line 13

Lines 14,

Line 17

Lines 18,

Line 21

Line 23

Line 24

locations in memory of A through D.

at DECO time, contains the length of SEG1 as it was assembled.
The segment extends from START to the library routines,

defines the segment SEG2, and will cause it to be loaded at loca-
tion B.

references a location in SEGI1.

15, and 16 cause SEGS3 to be loaded into its defined starting lo-
cation, C+2. Control is retained in SEG2, at $+3.

references a location in SEG3 which is now in memory.

19, and 20 cause SEG4 to be loaded at location D. Control is
retained in SEG2 at $+3.

SLJ TAX causes the library to be searched for the routine TAX.
This routine will be loaded into the library area, above the
highest location used in the job - in this case, above SEG1 or
SEG4.

defines the segment SEG3, and will cause it to be loaded at
location C+2,

defines the segment SEG4, and will cause it to be loaded at
location D,



REVISION: SECTION:
3-0005
UNIVAC III SUPPORT -
PAGE:
U-3519 20
N, —
MEMORY MAP
8000
7500 QCOMMON
7000 TAX
< 5075 =
O
€3]
@ 5050 E
5000 D
[ap]
&
=
2]
3504 C+2
3502 C
N
&5
=
wn
3002 B
4
o]
m "
“ 2514 A+BL
2502 A
2500 START

)



UNIVAC III SUPPORT

REVISION: SECTION:
3-0005
PAGE:
U-3519 21

o4

Symbionts

The primary burden for concurrency lies upon the symbionts,
programs which control the operation of peripheral equipment.
The BOSS III system is designed to permit one principal pro-
gram in the machine at a time, and to allow concurrent oper-
ation of any number of symbionts.

Symbionts are required to release control back to the system

when they find that the peripheral unit they are using is busy.

They must also save and restore any registers that they use

other than the basic registers. (Refer to the BOSS III Reference '** . -

- Manual for detail.) They must reset these registers upon re-

turn from any release.
a. Storage Allocation

There are two types of symbionts - absolute and dynamic-
ally relocatable. If absolute symbionts are used, automa-
tic memory allocation features are foregone; scheduling
and memory area designation become the responsibility
of the operating personnel.

If the symbiont is dynamically relocatable, the system
will provide automatic memory allocation at all times,
and will group the symbionts in contiguous areas in high-
est available core. (Of these, the Card Reader and Card
Punch symbionts are relocatable only in increments of
01008, due to hardware requirements.)

All symbionts must be accompanied by a SYM control
card at DECO time. The SYM card indicates whether
absolute or dynamic relocation is to be used. For the
SYM card format, see the section on Control Cards.



REVISION: 55;;3:-:;,;);05
UNIVAC III SUPPORT —
U-3519 29

b. Allocation of General Purpose Channels and Tape Units

In order to avoid conflicts in usage, symbionts should
normally refer to tape units and I/O channels symbol-
ically. The symbionts may then be defined by the op-
erator at execution time, in accordance with hardware
availability.

Symbionts may be indicated as operator-defined by in-
cluding a DEF control card with the symbiont at DECO
time:

Z DEF S1 82 83 S 4
in which S_,S_, etc., are undefined symbols represent-
ing, in this case, channels or tape units. The DEF card
will cause SUCO to generate a typeout of each undefined
symbol, following which the operator will type in the
symbol definition (tape unit or channel designation). A
maximum of four symbols may be entered on a DEF card.
Any number of DEF cards may be used within a job, but
the total number of symbols given may not exceed fifty.

D. CONTROL CARDS

DECO recognizes two types of control cards. They are DECO control
cards, and SUCO control cards introduced at DECO time.

‘{ € oofrs ey 3
These control cards-foltew the same free-form format asa line of
UTMOST symbolic coding, except that they must contain a-12-0-2-
punch in the flrst pos1t10n, and must rrot h?.ve eorgaments on them,

Nt v ,{ ‘J i ape PG

N . ~ ¥
v R o i j, -
N '3

pa v ,rj‘t F Anyy vl 4

¢ L
'z LABE LAOPERATIONAOPERAND

where Z is a 12-0-2 punch, and where A indicates at least one blank.



REVISION: 5:-:::31'-13;(:)5
UNIVAC III SUPPORT —
U-3519 23

If the first field of a control card contains the name of a processor,
the control card is then made '"transparent" to all other processors,
i.e., ZDECOASELECTAName. This control card may be passed
through UPCO or ACCO with no action being taken until the card is
processed by DECO.,

In the following discussion of control cards, formats and examples
will not show labels unless they might also apply to another processor.

1. DECO Control Cards

a. JOB
JOB JobName, Installation Information, Carriage Return

The JOB card image defines the name of the program
(JobName), and will carry such information as the pro-
grammer or installation requires (accounting informa-
tion, programmer name, estimated time, etc.). DECO
will place this entire image in the symbol block for the
job on the absolute system tape. JOB cards are searched
for by SUCO for object time execution, SUCO will output
the entire JOB card image on the console typewriter. A
carriage return symbol should be placed immediately fol-
lowing the installation information, to keep the typeout as
short as possible.

A JOB card is placed in front of all control cards and
binary elements for a particular job.

b. SEG

SEG SegName, Origin



REVISION: SECTION:

UNIVAC III SUPPORT 3-0005

PAGE:

U-3519 24

SEG defines the name by which a segment is called
(SegName), and the origin of the segment (i.e., loca-
tion into which the segment will be loaded). Origin

may be a symbolic name - any previously defined ex-
ternally defined label, Origin may be an actual mem-
ory location, or Origin may be blank, in which case the
segment is loaded in the area immediately above the ex-
ecutive routines.

A SEG card is placed in front of the segment which it
defines.

c. CHAIN
CHAIN LinkName
CHAIN defines the name of a link. The chain card pre-
cedes the binary elements composing the link. LinkName
may be alphabetic or numeric to conform with current
FORTRAN usage.
d. MODE
DECO MODE Option

where Option will be one of the following:

LNOR mapping, and error messages
-LCOR-- . . rrapping,-and error-messages
ILDTL mapping, and error messages
LCTL mapping, and error messages -

LDNT error messages only

Mapping will include control cards, starting locations

for each element, and assigned address for each external
symbol definition. If no MODE card is present, the list-
ing will be as for the LNOR option.



REVISION: BECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 25

The listing is done on-line unless the List tape has been
specified on a tape parameter card following a SERVO
card at the beginning of the DECO run.,

The listing Mée is in effect until it is redefined by a
MODE card. Therefore, a MODE card may be placed
anywhere within a DECO run.

e. ELT
ELT ElementName

An ELT card image defines each element to be processed
by DECO. It must precede all information which is part
of element ElementName. Each ELT card image is output
on the memory map. An element is terminated by another
ELT, JOB, SEG, CHAIN, DATA, or FINIS card.

f. DATA
DATA Origin + Increment

DATA directs DECO to locate the data images which follow
into a core position relative to Origin, which is a previous-
ly defined externally defined label. (Origin may also be an
absolute location.) It is frequently useful to load data with
a program at DECO time. The data images thus become a
part of the program at object time, but need not be assem-
bled as constants within an element,

Data card images following the DATA control card image
will be terminated by another DATA, ELT, SEG, CHAIN,
or FINIS card image.



UNIVAC IIT SUPPORT

REVISION: SECTION:
3-0005
PAGE:
U-3519 26

Each data card image follows UTMOST formatting for con-
stants, and can be decimal, alphanumeric, octal, or binary:

+ 112 (decimal)

+ 0120 (octal)

+ 'ABCD' (alphanumeric)
- 12 (binary)

Binary instruction card images will also be accepted when
they follow a DATA control card. This is particularly use-
ful for making patches to object code programs. They are
loaded into the specified location (Origin + Increment).
These patches may not, however, contain values which need
relocation.

Binary data card images are loaded into an area relative to
Origin rather than being controlled by the relocation counter.
This will be used for the FORTRAN DATA statement, and
for subroutines requiring a fixed origin, such as in commun-
ication with EXEC.

W i i

N

KEEP cards must appear outside of a job.
KEEP JobName

KEEP JobName will cause DECO to copy the specified job
(JobName) from the controlling system tape (u:: loo ical umt 0)
onto the DECO output tape T e QAR e
Y .
‘ ¥ orr

KEEP BOOT

DECO will rewind its output tape, and then copy BOOT (boot-
strap) onto it. - .. .ao frre w0

KEEP ALL

The entire system tape will be copied onto the DECO output
tape, after the output tape is rewound. 7' .-~



UNIVAC III SUPPORT

REVISION: SECTION:

3-0005

PAGE:

U-3519 27

KEEP JobA, JobB

L e ooy
- f’,' “L ¢ J‘" lIJ’ ‘)

DECO will search for JobA and copy the input tape from -
the beginning of JobA th%euglﬁhlebB.x@ Yo, puT 0 o s o

-

KEEP INPUT, n

The KEEP INPUT card will cause KEEP cards subsequent
to it to copy from file fn. (If no KEEP INPUT card is giv-
en, input will be on file #0.) The KEEP INPUT card itself
does not cause copying. As many KEEP INPUT cards may
be used as necessary, thus facilitating the creation of a
new system tape from several other system tapes.

KEEP OUTPUT -'n

v"/ 7
- .

o
-

it to e6py tape onto f11e #n, (If ho KEEP OUTPUT is given

sy

oytput will be on file #3 ) “As many KEEP OUTPUT cards Lo o

fhay be used‘as necessary.
MOD
MOD Value

This causes the relocation counter to be raised to the next
multiple of Value. For program checkout, it is often con-
venient to cause a program to begin at the next multiple of
some power of 2. This is accomplished by the MOD card,
which causes an adjustment to the relocation counter. For
example:

MOD 01000

causes the relocation counter to be set to the next multiple
of 01000 (51210).

s el



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 28

Due to hardware requirements, it is necessary that the data
areas for card read and card punch subroutines begin at an
address which is a multiple of 0100 (64 To accomplish
this, a MOD 0100 card should be 1nclud%d with the card read-
er dispatcher and with any subroutines which use the punch
dispatcher.

A MOD card should be placed just before the element with
which it is associated.

i, SERVO
DECO SERVO

When running under SUCO control, all tape assignments for
each DECO run must be specified by use of a SERVO control
card followed by tape assignment parameter cards. The
SERVO control card must be the first control card in a DECO
run, and there may be only one SERVO card per job. Any
SERVO cards encountered after the first will be-ignored.

D F N I i .

J. SELECT
DECO SELECT LibraryName

A library tape which has been specified by a preceding TAPE
card will be searched for LibraryName. The information
within LibraryName (a group or element) will replace the
SELECT card in the program sequence.

Previously compiled or assembled subroutines may be kept
on relocatable object code library tapes. A particular sub-
routine may be called into a job or segment by use of a
SELECT card. Subscripting may be used.

A SELECT may be used at any place within a job where the
user wants to insert an element from a library tape.



REVISION: SECTION:

UNIVAC TII SUPPORT 3-0005

PAGE:

U-3519 29

k. TAPE
DECO TAPE FileNumber, Label

The TAPE control card specifies which file number is to

be used as the library tape. FileNumber is a number (0
through 15) which specifies an entry in the tape assign-
ment table, For example, TAPEA6 specifies the seventh
entry in the tape assignment table. If Label is present,the
label of the specified library tape will be matched against
this label, and an error message typed out if they do not
match, If Label is not entered, the label block on the speci-
fied library tape will be ignored.

Each file designated in a TAPE card must have been previous-
ly defined by a tape assignment parameter card. A TAPE
card may be used whﬁnever bt is desired to specify a new li-

brary tape. Dty phel S0vd w ey oy
fj)'”/}; ,"f/' [EESE B
1. FINIS

DECO FINIS Name

A DECO run must be terminated by a FINIS card. The Name
entry specifies the processor or run to be entered next. When
Name is blank, SUCO will type out a message ("'Next'') upon
reaching EQJ, and will spin in a STOP loop until the operator
calls a new program.

m. LIBE
LIBE GroupName

After DECO has called in all the elements of a job, the ex-
ternal symbol definitions and external symbol references in
those elements are compared. Any external symbol referen-
ces which remain undefined are searched for on the currently
specified library tape (see TAPE control card) only if a LIBE



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 30

control card is present. The use of the LIBE card will
limit the search to a particular group (GroupName) on
that library tape.

If a LIBE card image is not present an automatic library
search will not be performed,

It should be noted that the LIBE card is effective only
for the undefined symbol search and has no effect on
other tape positioning orders such as SELECT and FIND.

Only one LIBE card image may be used within each ]ob »
- shoulel appe&r at the— begmnmg of-the job.. 7/ 7" 4

/!/.'- R R
oo o Chrh e ",{,uu’,!

‘2. SUCO Control Cards SRR T G E

In addition to control cards for DECO itself, DECO accepts cer-
tain control cards for use by SUCO. These cards are passed on
in the job preamble (control block) of the system tape.

These control cards may appear anywhere within a job.
a. NEXT
NEXT Name

Name specifies the program to be called at end of job of
the current program. The symbol Name will be placed

in Words 4 and 5 of the preamble on the system tape. If
NAME is blank, SUCO will go to the typewriter for the -
next pregram. If no NEXT card is present, SUCO will
type out a message upon reaching end of job in the current
program, and will spin in a STOP loop until the operator
calls a new program.



REVISION: SECTION:

UNIVAC TII SUPPORT 3-0005

PAGE:

U-3519 31

b. HOLD
HOLD First, Last

This card specifies the first and last locations of the core
area which is not to be cleared before loading the job in
which the card appears. If no HOLD card is present, the
entire core area within the job boundaries will be cleared
when a JOB card is encountered. Only one HOLD card may
be included in any one job. Ordinarily, First and Last would
be absolute memory locations. They could be previously
defined symbols within the job.

C. SYM
SYM X

Symbionts may be one of two types, absolute or dynamic-
ally relocatable. Of the latter, certain may be relocatable
only in increments of 100 locations, due to the requirements
of the punch and card reader buffers. A SYM control card
is used to indicate which type is desired. In the above format,

X = R for relocatable
X = H for relocatable in increments of 100 only
X = A for absolute

All symbionts must be accompanied by a SYM control card.
Absolute symbionts are loaded into whatever portion of upper
memory is specified by the programmer, and are not reloca-
ted during execution. They should normally be written to oc-
cupy memory locations with the highest addresses practical,
as no relocatable programs will be loaded above them.

Dynamically relocatable symbionts are stored inupper mem-
ory in the order of loading, and are relocated to pack from
the top of memory down.



REVISION: SECTION:

3-0005

UNIVAC IIT SUPPORT

PAGE:

U-3519 32

d. DEF
DEF S1, S2, 83, S4
in which S1, S2, etc., are otherwise undefined symbols,

A maximum of four symbols may be entered on a DEF card.
Any number of DEF cards may be used within a job, but the
total number of symbols given may not exceed fifty.

In order to avoid conflicts in usage, symbionts should normally
refer to tape units and I/O channels symbolically. The sym-
bols may then be defined by the operator at execution time, in
accordance with hardware availability. The DEF control card
indicates these symbols as being operator-defined. DEF will
cause SUCO to generate a type-out of each symbol, following
which the operator may type in the symbol definition. Such
symbols must be in the form of 15-bit addresses.

It is suggested that a list of standard symbols for tape and I/O
channels be adopted by an installation in order to minimize op-

erator confusion,

The DEF option is available only to symbionts. Main program
symbols may not be operator-defined.

3.  Tape Assignment

Tape assignment parameter cards are placed with the beginning para-
meter information for a run. They are condensed by DECO and are
written on the system tape as part of the JOB preamble. During the
initialization of a run by SUCO, they are examined and appropriate
action is taken.

When running under SUCO control, all tape assignments for each DECO
run must be specified by use of a SERVO control card followed by tape
assignment parameter cards. The SERVO control card must be the
first control card in a DECO run, and there may be only one SERVO
card per job.

The format of the tape assignment parameter card does not comply
with rules for other control cards. The format is not variable:



REVISION: SECTION:
3-0005
UNIVAC III SUPPORT
PAGE:
U-3519 33
Columns Entry
1-6 alias
7 blank or comma
8 -9 File number, right justified
10 blank or comma
11 - 16 Operation
17 blank
18... One to three-digit assignment
numbers right-justified in col-
umns 20, 24, 28..., and sep-

arated by commas or blanks.

The file alias has no logical attachment to any symbols gener-
ated by a program, and is carried as a mnemonic device only.
Its sole use is on tape assignment parameter cards and on
correspondingly generated tape mounting, posting, and dis-
mounting instructions via the console typewriter. Voo oo

ot e F

The File number (columns 8 and 9) is'a number (0 through 15)
which specifies an entry in the tape assignment table. For ex-
ample, file number 10 specifies the eleventh entry in the tape

assignment table. / : . / -

The function ‘of the assignment numbers (columns 18. ..) depends
upon the particular operation involved. All assignment numbers
are decimal.

Tape assignment cards should appear at the beginning of the job
to which they apply.

For a description of operator messages which might appear on
the console typewriter as a result of the following parameter cards,
refer to the BOSS III Reference Manual. .

o



REVISION: SECTIQON:

UNIVAC III SUPPORT 3-0005

PAGE:

U-3519 34

a. ASSIGN

alias. ASSIGN k1, k2

The file entry k1 from the previous run will be assigned
to file entry k2 of the current run. -This-is-aecomplished ..
by interchanging the logical unit numbers between the two
file entries-in the tape assignment-table. A check is made
to see if the previous alias agrees with the alias on the
ASSIGN card, and if not, an error message is produced.

% ‘\ S E AR ‘~:>">I-/ “hra ‘5,1 . j

The rewind-with-interlock pI‘OVlSlonS of INEX, INPUT,
OUTPUT, and SCRACH will not apply to a tape which has
been saved with a SAVE card, and subsequently assigned
with an ASSIGN. Neither will there be mounting or dis-
mounting instructions.

b. INPUT
alias k INPUT n

INPUT describes file k as being a protected input file, and
causes beginning-of-job mounting instructions and end-of-
job dismounting instructions. If reels are not in a dismount-
ed status at the beginning of the run it produces rewind-with-
interlock instructions. (If a tape has been ''saved" and sub-
sequently "assigned', the reel will only be rewound, and
there will be no mounting or dismounting instructions.) It
sets the "input" bit in the tape assignment table entry k.

n specifies the expected number of reels, thereby permit-
ting an early release of the alternate, if any. An incorrect
n will not cause an error.

c. INEX
alias k INEX n

INEX describes file k as being an unprotected input file,

and causes beginning-of-job mounting instructions only. If
reels are not in a dismounted status at the beginning of the

run, it produces appropriate rewind-with-interlock instruct-
ions. (If a tape has been ''saved' and subsequently ""assigned",



| " o005
UNIVAC TIT SUPPORT
U-3519 35

the reel will only be rewound, and there will be no mounting
or dismounting instructions.) It sets the "input' bit in the
tape assignment table entry k. n specifies the expected
number of reels. thereby permitting early release of the
alternate. if any. An incorrect n will not cause an error.

d. OUTPUT
alias k OUTPUT

OUTPUT describes file k as being a protected output file. It
causes assurance of scratch tapes at beginning of job, by re-
winding with interlock if the reel is not already in a dismount-
ed status. In either case, a MOUNT BLANK message is pro-
duced. Appropriate end-of-job dismounting instructions will
be typed out. If a tape has been '"'saved", dismounting in-
structions will not occur in the job in which the tape was
saved, and rewind will occur in the job which does the assign-
ing.

e. SCRACH
-atias- k SCRACH

SCRACH describes file k as being a scratch reel. It causes
assurance of a scratch at beginning of job by rewinding with
interlock if the reel is not already in a dismounted status.
MOUNT SCRACH message is produced at beginning of job if
the file is dismounted. If a tape has been ''saved' and subse-
quently "assigned", the reel will only be rewound, and there
will be no mountlng mstructmns

Vhe Gl gt aat e Mk

f. ALT
alias k ALT k1, k2, .

ALT describes file k as being an alternate to files k1, k2...,
and sets the alternate reference bit in entry k1, k2,... of

the tape assignment table. If k1 is an input file, then there
should only be the entry k1 in the list. If kl is an input reel,
then a MOUNT message will be produced and the unit rewound
with interlock if it is not dismounted. If kl is an output reel,
then a MOUNT SGRAE:H message will be produced if the unit
is dismounted. P-4 Y



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 36

g. SAVE
alias k SAVE

SAVE sets the "save' bit in file entry k of the tape assignment
table, and thereby causes the file to be carried over to the next
run., If file k has not been described as a SCRACH, INPUT,
INEX or OUTPUT file, it causes carryover anyway. If the file
is not in use, it causes MOUNT message and rewind-with-inter-
lock, if appropriate.

A tape which has been ""saved" must be assigned (with an ASSIGN
card) in the succeedmg job.

fie 5ot DR D N T NI R TZE I St P SN ‘i’” x
b, DUMBY; e v g b ]
¥ i /v':\l ,'),'/' “

-~ addxs-k DUMP

DUMP specifies the file entry (k) for the system dump tape. A
dump tape must be spec1f1ed for each job, It may be any output
tape.

¥ _,‘4,/;; > .:n‘;‘ ,v) S ﬁ/ NV RVAP): £ B
E. OPERATIONAL CONTROL

1. Nominal Tape Assignment

The following tape assignments are used for DECO. These assign-
ments may not be changed if DECO is called by an RXADECO type-
in. When DECO is under control of SUCO, these assignments may
be changed once in a DECO run by the use of a SERVO card follow-
ed by appropriate tape assignment cards.



REVISION: SECTION:
UNIV 3-0005
AC III SUPPORT
U-3519 37
File No. Usage
0 System Tape
1 Basic PRESTO input
2 ;il Print/puneh tape
3 New System tape output
4 Scratch tape
5 Scratch tape
6 Library tape
n Library tape
2. Console Functions
B
1. Clear
2. Rewind
3. Load
4. Release (Optienal. Press only when SUCO control is not
desived.) C i il a4
5. Program Stop - sets all memory to SLJ ERR. Must use.
6. Program Run
7. Keyboard Request
8, Type in RSACALLADECOA2 - e
9. Keyboard Release. (Activates DECO)

F. SYSTEM TAPE

A system tape is created by a DECO run. The first block on the sys-
tem tape will be BOOT (bootstrap). BOOT will automatically call in
EXEC, which will be next on the system tape.

The system tape is terminated by special end-of-file sentinels; search-
ing is normally done by searching forward through the file until the de-
sired name is found. If the desired name is not found on the second
pass, an error message is typed out.



REVISION: SECTION:

3-0005

UNIVAC III SUPPORT

PAGE:

U-3519 38

A section of the system tape containing a job called JOBA would appear
as:

Symbol Block
1. SCAT word - 3,TCD

2. Segment of three words
a. Transfer address of previous program :
b. JOBA, name of this job oy i/ Hru: 0 20
3. SCAT word - 16,0120
4. Cover register information of previous program

Preamble Block

1. SCAT word - signed negatively to make this block trans-
parent to BOOT

2. Control information for SUCO, such as tape assignment
parameters

Information Blocks
As many as 19 segment pairs consisting of:

1. SCAT word - number of contiguous instructions, absolute
location of first instruction
2. Segment of contiguous instructions

Perhaps Additional Symbol Blocks with Associated Information
Blocks for Segments or Links of the Job
Symbol Block
1. SCAT WORD - 3,TCD
2. Segment
a. Transfer address of JOBA (or the last segment or link)
b. Name of next job physically on tape
SCAT word - 16,0120
4, Cover register information for JOBA (or the last segment
or link)

[9%]



REVISION: SECTION:

4-0001

UNIVAC IIT SUPPORT

DATE: PAGE:

July 20, 1962 1

ON-LINE MEMORY DUMP

A, Purpose

To provide an on-line memory dump on the printer useful in debugging
programs. It can be used either through a calling sequence in a snap shot
manner or can be called upon by typewriter input.

B. Method

The memory dump routine uses the editing routines and an interruptable
print routine, The memory dump routine saves and stores all registers
and the comparison indicators at the time of entry. Internally, the memory
dump routine uses all 4 arithmetic registers and index registers 1 through
6. It uses index register 5 as a cover register, At the end of the dump
routine, all registers will be restored and control will be returned to the
location following the calling sequence that requested the dump or to the
point at which the interrupt occurred if the dump was requested by the
operator. This exit will occur even if there has been a typed-in restart
during the course of the memory dump. (See Section C.) The memory
dump routine is capable of producing 5 different fixed formats, These are:
instruction, alphabetic, decimal, octal and instruction and octal together.

C. Operating Procedure

1. Program calling sequence

The memory dump routine accepts a calling sequence of the form:

«{s trEvs, de f{ -
SLJ #MPO EX S R
+ lFI 9 ‘i i J - N
+ +FROM, N ;
+ THRU, N

where 'F' represents a single letter format code in the low order
position of the word as designated below, FROM is the starting address
of the area to be dumped, and THRU is the ending address of the area
to be dumped. N can be either 0 or index register 7 through 15, If

N is not zero then the current value of the index register specified will
be used to establish the area being printed. If the third word in the
calling sequence, the FROM location, carries a + sign then the contents
of the registers at the time of entry to the routine will be printed out in
addition to the specified area. If this sign is-negative then the registers

will not be printed out. Hive sa o albbn 7O



REVISION: SECTION:

4-0001

UNIVAC IIT SUPPORT

DATE: PAGE:

July 20, 1962 2

2. Typewriter Input
The dump routine accepts a typewriter request of the form:
MX 11111 22222

where M is the standard typewriter control symbol for a memory print
out, X designates what format is to be used as described below, 11111
designates the first location in octal and 22222 designates the last lo-
cation in octal of the memory area to be printed. The contents of the
registers at the time of the request will also be printed,

Format Codes

The following alphabetic codes will be accepted by the dump:

1 Instruction format 8 words per line
A Alphabetic format 16 words per line
D Decimal 8 words per line
O Octal 8 words per line
B Both instruction and octal together 4 pairs per line

A memory dump may be stopped and restarted by keying in new limits on
the typewriter. This will cause the dump to be interrupted immediately.
The printout of the registers occurs only on the original request, Ordinar-

ily, only a memory dump requested by typewriter input would be modified
in this manner,

If called for, the contents of the registers at the time of entry to the memory
dump routine are printed in the following format:

Low Equal High Indicators ARS8 AR4 AR2 ARl
Control Counter Index Registers 1-7

Index Registers 8-15

D. Memory Space

The dump routine occupies cells 02000 through 02777 and is a permanent
part of the executive routine,



UNIVAC III SUPPORT

REVISION: SECTION:

DATE:

|
|

| 4-0001
| ,

July 20, 1962 ‘ 3

1

E. Examples

1.

NOTE:

SLJ *MPO

+ TA!
AREA1,0
AREA1+59,0

This calling sequence will cause the 60 memory locations beginning
at AREA1 to be printed out in alphanumeric format, 16 locations per
line, The contents of the registers at the time of the call will be
printed out preceding the memory print out. No Index Register modi-
fication will occur.

SLJ $MPO

+ 't

+ 4#START, 0
+ END, 0

This calling sequence will cause the memory locations beginning at
START and ending with END to be printed out in instruction format,

8 locations per line, The contents of the registers will not be printed.
No index register modification will occur,

SLJ #M PO

+ ID!

+ DATA, 9

+ DATA+7,9

This calling sequence will cause the memory locations beginning at
DATA and ending with DATA+7 to be printed out in decimal format, 8
locations per line. The contents of the registers at the time of the call
will be printed out preceding the memory print out, The contents of
Index Register 9 at the time of the call will be used to establish the
starting and ending addresses,

In utilizing the memory dump routine with the ALMOST assembly system,
a standard EQU card should be placed ahead of the ALMOST symbolic deck
which is to be assembled. In this manner, the label for the dunip routine
will be equated with the proper absolute address. The following label is
then restricted from other use in the source program:

MPO



REVISION: SECTION:

4-0001

UNIVAC III SUPPORT

DATE: PAGE:

July 20, 1962 NOTES

. i [ Fog e o,
N AT LN A SRR , ‘
Al \ Y ) A ) i i v S T
N . fo L ok ,«\.“' c B T SYET R



REVISION: SECTION:
4-0002
UNIVAC IIT SUPPORT |
DATE: PAGE:
November 16, 1962 1

B.

Ce

ON-LINE EDITED MEMORY DUMP

PURPOSE

To provide an on-line memory dump on the printer in edited data
or program format for use in debugging,

METHOD

The edited memory dump uses an interruptable printer control
routine, The arithmetic registers, index registers, and the Low,
Equal and Greater indicators are stored and printed on entry to
the dump routine and are restored prior to exit, The routine uses
the arithmetic registers and index registers 8 and 9, The routine
is called as a procedure in the user's program, and is therefore,
covered by the use registers assigned by the user, Care must be
taken to ensure that the covering index register of the routine is
neither 8 nor 9, The edited memory dump can produce either of
two formats:

1, Data - which prints each word in octal, alphanumeric, and
decimal representations.

2, Program - which prints each word in octal, instruction word,
indirect address control word and field select control word
representations, The latter three representations are not
printed if the word is not legitimate for the individual
representation, For example, a word would not be printed
in instruction word representation if bits 15 through 20 of
that word contain a bit configuration equivalent to an invalid
operation code, Similarly, a word is not printed in indirect
address control word representation if a one bit exists in
positions 16 through 20, A word is not printed in field select
control word representation if that word has a one bit in
position 25, or the contents of bits 16 through 20 and 11
through 15 are legitimate representations of a left boundary
and right boundary.

CALLING SEQUENCE

1. The memory dump procedure is included in the user's program
by making a call to the procedure DUMP, This call must include



REVISION: SECTION:
4-0002
UNIVAC III SUPPORT
DATE: PAGE:
November 16, 1962 2

one list, The value of this list expression is the label of
the entry line which must precede the call to the procedure,
Following the procedure call should be an indirectly addressed
jump to the entry line, An example of the calling sequence is:
PRNTMEMY + $
DUMP PRNTMEMY

J *PRNTMEMY

The label PRNTMEMY in the above examples, is assigned by the user and
thus may have any value consistent with UTMOST label conventions,

2. In order to cause a memory dump the user codes the following
sequence:

SLJ PRNTMEMY
+ FROM
+ TO

eee return from memory dump

In the above example, the operand of the SLJ instruction is
a label identical to label of the entry line preceding the
procedure call, The label FROM is the label of the starting
address of the area to be dumped, If the sign of this entry
is + , the area dumped is printed in "program' format, If
the sign of this entry is — , the area dumped is in "data"
format, The label TO is the ending address of the area to
be dumped,

MEMORY_ SPACE

The dump routine requires 581 words in memory, exclusive of the
printer control routine,

EXAMPLE OF OUTPUT

An example of the output from a dump in data format followed by
output in instruction format is shown on page 4, The first line of
the dump printout contains the Control Counter contents in octal
at the point at which the dump was entered, the contents of the
arithmetic registers in octal and an indication of which (if any) of



REVISION: { SECTION:
| 4-0002
UNIVAC III SUPPORT — o
DATE: \ PAGE:
November 16, 1962 3
1

the low (L), equal (E), or greater (G), indicators was set, The
second line of the printout contains the contents of the index
registers in octal, The following two lines of the dump printout
are in the data format. On the left is the octal address of the
first word on the line (four words are printed on each line),.

Each word is printed in octal, alphanumeric and decimal
representation, The next two lines contain the control counter,
arithmetic register, index register, and indicator contents on
entry to the program format dump, The following lines are in
program format, On the left of each line is the address in octal
of the first word printed on the line (two words are printed on

each line), Each word is represented in octal, To the right of
the octal representation is printed the instruction word represen-
tation (if valid). The instruction word representation contains

the mnemonic operation code, AR expression, octal operand
address (preceded by * if position 25 of the word is a one bit),

and the index register expression, To the right of the instruction
word representation is the indirect address control word represen-
tation (if valid) containing the operand address (preceded by * if
position 25 of the word is a one bit) and the index register, Follow-
ing the indirect address control word representation is the field
select control word representation (if valid), containing the left
boundary, right boundary, operand address in octal and index
register., All expressions in each representation (with the e xcep-
tion of operand addresses), appear in the same format as normally
coded UTMOST expressions, The operation code J* indicates a
conditional jump operation, such as JP, JL, or JS., Examination
of the AR expression indicates which command is represented.



Cr 23uyr AR B

Ie

2uury

2uyung

212A3611

34uuushun

Cr 23444 AR A

10
23420
273422
23424
27476
23430
23432
FATRLY
234326
23440
2%yu2
27644
234u6
234K0
27yR2
21454
24Kk
23460
21 UR2
FAIY
23466
23470
23472

23474

T450276A
74510770
76402772
7AUUART T
764852776
76457000
T6UA3002
764647004
Tu3upn3>
00024408
00023420
T43upN3>
00013560
00023440
76420255
76414257
77014043
743000044
77016060
Tuun2264
74643007
Tapu3oin

=764A203>

1 00010 2 np020

1 00010 2 n@un2n 3

LA

ShJ

MNOP

MOP

SL

MOP

MOP

X

X

J*

3

Tuxl

76543210 4

76543210 u

1 076A
4 077n
1 U772
3 0774
5 0776
7 1oon
3 10n»2
11 1lnon
1 U032
10 UVuDs
9 lu2n
1 0n32
5 1R8AN
9 luauu
8 UPRR
6 U287
A Unux
0 unuL
7 unsn
1 02mA4
1 1on7
1 1nin

axun3zo

tC A 1234%6K

4-1A33

15

1w

4uRe6677 D

LURKARTT 2

2u4u4ns

23420

13540

234uy

22334455 1

52741401

11223344

2233045

17

21

21

1

16

tA

20

22

24

3

14

14

11223344

-p79)

AReH}

-7R9N0

[

)

-2=3=1

11223344

n770
n77>
n774
n77A
1000
1002

1004

n285
n2s7

noux

nosn

1007

1010

15

15

15

15

15

G

24252627

223344K5

T45n47A7
74520771
766444773
76450775
76454777
76441001
76465003
76471005
-00024401
74342032
000245130
00000000
003u2280
76402254
TAL1H2RA
74436263
74503006
74502774
77012082
74300054
7430004p
74300046

76461011

0onxn 4 NunNud S NOOSN 6 nNnOAN 7 00N70 A 00017 9 00027 O 0N100 1

tA

NOP

St

NOP

nNOP

SI .

Sx

ARCH

oHJ

2

R

10

12

10+

1

10

2)22Au

1686-1

00nxn 4 NUNWN S NOOSN & AnDAN 7 0ON70 A 0D017 9 00027 O 0N100 1 NN110O

0767
0771
0773
0775
0777
1001
1003
1005
401
0032
U530
0000
U260
0254
0256
0263
1006
0774
0052
0054
u04s
0046

1011

2 no12n 3 27420

15

18

15

18

15

15

(]

18

15

15

18

15

15

15

15

15

15

15

no110 2 no120 3 27u2n

u25420 5 23420

-30313233

24401

24530

00000

bu556677

0

0

0

<EFGH

J T

316368

b-t081(

u2b42n 5 23420

17

17

17

17

17

17

21

17

15
17
19
21

23

12

21

0771
U773
0775
0777
1001

1003

u2sy
0286

0263

00R2

1011

15
15
15
15
15

15

15
15

15

15

15

130ddNS IOT DVAINN

¢000-¥%

z 3 m

S 3 <

s " o

B o

o z
[
Lo
|—l
(1]
'..l
[{e]
[=2]
[\V]

R} [0}

> m

] 0

m 4

m 3

z



REVISION: SECTION:
4-0003
UNIVAC IITI SUPPORT
DATE: PAGE:
November 16, 1962 1

TEST DATA ASSEMBLY PROCEDURES

A.  PURPOSE

To provide a method of creating data files of any format using
UTMOST assembly,

B. METHQOD

Data Files are written on tape using the Intermediate Tape
Handling Routine, Three procedures - FILE, BLOCK and

FINIS generate calling sequences to the output routines, Data
words coded using UTMOST Data Word Generation (see UTMOST,
Section II, page 18) following each call to the BLOCK procedure
are written as a block on the output file,

C. USAGE
1. To specify a file of data the procedure call
FILEs, r

is used, s indicates the Uniservo on which the file is to
be written, r indicates rewind if 1, or no rewind if 0,

2. To specify the contents of a block of the output file the
procedure call BLgCK is used, Following this call are
coded the words desired in the block, The user must code
the entire content of all blocks, including data descriptors,
label flags, and sentinels if these are desired,

3. The end of a block is indicated in the coding by the next
procedure call BLOCK or FILE or FINIS,

4, To end the assembly of data files the procedure call FINIS
is used, More than one file of data may be assembled in
a single assembly,



UNIVAC III SUPPORT

REVISION:

SECTION:

4-0003

DATE:

November 16, 1962

PAGE:

D,

56 The amount of data assembled in any single program is

restricted to that which can be represented within a
program consisting of 12000 words of object code,

6, An END directive should follow the FINIS procedure

call, The label in the operand field of the END directive
should be identical to the label in the label field of the

first call to the FILE procedure,

7.  The procedures FILE, BLOCK and FINIS are included
in the source code for assembly by selecting FILEGEN

on the ACCO run, The intermediate tape handling
routines are included on the DECO run,

EXAMPLE

The sample coding on page 3 will generate a single file on Uniservo 4,
Rewind is specified, The blocks are in order ~ a label block, a data
block consisting of two 5-word items, and two end of file sentinel

blocks,



REVISION: SECTION:
4-0003
UNIVAC IIT SUPPORT
DATE: PAGE:
November 16, 1962 3

, LABEL A OPERATION A OPERAND

ITARIT FAIILE) 1l
 BLigek |0 1
N wEZE BN NN

L ETeE

1
|
!

L b slel 62
L1 coeeoell |

BB NEEEN

—

imal il
Lo O
BEuE. AR
|l|ﬁlolillllll
|
|
1

BluS . AEEREN

N L‘JLH BL'| |

|
!

|

|

|

!

|

L m Ol
 BegeK |
1

|

|

{

|

1

|

| 020002 | | |,

2134561 ) 1 |

|
|
Lt FIERSTT S L
L ‘Wo (ITlEm |
|
1

L 123789 0]

| [ islec o, 151‘||
L W mem |
lLJhplaoLoloﬂlllll
BLACK | L]
1 o06eood ]
BBk L L il
L1l o8leeed | ]
IIFIIMIlslllllilLlLillll
LEMD STRRT |0y ol Ly

IllllllllllllllLlllli

S T o e




UNIVAC IIT SUPPORT

REVISION: ‘ SECTION:
% 5-0001
DATE: l PAGE: ”
U-3519 |dJanuary 15, 1963 I 1

A.

UNIVAC III FLOATING POINT PACKAGE

PURPOSE

FPAC

To provide the user with a floating point package of arithmetic, normalizing, and

converting routines.

METHOD

The floating point package must be used as a unit, and will be included in the sys-

tem as a packaged subroutine.

A reference in UTMOST coding to one of the in-

cluded subroutines will cause the entire FPAC package to be included with the
user's object code at DECO time,

The following routines are included in FPAC and are available to the programmer:

ARITHMETIC ROUTINES

FAD
FMP
FDV
DMP
DDV

Floating Add (or subtract)
Floating Multiply

Floating Divide

Double Precision Multiply
Double Precision Divide

NORMALIZATION ROUTINES

NRM

Normalize

CONVERSION ROUTINES

FTI
ITF
FTD
DTF

|

Floating to Integer
Integer to Floating
Floating to Double Precision
Double Precision to Floating



REVISION: SECTION:
5-0001
UNIVAC IIT SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 2

C. DEFINITIONS

1. Floating Point Number

A UNIVAC III floating point number consists of a two digit exponent
(excess fifty) followed by a ten digit mantissa. A twelve digit float-
ing point number occupies two words of UNIVAC III memory. The
signs of both words must be the same. The decimal point of the man-
tissa lies to the left of the high order digit of the mantissa (i. e. the
magnitude of the mantissa is less than 1. 0). Several examples of
floating point numbers are shown below,

+EEMMMM +MMMMMM represents a two digit exponent EE
(excess fifty) and a ten digit mantissa
MMMMMMMMMM

+1. 0 is represented as +511000 +000000
-0.5 is represented as -505000 -000000
+0. 0 is represented as +000000 +000000

or +500000 +000000

o

Normalized

A floating point number is said to be normalized if the high order (left-
most) digit of the mantissa is greater than zero. A double precision
number is said to be normalized if its high order digit is greater than
zZero.

3. Scale Factor

A scale factor is a two digit exponent (not excess fifty) that is associa-
ted with a double precision number. A scale factor may take on posi-
tive or negative values. A scale factor occupies one word of the
UNIVAC IIl memory. Floating point numbers may be represented as
double precision numbers with scale factors as shown below,

-511000 -000000 = -100000 -000000 +000001
floating point double precision scale factor
+485000 +000000 = +500000 +000000 -000002

floating point double precision scale factor



REVISION: i SECTION
| -
UNIVAC III SUPPORT | - 5m0001
DATE: } PAGE:
January 15, 1963 J 3
U-3519 :

FLOATING POINT PACKAGE ROUTINES, CALLING SEQUENCE,

ENTRY CONDITIONS AND EXIT CONDITIONS

1. Floating Add (or Subtract)

a. Purpose:

To compute the sum of two floating point numbers.
b. Calling Sequence:

SILJ FAD
c. Entry Conditions:

ARS8 - most significant part of the first floating point number
AR4 - least significant part of the first floating point number
AR2 - most significant part of the second floating point number
AR1 - least significant part of the second floating point number

d. Exit Conditions:

ARS8 - most significant part of the floating point sum
AR4 - least significant part of the floating point sum
AR2Z - XXXXXX

AR1 - Positive

HI, LO, and EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point overflow occurs, + 999999 is placed in ARS8 and
AR4. AR1 is set negative. If underflow occurs, +000000 is
placed in AR8 and AR4.

f. Example: The addition of two floating point numbers.

CONTENTS ARS8 AR4 AR2 AR1
BEFORE +551111 +111111 +552222 +222222
AFTER +553333 +333333 XXXKXX positive

g. Timing: 270 microseconds (average)



UNIVAC III SUPPORT

REVISION: SECTION:

5-0001

DATE: PAGE:

U-3519 January 15, 1963

Floating Multiply

a.

Purpose:
To compute the product of two floating point numbers.

Calling Sequence:
SILJ FMP

Entry Conditions:

ARS8 - most significant part of the first floating point number
AR4 - least significant part of the first floating point number
AR2 - most significant part of the second floating point number
AR1 - most significant part of the second floating point number

Exit Conditions:

ARS8 - most significant part of the floating point product
AR4 - least significant part of the floating point product
AR2Z - xxxxxx

AR1 - Positive

HI, LO, and EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If floating point overflow occurs, + 999999 is placed in ARS8
and AR4. ARl is set negative. If underflow occurs, +000000
is placed in AR8 and AR4.

Example: Computing the product of two floating point numbers.

CONTENTS ARS AR4 AR2 AR1
BEFORE +521500 +000000 -53400 -000000
AFTER -546000 -000000 XXXXXX positive

Timing: 627 microseconds (average)



UNIVAC III SUPPORT

REVISION: SECTION:

5-0001

DATE: PAGE:

January 15, 1963

U_-3510

Floating Divide

a.

f.

Purpose:

To compute the quotient of two floating point numbers,

Calling Sequence:

SLJ  FDV

Entry Conditions:

ARS8 - most significant part of the dividend
AR4 - least significant part of the dividend
ARZ - most significant part of the divisor
AR1 - least significant part of the divisor

Exit Conditions:

ARS8 - most significant part of the quotient
AR4 - least significant part of the quotient

ARZ - xxXxxxxX

AR1 - Positive

HI, LO, and EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If the divisor equals zero or floating point overflow occurs,
+ 999999 is placed in AR8 and AR4. ARI1 is set negative. If
underflow occurs, +000000 is placed in AR8 and AR4.

Example: Computing the quotient of two floating point numbers,

CONTENTS ARS8 AR4 AR2 AR1
BEFORE -521500 -000000 -515000 -000000
AFTER +513000 +000000 XXXXXX positive

Timing: 840 microseconds (average)



UNIVAC IIT SUPPORT

REVISION: SECTION:

5-0001

DATE: PAGE:

U-3519 January 15, 1963

Double Precision Multiply

a.

Purpose:
To compute the product of two double precision numbers.

Calling Sequence:
SLJ DMP

Entry Conditions:

ARS8 - most significant part of the first double precision number
AR4 - least significant part of the first double precision number
AR2 - most significant part of the second double precision number
AR1 - least significant part of the second double precision number

Exit Conditions:

ARS8 - most significant part of the double precision product
AR4 - least significant part of the double precision product
AR2Z - xxxxxxX

AR1 - Positive

HI, LO, and EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

None

Example: Computing the product of two double precision numbers.

CONTENTS ARS8 AR4 AR2 AR1
BEFORE +333333 +333333 +300000 +000000
AFTER +999999 +999999 XXXXXX positive

Timing: 392 microseconds (average)



REVISION: SECTION:

5-0001

UNIVAC IIT SUPPORT

DATE: PAGE:

January 15, 1963

=~

U-3519

5. Double Precision Divide

a. Purpose:
To compute the quotient of two double precision numbers.

b. Calling Sequence:

SLJ DDV

NOTE: DDV is a special purpose divide routine that is used by the
floating point mathematical function routines (Sin, etc).
DDV should be used only if the divisor is normalized. The
quotient produced will have an error not greater than three
in the last digit. In most cases, the quotient will have no
error.

c. Entry Conditions:

ARS8 - most significant part of the double precision dividend
AR4 - least significant part of the double precision dividend
AR2 - most significant part of the double precision divisor
AR1 - least significant part of the double precision divisor

d. Exit Conditions:

ARS8 - most significant part of the double precision quotient
AR4 - least significant part of the double precision quotient
AR2 - xXXXXXX

AR1 - Positive

HI, LO, and EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If the magnitude of the dividend is greater than or equal to the
magnitude of the divisor, it is considered an overflow, and

+ 999999 is stored in ARS8 and AR4. ARl is set negative. If
the most significant part of the divisor is zero, it is considered
an overflow.

f. Example: Computing the quotient of two double precision numbers.

CONTENTS ARS8 AR4 AR2 AR1
BEFORE +100000 +000000 +700000 +000000
AFTER +142857 +142857 XXXXXX positive

g. Timing: 710 microseconds (average)



UNIVAC III SUPPORT

REVISION: SECTION:

5-0001

DATE: PAGE:

U-3510 January 15, 1963

6.

Normalize
a. Purpose:

To normalize a floating point number.

Calling Sequence:

SILJ NRM

Entry Conditions:

ARS8 - most significant part of the unnormalized floating
point number

AR4 - least significant part of the unnormalized floating
point number

AR2 - xxXxXxxx

ARl - xxxxxx

Exit Conditions:

ARS8 - most significant part of the normalized floating
point number

AR4 - least significant part of the normalized floating
point number

AR2 - xxxxxX

ARI1 - Positive

HI, L.O, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If underflow occurs, the number + 000000 is placed in ARS8
and AR4.

Example: Normalizing a floating point number.
CONTENTS ARS8 AR4 AR2 AR1
BEFORE +510034 +987654 XXXXXX XXXXXX
AFTER +493498 +765400 XXXXXX  positive

Timing: 260 microseconds (average)



REVISION: SECTION:

UNIVAC IIT SUPPORT 5-0001

DATE: PAGE:

January 15, 1963 9
U-3519

7. Floating to Integer

a. Purpose:
To convert a floating point number into a twelve digit integer.

b. Calling Sequence:
SLJ FTI

c. Entry Conditions:

ARS8 - most significant part of the floating point number
AR4 - least significant part of the floating point number
AR2 - XXXXXX
AR1 - XXXXXX

d. Exit Conditions:

ARS8 - most significant part of the integer
AR4 - least significant part of the integer
ARZ - xxxxxxX

AR1 - Positive

HI, LC, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If the integer is greater than 12 digits, it is considered an
overflow, and + 999999 is stored in AR8 and AR4. ARl is
set negative. If underflow occurs, the number * 000000
is placed in AR8 and AR4.

f. Example: Converting a floating point number into a 12 digit integer.

CONTENTS ARS8 AR4 AR2 AR1
BEFORE -551234 ~-567890 XXXXXX XXXXXX
AFTER -000000 -012345 XXXXXX positive

g. Timing: 152 microseconds (average)



UNIVAC IIT SUPPORT

REVISION: SECTION:

5-0001

January 15, 1963
U-3519

DATE: PAGE:

10

Integer to Floating

a.

f.

g.

Purpose:
To convert a twelve digit integer into a floating point number.

Calling Sequence:

SLJ ITF

Entry Conditions:

ARS8 - most significant part of the integer
AR4 - least significant part of the integer
AR2 - xxxxxX
AR1 - XXXXXX

Exit Conditions:

ARS8 - most significant part of the normalized floating
point number

AR4 - least significant part of the normalized floating
point number

AR2 - xxxxxxX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If underflow occurs, the number + 000000 is placed in ARS.

Example: Converting a 12 digit integer into a floating point number.

CONTENTS ARS8 AR4 AR2 AR1
BEFORE +123123 +121212 XXXXXX XXXXXX
AFTER +621231 +231212 XXXXXX positive

Timing: 242 microseconds (average)



REVISION: SECTION:

5-0001

UNIVAC III SUPPORT

DATE: PAGE:

January 15, 1963

J-3519

11

9. Floating to Double Precision

a. Purpose:
To convert a floating point number into a normalized double
precision number with a two digit scale factor. The scale
factor is not excess fifty and may take on positive or nega-
tive values.

b. Calling Sequence:

SLJ FTD
c. Entry Conditions:
ARS8 - most significant part of the floating point number

AR4 - least significant part of the floating point number
AR2 - xxXXXXX
AR1 ~ xxxxxXxX

d. Exit Conditions:

ARS8 - most significant part of the normalized double
precision number

AR4 - least significant part of the normalized double
precision number

AR2 - scale factor in the two low order digits

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:
None
f. Example: Converting a floating point number into normalized
double precision number with a 2 digit scale factor.
CONTENTS ARS8 AR4 AR2 AR1
BEFORE +489876 +543210 XXXXXX XXXXXX
AFTER +987654 +321000 -000002 positive

g. Timing: 108 microseconds (average)



UNIVAC IIT SUPPORT

REVISION: SECTION:

5-0001

DATE: PAGE:

U-3519 January 15, 1963

12

10.

Double Precision to Floating

a. Purpose:

To convert an unnormalized double precision number with a two
digit scale factor into a floating point number. The scale factor
is not excess-fifty and may take on positive or negative values.

b. Calling Sequence:

SIJ DTF
c. Entry Conditions:
ARS8 - most significant part of the unnormalized double precision
number
AR4 - least significant part of the unnormalized double precision
number
AR2 - scale factor in the two low order digits
AR1 - XXXXXX
d. Exit Conditions:
ARS8 - most significant part of the floating point number
AR4 - least significant part of the floating point number
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered
e. Special Conditions:
If floating point overflow occurs, + 999999 is placed in AR8
and AR4. AR1 is set negative. If underflow occurs,
+ 000000 is placed in AR8 and AR4.

1. Example: Converting double precision to floating point.
CONTENTS ARS8 AR4 AR2 AR1
BEFORE +000012 +345678 +000022 XXXXXX
AFTER +681234 +567800 XXXXXX positive

g. Timing: 238 microseconds (average)



UNIVAC IIT SUPPORT

U-351¢9

REVISION: SECTION:

5-0001

DATE: PAGE:

January 15, 1963

STORAGE ALLOCATION AND TIMING CHART

FOR

UNIVAC III FLOATING POINT PACKAGE

Average Time

Routine Length In Microseconds
FAD 59 270
FMP 32 627*
FDV 33 840**
DMP 13 392
DDV 23 T10**
NRM 7 260%**
FTI 26 152
ITF 15 242 %%
FTD 10 108
DTF 14 238**x
DDV2 38
NRM2 47 Internal
OFLO Subroutines
UFLO
CONSTANTS AND
ERASABLE STORAGE 74
FPAC 398

* Includes time for DMP
*k Includes time for DDV2
***  Tnecludes time for NRM2



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 1

UNIVAC III MATHEMATICAL PACKAGE

MATHPAC

A, PURPOSE
To provide the user with a set of routines for computing trigono-
metric, hyperbolic, exponential, and logarithmic functions, and
for evaluating roots and powers of numbers.

B. METHOD
The mathematical package for the UNIVAC III consists of a set of
routines for evaluating trigonometric, hyperbolic, exponential and
logarithmic functions, and for finding roots and powers of numbers.
This set of routines is called MATHPAC. In general, the routines
in MATHPAC are independent of each other. A reference to one of
the MATHPAC routines will cause the object code for that routine
to be included with the user’'s object code at DECO time.

Some of the MATHPAC routines are not independent and require the
presence of other MATHPAC routines. All the MATHPAC routines
require the UNIVAC III Floating Point Package (FPAC). If one or
more of the MATHPAC routines is used, FPAC will automatically
be included with the user's object code at DECO time.

ROUTINES IN MATHPAC:

TRIGONOMETRIC FUNCTIONS

SIN -  Sine (x)
cOS - Cosine (x)
TAN -  Tangent (x)
TNGT-  Tangent (x)
ASIN -  Arcsine (x)

ACOS -  Arcosine (x)
ATAN-  Arctangent (x)



UNIVAC IIT SUPPORT

REVISION:

SECTION:

5-0002

DATE:

U-3519 | January 15, 1963

PAGE:

2

HYPERBOLIC FUNCTIONS

SINH -  Hyperbolic-Sine (x)
COSH -  Hyperbolic-Cosine (x)
TANH -  Hyperbolic-Tangent (x)

ROOT FUNCTIONS

SQRT -  Square Root (x)
CBRT -  Cube Root (x)

EXPONENTIAL FUNCTIONS

EXP - exX
TENX - 10

LOGARTHMIC FUNCTIONS

LOGN - Log (x) (Base e)
LOGT - Log (x) (Base 10)

POWER FUNCTIONS

XTOP - x*

The following routines are not independent:

SUBROUTINE OTHER ROUTINES USED
TNGT SIN, SQRT
ASIS-ACOS ATAN, SQRT

SINH EXP

COSH EXP

TANH EXP

XTOP

TENX, LOGT



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
January 15, 1963 3
U-3519

C. DEFINITIONS

1.

Floating Point Number

A UNIVAC III floating point number consists of a two digit ex-
ponent (excess fifty) followed by a ten digit mantissa. A twelve
digit floating point number occupies two words of UNIVAC III
memory. The signs of both words must be the same. The
decimal point of the mantissa lies to the left of the high order
digit of the mantissa (i. e. the magnitude of the mantissa is less
than 1.0). Several examples of floating point numbers are
shown below:

+EEMMMM +MMMMMM represents a two digit ex-
ponent EE (excess fifty) and a ten
digit mantissa MMMMMMMMMM

+1. 0 is represented as +511000 +000000
-0.5 is represented as -505000 -000000
+0. 0 is represented as +000000 +000000

or +500000 +000000

Normalized

A floating point number is said to be normalized if the high or-
der (left-most) digit of the mantissa is greater than zero. All
input to MATHPAC must be normalized floating point numbers.
Unnormalized numbers will be treated as zeros.



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 4

D. MATHEMATICAL ROUTINES, CALLING SEQUENCES,

ENTRY CONDITIONS AND EXIT CONDITIONS

1. Floating Sine or Cosine Routine
a. Purpose:

To compute the value of Sine (x) or Cosine (x), where x is a
floating point number. x must be expressed in radians.

Calling Sequence:

SLJ SIN or
SLJ COoS

Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
ARZ - XXXXXX
AR1 - XXXXXX

Exit Conditions:

ARS8 - most significant part of the Sine or Cosine
AR4 - least significant part of the Sine or Cosine
AR2 - xxXxxXxx

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If the magnitude of x is greater than 1010, +000000 is
placed in AR8 and AR4, and AR1 is set negative. If
floating point underflow occurs, +000000 is placed in
ARS8 and ARA4.

Example: Computing the value of Sine (. 18)

CONTENTS ARS AR4 AR2 AR1
BEFORE + 501800 + 000000 XXXXXX ) 9:0.0.0.0:4
AFTER + 501790 + 295734 XXXXXX positive
Length: 174
Time: SINE requires 3540 microseconds (average)

COSINE requires 3580 microseconds (average)



REVISION: SECTION:
UNIVAC TII SUPPORT i
DATE: PAGE:
J-3519 January 15, 1963 D
2. Floating Tangent Routine
a. Purpose:
To compute the value ofTangent (x), where x is a floating
point number. x must be expressed in radians.

b. Calling Sequence:

SLJ TAN
c. Entry Conditions:
ARS8 - most significant part of x

|

AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxXxxxxX

d. Exit Conditions:

ARS8 - most significant part of the Tangent
AR4 - least significant part of the Tangent
AR2 - xxxxxx

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

1
If x is greater than 10 O, +000000 is placed in AR8 and AR4,

and ARI is set negative. If floating point overflow occurs,
+999999 is placed in ARS8 and AR4, and ARl is set negative.
If underflow occurs, +000000 is placed in AR8 and AR4.

f. Example: Computing the value ofTangent (. 26)

CONTENTS ARS8 AR4 AR2 AR1
BEFORE + 502600 + 000000 XXXXXX XXXXXX
AFTER + 502660 + 215417 XXXXXX positive

g. Length: 169

h. Time: 3780 microseconds (average)



REVISION: SECTION:
5-0002
UNIVAC IIT SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 6
Alternate Floating Tangent Routine
a. Purpose:
To compute the value of Tangent (x), where x is a floating
point number. x must be expressed in radians.
b. Calling Sequence:

SLJ TNGT

el

Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - XXXXXX
AR1 - xXxXxXxXxXX

d. Exit Conditions:

ARS8 - most significant part of the Tangent
AR4 - least significant part of the Tangent
AR2 - xXxxXxxxX

AR1 - Positive

HI, 1,O, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If x is greater than 1010, +000000 is placed in AR8 and AR4,
and AR1 is set negative., If floating point overflow occurs,

+ 999999 is placed in AR8 and AR4, and ARI1 is set negative.
If underflow occurs, +000000 is placed in AR8 and AR4.

f. Example: Computing the value of Tangent (. 26)

CONTENTS ARS8 AR4 AR2 AR1

BEFORE + 502600 + 000000 XXXXXX XXXXXX

AFTER + 502660 + 215417 XXXXXX positive
g. Length: 14 + SIN + SQRT

h. Time: 7500 microseconds (average)



REVISION: SECTION:

UNIVAC IIT SUPPORT -

DATE: PAGE:

January 15, 1963

U-3519

4. Floating Arcsine-Arcosine Routine

a. Purpose:
To compute the value of Arcsine (x) or Arcosine (x), where x
is a floating point number. The Arcsine (x) will lie in the in-
terval (-P1/2, + P1/2). The Arcosine (x) will lie in the interval
(O, PI).

b. Calling Sequence:

SLJ ASIN or
SLJ ACOS

c. Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

ARS8 - most significant part of the Arcsine or Arcosine
AR4 - least significant part of the Arcsine or Arcosine
AR2 - xxXxXxxX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If the magnitude of x is greater than 1.0, +000000 is
placed in AR8 and AR4. AR1 is set negative. If float-
ing point underflow occurs, +000000 is placed in ARS8
and AR4,

f. Example: Computing the value of Arcosine (.1986693308)

CONTENTS ARS8 AR4 AR2 AR1
BE FORE + 501986 + 693308 XXKXXX XXKXXXX
AFTER + 502000 + 000000 XXXXXX positive
g. Length: 36 + ATAN + SQRT
h. Time: ARCSINE requires 8000 microseconds (average)

ARCCOSINE requires 8160 microseconds (average)



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
U-3510 |January 15, 1963 8

5. Floating Arctangent Routine

a. Purpose:
To compute the value of Arctangent (x), where x is a floating

point number. The Arctangent (x) will lie in the interval
(-P1/2, + PI/2).

b. Calling Sequence:
SLJ ATAN

c. Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - xoxxxxx
AR1 - xxxxxx

d. Exit Conditions:

ARS8 - most significant part of the Arctangent
AR4 - least significant part of the Arctangent
AR2 - XXXXXX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point underflow occurs, +000000 is placed in
ARS8 and AR4.

f. Example: Computing the value of Arctangent (. 353736878)

CONTENTS ARS8 AR4 AR2 AR1
BEFORE + 503537 + 368780 XXXXXX XXXXXX
AFTER + 503400 + 000000 XXXXXX XXXXXX

g. Length: 141

h. Time: 3990 microseconds (average)



UNIVAC III SUPPORT

REVISION: SECTION:

5-0002

DATE: PAGE:

U-3519 January 15, 1963

Floating Hyperbolic Sine Routine

a.

€.

Purpose:
To compute the value of Hyperbolic-Sine (x), where x is a
floating point number.

Calling Sequence:

SLJ SINH

Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
ARZ - xxxxxX
AR1 - xxxxxX

Exit Conditions:

ARS8 - most significant part of the Hyperbolic-Sine
AR4 - least significant part of the Hyperbolic-Sine
AR2 - xxxxxx

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If floating point overflow occurs, + 999999 is placed in ARS8
and AR4, and AR1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

Example: Computing the value of Hyperbolic-Sine (. 4)

CONTENTS ARS8 AR4 AR2 AR1

BEFORE + 504000 + 000000 XXXXXX XXXXXX

AFTER + 504107 + 523255 XXXKXXX positive
Length: 41 + EXP

Time: 6510 microseconds (average)



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 10
o

7. Floating Hyperbolic Cosine Routine

a. Purpose:
To compute the value of Hyperbolic-Cosine (x), where x

is a floating point number.

b. Calling Sequence:
SLJ COSH

c. Entry Conditions:

ARS8 - most significant part of x
AR4 -~ least significant part of x
AR2 - xxXxxXxXX
AR - xXxXXxXxX

d. Exit Conditions:

ARS8 - most significant part of the Hyperbolic Cosine
AR4 - least significant part of the Hyperbolic Cosine
AR2 - xxxXxxXxX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point overflow occurs, + 999999 is placed in ARS8
and AR4, and ARI1 is set negative. If underflow occurs,
+000000 is placed in ARS8 and AR4.

1. Example: Computing the value of Hyperbolic-Cosine (. 4)

CONTENTS ARS8 AR4 AR2 AR1

BEFORE + 504000 + 000000 XXXXXX XXXXXX

AFTER + 511081 + 072371 KXXKXX positive
g. Length: 15 + EXP

h. Time: 6470 microseconds (average)



UNIVAC IIT SUPPORT

REVISION:

SECTION:

5-0002

DATE:

U-3519 |January 15, 1963

PAGE:

11

8. Floating Hyperbolic Tangent Routine

a.

[¢)

Purpose:

To compute the value of Hyperbolic Tangent (x), where x
a floating point number.

Calling Sequence:

SLJ TANH

Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - XXXXXX
AR1 - xxxxxX

Exit Conditions:

ARS8 - most significant part of the Hyperbolic Tangent
AR4 - least significant part of the Hyperbolic Tangent
AR2 - xxxxxx

AR1 - Positive

HI, I.O, EQ INDICATORS - may be altered

SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If floating point underflow occurs, +000000 is placed in
ARS8 and ARA4.

Example: Computing the value of Hyperbolic Thngent (. 4)

CONTENTS ARS8 AR4 AR2 AR1

BEFORE + 504000 + 000000 XXXXXX XXXXXX

AFTER + 503799 + 489621 XXXXXX positive
Length: 53 + EXP

Time: 6260 microseconds (average)

is



REVISION: SECTION:
5-0002
UNIVAC III SUPPORT
DATE: PAGE:
U-3519 January 15, 1963 12

9. Floating Square Root Routine

a. Purpose:
To compute the value of the SquareRoot of x, where x is

a floating point number.

b. Calling Sequence:
SLJ  SQRT

c. Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxXx
AR1 - xxXxXXX

d. Exit Conditions:

ARS8 - most significant part of the Square Root
AR4 - least significant part of the Square Root
AR2 - xxXXXXX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

If x is negative, the square root of the absolute value of
x is computed. ARl is set to negative.

f. Example: Computing the Square Root of . 44

CONTENTS ARS8 AR4 AR2 AR1
BEFORE + 504400 + 000000 XXXXXX XXXXXX
AFTER + 506633 + 249581 XXXXXX positive

h. Time: 2160 microseconds (average)



UNIVAC IITI SUPPORT

REVISION:

SECTION:

5-0002

DATE:

U-35190 January 15, 1963

PAGE:

13

10.

Floating Cube Root Routine

a. Purpose:
To compute the value of the Cube Root of x, where x is

a floating point number.

b. Calling Sequence:

SLJ CBRT

c. Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - XXXXXX
AR1 - xXxXXXXX

d. Exit Conditions:

ARS8 - most significant part of the Cube Root
AR4 - least significant part of the Cube Root
AR2Z - xXxxXxXxX

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e. Special Conditions:

None

f. Example: Computing the value of the Cube Root of . 44

CONTENTS ARS8 AR4 AR2 AR1
BEFORE +504400 +000000 XXXXXX XXXXXX
AFTER +507605 +904922 KXXXXX positive

h. Time: 2960 microseconds (average)



REVISION: SECTION:

UNIVAC III SUPPORT 5-0002

DATE: PAGE:

January 15, 1963 14
U-3519

11. Floating e* or 10" Routine

a. Purpose: % x
To compute the value of e or 10 , where x is a floating

point number.

b. Calling Sequence:

SLJY EXP (for et or
SLI TENX (for 10)

c. Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - XXXXXX
AR1 - XXXXXX

d. Exit Conditions:

ARS8 - most significant part of ez or 10?{
AR4 - least significant part of e or 10
AR2 - xXxxxxx

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

e, Special Conditions:

If floating point overflow occurs, +999999 is placed in ARS8
and AR4, and ARI1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

f. Example: Computing the value of e’ 16
CONTENTS ARS8 AR4 AR2 ARl
BE FORE + 501600 + 000000 XXXXXX XXXXXX
AFTER + 511173 + 510871 XXXXXX positive

g. Length: 122

h. Time: ex requires 4420 microseconds (average)

10x requires 3780 microseconds (average)



fREVISION: SEDTIOMN:

UNIVAC III SUPPORT

DATE B E

J-3519 danuary 15, 1963

Floating Log (Base ¢) or Log (Base 10) Routine

.

To compute the value of Tog (x) (hase e} orLog(x) hase 1,
where x is a flosting point number,

Calling Sequence:

s LOGN  tor dog (hase ) or
SI.T LOGT  forios (base 10)

Intry Conditions:

ARS - most significunt part of x
AR4 - least significant part of x
ARZ - xXXMXX
ART - xxxxxx

Exit Conditions:

ARS - most significant part of the Log

AR1 - least significant part of the Log

ARZ - xoxxxs

ARl - Positive

HI, L.O, EQ INDICATORS - may he altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If x is negative, the L of the absolute value of x is computed,
and AR1 is set negative, If floating point overflow occurs, -499496
15 placed in AR8 and AR4, and ARL1 is set negative. 1f underfiow
oceurs, +000000 is placed in AR8 and AR+,

(31. 584073985

Example: Computing the value of Log
CONTENTS ARS8 AR4 ARZ AR1
BEFORE + 511584 + 073985 XXXXXX XXXEXX
AFTER + 504600 + 000000 XXXXXX positive

Length: 111

Time: Log (base e) requires 4360 microseconds (averige)

Log (base 10) requires 3700 microseconds (average)



UNIVAC IIT SUPPORT

U-3519

REVISION: SECTION:
5-0002

DATE: PAGE:

January 15, 1963 16

13.

Floating x* Routine

a.

e.

Purpose:

To compute the value of x® where x and p are both
floating point numbers. The sign of xP will always be

positive.

Calling Sequence:

SLJ XTOP

Entry Conditions:

ARS8 - most significant part of x
AR4 - least significant part of x
AR2 - most significant part of p
AR1 - least significant part of p

Exit Conditions:

ARS8 - most significant part of xP

AR4 - least significant part of

AR2 - xxxxxx

AR1 - Positive

HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered

INDEX REGISTERS - unaltered

Special Conditions:

If x is negative, the absolute value of x is raised to the p-th
power, If floating point overflow occurs, +999999 is placed in
ARS8 and AR4. ARl is set negative. If underflow occurs,

+000000 is placed in AR8 and AR4.

Example: Computing the value of (. 6839903787 )3' 2

CONTENTS ARS8 AR4 AR2

BEFORE +506839 +903787 +513000

AFTER +503200 +000000 XXXXXX
Length: 8 + TENX + LOGT

Time: 8150 microseconds (average)

AR1
+000000
positive



REVISION: SECTION:

UNIVAC III SUPPORT 6-0001

DATE: PAGE:

July 20, 1962 1

EDITING ROUTINES

A, Purpose

To provide a means of editing input or output information on a character
by character basis, These routines have the ability to delete or insert
blanks and to accept octal, decimal or alphanumeric information. These
routines do not include any binary decimal conversions,

B. Method

The input edit routine accepts 6 bit characters and transforms them to
bites of 6 bits or less. The output editing routine accepts bites
of from 1 to 6 bits and transforms them to 6 bit characters.

The editing format codes proviced by the calling program as 4-bit X-S 3
numerics act as the heart of the processing for the editing routines, The
editing routines process information by examining these format codes on
a 4 bit bite-by-bite basis and making a corresponding interpretation of the
next sequential input or output character, This resulting character is then
placed in the appropriate portion of the word or words being created, The
editing format codes are written as decimal digits using as many words as
are required to assemble or disassemble (as the case may be) the word or
words of information, It is possible to create multiple edited words on
input and to edit multiple words on output through the use of repeated link-
ages to the editing routines,

C. Memory Space

The editing routines occupy approximately 75 words.

D. Operating Procedures

1. Editing Routines
a, Input

The input edit (IE) routine accepts alphanumeric (6 bit) char-

acters one character at a time, and contracts them to 1, 2, 3,

4, 5, or 6 bit edited bites. Blanks may be removed anywhere

in a word, This process is terminated by the digit '1* in an

editing format word, usually after a complete word has been assembled,



UNIVAC IIT SUPPORT

REVISION: SECTION:
6-0001
DATE: PAGE:
July 20, 1962 2

For example, if the format codes consisted of all 4's then 6
whole words and 1 partial word of alphanumeric information
would be contracted to 1 edited word (see example 1lc in Sect-
ion F), The edit routine will automatically pick up the subse-
quent input words.

To utilize the input edit routine the arithmetic and index regis-
ters noted below should be loaded as indicated and an SLJ IE
instruction executed, When the editing is complete the routine
will return control with the assembled word in ARS,

Output

The output edit (OE) routine accepts 1, 2, 3, 4,5 or 6 bit bites,
one bite at a time and expands them to 6 bit edited characters.
Blanks may be inserted anywhere in a word, This process is
terminated by the digit '1! in an editing format word, usually
after a whole word has been disassembled. For example, if

the format codes consisted of all 4's then 1 data word would be
expanded to 6 whole words and 1 partial word of 6 bit characters.
(See example 2f in Section F), The edit routine will automati-
cally store each output word in consecutive locations as specif-
ied by the calling program,

2. Calling Sequences

The following sequences are normally used for communication with the
editing routines:

a,

b.

SLJ IE Edit input information, Assembled word will be
left in ARS,

Initial Register Settings

ARl = first word of input information

AR2 = :000000

IR2 = location of first input word

IR4 = starting address minus 1 of format codes

SLJ OE Disassemble contents of AR1 and output as con~
secutive characters, Partial word may be left
in AR8, Use PNC (see below) to drain out these
additional characters,



REVISION: SECTION:

UNIVAC III SUPPORT L S

DATE: PAGE:

July 20, 1962 3

Initial Register Settings

AR1 word to be disassembled
AR2 = :000000

AR8 = 1 (causes full word to be gathered be-
fore return)

IR3 = location of first word of output information

IR4 = location of first format codes word minus 1

C. SLJ GNC Get next character (GNC) will place the next
input character in bit positions 1-6 of AR4. The
rest of AR4 will be zero. This routine will ordin-
arily be used only by the edit routines themselves.

d. SLJ PNC Put next character (PNC) will putput bits 1-6 of
AR4 into the next consecutive output character.
This routine may be used to drain out partially
filled output words upon exit from the OE routine,

3. Multiple word editing

Editing of more than one word of input or output may be accomplished
by repeated linkages to the proper routine, The index registers shown
above will be incremented at the time of return to accept the next con-
secutive words, In the case of input the calling routine may store the
assembled word and reenter the IE routine. In the case of output the
next information word to be disassembled may be loaded in AR1 and the
OE routine reentered. On output, if it is desired to add to a partially
accumulated word in AR8, ARS8 should be left intact; otherwise it should
be drained out on a character by character basis using linkages to PNC
(see above),

Editing Codes

Editing codes are written as decimal digits,

Code 0 indicates the end of a format code word. The editing routine will automat-
ically continue on to the next format code word, It is not necessary to end

a format code word with zero as in this case the routine will automatically
recognize the end of word and continue,



UNIVAC III SUPPORT

REVISION: SECTION:

6-0001

DATE: PAGE:

July 20, 1962 4

Code 1 terminates an editing linkage.

Code 2 is normally used for output editing only. A code 2 on output will

cause a bit to be represented as ' - '. A code 2 on input editing should
only be used to interpret the first bit of a word. Codes 2, 4, 5 and 6 all
treat a ' - ' as a 1 bit during input editing,.

Code 3 (space) will cause a space to be skipped on input or generated for
output.

Codes 4, 5 or 6 will treat the information as an octal representation of

the respective number of bits 1, 2 and 3. On input they will cause the infor-
mation to be converted from excess-three representation and on output into
excess-three.

Codes 7, 8 or 9 will cause the information to be transcribed directly with
only a contraction or expansion in the number of bits 4, 5 and 6 as specified.

Editing code table:

end of format code word

end of format code set

sign

space

1 bit octal

2 bits octal implies excess-three conversion
3 bits octal

4 bits (decimal)

5 bits

6 bits (alphanumeric)

W o0 U kLN EHO

Examples

1. Input
DATA FORMAT FORMAT CODE WORDS EDITED DATA FORMAT

a. Alphanumeric +277777 ~999999
+710000

b. Alphanumeric +279977 -9AA99
+100000

c. Alphanumeric +444444 11113111133113111331111131111
+444444
+444444
+444444
+410000



UNIVAC III SUPPORT

REVISION: SECTION:

6-0001

DATE: PAGE:

July 20, 1962 5

2.  Output
DATA FORMAT

a. 1 word octal

b. 1 word decimal

c. 1 word
alphanumeric

d. 1 word
instruction

e. 1 word mixed
information

f. 1 word binary

FORMAT CODE WORDS EDITED DATA FORMAT

+266666
+666335
+100000

+327777
+771000

+339339
+991000

+324630
+663463
+466631

+637335
+373353
+733537
+331000

+444444
+444444
+444444
+444444
+410000

+-777
+7777
+7SSS

+S5-99
+9999

+SSAS
+SAAA

+S-17
+S778
+17S1
+777S

+7598
+S359
+SS3S
+95S3
+S9SS

+AAAA
+AAAA
+AAAA
+AAAA
+AAAA
+AAAA
+ASSS

where in the data and edited data words

7 indicates digits 0-7
3 indicates digits 0-3
1 indicates digits 0-1
9 indicates digits 0-9

A indicates any alphanumeric character

S indicates space

- indicates either - or space on output and the sign bit on input
+ indicates sign is ignored

and the format codes in the format code words are as described in

Section E. 2,



UNIVAC III SUPPORT

REVISION:

SECTION:

6-0001

DATE:

July 20, 1962

PAGE:

NOTE:

The Editing Routines in the typewriter control section of the
executive system should not be used unless contingency inter-
rupt is prevented. In utilizing these Editing Routines with the
ALMOST assembly system, standard EQU cards should be
placed ahead of the ALMOST symbolic deck which is to be
assembled, In this manner, the labels for the Editing Routines

will be equated with proper absolute addresses.

If the Editing Routines of the typewriter control section are
used then the following labels are restricted from other use

in the source program:

IE
OE
GNC
PNC

If the Editing Routines are included in the ALMOST symbolic
source program as a separate sub-routine, then the above
restrictions do not apply. Instead the following labels must

be excluded from other use in the source program:

1E
OE
GNC
PNC
EC1
EC2
EC3
GNM
1E4
IE2
OE1l
OE2



July 20,1962

UNIVAC IITI SUPPORT U-3519

UPDATING PACKAGE A

The attached sheets are the first addition to the SUPPORT III Manual.
There are six routines comprising a total of 32 pages. These routines

should be read carefully.

BOOT 3-0001
WRITE SYSTEM TAPE 3-0002
ON-LINE MEMORY DUMP 4-0002
EDITING ROUTINES 6-0001
MOVE PROCEDURE 6-0002
FLOATING DOLLAR SIGN ROUTINE 6-0003

These routines should be placed in the manual by their numbers and this page

filed directly after the INDEX until a new INDEX is received.



October 10, 1962

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE B

The attached sheets contain important additions to the SUPPORT III
Manual. These routines should be read carefully.

INTERMEDIATE TAPE HANDLING ROUTINE 1-0004

TAPE INPUT-OUTPUT ITEM HANDLING ROUTINE 1-0005
These routines should be placed in the manual by their numbers and
this page filed directly after the INDEX until a new INDEX is
received.
The following routines should be removed from the SUPPORT III Manual
and destroyed. Corrected documentation for these routines can be
found in the UTMOST Manual.

MOVE PROCEDURE 6-0002

FLOATING DOLLAR PROCEDURE 6-0003



November 16, 1962

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE C

The attached sheets contain additions to the SUPPORT III
Manual.

PUNCHED PAPER TAPE READER SYMBIONT 2~-0005
ON-LINE EDITED MEMORY DUMP 4~0002
TEST DATA ASSEMBLY PROCEDURES 4~0003

These routines should be placed in the manual in sequence
oy their section numbers, and this page filed directly
after the INDFEX until a new INDEX is received.



January 15, 1963

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE D

The attached sheets contain important corrections and additions to the
SUPPORT III Manual.

INDEX 3 pages
Replace entire section

INTERMEDIATE TAPE HANDLING ROUTINE 1-0004 5 pages
Replace entire section

TAPE INPUT-OUTPUT ITEM HANDLING ROUTINE 1-0005 23 pages
Replace entire section

TAPE INPUT-CUTPUT VARIABLE SIZE ITEM HANDLING 1-0006 17 pages
Add (new section)

FLOATING POINT PACKAGE 5-0001 13 pages
Add (new section)

MATHEMATICAL PACKAGE 5-0002 16 pages
Add (new section)



March 27, 1963

UNIVAC 111
SUPPORT, U~3519

UPDATING PACKAGE E

The attached sheets contain major additions to the SUPPORT III
Reference Manual, Section 3 (Utility Routines).

INDEX 3 pages

Replace entire section

UPCO (UPdating COntrol) 3-0003 16 pages
Add (new section)

ACCO (Assembler Compiler COntrol) 30004 18 pages

Add (new section)
DECO (DEsignation COntrol) 3-0005 38 pages

Add (new section)

This sheet should be retained and inserted after the INDEX to serve as
a catalogue of change.



Il - Ty 7
P N DA R (V11 3 SRS g 0 - 8 4

INTIRCO! MUNICATION

T¢: UNIVAC III Programmers Frox (NAME): R Klose
LOCATION & DATE: New York - April 9, 1963
DEPARTMENT: UNIVAC Data Processing Center

CARBONS: SUBJECT: UNIVAC III Information Exchange

#NY 1

UTMOST Routines

The following routines are available and debugged and
may help you in programming in UTMOST. They are procedures
and may be called in your program thru SELECT cards at ACCO
time. The celling sequence in your coding i1s indicated.

routins is not on Symbolic library from CSC,
ut 1s obtainable from New York Data Processing Center.

DATA (i.e., SELECT DATA)***
Cenerates constants in UTMCST FORMATS.
Call is
DATA LIST1 LIST2 LIST3 etc.

Where LISTn is a l1ist of 1 thru 4 expressions which will
gznerate data worcs, indirect address control words, etc.,
according to UTMOST data word generation rules.

o

UMP * Kk x

Provides BOSS III on-line memory dump calling sequences
for & variety of dump formats including BOSS III formats, any
specizl formats you would care to define in accordance with
the cescription in SUPPORT III (#4-0001) and three special
formets as below. Also takes care of repositioning paper in
Printer.

Call is

Dowp F, S, E, SIR, EIR 1
or

DATADUMP S, B, SIR, ZIR 1
or

PROGDUMP S, E, SIR, EIR 1
or

BOTHDUMP S, E, SIR, EIR 1

FORM A3C-41 REV, 14 PRINTED IN U, 3. A,



e w 1 T

is format code or address of edit list (see
#4-0001 of SUPPORT III),

S, SiR are the starting address and IR (if any)
of area to be dumped (see #4-0001 of SUPPORT III)

I, BIR are onding address and IR i3 ohove

1 is 1 if Registers and Indicators are desired,
blank or zero i1f not.

DATADUM? call edits each word in alpha, octal
anc¢ decimal formut, words to a line.

PROGDUMP czll edits each word in octal, instruc-
“ion, indirect address, and field select control wordw
formats, 2 words to a line.

BOTHDUMP call edits each word in all formats of
DATADUMP and PROGDUMP, 1 word to a line.

3

=

ZDITRPROC *%*%

Provices the editing subroutines described in SUPPORT III
::6-000L. The feasibility of using the identical coding occurcrci
in BOsSS is nil. To do so, you would have to overlay compu-
ter absoliute location 19 so that =11 contingency interrupts can
bz icgnored while using these subroutines. Should be called in
some convenient area of your program and then the calling se-
guences described in SUPPORT III can be used.

Call is
EDIT.

ng

JMS

Provides Jump Minus with consistent AR designation. Uses
JPS procedure.
Call 1is
JiS AR, M, IR

JIT kwK

Provicdes consistent sense indicator designation and con-
venient mnemonic code.

all is
Jn M, IR
or
Sa
or
Rn
Where n stands for Sense Indicator 1 thru 8

Jn is Jump if Sense Indicator n is set.
Sn is Set Sense Indicator n
Rn is Reset Sense Indicator n



oL
Provices Jump 1if not less, if not equal, if not greater.
Call s
Jul M, IR
orr
Ng M, IR
or
JNG M, IR
JPS
Provides consistent AR designation for Jump Positive.
Call 1is
JPS AR, M, IR
LAED

Provides consistent memory addressing for LAE.

LATD LR, M, IR

Provides convenient mnemonic for generating sets of in-
structions for BRanching 1in your program.
Call is
BRX AR FLD, ADD, IR, 2AIR rLD,ADD,FIR,AIR etc.

Where BRX 4
BRL for Y
BRE for bra: equal
BRG for brarch greater
BRNL for brencn 1Z not less
BRNE for brench if not equal
BRNG for branch it not cLeater

AR 1s the Arithmetic Register(s) spec
PLD,FIR 1is the adcress and IR of fiel

less

"3 ~5 4]

1C
C

O‘W
’_‘I.

SHES )
FJ
FhoFh Fn

}..J,

"
()_

tested
ADD,AIR i1s the adcress and IR to jump to if

branching condition is met.
TYPEOUT

Provides BOSS III calling sequence for typeout control.
Call is
TYPEOUT (a)

TYPECUT (¥)



S the start of the message
on of A.

re forecoing, the following are in the

a procecurs using a set of closed subroutines to
ide variety of calls to move and £ill arcas of memory
where the neocessary parameters can be provided at

or at object time or any combination thzreotf.

INITIAL - a proc o comgletely automate mapping within an
UTMOST program and provica a running check on index coverage.
Also will, when completed, provide a wide variety of convenilent
mremonics inclucing SALT mnemonics. Frovides Typeout and Tyse-

in Control and & portion of initialization.

LTRL - & proc, similar to DATA, to generate litera
stants, i1.e.., constants to appear in thz constant pool rath
than at the spot in your program waere they are calied.

U

VPRI - Due to changes to UTHMOST and the elimination of
s5ity oZ using RES 010C0C in programs, the standara
oC no longer works. A cnange to it will be availablsz

the

i, nD bl

Wi D

snortly.

SNAPSHOT and SNIPSHOT, procs to cenerate opre:n «ad closed
subroutine memory dumps, respectively, of a snapshot nature.
Similar to dump, but can call a large numkter of format-area
combinations with a single call. First the registers and indi-
cators and the address of the call are printed and then your
specific calls.

’rocs are planned to generate coding to edit input images
into & series of right (or left?) justified fields of desired
formats and, conversely, to edit a series of right (or left?
justified fields of various formats into an edited line image
with Zacility of decimal point, blank, and other character cde-
letion and insertion and zero suppression.

The following routines are as yvet unavailable (SUPPORT III):
Paper Tape Symbiont #2-0005
On-line edited Mem. Dump #4-0002Z.

will probably ke provided as a relocatable
han a proc as de ibed.

-
5
(0]
(6]
ks
d]
-3
ky
I
(e
oy
[t]
H
o B



:d in using som» of tho aoove

Great care should e
L, and QBR, while loowxing Like

crocedures. In particuinr,
typical instruction 127 generate two or, in o=
caszc of QBR, sometim b . object ooaLuq, yoEoet v
can oo pq51ly overWOU\ G waen tweing reflexive addressing in

vicinity.

wcC



PRINTED IN U.S.A. U-3519



	0001
	0002
	001-01
	001-02
	001-03
	002-01
	1_01-01
	1_01-02
	1_01-03
	1_01-04
	1_01-05
	1_01-06
	1_01-07
	1_02-01
	1_02-02
	1_02-03
	1_03-01
	1_03-02
	1_04-01
	1_04-02
	1_04-03
	1_04-04
	1_04-05
	1_05-01
	1_05-02
	1_05-03
	1_05-04
	1_05-05
	1_05-06
	1_05-07
	1_05-08
	1_05-09
	1_05-10
	1_05-11
	1_05-12
	1_05-13
	1_05-14
	1_05-15
	1_05-16
	1_05-17
	1_05-18
	1_05-19
	1_05-19a
	1_05-20
	1_05-20a
	1_05-21
	1_05-22
	1_05-23
	1_06-01
	1_06-02
	1_06-03
	1_06-04
	1_06-05
	1_06-06
	1_06-07
	1_06-08
	1_06-09
	1_06-10
	1_06-11
	1_06-12
	1_06-13
	1_06-14
	1_06-15
	1_06-16
	1_06-17
	2_01-01
	2_01-02
	2_01-03
	2_01-04
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_02-05
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	3_01-01
	3_01-02
	3_01-03
	3_01-04
	3_02-01
	3_02-02
	3_02-03
	3_02-04
	3_03-01
	3_03-02
	3_03-03
	3_03-04
	3_03-05
	3_03-06
	3_03-07
	3_03-08
	3_03-09
	3_03-10
	3_03-11
	3_03-12
	3_03-13
	3_03-14
	3_03-15
	3_03-16
	3_04-01
	3_04-02
	3_04-03
	3_04-04
	3_04-05
	3_04-06
	3_04-07
	3_04-08
	3_04-09
	3_04-10
	3_04-11
	3_04-12
	3_04-13
	3_04-14
	3_04-15
	3_04-16
	3_04-17
	3_04-18
	3_05-01
	3_05-02
	3_05-03
	3_05-04
	3_05-05
	3_05-06
	3_05-07
	3_05-08
	3_05-09
	3_05-10
	3_05-11
	3_05-12
	3_05-13
	3_05-14
	3_05-15
	3_05-16
	3_05-17
	3_05-18
	3_05-19
	3_05-20
	3_05-21
	3_05-22
	3_05-23
	3_05-24
	3_05-25
	3_05-26
	3_05-27
	3_05-28
	3_05-29
	3_05-30
	3_05-31
	3_05-32
	3_05-33
	3_05-34
	3_05-35
	3_05-36
	3_05-37
	3_05-38
	4_01-01
	4_01-02
	4_01-03
	4_01-04
	4_02-01
	4_02-02
	4_02-03
	4_02-04
	4_03-01
	4_03-02
	4_03-03
	5_01-01
	5_01-02
	5_01-03
	5_01-04
	5_01-05
	5_01-06
	5_01-07
	5_01-08
	5_01-09
	5_01-10
	5_01-11
	5_01-12
	5_01-13
	5_02-01
	5_02-02
	5_02-03
	5_02-04
	5_02-05
	5_02-06
	5_02-07
	5_02-08
	5_02-09
	5_02-10
	5_02-11
	5_02-12
	5_02-13
	5_02-14
	5_02-15
	5_02-16
	6_01-01
	6_01-02
	6_01-03
	6_01-04
	6_01-05
	6_01-06
	_01
	_02
	_03
	_04
	_05
	_10
	_11
	_12
	_13
	_14
	xBack

