UNIVAC IlIl UTMOST

N° 07500

August 9,1962

The mnemonics for machine operation codes as printed in this mamual are
considered acceptable but non-standard by UNIVAC. This means that:

1. The UTMOST processor will accept programs written using either this
set of mnemonics or the standard UNIVAC III set.

or,
2. A orogram will be furnished which will convert source programs with
the non-standard mnemonics to source programs containing standard

mnemonics,

The following table gives the relationship between standard and non-standard
mnemonics:

SALT UTMOST
(standard) (non-standard)
L LA
LGS LAN
EXT LF
ST SA
STCS SAN
— SZ
A DA
S DS
AH DAH
SH DSH
M DM
D DD
BA BA
BAH BAH
BS BS
BSH BSH
SR DSR
SL DSL
SAR ASR
SAL ASL
SBC BRR
CA CM
C C
CONE CPA
CZRO CPZ
TEQ JE
THI JG
TLO JL
TPOS JP
TUN J
TR SLJ
SSI SS
RSI RS

TSI Js

SALT UTMOST

(standard) (non-standard)
ATD LAD
DTA SAA
0P LAE
sUp OR
ERS AND
LX LX
STX SX
IX IX
ICX IXC
TCI TC
RCI RC
TPE TPE
RPE RPE
TIO TIO
TIO TW
TIO TR
TCI TOV
TCI TOP
RIO RIO
RIO RW
RIO RR
AIO AT
PIO PI
TIOP JIP
I0F LC
IOF LWC
I0F LRC
NOP NOP
STMC SC
TR* SCJ
STMC SL
STMC SWC
STMC SRC
STCR ST
STCR SRT
STCR SWT
WAIT HJ
LT RCK
DIS WD
RT RT
WT WT
ACT AT

An assembler directive will be supplied for specifying the desired set of
mnemonics. The method of accomplishing this will be specified later.

August 22,1962

The mnemonics for machine operation codes as printed in this manual are
considered acceptable but non-standard by UNIVAC. This means that the

UTMOST vrocessor will accept programs written using either this set of

mnemonics or the standard UNIVAC III set.

The following table gives the relationship between standard and non-standard
mnemonics:

SALT UTMOST SALT UTMOST
(standard) (non-standard) (standard) (non~-standard)
L LA ERS AND
LCS LAN LX LX
EXT LF STX SX
ST SA IX IX
STCS SAN ICX IXxc
o SZ TCI TC
A DA RCI RC
S DS TPE TPE
AH DAH RPE RPE
SH DSH TIO TIO
M DM —— TW
D DD — TR
BA BA — TOV
BAH BAH — TOP
BS BS RIO RIO
BSH BSH —— RW
SR DSR ——— RR
SL DSL AIO AT
SAR ASR PIO PI
SAL ASL TIOP JIP
SBC BRR IOF LC
CA CM —_— LWC
C C —_— LRC
CONE CPA NOP NOP
CZRO CPZ STMC SC
TEQ JE TR* SCT
THI JG - SL
TLO JL —— SWC
TPOS JP — SRC
TUN J STCR ST
TR SLJ —_—— SRT
SSI SS —— SWT
RSI RS WAIT HJ
TSI Js LT RCK
ATD LAD DIS WD
DTA SAA RT RT
ZupP LAE WT WT
SUP OR ACT AT

An assembler directive will be supplied for specifying the desired set of
mnemonics. The method of accomplishing this will be specified later.

UNIVAC III August 24,1962
UTMOST , U- 3520

UPDATING PACKAGE A

CONTENTS: SECTION II , pages 3-4,9-10,21-26,29-34,37-55
SECTION IV , vpage 1
SECTION V , nages 1-4,23-24

The attached sheets are the first changes to the UTMOST manual.

There are three major programming modifications resulting from the
implementation and testing of the UTMOST assembler:
1. The format of the DO directive (SECTION II,page 32)
2. The specification of a method and format for writing multiple-word
alohanumeric constants useful in typewriter messages and High Speed
Printer headings. (SECTION II, page 10)
3, The addition of the COR directive for source code corrections. (SECTION II,nage 41)

Read these carefully.
Included,to be modified later, is the interim overating procedures.

Other changes correct typographical errors and omissions.

UNIVAC III October 1,1962
UTMOST, U-3520

UPDATING PACKAGE B

CONTENTS : INDEX , pages 1=3
SECTION I , pages 1
SECTION II, pages 5-8, 11-12, 15-20, 29-30, 33-63
SECTION III,pages 1-4,9-10
SECTION V , pages 31-32, 49-52,63-64
Appendix 1, page 1

The attached sheets are additions and changes to the subject manual.
There are three additions of major importance:

1. The modes of the results using operators with items of mixed modes is
specified in SECTION II, pages 17a and 17b,

2, In the reference section, SECTION III, the levels of the operators
are specified.

3. Appendix 1 contains the error codes that are used and appear in an
output listing of an UTMOST assembly.

The two PROCs, the $ Editing PROC and the MOVE PROC, have been assembled
and tested. The output listings of the assemblies and tests appear in
SECTION II, pages 33 and following.

Other changes are minor in nature.

All pages replace the existing pages. Pages that are removed should be
destroyed.

UNIVAC III February 1, 1963
UTMOST, U-3520

UPDATING PACKAGE C

CONTENTS: INDEX , pages 1-3
SECTION I , page 1
SECTION II , pages 3-12, 15-42, 53-58
SECTION III , pages 1-6, 9-10
SECTION V , pages 23-24, 29-30, 33-48, 51-54, 69-70
Appendix 2 , pages 1-10
The attached sheets are additions and changes to the UTMOST manual.
There are five major revisions:
1. The addition of the GO directive (Section II, page 40).
2. The addition of the NACL directive (Section II, page 41).
3. The addition of Binary Card Formats (Appendix 2, pages 1-10).
Read these carefully.
4, The deletion of the COR directive from the UTMOST
assembler, (See SUPPORT III, UPCO, ACCO and
DECO).

5. Delete the operating procedure; this will be revised at a
later date. (Section IV, page 1).

Other changes correct typographical errors and omissions.

REVISION:

1

‘ Tndoex
UN'VAC m UTMOST 1' pate: Oct, 1, 1962 PAGE
i
{ 1
i s .
TABLE OF CONTENTS
I, INTRGDUCTION i~ 1
I1. BASIC INTRODUCTION TO UTMOST ASSEMDLER LANGUAGE i - 1
1. Computers and Languages -1
2. The UTMGST Assenibler - 2
3. Symbolic Coding Format Im- 2
a. Label Field m- 4
b. Operation Field Im- 1
c. Operand Field - 3
d. Line Control - 6
4, Expressions il 7
a. Elementary Items -
b. Operators -1z
C. Mode o=
. Data Word Generation IR
a. ICW, Increment and Compare Word 1t~ 15
b. TWC, Two Word Constants - Is
c. + or - Operation Fields (R Y
6. Mnemonic Instructions i~ 2
7. Line Items - 23
8. Assembler Directives e 25
a. EQU i - 26
b. RES b2
c. USE 127
d. FORM 11— 2n
e. SET - o
f. FLD IT - 3i

REVISION: 2 SECTION: IndeX
UNIVAC TII UTMOST
Feb, 1, 1963 2
TABLE OF CONTENTS (Cont'd)

g. END II - 31

h, DO I - 32

i. PROC I - 33

j. NAME II - 35

k. Procedure Reference Lists II - 36

1. GO II - 40

m, NACL II - 4]

9. Sample Problem II - 41
10. Sample Floating Dollar Sign Editing Procedure II - 44
11. Sample MOVE Procedure II - 56
1II. PROGRAMMER'S REFERENCE GUIDE I - 1
A. Line Control I - 1
B. Label Field 1 - 1
C. Operation Field m- 1
D. Operand Field I - 2
E. Expressions m - 2
F. Mnemonic Instructions oI - 5
H. Line Item Im - 5
I. Addressing m- 7
d. Assembler Directives m- 7
K. Procedure Reference Line I1 - 11

L. Inter -Program Communication oI - 11

UNIVAC IIT UTMOST

REVISION:

2

SECTION:

DATE:

Feb, 1, 1963

PAGE:

o
[

TABLE OF CONTENTS (Cont'd)

IV. OPERATING PROCEDURES

V. UNIVAC III CENTRAL PROCESSOR
VI. BOSS IIl COMMUNICATIONS

VII. MNEMONIC INSTRUCTIONS
Appendix 1 - Error Codes

Appendix 2 - Binary Card Formats

IV - 1
V-1
Vi- 1
VII - 1

Appendix 1

Appendix 2

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PABGE:

f

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PAGE:

Feb. 1, 1963 L

1. INTRODUCTION

UTMOST (UNIVAC THREE MACHINE ORIENTED SYMBOLIC TRANSLATOR) is
an easy to learn and easy to use assembly language designed to permit rapid
efficient coding for UNIVAC III. UTMOGST is a two-pass assembly system pro-
viding rapid translation from: symbolic to object coding.

The UTMOST system contains a wide and sophisticated variety of operators

which provide the ability to fabricate fields during assembly without restrictions

on the programmer, The mnemonic operation codes describe machine functions

and prevent the programmer from having to learn a wide variety of octal machine
codes. The system has a series of twelve assembly directing instructions which

aid greatly in promoting easy communication with input-output and executive systems.
In addition, the assembly directives provide the programmer with the ability to write
short routines which are variable at assembly time. These routines and standard
routines are easy to incorporate in the program, thereby reducing the effort ot the
programmer and increasing programming production.

UTMOST produces relocatable binary output in a card form suitable for processing
by a binary card loader. It also supplies a listing of the original symbolic coding
together with an octal representation of the word generated. Certain error flags
are also supplied in the listingz,

The UTMOST rnanual is in several sections. Section II is designed to aid the pro-
ocrammer unfamiliar with this type of system. Section III is designed to act as a
brief programmers' reference guide to the UTMOST system.

UNIVAC III UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962

II. A BASIC INTRODUCTION TO THE UTMOST ASSEMBLER LANGUAGE

A. GENERAL

1. Computers and Languages

In order to solve a problem, a computer must be given a series of
instructions which determine how the computer is to operate. In
addition, the computer must be given one or more sets of data upon
which to operate. This combination of instructions and data is called
a program. A program must define in complete detail exactly what
the computer is to do, under every conceivable combination of cir-
cumstances, with the data which is read into or processed by the
computer. The number of instructions required for the complete
solution of a problem may be a few hundred or many thousands,
depending upon the problem. The computer may refer to these
instructions one after another. It can also be instructed to repeat,
modify, or skip over certain instructions, depending upon inter-
mediate results or circumstances. The ability to repeat operations,
usually called looping, combined with other facilities of modifying
and skipping over instructions, permits a significant reduction in
the number of instructions required to perform a given job. For
example, two sets of numbers exist and it is desired to add the
corresponding numbers of each set together. Instructions may be
written to add the first number of the first set to the first number

of the second set, then to repeat this operation with the second, third,
fourth, etc., numbers of each set. In this way, a few instructions
may cause thousands of additions.

Since the computer.does not respond to the English language, the
program must be encoded in a form known as machine language.
Considerable time and effort have been expended in developing
programming systems that allow the programmer to write in a
symbolic language more easily comprehensible to him than machine
language. Associated with a programming system is a machine
language program called a processor. The processor accepts a
program written in the symbolic language (source program) and
converts it into a machine language program (object program). The
symbolic language utilized to program for UNIVAC III is known as
UTMOST (Univac Three Machine Oriented Symbolic Translator).

REVISION: SECTION:

II

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 2

2. The UTMOST Assembler

The UTMOST assembly program was designed to provide a programmer
with an easy to learn and easy to use assembly system. UTMOST is

a straightforward data processing program, accepting input data
(symbolic coding) and processing it and producing as system output,
object coding usable by UNIVAC III directly.

As the symbolic coding is processed, the UTMOST assembler tallies
the number of lines produced in a location counter. The location
counter can be referenced by the programmer in his symbolic coding
and may be utilized throughout his program. UTMOST also provides
the programmer with a series of 'operators' permitting him to fab-
ricate any object code values which he may need. A small number of
extremely powerful assembly directives are also made available which
allow the programmer to direct the assembly in an extremely positive
manner during the actual assembly. In addition, the programmer
may use mnemonic operation codes which explain machine functions
by their very nature rather than having to learn the machine code bit
configurations.

The UTMOST assembler provides output in the form of a loadable
object program plus a listing of the symbolic program and the object
program. The listing also provides the programmer with error flags
at whatever points the assembly system detected the errors.

In the section following, each feature of the UTMOST assembly system
is examined in detail with examples of each operation, as well as an
illustrative problem demonstrating a legitimate approach to the
solution of a simple data processing problem for UNIVAC III utilizing
the UTMOST language.

3. Symbolic Coding Format

In writing a program in UTMOST symbolic language, the programmer
is primarily concerned with three fields, a label field, operation field
and operand field. In addition, it is possible to annotate the symbolic
language at the time it is written through the use of comments which
will provide clarity for the programmer and relate the coding to its
associated flowchart,

REVISION: | SECTION:

2

UNIVAC III UTMOST _:-‘,II.,A.,,,_M

DATE:

Feb. 1, 1963

o>

In writing in UTMGST language, the programmer is not bound by a
fixed length field concept as is the case with older assembly languages.
All of the fields in UTMOST are in free form, and are designed to
provide the greatest convenience possible for the programmer.

PROGRAM _ - PROGRAMMER S . DATE —_ PAGE ___OF _ _PAGES
, LABEL A OPERATION 4 OPERAND A COMMENTS 22laa a0
clovs v Lo o b bbb oo b b bbb oo Lo Tl
lljglil}Vil“illi;‘lfl[li‘t‘J‘llll[‘iii!!l’ili‘ liix‘tiiilliulx'if.!x‘k:i R
I SR A O O AU A O AT O A A T A U I O S U OO AR U SN S SO SUUR AN AU I I SN NS AU U NN RN B PR b
RN EE R I NI N I A I OO AU VTN SO G U AU O U U SO S S SRS AT RIS SR TNOS SRS S SRR Lo Dl
|L|I1111’J‘L'1llv’l{’Lgl"L;LLZkLAL! bt bbb b 1l |
IR NN N NS RS R N SIS A S AVERSN SN IO ARSI ARIN T ANSNU N R SNUVEN BN R SN TNUEE SN RSN RSN UN SO
Ll 11 IR NN N R SN R T S AT SN UVINSS ENSNUNEN I W ANS AU O Lot
R R AN NS AN AU AN TNUN S AN UUUNEN A AN UNEN SNUNON N AN SNEN OF N VRPN U AN AN AU SVUNANUN SN UVUVES ISR ONEN AN SPRVSN NPURSURN SURNUNEN PO
Ai’lel Jovotr bbb e b bonr b e bbb booe b o b e b
oo ! ol bbby b e b by by e b b b RSN
- Srinbiaioo o oo lesalve Lo vty
P! ! illuui [
a. Label Field

A label is a method of identifying either a symbolic line of coding,
or a word of data. In writing a label in UTMOST, the programmer
may use any meaningful combination of one to sixteen characters.

Of these sixteen characters, the first must be an alphabetic (A... Z),
and the others, if present, may be either alphabetics or numerics
(0-9). Sample labels are listed below:

PRNT ARRANGE
ONE ADOL
A OVER2

In writing a label in the label field of a symbolic line, the first
character of the label must be left justified within the line and

the field terminated by a blank. There must be no blanks within
the label tield itself. No special characters may be used in a
label field. When the label is analyzed by the UTMOST assembly
program, it is equated to the current value of the location counter
except in the cases of a label associated with the EQU, FORM,
DO, FLD, PROC and NAME assembly directives. Each of these
special cases is discussed separately in the portions of the manual
dealing with the specific directive,

REVISION: SECTION:
2
I

UNIVAC IIT UTMOST

DATE: PAGE:

Feb. 1, 1963 4

QlPll‘lilllll‘L
llLlLllLLllllllllllIl
ong | el sl 8l |
|11|11¢l:1||||1[|~u|1

In the symbolic lines illustrated above, each of the labels in the
label field, OVER, ONE and ARRANGE follow the requirements
of the label field. Each starts with an alphabetic in column 1,
is from one to sixteen characters in length, and is terminated
by a space.

b. Operation Field

The operation field of a symbolic line informs the assembler of
the purpose of the line. An operation field may be up to sixteen
characters in length, and may contain a mnemonic machine
operation code, an assembler directive, a label associated with
a FORM NAME or PROC directive or a data generating code.
Each of the above categories will be discussed in detail in its
appropriate section.

An entry in the operation field is terminated by a blank unless

it is a plus or minus sign, in which case the operand field may
begin in the succeeding column, If the line does not have a label,
the operation field may begin in the second column of the coding
form.

If an operation field contains an assembler directive other than
RES (which increments the location counter), the location counter
will not be affected. In all other cases, the location counter will
be incremented by one after the line has been generated.

REVISIDN:

{
UNIVAC III UTMOST | : \ I

SECTION:

PAGE:

i)

-

, LABEL A OPERATION A OPERAND

ol
ot

ONEL LA lrgy 3,8 il ol
e L syl @y 7ol Lol
L Rlesio @2l oL

i

SEREEER. RN N AR SRR RN
| | : ! : :

1

In the illustration of operation fields above, Line 1 contains an
operation field LA following the label ONE,

Line 2 contains an operation field, CM, starting in colunmn 2,
showing that no label is present.

Line 3 contains an assembler direclive as an operation {icld,
RES.

Line 4 also contains an assembler directive in the operation
field, USE.,

Note that each operation field follows the rules stated above.

c. Operand Field

The operand field of a symbolic line follows the label and opera-
tion fields. It consists of one or miore expressions defining the
information required by the operation field of the line.

Expressions within the operand field are separated by comimnas,
and the comimia indicates that another expression follows:. Ter-
mination procedures are discussed under Line Control, beiow,
The maximum number of expressions on a line is determined by
the content of the operation field of the line, LHowever, any linc
may contain less than the maximum number of expressions
indicated by the operation field; so long as it has at least one,
The unwritten expressions will be assumed by the assembler to
be zero.

REVISION: SECTION:
“y
L

UNIVAC IIT UTMOST ' &

DATE: PAGE.:

Feb. 1, 1963 6

. LABEL A OPERATION A OPERAND

rJQBlJDJ_J_L_L_L,LJ_IL-J_JIlIlLLIlI{ILlLL_L_L
wxt Lagus g e bonc Lo bv e ey

WA e b b ben bbb
! ! l | [| |

In the examples, the 0 following LA represents a single
expression in the operand field. The second line of symbolic
coding represents a three expression operand field, each
expression separated from the previous one by a comma,

d. Line Control

Tie information content of a line to the assembler consists of

a label, operation, and operand fields, The information content
is normally terminated when the maximum number of expressions
required by the operation has been encountered (or the maximum
number of lists in the case of a procedure reference) or by the
end of card, whichever applies to the case in question. There
are two special marks which override the normal rule:

1) Continuation: If a '";" is encountered outside of an alpha-
betic item, the current line is continued with the first non-
blank on the following line and there is no more information
to the assembler on the line in which the '";" occurred.

2) Termination: If a "." followed by a blank is encountered
outside of an alphabetic item, the line is terminated at
this point, If additional expressions are required by the
operation field, they are assumed by the assembler to be
zero,

A continuation or termination mark may occur anywhere on a
line, Following the information control of a line, any characters
may be entered,

REVISION: SECTION:

I

 PATE: (Oct, 1, 1962 PAGE:

-1

|
UNIVAC TIT UTMOST |
|

. LABEL A OPERATION A OPERAND

_|A|&LEILL) Lo LLMJJLIL[JI_i
lllli

_J_LIJ)QI‘{-LMII \111[1111,‘ L] v
o b bl b | l

1oL

[R T O T

The semicolons indicate that the line is continued on the next
line., The assenibler would treat the three lines as though
they were the following line.

[I B B B

|

|

ll(llllllleILJ[lllllxutillILlillIlllJIIJli!
!
i
L

J_].RIM_LJ_L"JM adoe g boaa bl
x|l|11|i‘ul|||11|11|L_1¢11LJMJLIUJL v oo oo by o

o1 Thlz WIng s Alusio | 7eRMINATED BY) TWeE Pertdn SPACE | |

oAl wizhou ale pATNTED oM THE S{MBe LTle Lis7rme ogsy . | .. 1

|
.,LJ‘![{" JIA

i

LLr

oL
L

|
|
Lt

|
L

|
i
{

|

LAGEIL FolRm 1]y 4 Tiels Lover i melR nmzhirm Y TwE | Jﬂé&lnm l&sPqua !

L

|

L

The three lines above use a period [ollowed by a space to
terminate the lines. Any information following the period
space is considered to be a comment and will be printed on
the symbolic output listing, The assembler will take no
action on the information following the pericd,

4, Expressions
An expression is an elementary item or a series of elementary
items connected by operators. It normally appears in the operand

field of a symbolic line.

a. Elementary Items

UTMOST permits the utilization of a series of elementary
items which may be used in expressions.

1) Label: Any label may be used as an elementary item.
The structure of a label corresponds to the description
of the label field discussed earlier. A label may be
from one tc sixteen alphanumerics, the first of which
must be an alphabetic. When a label has been encount-
ered in the label field of a symbolic line (with exceptions

UNIVAC TIT UTMOST

REVISION: SECTION:

DATE: PAGE:

February 1, 1963 8

3)

noted under Label Field), it is assigned the current
value of the location counter. Thereafter, when it is
encountered within an expression, the integer value
initially assigned to it will be substituted for the label
within the expression,

T N N N NN AN AN

lcomsm i b oo Lo L b bl

411|L|9|1|\|7lC|D|N1$I|||||lllulanln|L%
[U IR (N A N R

In the example above, AR1 will be loaded with the value of
the label CONST, which is a decimal 24.

Location:

The current value of the location counter may be used
as an elementary item within the operand field of a sym-
bolic line. The format of a reference to the location
counter is the dollar sign ($). When this sign appears
in an expression, the value of the location counter is
substituted for it, It is useful in reflexive addressing.

lllnulllllllilul[lsliillllllL

MlllllllllIllllulullnlll
ol b b e b b b |

In the example above, if the current value of the loca-
tion counter was 5280, the integer value 5280 would be
produced as a one word constant in decimal, right just-
ified, with preceding binary zeros and a positive sign.

Octal: Octal values (base eight) may be represented in
expressions as elementary items by preceding the de-
sired value with a zero. The assembler will convert
these values to their corresponding binary (base two)
equivalents. The converted binary integer will be
right justified in its object coded field.

REVISION: secTioN:
| 2 i
UNIVAC TIT UTMOST
Feb. 1, 1963 | 9
{
Ll bbb b e be ety
cit e o b

1)

bl bbbt

v lwezolan v Lo b

i the examples above:

317 is equivalent to 000 GO0 600 GOO 000 006 001 111
07007 is equivalent to 000 0G0 000 000 111 0G0 00U 111
in their converted object code,

Decimal: Decimal values may be used as elementary
items within an expression. Where they appear, decimal
values (base 10) will be converted into their binary equiva-
lents and right justified within their object fields., A
decimal item is represented as a non-zero digit followed
by decimal (0-9) digits.

v b Lo

l!!l/lOﬂllf!Ilill_LlJ
N A

In the examples above:

$ is equivalent to 0000000000000000006001001
1024 is equivalent to 000000000000010000006000

BCD: UNIVAC III binary coded decimal excess three
values in four bit notation may be utilized in elementary
items by preceding the value with a colon (:). When a
decimal value appears in this format, it will be trans-
lated by the assembler into its corresponding < bit base
16 value and right justified within its field.

crclad®@ oo by
o idleedd Ly,
| i ! |

t

In the examples above:

19 1s equivalent to 0000 0000 0000 0000 0000 1100
11024 is equivalent to 0000 0000 0100 0011 0101 0111

REVISION: SECTION:

UNIVAC IITI UTMOST

DATE: PAGE:

Feb. 1, 1963 10

6) Alphabetics: (a) Six bit alphabetic characters may be
represented in an elementary item by enclosing the de-
sired characters within apostrophes ('). Since the
assembler recognizes an apostrophe as the end of the
alphabetic value, it is not permitted to use an apostrophe
within the alphabetic grouping. The six bit object code
resulting from an alphabetic item will be right justified
within its field and preceded by binary zeros (space
codes). Alphabetic items used as literals will produce
the format deseribed above.,

A T T U T T T T T O O
o Mpaeie’ Ll

o Mol b
In the example above:

'PAGE' is equivalent to 101010 010100 0110106 011000
'Z' is equivalent to 060000 000006 000000 111100

(b) A multiple word item (maximum 78 characters) may
be generated in six bit notation by enclosing the desired
characters within apostrophes. The resultant object
code will be left justified. The left hand apostrophe in
this case functions as an operation code.

T S 5 S O N T O U T O R U Y O I T O 1—L+J—L
Y Mfxlee o/ Lo Lo Lo Lo oo b booe b Do e boon b badd u__L}_L‘L
1

ol b b b b b b b b b b b b b b b e b e
tﬁﬁfﬁmﬁu¢hmm@mmhmMM4¢MMMMmﬂ&muijMﬂMﬁMﬁ¢L&mML¢QMMMmMQ4#qmmwmnﬁl

In the above example:

'"FILE ID' will generate the following bit pattern for the words:
011001 011100 100110 011000 000000 011100 010111 000000

7) Floating Point Numbers: Floating point numb,ers. may pe
represented within an elementary expression by including
a decimal point (period) within the desired decimal value.
The converted value will be in standard UNIVAC excess
50 floating point format with a ten digit mantissa and a

two digit characteristic.

S T NN TN SN SN WS U S U N U S S S ' "

Lt[ksuubxlllll1lnxilll

| !]

In the example above:

3.14 is equivalent to 513140000000 in 4 bit BCD digits,

REVISION: SECTION:

o

11

UNIVAC IIT UTMOST L

DATE: PAGE:

Feb 1, 1963

[,
[

5)

10)

Field: A field may be referenced as an elcmentary
expression by writing a field label followed by an expres-
sion enclosed in parentheses representing the address

of the partial word. The field item is discussed in
¢reater detail in the section on Assembler Directives,
FLD directive.

PR VAT U TR N N S N W NN A A B A

L L uEleIL(xJAJLquLJJJ Ll

i [! | i
In the example above:

EXT represents the bit control pattern for field selection,
(VALUEL) represents the location from which the field
will be selected.

Parameter: A parameter may exist as an elementary
item by following the procedure label with cne or two
expressions enclosed in parentheses. The parameter
item is discussed in detail under Assembly Directives,
PROC directive,

Line: An entire line may exist as an clementary item by
enclosing the line within parentheses. The assembler
will generate the value of the word that the line would
generate if it existed as a separately coded line.

A U T T T N T T Y O T 0 Y O

_LJ_i_[(J_ILlQMILL]_LLJ_JJ_l
N e e

In the above example:

("DON'") would generate the constant DON in six bit
alphabetics preceded by binary zeros in the same
manner that 'DON' would on a symbolic line by
itself,

11
UNIVAC IIT UTMOST oare. PAGE:
July 1, 1962 12

b. Operators

An expression may consist either of an elementary item, or a
series ol elementary items connected by operators as shown
in the table below:

+ Arithmetic Sum

- Arithmetic Difference

* Arithmetic Product

/ Arithmetic Quotient

++ Logical Sum (OR)

-~ Logical Difference (EXCLUSIVE OR)

*x Logical Product (AND)

// Covered Quotient (a//b = at+b-1)
b
= Equals

> Greater Than
Less Than

t aX+h = a*l()b

A

T a*lo'b

1) + Arithmetic Sum : The arithmetic sum operator may be
used to combine two or more items. The assembler will
sum the integer values of the items and the resultant
integer value will be utilized in the resulting expression,

o A L e b b
g L Lo b Lo d

In thé abové examf)les:

7 + 3 would produce the integer 10 in binary.
$ + 15 would produce the current value of the location
counter incremented by 15 in binary,

2) - Arithmetic Difference : The arithmetic difference
operator may be used to subtract one item from another,
The assembler will subtract the integer value of the
second item from that of the first, and the resultant
integer difference will be substituted in the expression.

UNIVAC III UTMOST

REVISION: SECTION:

I

DATE: PAGE:

July 1, 1962 13

3)

I W U T (U SRS TN S SN SN N N S |

| Il
BRI = RENE R NN
Lm0
ol = o b b
| |

In the above examples:

$ - 3 will produce the current contents of the location
counter less three.

VALUE - 10 will produce the integer equivalent of the
label "VALUE" minus ten.

7 -4 will produce the integer three.

* Arithmetic Product: The arithmetic product operator
may be used to multiply one item by another producing
the arithmetic product. The assembler will multiply the
integer value of the first item by the integer value of the
second item and the resultant integer value will be sub-
stituted in the expression,

[U N RS NN N DU T U T TN N (R S T S v |

iz Lo Lo v by

1H|b‘mall¢||||1|[1LLJ_L

4)

| | | | |
In the above examples:

7*3 will produce the integer value 21,
$*2 will produce an integer value equivalent to the current
contents of the location counter times 2,

/ Arithmetic Quotient: The arithmetic quotient operator
may be used to divide one item by another producing the
arithmetic quotient. The assembler will divide the
integer value of the first item by the integer value of the
second item, and the resultant quotient will be utilized in
the expression. The remainder is discarded by the
assembler,

REVISION: SECTION:

UNIVAC III UTMOST I

DATE: PAGE:

July 1, 1962 14

6)

FURES GO NN U N NN GRS WU SUUN ST SR SR SRS SIS UM SUNSS SUURN S S— —

|ll|-#|¥l"7‘|/|’ﬂ;|l|1||11|||

g sselas L b b

Ui s v Lo b by

In the above examples:

44/4 will produce the integer value 11.

$/1024 will produce an integer value equivalent to the
number of possible index registers required for area
addressing in the program up to this point in the program.
33/2 will produce an integer value of 16 (remainder has
been discarded).

++ Logical Sum (OR): The logical sum operator (OR)
may be used to logically sum the binary equivalents of
two items, The assembler will logically add the two
values and the resulting logical sum will be utilized in
the expression,

11||11||||11|l|lll|l|lL

TR Tk T

In the above example:

'A' in six bit code is 010100
'3' in six bit code is 000110
Logical sum generated 010110

-- Logical Difference (EXCLUSIVE OR): The logical
difference operator may be used to obtain the logical
difference between the integer values of two items. The
assembler will perform an EXCLUSIVE OR on the two
items (where a bit is present in corresponding position
in both items, the result is binary 0, where no bit is
present in corresponding positions, the result is binary
0, where a bit is present in either one of corresponding
positions, the result is 1). The resultant integer is then
utilized as the value of the expression.

REVISION: SECTION:
I
UNIVAC IIT UTMOST -
DATE: PAGE:
July 1, 1962 15
oo bera b b b by
AN RN A
i (1 \ . ,
In the above example:
'V! in six bit code is 111000

7

8)

'T! in six bit code is 110110
Logical difference is 001110

** Logical Product (AND): The logical product operator
may be used to AND (Logically multiply) the integer

value of one item by another. The assembler will logically
multiply the two values and the resulting logical product
will be utilized in the expression.

b b b e b b

IR EEAAL AR
']

In the above example:

'V' in six bit code is 111000
'T! in six bit code is 110110
Logical product is 110000

a+b-1
b
operator may be used to divide the integer value of an item
by the integer value of a second item or expression, The
effect is the same as adding one to the integer value of the
quotient in straight division (A/b) if there were a remainder.
The resultant integer will be utilized in the expression.

IJlllllIlILill}llilil,

// Covered Quotient (a//b =

): The covered quotient

| (g-S7hR7D /i /0l2% | |
T |
In the above example:

($-START)//1024 (where START is the first location
required by the program and greater than 1024) will
produce a covered quotient equivalent to the number
of index registers required for area addressing up
to the point where the expression appeared,

UNIVAC III UTMOST

REVISION: SECTION:

2

II

DATE: PABGE:

Feb. 1, 1963

16

9)

= Equal: The equals operator may be used to compare
the integer values of two items or expressions. If the
two integer values are equal, the value of the resultant
field is a binary 1. If the two integer values are not
equal, the value of the resultant field is a binary 0.

Ll v e e bbb gt

10)

LLJ.:ulmlglall'Illllll

In the above example:

If $ = 7083, the value of the expression is binary 1.
If$ * 7083, the value of the expression is binary 0.

> Greater Than: The greater than operator may be used

to compare the integer values of two items or expressions,

If the integer value of the first item or expression is
greater than the integer value of the second, the value of
the resultant field is a binary 1. If the first value is less
than or equal to the second, the value of the resultant
field is a binary 0.

Ll b g

11)

‘_i_l_lﬁlﬂgmnlﬂa&lrlllul
i I I [

In the above example:

If the value of AMOUNT is greater than 2, the expression
value is binary 1, otherwise it is a binary 0.

<€ Less Than: The less than operator may be used to
compare the integer values of two items or expressions,
If the integer value of the first item or expression is less
than the integer value of the second, the resultant field
value is binary 1. If the first value is greater than or
equal to the integer value of the second, the value is
binary 0.

N Y S O T T O T O A |

L eouwnr&s |

N T T

REVISION: SECTION:

1T

UNIVAC IIT UTMOST

DATE: PAGE:

17

In the above example:

If the value of COUNT is less than 5, a binary 1 will be
generated, otherwise a binary 0 will be generated.

12) *+ Positive Exponent: The positive exponent opcrator
may be used to create a two word floating point constant
in excess 50 notation where a*+b is equivalent to a*10b.
Both words must be excess three binary coded decimal
numerics.

PR SR WS VG SRR WA S NS T U N SN VS N N SN U SO S AU 0 U S NS §

L Rueewtsli s L]
| | | | I

In the above example:
:10, 0*+:15 will produce 6710600060000
13) *- Negative Exponent: The negative exponent operator

is similar to the positive exponent operator in that it
will produce a floating point word in excess 50 notation.

N N A O T U T I

] H l§|.lmjh—1!b||1|111L
111111111111“|i|111|11.L

In the above example:

:15, 0*%-:3 will produce 491500000000 as the integer equiv-
alent in standard UNIVAC excess 50 floating point format,

In all of the foregoing cases where items are connected by operators, if
the value produced by an expression is a negative integer, it will be represented
by a 2's complement unless the operation field of the line contains an EQU directive
or, in some cases, the operation field is + or -.

REVISION: SECTION:
3 T

UNIVAC IIT UTMOST

DATE: PAGE: 17a

Feb. 1, 1963

c. The mode of each item within an expression can be
different. As the assembler evaluates each item a
determination of the mode of the result is made, The
determination is contingent upon the operator used, as
well as the mode of each item within the expression,

The operators are listed below grouped by function:

GROUP OPERATOR DESCRIPTION
= Comparison
A > Comparison
< Comparison
+4 Logical Sum
B - Logical Difference
ok Logical Product
4 Arithmetic Sum

Arithmetic Difference

C * Arithmetic Product
/ Arithmetic Quotient
// Covered Quotient
*4 Positive Exponent

D * Negative Exponent

The following chart depicts the resulting UTMOST mode
obtained by combining items of like or unlike mode using
any given operator,

UNIVAC IIT UTMOST

REVISION:

SECTION:

pate: Oct, 1, 1962

PAGE:

MODE OF
FIRST ITEM

Any

Any
Binary
Binary
Decimal
Decimal
Any
Tloating
Any

OPERATOR
GROUP

gaocaacaazy

MODE OF
SECOND ITEM

Any

Any
Binary
Decimal
Binary
Decimal
Floating
AxHy

Any

MODIE OF
RESULT

Binary
Binary
Binary
Binary
Binary
Decimal
Irloating
I"loating
Floating

UNIVAC III UTMOST

REVISION: SECTION:

i

DATE: PAGE:

Feb. 1, 1963

18

5. Data Word Generation

The UTMOST assembly system provides three means of generating
data words other than expressions. These data words consist of
Increment and Compare Words, two word constants, and words with
a plus (+) or minus (-) operation field. The last category provides
the ability to generate constants, indirect address words and field
select words with or without index registers.

a,

Increment and Compare WORD, ICW

The increment and compare word is used to prepare a word
suitable for incrementing and comparing an index register
(with the IX and IXC instructions),

The Increment and Compare word is written with ICW in the
operation field of the line, followed in the operand field by two
expressions, e and e_. The first expression, e_, represents
the comparison amoun% and the second expression, e_, repre-
sents the increment., The format of the generated word is
illustrated below:

24 10'9 1

ICW g e e,

Lt ettt b b et gl

In the above example:

ICW informs the assembler that this is an increment and
compare word., $+ 30, the first expression represents the
comparison amount;1, the second expression, represents the
increment,

Two Word Constant Generation, TWC

A two word constant may be generated by placing TWC in the
operation field of a line, and the constant in the operand field,
This symbolic line must have a label. The assembler will
generate the value of the expression in the operand field, right
justify filling with binary zeros the resultant value in the two
word field, and assign an address to the label. The sign of
both words is identical. The left half of the two word constant

UNIVAC IIT UTMOST

REVISION:) | secTiON:
% 11
— e _Nt;;;:—— S
I'eb. 1, 1963 | 16

may be addressed by using the label, the right half by using
the label plus one,

v e bbb
Rol i 7we 110l]y
Lllzlu!a,_J_._z,_LLxlillf[llLJ_

R | rmel | NPacE wo.l/ |

In the above examples:

ZERO TWC 0
Zeros,

will produce a two word constant of binury

HDR TWC 'PAGE NO,' will generate a header line for
editing purposes.

The first example may be referenced by ZERO+1 and a two
register indicator in the '"a" field of an instruction, the second
by HDR+1, and a two register indicator in the "a' field.

+ or - Operation Field: A + or - operation field plus froem one
to four expressions in the operand field may be used to generate
specific constants consisting of a one word constant of datum,
an indirect address word, a field select word without index
register notation (or implied index notation), and a field

select word with specific index register notation,

1) One word data constants: One word constants may be
generated by placing a + or a - in the operation field
followed by one expression in the operand field, It is
not necessary to leave a blank between the + or - sign
in the operation field and the operand field,

REVISION: SECTION:

UNIVAC III UTMOST 1

DATE: PAGE:

Feb. 1, 1963 20

2)

DATAY | |
NN ENEE N

80 .11,

In the above examples:

A will produce a one word alphabetic constant in six bit
code containing the word DATA .

B will produce a one word constant containing the current
value of the location counter in binary, right justified
with preceding binary 0s and a negative sign.

C will produce a positive binary constant containing
the address plus ten of label "VALUE",

D will contain a negative constant in excess three binary
coded decimal notation preceded by binary zeros of the
value ""5280",

Indirect Address Words: Indirect address words may be
generated through the use of a + or - operation field plus
two expressions in the operand field, The first expression
will be generated as a fifteen bit UNIVAC III address, and
the second expression will be generated as a four bit index
register code. The sign of the word will be the sign in

the operation field.

N N A A I AT

J_MAL&&IUM,LILQLLJI_L{J
In the above example:

An indirect address word will be generated containing

the fifteen bit address of the expression 'DATA+10! in the
least significant fifteen bits of the word, Index Register
#9 in the four most significant bits of the word, and the
sign of the word will be positive, indicating that no chain-
ing of indirect addresses is desired.

UNIVAC IITI UTMOST

REVISION: SECTION:

i

DATE: PAGE:

Feb. 1, 1963 21

3)

4)

Field Select Words: Field select words may be generated
through the use of a + operation field plus three
expressions in the operand field, The first expression
will be generated into a five bit left bit control (plus
binary three) integer indicating the left boundary of the
field to be selected. The second expression will generate
the right boundary of the field, also as a five bit binary
integer plus binary three,

The third expression will generate a ten bit binary address
for the word(s) from which the field is to be selected, The
sign of the generated word must be positive,

ol b b b

In the above example:

The first expression will generate 01111 (binary 15) as
the left bit control, the second will generate 01000
(binary 8) as the right bit control, and the ten bit address
equivalent to '"VALUE' from the third expression,

Field Select Words: As in 3, above, a field select word
may be generated using four expressions in the operand
field following a + operation field, The first express-

ion will generate the left bit parameter, the second ex-
pression the right bit parameter, the third expression the
ten bit 'm' address, and the fourth will be used to generate
the index register designator.

lllllllll]llllf’llll

L gl (valboed]]
.J_LJ‘_H__LLQVJ.E’JQ_’M il

In the above example:

The first expression (the second line) will generate bi-
nary 15 as the left bit control, the second will generate
binary 8 as the right bit control, the third will generate
a ten bit address equivalent to '"VALUE', as modified
by the index register, 8, specified in the fourth ex-
pression.

UNIVAC IITI UTMOST

REVISION: SECTION:
1 n
DATE: PAGE:
August 24, 1962 22

Mnemonic Instructions

The UTMOST assembly system utilizes a series of mnemonic instruct-
ions corresponding to the octal machine code instructions in object
coding which are recognizable by the computer. The mnemonic opera-
tion codes describe the function of the instructions, thereby removing
the problem of learning the octal operation codes, or their binary
equivalents., In some cases, a combination of octal operation code

and bits in the AR portion form instructions., Mnemonics have been
created to save a programmer from writing or knowing the parameter

AR bit configuration for n.ost of these.

UNIVAC III's instruction word consists of a 24 bit word with the sign
in bit 25 used to indicate either indirect addressing or field selection,

The format of the word on a bit basis is illustrated below:

24 21 20 15 14 11 10 1

where ""b" indicates the index register designator,
""op" the operation code,
"a'" the arithmetic register(s) designator, and

"m'" the ten bit area address of the operand,

Since UTMOST provides semi-automatic insertion of area index
register assignments, it is unnecessary to write a '"b'"' designator

in many cases. (See Use Directive, Section II, 8c)

The order of writing a symbolic instruction line has been altered
from the hardware format to provide greater convenience in pro-

gramming, The format is:

op a,m,b

REVISION: SECTION:

UNIVAC TIT UTMOST : I

DATE: PAGE:

Feb. 1, 1963 23

Type 0 Instructions: Type 0 instructions have three fields repre-~
senting the "a", "m'", and "b" fields of the instruction word, re-
spectively. The sign of the instruction will be + unless the "m"
portion of the instruction is preceded by an asterisk indicating

indirect addressing or field selection,

\
. d [ERE RS

OR | 1111 | mEl“llﬁh&)l bl
e 'QA I LAT ﬂgmﬂﬂeﬂﬂlmuhul

In the above illustration:

LA, OR, and SA are mnemonic instruction codes of type 0 category,
requiring in each case the "a", '""m'", and "b" fields. (The "b" field
may be omitted, if the USE assembler directive has been inserted in
the program prior to the assembly encountering these instructions).

Type 1 Instructions: Type 1 instructions have two fields representing
the "m'" and "b" portions of the instruction word, respectively., The
sign of the instruction word will be + unless the "m'" portion of the
instruction is preceded by an asterisk indicating indirect addressing
or field selection,

_@JEJ&DJ}LM,LL_Lulllululllulu

cet b b Lo Lo b b 1
| areAlveE -l ol b L L

In the above illustration:

J is the mnemonic code for the Jump instructions, the first instruct-
ion utilizing direct addressing, the second indirect addressing.

7. Line Item

A line item is an instruction line, form reference line, or data
word line without label field and without leading or trailing blanks,
enclosed in parentheses.

Coo o oo b b b b b b

JLIMl,__LdTIIIO])Ill]llllllllllllllllllL_

a2y (wasikd 1 0y lay 0, 7,10, b0l 10y o, 201 111
LA gy (Do),] oo oo b b

! 1

REVISION: SECTION:
2 il
UNIVAC III UTMOST
DATE: PAGE:
Feb., 1, 1963 24
In the above examples:
LA 1, (J0) The last expression is an instruction line written as

line item.

LA 2, (MASK 0,0,0,7,0,0,0,0,7) If MASK is the tag of a form
directive the parenthetical expression is a form
reference line written as a line item. (See Form
Directive, Section II, 8d)

LA 4, ('DON') The parenthetical expression ('DON') is a data
word line written as a line item.

In each case, the assembler will generate an address which will be

the address of the translated parenthetical expression. The translated
parenthetical expression is called a literal. If the literal is identical
to any other literal, the location assigned is the location of the previous
literal, thus eliminating duplication.

When a line item appears in the address field of an IX or IXC instruct-
ion and has two expressions, it is evaluated as a data word with ICW
in the operation field.

1|(JlllJl_11|lJl|Llll
;ggj 8, (QIMI]'[;,,[IOZ L]

In the above example:

The assembler will generate an index register increment and compare
word equivalent to the same expressions in an ICW line.

A literal will be double precision if the line was a TWC line or if it
was a data line with one expression and the mode of the expression

was floating,

cia s b b bl
_JLﬁJ_LiBJ,L(IMg_EﬁZLl_uJ

In the above examples:

The first example will generate a two word constant (double precision)
in BCD format 000000000005,

The second example will generate a two word excess 50 floating point
constant where 3. 14 is equivalent to 513140000000,

UNIVAC IIT UTMOST

REVISION:

SECTION:

DATE:

Feb. 1, 1963

PAGE:

Assembler Directives

The UTMOST assembler provides the programmer with a series of
powerful operation codes in the form of Assembler Directives. These
assembler directives do not produce coding in and of themselves, but
effectively provide a programmed means of controlling the process of

assembly,

There are twelve assembler directives as shown in the table below:

Directive Purpose
1. EQU Equate operand value to label field,
2. RES Reserve memory locations.
3. USE Assign index registers for area addressing,
4, FORM Designate arbitrary word format,
5. FLD Specify Field Selection pattern,
6. END Designate end of program or procedure.
7. DO Generate designated line(s) of coding.
8. PROC Generate associated coding if referenced.
S. NAME Qualify procedural coding.
10. SET Set index register to assumed value,
11. GO Means of transfer within a PROC,
12, NACL Replace an UTMOST mnemonic,

None of the assembler directives except RES will cause the location
counter to be incremented., However, if coding is generated as a

result of an assembler directive, the location counter will be incre-
mented in the usual maanner. A detailed discussion of each directive

follows in this section.

REVISION: SECTION:

I

UNIVAC III UTMOST

DATE: PAGE:

Feb. 1, 1963 26

a. EQU

The EQU assembler directive causes the label in the label field
of its line to be equated in all succeeding references in the coding
to the value of the expression in the operand field of the symbolic
line, Thereafter, the label may be used in an expression, and
the assembler will substitute for the label the integer value of
the original expression in the operand field of the EQU line,

IRlHIEQIWIL&!I!I[IIllI
ﬂﬁﬂj_[ﬂglllq‘llhlllllll
M@Li@lwli&l[llllllli
AR lEQuu | i L]

In the above example:

The four arithmetic register names have been equated to the
binary values utilized in object code to address the respective
registers, After these four EQU directives have been encountered
by the assembler, the AR portion of an instruction may contain
the label names of the registers, and the assembler will recog-
nize them as the associated binary values. Accordingly, coding
referencing these registers could read as follows:

e b b b b b b |
| LAl ARUTARS, TEMPrl 1 Ll
ci e b b b b b bt

In the above example the contents of TEMP will
be loaded into AR1 and the contents of TEMP + 1
will be loaded into ARS3.

b. RES

The RES assembler directive causes the value of the expression
in the operand field to be added to the location counter. It may
be used to reserve a specific or variable number of locations
for input/output storage, or any other programmable purpose.

(If the expression in the operand field is negative, the value of

the expression will effectively be deducted from the location
counter.) If it is desired to address any location within a reserved
area, the label associated with the reserve directive may be used.

REVISION: SECTION:

UNIVAC TIT UTMOST B

DATE: PAGE:

Feb. 1, 1963 2

=1

booa bbb vy
Iﬂmﬂ&&ﬁﬂl_,iv.ﬂl&&_m_n_l
| | | |

In the abhove example:

The RES directive will cause 32 words of storage to be set
aside (32 will be added to the location counter), These 32 words
are equivalent to the 32 words or 128 characters required for
one line on the High Speed Printer.

tllll Pl oo b by l ll‘l,,i,,vL_J,
LA f3| lPlRlNTIﬂIRIEﬂrhﬂg-l o b b
SA [31\1 PRNTARER K3/ | | | L| Ll

The two symbolic lines reference words 15 and 16, and 31 and
32 in the reserved area respectively.

c¢. USE

The USE assembler directive is utilized to load index registers
with base values relative to the value contained in the location
counter at the time the USE directive is encountered by the
assembler. After a USE directive is encountered, it is not
necessary to indicate index register designators in the operand
field of a symbolic instruction line, since the assembler will
insert the values automatically, unless a specific index register
is desired by the programmer,

The USE directive, when encountered by the assembler will
assign the current value of the location counter to the first
index register specified in the operand field of the USE line,

the current value plus 1024 to the second, and so on through the
number of index registers specified in the operand field of the
line.

While it is possible to use more than one USE directive in a program,

the value assigned an index register by a USE directive is loaded into

that register at object time. Therefore, any particular index register
may not be referred to more than once in a USE directive, or series

of USE directives.

REVISION: SECTION:
I
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 28
L_l_L‘l__LLlii_i_Ll]Llll|’_L[11ALK4I;L

_MJJME‘_J_@LIL‘I#_LLLLLLJ J_L,J

In the above exainple:

Assuming that the location counter reads 4000 at the time the
directive is encountered, IR 5 will contain the value 4000, IR 6
will contain 5024, and IR 7 will contain 6048, IR's 5, 6, and 7
will automatically be inserted into object code where required
by the program, and no indexing has been specified by the
symbolic coding.

d. FORM

The FORM assembler directive may be used to define arbitrary
word formats, label these formats, and thereafter reference
the format by using the associated format label as an operation
code in the operation field. When the assembler encounters a
FORM directive, it notes the pattern specified in the operand
field. Thereafter, the expressions in the operand field of the
associated label, appearing as an operation code, will be inter-
preted and generated in the "form'" specified by the initial
directive,

In writing a FORM directive, the label field must contain a label,
the operation field must contain the directive FORM, and the
operand field must contain a series of expressions whose sum

is equal to 25, the total number of bits in a UNIVAC II word

(a single expression = 25 is illegal)

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PABGE:

August 24, 1¢62

Co bt b bt e Lo d

o .Mllmxllltluxlllul

lllllllllllltlIlllllLllllll‘lJllJli[
J

co o b b v b b b b !

In the above example:

The FORM directive has been used to define an object code
format equivalent to a UNIVAC III instruction word. When INST
is encountered by the assembler in the operation field of a
symbolic line, the expressions in the operand field will be
generated into a sign bit, 4 bit "b" field, 6 bit "op" field, 4 bit
"a' field, and a 10 bit '""m"" field,

mxbmmummdmﬁuauum

b b b b b b b
[+

coa b b b b by b by
In the above example:

The FORM directive has been used to provide a simple means
of writing a masking constant in octal mode equivalent to a
UNIVAC II word., Whenever the label MASK appears in the
operation field, the assembler will generate the appropriate
masking constant. As illustrated in the second line above, the
use of MASK in the operation field followed by the expressions
0,0,90,7,0,0,0,0,7 will generate a masking constant in the
following pattern: + 000 000 111 000 000 060 000 111,

UNIVAC IITI UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb. 1, 1963

30

€.

FJSMLLKIEIS!11|ll3124i|||l|1|l|||l

coa o b b b b b d
J_A_LJ_J_ELRML_LJ_LLQMMI&LQ_

| PRAIT | | |
L1 1| PIRINIT, Llllol.lé_L_m,uLMsuhlJL

In the above example:

The FORM directive has been used to define a printer control
word. The first example below the form directive will generate
a line of object code which will cause the paper to be spaced

5 lines, and printing to take place from octal location 1004
through octal location 1035. The second example will cause the
paper to be spaced 2 lines. The third example will cause the
generation of a line which will cause the paper to be spaced 6
lines, and printing to take place from the location specified by
the RES directive. In all cases interrupt is specified.

SET

The SET assembler directive may be used to arbitrarily indicate
to the assembler that a specific value should be assigned to an
index register for assembly purposes. The value assigned will
be utilized by the assembler for automatic index register assign-
ment until another SET directive specifying the same index
register is encountered by the assembler, The assembler does
not load the index register, that is the responsibility of the
programmer, The format of a SET directive consists of SET

in the operation field followed by two expressions, The first
expression mdicates the index register to be set, the second
expression indicates the value to which the register is to be set,

1 LSETLJJE)(&)J_L
LSy Iy
L e IIL!':;IIII L

In the above example:;

Index Register 15 will be assumed by the assembler to contain the
integer value equivalent to the current content of the location
counter, The index register load instruction following physically
will accomplish the actual loading of IR 15 with the value of $,

REVISION: SECTIDN:

UNIVAC III UTMOST 1

DATE: PAGE:

Feb. 1, 1963 31

f. FLD
The FLD assembler directive may be used to define the leftmost
and rightmost bit limits of a field, A FLD directive line must
have a label in the label field, FLD in the operation field, and
the operand field must contain two expressions defining the left
and right bit boundaries of the field, After a FLD directive has
defined a field, the label may be used followed by the label in
parentheses of the word(s) containing the field.

U.M]jllﬁL.QlHlQi,.(,.l,,;I
lllLlllllIllliIlllj_

VALY

In the above example:

The label LMT has been defined as a field label through the use
of the FLD directive. . Its leftmost bit is bit 12, its rightmost
bit is bit 1,

In the symbolic coding following, AR1 is being loaded from word
VALUE as defined by the field LMT; i.e., bits 1-12 of word
VALUE are being loaded into AR1.

g. END

The END assembler directive indicates to the UTMOST assembler
that the last line of symbolic code in a program or procedure
(PROC assembler directive) has been read by the assembler,

This directive is required both at the end of a program and of a
procedure, In the case of a procedure, the operand field is
ignored by the assembler., In the case of a program, the starting
address of the program should be placed in the operand field in
the form of an expression.,

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

August 24, 1962 32

Jlllllllnulnleulu;llmilulll

JlWlbemlllllllllllllllfllllllllll
- OFL PROGRAM | | | |

In the above example:

END indicates that the last line of coding in the program has
preceded the END directive, The label STRT will be the starting
address of the assembled program.

Ll by bbb b b e

| L EAD | END OF PRoCEDIVRE Y OPERAND | |
111!lif!lﬁletlﬁ.lILGMOMII||l|1;111

In the above example:

END indicates that the last line of coding of a procedure has
been read. The content of the operand field of a procedural
END directive is ignored.

DO

The DO assembler directive may be used to optionally generate
a line of coding a variable number of times. A DO symbolic
line consists of an optional label, DO in the operation field, an
expression in the operand field stating the number of times the
DO is to be performed, and any symbolic line.

The format of a DO assembler directive is:

label DO elA,A line
The expression, e_, must be followed by a space comma. The

comma should be tlollowed by a space unless the line to be execu-
ted is labelled.

The label associated with a DO directive varies from the usual
type of label in that, when referenced, its integer value will be

equal to the number of times that the DO directive has been per-
formed.

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb, 1, 1963

33

i.

The expression of a DO directive, e_, is a value which indicates
to the assembler the number of times the associated line is to
be generated. The 'line' may be any legitimate symbolic line

of coding, or any directive except EQU, FORM, PROC, NAME,
and END,

il e e b b e by e e e bt

Lt oo 1 (STRITFS0rad<B 1) s ¥, 51, 6

1n the above example:

If the value assumed by the label STRT plus 3072 (3 x 1024) is less
than the current value of the location counter, the value of the
expression is a binary 1. In that case, the USE directive on the
DO symbolic line will be executed, and three additional index
registers will be set up by the assembler. If the condition is

not met, the value is 0, and the USE line will not become
effective.

PROC

A PROC assembler directive informs the assembler that all
succeeding symbolic lines until an END directive is read, are
not to be assembled, but retained by the assembler until refer-
enced by some other portion of the symbolic program, When
the PROC (procedure) is referenced, the symbolic coding
associated with the PROC will then be assembled and inserted
into the object program,

A PROC directive line must have a label and the expression in
the operand field indicates the maximum number of lists of
expressions associated with the procedure, if any.* If no
expression is given, the number of lists is indeterminate., (No
expression is indicated by a period followed by a blank. Any
PROC reference line must have a period if comments are to
follow on the same line),

A procedure must be defined previous to any references to the
procedure,

*A discussion of PROC lists follows under the NAME directive.

REVISION: SECTION:
1 I
UNIVAC III UTMOST
DATE: PAGE:
August 24, 1962 34

v oo b Lo b b b

|

TRAN RO Ol Ly]

111[111V-m|111/5_)14Q;L8111|1111
| l
|

__L_L_LLx_J_J_LSﬂllx[lSM JQ;I 7 A
1!1‘1!:1“1116)1(”’!)[!'11] llll
4111111%‘1“%;(%)!1]lrllLll

l
LllllllEl“DIIIIlllllllllllll

L 11

}

In the above example:

The PROC line has the label TRAN (for TRANsfer), PROC in
the operation field and a 0 in the operand field indicating that
there are no lists associated with the PROC, The four lines

of coding following make up a very simple straight line four word
transfer routine followed by an END directive.

The previous procedure may be referenced by the following
symbolic coding:

S U A WS S SN W SN T S S U S N U G SN N SN A |

L X BlruJﬁ&EﬂﬁBMd)_u
L e 19y lCeuRREMT)! |
NEE !nq iy TRAM 11 |

N N

The DO directive line will cause the procedure tc be generated
five times, since the expression in the DO line is 5, effectively
generating the following symbolic coding transferring twenty
words,

UNIVAC IIT UTMOST

REVISION:

SECTION:

I

pate: Oct, 1, 1962

PAGE:

jo

LABEL A OPERATION A OPERAND

111Mﬁuldﬁ@“@yalllu1llulliﬂ
L S LSy le 1 Lo Lo Lo

X L By L
X 4 co b b bl

||||Lrﬂ||ml.1!0n1 e b b

1

'IISAlJlIIISI{‘IOI\IﬁllllIllllllllIJJ
Illfil&l!Lal\llt(”l)lllllellllllj_lj
Ll Jliﬂ)u_d_u e b
L A 0 ; Lo oyl
lllwllidl-{t, Oy 111[:1 by

Lol boa

_ bl bl
1111}\1nlﬁl}lla}ia11|1:|f!|1|1uj
_JJ_JM__'_JASL)J_Q)J_E_LI_I_LJ_LLI_I_L_I_J__LJJ
Mljllﬁlxlllfl‘nlll poa gl
JﬁXlsIllq“|lt(#D|JL|1|1||;1ll_u_;
NN NENE RN

MMW@ .

|i11£)(1]lgl;llI(Jﬂillllllllullu

NAME

A NAME directive, or several NAME assembler directives,
may be used to qualify a PROC procedure, A NAME line is
written at any point within a Procedure where an entrance
is desired. Each NAME line must have a label, and may

have an expression in the operand field,

A procedure may be referenced by placing any of the procedure

names or the label associated with the PROC line in the operation

field of the referencing line,

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb, 1, 1963 36

bbby by

FQQ |!&Q|Q}IIIIIIIL1
mg__l_l_l_uﬂlﬂlﬂlﬁll.’lllLll|i

F!DOLL_ ul“i.!lEI | l!l_l_k liJ L1 |]

In the above example:

The procedure is a routine to generate a floating dollar sign
edit routine, The two names applying to the routine are ADOL
and NDOL respectively, ADOL if the value to be edited is in
six bit excess three format, and NDOL if the value is in 4 bit
numeric format,

ol b b b e

ARRANGE | &A | Ty Ry 11

. 1 Abols | 1Jl|}14[r|:|1111¢

_Léﬂwm 63 il

The coding above references the floating dollar subroutine, Since
the alphanumeric variant of the routine is applicable to the data
to be edited, the subroutine is called by writing the NAME of

the alphanumeric version in the operation field, ADOL and since
there are no lists required by the routine, nothing need be
written in the operand field of the symbolic line, When the
assembler encounters this symbolic line, the floating dollar
procedure will be generated and inserted in the program at this
point,

Procedure Lists

Procedures may be written referencing lists of variables which
are submitted by the calling program. During the assembly of
the procedure, when variables are required, the assembler will
call upon the lists submitted with the calling line.

1) PROC symbolic line: As stated under the PROC directive,
the PROC symbolic line consists of a label, PROC in the
operation field, and an expression in the operand field
indicating the number of lists expected by the procedure
during generation. If comments are to appear on the
PROC symbolic line, a blank period blank should be used
to terminate the line.

REVISION: SECTION:

UNIVAC III UTMOST I

DATE: PAGE:

b, 1, 1963 37

2)

Lot bron b b g b

IIlllIlLllllll

In the above example:

The PROC line states that the procedure does not require
any lists.
bov g b g by bag by

0

\ ‘.]
In the above example:

The PROC line states that the procedure may have an
infinite number of lists.

List References within a procedure: When information is
required by a procedure from the calling program, it is
obtained by referencing the label of the procedure by an
expression in the operand field stating the procedure label.

a) To reference an expression within a list, the expres-
sion is written as: label (8, e) where label is the
label of the procedure, s is the number of the list,
and e is the number of the expression within list s.

Lt bbbt b e v bbby

Lo lex o]
llllllll IIIMOIVM%L_LJIMM%JLQL_LL

In the example above which is taken from the MOVE
PROC, line 34, page 60:

MOVE (4, 1) refers to list #4, lst expression in the
calling symbolic line in the main program. In this
case, it would be the number of an index register.

MOVE (1, 1) refers to list #1, lst expression. This
expression within the list provides the address of
the first word to be moved.

UNIVAC IOIT UTMOST

REVISION: SECTION:

1

DATE:

Oct. 1, 1962

PAGE:

38

b)

To reference the number of lists supplied by the
calling symbolic line in the main program, the
expression is written as: label where label is the
label of the procedure, The assembler will substi-
tute the number of lists currently submitted by the
referencing line as the integer value of the
expression,

Lot bttt tr et by oot bl

c)

L1 oo 1 | mowvlerd

t|||||1||.||...l--.'...|...|

LA L b

4

In the above example:

The condition MOVE > 3, refers to the number of
lists submitted by the referencing line in the main
program, If the number of lists is greater than
three an integer 1 will be generated.

If the expression had been written:
MOVE(1) > 3,

it would refer to the number of expressions within
the first list of the referencing line,

To reference the expression in the operand field of
a NAME line within a procedure, the expression is
written as: label (0, 0) where label is the label of
the procedure, and the value of '"label (0, 0)" is the
value of the expression in the NAME line by which
the procedure was referenced.

REVISION: SECTION:
3
UNIVAC III UTMOST —
Feb, 1, 1963 39
EpoL! | PRloe 1 Lo 1l L bl b
EA:QM-J_J_\MMEHlnoull|1f111[||1|111[111
leHMAlHEl||l|l|111|l|1ll|||1||ll|'
Cic bbb b b kv b b
MMW&.LLMEM&&W_L

3)

In the above example:

The operand field of the ADOL NAME line is 0, the
operand field of the NDOL Name line is 1, The two
DO lines reference the procedure label, FDOL,
with the expression FDOL(0,0) and the value of the
expression is a binary 1 in whichever line the
condition is met, causing the associated line to

be generated once. In this way, the assembler

has determined which NAME was used to reference
the procedure in the main program.

References to a procedure from outside the procedure:

The label of the appropriate procedure or qualifying NAME
line is written in the operation field of the referencing
line, It is followed by the lists of parameters required by
the procedure, if any.

LISTS

When referencing a procedure, the operand field of the
calling line contains the lists required by the procedure.
A list consists of a series of expressions separated by
commas, Lists are separated by blanks, The last list
must be terminated by a period blank if comments are
to be written on the line,

UNIVAC IIT UTMOST

REVISION: SECTION:

3 o

DATE: PAGE:

Feb. 1, 1963 40

Lttt e byl i

Aol L]

In the above example:

The floating dollar procedure requires no lists, therefore
the operand field of the calling line will be ignored by the
assembler.

N I O O Y T O O O O O

In the example above:

The MOVE procedure uses an indeterminate number of lists,
The example line calls for straight line move coding to be
generated through the use of the ST name in the operation
field. Three lists are submitted.

Mwwwm

In the example above:

The example line calls for iterative coding to be generated.
Four lists are submitted, The expressions within the

lists are separated by commas, the lists by a blank, The
last list is terminated by a period followed by a blank,

GO

The GO assembler directive provides the means of transfer to
a label specified in the operand field of the directive. This
direetive can only be used within a PROC. The operand label
of the GO line must be the label of a NAME directive within

the PROC.
DIRECTIVE FORMAT

LABEL op OPERAND
GO ENTER
ENTER NAME 0

In the above example:

GO will transfer to the NAME directive ENTER within the PROC.

REVISION: SECTION:

3 II

UNIVAC IIT UTMOST

DATE: PAGE:

Feb. 1, 1963 41

m, NACL

The NACL assembler directive will cause the UTMOST mnemonic
table to be altered. When a mnemonic has been replaced, the new
mnemonic must be used for the entire program, or until another
directive replacing that mnemonic is issued. The maximum length
of the new mnemonic is four alpha characters.

DIRECTIVE FORMAT

LABEL OoP OPERAND
Mnemonic to be inserted NACL Mnemonic to be replaced
TUN NACL J
SKIP NACL TUN

In the above example:

The NACL directive has been used to replace the mnemonic in the
operand field with the code in the label field. The J mnemonic of
the UTMOST table is replaced by TUN, TUN now becomes the new
mnemonic, The next directive states the method by which TUN may
be replaced by SKIP.

9. Sample Problem--Two Way Merge with Editing

The attached sample problem is deliberately simple and designed to
illustrate a number of the features of the UTMOST assembler for
UNIVAC III. It consists of a basic business oriented two way merge
between a master file and a change file. Where record identifiers
are identical, the change record is substituted for the master record,
and the dollar value of the change record edited by a floating dollar
sign editing routine in preparation for printing. In addition, the
floating dollar sign routine is generated by a procedural reference,
and all data transfers are accomplished by a MOVE procedure which
will provide iterative or straight line transfers at the option of the
user.

Input/output record advance routines are shown as subroutines, but
not included within the coding. (All input/output area addresses are
supplied by the record advance routines in Index Registers at the
time of return to the main program.,)

PROGRAM ol WY MERGE o /E0rT, PRINT _ ProcRAmMer _BIBS VARNEY DATE PAGE [_OF & PAGES
, LABEL A OPERATION A OPERAND a COMMENTS ralrs %
_ugum,i-:& @l [sen lwe rlmokixl REslrsineles Fow wlhies noorlesisoneg ,_L._l,l_LiJ_J_Ll celaidlan
LLMM&&M&M&BMA@LLMAL@LLJ NSRRI RN RS e

lweelr o Lo by b b b by b b e v by b b b b pria b
Ll Lll 11

eamﬂmumwmmmﬂm@mmmw,, l Lol
| 181, T 1 _

W&MM&;@M&%@MWNHHMM
_xﬂm_tz_,_lm_lﬂmgﬂl|d11¢i111llHJLHiJLl'LILlllxlll|||111|1»111 cloa b bia el
nIILLJllLJl_JJlJlJlIIIl[Illlllllllllllli!ll]lllil!ll?ll!IJI[! lllllll

L z | w0 R Merae PReEcEdUE 1| Lol il
el ogm gttt b b b b b b b b b b b b P b g

A ER WRITiriE] 16 paWsIEL R]
perFanm PREMN ED

8 gl |y ITE SslEquelncEs

DTl

e 8 AGRIEE | MmKE cuAnes BMD.
| g7t 0,8 o, 9 ol awslErT LMM&MI&WE&ML&LM&L&MW&M.

MLM&MMM&&M@M&MMMJ&MMJHMH Coa o by
| SN M | o1 Bxseine Masirer RIEcoRD gwPun AnviaNes CREADY 1 i Ll bl
J e | ReETuled Tlo PRocES wEXT RECeAD | | L Lo b b b i b
KA N1 i, 17 NS IER R f iz oz 111
MMMMWWIM.HHNIHMLLMH N NN
[sy eliveds | o ldyecuns Recdes Aean BusRidurcive | | Lol Lol vnn iy
_MM&CMM[LR&M@D[|1||111L11JLLL1|111|1111111]:ulnll Ll
WM&WMLLJ&EIM Do boon v b by IllllLJ
‘MMMJMMMMM_WMM&MTMLHMHMHMH NRENEN
MMMMMEM b b b b b b beaa L
MAMMM@WM:MMN b b b by b b b b
MWAM|'ii[e e e e b

ur.2807 CODING FORM inG. &

1SOWIN III DVAINN

(44

II

4]
5 2
. o
o]
o z
o+
1]
_ Do
H
©
[))
[\
bl m
> m
Q (3]
m 4
m 3
z

1SOWIN III DVAINN

PROGRAM s WAY MERGCE W/EDT/, PRINT PROGRAMMER BY 3 ARNZY DATE PAGEZL_OF 5L PAGES
, LABEL A OPERATION A OPERAND A COMMENTS ralrs "
ST Cuwledmng [11 / ' ; NN NS NN N
M&Llul’lulullllanmvautMar\mneabmmnlu1\|1|ixw1|:ui1||L1|11||1 Lol
arRRANGE o [Lo Lo b Lo bonn e b v by by v b b b e b
i L opg@3 Lo Lo | s wveelua e sl goelren Fwiael weils s Lo Lo ol
Al Lo i keweeamel e ebimode Digliiciael uﬂzl--wx,xzbmmijulnuhm4141111
Mﬁm&ﬁwwmmzsl pzeleae vasede Lol Lo by e P b
s ol sALER Bae WRizmAzms | 1| 1»11114 Ll

- rTH-LilllllllJlllllllltll;LlIllI!Ill'llll!llilLJJ_L¢JLlI\LJLJLi]J Ll
zn | o, rzi oy, 8 oLl L eemvslennd iandeandna wevie laastue How deciaeddl aMzanrlzem |11
Mmmn_bullui) A b b b b b e b b b b b b
_J_L_JEIMISIﬂMﬁ..lLlll1lllL1blh&)LWlJ‘l@Mlcl/?lﬁlﬂil‘lllllllll|llllitllltlJ_LLlLlLlLlll AREREN
RN SRR RERE NN RN E RNl SN RERE SRR EEE NENE ERNE SN SRR SRS FRNl RENE SRR NEN R
s bbb b b b b b b b b b Do e b b b b by
sl b e b b b b b b b b Do b b b b e b b
bt b b b b b b b b b b b b b b e b b
Lllll|1f||1||llLJL1LH_L|_111]|11|¢JJIJ_IJILIJIL1|~|IiJJulJ_lLlLlLLLLLLLJIIJHIJLL
LllllII}IIIJJillliIllLlllJll[lllll[|lIllIILJ[_IIJJ_LIJIilllle[LlLILJLJIJ 414!L1
|H_lxl!lxl1}11111LJLJI_LL|aillelll¢|¢1LlL|J!!1[l}llllilL{;lJlJl[JLl[lll4_11|1!
i_lLlllL]lll]]lllI|IJ_LIIII!IllILIJIIIII[IllLll_ll[lllJ_LiiJli!llJll!llLIIJ 1|||L1L
111]1llllllllllllll]lllllmll||llllIIILlLlLlllnlf1:11111!1!11111luLJI#J_l_I_lix
bbb b b b b b b b b b b b b b e b fean L
b b b b b b b b b b b b b b b b peaa b

JlL’lLl!lllil¢1]|1l1 J_LLLubxllJ_uli (1ILI|fxtniulliLlJ_xLl[lllll11 IIJJJIL
JILJLJJJIIIIIJJJIJIIlIlllllJlll Illill Lllll||¢:L11L11hu“11[11 11]1(1
b et b b b b b b e b b b b e b b

uP.2807 CODING FORM inc. Bk

5 m
> m s
e - o
cg o
% z
(s
o =
N
et
Ne]

[*1]
Y

T [+

» m

Q 9}

m d

n 3

z
N
5 =

UNIVAC IIT UTMOST

REVISION: SECTION:

iI

oaTe: (QOct, 1, 1962 PAGE:

44

10,

Sample Floating Dollar Sign Editing Procedure

The following coding represents a procedure designed to edit an 11
character field, inserting a decimal point, commas where required,
a floating dollar sign to :he character position immediately preceding
the first significant digit in the field, and a minus sign following the
right most digit of the field if the value is negative.

The procedure will accept either 6 bit alphanumeric value or 4 bit
numeric values, The coding generated is dependent on the name by
which the procedure is referenced in the main body of coding,

Usage:

The procedure expects the value to be edited to be present in AR's 4,
2 and 1 if in alphanumeric format, or in AR's 2 and 1 if numeric
format. To call the alphanumeric version, ADOL should be written
in the operation field of the line where it is desired to generate the
rouiine, If the numeric version is desired, NDOL should be written
as the operation field of the referencing line,

Reference to Coding:
The floating dollar procedure is found from lines 0006 to 0083 inclu-

sive, It should be noted that the assembler does not produce object
code in conjunction with the source code of a procedure, Object code

is generated at the point at which the procedure is called. The remaining
coding provides an illustration of calls on both versions of the procedure,

and was used to test the validity of the routine,

Line 0002 RES places the program in location 023333 and
following,

0003 EQUates label DON to location 037777, The value
edited by the ADOL call is stored in this location
by line 0087,

0004 EQUates label GENE to location 037770, The value
edited hy the NDOL call is stored in this location
by line 0090,

0084 This is the start of the routine to test the procedure,
This line and the following line place the value
004565930589 in AR's 4, 2 and 1 in alphanumeric
format.

REVISION: SECTION:

1 o

UNIVAC IIT UTMOST

pate: Oct, 1, 1962 PAGE:
45

0086 At this point the ADOL version of the procedure
is called. Following this line is the object code
generated by the call, This coding may be related
to source code of the procedure using the mnemonic
operation codes on the left of the print out,

0087 Stores the four word edited value, The lable DON
has been equated to a location which is not within
the range covered by the IR's specified by the USE
directive, For this reason, the reference to DON
is by indirect address in the object code,

0088 Loads the value 01234567 in numeric format in
AR's 2 and 1,

0089 Calls the NDOL version of the procedure,

0090 Stores the edited value,

0091 SLJ 0250 terminates the run by entering the EOJ
(end of job) location of the typewriter control

routine,

0092 END directive for the program, with label of starting
location of the run.

Following line 0092 are the literals produced by the assembler.

UNIVAC IIT UTMOST

REVISION: SECTION:

I

oate: QOct, 1, 1962 PAGE:

46

[PV §
vuue
voes
Uous
uuob

UOGeA

uyay
[SRUN17.
uvuo9g
Uulo
uull
uule
uuls
uuly
Gulh
Uule
uul7
vuln
uule
uozu
uou21
uuze
uu23
uo24
vu2b
tlee
vu27
uoes
vuga

vu30

17 w00

cauno

233338

ovuasrrr7

ouLa7770

. "

DoM
GENE

FooL

ADOL

NDOL

LOATING & PROC 0762+ 9 19 62
RES (023333
USE 15014913
oy vs77?rz?
EQU 037770

PROC 0

NAME U
NAME)
VO FDOLLO»0)I=0 » SA 7eTEMP+2
DO FNOLLOL0IZ1 » SAA 39TEMP+2
LA 14 TEMP+2
ASR 303
ANL 1 (OTT7770V0)
JP B4
OR lplr=v)
Or 1. (U22000000)
LA 22 TEMP+2
ASK b2
AND 2000777777
OR 29 (U2000U00)
LA 4rTEMP+1
ASK 401
OR 4 lue200U000)
SA 15, TEMP+S
LAE 1heTEMmpP
SA 1% TEMP4+S
LA 12, (U4200000000770000)
CPZ 4o TEMP
JE O $+9

LF 1br%l18,1sTEMP+3)

D E w BUCHER

UNIVAC IIT UTMOST

REVISION

SECTION:

I

paTte: (Qct, 1’ 1962 PAGE:

47

uu31l
pu32
vu33
U034
uu3s
0036
vo37
uua8
U039
uo4o
Uus)
uo42
uvug 3
YuLL
Lugs
ulub
ulu7
Ui4R
QU49
vos0
vubl
uus2
uub3
0054
0055
uuse
vus7

ouss

La
Crz
Jt

L+

LA
Pz
JE

LF

LA

Chz
JE

LF

LA
crz
JE

[

LA
CP2z
JE

LF

LA

BN

12, (04200000000 7700)
49 TEMP

$+5

15r* 112019 TEMP4+3)
ENQ

12, (0420000000077
Le TEMP

b+3

159k (A 1eTEMP+S)
BEnL

se)

e (U420000UNVOT770000)
22 TEMP 41

b+3
Tr*(18r 1 TEMP+3)
ENL

6 (O4200VUO000OT770N)Y
2 TEMP+1

B+9

Toex (L2901 TEMP+3)
ErMD

b LUH2Y000000077)
ey TEMP+ 1

$+5

Tr*x(0r1leTEMP+3)

END

40(0)

UNIVAC III UTMOST

REVISION: SECTION:

1 I

PATE: QOct, 1, 1962 PAGE: 48

UUS9
VUB0
VU1
LUB2
UU63
0U6L
vUeS
U066
uU67
V68
uU69
UU70
vu71
uu72
uu73
VO74
uuTS
uu7e
V77
vo78
0079
vU80
vusl
0082
vus3
U84
008%

uuse

17 uUuLl 23333 17 12 u3

17 Juul 23334 17 12

17 vlu2 23335 17 10 u7 0114

La 3, (0U8200000000770000)
CRZ 1eTEMP+2

JE O $+3

[Sr¥ LR 12 TEMP+3)
J END

LA 3.0042000000007700)
CPZ 1eTEMP+2

JE O $+3

LF 3e*x (12019 TEMP4+3)
J ENG

LA 3, (0420000000U77)
CPRZ 1»TEMP+2

JE O $+3

LF Sr*¥{0r 1y TEMP+3)

v N

LA 1e(030300)

C Le*x 1Ry 79 TEMP+3)
JE O B+4

LA 2 G0

LA 1eTEMP+3

J EMD

A SrtUUQLOUOUNO)

o END
TEMP RES 4
enp EMNu

START LA 3, (1059305897
LA gy (rUNune)

ADOL

UNIVAC IIT UTMOST

REVISION:

SECTION:

II

pAaTE: QOct, 1, 1962

PAGE:

49

LA
A
AND
Jb
OR

OK

ASL
M
OR
LA
ASK
OR

Y

LA
cez
JE

(4

LA
LRz
Jt

LF

LA

tPz

17
17
17
17
17
17
17
17
17
17
17
17
1/
17
17
17
17
17
17
17
17

17

gy 3

gy

ullubd

Uhuek

[VIRNVY 4

vyl

uoll

U2

Jul3

14

ulilh

uule

ull?7

JU20

izl

g2

Jue3

uu2y

a2y

yoee

G027

.50

gual

J0S2

33

US4

a5

vi3e

23336
23337
23340
23341
23342
235343
23364
23345
23346
23347
23350
23351
23352
23353
23554
23355
235356
23357

233640

N
w
w
[o)}
un

n
£}
¢
N
N

23363
23364
23365
23366
23567
23370

23571

17
Qu
17
17
17
17
17
Qu
17
17
17
(V] V)
17
17
17
17
17
17
17
-17
17
17
17
17

-17

17

17

12 16 nN134
42 03 0ood
lo 01 n241
by 03 0010
15 01 0pu2
15 01 0243
12 02 0114
42 06 0002
16 492 N244
ls U2 n2ub
12 ga 0113
42 04 0001
15 04 n24b
19 17 nlid
73 17 0112
10 17 n115
12 14 0247
56 04 0112
60 Us D030
14 17 02580
ue U0 0116
12 14 1252
bs 0u n112
60 UA 0035
14 17 02583
us 00 0116
12 14 nN285

bs U4 0112

UNIVAC IIT UTMOST

REVISION:

SBECTION:

I

DATE:

Oct, 1, 1962

PAGE:

50

JE

LF

LA
LA

CPZ

JE

Tp

LA
“tPz
JE

LF

LA
CrPZ

JE

LF

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

17

" 17

17
17
17
17
17
17
17
17
17

17

VU387
uL40
yo41
w42
uoe3
Vu4y
uu4ebd
uo4e
Vo7
Josu
Uob1
b2
U053
ulb4
J055
uos6
00s7
yu6u
ule6l
uoe2
uues
0064
uleb
Ju66
uwle?7
w790
uu71

gu72

23372
23373
23374
23375
23376
23377
23400
23401
23402
23403
23404
23405
23406
23407
23410
23411
23412
23413
23414
23415
23416
23417
23420
23421
23422
23423
23424

23425

17 o0
17 14
17 u6
17 12
17 12
17 %6
17 ou
=17 14
17 us
17 12
17 b6
17 ov
-17 14
17 ue
17 12
17 b6
17 o0
~17 14
17 ve
17 12
17 12
17 b6
17 60
-17 14
17 vue
17 12
17 56

17 ou

ub
17
o
10
06
02
06
07
a0
)
02
06
07
g0
06
02
06
07
on
o4
03
01
06
03
0n
03
01

06

0042
0256
0116
0257
nau7
0113
005U
0250
nLi6
0252
0113
00%5
0253
0116
0255
0113
noe2
0256
0116
0257
oau7
N114
0Q70
0250
0116
0252
0114

0075

UNIVAC IIT UTMOST

REVISIO

N:

SECTION:

I

DATE:

Oct, 1, 1962 PAGE:

51

LA
CPZ
JE

LF

LA

JE

LA

LA

J
w87
uuBe
uuB9
LA
ASR
AND
JP
OR
OR
LA
ASR
AND

OR

17
1/
17
17
17
17
17
17
17
17
17
17

17

17
17
17
17
17
17
17
17
17
17
17
17
17

17

Ju73
Y74
un7y
uni7e
uo7r7
VRNV
Jldl
yluz
Jylus
U104
Ulubd
ulleb
vwlu7
J1iv
U111
ulle
3117
J120
ulel
ulez
ul23
ulek
J125
ulesh
U127
U130
ulsl

uls2

23426
23427
23430
23431
23432
23433
23430
23435
23436
23437
23440
23441
23442
23443
23444
23451
23452
23453

23454

n
1
rs
o
o

23456
23487
23460
23461
23462

23463

n
[&]
£
o
£

23465

~17

17

17
17
-17
17
17

-17

17
17
17
17
17
-17
17
17
17
gu
17
17
17
17
17
ou
17

17

14
ubH
12
n6
oJ

14

us
19
12
/1
12
42
16
Y|
15
15
12
42
le

15

0

U3

01

us

03

yo

Ul

U1

6

U1

uo

03

uo

17

03

03

16

a3

01

03

41

u1l

G2

U6

02

u2

nNowa
nile
285
nits
ni1o2
0256
0116

n2Ay0

0261

0110
0262
0115
0116
0257
0116
0263
N2Ab
n232
11)32
nGos
noeul
nize
nau2
v2ud
na232
0002
n2a44%

0245

SA
LA

NDOL

15» LON

3, (301234b67)

REVISION: SECTION:
I
UNIVAC IIT UTMOST o L T
LA 17 0133 23466 17 12 04 0231
ASR 17 0134 23467 VU %2 g4 oynl
OR 17 Uldb 23470 17 1o ys n2uh
Se 17 V136 23u71 17 lu 17 62335
L AE 17 U137 23472 17 735 17 n239
SA 17 140 23473 17 L0 17 N233
LA 17 uld4l 23474 17 12 14 nN2u7
Crp2 17 U142 23475 17 Yo U4 02320
JE 17 2143 23476 17 ©J Uk N1ub
LF 17 uwldd 23477 .17 14 17 N2e6
J 17 U145 23500 17 us 0N 0234
La 17 Jl4E 23501 17 12 14 N2%2
CPRZ 17 ula?7 23502 17 hao U4 Np3Y
V]2 17 ulbu 23503 17 00 06 n1hHS
LF 17 u1bl 23504 <17 14 17 0267
N/ L7 0152 23L0b 17 Vo 0 N34
LA 17 6153 23506 17 12 14 0255
CPz 17 Uloh4 23507 17 bs U4 0230
JE 17 ulsb 23510 17 vU UA 016U
LF 17 vi1se 23511 17 14 17 0270
J 17 U1Is7 23912 17 us 00 n2=4
LA 17 uleld 23519 17 12 10 02%7
LA 17 ulel 23514 17 12 06 N247
Ccrz 17 ulb2 239515 17 56 02 0231
NI 17 w163 23b1e 17 00 U6 0166
LF 17 ulhd 23517 17 14 07 0266
v 17 u1td 235206 17 Uo 00 0234
LA 17 Ulek 23521 17 12 Uk 0282

UNIVAC IIT UTMOST

REVISION:

SECTION:

II

PATE: QOct, 1, 1962

PAGE:

(921
oo
e

Cpy
JE

LF

LA
Pz

wE

La
LA
Crpz
JE

LF

LA
CPz
JE

LF

LA

CPz

wE

LF

LA

JE

17
17
17
17
17
17
17
17
17
17
17

o167
G170
0171
U172
U173
U174
uwl7h
w170
w177

Q2ou

U2U5
U200k
UR07
U210

0211

U217
0220
v221

0222

23522
23523

23524

23b26
23527
23530
23521
23532
23533
23534
23535
23536
23537
23540
23541
23542
23543
23544
23545
23546
23547
23550
23551
23552
23553
23554

23555

17
~17
17
17
17

17

~17
17
17
17
17
-17
17
17
17
17
-17
17
17
-17

17

56
00
14
o
12
56
60
14
06

12

56
00

14

12
56
60
14
U6
12
56
60
14
06
12
b4

60

ne

Q7
00

06

0e
a7
0o

ou

01
06
03
00
03
01
06
03

Qo

06
03
00
01
01

06

uz27u

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE: 54

Feb. 1, 1963

LA

o
UOasn
U9l

cuey

17
17
17
17
17
17

17

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

17

242

0243

D=4

245

Jdzab

4250

U251

23573
23574
23575
23576
23577
236000
23601
23603
23604
23606
23007
23611
23612
23613
23614
23615
23616
23617

23A21

17 12

17 Un
17 12
17 Up
-17 19

oo 07

111ulag603101314

17

g1

03430710

Gu7I77700

onhuudoo2

22000000

uuT7r7TT??7

62000000

42¢0000000770000

76510115

0042000000007700
75710115

0Cob420000000077

75110116

ocoogogo

ouG30300

76524115

00004203

0eca7777

0224
0272

0250

31234567

7651N123%

SA 159GENE
Sl.d 0260

END START

UNIVAC III UTMOST

REVISION:

1

SECTION:

il

pate: QOct, 1, 1962

PAGE:

(9]

92}

17
17
17

17

0267
0270
0271

0272

75710233
75110233
76524233

goc37770

UNIVAC III UTMOST

REVISION: SECTION:

3 11

DATE: PAGE:

Feb. 1, 1963 56

11,

Sample MOVE PROCEDURE

This MOVE PROC is a generalized routine to move n words from
one area in memory to another. It is activated and appropriate coding
generated by a procedure reference line: one of the following

IT Label Label # of words IR, IR (4 lists)

ST1 Label Label # of words (3 lists)
IT 0,IR 0,IR # of words (3 lists)
ST1 0,IR 0,IR # of words (3 lists)

The above reference lines indicate that the sending and receiving
addresses may be given as a label or in an index register. If
iterative coding is called for but the number of words (list 3) is
not greater than twenty, then straight line coding will be provided.
This allows the number of words to be computed elsewhere in the
program and the routine to determine the better coding.

The MOVE procedure is composed of a number of procedures to
determine which coding should be generated and how much coding

is needed in the case of straight line coding.

Line 6 - 8

The opening lines are the definition of the MOVE PROC.

Lines 9 -12 PROC M

This PROC generates the coding necessary to move words in straight
line coding, but it differs from PROC K, in that the addresses of the
sending and receiving areas are in index registers. Notice the use of

the indexing feature of a DO ''label",

Lines 13 - 16 PROC L

This PROC is called for in PROC E where the non-multiples of 4 have
to be moved before the iterative process can commence.

Lines 17 - 20 PROC K

This PROC contains the two four word load and store lines for straight
line coding. Note the use of the indexing feature of the DO ''label" to
increment the m address. Each time the coding is generated the
COUNT will be one greater and when multiplied by four will give the
proper address increment.

REVISION: SECTION:

3 1I

UNIVAC IIT UTMOST

DATE: PAGE:

Feb, 1, 1963 57

Lines 21 - 24 PROC G

This PROC is used by both straight line and iterative coding procedures
to move non-multiples of four when the addresses were given in labels
rather than index registers.

Lines 25 - 28 PROC J1

This PROC accomplishes the same thing as PROC H, but the switches
here would call for a PROC necessary to create straight line coding
where the area addresses were given as labels.

Line 27 creates the number of four word loads and stores necessary
to move all multiples of four. The DO statement has a '"label" which

will be used by the M PROC called for in this DO line.

Lines 29 - 32 PROC H

These lines would be generated if straight line coding would be desired
and the index register contains the area addresses. The first DO
determines if there are any non-multiples of four words and generates
a PROC to move them,

Lines 33 - 42 PROC F

PROC F, generated by PROC D, moves the words iteratively; the
addresses having been supplied as labels. Note in this PROC that
the non-multiples of four words are moved at the conclusion of the
4-word-multiples.

Lines 43 - 56 PROC E

PROC E would be generated if there were more than 20 words to be
moved and the addregses to be manipulated were in index registers.
Line 44

First a test is made to determine and move any words not multiples
of four. PROC L would be called for and it has one list. The
expression given would create the correct bit pattern to be placed
in the AR portion of the word.

Lines 45 - 50

are used to manipulate the beginning address and create the proper
increment and compare control word for use in iteration.

Lines 51 - 55

comprise the entire coding needed to move four words iterating on

REVISION: SECTION:

3 II

UNIVAC IIT UTMOST

DATE: PAGE: 58

Feb, 1, 1963

index register given as containing the beginning area address.
Line 56
is the conclusion of a PROC, an END line,

Lines 57- 60 PROC D

This procedure makes the same test as PROC C but sets the switches
so that the coding generated will handle the words to be moved with
labels provided instead of in an index register,

Lines 61 - 64 PROC C

PROC C performs the test for the number of words to be moved, It

is generated in PROC A and therefore is a continuation of the coding
necessary to generate iterative coding with an address supplied in an

index register. If the number of words were 20 or less, then straight
line coding would be generated.

Lines 65 - 68 PROC B

PROC B makes the same test as PROC A, but the switches are
different as they must create coding to handle straight line coding,

Lines 69 - 72 PROC A

PROC A is reached by IT in the reference line, These lines further
determine whether the addresses (sending and receiving) were given
as a label or in an index register.

Lines 73 - 75

The DO statement on lines 73 - 74 test to see whether STraight line
or ITerative coding is called for. If ITerative coding is desired
PROC A will be generated, if STraight line coding is desired,
PROC B will be generated.

UNIVAC IIT UTMOST

REVISION:

SECTION:

II

DATE: QOct. 1, 1962

PAGE:

59

0001

000600

0uo3

U004
_buos

V006

__voo7

Lbuog

uooe

_bvig
BRLEE

_vviz

_...uo1e

__vbeu

w021

uu22

UL

vu2u
uizsy
vo2e
_ue27.
vuzs

vo29

0030

ooz

17 90U0 11000
. 00U20000
00U30000

L Quus777Y7

__LOuNT DO

_RES 011000
~USE 15

AN Fou_ 020000

Do MOVE(3,1)%%x3>0 » 6
MOVE(3e1) /4 0 K
END

H PROC

Do MOVE (3,11 %%3>0 » | (3%*M(

oUT FEQI 030000
TEMP EQII 037777
__MOVF PROC

.[I . . NAMF 0O

STy NAMF 1

M PROC B
LA 1592 4%AND=1» MOVE(1,2)
sA 15r 4%AND=1+,MOVE (D¢ 2)
END

L PROC
LA LE121) s MOVF (39 1) a1 s MOVF(192)

R B, SA _ LALe1)eMOVFL3eL)-1,MOVE(2,2)

ErMD

K PROC

N ka 15¢ MOVE(1,1)+t4xCOUNT=1)

SA 15¢ MOVE(2,1)+(4xCOUNT=1)
END

6 PROC -
LA G(lrl)s MOVF(19s1)4MOVF(3r1) =1
SA Gllerl)sr MOVF(291)4MOVE (301)-1

i END o R

Jl ___PROr

(3%x*AOVE (301)%3=-3)/244

UNIVAC IIT UTMOST

REVISION:

2

SECTION:

I

oate: QOct, 1, 1962

PABE:

60

- 003%
0036
U037
-~ GUSR
0039
L1 A
U
U0z
uoG3
LT
0045
LY
0047
0048

LV A

--JUBT
“0o52

0Usx

- 0054

- gUBE

0056

Q057"

ADD 0o

F ~ PRO

LX

LA

— e p

Ix

END

W

MOVE(3y1)/4 » M

C

MOVE (4¢ 1)y MOVE (Y

1)

CMOVE(4,2) s MOVE(Ds1)

15,

TUA5, T3y TMOVE(G,2) T T

MOVE(4e2)0 (4)

39 MOVE(G4,1)

T

00

=4

TMOVE (30 10%%3>0

G {3RMOVE (I, 117%3-3)/2+4

T MOVE (I, 1 #x350

I (3++MOVE (30 1)%3=3)/2+4

SX MOVE (1s2)e TEMP T T
LA Ry TEMP R
~ BA Ry (4% (MOVE (301)/0)) T
BRR Re 16 7 o
TUTORTT R oy T -
~SA Ry TEMP B B
TTLAT 154 30 MOVETTP2) T
SA 15, 3» MOVE(2+2)
TTIXC O MOVE(1.2)s TEMPT T
IX MOVE (20209 (4) 7
TJIL T gey T T T T T T T
T END T

D PRO

~

Do

MOVET3,y 10520 » F

UNIVAC III UTMOST

REVISION:

1 SECTION:

I

pate: Oct. 1, 1962 PAGE:

61

vu72
ou73s

TU07u
Bo7S
UU76
LX
LA

SA

1x
JL
LA
SA
0077

LA

17
17
17
17

17

17

uuou

UAUIVE

unu2

ungs

vuuus

uyouus

uoue

uno?

yolio

uoll

uule

11000
11001

11002

11603

11004

11005

-17

16

15

17

17

51
51
12

Lu

53

16
15
17

17

16 Nou6

15

05

05 N080

0%

16

10

onuy
oous
0on3

nona

oou7

non2

0051
0082

nns2

po
EMD
PROC
Do
Do
END
PROC

0o

Do

MDD

PROM

0o

Do

END

nn

oo

EMD

T

IT

TMOVE(3,1)<21 4 U1

MOVE (3, 11520 4+ E

MOVE(3,1)<21 » H

MOVE(L,102D » H

MOvEC1r 1) >N » Jl

MOVECL» 1)z » C

YOVE(L1e2)D>0 o DD

MOVECQ, 00 » A

MOVE (O UY=1 » R

IN OUT 50 lue1d

0vi4 0rt3 40O

REVISION: SECTION:
I
UNIVAC III UTMOST onres Oct 1, 1062 | mame 62
Ba 17 0U13 11013 17 24 10 0083
BRR 17 U0l4 110ty gb 44 10 N020
OR 17 yills 11015 17 15 10 nou?
TSAT 17 v0le 11016 <17 1u 10 nps2
LA 17 U017 11Ut7 16 12 17 0003
SA 17 U020 11070 15 13 17 nnn3
TOOIXC 17 0021 11021 <17 53 ik N0s2
X 17 v022 11022 17 52 15 nnu7
JL 17 U023 11023 17 60 0% 0017
TTU078 17 ub24 11024 217 12 17 0084 TSTIUUIN TouT 20
Y 17 0U25 11dp5 -17 10 17 nokS
LA 17 U026 11u26 ~17 12 17 0086
TSAT T 17 U027 11027 <17 19 17 noR7
LA 17 0030 11u3x0 =17 12 17 DORO
SA 17 0031 11031 =17 10 17 noel
TUATTTTTTT 17 uu32 11032 =17 12 17 noe2
SA 17 0U33 11633 <17 10 17 NuR3
LA 17 U034 11034 <17 12 17 004
TSR 0035 110y 17 107170085
0079 17 U036 11036 16 12 0w 0011 ST1 014 0,13 10
SA 17 0037 11037 15 10 05 no11l
LA T 17 V040 11040 16 12 17 0on3
SA 17 0041 11041 15 19 17 non3
LA 17 UU42 11042 16 12 17 oon?
SR 17 0043 11043 15 19 17 ono7
go80 17 o044 11usy Eetn
17 v044 1104y 60uy20n00
17 0045 1104500030000

UNIVAC III UTMOST

REVISION:

SECTION:

I

pate: Oct, 1, 1962

PAGE:

63

17 ulse 11046

17

17

17

17

17

7

17

17

a7

17

17

i

17

17

17

Vne2

U047 ltuaT

U050 11050

20060004

“o0uLULoUL

pou2ooel

U051 11051
u0b2 11052

U053 11083

wosH 11054

uobs 11085

uns6 11086

0057 11087

ulel 110k0

ulel 11Uml

yne3d 110R3

ule4 1luml

unes 110R5

17 11000

11us2

00U30061
00L37777
00LUUR20
GouZun0s
00030003
DOU20007
oou3ono7
0nuU20013
00U30N13
T00u20017
oru3on1y

00L20023

Touusau2y

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION: SECTION:

1 It

UNIVAC IIT UTMOST

DATE: PAGE:

Feb 1, 1963 1

III. PROGRAMMERS' REFERENCE SECTION

A. LINE CONTROL

The information content of a line to the assembler consists of the label,
operation and operand fields. The information content is normally terminated
when the maximum number of expressions required by the operation have been
encountered (or maximum number of lists in the case of a procedure reference).

There are two special marks which override the normal rule:

1. Continuation
Ifa '";" is encountered (outside of an alphabetic item) the current
line is continued with the first non-blank on the following line, and
there is no more information to the assembler on this line.

2. Termination
Ifa "." followed by a blank is encountered (outside of an alphabetic
item) the line is terminated at this point. If any more expressions

are required, they are taken to be zero.

A continuation or termination mark may occur anywhere on the line. Following
the information content of a line any characters may be entered.

B. LABEL FIELD

If a line is to have a label, it is written in the label field. A label is composed
of one to sixteen alphanumeric characters, the first of which is an alphabetic
character. The label field starts in column one and is terminated by a blank,
Except for the EQU, FORM, DO, FLD, PROC and NAME directives, the label
is equated to the current value of the location counter.

C. OPERATION FIELD

The operation field is up to sixteen characters in length, and may contain an
assembler directive, a mnemonic machine operation code, a label associated
with the FORM, PROC or NAME directive, or a data generating code. The
operation field starts in the first non-blank following the label field and is
terminated by a blank unless it consists of a + (plus) or - (minus) sign, in
which case the + or - signs is the operation field and the next column need

UNIVAC IIT UTMOST

REVISION: SECTION:

II

pate: QOct, 1, 1962 PAGE: 2

not be blank, If the operation field contains an assembler directive other than
RES (which increments the location counter), the location counter will not be
affected. If the operation field contains TWC, the location counter is incre-
mented by two. In all other cases, the location counter is incremented by one
after the line is generated.

OPERAND FIELD

The operand field starts in the first column following the operation field and
is composed of lists of expressions. Lists are separated by blanks, The
number of lists is one except in the case of a procedure reference line, Each
expression in a list except the last is terminated by a comma .

EXPRESSIONS

An expression is an elementary item or a series of elementary items
connected by the operators shown in the table below. An item may have
preceding blanks.

PRIORITY OPERATOR DESCRIPTION
b
1 x4 a*¢ b=a* 10—b
1 *m a*~b=a* 10
2 * Arithmetic Product
2 / Arithmetic Quotient
2 // Covered Quotient
3 + Arithmetic Sum
3 - Arithmetic Difference
4 ok Logical Product (AND)
5 ++ Logical Sum (OR)
5 - Logical Difference (exclusive OR)
6 = Equal a=sb is 1 if a=b
a=b is 0 if ag#b
6 z Greater Than a>»b is 1 if a»b

a»b is 0 if a<b

6 < Less Than a<b is 1 if a<b
a<bh is 0 if a=b

REVISION: SECTION:

UNIVAC III UTMOST

DATE: PAGE:

Feb. 1, 1963

w

In the absence of parentheses, rules of priority determine the sequence of opera-
tions performed within an expression. When two or more operators of the same
priority are used, the sequence of interpretation is from left to right. The levels

of priority are shown in the chart on the preceding page. These levels are illustrated
in following examples.

9 - 2 34++412*%6¢ the result is 7
((9- (2¥3))++12)**6 the result is 6

An expression may also have a leading + or - sign. Any negative value producec
by an expression will be represented by a 2's complement unless the operation field
contains an EQU assembler directive, or TWC, or, in some cases, if the operution
field is + or — .

If an expression represents an address, it may be preceded by an *, This will
cause the sign of the generated word containing the expression to be - (indirect

address or field select).

The various types of items and their values are given in the following table.

REVISION: SECTION:
111
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 4
="
TYPE FORM VALUE EXAMPLE
Label any label value assigned to label L
Location $ value of location counter $
Octal the digit 0 followed value interpreted as base 017
by octal (0-7) digits 8 (binary representation)
Decimal non-zero digit value interpreted as base 14
followed by decimal 10 (binary representation)
(0-9) digits
BCD : followed by value interpreted as :14
decimal digits base 16 (Excess 3)
Alphabetic ' (apostrophe) value of each character '"BOB’
followed by any in corresponding position
characters except
' followed by '
Floating decimal digits values represented in 3.14
followed by . internal floating point
followed by decimal format (always double
digits precision)
Field field label followed address of word OP ($ +2)
by expression enclosed selecting the field
in parentheses
Parameter procedure label or value of corresponding MAX (2, 1)
procedure label followed parameter as defined by
by 1 or 2 expressions the current reference
enclosed in parentheses (see Procedure Reference)
Line * (followed by line value of the word the line J$+2)

followed by)

would generate

All items in the above table will be right justified in their generated resultant field,

and leading bit positions will be binary zeros,

* See description of line item.

REVISION: SECTION:

III

UNIVAC IIT UTMOST

DATE: PAGE:

Feb, 1, 1963 5

F. MNEMONIC INSTRUCTIONS

The operation field may contain any of the mnemonic instruction names listed
in Appendix 1. The instructions are of two types. Type 0 instructions have
three expressions representing the '"a', "m' and '"b" fields of the
instruction respectively. Type 1 instructions have two expressions repre-
senting the '"'m'" and "b'" fields of the instruction respectively. The
absolute operation code is placed in the operation field of the instruction

word and, if the instruction is type 1, the absolute 'a' register code listed
is placed in the "a'" field of the instruction word. These fields are described
by the format:

24 21 20 15 14 11 10 1

The sign of the instruction will be + unless the first character of '"m'" is
* (indirect address or field select) or an implied literal is generated
(see Section I).

G. DATA WORD GENERATION

There are two methods of indicating a data word (other than an instruction).

1. Increment and Compare Word, ICW

This data generation operation is used to prepare a word suitable
for incrementing and comparing an index register (with the IX and
IXC instructions). It is followed by two expressions: e, repre-
senting the comparison amount, and e, representing the increment.

The format of the generated word is illustrated below:

24 10 9 1
ICW S e e

The sign of the word generated is the sign of e_ and bits 9 to 1

2
contain the magnitude of ey mod 512,

REVISION: SECTION:
! 11
UNIVAC IIT UTMOST e
DATE: PAGE:
Feb. 1, 1963 6
2. + or - Operation Field
A + or - operation field causes generation of a one-word constant

whose format depends upon the number of expressions in the operand
field. The formats generated for the corresponding number of
expressions are described below:

24 21 1
1 S e1 one-word daturn
24 21 15 1
2 S e2 e1 indirect address word
24 21 20 16 15 11 10 1
3 + l 0 el+3 e2+3 e3 field select woird
24 21 20 16 15 11 10 1
+ 3 3 - ~
4 + l e4 el+ 3 e2 3 e3 field select word

3. Two Word Constant, TWC

A TWC data generating word will actually generate two words. The
sign of both words will be the same and equal to the sign of the value
of the expression given.

LINE ITEM

A line item is an instruction line, form reference line, or data word line
without label field and without leading or trailing blanks, enclosed in paren-
theses. The line item has the value which the word generated by the line
would have unless the line occurred in the address field of an IX or IXC
instruction and has two expressions. In this latter case, it is evaluated as
a data word with ICW in the operation field. If the line is a data word line,
the leading + or - may be omitted. If an entire expression (except for
possible leading *) consists of such an item, the value of the expression is
the address of the cell containing the word generated by the line. The word
generated is called a literal. If the literal is identical to any other literal,
the location assigned is the location of the previous literal, thus eliminating

duplication.

REVISION:

SECTION:

IIT

UNIVAC IIT UTMOST

DATE:

July 1, 1962

PAGE:

A literal will be double precision if the line was a "TWC' line or if it was
a data line with one expression and the mode of the expression was floating.

An item within such an item can be of this type up to a level of 8 parentheses.

ADDRESSING

The programmer writes addresses as if they were 15-bit quantities and
normally is not concerned with the fact that they are 10-bit quantities. The
resultant object code generated depends upon which of the following cases is
satisfied (where m represents the value of the address expression and b
represents the value of the index expression of an instruction and x, are

the index registers assigned to the assembler by USE directives).

10 24 21 20 15 14 11 10 1
1 m < 2 S I b op a m
24 21 2
2. b =0, and 1 0 15 14 11 10X 1
S X, op a m-(%;)
10 ‘ i 1
m > 2" and
for some i
0<m - (xi)<21°
3. If neither 1 nor 2 is satisfied, the object code generated will be

identical to that which would have been generated if the programmer

had enclosed m,b in parentheses and preceded the left parenthesis

by an *. (This is an implied literal.)

4, If the address addresses a literal logcation,

O).

Y,

(implied or otherwise)
and does not satisfy 0 <y - (x.) <2 for any i, a range error flag
is set and the address contains y (mod 2

Note: In 1 and 2, Sis + unless the first character of m is *.

J. ASSEMBLER DIRECTIVES

Assembler directives supply information to the UTMOST assembler. There

are several assembler directives as listed below and described on succeeding
pages. Any labels referred to in an expression on a directive line must have
been previously defined (i.e., they must have previously appeared in the label

field).

UNIVAC III UTMOST

REVISION: SECTION:

111

DATE: PAGE:

July 1, 1962 8

[y
[==]

O oo 1S Ok WN
P

EQU
RES
FLD
FORM
END
PROC
NAME
DO
USE
SET

EQU

The EQU assembler directive causes the label in the label field
of its symbolic line to be equated to the value of the expression in
the operand field of the symbolic line.

FORMAT: label EQU e1

RES

The RES assembler directive causes the value of the expression
in the operand field to be added to the location counter.

FORMAT: RESe

1

FLD

The FLD assembler directive is utilized to indicate the leftmost
and rightmost bit limits of a field. It must have a label. The first
expression represents the leftmost bit limit, the second expression,
the rightmost bit limit.
FORMAT:

label FILD e_, €

1’ 72

USE FORMAT: op AR, label (m)

When a field reference item is used as an address, a field select
literal selecting the field is generated and the address is the
address of this literal. The sign of the instruction generating the
literal is minus.

UNIVAC III UTMOST SRS

REVISION: SECTION:

DATE: PAGE:

Feb. 1, 1963 ’ 9

6.

FORM

The FORM assembler directive is used to define arbitrary data
formats. This directive must have a label in the label field, and
the sum of the values of the expressions in the operand field must
equal 25. A single expression equal to 25 is not permitted.

The FORM directive permits the programmer to define arbitrary
word formats by calling upon the pattern specified with a line of
coding having the associated label in the operation ficld and the
appropriate number of expressions in the operand field.

FORMAT: label FORM e1 ceees
REFERENCE: label e , e_, ... €
1’ 2 n
END

The END assembler directive indicates to the assembler that the
last line of symbolic coding for the procedure or program has been
read by the assembler. In the case of a procedure, the operand
field is ignored. In the case of an entire program, the expressicn
in the operand field represents the starting address.

FORMAT: END e

PROC

A PROC directive line must have a label, and the expression in

the operand field indicates the maximum number of lists of
expressions associated with the procedure (if any). If no expres-
sion is given, the number of lists is indeterminate. (No expression
is indicated by a period-blank. In this case, every reference to the
PROC must have a period-blank following the last list).

A procedure must be defined previous to any references to the
procedure,

The PROC line is (optionally) followed by NAME lines (sec NAME
directive) and any valid symbolic lines up to and including an END
line. If there are n intervening PROC lines, the n + first END
line will terminate the procedure.

REVISION: SECTION:

2 1

UNIVAC III UTMOST

DATE: PAGE:

Feb. 1, 1963 10

Any labels defined within the procedure are considered not defined
outside the procedure unless the label is followed by an '*'", in
which case the label is treated as if it appeared in the referencing
procedure without an asterisk. If a label is referred to within the
procedure and is not defined within the procedure, the definition of
the label outside of the procedure (if any) is taken.

7. NAME

All NAME directives associated with a given procedure must follow
the PROC line immediately. A NAME line must be given a label.
Its operand field contains an expression.

FORMAT: label NAME e1

A procedure may be referenced by placing any of the Procedure
names (including the name on the procedure line) in the operation
field of a line.

8. DO
The DO directive is used to generate a line a given number of times.
If a label is present, the value of the label will be n the n'th time
the line is done. The expression in the operand field indicates the
number of times the line is to be done. The line may be any line of
symbolic coding except EQU, FORM, PROC, NAME and END.

FORMAT: label DO elA, A line of coding

9. USE

This directive is followed by not more than 15 expressions which
represent index registers. The first of these registers is assigned
the current value of the location counter. Succeeding registers are
assigned the value of the preceding register plus 210 These
registers are loaded with their assigned values when the program is
loaded and cannot be modified by the program unless a SET directive
is given referring to the register. The same index register should
not appear in more than one USE directive.

UNIVAC IIT UTMOST —
July 1, 1962 11

10. SET

The SET directive has two expressions. The first expression
represents an index register and the second expression represents
a memory address. The assembler will assume the value given is
in the index register from the point the set is given until another set
referring to the same register is given.

The register is essentially a "USE' register and the information
supplied by the SET directive will be used for addressing purposes
as explained under "ADDRESSING''.

Note that the assembler will not cause the register to be loaded.

K. PROCEDURE REFERENCE LINE

Lists of variables may be submitted when referincing a procedure. Expres-
sions within a list are separated by commas; lists are separated by blank
columns.

If the name of the procedure is P, within procedure coding, P refers to

the number of lists supplied by the current reference, P(e) refers to the
number of expressions in the e'th list and P(e,f) refers to the value of the

f'th expression of the e'th list (e and f are expressions). The list containing
the procedure name (operation field) is considered list 0 and is always present,
The procedure name may be followed by expressions. P (0, 0) refers to the
value of the expression on the NAME line by which the procedure was
referenced, and P (0, e) refers to the e'th expression in the name list (list 0).

L. INTER-PROGRAM COMMUNICATION

1. Definition

If a label in the label field is immediately followed by an "*'' and
the line is not within a procedure, this is an external label which
can be referenced by other programs, assembled separately, when
the set of programs is loaded. References to the external label in
the program which defines it are the same as for any other label.

2. References
If an address expression consists of a label plus or minus a constant,

and the label is not defined within this program, a reference to an
external label will be generated.

UNIVAC III UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION: SECTION:

1

v

UNIVAC III UTMOST

DATE: PAGE:

August 24, 1962

UTMOST INTERIM OPERATING PROCEDURES

Mount blank tape on logical servo #2,

Mount tape to be corrected on logical servo #1. (If there is not a tape to
be corrected, a blank should be mounted on servo #1.)

Set the printer at absolute line #1 and place blank cards in the punch unit,
Place the UTMOST binary card deck in the high speed reader followed by
one or more symbolic decks for assembly. Each symbolic deck must be
separated from its successor by a blank card.

Depress the CLEAR button,

Feed one card.

Depress the RUN button,

After loading UTMOST deck and after completing an assembly, computer
stops.

Depress RUN button for each assembly,

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION:

SECTION:

A%

UNIVAC IIT UTMOST

DATE:

July 1, 1962

PAGE:

INTRO.

Section V is a reprint of UT 2465, the UNIVAC III Central Processor

Manual, with illustrations changed to the UTMOST language and with notes

brought up to date by the latest information on the hardware aspects of the

computer. It is here included in order to make this manual as comprehensive

as possible.

UNIVAC III UTMOST

REVISION:

SECTION:

NOTES

DATE:

July 1, 1962

PABE:

UNIVAC III UTMOST

REVISION: SECTION:

1

DATE: PAGE:

August 24, 1962

1. UNIVAC 1l Data-Processing System

The UNIVAC®III System is a medium-cost, high
performance electronic data-processing system
designed and engineered to provide maximum pro-
ductivity at minimal cost in a wide variety of busi-
ness applications. The UNIVAC III System is
modular in its major components and flexible in
the variety and numbers of peripheral units which
can be attached. These components utilize solid-
state circuitry of proven reliability.

The high rate of basic internal speed in the UNIVAC
III System is enhanced by advanced concepts of
systems otganization and design logic and it is
matched with high-speed input-output units to per-
mit extremely efficient, low-cost-per-unit pér-
ductivity in the broadest range of commercial
applications.

A UNIVAC III Data-Processing System consists of
a Central Processor with magnetic core storage and
the arithmetic and control units, magnetic tape
units, and varying types and numbers of peripheral
devices. An expanded UNIVAC III System is sche-
matically represented in Figure 1-1. The general
specifications of these major components are
discussed in this section. Detailed functional
specifications and analysis of operations are
covered in the separate technical bulletins on
each component.

FEATURES

M Systems modularity providing the ability for
smooth and efficient expansion by the addition
of magnetic core storage, magnetic tape units
and a full array of punched card, punched paper
tape and printing peripherals.

m Sustained magnetic tape to magnetic tape pro-
cessing with concurrent peripheral operations
on-line.

®Rogi'tored trademark of the Sperry Rand Corporation

Up to 13 simultaneous input-output operations
paralleling computer processing.

The fastest magnetic tape system available,
providing a tape transfer rate of 133,300
alphabetic and 200,000 numeric characters.

Fast access, magnetic core storage available
in memory sizes of 8,192; 16,384; 24,576 ;or
32,768 words.

A 4 —microsecond machine cycle providing
internal processing speeds usually associated
with computers designed for engineering and
scientific applications (for example, LOAD,
ADD, STORE, BRANCH, and so on, are all
accomplished in 8 microseconds).

A multiple-word operand feature plus field
selection which allows the system to take fu:l
advantage of word addressable storage and of
the high incidence of short fields in data-
processing applications with no offsetting
disadvantages.

Bit-handling facilities which enable the UNIVAC
Il to be programmed to perform many types of
special manipulations and allowing the system
to uvtilize a variety of binary input-output codes.

A powerful programming logic based on a com-
prehensive single-address instruction repertoire
and including automatic index register modi-
fication, multiple word operands, field selection,
indirect addressing, and scatter-read—gather-
write tape operations.

A completely integrated software package con-
taining an executive routine capable of con-
trolling concurrent peripheral operations on-line,
a COBOL compiler, an advanced symbolic
assembly system incorporating macro-instruc-
tions and an extensive library of common rou-
tines, and a sort/merge generator as well as
the vusual complement of service and diagnostic
routines.

UNIVAC IIT UTMOST

REVISION: SECTION:
1 \
DATE: PAGE:
August 24, 1962 2

CENTRAL PROCESSOR

The Central Processor consists of five modules:
the memory unit, the arithmetic and control unit,
the general purpose channels, the power supply
and the power control. The functions of the first
three are described below.

Control Unit

The control unit contains a number of special
registers and additional circuitry whose func-
tions are to select in proper sequence, inter-
pret, and initiate the execution of the individual
instructions of the stored program governing the
operations of the entire system. The instruction
logic is l1—address and the instructions are exe-
cuted sequentially.

In addition to the normal sequencing, addressing,
and control registers, the control unit includes up
to 15 index registers, and a Memory Address Adder.
The Memory Address Adder is separate from the
adder of the arithmetic unit. The index registers
together with the special adder permit the system
to make the indexing cycle an integral part of the
instruction set-up cycle. Therefore, no additional
memory cycles are required for indexing. The
instruction execution cycle is explained in detail
in Section 3.

Arithmetic Unit

The arithmetic unit contains an adder for both
decimal and binary arithmetio, four arithmetic
registers, and additional circuitry to permit a
wide range of logical abilities.

Addition in the UNIVAC IIl System is parallel by
bits of a digit and serial by digits. Because the
digit rate through the adder is ! microsecond,
the serial additions of the six digits within a
word are completed in the 4—microsecond basic
memory cycle,

The four arithmetic registers can be linked in
all processing operations to permit the handling
of two- three - or four-word operands. Utilizing
this feature, the programmer is able to reference,
with a single instruction, 4, 8, 12 or 16 alpha-
betic characters; 6, 12, 18 or 24 decimal digits;
or 24, 48, 72 or 96 binary digits.

All additions and subtractions are automatically
checked by congruence arithmetic on a modulo 3
basis.

Magnetic Core Storage

The primary storage of the UNIVAC III System
is a ferrite core storage unit of 8,192 UNIVAC
Il words., Additional modules of storage can be
added to increase this capacity to 16,384; 24,576;
or 32,768 UNIVAC III words.

The complete memory cycle including selection,
read-out and regeneration of a word is 4 micro-
seconds.

The basic unit of storage in the UNIVAC III Data-
Processing System is a fixed-length word consist-
ing of 27 binary bits. Twenty-five information bits
represent data, instructions, or control words. A
twenty-fifth bit is used to indicate the sign in a
data word. The remaining two bits are used to check
the accuracy of the transfer of all information to
and from magnetic core storage.

UNISERVO 1lI
UNITS

SYNCHRONIZER AND TAPE

The UNISERVO* III synchronizer serves as a
communication device linking the system’s core
storage to its UNISERVO IlI tape units. When re-
ceiving or transmitting data, the Central Pro-
cessor is never linked directly with the com-
paratively slower UNISERVO 1II tape units, but
instead with the high-speed synchronizer.

Once a UNISERVO III input-output instruction is
initiated by the Central Processor, the subsequent
control of the operation is relegated to the syn-
chronizer. This device automatically carries out
the execution of the function specified, releasing
the control unit so that the Central Processor
continues with the execution of subsequent in-
structions.

Each UNISERVO III synchronizer has a pair of data
channels with separate control circuitry. The
result is that UNISERVO III tape reading and
tape writing proceed in parallel with one another
and with Central Processor computation (and with
operations of the general purpose input-output
channels which are introduced below). Data
entering or leaving magnetic core storage through
the high-speed tape channels requires a memory
cycle of 4 microseconds per word.

In transfers from core storage, the tape syn-
chronizer receives the 27-bit word and segments
the word into three 9—bit groups, called frames.

L
Trademark of the Sperry Rand Corporation

CONSOLE
TYPEWRITER

UNISERVO II
SYNCHRONIZER

T
f B H
!
x| > - ax
i | UNISERVO Il CENTRAL PROCESSOR UNISERVO Il 17
UNITS" SYNCHRONIZER CORE STORAGE - 8,192/32,768 SYNCHRONIZER [UNITS
— -« !
|
|
|
Q
(5] B |
HIGH-SPEED CARD-PUNCH o0 ADDITIONAL PERIPHERALS MAY
READER UNIT BE ADDED TO THESE CHANNELS
HIGH-SPEED PAPER TAPE
PRINTER READER
AND PUNCH

Figure 1—1. Maximum Configuration of the UNIVAC Il
System

1SOWIN III OVAINN

o]
% 2
Z o a
Gé 3]
17 z
[
() —
N
[
<
S
N
] n
> m
"] 0
m 4
: D
z

UNIVAC IIT UTMOST

REVISION: SECTION:

1 A%

DATE: PAGE:

August 24, 1962 4

The frames are transferred serially to the read-
write head of the specified UNISERVO III tape
unit. Each 9-bit frame is then written in parallel
channels across the tape. On transfers into core
storage the synchronizer essentially reverses its
role. Nine-bit frames are sensed at the read-write
head, transferred serially to the synchronizer,
composed into a 27—bit word, and the entire word
transferred to the magnetic core storage.

A single UNISERVO IIlI synchronizer with as-
sociated power, control and switching circuitry
can control up to 16 UNISERVO III tape units.
Two UNISERVO III synchronizers can be attached
to a UNIVAC III System, each operating inde-
pendently of the other.

The pair of data channels on each UNISERVO III
synchronizer is normally used to provide simul-
taneous read and write in parallel with internal
computation. As an optional feature, the write
channel may be enabled to read as well as write.
With this read-read feature installed, the write
channel will accept and execute read orders in
all respects as if it were a read channel. This
feature thus gives the UNIVAC IIl System, with
a single UNISERVO III synchronizer, the ability
to accommodate two simultaneous reads in parallel
with computation.

The UNISERVO III tape units are the principal
means of input and output to the UNIVAC III
System and will be the only input-output devices
used in the large majority of UNIVAC III pro-
cessing runs. They employ as their storage
medium MYLAR base, oxide-coated magnetic
tape of % inch width. The length of magnetic
tape on a single reel is 2,400 feet.

As noted above, data is transferred from the
synchronizer and recorded across the magnetic
tape in 9 information channels. A single 9—posi-
tion pattern of bits across the width of the tape
represents one frame and three consecutive
frames constitute a UNIVAC III word in magnetic
core storage. The information-packing density on
tape is in excess of 1,000 frames per inch, and,
during reading or writing, tape speed under the
read-write head is maintained at 100 inches per
second. These specifications provide an in-
stantaneous transfer rate in excess of 100,000
frames per second, representing over 800,000
binary digits, 200,000 decimal digits or 133,300
alphabetic characters per second.

.
MYLAR is a registered trademark of E.I. du Pont de
Nemours & Co., Inc.

Data may be grouped on magnetic tape in blocks
varying in length, at the programmer’s option, in
muitiples of three frames (one UNIVAC III word).
The interblock spacing is approximately 0.7 inch.
Assuming 2,000 word blocks, a fully recorded
2,400-foot reel of magnetic tape would contain
from 34,000,000 characters (if the data was
completely alphabetic) to 51,000,000 digits (if
the data was completely in numeric form). A data
file equivalent to 515,820 cards (assuming 50%
numeric and 50% alpha-numeric data) occupying
one full reel of UNISERVO III tape can be read,
modified in the Central Processor and reproduced
in updated form in less than 5 minutes.

The UNISERVO III tape unit employs a phase
modulation recording and sensing technique to
achieve high density packing with highest re-
liability reading. This form of data-recording on
magnetic tape enables the UNISERVO III tape
unit to discriminate bit patterns accurately at
very high packing densities. The skew registers
permit the UNISERVO III tape unit to accept,
without fault, the normal skew associated with
high-speed tape movement.

The detailed functional specifications and control
operations for the UNISERVO III tape unit and the
UNISERVO III synchronizer will be found in a
separate technical bulletin.

GENERAL PURPOSE CHANNELS AND PERI-
PHERAL INPUT-OUTPUT DEVICES

In addition to the four high-speed data channels
associated with the two UNISERVO III syn-
chronizers (and a fifth associated with the UNI-
SERVO II or compatible tape synchronizer), eight
general purpose channels are attached to the
UNIVAC III System. These channels serve as the
communication circuits linking the Central Pro-
cessor’s magnetic core memory with the card,
paper-tape and printing peripherals. (The term
peripherals, as used in these technical bulletins,
indicates the group of input-output devices ex-
clusive of UNISERVO tape units.)

The general purpose channels synchronize the
operation of any combination of peripherals with
the magnetic core storage and provide the same
function of parallel operations for the peripherals
that the tape synchronizer provides for the UNI-
SERVO tape units. As a result, up to 13 input-
output operations (plus wunlimited rewinds of

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE:

July 1, 1962

PAGE:

[

UNISERVO tape units) could occur in parallel
with one another and simultaneously with Central
Processor operations.

High-Speed Reader

Both 80—column or 90—column card readers are
available with the UNIVAC III System. Any
number of card readers may be under simultaneous
control of a single system up to the number of
available general purpose channels.

Data is read into the system from punched cards
at the maximum rate of 700 cards per minute. The
data may be represented internally in either card
code (a binary one per hole in the equivalent
punch position) or in machine code (as the result
of an automatic translation during the read-in of
data).

The card transport system of the High-Speed
Reader is unclutched and consists of: a 2,000—
card input magazine; a read station for transfer
of data to memory; a separate read station for
check reading, providing automatic verification
of sensing; and three program-selectable 1,000—
card-capacity stackers.

Program controlled functions include:

Feed Card

Translate Image
Select Stacker

Select Memory Address

Interrupt Program

Misfeeds, row misregistrations, card jams, full
stackers and empty magazine are detected and
indicated by signal to the program and to the
operator.

Card-Punch Unit

Both 80—column or 90—column punch units are
available with the UNIVAC III System and multi-
ple punches may be operated simultaneously
under the control of a single UNIVAC III System
up to the number of available general purpose
channels.

Data from magnetic core storage is punched into
cards at the maximum rate of 300 cards per minute.
As with the card reader, data may be transferred
in either card code or machine code.

Under program control, cards move in a succession
of 4 card cycles along a path composed of a
1,000—card input magazine; a clutched first wait
station; a clutched second wait station; a clutched
punch station; and a check-read station which
provides automatic verification of card-punching,
At the check-read station the card enters con-
tinuously driven eject rollers to be delivered
to one of two program-selectable, 1,000-card-
capacity stackers.

Program controlled functions include:

Feed Card

Move Card from Station to Station
Translate Image

Punch

Select Stacker

Interrupt Program

An empty input magazine, card jam, full stacker
and full chip-box are detected and signalled to
the program and to the operator.

High-Speed Printer

The High-Speed Printer of the UNIVAC III System
has a line printing rate from a minimum of 700
lines per minute with alpha-numeric information
and up to 922 lines per minute with completely
numeric printing. Multiple High-Speed Printers
may be operated simultaneously under the control
of a single UNIVAC III System up to the number
of available general purpose channels.

The printing span of a single line of print is 128
characters. Any of the 128 print positions can
contain any of the 26 alphabetic characters, the
ten digits 0 through 9, or one of 15 special symbols,
as follows:

, comma / solidus

. period ! apostrophe

= equals sign * asterisk

< less than > more than

; semicolon $ dollar sign

— minus or hyphen (open parenthesis
+ plus) close parenthesis

colon

UNIVAC IIT UTMOST

REVISION: secTion:
\%

oATE: PAGE:
July 1, 1962 6

The internally stored program specifies the 32
consecutive words of memory which will com-
pose the print line. To satisfy the requirements
of the particular format, each of the 128 con-
secutive print positions may contain printing
characters to produce a solid line of type, or the
positions may be subdivided into words or fields
lengths. This completely variable
format is under the control of an editing program.

of wvarious

The printed characters are spaced 10 per inch
horizontally. Vertical spacing of 6 or 8 lines
per inch may be selected by the operator. Skip-
ping or advancing of paper proceeds at the rate
of 22 inches per second.

The paper-feed mechanism accommodates con-
tinuous form, sprocket-fed paper ranging up to
card stock in weight. The form may be either
blank or preprinted, in over-all width
from 4 to 22 inches.

varying

Up to five carbon copies of the printing can be
produced with paper between 11 and 13.5 pounds
in weight. Further, impression control permits
variation in the strength of the print-hammer stroke.
Fine vertical adjustments of the paper position
may be made while the printer is in operation.

No paper and paper runaway are detected and
signalled to the operator.

The detailed functional specifications and the
control of the operation for the peripheral input-
output devices will be found in separate technical
bulletins on each device.

SYSTEMS ORGANIZATION

It has long been a design objective of computer
engineers to provide an EDP system which is
able to co-ordinate and control all of the elements
of data-processing and data conversion from a
single set of electronic circuitry. Such a system
would relieve the user of the expensive support
of special purpose auxiliary equipment and pro-
vide him with a maximum processing power
relative to his investment in electronic circuits.

The design of such a system is predicated upon:

m The existence of electronic components of
sufficient reliability to insure against total
systems failure.

m An input-output logic sufficiently flexible to
permit input-output
operate in parallel with one another and with
the Central Processor.

a variety of devices to

m The attainment of internal operating speeds
considerably out of balance with top speeds
obtainable from card, printing and paper tape
peripherals.

m A transference from engineering to programming
of the responsibility for systems control. Re-
ducing the cost of computer development, and
allowing for maximum flexibility through the
creation of sophisticated and efficient control
routines.

The UNIVAC IIl System, while basically a tape-
to-tape system, provides for concurrent peripheral
operations to proceed on-line through:

m The utilization of reliable solid-state equipment,
proven in use on the UNIVAC Solid-State and
and the UNIVAC LARC*Systems.

a The provision of eight fully-buffered general
purpose channels (in addition to the five high-
speed tape channels) and the automatic pro-
gram interrupt feature,

m The seven-fold increase in internal operating
speeds contrasted to the 1.1 to 2.8 increase
obtainable within electromechanical limitations
with peripheral equipment.

m The development of an executive routine,
CHIEF, which controls error conditions, pro-
vides for input-output control, and allows itself
to be modified to meet the specific requirements
of an operating installation.

The UNIVAC III System from its inception was
planned and designed to permit peripheral opera-
tions, which, while functionally ‘‘out of (the
tape-to-tape processing) line,”” would proceed
through peripherals controlled ‘‘in-line’’ through
the Central Processor and concurrently with the
tape-to-tape processing.

A simple application of the concept of concurrent
peripheral operations on-line would require that a
payroll run not use the printer for paychecks
directly, but rather produce edited output data on

L]
Trademark of the Sperry Rand Corporation

UNIVAC IITI UTMOST

REVISIQON: SECTION:
\%
DATE: PAGE:
July 1, 1962 7

magnetic tapes. This tape data would, in turn, be
printed concurrently with a subsequent run. This
approach has the added advantage that processing
speed will not be limited to the speed of the
printer. The magnetic tape will be used as a
buffer between the high internal speeds and the
slower printer speeds.

It should be noted that, when the edited payroll
tape is printed, concurrently with a subsequent
tape-to-tape run, during a half-hour of operation
over 21,000 lines could be printed; however,
high-speed storage would be required for a total
of 45 seconds during the half-hour and the read
channel of the UNISERVO III synchronizer would
be required for a total of 28 seconds.

UNIVAC III UTMOST

REVISION: SECTION:
Vv
DATE: PAGE:
July 1, 1962 8

The UNIVAC III word is the basic unit of storage
in the system,. It is fixed in length and consists
of 27 binary digits. Twenty-four bits are used to
represent data, and a twenty-fifth bit denotes the
sign. The remaining two bits are modulo 3 check
bits required to produce a modulo 3 sum of zero
for the 27 bits. They are used to automatically
check the accuracy of word transfers and, by
congruence arithmetic, to automatically check all
addition and subtraction operations.

MODULO 3 CHECK BITS (00-01-10)
YY

SIGN

21126 25) 24 1

DATA WORD FORMATS

Data may be represented in any of the three formats
shown in Figure 2—2, or in any combination. The
processing circuits do not distinguish between
data formats. This distinction is completely a
function of the program.

Six decimal digits plus sign may be represented
in a word. Each digit is expressed in excess-
three binary coded decimal format. All decimal
arithmetic operations assume the values to be
in this format.

Four alphabetic or special characters may be
represented in alpha-numeric data word format.
Each character is composed of six bits, two bits
for the zone (00 to 11) and four bits for the numeric
portion (0000 to 1111); sixty-four different char-
acters may therefore be represented.

2. UNIVAC Il Word

See Figure 2-—1 for the UNIVAC III Character
Code.

Values may be expressed in pure binary with
values up to 2 4_1. an binary arithmetic opera-
tions assume the values to be in this format.

ZONE
00) 10 n
0000 A +
0001 ;) * (
0010 - . $.
0011 0 it
0100 1 A J /
0101 2 B K s
0110 3 C L T
E o 4 D M u
| 1000 5 E N v
>
z 1001 6 F o} W
1010 7 G P X
1011 8 H Q Y
1100 9 I R z
1101 : =
110 <
1 >

Figure 2=1. UNIVAC lll Character Code

REVISION: SECTION:

UNIVAC IIT UTMOST Y

DATE:

July 1, 1962

PAGE:

DECIMAL WORD?™

Six 4-bit numeric digits along with sign constitute a decimal word.

S

(| DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
G 4 3 2 1

& 6 5

25 (24 21|20 1716 13|12 98 54 1

S-Bit 25 indicates the sign, 1 for minus and 0 for plus.
Digits—6, 5, 4, 3, 2, 1-Each digit is expressed in excess-three code. See Figure 2-1.

0000000000000 00)7000000000000000 00000000 LEILICEERISISINIEITITIITITL

ALPHA-NUMERIC WORD™

Four 6-bit alpha-numeric characters constitute an alpha-numeric word.

S

|| CHARACTER CHARACTER CHARACTER CHARACTER
ﬁ 4 3 2 1

25 |24 1918 13(12 716 1
S-Sign.

Characters—4, 3, 2, 1-Each character is represented by 6 bits.

000000 0008000000000000000000OCSGTS

BINARY WORD¥

The entire 24-bit data portion of any memory location can be used to represent a
binary value ranging from 0 through plus or minus 16,777,215.

24-BIT BINARY VALUE

=0 — o)

25 |24 1

S-Bit indicates the sign, 1 for minus and 0 for plus.

L4
Two check-bit poaitions are omitted for illustrative purposes.

Figure 2—-2. Data Word Formats

REVISION: SECTION:
\Y
UNIVAC III UTMOST .
DATE: PAGE:
July 1, 1962 10
={24 2120 15114 1110 1
A
, X OP CODE | AR m
GENERAL INSTRUCTION FORMAT A OPERAND ADDRESS
SHIFT INSTRUCTIONS X OP CODE | AR SHIFT COUNT/m
vlX OP CODE | X0 m
INDEX REGISTER INSTRUCTION A OPERAND ADDRESS
INDICATOR,
INDICATOR INSTRUCTIONS AR OP CODE | “o=™ INDICATOR/m
CHANNEL
ADDRESS OF 1/0
INITIATE I/0 INSTRUCTION ',A X OP CODE | cawneL FUNCTION
SPECIFICATION

Figure 2-3,

INSTRUCTION WORD FORMATS

UNIVAC II Central Processor Instructions are
in five basic formats. In each format the functional
grouping of bits is the same. Some bit groups
perform the identical function regardless of the
operation to be performed, while the functions of
other groups vary, depending on the operation to
be performed (Figure 2-3).

BIT POSITION 25

Indirect Addressing or Field Selection Option
Designation, Indirect Addressing provides the
ability to express an operand location, indirectly,
through an intermediate control word. Nearly all
instructions of the UNIVAC III repertoire are
capable of utilizing this feature. In this form, the
address in the basic instruction does not refer
directly to the operand to be accessed but rather
to a control word, which in turn contains the
operand address. The word containing the operand
address is termed the Indirect Address Control
Word (INAD).

Field Selection provides the ability for an in-
struction to operate directly upon data fields
that are not multiples of a word. This feature is
available for processing instructions in which
bit positions 1-10 would normally designate an
operand address. When field selection is desired,
bit positions 1-10 specify the location of a

Instruction Word Formats

Field Select Control Word (FSEL). The FSEL
provides the definition of the field size and
specifies the address of the operand.

Either option is expressed by the presence of a
1-bit. The specific choice is determined by the
format of the control word.

BIT POSITIONS 21-24

Binary Address (0001—-1111) of the Index Register
(X) Selected. The contents of the specified index
register are used to increment bit positions 1-10
of the instruction. The m-address bits of all in-
structions, regardless of type, are automatically
indexed while being staticized in the control unit—
bits 1-10 + (X) produce m’. If 0000 is specified,
m = m’. Neither the contents of the index register
specified nor the instruction in memory is altered
by the indexing.

BIT POSITIONS 15-20

Operation Code.

BIT POSITIONS 11-14

Depending on the operation to be performed the
function of this group varies. The function of
this group depends on the type of instruction.
It will be the designation of the arithmetic reg-
ister(s) selected, the binary address of the index

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 11

register to be operated on, the indicator or group
of indicators to be tested, or the selected input-
outpu! channel.

BIT POSITIONS 1-10

This bit group is always indexed (if only by
0’s) and becomes a 15-bit group called m'.
This is done in the Memory Address Adder during
the instruction set-up cycle.

The function of m’ varies with the operation per-
formed as reflected in the above formats.

However, if position 25 is a 1-bit, positions 110
reflect the unindexed address of either an Indirect
Address Control Word or a Field Select Control
Word. The original function of positions 1-10 of
the basic instruction will in these cases be rele-
gated to the control words.

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 12

The functions of the control registers, a schematic
of their relationship, and the control cycle of the
UNIVAC III Processor are given in this section.

CONTROL COUNTER (CC)

This register is used to locate the next instruc-
tion to be accessed from memory for execution.
On the last memory cycle of an instruction, the
15-bit value of the CC (the address of the in-
struction currently in progress) is incremented
by 1 or 2 in the Memory Address Adder and re-
turned to the Control Counter. The new value
is also transferred to the Memory Switch Register
in order to address memory for read-out of the
instruction in the next memory cycle.

(CC) + 1or ZE MSR
ccC

INDEX REGISTER (X)

These registers are used to develop the final
operand address. When the instruction is read
from memory into the Central Processor Re-
gister, the 10--bit m address (or 15-bit if it is
a control word) is added to the contents of the
selected index register. This addition is ac-
complished in the Memory Address Adder. The
sum is then used by the Memory Switch Register
to locate the operand to be accessed from memory
in the next memory cycle. The modified storage
address is also delivered to the Memory Address
Register. Indexing occurs during the cycle in
which the instruction was read from memory.
The contents of the index register are not af-
fected by the indexing.

m + (X) EMSR
MAR

3. Control Unit

MEMORY SWITCH REGISTER (MSR)

This register contains the result of all additions
of the Memory Address Adder. The Memory Switch
Register addresses the magnetic core storage for
read-in or read-out of all data, control words, and
instructions.

MEMORY ADDRESS REGISTER (MAR)

This register contains the 15—bit result of m + (X).
It will only be utilized if the instruction specifies
a multi-word operand. In the event of a reference
to a multi-word operand, the contents of the MAR
will be decremented in the Memory Address Adder
with the result used to address the next word of
the operand to be read from memory. The result
of (MAR) — 1 is also returned to the MAR.

(MAR) - 1 —>MSR

—> MAR

MEMORY ADDRESS COUNTERS (MAC)

These counters, one for each of the thirteen
input-output channels, contain the 15-bit address
of the last word of input-output data transferred
to or from memory through the synchronizer cir-
cuitry of the related channel. When any channel is
granted a memory access, the contents of its
related MAC are read out and incremented through
the Memory Address Adder. The result will then
be used to access memory for read-in or read-out
in the next memory cycle.

CENTRAL PROCESSOR REGISTER (CPR)

Operands, instructions and their associated con-
trol words, when accessed, are read from memory
directly into the CPR register. If an instruction
is read, the OP Code, the AR portion, and the X

UNIVAC III UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 13

portion are read out and stored in decoders, in
order to alert the designated AR and X and to
build up function table signals for the execution
of the instruction. The m address is added to the
contents of the selected index register to produce
the eifective operand address. During multiplica-
tion or division it has the special requirement of
retaining the multiplicand or divisor.

Input-output data and input-output function speci-
fications do not utilize this register.

WRITE REGISTER

All data transferred to memory is routed through
the Write Register. Its function is to accept in-
formation from a 4—bit parallel transmission line
and to transfer it to the memory location specified
by the MSR over a 27-bit parallel line.

Arithmetic Unit—{ 4
Channel

Synchronizers

Wrife—@—>m

Register MSR

INPUT-OUTPUT REGISTER

When read from memory, all output, including tape
control words and input-output function specifica-
tions, pass through this register. Its function is to
convert the 27-bit parallel transmission from
memoty to a 4-bit parallel transmission to the
channel synchronizers.

(m)— :: >1/0 ——@—)Chonnel
MSR Register Synchronizers
or

Tape Control
Word Registers

TAPE CONTROL WORD REGISTERS (TCWR)

The four TCWR’s (one for each UNISERVO III
channel) are used in conjunction with the scatter-
reading and gather-writing features. When memory
access is granted to any of the four channels
(and control words for scatter-read or gather-
write are being used), the contents of the ap-
propriate TCWR are transferred through the Memory
Address Adder where the word-count portion is
decremented by one and the address portion is
incremented by 1. The new address is then used
to access memory for the read-in or read-out of
the input-output data in the next memory cycle.
The adjusted control word is also returned to the
TCWR. When control words are used for tape
reading or writing, the Memory Address Counters

for the UNISERVO III Read and Write Channels
are used to access the next control word when
required, If control words are not used, the UNI-
SERVO III Memory Address Counters are used to
access memory for input or output data.

Count -1 —> TCWR
(TCWR) ‘—]—
+
L5 MSR

MEMORY PRIORITY CIRCUITS (MPC)

The MPC circuits govern access to the magnetic
core storage by controlling the selection of the
contents of the CC, the MAR, an MAC, or a
TCWR to be transferred to the MSR through the
Memory Address Adder.

The selection is based, in the case of the MAC
and TCWR, on the transfer speed of the related
peripheral unit. As each peripheral unit’s syn-
chronizer circuitry determines a memory access
requirement, a request is sent to the MPC. At every
4—microsecond memory cycle all memory requests
are evaluated and the channel with the highest
priority will be selected. The contents of the
MAC for the selected channel will be sent to the
Memory Address Adder and memory read-in or
read-out performed according to the new setting
of the MSR. The request is then eliminated from
the MPC.

This action will be repeated as long as any
channel synchronizer requests memory access.
At the time when all requests from the channel
synchronizer have been accommodated, either the
Control Counter or the Memory Address Register
will be given access to memory.

The general order of priority for memory access is
as follows:
UNISERVO IIl Channel Synchronizer
UNISERVO II Channel Synchronizer
General Purpose Channels
Accessing Multi-Word Operands

Accessing Instructions

UNIVAC Il PROCESSOR BLOCK DIAGRAM

The functional relationship of the elements of the
control unit are schematically represented by the
UNIVAC IIl Processor Block Diagram, Figure 3-1,
on page 3-3.

e TO WRITE

L.

MEMORY
ADDRESS
ADDER

PRIORITY
CIRCUITS

ACCESS GRANTED

ERRRRERR

REQUESTS FOR
MEMORY ACCESS
FROM I/O UNITS

L—I___’. ENABLE MAC,
SIGNAL MAR, TCWR,

OR CC

N~

MAC #11 >
MAC #12 -
MAC #13 -

Figure 3—1. UNIVAC [ll Processor Block Diagram

REGISTER
= .
} oot | S S S Y MEMORY
SWITCH
REGISTER
u-111 | GENERAL PURPOSE u-n| u-in
TCWR TCWR TCWR TCWR TAPE CHANNELS TAPE]
2 »3 T WRITE
A —1 MEMORY
P REG.
rlwlijz|alalstelr|s|c|r|w] —d
)
1/0 N 7
REGISTER ﬁ
. - - M
* cp 1
TO REGISTER
MAC v
| | N ;l)
> AR1 1 | 4
{ |
IR AR/MAC
DECODER DECODER
> AR2
- INST
DECODER
ADDER N
FUNCTIO
> AR3 TABLE N
1111
e / ‘V;
ARS > cc
> MAR
>~ MAC #1
> MAC #2
TO WRITE
MEMORY ACCESS MAC #3 REGISTER

IR #1

IR #2

IR #3

IR #4

R #12

IR #13

R #14

R #15

TO WRITE
REGISTER

1SOWIN IIOI DVAINN

o] a
> m
3 <
e " o
=]
< r4
= z
[
\O
(o))
N
T ()]
> m
] (9]
m A
m 3
r4
’-—I
= <

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 15

THE CONTROL CYCLE

The major function of the control unit is to se-
quentially select each instruction: from memory,
interpret it, and perform all of the operations
necessary for its execution.

The sequencing of instructions is a function of
the Control Counter (CC). The CC contains the
memory address of the instruction being exe-
cuted in a 15-bit binary format.

The control unit sequence is divided into 4—
microsecond memory cycles. The description
of the control cycle will be in terms of these
cycles rather than in microseconds.

Single-Word Operand

During the final Execution Cycle of the preceding
instruction, the 15—bit address currently contained
in the CC Register is transferred to the Memory
Address Adder. The other input to the adder, the
increment amount, is specified as a function of
the nature of the previous instruction. Most in-
structions generate an increment of 1 and step
the program to the next sequential location.
General branching operations may replace the CC
reading with a new address rather than increment
the current address. Special test operations
cause the CC to be incremented by either 1 or 2,
depending on the set of the conditions tested.

The address fabricated by the Memory Address
Adder is sent to the Memory Switch Register
(MSR) and returned to the CC Register replacing
its previous contents.

Last Cycle S
°f the Pre- J(CC)+ Increment —> Memory Switch
vious Instruc-? Register (MSR)
tion

Control Counter

(CC)

Instruction Set-Up Cycle

During the Instruction Set-Up Cycle, the 27 bits
at the storage location selected by the Memory
Switch Register are sent to the Central Processor
Register (CPR) where they are staticized. During
the initial part of this cycle, the instruction
being received from memory is decoded through
the Index Register, the Arithmetic Register, and

Instruction Decoders. The appropriate index re-
gister and AR are selected and function table
signals are generated which will affect the exe-
cution of the instruction.

During the latter part -of the Instruction Set-Up
Cycle, the contents of the index register speci-
fied by the instruction, and the memory address
(from the CPR) are combined in the Memory Ad-
dress Adder, and the result is sent to the Memory
Switch Register and the Memory Address Register.
The MSR, which now contains the full 15-bit
address of the operand, is used to address memory.

Instruction [(m) s ——> CPR——> Decoders

R IR Selected

Set-Up AR Selected
Function Table
Cycle Signals Gen-

erated
(X) + m EMSR
MAR

Execution Cycle

During the Execution Cycle, the contents of the
Memory Switch Register select the memory location
which contains the data to be used in the opera-
tion. This data will be routed through the Central
Processor Register to the specified AR(s) which
have been alerted by the decoding of the AR
portion of the instruction on the previous cycle.

During this Execution Cycle, the contents of the
CC are being read out and are being adjusted
by a selected increment. Thus, there is a con-
tinuous overlap between the Execution Cycle of
the previous instruction and the fabrication of
the location of the next instruction.

— 5 CPR—>AR
(m)ysr

(CC) + Increment — MSR
e
(o

Execution

Cycle

REVISION: SECTION:
TMOST .
UNIVAC TIT UTMOS

July 1, 1962 16
Multi-Word Operand Instruction (m)MSR—%CPR—é Decoders
The incrementing of the CC during the execution LRRS;l'Iecfedd
of an operation employing a multi-word operand Set-Up FT S'e ec:e
is delayed until the final Execution Cycle of the Glgna S d
operation. The control unit is required during all Cycle (X) + m MSR enerate
other Execution Cycles to decrement the contents | _CPR
of the Memory Address Counter to select in turn MAR
the other words of the operand. Execution

(m) —> CPR—> AR

Cycle MSR
(MAR) - 1 MSR

Last Cycle

. (CC) + Increment MSR
of Previous %
CcC

Instruction

(first word)

Execution
Cycle

(last word)

MAR

(m) —> CPR—> AR
MSR

(CC) + Increment EMSR
cC

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 17

4. UNIVAC il

PROGRAMMING FEATURES

The UNIVAC III System provides a number of pro-
gramming features greatly expanding the power of
its basic command repertoire and providing addi-
tional flexibility to the systems designer as well
as to the programmer.

Index Registers

In the UNIVAC III System nine or fifteen index re-
gisters make possible address modification, pro-
gram loop control, and the setting of counters with-
out additional time being spent onthe execution of
an instruction. This occurs as all instructions
(and control words) go through an indexing phase
in order to develop the final operand address. The
net result of this feature is an expansion of the
memory.

Index registers may be used effectively to reduce
the number of instructions required for anyapplica-
tion. Their basic function is to permit the modifi-
cation of referenced data locations. They do this
by changing the ‘‘effective’’ address sought, with-
out altering the ‘“‘base’’ address itself. Therefore,

Command Repertoire

the entire processing routine remains unaltered in
memory available for application to any setof data.

Modifying the base operand address of any instruc-
tion without reference to the arithmetic registers
has also eliminated the need to handle each varia-
ble individually,

Each index register contains a 15-bit unsigned
binary value and is specified in binary (0001-
1111) in bits 21-24 of the instruction word.

During the access of each instruction from memory,
bit positions 1-10 of the instruction and the con-
tents of the specified index register are automatic-
ally added in binary [m + (X)]. A 15-bit effec-
tive operand address, m’, is produced. Address
modification in the UNIVAC III System does not
require an additional cycle. Any carry beyond
bit 15 is ignored. The instruction in memory and
the index register addressed are not affected as a
result of the indexing.

If 0000 is specified in bit positions 21-24 of the
instruction, no effective indexing occurs.

UNIVAC TII UTMOST

REVISION: SECTION:
\4
DATE: PAGE:
July 1, 1962 18

Multi-Word Operands

The UNIVAC III System contains four one-word
arithmetic registers — AR1, AR2, AR4, and ARS.
The arithmetic register involved in the execution
of the instruction is designated by a 1-bit in bit
positions 11-14 of the instruction word as shown
below:

Bit Positions
14 13 12 11
1 0 0 0 ARS8
0 1 0 0 AR4
0 0 1 0 AR2
0 0 0 1 AR1

Through any combination of these bit designations
it is possible to manipulate operands of from one
to four words with a single instruction. The number
and position of 1—bits control the size of the
operand and its placement within the arithmetic
registers. AR’s not specified will not be affected
by the instruction execution (Figure 4-1).

The AR’s selected may be adjacent or non-ad-
jacent and in either case they will act as a single
extended register. Multi-word operands in memory,
however, must be from adjacent locations.

The contents of the memory location specified in
the instruction (m’) are considered the least signi-
ficant word of the operand and are used in con-
junction with the lowest numbered AR designated.
The balance of the operand in the lower ordered
memory location(s) are related to thehighernum-
bered designated AR’s.

The sign of the least significant word of a multi-
word operand is treated as the sign of the entire
operand regardless of the sign of the more signifi-
cant words. After arithmetic operations the correct
algebraic sign will be placed in all AR’s involved,
regardless of their previous signs,

A carry from the least significant AR is propagated
to the next higher numbered register designated in
the instruction. Only a carry beyond the most sig-
nificant AR designated causes the Arithmetic
Overflow Indicator to be set and a Contingency
Interrupt to occur.

Generally, when a multi-word operand is specified
an additional machine cycle for each word beyond
one should be added to the basic execution time.

Indirect Addressing

In some programming instances, it is valuable to
be able to specify the location where the address
of an operand is stored rather than to specify the
location of the operand directly. This method of
addressing an operand is called indirect address-
ing. It is of use in writing compilers, sort and
merge routines, manipulating subroutines, and in
the formnation of various control words for the UNIVAC
III System. Indirect addressing has therefore proven
valuable in reducing programmer effort, processing
time and instruction storage area.

Indirect addressing is specified by placement of a
1-bit in bit position 25 of the instruction word.
The indexed address of the instruction word in
this case will not be the location of the operand,
but rather the location of an Indirect Address Con-
trol Word {INAD). The indexed address of the INAD
will specify the location of the data.

| &b
/X 000 g L-Addr,
A 5
25124 21120 18{1716|15 1
I/A Indirect address/field selection
option
X Binary address of index register,
1to 15
Bits 18-20 Must be 0’s
Bits 16—17 Unassigned
L-Address If I/A is a 1-bit, the L-address

specifies the unindexed location
of another INAD or a Field Select
Control Word (FSEL).

If I/A is a 0-bit, the L-addres
specifies the unindexed addres
of the data.

3
3

If it is desired to delay the expression of the
operand address through another level, a 1-bit
should be placed in bit position 25 of the first
level INAD and its indexed L-address made the
location of the second INAD. In this way, indirect
addressing can be made to extend through several

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE: .
July 1, 1962 19

Adjacent Registers Used

AR DESIGNATION

14|13 |12 | 11
0 l ! l SIGN OF
OPERAND
AR8 AR4 AR2 ARL
NOT + : NOT
INOLVED | |- m=1) | |- (m) INVOLVED
CARRY VALID
PRODUCING CARRY
OVERFLOW

'—ﬂ— OPERAND —

Non-Adjacent Registers Used

AR DESIGNATION

1] o1 | SIGN OF
OPERAND
ARS8 AR4 AR2 AR1
+ NOT + +
- (m-2) INOLVED| f~| (m-1) | -] (m)
y VALID v
CARRY C:RRY VALID
PRODUCING CARRY

OVERFLOW

Figure 4-1. Examples of Multi-Word Operands

UNIVAC III UTMOST

levels until an INAD with a 0-bit in bit position
25 is accessed. The original instruction will then
be executed, using the operand address of the last
INAD. There is no arbitrary limit to the possible
levels of ‘‘cascading.”’

Indirect addressing is not restricted to referencing
data.

Instructions utilizing indirect addressing are exe-
cuted in the following manner:

a. The basic instruction word is set-up in the
Instruction Register, an indexed address de-
veloped m + (X) and bit 25 is examined.

b. If bit 25 is a 1-bit, execution of the instruc-
tion is delayed and the contents of the indexed
address are accessed, Again an indexed loca-
tion is developed L + (X) and bit position 25
is again examined.

(If bit position 25 is a 1-bit, Step b is repeated
until the word accessed contains a 0-bit.)

c. If bit position 25 is a 0-bit, the control word
is further examined. If bit positions 18-20 con-
tain binary 0’s the developed L-address is the
address of the data.* The instruction is then
executed.

Though the Control Counter is not altered, indirect
addressing will require an additional memory cycle
for each INAD accessed.

Illustration

Load the contents of DATA (0651) into Arithmetic
Register 4 using the indirect address option.
The operand address is stored in the 15 least
significant bits of the Indirect Address Control
Word located at 0700 and tagged CONTROL.

LA 4, * CONTROL,
|
£ X OP Code AR m
1| 0000 12 0100 0700

* A 1-bit in position 25 may also indicate field selection; however,
field selection is specified by the presence of bite other than (0—
bits in positions 16—20 of the control word (FSEL).

REVISION: SECTION:
Vv
DATE: PAGE:
July 1, 1962 20
(0700) CONTROL + DATA
|
/X L
A
0| 0000 | 000 | 0O 0651

(0651) DATA

2524 21120 17{16 13|12 9(8 54 1

Field Selection

When a data field is not a multiple of a word, field
selection should be employed in order to isolate
only those bits, digits or characters to be operated
on during the instruction execution. The position
of the field to be selected is defined in a Field
Select Control Word (FSEL) as is the field’s ad-
dress.

The indexed m address of the basic instruction
word is made the location of the FSEL and bit
25 records a 1-bit. The FSEL has the following
format:

Left Right
X Boundary | Boundary m
Bit Bit
25|24 21|20 16 (15 11(10 1
Bit 25 Always 0
X Binary address of index register
0-15

Left Boundary Most significant bit position of

Bit field to be selected. The bit posi-
tion is specified in excess-three
and ranges from 4 (LSB of word)
to 27 (MSB of word).

If a multi-word operand is speci-
fied in the instruction, the Left
Boundary Bit Designator must be
within the most significant word
of the operand.

REVISION: SECTION:
TIT UTMOST ’
UNIVAC U DATE: PAGE:
July 1, 1962 21
Right Boundary Least significant bit position of INSTRUCTION
Bit the field to be selected. The bit
*
position is specified in excess- DA L CONTROL
three and ranges from 4 (LSB of |
word) to 27 (MSB of word). If a |/ X OP Code | AR m
multi-word operand is specified in
the instruction, the Right Boundary |1| 0000 20 0001 0266
Bit must be within the least signi-
ficant word of the operand.
m Unindexed address of the word CONTROL (0266)
Z?:tii::ng[-t?; least significant + 12, 1, LOC B,
1ot e fe | Left | Right
/| X Boundary | Boundary m
Notes A Bit Bit
1. The sign bit(s) will not be selected; the signs 0 0 15 4 0739

of all fields selected will be positive.

2. Portions of the word(s) beyond the boundaries
specified are binary 0’s. If decimal add or
decimal subtract is specified, these binary 0’s
are treated as excess-three 0’s.

3. Field Selection from memory affects or acts in
conjunction with the same relative bit positions
of the arithmetic register(s) unless a carry re-
sults beyond the most significant bit or digit
within the register. Such carries may be propa-
gated up to the limits of the most significant
arithmetic register designated. Beyond this
limit overflow will occur.

4. When a multi-word operand is specified in the
basic instruction the arithmetic registers may
be non-adjacent but the bits of the operand from
memory must be contiguous.

5. The FSEL may be indirectly addressed. But
indirect addressing may not extend beyond the
field select cycle. Hence bit position 25 of a
FSEL must be 0.

6. One machine cycle is required to access and
analyze the FSEL. The Control Counter is not
affected by this accessing.

Illustration

Arithmetic Register 1 contains a value of 770111,
Add to it the three least significant digits of the
value 99933 in LOC B (0739). The FSEL is loca-
ted in CONTROL (0266).

RESULT IN AR1 = 770444

INSTRUCTION FORMAT

The purpose of this section is to provide the
reader with a complete summary of the UNIVAC III
Central Processor command repertoire as well as a
knowledge of the subtle considerations applicable
to each instruction.

Each instruction description contains a symbolic
representation of the operation as well as its for-
mat (Figure 4-2). This format is further elaborated
upon by the use of an example illustrating the
operation described. Each example is illustrated
in two ways. One illustration will be in the equiva-
lent of machine representation. That is, the coded
instruction will contain the machine binary equiva-
lent when applicable, or its decimal equivalent, in
various segments of the instruction word. (For
example, the index registers will be designated by
a4-—bit binary configuration ranging from 0000-1111.)
The same illustration will be coded in

UTMOST (UNIVAC Three Machine Oriented
Symbolic Translator).

UNIVAC III UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 22

UTMOST
MNEMONIC

INSTRUCTION'S FUNCTION

Symbolic Representation of In-

eration: : .
Operation struction Execution
. Operation Code Expressed as
0P Code: Two Octal Digits
Cycles: Binary Operation Code Express-
’ ed as Two Octal Digits
Description: Definition of Instruction

Instruction Format

Explanation of Each Function of the Instruction
Format

Notes
Considerations in Instruction Usage
Hiustration

[1lustration of Instruction Usage Showing

UTMOST Mnemonic and Machine Equivalent

Figure 4-2. Instruction Layout

SYMBOLOGY AND ABBREVIATIONS USED

() The contents of

()x The contents of,as specified by x

a—b a is transferred to b

m A 10-bit unindexed address

m’ A 15-bit indexed address

ARi One of the four arithmetic registers

X; One of the fifteen index registers
used to modify m

X0q One of the fifteen index registers to

be affected

ccC The Control Counter

L A 15-bit unindexed address

L’ A 15-bit indexed address

MAC; One of thirteen Memory Address
Counters

MAR Memory Address Register

SL; One of thirteen stand-by locations

TBR Typewriter Buffer Register

TCWR; One of four Tape Control Word Regis-
ters

ICW Index Register Modification Control

Word

OPERAND TRANSFER INSTRUCTIONS

These instructions transfer operands from memory
to the arithmetic registers or from the arithmetic
registers to memory.

Reading from memory or the arithmetic registers
does not alter their contents. Reading into memo:y
locations or the arithmetic registers will replace
the original contents with the operand read in.

-
LOAD LA
.

Operation: (m')—»=AR;
0P Code: 12
Cycles: 2

Description: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated.

REVISION: SECTION:
UNIVAC III UTMOST - ~
DATE: PAGE:
August 24, 1962 23
| |
/I X 0P Code AR m /1 X CP Code AR m
A A
25|24 21|20 15|14 1110 1 25124 21|20 15(14 11]10 1
I/A Indirect addressing/field selection
/A Indirect addressing/field selection optron
option X Binary address of index register, O to
15
X Binary address of index register, 0
to 15 AR Positional designation of arithmetic
register(s)
AR Positional designation of arithmetic
register(s) m Unindexed address of the operand
m Unindexed address of the operand
Notes
Notes 1. Arithmetic register(s) are first automatically

1. Arithmetic register(s) are first automatically
cleared to binary 0’s.

2. Contents of memory location(s) accessed are
not altered.

3. Indirect addressing, field selection and multi-
word operand(s) may be employed.

IHustration

Transfer the operand, FIELD (0689), to AR2.

cleared to binary 0’s,

2. Contents and sign of memory location(s) ac-
cessed are not altered.

3. If field selection is used, the sign of the AR
will always be negative.

4. Indirect addressing, field selection, and multi-
word operands may be employed.

Ittustration

Transfer the operand, FIELDB (1002), to ARS8 re-
versing the sign(s) of the operand.

LA 2, FIELD A, LAN 8, FIELDB
|
£ X Op Code AR m :/\ X 0P Code AR m
0| 0000 12 0010 0689 0| 0000 13 1000 1002
LOAD FIELD INTO REGISTER LF
LOAD A NEGATIVELY LAN
Operation: (m’) —»ARj
Operation: (m)—»ARi FSEL
OP Code: 13 OP Code: 14
Cycles: 2 Cycles: 3

Description: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated, reversing each of the signs,

Description: Selectively replace consecutive bits
within the arithmetic register(s) designated with
the bits from corresponding positions of the memory
location(s) specified.

REVISION: SECTION:
UNIVAC III UTMOST : v
DATE: PAGE:
Feb, 1, 1963 24
— o)
Woox OPCode | AR m STORE SA
A
Operation: (ARi) ~—m'
25124 21|20 1514 11110 1 OP Code: 10
Cycles: 2
Description: Transfer the contents of the arithme-
i ist desi ted to the indexed Y
X Binary address of index register, 0 tic t?gls er(s) designated fo the :ndexed memory
location(s).
to 15
AR Positional designation of arithmetic |/ X OP Code AR m
register(s) A
m Unindexed location of Field Select 26/24 21120 15|14 11110 1
Control Word
I1/A Indirect addressing option
Notes
. . X Binary address of index register, 0
1.Bit positions to be replaced and operand ad- to 15
dress are specified in a Field Select Control
Word. (FSEL). AR Positional designation of arithmetic
register(s)
2.1f the field selection option is not exercised,
the instruction functions as the Load instruc- m Unindexed address of the operand
tion except that the sign of AR remains un-
changed. Notes

3.Bits outside the limits specified remain un-
changed.

4. The sign of the arithmetic register(s) will not
be affected.

5.Indirect addressing and multi-word operands
may be employed.

6.See Field Selection, page 4—4.

Hiustration
Extract bit position 1—-12 of FIELDA {0789) into
AR1. The Field Select Control Word is located in

1. The indexed memory location(s) are first auto-
matically cleared to binary 0’s.

2. Contents of the arithmetic register(s) are not
altered.

3. Indirect addressing, multi-word operands, but
not field selection, may be employed.

Ittustration

Transfer the contents of AR2 and 4 to FIELDB
(0551-0552).

SA 6
0285, , FIELDB
LF 1, * (12, 1, FIELDA) l/ X OP Code | AR .
| A
/I X OP Code | AR m
A 0| 0000 10 0110 0552
1/ 0000 14 0001 0289
FSEL (0289)
| ot Right STORE A NEGATIVELY SAN
/1 X Boundary | Boundary L
A Bit Bit Operation: (ARi)—m’
o| 0000 15 4 0789 3;’0&‘;“.’*- 2

UNIVAC III UTMOST

REVISION: SECTION:
\Y%
DATE: PAGE:
July 1, 1962 25

Description: Transfer the contents of the arithme-
regdister(s) designated to the indexed memory loca-
tion(s) reversing the sign(s) of the operand.

|

//\ X OP Code AR m

2524 21|20 15114 1110 1

1/A Indirect addressing/field selection
option

X Binary address of index register, 0
to 15

AR Positional designation of arithmetic
register(s)

m Unindexed address of the operand

Notes

1. The indexed memory location(s) are first auto-
matically cleared to binary 0’s.

2. Contents of the arithmetic register(s) are not
altered.

3. Indirect addressing and multi-word operands,
but not field selection, may be employed.
[flustration

Transfer the contents of AR4 to FIELDC (0482)
reversing the sign.

SAN 4, FIELDC
|
/1 X 0P Code AR m
A
0| 0000 11 0100 0482

ARITHMETIC INSTRUCTIONS

All arithmetic operations are performed in the
adder. One input to the adder, the primary, always
comes from some combination of the four arithme-
tic registers: AR1, AR2, AR4, ARS8, The other in-
put, the secondary, is from the indexed location
specified by the instruction. The result of an
arithmetic operation is usually returned to the
same arithmetic register or registers from which
the primary operand was secured; this return of
the result replaces the original operand in the

arithmetic register(s). However, the result may be
placed in some other arithmetic register, in which
case the primary operand is wunchanged. The rule
is: The result of an arithmetic operation will be
located in one place andone place only. In decimal
or binary subtractions and additions, the Equal
Comparison Indicator (ECI) is set, if the result is
decimal or binary 0; if the result is non-zero, the
ECI is reset.

DECIMAL ADD DA

Operation: (AR;i) + (m') —» AR
OP Code: 20
Cycles: 2

Description: Algebraically add in decimal the
operand (augend) in the indexed memory location(s)
and the value (addend) in the designated arithme-
tic register(s). The result is placed in the same

arithmetic register(s).

|

/I X 0P Code AR m

A

25|24 21120 15(14 11{10 1

I/A Indirect addressing/field selection
option

X Binary address of index registers, 0
to 15

AR Positional designation of arithmetic
register(s)

m Unindexed address of the augend

Notes

1. Binary 0’s (0000)in either the addend or augend
will be treated as decimal excess-three 0’s
(0011). See Appendix for treatment of non-
numeric binary codes.

2. Indirect addressing, field selection, and multi-
word operands may be employed.

3. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,

and Field Selection Sections.

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y%
DATE: PAGE:
July 1, 1962 26

4.

See Arithmetic Modes for a discussion ofrecom-
plementation and determination of signs.

ustration

Add FIELDA (0525) to ARS.

DA 8, FIELDA
} X OP Code AR m
A
0| 0000 20 1000 0525

DECIMAL ADD HIGHER

Operation: (ARi) + (m')=»ARi where i’ < i
0P Code: 22
Cycles: 2

Description: Algebraically add,

in decimal, the

operand (augend) in the indexed memory location(s)

and the value (addend) in the higher arithmetic
register(s), placing the result in the designat-
ed arithmetic register(s).
!
/1 X 0P Code AR m
A
25124 21120 15(14 11]10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, O
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the augend
Notes
1. The addend will be undisturbed.
2. Pure binary 0’s (0000) in either the addend or

augend will be treated as decimal excess-three
0’s (0011). See Appendix for treatment of non-
numeric binary codes.

. For single-word operands, all possible

cases of i and 1i' are:
if i is 8, i’ may be4, 2 or L
if i is 4, i’ may be2 or 1.
if i is 3, i’ may be 1 only.
i may not bel.

Multi-word usage is restricted to Arithmetic
Register 12, The sum will always appear
in Arithmetic Register 3. Bits 11-14 of
the instruction word in this case should be all
I’s.

Indirect addressing and field selection may be
employed.

Additional considerations if the operand is
multi-word, or if field selection is to be em-
cloyed, are discussed in the Multi-Word Operands,
and Field Selection Sections,

See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

IHlustration

Add FIELDD (0585) to AR8 and place the sum in

AR2

DAH 10, FIELDD
|
/i X OP Code. AR m
A
0 0000 22 1010 0585

DS

DECIMAL SUBTRACT
|
Operation: (ARi) — (m’'}—»ARi
OP Code: 21
Cycles: 2

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in the
same arithmetic register(s).

>~—

OP Code AR

21(20 1514 11

REVISION: SECTION:
TMOST !
UNIVAC III UTMOS
July 1, 1962 27
I/A Indirect addressing/field selection |
option /I X OP Code AR m
A
X Binary address of index register, 0
to 15 25(24 21|20 15|14 11110 1
AR Positional designation of arithmetic I74 [ndirect addressing/field selection
register(s) option
X Bi ddre fi 1
m Unindexed address of the subtrahend tonf,;y address of index register, 0
Notes AR Positional designation of arithmetic
register(s)
1. Pure binary 0’s (0000) in either the subtra- m Unindexed address of the subtrahend
hend or minuend will be treated as decimal)
excess-three 0’s (0011). See Appendix for Notes
treatment of non-numeric binary codes. 1. The minuend will be undisturbed.
2. Indirect addressing, field selection and multi- 2. Pure binary 0’s (0000) in either the subtrahend
word operands may be employed. or minuend will be treated as decimal excess-

o three 0’s (0011). See Appendix for treatment of

3. Additional considerations if the operand is non-numeric binary codes.
multi-word, or if field selection is to be em- inol d d 11 ibl
ployed, are discussed in Multi-Word Operands, 3. For Sln? e.—WOZ ‘?peran S, allpossible
d Field Selection Sections. cases ol 1 and 1 are:
an Sections if i is 8, i’ may be4, 2 orl.
if i is 4, i’ may be 2 or 1,
4. See Arithmetic Modes for a discussion of re- if i is 2, i’ may be 1 only.
complementation and determination of signs. i may not be 1.

) 4. Multi-word usage is restricted to Arithmetic
IHustration Register 12, The difference will always
Subtract FIELDA (0565) from ARL. appear in Arithmetic Register 3. Bits

11—-14 of the instruction word in this case
should be all 1’s.
DS 1, FIELDA
| 5. Indirect addressing, and field selection may be
{\ X OP Code | AR m employed.
6. Additional considerations if the operand is
0| 0000 21 0001 0565 multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,
and Field Selection Sections.
DECIMAL SUBTRACT HIGHER 7. See Arithmetic Modes for a discussion of re-
complementation ard determination of signs.
Operation: (ARi) — (m’)—=ARi’, where i’ <i Hlustration
OP Code: 23 Subtract FIELDS (0782) from AR4 placing the
Cycles: 2 difference in ARZ.

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the resultin a higher
designated arithmetic register(s).

DSH 6, FIELDS
|
/1 X OP Code AR m
A
0(0000 23 0110 0782

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 28

DECIMAL MULTIPLY DM

Operation: (m’') x (AR8)= AR4 and AR2
0P Code: 30
Cycles: 12 to 31 Depending on multiplier

digits.

Description: Algebraically multiply the contents
of the indexed memory location (multiplicand) by
the contents of Arithmetic Register 8 (multiplier),
placing the six most significant digits of the pro-
duct in Arithmetic Register 4 and the six least
significant digits in Arithmetic Register 2.

|
/1 X OP Code AR m
A
2524 21|20 15114 1110 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Will designate AR14
(1110)
m Unindexed address of the multiplicand
Notes

1. The multiplier and the multiplicand will not be
disturbed.

2. All O’s in the multiplier (AR8) and the multi-
plicand (m) must be excess-three (0011).

3. Indirect addressing but not field selection may
be employed.

4. Multi-word operands may not be used, but note
that a 12—-digit product is produced.

5. See Arithmetic Modes for determination of signs
and Appendix for timing.

DECIMAL DIVIDE

m—
Operation: (AR12) =+ (m’)y*AR4(quotient)
AR8(remainder)

OP Code: 31
Cycles: 17-36 Depending upon quotient

digits

Description: Algebraically divide the contents of
Arithmetic Register 12 (dividend) by the con-
tents of the indexed memory location (divisor)
placing the 6~digit quotient in Arithmetic Register
4 and the 6-digit remainder in Arithmetic Regis-
ter§ .

} X 0P Code AR m

A

2524 21|20 1514 11}10 1
I/A Indirect addressing option

X Binary address of index register

to 15

AR Will designate AR12 (1100)
m Unindexed address of the divisor
Notes

the divisor (m) and the divi-
must be excess-three (0011).

1. Decimal 0’s in

dend AR12

2. If the absolute magnitude of the divisor (m) is
less than or equal to that of ARS8, the Overflow
Indicator will be set and a Contingency Inter-
rupt will occur.

3. The sign of the remainder will be that of the
dividend. '

4. Indirect addressing but not field selection may
be employed.

5. See Arithmetic Modes for determination of

signs and timing.

lustration fltustration
Multiply the contents of ARS8 by FieldB (0538). ?0’;’;:‘)* the contents of AR12 by FIELLD
DM FIELDB DD FIELDD
|
:/\ X OP Code AR m £ X OP Code AR m
0| 0000 30 1110 0538 0 0009 31 1100 0685

UNIVAC III UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb. 1, 1963 29

BINARY ADD BA
Operation: (ARi) + (m’')——»ARi
0P Code: 24
Cycies: 2

Description: Algebraically add in binary the oper-
and (augend) in the indexed memory location(s)
and the value (addend) in the designated arithme-
tic register(s) placing the result in the same arith-
metic register(s).

BINARY ADD HIGHER

Operation: (ARi) + (m')=»ARi’ where i’ > {
OP Code: 26
Cycles: 2

Description: Algebraically add in binary the oper-
and (augend)in the indexed memory location(s) and
the value (addend) in the designated arithmetic
register(s), placing the result in a higher designa-
ted arithmetic register(s).

|
/I X OP Code AR m
A
25(24 21120 15|14 11110 1
I1/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the augend
Notes

1. Indirect addressing, field selection and multi-
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,

and Field Selection Sections.

3. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

tHustration

Add in binary, FIELDA (0789) to AR2.

BA 2, FIELDA
|
{\ X OP Code AR m
0| 0000 24 0010 0789

I

£ X 0P Code AR m

25(24 21|20 15)14 11/10

I/A Indirect addressing/field selection
option

X Binary address of index register, 0
to 15

AR Positional designation of arithmetic
register(s)

m Unindexed address of the augend

Notes

1. The addend will be undisturbed.

2. For single-word operands, all possible
cases of i and i' are:
if i is 8, i’ may be 4, 2 or 1.
if i is 4, i’ may be 2 or 1.
if 1 is 2, i’ may be 1 only.
i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12, The sum will always appear
in Arithmetic Register 3, Bits 11-14 of
the instruction in this case should be all I’s.

4. Indirect addressing and field selection may be
employed.

5. Additional considerations if the operand is multi-
word, or if field selection is to be employed, are
discussed in Multi-Word Operands, and Field
Selection Sections.

6. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

REVISION: SECTION:
v
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 30
Illustration: Itlustration

Add FIELDD (0832)to AR4 and place sum in AR1.

Subtract in binary FIELDD (0823) from AR2.

BAH 5, FIELDD BS 2, FIELDD
| I
£ X 0P Code AR m ﬁ X OP Code AR m
0| 0000 26 o101 0832 0| 0000 25 0010 0823
BINARY SUBTRACT BINARY SUBTRACT HIGHER BSH

Operation: (ARi) — (m’)—>ARi
0P Code: 25
Cycles: 2

Description: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in the
same arithmetic regdister(s).

|
/1 X 0P Code AR m
A
25124 21|20 15|14 11110 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designator of arithmetic
register(s)
m Unindexed address of the subtrahend
Notes

1. Indirect addressing/field selection and multi-
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Qperands,
and Field Selection Sections.

3. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

Operation: (ARi) — (m')——>»ARi’ where i’ > i.
0P Code: 27
Cycles: 2

Description: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in a
lower designated arithmetic register(s).

|
/1 X 0P Code AR m
A
2524 21120 15 |14 1110 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the subtrahend
Notes

1. The minuend will be undisturbed.

For single-word operands, all possible
cases of i and i' are:
if i is 8 i’ may be 4, 2 or 1.
if i is4, i’ may be 2 or L
if i is 2, i’ may be 1 only.
i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12, The result will always
appear in Arithmetic Register 3. Bits
11—14 of the instruction in this case should be
all I’s.

UNIVAC IIT UTMOST

4. Indirect addressing and field selection may be
employed.

5. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,
and Field Selection Sections,

6. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

Illustration

Subtract in binary FIELDD (0930) from ARS8 plac-
ing the difference in AR4.

BSH 12) FIELDD
|/ X OP Code AR m
A
0| 0000 27 1100 0930

SHIFT INSTRUCTIONS

The contents of the arithmetic registers may be
altered by the shift instructions. Three distinct
methods of shifting, a separate method for each
of the three types of data format, may be designa-
ted.

DECIMAL SHIFT RIGHT

OP Code: 40
Cycles: 4

Description: Shift the contents of the arithmetic
register(s) designated right the number of decimal
digit positions specified in bit positions 1-10 of
the instruction.

|

{\ X OP Code AR Shift Count

25(24 21(20 15|14 11{10 1
I/A Indirect addressing option

X Binary address of index register, 0

to 15

REVISION: SECTION:
A"
DATE: PAGE:
July 1, 1962 31
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Digits shifted to the right of the least signifi-
cant digit position of the operand are lost, and
decimal 0’s (0011) are inserted in the vacated
most significant decimal digit positions.

2. The sign bit(s) are not shifted.

3. A maximum of a 2—word operand, in adjacent
or non-adjacent arithmetic registers may be
shifted. The results in either case will always
appear in the same regdisters, leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted right from
one register into another with a higher numerical
designation, for example, shifting right AR1
and AR4.

5. A shift count greater than that of the operand
size will result in an error, for example,
shifting a 1-word operand nine places. The
shift will occur with Modulo 3 check error
which causes a processor error interrupt.

6. Indirect addressing, but not field selection,

may be employed.

Ilustration
Shift the contents of ARG four decimal
places right.
DSR 6, 4

|

K X OP Code AR Shift Count

0| 0000 40 0110 0004

DECIMAL SHIFT LEFT DSL
0P Code: 41
Cycles: 3

Description: Shift the contents of the arithmetic
register(s) designated left the number of decimal
digit positions specified in bit positions 1—10 of
the instruction.

UNIVAC IIT UTMOST

REVISION: SECTION:

1

oate: Oct. 1, 1962

PAGE:

32

|
£ X OP Code AR Shift Count
25/124 21(20 15(14 11|10 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Digits shifted to the left of the most significant
digit position of the operand are lost and deci-
mal 0’s (0011) are inserted in the vacated least
significant decimal digit positions of the oper-
and,

2. The sign bit(s) are not shifted.

3. A maximum of a 2—word operand in adjacent or
non-adjacent arithmetic registers may be shift-
ted. The results in either case will always ap-
pear in the same registers leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted left from
a redister into another with a lower numerical
designation, for example, shifting left AR4 and
AR1.

5. A shift count greater than that of the operand
size will result in an error, for example,
shifting a 1-word operand nine digits. The
shift will occur, causing a modulo 3 (parity)
error and a processor error interrupt.

6. Indirect addressing, but not field selection, may
be employed.

Itlustration

Shift the contents of AR4 three decimal positions
left.

DSL 4, 3

X OP Code AR Shift Count

o N\

0000 41 0100 0003

ALPHABETIC SHIFT RIGHT

0P Code:
Cycles: 4

42

Description: Shift the contents of the arithmetic
register(s) designated right the number of alpha-
numeric character positions specified in bit posi-
tions 1—-10 of the instruction.

|

'/\ X OP Code AR Shift Count

25124 21{20 1514 11)10 1

I/A Indirect addressing option

X Binary address of index register, 0
to 15

AR Positional designation of arithmetic
register(s)

Shift Unindexed number of places to be

Count shifted expressed in pure binary

Notes

1. Characters shifted to the right of the least
significant character position are lost and
binary 0’s (000000) are inserted in the vacated
most significant character positions of the
operand.

2. The sign bit(s) are not shifted.

w

A maximum of a 2—word operand in adjacent
or non-adjacent arithmetic registers, may be
shifted, The results in either case will always
appear in the same registers, leaving the other
registers undisturbed.

4. Two-word operand cannot be shifted right from a
regdister into another with a higher numerical
designation, for example, shifting right AR1
and AR4.

5. A shift count greater than the operand size will
result in an error, for example, shifting a
l-word operand nine character positions. The
shift will occur, causing a modulo 3 (parity

error and a processor error interrupt.

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb. 1, 1963 33

6. Indirect addressing, but not field selection
may be employed.

Hlustration

Shift the contents of ARS8 two character positions
right.

ASR 8, 2
/l/\ X 0P Code AR Shift Count
0! 0000 42 1000 0002
ALPHABETIC SHIFT LEFT l ASL
OP Code: 43
Cycles: 3

Description: Shift the contents of the arithmetic
register(s) designated left the number of alpha-
numeric character positions specified in bit posi-
tions 1—10 of the instruction.

| .
/I X OP Code AR Shift Count
A
25|24 21120 15]14 11110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Characters shifted to the left of the most signi-
ficant character position of the operand are
lost. Binary 0’s (000000) are inserted in the
vacated least significant character positions
of the operand.

2. The sign bits are not shifted.

3. A maximum of a 2—word operand, in adjacent
or non-adjacent arithmetic registers, may be
shifted. The results in either case will always
appear in the same registers leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted left from
a register into another with a lower numerical
designation, for example, shifting left AR4 and
AR1.

5. A shift count greater than the operand size will
result in error, for example, shifting a
l-word operand nine character positions. The
shift will occur, causing a modulo 3 (parity)
error and a processor error interrupt.

6. Indirect addressing, but not field selection may
be employed.

IHustration

Shift the contents of AR2 two character positions
left.

ASL 2, 2
I
{\ X OP Code AR Shift Count
0| 0000 43 0010 0002

BINARY ROTATE RIGHT

OP Code: 44
Cycles: 4

Description: Shift circularly the contents of the
arithmetic register designated right the number of
bit positions specified in bit positions I—10 of the
instruction.

|
'l/\ X OP Code AR Shift Count
725124 21120 15/14 1110 1
1I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic

register

UNIVAC IIT UTMOST

REVISION: SECTION:

1 v

DATE: PAGE:

Feb. 1, 1963 34

Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Bits shifted beyond the least significant bit
position re-enter in the most significant bit
positions of the same register so that no bits are
lost.

2. The sign bit is shifted.
3. The maximum size of the operand is one word.

4. A shift count greater than 25 will result in
an error,

5: Indirect addressing, but not field selection, may
be employed.

Illustration

Shift the contents of ARg Sixteen bit positions
right.

BRR 8, 020
|
{\ X 0P Code AR Shift Count
0} 0000 44 1000 0020

COMPARISON INSTRUCTIONS

These instructions perform four distinct types of
comparisons. In each case the contents of the arith-
metic register is compared to the contents of the
indexed address. Each of these instructions sets
one of the comparison indicators reflecting the re-
lationship of the contents of the arithmetic regis-
ter(s) to those of the indexed memory location.
The setting of the individual indicators may later
be tested and a logical branch operation executed

as a result. If Field Selection is employed, only

the selected bits are compared.

COMPARE MAGNITUDE

Operation: |(ARi)| : | (m’)]
OP Code: 55
Cycles: 2

Description: Compare the absolute magnitude of
the arithmetic register(s) designated with the ab-
solute magnitude of an operand in memory. Set the

appropriate comparison indicator according to the
following:

if |(ARi)| > |(m')|, set Greater Comparison Indicator
if |(ARi)| < |(m’)|, set LessComparison Indicator
if |(ARi)| = |(m’)|, set Equal Comparison Indicator

|
£ X OP Code AR m
25124 21120 15(14 11110 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes

1. Prior to the setting of the appropriate indicator
all comparison indicators are automatically reset.

2. The operands are not altered.

3. Comparison is based on the binary value of the
operands regardless of word format,
See Figure 2-1.

4. Indirect addressing, field selection and multi-
word operands may be employed.

Hiustration

Compare the absolute magnitude of AR2 with the
absolute magnitude of FIELD A (0732).

cM 2, FIELDA ,
Y x | opcode | AR m
A
o[0000 55 0010 0732
B
COMPARE c
|]

Operation: (ARi) : (m'’)
OP Code: 54
Cycles: 2

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE:

Feb. 1, 1963

PAGE:

35

Description: Algebraically compare the contents of

the

arithmetic register(s)designated with an operand

in memory. Set the appropriate comparison indicator
according fo the following:

If (ARi) > (m’), set Greater Comparison Indicator

If (ARi) < (m'), set Less Comparison Indicator
If (ARi) = (m’), set Equal Comparison Indicator

|
£ X OP Code AR m
2524 21120 15{14 11{10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, O
to 15
AR Positional designation of arithmetic
regdister(s)
m Unindexed address of the operand
Notes
1. Prior to the setting of the appropriate indicator,

all comparison indicators are automaticallyreset.
Plus 0 will compare greater than a minus 0,
The operands are not altered.

Comparison is based on the binary value of the
operands regardless of word format.

See Figure 2-1.

Only the sign of the least significant word of a
multi-word operand is considered. All other signs
are ignored,

Indirect addressing, field selection and multi-
word operands may be employed.

Hiustration

Compare algebraically the contents of ARl with
FIELDA (0835).

Cc 1, FIELDA
]
£ X OP Code AR m
0| 0000 54 0001 0835

COMPARE PRODUCT WITH

A REGISTER
Operation: (ARi) 1-bits : (m’) 1—bits
OP Code: 57
Cycles: 2

Description: Compare the 1—bits of the arithmetic
register(s) designated with the 1—bits of the oper-

and

in memory. If the latter contains a I[-bit in

every bit position in which the arithmeticredister(s)
contains a 1-bit, set the Equal Comparison Indica-

tor; otherwise set the High Comparison Indicator.
|
/ X OP Code AR m
A
25(24 21{ 20 15(14 11{10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, O
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes
1. Sign bits are included in the comparison.
2. Before setting the appropriate indicator all com-
parison indicators are automatically reset,
3. The operands are unaltered.
4. Indirect addressing, field selection and multi-

Iy

word operands may be employed.

stration

Compare the 1-bits of AR4 with the 1-bits of
FIELDD (0823).

CPA 4, FIELDD
|
,/\ X OP Code AR m
0| 0000 57 0100 0823

UNIVAC IIT UTMOST

REVISION: SECTION:
\4
DATE: PAGE:
July 1, 1962 36

COMPARE PRODUCT WITH ZERO

Operation: (ARi) 1-bits : (m’) O-bits
OP Code: 56
Cycles: 2

Description: Compare the 1—bits of the arithmetic
register(s)designated with the O—bits of the operand
in memory. If the latter contains a 0-bit in every
bit position in which the arithmetic register(s)
contains a 1-bit, set the Equal Comparison Indicator;
otherwise set the High Comparison Indicator.

|
//\ X OP Code AR m
2524 2120 15/14 11j10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes

1. Sign bits are included in the comparison.

2. Before setting of the appropriate indicator all
comparisons indicators are reset.

3. The operands are unaltered.

4. Indirect addressing, field selection and multi-
word operands may be employed.

Hlustration

Compare the 1-bits of AR2 with the 0-bits of
FIELDD (0834).

CPZ 2, FIELDD
;/\ X OP Code | AR m
0| 0000 56 0010 0834

LOGICAL BRANCHING INSTRUCTIONS

The sequence of execution of instructions may be
altered depending upon the state (set or reset) of
the
Thus a branch in the program or a conditional trans-
fer of control may be accomplished. If the indicator
tested is reset, the next instruction in sequence
will be accessed and executed. If the indicator is
set, control will be transferred to any point in the
program desired. Control may also be transferred un-
conditionally.

JUMP |IF EQUAL JE
I
Operation: Test Indicator:
If set, m'—»CC.
If reset, (CC) + I—»CC
0P Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Equal Comparison indicator.
If set, transfer control to the indexed memory ad-
dress. Otherwise, access the next instruction in
sequence.

|
{\ X OP Code | Indicator m
2524 21|20 1514 11(10 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
Indicator 0110
m Unindexed address of the next instruc-
tion to be accessed if indicator is set
Notes

1. The condition of the indicator will not be affec-
ted by the test.

2. The state of this indicator may also be affected
by addition and subtraction instructions. If a
zero result is produced, it will be set. It will
be reset if a non-zero result is produced.

3. Indirect addressing may be employed.

indicators affected by previous instructions.

UNIVAC III UTMOST

IHlustration

Transfer control to LOCC (0932) if the Equal Com-
parison Indicator is set.

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 37
[llustration

Transfer control to LOCD (0839) if the Greater Com -

parison Indicator is set.

JE LOCC JG LOCD
| ! .
£ X OP Code | Indicator m £ X OP Code | Indicator m
0] 0000 60 0110 0932 0| 0000 60 0111 0839
JUMP IF HIGH JG JUMP IF LESS JL
Operation: Test Indicator: Operation: Test Indicator:
If set, m’ —=—»CC If set, m'——= CC
If reset, (CC) + 1—»CC If reset (CC) + I—»CC
OP Code: 60 OP Code: 60
Cycles: 1 if set; 2 if reset Cycles: 1 if set; 2 if reset

Description: Test the Greater Comparison Indic.
If set, transfer control to the indexed memory ad-

Description: Test theLeSS Comparison Indicator,
If set, transfer control to the indexed memory ad-

dress. Otherwise, access the next instruction in dress. Otherwise access the next instruction in
sequence. sequence.
I I ‘
{\ X OP Code | Indicator m I/\ X OP Code | Indicator m
2524 21120 15(14 11110 1 25/24 21|20 15|14 11{10 1
I/A Indirect addressing option I1/A Indirect addressing option
X Binary address of index register, 0 X Binary address of index register, 0O
to 15 to 15
Indicator 0111 Indicator 0101
m Unindexed address of the nextinstruc- m Unindexed address of the next instruc-
tion to be accessed if indicator is set tion to be accessed if indicator is set
Notes Notes

1. The condition of the indicator will not be af-
fected by the test.

2. Indirect addressing may be employed.

1. The state of the indicator will not be affected
by the test.

2. Indirect addressing may be employed.

UNIVAC IIT UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 38

DATE:

Hlustration

Transfer control to LOCB (0938) if the LessCom-
parison Indicator is set.

3. Indirect addressing may be employed.

IHustration

Transfer control to LOCD (0659) if the sign of AR2
is positive.

JL LOCB
1
{\ X OP Code | Indicator m
0| 0000 60 0101 0938
JUMP IF POSITIVE
Operation: Test Indicator:
If set, m— CC
If reset, (CC) + 1—»CC
OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Sign Indicator of the arithme-
tic register addressed. If set, transfer control to the
indexed address. Otherwise, access the next in-
struction in sequence.

|
/A X OP Code | Indicator m
25124 21 15|14 1110 1
I1/A Indirect addressing option
X Binary address of index register, 0
to 15
Indicator Designation (See below.)
m Unindexed address of the nextinstruc-
tion to be accessed if indicator is set
Notes

1. Each Sign Indicator will be set or reset depend-
ing on the sign of the word currently in the re-
spective arithmetic register. If the sign is posi-
tive the indicator will be set, if negative it will
be reset.

2. The designations of the Sign Indicators are:

TPOS 3, LOCD
|
é X OP Code | Indicator m
0| 0000 60 0011 0659
JUMP J
Operation: m'=—» CC
0P Code; 06
Cycles: 1

Description: Replace the contents of the Control
Counter with the indexed address of the instruction,

|
£ X 0P Code AR m
2524 21|20 15{14 111 10 1
1/A Indirect address option
X Binary address of index register, 0
to 15
AR Not relevant
m Unindexed address of the next instruc-
tion to be accessed
Notes

1. Indirect addressing but not field selection may
be employed.

IHiustration

Transfer control to LOCC (0783).

ARS8 0001 1
AR4 0010 2
AR2 0011 3
AR1 0100 4

J LocC
|
’/\ X OP Code AR m
0| 0000 06 0000 0783

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:)
July 1, 1962 39

SLJ
SCJ

STORE LOCATION AND JUMP
STORE CHANNEL AND JUMP

Operation: (CC)+ 1—pm’
and
m+ 11— CC
0P Code: 07
Cycles: 3

Description: Transfer the contents of the Control
Counter, incremented by 1 (or if specified the MAC
incremented by 1) into bit positions 1—15 of the in-
dexed memory location and replace the contents of
the Control Counter with the indexed memory ad-
dress incremented by 1.

I£ X OP Code | CC/MAC m
25(24 21|20 1514 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
CC/MAC Normally 0001 (See note 2 below.)
m Unindexed address minus 1 of the
next instruction to be accessed
Notes

1. Rit positions 16—25 of the indexed location will
be binary 0’s,

2. If a Memory Address Counter plus 1 is desired,
the designations are:

UNISERVO Il Basic Write 0011 3
UNISERVO Ill Basic Read 0100 4
General Purpose #1 0101 5
General Purpose #2 0110 6
General Purpose #3 0111 7
General Purpose #4 1000 8
General Purpose #5 1001 9
General Purpose #6 1010 10
General Purpose #7 1011 11
General Purpose #8 1100 12
Compatible Tape Read-Write 1101 13
UNISERVO Il Additional Write 1110 14
UNISERVO III Additional Read 1111 15

3. The contents of the Memory Address Register
(15 bits)plus 1 may also be transferred to memory by
placement of 0010 in bit positions 11—14 of the
instruction,

4. Indirect addressing but not field selection may

be employed.

Illustration

Store the contents of the Control Counter incremen-
ted by 1 in LOCB (0839) and transfer control to
0840,

SLJ LOCB
|
//\ X 0P Code |CC/MAC m
0| 0000 07 0001 0839

SENSE INDICATOR INSTRUCTIONS

The following instructions refer to eight indicators
that may be used for program control. Each may be
set, or reset and tested, with branching occurring
if the indicator is set.

SET SENSE INDICATOR

OP Code: 62
Cycles: 2

Description: Set the Sense Indicator (1-8) speci-
fied in bits 11—14 of the instruction,

|

£ X OP Code | Indicator m

25124 21120 15{14 1110 1
I/A Not relevant

X Not relevant

Indicator Designation

m Not relevant

UNIVAC IIT UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 40

DATE:

Notes

1. The designations of the Sense Indicators are:

Sense Indicator #1 1000 8
Sense Indicator #2 1001 9
Sense Indicator #3 1010 10
Sense Indicator #4 1011 11
Sense Indicator #5 1100 12
Sense Indicator #6 1101 13
Sense Indicator #7 1110 14
Sense Indicator #8 1111 15

2. Indirect addressing, field selection and multi-
word operands are not applicable.

Illustration

Set Sense Indicator # 8.

SS 15

OP Code | indicator m

N\
>

0 0000 62 1111 0000

RESET SENSE INDICATOR

0P Code: 61
Cycles: 2

Description: Reset the Sense Indicator (1-8) speci-
fied in bits 11—14 of the instruction.

|
é X OP Code | Indicator m
25|24 21]20 15114 11(10 1
I/A Not relevant
X Not relevant
Indicator Designation
m Not relevant
Notes

1. See Note 1 above for Sense Indicator designa-
tions (bits 11—14).

2. Indirect addressing, field selection and multi-
word operands not applicable.

Illustration

Reset Sense Indicator # 4.

RS 11
|
l/\ X OP Code | Indicator m
0| 0000 61 1011 0000

JUMP |F SENSE
INDICATOR SET

JS

Operation: Test Indicator:

If set, m’—— CC

If reset,(CC) + 1—»CC
OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Sense Indicator designated.

If set, transfer control to the indexed address.
Otherwise access the next instruction in sequence.
l .
I/\ X OP Code | Indicator m
2524 2120 15(14 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
Indicator Designation
m Unindexed address of the next instruc-
tion
Notes

1. The condition of the indicator is not affected
by the test.

2. See Note 1 above for sense indicator designa-
tions (bits 11~14).

3. Indirect addressing may be employed.

UNIVAC IIT UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 41

DATE:

IHustration

Transfer control to LOCC (0832) if Sense Indica-

tor # 3 is set. Js 10, LOCC
|
{\ X OP Code | Indicator m
0| 0000 60 1010 0832

CONVERSION INSTRUCTIONS

These instructions provide the facility to convert
data in decimal format to alpha-numeric format or
data in alpha-numeric format to decimal format, and
to convert non-significant characters to non-printing
codes. Such instructions may be used to prepare in-
put data for processing and/or output.

LOAD A CONVERTING TO DECIMAL

Operation: (m'~2, m'~1, m')—AR; — 1, AR;
OP Code: 72
Cycles: 7

Description: Transfer the contents of three con-
secutive memory locations of alpha-numeric for-
mat into two adjacent arithmetic registers in decimal
format by removing the zone bits.

|
{\ X OP Code AR m
25(24 21120 1514 11§10 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
in alpha-numeric format
Notes

1. A 3—word alpha-numeric operand in memory is
‘‘compressed’’ into a 2—-word decimal operand
in the arithmetic registers.

2. It is assumed that the operand in memory is a
- numeric (in 6-bit code) rather than alphabetic

representation. There is no check for the pre-
sence of zone bits.

3. The signs of the result in the arithmetic regis-
ters will be that of the least significant word of
the operand in memory.

4. The operand in memory will not be altered.

Hlustration
Convert FIELDB (0830-0832) from alpha-
numeric format to decimal format and locate the
result in AR12,
LAD 12, FIELDB + 2
|
{‘ X OP Code AR m
0| 0000 72 1100 0832

STORE A CONVERTING TO
ALPHA-NUMERIC

Operation: (AR; ~ 1, ARj)—=»m’ — 2, m' -1, m’
0P Code: 71
Cycles: 8

Description: Transfer the contents of two adjacent
arithmetic registers of decimal format into three

consecutive indexed memory locations in alpha-
numeric format by inserting zero zone bits.
|
/1 X OP Code AR m
A
2524 21{20 15/14 11{10 1
I/7A Indirect addressing option
X Binary address of index register, O
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand in
alpha-numeric format
Notes

1. A 2-word decimal operand in the arithmetic
redisters is ‘‘expanded’’ to a 3—word alpha-
numeric operand in memory.

UNIVAC III UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 . 42

DATE:

2. The signs of the result in memory will be that
of the least significant word of the operand in
the arithmetic registers.

3. The contents of the arithmetic registers are not
altered.

4. Indirect addressing, but not field selection may
be employed.

Illustration

Convert to alpha-numeric format a decimal operand
located in AR12, storing it in FIELDB
(0681—-0683).

SAA 12, FIELDB + 2
I
£ X OP Code AR m
0| 0000 71 1100 0683

LOAD 'A' EDITED

0P Code: 73
Cycles: 2

Description: Transfer the contents of the indexed
memory location(s) to the arithmetic registers de-
signated replacing alpha-numeric 0’s (00 0011) and
commas (11 0010) to the left of the first significant
non-zero character with non-printing space codes
(00 0000). '

|
{\ X OP Code AR m
25124 21,20 15{14 11{10 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
(See #3 below.)
Notes

1. The operand in memory is unaltered.

2. The original sign(s) are retained.

3. A multi-word operand must be located in con-
secutive memory locations, but the suppressed
result may be in non-adjacent arithmetic regis-
ters.

4. When the operand is multi-word, the indexed
memory location must be the address of its most
significant word.

5. Indirect addressing, but not field selection may
employed.

IHustration .
Edit FIELDP (0689-0690) placing the
result in AR12,

LAE 12, FIELDB
I N
{\ X OP Code AR m
0| 0000 3 1100 0689

LOGICAL 'INSTRUCTIONS

These instructions allow bit manipulation in the
UNIVAC III System. The operation table which ap-
plies to each affected bit of the arithmetic regis-
ter(s) has the following form:

AR;
m (AR ;) before execution
(m’) l (AR;) after execution
-
OR ‘ OR

L]

Operation: (m') =—>AR;

OP Code: 15 1-bits

Cycles: 2

Description: Transmit all 1-bits in the indexed
memory location(s) to the corresponding bit posi-
tions in the arithmetic register(s) designated.

OP Code AR m

>~—
=<

25|24 21|20 15|14 1110 1

REVISION: SECTION:
UNIVAC III UTMOST : v
DATE: PAGE:
Feb. 1, 1963 43
1/7A Indirect addressing/field selection |
option ‘/\ X OP Code | AR m
X Binary address of index register, 0 bss 21(20 1504 11110 1
to 15
I/A Indirect addressing/field selection
AR Positional designation of arithmetic option
register(s)
X Binary address of index register, 0
m Unindexed address of the operand to 15
Notes AR Positional designation of arithmetic
register(s)
1. Bit positions in the arithmetic register(s) that .
m Unindexed address of the operand

correspond to O-bits in the operand are not al-
tered.

The operand in memory is not altered.

A logical ‘‘or’’ operation is performed on the
entire operands, including sign bits. The truth
table is:

. AR
m 0 1
0 0 1
1 1 1

Indirect addressing, field selection and multi-
word operands may be employed.

Itlustration

JOGICAL"OR'FIELDB (0823)with AR2

OR 2, FIELDB

|
£ X OP Code AR m
0{ 0000 15 0010 0823

AND AND
Operation: (m’)—AR;

0-bits

OP Code: 16
Cycles: 2

Description: Transmit all O—bits in the indexed
memory location(s) to the corresponding bit posi-
tions in the arithmetic register(s) designated.

Notes

1. Bit positions in the arithmetic register(s) that
correspond to 1-bits in the operand are not al-
tered.

2. The operand in memory is not altered.
3. A logical ‘“‘and’’ operation is performed on the

entire operand, including sign bits, for which
the truth table is:

AR
m 0 1
0 0 0
1 0 1

4. Indirect addressing, field selection and multi-
word operands may be employed.

Iitustration

LOGICAL "AND" FIELDE (0832)with AR1

AND 1, FIELDE
|
I/\ X OP Code AR m
0| o000 16 0001 0832

INDEX REGISTER INSTRUCTIONS

The following instructions provide for the loading,
storing, incrementing and comparing of index regis-
ter contents used forthe indexing of all instructions,

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

Feb. 1, 1963 44

LOAD INDEX REGISTER

Operation: (m’) —+XO0;
bits 1-15

OP Code: 51

Cycles: 3

Description: Transfer bits 1—15 of the indexed
memory location to the index register designated in
bit positions 11—14 of the instruction.

{
{\ X 0P Code X0 m
25124 21|20 15714 11110 1
1/A Indirect addressing option
X Binary address of index register,
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of value to be load-
ed
Notes

1. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Hlustration

Load index register 12 with the value found in AMTA

(0389).
LX 12, AMTA

|

,/\ X 0P Code X0 m

0| 0000 51 1100 0389
STORE INDEX REGISTER SX
Operation: (X0i) —>m'
OP Code: 50
Cycles: 3

Description: Transfer the contents of the index re-
gister designated in bit positions 11—-14 of the in-
struction to bit positions 1—15 of the indexed
memory location,

|
/1 X 0P Code X0 m
A
25|24 21120 1514 11110 1
I/A Indirect addressing option
X Binary address to index register, 0
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of storage location
Notes

1. Bit positions 16—25 of the indexed memory loca-
tion will be binary 0’s.

2. If XO is 0000, bit positions 1—25 of m’ will con-
tain binary 0’s.

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Ilustration

Store Index Register 10 in AMTB (0834).

SX 10, AMTB
i
l/\ X OP Code X0 m
0] 0000 50 1010 0834
L
INCREMENT INDEX REGISTER 1X
]
Operation: (X0;) + (m') ——>X0;
‘ bits 1-9
OP Codes: 52
Cycles: 3

Description: Algebraically add in binary bit posi-
tions 1-9 (augend) of the indexed memory location
to the index register designated (addend) in bits
11—14 of the instruction.

UNIVAC IIT UTMOST

REVISION: SECTION:

vV

DATE: PAGE:

Feb. 1, 1963 45

|
/X OP Code X0 m
A
25(24 21120 15114 11110 1
I/A Indirect addressing option
X Binary address to index register, 0
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of increment
Notes

1. If the sign of the indexed memory location is
negative, the addition to the index register is in
effect a decrementation.

2. Any carry beyond the most significant bit posi-
tion of the index register is ignored.

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Ilfustration

Increment Index Register 12 by the value in AMTB
(0772).

IX 12, AMTB
|
{\ X OP Code X0 m
6| 0000 52 1100 0772

INCREMENT INDEX REGISTER AND

COMPARE v xc

Operation: (X0;) + (m’) — XO;
bits 1--9
l(x01)|: 1(m')}
OP Code: 53 bits 10-24
Cycles: 4

Description: Algebraically add in binary bit posi-
tions 1-9 (increment amount) of the indexed Incre-
ment and Compare word (ICW) to the

index register designated in bits 11-14 of the in-
struction. Compare in absolute the new contents of
the index register with bit positions 10-24 (com-
parison amount) of the J[CW and set the appropri-
ate comparison indicator according to the following:

if |(X0i)| > |(m')| bits 10-24, set Greater Com-

parison [Indicator.
if |(X0i)| < |(m')| bits 10-24, set Less Compar-
ison Indicator.
if | (X0i)| = |(m’)| bits 1024, set Equal Comparison
Indicator
|
/X OP Code X0 m
A
25124 21{20 15114 11110 1
I/7A Indirect addressing option
X Binary address of index register, 0
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of ICW
Notes

1. The ICW is in the following format:

Rl
S
! Comparison Amount Increment Amount
;
2524 1019 1

2, If the sign bit (25) of the ICW is one, the in-
crement amount is added as a negative value, in
effect decrementing the index register.

3. Any carry beyond the most significant bit posi-
tion of the index register is ignored.

4. Prior to the setting of the appropriate indicator,
all comparison indicators are reset.

5. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

REVISION: SECTION:
1
UNIVAC IIT UTMOST z
DATE: PAGE:
Feb. 1, 1963 46
Ilustration Class 0010
Indicator(s) Positional designation of specific

Increment Index Register 5 by 3 and compare the
contents to the value 45. The ICW 1is located in
INCR (0489).

IXC 5, INCR

|

{\ X OP Code X0 m

0] 0000 53 0101 0489
(0489)

INCR ICW 45,3,

N

é Comparison Amount Increment Amount

i

0 45 3

PROCESSOR INTERRUPT INSTRUCTIONS

The cause of two classes of automatic program in-
terrupt, Processor Error and Contingency, may be
determined by these instructions. When the condi-
tion is rectified, the affected indicator may then be
teset, and normal processing may continue.

TEST CONTINGENCY INDICATOR

Operation: Test Indicator:

If set, (CC) + 1—CC

If reset, (CC) + 2—»CC
0P Code: 64
Cycles: 2

Description: Test the contingency indicator(s)speci-
fied in bit positions 1-10. If one or more is set,
access the next instruction in sequence. Otherwise,
skip the next instruction in sequence.

]

‘/\ X OP Code | Class Indicator

25(24 21{20 15{14 1110 1
1/A Indirect address option
X Binary address of index registers, 0

to 15

indicator(s)
Notes

1. Any number of indicators may be tested by place-
ment of 1-bits in bit positions 1-10. If an in-
dicator is set, the next instruction in sequence
will be accessed, (CC) + 1—» CC.

2. The condition of the indicator(s) will not be
affected by the test.

3. Indicators are designated by 1—bits in the follow-
ing bit positions. (Bit positions 7—10 should be
0’s.)

ADDRESSES
Overflow 000001 01
Invalid OP Code 000010 02
Console Typewriter Interrupt 000100 04
Keyboard Request 001000 010
Keyboard Release 010000 020
Contingency Stop 100000 040

4. The location immediately following the instruc-
tion will normally be an unconditional transfer.

5. Indirect addressing may be employed.

Itlustration

Test the Contingency Stop Indicator.

TC 040
|
I/\ X OP Code | Class Indicator
0| 0000 64 0010 0000100000

RESET CONTINGENCY INDICATORS

-
OP Code: 65
Cycles: 2
Description: Reset the Contingency Indicator(s)

specified in bit positions 1—-10 of the instruction.

REVISION: SECTION:
UNIVAC III UTMOST Y
DATE: PAGE:
July 1, 1962 47
: Description: Test the Process error indicator(s)
/ X OP Code | Class Indicator specified in bit positions 1—10. If one or more is
A set, access the next instruction in sequence. Other-
2524 21120 15/14 110 1 wise, skip the next instruction in sequence.
| .
1/A Indirect addressing option l/\ X OP Code | Class Indicator
X Binla;y address of index register, 0 b5l 24 21120 15(14 11110 |
to
ci 1/A Indirect address option
ass 0010
X Binary address of index register, 0O
Indicator(s) Positional designation of specific to 15
indicator(s)
Notes Class 0001
1. Any number of indicators may be reset. The in- Indicator(s) I"os.itional designation of specific
clusion of several 1—bits will result in the re- indicator(s)
setting of all indicators designated. Notes

2. Indicators are designated in the same way as for
Test Contingency Indicator
Note 3

3. Any attempt to reset an indicator in a reset con-
dition will not result in an error.

4. Resetting of any indicator will automatically
reset the Contingency Interrupt Mode Indicator
and inhibit all interrupts until after execution
of the following instruction.

5. Indirect addressing may be employed.

lllustration

Reset the Overflow Indicator.

RC 1
;/\ X OP Code | Class Indicator
0/ 0000 65 0010 0000000001

TEST PROCESSOR ERROR
INDICATOR(S)

Operation: Test Indicator:
If set, (CC) + 1=—» CC
If reset,(CC) + 2—» CC
0P Code: 64
Cycles: 2

1. Any number of indicators may be tested by
placement of I1—-bits in bit positions 1—10. If
an indicator is set, the next instruction in sequ-
ence will be accessed; (CC) + 1 —»= CC.

2. The condition of the indicator(s) is not affected
by the test.

3. Indicators are designated by the following
address:

UTMOST

Memory Address Error during:

Instruction Access

Operand Access

Synchronizer Access by:
UNISERVO Il Basic Write
UNISERVO Ill Basic Read
General Purpose #1
General Purpose #2
General Purpose #3
General Purpose #4
General Purpose #5
General Purpose #6
General Purpose #7
General Purpose #8 12
Compatible Tape
UNISERVO IllI Additional Write
UNISERVO Ill Additional Read 15

WO U W m

Modulo 3 Check on Instruction 16
Modulo 3 Check on Operand 32
Adder Error Check 64

UNIVAC III UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 48

DATE:

4. The location immediately following the instruction
will normally be an unconditional transfer.

5. Indirect addressing may be employed.

IHustration

Test the Modulo 3 Check On Instruction Indicator,

TPE 16
|
/A X OP Code | Class Indicator
0 0000 64 0001 0000010000

RESET PROCESSOR ERROR
INDICATOR(S)

OP Code: 65
Cycles: 2

Description: Reset the Processor Error Indicator(s)
specified in bit positions 1—-10 of the instruction.

!
é\ X 0P Code Class Indicator
2524 21120 15{14 11|10 1
1/A Indirect addressing option
X Binary address of index register O to
15
Class 0001
Indicator(s) Positional designation of specific in-
dicator(s)
Notes

1. Any number of indicators may be reset. The in-
clusion of several 1-bits will result in the re-
setting of all the indicators designated.

2. Indicators are designated in the same way as
for Test Processor Error Indicators, Note 3

3. Any attempt to reset an indicator already in a
reset condition will not result in an error.

4. Resetting of any indicator will automatically
reset the Processor Error Interrupt Mode Indi-
cator and inhibit all interrupts until after execu-
tion of the following instruction,

5. Indirect addressing may be employed.

[Hlustration

Reset the Adder Error Check Indicator.

RPE 64
]
//\ X OP Code | Group indicator
0| 0000 65 0001 0001000000

INPUT-OUTPUT INTERRUPT INSTRUCTIONS

The third class of automatic program interrupt, In-
put-Output, is handled by these instructions. The
channel synchronizer originating the interrupt and
the specific cause of it may be determined. Normal
processing will be resumed when the affected in-
dicators are reset.

TEST INPUT-OUTPUT INDICATORS

Operation: Test Indicator:
If set, (CC) + 1—CC
If reset, (CC) + 2—»CC
OP Code; 64
Cycles: 2
Description: Test the Input-Output Indicator(s)

specified in bit positions 1-10 for the channel
specified in bit positions 11—14. If one or more is
set, access the next instruction in sequence. Other-
wise, skip the next instruction in sequence.

|
{\ X OP Code | Channel Indicator
2524 21|20 15114 11(10 1
1I/A Indirect addressing/field selection
option
X Binary address of index register, 0 to

15

REVISION: BECTION:
UNIVAC III UTMOST v
DATE: PAGE:
July 1, 1962 49
Channel Designator (See below.) Bit
Positions
Indicator Positional designation of specific Error A (UNISERVO Units
indicator Only)
Busy (UNISERVO UnitsOnly) 4
Notes
Error B
1. Any number of indicators may be tested by place- Error for General Purpose
ment of 1-bits in positions 1—10, If an indicator Channels
is set, the next instruction in sequence will be)
accessed; (CC) + 1 —» CC. End of File (727 Tape) 5
End of Tape (UNISERVO I
2. The condition of the indicator(s) will not be Unit Only) 6
affected by the test.
Qut-of-paper (High-Speed
3. The location immediately following this instruc- Printer) 6
should normally contain an unconditional trans- Wired Stop Character (Paper
fer. Tape) 6
4. Any attempt to reset an undefined indicator for Fault 7
a given channel or an indicator already in a reset Low on Paper (Paper Tape) 2and6
condition will not result in an error. .
Bad Line Printed S5and7

5. Indirect addressing may be employed.

6. Channel designations (bits 11—14) are as follows:

UNISERVO Il Basic Write 0011 3
UNISERVO Il Basic Read 0100 4
General Purpose #1 0101 5
General Purpose #2 0110 6
General Purpose #3 0111 7
General Purpose #4 1000 8
General Purpose #5 1001 9
General Purpose #6 1010 10
General Purpose #7 1011 11
General Purpose #8 1100 12
Compatible Tape Read Write 1101 13
UNISERVO III Additional

Write 1110 14

UNISERVO Il Additional Read 1111 15

7. Indicators aredesignated by 1—-bits in the follow-
ing bit positions (bits 8—10 should be 0):

Bit
Positions

Stand-by Location Interlock 1
Indicator

Completion/Initiation
Interrupt 2

Illustration

Test the Stand-by Location Interlock Indicator for
UNISERVO Il Basic Write Channel.

TiO 3. 1
[
l/\ X OP Code {Channel Indicator
6{ 0000 64 0011 0000000001

RESET INPUT-OUTPUT
INDICATOR(S)

0P Code: 65
Cycles: 2
Description: Reset the input-output indicator(s)

specified in bit positions 1-10 for the channel
specified in bit positions 11-14.

Channel Indicator

>~—
>

OP Code

25(24 21{20 1514 11{10 1

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

Oct. 1, 1962
50

I/A Indirect address option

X Binary address of index register, 0 to
15

Channel Designator (See below.)

Indicator(s) Positional designation of specific
indicator(s)

Notes

1. Any aumber of indicators may be reset. The in-
clusion of several 1-bits will result in the re-
setting of all indicators designated.

2. For channel designations (bits 11—14) see Note 6
of preceding instruction,

3. Indicators are designated by 1-bits as speci-
fied in Note 7 of the preceding instruction.

4. Any attempt to reset an undefined indicator for
a given channel or an indicator already in a reset
condition will not result in an error.

5. Resetting of any indicator will automatically
reset the Input-Output Interrupt Mode Indicator
and inhibit all interrupts until after execution of
the following instruction.

6. Indirect addressing may be employed.

Description: Set the Inhibit Input-Output Interrupt
Indicator thereby preventing all subsequent Input-
Output Interrupts from occurring.

|
£ X OP Code | Indicator m
25(24 21(20 1514 11110 1
I/A Should be 0
X Not relevant
Indicator Should be 0000
m Not relevant
Notes

1. Storage of the Control Counterreading and trans-
fer of control to location 0020 will be blocked
as long as the indicator is set.

2. The setting of the indicator will not affect any
subsequent setting or resetting of the Input-
Output Indicators.

3. Indirect addressing and field selection are not
applicable.

IHustration

Inhibit all Input-Output Interrupts from occurring,

Ilustration Pl 0
Reset the Stand-by Location Interlock Indicator for l/ X OP Code |Indicator m
UNISERVO Il Basic ReadChannel. A
RIO 4, 1 0| 0000 62 0000 0000
| .
I/\ X 0P Code |Channel Indicator
0{ 0000 65 0100 0000000001

PREVENT INPUT-OUTPUT
INTERRUPT

0P Code: 62
Cycles: 2

ALLOW INPUT-OUTPUT
INTERRUPT

OP Code: 61
Cycle: 2

Description: Reset the Inhibit Input-Output Interrupt
Indicator thereby allowing the occurrence of all
subsequent input-output interrupts.

REVISION: BECTION:
UNIVAC III UTMOST Y
DATE: Qct, 1, 1962 PAGE:
51
) X Binary address of index register, O to
£ X OP Code | Indicator m 15
2924 21120 15114 1110 1 Indicator Should be 0000
m Unindexed address of the next in-
1/A Should be 0 struction to be accessed if indicator is
set
X Not relevant
Indicator Should be 0000 Notes
m Not relevant 1. The condition of the indicator is not affected by
the test.
Notes

1. An Input-Output Interrupt or Input-Output Error
Indicators may be set during the time Input-Out-
put Interrupts are inhibited. A normal Input-Output
Interrupt will occur when this indicator is reset.

2. Indirect addressing and field selection are not
applicable.

Ilustration

Allow input-output interrupts to occur.

Al 0
:{\ X OP Code | Indicator m
0 0000 61 0000 0000

JUMP IF INPUT-OUTPUT
INTERRUPT PREVENTED

Operation: Test Indicator:

If set, m—»CC

If reset, (CC) + 1—»CC
OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Inhibit Input-Output Indicator.
If set, transfer control to the indexed address.
Otherwise access the next instruction in sequence.

>~—
>

OP Code |Indicator m

25(24 21§20 1514 11410 1

I/A Indirect addressing option

2. Indirect addressing may be employed.

lllustration

Transfer control to LOCE
interrupt is inhibited.

(0839) if input-output

JIP LOCE
:/\ X OP Code | indicator m
0| 0000 60 0000 0839

INITIATE INPUT-OUTPUT INSTRUCTION

Input-output function specifications, denoting the
particular input-output operations to be performed,
are not decoded and executed in the Central Proces-
sor. Execution of Initiate Input-Output Instruction
makes the input-output function specification avail-
able to the appropriate channel synchronizer which
executes it.

LOAD CHANNEL STANDY
REGISTER

Operation:

(m’)—>SLi and set appropriate
Stand-by Location Interlock Indicator
OP Code: 70

Cycles: 3

Description: Transfer the function specification
from the indexed memory location to the fixed
stand-by location in memory associated with the
channel designated in bit positions 11—-14 and set
the respective Stand-by Location Indicator.

UNIVAC ITIT UTMOST

REVISION: SECTION:

PAGE:

Feb. 1, 1963 52

DATE:

|
£ X OP Code | Channel m
25(24 21|20 15/14 11|10 1
/74 Indirect addressing option
X Binary address of index register, 0
to 15
Channel Channel designator
m Unindexed address of the function
specification
Notes
1. Input-output operations, except those pertaining

to the Console Typewriter, are executed by
means of two instructions — the initiate input-
output instruction and a function specification
(FS). The latter serves to direct the peripheral

unit to perform a specific function — read a card,

read a block, print a line, and so on. Function
specifications have the following formats.

TAPE FUNCTIONS

Servo | Function
0| Number | Code | L-Addr.
25(24 2120 171615 1

HIGH-SPEED PRINTER FUNCTIONS

Number of |~ u
0| LinesPaper |3 o]l L-Addr.
Advance |2 °
2524 19{181716/15 1

HIGH-SPEED CARD READER AND CARD-PUNCH
FUNCTIONS

Function

00000 Code

L-Addr.

25 21120 171415 1

PAPER-TAPE READER AND PUNCH
FUNCTIONS

| L-Addr.

o

No. of Words

FUNCT'N
CODE

16115 1

—
(-]
—
-~

D5 24 19

The initiate input-output function places the F§
in the memory location associated with the
channel so that it may be picked up by the
channels control circuitry, decoded, and execut-
ed, To inform the channel circuitry that a FS is
available, the Stand-by LocationIndicator is set.

Operation of the initiate input-output function
and the input-output function specification is as
follows:

Execution of the initiate input-output func-
tion places an input-output function speci-
fication into the stand-by location for the
synchronizer designated and sets the cor
responding Stand-by Location Indicator.

When the related synchronizer successfully
completes the execution of a previous in-
struction, the synchronizer requests access
to its stand-by location if its Stand-by
Location Interlock Indicator is set. When
the Memory Priority Circuits grant the Syn-
chronizer the requested access, the
contents of the stand-by location are trans-
ferred to the Channel Control Circuitry where
the function is defined. During the transfer,
bit tunctions 1—15 are loaded into the syn-
chronizer’s Memory Address Counter. The
Stand-by Location Interlock Indicator will be
reset when the operation is successfully
initiated and the instruction execution begins
(when the instruction applies to the tape
units and to the Printer.)

If the Stand-by Location Interlock Indicator
is set, and an initiate input-output function
is executed, the associated input-output
function specification will replace the one
in the stand-by location. In normal use the
indicator should be tested and found reset
prior to the execution of an initiate input-

output function. If the Indicator is found
set, and the initiate I-O command is
executed, there is the possibility that
the instruction already in the stand-by
location will not be executed while the
new one is being entered. Resetting of
the Indicator may be accomplished by
the RIO instruction.

Whenever input-output functions can-
not be successfully completed because
of error or abnormal conditions, the
stand-by location Interlock Indicator for
the appropriate synchronizer remains
reset. The instruction in its stand-by
location will therefore not be transferred
for execution,

REVISION: SECTION:

UNIVAC IIT UTMOST v

DATE: PAGE:

Feb. 1, 1963

2. The address of the memory locations associated STORE LOCATION
with the channel is the binary value of the STORE CHANNEL

channel designator.

Operation: (MACi) = m’

3. Indirect addressing but not field selection may OP Code: 04
be employed. Cycles: 3
4. See Note 2 of SC for channel addresses. Description: Transfer the contents of the Memory

Address Counter (MAC) for the channel specified in
bit positions 11—14 (or the Control Counter if speci-
fied) into bit positions 1—15 of the indexed memory

ilustration

Initiate a tape operation for the Basic Read Channel.

The function specification is located in LOCB Iocation.
(0839).
LC 4, LOCB k X OP Code |MAC/CC m
|
Al X | OPCode |Channel m bsl2a 21|20 1514 1110 1
0| 0000 70 0100 0839
I/A Indirect addressing option
MISCELLANEOUS INSTRUCTIONS X Binary address of index register, 0

to 15

NO OPERATION MAC/CC Normally channel designator (See

below.,)
Operation: (CC) + I—»CC m Unindexed address
OP Code: 00
Cycles: 2

Notes

Description: No operation is performed. Access the

next instruction in sequence. 1. Bit positions 16—25 of the indexed location will

be binary 0’s.

2. If the Control Counter is desired, bit positions
Wox OP Code | AR m 11-14 should be 0001 (SL), If a Memory
A Address Counter is desir2d, the channel designa-
tions are:
25124 21120 15114 11{10 1
I/A 0 UNISERVO Il Basic Write 0011
UNISERVO lll Basic Read 0100
X Not Relevant General Purpose #1 0101
General Purpose #2 0110
OP Code 00 General Purpose #3 0111
AR Not Relevant General Purpose #4 1000
General Purpose #5 1001
m Not Relevant General Purpose #6 1010
General Purpose #7 1011
Notes General Purpose #8 1100
Compatible Tape Read-Write 110!
1. Memory, arithmetic registers and indicators UNISERVO Il Additional Write 1110

are not affected. UNISERVO Il Additional Read 1111

REVISION: SECTION:
V
UN c U o DATE: PAGE:
July 1, 1962 54
3. The Memory Address Counter for the channel I
designated at the time of transfer will contain: l/\ X OP Code |Channel m
UNISERVO Il Unit — Address of the Tape Con- 2524 21 20 15 14 11 10 1
Scatter Read trol Word currently effec-
or tive in the UNISERVO 111 . . .
1I/A Ind t add t
Gather Write Read or Write Synchronizer. / ndirect addressing option
% . . .
Compatible Servos — Address to or from which fo";';ty address of index register, 0
or UNISERVO I the last data word trans-
Unit Read W/0 fer took place. Channel For channel designation, see Note 2
Control Word below.
Unindexed 1 ti
High-Speed Printer — Address of last word - mndexed memory focation
transferred to the Printer
Synchronizer Buffer. Notes
Card-Punch Unit — Address of the last word 1. The indexed memory location will contain the
transferred from Punch following information:
Synchronizer. Bits 1—15 Binary address of the last word

transferred to or from the synchro-

High-Speed Reader — Address of the last word nizer channel

transferred from High-

Speed Reader Synchronizer. Bits 16—24 Original count as contained in the
Scatter Read/Gather Write Control
4. The contents of the Memory Address Register Word, decremented by one for each
(15 bits) may also be transferred to memory by word transferred
placement of 0010 1nbit positions 11-14 Bit 25 Sign; Positive

of the instruction.

2. The UNISERVO Il Read or Write Channel Syn-

5. Indirect addressing but not field selection may chronizer Designations

be employed.

BITS 11-14
Hlustration Basic Write 1000
) . Basic Read 0100
?gggeg)theMAC for the Basic Read Channel in LOCB Additional Read 0010
: Additional Write 0001
SC 4, LOCB
| Note: The above designations apply to this in-
£ X OP Code |Channel m struction only.
ol 0000 04 0100 0839 3. Indirect addressing, but not field selection may
be employed.

STORE TAPE CONTROL REGISTER [lustration

Store the TCWR of the Basic Write Synchronizer

gge[:a::jzr;. gcm)—-» m Channel in FIELDD (0832).

Cycles: 3 ST 4, FIELDD
Description: Transfer the contents of the Tape Con- I/ X QP Code |Channel m
trol Word Register (TCWR) for the UNISERVO IlI A

synchronizer channel specified in bits 11-14 to ol oooo 05 1000 0832
the indexed memory location,

REVISION: SECTION:
\Y
UNIVAC IIT UTMOST R
DATE: PAGE:
July 1, 1962 55
BALT AND JUMP READ CLOCK RCK
Operation: m'— CC and Operation: (Clock)—» ARI
Stop Arithmetic and Control Unit OP Code: 76
0P Code: 77 Cycles: 2
Cycles: 2

Description: Replace the contents of the Control
Counter with the indexed address of the instruc-

tion and stop the arithmetic and control unit.

|
Al X OP Code AR m
2524 21120 15|14 11{10 1
I/A Indirect address option
X Binary address of index register, 0
to 15
AR Not relevant
m Unindexed address of the next instruc-
tion to be accessed
Notes

1. When the Start Key on the console is depressed,
the program is resumed at the location specified
by the Control Counter reading.

2. The arithmetic and control unit ceases to request

memory access. All peripheral operations in
progress continue to request memory until they
are completed. Any function specifications in
stand-by locations will be accessed and execu-

ted.

3. Indirect addressing but not field selection, may
be employed.

Ilustrations

Stop the arithmetic and control unit. Then resume
the program with the instruction located in LOCB
(0839).

HJ LOCB
|
/A X OP Code AR m
0; 0000 77 0000 0839

Description: Transfer the reading of the clock to
the arithmetic register designated.

|
;/\ X OP Code AR m
2524 21] 20 1514 11110 1
I/A Should be 0
X Should be 0
AR Positional designation of arithmetic
register
m Should be 0’s
Notes

1. If the clock is cycling, one-half second every
six seconds, an invalid time 1s transferred to
AR and the next Instruction in sequence IS
accessed; (CC)+ |—»CC,

2. If the clock is not cycling, a valid time is trans-
ferred to bit positions 1-20 of ARi with 21-25
binary 0’s and the next
ence is skipped; (CC) + 2—»CC,

instruction in sequ-

3. The valid time is expressed in five 4—bit ex-
cess-three digits in the following format:

00000

25 20120 17(16 13)12 98 54 1

L

N—
Tenth

~of
Minute

Hour Minute

4. If more than one arithmetic register is designat-
ed, the clock reading will be transferred to the
highest arithmetic register designated.

5. If the UNIVAC IIl System does not include the
clock and the instruction is executed, ARi will
receive binary 0’s and the next instruction in
sequence will be accessed.

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 56

6. The clock, modulo 24 hours, is located inside
the Console and is not normally visible to the
operator. Knobs are provided on the clock hous-
ing to set the hour and minute hands. Power is
supplied directly from a 115-volt AC, 60-cycle line.

7. If the power to the clock was disrupted, any
Load Time instructions executed will set the
Overflow Indicator resulting in a Contingency
Interrupt. The operator must reset the clock to
prevent further Contingency Interrupts when
accessing the clock. This is accomplished by
depression of a button located on the clock
housing.

8. Indirect addressing, field selection and multi-
word operands are not applicable,

INlustration

Store the clock reading in AR,

RCK 1, 0
|
//\ X 0P Code AR m
0/ 0000 76 0001 0000
WRITE DISPLAY wo
Operation: (m')=— Display
0P Code: 03

Cycles: 2

Description: Transfer the 27—bits of the indexed
memory location to the visual display on the Main-
tenance Panel,

|
//\ X OP Code AR m
2524 21120 15|14 11/10 1
1/A 0
X Binary address of index register, (
to 15
AR Not relevant
m Unindexed address of operand
Notes

1. The Display switch on the panel must be set to,
position 0,

Ilustration
Display the contents of LOCB (0839).

WD LOCB
|
£ X OP Code AR m
0| 0000 03 0000 0839

UNIVAC IIT UTMOST

REVISION: SECTION:

A%

DATE:

July 1, 1962

PAGE:

i

The UNIVAC III Operator’s Console contains, in
addition to the Console Typewriter and Keyboard
and its controls, buttons and lights to control the
Central Processor the peripheral
equipment.

and monitor

AC On-Off Button-Light

Depression of this button when in the off-
state, will supply power to the system. If
this button is depressed when in the on-state,
power will be lost. Use of this button is
controlled by a key lock located under the
Console apron.

Ready Light

When lit, it indicates that power has been
supplied and the Central Processor is ready
to operate. There will normally be some lag
in its lighting after power has been supplied.

General Clear Button

Depression of the General Clear Button causes
the following indicators to be reset:
Processor Error Interrupt ‘Indicators
Contingency Interrupt Indicator
Input-Output Interrupt Indicators
Interrupt Mode Indicators
Inhibit Input-Output Interrupt Indicator

Sense Indicators

Depression of the General Clear Button also
causes the following registers to be cleared to
binary 0’s:

Control Counter

Index Registers

Memory Address Counters

5. Operator’s Console

Load Button

Depression of this button causes logical
UNISERVO III 0000 to read forward one block
without control word.
of the transfer is determined by the Memory
Address Counter of the UNISERVO III Read
Synchronizer. The Stop Light must be lit for
the button to be effective.

The starting address

Rewind Button

Depression of this button causes the logical
UNISERVO III 0000 to rewind without inter-
lock. The button will only be effective if the
Stop Light is lit.

Program Run Button-Light

Depression of this button causes the Central
Processor to begin execution of instructions
the location of which is specified by the
Control Counter. The light is lit only during
the execution of instructions.

Processor Error Stop/Program Stop

This is a two-section button-light. When the
top section, Processor Error Stop, is lit, it
indicates that a second Processor Error oc-
curred while in a Processor Error Interrupt
Mode causing a stop condition. When the
lower section is lit, it indicates that the stop
resulted from the execution of a Halt Listruction.
When this button is depressed. the Contin
gency Stop Indicator will be set causing a
Contingency Interrupt.

Prevent 1/0 Interrupt

This light is lit when the Inhibit I/O Interrupt
Indicator is set.

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 58

Monitor Panel

Eight pairs of lights, indicate the line status
of the general purpose channels (lit if off-line)
and whether an abnormal (fault) condition
exists in any unit requiring operator inter-
vention. Two additional pairs of lights in-
dicate the same conditions for the servo power

supplies and the Central Processor.

If an abnormal condition such as no airflow,

overheat, power supply failure, and so on,
occurs, the appropriate light will be lighted
and sound a buzzer. The buzzer may be turned
off by depressing the Buzzer Override Button
which is on the panel. The indicator light is
extinguished when the abnormal condition is

corrected. (This panel is not illustrated.)

CONSOLE TYPEWRITER

The UNIVAC III Operator’s Console contains in
addition to lights and buttons for the operation
of the Central Processor, a Console Typewriter
and Keyboard.

The
following purposes:

typewriter and keyboard are used for the

m Typing out data or the contents of the address-
able registers, for control purposes under pro-
gram control.

® Changing the contents of memory location ad-

dressable registers by program controlled

type-ins.

m Manual typing independent of program control
when in an off-line condition.

Specifications:
CHARACTERS

Fifty-one printing
characters as programmed

(Figure 5-2).

alpha-numeric
input

(6-bit)
or output

FORMAT CONTROL

Programmed typewriter actions are controlled
by 6-bit non-—printing characters. They are:

m Tab Stop (advance carriage to next tab
stop).

B Return carriage and space one or two lines.

® Form Feed will advance paper to the pre-set
first printing line of the next 5% or 11"’ form.

® Bell Ring.

SPEED
Ten characters printed per second.
SPACING

Ten characters per inch horizontal spacing
and six lines per inch vertical spacing.

FORM FEED
Sprocket Fed
PAPER WIDTH

Eight and one-half inches including sprocket
holes.

NUMBER OF COPIES

Up to five copies plus the original may be
produced.

MODES

On-line typewriter functions under program
control. Off-line functions as a conventional
electric desk typewriter.

ZONE
00 01 10 1
0000 A &
0001) . * %
0010 - . $,
CARRIAGE RETURN RING
001] 0 AND LINE FEED BELL +
0100 1 A J /
0101 2 B K s
0110 3 C L T
gt om 4 D M o
o
21 o000 5 E N y
2
Zl o0 6 F o W
1010 7 G P X
1011 8 H Q Y
1100 9 i R 7
1101 , N
HORIZONTAL| FORM
1110 ; TAB FEED
1M (

Figure 5-2. UNIVAC |ll Console Typewriter Code

UNIVAC IIT UTMOST

REVISION: SECTION:
\7
DATE: PAGE:
July 1, 1962 HY

On-Line Mode of Operation

Input from the keyboard and output to be printed
is accomplished character-by-character through
the 6-bit Typewriter Buffer Register (TBR).

Execution of a Write Typewriter Character (WT)
will transfer from memory one 6-bit printable or
non-printing typewriter character and initiate a
typewriter cycle. Once this is accomplished the
Central Processor accesses the next instruction.
The character is then printed or the non-printing
function executed. At this time, the Console
Typewriter Interrupt Indicator is set, causing a
Contengency Interrupt.

In order to use the keyboard for input, the Acti-
Typewriter (AT) instruction must be exe-
cuted, before depressing a character key. De-
pressing a character key will enter in the TBR
the proper 6—bit code and set the Console Type-
writer Interrupt Indicator causing a Contingency
Interrupt. Execution of a Read Typewriter Char-
acter (RT) instruction will then transfer the
character to the arithmetic register designated.
Depression of a character key will not result in
a printing or typewriter controlled function.

Typewriter Control Buttons and Associated
Indicators

In addition to the keyboard with its printing
and non-printing character keys, the following
buttons and testable indicators are associated
with the Console Typewriter:

KEYBOARD REQUEST BUTTON

Depression will set the Keyboard Request
Indicator and cause a Contingency Interrupt
to occur. The indicator is tested and reset by

programming.

This button is inactive when the typewriter
is off-line.

KEYBOARD RELEASE BUTTON

Depression will set the Keyboard Release In-
dicator and a Contingency Interrupt will occur.
The indicator is tested and reset by pro-
gramming.

This button is inactive when the typewriter is
off-line.

KEYBOARD ACTIVE LIGHT

Lit by the execution of an Activate Typewriter

(AT) instruction. It is extinguished when
either a key or the Keyboard Release Button
is depressed. There is no associated program
testable indicator.

TYPEWRITER ON-OFF LINE BUTTON-LIGHTS

Indicates the status of the typewriter by the
section lit. If on-line, the typewriter is under
the direct control of the program. Depression
of the button when on-line will put it off-line.
The typewriter may then be used manually
with printing or non-printing functions occurring
when a key is depressed. Depression of the
On-Off Line button-light when off-line will put
the typewriter on-line.

CONSOLE TYPEWRITER INTERRUPT
INDICATOR

This indicator is set when the typewriter is
on-line by the depression of a character key
or the execution of a printing or non-printing
function initiated by a WT instruction.

There is no light indicating the status of this
indicator; it is testable and resettable by

program only.

Console Typewriter Instructions

The UNIVAC III Console Typewriter will function
under program control utilizing these instructions.

WRITE TYPEWRITER CHARACTER

~-->TBR
one character
Then print and(CC)+2—> CC
If Typewriter off-line: (CC)+ 1—> CC
OP Code: 02
Cycles: 2

Operation:

If Typewriter on-line: (m’)

Description: If the Console Typewriter is on-
line, transfer the alpha-numeric

function code specified in bit positions 11—14 of

character or

the instruction from the indexed memory location
to the Typewriter Buffer Register (TBR), initiate
a Typewriter Print Cycle, and skip the next
instruction in sequence.

REVISION: SECTION:
UNIVAC III UTMOST ¥
DATE: PAGE:
July 1, 1962 60
| |
{\ X OP Code | Character m /1 X 0P Code AR m
A
25124 21|20 15(14 11110 1 25|24 2120 15114 1110 1
I/A Indirect addressing option I/A Should be 0
X Binary address of index redister, X Should be 0’s
0tol5
AR Should be 0’s
Character Designation of character position to
be printed, 0000~0011. See Note 1. m Should be 0’s
m Unindexed Address of character to Notes
be printed
Notes 1. The Keyboard Activate Light on the Console

1. The character to be transferred and printed is
designated in bits 11—12 as shown below. Bits
13—14 are not examined and therefore may be
I or 0.

CHAR. 4 3

BITS 24 19118 13]12 116 1

AR 12]11 12111 1211
BITS 11 1o of1

12[11
0o

SALT 3 2 1 0

2. When the character is printed or function per-
formed, the Typewriter Interrupt Indicator is
set causing Céntingency Interrupt,

3. If the Typewriter is off-line the instruction is
aborted and the next instruction (normally an
unconditional transfer) is accessed.

Illustration:

Print character 4 from FIELDB (0683).

WT 3, FIELDB
I
/X 0P Code | Character m
A
0| 0000 02 0011 0683

ACTIVATE TYPEWRITER

OP Code: 66
Cycles: 2

Description: Allow one alpha-numeric character
to be typed in the Typewriter Buffer Register.

will be turned on when the instruction is ex-
ecuted. When a character key is depressed, the
light will be extinguished and the Typewriter
Interrupt Indicator will
Contingency Interrupt,

be set causing a

2. Depression of a character key will not result
in the character being printed.

3. The Central Processor will not be interlocke
while the character is being typed.

4. Indirect addressing, field selection and multi-
word operands are not applicable.

I1lustration

Activate the Console Typewriter.

AT 0
|
/I X OP Code AR m
A
0| 0000 66 0000 0000

READ TYPEWRITER CHARACTER

"
Operation: (ARi)+(TBR)—> ARi

OP Code: 01

Cycles: 2

Description: Add the alpha-numeric character

in the Typewriter Buffer Register (TBR) to bit
positions 1—6 of the designated Arithmetic Re-
gister,

UNIVAC IIT UTMOST

REVISION:

DATE:

July 1, 1962

| SECTION:

G1

|

/1 X 0P Code AR m

A

25124 21|20 1514 11110 1
/74 Should be 0

X Should be 0’s

AR Positional designation of arith-

metic register

m Should be 0’s

Notes

1. Bits 7-25 of the designated arithmetic re-

gister will not be affected.

2. Indirect addressing, field selection and multi-

word operands are not applicable.

3. The rules for binary

addition apply for bit

positions 1-5. For bit position 6, the rules

are:

m If a carry from bit position 5 exists, the

result in bit position 6 is a 1.

w If a carry from bit position 5 does not
exist, the rules for binary addition apply
to bit position 6.

w In any case, no carry from bit position 6
is propagated to bit position 7.

lustration

Unload the Typewriter Buffer Register into ARZ,

RT 2, 0
|
{\ X OP Code AR M
0| 0000 01 0010 0000 1

UNIVAC III UTMOST

REVISION: SECTION:
\Y
DATE: PAGE:
July 1, 1962 62

The purpose of this section is to explain briefly
the operation of each arithmetic process so that
details of the individual instructions may be more
fully appreciated.

All arithmetic operations exclusive of those
relative to the control unit are accomplished
by the arithmetic unit which consists of the
adder, arithmetic registers, Central Processor
register, and their related circuitry. Each of the
five registers involved performs a unique function
during all of the arithmetic processes as shown
in Figure 61,

ADDITION
Signs Equal — True Addition

In either a binary or decimal add with like signs,
the operands are transferred to the adder four bits
in parallel, the augend from memory and the ad-
dend from the arithmetic register(s) specified.
The addition is actually binary with any carries
resulting from a 4—bit group retained and added to
the next higher 4-bit group entering the adder.
If a binary add were specified, the result of the
addition would be read into the arithmetic register
designated. A decimal addition will require the
binary sum produced to be corrected prior to its
being read in the designated arithmetic registers.
This adjustment, requiring no additional time, is
the addition of correction factors to each 4-bit
group and the ignoring of decimal carries, since

6. Arithmetic Modes

Unequal Signs — Addition with Complementation

Addition with complementation takes place if the
signs of both quantities are unequal. In an addition
with unequal signs, the data word from memory
entering the adder is automatically converted to
its 10’s complement.*™ A normal addition then
takes place.

The result will take the sign of the input with
the greater absolute value, If it is a decimal add,
the result would have been corrected for excess-
three notation.

Addition with Complementation :

AR (addend) +226385 -226385
m (augend) - 214360 + 214360,
Effective Addend (AR) 226385 226385
Complemented Augend (m) 785640 785640

+1 012025 -1 012075

N the carry is ign(;a'

In complementing, a 0 remains a 0, a 1 becomes a 9, a 2
becomes an 8, a 3 becomes a 7, and so on. For all digits
after the first least significant non-zero digit the 7’s
complement is used. Therefore in complementing 214360
the followi ng takes place: 9 9 9 9 10

21 43 60

the decimal values expressed were in excess- 10’e comploment 7856 40
three.
ADDITION® SUBTRACTION™ MULTIPLICATION DIVISION

AR1 ADDEND MINUEND AND MULTIPLIER 6 MSD OF DIVIDEND
AND SUM DIFFERENCE AND REMAINDER

AR2 ADDEND MINUEND AND 6 MSD OF PRODUCT 6 LSD OF DIVIDEND
AND SUM DIFFERENCE AND QUOTIENT

AR3 ADDEND MINUEND AND 6 LSD OF PRODUCT NEVER INVOLVED
AND SUM DIFFERENCE

AR4 ADDEND MINUEND AND NEVER INVOLVED NEVER INVOLVED
AND SUM DIFFERENCE

CPR AUGEND SUBTRAHEND MULTIPLICAND DIVISOR

‘Only those AR's specified in the instruction will be involved.

Figure 6-1.

Functions of Arithmetic Registers in Arithmetic Processes

UNIVAC III UTMOST

REVISION: SECTION:
\'%
DATE: PAGE:
July 1, 1962 63

Addition with complementation ignores the carry
from the most significant digit position and takes
the sign of the input with the greater absolute
value. Although complementation will occur in an
addition with unequal signs, no additional exe-
cution time will be expended.

Addition with Recomplementation

In an addition with unequal signs recomplementa-
tion will be necessary if the result will change
the sign of the addend. Recomplementation will
be necessary if the absolute value of the quantity
in the AR is less than the absolute value of the
quantity from memory. This relationship will
necessitate a change in the sign of the AR(s)

with recomplementation automatically taking

place.

Addition with Recomplementation:

AR (addend) +218684 -218684

m (augend) -221896 +221896

Effective Addend (AR) 218684 218684

Complemented Augend (m) 778104 778104
996788 996788

This is the 10’s compiement of the
correct result and must be recom-
plemented to

003212 taking +003212
the sign
of the input
with the greater
absolute value,

In these examples, the result of the addition with
complementation alone is, in reality, the 10’s
complement of the true result. This complemented
result will be sent through the adder and be re-
complemented. Because recomplementation is
necessary, a minimum of one additional cycle time
will be needed to complete the execution of the
instruction. In addition, one cycle time must be
added for each word of the result to be recom-
plemented.

Recomplementation will therefore take place in
an addition with unequal signs, if the absolute
value of the contents of the AR(s) are less than
the absolute value of the contents of the data
word from memory.

The three factors which affect the sign and the
result of an addition are:

The sign of the AR
The sign of the data word from memory
The absolute value of the operands

AR
+ —_
*

WITH SIGN OF THE
EQUAL + GREATER IN
SIGNS ABSOLUTE VALUE**

m +
WITH SIGN OF THE
UNEQUAL] GREATERIN -
SIGNS | ABSOLUTE VALUE **

’ So long as the signs are equal, the result is a sum even
if the signs are both negative.

s
Although the command is for addition, the presence of
unequal signs makes the operation effectively a sub-
traction. The result is, in reality, a difference.

Note: If a zero result is developed, its sign is
always positive and the Equal Comparison In-
dicator is set. If the result is not zero, the in-
dicator will be reset.

SUBTRACTION

The same rules which apply to addition apply
to subtraction. However, because subtraction
affects the sign of the subtrahend (m), the rules
are the converse of those for addition.

In a subtraction the sign of the operand from
memory is reversed and an addition is performed.
If the signs were originally equal, the sign of the
subtrahend would change and an algebraic addition
occurs. This addition would then involve two
quantities with unequal signs. The rules govern-
ing complementation and recomplementation take
effect if the sign of the AR will change because
of the absolute values of the input. In this case,
recomplementation automatically occurs.

UNIVAC IIT UTMOST

REVISION: SECTION:

PAGE:

oate: QOct, 1, 1962
64

The factors which will affect the sign and the
result of a subtraction are:

The sign of quantity in the AR
The sign of the quantity from memory
The absolute values of the operands

AR
+ —_—
*
SIGN OF THE
+ GREATER IN —
ABSOLUTE VALUE**
m
*
SIGN OF THE
- + GREATER IN
ABSOLUTE VALUE

The result of this subtraction is, in reality, a sum be-
cause the subtraction operation changes the sign of the
subtrahend (m) before the execution of the operation. A
true addition would then take place without com-
plementation.

.The result of this operation is a difference. The reversing
of the aign of the subtrahend would make this operation
an addition with unequal signs. This type of operation
necoasitates complementation. Recomplementation would
be neceasary if the absolute value of the quantity in the
AR were less than the absolute value of the quantity
from memory because the relationship would force a
change in the aign of the AR(s).

Note: If a zero result is developed, its sign is
always positive.

MULTIPLICATION

Multiplication is accomplished by repeated ad-
ditions of multiples of either the multiplicand
or its tens complement to AR4 (initially cleared
to binary 0’s.) The selection of the value and
number of times it is to be used is governed by
the value of each multiplier digit as determined
by the value of the multiplier digit to its im-
mediate right. A 12-digit product is produced;
the six most significant digits in AR4 and the
six least significant digits in AR2,

MULTIPLIER
+ —

+| + —~
MULTIPLICAND

SIGNS OF THE
PRODUCT

During the execution of a multiplication, no
accesses to memory are required since the multi-
plier is held in the Central Processor Register
and the multiplicand digits in AR4 during the
process.

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 65

7. Automatic Program Interrupt

Automatic program interrupt in the UNIVAC III
Data-Processing System causes, upon automatic
recognition of special conditions in the system,
the automatic interruption of the program in pro-
gress. Depending on the cause of the interrupt,
the contents of the Control Counter will be stored
in a specific location and control transferred to
the succeeding location where the reason for the
interruption may be investigated and suitable ac-
tion taken. Return to the point in the program at
which the interrupt occurred may be accomplished
by use of the stored Control Counter reading.

The three main causes or classes of interrupt in
decending order of priority ate Process Error,
Contingency and Input-Output.

When a condition which calls for interrupt arises,
the following occurs within the Central Processor:

s A program testable indicator, or group of in-
dicators, is set to specifically identify the
cause of the interrupt. The special indicators
set will generally belong to the same class of
interrupt.

m For each of the three classes of interrupt there
is an Interrupt Mode Indicator. These indicators
cannot be program set, reset or tested; their
functions are automatically controlled. If one is
set, interrupts of its respective class or of any
class of a lower priority are inhibited; those of
a higher class are not.

The setting of any Mode Indicator will not in-
hibit the setting of any specific indicator when
the appropriate conditions arise.

In general, when an ending pulse is generated
at the end of the execution of each instruction
in the Central Processor, the indicators are
automatically probed in groups according to the
class of interrupt in decending order of priority.
In the case of certain Processor Errors, the
respective indicators are examined every 4
microseconds. If any specific indicator is found
to be set, and if the interrupt Mode Indicator
for its class or for classes of higher priority is
not set, interrupt will take place. At this time
the appropriate Interrupt Mode Indicator is auto-
matically set.

s Depending on the class of interrupt to which the

specific indicator found set belongs the current
contents of the Control Counter is stored in one
of three addressable fixed memory locations;
bit positions 1-15 containing the Control Coun-
ter reading and bit positions 16—25 containing
binary 0’s. Control is then transferred to one of
three fixed memory locations depending on the
class of interrupt.

The specific locations associated with each
class of interrupt is as follows:

Storage Location

Class of of Transfer of

Interrupt Contro! Counter Control to
Processor Error 0016 0017
Contingency 0018 0019
Input-Output 0020 0021

Transfer in thus effected to one of three loca-
tions where JUMP to a program may be ini-
tiated to determine the exact nature of the
interrupt. This

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 66

determination is made by testing the condition
of the specific indicators related to the class
of interrupt. During this time the specific in-
dicators are probed as above. When it is known,
appropriate action may then be taken, and the
specific indicators reset. The reset instruction
(R10, RPE or RC) will automatically reset the
Interrupt Mode Indicator for the class of inter-
rupt involved. Interrupts of all classes will then
be inhibited, provided all the specific indicators
are reset, until the completion of the instruction
following the reset instruction.

m After the execution of the J instruction, and
before the next instruction is accessed, the
specific indicators for the class of interrupt
just effective, as well as those of a lower class,
are again automatically tested for a set condi-
tion. If any is found set, the appropriate Inter-
rupt Mode Indicator is set and the Control Coun-
ter, containing the return address of the pre-
vious interrupt, is stored in the fixed location
associated with the class of interrupt of higher
priority for which a specific indicator was found
set. Control is then transferred to the location
associated with the class of interrupt.

s During the course of operation within an Inter-
rupt Mode, that is, an Interrupt Mode Indicator
is set, occurrence of an interrupt of a higher
priority is always possible and cannot be pre-
vented. Interrupts for all classes will be in-
hibited until the instruction following the in-
terrupt reset instruction has been executed.

PROCESSOR ERROR INTERRUPT

At the completion of every instruction, regardless
of whether any Mode Indicator is set, the Pro-
cessor Error Indicators are probed for a set condi-
tion. If any is set, and the Processor Error Inter-
rupt Mode Indicator (PEIMI) is not set, a Processor
Error Interrupt will always result immediately
without regard to the condition of the lower pri-
ority Interrupt Mode Indicators. The PEIMI will be
set, the Control Counter reading stored in memory
location 0016 and control transferred to memory
location 0017. If any other Processor Error
Indicator is set when the PEIMI is set, the
.Central Processor will stop. The Control
Counter will contain the address plus one of
the instructions which caused the error.

During the time the PEIMI is set, the setting of
specific indicators for the same or lower priority
interrupts will not be inhibited. Their action,
though, will not be effective until the instruction
following the instruction resetting the specific
Processor Error Indicator has been executed.

If a Processor Error Indicator is set during the
time when either (or both) of the lower priority
Interrupt Mode Indicators is set, a Processor
Interrupt will occur.

The conditions causing a Processor Interrupt and
the special indicator addresses in bit positions
1-10 of the Test (TPE) and Reset (RPE) instruc-
tions are listed below.

Memory Address Check

Incorrect memory addressing of internal and ex-
ternal instructions or operands by the Central Pro-
cessor (accessed in current instruction cycle) or
channel synchronizer (accessed during previous
instruction cycle). If the error occurs during a
synchronizer access a specific Input-Output Inter-
rupt is set after the Processor Error Interrupt Mode
Indicator has been reset.

Depending on when the error occurred, the follow-
ing designation in bit position 1-4 will test or
reset this indicator:

0001
0010

During access of an input-output data 0011to1111
word or function specification by
the channel addresses specified
(See descriptions of RPE and TPE.)

During access of an internal instruction

During access of an internal operand

Modulo 3 Check On Instruction

The instruction or function specification failed the
modulo 3 check when accessed from memory. This
error is detected after the instruction execution
begins.

The indicator is designated by a 1—bit in bit posi-
tion 5 of the TPE and RPE instructions.

Modulo 3 Check On Operand

The operand or input-output data word failed the
modulo 3 check when transferred to or from memory.

UNIVAC III UTMOST

REVISION: SECTION:
AV
DATE: PAGE:
July 1, 1962 67

The instruction will be partially executed before
the error is detected. An ending pulse is then
generated and an interrupt will occur. This error
cannot occur on instructions in which a transfer
of control is involved.

The indicator is designated by a 1-bit in bit posi-
tion 6 of the TPE and RPE instructions.

Adder Error Check

The results of certain instructions failed the mod-
ulo 3 check. The check bits of the operand are
used to determine the check bits of the result
which, in turn, are compared with check bits gener-
ated from the bits of the result. If the two pair of
check bits are not equal, an error will result. The
instructions checked are all Add and Subtracts,
Load and Compare, and Compare Absolute.

The indicator is designated by a 1-bit in bit posi-
tion 7 of the TPE and RPE instructions.

CONTINGENCY INTERRUPT

The Contingency Interrupt Indicators are probed
on the completion of the execution of an internal
instruction when an ending pulse is produced. If
any is set and neither the Processor Error Inter-
rupt Mode Indicator nor Contingency Interrupt Mode
Indicator (CIMI) is set, a Contingency Interrupt
will result without regard to the state of the Input-
Output Interrupt Mode Indicator. The CIMI will be
set, the Control Counter reading stored in memory
location 0018 and control transferred to memory
location 0019.

Any specific indicators for the same or lower
priority set subsequent to the setting of the CIMI
and prior to it being reset, will not effect another
interrupt, on this or a lower class. If a Processor
Error Indicator is set during this time a Processor
Error Interrupt will occur.

The conditions resulting in a Contingency Inter-
rupt and the specific indicator addresses in bit
positions 1-10 of the test (TC) and reset (RC)
instructions are listed below.

Overflow

A carry beyond the most significant bit or digit
was detected in an add or subtract operation, or in
a division, when the absolute magnitude of the

divisor in memory is less than that of the most
significant half of the dividend in ARS8 or it is
equal to 0.

This indicator will also be set if power to the
Program Clock has been dropped at any time prior
to the execution of a Load Time instruction with-
out subsequently resetting the clock.

The indicator is designated by a 1—bit in bit posi-
tion 1 of the TC and RC instructions.

Invalid Op Code

Attempted execution of an instruction whose oper-
ation code is not part of the repertoire immediately
producing an ending pulse. No registers or memory
locations will be affected by this condition.

The indicator is designated by a 1—bit in bit posi-
tion 2 of the TC and RC instructions,

Console Typewriter

The release of a character key on the Console
Typewriter Keyboard or a character printed by the
Console Typewriter will set the indicator.

The indicator is designated by a 1-bit in bit posi-
tion 3 of the TC and RC instructions.

Keyboard Request

This indicator will be set when the Keyboard Re-
quest Button is depressed.

The indicator is designated by a 1—bit in bit posi-
tion 4 of the TC and RC instructions.

Keyboard Release

This indicator will be set when the Keyboard Re-
lease Button is depressed.

The indicator is designated by a 1-bit in bit posi-
tion 5 of the TC and RC instructions.

Contingency Stop

Depression of the Stop Button will result in this
indicator being set.

The indicator is designated by a 1-bit in bit posi-
tion 6 of the TC and RC

instructions.

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 68

INPUT-OUTPUT INTERRUPT

The Input-Output Interrupt Indicators for all chan-
nels are probed by an ending pulse produced by
the completion of an internal operation. If any is
set, and the Processor Error Interrupt Mode In-
dicator, Contingency Interrupt Mode Indicator and
Inhibit Input-Output Indicator are reset an Input-
Output Interrupt will occur. The Input-Output In-
terrupt Mode Indicator will be set, the Control
Counter reading stored in memory location 0020
and control transferred to memory location 0021,

Since this is the lowest priority interrupt any
specific indicators of a higher priority interrupt
set while the Input-Output Interrupt Mode Indicator
is set will immediately result in another interrupt,
of the higher class.

The subsequent setting of specific indicators for
other channels will not be affected during the time
that the Input-Output Interrupt Mode Indicator is set.

Input-Output Interrupt will occur as a result of the
following conditions:

m Successful completion or initiation of an input-
output operation if called for in the function
specification.

m Occurrence of an error or some condition requir-
ing manual instruction when the synchronizer
attempts to perform an operation.

See the appropriate bulletin forthe specific causes
of interrupt and indicators effected.

UNIVAC III UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
Feb., 1, 1963 69

The following shift instructions

Decimal Shift Right DSR
Decimal Shift Left DSL
Alphabetic Shift Right ASR
Alphabetic Shift Left ASL

will cause a stall when executed if more than
two AR's are specified,

The following instructions

Decimal Add Higher DAH
Decimal Subtract Higher DSH
Binary Add Higher BAH
Binary Subtract Higher BSH

will cause a stall when executed, if one or
three AR's are specified.

8. SPECIAL CONSIDERATIONS

The conversion instructions

Load A Converting to Decimal LAD
Store A Converting to Alphanumeric SAA

will cause a stall when executed if one, three
or four AR's are specified.

Reference to arithmetic register zero can
result in a processor error, It should not be
used.

Multiplication involving zero generates as a
result a properly signed zero.

A store memory address counter instruction
specifying the control counter will store the
current value rather than the current value
plus one.

UNIVAC IIT UTMOST

TIMING OF MULTIPLICATION
Terminology

The multiplier is the factor in Arithmetic Reg-
ister 8. Each digit is a number from 0 through 9,
represented as n. Each digit has a position with-
in the multiplier, from 1 through 6, represented as
a subscript 1 to the number n. The value of the
number varies according to the value of the digit
on its right, except for the number in position 1,
and this digit on the right is represented by the
subscript i—I. The final value of the number for
timing of multiplication purposes is represented
by n'. The following formulae state the method
of computing n’, and the following table gives the
number of 4-microsecond cycles required for
multiplication according to the value of n’.

Fori=1,n";j=n.
Fori>1,n'j=n;ifnj_<5.
Fori>1 n'y=nj+1ifn’;_y > 5; butif n + 1 = 10,

ni=0,andni+1=ni+1+l.

The n,
allow for the “righthand” value ofn'6.

is a constructive digit position created to

n'7=0ifn'6<5

'y = 1if ne>5

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 70
7

Execution time in 4 y cycles = § +i§1Ti where T,
is found in the following table: ’

LR T
0 2
1,2 2
3,4 3
5 4
6, 7 3
8,9 2

Thus, for example, if the multiplier is 945270, the
execution time is determined as follows:

,

i ni n i T
1 0 0 2
2 7 7 3
3 2 3 3
4 5 5 4
5 4 5 4
6 9 0 1
7 0 1 2

2 Ti = 19

Multiplication time = 5 + 19 = 24 cycles.

Note: If "'i > 5, the ten’s complement of the

multiplicand is used.

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y
DATE: PAGE:
July 1, 1962 71

TIMING OF DIVISION
Terminology

Timing of division is computed in a fashion anal-
ogous to timing of multiplication. Each digit is a
number from O through 9, represented as n , but
the time for execution of division depends entirely
upon the digits of the quotient. Each digit has a
position within the quotient, from 1 through 6,
represented as a subscript 1 to the number n; but
the value of the number varies according to the
value of the digit on its left, except for the
number in position 6. The digit on the left is rep-
resented by the subscript 1 + 1. The final value
of the number for timing of division purposes is
represented by n. The following formulae state
the method of computing n, and the following
table gives the number of 4 i cycles required for
division according to the value of n .

Fori:6,ni:n6.
For i« 6,ni:ni1Fn|+1isODD.

Fori<6,ni:9-ni1Fni+1isEVEN.

6

Execution time in 4 p cycles = 5+ X T,, where

T, is found in the following table: i=1
M T
0,1 2
2,3 3
4,5 4
67,8 9 5

Thus, for example, if the quotient is 806491, the
execution time is determined as follows:

I ﬂ" ﬂll' T
6 8 8 5
5 0 9 5
4 6 6 5
3 4 5 4
2 9 9 5
1 1 1 2

2T = 26

Division Time = 5 + 26 = 31 cycles

MODULO 3 CHECKING IN UNIVAC Il SYSTEM
The Parity Bits

The UNIVAC III fixed word consists of twenty-
seven bits, two of which are parity bits. These
parity bits can be used for two purposes:

1. Checking the transmission of the word to
determine if any bits were lost, picked up,
or transposed as a result of this process.

2. Checking the result of arithmetic operations
without the necessity for programmed checks
or duplicated circuitry.

Casting Out of Elevens

The casting out of elevens used to check arith-
metic is analogous to modulo
arithmetic.

3 congruence

The modulo 11 check value for any number is its
remainder when it is divided by 11. As a result
of this division, the greatest number of 11°’s are
“cast out” (the quotient) leaving a value less
than 11 to be used as the check value. We deter-
mine the modulo 11 check value for the following
numbers thus:
2762
251 3438 312

11} 2762 11)3438 6 = check
value

1 = check value

Another way the check value may be determined
is to subtract the sum of the even numbered
digits from the sum of the odd numbered digits.*
The units digit is considered odd; the tens digit,
even and so on, to the left.

Sum of Odd Sum of Even
Numbered Digits ~ Numbered Digits thchVaI»qg
2762 2+7=9 6+2=28 9-8-1
3438 8+4=12 3+3=6 12-6-6

We may determine whether the sum of two quantities
is correct by adding the modulo 11 check values
of the operands and comparing it to the check
value of the sum.

Check Value
2762 1"
+3438. 6
6200 7

*
If the sum of the even numbered digits is greater than the

sum of the odd numbered digits, a multiple of 11 is added
to the latter. When the difference is obtained, the largest
multiple of 11 is subtracted.

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 72

From the above computation it can be seen that
the sum arrived at is correct. The above relation-
ship is always valid no matter how many digits
there are in the operands or how many operands
there are.

The same theory can also be used for other arith-
metic processes. In the case of multiplication,
for example, instead of adding the check values
of the two operands, we would multiply them and
compare it to the check value of the product.
They should be equal when the multiplication is
corréct.

When numbers are copied, digits may often be
dropped or inverted. For example, if we were to
read the number 2762 and record it, it might be
recorded as 2726. Without the original number
with which to compare the copy we would never
know that the unit and ten digits were transposed.
However, if we determine a modulo 11 check
value and carry it with the number, any trans-
position of the original number as 2726 would
indicate an error in “transmission.”

check
value
2762 9 2726

check
value
1

check value incorrect,
therefore transmission
incorrect.

In conclusion, the check value determined by
congruence arithmetic, in the above case modulo
11, can be used to check arithmetic functions
and transcriptions of numbers.

Modulo 3 Checking

Using the principles outlined above, we may
examine a binary number and develop a method of
checking its transmission and arithmetic functions.

Two bits are used in the UNIVAC III System for
checking. These two bits may represent values:
00, 01, 10 and 11, or 0, 1, 2, and 3. Since a
modulo 3 check is used, the value 3(11) is not
possible.

Let us determine the parity or check value,
modulo 3, for the following binary configuration:

111101

The decimal value is 61. Since a modulo 3 check
value is desired, the quantity is divided by 3,
and its remainder becomes its modulo 3 check

value.
20
3) 61 1 = check value
60 01 = binary check value
1

The modulo 3 check value may also be determined
by subtracting the total number of the even num-
bered bits from the total number of the odd num-
bered bits.

Number of 0dd Number of Even
Nunbered Bits Numbered Bits
3 — 2 =1

As a result of this subtraction, the parity would
be 01.

The binary configuration would carry its modulo 3
check value and would appear as:

Modulo 3
Paiity Value
01 111101

In any transmission, a bit which is lost or trans-
posed, would be revealed by the modulo 3 check.

Just as the modulo 11 check value was used to
check the results of a decimal addition, so the
modulo 3 parity bits may also be used to check a
binary addition. For example:

Modulo 3
Parity Value
01 011001 = 25
+ 10 001110= 14
11 100111 = 39
or
00

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE: -
July 1, 1962 73

Advantages of Modulo 3 Checking

1.

2.

RESU

. The check bits can be

The loss of an odd number of bits will be

detected.

The loss of an even number of non-con-
secutive bits will be detected.

“crossfooted” in
addition and subtraction giving a reliable
check through the adder.

LTS OF DECIMAL ARITHMETIC WITH

NON-NUMERIC OPERANDS

A procedure follows for determining the results
of decimal add which involves non-numerics (sum
with like signs, difference with unlike signs).

Al

A2,

A3.

A4,

AS.

. Calculate the results of a binary add,
retaining carry information from bits 4 to
5, 8to9, 12 to 13, 16 to 17, 20 to 21 and
24 to overflow.

Group the result according to decimal for-
mat (1-4, 5-8,...21-24)..

Note each 4-—bit group with a carry from
its most significant bit of the same group.

Convert the 4-bit result according to

the following table:

Decimal Character

4-bit

Group No Carry Carry

0000a 01012 0011 0
0001b | 01103 0100 1
0010c | 01114 0101 2
00110 | 0000a 0110 3
0100 1 0001 b 0111 4
0101 2 1 0010 ¢ 1000 5
0110 3 0011 0 1001 6
0111 4 0100 1 1010 7
1000 5 0101 2 1011 8
1001 6 0110 3 11009
10107 01114 1101 f
10118 | 10005 1110 g
11009 10016 1111 h
1101 f 1010 7 1000 5
1110 ¢ 1011 8 | 1001 6
1111 h 1100 9 | 1010 7

The result is the final result of an add.
Overflow will
terrupt.

cause a Contingency In-

The following procedure is to be followed for
subtract (add unlike signs, subtract like signs):

S1.

S2.
S3.

S4.

S5.

Complement the contents of ARi, and
binary add 00...001 to(m’). Use the results
as the contents of ARi and m for the next
step.

Follow add steps Al through A4.

If overflow results, the answer has been
obtained, and will be negative.

If no overflow results, the answer will be
positive and must be recomplemented.
Repeat subtract step 1 and add steps 1-2
with the contents of m' assumed to be
binary 0’s.

This result is the answer.

The following example will illustrate:

Decimaladd +f37b28 =(A8i)
-alf36h =(m)
Step S1. (ARi) =0 1101 0110 1010 0001 0101 1011
Complement (ARi) =0 0010 1001 0101 1110 1010 0100
(m’) =1 0000 0100 1101 0110 1001 1111
Binary add 1 0 0000 0000 0000 0000 0000 0001
1 0000 0100 1101 0110 10i0 0000
Step $2. Al. 0010 1001 0101 1110 1010 0100
Binary add. 0000 0100 1101 0110 1010 0000
Step S2. A2. 0010 1110 0011 0101 0100 0100
Step S2. A3. carry 0 0 1 1 1 0
Step S2. A4. 0111 1011 0110 1000 0111 0001
Step S3. No carry, therefore S4 applies
Step S4. (ARi) =0 0111 1011 0110 1000 0111 000}
(m") =0 0000 0000 0000 0000 0000 0000
Complement (ARi) = 1000 0100 1001 0111 1000 1110
Addto (m") = 0000 0000 0000 0000 0000 0001
Step S4. Al. A2, 1000 0100 1001 Ol11 1000 1111
Step S5. (AR1) =+51645h.

UNIVAC IIT UTMOET

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC III UTMOST — — Vi
July 1, 1962 1

Communications with the executive system (BOSS III) will be specified later.

UNIVAC III UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC IIT UTMOST

REVISION:

SECTION:

vl

DATE:

July 1, 1962

PAGE:

Octal
OoP
Code

A
Field

61
16
43
42
66
24
26
44
25
27
54
55
57
56
20
22
31
30
21
23
41
40
77

00

00

14
16

00

Instruction is type 0 unless an A value is listed

Al
AND
ASL
ASR
AT
BA
BAH
BRR
BS
BSH

CM
CPA
CPZ
DA
DAH
DD
DM
DS
DSH
DSL
DSR
HJ

MNEMONIC INSTRUCTIONS

Instructions' Function

Allow Interrupt

AND

Alphabetic Shift Left
Alphabetic Shift Right
Activate Typewriter
Binary Add

Binary Add Higher
Binary Rotate Right
Binary Subtract

Binary Subtract Higher
Compare

Compare Magnitude
Compare Product with A
Compare Product with Zero
Decimal Add

Decimal Add Higher
Decimal Divide

Decimal Multiply
Decimal Subtract
Decimal Subtract Higher
Decimal Shift Left
Decimal Shift Right

Halt and Jump

Timing

NN NN NN NN R NN DN AW NN

17-36
12-31

N~ W N

UNIVAC IIT UTMOST

REVISION:

SECTION:

VII

DATE:

July 1, 1962

PAGE:

Octal
oP
Code

A
Field

52
53
06
60
60
60
60
60
60
12
72
73
13
70
14
70
70
51
00
15
62
65
76
65
65
65
61
01

06
07
00
05

04
03

00
02

01
04

IX
IXC

JE
JG
JIP

LRC
LWC
LX
NOP
OR
PI
RC
RCK
RIO
RPE
RR
RS
RT

Instructions' Function

Increment indeX

Increment indeX and Compare
Jump

Jump if Equal

Jump if Greater

Jump if Interrupt Prevented
Jump if Less

Jump if Positive

Jump if Sense indicator set
Load A

Load A converting to Decimal
Load A Edited

Load A Negatively

Load Channel

Load Field

Load Read Channel

Load Write Channel

Load irdeX

No OPeration

OR

Prevent Interrupt

Reset Contingency

Read ClocK

Reset Input-Output

Reset Processor Error
Reset Read

Resct Sense

Read Typewriter character

Timin

W W W W NN SN

oW

[SV]

NN NN

[A]

UNIVAC III UTMOST

REVISION:

SECTION:

VII

DATE:

PAGE:

July 1, 1962

Octal

[N
Code Field Instructions' Function

65 03 RW Reset Write

10 SA Store A

71 SAA Store A in Alphanumeric

11 SAN Store A Negatively

04 sC Store Channel

07 SCJ Store Channel and Jump

04 01 SL Store Location

07 01 SLJ Store Location and Jump

04 04 SRC Store Read Channel

05 04 SRT Store Read Tape control

62 SS Set Sense

05 ST Store Tape control

04 03 sSwcC Store Write Channel

05 10 SWT Store Write Tape control

50 SX Store indeX

50 00 Sz Store Zero

64 02 TC Test Contingency

64 TIO Test Input-Output

64 01 TPE Test Processor Error

64 04 TR Test Read

64 03 ™ Test Write

03 00 WD Write Display

02 WT Write Typewriter character

Timin

NN ONNN NN W W W W W N W W W W W W N NN

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC III UTMOST

REVISION: SECTION:

Appendix 1

pare: Oct. 1, 1962 PAGE: 1

:
Q

Ll -~ B ol =R ol o}

ERROR CODES

DESCRIPTION

Bad expression - ! "
Duplicate 1

Undefined ,
Address - by Yo
Instruction .

Too many levels ¢/ »// '
Relocation
Truncation - >
P A

N }

H

REVISION: SECTION:

Appendix 2

UNIVAC IITI UTMOST R

DATE: PAGE:

Feb. 1, 1963 1

BINARY CARD FORMATS

The output of an UTMOST assembly is a deck of 80 column punched cards. The cards
are punched in column binary for loading into the UNIVAC III.

In an 8¢ column untranslated card, a word is 4 columns wide and 6 rows long (4 x ©).
Word 1 occupies columns 1-4, rows 12-3; Word 2 rows 4-9; etc. In this fashion, the
upper half of a card contains the odd numbered words (1, 3, 5, 7,. . . 39); the lower
half of a card contains the even numbered words (2, 4, 6,. . .40).

The following example illustrates the relationship between a column binary word and
its position in memory.

Word 1 Word 3 Word 5

Rows /

12 ol e "N 00 O O O:M 0 O O
v | 200 @B 0 20 0 O OD:0 O O N
> | =060 M0N0 O D!8 O N B!
| =0wl D400 0 0 O0:0 0 O B
> | »BvNuds0:0 0 O 0D'0 X B B
3 | BB eNcN:0 O O OD:®8 0 0O K

4 1 % 0 0:0 O O oD% O 0 o'
5 » 0 8 X0 0 O 0D:D0 O W D!
6 D 00D 0D:!0 0 0D O:% 0 B 0|
7 U 8 0 0:0 0D 0D D'D 0 D O
5 D "W 0D 0D:'D 0 O O:'0 % W O
9 1 00 0'0 DD D:" 0 0 B
Cols. 1 2 3 4 5 6 1 8,9 10 11 12
Word 2 Word 4 . Word 6]

WORD 1 IN MEMORY
{
3110001111010100101100010}80

252493 92 2120191817 161514 13121110 9 8 7 6 5 4 3 2 q

The Sign Bit of the above example is explained in the discussion of Word 3 under
the Instruction and Data Card section which follows.

REVISION:

SECTION:

Appendix 2

UNIVAC III UTMOST

DATE:

Feb. 1, 1963

PAGE:

UTMOST produces five types of binary cards: Instruction and Data Cards (the data
which the assembler produces--instructions, constants, etc.), Relocation Cards,
External Symbol Reference Cards, External Symbol Definition Cards, and End Cards,

An Instruction and Data Card may contain up to and including 24 words to be leaded

into memory. (Word 5 taru Word 28)

Word 1 contains the address of the area in nmiemory where the contents of the card

are to be stored.

Word 2 is of special format to cause the card to have even parity.

¥ord 5 contains the sign bits for the data words; a blank for +, a punch for -

Word 4 is always blank,
Words 5-28 contain the data which will be stored in memory.

The remaining four card formats are explained later in the section,

REVISION:

UNIVAC IIT UTMOST

SECTION:

Appendix 2

DATE:

Feb, 1, 1963

PAGE:

9V

INSTRUCTION AND DATA CARD

(causing the card to have even parity)

WORD
Vs
Ve ~
1 a S 7 9 1 13 s 7 19 2 23 2§ 27
/
12 /un D of of oopofpon| ol o
t 1 0 0] 0 0
o oop o oojp oopo o oop ooo ood oopa o
i 0 g o] 0| 000l 0
2 Q goo| ao; oo] 0 0 a oon;
3 U 0 0 0o Up ag o gopo o O
4 00 g 00 I g{@pao0aao
s 0 a0 0 0go Do 1] 0
6 0 OO0 00j 0O (o0 omopoOD 0 oipa
7 0o 00 oOa 0 a
g go | oo do 0
9 0 0 0oooo p00Oanc |0 Opo Goono
1-qQ §~-8 9 -1213-1617-20 21-29 35-20 29-32 43-36 37-40 a4 48 S2 86
2 4 6 € 10 12 14 16 |18 @ =22 24 p6 28
. /
v
WORD
3 2 o . 1 0 5 5 4
WORD 1 |11o0010loo0oiooijooo1o01fio1100
321 o3 21'cilig3 21 onizs 2 o il 12
Col. 1 Col. 2 Col. 3 Col. 4
Bits 1 - 15 Address of First Data Word
10554 8
Bits 16-20
Count of Number of Data Words (C < 24)
20
8
Bits 21 - 22
Always 0
Bits 23 - 24
Always 3
WORD 2 'Exclusive Or' of all other words on the card

Col. 1

Col. 2

Col. 3

Col. 4

100011

01100

1
9% 76©3549%76 54

000010
9% 7 <54

00001
9% 76e35

0
<

REVISION: SECTION:
Appendix 2
UNIVAC III UTMOST - ace:
Feb, 1, 1963 4
20—
WORD 3 Col. 5 Col. 6 Col. 7 Col. 8
321 o1l 123 2 1 O NS 21011123 2 1 o 12
000100/000000/000000/000000
')
T Sign of Data Word 16 +
Sign of Data Word 15 +
Sign of Data Word 14 +
Sign of DataWord 3 + Sign of Data Word 13 +
Sign of Data Word 2 +
Sign of Data Word 1 +
Signs of Data Words:
bit 24 =Sign of Data Word 1
bit 23 =Sign of Data Word 2
etc.
WORD 4 Always Blank
WORDS 5 - 28 The Data Words
Col. 9 Col. 10 Col. 11 Col. 12
32 1oini23 210012321 cui232ion 2
WORD 5 10OIEO101005000150100111110 10554
1 H t
On output listing this is instruction word
Bits
24 - 21 IR9=118
20-15 OP =248 =BA
14-11 AR =01, =arithmetic register 1
10 -1 10 bit address =04768
WORD 6 Col. 9 Col. 10 Col. 11 Col. 12
33 7¢i549%7654 9%!17c549% 76524
IO0150101000001{0110100100 10555

This is an instruction word

REVISION:

SECTION:

Appendix 2

UNIVAC IIT UTMOST

DATE:

Feb, 1, 1963

PABGE:

Bits
24 -21 IR 9=118

20-15 OP =24_ =BA

14 - 11 AR =01_ = arithmetic register 1

8

10 -1 10 bit address = 06448

etc.

REVISION:

SECTION:

Appendix 2

UNIVAC III UTMOST

DATE:

Feb. 1, 1963

PAGE:

UNIVAC III RELOCATABLE BINARY CARD FORMATS

A, INSTRUCTION AND DATA CARD
1. Word 1
Bits 24-23 3
Bits 22-21 0
Bits 20-16 Word count of information
Bits 15-1 Location of information
2. Word 2

Parity word

3. Word 3
Sign bits

4, Word 4
Not used

5. Words 5 thru 28

Binary information to be loaded

B. RELOCATION CARD
L Word1
Bits 24-23 3
Bits 22-21 1
Bits 20-16 Number of words to be relocated
Bits 15-1 Irrelevant
2. Word2

Parity word
3. Word3

Sign bits 1----Backward adjustment
0----Forward adjustment

REVISION: SECTION:
Appendix 2
os DATE: PAGE:
Feb. 1, 1963 7

4, Word 4,

Not used
5. Words 5 thru 28

Relocation references

Sign Bits Direction of adjustment

Bits 24-21 Not used

Bits 20-16 Low order position of 15 bits to be adjusted

Bits 15-1 Location to be relocated (relative to current base)

Each relocation reference will cause location referenced to be adjusted by amount
of current base.

Relocation cards must follow corresponding instruction and data card,

C. EXTERNAL SYMBOL REFERENCE CARD
1. Word 1
Bits 24-23 3
Bits 22-21 2
Bits 20-16 Word count of symbol references
Bits 15-1 Irrelevant
2. Word 2

Parity word

3. Word 3
Sign bits
4, Word 4

Not used

UNIVAC IIT UTMOST

REVISION:

SECTION:

Appendix 2

DATE:

Feb. 1, 1963

PAGE:

5.

Words 5 thru 28

External symbols referenced, and corresponding relocation reference.

Each entry consists of two to five words.

The last word contains the

reference information and is of the same form as a relocation word.

Sign bits
Bits 24-21
Bits 20-16
Bits 15-1

Direction of adjustment

Not used

Low order bit position of 15 bit reference address
Value of adjustment to external value or location

Symbol is given in first words of an entry and may be one to four words
All but last word of a symbol carry a negative sign.

long.

External symbol references may appear anywhere in a relocatable binary

deck, previous to the symbol definition cards.
from one card to another,

D. EXTERNAL SYMBOL DEFINITION CARDS

Word 1
Bits 24-23
Bits 22-21
Bits 20-16
Bits 15-1
Word 2
Parity word
Word 3
Sign bits

Word 4

Not used

3
3

Word count of symbol definitions

Irrelevant

An entry will not overflow

REVISION:

SECTION:
Appendix Z

UNIVAC TIT UTMOST

DATE:

Feb. 1, 1963

PAGE:

5. Words 5 thru 28

External symbols being defined and corresponding absolute values

(25 bits) or locations relative to current base.

Each entry consists of two to five words., The last word specifies the

location or value of the external symbol.

Sign bits

Bits 24-17 Not used

Bit 16 Relocation indicator
Bits 15-1 Value or location

If relocation indicator (bit 16) is one then current base should be added

to bits 15-1.

Symbol is given in first one to four words of an entry. All but the last

word of a symbol carry a negative sign.

External symbol definitions appear at the end of a relocatable binary

deck immediately preceding the end card.

E. END CARD
1. Word 1
Bits 24-23 3
Bits 22-16 0
Bits 15-1 End address
2, Word 2
Check sum
3. Word 3

Signs (normally zero)

4. Word4

Bit 16 If 1 indicates end card has transfer address
Bits 15-1 Location following last word used by program

REVISION: SECTION:
Appendix 2
UNIVAC IITI UTMOST
DATE: PAGE:
Feb, 1, 1963 10
5. Words 5 thru 28
Index Load words
Bits 24-21 Index designation

Bits 15-1 Value to be loaded in index

M-SOu-

UNIVAC

	001
	002
	003
	004
	005
	006
	007
	TOC_1
	TOC_2
	TOC_3
	TOC_4
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-17a
	2-17b
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	5-001_UT-2465
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	xBack

