
TECHNICAL BULLETIN

Re"erence ltIIanual

UNIVAC III SUPPORT

N'l 00285

REVISION: SECTION:

2 INDEX

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 1

INDEX

SECTION PAGE --
GENERAL INTRODUCTION INTRO 1

l. INPUT-OUTPUT ROUTINES

ON-LINE BINARY CARD LOADER 1-0001 1

COMPOSITE CARD LOADER 1-0002 1

CARD READER ROUTINE 1-0003 1

INTERMEDIATE TAPE HANDLING ROUTINE 1-0004 1

TAPE INPUT-OUTPUT ITEM HANDLING
ROUTINE 1-0005 1

TAPE INPUT-OUTPUT VARIABLE SIZE
ITEM HANDLING 1-0006 1

2. SYMBIONT ROUTINES

PUNCHED PAPER TAPE READER SYMBIONT 2-0005 1

3. UTILITY ROUTINES

BOOT 3-0001 1

WRITE SYSTEM TAPE 3-0002 1

UPCO

INTRODUCTION 3-0003 1

CONTROL CARDS 5

OPERA TIONAL CONTROL 15

ACCO

INTRODUCTION 3-0004 1

CONTROL CARDS 5

OPERATIONAL CONTROL 16

DECO

INTRODUCTION 3-0005 1

GENERAL 4

REVISION: SECTION:

UNIVAC m SUPPORT
2 INDEX

DATE: PAGE:

U-3519 2

=iIIIIIIIrit;

INDEX

SECTION PAGE

DECO (CONT'D) 3-0005

CONTROL CARDS 22

OPERA TIONAL CONTROL 36

SYSTEM TAPE 37

4. PROGRAM TESTING AIDES

ON-LINE MEMORY DUMP 4-0001 1

ON-LINE EDITED MEMORY DUMP 4-0002 1

TEST DATA ASSEMBLY PROCEDURES 4-0003 1

5. MATHEMATICAL ROUTINES

FLOATING POINT PACKAGE 5-0001 1

FLOATING ADD (OR SUBTRACT) 3

FLOATING MULTIPLY 4

FLOATING DIVIDE 5

DOUBLE PRECISION MULTIPLY 6

DOUBLE PRECISION DIVIDE 7

NORMALIZE 8

FLOATING TO INTEGER 9

INTEGER TO FLOATING 10

FLOATING TO DOUBLE PRECISION 11

DOUBLE PRECISION TO FLOATING 12

MATHEMATICAL PACKAGE 5-0002 1

SIN SINE(x) 4

COS COSINE (x) 4

TAN TANGENT (x) 5

TNGT TANGENT (x) 6

REVISION: SECTION:

UNIVAC m SUPPORT
2 INDEX

DATE: PAGE:

U-3519 3

-

INDEX

SECTION PAGE

MATHEMATICAL PACKAGE (CONT'D) 5-0002

ASIN ARCSINE (x) 7

ACOS AR COSINE (x) 7

ATAN ARCT ANGENT (x) 8

SINH HYPERBOLI C-SINE (x) 9

COSH HYPERBOLIC-COSINE (x) 10

TANH HYPERBOLIC-TANGENT (x) 11

SQRT SQUARE ROOT (x) 12

CBRT CUBE ROOT (x) 13

EXP eX 14

TENX lOx 14

LOGN LOG(x) (BASE e) 15

LOGT LOG(x) (BASE 10) 15

XTOP xP 16

6. MISCELLANEOUS ROUTINES

EDITING ROUTINES 6-0001 1

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

June 1, 1962

GENERAL INTRODUCTION

SUPPOR T III is a dynamic expanding library of routines and subroutines designed
to facilitate the efficient utilization of UNIVAC III. The SUPPORT TIl library falls
into six categories: Input, Output, Utility, Program Testing Aids, Mathematical,
and Miscellaneous. All of the routines in the library are integrated with other
UNIVAC III programs such as ALMOST, UTMOST, COBOL, BOSS III, FORTRAN
IV for UNIV AC III and SOR T III.

As other routines become available, they will be incorporated in this manual.

INTRO.

1

REVISION: SECTION:

UNIVAC m SUPPORT
DATE:

June 1, 1962

ON-LINE BINARY CARD LOADER

A. Purpose:

Provide a simple, compact binary card absolute loader for the on-line
reader. This loader is used to load ALMOST assembly output.

B. Method:

PAGE:

Cards are loaded with interrupt prevented into the locations specified on
each card. Low-speed card reading of 175 cards per minute is employed.

C. Restrictions:

Card reader will only handle up to 24 words per card of object information.

D. Memory Space:

Program uses the first 200 octal words of storage, including the card image
which is located at 100 octal.

E. Input Card Form:

Input card form is standard Uill binary.

F. Operating Procedure:

Hit general clear. Load one card and hit run.

1-0001

1

REVISION: SECTION:

UNIVAC m SUPPORT
DATE:

June 1, 1962

BINARY CARD FORMATS

The output of an ALMOST assembly is a deck of 80 column punched cards.
The cards are punched in binary, for loading into the UNIVAC III using the
binary loader in untranslated mode.

PAGE:

In an 80 column Wltranslated card a word is 4 columns wide 6 rows long (4x6).
Word 1 occupies columns 1-4, rows 12-3; Word 2, columns 1-4, rows 4-9;
Word 3, columns 5-8, rows 12-3; Word 4, columns 4-9; etc. In this fashion
the upper half of a card contains the odd numbered words (1, 3, 5, 7, 39),
the lower half of the card contains the even numbered words (2, 4, 6, •.. 40).

ALMOST produces two types of cards: Data Cards (the data which the assembler
produces--instructions, constants, etc.) and a Transfer Card. The Data Cards
need not be loaded in any special order since each card carr ies the address of
the first data word in the first word on the card. (See Data Card Format
following.)

A Data card may contain up to and including 28 words.

The first word contains the address where the first data word will go in memory.

Word 2 is of special format to cause the card to have even parity.

Word 3 contains the sign bits for the data words; a blank for +, a punch for -.

Word 4 is always blank.

Words 5-28 contain the data words.

A Transfer Card contains the starting address of a program (where control
is transferred after the program has been loaded into memory) and the index
registers specified in the ALMOST USE statement with the contents they should
contain. The binary loader loads the program into memory, loads the index
registers specified in the transfer card with the amounts given and transfers
control to the address specified in word 1 of the Transfer Card.

1-0001

2

REVISION:

UNIVAC m SUPPORT
DATE:

June 1, 1962

DATA CARD

WORl)

A
/' '" 1 3 S '7 9 II 13 IS' 17 19 21 23 25 ~7

.2 00 0 0 D 0 DOD 0

1I 0 0 0 0

0 DOD DODD o D DO n (]
0 0 000 0

2 D 0 (] 00

.3 0 00 DO 0 0 0

4 00 0 on 0 D 0

5 o a 00 0 0

" 0 D 0 (lOOO o 0 o 0 D 0

7 0 0 0 Q 0 D n
i Q D

9 Q 0 DOD 0 Q (]

I - ~ S - 8 9 - It Ii - I' 17 -20 21- 2~ ~S-li lot- ~2 &3-~ 17-40 4141 <4' 42 $"

2 ... " r lOll »4 16 II ~o 2. 22 24 "

~,----------------------------~--------------------------_/

WORD 1

WORD 2

WOR.I)

2 0 I 1 0 5 5 4

10 0 0 010\0 o oio 0 110 0 o 1 o 1 II o 1 1 0 01
3 2. I 0 II 12 a 2. I • 0 II 12. 3 2 I 0 II 12 ~ 2. I 0 /I 12-

Col. 1 Col. 2 Col. 3

Bits 1 - 15 Address of First Data Word
10554 8

(see sample output listing)

Bits 16 - 24

Col. 4

Count of number of Data Words (C ~ 24)

'Exclusive Or' of all other words on the card
(causing the card to have even parity)

Col. 1 Col. 2 Col. 3 Col. 4

[1 0 0 0 1 1\0 1 1 0 0 110 0 0 0 1 0 10 0 0 0 1 0 (
9"11 7 ",$4 9'S'lw S49" 7 <0.54 9 ~ 7(o5~

SECTION:

1-0001

PAGE:

3

REVISION:

UNIVAC m SUPPORT

WORD 3

WORD 4

DATE:

June 1, 1962

Col. 5 Col. 6 Col. 7 Col. 8

3 2 I 0 tl 12 3 2. I 0 II 12 ..3 2 I 0 II '2 3 2 J 0 II 12

o 0 010 010 0 000 010 0 0 0 0 010 0 0 0 001

1 f Itt ~ign of Data Word 16 +
I Sign of Data Word 15 +
Sign of Data Word 14 +

Sign of DataWord 3 + Sign of Data Word 13 +
Sign of Data Word 2 +

Sign of Data Word 1 +

Signs of Data Words:

bit 24 = Sign of Data Word 1
bit 23 = Sign of Data Word 2

etc.

Always Blank

WORDS 5 - 28 The Data Words

WORD 5

WORD 6

Col. 9 Col. 10 Col. 11 Col. 12
?> 2 I 0: /I 12 '3 2 I 0:" 12 3 2: J 0 1I 12 3 2 , 0 " 12

[1 0 0 ~ 0 1 0 0 I 0 0 10 I! 0 1 0 0 11 1 1 1 1 0 I
I ,

On output listing this is instruction word

Bits
24 - 21

20 - 15

14 - 11

10 - 1

IR 9 =11 8

OP =24 =BA
8

AR = 018 = ari thmetic register 4

10 bit address =0476
8

Col. 9 Col. 10 Col. 11 Col. 12
9- ~ 1 ~: 5 4 C) "8 7 b S 4 9 i! 7 '" S 4 9"'i '7 b 5 4

J 10 0 1;0 110 1 0 0 0 010 110 11 ob 0 0 1 0 01
I I

This is an instruction word

SECTION:

1-0001

PAGE:

4

10554

10555

UNIVAC m SUPPORT

Bits

24 - 21 m 9 = 11

20 - 15 OP = 24 = BA
8

REVISION:

DATE:

June 1, 1962

14 - 11 AR = 018 = arithmetic register 4

10 - 1 10 hit address = 06448

etc.

SECTION:

1-0001

PAGE:

5

REVISION: SECTION:

UNIVAC m SUPPORT

WORD 1

WORD 2

to 0
?> 2

DATE:

June 1, 1962

TRANSFER CARD

wo~

/'0.. r , ~ :s .., "
o 0 0 0

0 0

0 0 0 0

0 0

0 0 0

0 0 D

0 0 0 0

0 0

0 0

0

0 0 a 0 o 0

0 0

,- ~ $.' ~ -,a 1'!.-1c. '1- ~o

,2 ~
woflJ)

~ O's ~, Starting
I

o 0 0 0 10 0
I o II 12 3 !.

Col. 1

0;0 o 1 I 0 0
1,0 III~

Col. 2

1

3 2

o

Address

I 0 II 12 3 2. t 0 1\ IZ

Col. 3
6 7

Col. 4
1

8

PAGE:

Exclusive or (Logical Difference) of all other words on the card
(causing the card to have even parity).

[i 0 0 1 0 01 0 0 0 0 0 11 0 1 0 1 1 0 11 1 1 0 0 11
9 ~ 7 "$ 4 9 ti' 7 ~ .s 4 '7 'i 7 ~ 54 '7 g 7 "" $'.:t

Col. 1 Col. 2 Col. 3 Col. 4

1-0001

6

REVISION: SECTION:

1-0001
UNIVAC m SUPPORT 1-----------+---------- - -----.---

DATE:

June 1, 1962

WORDS 3 and 4 Blanks

WORDS 5 - Up

Index Load Words:

Bits 24 - 21 Index to be loaded
20 - 16 Zeros
15 - I Amount to be loaded

WORD 5 24 21 . 1<0 ~- IS

I, 1 0 0 + 01 0 0 01
001

10 o 0 o 0 01 0 o 0 000

3 It l 0111 .2. 3 2- I .0 " 12. a 2. I o " 12 3 2 I 0 II 12

IH 9 1 0 0 0 o 8-

WORD 6 - 10
t I

10 0 0lO 010 0 OlO 0 110 10 0 0 010 0 0 0 0 0

IR8 (· I 2 0 0 0
8

WORD 7 I l

~~~ 01
0 ojo III 01 0 0 0 o 0 0 0 o 0 0 0 0 

IR 7 
( 

I I 4 0 0 0 
8 

WORD 8 I 
, 

I 

01 0 01 0 0 III 1 0 o 010 o 1 1 0:0 0 0 o 0 000 

IR 6 
c 

1 6 0 0 0 
8 

WORD 9 
I 

I 
I 

r 

I 

1]0 0 I 0 
I 

1 010 o 010 0 0 0 00.1 010 0 O~O 000 

IR5 2 0 0 0 0 
8 

WORD 10 , 
I 

010 O~O 010 0 010 1 010 10 o 0 010 0 0 000 
1 

IR 4 2 2 0 0 0 
8 

PAGE: 

7 



REVISION: SECTION: 

1-0002 
UNIVAC m SUPPORT r-----------+------------

DATE: PAGE: 

June 1, 1962 

COMPOSITE CARD LOADER 

A. Purpose: 

Provide a loader, moderate in scope, which will load absolute instructions or 
data in a variety of octal, decimal, and alphabetic formats, using the on-line 
80-column card reader. 

B. Method: 

1 

Card formats are recognized by absence of punching in characteristic columns. 
A reading speed of 350 cards per minute is employed. 

C. Restrictions: 

Blind determination of card form is made and no check is made by the loader 
as to the propriety of the contents of the card. Requires blank card at end of 
deck if no cards follow. 

D. Mapping: 

Current version of the program is at 1400 - 1677 octal. Card images are at 
100

8 
and the read subroutine is at 1716 octal. 

E. Input Card Forms: 

(See end pages Ch. 5.) 

F • Operating Procedure: 

If program is used to make patches to a standard absolute binary deck, then 
the transfer card from the absolute deck should be removed and the composite 
loader substituted in its place. Behind this should be placed the composite 
cards to be loaded and the index load instructions in composite card format, 
followed by a composite transfer card. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
1-0002 

DATE: PAGE: 

June 1, 1962 2 

================================================~================================= 

Col. # 

G 1. General Formats 

0 

1 2 

7 7 

7 7 

7 7 

7 7 

7 7 

7 7 

2. 

Let 1, 3, 7, and 9 represent digits less than or equal to the written number 
(e. g., 3 may represent 0, 1, 2, or 3). Let A represent any character. 
FollOwing are the six word formats accepted by the loader~ 

1 

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

7 7 7 1 7 7 7 1 7 1 

7 7 7 1 7 3 7 - 3 7 1 

7 7 7 1 7 3 7 7 

7 7 7 7 7 7 7 7 7 7 7 

7 7 7 9 9 9 9 9 9 

7 7 7 A A A A 

Description of Format 

Instruction Word 
1 - 5 location 

7 sign 
8 - 9 index (4 bits) 

11 - 12 operation (6 bits) 
14 - 15 A field (4 bits) 
17 - 20 M field (10 bits) 

Indirect Address Word 
1 - 5 location 

7 sign 
8 - 9 index (4 bits) 

16 - 20 address (15 bits into bits 1 - 15) 
bits 16 - 20 are cleared 

2 

8 9 0 

7 7 7 instruction format 

7 7 7 field select word format 

7 7 7 indirect address word format 
(col. 15 need not be punehed) 

octal data format 

decimal data format 

alphanumeric data forrnat 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE: 

June 1, 1962 

2. Description of Format (Cont'd.) 

Field Select Word 
1 - 5 location 

7 sign 
8 - 9 index (4 bits) 

11 - 12 left bit in octal excess three (5 bits) 
13 

14 - 15 
17 - 20 

Octal 
Word 
1 - 5 

7 

8 - 15 

Decimal 
Word 

1 - 5 
7 

8 - 13 

Character 
Word 

1 - 5 
7 

8 - 11 

right bit in octal excess three (5 bits) 
M field (10 bits) 

location 
sign 
octal representation of word 

location 
sign 
decimal representations of word 

location 
sign 
character representation of word 

3. Index Loading and Transfer Cards 

a. Index Card 

PAGE: 

If the location (columns 1-5) is greater than zero and less than 00020, 
the data is loaded in cell zero and the corresponding index register is 
loaded from cell zero. 

b. Transfer Card 

1-0002 

3 

If the location (Columns 1-5) is zero or blank, the data is loaded in cell 
zero and program control is transferred by means of a J * 0 instruction 
(Indirect Addressing). 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE: PAGE: 

June 1, 1962 

CARD READER ROUTINE 1.0003 

A. Purpose: 

To maintain a flow of cards through the Card Reader at its rated speed of 
700 cards per minute, making the images available to the program as 
required in either translated or untranslated format. 

B. Method: 

To maintain its rated speed, the Card Reader is operated as a real-time 
device. Since the reader is not clutched, function specifications are made 
available at each interrupt so that the position of cards at the stations 
within the reader will be accounted for by the reader program. The basic 
dispatcher for the card reader (synchronize control routine for the reader) 
maintains six buffer areas within the memory of the computer. One is the 
active read-in area and of the remaining five, one is used to hold the card 
currently available to the worker program, and the other four available for 
the cards already committed to the reader. A "request" for a card implies 

1-0003 

1 

that the buffer area containing the card image previously requested is now 
released and available for a new image and that four cards have been committed 
to the reader follOwing the one currently being requested. 

C. Restrictions: 

The commitment of four cards implies that four blank cards should follow 
the end of a card deck and also that, when a change from translated to 
untranslated mode or vice versa is made, the succeeding four card images 
will be made available in the previous mode. All ARs and IRs 1 and 2 must 
be preserved by the worker program if deSired, or made available to the 
reader routine at the time control is transferred to the Card Routine from 
the worker program. 

D. Programming Procedures: 

1. Card Request: To request a card image, the programmer should 
provide the following packet of coding: 

n 
n+l 

n+2 
n+3 

SLJ 
( 

*CDRQ 
) 

Execute Card Request 
Starting Location of Card Image provided 
on ready return 
Not Ready Return Exit 
Ready Return Exit 



REVISION: SECTION: 

UNIVAC m SUPPORT 
1-0003 

DATE: PAGE: 

June 1, 1962 2 

==========================================================================~=============~ 

Location "n" contains an SLJ instruction indirectly addressing the 
Card Request subroutine. If an image is not available, control will 
be returned to location "n+2", and the programmer provision should 
be made in this location for this eventuality. If an image is available, 
control will be returned to location "n+3" and the base address of the 
card image will be provided in location "n+ 1". 

2. Release: To release control of the processor to an alternate program 
when an image is not available, the programmer should provide t.he 
following packet of coding: 

p SLJ *CDRL 
p+ 1 (Return entrance) 

When control is transferred to location "p", the Release exit, the 
processor will be released to another program. When an image is 
available, control will be returned to location "p+1" for further card 
processing. An entry to the Request subroutine on Return will produce 
an immediate "Ready" exit. 

3. Translation Mode: To specify an untranslated image, a zero should be 
placed in bit 18 of CDQF (Card Request Communication word) in the 
input/ output communication region. When the mode is changed, four 
images will be supplied in the previous mode. 

4. Stacker Selection: Cards are normally directed to stackers 1 and 2, 
alternating every 900 cards. Cards incurring an error or fault are 
directed to stacker o. 

5. Error Recovery: When an error is detected, the card is sent to stacker 
o. The operator notifies the routine by a type-in when and whether 
to retry reading the card. The basic dispatcher Will return to the 
interrupted environment while waiting for the type-in. 

NOTE 1: The Card Reader routine utilizes all arithmetic registers and 
Index Registers 1 and 2. These must be preserved by the programmer if 
it is necessary to retain their contents. 

NOTE 2: In utilizing the Card Reader Routine with the ALMOST assembly 
system, standard EQU cards should be placed ahead of the ALMOST symbolic 
deck which is to be assembled. In this manner, the labels for the Card Reader 
Routine will be provided. 



REVISION: 

1 I 

SECTION: 

1-0004 

UNIVAC m SUPPORT ------------ -----t---
DATE: January 15, 19G3 ! PAGE: 

I 1 
U-3519 

INTERMEDIATE TAPE HANDLING ROUTINE 

A. PURPOSE 

To provide a set of tape handling routines at a block level of communication. 

B. METHOD 

1. Structure of the Intermediate Tape Handling Routines 

The Intermediate Tape Handling Routines permit the manipulation of 
UNIV AC I I I tapes on the block level. This permits the following 
functions: Block Read Forward, Block Read Backward, Scatter Read 
Forward, Scatter Read Backward, vVrite, Rewind after Reading! Rev·rind 
after ivVriting and Position Tape (skip a given number of blocks with no 
data transmission). 

The checking for labels, end-of-file sentinels, end-of-reel sentinels 
and by-pass sentinels is left to the user as is the implementation of 
item advance. 

All of the subroutines which perform the above mentioned functions 
specify a Symbolic Tape Unit Reference. This Symbolic Tape Unit 
Reference is the label or numeric addres s of a location which contains 
in bits 24-21 the logical tape unit number. vVhen BOSS III is loaded, 
locations octal 0200 through octal 0217 contain, in order, the logical 
tape unit numbers 0 through 15. The user may equate any label he 
desires with these locations. 

The levels of the Intermediate Tape Handling System are: 

a. Intermediate Level Tape Handling Routines 

b. Basic Request and Verify Routines 

c. Basic Interrupt Dispatchers 

The use of the Intermediate Level Tape Handling Subroutines is dis­
cussed below. The basic request and verify routine and the basic 
interrupt dispatchers are described in the BOSS I I I manual. 



SECTION: 

UNIVAC m SUPPORT 

I REVISION: j 

~l 1-0004 

DATE:January 15, 196-3---+-PA-c;-E-:---

U-3519 

2. Tape Formats 

This level of tape input-output communication can accept any tape 
formats. The processing of the contents of a tape is completely 
at the discretion of the user as described above. It is recommended, 
however, that the tape formats as described in the section on Tape 
Input-Output Item Handling in this manual be used for processing at 
the block level. 

3. General Procedures 

If the user of the Intermediate Tape Handling Routine wishes to 
perform simple buffering, two alternating areas may be employed 
for this purpose by specifying a verification cycle of 2. This causes 
the return from a request for a tape operation, with a specified 
reserve word R, to be delayed until the previous request with the 
same reserve word specified has been completed. 

Matching requests with returns is accomplished by reference to 
the reserve word R within the Intermediate Level Tape Handling 
Routine. The matching is done by storing the function specification 
word in the reserve word R before transmitting it to the basic dis­
patcher. A unique reserve word must be provided for each tape 
unit referred to by the user at the intermediate level. Each reserve 
word must have an initial value of zero. Swapping of tapes and of 
input-output areas may be accomplished either by modifying the 
calling sequence or by providing different calling sequences. 

If the user wishes to use a demand read method of processing tape, 
waiting until each tape action is completed before returning to the 
calling program, a verification cycle of 1 should be used. No reserve 
word R is required in this case. 

A verification cycle of 0 will cause the specified tape action to be 
initiated. Control will then be immediately given back to the calling 
program which must determine for itself when completion of the tape 
action has occurred by direct communication with the appropriate 
basic tape dispatcher. This is accomplished by executing a verify 
calling sequence as described in the BOS.s III manual. 

Verification cycles greater than 2 will operate as though they 
were 2. 

2 

..... 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT ----- ---------- -- ------------+----

DATE:January 15,1963 PAGE: 

U-3519 

C. CODING PROCEDURES 

I. Block Read Forward 

n SLJ RDBF 

n+l + Symbolic Tape Unit Reference 

n+2 + Address of first word of read-in area 

n+3 + R, V 

n+4 Return Point 

V is the code for the verification cycle desired: 0, 1 or 2. R is 
the address of the Reserve word if V is 2. Otherwise R should 
~...ge.F.e. '" 

2. Block Read Backward 

n SLJ RDBB 

n+l + Symbolic Tape Unit Reference 

n+2 + Address of last word of read-in area 

n+3 + R, V 

n+4 Return Point 

3. Scatter Read Forward 

n SLJ RDSF 

n+1 + Symbolic Tape Unit Reference 

n+2 + Address of first word of SCAT control list 

n+3 + R, V 

n+4 Return Point 

1-0004 

3 



REVISION: SECTION: 

1 1-0004 
UNIVAC m SUPPORT 

DATE:January 15,1963 PAGE: 

U-3519 4 

=====================================================================================~ 

4. 

n 

n+1 

n+2 

n+3 

n+4 

5. 

n 

n+1 

n+2 

n+3 

n+4 

n+5 

n+6 

Scatter Read Backward 

SLJ RDSB 

+ Symbolic Tape Unit Reference 

+ Address of last word of SCAT control list 

+ R, V 

••• Return Point 

Write (Gather or Block) 

SLJ WRIT 

+ Symbolic Tape Unit Reference 

+ Addres s of first word of write-out area or 
address of first word of SCAT control list 

+ Output block word count 
(Zero for gather write) 

+ R, V 

••• End-of-tape Return Point 

••• Normal Return Point 

A block write will be simulated if a word count is specified. This 
word count may not exceed 4096. A word count of zero indicates 
a gather write is desired. In this case the third word of the calling 
sequence is then as sumed to be the address of the first word of a 
SCAT control list provided by the user. The end-of-tape return 
is used to indicate that the end of tape window on tape was reached 
on the specified tape unit during the previous tape function. Verifi­
cation cycles and the use of a reserve word are used as described 
above for tape reading. 



UNIVAC m SUPPORT 

I REVISION' LI SECTION: 

f~.~ 1 1-0004 
DAT~~ -- ------- ~ ------ i ~~~: -- ----

I January 15. 1963 I 

I II" U-3519 v 
I i 

6. Rewind after Reading 

7. 

8. 

n SLJ RDRW 

n+l + Symbolic Tape Unit Reference 

n+2 ••• Return Point 

n 

Normally, return to the calling program will not be made until 
the rewind has been initiated by the specified tape unit. The 
return will be made immediately after the request has been made 
without waiting to verify initiation if a I-bit is placed in position 
16 of the second word in the calling sequence. If the second word 
in the calling sequence, the symbolic tape unit reference line, is 
negative, the tape will be rewound with interlock. If it is positive, 
the tape will be rewound without interlock. 

Rewind after Writing 

SLJ WRRW 

n+l + Symbolic Tape Unit Reference -

n+2 ••• Return Point 

Position Tape 

n SLJ TPOS 

n+l + Symbolic Tape Unit Reference 

n+2 + Number of Blocks to be Skipped 

n+3 ••• Return Point 

The subroutine skips the number of blocks indicated. A plus sign 
on the third word in the calling sequence, the number of blocks to 
be skipped, indicates skipping in a forward direction; a minus 
sign on this word indicates skipping in a backward direction. 



I SECTION: I REVISION: 

I 
"l 
.1 

I 1-0005 
UNIVAC m SUPPORT ------------------+-- - ---

DATE: I PAGE: 

U-3519 January 15, 1963 

TAPE INPUT-OUTPUT ITEM HANDLING 

A. Purpose 

To provide a set of tape input-output item handling routines. 

B. Method 

1. structure of the Item Handling Subroutines 

File description tables constitute the highest logical level within 
the tape Input-Output system. Entries in this table are either 
defined as constants by the user or compiled from given paramenters 
by a special subroutine. 'rhese tables are interpreted and the 
information in the files they represent is processed by a group of 
subroutines which perform the functions customarily associated 
with item handling operation: open, close, read, write and with the 
UNIVAC III system, write-read. The item handling operators in 
turn communicate to lower-level routines which act as a file dis­
patcher. The file dispatcher n1aintains a queue of requests generated 
by the item handling operators and coordinates these requests with 
the request-and-verify mechanism of the basic interrupt system. 
This coordination is accomplished through the intermediate level 
(block handling) tape input-output package which consists of the 
following block handling functions: read, write, overwrite, position 
and rewind. The levels of the item handling input-output system are 
thus seen to be: 

a. File description table entries 
b. Item handling operators 
c. File dispatcher subroutines 
d. Intermediate level tape handling subroutines 
e. Basic request and verify routines 
f. Basic interrupt dispatchers 

The file description table entries and the item handling operators 
are discussed below. The use of the intermediate level tape handling 
subroutines~ in which the user must provide his own iteln advance 
routine, is described in another section of this manual. The basic 
request and verify routines and the basic interrupt dispatchers are 
described in the BOSS III manual. (Section IV, Synchronizer Control). 

1 



REVISION: SECTION: 

1 1-0005 
UNIVAC m SUPPORT 

DATE: 

U-351-9 January 15, 1963 

2. Tape Formats: Labels, Data Blocks, and Sentinels 

a. General 

The input-output file structure produces and accepts tapes 
whose format follows the conventions described below. 
Tapes produced by the Item Handling System will contain 
the standard labels, sentinels and flags described below. 
Tapes read by the Item Handling System should conform 

PAGE: 

to the standard format, unless the block option is exercised. 
If an input tape contains the proper flags and sentinels, the 
standard file system will proces s items of any fixed length 
and blocks containing a variable nllmber of items provided 
that the specified maxima for item length and number of items 
per block are not exceeded. 

b. Label Block 

(1) Label Block Processing 

If a data tape is labeled, the first block must be the label 
block. The presence of an address as one of the entries in 
the file description table (which is described below) indicates 
whether or not the file is labeled. If such an address is 
present, the first block of each reel of an input file will be 
read with a block-read tape order into the last twelve words 

2 

of the file description table for that file, and a subroutine 
linkage will be made to the address specified. The subroutine 
located at the address given is assumed to be either a standard 
or special label-checking program which will verify the 
contents of the label just read. 

For output files, the subroutine linkage will be made at the 
beginning of each reel, and the last twelve words of the file 
description table for that file will be written as a block upon 
return from the output label subroutine. 

If the file is not labeled, a zero address is entered in the 
file description table as the location of the label checking 
subroutine. The first block on each reel of the file is then 
assumed to be a data block in standard format as described 
below. 

If input labels are present but are not to be checked, a label 



REVISION: SECTION: 

1 1-0005 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 
January 15, 1963 3 

-"'--=================:=:!:::::======~====== 

subroutine must still be provided. It can stmply return 
control to the input-output routine without processing or 
checking the label. 

(2) Label Block Layout 

Word Content 

o -00000000 

1 AAAA 

2 ddmmyy 

3 OOrrr 

4 

5 

6 

7 

8 

9 

10 AAAA 

11 -00000000 

c. Data Blocks 

(1) General 

Information 

Label flag 

First four alphanunleric 
characters of file label 

Date: day, month and year 
in decimal characters 

File reel number tn 
decimal characters 

These words are available for use 
by the individual installation 

Last four alphanumeric characters 
of file label 

Label flag 

Data Blocks consists of one or more logical itenlS of 
fixed length and two data descriptor words, one at each 
end of the block. The data block and data descriptor word 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT 
DATE:January 15,1963 PAGE: 

U-3519 

formats are shown and described below. 

(2) Data Block Layout 

Segment separators occur on tape between the initial 
data descriptor word and the first item of the block, 
between items within the block, and between the last 
item and the terminal data descriptor word. When 
writing, the data descriptor words are automatically 
prepared by the file dispatcher. When reading, the 
first data descriptor word encountered (depending on 
the direction the tape is being read) is placed in the 
item descriptor word position of the first and last item 
buffer area. 

The data descriptor words are principally used as 
position markers for restart purposes. It should be 
noted that if the block mode is being used, the block 
will consist of two data descriptor words and the data 
area, which is considered as one item by the item pro­
cessing routine. In this case there will be only two 
segment separators on tape for this block. If a block 
mode of operation is desired, it is recommended that 
the intermediate tape handling routines be utilized. 
They are described in another section of the manual. 

(a) Data Descriptor Words 

Data descriptor words consist of a one word marker 
at each end of a block. This marker is composed 
of two parts: t he channel increment and the block 
number. The channel increment is located in the 
upper half of the data descriptor word and will be 
the number of items in this block in the case of a 
scatter read-gather write system or the number 
of words in the block in the case of a block-read 
block-write systemo 

The block number is in the lower half of the marker 
word and will be the true block number for this reel, 
modulo 4096. Both of these entries in the data des­
criptor word will be expressed in pure binary, 12 
bits in each entry. The sign of the data descriptor 
word is positive. 

1-0005 

4 



REVISION: SECTION: 

I 1-0005 
UNIVAC m SUPPORT r------------------+-----------------

DATE: PAGE: 

TJ-3519 
January 15, 1963 

(b) Items 

The data area within the block may consist of one 
or more items. The number of items per block 
and the item size must not exceed the maximum 
size as stated in the file description table.. The 
item size also must not exceed 511 words. The 
output produced by this system will consist of fixed 
size items and fixed size blocks. An exception in 
block ~ .. ;ize may occur preceding sentinel blocks or 
bypass blocks, where short blocks may occur. 

(c) Item Chain Words and Item Descriptor Words 

Preceding each item area are two Nards, the item 
chain word and the item descriptor word.. The chain 
word contains the add.ress of the next available input 
or output item area in the buffer pool. The item 
descriptor word is used to control and analyze tape 
format. The data descriptor word for a block is 
placed in the item descriptor word of the first and 
last item area. 

The item descriptor words in the other iteln areas 
used for this block will not be used. Under normal 
usage, the user does not need to make reference to 
the item chain word or the item descriptor word .. 
The item address given the user by this system will 
be the address of the actual data item. It should be 
noted that neither item descriptor words nor item 
chain words appear on tape. 

(3) Data Block Processing 

(a) Item Handling 

When a request for an input or output item advance 
has been honored, the starting address of the next 
item buffer area will be found in the first location 
of the file description table associated with that 
file. The user can then load an index register with 
this address or can access the data indirectly using 
the label of the file description table as the operand. 

vVhen an FRD (read) operator is given, the current 
item area will be released back to the pool. When 

5 



REVISION: SECTION: 

UNIVAC m SUPPORT 
1-0005 

DATE: PAGE: 

U-3519 
January 15, 1963 

an FRW (write) operator is given, the item whose 
starting address is in the first location of the file 
description table associated with that file is placed 
on the output list for that file. The item area will 
be released when the tape write operation involving 
that item area is completed. When a FWRD (write­
read) operation is given" the item whose starting 
address is given in the first location of the input file 
description table specified}is placed on the output list 
for the specified output file. The specified input file 
will then be advanced as described above. When a 
write tape operation is completed, the item areas 
involved will be returned to the pool for that file. 

(b) Block Option 

An input tape file,which does not contain standard 
labels, flags and sentinels, may be read by exercising 
the block option. Such a file should use a pool in which 
the maximum block size is given as the size of the item. 
The blocks on this file will be processed in the block 
mode, and the use of read and write operators will 
provide the user with the address of the first word of 

6 

each block. Analysis of the contents of the block then 
becomes the responsibility of the user. Sentine.l checking, 
label checking and item advance must be provided by the 
us er when us ing the block option. 

d . Sentinels 

Three types of sentinels exist in this system. They are the end-of­
file sentinel, the end-of-reel sentinel and the bypas s sentinel. The 
end-of-file and the end-of-reel sentinels each consist of a one word 
block. The high order 2 bits and sign of this one word are a special 
flag signifying what kind of a sentinel it is. The low order 22 bits 
of this word will be a block count of all of the label blocks, data 
blocks and sentinel blocks in this reel to this point including the 
sentinel block. 

Bypass sentinels are used to indicate that a portion of the data on 
a tape does not pertain to the file which contains that tape. Two 
bypass sentinels will appear before and after the block or blocks 
containing this extraneous information. These blocks are ignored 



REVISION: SECTION: 

1 1-0005 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 January 15, 1963 

when encountered by the item handling routine and the inforlnation 
contained in them will not be given to the user. These bypassed 
blocks are generally used for memory dumps • 

" -

bypass sentinel 

inter-block gap 

bypass sentinel 

inter-block gap 

bypas s block 1 

~ 

~ -
bypas s block n 

inter-block gap 

bypass sentinel 

inter-block gap 

bypass sentinel 

'-'- ---

...-

- ----, 
~ 

-

This diagram shows how bypas s 
sentinels are used to indicate 
that a portion of a tape contains 
information which does not pertain 
to the file which contains that tape. 

7 



UNIVAC m SUPPORT 

---------
item n 

segment separator 

data descriptor 

inter-block gap 

end-of-reel sentinel 

inter-block gap 

end-of-reel sentinel 

-- -------. 

REVISION: SECTION: 

1 

DATE: PAGE: 

U-3519 
January 15, 1963 

This diagram shows the end of a 
block followed by two end-of-reel 
sentinels. 

1-000~) 

8 

-4 



UNIVAC m SUPPORT 

~ -------
item n 

segment separator 

data descriptor 

in~er-block gap 

end-of-file sentinel 

inter-block gap 

end-of-file sentinel 

-.. ~ 

SECTION: I REVISION: 1 

I DATE-:----------- -------+-P-A-G-E-: _1-~??_5 __________ _ 

! January 15, 1963 
U-3519 

This diagram shows the end of a 
block followed by two end-of-file 
sentinels • 

9 



UNIVAC m SUPPORT 

~ -

data descriptor 

segment separator 

item 1 

segment separator 

item 2 

segment separator 

item 3 

--
- ----r-

item n-1 

segment separator 

item n 

segment separator 

data descriptor 

-- --

REVISION: 1 SECTION: 

DATE: PAGE: 

January 15, 1963 
U-3519 

This diagram shows a data block 
containing n items with associated 
data descriptors and segment 
separators. 

1-0005 

10 



UNIVAC m SUPPORT 
I REVISION' .. 1. . I SECTlON~_0005 

i -~A~-~~----- -- ~-------- -----~;--- ----------

U 3519 I January 15, 1963 I 11 

+ 
number of words (block mode) or 

block nlnnber (modulo 4096) 
nurnber of Herns (scatter mode) 
•• I I I I I I I I . I I . I I I I I I J . 

data descripto r 

1_-_1 .... _1 ........ 0 -Ill-..L.-....L-
b
_
J 

IJ.0_Ck...J" ,-co_lLm_t ...J.ill __ b
L
in_a...!.r_

Y
-'--L---J'--..l..--1-.......L--1._L-.....L..._-L--L---1_L-..1 

end-of-reel sentinel 

block count in binary 

end-of-file sentinel 

I I 0 1 I 
bypass sentinel 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 January 15, 1963 

3. File Description Table 

a. General 

The characteristics of each file to be processed by a program 
utiliz ing the Item Handling Subroutines must be provided by the 
user. These characteristics are described in a table called the 
File Description Table. This table consists of 2~ words in the 
case of a labeled file and 16 words in the case of an unlabeled 
file. The entries in this table marked by an asterisk must be 
supplied by the user. The other entries are used internally 
by the Item Handling Subroutine. The values of the entries 
supplied by the user are dynamically alterable and may be 
changed whenever the file is not open. The label of the first 
entry in the table will be the "file label" as used in the calling 
sequences described in the section on file operators. 

b. File Description Table 

File Label 
1 
2 

3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 

16-27 

current item location 
maximum ite.m length* 
maximum number of items per block* 
pool control label * 
location of current item chain word 
location of last item 
block position 
item position counter 
dispatching factor* 
status indicators* 
symbolic tape unit reference* 
block dispatch count 
eight character 
label identification (two words)* 
current reel number (decimal) 
address of label check routine 
twelve word area for label 

The entries marked by an asterisk must be supplied by the user. 

1-000!5 

12 

... 



REVISION: SECTION: 

1 1-0005 
UNIVAC m SUPPORT 

DATE: PAGE: 

U-3519 
13 January 15, 1963 

The following bit positions in word File +9 have the specified 
functions as status indicators: 

1 
2* 
3* 
4* 
5 
6 
7 
8 

usage 
block option 
input end notice 
output end notice 
open for output 
open for input 
not used 
di~patehing- rate 
hlJt ,,' .oj (.~ 

zero=mput, 1 = output 
zero=no, l=yes 
zero=last reel only; l=every reel 
zero=none; 1 =every reel 
zero=no; l=yes 
zero=no; l=yes 

.ze.-ro=les-s than two blocks 
l=two -blocks 

The bit positions marked by an asterisk must be supplied by the user. 
It should be noted that an entry of +0 would be normal. 

c. Detailed Description of the File Description table Entries 

File: The current item location is maintained in the least significant 
15 bits of the first word in the file description table, the file 
label word. This permits the user to address the current 

File+i: 

data by loading an index register with the contents of the file 
label word. 

The first read operation on an input file establishes the first 
item location. Subsequent read operations provide new data 
locations. Each read operation releases the item area used 
on the previous read. The input-close operation releases the 
last item area used and any remaining unused areas. It should 
be noted that the open input operation does not provide a data 
location. 

The open operation on an output file establishes the address of 
an available (empty) item area. Each subsequent write opera­
tion assigns the previously supplied item area to an output block 
and makes available the location of a new, empty item area. 
The close operation on an output file releases the last unused 
item area to the pool. 

The write-read operation assigns the item area currently 
available for that input file, to the block in preparation by the 
output file. A new input data location is then made available. 
The empty item area location specified in the output file label 
word is left undisturbed by the read-write operation. The 
two files used by a write-read operation must share the same 
pool. 

Item length is the length in words of the largest item in the file. 
Normally, all items are the same length. For scatter-gather 
mode, no item may exceed 511 words. 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT 
DATE: PAGE: 

January 15, 1963 
U-3519 

File + 2: For input, this parameter represents the number of 
items in the largest block in the file. Normally, all 
blocks contain the same number of items. For output, 
this parameter determines the standard number of 
items to be placed in a block. 

File + 3: The pool used by the file is spec ified here. File s 
with similar item length normally share the same 
pool. Files with widely divergent item lengths should 
specify separate pools. The number of item areas re­
quired in a pool is dependent on block size and the dis­
patching factor for input, and on block size only for 
output. See below under File + 8. 

14 

File + 4: For input, the file system attempts to maintain a number 
of items in advance of process ing requirements. These 
unprocessed items are chained together through item 
chain words. The location of the chain word for the cur­
rent item is maintained at this location in the file table 
and is used by each read operation to locate the next 
item to be made available to the user. For output, this 
word contains the address of the chain word for the 
first item in the output block being prepared. Each 
write operation adds a new item to the chain. The out­
put file dispatcher extracts the specified number of 
items from the beginning of the chain to prepare an 
output block (us ing this word in the file table to locate 
the first unwritten item). 

File + 5: When the input file dispatcher has successfully read in 
a new block for the file, it chains the item area locations 
assigned to the new block to the list of item area loca­
tions for items previously read. The dispatcher uses 
this word of the file table to locate the end of the chain 
of preViously read items. Each write operation causes 
the currently assigned output item area to be added to 
the end of the chain of output items. The write opera­
tion uses this word of the file table to locate the end of 
the chain. 

File + 6: The block counter indicates how many blocks on the current 
reel of the file have been read or written. The counter is 
used primarily for repositioning purposes. 

File + 7: The item counter indicates how many items of the current 
block have been processed. 



~",'" ' ~ 
UJ j 

REVISION: SECTION: 

1 1-0005 
UNIVAC m SUPPORT 

,1/ I,' : 

I' ,',) ~)I 

Jl 

\i 

DATE: PAGE: 

Tj-3519 
January 15, 19G3 15 

File + 8: For input usage, the dispatching factor represents the 
number of items in excess of one block to be used for 
advance reading, and, in effect, specifies how many 
item areas in the pool are to be allocated to the file. A 
request to read a block is made whenever the number 

.1 

of available item areas associated with the file equals 
or exceeds the number of items per block. The end-of­
reel conventions limit the number of advance reads to 
two blocks; hence, the value spec ified as tre dispatching 
factor will automatically be limited by the "OPEN" 
operation to a maximum of twice the number of items 
per block. 

The entry is not used for an output file. Instead, the 
dispatching factor (the amount of buffering) is deter­
mined by the size of the pool used by the file. Thus, 
J_~!' __ 0l!~Pllt, .the entry should be +0. The nlinimum num­
ber of item areas in an output pool must be equivalent 
to the number of items per block plus one, for each 
output file sharing the pool. Any item areas in excess of 
this number will permit the stacking of output items in 
the pool for later dispatching. Dispatching will be allowed 
to proceed at a natural rate unless the pool no longer has 
any free item areas for new output, under which circunl­
stance the previously stacked output will be forcibly dis­
patched. 

The size of a pool can thus be calculated as follows: 
For each input file sharing the pool, I + D buffer 
areas (where I is the maximum num~r of items per 
block for the fife and D is the dispatching factor). For 
each output file sharing the pool, I + 1 buffer areas 
is minimum (where I is the maximum number of items 

m 
per block). 

To increase output efficiency, an addition I to 2 I 
;,I item areas per output file is suggested. m m 

II I; 

, File + 9: This word contains a number of I-bit indicators which 
supply miscellaneous information about the file, as 
follows: 

Bit 1 indicates whether the file is currently in use as 
input or as output. 

Bit 2 indicates whether the block option is to be used in 

preparing the input-output dispatching for the file. (See 
above for a description of the block option. ) 



REVISION: SECTION: 

1 1-0005 

UNIVAC m SUPPORT 
DATE: 

January 15 t 1963 
PAGE: 

U-3519 

Bit 3 indicates whether the read operation should 
yield an end-of-file return at the end of every reel 
or only at the end of the last reel of the file. 

Bit 4 indicates whether the write operation should 
yield an end-of-reel return or not. 

Bit 5 is set on when the file is opened for output. 

Bit 6 is set on when the file is opened for input. 

~t 8 is- set on w,hen the input dispatching fao~?r has 
itS., maximum valu.e of twice the numQer of ite~ ~~r 
block. Unde,:r" the~'e.. ,?onditi,ons the fii~ill norm~ 
be rea~ng tw~~ull b~ks ~ad, a con~on which 
must be accounted for at end ~~"reel or fil~", 

The sign bit is used for input files to indicate the 
direction in which the file is being read. The sign 
is negative for backward operations. 

Bits 2, 3 and 4 are set on by the compiler or user 
of the file. The other bits are set and interrogated 
during the running of the program. 

File +10: This parameter specifies the symbolic tap e unit 
reference and is normally a reference to a word ah 
the table maintained by the tape assignment system. 
The t.a P e unit number must be found in bits 24-21 
of the referenced word. 

File +11: This word is used as a running counter to determine 
when a request should be made to dispatch an input 
or output block. An input request is made when this 
counter exceeds the items-per-block (ipb) count. The 
counter is initialized with the sum of the dispatching 
factor and the ipb count, is reduced by the ipb count 
whenever a request is made, and is increased by one 
for each item read. Adjustment for short blocks is 
made at each block flag by using the item counter at 
Filet- 7. .£}IJrputput request is made when this counter 
equals the~ count. The counter is initialized at zero, 
is increased by one for each item written, and is reset 
at each request. 

16 



I REVISION, I SECTION: 

r"Jan~arY 15, 

I 1-0005 

1;;3-r;::~~;-~ 7 UNIVAC m SUPPORT 

U-3519 
I 

File +12 The file identification appears as eight alphanumeric 
and +13: characters in these two words. 

File +14: The current reel number is maintained here in 
decimal digit format. An open operation sets this 
count to zero, and internal operations at the begin­
ning of each reel advance it by one. At the time of 
linkage to the input label-check routine, the count 
in this w·ord should match the reel count in the 
input label. This word should be used as the reel 
count for an output label. 

File +15: The presence of a nonzero address in this word indi­
cates that the file is labeled and that the nonzero 
address is that of the appropriate label-checking 
routine. If the word is binary zero, it is assumed 
the file is unlabeled. 

File + 16 
to 

File +~7: 

If the file is labeled, these twelve words are used as 
the label area. If the file is not labeLed, these twelve 
words may be omitted. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
1 

DATE:January 15, 1963 PAGE: 

U-3519 

d. Example of a File Description Table 

In this example a file description table is shown for an input 
file with the following parameters: 

23 words per item; 40 items per block; pool control label: 
IOPOOL; 35 item areas for buffering in addition to the first 
block; symbolic tape unit reference: A; label identification: 
MASTERAA; starting address of label checking routine: 
LBLCHECK. 

INFILEA + 0 
+1 + 23 
+2 + 40 
+3 + IOPOOL 
+4 + 0 
+5 + 0 
+6 + 0 
+7 + 0 
+8 + 35 
+9 + 0 I 

'/ )) J;)' 
O/YJ i )I,."~--

+10 + A 
-, 

+11 + 0 )',) ),.~),.. 

+12 + 'MAST' 
+13 + 'ERAA' t- /) 0._ . ". ,- - I " '~, /.j 

\ 
+14 + 0 ii \'Q.. } "-::;. "I ,,~ , " 

I i 

+15 + LBLCHECK 
+16 + 0 , )~:: .. I' 

i' 
'" 

+17 + 0 
+18 + 0 (f{" Ct r.:::.Jl.- "~"') ;. Dc;" 
+19 + 0 
+20 + 0 
+21 + 0 
+22 + 0 
+23 + 0 
+24 + 0 
+25 + 0 
+26 + 0 
+27 + 0 

1-0005 

18 

i 
,Jr,I,) J..Z_ 

.I . II 

" r '" ~ '" 

.'!] 



Y'" 

REVISION: SECTION: 

1 1-0005 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 January 15, 1963 
19 

C. Coding Procedures 

.' 

1. Construction of an input-output item area pool 

Files containing items of similar size may use a common memory 
area or pool to share the ir individual item areas. The pool area 
may either be constructed to static specifications or dynamically 
constructed through the use of a special subroutine which is provided 
as part of the input-output routines. The pool control label is 
attached to the first of three words known as the pool control words 
which should have the following format after the pool has been con­
structed: 

,I ,,',/k 

Pool Control Table + address of next buffer area (initially first buffer area) 
+ 1 + address of last buffer area 
+ 2 + length of individual item area in pool (not including 

the item chain word or the item de­
scription word) 

The length of each individual item area must be equivalent to that of 
the largest item to share in the pool. The format of the buffer area 
is shown below. It should be noted that the size of a buffer area is 
,~he length of the item area plus two words, the item chain word and 

i tke item description word. The item chain word contains the address 
of the next available buffer area in the pool. The item description 
word is used to control and analyze tape format. Available item areas 
are chained together via the item chain words using the pool control 
words. The last item area will have a chain word of zero. 

a. Dynamic Construction 

Dynamic construction of a pool is accomplished with the 
following subroutine linkage: 

SLJ 
+ 
+ 
+ 

BUFC 
address of first word in pool area L 
number of words allocated to pool, .-;, 
pool control label 

In this case the pool control words should be defined as: 

Pool Control Label 
+ 1 
+2 

+ 0 
+ 0 
+ length of individual item areas in 

pool (not including the item de­
scription or the item chain word) 



• . U-3519' .'.' . 
C. Coding Procedures 

J 

1. Input-output Area Pool 

&. General 

'Each file using the Tape Input-Output Item Handling Routine is re­
quired to have' a memory area or pool specified, which will be used 
for buffering purposes. Files containing items of the same or simi": 
lar length should specify the same pool area. 

A pool consists of a series of buffer areas. The total size of the 
pool must" accommodate the specified buffering for all of the files 
using this pool. It is required that these buffer areas be initially 
chained together. This is accomplished through the use of a special 
subroutine provided as part of the input-output routines. This rou­
tine will insert the proper chain word into each buffer area. 

The size of each buffer area is the length of the largest item p~us 
two words, the item chain word and the item descriptor. The item 
chain word contains the address of the next available buffer area in 
the pool. The item descriptor word is used to control and analyze 
tape format. The length of each individual item area must be as 
J.arge as the largest item to share the pool. The last buffer area 
in a chain will have a chain word which contains zero. 

Three words known as pool control words are associated with each 
pool. A Pool Control Label is attached to the first.of these. The 
pool control words will contain the following after the pool has been 
initialized: 

Pool Control Label 

:+-1 
+2 

+ 

+ 
+ 

addres s of next buffer area 
(ini tially the fir s t buffer area) 
address of last buffer area 
length of incii vidual item areas 
in pool not including the item 
chain word or the item descriptor 
word 

The number of words allocated to the pool is calculated by multiplying 
the item size plus 2, times the number of items of buffering desired, i. e. , 

n (i+2) = s 

where n = nwnber of items, i = item size, and s = pool size. 

'. 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT 
DATE: 

U-3519 January 15, 1963 

b. Stat ic Construct ion 

Static construction of a pool is accomplished by placing the 
proper item chain word (the address of the next buffer area) 
in the first word of each buffer area. 

The dynamic construction method, using the BUFC subroutine as 
described above, is recommended. 

2. Item Handling Operators 

a. Open Input Forward 

SLJ FOIF 
+ File 

PAGE: 

Execution of this subroutine initializes the specified file des­
cription table for reading forward. If the file is labeled, the 
label is read and the label-checking routine is called. The 
sign of the calling sequence specifies whether the file is to be 
rewound prior to opening (-) or not (+). 

b. Open Input Backward 

SLJ FOm 
+ File 

Execution of this subroutine initializes the specified file des­
cription table for reading backward. The tape is assumed to 
be pOSitioned correctly (ending sentinels will be ignored when 
encountered). No label checking or rewind option is incorp­
orated in the subroutine. 

c. Open Output 

SLJ FOPO 
+ File 

Execution of this subroutine initializes the specified file des­
cription table for writing. The sign of the calling sequence 
indicates whether the file should be rewound (-) or not (+). 
If the file is labeled, the label subroutine will be called, and 
the label block will be written when control is returned. The 
location of an empty buffer will be made available in the first )) j .. ':1 

of the file description table upon return. 

1-0005 

20 



-.. 

U-3519 

. b. Coding Procedures 

(1) Object time initialization of a pool is accomplished with the fol­
lowing subroutine linkage: 

SLJ BUFC 
+ address of first word in pool area (p.991. ~ 
+ number of words allocated to pool (pool size) 
+ Pool Control Label 

(2) The pool control words should be coded as follows: 

Pool Control Label + 
+1 + 

o 
o 

20 

+2 + length of individual item areas in pool 
(not including the item .des~:r!~r or . 
the item chain word) 

(3) The pool area itself may be specified in the following manner: 

pool name RES pool size (s, as defined above) 

2. Item Handling Operators 

a. Open Input Forward 

SLJ FOIF 
+ File 

Execution of this subroutine initializes the specified file description 
table for reading forward. If the file is labeled, the label is read 
and the label-checking routine is called. The sign of the calling se­
quence specifies whether the file is to be rewound prior to opening­
(-) or not (+). It should be noted that the open input operation doe.s. 
not provide a dati loca·tion. - . - ....... -.. - ........ --
._--- ----- ... -.-.,~.' ...,- ....... _ ......... ,'.-.... '._-- ................. ", 

b. Open Input Backward 

SLJ FOIB 
+ File 

Execution of this subroutine initializes the specified file description 
table for reading backward. The tape is assumed to be positioned 
correctly (ending sentinels will be ignored when encountered). No 
label checking or rewind option is incorporated in the subroutine. 



REVISION: SECTION: 

1 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 January 15, 1963 

d. Read 

e. 

SLJ FRD 
+ File 

End of file (or reel) return 
Normal return 

Execution of this subroutine causes the location of the next 
item of the file to be placed in the first word of the file des­
cription table. The buffer containing the previous item is 
released to the pool. Detection of an end-of-file flag (or 
end-of-reel if such option is specified) causes an appropriate 
return. The end-of-reel option, if taken, requir:es subse-

~~;~"y~S~1 0; t~,e I :'C)I~~le ,input ~eel" SUb~\~;U~(; . :.' .'. j~, ,h 
11 ~ :'" , ,- . 

Writie (l~ I ~ .. !, I}'/'" "i Iii -J(~ , ''''U i ",1,1' ,Ii",' 
,) 

1./ j; '1 i 

SLJ FWR 
+ File 

End-of-reel return if specified 
Normal return 

Execution of this subroutine causes the location of the item 
currently stored in the first word of the file description table 
to be added to the chain of items ready for output. The loca­
tion of a new item is procured from the pool and placed in the 
first word of the file description table. 

If specified, an end-of-reel return will be made when such 
condition is detected. At such a return, all output previously 
stacked in the pool will have been written out. This permits 
a limited number of blocks to be written by a closing label 
routine, or a limited number of additional items to be inserted 
in the output string. The "close output reel" subroutine, which 
must subsequently be used in this case, will dispatch any fur­
ther output items stacked in the pool and will write two end-of­
reel sentinels. Approximately 25 feet of tape remain on the 
reel at the time of end of reel return to accommodate any 
closing blocks. 

1-0005 

21 



REVISION: SECTION: 

1 1-000[) 

UNIVAC m SUPPORT f-------------f--------------

DATE: PAGE: 

22 U - 3 5 1 9 Jan uary 15, 1963 
============================================~===========================~ 

f. Write-Read 

SLJ FWRD 
+ Input file 
+ Ou tput file 

End return with code in AR8 
Normal return 

Execution of this subroutine causes the location of the item 
currently stored in the first word of the input file description 
table to be added to the chain of items ready for dispatching 
in the output file. The location of a new input item is made 
available, as in the "read" operation; the output buffer loca­
tion in the first word of the output file description table is 
left undisturbed. Input or output end notice will be given as 
specified in the respective file description tables. The code 
supplied in AR8 upon return will be 1 for input end, 2 for 
output end, and 3 should both occur simultaneously. 

g. Close Input Reel 

SLJ FCIR 
+ File 

/'1 

If the end-ot-reel return option is elected for an input file, 
the close input reel subroutine must be executed in order to 
advance to the next reel of the file. The subroutine executes 
a rewind and swaps tapes. 

h. Close Input File 

SLJ FCIF 
+ File 

Execution of this subroutine causes all outstanding item buffers 
to be released to their pool. Tape swapping is suspended, and 
the sign of the calling sequence indicates whether the tape is 
rewound (-) or not (+). The file description table is stabilized 
and may subsequently be re-opened. 



REVISION: SECTION: 

1 1-0005 

UNIVAC m SUPPORT ~- --J-~------___ _ 
DATE: PAGE 

U-3519 January 15, 1963 

i. Close Output Reel 

SLJ FCOR 
+ File 

Execution of this subroutine causes all output currently stacked 
in the pool to be dispatched and two end-of reel sentinels to be 
written. The subroutine executes a rewind and swaps tapes. 

j. Close Output File 

SLJ FCOF 
+ File 

Execution of this subroutine causes the last unused buffer to be 
released to the pool, all output currently stacked in the pool to 
be dispatched, and two end-of-file sentinels to be written. Tape 
swapping is suspended~ and the sign of the calling sequence in­
dicates whether the tape is to be rewolUld (-) or not (+). The 
file description table is stabilized and may subsequently be re­
opened. 

k. General Close Reel 

SLJ FCLR 
+ File 

This subroutine performs the input and output reel clos ing 
functions described above ~ determining by analysis of the file 
description table whether an input function or an output function 
is required. The routine isdesigned for use in programs which 
do not know at the time the calling sequence is programmed 
which function the file table will be performing at execution tinle. 

1. General Close File 

SLJ FCLF 
+ File 

This subroutine performs the input and output file closing functions 
described above, determining by analysis of the file description 
table whether an input funct ion or an output funct ion is required. 

23 



I REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE: PAGE: 

TJ-3519 January 15, 1963 

TAPE INPUT-OUTPUT VARIABLE SIZE ITEM HANDLING 

A. Purpose 

To provide a set of tape input-output variable size item handling routines. 

B. Method 

1. Structure of the variable size item handling routines 

File description tables constitute the highest logical level within 
the tape Input-Output system. Entries in this table are either defined 
as constants by the user or compiled from given parameters by a 
special subroutine. These tables are interpreted and the infornlution 
in the files they represent is processed by a group of subroutines which 
perform the functions customarily associated with itenl handling 
operation: open, close, read and write. The itelll handling operators 

1 

in turn communicate to lower-level routines which act as a file dispatcheI4t 
The file dispatcher maintains a queue of requests generated by the itenl 
handling operators and coordinates these requests with the request-and­
verify mechanism of the basic interrupt system. This coordination is 
accomplished through the intermediate level (block handling) tape input­
output package which consists of the following block handling functions: 
read, write, overwrite, position and rewind. The levels of the itenl 
handling input-output syste.m are thus seen to be: 

a. File description table entries 
b • Item handling operators 
c. File dispatcher subroutines 
d. Intermediate level tape handling subroutines 
e. Basic request and verify routines 
f. Basic interrupt dispatchers 

The file description table entries and the item handling operators are 
discussed below. The use of the intermediate level tape handling sub­
routines in which the user must provide his own item advance routine, 
is described in another section of this manual. The basic request and 
verify routines and the basic interrupt dispatchers are described in 
the BOSS ill manual. (Section IV, Synchronizer Control). 



REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE: January 15, 1963 PAGE: 2 

U-3519 

2. Tape Formats: Labels, Data Blocks J and Sentinels 

a. General 

The input-output file system produces and accepts tapes 
whose format follows the conventions described below. 
Tapes produced by the Variable Size Item Handling System 
will contain the standard labels, sentinels and flags des­
cribed below. Tapes read by the system must conform 
to the standard format. 

b. Label Block 

(1) Label Block Processing 

If a data tape is labeled, the first block must be the 
label block. The presence of an address as one of 
the entries in the file description table (which is 
described below) indicates whether or not the file is 
labeled. If such address is present, the first block 
of each reel of an input file will be read with a block­
read tape order into the last twelve words of the file 
description table for that file, and a subroutine linkage 
will be made to the address specified. The subroutine 
located at the address given is assumed to be either a 
standard or special label-checking program which will 
verify the contents of the label just read. For output 
files, the subroutine linkage will be made at the beginning 
of each reel, and the last twelve words of the file des­
cription table for that file will be written as a block 
upon return from the out-put label subroutine. 

If the file is not labeled, a zero addres s is entered in 
the file description table as the location of the label 
checking routine. The first block on each reel of the 
file is then assumed to be a data block in standard 
format, as described below. 

If input labels are present but are not to be checked, 
a label subroutine must still be provided. It can simply 
return control to the input-output routine without process­
ing or checking the label. 



I REVISION: SECTION: 

UNIVAC m SUPPORT ~ATE 

c. 

PAGE: 

U-3519 i January 15, 1963 
I 
I 

(2) Label Block Layout 

Word Content Information 

0 -00000000 Label flag 

1 AAAA First four alphanun1cric characters 
of file label 

2 ddmmyy Date: day, month and year in 
decimal characters 

3 OOrrr File reel number in decimal 
characters 

4 

5 

6 These words are available for use by 
the individual installation. 

7 

8 

9 

10 AAAA Last four alphanumeric characters of 
file label 

11 -00000000 Label flag 

Data Blocks 

(1) General 

Data Blocks consist of one or more logical items of 
variable length (the maximum item length must be 
equal to or les s than the block length) and two data 
descriptor words, one at each end of the block. The 
data block and data descriptor word formats are des­
cribed below. Each item is preceded and followed by 
an item descriptor word, as shown. This item des­
criptor need not be considered by the progra.mmer to 
be a part of the item. These words are placed in the 
block by the handling routine on output and are expected 

I-OOOG 



REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 

(2) 

DATE: January 15, 1963 PAGE: 4 

U-3519 

to be present on input. Thus, the input format 
required must be generated by the use of the 

~. ari,aple Size' It~m. ou.tPu~ Hand~in!? r~llpnes • 
""i / '(,' " If /., 'r' 1 ' , (j l' y~. ') ,I r 
t. " ,I.. V· . 

Data Block Layout I 

Segment separators occur on tape between the initial , 
data descriptor word and the first item of the bloc~, . '(' 
and between the last item of the block and the terminal 
data descriptor word. When writing, the data descriptor 
words are automatically prepared by the file dispatcher. 
When reading, the first data descriptor encountered 
(depending on the direction the tape is being read) is 
accounted for as a file position marker in order to 
facilitate restart. The item descriptor words are used 
to present the address of the current item in word zero 
of the file description table on input, and are created 
frolll wp1?ds~$ro; 3.lld-:~~ Qft- output. 

" : .~ ~ i, 

" (a) Data Descriptor Words 

Data descriptor words consist of a one word marker 
at each end of a block, consisting of the channel 
increment and the block number. The channel 
increment is located in the upper half of the data 
descriptor word and speCifies the number of words 
in the block. The block number is in the lower half 
of the word and specifies the block number within 
the reel, modulo 4096. Both of these fields are 12 
bit binary nu.mbers. The sign of data descriptor 
words is positive. 

(b) Items 

The data area within the block consists of one or 

mo~.eJ ~t,~,!lls • i' ,~~~, i~e~i, ;,~.i~ ~fl~:- i ary from one word 
to-4~ (moo:m'l~~B~ anJ is always au integral 
number of words. 

(c) Item Descriptor Words 

Preceding each item is an item descriptor word which 
is used to control and analyze the tape format. This 
word is not considered to be part of the item for addressing 

.. 



REVISION: I SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE: January 15, 1963 PAGE: 5 

U-3519 

and processing purposes. On outPll.t" ~l?-.e ~~r :Q~ed <?~Jy 
indicate the item length (in wordsA'as J word oile lof rille file 
description table in the call to the output handling routines. 
Should the user wish to access the item descriptor, it is 
found in the address previous to that given as the current 
item address in the file description table. 

The item descriptor is composed of two fields, the length 
of the previous item as a binary value in the nl0st signi­
ficant 12 bits and, the length of the next item as a binary 
value in least significant 12 bits of the word. The first 
item descriptor of a block has the length of the previous 
item as zero. The last item descriptor of a block has 
the length of the next item as zero. Under normal usage 
the user does not need to make reference to the item 
descriptor. The item address given the user by this system 
will be the address of the first word of actual data in the 
item. 

(3) Data Block Processing 

(a) Item Handling 

When a request for an input item advance has been 
honored, the starting address of the next item area 
available will be found in the first location of the file 
description table associated with that file. The user 
can then load an index register with this address or 
can access the data indirectly using the label of the 
file description table as the operand. 

vVhen a VRD (Variable item ReaD) operator is given, 
the current item area will be released back to the 
pool. When a VWR (Variable item WRite operator 
is given, the item whose starting address is in word 

':"; , ' ,~po of the file description table associated with that 
file is :moved to an output block area for that file. 
The len~h of the item moved to output is determined 
by ~~ 9~ '6i the :file description table. The block 
area will be released when the tape write operation 
involving that block area is completed. 



REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE:January 15, 1963 PAGE: 6 

U-3519 

d. Sentinels 

Three types of sentinels exist in this system. There are the end­
of-file sentinel, the end-of-reel sentinel and the bypass sentinel. 
The end-of-file and the end-of-reel sentinels each consist of a 
one word block. The high order 2 bit s and sign of this one word 
are a flag signifying the type of sentineL, The low order 22 bits 
of this word are a block count for all of the label blocks, data 
blocks and sentinel blocks in the reel to this point, including the 
sentinel block. 

Bypass sentinels are used to indicate that a portion of the data on 
a tape does not pertain to the file which contains that tape. Two 
bypass sentinels will appear before and after the block or blocks 
containing this extraneous information. These blocks are ignored 
when encountered by the item handling routine and the information 
contained in them will not be given to the user, or counted for 
block count purposes. These bypassed blocks are generally used 
for memory dunlps. 

3. File Description Table 

a. General 

The characteristics of each file to be processed by a program 
utilizing the Item Handling Subroutines must be provided by 
the user. These characteristics are described in a table called 
the File Description Table. This table consists of 28 words in 
the case of a labeled file and 16 words in the case of an unlabeled 
file. The entries in this table, which must be supplied by the 
user J are marked by an asterisk in the following table. The 
other entries are used internally by the Variable Size Itern 
Handling Subroutine. The values of the entries supplied by the 
user are dynamically alterable and may be changed whenever 
the file is E£!. open. The label of the first entry in the table will 
be the "file label- as used in the calling sequences described in 
the section on file operators. 



U-3519 

I REVISION: 

r OAT" January 15 1963 
I ' 

SECTION: 1-0006 

UNIVAC m SUPPORT ---+-------- ----'----,---

PAGE: 7 

b. File Description Table 

! I ,.., ~ .. ,'.; 
File label current data location ')'; / 

+ 1 item length ' /' F'_ i 
,,/ 

''' __ J 

\ 

+ 2 maximum block length* 

+ 3 poollabel* 

+ 4 location of current block chain word 

+ 5 location of last block chain word 

+ 6 block position counter 
! j ., f 

~ I' " ,"1 'Ii : , 
+ 7 ite:m-poB4twneeunt-er i r 

+ 8 dispatching factor* 

+ 9 status indicators* 

+ 10 symbolic tape unit reference* 

+ 11 block dispatch count 

+ 12 eight character label 

+ 13 identification (two words)* 

+ 14 current reel number (decimal) 

+ 15 address of label check routine* 

+ 16-27 twelve word area for label 



SECTION: 1-0006 

UNIVAC m SUPPORT ~
EVISION: 

---------.-----

! DATE: January 15, 1963 PAGE: 8 

U-3519 

The following bit positions in word File + 9 have the specified 
functions as status indicators: 

The bit positions indicated by an asterisk must be supplied by 
the user. 

1 

2 

:)* 

4* 

5 

6 

7 

8 

usage 

block option 

input end notie e 

output end notice 

open for output 

open for input 

not used 

r t:'l . l...-) .:...l. ..... 

dispatehing -rate 

zero= input, 1= output 

this bit is ignored by the Variable 
Size Item Handling routines 

zero= last reel only; 1 =every reel 

zero=none; 1=every reel 

zero=no; 1=yes 

zero=no; l=yes 

zero:l:e8s·thrtnone··oloc·k" 
1= two bloeks 

c. Detailed description of the File Description Table Entries 

File: The current data location is supplied by the input 
routines in the least significant 15 bits of the file 
label word, permitting a program to locate the current 
data by indirectly addressing the file label, or by loading 
this word in an index register used in referencing the 
item. The first read operations on an input file establishes 
the first data location. Subsequent read operations produce 
new data locations. Each read releases the item areas 
used on the previous read, and the input-close operation 
releases the last item area. Each write operation moves 
the output item specified by the user in the first two words 
of the file description table to the output buffer area, i. e. , 
each time the user wishes to send an item to output, he 
places the addres s of the item in the first word of the file 
description table, the length of the item in the second 
word (File+ 1), and calls the write operation. The close 
operation on an output file releases the last block area 
to the pool. 



I REVISION: 

I 

\ SECTION, 1-0006 

U-3519 

~-------.--.--+------------
I DATE: PAGE: 9 
I January 15, 1963 
I 

UNIVAC m SUPPORT 

File + 1: Item length is the length in words of the current 
item to be sent to output. The IT1axinlunl item length 
is equal to the block length. This entry is not specified 
by the user for input files. 

File+2: For both input and output, this entry is the maximum 
block size in words. 

File + 3: The location of the pool control table used by the file is 
specified here. Files with similar block length normally 
share the same pool. Files with widely divergent block 
lengths should specify separate pools. Input and output 
files must not share the san1e pool. The number of areas 
required in a pool is dependent on the dispatching factor 
for input, and on block size only for output. See below 
under Filet 8. 

File + 4: For input, the file systelD attempts to maintain a number 
of items in advance of processing requirements. The 
block area locations of these unproces sed itelDs are 
chained together through chain words. 'rhe location of 
the first unproces sed block is maintained at this location 
in the file table and is used by each read operation to 
locate the next block to be made available to the user. 

File +- 5: When the input file dispatcher has succes sfuIly read in 
a new block for the file, it chains the block area location 
assigned to the new block to the list of block area locations 
for blocks previously read. The dispatcher uses this 
word of the file table to locate the end of the chain of 
previously read blocks. Each write operation causes the 
currently as signed output area to be added to the end of 
the chain of output blocks. The write operation uses this 
word of the file table to locate the end of the chain. 

File + 6: The block counter indicates how many blocks on the current 
reel of the file have been read or written. The counter is 
used primarily for repositioning purposes. 

File + 7: The item counter indicates how many items of the current 
block have been proces sed. 

File-+ 8: For input usage, the dispatching factor represents the 
number of blocks in exces s of one block to be used for 



SECTION: 1-0006 

UNIVAC m SUPPORT 
~5:N' 

Filet 9: 

PAGE: 

U-3519 
I January 15, 1963 
I 

advance reading, and, in effect, specifies how many 
areas in the pool are to be allocated to the file. The 
end-of-reel conventions limit the nU.mber of advance 
reads to two blocks; hence the value specified as the 
dispatching factor will automatically be limited by the 
"OPEN" operation to a n1aximum of two blocks. 

For output usage, the dispatching factor is not explicitly 
stated but implied by the s:ize of the pool used by the 
file. The Ininimum number of block areas in an output 
IJool must be equivalent to the nUHlber of files sharing 

10 

the pool. Any areas in exces s of this number will permit 
the stacldng of output blocks in the pool for later dispatching. 
Dispatching will be allowed to proceed at a natural rate 
unles s the pool no longer has any free areas for new output, 
under which circumstance the previously-stacked output 
will be forcibly dispatched. 

This word contains a number of I-bit indicators which 
supply miscellaneous information about the file, as 
follows: 

Bit 1 indicates whether the file is currently in use as 
input or as output. 

Bit 2 is not used by the Variable Item Size Handling 
Routine. 

Bit 3 indicates whether the read operation should yield 
an end-of-file return at the end of every reel or only 
at the end of the last reel of the file. 

Bit 4 indicates whether the write operation should 
yield illl end-of-reel return or not. 

Bit 5 is set on when the file is opened for output. 

Bit 6 is set on when the file is opened for input. 

Bits 3 and 4 are set on by the compiler or user of 
the file. The other bits are set and interrogated during 
the running of the program. 

File+ 10: This parameter specifies the symbolic servo unit 

.. 



REVISION: 
i 
I SECTION: 

I -+----------UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 
January 15, 1963 

reference and is normally a reference to a word 
on the table maintained by the tape assignment 
system. The servo unit number :must be found in 
bits 24-21 of the referenced "vord. 

File-tIl: This word is used as a counter in order to determine 
when a request should be made to dispatch an input 
or output block. 

File + 12: The file identification appears as eight alphanumeric 
and +13: characters in these two words .. 

File t 14: The current reel number is maintained here in decin1al 
format. An open operation sets this count to zero~ and 
internal operations at the beginning of each reel advance 
it by one. At any label exit, the count in this word 
should match the reel count in an input label, and is 
used as the reel count for an output label. 

File+15: The presence of a nonzero address in this word 
indicates that the file is labeled and that the nonzero 
address is that of the appropriate label-checking 
routine. 

File+ 16 If the file is labeled, these twelve words are used as 
to the label area. If the file is not labeled, these twelve 

File+ 27: words may be omitted. 

1-0006 

11 



REVISION: SECTION: 1-00013 

UNIVAC m SUPPORT f---------------+--------

DATE: January 15, 1963 PAGE: 12 

U-3519 

d. Exalnple of a File Description Table 

In this example a file description table is shown for an 
input file with the following parameters: 

400 words per block; pool labels: INPOOL; 1 block area 
for buffering in addition to the first block; sYlnbolic tape 
unit reference: A; label identification: lVIASTERAA; 
starting address of label checking routine: LBLCHECK. 

INFILEA + 0 

+ 0 
+ 400 

+ INPOOL 
+ 0 
+ 0 
+ 0 

+ 0 

+ 1 

+ 0 

+ A 
+ 0 

+ 'MAST! 

+ 'ERAAt 

+ 0 

+ LBLCHECK 
+ 0 

+ 0 

+ 0 

+ 0 

+ 0 

+ 0 

+ 0 

+ 0 

+ 0 

+ 0 
+ 0 

+ 0 



REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE: PAGE: 

U-3519 January 15, 1963 

C. Coding Procedures 

1. Construction of an input-output area pool 

Files containing blocks of similar length may use a common memory 
area or pool. The pool may either be constructed by the us er to 
static specifications, or dynamically constructed through the use of 
a subroutine provided as a part of the input-output routines. The 
label of a pool is attached to the first of three words lmown as the 
pool control words, which have the following format: 

Pool Label + addres s of first buffer area 
+ addres s of last buffer area 
+ length of the individual buffer area in 

this pool 

The length of each block buffer area must be equivalent to that of the 
largest block area in the pool. Preceding each buffer area is a chain 
word in which the address of the next buffer area is located. The 
chain word of the last buffer area is zero. Dynamic construction of 
a pool is accomplished by coding the following subroutine linkage: 

SLJ VEC 
+ addres s of the first word in the area to become 

the pool 
+ number of words to be allocated to the pool 
+ pool label 

In this case the pool control words are defined as follows: 

pool label + 0 
+ 0 

+ length of individual block areas in this pool 

2. Item handling operators 

a. Open Input Forward 

SLJ VOIF 
+ File 

Execution of this subroutine initializes the specified file des­
cription table for reading forward. If the file is labeled, the 

label is read and the label-checking routine is called. The 

13 



REVISION: SECTION: 1-0006 

UNIVAC m SUPPORT 
DATE: January 15, 1963 PAGE: 14 

U-3519 

sign of the file label indicates whether the file is to be 
rewound prior to opening (-) or not (+). 

b. Open Input Backward 

SLJ VOIB 
+ File 

Execution of this subroutine initializes the specified file 
description table for reading backward. The tape is assumed 
to be positioned correctly (ending sentinels will be ignored 
when encountered). No label checking or rewind option is 
incorporated in the subroutine. 

c • Open Output 

SLJ VOPO 
+ File 

Execution of this subroutine initializes the specified file 
description table for writing. The sign of the calling sequence 
indicates whether the file should be rewound (-) or not (+). 
If the file is labeled, the label subroutine will be called, and 
the label block will be written when control is returned. 

d. Variable Size Item Read 

SLJ 
+ 

••• 
••• 

VRD 
File 
End of file (or reel) return 
Normal return 

Execution of this subroutine causes the location of the next 
item of the file to be placed in the first word of the file des­
cription table. The buffer containing the previous item is 
released to the pool. Detection of an end-of-file flag (or 
end-of-reel if such option is specified) causes an appropriate 
return. The end-of-reel option, if taken, requires subsequent 
use of the "close input reel" subroutine. 



UNIVAC m SUPPORT 

I REVISION: I SECTION: 

f~-E ---- -+~~- -
, I 

I 
January 15, 1963 ,II 

U-3519 . . 

e. Variable Size Item Write 

SLJ 
+ 

••• 
••• 

VWR 
File 
End-of-reel return if specified 
Normal return 

Execution of this subroutine causes the item whose addres s 
is stored in word zero of the file description to be moved to 
the output block area. The number of words lTIoved is con­
trolled by the item length stored in word one of the file des­
cription table. VVhen the current itenl to be 1l10ved to output 
will not fit within the current output block area, considering 
maximum block size, the current block area is dispatched 
and the current item is lTIoved to the ne)<..1: available block area. 
If specified, an end-of-reel return will be made when such 
condition is detected. At such return, all output previously 
sta cked in the pool will have been written out. This permits 
a limited number of blocks to be written by a closing label 
routine, or a limited number of additional itelTIS to be inserted 
in the output string. The "close output reel" subroutine, which 
must subsequently be used in this case, will dispatch any further 
output items stacked in the pool and will write two end .... of-reel 
sentinels. Approximately 25 feet of tape remain on the reel at 
the time of end of reel return to accomodate any closing blocks. 

f. Close Input Reel 

SLJ VCIR 
+ File 

If the end-of-reel return option is elected for an input file, the 
close input reel subroutine must be executed in order to advance 
to the next reel of the file. The subroutine executes a rewind 
and swaps tapes. 

g. Close Input File 

SLJ VCIF 
+ File 

Execution of this subroutine causes all outstanding item buffers 

l-OOOf) 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE January 15, 1963 PAGE: 

U-3519 

to be released to their pool. Tape swapping is suspended, and 
the sign of the calling sequence indicates whether the tape is 
rewound (-) or not (+). The file description table is stabilized 
and may subsequently be re-opened. 

h. e los e Output Reel 

SLJ VeOR 
+ File 

Execution of this subroutine causes all output currently stacked 
in the pool to be dispatched and two end-of-reel sentinels to 
be written. The subroutine executes a rewind and swaps tapes. 

i • e los e Output File 

SLJ VeOF 
± File 

Execution of this subroutine causes the last unused buffer to 
be released to the pool, all output currently stacked in the 
pool to be dispatched, and two end-of-file sentinels to be written. 
Tape swapping is suspended, and the sign of the calling sequence 
indicates whether the tape is to be rewound (-) or not (+-). The 
file description table is stabilized and may subsequently be 
re-opened. 

j. General Close Reel 

SLJ VeLR 
+ File 

This subroutine performs the input and output reel closing 
functions described above, determining by analysis of the file 
description table whether an input function or an output function 
is required. The routine is designed for use in programs which 
do not know at the time the calling sequence is programmed 
which function the file table will be performing at execution 
time. 

1-0006 

16 



UNIVAC m SUPPORT 

REVISION, I SECTION~ ___ 1 __ 0006~ 

OAT., January 15, 19~" 1 7 

U-3519 

k. General Close File 

SLJ VCLF 
+ File 

This subroutine performs the input and output file closing 
functions described above, determining by analysis of the 
file description table whether an input function or an output 
function is required. 



.... ,." 

UNIVAC m SU'I?O~1 
~ 

U-3519 
.. ~C, 

CARD TO TAPE SYMBIONT (CTS) , 

,A~ PURPOSE 

The purpose of CTS is to convert alphanumeric punched cards to UNIVAC. 
ill magnetic tape in standard file format. ' 

B. METHOD 

CTS is called and controlled by operator type ins. Type outs from CTS 
indicate end-of-reel, reader errors, and reader end-of-file conditions. 

1 

Each block on tape contains from one to twenty-five items, depending on 
the user's specification in the LABEL card. A blocking factor of 25 is 
assumed if this specification is not present. Smaller blocks than specified 
may be written prior to restart points or the end-of-file point. Each card 
image becomes a 20-word item. 

CTS is cur,rently assembled to write on the tape unit specified in file 14 
(tape assignment table entry 0216). This may be altered by reassembling, 
changing the EQU card which defines CTSTAPE (CTSTAPE EQU 0216). 
CTSTAPE may be left undefined at assembly time by removing the EQU 
card. In this case, it must be defined at object time or SUCO time by an 
operator type-in. (See DEF card description in DECO, SUPPORT III 
Section 3-0005.) Channel number (CDCE) and the tape channel priority 
reservation entry CTSTENT can be changed by the user in the same manner. 

C. CONTROL CARDS 

CTS recognizes three control cards. They are the LABEL card, the END 
OF FILE card, and the RESTART card. The format of each follows. Words 
printed in capital letters must be punched as shown. Lower-case words re­
present fields to be supplied by the user. 

1. LABE L Card 

Card Columns 

1 
2 
3 - 7 
8 
9 - 16 

17 
18 - 23 

Content 

~ (12-0-2 punch) 
t::.. 
LABEL 
t::.. 
file identity (8 characters, which will be­
come words 1 and 10 of the output file label) 
t::.. 
date 



UNIVAC m SUPPOL11 . , 

Card Columns 

24 
25 - 26 

27 
28 - 29 

MOe: 
U-3519 2 

Content 

II 
number of items (card images) per block. 
If this field is blank, 25 items per block 
are recorded. 
II 
reel number. If blank, reel number in the 
file label will be 000001 (decimal). 

The fields supplied by the user in the LABEL card will be placed in the 
appropriate words of the label block on the output tape. 

2. RESTART Card 

3. 

Card Columns 

1 
2 ... 8 

Content 

~ (12-0-2 punch) 
RESTART ----. 'I- '< 

I Fu 
A RESTART card will cause CTS to write four bypass sentinels on the / (I ll),l A 

output tape. If a situation arises which requires recovery during the 0 j,f)} . 
card-to-tape process, the tape will be repositioned to the last restart B~ S1 A R r 
point (4 bypass sentinels) when an SkllRESTART type-in is given. ~~ (.(. GU. 

END OF FILE Card 

Card Columns 

1 
2 - 12 

Content 

~ (12-0-2 punch) 
ENDllOF~FlLE 

r...c{)~U~ 

When the END OF FILE card is encountered, end-of-file sentinels are 
written onto the output tape, and that tape is then rewound. A RDMEOF 
messa~e is typed out, and CTS releases control. 

An END OF FILE card should be followed by 4 blank cards. 

D. TYPEWRITER COMMUNICATION 

Console type-ins and type-outs shown below are used to control the symbiont. 
(k in all messages refers to the card reader channel number. ) 

1. Symbiont Initialization 

a. RS~CALUCTS~k 



-, 

·" \-:'~ 
, 1t, 

UNIVAC m SUPPOIir -

b. 

U-3S19 3 

This type-in will cause the symbiont (CTS) to be called into 
memory. k is the channel designator, and its specification 
ill the CALL type-in is for purposes of typewriter communi­
cation only. 

After initialization, if card reader channel number, file number. 
and/or tape channel priority reservation entry haye been defined 
with a DEF card, the following will occur: CDCH, CTSTAPE J 

and/ or CTSTENT will type out. The operator must then type in 
channel number, file number, and/or reservation entry, respec­
tively. 

RS.6.KILUkl.6. CA LU CTS.6.k2 

This type-in will cause the symbiont currently using channel kl 
to be killed, and CTS is called, assigned to channel k2. If there 
are no symbionts to be killed, 0 may be entered for kl (or the 
RS.6.CALL type in described above may be used). 

Main programs may be called in the same manner, using pro­
gram name in place.of CTS, and 2 for k2. 

2. Type-ins 

a.. 

h. 

c. 

. d. 

Sk.6.START 

This type-in causes card reading to begin. The first five cards 
are ohecked for a LABE L card. Data on cards preoeding the 
LABEL card is not recorded on the output file. If a LABEL card 
Is not found, the symbiont types out the message NO.6.LABEL. 

The LABEL card should always be preceded by four blank cards, 

Sk 

This type-in causes the symbiont to' cease processing. The type­
in Sk.6.GO will cause processing to resume. 

Sk.6.GO 

This type-in causes the symbiont to ,continue processing after a 
stop. 

SkARESTART 

Prior to this type-in, the operator should have repositioned the 



t:.h ',->i""'"~","' -., - •• _ ..... 

'!o....,.'O ... ~}". . 
'1..0001 

UNIVAC m SUPIPO~T 
U-3519 

input card file to the previous··RESTART card. SkARE START 
causes the symbiont to position tape prior to the last restart 

" 

point on the output file. Card reading is resumed, and the first 
five cards are checked for a RE~TART card. The recovery point 
is written on the output file and normal operation is then resumed. 

3. Type-outs 

, a'. 

b. 

c. 

d. 

e. 

f. 

NO~LABEL 

When a LABE L card is not found among the first five cards read, 
this message is typed out. The operator may type in GO to ignore 
the label, or he may put a LABE L card in the reader and repeat 
the SkASTART type-in. The message may have been caused by 
an illegally punched LABE L card. 

NO~RESTART 

In the event that one of the first five cards read on :;-ecovery is 
not a RESTART card, the type-out NO~RESTART occurs. When 
the proper restart point in the card file is located, the Sk.6.RESTART 
type-in should be repeated. 

CH5~EOT 

This type-out occurs when an end-of-reel condition is encountered 
on the output file. End-of-reel sentinels are recorded, and the 
file is rewound. If further card to tape conversion is desired, a 
LABE L card specifying the proper reel number should precede the 
remainder of the card file, and after a blank tape is mounted, 
SkASTART should be typed in. 

RDR~EOF 

This type-out occurs when an END OF FILE card is read. End-of­
file sentinels are written on the output file and the output file is 
rewound. 

WHAT 

This type-out is the response to any illegitimate type-in. 

READER 

This message is typed out when a card reader error or fault oc­
curs. The cards, if any, in stacker 0 should be repositioned in 
front of the remaining card file. An SkAGO will cause card reading 
to proceed. 



UNHVAC m SUPPOflY 
U-3519 

TAPE TO PRINTER (TPRS) 

A. PURPOSE 

The purpose of TPRS is to provIde a standard tape-to-printer procedure 
Wl~ a.moderate amount of automatic carriage control. 

B. METHOD 

1 

TPRS accepts an input file in standard data format. The tape must have 
been written using standard label t bypass t end-of-file t end-of-reel, and 
block sentinel conventions. Each print item (record) on the tape will con­
tain a line control word followed by a line image of from 1 to 32 words. 

Maximum block size for the input fila is 254 data words (256 words, in­
cluding the two Data Descriptor words). 

Each page will have a standard heading and footing of six lines each, as­
suming the operator has correctly aligned the paper. The 6-line heading 
and 6-1ine footing may be modified by the user with a carriage control 
word. A 66-line form (11 inches) is assumed by the symbiont. If a dif­
ferent form length is used, its length should be indicated in a carriage 
control word. 

TPRS is currently assembled to read from the tape unit specified in file 
15 (tape assignment table entry 0217). This could be altered by reassem­
bling, changing the EQU card which defines TPRSTAPE (TPRSTAPE EQ.U 
0217). TPRSTAPE could also be left undefined at assembly time by re­
moving the EQU card. It should then be defined at object time or SUCO 
time by an operator type-in. (See the DE F card description in SUPPORT 
III, Section 3-0005.) 

The channel number (PRCH) assigned to the printer, and the tape channel 
priority reservation entry TPRSTENT might also be altered in the same 
manner. 

C. CONTROL WORDS 

1. The line control word must be the first word of each print item. It 
specifies the number of words in each line image, and it controls page 
and line advance. Printing begins in print position 1. 



• 
-

:' '!6t , .t:Y .. ,~ 

UNBVAC m SUPPO~Y 
PAClC, 

U-3519 

The format of the line control word: 

Bits Content 

25 0 
24 - 22 not used 
21 - 16 length I()f line ~ 32) 
15 - 9 0000000 
8 eject control 
7 - 1 line advance 

If there is a.l in bit 8 (eject control) of the control word, page 
ejection will occur immediately. Ordinarily, prmting will occur 
on a page until the footing space is reached, at which time there 
is an automatic eject to the first line after the heading space of 
the next page. ' 

A combination of a 1 in eject control and an entry in line advance 
(bits 7 - 1) causes an immediate eject to the line number on the 
next page specified in bits 7 - 1. 

An entry in line advance without an entry in eject control specifies 
the number of lines to be spaced before printing. Thus the user 
can double-space, triple space, or print with irregular spacing. 

Punch control words are indicated by 017777 in bits 1 - 13 J and 
will be automatically bypassed by TPRS. 

2. A carriage control word may be used if the user wishes to specify 
a non-standard page heading and footing (other than 6 lines each) 
and/or a non-standard form length (other than 66 lines). 

The format of the carriage control word: 

Bits 

25 
24 - 22 
21 - 15 
14 - '8 
7 - 1 

Content 

1 
not used 
length of page heading, in lines 
length of page footing, in lines 
length of form, in lines 

'\ 

2 

, 



UNIVAC m SU~f?Oay 
U-3519 

When this control word is used, all fields must be filled in since 
this word will oause new specifications to replace the standard 
heading and footing and form length. Therefore, even if the user 
is modifying only page heading, for example, he must indicate 6 
for page foo~ing and 66 for form length. 

When the carriage control word is used, it should be followed by 
a line control word, which specifies a line length one less than 
normal. The remainder of the item should be a dummy item which 
Is one word shorter than normal. The print image in an item con­
taining a carriage control word will not be printed. 

D. TYPEWRITER COMMUNICATION 

The entry "k" in all typewriter messages indicated here refers to the 
printer channel number. The user must deSignate the channel being 
used. 

1. Symbiont Initialization 

a. RS.6.CALL~TPRS~k 

3 

This type-in w ill cause TPRS to be called into memory. The " 

b. 

designation here of printer channel number ("k") is for pur-
poses of typewriter messages only. This does not obviate 
the need for defining an undefined charmel number as described 
under "METHOD". 

After initialization, if printer charmel number, file number, 
and/ or tape channel priority reservation entry have been de­
fined with a DEF card, the following will occur: The mes-
'sages PRCH, TPRST APE, and/or TPRSTENT will type out. 
The operator must then type in channel number, file number, 
and/ or reservation entry, respectively. 

RS.6.KILL.6.kl.6.CALL.6. TPRS.6.k2 

This type-in will cause the symbiont currently using channel 
,kl to be killed. TPRS is called and assigned to channel k2. 
If there is no symbiont to be killed, 0 may be entered for kl, 
or the ~CALL type-in may be used. 



REVISION: 

UN~VAC m SU!?~Or:iY 
2-0002 

PAGE: 

U-3519 4 

2. Operator Type-ins 

a. 

b. 

c. 

d. 

e. 

Sl<.6.START 

This causes tape movement to begin. First the tape will be 
rewound and if there is a label, the eight-character I D will 
be typed out (along with date and reel number). The first 
line item will be printed. The symbiont then releases to al­
low the operator to check the form alignment. 

SkAGO 

This type-in causes printing to continue after a stop. 

S1<.6. TEST 

A single line will be printed. This type-in can be used to­
gether with manual printing to set up form alignment. The 
same line image w ill be printed each time S~ TEST is re­
peated. Typing in SkAGO will cause the symb iont to continue 
normal printing, beginning with the next line item. 

Sk 

The symbiont will release without further printing, and 
printing will be continued when Sl~GO is typed in. 

_~ 0 crfft'l'tl-l .~ 
qq 4..1.. (-.. ~ ~ ,-r:: 

SkD.BAC~n 

The symbiont will back up n pages (n = 0,1. .. "S-) and then /" ~--'I ,,. . .<.A_>.,,..y' 

resume printing. Backing up is accomplished by checking ., ./1 ~~ 4 
for cumulative line advance on a page when the type-in oc-,;, i\,.iL~·. /( ,f. '; 
curs between the head and foot of a page. When it occurs at ? 
the foot of a page, TPRS will back up until the distance backed 
up exceeds the distance from head to foot. If an eject bit is 
found anyw-here, it is assumed that this is the head of a page. 
If ejects are not used, then vertical line positioning of a 
page will normally not agree with that prior to backing up. 
A precise number of pages backed up is not guaranteed, and l'rL ~ . i~ 
the symbiont may back up more pages than specified. J R J,vL ~t 

A' ~}'I... 
The symbiont will print a sing:e line and then release to per- {{/it. t 
mit paper alignment, if desired. 



" 

UNIVAC ,m SUPPOriT . 
U-351S 5 

3. Type-outs 

a. 

b. 

c. 

d. 

e. 

f. 

END.6.PRINTING 

This message is typed out when an end-of-reel or end-of-file 
sentinel is encountered on the input tape. The tape is not re­
wound. The print routine will release. 'A new reel may be 
commenced by manually rewinding the old reel, replacing it 
with the new reel, and typing in S~START. If the user pre­
fers, the symbiont could be called again, and the new reel 
defined on another unit. 

WHAT 

This message will respond to an unrecognizable type-in. The 
symbiont will release, and the operator should type in a cor:" 
rected message. 

BAD.6.BYP ASS~SENTINE L 
/ 111: " ~, 

/1' ", .- ,..t._, 

d 1 1 ".-<- r i' t-t. 
-If, { .s l: i, ,~I A.. 

'''I '" ;,t ( l-

This type-out occurs when an illegal bypass sentinel is en­
countered on tape. It is not possible to recover since it ordi­
narily indicates that the tape was incorrectly produced,. ' 

I ' - ) 

!,~ tJi,._,"- /-:' 
) 

BAD.6.EOF.6.SENTINE L 
ie(, £ • t C{"-

This message is caused by an illegal end-of-file sentinel. It 
ordinarily indicates an incorrectly produced tape, and recovery 
is not possible. (Restart is not generally necessary since 
printing is finished at this point. ) 

IL LE GA UE 0 F .6.0R.6. LAB E USENTINE L 

This type-out occurs when an illegal end-of-file or label senti­
nel is encountered when tape is being read backward after an 
Sk.6.BACK type-in. The tape should be rewound and the sym-, 
biont restarted. 

NO.6.ST ART.6. TYPE-IN 

This type-out requests an RS~START type-in. Probably an 
RS.6.GO has been used'where an RS.6.START was required, or 
RSASTART was not typed m after symbiont initialization. 

( #' f 'I (,.( ... ,) 



UN!" AC m SUPPO~T , 
ItCYlaaOHt 

U-3519 

TAPE-TO-PUNCH SYMBIONT - (TPCS) 

A. PURPOSE 

TPCS provides a standard tape-to-punch procedure which will punch 
translated card images from a conventional punch tape or from a com­
bined printing and punching tape. 

B. METHOD 

TPCS accepts an input file in standard data format. The tape must have 
been written using standard bypass end-of-file, end-of-reel, and block 
sentinel conventions. Each punch item (record) on the tape will contain 
a punch control word followed by a card image of from 1 to 20 words. 

MaxiJ:;num block size for the input file is 254 data words (256 words, in­
cluding the two Data Descriptor words). 

TPCS is currently assembled to read from the tape specified in file 13 
(tape assignment table entry 0215). File nUlnber could be changed by 
the user by reassembling, changing the EQU card which defines 
TPCSTAPE (TPCSTAPE EQU 0215). Another method would be to leave 
TPCSTAPE undefined at assembly time by removing the EQU card. A 
DEF card should be used to indicate the symbol as operator-defined. 
TPCSTAPE would then be defined by an operator type-in at object time 
or SUCO time. (See the DEF card description in SUPPORT III, Section 
3-0005. ) 

The channel nwnber (PUCH) assigned to the punch, and the tape channel 
priority reservation entry (TPCSTENT) might also be altered in the 
same manner. 

C. PUNCH CONTROL WORD 

The pilllch control word must be the first word of each pWlch item. It 
specifies the nwnber of words in each card image, and specifies the 
punching mode (binary or Hollerith). Punching begins in column 1. 

1 



"CV,.'QN: 
, 

....... 
2-0003 

UNDVAC ill SU?I?OEii 
U-3519 2 

The format of the punch control word: 

Bits 

21 - 16 
15 
14 
13 - 1 

Content 

number of words in punch item 
punch mode 
punch stop bit 
17777 

A "1" in punch mode field (position 15) indicates that punching is to be 
jn Hollerith code. A zero indicates binary code (24-bit words). 

When there is a "1" in position 14 (punch stop bit), the card acts as a 
restart card. Punching will stop, and the symbiont will release after 
the "restart" card is punched. This permits the operator to mark the 
position of the last card to enter the stacker for possible later restart. 
It should be noted that the last card in the stacker is the card immedi­
ately preceding the I'restart" card since the last card processed is 
still in the 'punch. If a restart becomes necessary later, the operator 
should remove all cards in the stacker after the marked card, in­
cluding the "restart" card, since it will be punched again. 

The 17777 in positions 13 - 1 distinguishes the punch control word. A 
print control has a different entry in this field, and print items will 
simply be bypassed by TPCS. 

D. TYPEWRITER COMMU:t\TJ:CATION 

The entry "k" in all of the folloWing typewriter messages refers to the 
punch channel number. The user must designate the channel being used. 

1. Symbiont Initialization 

a. RS6CALU TPCS6k 

This type-in will cause TPCS to be called into men1ory. The 
designation of punch channel number ("k") is for purposes of 
typewriter communication only, and its use here does not can­
c~l the need for elsewhere defining an undefined channel number 
as described on page 1. 



= 

, aceTU .. " 
2-0003 

UNaVAC m SUf?[,O~l 

b. 

"AGE: 

U-3519 

After initialization, if punch channel number, file number, 
and/or tape channel priority reservation entry have been 
defined with a DEF, the following will occur: The messages 
"PUCH", "TPCSTAPE", and/or "TPCSTENT" will be typed 
out. 'The operator must then type in channel number, file 
number , and/or reservation entry, respectively. 

RS.6.KI LL.6.kl~ CA LL~ TPCS~k2 

This type-in will cause the symbiont currently using channel 
kl to be killed. TPCS is called and assigned to channel k2. 
If there is no symbiont to be killed, 0 may be entered for kl, 
or the RS~CALL~TPCS type-in may be used. 

A main program could also be called with this type-in. Pro­
gram name would replace "TPCS". 

3 

2. Operator Type-ins 

a. 

b. 

c. 

d. 

Sk~START 

This type-in causes the input file to rewind; the first block to 
type out as the label block, and punching to begin. 

Sk 

This causes the symbiont to stop and release control. Punching 
will continue when Sk~GO is typed in. 

Sk~GO 

Causes the symbiont to continue after a stop. 

S 1<Lill ES TAR T 

This type-in causes the symbiont to search the tape bacl\:\vards 
until a punch control word with a I-bit in position 14 (punch 
&OP bit) is encountered. TPCS will then reSUlne by. punching 
the record thus flagged as the restart point. After typing in 
Sk~ESTART, the operator D1USt remember that the first 
card out of the punch is not the first card from the restart 
point, but it is the "restart" card, and was actually punched 
previously. It is assumed, therefore, that before typing in 
Sl<lill. ES TART , the operator has removed all the cards in the 
stacker back to the card flagged at the previous restart . stop. 



2-0003 

PAGe; 

U-3519 4 

3. Type-outs 

a. 

b. 

c. 

ViLe:::. ~n c!Li-Cl-:'iL: u:.' c:1d-o:-l'(;cl sc::tinel is encountl;::.'cJ G:~ 
the ill~)LlL t:<);::;, L.ll.i.s r.:CS.s:":'~;l; i.s typcd out. TPCS ;.:-.en relc~se's, 
WitilGUt l'C\v:::c2':'n~ lLL~ t~)e. A new reel n:.~y be corr.l'.lcnCl:cl Ly 
rnan1.:ally rcwi.tldi:l~; the olel reel, replacing it with the new re~l) 
~nc: typin~ in Sk.2STAI1 rr. The: new reel could be c:efinecl ::::.,s a 
diflerent file. TLe· syn;.;)i(Xl~ '.vould then have to be re-initialized. 

This ~:1esS~~Q Is Lj'peJ out \v~en a punch control word wiLli ;.: 
I-bit in po.siLion l~} ::'s enc0unLered. TIle symbiont releases, 
and the opol'atur Sl10uld l'e:rnOVE: and fb.g t.~e cards in the punch 
stacker, and then type in S;,:..0..GO to continue. 

'lVII.:\.T 

Tl-.is type-out GCCL:I'S ill rc,:;pGl'::::'c to ;:..n unreco;niz2.1Jle type-:a. 
The :::;Yl::biuu:., :,·cL...:~l..ses, Ull,J ::18 0P(;::"~;lIOl' should type in the 
corrected n:8s,:;~;C..:. 



UNIVAC m SUPPORT 

I REVISION: .. 

~ 
I November 16, 1962 
I 

PUNCHED PAPER TAPE READER SYMBIONT 

Ao PURPOSE 

I SECTI~~005 _____ _ 

I PAGE: 

I 1 

To convert punched paper tape data to magnetic tape using 500 
or 250 characters per sec paper tape reading speeds. 

B. METHOD 

The absence of standard conventions on the part of the user as to 
use and character set for punched paper tape requires that the 
conversion of punched paper tape to magnetic tape provide an 
untrans lated and unpacked image of the input data in the output 
file o The user is then free to manipulate the data image according 
to his own conventions during a subsequent run, availing himself 
of the higher input speed of magnetic tape. 

The output of this run is in standard block format, with standard 
label and sentinels. Each data block contains 256 data words 
(equivalent to 256 fran1es of punched paper tape). 

UNIV AC will make adjustment, upon request, of the number of data 
words (fran1es) per block of the output file of the symbiont program. 

The console type-ins and type-outs shown below are used to control 
the symbionto 

Sk ~ aaaaaaaa 

- k defines the paper tape reader channel nun1ber. 
a is the eight character file ID desired in the output label block. 
This type-in causes the symbiont to write the output label block and 
commence conversion of paper tape data to the output file. 

Sk L.\ GO 

- this type-in causes the symbiont to continue pro­
cessing after any stop. This type-in should not be used after mounting 
a new reel of paper tape as no recovery point will be established. 

Sk~ END 

- this type-in causes end-of-file sentinels to be 
written on the output file ~ and rewind of the file. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE: PAGE: 

November 16, 1962 

Sk or Sk A 44 ilil ST()P 

- this type-in carJ.ses the symbiont to stop 
pro~essing. 

Sk~FLT 

- this type-out occurs when the fault indicator 
of the paper tape reader is set. The Fault Indicator may be set 
by an end of paper tape condition in which case the operator may 
terminate the run or mount the next reel and call for continued 
operation. In the event of a Reader Fault other than end of paper 
tape, the operator may terminate the run or clear the fault and 
recover from the start of the current paper tape reel. 

Sk/\ ERR 

- this type-out occurs when the Error Indicator 
of the paper tape reader is set. The operator may terminate 
the run or recover from the start of the current reel of paper 
tape. 

Sktl NXT 

- this type-in is used to establish a recovery 
point before commencing conversion of the next reel of paper 
tape. After this type-in, the type-out Sk Illl occurs, where nn 
indicates that the reel of paper tape mOWlted on the reader is 
the nn th reel of paper tape to be converted to the current output 
file. The operator should record the value rm on the paper tape 
reel to aid in recovery, should such action become necessary. 

Sk Ll \VS 

- this type-out occurs when the paper tape 
reader wired stop Indicator is set. The group of characters 
read from paper tape up to the occurrence of the wired stop 
character will be written on the output file. 

SkA Rnn 

- this type-in is used to recover the run by 
rerWlning the conversion from the start of paper tape reel nn. 
On receiving this type-in, the output file will be rewound and 

2-0005 

2 



REVISION: SECTION: 

2-0005 

UNIVAC m SUPPORT 
DATE: PAGE: 

November 16, 1962 

read forward until the bypass block identifying the start of paper 
tape reel nn is located. Conversion of reel nn to the output file 
then occurs. 

sk~Nf6 

- this type-out responds to any illegitimate 
type-in. 

C. OUTPUT FILE FORMAT 

1. Label block 

Word 

o 

1 

2 

3 

4 to 9 

10 

10 

2. Data Blocks 

\Vord 

o 

1 

256 

257 

Content 

-0 

aaaa 

ddD1myy 

()OOOOI 

10 

aaaa 

-0 

Content 

Data Descriptor 

label flag 

first 4 characters of 
syn1biont initiating type-in 

date assigned by DECO 

reel nUD1her 

unassigned 

last 4 character~·' of syn1biont 
initiating type-in 

label flag 

Image of first frame 

Image of last fran1e 

Data Descriptor 

3 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE: PAGE: 

November 16, 1962 

3. Bypass and Recovery Point Blocks 

These blocks, occurring in the sequence illustrated below, 
are generated by the type-in Sk~NXT, providing a 
recovery point. 

Bypas s Block -020000000 

Recovery Point Block +OOOOnn 

Bypas s Block -020000000 

Bypass Block -020000000 

In the recovery point block~ nn is the reel number of the 
paper tape reel whose data blocks follow on the output file .. 

2-0005 

4 



= 

REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0001 

DATE: PAGE: 

July 20, 1962 

BOOT 

Bootstrap and System Tape Loader 

A. Purpose 

To provide a system tape bootstrap routine and a loader to load specified 
routines from the system tape. 

B. Method 

This routine has the capabilities of reading routines from the system tape 

1 

or from binary punched cards. Before loading the executive routine, memory 
may be preset to instructions which transfer control to an error routine. 

1. Bootstrapping 

BOOT is loaded from the system tape by pressing the load button when 
the machine is cleared and the systeII?- tape is rewound. This routine 
includes the system tape search routine. If the run button is now 
pressed, the executive routine is loaded using the system search rou­
tine. 

2. Sys tern Tape Search 

The system tape search is accomplished by scanning the system tape 
forward for a symbol block corresponding to the specified symbol. If 
an end-of-file is encountered before the symbol is found, the system 
tape is rewound and the search continued through the file a second time 
until either the specified symbol or the end-of-file is encountered. If 
the symbol is found, the corresponding program is loaded. If the syrn­
bol is not found an error is indicated. Control will be transferred to 
the starting address of the loaded progranl if so indicated. 

C. Operating Procedures 

1. To load the executive routine from the system tape, perform these 
functions: 

a. REWIND 
b. CLEAR 
c. LOAD 
d. PROGRAM STOP 

Optional. If used will preset memory to SLJ (error routine). 
e. RUN 



REVISION: SECTION: 

3-0001 
UNIVAC II[ SUPPORT 

DATE: ~AGE: 

July 20, 1962 2 

======================================================~==================~=============~-' -.~= 

2. To load binary routine through the card reader after having loaded 
the executive routine,perform these functions: 

a. REWIND 
b. CLEAR 
c. LOAD 
d. PROGRAM STOP 

Optional. If used will preset memory to SLJ (error routine). 
e. REQUEST 
f. RUN 

3. To load and execute routine specified by type-in on console typewriter 
after loading executive routine, perform the following functions: 

a. REWIND 
b. CLEAR 
c. LOAD 
d. PROGRAM STOP 

Optional.. If used will preset memory to SLJ (error routine). 
e. RUN 
f. REQUEST 

Type-in: RX routine name 
routine nan1e must appear exactly as it appears on the system 
tape. 

g. RELEASE 

4. Calling sequence to load and execute specified routine from system 
tape: 

LA 3, routine name 
J LODX, 

5. Calling sequence to load specified routine from the system tape and 
return control to calling program. Load index register 1 with desired 
return address. 

LA 3, sylubol desired 
J LOAD 
(control returns here) 

Halts and Loops 

a. 
b. 
c. 

00342-00347 
00351 J $ 
00333 J $ 

busy loop 
B error or fault 
symbol not found 



REVISION: SECTION: 

UNIVAC m SUPPORT 
DATE: PAGE: 

July 20, 1962 

D. Memory Space 

NOTE: 

o 
1-0177 

0100-0147 
0200-0217 
0240-0246 
0300-0377 

J 0302 
Binary Loader 
Scat words for search routine 
Tape assignrnent table 
TeD, LOAD, LODX cornmunication cells 
Search routine 

If the BOOT routine is referred to by a symbolic program written 
in the ALMOST assernbly system language, standard EQU cards 
should be placed ahead of the sylnbolic progranl to be asserrlbled 
and the following labels are restricted from other use in the source 
program. In this manner, the labels for the BOOT routine will be 
equated with proper absolute addresses. 

LOAD 
LODX 

3-0001 

'I 
..) 



REVISION: SECTION: 

3-0001 
UNIVAC m SUPPORT 

DATE: PAGE: 

======================~======~=====~ 
July 20, 1962 NOTES 



= 

REVISION: SECTION: 

3-0002 
UNIVAC m SUPPORT I--------------~------- - ----------

DATE: PAGE: 

July 20, 1962 

WST (WRITE SYSTEM TAPE) 

A. Purpose 

To create a basic absolute system tape from binary cards. 

B. Method 

This routine reads binary cards and control cards through the card reader 
and writes corresponding scat records on the system tape. For each 
standard binary card, a one word segment corresponding to the first word 
on the card is written followed by a segment containing the words of infor­
mation from the remaining portion of the card as specified by the first 

1 

word. The transfer card and the following routine name card are written as 
a separate block on the tape. The bootstrap routine is loaded into location 
010000 and written therefrom onto tape, followed by the routines read from 
the binary punched cards in the card reader. Only absolute binary cards may 
be processed by this routine. The setting of cover registers to their proper 
values is not handled by this routine and must be accomplished by the routines 
themselves after they have been read in from the system tape. This routine 
uses index registers 4 and 5 as cover registers and index registers 1, 2 and 
3 for working registers. 

Program Modification 

1. To change the tape unit to be written on, modify bits 21-24 of cell 0214. 

2. To prevent writing the bootstrap routine on the system tape, set the 
contents of 04334 to zero. 

C. Operating Procedure 

1. CLEAR 

2. Feed one card in card reader 

3. RUN 

Upon successful completion, the output tape unit will rewind and the WST pro­
gram will loop. This output tape is then ready for use as the system or 
program tape. Ordinarily, rings should be removed to inhibit writing on this 
reel. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0002 

DATE: PAGE: 

July 20, 1962 2 
====================================================;r-~= 

D. 

E. 

I I 

Memory Space 

o - 0177 
0200 - 0217 

010000 - 010377 
04000 - 04363 
04364 - 04435 
04436 - 06075 
06076 - 06121 

Card Formats 

binary loader 
tape assignment table 
bootstrap program offset from cells 0-0377 
WST program and constants 
Scat words to write information blocks 
card images 
literals 

1. Routine label card. Binary equivalent of routine label is punched 
in first two words of card. For example, label for AKTDNW would 
be punched: 

II 
111100000000000000000000000000000000000000000000000000OOOGOOOOOOOOOOOOOOOOOOOOOO 
1 2 3 • 5 6 7 8 9 10 11 12 13 14 15 1& 17 18 192021 22 23 24 25 21i 27 ]8 29 30 31 J2 33 J4 35 36 31 38 39 40 41 424344 4, 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 M &5 66 67 68 69 70 71 121314151677 18 1980 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

1211222222222222222222222£222222222222222222222222222222222222222222222222222222 

311 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

41444444444444444444444444444444444444444444444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 

1177777777777771777777777777777777777717777777777777 7 7 7 7 7 7 7 7 7 7 7 77777777111711171 

pl888888888888888888888888888888888888888888888888888888888888888888888888888888 

•• 999999999999999999999999999999999999999999999999999999999999999999999999999999 
1 , 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 13 19 20 21 22 23 24 ,~ 11' 21 28 (') 30 31 32 33 34 35 36 31 38 :>9 41141 42 43 44 4J 4~ 47 48 49 50 51 52 53 54 55 S6 51 58 S9 'iO 61 62 63 64 65 66 67 68 69 70 11 12 13 14 75 16 l' I, 19 80 

~~r~(S .. S) 5081 



I II 

REVISION: SECTION: 

UNIVAC ill SUPPORT 
DATE: PAGE: 

july 20, 1962 

2. Routine program cards. Routine program cards and transfer cards 
must be in standard binary format. See Section 1-0001 of the 
SUPPORT lIT manual for a description of these formats. 

3. End-of-file card. Below is a sample of the end-of-file card. It 
contains the binary equivalent of 6 END-OF-FILE. 

3-0002 

3 

I I I 
00010110000000000000000000000000000000000000000000000000000000000000000000000000 
1 2 J • 5 6 7 8 9 10 11 12 13 14 15 16 11 18 1920 21 22 2J 24 25 26 27 78 29 30 31 J7 33 J4 3~ 36 37 38 39 40 41 4743 44 4~ 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 &5 60 61 68 69 70 71 12 73 74 75 76 77 18 79 10 

11111111111 11111111111111111 ~ 11 111 1111111111111111111111111111111111 111111111111 

11211121222222222222222221222222222222222222222222222222222222222222222222222222 

33133313333333333333333333333J....33333333333333333333333333333333333333333333333333 

41144444444444444444444444444444444444444444444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

6&666666666666666666666666666666666666666666666666666666666666666666666666666666 

7117777777777777777777777777777777777777777777777777 7 777777777777777777777777111 

P 818 8888888888888888888888888888888888888888888888888888 8 8 8888888888888888888888 

9199999999999999999999999999999999999999999999999999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 9 9 9 9 9 9 9 999 
1 1 3 4 5 _6.7 6 q 10 11 121) 14 15 16 17 18 19 20 21 27 23 24 25;>t; 27 78 7130 31323334 35 36 37 J8 3940414243« 4, 4~ 47 48 49 50 51 ~2 ~3 54 5~ 56 ~7 58 59 0;0 61 62 63 64 65 66 67 68 69707172 73 7< '576 l' 'R Iq 110 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0002 

DATE: PAGE: 

July 20, 1962 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0003 

PAGE: 

U-3519 1 

UPCO 

A. PURPOSE 

UPCO (UPdating COntrol) is one of the three General Program Process­
ors associated with the BOSS III SUPPORT System. Its purpose is to pro­
vide updating services for the user's source code and object code libraries. 

B. INTRODUCTION 

upea may be used in three major area - in creating symbolic code or relocatable 
obj ect code libraries, in updating libraries, and in creating control tapes. 

A new library tape is created by UPCO by including the desired library 
. information with the control input. In this case there would be no additional 
library input tapes to UPCO, and there would be no corrections, insertions, 
or deletions. A new library tape could also be created by using the PRESTO 
card-to-tape symbiont. it ":," (',}, i' ,I 

i 

UPCO can create an updated library tape by 1?electing ,~nfo:rmation from 
one or more old library tapes. Control input directs'the various processes 
of insertion, deletion, and correction, and the control input may itself con­
tain information to be included on the updated library tap'e. '''The 'updatd:'I ! 

tape may then be used as library input or as a control tape for another pro-
cessor (ACCO, DECO, or UPCO itself).·1 'I,· /1 , , I! ,.,. i 

1. Input 

Input to upea consists of the user's relocatable library or symbolic library 
tape, which is to be updated, and control information on cards or on a separate 
tape which directs the updating process. All tape input to upea is in the 
condensed PRESTa format, which means that all consecutive blanks and 
zeroes have been removed. None of the original information content is lost 

a. Library Tapes 

A library tape may contain sets of independently compiled reloca­
table object code, or source code, arranged in groups and elements. 
Elements contain either source code images (COBOL, FORTRAN, 
or UTMOST), or binary card images. In either case ~ there may 
be control cards within the element. 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 2 

b. Control Information 

Control information defines and directs the updating of the relocatable 
or the symbolic library tapes, and is contained either on a tape in 
PRESTO format, or on cards, but not both. 

Control input comes from a previous processor (ACCO or 
UPCO), the PRESTO card-to-tape symbiont, or directly from 
cards. In addition to control card images, the control input 
may also contain symbolic or binary elements. 

See the section on Control Cards for an explanation, in detail, 
of the various types of control cards. 

2. Output 

a. Library Tape 

The library tape (PRESTO fonnat) which is produced by an UPCO run 
will be an updated symbolic or a relocatable library tape, containing 
updated and/or new information. This tape may be used as input to 
another processor (ACCO, DECO, or UPCO itself). 

b. List/Punch Tape 

A List/Punch tape is optional in an UPCO run, and must be 
specified by a tape assignment parameter card if the user wants 
it. If it is not so des ignated, all listing and/or punching will be 
d one on line. 

The information which UPCO places on the tape is in the format 
required by the combined PRINT! PUNCH tape' -s-yml:ilimL(.GP.ES). 
This tape could be printed and/or punched later by'CPPS"con­
currently with a main program. 

~(~i':l ' '/p!! )b,~, )(:~): '7.", 
There are a number of option~tavailable to the user which will 
control the mode of listing and punching, and the mode can be 
changed for each element or group within an UPCO run. For 
punching, there are only two options - punch or no punch. For 
listing, options available allow the printing of selected informa­
tion such as diagnostics, error messages, control cards, or a 
combination of these. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
PAGE: 

U-3519 

The Options in a MODE control card (or in a COpy control 
card) determine the printing/punching mode. Once a mode 
is initiated~ it will remain in effect until changed by another 
MODE or COpy control card. If a mode of listing and punch­
ing is not stated ~ there will be no punching, and the listing 
will be as specified in the l;;~ option of the MODE card . 

.... (;,' 1--

List/Punch options will be particularized in the Control Card 
Section. 

3. Groups and Elements 

3-0003 

3 

A program (job) contains a combination of groups and elements - or a program 

may consist of only one group or element. An element is the smallest program 

uni t and may contain binary images or source code images, inel uding control 
cards. A group is a collection of elements or other groups, and may contain 
control cards, but .!Il'?-Y .. I'l:()!_ contain source code or binary images unless they 
are within an element. 

Groups and elements are identified by names, which must be unique 
within a group. Names may not exceed ~.igbJ characters. ' 

, i 
/ '-+ ' j '! ' 

Groups and elementS- are identified by the following control cards: 

BOG Groupname 

EOG Groupname 

ELT Elementname 
I) 

(Beginning of group and its name) 

(End of group and its name) 

(Begi.p.ning of element and it$ name) 
i I 

On a library tape an element is terminated by the appearance of 
another ELT, a BOG, an EOG card, or an end-of-file marker. 

The BOG and EOG control cards serve as brackets around a section 
of coding; they are descriptive labels for a group. All other control 
cards pertinent to a group must appear within the BOG and EOG con­
trol brackets. Groups may be nested within groups, as the following 
example indicates. 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 4 

BOG GRPI Group 1 (GRPl) contains groups 2,3, and 4. 
BOG GRP2 Group 2 (GRP2) contains groups 3 and 4. 

[BOG GRP3 
EOG GRP3 

[BOG GRP4 
EOG GRP4 
EOG GRP2 
EOG GRPI 

An E LT control card precedes the card images belonging to the ele­
ment named in its operand field (Elementname). To be part of a group, 
elements must be contained within BOG and EOG control cards, and 
within a group an ELT card separates succeeding elements. Elements 
which are not within a group are terminated by the next BOG, ELT 
card, or end-of-file marker encountered. 

The following is an example of elements within nested groups: 

BOG 
ELT 
BOG 

[BOG ELT 
ELT 
EOG 

[BOG 
ELT 
EOG 
EOG 
EOG 

GRPI 
ELTI 
GRP2 

GRP3 
ELT2 
ELT3 
GRP3 
GRP4 
ELT4 
GRP4 
GRP2 
GRPI 

Group 1 (GRPl) contains element 1 (ELTl) 
and groups 2, 3, and 4. 

Group 2 (GRP2) contains groups 3 and 4. GRP2 
does not contain source code state­
ments in itself. 

Group 3 (GRP3) contains elements 2 and 3. 

Group 4 (GRP4) contains element 4. 

To call ELT3 in the preceding example: 

SELECT GRPl(GRP2(GRP3(ELlIT3») 



REVISION: SECTION: 

:~ -OOO:i 

UNIVAC m SUPPORT i _ .. _-....... ---_.- -.----

PA13 E: 

U-3519 

or, to caU LTl: 

or. tIl call GHP3: 

Sf': LECT GHP} (GRP2(GHP3)) 

1 (:!\rltrol (:;lrd", Clrp Il-;ed ly programmers and operators to commllnicatp with ill(' IV)<;:-; 
III Sl:tJi'OHT ~yst(·!Il. \n Ll'(~(J control card has a frce-form f0rmat similar tIl ,) );1(' 

(~f! },~T symholic ('()ding. TIJi: exceptions are that it must ('onU1ip a 1.2- i)-~2 

pllBch (nonst:m,jard pllrwh and for use in illustrations in the tC'xt tilt' symho './ If. I! 

!W Il;·;e.1) (h) in the first col!ll1ln, the label field may begin in any column foll(;,."il 

the 'I-, !llIlWh, alld Ill,' I i liP may not contain comments. 

'7,1.,,\ Tn L,,)'OPEHATION~OPERAND ) 

(v:hpt'(' 

V) •. If . ~.. (,' , . 

in dic:d (':-; al. l~<lst one '61ailk). 

ff til(' lahcd, field or a control card contains the name of a proccs~ur. r, 
hi.:' ('olliro] ear'd is then made "transparent" to all other proC{~s:::;Ul'-:. 

For c>~anlple: 1l, UPC(\~IVIODE.6.LNOR, PUNCH. This cont rol card rl1a~' 

be passt'd thruugh i\ ceo or DECO with no action be ing taken unt il il. i 

processed by lTPCO. The designation of a processor is the only usc> 

for the' la1)(\ I field in any control card. 

The operation fi;(~ld C;OI:taiqs a ,syslym directive which specifie~ a P<ll'­
Ucular function to 1)(:\ rl'erf6rmect b'y'theproccssor. The operand field 

contains one or nt\)l'C parameter~f~hi~1~prethcat~ the6peration of tlw 
I 

sy:':lte m direct ive. The uperation field and any parameters lnay lw up 

to f'.ight char::wtt'!''-l in length. 

C'on/rol cards for tTP(:O will not be passed on once that processor' h:l..s 

acted upon the m" Tht' sa me is true for any processor ~ (:xcept ing con .. 

trot canis which deri!! jobs. elenH:mts, groups, and data areas. sUl.'h 

as f'; LT, BUG. ECl(;,.TOB. SEG, a.nd DATA. 

The control cards 1'01' upea may be separated into certain clivision~ 
accord ing to their [UlH't ion, as indicated by the following desc riptiolls. 
Control cards listt~d in this section will have UPCO in the label field 
if th(~ cards are a lsn applicable to ACCO or DECO. 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0003 

PAGE: 

U-3519 6 

==========================================================================~==============~~ 

~. , 

- ;\'; "; 
) ;. ',I 

~: ' 
\ I 

a. Servo Assignment Control Card 

UPCO SERVO 
. I ), .'. ?" ~ 

When running under sucQ, ali tape assignments for each UPCO 
run must be specified by the use of a SERVO control card follow­
ed by tape assignment parameter cards. This SERVO card must 
be the ~ir_?~eontrol card in an UPCO run, and there may be ol!!y 
one SERVO card per job. Any SERVO cards encountered after the 
"first one will cause an error message. 

It should be noted that when the UPCO FINIS card specifies a suc­
cessor run, the input tape to UPCO (file #1) will also be the input 
tape to the successor processor until an ASSIGN card is found 
which changes it. In this case, duplicate SERVO cards and asso­
ciated tape assignment parameter cards will be generated on the 
UPCO output tape. These duplicate images will be ignored by the 
successor processor. 

The following is an example of the use of SERVO cards and tape 
assignment parameter cards in a run using all three processors, 
where execution will be in UPCO~ ACCO~ DECO order. 

Z DECO 
1 

DECOUT 3 
4 
8 

ACOUT 
Z ACCO 

1 
UPIN 6 
ACOUT 3 
SLIBRY 9 

4 
UPOUT 
ACOUT 
ACOUT 3 
Z UPCO 
UPIN 1 
UPOUT 3 
SLIBRY 9 
UPOUT 3 
ACOUT 6 
SLffiRY 9 
UPIN 1 

SERVO 
INEX 
OUTPUT 
SCRACH 
INEX 
ASSIGN 

SERVO 
INEX 
INPUT 
OUTPUT 
INPUT 
SCRACH 
ASSIGN 
ASSIGN 
SAVE 

SERVO 
INPUT 
OUTPUT 
INEX 
SAVE 
SAVE 
SAVE 
SAVE 

3, 1 

3, 1 
6, 3 

Control input tape 
New system tape 
Scratch tape 
Reloc. obj code library 

ACCO control input 
UPCO control input 
Relocatable ACCO output 
Source code library 
Scratch tape 

Control input tape 
UPCO output (PRESTO) 
Source code library 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0003 

PAGE: 

U-3519 7 

The control information for all three processors is contained on 
one tape (file #1). Control input for ACCO and DECO is copied 
from this tape onto the UPCO output tape (UPOUT). ACCO ob­
tains its tape assignment information from the original control 
input which is still file #1. These tape assignments cause UP­
OUT to become the control input (on file #1) for ACCO, and the 
blank tape on file #6 in UPCO now becomes ACCO output (ACOUT) 
on file #3. This process is repeated between ACCO and DECO, 
in that control information for DECO is copied from UPOUT onto 
ACOUT, and ACOUT becomes the control input tape for DECO. 
UPOUT now becomes the DECO output tape, which will be the new 
system tape. 

Dismounting instructions for the original control input tape (UPIN) 
will be given at the end of the ACCO run, and there will be dis­
mounting instructions for the new system tape at the end of the 
DECO run. 

b. Tape Designation Control Card 
,1 , 

UPCO TAPE File Nunibe~, Label I ,I 

i,. , , 

The TAPE control card specifies which file number is to be used 
as the library tape. File number is a decimal number (0 through 
15) which indicates an entry in the tape assignment table. For 

-example: TAPE~6 specifies the seventh entry in the tape assign­
ment table. The label of the library tape will be matched against 
Label shown in the control card, and an error message will be 
typed out if they do not match. If Label is blank, UPCO assumes 
there is no tape label, and if there is one, it will be ignored. 

,. I! 

A TAPE card may be used whenever it is needed for spec ification 
of a new library tape. I II) !' I'll ,c! : ri! ' )' t', 

i)Each file designated in a TAPE card should have been previously 
defined by a tape assignment parameter card. An example of this 
is: 

~UPCO 

LffiRY 
~UPCO 

07 
SERVO 

INPUT 
TAPE 

(balance of cards) 

(Tape assignment parameter card) 
07 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 8 

ii ~ ~~~E card names a file which has not been previously defined, 
a message will be typed out, and processing ~ill con~inue as soon 

. .' . ',; ,/... : ': A~·'[." /"\1., i as GO IS typed In. I .. , ._,,\ ' '( . or' /. • "1./; , .. - ."/ 1.-

c. Processor Termination Card 

UPCO FINIS Name 

FINIS indicates the end of the UPCO run; Name indicates the pro­
cessor or run to be entered next. Normally, Name would be DECO 
or ACCO~ providing automatic transfer to the desired processor. 
Name would be left blank if the user is processing through UPCO on­
ly. In this case, at the end of the UPCO run, SUCO will type out a 
message ("NEXT") upon reaching end of job, and will spin in a stop 
loop until the operator calls a new program. 

d. Mode of Listing/Punching 

UPCO MODE List option, Punch option 

The MODE control card indicates to the processor the type of in­
formation that is to be listed or punched, whether on line or off­
line. 

For the List option, one of the following should be entered: 

LDNT - Diagnostics and error messages 

LCTL - Control cards' 

LNOR - Revised information 

LCOR - Revised information with the corrected (superseded) 
images flagged. 

LDTL - Detailed information (includes those groups and 
elements which had no corrections, as well as 
those which did. ) 

For the Punch opt ion, 

PUNCH - punch detailed information 

NO PUNCH - punch nothing 

Once a mode is initiated, it will remain in effect until changed by 



UNIVAC m SUPPORT 

I SECTION: 

b 3-000:3 
----------- -- ---

PAGE: 

REVISION: 

U-351~) I 9 

another MODE (or COPY) control card. If a mode of listing and 
punching is not stated ~ there w ill be no punching, and the listing 
will be as specified in the -bNeR-option of the MODE card. 

it; r: 

e. Control Cards for Deletion or Copying without Correction 

(1) DELETE 

DELETE Name 

The DELETE card causes UPCO to copy from the current 
position of the tape up to, J2ut ~ot includi~~~ Name (a group 
or element name). At the completion of the DELETE opera­
tion~ the tape will be positioned immediately beyond Name. 

(2) COpy 

COpy Name, List option, Punch option 

This control card causes UPCO to copy from the current 
"location of the library tape through the end of the speci­
fied group or element. 

List and Punch options are the same as those indicated for 
the MODE card. The mode of listing and punching in effect 
at the time the COpy card is encountered will be used for 
listing and punching all information copied, ~ to Nalne. 
Name will then be listed and punched in the mode indicah>d 
in the COpy control card. This mode will remain in effect 
until a new mode is established by another control card 
(MODE or another COPY). 

(3) SELECT 

UPCO SELECT Name 

SELECT is similar to COPY. It, however, does not copy 
the information from the old library tape which appears 
prior to Name, but instead skips the library tape unt il it 
finds Name, and then copies only this element or group. 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 10 

f. Control Cards which Position a Library Tape for Correction 

There are two control cards in this classification: one does 
only positioning~ and the other causes a copy down to a specific 
position. These two c9~trol cards are. n9rmally followed by 
cards which indicate corrections or insertions. In each case, 
if New name is specified~ it causes the title of the element or 
group to be changed from Old name to New name on the output I 

• " ". I !) 1\"/ f"'i', ,1 I ~ .... h,brary tape. /: /, " .,;. - " ,1 ,,_.-,1' 

;. ,; I • .' /' i' " 1,' '1 ,'" I - -;-' , " . ,- ')' 

If New ~am~ has the title MATE, it causes the -contents of Old 
name to' become part of the .. preceding ,group or element. The 
original-group or element namewtH-not exist on the new sys:­
te.m.-ta.pe. 

(1) FIND 

(2) 

UPCO FIND Old name, New name 

FIND causes the library to bepositioned (without copy­
ing) at the beginning of Old name. If Old name is an~!e­
ment, FIND may now be followed by COR or INS ,?ol!trol 

, ',A"'!lTr' , cards. , ' \ , ,'tt; . 'ci '/1 ! f:\ ?)' "1 " /' : 

J • , .ry}. ; i), 'r. ~J~" 'j 

CHANGE .~.' .. t r/ )~J ?, 

'f",''':' '\ 

CHANGE Old name~ New name 

CHANGE causes the library tape to be copied from its 
current position to a position at the beglnning of Old 
name. If Old name is an element, CHANGE may be fol-­
lowed by COR or INS cards. 

g. Line Correction or Insertion Cards 

These cards serve to permit corrections or insertions to indivi­
dual lines in an element. COR and INS cards will normally fol­
Iowa control card which has positioned the tape at the beginning 
of an element. 

(1) COR 

.... 1\1 I . 

l ~ 



REVISION: SECTION: 

3-000~3 

UNIVAC m SUPPORT 
PAGE: 

U-3519 11 

--====================================:!::::=:=====--::-::--=-=::::::--==~-==:. 

where n
l 

and n
2 

are line numbers on a/listing of the ele­
ment to De corrected. 

COR will cause the element to be copied until line n
1 

is 
fout;l ... d., I,~ines n th~_?,:!g;~_ n') will be deleted ~ and any non­
cont'rol~ldards fJUowing the .... COR card will be inserted at 
this point. If n is not specified~ then only line n

1 
will 

be deleted. Th~ effect will be just as if the control card 
COR n

1
, n

1 
had been specified. 

INS~~~~ may be used to terminate corrections if the re­
mainder of the element being corrected is to be copied. 

(2) INS 

UPCO INS n 

INS causes the element to be copied down through and 
including line n, and any non-control cards will be in­
serted at this point. 

INS.6.M~ will cause the information following it to be in­
serted after the last line of the current elelnent. This 
form is convenient for inserting relocatable binary correct­
ions, as it eliminates any need to know the count of the bi­
nary images. 

INS.6.M~ may also be used to terminate corrections or 
insertions to an element if the remainder of the element 
is to be copied. 

2. Tape Assignment 
i 

, ,., ,11) 
,<1' ,I J'" 

Tape assignment parameter cards"are placed with the beginning para-
meter information for a run. They are condensed by DECO and are 
written on the system tape as part of the JOB preamble. During the 
initialization of a run by SUCO, they are examined and appropriate act­
ion is taken. Tape assignment parameter cards, as they apply to a 
particular job, are !!,ansp~rent to UPCO, and will merely be copied on­
to the output system tape for another processor. 

\Vhen running under SUCO, all tape assignments for each UPCO run 
must be specified by the use of a SERVO control card followed by tape 
assignment parameter cards. 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 12 

The format of the tape assignment parameter card does not comply 
with rules for other control cards. The format is not variable: 

Columns 

1 - 6 

7 

8 - 9 

10 

11 - 16 

17 

18 . 

Entry 

alias 

blank or comma 

File number, right justified 

blank or comma 

Operation 

blank 

One to three-digit assignment numbers 
right-justified in columns 20, 24, 28 ... , 
and separated by commas or blanks. 

The file alias has no logical attachment to any symbols generated by 
a program, and is carried as a mnenlonic device only. Its sole use 
is on tape assignment parameter cards and on correspondingly gener­
ated tape mounting. posting, an? di~mounti~g instr,Uctions f~i~ ~~e. ~?n-
sole ,typewriter. (.Ii j)i) f._ '(:1 -,"_, a,JjJ.;~· '/.J." i " ) I,' ,', /.! II ,. ~ j I i? < .. 
~ y J7';';'~ 'J .' • , /,' ,- , '" ': " ' . " ; J".\', 'i ' , "i f ' i I 
~ ,I '" . " , . "\: ,... ! ~ '),1 • / ... } !, • I ,.1 ;." .s.- i, I I ;-

The File number (columns 8 and 9) is a decimal numb~r (0 through 15) 
which specifies an entry in the tape assignment table. For example ~ 
file number 10 specifies the eleventh entry in the tape assignment table. 
It is not necessary t,Oprecede jith zeroes~ ''-',' t' , ,~" j",,', }', .. 

>'1' . 'j". " 1>/ i _ ',. "'1)1' F\~ JJ'~' 1 i I I J ?(, ): I • '" " , ;., I '- I 
~ • ! l '.......... !~. ".; f : .~.,' . J 't· -, .... ,'/ II -- "j fl' ., t~ 

.fli:~-1Jh6ti~~;~i 'thJ~~~s'ignment numbers (columns 18 ... \ depends upon 
the particular operation involved. All assignment numbers are decimal. 

Tape assignment cards should appear at the beginning of the job to 
which they apply. 

For a description of operator messages which might appear on the con­
sole typewr iter as a result of the following parameter cards, refer to 
the BOSS III Programmers Guide. 

a. ASSIGN 

alias ASSIGN k1, k2 



I REVISION: SECTION: 

UNIVAC m SUPPORT ~------------ 3-0003 

I 

PAGE: 

I 

U-3519 13 

The file entry kl from the previous run will be assigned to file 
entry k2 of the current run. This is accomplished by interchang­
ing logical unit numbers between the two file entries in the tape 
assignment table. A check is made to see if the previous alias 
for kl agrees with the alias on the ASSIGN card, and if not, an 
error message is produced. To ign<;>re the ASSIGN card ~ type 
in GO. .-~\')' /1/. / ;') 'It i'". '/ ;" 11'1' t" i 'l . 

The rewind-with-interlock provisions of INEX, OUTPUT and 
SCRACH will not apply to a tape which has been saved with a 
SAVE card, and subsequently assigned with an ASSIGN. Nei­
ther will there be mounting and dismounting instructions. 

b. INPUT 

alias k INPUT n 

INPUT describes file k as being a.p!o~~ctec:! input file, and 
causes a beginning-of-job mounting message and an end-of-job 
dismounting message. File k may not have been rewound with 
interlock at the end of the previous job. If not, INPUT will cause 
rewind with interlock at the beginning of the job in which it oc­
curs. (If a tape has been "saved" and subsequently "assigned!', 
file k will only be rewound, and there will be no mounting or 
~]j~IDounting instructions.) n specifies the expe'cted number 
of reels for file k, thereby permitting an early release of the 
alternate, if any. An incorrect n will not cause an error. 

c. INEX 

alias k INEX n 

INEX describes file k as being an.~Eprotected input file, and 
causes a beginning-of-job mounting message only. File k may 
not have been rewound with interlock at the end of the previous 
job. If not, INEX will cause a rewind with interlock at the be­
ginning of the job in which it occurs. (If a tape has been "saved" 
and subsequently "assigned", file k will only be rewound, and 
there will be no mounting or dismounting instructions.) n 
specifies the expected number of reels for file ks thereby per­
mitting early release of the alternate, if any. An incorrect n 
will not cause an error. 



UNIVAC m SUPPORT 

I REVISION, 

~---
I 

i 

I 

SECTION: 

U-3519 

3-0003 

PAGE: 

14 

d. OUTPUT 

alias k OUTPUT 

OUTPUT describes file k as being a protected output file. File 
k may not have been rewound with interlock at the end of the pre­
vious job. If not, OUTPUT will cause rewind without interlock 
at the beginning of the job in which it occurs. In either case, a 
MOUNT BLANK message is produced. An end-of-job dismount­
ing message will be typed out. If a tape has been "saved", a 
dismounting message will not occur in the job in which the tape 
was saved~ and only rewind will occur in the job which assigned 
the tape. 

e. SCRACR 

~k SCRACR 

This describes file k as being a scratch tape. File k may not 
have been rewound with interlock at the end of the previous job. 
If not ~ SCRACR will cause rewind without interlock at the begin­
ning of the job in which it occurs. If the previous job did rewind 
with interlock, a MOUNT BLANK message is produced at begin­
ning-of-job. If a tape has been "saved" and subsequently "as­
signed". the reel will be rewound only and there will be no 
mounting messages. . J 

; 'J ~',') ; ~.:' j- 1 . I ~. ." . i J ;. . ' .. 

f. ALT 

a lias k A L T k1, k2, ... 

This describes file k as being an alternate to files k1, k2, ... If 
k1 is an input file, then there should only be the entry k1 in the 
list. If k1 is an input reel, then a MOUNT message will be pro­
duced and the unit rewound with inter lock if it is not dismounted. 
If k1 is an output reel, then a MOUNT BLANK message will be 
produced if the unit is dismounted. 

g. SAVE 

alias k SAVE 

SAVE specifies that file k be carried over to the next run. If 
file k has not been described as a SCRACR, INPUT, INEX or 
OUTPUT file, it causes carryover anyway. If the file is not in 



REVISION: SECTION: 

3-0003 
UNIVAC m SUPPORT 

h. 

PAGE: 

U-3519 

use, it causes a MOUNT message and rewind with interlock, 
if appropriate. 

A tape which has been "saved" :rr.:!'!l.~t be assigned (with an 
ASSIGN card) in tbe succee.ding job. 

///;1 1)./" !lc;;~L) J ( ,\ , 

. I 

15 

I ~J'" {'J \J J ,.' :~,; !' 1 i~'\ 

" '" ~,I ,,' "j .! I I 

'~'.JI " I, / .• ' 
O!,;j j J ,',' 

k DUMP I (" " ,r I : .~ ~ ( '.. 

,/ I.: il 
DUMP specifies that file entry (k) is the system dump tape. A dump tape 

must be specified for each main program which will be run in conjunction 

with symbionts, or which will use rerun.1t may be any output tape which 

employs st~ndard tape con~entions., i.e., :i~~~~n '7itten~nd~ C(~~tt O~i 
the-+~'-Fil ... -e-L~ .. belIHa~l~Jl~ ~OQ. i t,~e. '" ~ . .j . ,~1/ t I " .,)i' 'i' ' 

, !,' i, I ijl' ·1 I ! lit 1 ..JiJ /li,Jf(~ .. 

D. OPERATIONAL CONTROL 

1. Nominal Tape Assignment 

The following tape assignments are used for UPCO. They may not be 
changed if UPCO is called by an RXAUPCO type-in. However, when 
UPCO is under control of SUCO, the assignments may be changed 
once in an UPCO run by the use of a SERVO card followed by appro­
priate tape assignment cards. 

File No. Usa~ 

0 System Tape I 
I 

1 Basic PRESTO input e-:i () 1\ 1('/ . f} i 

2 Print/punch tape / "' ... / 
3 PRESTO output 
4 Library tape if I, ~c ~ 

5 Library tape : ) .' /: 

6 Library tape 

n Library tape 

2. Console Functions 

i. j 



REVISION: SECTION: 

3-0003 

UNIVAC m SUPPORT 
PAGE: 

U-3519 16 
================================================================================:~~-

a. SUCO Control (for automatic tape operation) 

1. CLEAR 

2. REWIND 

3. LOAD 

4. PROGRAM STOP - sets all memory to SLJ ERR. 

5. PROGRAM RUN 

6. KEYBOARD REQUEST 

7. Type in RS~CALUUPCO~2; 

8. KEYBOARD RELEASE (Activated UPCO) 

b. EXEC Control (for card operation) 

1. CLEAR 

2. REWIND 

3. LOAD 

4. RELEASE (This causes EXEC control. ) 

5. PROGRAM STOP - sets all memory to SLJ ERR. 

6. PROGRAM RUN 

7. KEYBOARD REQUEST 

8. Type in ~UPCO 

9. KEYBOARD RELEASE (Activates UPCO) 



REVISION: SECTION: 

3-0004 
UNIVAC m SUPPORT 

PAGE: 

U-3519 

ACCO 

A. PURPOSE 

The purpose of ACCO (Assembler-Compiler COntrol), one of the 
three General Program Processors associated with the BOSS III 
SUPPORT System, is to direct the processing of the user's source 
code through UTMOST, COBOL, and FORTRAN, and to provide a 
standard input-output processing for assembling and compiling. 

B. INTRODUCTION 

ACCO permits high efficiency for assembly and/or compilation since 
a number of source cooe routines, written in UTMOST, FORTRAN, 
and/or COBOL (and stacked on one input tapeL can be assembled or 
compiled in one run. 

There are essentially two ACCO "passes" for each assembly or com­
pilation requested. (And within ACCO's second pass are the multiple 
passes or phases of the particular assembler or compiler.) In its in­
itial pass l ACCO will perform library search and copy with correct­
ions for the COBOL, FORTRAN, or UTMOST routine. Control cards 

1 

for other processors ~ information included on the control input, or in­
formation extracted from library tapes outside the control of the assem­
bIer or compilers will be copied directly onto ACCO's output tape dur­
ing this initial pass. An intermediate scratch tape is used ~ on which 
the source code for the assembly or compilation is accumulated. 

When the end of the source code to be compiled or assembled is indi­
cated, ACCO will rewind the intermediate scratch tape and enter its 
second pass (assembly or compilation). As the relocatable object code 
is generated by UTMOST, COBOL, or FORTRAN, it will be written 
onto the output tape. On completion of this process, control will return 
from the compiler or assembler to ACCO, which will continue to pro­
cess the next sequential information on its input tape. 

Thus, the final output includes control input not recognized by ACCO, 
information not processed by ACCO, and also the compiled or assem­
bled relocatable object code. 

1. Input 



REVISION: SECTION: 

UNIVAC m SUPPORT 
3-0004 

PAGE: 

U-3519 2 

=========================================================================================---

AGCO will accept three types of input: control information, source 
code images, and relocatable object code. Relocatable object code 
input will be copied directly onto the relocatable output tape, with no 
action being taken on it during the ACCO run. All tape input to ACCO 
is in the condensed PRESTO format, which means simply that all con­
secutive blanks and zeroes have been removed. None of the original 
information content is lost. 

a. Control Input 

Control information (on either tape or cards) defines and directs 
the processing of a source code program. Control card images 
contain the programmer's instructions to the processors for copy­
ing tape, for changing or deleting specified code, and for assem­
bling or compiling specified source code. 

Control input comes from a previous processor (UPCO), from 
the PRESTO card-to-tape symbiont, or directly from cards. The 
control input may contain some or all of the source code, and 
could even contain binary elements which will simply be passed 
on to the relocatable output tape. 

See the section on Control Cards for an explanation, in detail, of 
the various types of control cards and their functioqs. 

b. Library Tapes 

Library tapes may contain numerous sets of source code or relo­
catable object code programs or subprograms arranged in ele­
ments and groups. Control information may appear within an ele­
ment or group, and will be processed in the order in which it is 
encountered. 

The use of the library tape input is optional with the user, and 
the number of library tapes used in an ACCO run is limited only 
by the number of available tape units. Only one library tape is 
available to ACCO at a given time, the selection being under con­
trol of the user by means of a TAPE control card. 

2. Output 

a. Relocatable Object Code Tape 



UNIVAC m SUPPORT I 
REVISION, SECT~::004 
--~.------~----~-- - -~-~-~T---- - -

I PAGE: 
I 

I U-3519 I 3 

This output tape (in PRESTO format) may contain a combination 
of the following: control card images for other processors, re­
locatable object code copied from a library tape or the control 
input, and relocatable object code output of the various assem­
blies or compilations which may have taken place during the 
ACCO run. 

b. List/Punch Tape 

A List/Punch tape is an optional output from an ACCO run. It 
is specified by including a tape assignment parameter card for 
file 2 with the other ACCO tape assignment cards. If the tape is 
not so deSignated, all listing and/or punching will be done on 
line. 

If a List/Punch tape is designated, the information which ACCO 
places on it is in the format required by the PRINT/PUNCH tape 
symbiont (CPPS). This tape could be printed and/or punched later 
by CPPS, concurrently with a main program. 

There are a number of options available to the user which will 
control the mode of listing and punching. The mode can be 
changed for each asselnbly or compilation. For punching, there 
are only two options - punch or no punch. For listing, options 
available allow the printing of selected information, such as diag­
nostics, error messages, control cards ~ source code language, 
or a combination of these. 

The options given in a MODE, UTMOST, FORTRAN ~ or COBOL 
control card determine what information is to be printed or punch­
ed. Once a mode is initiated, it will remain in effect until changed 
by a mode option in another control card. If a mode of listing and 
punching is not stated, there w ill be punching, and the listing will 
be as specified in the LNOR option. List options will vary accord­
ing to the particular assembler or compiler being used. The var­
ious options are listed in the section on Control Cards, under 
MODE, COBOL, FORTRAN, and UTMOST. 

3. Groups and Elements 

A program (job) contains a combination of groups and elements - or a 
program may consist of only one group or element. An element is the 
smallest program unit; a group is a collection of elements or other 



REVISION: SECTION: 

3-0004 
UNIVAC m SUPPORT 

PAGE: 

U-3519 

groups. An element contains source code images or relocatable 
code, and may also contain control cards. Groups may contain 
control cards, but may not contain source code images or reloca­
table object code except as part of an element. 

4 

Groups and elements are identified by names, which must be unique 
within a group. Names may not exceed (8) characters. 

Groups and elements are identified by the following control cards: 

BOG Groupname 

EOG Groupname 

(Beginning of group and its name) 

(End of group and its name) 

~LT Elementname (Beginning of ~lemel].t and its name) 
(~L:,4-<~' ':1) Ii,! ;i .. L ,,;):':;/: 'F l t, !,) 

On a library tape an element is terminated by the appearance of 
another ELT, a BOG, or an EOG card. 

The BOG and EOG control cards serve as brackets around a sec­
tion of coding. These cards are descriptive labels for a group, and 
should be the first and last cards of any group. All other control 
cards pertinent to a group must appear within the BOG and EOG con­
trol brackets. Groups may, be ne~e.d within groups, as the following 
example shows. ~; f j} ':f) :,' /i'J:,;~ I }/yl t U}( '1~:, e~~' ,'> ,': ::)7 

\i '1 

BOG GRPI Group 1 (GRPl) contains groups 2, 3, and 4. 

BOG GRP2 Group 2 (GRP2) contains groups 3 and 4. 

[BOG GRP3 

EOG GRP3 

[BOG GRP4 

EOG GRP4 

EOG GRP2 

EOG GRPI 

An E LT control card precedes the card images belonging to the ele­
ment named in its operand field (Elementname). To be part of a 
group, elements m~st be contained with~~9P)alld.~?? control cards. 
Elements are termlnated by the next BOG"or ELT encountered. The 
following is an example of elements within nested groups: 



I REVISION: SECTION: 

UNIVAC m SUPPORT 
I 

! 
~--~-~---

3-0004 

PAGE; 

BOG GRP1 

ELT ELT1 

BOG GRP2 

BOG GRP3 

ELT ELT2 

ELT ELT3 

EOG GRP3 

[:~~ 
GRP4 

ELT4 

EOG GRP4 

EOG GRP2 

EOG GRPI 

U-3519 

Group 1 (GRP1) contains element 1 (E L T1) 
and groups 2, 3, and 4. 

Group 2 (GRP2) contains groups 3 and 4. 
GRP2 does not contain source code state­
ments in itself. 

Group 3 (GRP3) contains elements 2 and 3. 

Group 4 (GRP4) contains element 4. 

To call ELT3 in the preceding example: 

SELECT GRPl(GRP2(GRP3(ELT3») 

or, to call ELT1: 

SELECT GRP1 (ELT1). 

or, to call GRP3: 

SELECT QRPl(GRP2(GRP3» .' (' .' 4' ",. AI"'O '.' ,.,t 
\,..~/ U ... t:- \- II)':, 1::'>/1.J .- :~J.;_ ,- ,::1., 'i rr 

C. CONTROL CARDS 

5 

1. Control cards are used by programmers and operators to commun­
icate with the BOSS III SUPPORT System. An ACCO control card 
has a free-form format similar to a line of UTMOST symbolic cod­
ing. The exceptions are that it must contain a 12-0-2 punch (~) in 
the first position, the line may not contain comments, and the label 
field may begin in any column after the first. 

~ LABEL~OPERATION~OPERAND 



, ' 

I' 

1 • ./ ' 

I I, 

REVISION: SECTION: 

3-0004 

UNIVAC m SUPPORT 
PAGE: 

U-3519 6 

where .6. indicates at least one blank. 

If the label field contains the name of a processor, the control card 
is then made "transparent" to all other processors. For example, 
ZACCO.6.MODE.6.LNOR, PUNCH. This card may be passed through 
UPCO or DECO with no action being taken until it is processed by 
ACCO. The designation of a processor is the only use for the label 
field in any control card. (E LT, BOG, or EOG may be made trans­
parent to ACCO by using an UPCO or DECO label. This will indi­
cate to ACCO the end of an assembly or compilation. ) 

The operation field contains a system directive which specifies a par­
ticular function to be performed by the processor. 

The operand field contains one or more parameters which define the 
operation of the system directive. The operation field or any of the 
parameter s may be up to eight characters in length. 

Many of the control cards shown in the following discussions are uni­
versal, i. e. , they are also applicable to DECO or UPCO. These 
are indicated here by the appearance of ACCO in the label field. 

I 

"Qj;"'i' < :' 
a. UTMOST 

i ,,; ( , 'I: 
\) 

UTMOST / List option, Punch option 
,) , \ ''',I! ,) 
... ,.,-,(, It : 'F 

The UTMOST control card is a request for an UTMOST assembly. 
It precedes the source code (or the control cards that call the 
source code) which comprises the input to be assembled. The op- /,'): i 

tions indicate to the processor the type of information to be listed 
, and punched. If a List option is not entered, the listing will be 

the same as for the LNOR option. Punching will occur if a Punch 
option is not given. 

Available List options: 

LNOR - Normal assembly listing (symbolic and relocat­
able object code representation). 

LCOR - Deleted or corrected lines listed in front of 
as sembly output in addition to COR lines. 

LDTL - Same as LCOR 



REVISION: SECTION: 

3-0004 
UNIVAC m SUPPORT 1-------------+--------------

U-3519 

LDNT - No listing. -­
,,) 

LCTL - Control cards only. 

Available Punch options: 

b. COBOL 

PUNCH - Relocatable object code 

NO PUNCH - No punching 

COBOL List option, Punch option, Class 

PAGE: 

7 

The COBOL control card is a request for a COBOL compilation. 
It precedes the source statements (or the control cards that call 
the source code) which make up the input to be assembled. The 
options indicate the type of information to be listed and punched. 
The listing will be as for the LNOR option if a List option is not 

enter~d in :he COBO~ 9ard., If a Pupch option.,l~_ ?;~\,s~ec,~~~ed", 
punchIng wIll occur. L~ J c./ tI';,. ':, "t)r(~}~' 11-,. I 1 -.-

~~~~a~;~'~~:i~n~ ~~~'li~~in/ }i. ,>\;'~l i I \!,':~,;, ;", 

LNOR - Source language listing and diagnostics.

LCOR - Deleted or corrected lines listed in front of
source language.

LDTL - Complete UTMOST listing of generated code
plus LCOR output.

LDNT - Diagnostics. :'{:

LCTL - Control cards.

Options for punching:

PUNCH - Relocatable object code

NO'PUNCH - No punching

There are two available options for Class:

(1) MAIN - Indicates a main program for which there are
independently compiled sUbprograms.

1:\ J,,'

REVISION: SECTION:

3-0004

UNIVAC m SUPPORT
PAGE:

U-3519 8

(2) SUB - Indi~ates a, subprogram.
\ ,~)']" I" I:;' t, l/l~IJ,' ," .. ,' r'l

c. FORTRAN

FORTRAN List option, Punch option

The FORTRAN control card is a request for a FORTRAN com­
pilation. It precedes the source code (or the control cards that
call it) which comprises the input to be compiled. The options
indicate the type of information to be listed and punched. The
listing will be as for the LNOR option if a List option is not en­
tered in the FORTRAN card. If a Punch option is not specified~
punching will occur.

Available options for listing:

LNOR - Source language listing and diagnostics.

LCOR - No listing.

LDTL - Source language plus an UTMOST-like edited
output.

LDNT - No listing.

LCTL - Control cards.

Options for punching:

PUNCH Relocatable object code

NO ~PUNCH - No punching

d. SELECT

li "'j SELECT Library name I) ,

A library tape which has been specified by a preceding TAPE
card will be searched for Library name. The information with­
in Library name (a group or element) is then given to the pro­
cessor for assembling or compiling.

e. FIND

,~ ~ ') FIND Library name

A library tape which has been specified by a preceding TAPE
card will be searched for Library name. FIND may now be

REVISION: SECTION:

UNIVAC m SUPPORT
3-0004

PAGE:

U-3519 9

followed by COR or INS control cards. The FIND control card
will enable a user to correct an element prior to compiling or
assembling.

f. COR

It~>·-·:J COR n1 , n2

where n
1

and n are line numbers on a listing of the element
to be correcteJ.

The COR control card must follow a FIND control card, and
will cause the element to be copied until line n

1
is reached.

Lines n
1

through n
2

will be deleted, and any non-control cards
following the COR card will be inserted at this point. If n is .
not specified, then only line n

1
will be deleted. The effect will

be just as if the control card. COR, n
1

, n
1

had been specified.

g. INS

ACCO INS n

INS n causes the element to be copied down through and including
line n, and any non-control cards will be inserted at this point.
INS must follow a FIND card. INS.6..6..6..6. will cause the informa­
tion follOWing the INS card to be inserted after the last line of
the current element. This form may be used to insert relocat­
able binary corrections, and it eliminates any need to know the
count of the binary images.

INS.6..6..6..6. may also be used to terminate corrections and insert­
ions to an element, if the remainder of the element is to be cop­
ied.

h. MODE

ACCO MODE List option, Punch option

The MODE control card indicates to the processor the type of
information that is to be listed or punched, whether on line or
off line.

For the List option, one of the following should be entered:

REVISION: SECTION:

UNIVAC m SUPPORT
3-0004

U-3519

LDNT - Diagnostics and error messages.

LCTL - Control cards.

LNOR - Normal source language listing.

PAGE:

LCOR - Deleted or corrected lines listed in front of
normal output.

LDTL - Detailed information.

For the Ptmch option:

PUNCH Punch relocatable object code

NO, PUNCH - Nothing is ptmched

10

Once a mode is initiated ~ it will remain in effect until changed
by another MODE, UTMOST, FORTRAN, or COBOL control
card. If a mode of listing and punching is not stated, there will
be punching, and the listing will be as specified in the LNOR op­
tion.

i. JOB, DATA, SEG, and CHAIN

j.

JOB Job name

DA T A Location + Increment

SEG Segment name, Origin

CHAIN Link name

These are DECO control cards, but when ACCO encounters them,
they will cause terminatioQ of an assembly or compilation. 'rhese
cards will be ,copi-ed--o~t~the ACCO output tape. f/! ','.,':': ,·l ~;' ,
.\ '. , i' . \ '

ELT, BOG, EOG
"',' I '

ELT Element name

BOG Group name

EOG Group name

Any of these control cards encountered within source code being
assembled or compiled will be deleted. K~untered .. outs.ide
stteh-'a source code set, theywiH be copied onto the ACCO output.
If-a.uy.. (}f these cards contain a processor name (UPCO or DECO)
in the label field, they will cause termination of assembly or COffi­

p.ilation~ and will be cop'ied--onto--theOtttput-tape~'

='"-

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

~ --EtT -M-NGHA-lN -

~ ACCO TAPE 7 SCLIBE 1

~ UTMOST /~' ~:1 A r, "/
~ ACCO SELECT GRPONE (ELTTWO)
~ ACCO SELECT GRPTHREE
~ DECO ELT ---. SHBONE

~ UTMOST ~(j"):') ":.

~ ACCO SELECT GRPTWO (ELTFOUR)
Z ACCO FINIS) II

• , " ,',,- ~ ., , 1 I ,i . -'"
, "~-{.l/ .. ,. t),

In this example, the E:~ MNCHAINAcard image wilt be writ-
ten onto the output tape followed by the object code created
during the assembly of GRPONE(ELTTWO) and GRPTHREE.

Any BOG, EOG ~r 1~':S~jet[f, hV1t~es encountered during this
selection process"are tleleted. The D.E..GGE-frT-'SUBONE I

card image indicat~~f;? fS.~,9_.the termination of the input for
assembly. This ~:.~ is also copied onto the output tape
followed by the resultant object code of the second assembly.
This second assembly is terminated by the FINIS card image.

k. SERVO

ACCO SERVO

When running under SUCO, all tape assignments for each
ACCO run must be specified by tape assignment parameter
cards following a SERVO control card. This SERVO card
must be the first control card in an ACCO run, and there
may be only one SERVO card per job. Any SERVO cards en­
countered after the first one will cause an error message.

1. TAPE

ACCO TAPE File number, Label

The TAPE control card specifies which file number is to be
used as the library tape. File number is a decimal number

3-0004

11

(0 through 15) which specifies an entry in the tape assignment
table. For example, TAPE~6 specifies the seventh entry in
the tape assignment table. If Label (an eight-character ident­
ification) is present, the label of the specified library tape will
be matched against this label, and an error message typed out
if they do not match. If Label is blank, ACCO assumes there
is no label, and if there is one, it will be ignored.

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

A TAPE card may be used
l
wI:\~ttever it is desired to specify a

new library tq.pe. Whenevet"tt'-is used, the specified file will
be I' ewounc4, ,.;1.'.. /) i .' : .

3-0004

12

Each file des ignated in a TAPE card must have been previous­
ly defined by a tape assignment parameter card. An example
of this is:

m. FINIS

~ ACCO
LIBRY 07

~ ACCO

SERVO
INPUT

TAPE
(balance of cards)

ACCO FINIS Name

07

The FINIS card must be used to terminate an ACCO run. Name
indicates the processor or run to be entered next. Normally,
Name would be UPCO or DECO, providing automatic transfer to
the desired processor. Name will be left blank if the user is pro­
cessing through ACCO only. In this case, at the end of the ACCO
run, SUCO w ill type out a message ("NEXT") upon reaching end
of job, and will spin in a stop loop until the operator calls a new
program.

2. Tape Assignment

Tape assignment parameter cards are placed with the beginning para­
meter information for a run. They are condensed by DECO and are
written on the system tape as part of the JOB preamble. During the
initialization of a run by SUCO, they are examined and appropriate ac-
tion is taken. Tape assignment parameter cards, as they apply to a
particular job, are transparent to UPCO, and will merely be copied on­
to the output system tape for another processor.

When running under SUCO, all tape assignments for each UPCO run
must be specified by the use of a SERVO control card followed by tape
assignment parameter cards.

The format of the tape assignment parameter card does not comply
with rules for other control cards. The format is not variable:

-m-

REVISION: SECTION:

UNIVAC m SUPPORT

Columns

1 - 6

7

8 - 9

10

11 - 16

17

18 .

Entry

alias

blank or comma

U-3519

File number, right justified

blank or comma

Operation

blank

PAGE:

One to three-digit assignment numbers right­
justified in columns 20, 24, 28 ... , and sep­
arated by commas or blanks.

3-0004

13

The file alias has no logical attachment to any symbols generated
by a program, and is carried as a mnemonic device only. Its sole
use is on tape assignment parameter cards and on correspondingly
generated tape mounting, posting, and dismounting instructions via
the console typewriter.

The File number (columns 8 and 9) is a decimal number (0 through
15) which specifies an entry in the tape assignment table. For ex­
ample, file number 10 specifies the eleventh entry in the tape as­
signment table. It is not necessary to precede with zeroes.

The function of the assignment numbers (columns 18 ...) depends
upon the particular operation involved. All assignment numbers
are dec imal.

Tape assignment cards should appear at the beginning of the job to
which they apply.

For a description of operator messages which might appear on the
console typewriter as a result of the following parameter cards, re­
fer to the BOSS III Programmer's Guide.

a. ASSIGN

alias ASSIGN k1, k2

The file entry k1 from the previous run will be assigned to file
entry k2 of the current run. This is accomplished by interchang­
ing logical unit numbers between the two file entries in the tape

REVISION: SECTION:

3-0004

UNIVAC m SUPPORT
PAGE:

U-3519 14

assignment table. A check is made to see if the previous alias
for k1 agrees with the alias on the ASSIGN card, and if not, an
error message is produced. To ignore the ASSIGN card ~ type
in GO.

The rewind-with-interlock provisions of INEX, OUTPUT and
SCRACH will not apply to a tape which has been saved with a
SAVE card ~ and subsequently assigned with an ASSIGN. Nei­
ther will there be mounting and dismounting instructions.

b. INPUT

alias k INPUT n

INPUT descr ibes file k as being a protected input file, and
causes a beginning-of-job mounting message and an end-of-job
dismounting message. File k may not have been rewound with
interlock at the end of the previous job. If not~ INPUT will cause
rewind with interlock at the beginning of the job in which it oc­
curs. (If a tape has been "saved" and subsequently "assigned",
file k will only be rewound, and there will be no mounting or
dismounting instructions.) n specifies the expected number
of reels for file k, thereby permitting an early release of the
alternate, if any. An incorrect n will not cause an error.

c. INEX

alias k INEX n

INEX describes file k as being an unprotected input file, and
causes a beginning-of-job mounting message only. File k may
not have been rewound with interlock at the end of the previous
job. If not, INEX will cause a rewind with interlock at the be­
ginning of the job in which it occurs. (If a tape has been "saved"
and subsequently "assigned", file k will only be rewound, and
there will be no mounting or dismounting instructions.) n
specifies the expected number of reels for file k, thereby per­
mitting early release of the alternate, if any. An incorrect n
w ill not cause an error.

d. OUTPUT

alias k OUTPUT

OUTPUT describes file k as being a protected output file. File
k may not have been rewound with interlock at the end of the pre­
vious job. If not, OUTPUT will cause rewind without interlock

REVISION: SECTION:

3-0004

UNIVAC m SUPPORT
PAC3 E:

U-3519 15

at the beginning of the job in which it occurs. In either case, a
MOUNT BLANK message is produced. An end-of-job dismount­
ing message will be typed out. If a tape has been "saved", a
dismounting message will not occur in the job in which the tape
was saved, and only rewind will occur in the job which assigned
the tape.

e. SCRACH

alias k SCRACH

This describes file k as being a scratch tape. File k may not
have been rewound with interlock at the end of the previous job.
If not, SCRACH will cause rewind without interlock at the begin­
ning of the job in which it occurs. If the previous job did rewind
with interlock, a MOUNT BLANK message is prcxluced at begin­
ning-of-job. If a tape has been "saved" and subsequently "as­
signed", the reel will be rewound only and there will be no
mounting messages.

f. ALT

alias k A L T k1, k2, ...

This describes file k as being an alternate to files k1, k2, ... If
kl is an input file, then there should only be the entry kl in the
list. If kl is an input reel, then a MOUNT'message will be pro­
duced and the unit rewound with interlock if it is not dismounted.
If kl is an output reel, then a MOUNT BLANK message will be
produced if the unit is dismounted.

g. SAVE

alias k SAVE

SAVE specifies that file k be carried over to the next run. If
file k has not been described as a SCRACH, INPUT, INEX or
OUTPUT file, it causes carryover anyway. If the file is not in
use, it causes a MOUNT message and rewind with interlock, if
appropriate.

A tape which has been "saved" must be assigned (with an
ASSIGN card) in the succeeding job.

REVISION: SECTION:

UNIVAC m SUPPORT
3-0004

PAGE:

U-3519 16

h. DUMP

k DUMP

DUMP specifies that file entry (k) is the system dump tape. A dump tape

must be specified for each main program which will be run in conjunction

with symbionts, or which will use rerun. It may be an output tape which
employs standard tape conventions, i.e., has been written under control
of the Tape File Label Handling routine.

D. OPERATIONAL CONTROL

1. Nominal Tape Assignment

The following tape assignments are used by ACCO. If ACCO is called
by an RXD.ACCO type-in. these assignments are fixed and may not be
changed. Also, the control input will be from cards, not tape.

When ACCO is under SUCO control~ the tape assignments may be
changed once at the beginning of the run by the use of appropriate
tape assignment parameter cards following a SERVO control card.
The dump tape must be specified as an output tape which would be
read by a system which recognizes bypass sentinels. The List/Punch
tape satisfies this requirement, but if it is not being used ~ a separate
output tape must be specified.

a. Tape Assignment for UTMOST

File No. 'ysage

0 System tape

1 PRESTO control input

2 List/Punch tape

3 PRESTO relocatable output

4 Scratch

5 - 15 Library tapes as needed

REVISION: SECTION:

UNIVAC m SUPPORT 3-0004

PAGE:

U-3519 17

b. Tape Assignment for COBOL

File No. Usage

0 System tape

1 PRESTO control input

2 Scratch - List/Punch tape

3 Scratch - PRESTO relocatable output

4 Scratch

5 Scratch

6 Scratch

7 COBOL library

8 - 15 Library tape s as needed

c. Tape Assignment for FORTRAN

File No. Usage

0 System tape

1 PRESTO control input

2 List/Punch tape

3 PRESTO relocatable output

4 Scratch

5 Scratch

6 Scratch

7 - 15 Library tapes as needed

2. Console Functions

a. SUCO Control (for automatic tape operation)

1. CLEAR

2. REWIND

3. LOAD

4. PROGRAM STOP - sets all memory to SLJ ERR

5. PROGRAM RUN

6. KEYBOARD REQUEST

7. Type in RS~CALUACCO~2

8. KEYBOARD RELEASE (Activates ACCO)

REVISION: SECTION:

UNIVAC m SUPPORT
3-0004

PAGE:

U-3519 18

b. EXEC Control (for card operation)

1. CLEAR

2. REWIND

3. LOAD

4. RELEASE (This causes EXEC control)

5. PROGRAM STOP - sets all memory to SLJ ERR

6. PROGRAM RUN

7. KEYBOARD REQUEST

8. Type in RX.6.ACCO

9. KEYBOARD RELEASE (Activates ACCO)

REVISION: SECTION:

3-0005
UNIVAC m SUPPORT

PAGE:

U-3519 1

DECO

A. PURPOSE

The purpose of DECO (DEsignation COntrol), one of the three General
Program Processors associated with the BOSS III SUPPORT system,
is to convert the relocatable programs produced by COBOL, FORTRAN,
and UTMOST into an operational system tape - that is, a loadable in­
struction tape, ready for execution. The information on this system
tape will consist of either absolute programs or dynamically relocatable
programs.

B. INTRODUCTION

1. Input

DE CO will accept three types of input: control input on tape or cards,
relocatable object code library tape (s), and system tapes. (All tape
input to DECO, except system tapes, is in the condensed PRESTO
format, which simply means that all consecutive blanks and zeroes
have been removed. None of the original information content is lost.)

a. Control Input

Control information defines and directs the preparation of a
system tape. The control information is always in a sym­
bolic format, and is contained either on tape or on cards.

Tape control input is used when automatic operation is em­
ployed (i. e. , job-to-job chaining under control of SUCO).
Card input is used when DECO has been called by means of
an operator type-in. Thus control input is optionally tape or
card, but not both.

Control input may contain several types of control cards, and
may contain binary elements. Binary elements are the reloca­
table object code output of COBOL, FORTRAN, or UTMOST.
Control input comes from a previous processor (ACCO or
UPCO), from the PRESTO CTT Symbiont, or directly from

REVISION: SECTION:

UNIVAC m SUPPORT
PA[3E:

U-3519

cards. Some of the control information for a job may also
come from a relocatable object code library tape. See the
section on Control Cards for an explanation, in detail, of
the various types of control cards.

b. Relocatable Library Tapes

Library tapes may contain numerous sets of independently
compiled relocatable object code arranged in elements and
groups, where a group is a collection of elements or other
groups. Control information may appear within elements
or groups, and will be processed in the order in which it
is encountered. The user may thus keep control informa­
tion which is permanently associated with a job on a library
tape with that job, thereby reducing the amount of primary
control input needed to process the job through DECO.

The use of library tape input is optional with the user; con­
trol information from tape or cards is the only required in­
put. The number of library tapes used as DE CO input is
limited only by the number of available tape units. Only
one library tape is available to DECO at a given time, the
selection being under control of the user by means of a
TAPE control card.

c. System Tape

The system tape on logical tape unit 0 may be used as input
to a DECO run. Jobs on this system tape may be copied on­
to the system tape being created by DECO under control of
KEEP control cards.

2 Output

DECO produces as output a system tape (loadable instruction tape)
and an optional List tape.

3-0005

2

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

a. System Tape

The system tape will normally contain a bootstrap loader
(BOOT), an in-core executive routine (EXEC), a supervisory
control routine (SU CO), diagnostic aids, main programs, and
symbionts. (For detail, refer to the System Tape section.)
From this system tape, main programs and symbionts will
be loaded into memory for execution.

(1) Main Programs

Each of the main programs (jobs) processed by DECO
has been converted from relocatable object code to
absolute object code. Each job appears on a system
tape as a series of blocks which contain absolute ob­
ject code, preceded by a block with the job's related
control information.

Main programs, at execution time, will be located in
core immediately above the executive system, or as
specified in a SEG card. Main programs are not dy­
namically relocatable.

(2) Symbionts

The system tape may contain symbionts - programs
which normally control the operation of peripheral
equipment. A symbiont may operate concurrently
with a main program, other symbionts, or it may
operate alone. Symbionts are under complete control
of operator type-ins.

Symbionts may be absolute or relocatable, depending
on the definition of the user at DECO time. When a
dynamically relocatable symbiont is called into memory,
it is loaded into the highest available memory location.
Subsequently, if higher memory locations become avail­
able (by the completion of some other symbiont), all
dynamically relocatable symbionts in core will be moved

3-0005

3

SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

up to overlay the vacated space. For more detailed infor­
mation on symbionts, refer to the BOSS III Reference

. (....

MalHffiL f', . , '/,:: ,

Absolute sYlnbionts, when called, will be loaded into what­
ever portion of upper 111emory is specified by the program­
Iner with a HES card at assembly time, or a SEG card at
DECO ti111e. Absolute synlbionts are not relocated during
execution, and no relocatable programs will be loaded
above then1. Therefore, it is advisable that absolute sym­
bionts be written to occupy the highest addresses practical.

b. Mapping (List Tape)

DE CO provides the user with a listing which may show the
control cards used by DECO for each job, the name and loca­
tion of each element, the nan1e and location of externally de­
fined labels, and diagnostic error messages. The user may
elect to show error messages only, by using a particular
IVIODE card option.

The list tape is prepared if file #2 has been specified on a
tape assignment card following a SERVO card at the beginning
of the DECO run. The information which DECO places on a
list tape is in the format required by the PRINT/PUNCH tape
symbiont. The tape would be printed later, concurrently
with some other job, with the PRINT /PUNCII symbiont. The
listing will be done on line if file #2 (the list tape) has not
been specified. (There is no punch output from DECO.)

C. GENERAL

1. Groups and Elements

A program (job) contains a combination of groups and elements -
or a program may consist of only one group or element. An
element is the smallest program unit; a group is a collection of
elements or other groups. Elements contain either control cards
or binary card images, or both. Groups may contain control

3-0005

4

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519 5

--===~=================±==================

cards, but may not contain binary card images unless they are
within an element.

Groups and elements are identified by names, which nlay not
exceed eight (8) characters. A group name must be unique within
a group, and an element name must also be unique within a group.

Control cards for DECO follow the same free-form format as a
line of UTMOST symbolic coding, except that they must contain
a 12 -0-2 punch in column 1.

Groups and elements are identified by the following control
cards:

BOG GroupName (Beginning of group and its name)
EOG GroupName (End of group and its name)

A~~:.~ E~emenrame ~~e~~~~r o/.e~~mtt and its name)

On a library tape an element is terminated by the appearance of
another ELT, a BOG, or an EOG card.

The BOG and EOG control cards serve as brackets around a
section of coding. These cards are descriptive labels for a
group, and should be the first and last cards of any group. All
other control cards pertinent to a group must appear within the
BOG and EOG control brackets. Groups may be nested within
groups.

An example of nested groups might be:

BOG GRP1 Group 1 (GRP1) contains groups 2, 3, and 4.
BOG GRP2 Group 2 (GRP2) contains groups 3 and 4.

[BOG GRP3
EOG GRP3

CBOG GRP4
EOG GRP4
EOG GRP2
EOG GRP1

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

An ELT control card precedes the card images belonging to the
element named in its operand field (ElementName). To be part
of a group, elements must be contained within BOG and EOG
control cards. Within a group, an ELT card separates succeed­
ing elements. Elements which are not part of a group are termi­
nated by the next BOG or ELT encountered.

The following is an example of elements within nested groups:

BOG GRPI
ELT ELTI
BOG GRP2

[BOG GRP3
ELT ELT2
ELT ELT3
EOG GRP3

[BOG GRP4
ELT ELT4
EOG GRP4
EOG GRP2
EOG GRPI

Group 1 (GRPl) contains element 1 (ELTl)
and groups 2, 3, and 4.

Group 2 (GRP2) contains groups 3 and 4.
GRP2 does not contain binary
elements in itself.

Group 3 (GRP3) contains elements 2 and 3.

Group 4 (GRP4) contains element 4.

To call an element within a group, subscripting is used. For
example, to call ELT3 in the preceding example:

SELECT GRPl(GRP2(GRP3(ELT3)))

or, to call ELTl:

SELECT GRPl(ELTl)

or, to call all of GRP3:

SELECT GRPl(GRP2(GRP3))

3-0005

6

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

2. Binary Card Images

Binary card images appear within elements (but not within groups).
DECO recognizes five types of binary card images which are crea­
ted by UTMOST, COBOL, and FORTRAN:

Relocation card
External Symbol Reference
External Symbol Definition
End Card
Instruction Card

The order of the binary cards within an element is immaterial to
DECO.

a. Relocation Card

A relocation card consists of one or more relocation refer­
ences. Each reference specifies a location which contains
a 15-bit address. DECO adds the current base address to
this 15-bit address (ignoring sign and masking out any over­
flow), thereby effecting relocation from the originally de-
fined base to the current base. The original base was assigned
at assembly or compilation time. In COBOL and FORTRAN,
base zero is always used. In UTMOST, base zero is used if
a base is not defined; a base other than zero can be defined
with a RES card at assembly time.

For most programs, the relocation base will be initialized
for each job at DECO time to a location immediately above
the executive routine. This address may be changed, during
DECO, by the use of a SEG card. The relocation base is
incremented within a job by the lengths of succeeding ele­
ments. This length is obtained from the END card for each
element.

For symbionts, the type of relocation employed is defined by
use of a SYM card.

3-0005

7

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519 8

==±===================~==============~.-

b. External Symbol Reference

An entry is created in an external reference card image when
a symbol (label) is left undefined at assembly or compilation
time. This entry consists of from two to five words. (The
entry is variable in order to permit different lengths in
labels.) The first words in the entry contain the undefined
symbol. The last word in the entry specifies the location
of the word which contains the undefined field, and the low­
order bit position of this 15-bit field. The word which con­
tains the undefined field may be an indirect address word
which has been created because of the undefined symbol, or
may be an instruction which contained the undefined symbol
itself. The undefined field may contain a constant increment
or decrement as will be shown in examples following the dis­
CllS sion on external symbol definition. The entire external
reference entry is stored in a table called EXTREF during
the first pass of DECO.

Definition and relocation of the undefined field await a cor­
responding external definition card.

c. External Symbol Definition

An entry is created in an external definition card image when
a symbol (label) has been marked as an externally defined
symbol. (In the UTMOST language, external definition is in­
dicated by a label followed by an asterisk.)

Each entry consists of from two to five words. The first
words in the entry contain the defined symbol. The last word
in the entry specifies the 15-bit value corresponding to the
defined symbol. This may be an absolu~ value or an address
relative to the originally defined base. The last word may
specify relocation.

The entire external symbol definition entry is stored in the
table EXTDEF during the first pass of DECO. If relocation
is specified in the last word of the entry, it is effected by

UNIVAC m SUPPORT
I~EVISICN'

I U-3519

SECTION:

PAGE:

adding the value for the defined symbol to the current job base
address before storing in EXTDEF. If duplicate symbol defi­
nitions occur, the first definition encountered holds and an
error message is written.

As each external symbol reference or definition is found by
DECO, that entry is placed in the appropriate table (EXTREF
or EXTDEF). After DECO has passed the entire job (all
groups and elements of a program), the EXTREF table is
matched against the EXTDEF table. As a rnatch is made,
that external reference becollles a defined reference. A
library search will then be made for those external refer­
ences which are undefined, if library search has been speci­
fied by a LIBE card. This search is performed by using the
undefined external symbol reference label as a key. The ele­
ments within the specified group are scanned for a rnatching
externally defined synlbol. When a match is made, the entire
element which contains the matched label is brought in as part
of the library routines for the job. Error messages will be
written for those references still undefined after the library
search, if there was one. A second pass on the job is then
nlade, and the values for the defined references are inserted
into the prograln.

The following example will illustrate how DECO handles an
external symbol reference and definition. Assurne that the
following job is being processed through DECO. (POl' ease
of representation, sy nlbolic coding is used in the exarnple.)

3-0005

9

(1)
(2)
(3)

JOB EXAMPLE (where Z is a 12-0-2 punch)

(4)
(5)

ELT PARTI
SA ~3, SAVE+1

END
ELT PART2

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT

(6)

(7)
(8)

SAVE* RES

END
FINIS

2

PAGE:

U-3519

The coding in element PART1 will create an entry (SAVE) at
assembly time in an external reference card, and will create
an indirect address word containing the increment 1 (+00000001).
The coding in element PAR T2 will create an entry (SAVE) in an
external definition card.

Assume the following: that the address within PART2 for
SAVE is 0100, that the base address assigned to the job is
07000, and that the length of PART1 is 0300.

During DECO's first pass the external reference entry for
SAVE is placed in the EXTREF table, and the external defi­
nition entry for SAVE is placed in the EXTDEF table. During
the second pass, the value 07000+0300+0100 (or 07400) will be
added to a 15-bit field in the indirect address word as indicated
in the external reference entry. In this case, the final value of
07400 + 01 is given. At execution time, line 3 of the example
will make an indirect reference to the generated word which
will now contain 07401.

d. End Card

Effectively there are two kinds of end cards. One contains only
the length of the element in which it appears. The other con­
tains the transfer address (where control is to go after a job
has been loaded), the values to be loaded into the cover index
registers, as well as the length of the element or subprogram
in which the end card appears.

e. Instruction Card

An instruction card contains one or more contiguous binary data
or instruction words, together with the location of the first word
relative to the original base.

10 ...

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT --+----- ----------
PAC3 E:

U-3519

3. Program Structure

Programs and subprograms may be combined in several different
ways to permit maximum efficiency. The structure of a program
will fall into one of the following classes:

a. Single- Compilation Programs

11

For single-compilation programs (UTMOST, COBOL, FORTRAN)
which fit into core, DECO simply serves as a relocator. DECO
will write the program on the absolute system tape for execution
loading by BOOT.

b. Separately Compiled Main Programs and Independent Subroutines

This program will consist of a main program and one or more
independently compiled subprograms (or subroutines). The en­
tire program (job) will fit into one core load. Main progranls
and subprograms may be written in UTMOST, COBOL, or
FORTRAN.

There are many advantages to this programming technique:
assembly or compilation time is minimized, checked out
library subroutines may be inserted automatically, and be­
cause of the modular structure, debugging is considerably
simplified.

The following discussion will indicate how communication be­
tween separately compiled or assembled main programs and
subroutines is controlled by the programmer.

(1) External Labels

In UTMOST, if a label in the label field is immediately
followed by an asterisk, and the line is not within a
procedure (PROC) , it is an external label, and can be
referenced by other separately assembled subprograms.

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519

(2) External Symbol Reference

In UTMOST, if a label in the operand field is left unde­
fined, it is an external sylnbol reference, and may be
defined by a corresponding external symbol definition
at DECO tilne. Such definitions must be in the form
of 15-bit addresses.

(3) COMMON

Within the FORTRAN language, two kinds of common
data areas may be defined. They are "labeled COM­
MON" and "blank COMMON". A blank COMMON area
is used and defined within an entire job, and its con­
tents nlay be referenced by any link of a chain, any
element, or any segment. A labeled COMMON area
may be referenced and defined within any separately
compiled subroutine. The first subroutine which ref­
erences the labeled COMMON area will define for
DECO the position of that area. Space will be alloca­
ted in the subroutine according to this first definition
for the labeled COMMON area. Subsequent references
to this particular labeled COMMON area within a link
of a chain job, or in any segment of a segmented job,
will be treated as references to the first definition of
the labeled COMMON area. It is therefore the user's
responsibility to see that when a reference is made to
a labeled COMMON area, the subroutine which contains
the first reference to it will also be in memory.

FORTRAN will create special external symbol definition
images which define a symbol as being the name of a
COMMON area. The length of the COMMON area is
carried in value position of its external symbol definition
image. This length is used to define the size of a pseudo·­
element which becomes the common area.

This created element will be placed following the first
elenlent containing an external symbol definition for the
labeled COMMON. Multiple definitions of a particular

12

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
F'AGE:

U-3519

labeled COMMON may be given; however, the first one
encountered will be used to define the length of the
pseudo-element (created COMMON area). The other
definitions for this labeled COMMON area will not
cause error or error messages, but will be ignored.
It is the user's responsibility to see that the first de­
finition found will be a proper one.

For all blank COMMON, a special symbol, QCOMMON,
is generated by FORTRAN. This special name is re­
cognized by DE CO and the procedure outlined above is
modified in these respects: the pseudo-element created
is placed above the longest link in a chain job or above
the library in a segmented job. The length of the pseudo­
element is taken as the maximum length specified in the
many external symbol definitions given.

It should be noted that a bit is contained in position 17 of
the value word of these special external synlbol refer­
ences generated by FORTRAN. Standard external sym­
bol definition images as generated by UTMOST do not
contain this bit.

c. Chain Jobs

A chain job is composed of one or more programs or links.
Each link may be composed of one or more independently com­
piled subroutines. Only one link will be in core at a given
time. Normally, chain jobs will be used for FORTRAN com­
piled programs.

Chaining permits these independent links to comnlunicate
with each other through "blank COMMON", a common data
area. The subprograms within a link may communicate with
each other through "labeled COMMON". (Refer to COMMON,
Section C. 3)

13

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

A link in a chain is defined by the insertion of a CHAIN control
card image in front of the binary elements composing the link.

The control card is of the format,

CHAIN LinkName

where LinkName can be alphabetic or numeric to conform with
current FORTRAN usage.

Within a link, any other link within a chain job may be called
by,

LA 3, LinkName
J LODX

3-0005

14

where LinkName is the address of the first word of a two-word
constant containing the alphabetic name of the link being called.

During the first DECO pass, each link is processed as for a
job consisting of a separately compiled main program and sub­
routines. After each link is processed, the library search is
made, excluding the special symbol QCOMMON (blank COMMON
area), and the length of the link is remembered. The EXTDEF
table is then reset, and the next link is processed. After all
links have been processed through the first pass of DECO, the
externally defined variable QCOMMON will be assigned the core
location above the highest location used by any link. An area
equal to the maximum length in the many QCOMMON definitions
will be reserved, beginning at this location.

The following example will illustrate the make-up of a chained
job:

JOB
CHAIN
ELT

JOBX
LINK1
ELTA

REVISION: SECTION:

UNIVAC m SUPPORT
3-0005

PArlE:

LINKB

LINKA

LA
J
'LINK2'

CHAIN
ELT

LA
J
'LINK1'

FINIS

3, LINKB
LODX

LINK2
ELTB

3, LINKA
LODX

U-3519

When JOBX is called, LINK1 will be loaded. At some time
during its execution, LINK2 may be called and loaded, over­
laying LINK1. Similarly, during execution of LINK2, LINK1
may be called, and would then over lay LINK2.

d. Segmented Jobs

Many computer applications require that various sections of
a program be brought into core only when they are needed.
The segmentation provisions of DECO provide this facility.
This is the most powerful way to operate the computer, and
also places the greatest burden on the user in planning his
over lays and cross referencing.

15

A segment is defined as a collection of binary elements which
comprise a single core load. In this case, "core load" means
a program or subprogram which may occupy part or all of the
memory space allocated to a job. There may be one or more
segments in core at any given time.

REVISION: SECTION:

UNIVAC m SUPPORT
3-0005

PAGE:

U-3519 16

A segment's starting point is defined with a SEG control card
of the follow ing format:

SEG SegName, Origin

Origin may be symbolic (any previously defined externally de­
fined label), blank, or an actual location. When Origin is
blank, the segment will be loaded into the normal location
immediately above the executive routine.

When a job containing segments is called, the first segment
will be automatically loaded into core. The loading process
is halted when the symbol block of the second segment is en­
countered. From this first segment, any other segment(s)
may be called into core. Thereafter, any segment in core
may call any other segment, in one of two ways:

LA
J

3, SegName
LODX

where SegName is the address of a two-word constant con­
taining the alphabetic name of the segment being called.

This will load the segment (SegName), and transfer control
to a location specified in a "main" program in the segment.

LX
LA
J

1, (ROSIE)
3, SegName
LOAD

The segment will be loaded, and control will go to ROSIE.
ROSIE can be any location within any segment now in core.,
including the called segment (SegName).

In either of the above cases, the calling segment can be com­
pletely overlayed by the called segment.

REVISION: SECTION:

UNIVAC m SUPPORT
PAGE:

U-3519

As each segment is processed by DECO, the external symbol
definitions and external symbol references are placed in the
appropriate tables. After the entire job has been processed
through DECO's first pass, if a library search has been speci­
fied by a LIBE card, an automatic library search is made for
any undefined external symbol references. This search is
made within the group indicated on the LIBE card, on the file
specified by the last TAPE card image, using the label in the
undefined external symbol reference as the key. Elements
called in as a result of this search are relocated above the
highest memory used by any segment. At the end of the first
DECO pass, this library information is written onto an inter­
mediate tape. During DECO's second pass, the library in­
formation on the intermediate tape is written onto the system
tape as part of the first segment. It should be noted that when
the first segment is loaded, the library portion will be located
in higher memory, apart from the segment itself, which is
ordinarily loaded into an area just above the executive routine.

If the user requires a library routine only within a particular
segment, he may call it with a SELECT card, and this library
routine will be loaded with this particular segment. It will
not be included with the high-core common library area. If
more than one segment requires a library routine, the library
routine should NOT be called by a SELECT, but should be in­
cluded in the high-core library routines.

The FORTRAN externally defined "blank COMMON" symbol
QCOMMON will be located above the library routines.

The processing of inter-subroutine or inter-segment communi­
cations operates on the entire job. It is the user's responsibi­
lity to see that when an external symbol reference to another
segment is made, that segment is in core.

An example of a segmented job follows. For ease of represen­
tation, symbolic coding is used.

3-0005

17

UNIVAC m SUPPORT

(1)
(2)

(3)

(4)
(5)
(fi)
(7)
(8)
(9)

(10)
(11)
(12)

(13)

(14)
(15)
(16)

(17)

(18)
(19)
(20)

(21)
(22)

(23)

(24)

(25)

START

A*
B*
C*
D*

REVISION: SECTION:

3-0005

~--------f----------------

JOB
TAPE
LIBE
SEG
LA
J
RES
RES
RES
RES
END
SEG

LA

LX
LA
J

LA

LX
LA
J

SLJ
LA

SEG

EXAMPLE
6
PAYROLL
SEG1
3, SEG2
LODX
500
500
1498
2000
START
SEG2, B

1,A+12

1, ($+3)
3,SEG3
LOAD

1,E

1, ($+3)
3,SEG4
LOAD

TAX
1, F

SEG3,C+2
binary elements

SEG SEG4,D
binary elements

FINIS

PA[3E:

U-3519 18

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519

Line 2 specifies that the logical tape unit number in the 7th entry of
the tape assignment table is to be the library tape.

Line 3 specifies that the automatic library search is to be limited to
the group called PAYROLL.

Line 4: Note this line is redundant, and name of this first segment will
be the job name (EXAMPLE).

Lines 5 and 6 cause SEG2 to be loaded and control to be transferred to
SEG2.

Lines 7 - 10: The values 500, 500, 1498, and 2000 will define the relative
locations in memory of A through D.

Line 11, at DECO time, contains the length of SEG1 as it was assembled.
The segment extends from START to the library routines.

Line 12 defines the segment SEG2, and will cause it to be loaded at loca­
tion B.

Line 13 references a location in SEGl.

Lines 14, 15, and 16 cause SEG3 to be loaded into its defined starting lo­
cation, C+2. Control is retained in SE G2, at $+3.

Line 17 references a location in SEG3 which is now in memory.

Lines 18, 19, and 20 cause SEG4 to be loaded at location D. Control is
retained in SEG2 at $+3.

Line 21 SLJ TAX causes the library to be searched for the routine TAX.
This routine will be loaded into the library area, above the
highest location used in the job - in this case, above SEG1 or
SEG4.

Line 23 defines the segment SEG3, and will cause it to be loaded at
location C+2.

Line 24 defines the segment SEG4, and will cause it to be loaded at
location D.

19

REVISION: SECTION:

3-0005
UNIVAC m SUPPORT

PAGE:

U-3519 20

===±================~============:==~-

MEMORY MAP

~
e;
~
W.

M
e;
~
w.

C\1
e;
~
w.

...-l
e;
~
w.

8000

7500 _"'--____ QCOMMON

7000 -...f....----- TAX

5075

5050

5000

3504
3502

3002

2514

2502

2500

-+------f=

-4------E

-...f....-----D

-4------ C+2
-~-----C

-+-----B

A+,-L~:'

A

START

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519

4. Symbionts

The primary burden for concurrency lies upon the symbionts,
programs which control the operation of peripheral equipment.
The BOSS III system is designed to permit one principal pro­
gram in the machine at a time, and to allow concurrent oper­
ation of any number of symbionts.

Symbionts are required to release control back to the system
when they find that the peripheral unit they are using is busy.
They must also save and restore any registers that they use

21

other than the basic registers. (Refer to the BOSS III :Reference ",I:

, .I)' Manual for detail.) They must reset these registers upon re­
turn from any release.

a. Storage Allocation

There are two types of symbionts - absolute and dynamic­
ally relocatable. If absolute symbionts are used, automa­
tic memory allocation features are foregone; scheduling
and memory area designation become the responsibility
of the operating personnel.

If the symbiont is dynamically relocatable, the system
will provide automatic memory allocation at all times,
and will group the symbionts in contiguous areas in high­
est available core. (Of these, the Card Reader and Card
Punch symbionts are relocatable only in increments of
0100

8
, due to hardware requirements.)

All symbionts must be accompanied by a SYM control
card at DECO time. The SYM card indicates whether
absolute or dynamic relocation is to be used. For the
SYM card format, see the section on Control Cards.

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519

b. Allocation of General Purpose Channels and Tape Units

In order to avoid conflicts in usage, symbionts should
normally refer to tape units and I/O channels symbol­
ically. The symbionts may then be defined by the op­
erator at execution time, in accordance with hardware
availability.

Symbionts may be indicated as operator-defined by in­
cluding a DEF control card with the symbiont at DECO
time:

in which S1' S , etc. , are undefined symbols represent­
ing, in this c~se, channels or tape units. The DE F card
will cause SUCO to generate a typeout of each undefined
symbol, following which the operator will type in the
symbol definition (tape unit or channel designation). A
maximum of four symbols may be entered on a DE F card.
Any number of DE F cards may be used within a job, but
the total number of symbols given may not exceed fifty.

D. CONTROL CARDS

DECO recognizes two types of control cards. They are DECO control
cards, and SUCO control cards introduced at DECO time.

/~ ~> ;;,. (," : i ".) it
-These control card.--tmfflw the same free-form format a& a line of
UTMOST symbolic coding. ex-cept that the-y must conta,in a-12-6 ... 2'
.(lunch in thefirstposition~ and 'm\lsi -not ~v~' <;o~m~nts on ~m~ ,
.) :' .,~.; t/' " i, ,; r, '(• ~!;: i~ ~ ~ /_ .':'f.i~ ;: r-~ t:~ ,I') ~"/ I~i .,/1 F,\ I ,})~:!-'i::'- Ii'; :+~ '," "-'; ~ ;'.

, ~'LABE UOPERATION~OPERAND

where ~ is a 12 -0-2 punch, and where ~ indicates at least one blank.

22

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519

If the first field of a control card contains the name of a processor ~
the control card is then made "transparent" to all other processors,
i. e., ~DECO~SELECT~ame. This control card may be passed
through UPCO or ACCO with no action being taken until the card is
processed by DECO.

In the following discussion of control cards, formats and examples
will not show labels unless they might also apply to another processor.

1. DECO Control Cards

a. JOB

23

JOB JobName, Installation Information, Carriage Return

The JOB card image defines the name of the program
(J obName), and will carry such information as the pro­
grammer or installation requires (accounting informa­
tion, programmer name, estimated time, etc.). DECO
will place this entire image in the symbol block for the
job on the absolute system tape. JOB cards are searched
for by SUCO for object time execution. SUCO will output
the entire JOB card image on the console typewriter. A
carriage return symbol should be placed immediately fol­
lowing the installation information, to keep the typeout as
short as possible.

A JOB card is placed in front of all control cards and
binary elements for a particular job.

b. SEG

SEG SegName, Origin

REVISION: SECTION:

UNIVAC m SUPPORT 3-0005

U-3519

SEG defines the name by which a segment is called
(SegName), and the origin of the segment (i. e., loca­
tion into which the segment will be loaded). Origin

PAGE:

may be a symbolic name - any previously defined ex­
ternally defined label, Origin may be an actual mem­
ory location, or Origin may be blank, in which case the
segment is loaded in the area immediately above the ex­
ecutive routines.

A SEG card is placed in front of the segment which it
defines.

c. CHAIN

CHAIN LinkName

CHAIN defines the name of a link. The chain card pre­
cedes the binary elements composing the link. LinkName
may be alphabetic or numeric to conform with current
FORTRAN usage.

d. MODE

DECO MODE Option

where Option will be one of the following:

LNOR mapping, and error messages
LCDR-, --. -,ma-ppmg,---and'a-P'0p..,messages·
LDTL mapping, and error messages
LCTL mapping, and error messages·
LDNT ~~!,or messages only

Mapping will include control cards, starting locations
for each element, and assigned address for each external
symbol definition. If no MODE card is present, the list­
ing will be as for the LNOR option.

24

REVISION: SECTION:

UNIVAC m SUPPORT 3-0005

PAGE:

U-3519

The listing is done on-line unless the List tape has been
specified on a tape parameter card following a SERVO
card at the beginning of the DECO run.

The listing ~~e is in effect until it is redefined by a
MODE card. Therefore, a MODE card may be placed
anywhere within a DE CO run.

e. ELT

ELT ElementName

An ELT card image defines each element to be processed
by DECO. It must precede all information which is part
of element ElementName. Each ELT card image is output
on the memory map. An element is terminated by another
ELT, JOB, SEG, CHAIN, DATA, or FINIS card.

f. DATA

DATA Origin ~ Increment

DATA directs DECO to locate the data images which follow
into a core position relative to Origin, which is a previous­
ly defined externally defined label. (Origin may also be an
absolute location.) It is frequently useful to load data with
a program at DECO time. The data images thus become a
part of the program at object time, but need not be assem­
bled as constants within an element.

Data card images following the DATA control card image
will be terminated by another DATA, E LT, SE G, CHAIN,
or FINIS card image.

25

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT

g.

PAGE:

U-3519

Each data card image follows UTMOST formatting for con­
stants, and can be decimal, alphanumeric, octal, or binary:

+ :12
+ 0120
+ 'ABCD'
- 12

(decimal)
(octal)
(alphanumeric)
(binary)

Binary instruction card images will also be accepted when
they follow a DATA control card. This is particularly use­
ful for making patches to object code programs. They are
loaded into the specified location (Origin ~ Increment).
These patches may not, however, contain values which need
relocation.

26

Binary data card images are loaded into an area relative to
Origin rather than being controlled by the relocation counter.
This will be used for the FORTRAN DATA statement, and
for subroutines requiring a fixed origin, such as in commun­
ication with EXEC.

KEEP
1 '

,.KEEP cards must appear outside of a job.

KEEP JobNlme

KEEP JobNlme will cause DECO to copy the specified job
(JobName) from the controlling system t:;tpe (Oil logical unit 0)

~~~o t,h~ DECO. o~~~;t~~~~ " '~ , '" ~ "/i " '., 

KEEP BOOT 

DE CO will re~incl its output tape, and tren copy BOOT (boot-
strap) onto it. :;, :'\., r:: ~ ~J'" ~,;j 

KEEP ALL 

The entire system tape will be copied onto the DECO output 
tape, after the output tape is rewound. I!': ' i'" , 



REVISION: SECTION: 

3-0005 
UNIVAC m SUPPORT 1--------------+------------------

PAGE: 

U-3519 27 

~-=======================================================================~==============~=== 

KEEP JobA, JobB 

DE CO will search for J obA and copy thr inpu,t tape from 
the beginning of J obA thr9Qgl:i Job;g~ ~ i(", j; 'A r ,j)'"/ 'j , /. I ,j 

~ ") 

KEEP INPUT, n 

The KEEP INPUT card will cause KEEP cards subsequent 
to it to copy from file #no (If no KEEP INPUT card is giv­
en, input will be on file #0.) The KEEP INPUT card itself 
does not cause copying. As many KEEP INPUT cards may 
be used as necessary, thus facilitating the creation of a 
new system tape from several other system tapes. 

KEEPOUTPU'r1" n 
",/ 

T 
"~ 

The KE :f1/0UTPUT,ca;'d causesK~E P cards subsequent to "/ .. 
,r.~ ~ J J p 'tf i / I 

it to py tape 0g1-6 file #no (If'no KEEP OUTPUT is given, 1: 

o ut will be-dn file #3.)' -As many KEEP OUTPUT cards ~;.; r 
rllay be used/'~s necessary. 

h. MOD 

MOD Value 

This causes the relocation counter to be raised to the next 
multiple of Value. For program checkout, it is often con­
venient to cause a program to begin at the next multiple of 
some power of 2. This is accomplished by the MOD card, 
which causes an adjustment to the relocation counter. For 
example: 

MOD 01000 

causes the relocation counter to be set to the next multiple 
of 01000 (512

10
). 



REVISION: SECTION: 

UNIVAC m SUPPORT 
PAGE: 

U-3519 

Due to hardware requirements, it is necessary that the data 
areas for card read and card punch subroutines begin at an 
address which is a multiple of 0100 (64 0). To accomplish 
this, a MOD 0100 card should be incluJea with the card read­
er dispatcher and with any subroutines which use the punch 
dispatcher. 

A MOD card should be placed just before the element with 
which it is associated. 

i. SERVO 

DECO SERVO 

When running under SUCO control, all tape assignments for 
each DECO run must be specified by use of a SERVO control 
card followed by tape assignment parameter cards. The 
SERVO control card must be the first control card in a DECO 
run, and there may be only one SERVO card per job. Any 
SERVO cards encountered after the first will be igHeJJ ed. 
"', 

, ; "1 i :.: 1:'· 

j. SELECT 

DECO SELECT LibraryName 

A library tape which has been specified by a preceding TAPE 
card will be searched for LibraryName. The information 
within LibraryName (a group or element) will replace the 
SELECT card in the program sequence. 

Previously compiled or assembled subroutines may be kept 
on relocatable object code library tapes. A particular sub­
routine may be called into a job or segment by use of a 
SELECT card. Subscripting may be used. 

A SELECT may be used at any place within a job where the 
user wants to insert an element from a library tape. 

3-0005 

28 



REVISION: SECTION: 

UNIVAC m SUPPORT 3-0005 

PAGE: 

U-3519 29 

k. TAPE 

DECO TAPE FileNumber, Label 

The TAPE control card specifies which file number is to 
be used as the library tape. FileNumber is a number (0 
through 15) which specifies an entry in the tape assign-
ment table. For example, TAPE~6 specifies the seventh 
entry in the tape assignment table. If Label is present, the 
label of the specified library tape will be matched against 
this label, and an error message typed out if they do not 
match. If Label is not entered, the label block on the speci­
fied library tape will be ignored. 

Each file designated in a TAPE card must have been previous­
ly defined by a tape assignment parameter card. A TAPE 

~~~~~~:~e~edl~~~~;~1~ev~~"J i~ e~~~red to ~P~CifY) fl new li-

:)}') II: () I.' 1 , 'I.

1. FINIS

DECO FINIS Name

A DECO run must be terminated by a FINIS card. The Name
entry specifies the processor or run to be entered next. When
Name is blank, SUCO will type out a message ("Next") upon
reaching EOJ, and will spin in a STOP loop until the operator
calls a new program.

m. LIBE

LIBE GroupName

After DECO has called in all the elements of a job, the ex­
ternal symbol definitions and external symbol references in
those elements are compared. Any external symbol referen­
ces which remain undefined are searched for on the currently
specified library tape (see TAPE control card) only if a LIBE

REVISION: SECTION:

UNIVAC m SUPPORT
3-0005

2.

PAGE:

U-3519

control card is present. The use of the LIBE card will
limit the search to a particular group (GroupName) on
that library tape.

30

If a LIBE card image is not present an automatic library
search will not be performed.

It should be noted that the LIBE card is effective only
for the undefined symbol search and has no effect on
other tape positioning orders such as SE LECT and FIND.

Only one LIBE card image may be used within ,each job.
-ft--s-hoYld--ap~ea-rat the beginning of-the job.... ,'j Ii'

SUCO Control c~r~~ I;, ~>. .' ::'.. ;! "'y' • ~.: I;':' . ", ,!

In addition to control cards for DECO itself, DECO accepts cer­
tain control cards for use by SUCO. These cards are passed on
in the job preamble (control block) of the system tape.

These control cards may appear anywhere within a job.

a. NEXT

NEXT Name

Name specifies the program to be called at end of job of
the current program. The symbol Name will be placed
in Words 4 and 5 of the preamble on the system tape. If
NAME is blank, SUCO will go to the typewr-iter for the
next program. If no NEXT card is present, SUCO will
type out a message upon reaching end of job in the current
program, and will spin in a STOP loop until the operator
calls a new program.

REVISION: SECTION:

UNIVAC m SUPPORT 3-0005

PAGE:

U-3519 31

b. HOLD

HOLD First~ Last

This card specifies the first and last locations of the core
area which is not to be cleared before loading the job in
which the card appears. If no HOLD card is present, the
entire core area within the job boundaries will be cleared
when a JOB card is encountered. Only one HOLD card may
be included in anyone job. Ordinarily ~ First and Last wouJd
be absolute memory locations. They could be previously
defined symbols within the job.

c. SYM

SYM X

Symbionts may be one of two types, absolute or dynamic-
ally relocatable. Of the latter, certain may be relocatable
only in increments of 100 locations, due to the requirements
of the punch and card reader buffers. A SYM control card
is used to indicate which type is desired. In the above format,

X = R for relocatable
X = H for relocatable in increments of 100 only
X = A for absolute

All symbionts must be accompanied by a SYM control card.
Absolute symbionts are loaded into whatever portion of upper
memory is specified by the programmer, and are not reloca­
ted during execution. They should normally be written to oc­
cupy memory locations with the highest addresses practical,
as no relocatable programs will be loaded above them.

Dynamically relocatable symbionts are stored in upper mem­
ory in the order of loading, and are relocated to pack from
the top of memory down.

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519 32

==~==================~===============~

d. DEF

DEF S1, S2, S3, S4

in which S1, S2, etc., are otherwise undefined symbols.

A maximum of four symbols may be entered on a DEF card.
Any number of DEF cards may be used within a job, but the
total number of symbols given may not exceed fifty.

In order to avoid conflicts in usage, symbionts should normally
refer to tape units and I/O channels symbolically. The sym­
bols may then be defined by the operator at execution time, in
accordance with hardware availability. The DEF control card
indicates these symbols as being operator-defined. DEF will
cause SUCO to generate a type-out of each symbol, following
which the operator may type in the symbol definition. Such
symbols must be in the form of 15-bit addresses.

It is suggested that a list of standard symbols for tape and I/O
channels be adopted by an installation in order to minimize op­
erator confusion.

The DEF option is available only to symbionts. Main program
symbols may not be operator-defined.

3. Tape Assignment

Tape assignment parameter cards are placed with the beginning para­
meter information for a run. They are condensed by DECO and are
written on the system tape as part of the JOB preamble. During the
initialization of a run by SU CO, they are examined and appropriate
action is taken.

When running under SUCO control, all tape assignments for each DECO
run must be specified by use of a SERVO control card followed by tape
assignment parameter cards. The SERVO control card must be the
first control card in a DECO run, and there may be only one SERVO
card per job.

The format of the tape assignment parameter card does not comply
with rules for other control cards. The format is not variable:

UNIVAC m SUPPORT

Columns

1 - 6
7
8 - 9
10
11 - 16
17
18 ...

REVISION: SECTION:

3-0005
r-------------+------------------

PAGE:

U-3519

Entry

alias
blank or comma
File number ~ right justified
blank or comma
Operation
blank

33

One to three-digit assignment
numbers right-justified in col­
umns 20, 24, 28 ... , and sep­
arated by commas or blanks.

The file alias has no logical attachment to any symbols gener­
ated by a program, and is carried as a mnemonic device only.
Its sole use is on tape assignment parameter cards and on
correspondingly generated tape mounting, posting, ~nd dis-
mounting instructions via the console typewriter. J~) Y'(: I 'I

J .'

The File number (columns 8 a~d 9) is! a number (0 through 15)
which specifies an entry in the tape assignment table. For ex­
ample, file nUlnber 10 specifies the eleventh entry in the tape
assignment table.

I , ' '" ~. "~~.~','"" 1 " " " ,I

The 'funefton 'of the ass'ignment numbers (columns 18 ...) depends
upon the particular operation involved. All assignment numbers
are decimal.

Tape assignment cards should appear at the beginning of the job
to which they apply.

For a description of operator messages which might appear on
the console typewriter as a result of the following parameter cards,
refer to the BOSS III Reference Manual.

REVISION: SECTION:

UNIVAC m SUPPORT 3-0005

PAGE:

U-3519 34

a. ASSIGN

1 •

alia~~;-"ASSIGN kl, k2

The file entry kl from the previous run will be assigned
to file entry k2 of the current run. 1fl:ti.s-ts--aeemnpH-shed,.
by interchanging the logical unit numbers between the' two
file entries-in the tape1iss-ignmmrt-tabte. A check is made
to see if the previous alias agrees with the alias on the
ASSIGN car~, and if pot, aI) e,rror me~sage is produced.

, ,__ ",' /' ., ' ;. , " .~ (" 'I I • I .), 1'.. <)
1:.- ~I <. - _ I't ;;. -" j (1 '1; I r ~,. ,- '.. •

The rewind-with-interlock prov'isions of INEX, INPUT,
OUTPUT, and SCRACH will not apply to a tape which has
been saved with a SAVE card, and subsequently assigned
with an ASSIGN. Neither will there be mounting or dis­
mounting instructions.

b. INPUT

alias k INPUT n

INPUT describes file k as being a protected input file, and
causes beginning-of-job mounting instructions and end-of­
job dismounting instructions. If reels are not in a dismount­
ed status at the beginning of the run it produces rewind-with­
interlock instructions. (If a tape has been "saved" and sub­
sequently "assigned", the reel will only be rewound, and
there will be no mounting or dismounting instructions.) It
sets the "input" bit in the tape assignment table entry k.
n specifies the expected number of reels, thereby permit­
ting an early release of the alternate, if any. An incorrect
n will not cause an error.

c. INEX

alias k INEX n

INEX describes file k as being an unprotected input file,
and causes beginning-of-job mounting instructions only. If
reels are not in a dismounted status at the beginning of the
run, it produces appropriate rewind-with-interlock instruct­
ions. (If a tape has been "saved" and subsequently "assigned",

REVISION: SECTION:

3-0005
UNIVAC m SUPPORT

PAGE:

U-3519 35

the reel will only be rewound, and there will be no nlounting
or dismounting instructions.) It sets the "input" bit in the
tape assignment table entry k. n specifies the expected
number of reels. thereby permitting early release of the
alternate. if any. An incorrect n will not cause an error.

d. OUTPUT

alias k OUTPUT

OUTPUT describes file k as being a protected output file. It
causes assurance of scratch tapes at beginning of job, by re­
winding with interlock if the reel is not already in a dismount­
ed status. In either case, a MOUNT BLANK message is pro­
duced. Appropriate end-of-job dismounting instructions will
be typed out. If a tape has been "saved", dismounting in­
structions will not occur in the job in which the tape was
saved, and rewind will occur in the job which does the assign­
ing.

e. SCRACH

.~ k SCRACH

SCRACH describes file k as being a scratch reel. It causes
assurance of a scratch at beginning of job by rewinding with
interlock if the reel is not already in a dismounted status.
MOUNT SCRACH message is produced at beginning of job if
the file is dismounted. If a tape has been "saved" and subse­
quently "assigned", the reel will only be rewound, and there
will be no ~ounting ~structions.

l (.1 . 1., ",;,Ii ,) (t:'f I.. .' ;' J .~. •

f. ALT

alias k ALT kl, k2, ...

ALT describes file k as being an alternate to files kl, k2 ... ,
and sets the alternate reference bit in entry kl, k2,... of
the tape assignment table. If kl is an input file, then there
should only be the entry kl in the list. If kl is an input reel,
then a MOUNT message will be produced and the unit rewound
with interlock if it is not dismounted. If kl is an output reel,
then a MOUNT ~~ message will be produced if the unit

; I " ~I '", is dismounted. b L'!'l 'I ~"

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519 36

==~

g. SAVE

h.

alias k SAVE

SAVE sets the "save" bit in file entry k of the tape assignment
table, and thereby causes the file to be carried over to the next
run. If file k has not been described as a SCRACH, INPUT,
INEX or OUTPUT file, it causes carryover anyway. If the file
is not in use, it causes MOUNT message and rewind-with-inter­
lock, if appropriate.

A tape which has been "saved" must be assigned (with an ASSIGN
card) in the succeeding job. ,

I . · ~) : r J ;'i . . , ,I ';', ,.,:- /:.' \ . '!J '."1 "" ,''', "'1.1; i "'" A·~ ,I <'\ '
. ~ ~ i J i --', (.. ~l__ ,,' 't .

DUMPI;:."_~) .. ,' ; :: ... ' {~:'ii;:.,'.;·l;1 ~~(l ,'- plJ.~.l/ ':
I h ' ~,I. ;.!,.)~' -. q r: ,/,\. J' ' . .i! '. ,

,. ~ " -". 1-,", ~ /

,'6/' /,-
, j

.... ~-k DUMP

DUMP specifies the file entry (k) for the system dump tape. A
dump tape must be specified for each job. It may be any output

I tape. ;
~, .• J"~J\ ,.'.), ?" __ ,_J'/, I, ' " 'f" I I" /' 't;l , '! ,./>;, '.

E. OPERATIONAL CONTROL

1. Nominal Tape Assignment

The following tape assignments are used for DECO. These assign­
ments may not be changed if DECO is called by an R~ECO type­
in. When DECO is under control of SUCO, these assignments may
be changed once in a DECO run by the use of a SERVO card follow­
ed by appropriate tape assignment cards.

UNIVAC m SUPPORT

File No.
o
1
2

3
4
5
6

n

2. Console Functions

1. Clear
2. Rewind
3. Load

REVISION:

U-3519

Usage
System Tape
Basic PRESTO input
Pr intfpuooh tape
New System tape output
Scratch tape
Scratch tape
Library tape

Library tape

SECTION:

3-0005

PAGE:

37

4. Release (Qptwnal. Press only when SUyO control is not
uJe.s.i.~-e.d.) :~ I, / :..: ' I" ' 1j i'

5. Program Stop - sets all memory to SLJ ERR. Must use.
6. Program Run
7. Keyboard Request

'j'ff. Type in RS~CALL~DECO~2 ~. j'

9. Keyboard Release. (Activates DECO)

F. SYSTEM TAPE

A system tape is created by a DE CO run. The first block on the sys­
tern tape will be BOOT (bootstrap). BOOT will automatically call in
EXEC, which will be next on the system tape.

The system tape is terminated by special end-of-file sentinels; search­
ing is normally done by searching forward through the file until the de­
s ired name is found. If the des ired name is not found on the second
pass, an error message is typed out.

REVISION: SECTION:

3-0005

UNIVAC m SUPPORT
PAGE:

U-3519 38

A section of the system tape containing a job called JOBA would appear
as:

Symbol Block
1. SCAT word - 3, TCD
2. Segment of three words

a. Transfer address of previous, program
b. JOBA, name of this job (5 (' j 7 /.,J'l J I~ = /' 0J))/) ..

3. SCAT word - 16,0120
4. Cover register information of previous program

Preamble Block
1. SCA T word - signed negatively to make this block trans­

parent to BOOT
2. Control information for SUCO, such as tape assignment

parameters

Information Blocks
As many as 19 segment pairs consisting of:
1. SCA T word - number of contiguous instructions, absolute

location of first instruction
2. Segment of contiguous instructions

Perhaps Additional Symbol Blocks with Associated Information
Blocks for Segments or Links of the Job
Symbol Block
1. SCAT WORD - 3, TCD
2. Segment

a. Transfer address of JOBA (or the last segment or link)
b. Name of next job physically on tape

3. SCAT word - 16, 0120
4. Cover register information for JOBA (or the last segment

or link)

REVISION: SECTION:

UNIVAC m SUPPORT
4-0001

DATE: PAGE:

July 20, 1962

ON-LINE MEMORY DUMP

A. Purpose

To provide an on-line memory dump on the printer useful in debugging
programs. It can be used either through a calling sequence in a snap shot
manner or can be called upon by typewriter input.

B. Method

The m.emory dump routine uses the editing routines and an interruptable
print routine. The memory dump routine saves and stores all registers
and the cornparison indicators at the time of entry. Internally, the memory
durrlP routine uses all 4 arithn1etic registers and index registers 1 through
6. It uses index register 5 as a cover register. At the end of the durnp
routine, all registers will be restored and control will be returned to the
location following the calling sequence that requested the dun1p or to the
point at which the interrupt occurred if the dump was requested by the
operator. This exit will occur even if there has been a typed-in restart
during the course of the memory dump. (See Section C.) The memory
dUIT1P routine is capable of producing 5 different fixed formats. These are:
instruction, alphabetic, decimal, octal and instruction and octal together.

C. Operating Procedure

1. Program calling sequence

The memory dump routine accepts a calling sequence of the form:

SLJ
+
+
.~

+

~MPO

'F'
.. FROM, N

THRU, N

Ii r,(I; l + ,J

1

where r F' represents a single letter format code in the low order
position of the word as designated below, FROM is the starting address
of the area to be dumped, and THRU is the ending address of the area
to be dumped. N can be either 0 or index register 7 through 15. If
N is not zero then the current value of the index register specified will
be used to establish the area being printed.. If the third word in the
calling sequence, the FROM location, carries a + sign then the contents
of the registers at the time of entry to the routine will be printed out in
addition to the specified area. If this..-sign ,i,s--Rega:u..ve then the registers
will not be printed out. I ') ~ ('1 'I;~.1"\

REVISION: SECTION:

4-0001
UNIVAC m SUPPORT

DATF:: PAGE:

July 20, 1962

2. Typewriter Input

The dUIT1P routine accepts a typewriter request of the forln:

MX 11111 22222

where M is the standard typewriter control symbol for a memory print
out, X designates what format is to be used as described below, 11111
designates the first location in octal and 22222 designates the last lo­
cation in octal of the Inemory area to be printed. The contents of the
registers at the time of the request will also be printed.

Forlnat Codes

The following alphabetic codes will be accepted by the dUlnp:

I
A

Instruction forn1at
Alphabetic format

8 words per line
16 words per line

D Decinlal 8 words per line
o Octal 8 words per line
B Both instruction and octal together 4 pairs per line

A 111emory dUlnp Inay be stopped and restarted by keying in new limits on
the typewriter. This will cause the dump to be interrupted immediately.
The printout of the registers occurs only on the original request. Ordinar­
ily, only a nlenlory dump requested by typewriter input would be modified
in this Inanner.

If called for, the contents of the registers at the time of entry to the memory
dun1p routine are printed in the following format:

Low Equal High Indicators AR8 AR4 AR2 AR1
Control Counter Index Registers 1-7
Index Registers 8-15

D. Memory Space

The dU111P routine occupies cells 02000 through 02777 and is a permanent
part of the executive routine.

2

I

UNIVAC m SUPPORT ~
:~EVISION: I SECTION:

___ ~~ ___ ~ ___ ~ ________ I ~=_~OOl __
DATE: ~E:

I July 20, 1962 3
I

E. Examples

1.

2.

SLJ
+
+
+

.MPO
tAt

AREAl, 0
AREA1+59, 0

This calling sequence will cause the 60 menlory locations beginning
at AREAl to be printed out in alphanumeric format, 16 locations per
line. The contents of the registers at the tinle of the call will be
printed out preceding the memory print out. No Index Register modi­
fication will occur.

SLJ ·MPO
+ rp

t * START, °
+ END,O

This calling sequence will cause the memory locations beginning at
STAHT and ending with END to be printed out in instruction fornlat,
8 locatjons per line. The contents of the registers will not be printed.
No index register modification will occur.

SLJ
+
+
+

'MPO
'D'
DATA, 9
DATA+7, 9

This calling sequence will cause the nlemory locations beginning at
mTA and ending with DATA+7 to be printed out in decimal format, 8
locations per line. The contents of the registers at the tiule of the call
will be printed out preceding the memory print out. The contents of
Index Register 9 at the time of the call will be used to establish the
starting and ending addresses.

NOTE: In utilizing the Inemory dump routine with the ALMOST assenlbly systenl,
a standard EQU card should be placed ahead of the ALMOST symbolic deck
which is to be assembled. In this manner, the label for the durnp routine
will be equated with the proper absolute address. The following label is
then restricted from other use in the source progranl:

MPO

REVISION: SECTION:

4-0001
UNIVAC m SUPPORT

DATE: PAGE:

July 20, 1962 NOTES

REVISION: I SECTION:

UNIVAC m SUPPORT
DATE: + 4-0002

------ .----~------

, PAGE:

November 16, 1962
I

i
I

ON-LINE EDITED MEMORY DUMP

A. PURPOSE

To provide an on-line memory dump on the printer in edited data
or program format for use in debugging.

B. METHOD

The edited memory dump uses an interruptable printer control
routine. The arithmetic registers, index registers, and the Low,
Equal and Greater indicators are stored and printed on entry to
the dump routine and are restored prior to exit. The routine uses
the arithmetic registers and index registers 8 and 9. The routine
is called as a procedure in the user's program, and is therefore,
covered by the use registers assigned by the user. Care must be
taken to ensure that the covering index register of the routine is
neither 8 nor 9. The edited :memory dump can produce either of
two formats:

1. Data - which prints each word in octal, alphanumeric, and
decimal representations.

2. Program - which prints each word in octal, instruction word,
indirect address control word and field select control word
representations. The latter three representations are not
printed if the word is not legitimate for the individual
representation. For example, a word would not be printed
in instruction word representation if bits 15 through 20 of
that word contain a bit configuration equivalent to an invalid
operation code. Similarly, a word is not printed in indirect
address control word representation if a one bit exists in
positions 16 through 20. A word is not printed in field select
control word representation if that word has a one bit in
position 25, or the contents of bits 16 through 20 and 11
through 15 are legitimate representations of a left boundary
and right boundary.

C. CALLING SEQUENCE

1. The memory dump procedure is included in the user's progranl
by making a call to the procedure DUMP. This call must include

1

REVISION: SECTION:

4-0002
UNIVAC m SUPPORT

DATE: PAGE:

November 16, 1962

one list. The value of this list expres sion is the label of
the entry line which must precede the call to the procedure.
Following the procedure call should be an indirectly addressed
jump to the entry line. An example of the calling sequence is:

PRNTMEMY + $

DUMP PRNTMEMY

J *PRNTMEMY

The label PRNTMEMY in the above examples, is assigned by the user and
thus may have any value consistent with UTMOST label conventions.

2. In order to cause a memory dump the user codes the following
sequence:

SLJ PRNTMEMY

±
+

•••

FROM

TO

return from memory dump

In the above example, the operand of the SLJ instruction is
a label identical to label of the entry line preceding the
procedure call. The label FROM is the label of the starting
address of the area to be dumped. If the sign of this entry
is + , the area dumped is printed in "program" format. If
the sign of this entry is - , the area dumped is in "data"
format. The label TO is the ending address of the area to
be dumped.

D. MEMORY SPACE

The dump routine requires 581 words in memory, exclusive of the
printer control routine.

E. EXAMPLE OF OUTPUT

An example of the output from a dump in data format followed by
output in instruction format is shown on page 4. The first line of
the dump printout contains the Control Counter contents in octal
at the point at which the dump was entered, the contents of the
arithmetic registers in octal and an indication of which (if any) of

2

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

November 16, 1962

the low (L), equal (E), or greater (G), indicators was set. The
second line of the printout contains the contents of the index
registers in octal. The following two lines of the dump printout
are in the data format. On the left is the octal address of the
first word on the line (four words are printed on each line).
Each word is printed in octal, alphanumeric and decimal
representation. The next two lines contain the control counter,
arithmetic register, index register, and indicator contents on
entry to the program format dump. The following lines are in
program format. On the left of each line is the addres s in octal
of the first word printed on the line (two words are printed on
each line). Each word is represented in octal" To the right of
the octal representation is printed the instruction word represen­
tation (if valid) • The instruction word representation contains
the mnelTIonic operation code, AR expression, octal operand
address (preceded by * if position 25 of the word is a one bit),
and the index register expres sion. To the right of the instruction
word representation is the indirect address control word represen­
tation (if valid) containing the operand addres s (preceded by * if
position 25 of the word is a one bit) and the index register" Follow­
ing the indirect address control word representation is the field
select control word representation (if valid), containing the left
boundary, right boundary, operand addres s in octal and index
register. All expressions in each representation (with the e xcep­
tion of operand addresses), appear in the same format as norn1all.Y
coded UTMOST expressions. The operation code J* indicates a
conditional jump operation, such as JP, JL, or JS. Exal11ination
of the AR expression indicates which comnland is represented.

4-0002

'> .)

cr ?3U41 AR P 7~54~?IO 4 44~Sh~77? 22~~44S~ 1 11??3~44 F

JQ 0001n ? ~on?o ~ non~o 4 00040 ~ oaa~o h onOhO 7 00070 A 00017 q 00027 a 00100 1 nOll0 2 Oal?O 3 ?74;>n 4'5420 5 ?3420

:c F.. 1?34<.,F.. -EF'GH 3)~~"'A

34444~4F.. IJI(L 4-1A33 11;>'3344 .H.J 16A6-' 44556617 J T 6-"A(

In 0001n 2 Oon?o 3 Oon~o 4 OUn40 ~ ooo~n b OOOhO 7 00070 A 00017 9 000?7 a 00100 1 00110 2 00120 ~ "4,0 4'~420 5 ,3420

23420 07h~ I~ 74S047A7 I A , 07h7 IS

14510770 LA 4 0770 I" ? 0770 t" 14S20771 LA A 0771 1" , 5 0771 15

2~4?4 1f.4 Il,77, 1 'If U77? '" 17 14 n77? t" 76444773 1)(? 0773 I~ 17 15 077:1 1~

2~4?6 '",44h 774 1 X 3 0774 ,., 764S017~ l x 4 017~ IS 17 17 0775 Itl

23430 17 lA 017F-. IS 764~4777 LX h 0777 IS 17 19 0777 1~

2~432 164~700n LX 7 10n~ IS 17 20 1000 t'1 1641',1001 1 \I R 1001 1~ 17 21 lOot 15

17 2;> 100? I") 17 23 1003 15

2~4:'16 164 A 7 0 04 1 \l 1 1 1 0 ()l1 1 ~ 17 24 lon4 ts 16471005 I X I;> 10115 IS

2~440 Ur3? '" - 0 a 0'4401 t\IOP 10 .. 04 (J 1 () *?4401 0

000'440~ ~I()P 1 () 040e; 244n~ 0 74.~4203? 51..1 0(132 ,~

2~444 000'34," ~IOP 9 lu,o ?34?0 0 00U,4530 NOP 10 U5~0 0

on3' 1~ 00000000 Nnp n 0000 0 00000 (J

234~0 OO~422~0 SI.J 0250 0

OOO'.~441~ ~IOP 4 14Ull 0 23444 0 764'22~4 S'Ie' 9 0254 IS 17 6 02'14 15

17 4 0,S6 It1

17 :3 02.,7 1'1 12 0'",3 15

234"'0 74S0300F.. 1 A 1006 15

74300044 J n U044 1~ 74.,02174 LA 0174 IS

?1 4 OOso 1'1 21 2 00S2 15

143000S4 .1 () 00.,4 15

2:1470 14f,430fl7 ()P 10n7 I" ~ 14 1007 1'1 74j0004F.. .1 0 004h I">

~ 14 1010 15 7430D04h .J f) 0046 IS

164hl011 1'Ie' A lOll ts 17 21 1011 It1

1]

>
CI
1'1

c:
Z -< » n

a
en
c:
."
."
o
=

;u
1'1
<
III

o
Z

III
1'1
n
::!
o

~ Z
I
o
o
o
t-.:l

REVISION: SECTION:

UNIVAC m SUPPORT
DATE:

November 16, 1962

TEST DATA ASSEMBLY PROCEDURES

PURPOSE ----"--
To provide a method of creating data files of any format using
UTMOST assembly.

B. METHOD

Data Files are written on tape using the Intermediate Tape
Handling Routine. Three procedures - FILE, B L¢C K and

PAGE:

FINIS generate calling sequences to the output routines. Data
words coded using UTMOST Data Word Generation (see UTMOST,
Section II, page 18) following each call to the BL¢CK procedure
are written as a block on the output file.

c. USAGE

1. To specify a file of data the procedure call

FILE s, r

is used. s indicates the Uniservo on which the file is to
be written. r indicates rewind if 1, or no rewind if 0 ..

2. To specify the contents of a block of the output file the
procedure call BL0CK is used. Following this call are
coded the words desired in the block:. The user must code
the entire content of all blocks, including data descriptors,
label flags, and sentinels if these are desired.

3. The end of a block is indicated in the coding by the next
procedure call BL¢CK or FILE or FINIS.

4. To end the assembly of data files the procedure call FINIS
is used. More than one file of data may be assembled in
a single assembly.

4-0003

1

REVISION: SECTION:

4-0003
UNIVAC m SUPPORT

DATE:

November 16, 1962

5. The amount of data assembled in any single program is
restricted to that which can be represented within a
program consisting of 12000 words of object code.

6. An END directive should follow the FINIS procedure
call. The label in the operand field of the END directive
should be identical to the label in the label field of the
first call to the FILE procedure.

7. The procedures FILE, BL¢CK and FINIS are included
in the source code for as sembly by selecting FILEG EN
on the ACCO run. The intermediate tape handling
routines are included on the DECO run.

D. EXAMPLE

PAGE:

The sample coding on page 3 will generate a single file on Uniservo 4.
Rewind is specified. The blocks are in order - a label block, a data
block consisting of two 5-word items, and two end of file sentinel
blocks.

2

REVISION: SECTION:

UNIVAC m SUPPORT r----------------+----__ " _________ _
4-0003

DATE: PAGE:

November 16, 1962 3

LABEL fl OPERATION fl OPERAND

IIII~

I

REVISION: I SECTION:

I 5-0001 ---I PAG~'--~----UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

UNIVAC III FLOATING POINT PACKAGE

FPAC

A. PURPOSE

To provide the user with a floating point package of arithmetic, nor rna liz ing, and
converting routines.

B. METHOD

The floating point package must be used as a unit, and will be included in the sys­
tem as a packaged subroutine. A reference in UTMOST coding to one of the in­
cluded subroutines will cause the entire FPAC package to be included with the
user's object code at DECO time.

The following routines are included in FPAC and are available to the programmer:

ARITHMETIC ROUTINES

FAD
FMP
FDV
DMP
DDV

Floating Add (or subtract)
Floating Multiply
Floating Divide
Double Precision Multiply
Double Precision Divide

NORMALIZATION ROUTINES

NRM Normalize

CONVERSION ROUTINES

FTI
ITF
FTD
DTF

Floating to Integer
Integer to Floating
Floating to Double Precision
Double Precis ion to Floating

1

REVISION: SECTION:

5-0001

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 January 15 ~ 1963

C. DE FINITIONS

1. Floating Point Number

A UNIVAC III floating point number consists of a two digit exponent
(excess fifty) followed by a ten digit mantissa. A twelve digit float­
ing point number occupies two words of UNIVAC III memory. The
signs of both words must be the same. The decimal point of the man­
tissa lies to the left of the high order digit of the mantissa (i. e. the
magnitude of the mantissa is less than 1. 0). Several examples of
floating point numbers are shown below.

+EEMMMM +MMMMMM represents a two digit exponent EE
(excess fifty) and a ten digit mantissa
MMMMMMMMMM

+ 1. 0 is represented as +511000
-0. 5 is represented as -505000
+0. 0 is represented as +000000

or +500000

2. N ormaliz ed

+000000
-000000
+000000
+000000

A floating point number is said to be normalized if the high order (left­
most) digit of the mantissa is greater than zero. A double precision
number is said to be normalized if its high order digit is greater than
zero.

3. Scale Factor

A scale factor is a two digit exponent (not excess fifty) that is associa­
ted with a double precision number. A scale factor may take on posi­
tive or negative values. A scale factor occupies one word of the
UNIVAC III memory. Floating point numbers may be represented as
double precision numbers with scale factors as shown below.

-511000 -000000
floating point

+485000 +000000
floating point

-100000 -000000
double prec is ion

+500000 +000000
double prec IS ion

+000001
scale factor

-000002
scale factor

2

REVISION: SECTION:

UNIVAC m SUPPORT ~---~~--.- ~---.---+----"----~--

DATE:

U-3519
January 15, 1963

D. FLOATING POINT PACKAGE ROUTINES, CALLING SEQUENCE,

ENTRY CONDITIONS AND EXIT CONDITIONS

1. ylo::tting Add (or Subtract)

a. Purpose:
To compute the sum of two floating point numbers.

b. Calling~equence:

SLJ FAD

c. Entry Conditions:

PAGE:

AR8 - most significant part of the first floating point number
AR4 .- least significant part of the first floating point number
AR2 - most significant part of the second floating point nUlnber
AR1 .- least significant part of the second floating point number

d. Exit Conditions:

AR8 - most significant part of the floating point sum
AR4 - least significant part of the floating point sum
AR2 - xxxxxx
AR1 - Positive
HI, LO, and EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. §2ecial Conditions:

f.

g.

If floating point overflow occurs, + 999999 is placed in A H8 and
AR4. AR1 is set negative. If underflow occurs, +000000 is
placed in ARB and AR4.

ExamEle: The addition of two floating point numbers.

CONTENTS ARB AR4 AR2 AR1
BEFORE +551111 +111111 +552222 +222222
AFTER +553333 +333333 xxxxxx positive

Timing: 270 microseconds (average)

5-0001 - ~- ~- -

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 January 15, 1963

2. Floating Multiply

a. Purpose:
To compute the product of two floating point numbers.

b. Calling Sequence:

SLJ FMP

c. Entry Conditions:

AR8 - most significant part of the first floating point number
AR4 - least significant part of the first floating point number
AR2 - most significant part of the second floating point number
ARI - most significant part of the second floating point number

d. Exit Conditions:

AR8 - most significant part of the floating point product
AR4 - least significant part of the floating point product
AR2 - xxxxxx
ARI - Positive
HI, LO, and EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. SpeCial Conditions:

f.

g.

If floating point overflow occurs, ~ 999999 is placed in AR8
and AR4. AR1 is set negative. If underflow occurs, +000000
is placed in AR8 and AR4.

Example: Computing the product of two floating point numbers.

CONTENTS AR8
BEFORE +521500
AFTER -546000

AR4
+000000
-000000

Timing: 627 m~croseconds (average)

AR2
-53400
xxxxxx

AR1
-000000
positive

5-0001

4 -

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

3. Floating Divide

a. Purpose:
To compute the quotient of two floating point numbers.

b. Calling Sequence:

SLJ FDV

c. Entry Conditions:

AR8 - most significant part of the dividend
AR4 - least significant part of the dividend
AR2 - most significant part of the divisor
ARI - least significant part of the divisor

d. Exit Conditions:

AR8 - most significant part of the quotient
AR4 - least significant part of the quotient
AR2 - xxxxxx
ARI - Positive
HI, LO, and EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If the divisor equals zero or floating point overflow occurs,
-=!:: 999999 is placed in AR8 and AR4. ARI is set negative. If
underflow occurs, +000000 is placed in AR8 and AR4.

I SECTION:

I

I 5-0001

t PAGE~-----
5

f. Example: Computing the quotient of two floating point nurnbers.

g.

CONTENTS
BEFORE
AFTER

AR8
-521500
+513000

AR4
-000000
+000000

Timing: 840 microseconds (ave rage)

AR2
-515000
xxxxxx

AR1
-000000
positive

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 January 15, 1963

4. Double Precision Multiply

a. Purpose:
To compute the product of two double precision numbers.

b. Calling Sequence:

SLJ DMP

c. Entry Conditions:

AR8 - most significant part of the first double precision number
AR4 - least significant part of the first double precision number
AR2 - most significant part of the second double precision number
ARI - least significant part of the second double precision number

d. Exit Conditions:

AR8 - most significant part of the double precision product
AR4 - least significant part of the double precis ion product
AR2 - xxxxxx
ARI - Positive
HI, LO, and EQ INDICA TORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

None

f. Example: Computing the product of two double precision numbers.

CONTENTS AR8 AR4 AR2 ARI
BEFORE +333333 +333333 +300000 +000000
AFTER +999999 +999999 xxxxxx positive

g. Timing: 392 microseconds (average)

5-0001

6

REVISION:

_______ I SE_CTIO~ __ fi_OOOl

-j-;AGE' UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

5. Double Precision Divide

a. Purpose:
To compute the quotient of two double precision numbers.

b. Calling Sequence:

SLJ DDV

NOTE: DDV is a special purpose divide routine that is used by the
floating point mathematical function routines (Sin, etc).
DDV should be used only if the divisor is normalized. The
quotient produced will have an error not greater than three
in the last digit. In most cases, the quotient will have no
error.

c. Entry Condit ions:

AR8 - most significant part of the double precision dividend
AR4 - least significant part of the double precision dividend
AR2 - most significant part of the double precision divi sor
AR1 - least significant part of the double precis ion divisor

d. Exit Conditions:

AR8 - most significant part of the double precision quotient
AR4 - least significant part of the double precision quotient
AR2 - xxxxxx
AR1 - Positive
HI, LO, and EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

If the magnitude of the dividend is greater than or equal to the
magnitude of the divisor, it is cons idered an overflow, and
.2:. 999999 is stored in AR8 and AR4. AR1 is set negative. If
the most significant part of the divisor is zero, it is considered
an overflow.

Example: Computing the quotient of two double precision numbers.

CONTENTS
BEFORE
AFTER

AR8
+100000
+142857

AR4
+000000
+142857

Timing: 710 microseconds (average)

AR2
+700000
XXXXx.x

AR1
+000000
positive

7

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

6. Normalize

a. Purpose:
To normalize a floating point number.

b. Calling Sequence:

SLJ NRM

c. Entry Conditions:

AR8 - most significant part of the unnormaliz ed floating
point number

AR4 - least significant part of the unnormaliz ed floating
point number

AR2 - xxxxxx
ARI - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the normalized floating
point number

AR4 - least significant part of the normalized floating
point number

AR2 - xxxxxx
ARI - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

If underflow occurs, the number + 000000 is placed in AR8
and AR4.

Example: Normalizing a floating point number.

CONTENTS AR8
BEFORE +510034
AFTER +493498

AR4
+987654
+765400

Timing: 260 microseconds (average)

AR2
xxxxxx
x:xxxxx

ARI
xxxxxx

positive

SECTION:

5-0001

PAGE:

8

UNIVAC m SUPPORT

I REVISI" N,

r OAT.,

U-3519
January 15, 1963

7. Floating to Integer

a. Purpose:
To convert a floating point number into a twelve digit integer.

b. Calling Sequence:

SLJ FTI

c. Entry Condit ions:

AR8 - most significant part of the floating point number
AR4 - least significant part of the floating point number
AR2 - xxxxxx
ARI - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the integer
AR4 - least significant part of the integer
AR2 - xxxxxx
ARI - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If the integer is greater than 12 digits, it is considered an
overflow, and ~ 999999 is stored in AR8 and AR4. ARI is
set negative. If underflow occurs, the number + 000000
is placed in AR8 and AR4.

SECTION:

PAGE:

f. Example: Converting a floating point number into a 12 digit integer.

g.

CONTENTS
BEFORE
AFTER

AR8
-551234
-000000

AR4
-567890
-012345

Timing: 152 microseconds (average)

AR2
xxxxxx
xxxxxx

ARI
xxxxxx

positive

5-0001

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

8. Integer to Floating

a. Purpose:
To convert a twelve digit integer into a floating point number.

b. Calling Sequence:

SLJ ITF

c. Entry Conditions:

AR8 - most significant part of the integer
AR4 - least significant part of the integer
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the normalized floating
point number

AR4 - least significant part of the normalized floating
point number

AR2 - xxx.xxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If underflow occurs, the number + 000000 is placed in AR8.

SECTION:

PAGE:

f. Example: Converting a 12 digit integer into a floating point number.

g.

CONTENTS
BEFORE
AFTER

AR8
+123123
+621231

AR4
+121212
+231212

Timing: 242 microseconds (average)

AR2
xxxxxx
xxxx:xx

AR1
xxxxxx
positive

5-0001

10

I

SECTION: I REVISION:

______ -L ________ 5_~~~~_= ______ _ UNIVAC m SUPPORT
DATE: I PAGE:

TJ-3519
January 15, 1963! 11

9. Floating to Double Precision

a. Purpose:
To convert a floating point number into a normalized double
precision number with a two digit scale factor. The scale
factor is not excess fifty and may take on positive or nega­
tive values.

b. Calling Sequence:

SLJ FTD

c. Entry Conditions:

AR8 - most significant part of the floating point number
AR4 - least Significant pirt of the floating point number
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the normalized double
precision number

AR4 - least Significant part of the normalized double
precision number

AR2 - scale factor in the two low order digits
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

None

Example: Converting a floating point number into normalized
double preCision number with a 2 digit scale factor.

CONTENTS AR8
BE FORE +489876
AFTER +987654

AR4
+543210
+321000

AR2
xxxxxx

-000002

Timing: 108 microseconds (average)

AR1
xxxx:xx
positive

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 January 15, 1963

10. Double Precision to Floating

a. Purpose:
To convert an unnormalized double precision number with a two
digit scale factor into a floating point number. The scale factor
is not excess-fifty and may take on positive or negative values.

b. Calling Sequence:

SLJ DTF

c. Entry Conditions:

AR8 - most significant part of the unnormalized double precision
number

AR4 - least significant part of the unnormalized double precision
number

AR2 - scale factor in the two low order digits
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the floating point number
AR4 - least significant part of the floating point number
AR2 - xxxxxx
ARI - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point overflow occurs, ~ 999999 is placed in AR8
and AR4. ARI is set negative. If underflow occurs,
+ 000000 is placed in AR8 and AR4.

f. Exam2le: Converting double prectsion to floating point.

CONTENTS AR8 AR4 AR2 AR1
BEFORE +000012 +345678 +000022 x.xxxxx
AFTER +681234 +567800 x.xxxxx positive

g. Timing: 238 microseconds (average)

5-0001

12

E.

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

STORAGE ALLOCATION AND TIMING CHART

FOR

UNIVAC III FLOATING POINT PACKAGE

Average Time

SECTION:

PAGE:

Routine Length In Microseconds

FAD 59 270
FMP 32 627*
FDV 33 840**
DMP 13 392
DDV 23 710**
NRM 7 260***
FTI 26 152
ITF 15 242***
FTD 10 108
DTF 14 238***
DDV2 38

1
NRM2 47

Internal
OFLO 4
UFLO 3

Subroutines

CONSTANTS AND
ERASABLE STORAGE 74

FPAC 398

* Includes time for DMP
** Includes time for DDV2
*** Includes time for NRM2

5-0001

13

REVISION: SECTION:

5-0002

UNIVAC m SUPPORT
DATE: PAGE:

U-3519 January 15, 1963

UNIVAC III MATHEMATICAL PACKAGE

MATHPAC

A. PURPOSE
To provide the user with a set of routines for computing trigono­
metric, hyperbolic, exponential, and logarithmic functions, and
for evaluating roots and powers of numbers.

B. METHOD

1

The mathematical package for the UNrv AC III consists of a set of
routines for evaluating trigonometric, hyperbolic, exponential and
logarithmic functions, and for finding roots and power s of numbers.
This set of routines is called MATHPAC. In general, the routines
in MATHPAC are independent of each other. A reference to one of
the MATHPAC routines will cause the object code for that routine
to be included with the user's object code at DECO time.

Some of the MA THPAC routines are not independent and require the
presence of other MATHPAC routines. All the MATHPAC routines
require the UNrv AC III Floating Point Package (FP AC). If one or
more of the MA THP AC routines is used, FPAC will automatically
be included with the user's object code at DECO time.

ROUTINES IN MATHPAC:

TRIGONOMETRIC FUNCTIONS

SIN Sine (x)
COS - Cosine (x)
TAN - Tangent (x)
TNGT- Tangent (x)
ASIN - Arcsine (x)
ACOS- Arcosine (x)
ATAN- Arctangent (x)

REVISION: SECTION:

UNIVAC m SUPPORT 5-0002

DATE: PAGE:

U - 3 5 1 9 January 15, 1963 2

HYPERBOLIC FUNCTIONS

SINH Hyperbolic-Sine (x)
COSH - Hyperbolic-Cosine (x)
TANH - Hyperbolic-Tangent (x)

ROOT FUNCTIONS

SQRT -
CBRT -

Square Root (x)
Cube Root (x)

EXPONENTIAL FUNCTIONS

EXP
TENX -

LOGARTHMIC FUNCTIONS

LOGN - Log (x) (Base e)
LOGT - Log (x) (Base 10)

POWER FUNCTIONS

XTOP - ~

The following routines are not independent:

SUBROUTINE OTHER ROUTINES USED

TNGT SIN, SQRT
ASIS-ACOS ATAN, SQRT
SINH EXP
COSH EXP
TANH EXP
XTOP TENX, LOGT

REVISIO N:

UNIVAC m SUPPORT 1---------- -

DATE:

U-3519
January 15, 1963

C. DEFINITIONS

1. Floating Point Number

A UNIVAC III floating point number consists of a two digit ex­
ponent (excess fifty) followed by a ten digit mantissa. A twelve
digit floating point number occupies two words of UNIVAC III
memory. The signs of both words must be the same. The
decimal point of the mantissa lies to the left of the high order
digit of the mantissa (i. e. the magnitude of the mantissa is less
than 1. 0). Several examples of floating point numbers are
shown below:

+EEMMMM +MMMMMM represents a two digit ex­
ponent E E (exce s s fifty) and a ten
digit mantissa MMMMMMMMl\tlM

+ 1. 0 is represented as
-0. 5 is represented as
+0. 0 is represented as

or

2. Normalized

+511000
-505000
+000000
+500000

+000000
-000000
+000000
+000000

A floating point number is said to be normalized if the high or­
der (left-most) digit of the mantissa is greater than zero. All
input to MATHPAC must be normalized floating point numbers.
Unnormalized numbers will be treated as zeros.

SECTION:

5-0002

PAGE:

3

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

D. MATHEMATICAL ROUTINES, CALLING SEQUENCES,
ENTRY CONDITIONS AND EXIT CONDITIONS

1. Floating Sine or Cosine Routine

a. Purpose:

SECTION:

5-0002

PAGE:

4

To compute the value of Sine (x) or Cosine (x), where x is a
floating point number. x must be expressed in radians.

b. Calling Sequence:

SLJ SIN or
SLJ COS

c. Entry Conditions:

ARS - most significant part of x
AR4 - least Significant part of x
AR2 - xxxxxx
ARI - xxxxxx

d. Exit Conditions:

ARS - most Significant part of the Sine or Cosine
AR4 - least significant part of the Sine or Cosine
AR2 - xxxxxx
ARI - Pos itive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If the magnitude of x is greater than 10
10

, +000000 is
placed in ARS and AR4, and ARI is set negative. If
floating point underflow occurs, +000000 is placed in
ARS and AR4.

f. Example: Computing the value of Sine (. IS)

CONTENTS ARS
BEFORE + 501S00
AFTER + 501790

g. Length: 174

AR4
+ 000000
+ 295734

AR2
xxxxxx
xxxxxx

ARI
xx:xxxx
positive

h. Time: SINE requires 3540 microseconds (average)
COSINE requires 35S0 microseconds (average)

UNIVAC m SUPPORT
I REVISICN' __ -J SEC:C~~_5~O~()2

U-3519 I

DATE:

. January 15, 1963

2. Float ing Tangent Rout ine

a. Purpose:
To compute the value of Tangent (x), where x is a floating
point number. x must be expressed in radians.

b. Calling Sequence:

SLJ TAN

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Cond it ions:

AR8 - most significant part of the Tangent
AR4 - least significant part of the Tangent
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. SpeCial Conditions:

I
PAGE:

I

If x is greater than 10
10

, +000000 is placed in AR8 and AR4,
and AR.1 is set negative. If floating point overflow occurs,

f.

g.

h.

~ 999999 is placed in AR8 and AR4, and AR1 is set negative.
If underflow occurs, +000000 is placed in AR8 and AR4.

Example: Computing the value oITangent (.26)

CONTENTS AR8 AR4 AR2 AR1
BEFORE + 502600 + 000000 xxxxxx xxxxxx
AFTER + 502660 + 215417 xxxxxx positive

Length: 169

Time: 3780 microseconds (average) --

5

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

3. Alternate Floating Tangent Routine

a. Purpose:
To compute the value of Tangent (x), where x is a floating
point number. x must be expressed in radians.

b. Call ing Sequence:

SLJ TNGT

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the Tangent
AR4 - least significant part of the Tangent
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If x is greater than 10
10

, +000000 is placed in AR8 and AR4,
and AR1 is set negative. If floating point overflow occurs,

f.

g.

h.

~ 999999 is placed in AR8 and AR4, and AR1 is set negative.
If underflow occurs, +000000 is placed in AR8 and AR4.

Exam:ele: Computing the value of Tangent (.26)

CONTENTS AR8 AR4 AR2 AR1
BEFORE + 502600 + 000000 xxxxxx xxxxxx
AFTER + 502660 + 215417 xxxxxx positive

Length: 14 + SIN + SQRT

Time: 7500 microseconds (average)

SECTION:

5-0002

PAGE:

6
-~-

REVISION: SECTION:

UNIVAC m SUPPORT ~---------------

DATE: PAGE:

U-3519
January 15, 1963

4. Floating Arcsine-Arcosine Routine

a. Purpose:
To compute the value of Arcsine (x) or Arcosine (x), where x
is a floating point number. The Arcsine (x) will lie in the in­
terval (-PI/2, + PI/2). The Arcosine (x) will lie in the interval
(0, PI).

b. Calling Sequence:

SLJ ASIN or
SLJ ACOS

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
ARI - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the Arcsine or Arcosine
AR4 - least significant part of the Arcsine or Arcosine
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If the magnitude of x is greater than 1. 0, +000000 is
placed in AR8 and AR4. ARI is set negative. If float­
ing point underflow occurs, +000000 is placed in AR8
and AR4.

f. Example: Computing the value of Arcosine (.1986693308)

g.

h.

CONTENTS AR8
BE FORE + 501986
AFTER + 502000

AR4
+ 693308
+ 000000

Length: 36 + ATAN + SQRT

AR2
xxxxxx
xxxxx:x

ARI
xxxxxx
positive

Time: ARCSINE requires 8000 microseconds (average)
ARCCOSINE requires 8160 microseconds (average)

5-0002

7

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

5. Floating Arctangent Routine

a. Purpose:
To compute the value of Arctangent (x), where x is a floating
point number. The Arctangent (x) w ill lie in the interval
(-PI/2, + PI/2).

b. Calling Sequence:

SLJ ATAN

c. Entry Condit ions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - XX}l"XXX

d. Exit Conditions:

AR8 - most significant part of the Arctangent
AR4 - least significant part of the Arctangent
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point underflow occurs, +000000 is placed in
AR8 and AR4.

f. Example: Computing the value of Arctangent (. 353736878)

CONTENTS AR8 AR4 AR2 AR1
BEFORE + 503537 + 368780 xxxxxx xxxxxx
AFTER + 503400 + 000000 xxxxxx xxxxxx

g. Length: 141

h. Time: 3990 microseconds (average)

SECTION:

5-0002

PAGE:

8

-

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

6. Floating Hyperbolic Sine Routine

a. Purpose:
To compute the value of Hyperbolic-£ ine (x), where x is a
floating point number.

b. Calling Sequence:

SLJ SINH

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the Hyperbolic-Sine
AR4 - least significant part of the Hyperbolic-Sine
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If floating point overflow occurs, + 999999 is placed in AR8
and AR4, and AR1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

f. Exam2le: Computing the value of Hyperbolic-.Si.ne (.4)

CONTENTS AR8 AR4 AR2 AR1
BEFORE + 504000 + 000000 xxxxxx xxxxxx
AFTER + 504107 + 523255 xx:xxxx positive

g. Length: 41 + EXP

h. Time: 6510 microseconds (average)

SECTION:

5- 0002

PAGE:

9

I REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

7. Floating Hyperbolic Cosine Routine

a. Purpose:
To compute the value of Hyperbolic-Cosine (x), where x
is a floating point number.

b. Calling Sequence:

SLJ COSH

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - x:xxxxx
AR1 - x:xxxxx

d. Exit Conditions:

AR8 - most significant part of the Hyperbolic Cosine
AR4 - least significant part of the Hyperbolic Cosine
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

h.

If floating point overflow occurs, ~ 999999 is placed in AR8
and AR4, and AR1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

Example: Computing the value ofHyperbolic-Cosine (.4)

CONTENTS AR8 AR4 AR2 AR1
BEFORE + 504000 + 000000 xxxxxx xxxxxx
AFTER + 511081 + 072371 x:xxxxx positive

Length: 15 + EXP

Time: 6470 microseconds (average)

SECTION:

5-0002

PAGE:

10

REVISION: SECTION:

5-0002

UNIVAC m SUPPORT I--------.----+------------~-----.-.. ----..

DATE:

U - 3 5 1 9 January 15, 1963

8. Floating Hyperbolic Tangent Routine

a. Purpose:
To compute the value of Hyperbolic Thngent (x), where x is
a floating point number.

b. Calling Sequence:

SLJ TANH

c. Entry Conditions:

AR8 .- most significant part of x
AR4 .- least significant part of x
AR2 .- xxxxx:x:

ARl- xxxxxx

d. Exit Conditions:

AR8 '- most significant part of the Hyperbolic Thngent
AR4- least significant part of the Hyperbolic Thngent
AR2 .- xxxxxx
ARI .- Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

h.

If floating point underflow occurs, +000000 is placed in
AR8 and AR4.

Example: Computing the value of Hyperbolic Thngent (.4)

CONTENTS AR8 AR4 AR2 ARI
BEFORE + 504000 + 000000 xxxxxx xxxxxx
AFTER + 503799 + 489621 xxxxxx positive

Length: 53 + EXP

Time: 6260 microseconds (average)

PAGE:

11

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519 January 15, 1963

9. Floating Square Root Routine

a. Purpose:
To compute the value of the Square Root of x, where x is
a floating point number.

h. Calling Sequence:

SLJ SQRT

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:

AR8 - most significant part of the Square Root
AR4 - least significant part of the Square Root
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

If x is negative, the square root of the absolute value of
x is computed. AR1 is set to negative.

f. Example: Computing the Square Root of . 44

CONTENTS AR8 AR4 AR2 ARI
BEFORE + 504400 + 000000 xxxxxx xxx:xxx
AFTER + 506633 + 249581 xxx.xxx positive

g. Length: 95

h. Time: 2160 microseconds (average)

SECTION:

5-0002

PAGE:

12 -

UNIVAC m SUPPORT
I REVISIC_N_: __ _

.... I 5 EC: :~~02 ~~_ ... _ ~_~ ---1 PAGE, !
i DATE:

U-3519 January 15, 1963

10. Float ing Cube Root Routine

a. Purpose:
To compute the value of the Cube Root of x, where x is
a floating point number.

b. ~alling Sequence:

SLJ CBRT

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x

AR2 - xxxxxx
AR 1 - xxxx:xx

d. Exit Conditions:

AR8 - most significant part of the Cube Root
AR4 - least significant part of the Cube Root
AR2 - xxxxxx
ARI - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICA TORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

None

f. Example: Computing the value of the Cube Root of .44

CONTENTS AR8
BE FORE +504400
AFTER +507605

g. Length: 96

AR4
+000000
+904922

h. Time: 2960 mkroseconds (average)

AR2
xxxxxx
xxxxxx

ARI
xxxx:xx

positive

I 13

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

11. Floating eX or lOx Routine

a. Purpose:
To compute the value of eX or lOx, where X is a floating
point number.

b. Calling Sequence:

SLJ
SLJ

EXP
TENX

X
(for e.2
(for 10)

or

c. Entry Conditions:

AR8 - most significant part of X
AR4 - least significant part of X
AR2 - xxxxxx
AR1 - xxxxxx

d. Exit Conditions:
X

AR8 - most significant part of e
X

AR4 - least significant part of e
AR2 - xxxxxx
AR1 - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

f.

g.

h.

If floating point overflow occurs, +999999 is placed in AR8
and AR4, and AR1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

Example: Computing the value of e· 16

CONTENTS AR8
BE FORE + 501600
AFTER + 511173

Length: 122

AR4
+ 000000
+ 510871

AR2
xxxxxx
xxxxxx

ARI
xxxxxx
positive

Time:
x

e requires 4420 microseconds (average)

lOx requires 3780 microseconds (average)

SECTION:

5-0002

PAGE:

14

REVIS; o~, s r::1 fJ r"i:

UNIVAC m SUPPORT
DAT

U-:3519
- ~----- ,_ ... _---------_._,----_ _- ------.-----,_._-- -_._-_.- ... _, -_ ... "--'-'--- ,-. -- - -- -- -----.-. --"-----" .. " "

a. _pu!~PO s_~ :

b.

c.

d.

f.

g.

h.

To COlnpute the value of log {x) (base (-~! orL, Ii.!; ('..::) n
pi liDt nUlul,cr.

Call

st.]
SLT

I lV; 1\~ tor l.~)g 0)ase
L()GT' fOl [,0;:· {ha~;;e :10)

Entrv Conditions: __ ... _..1 ..•. _

,\H8 - rnost significant part of x
AHA -- least s ign..ifi('ant pari of x
.. \ H2 -.. xxxxxx
AH .- XXXx,xx

Exit Cond it ions'

or

t\ H:'1 ... most ~;ignificant part of thv log
j\ TU - least s igllificant part of the log
A H.2 - xxxxx,'<

AH 1 - Positive
Ht, L(J, EQ INDICATORS - rnay be altered
SENSE INDICATORS - unaltered
INDEX REGISTEHS - unaltered

[f x is negative, the Lq.?; of the absolute value of x is comput ed_,
and AR 1 is set negative. If floating point overflow occurs, -~19D9g9
is placed in i\RH anel AH4, and AH1 is set negative. If undernov.

oceurs~ j-OOOOOO is placed in ARB and AR,+,

Computing the value of Log;
1. 584073985

e

CONTENTS AIl8 AR4 AH2 AH]

BEFORE
AFTER

Tilne:

t 511584 + 073985 xxx xxx x.x.,:.}:...-x x

+ 504600 + 000000 xxxxxx pos itive

111

Log (base e) requires 4360 microseconds (c1\'I_'r;t~~e)

Log (hase 10) requires 3700 microseconds (average)

\I{I(I,..:

REVISION:

UNIVAC m SUPPORT
DATE:

U-3519
January 15, 1963

13. Floating ~ Routine

a. Purpose:
To compute the value of ~ where x and p are both
floating point numbers. The sign of ~ will always be
positive.

b. Calling Sequence:

SLJ XTOP

c. Entry Conditions:

AR8 - most significant part of x
AR4 - least significant part of x
AR2 - most significant part of p
AR1 - least significant part of p

d. Exit Conditions:

AR8 - most significant part of ~
AR4 - least significant part of ~
AR2 - xxxxxx
ARI - Positive
HI, LO, EQ INDICATORS - may be altered
SENSE INDICATORS - unaltered
INDEX REGISTERS - unaltered

e. Special Conditions:

SECTION:

5-0002

PAGE:

16

If x is negative, the absolute value of x is raised to the p-th
power. If floating point overflow occurs, +999999 is placed in
AR8 and AR4. AR1 is set negative. If underflow occurs,
+000000 is placed in AR8 and AR4.

f. Example: Computing the value of (.6839903787)3.2

CONTENTS AR8 AR4 AR2 AR1
BEFORE +506839 +903787 +513000 +000000
AFTER +503200 +000000 xxxxxx positive

g. Length: 8 + TENX + LOGT

h. Time: 8150 microseconds (average)

REVISION: SECTION:

UNIVAC m SUPPORT 6-0001
DATE: PAGE:

July 20, 1962

EDITING ROUTINES

A. Purpose

To provide a means of editing input or output information on a character
by character basis. These routines have the ability to delete or insert
blanks and to accept octal, decimal or alphanumeric information. These
routines do not include any binary decimal conversions.

B. Method

The input edit routine accepts 6 bit characters and transforms them to
bit'?$ of 6 bits or less. The output editing routine accepts bites
of from 1 to 6 bits and transforms them to 6 bit characters.

The editing format codes provid.ed by the calling program as 4-bit X-S 3
numerics act as the heart of the processing for the editing routines. The
editing routines process information by examining these format codes on

1

a 4 bit bite-by-bite basis and making a corresponding interpretation of the
next sequential input or output character. This resulting character is then
placed in the appropriate portion of the word or words being created. The
editing format codes are written as decimal digits using as many words as
are required to assemble or disassemble (as the case may be) the word or
words of information. It is possible to create multiple edited words on
input and to edit multiple words on output through the use of repeated link­
ages to the editing routines.

c. Memory Space

The editing routines occupy approximately 75 words.

D. Operating Procedures

1. Editing Routines

a. Input

The input edit (IE) routine accepts alphanumeric (6 bit) char­
acters one character at a time, and contracts them to 1, 2, 3,
4, 5, or 6 bit edited bites. Blanks may be removed anywhere
in a word. This process is terminated by the digit tIt in an
editing format word, usually after a complete word has been assembled.

REVISION: SECTION:

UNIVAC III SUPPORT
6-0001

DATE: PAGE:

July 20, 1962

For example, if the format codes consisted of all 4 t s then 6
whole words and 1 partial word of alphanumeric information
would be contracted to 1 edited word (see example lc in Sect­
ion F). The edit routine will automatically pick up the subse­
quent input words.

2

To utilize the input edit routine the arithmetic and index regis­
ters noted below should be loaded as indicated and an SLJ IE
instruction executed. When the editing is complete the routine
will return control with the assembled word in AR8.

b. Output

The output edit (OE) routine accepts 1, 2, 3, 4,5 or 6 bit bites,
one bite at a time and expands them to 6 bit edited characters.
Blanks may be inserted anywhere in a word. This process is
terminated by the digit 'If in an editing format word, usually
after a whole word has been disassembled. For example, if
the format codes consisted of all 4' s then 1 data word would be
expanded to 6 whole words and 1 partial word of 6 bit characters.
(See example 2f in Section F). The edit routine will automati­
cally store each output word in consecutive locations as specif­
ied by the calling program.

2. Calling Sequences

The following sequences are normally used for communication with the
editing routines:

a. SLJ IE

b. SLJ OE

Edit input information. Assembled word will be
left in AR8.

Initial Register Settings

ARI = first word of input information
AR2 = :000000
IR2
IR4 =

location of first input word
starting address minus 1 of format codes

Disassemble contents of ARI and output as con­
secutive characters. Partial word may be left
in AR8. Use PNC (see below) to drain out these
additional characters.

=

REVISION: I SECTION:

UNIVAC m SUPPORT
J 6-0001

~- I PAGE:

D. 3.

c. SLJ GNC

d. SLJ PNC

DATE:

July 20, 1962
I 3

Ini tial Register Settings

AR1 word to be disassembled
AR2 :000000
AR8 = 1 (causes full word to be gathered be­

fore return)
IR3 = location of first word of output information
IR4 location of first format codes word minus 1

Get next character (GNC) will place the next
input character in bit positions 1-6 of AR4. The
rest of AR4 will be zero. This routine will ordin­
arily be used only by the edit routines then1.sel ves.

Put next character (PNC) will putput bits 1-6 of
AR4 into the next consecutive output character.
This routine may be used to drain out partially
filled output words upon exit from the OE routine.

Multiple word editing

Editing of more than one word of input or output may be accomplished
by repeated linkages to the proper routine. The index registers shown
above will be incremented at the time of return to accept the next con­
secutive words. In the case of input the calling routine may store the
assembled word and reenter the IE routine. In the case of output the
next information word to be disassembled may be loaded in AR1 and the
OE routine reentered. On output, if it is desired to add to a partially
accumulated word in AR8, AR8 should be left intact; otherwise it should
be drained out on a character by character basis using linkages to PN C
(see above).

E. Editing Codes

Editing codes are written as decimal digits.

Code 0 indicates the end of a format code word. The editing routine will automat­
ically continue on to the next format code word. It is not necessary to end
a format code word with zero as in this case the routine will automatically
recognize the end of word and continue.

REVISION: SECTION:

UNIVAC m SUPPORT
DATE: PAGE:

July 20, 1962

Code 1 terminates an editing linkage.

Code 2 is normally used for output editing only. A code 2 on output will
cause a bit to be represented as ' - r. A code 2 on input editing should
only be used to interpret the first bit of a word. Codes 2, 4, 5 and 6 all
treat a ' - , as a 1 bit during input editing.

Code 3 (space) will cause a space to be skipped on input or generated for
output.

Codes 4, 5 or 6 will treat the information as an octal representation of

6-0001

4

the respective number of bits 1, 2 and 3. On input they will cause the infor­
mation to be converted from excess-three representation and on output into
excess-three.

Codes 7, 8 or 9 will cause the information to be transcribed directly with
only a contraction or expansion in the number of bits 4, 5 and 6 as specified.

Editing code table:

o
1
2
3
4
5
6

7
8
9

end of format code word
end of format code set
sign
space
1 bit octal '.

2 bits octal)
3 bits octal
4 bits (decimal)
5 bits

implies excess-three conversion

6 bits (alphanumeric)

F. Examples

1. Input
DATA FORMAT FORMAT CODE WORDS EDITED DATA FORMAT

a. Alphanumeric +277777 -999999
+710000

b. Alphanl1..meric +279977 -9AA99
+100000

c. Alphanumeric +444444 1111111111111111111111111
+444444
+444444
+444444
+410000

REVISION: SECTION:

6-0001
UNIVAC m SUPPORT f---------------t--------- ------------

DATE: PAGE:

July 20, 1962 5

2. Output

DATA FORMAT FORMAT CODE WORDS EDITED DATA FORMAT

a. 1 word octal

b. 1 word decimal

c. 1 word
alphanumeric

d. 1 word
instruction

e. 1 word mixed
information

f. 1 word binary

+266666
+66633:)
+100000

+327777
+771000

+339339
+991000

+324630
+663463
+466631

+637335
+373353
+733537
+331000

+444444
+444444
+444444
+444444
+410000

where in the data and edited data words

7 indicates digits 0-7
3 indicates digits 0-3
1 indicates digits 0-1
9 indicates digits 0-9
A indicates any alphanumeric character
S indicates space

+-777
+7777
+7SSS

+S-99
+9999

+SSAS
+SAAA

+S-17
+S778
+1781
+7778

+7898
+8389
+8838
+9883
+898S

+AAAA
+AAAA
+AAAA
+AAAA
+AAAA
+AAAA
+A888

- indicates either - or space on output and the sign bit on input
+ indicates sign is ignored

and the format codes in the format code words are as described in
Section E. 2.

REVISION:

UNIVAC m SUPPORT

NOTE:

DATE:

July 20, 1962

The Editing Routines in the typewriter control section of the
executive system should not be used unless contingency inter­
rupt is prevented. In utilizing these Editing Routines with the
ALMOST assembly system, standard EQU cards should be
placed ahead of the ALMOST symbolic deck which is to be
assembled. In this manner, the labels for the Editing Routines
will be equated with proper absolute addresses.

If the Editing Routines of the typewriter control section are
used then the following labels are restricted from other use
in the source program:

IE
OE
GNC
PNC

If the Editing Routines are included in the ALMOST symbolic
source program as a separate sub-routine, then the above
restrictions do not apply. Instead the following labels must
be excluded from other use in the source program:

IE
OE
GNC
PNC
EC1
EC2
EC3
GNM
IE4
IE2
OE1
OE2

SECTION:

6-0001

PAGE:

6

July 20,1962

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE A

The attached sheets are the first addition to the SUPPORT III Manual.

There are six routines comprising a total of 32 pages. These routines

should be read carefully.

BOOT

WRITE SYSTEM TAPE

ON-LINE MEMORY DUMP

EDITING ROUTINES

MOVE PROCEDURE

FLOATING DOLLAR SIGN ROUTINE

3-:0001

3-0002

4-0002

6-0001

6-0002

6-0003

These routines should be placed in the manual by their numbers and this page

filed directly after the INDEX until a new INDEX is received.

October 10, 1962

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE B

The attached sheets contain important additions to the SUPPORT III
Manual. These routines .should be read carefully.

INTERMEDIATE TAPE HANDLING ROUTINE 1-0004

TAPE INPUT-oUTPUT ITEM HANDLING ROUTINE 1-0005

These routines should be placed in the manual by their numbers and
this page filed directly after the INDEX until a new INDEX is
received.

The following routines should be removed from the SUPPORT III Manual
and destroyed. Corrected documentation for these routines can be
found in the UTMOST Manual.

MOVE PROCEDURE 6-0002

FLOATING DOLLAR PROCEDURE 6-0003

November 16, 1962

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE C

The attached sheets contain additions to the SUPPORT III
Manual.

PUNCHED PAPER TAPE READER SYMBIONT

ON-LINE EDITED MBlviORY DUMP

TEST DATA ASSEMBL Y PROCEDURRS

2-0005

4-0002

4-0003

These routines should be placed in the manual in sequence
by their section numbers, and this page filed directly
after the INDEX until a new INDEX is received.

January 15, 1963

UNIVAC III SUPPORT U-3519

UPDATING PACKAGE D

The attached sheets contain important corrections and additions to the
SUPPORT III Manual.

INDEX
Re?lace entire section

INTERMEDIATE TAPE HANDLING ROUTINE
Replace entire section

TAPE INPUT-OUTPUT ITEN HANDLING ROUTINE
Replace entire section

TAPE INPUT-OUTPUT VARIABLE SIZE ITEM HANDLING
Add (new section)

FLOATING POINT PACKAGE
Add (new section)

MATHEMATICAL PACKAGE
Add (new section)

3 pages

1-0004 5 pages

1-0005 23 pages

1-0006 17 pages

5-0001 1.3 pages

5-0002 16 pages

UNIVAC III
SUPPORT, U-3519

UPDATING PACKAGE E

March 27, 1963

The attached sheets contain major additions to the SUPPORT III
Reference Manual, Section 3 (Utility Routines).

INDEX
Replace entire section

UPCO (UPdating COntrol)

Add (new section)

ACCO (Assembler Compiler COntrol)
Add (new section)

DECO (DEsignation COntrol)
Add (new section)

3 pages

3-0003 16 pages

3-0004 18 pages

3-0005 38 pages

This sheet should be retained and inserted after the INDEX to serve as

a catalogue of change.

I N T ~ ;;: c (): '; :/.:; N I CAT' 0 N

TO: UNIVAC III Programmers FRO,',', (Nh",",,): R. Klose

CA~ SONS;

1..0CATIO~ 3. DATE: New York - Ap:--il 9, 196~~

DE?ARTMENT: UNIVAC Data Proce s s i n<; Ce n te r

SUaJECT: U::.JIVAC III Information ExchangE.:
#NY 1

UTIviOST Rot:t i ne s

Toe following routines are available and debugged and
:-:-:CiY he lp you in pro·;rraIThlling in UTMOST. They are procedure s
2nd may be called in your program thru SELECT cards at ACCO
Lime. The ceIling sequence in your coding is indicated.

I~cicG~cs routine is not on Symbolic library from CSC,
b'C.t is obtainable from New York Data Processing Center.

DATA (i.8., SELECT DATi\) ***
22ne::ates constants in UTMOST FORMATS.

Call is
DATA LISTl LIS':'2 LIST3 etc.

Where LISTn is a ~ist of 1 thru 4 expressions which will
g2n~rate data wores, indirect address control words, etc.,
according to UT.HOST data word generation rules.

DUMP ***

Provides BOSS IlIon-line memory dump calling sequences
for 0 variety of dump form~ts including BOSS III formats, any
speci61 formats you would care to define in accordance with
the cescription in SUPPO~T III (#4-0001) and three special
formo.ts as below. Also takes care of repositioning paper in
Printer.

20.11 is
DG~<2 F, S, E, SIR, EIR 1

0::

D.::'.TADUMP S, E, SIR, EIR 1
or

P:{OGDUMP S, E, SIR, EIR 1
or

BOTHD:Jt/J.P S, E, SIR, EIR 1

PHINTl:O IN lJ. ,

-2-

~~erc ? is forDat code or 2ddress of edit list (see
~4-0001 of SUPPORT III),

S, SIR are the starting address and IR (if any)
of area to be dumr-:ed (see #4-0001 of SUPPORT III)

E, EIR ~rG ending 0ddrQ~s and IR ts ohovc
1 is 1 if Hegisters and Indicators are desirec~,

blank or zero if ~ot.
DATADUr{? cell edi.ts each word in alpha, octal

c.~d decimal for~~t, 4 words to a line.
PROGDUHP c::~ll eei ts each word in octal, instrL:c­

t.io:l, indirect address, 2.nd field select control Y.;0r.'1~,.

formats, 2 words to a line.
BOTHDUHP call edits each word in all formats of

Dj\r::.:'ADUMP and PROGD\JMP, 1 word to a line.

?rovi~es the editing subroutines described in SUPPO~T III,
~~6-0001. The feasibility of using the identical coding occur~ing
in BOSS III is nil. To do so, you would have to overlay compL­
ter absolute location 19 so that all contingency interrupts can
be ignored while using these subroutines. Should be called in
some convenient area of your program and then the callin~ se­
quences described in SUPPORT III can be used.
Call is

EDIT.

Provides Jump Minus ",'ith consistent AR designation.
JPS procedure.
Call is

Ji<S AR, M, IR

Uses

Provides consistent sense indicator designation and con­
venient mnemonic code.
Call is

In H,IR
or

oc
Rn

'0Jhere n stands for Sense Indicator 1 thru 8
In is Ju~p if Sense Indicator n is set.
Sn is Set Sense Indicator n
Rn is Reset Sense Indicator n

JPS

.,
-.)-

~roviCes Jump if ~ot less, if not equal, if not greatc~.

oc
J:T2 M,IR

or
JNG M,IR

Provides consistent f~ designation for Jump Positive.
Call is

JPS AI~.,M,IR

?rovides consistent ~2mory addressing for LAE.
Call is

L~\=:O

Provides convenient ~~emonic for generating sets of in­
structions for BRanching i~ your ?rogram.
Call is

AR :F'LD, ADD, FIR, AIR etc.

hnere Bn.X :~ s
BRL for b inc~ if less
BRE for bra~c~ if equal
ERG for brarcn if greater
BRNL for br~nc~ i~ not less
B~NE for br~nch if not equ&l
BRNG for branch if not greater

AR is the Arithmetic Register(s) specified.
FLD,FIR is the adcress and IR of field to be

t:.e sted.
ADD,AIR is tne aa~re3S and IR to jump to if

bra~ching condition is lliet.

Provides BOSS III calling sequence for typeout control.
Call is

TIrpECUT (A)
or

TYPEOUT (y)

~'"l.. is the 2c~c~:;::-e S3 of Jche start of the 1..r2 ssage
Y is the locQtion of A.

In addition to t~G fo::::-egoing, the following are in the
works or almost ready:

:.'~)\i'2 - ci proc~':,'Ji::"=:: 'i.l:.:~~;.ng a :3e'~:' 0::= closed subrc1...:":::.inc s to
;).:~-ovi.c::...:: a wide variet~y 0:;': cc.:.lls C.o mov(::: and fill arcG:':; of .:T.cmory
<:.:!>~I:lC ntly w~l.ere t~J.2 n·c.::cessary ~")ara.:Tleters can be provided at
~\CCC tirrl2 or at object ti:TlC: or any combination thereof.

IN:::::TIAL - a proc~o completely automate r:lappin<; wi~hin ~r.

UTMOST program and provide a running check on index covera~e.
Also 1.·/i11, V-.Then cO:'1plc~cG, ~)rovi\=~c <l v1ide variety 0.E convenic:-:t
mEerr.c:-lics incluc..ing SALT :,w.""lemonics. F~-ovides 'Typeout and T"I.:::'"":Jt".;­
j.n COil.trol an·5 a portion of ini tial~zat.ion.

LTRL - a r~roc, simil2.r to DAT;\, to generate Ij.tcral CO;l.­

stants, i.e., constants to appear in the constant pooJ. rather
than at the s:)o-~ in YoL:r program w~lere t}ley are cal:eci.

r.rYi~;-;:::;::>~ - Due to changes to uT~·:OST and the eliminat:~on of
the:--_'..:cc: ssi ty o:..~ using i'lliS 01000C j 1"1 p:-ograms, the stc:..na.arci
~Y'2EI~~ ~)COc no longer works. A c-LleDge to it \-Vil~ be available;
si1:>rtly.

SNAPSHOT and Sl.'JIPSHOT.. procs to (~;2nerate opei~ ;~'4l.d closed
su"0routi ~_e memory C:urr.ps, re specti ve ly I o~: a snapshot nature.
Similar to dump, but ca:l caJ_l a large number of format-area
combinations with a single call. First the registers and indi­
cators and the address of the call are printed and then your
specific calls.

?rocs are planned to generate coding to edit input images
~_nto c. series of right (or left?) justified fields of des:'rec.
formats and, conversely, to edit a series of right (or left?)
justiE~ed fields of various formats into an edited line i~age
with =acility of decimal point, blank, and other character ce­
letio~ and insertion and zero suppression.

The follo'fling routine s are as yet unavailable (SUPPORT III)
P:3.per Tape Symbior~t #2-0005
On-line edited I\C'2D. Dump #4-0002.

The letter will probably be provided as a relocatable

~jrogTc...:-:1 rc.ther than a proc as described.

-:)-

GrcLlt C2re ShOLlc' c;xc':~-(>~~3cd in usj_ng ~30;rl:~ oi t-..li'-; 2..~)C:/JC

~;=-occcur-cs. In pLlrt:_c ~ .. ,r, J~,:;.31 Ji'.'~L, and QBR, y..;h.~.lc loo.,:i:-1ej ~~i~<;>:...:

typical instruction lin2s, act'l.::: i.:y genera.te tl.'''-O or I

1 :L
can .X':';: easily overloo~,~~_d \',.'1(';.."1 l:S~:"J.J.s· reflexive addres;::;::..r:g in ~hcir
viein:j_ ty.

R. KLeSS
we

PRINTED IN U.S.A. U-35 t 9

	0001
	0002
	001-01
	001-02
	001-03
	002-01
	1_01-01
	1_01-02
	1_01-03
	1_01-04
	1_01-05
	1_01-06
	1_01-07
	1_02-01
	1_02-02
	1_02-03
	1_03-01
	1_03-02
	1_04-01
	1_04-02
	1_04-03
	1_04-04
	1_04-05
	1_05-01
	1_05-02
	1_05-03
	1_05-04
	1_05-05
	1_05-06
	1_05-07
	1_05-08
	1_05-09
	1_05-10
	1_05-11
	1_05-12
	1_05-13
	1_05-14
	1_05-15
	1_05-16
	1_05-17
	1_05-18
	1_05-19
	1_05-19a
	1_05-20
	1_05-20a
	1_05-21
	1_05-22
	1_05-23
	1_06-01
	1_06-02
	1_06-03
	1_06-04
	1_06-05
	1_06-06
	1_06-07
	1_06-08
	1_06-09
	1_06-10
	1_06-11
	1_06-12
	1_06-13
	1_06-14
	1_06-15
	1_06-16
	1_06-17
	2_01-01
	2_01-02
	2_01-03
	2_01-04
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_02-05
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	3_01-01
	3_01-02
	3_01-03
	3_01-04
	3_02-01
	3_02-02
	3_02-03
	3_02-04
	3_03-01
	3_03-02
	3_03-03
	3_03-04
	3_03-05
	3_03-06
	3_03-07
	3_03-08
	3_03-09
	3_03-10
	3_03-11
	3_03-12
	3_03-13
	3_03-14
	3_03-15
	3_03-16
	3_04-01
	3_04-02
	3_04-03
	3_04-04
	3_04-05
	3_04-06
	3_04-07
	3_04-08
	3_04-09
	3_04-10
	3_04-11
	3_04-12
	3_04-13
	3_04-14
	3_04-15
	3_04-16
	3_04-17
	3_04-18
	3_05-01
	3_05-02
	3_05-03
	3_05-04
	3_05-05
	3_05-06
	3_05-07
	3_05-08
	3_05-09
	3_05-10
	3_05-11
	3_05-12
	3_05-13
	3_05-14
	3_05-15
	3_05-16
	3_05-17
	3_05-18
	3_05-19
	3_05-20
	3_05-21
	3_05-22
	3_05-23
	3_05-24
	3_05-25
	3_05-26
	3_05-27
	3_05-28
	3_05-29
	3_05-30
	3_05-31
	3_05-32
	3_05-33
	3_05-34
	3_05-35
	3_05-36
	3_05-37
	3_05-38
	4_01-01
	4_01-02
	4_01-03
	4_01-04
	4_02-01
	4_02-02
	4_02-03
	4_02-04
	4_03-01
	4_03-02
	4_03-03
	5_01-01
	5_01-02
	5_01-03
	5_01-04
	5_01-05
	5_01-06
	5_01-07
	5_01-08
	5_01-09
	5_01-10
	5_01-11
	5_01-12
	5_01-13
	5_02-01
	5_02-02
	5_02-03
	5_02-04
	5_02-05
	5_02-06
	5_02-07
	5_02-08
	5_02-09
	5_02-10
	5_02-11
	5_02-12
	5_02-13
	5_02-14
	5_02-15
	5_02-16
	6_01-01
	6_01-02
	6_01-03
	6_01-04
	6_01-05
	6_01-06
	_01
	_02
	_03
	_04
	_05
	_10
	_11
	_12
	_13
	_14
	xBack

