
G
M

E N
A N

ERA L
U A L

PROGRAMMER'S GUIDE

U3521

This manual is published by the UNIVAC Division in loose leaf format as a
rapid and complete means of keeping recipients apprised of UNIVAC

Systems developments. The UNIVAC Division will issue updating packages,

utilizing primarily a page for page or unit replacement technique. Such

issuance w ill provide notification of hardware and/or software changes

and refinements. The UNIVAC Division reserves the right to rna ke such

additions, corrections, and/or deletions as, in the judgment of the UNIVAC

Division, are required by the development of its respective Systems.

® R EGIST ER ED TRADEMAR K OF TH E SPE RRY RAND COR PORA TION ©1963. SPERRY RAND CORPORATION

PRINTED IN U.S.A.

UNIVAC III January 21, 1963

BOSS, U-3521

UPDATING PACKAGE A

CONTENTS: INDEX pages 1 - 7

SECTION III pages 1 - 31

SECTION VI page 1

The attached sheets are additions and changes to the subject manual.

Two new sections are included:

1. SECTION III OPERATIONAL CONTROL

2. SECTION VI PROCESSOR ERROR CONTROL

The index is modified to br ing it up to date. All pages replace the
existing pages. Pages that are removed should be destroyed.

REVISION: SECTION:

UNIVAC m BOSS
1 Index

DATE: PAGE:

January 21, 1963 1

TABLE OF CONTENTS

I. INTRODUCTION 1-1

II. GENERAL II-I

1. Operational Control II-I
2. Synchronizer Control II-I
3. Contingency Control II-2
4. Processor Error Control II-3
5. Memory Dump II-3

III. OPERATIONAL CONTROL III-l

A. General III-1

B. BOOT
Bootstrap and System Tape Loader III-l

1. General 111-1
2. Bootstrapping III -2
3. System Search III-2
4. Register Usage IJI-2
5. To Load EXE C from Tape 1II-2
6. To Load Binary Routine through

Card Reader and Load EXEC III-3
7. To Load and Execute Spec ified

Routine in Core from Typewriter III-3
8. Calling Sequence III-3

To Load and Execute Spec ified
Routine from Tape

9. Calling Sequence III-4
To Load Spec ified Routine from Tape
but Return Control

C. System Tape Format 1II-4

1. General 1II-4
2. Symbol Block - Job Ident ification III-4
3. Preamble Block 1II-5
4. Information Blocks 1II-5
5. Additional Symbol Blocks with

Associated Information Blocks III-5
6. Symbol Block - Transfer Informat ion III-5

UNIVAC m BOSS
I:EVI5IDN'1 _____________ ~5-E-C-TI--O-N-~-d-ex
~ DATE, PAGE'

January 21, 1963

TABLE OF CONTENTS (Cont'd)

D. Operator-Controlled Executive Operation

1. Loading Programs from Tape
2. Loading Programs from Cards

E. SUCO Operation

1II-6

1II-6
1II-6

1II-7

1. General 1II-7
2. Scheduling Principal Programs 1II-7
3. Memory Clearing 1II-7
4. Initiation III-S
5. Calling Symbionts III-8
6. Running Symbionts Without a Principal

Program

F. Control Cards for SUCO

1. NEXT NAME
2. HOLD FIRST, LAST
3. SYM X
4. DEF SI,S2, ...

G. Preamble Block
Control Information for SUCO

H. Symbiont Operational Control, Storage
Assignment and 1-0 Allocation

1. Symbiont Operational Control

a. General
b. Symbiont Debugging
c. Beginning and Ending Symbionts

2. Symbiont Storage Assignment

a. General
b. Storage Allocation
c. Dynamically Relocatable Symbionts -

Programming Rules

III-9

1II-9

1II-9
1II-9
III-I0
III-l 0

III-I0

III-II

III-II

III-II
III-12
III-12

III-13

III-13
III-13

III-15

2

-

REVISION: SECTION:

1 Index
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 3

=

TABLE OF CONTENTS (Cont'd)

3. Allocation of Symbiont 1-0 Channels III-17

a. General III-17
b. Multiple-Channel Symbionts III-17

1. Tape Operational Control and As s ignment -
UN ISE RV 0 III III-IS

l. General Descript ion III-IS
2. Operator Messages III-IS

a. General III-IS

b. DISMOUNT 1II-19
c. MOUNT BLANK III-19
d. MOUNT ON 1II-19
e. POST ON 1II-19
f. NOT CLOSED DISMOUNT 1II-19
g. ASSIGN DISAGREE 1II-20
h. ASSIGN NOT SAVED 1II-20
i. ON ERRONEOUS REQUEST 1II-20

j. OFF-LINE III-20

k. HAS USAGE CONFLICT 1II-20

1. NOT READY 1II-20

m. SAVED NOT ASSIGNED 1II-20

3. Procedures for Taking UNISERVOS Off- Line III-21

4. Permanent Assignment Routine 1II-22

a. General 1II-22

b. Open Rout ine III-22
c. Close Routine III-22
d. Swap Routine III-23
e. File Alias Table 1II-23

f. Usage III-24

REVISION: SECTION:

1 Index
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 4

TABLE OF CONTENTS (Cont'd)

5. Inter-Run Assignment Routine III-24

a. General 1II-24
b. Clean-Up III-24
c. ASSIGN Processing 111-24
d. Canonization 111-25
e. INPUT, OUTPUT, INEX, SCRACH

Processing III-25
f. SAVE, ALT Processing III-25
g. Summarization III-25

6. Tape Assignment Parameter Cards III-25

a. General III-25
b. ASSIGN III-27
c. INPUT III-27
d. INEX 1II-27
e. OUTPUT III-28
f. SCRACH III-28
g. ALT III-28
h. SAVE III-28
i. DUMP III-29
j. DIAG III-29

7. Tape Assignment Table III-29

IV. SYNCHRONIZER CONTROL IV-l

A. Basic Dispatchers - Calling Sequences IV-I

1. Card Reader IV-I

a. Request and Verify IV-l
b. Errors IV-l
c. Mode IV-2
d. Release IV-2

REVISION: SECTION:

Index
UNIVAC m BOSS

DATE: PAGE:

January 21, 19(53 5

2. Card Punch 1V-2

a. Request IV-~

b. Verify IV .. -.)

c. Errors 1V-,1
d. Release rV-4

3. Printer 1V-4

a. Request IV -4

b. Verify IV-5
c. Errors IV-5
d. Helease rV-5

"1. Tape Read - UNISERVO III IV -()

a. Request IV-G
b. Verify IV-G
c. Errors 1V-7
d. Release IV-7
e. Contents of MAC 1V-8
f. Load--Point Test 1V-9

5. Tape Write - UNISE RV 0 III 1V-9

a. Request IV-9
b. Verify IV-IO
c. Errors 1V-I0
d. Release IV-I0

6. Symb iont Tape 1-0 - UNISE RV 0 III IV-I0

a. Request and Verify IV-I0

B. Basic Interrupt Analyzer IV-II

C. Basic Dispatchers - General Information IV-II

1. Introduct ion IV-II
2. Use of the Central Processor IV-12
3. Use of the Synchronizers IV-12

4. Dispatcher Communication IV-14

REVISION: SECTION:

UNIVAC m BOSS
DATE:

January 21, 1963

TABLE OF CONTENTS (Cont'd)

D. Dispatching - General

1. Request
2. Verify
3. Errors
4. Releasing

E. Dispatching - Card Reader

F. Timing and Space Requirements of the Bas ic
1-0 Routines

V. CONTINGENCY CONTROL

A. General

B. Programmer Control

PAGE:

IV-15

IV-15
IV-16
IV-17
IV-17

IV-19

IV-20

V-I

V-I

V-I

1. Typewriter Output V-I
2. Program Acceptance of an Operator Type- In V-3
3. Unplanned Overflow or Illegal Operation

Code V-6

C. Initiate Operator Control - Keyboard

1. Load System and Reset Core
2. Load System without Reset Core
3. Load System and Load Binary Cards

D. Exec Operator Control - Keyboard

1. Contingency Stop
2. Keyboard Request
3. Keyboard Release
4. Carriage Return
5. Operation Control Characters

V-6

V-6
V-7
V-7

V-8

V-8
V-8
V-8
V-8
V-9

Index

6

REVISION: SECTION:

UNIVAC m BOSS
DATE:

January 21, 1963

TABLE OF CONTENTS (Cont'd)

a. Control Counter
b. Display
c. Execute Instruction
d. GO ON
e. Jump
f. Load
g. Symbiont Message
h. Me mory Pr int Out
i. Request
j. Transfer

6. In valid Characte r s

7. Typewriter Page Ejection

E. Contingency Interrupt Interpretation and
Typing Control

V-9
V-9
V-9
V-I0
V-I0
V-I0
V-I0
V-II
V-II
V-II

V-12

V-12

V-12

1. Keyboard Request V-12
2. Keyboard Release V -13
3. Typewriter Interrupt V -13
4. Contingency Stop V -14
5. Overflow or Illegal Operation Interrupt V-14
6. Typewriter Routine Exiting V -14
7. Register Save and Restoration V -15

F. Typed-In Message Interpretation and Control V-15

VI. PROCESSOR ERROR CONTROL

A. General VI-l

B. Processor Error Indicators VI-l

Index

PAGE:

7

REVISION: SECTION:

UNIVAC m BOSS
r

DATE: PAGE:

December 17, 1962 1

INTRODUCTION

The ~usiness Qriented §ystems .§upervisor for the UNIVAC III (BOSS In) is a modular
executive system of great flexibility. It is designed in sections so that a system may
be "pieced" together to create the executive routine desired for any particular con­
figuration. If required, the executive routine can be changed on a day-to-day basis.
Only those sections absolutely necessary are maintained in memory while programs
are operating.

Under the direction of BOSS III, programs are called from a Systems Tape, loaded
into the memory of the computer, executed and completed. Concurrent operations
are made possible by BOSS III.

The control of all type-ins and type-outs, other contingencies, processor errors,
memory dumps and rerun procedures is included in BOSS III. Certain areas are
not included in this first release but will appear in]a ter additions.

Some of the specifications presented are interim and may be modified later, however,
any programs coded using the se specifications will be operable under the completed
system. The interim procedures presented in this manual have been tested and
are operable.

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

REVISION: SECTION:

11
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 1
.. ==~=============

GENERAL

The Business Oriented ~ystems ~upervisor for the UNIVAC III (BOSS III) is
composed of sets of subroutines from which various combinations may be
selected to form a particular BOSS III for a particular configuration. Within
an executive system for a computer of such power as the UNIVAC III certain
basic functions must be provided. These functions may be grouped into five
major hea::lings:

1. Operational Control
2. Synchronizer Control
3. Contingency Control
4. Processor Error Control
5. Memory Dump

These will be briefly and generally discussed in this section and expanded upon
in detail in the sections that follow.

1. Operational Control

Operational control provides the necessary routines to locate, load and
execute programs either from a previously scheduled sequence of pro­
grams or through operator intervention. It is also concerned with the
allocation of memory and input-output facilities for all programs and
the initiation of programs when the program has been allocated and
loaded. The function of removing a run and releasing input-output
facilities when a program is ended for any reason is also included in
operational control.

Most of the subroutines which are a part of operational control are
found in the Supervisor which is maintained on tape and only brought
into the memory for use when a program is ended or a new program
is called for, and for other reasons specified later.

2. Synchronizer Control

Concurrent processing involves multi-program usage of input-output
facilities as well as the central processor. Subroutines to accomplish

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962

this sharing are contained in the synchronizer control routine.
The tape synchronizer control routines are in memory at all
times; other input-output synchronizers are loaded as required.

I/O orders are submitted to the executive system which determines

11

2

the order of execution of all orders. Tape orders are executed
according to a priority system. Since the main purpose is to maintain
rated speeds on the slower peripheral units (card readers, punches,
printers) such symbiont (peripheral) runs using these peripheral units
are given to synchronizer control which attempts to fill the stand-by
location and then returns to the interrupted program. Under certain
conditions control is not immediately returned to the interrupted
program. When the input-output order causing the interrupt was an
order from a symbiont run to a printer, punch or reader, control may
or may not be immediately returned to the interrupted program. If that
symbiont program has previously given up control of the computer be­
cause the program was waiting for the completion of an order before
it could proceed, then control is passed to that symbiont run and the
interrupted program is held in abeyance until the symbiont program
voluntarily gives up control.

In this manner, per ipherals are maintained at rated speeds and the
available computer time is shared by the programs running concur­
rently.

3. Contingency Control

Contingency control is in charge of processing operator-computer com­
munications. It accepts and executes all message type-outs from i",ro­
grams in the computer whether recording running operational information
or requesting operator intervention. It allows, through unrequested type­
ins, operator intervention to change the operational state of the computer.
All information typed into or out of the computer will appear on the console
printer 0

Contingency control also handles errors arising from arithmetic overflow,
from the use of invalid operation codes and from clock power failure.
(See SECTION V for specifications.)

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962

Contingency control is part of the permanent executive system in
memory at all times.

4. Processor Error Control

In a running environment, this function must be present at all times.
It recognizes all processor errors and types out a diagnostic message.

50 Memory Dump

BOSS III contains a group of subroutines for memory dumps to be used
in establishing rerun points and for memory dumps for informational
purposes (useful in finding programming errors).

A repositioner routine is also included in the Supervisor to initiate a
program from a rerun point.

Memory dump for rerun purposes exists for main programs only
(tape-to-tape runs). Symbiont programs contain recovery procedures
rather than rerun points.

Information necessary for BOSS III to maintain its internal files and
tables is provided by the assembler or compiler that produces the
object program. These communications and parameters are pro­
vid~d in the appropriate manual.

UNIVAC III COBOL PROGRAMMER'S GUIDE
UNIVAC III FORTRAN PROGRAMMER'S GUIDE
UNIVAC III UTMOST PROGRAMMER'S GUIDE

U-3389
U-3517
U-3520

II

3

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

I REVISION: SECTION:

UNIVAC m BOSS l---------- __ -+--1 _III
! DATE: I PAGE;

I

,January 21, 1963 I

III. OPERATIONAL CONTRCL

A. General

Operational control is provided from a single execution system tape
which will contain supervisory control routines and diagnost ic aids

1

in addition to the absolute programs which may be loaded by the
Inter-Run Assignment Routine, SUCO, for object time execution.
Control information made up from control cards during the Desig­
nation Run, DECO, is included with each absolute progranl. This
control information is interpreted by SUCO to deterlnine tape assign­
ment, storage allocation, etc. The primary controlling medium dur­
ing execution will be through the typewriter; the contingency control
routine forms a substantial part of the controlling routines in core
during execution. In addition to the typewriter routine, the basic
input-output communication routine and the bas ic tape input-output
routines will be in core, plus the necessary tape assignment and
boot-strapping for the termination of a job. All coordination which
can be accomplished between jobs has been placed in the supervisor.
Upon the completion of a symbiont, the principal program will be
dumped temporarily on tape, the supervisor loaded, and after com­
pletion of the supervisor action, the principal program will be re­
loaded and continued.

Progression of the principal programs from one progran1 to another
will be established at set-up time and carried in control informat ion
through the designation run. In addition, operator intervention will
permit alteration of this schedule. Scheduling of syrnbionts will be
under complete operator control.

B. BOOT

Bootstrap and System Tape Loader

1. General

BOOT provides a system tape bootstrap and a loader to load
specified routines from the system tape.

REVISION: SECTION:

III
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 2

2. Bootstrapping

BOOT is loaded from a system tape by hitting the load key when
the computer is cleared and the system tape is rewound. This
routine includes the system tape search routine. If the run key
is struck BOOT proceeds to load the routine EXEC using the
system search routine.

3. System Search

The system search is accomplished by scanning the system tape
forward for a symbol block corresponding to the specified symbol.
If an end-of-file is encountered ,before the symbol, the tape is
rewound and search continued through the file a second time un­
til either the program or the end-of-file is encountered. If the
symbol is found, the corresponding program is loaded and exe­
cuted if so indicated. If not, an error is indicated.

4. Register Usage

BOOT uses the AR's and index register 2 only.

5. To Load EXEC from Tape

Depress the following keys in sequence:

(a) REWIND

(b) CLEAR

(c) LOAD

Contingency STOP to set core to SLJ ERR

(d) RUN

REVISION: SECTION:

III
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 3

6. To Load Binary Routine through Card Reader and Load EXEC

Depress the following keys in sequence:

(a) REWIND

(b) CLEAR

(c) LOAD

Contingency STOP to set core to SLJ ERR

(d) REQUEST

(e) RUN

7. To Load and Execute Specified Routine in Core from Typewriter

Depress the following keys in sequence:

(a) REWIND

(b) CLEAR

(c) LOAD

(d) RUN

(e) REQUEST

(f) Type in RX.6 routine name (),' tJ --

(g) RELEASE

8. Calling Sequence

To Load and Execute Specified Routine from Tape

(a) LA 3, symbol desired

(b) J LODX

REVISION: SECTION:

lIT
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 4

9. Calling Sequence

To Load Specified Routine from Tape but Return Control

(a) Load desired return in index register 1

(b) LA 3, symbol des ired

(c) J LOAD

C. System Tape Format

1. General

A system tape is created by a DECO run. The first block on
the system tape should be BOOT. BOOT will automatically
call in EXEC, which should also be on the system tape.

The system tape is terminated by special end-of-file sentinels;
searching is normally done by searching forward through the
file until the desired name is found. If the desired name is not
found on the second pass, the search program will spin.

A section of the system tape containing Job A would appear as:

2. Symbol Block - Job Identification

(a) SCAT word - 3, TeD

(b) Segment of three words

(1) Transfer address of previous program.

(1) JOBA, name of this job.

(c) SCAT word - 16,0120

(d) Cover register information of previous program.

REVISION: SECTION:

III

UNIVAC m BOSS
DATE: PAGE:

January 21, 1963 5

3. Preamble Block

(a) SCAT word - signed negatively to make this block
transparent to BOOT.

(b) Control information for SUCO, such as tape assign-
ment parameters.

4. Information Blocks

As many as 19 pairs consisting of:

(a) SCA T word - number of contiguous instruct ions, ab-
solute location of first instruction.

(b) Se gment of cont iguous instruct ions.

5. Perhaps Additional Symbol Blocks with Associated Information

Blocks for Segments or Links of the Job

See sections 2 and 4 above

6. Symbol Block - Transfer Information

(a) SCAT word - 3, TCD

(b) Segment

/
. ~ 'iiH ti • ;

(1) Transfer address of JOBA (or the last segment or
link).

(2) Name of next job physically on tape.

(c) SCAT word - 16,0120

(d) Cover register information for JOBA (or the last segment
or link).

REVISION: SECTION:

III
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 6

D. Operator-Controlled Executive Operation

~~.

1. Loading Programs from Tape

This mode of operation permits individual principal programs
to be called from the console and executed. No symbiont opera­
tion or tape-assignment will be provided. It is expected that
this mode of operation will be used only for preliminary de­
bugging of programs or for occasional runs of rarely used pro­
grams.

The follOWing sequence will permit operator-controlled opera­
tion with the system tape mounted on UNISERVO 0 :

(a) CLEAR

(b) REWIND

(c) LOAD

(d) STOP (if it is des ired to reset core to SLJ ERR)

(e) RELEASE

(f) RUN

The system will now spin in a loop awaiting type-in. Programs
may be called from the system tape by typing

RX~NAME

where NAME is the name of the desired program. At the end
of the program, an EOJ message is typed out and the system
returns to the spin loop. If NAME is not found in two passes
of the tape, the program will spin.

2. Loading Programs from Cards

If it is desired to load programs from the card reader, Step (e)
in the above sequence should be REQUEST. This will call in
the Binary Relocatable Loader which will load and execute bi­
nary decks.

SECTION:

III

UNIVAC m BOSS
PAGE:

~January 21, 196:3 7

==---

1. General

Operation under Supervisor Control (SUCO) permits sinlul­
taneous operation of principal programs and symbionts ~
with automatic chaining of principal programs and automa­
tic tape assignment. This is 'expected to be the nornlal
mode of operation for production runs.

Principal prograllls will normally communicate with SUCO
through control cards. An SLJ EOJ should be used to
terlninate each principal program.

2. Scheduling Pr inc ipal Programs

Each prinCipal program has the option of speci fying the pro­
granl which is to follow. This is done by means of a control
card of the following format preceding the program:

NEXT NAME

where NAlVIE is the nanle of the program to follow. If no
NEXT card is included, SUCO will type out a message upon
reaching EOJ in the current program, and spin in a STOP
loop until the operator calls a new program. A princ ipal
program is called from the console in the same manner as a
sYlnbiont. The procedure is outlined below.

3. Memory ClearinK

SUCO will nor Inally clear the n1emory locations used by a
principal progranl before loading. If one desires to preserve
a segment of nlemory, a HOLD control card must be used.
The format of this card is described under "SUCO Control
Cards" .

I REVISION: SECTION:

UNIVAC m BOSS ~
III

I DATE: PAGE:

I January 21, 1963
,

4. Initiat ion

The following sequence will call in SUCO and initiate automa­
tic processing:

(a) CLEAR

(b) REWIND

(c) LOAD

(d) STOP (if core reset is desired)

(e) RUN

A message "WHA TS NEXT" will be typed out, and the first
program to be called should be typed in us ing the follow ing
message format:

R~KILL6..06CALL6..NAM:Z62

SUCO will then type out tape assignment and accounting infor­
mation for the called program, and load it in. Subsequent
main programs will either be automatically called by NEXT
control cards, or may be called from the console using the se­
quence above ~ if no NEXT card was provided.

An invalid type-in will produce an 'EH' message followed by
"WHATS NEXT".

5. Calling Symbionts

8

Symbionts may be called by using the same type-in format as
above, substituting the symbiont channel number for the 2. This
sequence will interrupt the principal program and stop all I-O
action while the symbiont is being loaded. Symbionts must not
be called during the time that SUCO is loading a new principal
program or another symbiont, but only during the running of a
principal program.

I REVISION: I SECTION:

I

UNIVAC m BOSS f-- ---
I DATE:

III -------+------ -­
PAGE:

I January 21, 1963
I

So long as only pr inc ipal programs are be ing run ~ no syste 111

DUIVIP tape need be specified. However, before a symbiont
may be called fron1 the console, a principal progranl contain­
ing a DUMP control card must have been called.

6. Running Syn1bionts Without a Principal Progran1

If, at any time after a principal program containing a DUMP
card has been run, it is des ired to continue running syn1bionts
without a principal program, the "WHATS NEXT" message
should be answered by REQUEST, GO (type-in), RELEASE.
This will permit symbionts to run, with a spin loop in sueo
acting as principal program. A subsequent GO will cause
an SLJ EOJ and allow running of principal programs to re­
sume.

F. Control Cards for SUCO . ;II ')

These control cards are passed through the Designation Run,
DECO, which makes up the Preamble Block for a progranl. All
control cards have a 12-0-2 punch in column 1 followed by a
space in column 2. (In the following control card forn1ats. .6
indicates that there must be at least one blank space.)

First word = Operator; Final words = Operand.

1. NEXT .6.NAME

This specifies the name of the program to be called at EOJ
of the program containing the control card. The symbol
NAME will be placed in Words 4 and 5 of the preamble on
the absolute tape. SUCO will go to the typewriter for the
next program if no NEXT card is present.

2. HOLD.6.FIRST, LAST

This card specifies the first and last absolute locations of the
core segment which is NOT to be reset before loading the pro­
gram in which the card appears. If no card is present, the en­
tire core segment within the program boundaries will be reset.
Only one HOLD card may be included in anyone prograln.

The first and last locations are Joaded into Words (i and 7,
respectively, of the program preamble.

9

REVISION: I SECTION:

I III
I

UNIVAC m BOSS I DAT~-----~--+'A~ -~--------
I January 21, 1963 I 10

3. SYM~X

See "Symbiont Storage Allocation" (section III. H. 2. b.) for
description. Only Symbionts use this card.

See" Allocation of Symbiont I-O Channels" (section III. H. 3. a.)
Only Symbionts use this card.

G. Preamble Block

Control Information for SUCO

Immediately following the symbol block for a program must be a
preamble block which has been automatically prepared by the
Designation Run, DECO, laid out as follows:

Word

1

2

3

4 and 5

6 and 7

8

9

"1" for absolute, "2" for dynamically relocatable
symbionts, "3" for symbionts requiring relocation
in increments of 100.

First Location of program.

Number of cells required by program.

Symbol of Program to be called NEXT. "0" for sym­
bionts, or if next main program is to be called from
CONSOLE.

First and last words of core segment which is NOT to
be reset before loading program. Zeros if entire seg­
ment occupied by program is to be reset.

(No. of Tape Assignment Parameter Entries following)
X 4 = No. of words (Nt).

Tape Assignment Parameter Entries (4 words per entry)
condensed from tape assignment parameter cards.

UNIVAC m BOSS

I REVISION: I SECTION:

I I III

f;A~: -- - - -f PAG E~
I January 21, 1963 ! 11
I i

9 + Nt These entries are described under "Tape Assignment
Parameters" (section III. I. 6.) below.

10 + Nt Number of Words of Undefined SYlnbol Table (Ns).

11 + Nt Undefined Symbols for Operator.

11 +- Nt +- Ns These entries are laid out as follows:

Symbol = 1-4 words of alpha, all hut
last minus.

Reference =- 1 word containing address
where symbol was refer­
enced. s::l1ne format as re­
locat ion reference words.

H. Symbiont Operational Control, Storage ~ssigll~ent

and 1-0 Allocation

a. General

The role which the operator and the machine play is re­
versed with respect to symbionts. For symbionts the
operator must initiate all action. He must request a
terlnination and initialization 6f a symbiont; for tape al­
teration, opening, mounting, removing, etc., all actions
are initiated by the operator rather than by the operating
system. This reversal serves two purposes. One is to
simplify the principal program's relocation and shorten
tape assigIllnent. The second purpose served by this re­
versal of the positions is that it gives the control primari­
ly to the operator for the operation of symbionts as
opposed to the scheduler; since it is felt that the scheduling
of symbionts is a real-tilne problem, it is only the opera­
tor who can make intelligent decisions in this regard.

UNIVAC m BOSS

! REVISION: -01 SECTION:

III
~, ---~~--~~-- ---~~-------~--------- ------------.----~---
1 DATE: PAGE:

i January 21, 1963 I 12
, i

Although a symbiont is norninally not permitted to have
debugging references ~ it may be debugged by running it
without a principal prograll1. In this circunlstance, the
symbiont is permitted to make debugging references
since there would be no conflict. Typewriter interven­
tion, however, is only possible in this instance when the
symbiont is released; and a syn1biont should be initially
debugged as a principal program without release.

Synlbionts are called and terminated only fronl the console.
The me s sage form is as follows:

RS~KIL~a, b, c~CALL~NAl\IIE~a

in which a, b, c are channel designators. This message
indicates that the symbionts currently us ing those channels
following KILL are to be terlninated and that the program
indicated by NAME is to be loaded into the space vacated
and assigned Channel a. Principal programs may be
called in the sanle way, using a channel designator of 2.

Both KILL and CALL must be entered. If there (!re no
symbionts to be KILLed, an operand of 0 should be en­
tered.

Symbionts nlust be written in such a fashion that the dom­
inant channel release re-entry is also the initial entry for
starting the symbiont, as well as the entry for acceptance
of typed-in messages. The transfer card of a symbiont
must spec ify the address of this entry point.

Symbionts are responsible for their own orderly termina­
tion upon reaching an EOF or EOJ condition. This should
include typing a message to inform the operator that no
further work remains, identifying the channels involved.
The operator can then either restart the symbiont with
additional input or clear it out by use of the KILL mess­
age.

UNIVAC m BOSS

I REVISION: I SECTION:

I I III

~----------------- ---- ------+------
I DATE· I PAGE:

I Jan~ary 21, 1963 13

2. Symbiont Storage Assignment

a. General

Symbionts are loaded at the top end of core. These
symbionts may be located either statically, which is
to say that their location is specified at des ignation
time through a parameter card, or dynamically in
memory. If a symbiont is located statically in mem­
ory, then the automatic symbiont memory allocation
features of the supervisor are foregone and schedul­
ing and mernory area designation beconlc the respons­
ibility of operating personnel. If the symbiont is
specified as a dynamically relocatable symbiont, then
the system will provide autornatic memory allocation
for the symbiont at all times and will group the sym­
bionts in contiguous areas at the top of available core.
Both dynamically relocatable symbionts and stat ically
relocatable symbionts can be in the machine simul­
taneously.

b. Storage Allocation

Symbionts may be of one of two types, absolute or
dynamically relocatable. Of the latter, certain Inay be
relocatable only in increments of 100 locations, due to
the requirements of the punch and card reader buffers.

A SYM control card in the following fornl is used to in­
dicate which type is desired:

SYM~

in which

x = R for relocatable

x = H for relocatable in increments of 100 only

x = A for absolute

UNIVAC m BOSS
, REVISION: ----b' SECTION:
I III

~~AT~;------- PAGE-:---- -------

i January 21, 1963 I 14

All symbionts Inust be accompanied by a SYM control
card. Absolute symbionts are loaded into whatever por­
tion of upper nlcmory is specified by the programmer,
and are not relocated during execution. They should
normally be written to occupy memory locations with
the highest addresses practical, as no relocatable pro­
granls w ill be loaded above them.

Dynamically relocatable synlbionts are stored in upper
memory in the order of loading, and are relocated to
pack from the top of memory down. To illustrate this,
let A, B, and C be three symbionts. Let U represent
the address of the highest cell in the relocatable area
storage, and N ,N

B
, and N represent the number of

cells required A for the sym~iont indicated in the sub­
script. Then, if A, B, and C are loaded in that order,
they will occupy storage locations as follows:

A will occupy fronl cell (U - (N A-I» to U

B w ill occupy from (U - (N A +N
B

-1» to (U-N A)

C will occupy from (U - (N A +N
B

+NC-l» to (U-(N
A

+N
B

»

When a new program is called, SUCO will determine
whether sufficient vacant space exists in memory. If so,
the relocatable symbionts currently in memory will be
relocated to provide space at the proper point in mem­
ory and the program will be loaded.

If the new program is a principal program or a relocat­
able symbiont, relocation will be upwards. If it is an
absolute symbiont, relocation will be downwards. In
any case, the remaining vacant space in relocatable core
will be above the highest location of the principal pro­
gram and below the lowest address of the lowest relocat­
able symbiont. The figure at the end of this section
shows the scheme for storage allocation in multiprogram­
ming applications.

l REVISION, _____ . _

SECTION:

III

UNIVAC m BOSS
PAC3 E:

I

I DATE:

. January 21, 1963 15

If there is not enough vacant space anywhere in memory,
a message will be typed indicating how many additional
cells are required and the program w ill go into a stop
loop. The operator then has the option of either:

1. KILLing other programs to provide the needed
space and reCALLing the desired prograrn or

2. CALLing a program with smaller space require­
ments.

Typing GO will then permit execution of the typed-in
message and another cycle of storage availability
analysis.

If GO is entered without having first entered a KILL/CALL
message, SUCO will remain in the stop loop operating as
a principal program if a principal program EOJ condition
exists. Otherwise, SUCO will exit and resume the prin­
cipal program which was interrupted.

c. Dynamically Relocatable Symbionts - Programnling Rules

In order for a symbiont to be dynamically relocatable, the
only programming requirement is that all working storage
usages be explicit with respect to any relocation indica­
tions. A particular example is a cell which is the object
of an SLJ. This cell must be specified as a relocatable
cell by placing in it a dummy value such as, for example,
+$+00, which will both flag the location for documentation
purposes and cause this location to be recognized by the
assembler as being a relocatable location. It is not per­
missible to store in any cell of the symbiont both relocat­
able information and non-relocatable information.

A dynanlically relocatable symbiont may potentially be re­
located at any time that it is released. Since at the time
that it is released the registers are not saved, there are
no requirements with respect to register usage as to the
type of information that they contain.

REVISION: SECTION:

III

UNIVAC m BOSS DATE: PAGE:

January 21, 1963 16

Upper Memory

Not available for relocation

Absolute Symbionts

Relocatable Symbiont 1

Relocatable Symbiont 2

Vacant Space Available For
Relocation

Principal
Program

Not Available For
Relocation

Lower Memory

REVISION: SECTION:

UNIVAC m BOSS
III

DATE: PAGE:

January 21, 1963

3. Allocation of Symbiont 1-0 Channels

a. General

In order to avoid conflicts in usage, symbionts should
normally refer to tape units and 1- 0 channels symbol­
ically. The symbols may then be defined by the opera­
tor at execution time, in accordance with hardware
availability.

Symbols may be indicated as operator-defined by a DE F
control card of the following format:

in which Sl' S2' etc. , are otherwise undefined symbols.

17

This card will cause SUCO to generate a type-out of each
symbol, following which the operator may type in the sym­
bol definition. Such symbols must be in the forn1 of 15-bit
addresses.

It is suggested that a list of standard symbols for tape
and 1-0 channels be adopted by each installation in or­
der to minimize operator confus ion.

It should be noted that this option is available only to
symbionts. Main program symbols may not be operator­
defined.

b. Multiple-Channel Symbionts

It is permissible for a symbiont to release on more than
one channel. However, if this is done then the symbiont
will be responsible for simulating a not-used status on
channels other than the currently released channel by
storing minus zero in the corresponding release entry
MPRL + channel number.

I REVISION: SECTION:

III
UNIVAC m BOSS

PAGE: I DATE'-

I January 21, 1963 18

1. .Iap~rational Control and Assignment - UNISERVO III

1. General Descritpion

Tape assignment will be performed at execution time and be­
tween runs. The responsibility for tape assignment will be
divided between two routines. One is a relocatable subroutine
and the other will be part of the supervisor. The routine in
the supervisor will be responsible for the analysis of tape pa­
rameter cards and cleaning up of tape assignments upon job
completion. The relocatable routine will be responsible for
preparation of "posting" messages for output files, handling of
tape swapping, and of closing files.

All pertinent tape assignment information will be retained in
a table in the communication region consisting of 16 words per
tape channel pair. This table will be accessible for interroga­
tion and manipulation by any routine so that it will be possible
for programs other than the tape assignment routines to make
tape assignment adjustments.

It is possible for a generalized program which accepts card
images directly for control, to make distinct tape assignments
for each run instead of relying upon a designation pass. This
file assignment permits early mounting instructions for speci­
fied optional inputs such as library tapes.

2. Operator Messages

a. General

Except for operator intervention not covered here and
system outguessing with free entries, all unit mounting
and dismounting must be at the instigation of the type­
writer. The system has been designed to permit early
mounting instructions where possible by use of the SAVE
instructions, and to be self-protecting via the dismount
status. It permits operation to go from one run to another
without any stop required to be sure all tape reels are
mounted. A description of the messages and correspond­
ing operator action follows.

For explanation of the term "alias", see Sect. III, p.23
(e.).

UNIVAC m BOSS

I REVISION: ! SECTION:

L i III , "-"--"""----"--- ---+-------
! OAT" I PAGE.

I January 21, 1963 19

b. "DISMOUNT unit"

The unit specified will be rewound with interlock and is
to be dismounted. The unit specified should remain in
"change tape" status until further instructions ::11'(' re­
ceived.

c. "MOUNT BLANK unit"

If the specified unit is not in a dismounted status it will
be rewound with interlock. If already in a disnlounted
status, no 1-0 action will occur. In either case. the
next reference to this unit will expect a blank reel to be
on this unit.

d. "MOUNT alias-k ON unit"

If the specified unit is not in a dismounted status, it will
be rewound with interlock. If already in a dismounted
status, no 1-0 action will occur. In either case the next
reference to this unit will expect an input reel to be on
this unit.

e. "POST alias-k ON unit"

The operator should now affix a corresponding reel
sticker to the specified UNISERVO. It is iInportant
that this be done at this time, inasmuch as no further
typewriter reference with respect to alias-k will be
made. Instructions to remove this reel will instead
be implic it in a later DISMOUNT or MOUNT message.

f. "alias-k unit NOT CLOSED DISMOUNT"

This message will occur only if a run is ternlinated
without clos ing a protected file. It would normally be
expected that the result s of the affected run would be
invalid.

UNIVAC m BOSS
I REVISICN_: ____________ ~S-E-C.-T~-:-;-:-------------

DATE: PAGE:

January 21, 1963

g. "alias ASSIGN file-entry file-entry DISAGREE"

This message will occur if the saved file-entry does not
carry the same file alias as that spec ified on the ASSIGN
parameter card. A subsequent wait will occur, where­
upon the operator can determine whether to proceed.

h. "alias ASSIGN file-entry file-entry NOT SAVED"

Specified file-entry was not saved by previous job. Pro­
gram will proceed as if no ASSIGN parameter had been
given. Operator should intervene if corresponding re­
quired reels are not readily available.

i. "alias file entry ON unit ERRONEOUS REQUEST"

File-entry is already in use or else unit was not off-line.
A subsequent delay for operator intervention will occur.

j. "unit OFF-LINE"

Specified unit has been set to OFF-LINE status and is
not available to programs.

k. "file-entry HAS USAGE CONFLICT"

20

Conflicting parameter cards have occurred for the speci­
fied file-entry. A subsequent delay for operator interven­
tion will occur.

1. "unit NOT READY"

System is waiting for specified unit to be ready so that
input output may proceed. Specified unit may be rewind­
ing or in the process of tape changing at the time of this
message.

m. "file-entry SAVED NOT ASSIGNED"

A file entry which was saved by previous job was not
assigned by current job. A subsequent delay will occur.

REVISION: I SECTION:

UNIVAC m BOSS
:

____ ~I ___ ~~ ______ .
PA[3E:

1963 21
DATE:

January 21,

3. Procedures for TakingUNISERVOSOff Line

In the event that, due to mechanical failure or SOllle other
reason, a UNISERVO is unavailable, the operator should
take it off line. This may be done as follows:

Type in L~TPSWICH

I

This will cause SUCO to pause before the next tape assign­
ment phase and type out an inquiry. The operator should
then type in

RS.6..n1~OFF.6..USE~n2 and Enter GO

in which n 1 is the two-digit number of the UNISERVO to
be taken off-line, and n2 is the two-digit number of the
UNISERVO to be substituted for it.

SUCO will then

(a) Find the file entries to which n 1 and n2 are
assigned.

(b) Exchange the servo numbers.

(c) Set the file entry receiving n2 ON LINE on sym­
biont channel 2 (main program) and the file entry
receiving n 1 OFF LINE.

When an off-line UNISERVO becomes available again, it may
be placed on line by the same procedure used for taking it off,
except that the type-in should read

RS.6..n1.6..0N

This will place the file entry now containing n 1 ON-LINE
on symbiont channel 2 (main program).

When a file entry has been taken off line by the above proce­
dure, the operator should avoid using that file entry in defin­
ing symbolic tape files for symbionts.

If a main program attempts to use the off-line file, a message
will be generated and SUCO will wait for the operator to either
type in a unit "ON" message, or to interchange units with an
"OFF USE" message.

REVISION: SECTION:

UNIVAC m BOSS
DATE:

January 21, 1963

4. Permanent Assignment Routine

a. General

The permanent assignment routine (COSTA~which is
relocatable, accepts calling sequences from the user,
types out pertinent messages and performs a limited
amount of 1-0 action for rewinding and interlocking
tapes. It accepts the following calling sequences:

(1) To open output file:

SLJ OPEN
+ file entry

(2) To close a file:

SLJ CLOSE

+ file entry

(3) To swap input reels:

SLJ SWAP

+ file entry

PAGE:

In each of the above calling sequences, file entry speci­
fies a location in the tape assignment table. The word
in the calling sequence must not have bits except in
Positions 1 - 10.

b. Open Rout ine

The open routine will produce a POST message if an out­
put reel is to be saved.

c. Close Routine

The close routine will rewind the specified reel and, if
protected, produce a DISMOUNT message. Unless the
file is saved, it will set the symbiont channel designa­
tion to "free".

III

22

UNIVAC m BOSS

d. Swap Routine

(1) Input

REVISION:

DATE:

i January 21, 1963
---1

J SEC~;N·o _____ -o_

r PAGE:
I

j
23

The swap input routine first determines whether
an alternate reel has been specified. If an alter­
nate reel has been specified, the unit numbers will
be inter-changed between the file entry and its al­
ternate. If the next reel does not correspond to a
prescribed nlaximum (via file parameter card),
then a MOUNT message will be produced and the
current reel rewowld with inter lock. If the next
reel does correspond to the prescribed maximum
then the current reel will be rewound with inter­
lock, a DISMOUNT message will be produced, and
the file entry symbiont channel will be set to "free".
If no alternate has been specified, a simple MOUNT
message and rewind with interlock will be produced.
In any case, the reel number will be incremented
by one.

(2) Output

The swap output routine causes the current reel to
be rewound with interlock and a MOUNT SCRATCH
message to be produced. If an alternate reel refer­
ence is indicated, the unit will be interchanged. A
POST message will then be produced for the proper
unit.

e. File Alias Table

Corresponding to each file entry there is a two-word file
alias entry in the file alias table. The first six charac­
ters of this entry determine the alias and the last two con­
tain the current reel count.

REVISION: SECTION:

III
UNIVAC m BOSS

DATE: PAGE:

January 21, 1963 24

f. Usage

The item advance routines (high level 1-0) will contain
their own interface with the tape assignment routines.
Programs which require tape mounting, dismounting, or
swapping must provide their own interface with the per­
manent assignment routine. Symbionts may not commun­
icate directly with SWAP, OPEN, and CLOSE routines.
Since SWAP may not be used, symbionts may not specify
alternate entries.

5. Inter-Run Assignment Routine (SUCO)

a. General

The inter-run assignment routine cleans up after the pre­
vious job, canonizes the assignments, and interprets the
assignment cards for the next job.

b. Clean-Up

Each file entry used by a symbiont which is being termi­
nated is examined. The only file entries which should
still remain assigned are unprotected files, unused input
alternates, and saved files, unless the terminating pro­
gram failed to close all of its files, in which case mess­
ages would be produced for any protected files still re­
main ing as signed.

Each file entry ass igned to the affected symbiont channel
is examined in sequence and (a) if it is an input alternate,
the dismount bit is set and the entry is released; (b) if the
entry is not protected, the entry is simply released; (c)
if protected, a NOT CLOSED DISMOUNT message is pro­
duced and the unit is rewound with interlock; and (d) if pro­
tected and referenced by input alternate, then the alternate
is rewound with interlock and a DISMOUNT message is pro­
duced.

c. ASSIGN Processing

The ASSIGN parameters are processed first.

,-,

UNIVAC m BOSS

I REVISION: \ SECTION:

I III

r--;;-;;:;-- - --------F:
I January 21, 1963 I 25

The old assignment table is saved and all of the
ASSIGN's are processed in order of receipt. Follow­
ing the completion of the processing of the ASSIGN
entries, the remaining file entries are transferred
from the old assignment table to the new one.

d. Canonization

Canonization is accomplished following the process­
ing of the ASSIGN entries by examining all of the then
free or off-line entries and making any interchanges
which will permit a unit to fall into its canonical loca­
tion. Dismount status is retained. Canonical refer­
ences are accomplished by a fixed table in the super­
visor which can be altered as an installation option.

e. INPUT, OUTPUT, INEX, SCRACH, Processing

These parameters are processed as a group. Particu­
lar attention is made to any possible conflicting usage,
and appropriate messages are produced.

f. SAVE, ALT Processing

SAVE and ALT parameters may require information
from previous paramet ers and are processed in the
last group.

g. Summar iz ation

Summarization permits the operator to be aware of
which physical units are in use and which are free.

6. Tape Assignment Parameter Cards

a. General

Tape assignment parameter cards are placed with the

I REVISION: SECTION:

I

UNIVAC m BOSS ~

I

DATE:

January 21, 1963

beginning parameter information for a run. They are
condensed by the designation run and written on the
system tape as part of the run preamble. During the
initialization of a run by the supervisor, they are ex­
amined and appropriate action is taken.

The tape as s ignment parameter card format is:

Columns

1 - 6

7

8 - 9

10

11- 16

17

Alias

Blank

File Number (k)

Blank

Operation

Blank

PAGE:

18 ... Assignment numbers right
justified in Columns 20, 24,
28, 32, 36,

The file-alias has no logical attachment to any symbols
generated by a program and is carried as a mnemonic
device only. Its sole employment is on tape assignment
paramenter cards and on correspondingly generated tape
mounting, posting, and dismounting instructions.

The file number specifies the entry in the tape assign­
ment table. A description of the permissible tape
assignment operations follows.

The function of the assignment numbers depends upon
the operation involved and is described in the descrip­
tion of these operations. It may be a physical unit
number, a file number, or an estimate of the number
of reels. All numbers are decimal.

III

26

•

t::: I SECTION:

I

UNIVAC m BOSS
I III

I DATE:

-- . ---.-1.------ _ .. _­
I PAGE:

I January 21, 1963

b. ASSIGN

alias k ASSIGN k2, k3

Assigns file entry k2 from the previous run to file
entry k3 of the current run. This is accomplished
by interchanging the unit numbers between the two
file entries. A check is made to see if the prev ious
alias agrees \v ith the alias on the ASSIGN card~ and ~
if not, an error message is produced. File number
(k) is always blank (~~) in this card.

c. INPUT

alias k INPUT n

Describes file k as be ing a protected input file.
Causes beginning-of-job mounting instructions and
end-of-job dismounting instructions. If reels are
not in dismounted status at the beginning of the run
it produces rewind-with-interlock instructions. Sets
the 'input! bit. If n is non-zero, it specifies the
expected number of reels, thereby permitting an
early release of the alternate, if any. An incorrect
n will not cause an error.

d. INEX

alias k INEX n

Describes file k as being an unprotected input file.
Causes beginning-of-job mounting instructions only.
If reels are not in "dismounted" status at the begin­
ning of the run it produces appropriate rewind-with­
interlock instructions. Sets the "input" bit. If n
is non-zero, it specifies the expected number of
reels, thereby permitting early release of the alter­
nate, if any. An incorrect n will not cause an error.

'27

REVISION:

UNIVAC m BOSS
DATE:

January 21, 1963

e. OUTPUT

alias k OUTPUT

Describes file k as being a protected output file.
Causes assurance of scratch tapes at beginning-of­
job and appropriate end-of-job dismounting instruct­
ions. Tests to see if reel is dismounted and, if so,
produces MOUNT BLANK message.

f. SCRACH

alias k SCRACH

Describes file k as being a scratch reel. Causes
assurance of scratch at beginning of job, and pro­
duces MOUNT SCRATCH message at beginning of
job if file is dismounted.

g. ALT

alias k1 ALT k2, k3,

Describes k1 as being an alternate to files k2,
k3, ,and sets the alternate reference bit in en­
try k2, k3,..... . If k2 is an INPUT file, then
there should only be the entry k2 in the list. If
k2 is an input reel, then a MOUNT message will
be produced and the unit rewound with inter lock if
not dismounted. If k2 is an output reel, then a
MOUNT SCRA TCH message will be produced if the
unit is "dis mounted" .

h. SAVE

alias k SAVE k1

Sets the "save" hit in file entry k1 and thereby
causes the file to be carried over to the next run.
If file k1 has not been described as a SCRACH,

SECTION:

III

PAGE:

28

RE.VISION: SECTION:

UNIVAC m BOSS
III

f--------------

DATE: PAGE:

January 21, 1963 29

INPUT, INEX or OUTPUT file, it causes carryover
anyway. If the file is not in use, it causes IVIOUNT mess-
age and rewind-with-interlock, if appropriate. As in
ASSIGN, the file number (k) in this card is always blank (L~~).

i. DUMP

alias k DUMP

Specifies the file entry for the system dump tape.

j. DIAG

alias k DIAG

Specifies the file entry for the system diagnostic tape.

7. Tape Assignment Table

Central control for tape assignment lies in the contents of the
tape assignment table. Each word of this table completely de­
fines the status of a file entry, insofar as it affects tape assign­
ment. All tape assignment functions are accomplished by in­
terrogating or manipulating the contents of this table. The first
entry in the tape assignment table at 0200 will normally be
assigned to the system tape file. The format of these words
follows:

bits function

sign Not used

24 - 21 Logical unit number

20 Not used

19 Protected

18 Dismounted unit

17 Input

16 Alternate reference

15 Saved

14 - 11 Not used

10 - 7 Symbiont channel number

6 - 1 m field

REVISION:

UNIVAC m BOSS
DATE:

January 21, 1963

The logical unit number will be the actual value which will
appear in the 1-0 function specification word.

SECTION:

PAGE:

A file which is described as protected is to be removed after
use. It may pertain either to an input reel, in which case the
write-permissive ring would be expected to be missing at the
time of nl0unting, or to an output reel, in which case the oper­
ator would be expected to remove the reel and extract the ring
upon completion of usage. In either case, the file assignment
program will rewind with interlock when closing or swapping
the specified reel.

The dismounted unit bit is set whenever a reel is rewound with
inter lock without immediate operator instructions for replacing
the reel. This permits the supervisor to avoid redundant re­
wind with interlock when issuing mounting instructions, if any,
for the next job.

The "input" bit is set if the file is an input file with input
reels to be mounted.

The alternate reference bit is set if the file entry is referenced
by an alternate reel parameter. This bit is interrogated during
tape swapping; the alternate reel is substituted if so indicated
by this bit.

The "saved" bit is set if the file is to be retained on the com­
puter for the following job. It causes dismounting to be pre­
vented and "protect" information to be remembered.

The symbiont channel field is used to describe the symbiont
with which the file is associated. "Free" tapes are assigned
a channel number of o. A channel number of 2 is used for
prinCipal programs. Off-line tapes are assigned a channel
number of 1.

The m field is normally used in conjunction with the alternate
drive indication to specify the file number to be used as an al­
ternate drive. In the case of output drives, more than one file
word can be chained to a single alternate.

III

30

REVISION:

UNIVAC m BOSS
DATE:

January 21, 1963

If an alternate drive is used for input, then the reel count
specified is placed in the m field of the alternate reel.

SECTION:

III

PAGE:

31

I REVISION: SECTION:

UNIVAC m BOSS I OAT" - ----- ---+--P-A-GE:

I December 17, 1962 I

IVo SYNCHRONIZER CONTROL

A. Basic Dispatchers - Calling Sequences All routines use the AH's

and index registers 1 and 2.

1. Card Reader

a. Request and Verify

SLJ CDRQ

+1.

+2.

+3.

+4.

+ location of current card stored
here on ready return

error returned with indicators
in AR4

not-ready return

ready return

Function specifications are prepared automatically by the
basic dispatcher for this channel only. Entry to request
implies release of previous card buffer and commitment
of five cards to the reader. Because of the real-time
operation of the card reader, the timing and error-veri­
fication functions which normally have a separate calling
sequence on other channels are incorporated into the re­
quest calling sequence for the card reader channel only.
Symbiont programs use the not-ready return to release.

b. Errors

Cards are normally directed to stackers 1 and 2, alter­
nating every 500 cards. All cards in the reader at the
time of an error or fault are directed to stacker zero.
When a request is made for the buffer that would have
contained the error card, the error return is taken by
the request subroutine. Bits in AR4 are set on in the
same position as used in the TIO instructions ancI lnay
be interrogated with the same logic to determine the
cause of error. Operator communication and restart
are determined by the requesting program.

REVISION: SECTION:

UNIVAC m BOSS
tV

DATE: PAGE:

December 17, 1962 2

Co Mode

d.

A 1 in Bit 18 of CDQF (request communication word) in
the synchronizer communication region specifies trans­
lation. When mode is changed, four images will subse­
quently be supplied in the previous mode. The dispatcher
is initially loaded for the translated mode.

Release

SLJ *$+1

+1 + CDRL

+2 + save

+3 + index register 3 value

+4 return

Upon return, an entry to the request subroutine will pro­
duce an immediate "ready" exit. Save is the label of a
nine word area within the program releasing for holding
the environment of a program interrupted (released to
and return from). The nine word area contains CC, LEG,
AR8, AR4, AR2, ARl, ill 1 , IR2, and ill 3 , in this order.
LEG represents the low, equal, greater indicators.

2. Card Punch

a. Request

SLJ

+1

+2

Load desired function specifi­
cation in AR8 (address within
the function specification must
be a multiple of 64)

PCRQ

deferred return

accepted return

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962 3

If accepted, another request may be placed immediately.
If deferred, no ~ore requests may be placed until the
program receives a "ready" return from the verify sub­
routine. Symbionts should release at this point. Prin­
cipal programs may wait by looping through the verifier.
If a request is made following a "deferred" return with­
out intervening verification for ready, the request sub­
routine will wait until the next interrupt on the punch
synchronizer, process the request, and return with a
"deferred" exit.

b o Verify

SLJ

+1

+2

+3

load function specification to
be verified in AR8

PCVF

error return with indicators
in AR4

not-ready return

ready return

If punching at full speed, two functions will initially be ac­
cepted and the third will produce the deferred return from
the request subroutine. For simplicity of error handling,
the earliest outstanding request should be the one verified
although any previously-requested function may be used;
a ready return implies completion of all requests prior to
the one verified. Symbionts will not encounter the "not
ready" exit if they release on a deferred request. Prin­
cipal programs may wait for completion of a given action
by making the not-ready return a jump to the SLJ. Data
errors and faults produce the error return. The earliest
outstanding request has caused an error or fault and no
subsequent requests have been processed. The bits in AR4
are set on the same positions as used in the TIO in­
structions and may be interrogated with the same logic to
determine the cause of error.

REVISION: SECTION:

UNIVAC m BOSS IV

DATE: PAGE:

December 17, 1962 4

For data error, the basic dispatcher has directed the
error card to stacker 1 on the assumption that normal
punch usage will direct cards to stacker zero, The
disposition of the card currently at the post-punch sta­
tion will depend on the next function requested. Re­
punching of error cards, operator communication, etc. ,
is determined by the punch user.

c. Errors

The basic dispatcher will direct a card incurring a data
error interrupt to stacker 1 and preserve the 1-0 indi­
cators for interrogation by the user at the error return
from the verifier subroutine. All other action is deter­
mined by the user.

d. Release

SLJ *$+1

+1 + peRL

+2 + save

+3 + index register 3 value

+4 return

Upon return, an entry to the verifier will produce an im­
mediate "ready" return. The save area must be a reser­
vation of nine words.

3. Printer

a. Request

SLJ

+1

+2

load desired function specifica­
tion in AR8

PRRQ

deferred return

accept return

See description above under Card Punch

I REVISION, : SECTION,

UNIVAC m BOSS i--;:TE'--- ---- --1 PAGE IV

I I

I December 17. 1962 . 5

b. Verify

SLJ

+1

+2

+3

load fWlciion spec ificat ion t () he
verified in AR8

PRVF

error return with inclicat ors iii

AR4

not-ready return

ready return

The description above, under Card Puncl1, applies with the
following difference: the basic dispatcher takes no action
whatsoever in processing a print error. Operator conl:muni­
cation and reprinting action are determined by 0-,·.: u..:er.

c. Errors

d.

The basic dispatcher will reset the print synchronizer and
collect the 1-0 indicators for interrogation by the U'3cr at
the error return from the verifier subroutine. All other
action is determined by the user.

Release

SLJ *$+1

+1 + PRRL

+2 + save

+3 + index register 3 value

+4 return

Upon return, an entry to the verifier will produce an im­
mediate "readyTt return.

IV
UNIVAC m BOSS

i REVISION,
SECTION:

DATE: PAGE:

December 17, 1962 6

4. Tape Read - UNISERVO I I I

a. Request

SLJ

+1

+2

load desired function specifica­
tion in AR8

RTRQ

deferred return

accepted return

If accepted, another request may be placed immediately.
If deferred, no request should be placed until the program
receives a "ready" return from the verify subroutine.
Both principal and symbiont program normally wait by
looping through the verifier. Symbionts do not normally
release their tape synchronizer Q Re-entry to the re-
quest subroutine following a "deferred" exit without in­
tervening verification for ready will cause the request sub­
routine to wait until the next tape-read interrupt servicing
the dispatcher priority class requested. It will then pro­
cess and return via the "deferred" exit.

b. Verify

+1

+2

SLJ

load desired function specifica­
tion in AR 8

RTVF

not ready return

ready return

When reading tape at full speed in the absence of higher­
priority requests from other users of the tape-read syn­
chronizer, two function specifications will initially be ac­
cepted, and the third will produce the deferred return
from the request subroutine. Although any previously
requested function may be verified, for simplicity of

REVISION: SECTION:

IV

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962 7

higher-level dispatching the earliest outstanding re­
quest should be the one verified.

Programs will normally wait when encountering the "not
ready" return by looping back through the verify sub­
routine. Since the tape synchronizers are shared by up
to four classes of programs, provision is made for the
function to be entered on either a request or a demand
basis. A request is indicated by a positive sign bit on the
flUlction specification as it stands in its reservation word.
The request may be converted to a demand at any time
(normally at the "not ready" verifier exit) by reversing
the sign to minus. This does not involve re-entry to the
request subroutine. However, interrupts should be
momentarily prevented during the reversal of the sign. A
demand by one user overrides all other normal requests
but defers to a simultaneous demand by the user of higher
priority.

c. Errors

The basic dispatcher provides standard error procedure
for tape reading. This includes automatic re-tries for
type B errors. For faults, the read function specification
is repeatedly re-issued until the condition is corrected by
the operator or terminated by a type in.

d. Release

+1

+2

SLJ RTRL

+ save

return with completed function
in AR4

Return is made on every tape-read interrupt. Since the
synchronizer may be shared by up to four programs, the
completed function specification is supplied upon return
from a release so that the releasing program may

REVISION: SECTION:

UNIVAC m BOSS IV
DATE: PAGE:

December 17, 1962 8

determine whether this interrupt is the one for which it
is waiting. This can be determined by comparing the
completed function with the earliest outstanding request.
When the two match, the release is completed. When
they do not, the program should release again.

Normally only one program may release on the tape-read
synchronizer. To permit more, a special routine would
be needed to associate the completed functions with the
correct initiating programs.

e. Contents of MAC

To permit efficient operation of the basic tape dispatcher,
the read channel memory address counter is not normally
stored. If its contents are essential to a programs opera­
tion (as in a generalized tape dump, for example), the
basic tape dispatcher can be directed to store the channel
by issuing the following instructions for every tape-read
request linkage:

LA 8, (function specifica-
tion)

SAN 8, HTSC (any negative
value is sufficient)

SLJ RTRQ

This sets a switch in the tape-read request subroutine which
causes dispatching to proceed in the start-stop mode and
causes the channel to be stored in a special table within the
dispatcher e This table is referenced by the label WTTT
and consists of 16 entries, corresponding to servo numbers
o through 15. Correct information will be found in the table
only if the using program places one basic request at a time
and always verifies it before making another. This non­
buffered technique combined with the start-stop operation
of the input servos reduces the efficiency of the Tf store
channel" operation considerably and is recommended only

REVISION: SECTION:

UNIVAC m BOSS
IV

DATE: PAGE:

December 17, 1962 9

when information concerning the data on a tape cannot be
obtained in any other way.

Such multiple symbionts may require the "store channel"
operation, the switch RTSC can only be restored between
jobs by supervisory control. The restoring instruction
is:

SZ RTSC

f. Load-Point Test

A function specification for a load-point test (bits 17, 18,
19, and 20 all on) may be requested through the basic
read-tape dispatcher. If error indicators are turned on
as a result of the issuance of the load-point test, the
indicator bits will be collected into a word in the sanle
bit positions used by the TIO instruction and stored in
the table WTTT (the same table used for the "store
channel" operation). This table consists of 16 entries,
corresponding to servo addresses 0 through 15. The
error flag word, if any, will be found (after the request
has been verified in the usual manner) in the table entry
corresponding to the servo number contained in the re­
request. Since the table entries are not reset by the dis­
patcher, it is recommended that the requesting program
zero-out the appropriate table entry word prior to issuing
the load-point test, in order to distinguish error-free
results (tape at load-point). An intermediate level sub­
routine is available to issue a load-point test and analyze
the results (see Support I I I).

5. Tape Write - UNISERVO I I I

a. Request

SLJ

+1

+2

load desired function specifica­
tion in AR8

WTRQ

deferred return

accepted return

REVISION: SECTION:

UNIVAC m BOSS
IV

b.

DATE: PAGE:

December 17, 1962 10

Verify

SLJ WTVF

+1 not-ready return

+2 end-of-tape return

+3 normal ready return

A successfully completed function at the end of tape pro­
duces the end-of-tape ready return. This is to notify any
higher-level dispatcher or user program of the end-of-tape
condition on the unit specified in the function verified. See
Tape Read for the remaining description.

c. Errors

The basic dispatcher provides standard error procedures
for tape writing. This includes re-writing of information
on Error A conditions. For faults, the write function
specification is repeatedly re-issued until the condition
is corrected by the operator or termj.nated by a type-in.

d. Release

SLJ WTRL

+1 +

+2

save

return with completed function
in AR4

Description as above for Tape Read

6. Symbiont Tape 1-0 - UNISERVO III

a. Request and Verify

In order to prevent interferring with principal progrant
tape input/output, special indirect tape request and
verify references must be used by symbionts. For
fixed symbiont channel assignments, the linkage should

UNIVAC m BOSS

REVISION: SECTION:

IV

DATE: PAGE:

December 17, 1962 11

be of the form:

SLJ *RTSRQ:t-CHNO (in lieu of SLJ RTRQ)

SLJ *RTSVF+CHNO (in lieu of SLJ RTVF)

SLJ *WTSRQ+CHNO (in lieu of SLJ WTRQ)

SLJ *WTSVF+CHNO (in lieu of SLJ WTVF)

in which CHNO is the number of the channel upon which
the symbiont is releasing.

If the channel numbers is not to be defined at assembly
time, special double-reference, indirect address words
must be used instead of the addresses above. This can
be done in the following manner:

RDREQ

RES

+*RTSRQ

-1

+*CHNO
in which CHNO is to be externally defined as well as
RTSRQ. An SLJ *RDREQ would now give the correct

external linkage for a symbiont.

Bo Basic Interrupt Analyzer

A basic interrupt analyzer services all 1-0 interrupts and determines
which synchronizer requires control. Associated with each synchroni­
zer is a basic dispatcher. The basic interrupt analyzer transfers con­
trol to the appropriate dispatcher for suitable processing of any par­
ticular interrupt.

C. Basic Dispatchers - General Information

1. Introduction

The basic dispatchers perform the necessary error checking, take
varying degrees of corrective action if needed, and attempt to load
the standby location with a new 1-0 function before returning con­
trol to the interrupted program. For interrupt servicing, the basic
dispatchers operate independent (asynchronous) of program us ing
the central processor. Communication and synchronization with
these dispatchers by programs using synchronizer control is de­
scribed in detail below.

REVISION: SECTION:

UNIVAC m BOSS -+ __ -=:IV _____ _
DATE: PAG E:

December 17, 1962 12

2. Use of the Central Processor

The basic dispatchers are designed to accomodate a multi­
programming usc of the central processor wherein the prin­
cipal program uses tapes exclusively and shares (through in­
terrupts) part of its time with one or more smaller programs
whose processing cycle is determined by the speed of one of
the pieces of peripheral equipment. Any program other than
a principal progranl is called a syn1biont. These smaller,
symbiont programs (card-to-tape, tape-to-print, tape-to­
punch) relinquish control whenever the peripheral unit they
are using is not yet ready to accept a new 1-0 function, a tech­
nique hereafter called releasingo This permits the principal
program to retain control of the central processor for all but
a minimal an10unt of the peripheral processing cycle.

30 Use of the SVI].chronizers

One progranl only (either principal or symbiont) of a group
of programs sharing the central processor may use a specific
general-purpose synchronizer with its associated dispatcher.
Thus, if the principal program requires a card reader, a
card-to-tape symbiont using the same card reader may not be
run at the same time as the principal program.

The present tape synchronizer dispatchers allow four prog­
rams to use the tape-read synchronizer, and four programs
(not necessarily those using the tape-read synchronizer) to
use the tape-write synchronizer.

A synchronizer communication region within the dispatcher
for each synchronizer contains information (request or reser­
vation words which are 1-0 function specifications) which is
used to control loading of the appropriate standby location.
Each general-purpose synchronizer communication region
contains one word of such information which is automatically
assigned to the one program using a particular general-purpose

I REVISION: SECTION:

UNIVAC m BOSS I 1--- .----.-- IV

I DATE: PAGE:

I December 17, 1962 13

synchronizer. The tape synchronizer dispatchers nlaintain
a synchronizer communication region of four such reserva­
tion words which are currently assigned the following pri­
orities:

Priority 1.

Priority 2.

Priority 3.

Priority 4.

Priority 1.

Priority 2.

Priority 3.

Priority 4.

Tape reading

Tape-to-punch synlbiont

Tape-to-printer synlbiont

Principal progranl

Unassigned

Tape writing

Card-to-tape synlbioni

Principal progranl

Unassigned

Unassigned

The 1-0 requests of symbionts are given higher priority (initi­
ated first) than principal program 1-0 requests, since the synl­
bionts are attempting to maintain maximum speed on the per iph­
eral units they are using. To prevent penalizing the principal
program, symbiont programs are required to release (relinquish
control) to their peripheral unit basic dispatcher whenever they
find their peripheral unit synchronizer busy. The basic dis­
patcher then will switch control away from the symbiont. This re­
stores control for the major portion of the processing cycle to
the principal program. A principal prograrll never releases,
and thereby retains primary control of the central processor.

REVISION: SECTION:

IV
UNIVAC m BOSS

DATE: PAI3 E:

December 17, 1962 14

4. Dispatcher Communication

The basic dispatcher for each synchronizer maintains a com­
munication region is unindexed locations in low order memory
(below 2000

8
), A list of base locations for the various dis­

patchers is maintained as part of the general I-a communica­
tion region to permit the dispatcher themselves to be se1£­
locating. All the synchronous I-a subroutines (" synchronous"
refers to those parts of the dispatchers directly communicated
to by programs) use the four arithmetic registers and index
registers 1 and 20 Information in these registers and the com­
parison indicator settings at the time of program communica­
tion with the 1-0 subroutines will not be saved. On the other
hand, the asychronous portions of the I-a system ("asynchro­
nous" refers to those parts of the dispatcher entered upon hard­
ware I-a hardware I-a interrupt) save and restore all registers
and indicators used.

Additionally, the dispatchers maintain storage within themselves
for the function specification currently active and the function
specification next to be loaded into standby (reservation word).

The basic element of communication between an I-a synchron­
izer dispatcher and a program using the dispatcher's associa­
ted synchronizer is a request word (1-0 function speCification)
which may be of any desired configuration except all-zero. The
validity of function specification from a hardware point of view
is not checked by the dispatchers. Therefore, if processor or
channel errors are to be avoided, care should be taken in the
fabrication of function specifications in programs using syn­
chronizer control. The dispatchers do insert an interrupt bit
(bit 16) in all function specifications received from requesting
programs.

If a requesting program fails to have an interrupt bit in a re­
quested function specification, the bit inserted by a dispatcher
causes the requested function specification and the executed
function speCification to have different configurations. This

REVISION: SECTION:

IV
UNIVAC m BOSS t----------------+---------- --------

DATE: PAGE:

December 17, 1962 15

usually causes a premature ready return from the ver ify sub­
routine which inturn causes problems in the requestJng pro­
gram. Therefore, function specifications submitted to the dis­
patchers should always have an interrupt bit.

Do Dispatching - General

1. Request

To initiate or request 1-0 action, a function specification word
for the desired synchronizer activity is loaded into AR8 and a
calling sequence (subroutine linkage) written which begins with
an SLJ to the addressed request entry point of the appropriate
dispatcher. (See Part A of this section for specifications). As
a consequence of the dispatching method used, the request sub­
routine, after processing the request, exits to one of two return
address lines in the calling sequence - - accept or deferral.

If the synchronizer is not active at the time of the request, the
function specification word is loaded into the standby location
for immediate initiation. In this case, the request subroutine
will return to the requesting program via the requesting pro­
gram's acceptance return line. A new function specification can
and should be requested for the same synchronizer immediately
in order to maintain maximum 1-0 speed.

On UNISERVO-III channels, if the synchronizer is currently
operating but the standby-interlock indicator is off, a request
will be loaded into standby in order to permit the servos to
operate in the "non -stop" mode. This request will be initiated
immediately at the next interrupt, while the basic dispatcher
processes the results of the interrupt. In this case, as in the
case where the channel is not active, the request subroutine
will return to the requesting program via the acceptance re­
turn line.

A deferred return (see below) will be taken for UNISERVO-I I I' s
only when the standby interlock indicator is on at the time of the
request.

REVISIDN: SECTIDN:

UNIVAC m BOSS -------- -----+----------
IV

DATE: PAGE:

December 17, 1962 16

When synchronizers other than UNISERVO I I I synchronizers
are currently active, the requested function is placed in the re­
servation word for loading into the standby location at the next
interruptc For those synchronizers which interrupt upon in­
itiation of a function specification, the function specification is
loaded into the standby location as well as the reservation word
in order to cause the next interrupt. The request subroutine
then returns cont rol to the requesting program via the requesting
program's deferral return line indicating that maximum I-a speed
has be~m attained. No new function specifications should be re­
quested after a deferred return until an entry to the verify sub­
routine results in a ready return. The verify subroutine deter­
mines if successful completion of the currently active function
specification has occurred. If a new function specification is re­
quested after a deferred return, the request subroutine will wait
until present action on the synchronizer is completed (loop in­
ternally), and a processing delay occurs until the next interrupt.
The request subroutine then loads standby with the request in
the reservation word ~ places the new request into the reserva­
tion word, and exits to the requesting program's deferred re­
turn line.

Since the deferred return occurs when the synchronizer is busy,
a symbiont program uses the deferred return as the signal to
release (see below). A principal program which attempts to
operate the synchronizer at full speed uses the deferred return
as the signal to verify its earliest outstanding request. A prin­
cipal program which does not attempt to operate the synchro­
nizer at full speed may ignore the deferred return.

2 Verify

The verify subroutine is used to determine whether a requested
function has been executed. Entrance to the verifier is normally
made by the using program to check the completion of a pre­
viously requested function specification. The function specifica­
tion to be verified is loaded into AR8. A ready return from the
verifier indicates that the input or output function has been com.­
pleted. A not ready return will normally indicate to a program

UNIVAC m BOSS ~~:~~ION._. ____ _ IV

SECTION:

PAGE:

I

December 17, 1962 17

that it should loop back to verify until a ready return is incli­
catedv

In a conventional buffering system, verification should be made
normally prior to supplying data from an input buffer and prior
to supplying data to an output buffer v

A symbiont program which uses the deferred reque st return as
a signal to release will never encounter the not ready return
from the verifier on its peripheral unit dispatcher.

3 v Errors

Tape synchronizer dispatchers will attempt to correct errors.
Other dispatchers will return error indicators via an error re­
turn line to a program verifying a function specification on which
an error has occurred. All error correction procedures for
peripheral units other than tape are the responsibility of routines
written to use these units. Tape synchronizer dispatcher error
correction has been explained in Part A of this section.

4. Releasing

Symbiont programs are required to release, normally, upon find­
ing the peripheral unit synchronizer they are using busy. This
release is made to the busy peripheral unit synchronizer's dis­
patcher. The release is initiated when an entry to the request
subroutine by a symbiont produces a deferred return, or when
an entry to the verify subroutine by a symbiont produces a not
ready return. Rather than looping through the ver ify subroutine
unproductively for a time equivalent to the peripheral unit cycle
and then receiving a ready reutrn, a symbiont executes entry to
the release subroutine of the peripheral unit found busy. Con­
trol of the central processor is returned to the principal prog­
ram and other symbionts until the next interrupt on the released
synchronizer. Re-entry to the symbiont is then made by syn­
chronizer control through the synchronizer dispatcher. At this
time an entry to the verify subroutine by the symbiont will pro­
duce an immediate ready return, and the symbiont program can
execute another processing cycle.

REVISION: SECTION:

UNIVAC m BOSS IV

DATE: PAGE:

December 17, 1962 18

Each symbiont must provide a nine-word area, within itself, to
hold the environment of any program interrupted by the sym­
biont's released synchronizer. The label of the first line of the
nine-word hold area must be provided in all release calling se­
quences contained in the symbiont program. The contents of
the arithmetic registers, the comparison indicators, and index
registers 1, 2, and 3 (basic environment) of the program inter­
rupted will automatically be stored in the symbiont's hold area
when control returns to the symbiont from a release. This en­
vironment will automatically be restored to the proper registers
and indicator when the symbiont subsequently releases. If a
symbiont uses any registers or indicators other than those auto­
matically saved, the symbiont must store their contents and
status when control returns to the symbiont and must restore
them prior to any subsequent release. A symbiont must also
save its own environment before it releases since none of its
registers or indicators will be saved. On return from a release,
a symbiont must restore its cover index registers (those index
registers which modify 10 bit addresses in instructions). Cover
index registers may be pre-stored as constants when the sym­
biont is coded. Index register 3 will be restored automatically
with respect to the symbiont at the time of return from a re­
lease o Therefore, the release-return coding should be covered
by index register 3. On return from a release on a tape channel
the following coding to restore index register 3 should be used:

SLJ IOLX

+ index register 3 value

IOLX should be equated to an absolute 10 bit address as de­
termined from the executive routine listing (IOLX EQU 0461).

REVISION: SECTION:

UNIVAC m BOSS IV

DATE: PAGE:

December 17, 1962 19

Eo Dispatching - Card Reader

To maintain its rated speed, the card reader must be operated as a
real-time device o Since the reader is not clutched, function speci­
fications must be available without fail at each card reader synchro­
nizer interrupt so that the position of cards at the stations within the
reader may be accounted for.

On all other units, the function specifications are prepared by the
using program and are communicated to the basic dispatchers in
response to processing demands o This variable timing is insufficient
to meet the card reader's real-time demand for new functions. The
basic dispatcher for the card reader accordingly incorporates a
buffering function as well.

A request for a card image does not supply the basic dispatcher with
a function, but, instead, receives from it, when ready, the location
of the internal buffer in which the current card image is stored. The
verifier technique used to coordinate the activity of other synchroni­
z er s is not applicable to the card reader. However, since an in­
ternal buffer mayor may not be ready when needed, ready and not
ready returns are associated with the request subroutine on the card
reader only.

The basic dispatcher for the card reader maintains six buffers. One
is the active read-in area at a memory location whose address is a
multiple of 64. Card images are moved as read to the other five
buffers in rotation. Of the five remaining buffers, one is normally
in the hands of the using program, and the other four must be a vail­
able to receive cards already committed to the reader. A request
for a card implies: (1) that the buffer containing the card previously
requested is released and available to receive a new image, and
(2) that four additional cards following the one requested are com­
mitted to the reader. This implies that four dummy cards should
follow the end of a deck, and that when the reading mode is changed
from translated to untranslated, after cards have been committed
to the reader and vice versa, the first four requests in the new mode
will produce images in the previous mode.

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962

F. Timing and Space Requirements of the Basic 1-0 Routines

The following figures represent the timing and space require­
n1ents of the input-output interrupt routines for the five basic
channels. Future modifications and refinements may change
these specifications moderately, but the basic range is ex­
pected to remain fairly stable.

10 Card reader:

IV

20

Size: 516 words (includes 240 words of buffers)

Interrupt:

Request:

2. Punch:

Size:

Interrupt:

Request:

Verify:

1020 us when image present

600 us when no image present

216 us ready

444 us not ready and reader inactive

168 us not ready and reader active

164 words

488 us

188 us deferred

232 us accepted

176 us ready

152 us mino not ready

184 us max. not ready

168 us avrg. not ready

152 us error

UNIVAC m BOSS

3. Printer:

Size:

Interrupt:

Request:

Verify:

4. Tape write:

Interrupt:

5. Tape read:

Size:

Interrupt:

Request:

REVISION: SECTION:

IV
--------~~---"--+----

DATE:

December 17, 1962

146 words

488 us

188 us deferred

232 us accepted

160 us ready

140 us min. not ready

152 us max. not ready

146 us avrg. not ready

152 us error

230 words

PAC; E:

21

492 us miniUlum (class 1 priority)

788 us maximum (no activity)

180 us deferred

212 us accepted

384 us ready

244 us not ready

325 words (includes routines used jointly
with tape-write)

556 us minimum (class 1 priority)

848 us maximum (no activity)

192 us deferred

224 us accepted

REVISION: SECTION:

IV
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 22

Verify: 348 us ready

200 us not ready

6. Release (all channels):

216 us

REVISION: SECTION:

v
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 1

v. CONTINGENCY CONTROL

A. General

The contingency control routine is a most important function of the
executive system inasmuch as it will provide the only means of
operator control. The contingency control routine is designed to
operate in parallel with other programs. One message at a time
may be typed in or typed out on the console keyboard typewriter
under control of the contingency control routine. When the type­
writer is busy, additional message requests will have to be resub­
mitted until acceptance by the contingency control routine is pos­
sible. The contingency control routine does, however, have
capabilityto communicate buffering information to other routines
which may desire to buffer a large number of lines of information
at a time.

The contingency control routine in itself provides only diagnostic
operator control (listed in sections V. B-C). Functional opera-tor
control such as orders to space paper, start or stop symbionts,
etc. , are communicated by the keyboard through contingency con­
trol to the symbiont or principal program involved, or to other
routines in the executive system. Interpretation of the message is
then accomplished by the program receiving the message. The
contingency control routine is synchronized so that diagnostic opera­
tor control reflects only the prinCipal program.

B. Programmer Control

1. Typewriter Output

A program may type out a message on the typewriter in the
following manner:

a. Load ARI with the starting address of the message to be
typed out in the form of an indirect address word using
index register 1.

REVISION: SECTION:

v
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 2

b. Cause an overflow by adding two appropriate constants
together.

c. Follow the line in which overflow will occur by a line
containing the octal constant 037777. This sequence
which causes a contingency interrupt is recognized by
the contingency control routine as a planned overflow.
It is the only kind of planned overflow handled by the
contingency control routine. If the typewriter is not
busy the entire message is transcribed to the type­
writer buffer area in the typewriter routine, typing is
commenced and control is returned to the requesting
program at the address of the second line following the
037777 constant. The remainder of the message is
typed (one character at each contingency interrupt) by
the contingency control routine concurrent with subse­
quent operation of the requesting program. A carriage
return character as the final character of a message
indicates the end of the message to the contingency con­
trol routine. If, however, the typewriter is busy, then
control is returned to the requesting program at the
address of the first line following the 037777 constant.
In this case, the contingency control routine makes no
attempt to type out the message. At this point the re­
questing program could postpone the request for a type­
out or could loop back through the request routine.
The following sample code could be used to type out a
message:

REVISIO N: SECTION:

UNIVAC m BOSS v
DATE: PAGE:

December 17, 1962 3

LA 1, (LOC, 1) a. load ARI with starting
address of message to be
typed-out. Index register I
is used as a counter by the
contingency control routine
to scan the message.

LA 2 t (077777777) b. force overflow
BA 2, (077777777)

+ 037777 c. octal constant

J $-4 d. message not accepted, then
loop through through re-
quest routine

. e . message accepted. This
line could be the start of a
test loop if an operator
typed-in is expected.

2. Program Acceptance of an Operator Type-in

In order to be able to accept operator type-ins, a program
will be given a one character identification. Symbionts (pro­
grams other than the principal program) will be given the
channel number of the peripheral unit they are using as the
one character identification. Principal programs will be
given any alphabetic character identification excluding those
used for format codes and system control (see part C 5b of
this section). This character identification and the starting
address (exit line) of the program's subroutine for accept­
ing operator type-ins will be punched into a parameter card
for loading into table TAB2 of the contingency control routine.

REVISION: SECTION:

UNIVAC m BOSS v
DATE: PAGE:

December 1 7 ~ 1962 4

The format of the one word entry into table TAB2 for each
program given the capability of operator type-in accep­
tance will be as follows:

Bits 24-19

Bits 15-1

one character identifi­
cation

starting address of type­
in acceptance subroutine

An operator type-in may be accepted by a program through
the use of the typewriter operator R as the first character
typed-in after a keyboard request. The character typed-in
following the R will be the one character identification fol­
lowed by the typed-in message plus an extra leading blank.
The contingency control routine will load the type-in into its
typewriter line buffer one character at a time. The first
character of the typewriter line buffer is left blank by the
contingency control routine. Since an extra leading blank is
typed-in by the operator, this assures that the message it­
self will start in the second word of the typewriter line
buffer. The first word will contain blank, R, one character
identification, and blank in that order. The typewriter line
buffer area is capable of holding one printed teletype length
line. Each typed-in character is accepted by interrupting
the program which has control of the central processor.
After accepting each typed-in character through interrupt the
contingency control routine will return control to the in­
terrupted program. When the contingency control routine
finally receives a keyboard release, it scans table TAB2 for
the appropriate one character identification. Upon finding
the one character identification, the contingency control
routine tests the contents of the location specified by the as­
sociated type-in acceptance subroutine starting address (exit
line) for zero. If the contents of the location specified by
the starting address is zero, then the contingency control
routine executes an SLJ to the starting address of the pro­
gram's type-in acceptance subroutine. At the time of this
SLJ the contents of index register 2 will contain the begin­
ning address of the typewriter line buffer. If the contents

REVISION: SECTION:

UNIVAC m BOSS v
DATE: PAGE:

December 17, 1962 5

of the location specified by the starting address is not zero,
then the message is bypassed by the contingency control
routine. This technique prevents information from being
typed-in to a program which is not ready to accept such in­
formation which in effect prevents unwanted operator inter­
vention. It should be especially noted that when and if the
contingency control routine does an SLJ through a program f s
type-in acceptance subroutine the following condition exist:

(a)

(b)

Interrupt is prevented

The program f s environment is
not restored

Therefore the subroutine will be required to load its cover
index registers, process the message, and exit by executing
a J indirectly to the starting address (exit line) of the sub­
routine as quickly as possible. Preventing interrupt for any
length of time may have devastating effects. The recom:­
mended usage of the program subroutine is move the type­
wr iter line buffer contents into a program area, set the
necessary program switches, and then exit. The contin­
gency control routine will then restore interrupt and the in­
terrupted program's environment and return control to the
interrupted program. A program requiring an operator
type-in will set the starting address (exit line) of its type-
in acceptance subroutine to zero. It will then normally
type-out a message requesting the type-in and loop in a
test loop, which tests the contents of the location specified
by the starting address (exit line) of the type-in acceptance
subroutine, or an appropriate switch setting. Each time
control is returned to the program's test loop after a con­
tingency interrupt, the program will test either the con­
tents of the location specified by the starting address (exit
line) of its subroutine or an appropriate switch setting. If
the contents of the location specified by the starting address
is not zero or the appropriate switch is set, the typed-in
message is available and the program can process. If one
or the other condition is not met, the program continues
looping in its test loop.

REVISION: SECTION:

UNIVAC m BOSS
v

DATE: PAGE:

December 17, 1962 6

3. Unplanned Overflow or lllegal Operation Code

A contingency interrupt due to an unplanned overflow or an
illegal operation code in a program will cause the contin­
gency control routine to type-out the following message:

XXXXX CaNTING. 77777 ~OO~OO~OOOOy

where 77777 indicates in octal notation the address of the
location following the line in which the contingency inter­
rupt occurred. Y represents the indicator set. Following
the typeout, the contingency control routine will loop in a
stop loop;

J $

C. Initiate Operator Control - Keyboard

1. Load System and Reset Core

To load the executive system and reset core memory, de­
press the following keys in sequence:

a. REWIND

b. CLEAR

c. LOAD

d. STOP

e. RUN

This will reset the system and reload EXEC. It will re-establish
canonical tape assignments and will automatica~y reload super­
visory Jontro1. Depressing.STOP will cause core memory outside
of the EXEC to be set to SLJ ERROR. Any transfer by a program
to a location outside of itself which contains SLJ ERROR will
cause an immediate jump to an error routine in the EXEC.

REVISION: SECTION:

UNIVAC m BOSS v
DATE: PAGE:

December 17, 1962 7

2. Load System without Reset Core

To load the executive system and leave core memory
outside of the EXEC intact, depress the following
keys in sequence:

a. REWIND

b. CLEAR

c. LOAD

d. RUN

This will reload the EXE Conly.

3. Load System and Load Binary Cards

To load the executive system and load binary cards
through a card reader, depress the following keys
in sequence:

a. REWIND

b. CLEAR

c. LOAD

d. REQUEST

e. STOP to reset core memory

f. RUN

In this case the on line relocatable loader is employed
and conventions of this loader should be followed. The
binary cards loaded can now be used as a simple se1£­
contained program for non-standard routines, to make
temporary system modifications, etc. For example,
a cell in LODX could be overlayed so that control would
transfer to the patch loader following the loading of
each subsequent program segment from the system tape,
facilitating checkout of very large multiple-pass pro­
grams.

REVISION: SECTION:

v
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 8

D. Exec Operator Control-Keyboard

Operator control is provided by the following:

1. Contingency Stop

Depressing this key creates an interrupt which causes the con­
tingency control routine to type-out the message:

*£177777

where 77777 indicates the address of the next location to be ex­
ecuted of the program interrupted. The contingency control
routine then does a spin in a stop loop:

J $

2. Keyboard Request

Depressing this key will activate the typewriter to accept an
operator type-in under control of the contingency control rou­
tine. If an error is made during type-in, the message may be
retyped by depressing the request key again.

3. Keyboard Release

Depressing this key signals through interrupt the end of
message type-in to the contingency control routine. It should
be noted that while the contingency control routine is accepting
a type in (keyboard is active), programs within the computer
cannot type out.

4. Carriage Return

The carriage return key should not be used since carriage re­
turn is used as an internal control function (end of message
type-out) by the contingency control routine.

REVISION: SECTION:

UNIVAC m BOSS I--_____ . _______ ---+ ____ v ____ ~ _______ _
DATE: PAGE:

December 17, 1962 9

5. Operation Control Characters

The first character typed-in on a message controls mes­
sage interpretation. The characters and their interpre­
tation are listed below:

a. C (Location Counter) (Control Counter)

displays on the console typewriter in octal notation
the current value of interrupted program T s location
counter.

b. J{3.6.77777 (Display)

c.

displays on the console typewriter according to for­
mat {3 the contents of the location indicated in oc­
tal notation by the address 77777.

Format Codes are:

A .6.-AAAA

C .6.-17.6.37.6.77777

D .6.-999999

F .6.-17.6.37.6.37.6.1777

I .6.-17.6.77.6.17.6.1777

a .6.-77777777

Alphanumeric

Complete Indirect
Addre s s Word in
octal notation

Decimal

Field Select Word
in octal notation

Instruction in octal
notation

Octal

EID.-17.6. 77.6.17.6.1777 (Execute Instruction)

restores the interrupted program T s environment and ex­
ecutes the instruction typed-in in octal notation.

REVISION: SECTION:

v
UNIVAC m BOSS

DATE: PAGE:

December 17, 1962 10

d. G (GO ON)

permits continuance of a program stopped (looping) in a
stop loop J $ by returning control to the location fol­
low ing the stop loop. Also breaks out of the contingency
control routine stop loop and allows return to the in­
terrupted program.

e. J 1::::.1::::.77777 (Jump)

causes control to be transferred to the location specified
in octal notation by the address 77777.

f. L{3 I::::. 7 7 7 7 7 1::::.. • • •• (Load)

. loads into the location specified in octal notation by the ad­
dress 77777 according to format {3 the typed-in information
following the address 77777.

Format Codes are:

g. Sk!:::.. •••

A

C

D

F

I

a

I::::.-AAAA

1::::.-171::::.371::::..77777

1::::..-999999

1::::..-171::::..371::::..371::::.1777

1::::..-171::::..771::::..171::::..1777

1::::..-77777777

Alphanumeric

Complete Address
Word in octal no­
tation

Decimal

Field Select Word
in octal notation

Instruction in octal
notation

Octal

directs type-in message to symbiont on channel k.

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAGE:

December 17, 1962

h. M{3.6.77777 D.77777 (Memory Print Out)

i.

prints memory between the spec ified addres s limits
in octal notation 77777 D.77777 according to the for­
mat {3. If one or more lines of the memory print out
contain the same word as the last word in the pre­
vious line in all locations being printed out, the lines
are omitted and represented by a single line of pe­
riods. The following dump formats are available:

I Instruction

A Alphanumeric

D Decimal

0 Octal

B Both Octal and Instruct ion

RXD.. (Request)

transfers control to routine X with the type-in mes sage
in the typewriter line buffer. Routine X is in the con­
tingency control routine and is used to locate and load
programs on the systems tape. For example, the type­
in RXD. ACCO locates and loads the assembler-compiler
control program.

j. T D.D.. • • . • (Transfer)

transfers control to the location specified in the con­
tingency control communication location TCD. The 10-
cat ion in TCD is normally the transfer address of the
last program loaded from the system tape. The type-in
message will be in the typewrih.,J.' line buffer and may be
used to communicate operating instructions to the pro­
gram transferred to.

v

11

REVISION: SECTION:

v
UNIVAC m BOSS

OATE: PAGE:

December 17, 1962 12

6. Invalid Characters

If the first character typed-in on a message is not a valid
operation control character, the contingency control
routine types the whole message out on the typewriter fol­
lowed by the type-out XX. Control is then returned to the
interrupted program. If the second character typed-in on
a R message is not a valid format code or the affected
starting address is not ready (.F 0), the contingency control
routine types out the whole message followed by the type­
out YY. As before, control is then returned to the inter­
rupted program.

7. Typewriter Page Ejection

It is not necessary to take the typewriter off-line to eject a
page. Typewriter page ejection may be accomplished.
simply by depressing the keyboard (form advance) release.
The form advance release may be depressed more than once
if a longer ejection is desired.

E. Contingency Interrupt Interpretation and Typing Control

When a contingency interrupt occurs, the contingency rou­
tine tests the contingency indicators. Tests are made to de­
termine if a keyboard release, a keyboard request, a con­
tingency stop or a typed character interrupt occurred. If
none of the indicators tested is set, then the interrupt is as­
sumed to be due to an overflow or an illegal operation code.
In any case the total environment of the interrupted program
is saved and the previous contingency control routine en­
vironment is restored.

1. Keyboard Reque st

If the contingency interrupt is due to a keyboard request, the
contingency control routine determines if a message is now
in the process of being typed out. When the contingency

I REVISION' SECTION:

v UNIVAC m BOSS
I oA~:'Cember 17 ~1962 PAGE:

13

control routine is in the process of typing out a n1essage, it
sets a switch within itself and postpones the keyboard re­
quest until the completion of the type-out. After the message
type -out is completed or the typewriter has been found to be
inactive, the contingency control routine will do the following:

a) Clear out the typewriter line buffer (zero­
ize the core area used).

b) Return the typwriter carriage by out­
puting a carr iage return characte r to the
typewriter.

c) Go into a typewriter input made of opera­
tion (active keyboard).

2. Keyboard Release

If the contingency interrupt is due to a keyboard release, the
contingency control routine assumes that the last character of
a previously requested message has been typed-in. Contin­
gency control will determine whether at this point 1-0 inter­
rupt has been prevented or whether control is now within a SY111-

biont. If not, the contingency control routine will transfer
control to its message interpretation routine. If so, it will
set appropriate switches in 1-0 synchronizer control so as
to regain control as soon as neither of the above conditions
prevail. Upon regaining control, it will cause a dummy con­
tingency interrupt and will then transfer control to its message
interpretation routine.

3. Typewriter Interrupt

If the contingency interrupt is due to a character type-in, the
contingency control routine accepts the character, stacks the
character in the typewriter line buffer, and issues an echoing
type-out of the character on the typewriter. If the contingency
interrupt is due to a character being typed-out, the contingency
control routine examines the character to determine if the
character is an echo of a type-in or a carriage return. The

REVISION: SECTION:

UNIVAC m BOSS
v

DATE: PAGE:

December 17, 1962 14

contingency control routine will reactivate the keyboard if
the character type-out is an echo of a type-in. A carriage
return character indicates end of message type-out to the
contingency control routine. If the contingency interrupt
is caused by any character other than an echo character or
a carriage return being typed-out, the contingency control
routine outputs the next character of the typewriter mes­
sage submitted by a program.

4. Con1J.ngency Stop

If the contingency interrupt is due to a contingency stop then
the contingency control routine transfers control to its con­
tingency stop routine. The contingency stop routine functions
in a manner similar to the keyboard request routine except
that an * is typed out and switches are set to simulate an im­
mediate keyboard release. This will cause a blank image
except for the first character and a consequent entry into a
J $ loop awaiting operator intervention. This loop is known
as the stop loop.

5. Overflow or illegal Operation Interrupt

If the contingency interrupt is due to an overflow or illegal
operation code, the contingency control routine examines the
location following the location that caused the interrupt. If
the following location contains +037777, control is trans­
ferred to the requested type-out routine. In all other cases,
the interrupt is considered an error; the contingency control
routine types out an error message indicating the address of
the error location and then loops .:n its stop loop J $.

6. Typewriter Routine Exiting

The last action of the contingency control routine before ex­
iting to the interrupted program is to reset the contingency
indicator that initiated the entry to the contingency control
routine. In the case of message type-in to a symbiont, the
contingency indicator is not reset when the control is passed to
the symbiont. The symbiont tests the indicator and resets
it.

REVISION: SECTION:

UNIVAC m BOSS --------------+----
DATE: PAGE:

December 17: 1962 15

7. Register Save and Restoration

Upon entry through interrupt, the contingency control rou­
tine saves the contents of all index registers and arithmetic
registers, the settings of the comparison indicators, and
the contents of cell 22 (location counter contents at time of
interrupt). Upon exiting to the interrupted program, the
contingency control routine restores these registers and
settings. During the course of a type-out or type-in, the
contingency control routine depends upon the preservation
of thl- arithmetic registers and the first five index registers
between interrupts. For this reason, each time the contin­
gency control routine exits to the interrupted program,
these registers are saved and upon interrupt these regis­
ters are restored by the contingency control routine. The
locations at which the registers and indicators are saved
can be found from an assembler listing of the contingency
control routine.

F. Typed-in Message Interpretation and Control

The basic message interpretation performed by the contin­
gency control routine is on the first two characters in each
typed-in message. The first character is defined as the
principal operation and the second character is defined as
the operation modifier. The interpretation of each of these
two characters is determined by a table look up. The in­
terpretation of the operation modifier is primarily on the
basis of the principal operation. However, operation modi­
fiers are shared among all the principal operations so that
it is not possible for two different principal operations to
have different operation modifiers defined by the same
character. The prinCipal operation entry in the operation
table consists of one word. The sign bit of this word indi­
cates whether this operation is to be performed within
(plus sign) or outside (minus sign) of the contingency control
routine environment. Bits 24-19 specify the principal opera­
tion character and are used as the basis for the table look up.

I REVISION: SECTION:

UNIVAC m BOSS
v

DATE: PAGE:

December 17, 1962 16

Bit 17 indicates whether there will and should be a five­
digit octal address as part of the typed-in message to be
converted to binary 0 Bit 16 indicates whether there will
and should be a typed -in word to be converted to binary.
If the designated operation is to be performed without the
contingency control environment, the operation is placed
within the contingency control routine and is executed with
the interrupted program's environment restored, eo g. EI
(see part C 5c of this section).

REVISION:

UNIVAC m BOSS
DATE:

January 21, 1963

VI. PROCESSOR ERROR CONTROL

A. General

Processor error interrupts will be handled by a processor
error routine in EXEC. A type-out of the following format
will be initiated by the processor error routine:

uuuuu~PROC~E RM vvvvv~ O~ OcP.yyyyy

where

uuuuu location in processor error routine

vvvvv location of interrupt (contents of 020)

yyyyy processor error indicators

After initiating the type-out the processor error routine will
go into a J $ loop. Memory dumps and other diagnostics
must be initiated by the operator through the keyboard if pos­
sible.

B. Processor Error Indicators

00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00040
00100

Instruction access
Operand access
UNISERVO III Basic Write Access
UNISERVO III Basic Read Access
General Purpose Channel 1 Access
General Purpose Channel 2 Access
General Purpose Channel 3 Access
General Purpose Channel 4 Access
General Purpose Channel 5 Access
General Purpose Channel 6 Access
General Purpose Channel 7 Access
General Purpose Channe 1 8 Access
UNISERVO II Access
UNISERVO III Additional Write Access
UNISERVO III Additional Read Access
Modulo 3 check on Instruction
Modulo 3 check on Operand
Adder Error Check

SECTION:

VI

PAGE:

1

REVISION: SECTION:

UNIVAC m BOSS 1---------------------+------- ---____ _

DATE: PAGE:

REVISION: SECTION:

UNIVAC m BOSS
DATE: PAI3E:

UNIVAC
DIVISION OF SPERRY RAND CORPORATION

U3521

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	notes1
	notes2
	xBack

