
INTRODUCTION

A Programmer's Guide 1Q the X-6 Assembly System is concerned
wi th the prepara tion of a da ta pro,cessing program for the X-6
assembly on a USS 80 or 90 Tape System. For the most part,
this consists of the coding of the object program according
to X-6 symbolic and relative coding conventions and the pre­
paration of the punched card input deck to be processed by
the X-6 Assembly System program. Such preassembly prepara­
tions are covered in detail. An understanding of the reasons
for these preparations, however, is only possible through a
general knowledge of the processing steps during the actual
assembly by the X-6 system. For this purpose, a general des­
cription of the X-6 processing has been included. The details
of the processing can be found in the flow charts of the X-6
Assembly System. .

Most of the examples used are applicable to both the USS 80,
80 Tape, and 90 Tape computers. Some,however, are inimical
~'"' ,",,,",,, ,..."I'YlV"\"+,, (.p" r.-v-.-,mnl" +h'Y't"'IC) l'"'\!:l'Y'+ !:llnh!:l'hClt;('>~ Qnrl ;1"'1_
loU U.l..l.C \...Ulll!!LA.uC.l. \.l.V.l. v~q.l.l.LJ:-'...L-C:;' U.L.L..L.vv t'~..L U ~~.t-''''..L u'-'u '-'~ ""

ter laces) •

Much of the description and terminology used in this manual
presupposes that the reader has a general knowledge of machine
coding and operation of the USS 90/80 computers.

ii U 1 774. 1

TABLE OF CONTENTS

INTRODUCTION • • • • • •
G~NERAL DESCRIPTION
X-6 INSTRUCTION CODES . . .
ADDRESSING • • • • • • • · .

I. Instruction Addressing

· . .
. .

· . .
A. Space Addressing • • • •
B. Tag Addressing • • • • • • •

1. Permanent Tags
2. Temporary Tags

C. Overflow Addressing

· . . .
· . . . · .

· . .
· . . . · . . . · .

. . . ·
· .

· . · . . .
·

·
· . . .

· ii

• 1

• 4
• 10

• 10

• 1 0
12

• 12

• 14
.15

D • Absolute Addressing • • • • • • • • • 16

E. Register Addressing ••••••••••••••••• 17
I I. D a t a Ad d res s i n.g • 1 8

A. Working Storage and Constant Addressing • s ••••• 19
B. Table Entry Addressing • • • • • • • • • ••••• 23
C. Interlace Addressing · · • 24

. . . · . · . . · . • 28 LATENCY MINIMIZATION •
CLOCK MODIFICATION •
LIBRARY ROUTINES • • • •

· . • . • • 31

· . . . · . . • • • • • • • 41
ASSEMBLY INPUT CARDS · . . • • • • • • 43

I. Symbolic Deck Organization
II. Input Card Format •••••

A. Label Card, Card Type 1
· · . . .

43

• • 44
· . . · . . . • • • • • • 44

B. Restrict Card, Card Type 2 ••••• • • . • . • 45
C. Tag Equals Card, Card Type 3 •••. • • . • • • 47
D. Interlace Card, Card Type 4 . . · . . · . • • • • • • 48
E. Tables Card, Card Type 5 · . . . · • • 50
F. Specifications Card, Card Type 6 • · • 51
G. Operation Header Card, Card Type 7 • · . · . • 52
H. Detail Card, Card Type 8 • • •• •• · 53
I. Operation Sentinel Card, Card Type 9 • · . · . . · • • 55
J. End-of-Run Sentinel Card, Card Type 10 · • • • 56

U 1 774. 1 iii

OUTPUT CARD FORMAT • • • • • • • • • • • • • • • • •• • • 57
PROGRAMMING PROCEDURES • • • • • • ••••• • • • • • • • 58

I. Flow-Charting •••••••••••••• • • 58
II. Coding • • • •• •• • • • • • • • • • 59

PREPARATION FOR THE X-6 ASSEMBLY • •••• • •• • 60
OPERATING INSTRUCTIONS FOR THE X-6 ASSEMBLY • • • • • • • 61

I. Loading and Assembly •
II. Error Codes

III. Stop Codes ••••••
IV. X-6 Storage Layout ••

.
.

.
.

· . • 61

• • • • • 62

• • • • • 63
• • • • 64

APPENDIX I - OPERATIONS AND SUBROUTINES
WITHIN THE X-6 ASSEMBLY SYSTEM PROGRAM • • 67

APPENDIX II - X-6 FLOW-CHARTS • • 71

iv

GENERAL DESCRIPTION

wnen the X-6 coding of a data processing program or operation
has been completed, this coding, and any further information
required by the X-6 Assembly System for the processing of the
coding, is punched on appropriate input card types. These in­
put cards are then placed in a specific order in the input
deck and the actual assembly is begun.

Each card type will be processed in a specific way:

I
I IIS8 L _________ _

loom
I
I

~--- ---------------------------------------.-. ,--
I
I The fields of the label card are placed in the output interlaces

without modification.
~--~------- ---------

I
I _

~--
Restrict card entries are used to mark off locations in the storage
availability table. No restricted location will be assigned when

: absol ute addresses are generated. ,
~--'

I
I - ____ --- ___ - __________________ - - - ___________ -- - ____________________________________ _ -=J--¥, _ _____ _

Tag equals card entries are filed in internal tables equated to their
absolute addresses. The absolute addresses are used to mark off
locations in the storage availability table.

--~------------- --

U 1 774. 1 1

,
~---~-------~
: Interlace card entries are used to mark off interlace positions in
: the storage availability table. The origins are filed for future use. : , ,
.---

, ,
1--1 , , Table card entries are also used to mark off positions in the

storage availability table. Increments and origins are filed for
, future use. ,
~--,

,
:--,
: Card types 1 through 5 must be received by the X-6 Assembly System

in order. After the Label card has been processed (MC 1 IN), if a
card is received that is not a type 2, 3, 4, or 5, the assumption

, is made that all the above processing has been accomplished. ,
~---~

r--~--------,
I Specifications card entries are filed in tables for direct sub-
, stitution later. :
,--~

,
.---.
: Operation Header card entries are placed in the output interlaces. '
, Initial conditions are set for Detail card processing (MC 9 5N). ,
1_~_- _____ --------------------------------_----------- _________________________ ~---------------~

2
U 1774.1

! --
Detail cards contain the instruction lines and constants of a
program. Only Detail card processing will produce output punching.
The four basic steps in Detail card processing are:

1. Handle the a address.

2. Analyze the instruction code and separate instructions
from constants. For instructions, obtain a code word
to control further processing by the use of the
necessary increment needed between the a, m, and c
addresses and substitute the computer code equivalent
of the mnemonic code. Determine if one or both of the
m and c addresses are significant.

3. Handle the m address if necessary.

4. Handle the c address if necessary.

--j---------------------------------------

1

THIS IS
INliER lOOP

THIS IS
OUTER lOOP

1

1 ___ L _______________________________________ •

1 1
1
1 End operation card signals the end of a group of Detail cards.
1 1
1 ______ --- __ 1

~--ri---
1
1

H~_~
\.V

--~------------------------------------ --------~
End input card signals the last card of the ~ogram heing assembled.
It contains the instruction to be used by the loading routine to
start execution of the assembled program. 1

I 1--- ___ ~

U 1 774. 1
3

X-6 INSTRUCTION CODES

X-6
Mnemonic Computer Minimum

Code Code Word Times Function

Arithmetic
ADD m c 70 5 Add (.1l) to (r A). If over-

flow, next ins tr uc t ion is
c+1 .

SUB m c 75 5 Subtract (m) from (rA) •
If overflow, next instruc-
tion is c+1.

MDL m c 85 105 Multiply CrL) by (m).

DIV m c 55 11 5 Divide (m) by (rL). If
overflow, next instruction
is c+1.

Transfer

LDA m c 25 4 Load rA: (m)----..rA.

LDX m c 05 4 Load rX: (m)~rX.

LDL m c 30 4 Load rL: (m)~rL.

STA m c 60 4 Store rA: (rA'_lll} ill cannot
STX m c 65 4 Store rX: (rX)~m be regis-
STL c 50 4 Store rL: (rL)--..m ter ad-m dress.

ATL c 77 3 (rA)~rL.

CTA m 23 3 (rC)~rA.

CM m 36 3 Clear rA to zeros: 0~rA.
Original sign remains.

CLA m 26 3 Clear rA to zeros: 0---..rA.
Sign +.

CLX m 06 3 Clear rX to zeros: 0---..rX.
Sign +.

CLL m 31 3 Clear rL to zeros: 0--+-rL.
Sign +.

CAX m 86 14 Clear rA and rX to zeroes.
Sign of rL goes to rA and
rX.

4 U 1774.1

X-6
Mnemonic

Code

Trans la te

CTM

HTC

TXM

TMX

c

c

c

c

Computer
Code

12

17

C3

C1

Index Registers

LIR ill C

Absolute
Address

IIR m c

02

07

Minimum
Word Times

3

3

3

3

3

4

Function

Translate card to machine
(computer) code: 80cc (rA,
rL, rX)~MC-6 (rA, rX);
0~rL.

Translate machine (com­
puter) to card code~ MC-6
(rA, rX)~80CC (rA, rL,
rX) •

Translate XS-3 code to
machine (computer) code:
XS-3 (rA)~MC(rA).

Translate machine (com­
puter) code to XS-3 code:
MC(rA)~XS-3 (rA).

Load index register: m
portion of instruction
word~rBi.

Increment Index Register:
m portion of instruction
word +(rBi)~rBi and to
m portion of rA; 0-..
balance of rA:

Note: When either an LIR or IIR instruction is used, the m ad­
dress portion must be an absolute address.

Comparison

TEQ m c 82

TGR m c 87

U 1774.1

3

3

Test (rA) and (rL) for
equality: If =, next in­
struction at m. If~,
next instruction at c.

Test (rA) and (rL) for
magni tude:
If erA) > (rL), next in­
struction at m.
If erA) ~ (rL), next in­
struction at c.

5

X-6
Mnemonic

Code

Logical

BUF m c

ERS m c

SHR MlIDn c

SHL M:J::;nn c

ZUP

JMP

STP

c

m

m c

Computer Minimum
Code Word Times

20 4

35 4

32 3+nn

37 3+nn

62 4

00 2

67

High-Speed Printer

PBT m c

PFD M:J::;nn c

PRN PyOnn c

6

27

16

1 1

3 if c.
4 if m.

4

592

"Function

Superimpose (m) on
(rA)--..rA.

Extract (m) from
(rA)~rA.

Shift right nn places:
(rA)---"(rX)~rA. nn
is number of places to
be shifted within range
00 through 10.

Shift left nn places:
(rA).......0. nn is number
of places to be shifted
within range 00 through
10.

Zero suppress commas and
zeros. MC-6 in rA, rX.

Jump to m.

Stop. m or c is alternative.
next instruction (re-
quires manual interven-
tion) •

Printer test. If printer
free, next instruction
at m. If printer is not
free, next instruction
at c.

Advance nn lines.
nn is within the range 00
through 79.
If abnormal operation of
HSP, next instruction is
c+1.

Advance and print.
y=Print interlace (0

through 9).
nn=number of lines to ad-

vance (~O through 79).
If abno~mal operation of
UQD V'I -u-+- .; +- ,~,.,.-I-.;,,~ _.L.
J..IUJ. , J.J.CA u .J....L..L.:I u.l. LA\.,; lJ .LUll d u
c+1 •

U 1 774.1

X-6
Mnemonic

Code
Compu ter Minim-urn

Code Word Times

High-Speed Card Reader

HET ill c

HEU HnOOd c

HCC ill c

HSS .6LIDOO c

Read-P:lnch Unit

RBT ill c

REU RnOOd c

Rec OnOOd c

U 1 774.1

42

96

72

47

22

46

81

3 if c.
4 if m.

203 if d=O.
21 5 if d=1 •

3 if c.
4 if m.

3

3 if c.
4 if m.

203 if d=O ..
21 5 if d=1 •

203 if d=O.
21 5 if d=1 •

Function

HSR buffer test: if
buffer loaded, next in­
struction at m; if buffer
not loaded, next instruc­
tion at c.

HSR buffer unload.
n=HSR Interlace (0 through

9) •
d=O if no automatic trans-

lation.
1 if automatic transla­

tion.

HSR card cycle. If HSR
interlock, next instruc­
tioYl at m.
If HSR not interlocked,
next instruction at c.
If abnormal operation of
HSR, next instruction is
c+l •

HSR stacker selection.
n =s t a c ke r 0, 1, 0 r 2 •

"RDTT "h"f'f' 'rI +- ,..+-
.L L.L v U lA..L. .L. C;.l. U C;.:J U •

If buffer loaded, next
instruction at m.
If buffer not loaded,
next instruction at c.

RPU buffer unload.
n=RPU input interlace

(0 through 9).
d=O if no automatic

trans la tion.
1 if automatic transla­
tion.

RPU card cycle.
n=RPU output interlace.

(0 thr 0 ug h 9).
d=O if no automatic

trans la tion.
1 if automatic transla­
tion.

7

Mnemonic
Code

RSS c

Magnetic Tape

TST m c

TBL xnOOO c

TBT m c

TRW MxyO c

TBU xnOOO c

TRD 66xyz c

8

Computer Minimum
Code Word Times

57

C2

C6

C7

F2

F6

G2

3

3 if c.
4 if m.

205

3 if c.
4 if m.

600 ms.

205

1 7

Function

If abnormal operation of
RPU, next instruction is
c+1 .

RPU select Stacker 1.

Test servo availability.
If servo free, next in­
struction at m. If servo
not free, next instruc­
tion at c.

Tape buffer load.
x=T or Z.
n=Tape interlace (0

through 9).

Test tape buffer.
If buffer not available,
next instruction at c.
If available, next
instruction at m.

Rewind tape to first
block condi tion.
x=servo number (0 through

9) •
y=O if rewind without in-

ter lock.
2 if rewind with inter­

lock.

Tape buffer unload.
x=T or z.
n=Tape interlace (0

through 9).
If abnormal operation of
tape, next instruction
is c+ 1 .

Read one block from servo x
into tape buffer band.
x=servo number (0 through

9) •
y=O if USS mode.

5 if UNIVAC mode.

U 1 774. 1

X-6
Mnemonic

Code

TWR xyO c

Computer Minimum
Code Word Times

H2 1 7

Function

z=direction and gain:
O=forward normal.
1 =forward low. .
2=forward high.
5=backward normal.
6=backward low.
7=backward high.

Write one block from the
tape buffer band onto the
tape.
x=servo number (0 through

9) •
y=mode and density.

O=USS 250 cpi.
5=UNIVAC 250 cpi.
6=UNIVAC 125 cpi.

PRINTED EQUIVALENTS FOR ALPHA-NUMERIC COMPUTER CODES

X-6 Mnemonic
Code

TST
TBL
TBT
TRW
m'T"\TT

J..DU

TRD
TWR
TXM
TMX

U 1 774.1

Computer
Code

C2
C6

C7
F2
T:1~
!'o

G2
H2
C3
C1

Printed
Equivalents

)2

)6
)7
(2

(6

;2
'2

)3
) 1

9

ADDRESSING

The X-6 Assembly System will generate absolute a, m,and c ad­
dresses with optimal latency address development. In the as­
sembly of a program, however, it may be necessary to establish
certain relationships between data being assembled and data
that has already been assembled or that will be assemb18d. The
program is coded in small segments, termed "operations", with
each of the operations coded by one or more programmers. To
assemble these operations, X-6 instructions must be coded in
such a way that the relation of each operation to any other is
taken into account. It may also be that certain routines such
as 90/80 HSR and RPU routines which already occupy fixed ~oca­
tions will be used with the program. Such routi~es must be
referenced in absolute notation only and the assembly system
must be restricted from assigning any of the fixed locations.

Various methods of addressing that relate lines and operations
or that restrict the generation of addresses may be used. In
a general sense, these methods come under the headings of In­
struction Addressing and Data Addressing.

I. INSTRUCTION ADDRESSING

10

A. Space Addressing

Space addressing relates two successive lines of coding.
It cannot relate one line of coding with another line
separated from it by any intervening coded lines.

When the a, m, or c address of an X-6 instruction is
filled with spaces, these spaces will have one of
several meanings:

1. Following any instruction code that requires an m
and c address, spaces in these portions will be in­
terpreted:

Portion

c

m

Meaning
The next instruction to be executed is in
the next line of coding. Therefore, the
address generated for and assigned to this
c will be identical to the a address as­
signed to the next line.
A computer operation is to be performed on
the word in the next line of coding; or,
the next instruction to be executed is in
the next line of coding. Therefore, this
m will be identical to the a address as­
signed to the next line.

U 1 774.1

2. When an instruction code requires only an m or
only a c address, the portion not used may be
filled with spaces or any other characters with­
out affecting the program.

When using space addres.3ing, certain restrictions must
be observed:

1. Spaces cannot be used in both the m and c addresses
of an instruction unless the instruction requires
only an ill or c address= If spaces are used when
the instruction requires both an m and c address,
the spaces in the m portiQn will be assumed to be
in error and an error code will appear when the
X-6 listing is printed out during assembly.

2. When an m or c address necessary to the instruction
is space filled, the next line must contain spaces
in the a address. If the a address in such a case
does not contain spaces, it will be processed cor­
rectly but the line with spaces in the m or c ad­
dress will not. When the X-6 listing is printed
during assembly, an error code will be printed with
the line containing the a address to indicate that
the previous line must be recod3d.

U 1 774.1

Examples of Space Addressing;

a Op m c

00553 LDA ~4211 MlJ.M

~~ LDA ~~~ ~4211

AAAAA ~M 00000 ~0001

~4211 STA b4215 AAAAA

Remarks

This c and the next a ad­
dress will be the same.

This c and the next a ad­
dress will be the same.

This m is ignored; this c
and the next a address will
be the same.

This m and the next a ad­
dress will be the same;
the contents of the IE xt
coded line will be loaded
in rAe The next instruc­
tion is in the coded line
with 4211 in the a address.

The contents of rA will be
stored in 4215. This c and
the next a address will be
the same.

.., 1
I •

a Op m c

66666 JMP 66666 66666

Remarks

This c is ignoxed; this ill
and the next a address will
be the same.

This m and the next a ad­
dress will be the same.
When the assembled program
is used, if the result of
the test is equality, the
next instruction will be
at the address generated
for the m address; if in­
equality, the next instruc­
tion will be at location
4630.

B. Tag Addressing

12

A tag is a symbolic address that relates one non-succes­
sive line of coding with another and may be either a
temporary or permanent tag. It may be used for an en­
trance to or an exit from common subroutines, to trans­
fer control to a common line at the end of a branching
chain of instructions, to transfer from one operation
to another, or to reference lines that may be modified.

A temporary tag refers only to lines within the same op­
eration in which it occurs. When a tag is referenced
by more than one operation (that is, when it is refer­
enced by lines within other operations than the one in
which it occurs) it is a permanent tag.

To conserve the memory space used during an X-6 assembly,
a table is kept of each type of tag. The tag identifier
and the address assigned to it are entered in the appro­
priate table. When an operation has been processed, the
temporary tag table is erased so that the temporary tags
of the next operation to be assembled may be stored in
those same table locations. The permanent tag table is
not erased (thus permitting communication between opera­
tions) •

1. Permanent Tags
.
A permanent tag is coded by using all five digits of
the X-6 symbolic address:

U 1 774. 1

U 1 774.1

Digits 12345
Symbolic Address PPPPm

PPPP (Digits 1-4) identifies a permanent tag and
may be composed of alphabetic and/or numeric
characters. Since identification depends on
the use of these digits (plus m), the first
digit cannot be 6 or o.

m (Digit 5) specifies the memory area the
tagged line is to be assigned,or it may re­
fer to an overflow or c+1 condition (see
Overflow Addressing, below).

In either case, m must be one of the follow­
ing:

N for Normal Access memory assignment.

F for Fast Access memory assignment.
o or IP for overflow condition.

When assigning permanent tags, the following should
be observed:

a. No more than 300 permanent tags can be used
in each program.

b. Permanent tags may be assigned to a specific
memory location by the use of a Tag Equals
Card, Card Type 3 (see Input Card Section,
below) .

c. The identifier of the tag (digits 1-4) is
arbitrary. It lS recommended that a meaning­
ful tag coding scheme be developed for each
program. This may be found useful after as­
sembling the X-6 Instruction Deck in checking
the X-6 listings.

d. An overflow line should be given a permanent
tag if the overflow subroutines referenced
are used by more than one operation.

Examples of Permanent Tag Coding:

Coding

D.~ LDA ASINF 1\ " !. ~ A
1\/\/\/\/\

AAAAA ADD K0015 STINF

Remarks

~oaj rA with the line whose
a address is ASINF.

The constant in K0015 is
added to the contents of
ASINF. Control is sent to
the line whose a address
is STINF.

13

STINF STA ASINF A124F

2. Temporary Tags

Remarks
Restore ASINF; transfer to
line A124F.

A Temporary Tag is coded by using three of the five
digits of the X-6 symbolic address:

Digits 12345
Symbolic Address ~ttm

tt (Digits 3-4) identifies a temporary tag and
may be composed of alphabetic and/or numeric
characters. Digit 2 may also be used as part
of the tag identifier; however, only digits
3-4 will be processed.

m (Digit 5) specifies the memory area the tagged
line is to be assigned, or it may refer to an
overflow condition (see Overflow Addressing,
below). In either case, m must be one of the
following:
N for Normal Access memory assignment.
F for Fast Access memory assignment.
Q or P for overflow conditions.

When assigning temporary tags, the following should
be observed:

a. No more than 50 temporary tags can be used
in each operation.

b. It is not possible to assign absolute loca­
tions to temporary tags.

c. The identifier of the tag (digits 3-4) is ar­
bitrary. However, to make certain that no
more than 50 temporary tags are assigned in
any operation, it is recommended that such
tags be coded by numbers 01 through 50.

d. Temporary tags cannot be referenced within
any operation except the one in which they
occur.

14 U 1774.i

Example of Temporary Tag Coding:

Coding

6~11N LDA W0005 ~66
~6 LDL K0012 66666

6MM TEQ M 1 2N 6MBN
M12N CLA 6MBN 61\6M

~8N STA W0005 6M1N

C. Overflow Addressing

Remarks

Page/Line counter to rAe
Constant: 00 0000 0030

Are they equal?
Zeros into rAe
Zeros into Page/line
counter; transfer to
the beginning of this
operation.

Overflow, a c+1 condition, can result from either an
arithmetic operation or an abnormal condition in an
input or output unit. In an arithmetic operation, it
is caused by the generation of a quantity beyond the
capacity of the register ~hich is to receive it. In
an input or output unit, it may be due to any of a
number of mechanical conditions (HSP out of paper, RPU
card jam, for example). In either case, the instruc­
tion to be executed in the program is determined by
the addition of 1 to the c portion of the instruction
in which the overflow condition occurred.

There are eight X-6 instruction codes that can result
in overflow conditions: ADD, SUB, DIV, RCC, HCC, PRN,
PFD, TBU. Whenever one of these codes is used, a sub­
routine should be coded that will handle the possible
overflow condition. In X-6 coding, this is accomplished
by the use of temporary or permanent tags with an Q or
P in the fifth digit position. The tag with the 0 is
placed in the c address of the instruction in which
overflow may occur. If there is no overflow, control
will be sent to the line with the Q tag in the a ad­
dress portion. If overflow does occur, control will be
sent to the line with the P tag in the a address portion.
Thus, when the fol~owing instruction is assembled:

Coding Rem rks

Digits 12345 12345 12345
a Op m c

6MM DIV K6295 M18Q If overflow does not occur,
control is to go to tag
M18.Q.
If overflow does occur, con­
trol is to go to tag M18P.

The address assigned to tag M18P will be equal to the
address assigned to tag 6618.Q plus 1.

U 1 774.1 1 5

When ·coding for overflow conditions, it should be ob­
served:

1. Neither the 0 nor the P line has to follow the line
from which the overflow may result.

2. If the subroutine coded to handle the overflow con­
dition is common to more than one operation, a per­
manent tag must be used. If the subroutine is only
entered from one operation, a temporary tag may be
used. In either case, the tag must follow the cor­
rect format for its type (see Tag Addressing; above).

3. Overflow lines must be counted as part of the tag
limits.

The 0 and the P lines must each be counted once.

Coding
~66 LDA W0002 AAAAA

AAAAA ADD K0109 ~42Q

~19N LDA K0006 ~620N

M20N STA M67N M68N
~42Q STA W0002 M19N

6642P LDA K0212 M666

~~ STA W0002 M22N

Remarks
Counter (original setting
99 9999 9975) to rAe
Update counter; if overflow,
go to a address 42P; if no
overflow, go to a address
42Q.

No overflow, store updated
counter in W0002; go to a
address ~19N.

Reset counter (99 9999 9975
to r A).

Store reset counter in W0002;
go to a address 6622N.

D. Absolute Address ing

1 6

When it is necessary in an operation to reference a
fixed computer location or absolute address, it is
coded by placing the specific numeric characters that
designate that location in the X-6 symbolic address,
digit positions 2-5. To refer to Fast Access memory
location 4318, for example, the numbers 4318 would be
placed in digit positions 2-5 of the appropriate X-6
symbolic address. Digit position 1 may be coded as a 6
or O. Thus, digit positions 2-5 when used for absolute

U 1 774. 1

addressing must be in the range ~~O (or 0000) through
1\)1000 1
U'777·

An address coded in this manner will not be modified
in any way. For example, if RPu04-8c01 is to be used
with an X-6 coded program and it is necessary to enter
the RPu04 Punch Section. The X-6 coded line that
transfers control that section will contain the ab­
solute address of the Punch Section entrance:

Coding Remarks
a Op ill C

12345 12345 12345
66666 LDA ~661N ~3072 Bring the contents of tagged

line 1N to rA, and go to lo­
cation 3072 for the next in­
struction to be executed.
(3072 is the entrance to the
Punch Section of RPu04-8c01 .
Control will be returned to
the X-6 assembled program at
the line placed in rA.) The
c address could also have
been coded as 03072.

References to absolute addresses may be placed in the a,
m, and c portions of an X-6 instruction.

To determine whether an address is absolute or not,
during an X-6 assembly, a test is made to determine if
the character in digit position 5 is alphabetic. If
it is not, digit position 1 is checked. If this char­
acter is also not an alphabetic, the address is classed
as an absolute address and is not modified in any way.
If absolute addressing is to be used in a program, the
specific locations must be restricted from assignment
during the X-6 program assembly. This is done by
specifying such locations, or even specific groups of
locations (portions of the computer memory) on Restrict
Cards, Card Type 2 (see Input Card Section,below).

E. Register Addressing

When it is necessary in an operation to address the con­
tents of a register, the address is cojed by using two
of the five digits of the X-6 symbolic address:

lIf the absolute address 0000 is to be assigned, it should be
noted that at least one digit must be a zero. The other digits
positions may be coded as spaces.

U 1 774.1

Digi t
Symbolic Address

12345
b.DJiRi

R should be placed in digit position 4 though only
digit 5 is processed.

i (Digit 5) must be:

A for register A.
X for register X.
L for register L.

The register contents should be added to the symbolic
deck by use of a card with the register in the a ad­
dress portion. This will allow the latency counter or
Clock to be updated for correct address assignment of
the next line to be assembled. For example:

Instruction Line

a Op m c

b.~ LDA K0005 b.~
~b. ADD K0012 ~A

~A JMP ASINF ~10

Remarks
Contains JMP ASINF
Add 00 0000 0010 to the con­
tents of rA and go to rA for
the next instruction. The next
instruction is in line ASINF.

The card with rA in the a address portion will cause a
print out on the listing. No corresponding output card
will be produced.

II. DATA ADDRESSING

1 8

X-6 coding provides four basic types of data addressing:

Wor king S tor ag e

Constants

Table Entry

Interlace

Working Storage and Constant addressing refer to data (or
instructions treated as data). These are stored in loca­
tions related to the lines of the operations in which
they are referenced but not to themselves. Table Entry
and Interlace Addressing reference data stored in loca­
tions relative to themselves, the relation to their pro­
gram references being of secondary importance.

U 1 774. 1

A. Working Storage and Constant Addressing
Both constant and working storage data may be coaea wltn
spaces in the a symbolic addresses each time they are
required by the program. Such coding would assure the
best possible latency positions being assigned during an
X-6 assembly. However, the data would have to be placed
in a specific location for each reference and could not
be referenced by any line of coding other than the line
directly preceding it. When time alone is the prime
consideration, this method can be used to advantage. The
disadvantage, of course, is that more than one location
is occupied by the same data word.

To conserve memory and assure at least minimal relative
latency between a working storage or constant location
and- the lines of the opera tions tha t reference it, such
data are assigned to pools. Working Storage data would
be placed in the W-Storage pool and constant data in
the K-Constant pool. When assigned to a pool,the ad­
dresses generated for a w-Storage or K-Constant by the
X-6 Assembly System will depend upon the address as­
signed to the line in which it is first referenced.
During the subsequent assembly process, the same ad­
dress will be assigned whenever a particular W-Storage
or K-Constant occurs.

To assure minimal relative latency to all the lines in
which they are referenced, W-Storages and K-Constants
will be assigned by the X-6 assembly system to the Fast
Access memory until all such locations are exhausted.
After that, they will be assigned to the normal access
bands.

The most appropriate method of addressing W-Storages or
K-Constants will depend upon the program to be assembled.
Final determination will be made by considerations of
program memory space and running time. Whatever the
method, the decision must be made before the program is
coded. For example, if the program flowchart indicates
that the coding will take about a thousand lines, and
computer running time is critical, space addressing
would be the most logical method of coding. If the
flowchart indicates that storage space may be critical,
working storages and constants would be pooled, or a
portion pooled (those most often referenced by various
operations) and others space coded.

When data is placed in a pool, consideration should be
given to when the first reference is to be made to it
during the X-6 Assembly. For example, if an operation
is to be executed repeatedly for each input item in a

U 1 7?4.1

program, and working storagE:; and/or constant data used
in that operation is also referenced by ot~2r opera­
tions, the first references to the w-Storage and K-Con­
stant data during the X-6 assembly should be made in the
repeated operation. Thus, minimuo latency would be ob­
tained for the references in the repeated operation and
minimal relative latency would be obtained for refer­
ences in other operations by Fast Access memory assign­
ment of the w-Storage and K-Constant data.

A maximum of 300 W-storages and 300 K-Constants are
allowed in a program. Both W-Storage and K-Constant
entries are addressed in X-6 coding by tags conforming
to a particular format.

1. W-Storage and K-Constant Addressing

20

The W-Storage or K-Constant tag will most often occur
in the ill symbolic address portion of an X-6 instruc­
tion. When the contents of the W-Storage or K-Constant
is given, the tag will occur in the a portion. If the
contents should be an instruction to be performed, refer­
ence may be made in a c portion.

Coding
Digits
Symbolic Address

12345
yOxxx

Y (Digit 1) Either W or K must be used in this lo­
cation.

W=W-Storage pool.
K=K-Constant pool.

o (Digit 2) This position is ignored during X-6
Assembly. It is usually coded with 6 or 0 but
may be any character.

xxx (Digits 3-5) These must be a numeric in the
range 000 to 299. Leading zeros m-ay be coded as
spaces (K~1=K6001). During X-6 assembly, these
digits are extracted and used to form a table
look up instruction when Wand K tags are conver­
ted to absolute addresses.

When coding W-Storage or K-Constant addresses, the
following should be observed:

a.

b.

The order of addressing is not important. For
example, 6299 may be referenced before 6050.

All 300 numbers for each type of tag do not
have to be used in a program.

U 1 774. 1

c. An absolute address may be assigned to W-Storage
or K-Constants by using a Tag Equals Card, Card
Type 3 (see Input Card Section, below).

2. When the X-6 Symbolic deck is keypunched from the X-6
coding, for every W-Storage or K-Constant referenced
in m or c addresses, there must be a card containing
the W-Storage or K-Constant in the a address. For ex­
ample, if in the coding there are m and/or c address
references to W6000 through W6003 and K6015 through
K6017, the following cards must be part of the sym­
bolic deck:

a

W6000
WD001
W/i002
WD003
K6015
K.6016
KD01 7·

Op m c

CONTEN"TS

The contents of the constant addressed by the K-Constant
tag will appear in the Op, m, and c address posltions of
the card. When W-Storage locations must be set to ini­
tial conditions, as with counters or limits, these ini­
tial conditions will be keypunched in the same manner as
K-Constant contents. Whether the contents are for K­
Constants or for W-Storages, they may be coded to be
treated as absolutes, not to be modified in any way, or
coded symbolically to be translated during the X-6 as­
sembly.

3. If absolute coding is used, DM must be placed in the
Op portion. The ten digits that are placed in the m
and c portions may be alphabetic, numeric, or any combi­
nation of the two. For example, the contents of the
following would be treated as absolute:

a Op m c

WD074 ~ 99999 99975
K,6284 ~ 00000 00000

In the case of data not to be translated into machine
code, a Key of the card would also be punched. If, for
example, the following K-Constants were to be used for
punching and/or printing, the Key would be punched:

U 1 774. 1 21

a Key Op m c

K~025 U ~ RUN01 EDIT 2 part alphabetic, uss
90 Card code.

(U=Unpr imed)
K~026 P b.M RUN() 1 EDIT (P=Primed)
K~015 U ~M RUN01 EDIT 3 part alphabetic,

8n Card code.
USS

K~()16 P ~ RUN() 1 EDIT~ (U=Unpr imed)
(P=Pr imed)

K~()17 D Mfj, RUN01 EDIT~ (D=Duopr imed)
K~050 N ~M RUN01 EDIT~ 2 part alphabetic, USS

80/90 machine code.
(N=Numer ic)

U051 z b.M RUN01 EDIT~ (Z=Zone)

When X-6 symbolic coding is used, translation of the w-
storage or K-Constant data will be made during the X-6
assembly. The thirteen digit positions comprising the
Op, m, c address portions must be used. For example,
the contents of the following would be translated during
assembly: a Op m c

U008 LDA ~004 ASINF

The processing of W-Storage and K-Constant data is de­
termine by the presence or absence of spaces (~) in
the Op portion of the coding.

4. There are six non-numeric computer coded characters. The
QlnhQhc~i~ Ac~i~n~~;~n~ ~n~ +h~~~ ~~~ •
.......... ,t' Uvu '""v O <..\U..Lv,LV.J,. U.1.1C;.:JC; q.LC;.

0101 A
0110 B
0111 C
1101 F
1110 G
1111 H

5. A ~ or a 2 in the control column will indicate a positive
or negative value (see INPUT CARD FORMAT, Card Type 8).

6. During the assembly of the symbolic deck, it is advanta­
geous to group the cards containing W-Storage data to­
gether under the same operation name and the cards con­
taining K-Constant data under another operation name
(usually, WWW and KKK are the operation names used). By
using such an assembly, desk checking and program test­
ing of an X-6 assembled program is simplified: When it
is necessary to check the contents of a referenced W­
Storage or K-Constant, it is easier to find if the loca­
tion in the deck is a known relativA position.

22 U 1 774. 1

B. Table Entry Addressing

1~ A table consists of data stored at regularly spaced in­
tervals. The contents of any particular storage loca­
tion in a table may be designated as an entry. Provi­
sion has been made in the X-6 Assembly System for as
many as thirty tables of up to 1 ,000 words each in a
program. A table entry reference will usually occur in
the m symbolic address portion but may occur in the a
or c portion. It is coded in the following manner:

Coding
Digit
Symbolic Address

12345
tnxxx

tn (Digits 1-2) is the identifier of the table refer­
enced: t (Digit 1) must be either S, U, or V. Thus

allowing 30 possible table names.
n (Digit 2) must be a numeric in the range

a through 9.

xxx (Digits 3-5) is the identifier of the table entry
and must be a numeric in the range 000 through
999.

Thus S3000 would reference the first entry of table
S3, V4898 would reference the 899th entry of table v4.

The order in which tables are referenced is not
important (the first table might be V8, the second S1,
the third U9, etc.).

2. When the number of tables that will be used in a program
has been determined, each table must be described on a
Type 5 Card (see Input Card Section, below). The coding
on the Type 5 Card will define the location of the first
table entry, the number of entries (000-999) in the
table, and the desired interval between entries. When
this card is processed by the X-6 Assembly System, all
locations required by the table will be restricted from
other assignment.

Care must be taken during the X-6 coding of a program
not to reference an entry that is not in a particular
table. That is, if the number of entries in a partic­
ular table was defined as 25 on the Type 5 Card, only
25 locations were restricted to that table. Should a
reference be made to an entry greater than 25 for that
table, it will not be detected as a logical error
during the X-6 assembly.

U 1 774. 1 23

C. Interlace Addressing

1. Positions on the Input and Output Interlaces may be re­
ferenced as absolute addresses or in X-6 symbolic coding.
When referenced symbolically, the coding, which may ap­
pear in the a, m, and c symbolic addresses, is:

Coding

Digi ts
Symbolic address

12345
inxyz

in (Digits 1-2) is the identifier of the interlace.
i (Digit 1) specifies the I/O device and must be one

of the following:
H the read interlace of the HSR.
R the read interlace of the RPU.
o the punch interlace of the RPU.
P the HSP interlace.

~ tape interlace.

n (Digit 2) specifies the number of the interlace and
must be a numeric in the range 0 through 9.

Thus, the combination of the alphabetic specifying and
I/O device and the numeric of 0 through 9 allows ten
possible identifiers for each I/O device. Since two
alphabetics may be used to specify a tape i.l1terlaco, 20
tape interlace identifiers are possible. A program re­
quiring the use of alternate input bands could be coded
throughout with symbolic addresses. Alternate Cards,
Type 4 (see Input Card Section, below) would be used to
redefine each band.

xyz (Digits 3-5) depends upon the action desired hy the
reference.

2. To refer to an entire hand:

24

a. xy (Digits 3-4) must be 00 when reference is
made to an entire band of the HSR or RPU.
z (Digit 5) must be 0 if the contents of the

band are not to be automatically trans­
lated; 1 if the contents of the band are to
be automatically translated.

(For example, HBU H1000 would dump the HSR buffer
into the first and second read interlace posi­
tions without automatic translation. For auto­
matic translation, the instruction HBU H1001
would be us ed •)

U 1 774. 1

3.

b. ~~en a reference is made to a complete HSF in­
terlace band:
x (Digit 3) must be O.

yz (Digits 4-5) will specify a number of lines
and must be a numeric in the range 00
through 79.

(Thus, PRN POOOO would advance the paper zero
lines before printing.
PRN P0030 would advance the paper thirty lines
before printing.)

c, When an entire tape interlace is referenced, as
in read and write instructions:

To

x (Digit 3) refers to the Uniservo number and
must be a numeric in the range 0-9.

y (Dig i t 4) refers to mode and dens i ty and mus t
be:

z

o for USS, 250 cpi.

5 for UNIVAC, 250 cpi.
6 for UNIVAC, 125 cpi (used only with write

instructions).

(Digit 5), used only with read instructions,
refers to direction and gain and must be:
0 forward normal.
1 forward low.
2 for1.A!ard h;O'h_

~~--b~'" •

5 backward normal.
6 backward low.

7 backward high.

When reference is to be made to a particular word
of an interlace band, the above coding cannot be
used.

refer to a particular word of an inter lace band:
a. x (Digi t 3) relates to the translation mode and mus t

be one
(1)

U 1 774, 1

of the following:

For untranslated
band:

U=Unprimed.
P=Pr imed.

(Card Code) words of a

D=Duoprimed (applicable USS 80 only.)

25

(2) For the HSP Interlace and for translated
(Machine Code) words:

N=Numeric
Z=zone.

b. yz (Digits 4-5) relate to the word in the interiace
band. The coding varies for each I/O device:

(1) HSR and RPU Read Stations:
y (Digit 4) means the read station and must be

1 or 2.

z (Digit 5) means one of the eight words and
must be a numeric in the range 0 through 7.

Thus, N11 specifies the numeric portion of the
second word at the first read station.

Z20 would specify the zone portion of the
first word at the second read station.

u25 would specify the unprimed portion of
the sixth word at the second read
station.

(2) RPU Punch Interlace:
y (Digit 4) must be 1.
z (Digit 5) indicates the word and must be a

numeric in the range of 0 through 7.

Thus, U13 specifies the unprimed portion of the
fourth word of the punch interlace.

Z10 would specify the zone portion of the
first word of the punch interlace.

(3) HSP Inter lace:
yz (Digits 4-5) must be a numeric in the range

01 through 13.

Thus, N12 would specify the numeric portion of
the twelfth word of the HSP interlace.

(4) Tape Interlace:
x = N or Z

yz (Digits 4-5) when referring to a word of
a tape interlace must be a numeric:

in the range 00-71 of an interlace in XS-3
Code,
in- the range 00-99 of an interlace in USS
Code.

26 U 1 774.1

4. As examples of interlace addressing from the fore­
going:
H1Z10 HSR interlace #1, the zone portion of word

zero at the first read station. H1Z20 would
be the same word at the second read station.

P1N13 Printer interlace #1, numeric portion of word
13. P1Z13 would be the same word, zone por­
tion.

T9Z11 The ninth tape interlace, zone portion of word
11. (TRD~800 would be, read one block from
tape buffer band using Servo 8, USS mode, for­
ward normal).

U 1 774. 1 27

LATENCY MINIMIZATION

Latency minimization during a program or an operation assembly
is achieved through use of a working storage location called a
"Clock" in which the X-6 Assembly System stores the relative
band level location. The value or setting of the clock is ini­
tially 00 0000 0000. At any subsequent time, the setting will
always lie within the range 00 0000 0000 through 00 0000 0199.
When an instruction line is analyzed by the X-6 Assembly System,
the clock reading is used to obtain the tentative best address
(TBA) for the next address to be assigned. The TBA is gener­
ated and assigned by using the value of the clock setting, in­
crementing the setting by the specific word increments associ­
ated with each instruction code, or by assigning a new setting
to the clock and then incrementing the value of the new setting
(these increments can be found in the Instruction Code Informa­
tion Words Table, below). After the TBA is obtained, the avail­
able memory locations are searched. If a band location equiva­
lent to the relative band level of the TBA is found, it is as­
signed. If no such band location is found, the TBA is incre­
mented and another search is made. This process continues un­
til an assignment is possible. When it is not possible to make
an assignment because the memory is full, an arbitrary assign­
ment to 9999 is made and the assembly continues. A printout
indicating such an assignment is made in the listing. After an
address assignment has been made, the absolute address is re­
duced to a relative band level value and is stored in the Clock.

28 U 1 774. 1

INSTRUCTION CODE INFORMATION WORDS TABLE

If control column indicates Index Register modification, add one
more word time before m.

Digit 3 Digits Digits
Digits Action 5-7 8-10

1-2 Code Before m Before c

ADD 70 0 002 003
BUF 20 0 002 002
nT1T 55 (\ 002 113 .LJ.l.V v

ERS 35 0 002 002
LDA 25 0 002 002
LDL 30 0 002 002
LDX 05 0 002 002
MUL 85 0 002 103
STA 60 0 002 002
STL 50 0 002 002
STX 65 0 002 002
SUB 75 0 002 003
LIR 02 0 000 003
IIR 07 0 000 004

TRD G2 1 000 017
TWR H2 1 000 01 7
TRW F2 1 000 1 50
TMX C1 1 000 003
TXM C3 1 000 003
ATL 77 1 000 003
CTM 12 1 000 003
MTC 1 7 1 000 003
ZUP 62 1 000 004
HSS 47 1 000 003
RSS 57 1 000 003
CLA 26 2 003 000
CLL 31 2 003 000
CLX 06 2 003 000
JMP 00 2 002 000
CAA 36 2 003 000
CAX 86 2 014 000
eTA 23 2 (OO~) 000

OO~ PFD 16 3 22 003} 222 is a code not affect-
SHL 37 3 111 003 ting timing; 111 means use
SHR 32 3 111 003 amount of shift.

U 1 774. 1 29

Digit 3 Digits Digits
Digi ts Action 5-7 8-10

1-2 Code Before ill Before c

HBU 96 4 198 203
PRN 1 1 4 197 592
RBU 46 4 098 203
RCC 81 4 098 203
TBU F6 4 048 103
TBL C6 4 198 205
HBT 42 5 004 003
HCC 72 5 004 003
PBT 27 5 004 003
RBT 22 5 004 003
STP 67 5 003 003
TEQ 82 5 003 003
TGR 87 5 003 003
TBT C7 5 005 003
TST C2 5 004 003

30 U 1 774. 1

CLOCK MODIFICATION

The purpose of the clock modification instructions is to allow
relationships to be established between addresses when these
relationships cannot be detected by the X-6 Assembly System.
This is necessary because the X-6 Assembly System is a one
pass program. Once an address has been assigned, therefore,
it cannot be changed at any subsequent assembly point. Cer­
tain conditions may arise when the process by which the X-6
system assigns addresses will not result in the best latency
from an overall program point of view. One example of this
would be:

X-6 Coded Lines

a Op m c
AAAA/\ TEQ b.M 1 N b.MM
A/\/\/\A TGR Mb.1N /\AAAA

X-6 Assembled Coding
2145 82 2148 2348
2348 87 2148 2351

Remarks

The address for temporary tag 1N
would be assigned during the assem­
bly of the TEQ line. This address
would then be placed in the TGR
line.

Thus, if control is sent to 2348
by the equality test and then sent
to 2148 by the magnitude test, a
drum revolution would be lost.

In this case, it would be desirable to have the address assigned
to 1N increased by the increment between the first reference to
it in the TEQ line and the second reference to it in the TGR
line so that the coding generated would be:

X-6 Assembled Coding

2145 82 2151 2348
2348 87 21 51 2351

Remarks

The process by which this is accom­
plished will be found in the Examples
of Clock Modification at the end of
this section.

The clook setting may be modified by any arbitrary increment, or
the clock may be set to any arbitrary band relative reading. Such
modification is programmed by the use of any of seven clock modi­
fication instructions. Each such instruction used is keypunched
on a detail Card, Card Type 8 (see Input Card Section, below),
and filed in the symbolic deck immediately preceding the instruc­
tion the new clock reading is to affect. 1 Each of the seven

1Clock modification cards do not require a card number in columns
6-8. Thus, they may be inserted at any time without breaking the
detail card sequence and causing an entire operation to be renum­
bered.

U 1 774. 1 31

clock modifica tion ins true tions mus t hav-e- -CLOCK in the a sym­
bolic address portion of the coding.

The clock modifications may be divided into two basic types:

SE (Set) in which a new setting of the Clock is made before in­
crementation by a specified number of word times. An SE in­
struction may only directly modify one address in the suceed­
ing instruction.

AD (Add) in which a specified increment is added to the normal
band relative address which the X-6 Assembly System would
normally assign. An AD instruction may directly modify two
addresses in the succeeding instruction.

The clock modifications and their format are as follows:

A. ~~ Instruction:

a Op m c
CLOCK ~ sssss OOxxx

Remarks
The succeeding a address will be
modified:
sssss must be a legitimate X-6

symbolic address or an ab­
solute memory location.
This address will be con­
verted to a band relative
reading and placed in the
clock. 2

xxx must be a numeric incre-
men+ +n he ~~~c~ +n +h~
J...U.V..L~V \.1'-' JoJv "-4~'-A.'-"\"A. U'-" U.1...1.G

new clock setting in addi­
tion to the normal incre­
mentation. The result of
this addition will be the
TBA for the assignment of
the succeeding a address. 3

2If sssss is an X-6 symbolic address that has not already been
processed, it will be assigned a permanent address when the
clock modification instruction line is processed. Thus, it
would be assigned in minimal latency to the line just preced­
ing the clock modification in the assembly process. If this
happens, it could result in a loss of word times when the ob­
ject program instruction line that first references sssss is
assembled.

3The word time increment of the clock modification instructions
is always added to the clock setting. Since the clock setting
will always lie within the range 000-199, the setting may, in
effect, be decremented by subtracting the desired decrement
from 200 and using the result as the specified increment.

32 U 1 774. 1

This is the only clock modification that does not contain a
mnemonic code in the Op portion of the instruction. The
same modification may be accomplished by use of the SEA in­
struction (see below)~ It is also the only clock molifica­
tion instruction that does not allow the clock to be reset
to its premodification setting after the succeeding desired
address portion has been assigned according to the modified
clock setting.

B. SE Instructions:

For each of the succeeding SE instructions, the format of
the a, m, and c address is the same:

1. The a address portion must always be:

a
CLOCK

2. The m address must always contain:

m
xxxOz xxx = The numeric increment to be

added to the new clock read­
ing that will be specified
in the c portion of this in­
struction in addition to the
normal incrementation. The
new clock reading plus the
increment will result in the
TBA for the address to be as­
signed. (Spaces, 6, cannot be
used in place of zeros.)

z = 0 if the clock setting is
not to be restored to its
premodification setting be~
fore obtaining the TBA for
the address succeeding the
address to be modified.

z = 1 if the clock setting is
to be reset to the premodi­
fication setting before ob­
taining the TBA for the ad­
dress succeeding the address
specified to be modified.

3. The c address must contain:
c

sssss

U 1 774. 1

~ssss = A legitimate X-6 symbolic
address or an absolute memo­
ry location. This address
will be converted to a machine
coded band relative reading
and placed in the clock.

33

4. The mnemonic SE instructions and their format are:
CLOCK SEA xxxOz sssss The succeeding a address TBA

will be arrived at by using the
band relative equivalent of
sssss plus the increment xxx.
The presence of ° or 1 in the z
digit position will determine
whether the clock will be re­
stored to its original setting
when this modification has been
accomplished or if the clock
setting that results from this
modification will be retained.

CLOCK SEM xxxOz sssss

CLOCK SEC xxxOz sssss

The succeeding m address TBA
will be arrived at by the above
process.

The succeeding c address TBA
will be arrived at by the above
process.

C. AD Instructions:
1. The a address portion must always be:

a
CLOCK

2. The m and c address portions must always contain:
ill C

xxxO OOyyy yyy = The numeric increment to be
a~~o~ +n +hn "~n~""+ n'nn~
~~~'--..... v..... V.L.L'-- tJ..L v ~v.L.1. U \oJ .... Vv.n. 

reading, in addition to the 
normal incrementation, to 
arrive at the TBA to be as­
signed to the next address 
specified in the operation 
code of the AD instruction. 

xxx = The numeric increment to be 
added to the clock reading 
according to the numeral in 
the z digit. This addition 
is used to obtain the TBA for 
the address to be assigned 
after the address called for 
in the operation code of the 
AD instruction. If xxx=OOO, 
the address generated will 
be derived normally from the 
clock reading determined by 
the z digit. 

(Space, ~~ cannot be used in place of zeros in the xxx and yyy 
por tions • ) 

34 U 1 774. 1 



z = 0 if the clock setting is not 
to be restored to its pre yyy 
reading before incrementing 
by xxx. 

z = 1 if the clock setting is to 
be restored to its pre yyy mo­
dification before incrementing 
by xxx. 

3e The AD instruction Codes, and their format, are: 

CLOCK ADA xxxOz OOyyy 

CLOCK ADM xxxOz OOyyy 

CLOCK ADC xxxOz OOyyy 

The TEA for the succeeding a 
address will be arrived at by 
adding yyy to the clock read­
ing. The succeeding m address 
will be arrived at by incre­
menting the new clock reading, 
if z=O; or, if z=1, by restor­
ing the pre yyy incrementation 
clock reading before incremen­
ting by xxx. The suC!ceeding a 
address will be assigned 
normally. 

The succeeding m and c addresses 
will be arrived at by the above 
process. 

The succeeding a and m addresses 
will be assigned normally. The 
succeeding c and the a address 
following it will be arrived at 
by the above process. 

4. When an absolute address on the Fast Access bands is 
specified in a clock modification instruction, the Fast 
Access address is reduced to a number in the range 00 
through 49. This is placed in the clock in the form 
000 through 049. Thus, if no further incrementation is 
specified, the absolute address derived from this read­
ing will have to be on an even band level on the Normal 
Access bands. An odd numbered band assignment on the 
No~mal Access bands is only possible when the clock set­
ing, plus increment if called for, is in the range 100 
through 199. 

D. Examples of Clock Modification 

The following examples of the use of the clock modification 
instruction are not intended to illustrate every possible 
condition that may arise. The application of these instruc­
tions will depend entirely on the nature of the object pro­
gram to be assembled. 

U 1 774. 1 
35 



1. In the beginning of this section, the following example 
was given: 

X-6 Symbolic Coding 
a Op m c 

TEQ 1N 
TGR 1N 

X-6 Assembled Coding 
a Op m c 

2145 82 2148 2348 
2348 87 2148 2351 

It was noted that the address of temporary tag 1N was 
generated and assigned during the processing of the TEQ 
line. Thus, the same address was assigned when 1N was 
referenced in the TGR line. The result was that if 
during the object program execution control was sent to 
2348 after the equality test and then to 2148 after the 
magnitude test a drum revolution would be lost. In 
such a case, a clock modification instruction should be 
used so that the address generated for tag 1N will be 
incremented by the word time interval between its first 
reference in the TEQ line and its second reference in 
the TGR line: 

X-6 Symbolic Coding 
a Op m c 

CLOCK ADM 00001 00003 
TEQ 1N 
TGR 1N 

X-6 Assembled Coding 
a Op m c 

2145 82 2151 2148 
2148 87 21 51 2351 

Thus, the address generated for 1N in the TEQ line would 
be incremented by 3 word times before assignment. The 
clock reading existing before the 1N address assignment 
would be used to obtain the c address in the TEQ line. 

2. The X-6 Assembly System automatically increments the 
clock by 105 word times for every multiplication instruc­
tion: 2 word times between the a and m addresses and 103 
between the m and c addresses. In those cases where the 
number of digits in the multiplier is known, this incre­
ment can be changed by use of a clock modification and 
insertion of a sentinel to the left of the most signifi­
cant digit of the multiplier: 4 

4When the computer receives a multiplication order, the multiplier 
is placed in rX and a sentinel is automatically generated and 
placed in the least significant digit position of rAe As the 
multiplication process is carried out, this machine sentinel 
is shifted one position at a time toward the least significant 
dIgit position of rX, followed by the least significant digits of 
the product as they are developed. When the machine sentinel is 
shifted out of the least significant digit position of rX, the 
multiplication process stops. The product of the multiplication 
is in rA and rX with the least significant digits in rX. When a 
programmed sentinel is placed in rX with the multiplier, the 
machine sentinel is still placed in rAe When the programmed sen­
tinel is shifted out of rX, the multiplication process stops. The 
machine sentinel is left in rX to the right of the least signifi­
cant digits of the product. 

36 
U 1 774.1 



X-6 Symbolic Coding 
a Op m c 

LDL W0012 
CLOCK ADM 03000 00000 

MUL K0001 

Remarks 

It is assumed that the sentinel 
has been positioned in the mul­
tiplier contained in K0001 and 
that thirty word times, plus 
the 2 word times between the a 
and m addresses, has been de­
termined as the length of time 
needed for the multiplication 
to be completed. -

Thus, the clock would he incrementAd by 000 before as­
signment of the address for K0001. The c address follow­
ing would be generated and assigned with an incrementa­
tion of 30 word times instead of the usual 103. 

3. An object program may contain a constant that is a vari­
able instruction. This could be, ~~ SHR ~OOOO ~7N 
with the amount of shift ranging from 0000 to 0009. 
When assembling a shift instruction line, the X-6 Assem­
bly System increments by the amount of shift specified 
by the m address plus three word times to obtain the c 
address. If the above line were assembled with the 
minimum shift value, the c address would be assigned 
three word times from the a address. As the instruc­
tion was executed during the object program, any incre­
mentation of the shift value would result in the loss 
of a drum revolution. This can be corrected by the use 
of a clock modification instruction during assembly; 

X-6 Symbolic Coding 
a Op m c 

LDA 6N 
CLOCK ADC 00000 00009 

SHR 00000 7N 
6N BUF W 3 RA 

Remarks 
Load rA with constant. 
Adjust c address of constant 
for maximum shift value. 
Constant. 
Buff in amount of shift (al­
ready generated and stored in 
W-Storage 3) and go to rA for 
next instruction. 

It is assumed that the constant line in this case is 
only referenced in this operatien and only at this 
point in the operation. Thus, it is n@t necessary to 
assign a K-Constant tag to it. 

4. The principle used in example 3, above, can apply to any 
variable instruction line of a program to be assembled. 
For another example of this, an instruction line is to 
be modified by an index register before execution: 

U 1 774. 1 
37 



X-6 Symbolic Coding 
a Op m c IR 

42N STA 61000 ASINN 2 

Remarks 
For this example, assume the 
range for m to be 1000 through 
1150 due to index register mo­
dification before execution. 

Thus, the address to be assigned to ASINN should be re­
lative to 1150 rather than 1000 which is the first exe­
cutable value. To do this, the line could be preceded 
by: 

CLOCK ADM 00000 00150 
42N STA 61000 ASINN 2 

The address generated for the 
m portion will be incremented 
by 150 (the upper limit of 
its range) before assignment. 
The c address will be derived 
normally from the resultant 
clock setting. 

5. When an object program contains a subroutine which con­
sists of operations of various word time lengtffibut with 
the same exit, it is usual practice to assemble the 
longest of these operations first. If this is not done, 
the first operation to be assembled should have its exit 
line preceded by a clock modification instruction which 
will increment the co~uon exit address by the word time 
differential between the length of the operation being 
assembled and the length of the longest operation in 

38 

the subroutine. For example, a subroutine contains the 
following three operations: 

a. Enter with tag 1N, process data (approximately 50 
word times), and exit to tag ASINF. 

b. Enter with tag 2N, process data (approximately 100 
word times), and exit to tag ASINF. 

c. Enter with tag 3N, process data (approximately 200 
word times), and exit to tag ASINF. 

If operation a. is assembled first the exit line to tag 
ASINF would be preceded by: 

X-6 Symbolic Coding 

a Op m c 

CLOCK ADC 00000 00150 
STA w 19 ASINF 

The address generated for tag 
ASINF would be incremenGed by 
150 word times, the difference 
between the length of the op­
eration assembled and the length 
of the longest operation of the 
subroutine. 

U 1 774.1 



6. The same principle as in example 5 would be applied if 
the length of an operation is variable. For example, 
if the entrance to an operation were to be made froill 
instructions entered in a table, the overall operation 
length set during assembly should allow for the 
longest possible length of the operation: 

Given a table of five entries stored at intervals of 
twenty word times between each entry, the word time 
difference betweeen the first and the fifth entry 
would be 80. 

X-6 Coding 
S1000 
S1001 
S1002 
S1003 
81004 

Assigned 
Location 

2300 
2320 
2340 
2360 
2380 

X-6 Coded 
Contents 

LDA W0001 ASINF 
LDA W0002 ASINF 
LDA W0003 ASINF 
LDA woo04 ASINF 
LDA WOOO, ASINF 

If the first assembled line is to be S1000 LDA W0001 
ASINF, and this is the first assembly reference to 
ASINF, a clock modification instruction should be used 
to set the address assigned to ASINF so that when the 
last table entry line is assembled, minimal latency 
between addresses will result: 

CLOCK ADC 00000 00080 
S1000 LDA W0001 ASINF 

In this way, the address generated for ASINF would be 
incremented by 80 word times before assignment. When, 
later in the assembly, s1004 LDA W0005 ASINF is as-
<:!om'hlori _ tho !:lriri1'1O<:!<:!O<:! "t&Tf"'I111r1 'hon ;1""1 m;1""I;m~1 1 ~+-1"\1""Ir>T" 
....,· ....... ~u,..J- ......... '-A., v ........ '- ~"""'\oA.,. V......,...,\....o"-' VV'-'\.A.,.L-\.A UV ~.L..J. .1.J.J...L..L..J.~J.J.J.t....4..J- .J-t..4 \JG.1.iVJ. 

The amount of incrementation would depend on which 
table entry line is first assembled5 

7. When a connector is to be set in an object program, it 
may be desirable to use a clock modification to relate 
the ill address of the instruction to be placed in the 
connector with the address assigned to the connector. 
For example, the instruction lines that load the con­
np.ctor are: 

X-6 Symbolic Coding 
Remarks 

a Op ill c 
LDA 5N Load rA with connector set-

ting. 
LDA 7N 9N The connector setting. 

5N STA ABC2N Store setting in connector. 

U 1 774. 1 39 



40 

The clock modification used could be: 

X-6 Symbolic Coding 
a Op m c 

LDA 5N 
CLOCK SEM 00200 ABC2N 

LDA 7N 9N 
5N STA ABC2N 

Remarks 
The address assigned to 7N will 
be equal to the band relative 
address assigned to ABC2N plus 
an increment of 2 word times. 

It is assumed, in this example that ABC2N has already 
been assigned an address during a previous portio{l of 
the assembly. If it has not and the ABC2N address is 
assigned during the assembly of the above lines, it may 
be necessary to use a clock modification during the as­
sembly of the operation in which ABC2N is executed. This 
would insure minimal latency of the address generated 
for that operation in relation to the ABC2N address. 

U 1 774. 1 



X-6 LIBRARY ROUTINES 

Certain functions recur frequently as elements of an installa­
tion's programs. Such function are typically isolated and coded 
in the best possible manner for inclusion in an X-6 Library. 

When an object program is to be assembled by the X-6 Assembly 
System, any X-6 library subroutine decks necessary are included 
with the main program deck. This allows the assembly system to 
generate the absolute addresses occupied by the subroutines. 

When a subroutine is coded for inclusion in an X-6 library, in­
put and output locations are characteristically assigned to re­
gisters in order to simplify access to the subroutine by the 
user. Provision is made, wherever possible, for the insertion 
of parameters which can tailor the subroutine to the needs of 
any object program. References to constants, working storages, 
interlaces, and tables which are used by such a subroutine but 
not contained within it are generalized by placing special tags 
to indicate parameters in the a, m, or c address portions where 
these references occur. 

Twenty tags to indicate parameters are allowed in each operation 
within an X-6 library subroutine. The coding of this tag is in 
the form: 

Digi t 12345 
Symbolic Address XMnn 

X (Digit 1) must be X. 
(Digits 2-3) may be ~ or 00. 

nn (Digits 4-5) must be a numeric in the range ~1 (or 
01) through 20. 

(Note: Should it ever happen that more than 20 parameters are 
necessary within a subroutine, all parameters beyond the X6620 
upper limit would be coded as permanent tags.) 

When the X-6 library subroutine is assembled as part of an ob­
ject program by the X-6 Assembly System, the parameters addressed 
within each operation of the subroutine are assigned specific 
locations related to the object program, by the insertion of 
Specifications Cards, Card Type 6 (see Input Card Format, below), 
before the operation to which they apply. The format of the 
entries on the Specification Card is: 

Digits 1 2 3 4 5 6 7 8 9 10 

Symbolic Coding X 6 6 nne e e e e 

~ (Digits 1-5)is the parameter to be redefined in re­
lation to the program being assembled. 

U 1 774. 1 
41 



eeeee (Digits 6-10) is a legitimate X-6 address to be 
placed in the parameter designated 
by digits 1-5. This may be an ab­
solute address or an X-6 Symbolic 
Address (that is, a permanent tag, 
an interlace or table reference, a 
K or W-Storage address, a register 
address, etc.). 

The redefinitions contained on the Specifications cards are 
filed in a table and erased at the end of the assembly of the 
operation which they precede. This allows the table to be 
used again by any succeeding operation in which ~ para­
meters must be redefined. 

Th~ most advantageous method of building a library of X-6 sub­
routines is to file each subroutine under an operation name 
unique to itself with the cards in correct sequence. In some 
cases a library subroutine may contain a number of operations 
each of which has its own unique name. For library convenience, 
an overall operation name should be given to the subroutine. To 
avoid renumbering of the subroutine cards, before assembly, a 
library subroutine should be assembled as a separate object pro­
gram operation, not as a part of an operation within the object 
program. 

42 U 1774.1 



ASSEMBLY INPUT CARDS 

After an object program has been coded according to the X-6 
coding conventions, the symbolic deck used as input for an 
X-6 program assembly must be prepared. Besides those cards 
that will contain the coded lines, other cards must be 
prepared to set the limits within which the assembly is to 
take place and to signal the beginning or ending of certain 
assembly processing. That is, the beginning and the end of 
an object program must be signalled as must the beginning and 
end of operations within the program. Certain portions of 
computer memory must be restricted from assembly assignment: 
those locations that are used as absolute addresses in the 
coding and the locations that will be used by tables and in­
terlaces, for example. 

I. Symbolic Deck Organization 

These are ten possible card types that may be keypunched for 
an X-6 program. Of these ten, there are five card types 
that must be used in any program to be assembled by the X-6 
Assembly System: 

Card Type 
1 
7 
8 
9 
10 

Title 
Label Card 
Operation Header Card 
Symbolic Detail Card 
Operation Sentinel Card 
End of Run Sentinel Card 

Every program must have only one Type 1 (Label Card) and 
only one Type 10 (End of Run Sentinel). 

Each operation must have only one Type 7 and only one Type 
9. The n~ber of Type 8 cards must correspond to the num­
ber of lines of coding in the operation and the number of 
constants unique to that operation. 

The other card types that may be used, depending on the 
needs of the program are: 

U 1774.1 

Card Type 

2 
3 
4 
5 
6 

Title 

Restrict Card 
Tag Equals Card 
Interlace Card 
Tables Card 
Specifications Card 



Card Types 2 through 5 cause particular memory locations to 
be restricted from use by the X-6 Assembly System. Card 
Type 6 modifies coding within a library routine before it 
is assembled, thus allowing a redefinition of the library 
routine variables just before each operation is processed. 

The Card Type number (in the form 6,1, 6,2, through 10) is 
keypunched in card columns 1-2. 

When organizing the symbolic deck for a program, Card Type 
1 must be the first card for input. All Types 2, 3, 4 and 
5 cards must follow in numerical sequence. That is, all 
Type 2 cards must precede all Type 3 cards, etc. the group­
ing within the card type is unimp~tant. After Types 1 
through 5, Card Types 6 through 9 are arranged by operation. 
That is, for each operation, the cards of that operation are 
grouped in sequential order: all type 6 cards for an opera­
tion will precede the Type 7 card. The type 7 card will be 
followed by all the Type 8 cards arranged in ascending se­
quence. The last card of each operation will be a Type 9. 
Usually, operations are grouped according to their relative 
importance in the program since the first assembled opera­
tion will receive the best possible X-6 latency minimization. 
The last card of the assembled deck must be the type 10 
card. 

II. Input Card Format 

A. Label Card, Card Type 1 

Function: 

80 Card 
Columns 

1-2 
3-10 

11-1 5 
16-20 
21-26 
27-30 

31-80 

44 

To provide run identification for the edited 
lis ting. 'lihe informa tion contained in this 
card will be printed as a header for each 
page of the listing. 

90 Card 
Columns Format Name of Field 

1-2 61 Card Type 
3-10 666t:l::i'j66 Spaces 

11-1 5 ppppp Program Identification 
16-20 6,~ Spaces 
21-26 ddddd Date 
27-30 MMb. Spaces 
31 -45 ~ ... ~ Spaces 
46-85 zzzz ••• zzzz Descr iptive Comments 
86-90 M6M Spaces 

U 1 774. 1 



Technical Notes: 

1 
I • Each run being assembled must have a Label Card as 

the first card of the symbolic deck. If the label 
card is missing, the computer will stop and display 
67 0003 cccc. 

2. 

3. 

4. 

5. 

6. 

7. 

Column 2 must contain a 1 punch. 

Columns 3-10 are not examined by the system and 
can be used, if desired, to record additional des~ 
criptive information. This information is not 
printed in the output listing. 

The program identification field is not altered 
by an X-6 assembly and can contain any combination 
of characters. However, the identification should 
be meal1ingful to the installation (for example, 
RUN01 ). 

Columns 16-20 are never punched. 

An X-6 assembly does not alter the date field; there­
fore, it may appear in any format desired. 

Since the comments are not altered by an X-6 assembly, 
the co~~ents field may contain any descriptive infor­
mation. 

B. Restrict Card, Card Type 2 

Function: Specifies the absolute locations that will be 
used for some specific purpose and removes 
them from the Table of Availability before 
the Detail Cards, Card Type 8, are processed. 

80 Card 
Columns 

1-2 
3=10 

11-20 
21-30 
31-40 

41-50 
51-60 
61--70 
71-80 

U 1 774. 1 

90 Card 
Columns 

1-2 
3-10 

11-20 
21-30 
31-40 
41-4-5 
46-55 
56-65 
66-75 
76-85 
86-90 

Format Name of Field 

~2 Card Type 
66666666 Spaces 

iirrrraaaa Entry 1 
iirrrraaaa Entry 2 
iirrrraaaa Entry 3 
~~ Spaces 

iirrrraaaa Entry 4 
iirrrraaaa Entry 5 
iirrrraaaa Entry 6 
iirrrraaaa Entry 7 

6.~6. Spaces 



46 

Technical Notes: 

1. Column 2 must contain a 2 punch. 
2. Columns 3-10 are not punched. 
3. Entry contains ten digits in the following 

forma t: 
iirrrraaaa 

ii is the increment between elements. 
rrrr is the total number of locdti~ns to be 

restricted. 
aaaa is the beginning absolute address. 

4. There is no limit to the number of Restrict Cards 
that may be used. 

5. There is no limit upon the total number of ad­
dresses to be restricted by a single entry. 

6. A particular restrict card may contain from one 
to seven entries. If there are less than seven 
entries the first invalid entry field must con­
tain a sentinel worj of nines (99 9999 9999). 

7. The sentinel word stops the proc3ssing of a partic­
ular card, it does not signal the end of Type 2 
Cards. That is, if the last Type 2 Card contains 
all seven entries, it is not necessary to prepare 
another card containing only the sentinel word. 
The end of Type 2 Cards will be detected by the 
punch in Column 2 of the next card. 

Be During the ActUAl assembly of the symbolic deck the 
interval of time during which the restrict card 
information is processed may be great enough to 
give the impression that the system has entered a 
clo3ed loop. Actually, the length of time required 
is a function of the total number of locations to 
be restricted. In some cases, this might require 
up to seven or eight minutes. 

9. All absolute addresses used in the X-6 coding of an 
object program that will not be specified on: 

a. A Tag Equals Card, Card Type 3 
b. An Interlace Card, Card Type 4 
c. A Tables Card, Card Type 5 

must be restricted from X-6 assembly assignment by 
an entry on a Restrict Card. 

10. Usually the memory area required by a PTA routine 
(0000-0199) is restricted. 

U 1 774. 1 



C. Tag Equals Card, Card Type 3 

Function: Assigns a specific memory location to a per-
manent tag, K-Cons tant, or W-Storage. 

80 Card 90 Card 
Columns Columns Format Name of Field 

1-2 1-2 63 Card Type 
3-10 3-10 66666666 Spaces 

11-20 11-20 tttttllaaaa Entry 1 
21-30 21-30 ttttt6aaaa Entry 2 
31-40 31-40 t t t t tllaaaoa Entry 3 

41-45 llMM Spaces 
41-50 46-55 tttttllaaaa Entry 4 
51-60 56-65 tttttllaaaa Entry 5 
61-70 66-75 tttttllaaaa Entry 6 
71-80 76-85 ttttti}.aaaa Entry 7 

86-90 66666 Spaces 

Technical Notes: 

1. Column 2 must contain a 3 punch. 

2. Each entry must contain ten digits coded in the 
following format: 

ttttt.6.aaaa 
ttttt is the name of the permanent tag, K-Constant, 

or w-Storage. 
aaaa is the absolute location to which ttttt is as­

signed. 

3. There is no limit to the number of Tag Equals Cards 
that may be used. 

4. Each Tag Equals Card may contain up to seven entries. 
Any Tag Equals Card containing less than seven 
entries must have a sentinel word (99 9999 9999) in 
the first invalid field to stop processing of the 
card. 

47 



48 

D. Interlace Card, Card Type 4 

Function: Provides automatic restriction of the input 
and output interlace positions. A single 
entry on this card restricts all interlace 
positions in the specified band for the unit 
desired. Information on the Interlace Card 
also permits the addressing of elements sym­
bolically rather than in absolute notation. 

80 Card 90 Card 
Columns Columns Format Name of Field 

1-2 1-2 ~4 Card Type 
3-10 3-10 (\6661\~ Spaces 

11-20 11-20 in~aaOO Entry 1 
21-30 21-30 i~6xaaOO Entry 2 
31-40 31-40 i~aaOO Entry 3 

41-45 (\6666 Spaces 
41-50 46-55 i~aaOO Entry 4 
51-60 56-65 i~aaOO Entry 5 
61-70 66-75 i~xaaOO Entry 6 
71-80 76-85 i~xaaOO Entry 7 

86-90 /\6(\/\/\ Spaces 

Technical Notes: 

1. Column 2 must contain a 4 punch. 
2. Columns 3-10 are not punched. 
3. Each entry must contain ten digits coded in the 

following format: 
i~6xaaO 

i is the type of interlace and must be: 
H for the HSR 
R for the RPU read station 
o for the RPU punch station 
P for the HSP 
T or Z for tape 

n is the interlace number (0-9). 
x is the kind of interlace to be restricted: 

o for untranslated interlace 
1 for translated interlace 
2 for both 

For HSR and RPU 
interlaces 

o for HSP and Tape interlaces. Will always 
produce a two part interlace. 

aa is the absolute address of the band and must be 
an even number. 

00 is always coded as 00. 

U 1 774.1 



U 1774.1 

4. There is no limit to the number of Interlace Cards 
that may be used. 

5. Each Interlace Card may contain up to seven en­
tries. Any card containing less than seven en­
tries must have a sentinel word (99 9999 9999) in 
the first invalid field to stop card processing. 

6. The X-6 Assembly System does not distinguish between 
tape notations T and Z. The functions of these two 
symbols is to allow the use of up to twenty Tape in­
terlaces by the use of T and Z plus digit n which 
ranges from 0 through 9. 

49 



E. Tables Card, Card Type 5 

Function: Specifies the absolute locations to be used 
by a table or tables. 

Bo Card 90 Card 
Columns Columns For.rm t Name of Field 

1-2 1-2 1::.5 Card Type 
3-10 3-10 I::.~M!::. Spaces 

11-20 11-20 tnt\t\I\t\aaaa Word 1, Entry 1 
21-30 21-30 iiil::.Meeee Word 2, Entry 1 
31-40 31-40 tnb.Ml::.aaaa Word 1, Entry 2 

41-45 ~M Spaces 
41-50 46-55 iiiM!::.eeee Word 2, Entry 2 
51-60 56-65 tnMMaaaa Word 1, Entry 3 
61-70 66-75 iiiM!::.eeee Word 2, Entry 3 
71-BO 76-90 ~ .... ~ Spaces 

Technical Notes: 

1. Column 2 must contain a 5 punch. 
2. Each entry must contain twenty digits coded in the 

following format: 

Word 1 Word 2 
tnMMaaaa iii!::.Meeee 

t is the table identification (S, U, or V) • 

n is the table number (0-9) • 
aaaa is the absolute location of the first table 

element. 

iii is the interval (or increment) between elements. 
eeee is the total number of elements in the table. 

3. There is no limit to the total number of Table Cards. 

4. A particular Table Card may contain from one to three 
two-word entries. If it contains less than three 
entries, word 1 of the next invalid entry must cortain 
a sentinel word (99 9999 9999). 

5. Columns 71-BO, on the 80 column card, and 76-90, on 
the 90 column card, are ignored by the X-6 Assembly 
System. 

50 U 1 774.1 



F. Specifications Card, Card Type 6 

Function: Indicates that the next operation to be as­
sembled contains parameters that will lie 
in the range X 01 through X 20 and speci­
fies the X-6 symbolic address or the absolute 
address to be substituted for each parameter. 

80 Card 90 Card 
Columns Columns Format Name of Field 

1-2 1-2 ~6 Card Type 
3-5 3-5 www Operation No. (or Name) 
6-8 6-8 yyy Card Number 
9-10 9-10 M Spaces 

11-20 11-20 xMnnsssss Entry 1 
21-30 21-30 xMnnsssss Entry 2 
31-40 31-40 xMnnsssss Entry 3 

41-45 b.MM Spaces 
41-50 46-55 ~LIDnSSSSS Entry 4 
51-60 56-65 xMnnsssss Entry 5 
61-70 66-75 xMnnsssss Entry 6 
71-80 76-85 xMnnsssss Entry 7 

86-90 /\/\/\1\/\ Spaces 

Technical Notes: 

1. Column 2 must contain a 6 punch. 

2. Each entry must contain ten digits coded in the 
following format: 

xMnnsssss 
xMnn is the generalized parameter. 
sssss is the address (symbolic or absolute) to 

be substituted. 

3. Necessarily, sssss must be some kind of tag line or 
absolute memory address. 

4. The total number of parameters allowed in the sub­
routine is twenty. However, there is no restriction 
upon how many Specifications Cards are used. For 
example, twenty cards with one entry each might be 
used or four cards with five entries each. 

5. Each card may contain from one to seven entries. 
Any card containing less than seven, however, must 
contain a sentinel (99 9999 9999) in the first in­
valid entry field. 

6. A new specifications card may be introduced only at 
the beginning of a new operation and must precede the 
Header Card. 

7. Information provided on the Specifications Card is 
retained until the next operation begins. 

U 1 774.1 51 



G. Operation Header Card, Card Type 7 

Function: Specifies the nunber or name of the operation 
to be assembled. Serves to set counter for 
processing of Type 8 Cards which will follow: 

80 Card 90 Card 
Columns Columns Format Name of Field 

1-2 1-2 ~7 Card Type 
3-5 3-5 www Operation No. (or Name) 
6-8 6-8 yyy Card Number 
9-30 9-4"5 ~~ ••• D.M~ Spaces 

31-80 46-85 zzzz ••• zzzz Descriptive Comments 
86-90 /\/\/\/\/\ Spaces 

Technical Notes: 

1. Column 2 must contain a 7 punch. 

2. The card number is stored and becomes the base for the 
counter used when processing Type 8 Cards. Thus, the 
card number may be any three digit number; however, 
for the most flexibility as a counter base, it is 
usually 000 or 001. 

3. The Descriptive Comments are printed without altera­
tion. 

4. An output card will not be produced by the Operation 
Header Card. 

5. An Operation Header Card must precede each operation 
to be assembled. 

52 U 1 774.1 



H. Detail Card, Card Type 8 

Function: Contains the object program coding that will 
be assembled by the X-6 Assembly System Pro­
gram. 

80 Card 90 Card 
Columns Columns Format Name of Field. 

1-2 1-2 t:8 Card Type 
3-5 3-5 www Opera tion Number (or Name) 
6-8 6-8 yyy Card Number within Operation 
9-10 9-10 66 Spaces 

11-1 5 11-1 5 aaaaa Symbolic a Address 
16 16 x Control Code 

1 7-1 9. 17-19 000 Symbolic Operation Code 
20 20 6 Space 

21-25 21-25 m.m.mm.m Symbolic m Address 
26-30 26-30 ccccc Symbolic a Address 

31-45 ~ ... ~ Spaces 
31-80 46-85 zzzz ••• zzzz Descriptive Comments 

86-90 66666 Spaces 

Technical Notes: 

1. Column 2 must contain an 8 punch. 

2. The Detail Cards must be numbered in sequence beginning 
one number higher than the card number appearing on the 
Header Card for the operation. 

3. Only Columns 6-8 are extracted for the card number. 
Therefore, columns 9 and 10 should not be used as part 
of the card number, even though no other use is made of 
them. 

4. The Control Code, column 16, signals that conditions are 
associated with the instruction. These conditions are 

U 1 774.1 

of three ca tegor ies: Index Reg is ters" nega tive cons tants , 
and alphabetic constants. 

The code used may be one of the following: 

a. 6 if the instruction requires no specific control 
information. 

b. 2 for a negative constant. 

c. 1,2, or 3 if an Index Register is to be specified. 

d. U for the Unprimed portion of a two part alphabetic 
90 column Card. 

P for the Primed portion of a two part alphabetic 
for 90 Column Card. 

e. U for the Unprimed portion of three part alphabetic 
for 80 Column Card. 

53 



5. 

6. 

7. 

8. 

9. 

54 

f. 

P for the Primed portion of a three part alphabetic 
for 80 Column Card. 

D for the Duoprimed portion of a three part alpha­
betic for 80 Column Card. 

N for the Numer ic por tion of a two part alpha­
betic for 80 or 90 Column Card (machine code). 

Z for the Zone portion of a two part alphabe~ic 
for 80 or 90 Column Card (machine code). 

An alphabetic constant, to be properly entered, should 
be on two or three cards, depending on whether it is.to 
be two or three part image. These cards would contain 
identical information, but the part of the image that 
was loaded would depend upon the control code in column 
16. Each card would be numbered in ascending sequence. 

Column 20 is not used. 

Refer to the section on Coding for a discussion of the 
a, m, and c address possibilities. 

The Descriptive Comments are printed without alteration. 

Since the function of the X-6 Assembly System is to 
process Detail Cards, these cards must occur in any sym­
bolic deck to be assembled. 

U 1774.1 



I. Operation Sentinel Card, Card Type 9 

Function: To advance the paper to the beginning of the 
next page so that the record of each opera­
tion is distinctly separated on the output 
listing, and to clear the storage tables con­
taining temporary tags and specifications in­
formation. 

80 Card 90 Card 
Columns Columns Form.a t Name of Field 

1-2 1-2 ~9 Card Type 
3-5 3-5 www Operation Number (or Name). 
6-8 6-8 yyy Card Number within Operation 
9-30 9-45 ~h.M ••• ~ Spaces 

31-80 46-85 zzzz ••• zzzz Descriptive Comments 
86-90 ~~ Spaces 

Technical Notes: 

1 • 

2. 

3. 

4. 

5. 

U 1774.1 

Column 2 must contain a 9 punch. 

The Operation Number or name must be the same as 
that given to the Type 8 cards of the operation. 

The card number must be one more than the card 
number of the last Type 8 Card. 

The Descriptive Comments are printed without altera­
tion. 

An Operation Sentinel Card must succeed the last 
Type 8 Card of each operation to be assembled. 

55 



J. End of Run Sentinel Card, Card Type 10 

Function: Signals that all of an object program has 
been processed. The computer will be 
brought to an orderly halt. 5 

80 Card 90 Card 
Columns Columns Format Name of Field 

1-2 1-2 10 Card Type 
3-15 3-15 /:::J::J:::Jj.. • • ~ Spaces 

16 16 x Con tro 1 Code 
17-19 17-l 9 000 Symbolic Operation Code 

20 20 /:::. Space 
21-~5 21-25 mmmmm Symbolic m Address 
26-30 26-30 ccccc Symbolic c Address 

31-45 /:::J::J:::Jj.. • • /:::J::J:::Jj. Spaces 
31-80 46-85 zzzz ••• zzzz Descriptive Comments 

86-90 1\1\6/:::.6 Spaces 

Technical Notes: 
1. Columns 1 and 2 must contain a 1 and 0 punch res­

pectively. 

2. All entries on the card from column 16 through the 
last column follow the same rules as the Detail Card, 
Card Type 8. 

3. The symbolic instruction contained on the End of Run 
Sentinel Card will be translated and punched on an 
output sentinel card (it is assumed that the program 
rlA~k nT'nrlll~ArI hU' ~n Y-h ~C:C:Amh1~1 1.d11 ho If)~non hU !:l ----- r- ----......,- """J ~ ... .- ..... '"" """' ...... _....., ....... ....,-J ... ..- ............. V'-' ..... ""'''-''''''''"V'-4 UJ ........ 

PTA routine. These routines require the sentinel 
card to contain the first instruction of the object 
program) • 

4. The Descriptive Comments are printed without altera­
tion. 

5. Every object program ass'embled mtist contain an End 
of Run Sentinel Card. 

5The final stop is 67 8888 cccc (cccc being the first a address 
of the X-6 Assembly System Program). 

56 U 1 776.1 



OUTPUT C~~D FORMAT 

The cards produced by the X-6 Assembly System are the machine 
code equiv"alent of the X-6 Symbolic input cards. This output 
format is acceptable to the loading routine. The differences 
between the X-6 produced card format and the exact PTA01 format 
are: 

Card 
Columns 

1-5 

11 -16 

47-50 

U 1 774. 1 

X-6 Produced Output 
Card Contents 

Five digit program identi­
fication from columns 11-15 
of the X-6 Label Card, Type 
1 • 

Operation and card number 
from columns 3-8 of the X-6 
input card. 

Card number in X-6 produced 
deck. 

Load Routine Input 
Card Contents 

Program Name. 

Page number, line number 
and suffix. 

The PTA routines require 
a card count on the last 
card of the input deck 
only. 

57 



PROGRAMMING PROCEDURES 

I. Flow-Char ting 

The only modifications to standard flow-charting procedures 
are: 

A. Operations should be kept short and well defined. 

B. Designations for an operation are shown as: 

ASINF ASJNF 

[>-i0peration ~ 
Permanent tags should be assigned to 
these triangles representing ope~a­
tion (or subroutine) entrances and 
exits. 

o 

C. Communications links within operations are shown as: 

ASINF 

~.or examPle'[>-i H 
~n connec- LDA ADDK6012 
tors: ----_ ... I 
Temporary tags should be assigned to these. 

D. Execution of one operation within another operation is 
shown by: 

ASIl'lF 
For 
example: LDA STA 

E. 

58 

X-6 symbology should be used in the flow chart. Tahle and 
interlace symbols and working storage addresses should be 
assigned during flow-charting. 

U 1 774.1 



II. Coding 

When coding, it must be kept in mind that buffer tests are 
not inserted by the X-6 Assembly System but must be in­
serted where required during the coding or after the object 
program is assembled. Accurate estimates for buffer test 
insertions can be made by consulting the Latency Minimiza­
tion Section, above. Aside from this, the general rules 
for X-6 coding are: 

A. Start each operation with a "Header" line (see Card 
Type 7 in Input Card Section, above) on a new sheet 
of coding paper. 

B. Code the main chain of the object program first and 
then the lesser used branch paths. Since each address 
is assigned in order of reference during assembly, this 
technique will produce better minimization. 

C. The comments columns should be used liberally since 
the X-6 produced edited listing will be more valuable 
for desk checking if full comments are appended. 
Comments should be limited to numeric and alphabetic 
characters. 

D. A cross reference to the card number on which the in­
struction line is to be punched should be maintained 
in the box on the flow chart. 

E. Each operation should end with an Operation Sentinel 
Card (see Input Card Format, above). 

F. Initial conditions of all working storages should be 
coded. 

The memory is usually filled with stop orders using PTA01. 

U 1774.1 59 



PREPARATION FOR THE X-6 ASSEMBLY 

1 • 

2. 

3. 

4. 

5. 

6. 

60 

Have all operations keypunched and verified. 

Obtain any needed X-6 library routines and prepare specifi­
cation cards. 

Prepare card types 1, 2, 3, 4, 5, and 10 if this has not al­
ready been done. Be sure to restrict the area used by the 
standard loading routine. 

Arrange the input deck in the desired order. If the 'program . 
is very large, place the most important operations first; 
they will get better minimization. 

Sight check the separate operations to make certain that 
card types 7, 8, and 9 within each operation are identical­
ly punched in columns 3-5 (operation number). 

Either manually or by machine, check that card numbers are 
ascending within operations with no omissions. 

U 1774.1 



OPERATING INSTRUCTIONS FOR THE X-6 ASSEMBLY 

I. Loading and Assembling 

1. Load X-6 Program Deck.l If the deck is in the three in­
struction per card format use a PLD routine. If it is 
in the one instruction per card format use a PTA routine. 

2. After X-6 is loaded, or earlier: 

a. Feed blank cards through to all stations of the RPU. 

b. Advance paper in HSP so six free holes show above 
the paper holding clamps. 

c. Put X-6 input program deck in the HSR. 

3. To assemble a program: 

a. Set on continuous, depress general clear, and de­
press Run button. 

b. Successful stop is 67 8888 cccc. 

c. Error stops are listed on the following pages along 
with error indications which do not stop the com­
puter. 

4. After assembly, the output program deck is complete in 
Stacker zero of the Read-Punch Unit. Any cards in 
Stacker one should be des troyed. 

5. Check the edited listing carefully, all detected input 
data errors are coded and tabulated in print word 01 on 
the listing. These errors must be corrected before 
desk checking can begin. 

6. Print the contents of the memory to preserve the informa~ 
tion accumulated during the assembly .which will be useful 
for desk checking. 

The X-6 Memory Layout, see below, C2n be used to inter­
pret the contents of the memory. 

7. The following routines might also be used, after one 
X-6 assembly, and prior to the next. 

a. An X6LNU routine produces a list of all storage lo­
cations not used by the assembled program. This 
routine should be used after printing the contents 
of the memory. 

lSee X6TLD for instructions to load X-6 instruction tape. 

U 1 774.1 61 



b. An X6LUR routine produces a listing of all storage 
locations with operation and card number of the 
progra~s contents. 

II. Error Codes (These appear on listing) 

Code 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

62 

Originates In 

Permanent Tag Search 
Routine. 

Temporary Tag Search 
Routine. 

K/W Search Routine. 

Memory Availability 
Routine. 

Memory Availability 
Routine. 

Specifications Table 
Search Routine. 

Address Analysis Rou­
tine. 

Process Action Code 
Routine. 

Instruction Code 
Analysis Routine. 

Interlace Availability 
Routine 

Means 

More than 300 permanent tags. 
Address 9999 has been assigned. 

More than 50 temporary tags. 
Address 9999 has been assigned. 

Address higher than K 299 or W 
299 has been requested. 9999 has 
been assigned. 

No more storage. Have assigned 
9999. 

No two consecutive addresses 
free. Have assigned 9999. 

Nothing in specifications table 
matches this "X" symbolic address. 
Absolute 9999 has been assigned. 

An incorrect "a" address. Pre­
vious instruction had blanks in 
m or c part. This a should have 
been blank. This a has been 
processed properly - the previous 
line must be fixed. 

Spaces in m and c. Spaces in ill 

will be assumed to be in error. 

Invalid instruetion code. The c 
address will be incremented by 3, 
a 67 instruction will be punched 
in the Op portion of the output 
card. 

.Reference has been made to a word 
part in an interlace which was 
not properly restricted in summary 
card type 4. Address of 9999 has 
been assigned. 

U 1 774. 1 



III. Stop Codes (in m part of STP order) 

Code Originates In Means 

0001 Get Next Card Routine. The card being diverted to HSR 
Stacker 2 has failed to pass 
read check. Reposition cards 
and depress Run button to try 
again. 

0002 Get Next Card Routine. Malfunction in HSR has caused 
overflow. Fix trouble. Depress 
Run button to try again. 

0003 Main Chain Routine. No label card (Type 1). Prepare 
label card. Reposition input 
deck. Depress Run button to be­
gin again. 

0004 Process Specifications Too many specifications for cur-
Entry. rent library routine. Depress 

Run button to proceed. Error 
code F will appear later. 

0005 Print Routine. Malfunction in printer has 
caused overflow. Fix trouble. 
Depress Run button to print cur­
rent line. (It was PRN order 
that caused it). 

0006 Punch Routine Malfunction in RPU. Fix trouble. 
Depress Run button to execute 
punch order. 

0007 Main Chain Routine Card type sequence error. Check 
last card read. If it is a type 
7 card, depress Run button to 
get to next stop order. Go to c 
to process card. If it is type 8, 
go to m of next stop order. 

0008 Process Detail Card Operation number on detail card 
Routine. is incorrect. Depress Run button 

and machine will stop on 67 order. 
Go to m to process card. Go to c 
to get next card. 

0009 Process Detail Card Card nlmber on detail card incor-
Routine. rect. Same action as 0008 Stop. 

8888 Main Chain Routine. Final successful stop. Reload 
last 100 cards of·X-6 deck and 
follow normal operating instruc­
tion before depressing Run 
button if new assembly is wanted. 

U 1 774.1 63 



III. Stop Codes (in m part of STP order cont.) 

Code Originates In 

0010 Main Chain Routine. 

IV. X-6 Storage Layout 

Means 

Previous card was type 9, card 
now being processed is not a 
type 7 or 10 card. Depress Run 
button. If card last read is 
to be processed as type 10 
card go to the c address of 
this order. If it is to be 
processed as a type 7 or 8 
card, go to the m address. 
This will transfer control to 
another stop order. Now if the 
card to be processed is a type 
7, go to the c address of this 
stop order. If it is to be 
processed as a type 8 card, to 
m address. 

A listing of the memory at the end of a successful assembly 
is desirable for desk checking and patching of object pro­
gram. 

Location 

0800 

r __ 
1 Otn 6 -

2110-211 7 

211 8-2130 

2100-2109 

2200 Band 

3250-3299 

64 

Name 

Table s8 

Table S9 

Table V3 

Table v4 

Table S5 

02 Interlace 

Table S3 

Use 

Valid mnemonic codes stored 20 
words apart. 

Information words for each 
mnemonic code stored 20 words 
apar t. 

Two or three part interlace word 
position for Q. 

Two part interlace word position 
for P. 

Interlace origins (from card type 
4) • 

Repunching of output cards which 
fail read check. 

Temporary tags with absolute ad­
dresses. Cleared after every op­
eration. No value after complete 
assembly. 

U 1 774.1 



Location 

2450-2465 

2470-2479 

2480-2509 

2520-2539 

2540-2559 

2800-3099 

3100-3249 

3300-3599 

"Jh()()_"J'700 
,J uvv -- ,J ( / / 

3800 Band 

4000 Band 

4200 Band 

U 1 774.1 

Name 

Table V2 

Table S6 

Table S7 

Table V1 

Table VO 

Table 84 

Table S2 

Table S1 

PO Interlace 

HO Interlace 

01 Interlace 

Use 

Two and three part interlace word 
positions for Hand R. 

Interlace origins (from card type 
4) • 

Table origins and increments 
(from card type 5). 

X-6 equivalents for last set of 
specifications. 

Specifications. Cleared after 
every operation. No value after 
complete assembly. 

K and W addresses and absolute 
addresses are stored as follows: 

2800 KO and WO as OKKKKOWWWW 
2801 K1 and W1 as OKKKKOWWWW 

Address of permanent tags in 
same order as Table S1, stored 
as: OaaaaOaaaa. Left half-words 
used for first 150 tag-addresses, 
then right half-words are filled. 

Permanent tags. The 5 character 
alpha-numeric tag is stored as 
zzzzznnnnn. One tag per word. 

Storage availability. Each word 
of table represents a band rela­
tive address, 0-199= The 20 bits 
in the left half-word are zero 
for unused or 1 for used repre­
senting the 20 standard access 
bands. The 20 bits in the right 
half of words 3600-3649 repre­
sent high-speed access storage. 
Addresses 4000, 4050, 4100 and 
4150 are included in first digit 
of right half-word. Right half 
of words 3650-3799 are unused. 

Header for X-6 listing. 

High-Speed Reader read-in area. 

Output punching area. 

65 



Location 

4200 Band 

4400 Band 

0000-0199 

66 

Name 

RO Inter la ce 

p1 Interlace 

Restricted 

Use 

Read-Punch Unit read in area. 

Detail lines for X-6 listing. 

Used to load X-6 and later 
filled with memory print rou­
tine. 

U 1 774.1 



APPENDIX I 

Operations and Subroutines within the x-6 Assembly System 
Program. 

AAR - Address Analy~is Routine - Analyzes the five character ad­
dress in the a, m, or c portion of an instruction to deter­
mine which lower level subroutine should be used for pro­
cessing. 

ACO - Action Code Routine - After the PDC path has been completed, 
ACO continues the processing of instructions containing op-­
eration codes belonging to the Action Code 0 group. 

AC1 - Action Code 1 Routine 

AC2 - Action Code 2 Routine Same as ACO except that proces-
AC3 Action Code 3 Routine sing is done for a different Ac-

Ac4 - Action Code 4 Routine tion Code group in each case. 

AC5 - Action Code 5 Routine 

CAR - Clock Adjustment Routine - Updates the clock to the new re­
lative band level after an address assignment. 

CEP - Edit c for Print Routine - Edits the c address for print­
ing. 

CQN - Process Constants Routine - Converts the mnemonic control 
indicators into computer code keys. 

CPI - Clear Print Interlace Routine - Clears print interlace 1. 

EDS - Edit a, m, or c routine - Edits the a, m, or c address 
prior to processing. EDS includes the subroutines: 
EDA, EDM, EDC. 

EMP - Edit m for Print Routine - Edits the m address for print­
ing. 

EDX - Edit X routine - Establishes the Tentative Next Best Band 
Relative Address for clock option. 

FIE - Further Input Edit Routine - Provides additional input 
editing for card types 2 through 6. 

GNC - Get Next Card Routine - Obtains next card image from HSR. 

GNE - Get Next Entry Routine - Provides next entry from card 
types 2 through 6. 

U 1 774.1 67 



IA1 

IA2 

IA3 
IA4 

IA5 

Interlace Routines - Used by Input/Output interlace 
routines to determine interlace locations. 

IAH - RPU Interlace Routine - Converts a symbolic reference to 
an HSR interlace address to its real address equivalent. 

IAQ - RPU Output Interlace Routine - Converts a symbolic fefer­
ence to an RPU punch interlace address to its real ad­
dress equivalent. 

lAP - Printer Interlace Routine - Converts a symbolic reference 
to a printer interlace address to its real address equi­
valent. 

IAR - Reader Interlace Routine - Converts a symbolic reference 
to anHSP interlace address to its real address equivalent. 

IAT - Converts a symbolic reference to a tape word address to 
its interlace position equivalent. 

ICA - Instruction Code Analysis Routine - Examines symbolic in­
s truction codes for v alidi ty and obtains the 'correspond­
ing computer code information word for processing. 

1FT - Initial Fill Tables Routine - Initially fills the internal 
x-6 Assembly tables with proper bit configurations. 

KWS - K-Constant Working Storage Routine - Assigns initial loca­
tion to symbolic Working Storage or K-Constants and ob­
tains this address at time of later symbolic reference. 

MAR - Memory Availability Routine - Keeps a record of assigned 
locations through use of a single bit position-one location 
table scheme. Also differentiates between Fast and Normal 
access areas and ensures consecutive location assignments 
for c+1 conditions. 

MC - Main Chain Routines - Provides the main line of logic flow 
for the X-6 Assembly System. Consists of subroutines: MC1, 
MC2, MC3, Mc4, MC5, MC6-, MCt, MC8, MC9, MCX, and MCK. 

MLC - Modify Latency Counter Routine - Modifies the Latency 
Counter when a clock option is detected. 

PAP - Print and Punch Routine - Provides additional editing prior 
to printing and/or punching. 

68 U 1 774.1 



PDC - Process Detail Card Routine - Provides the processing of 
the X-6 symbolic instructions contained on the Detail Card, 
Card Type 8. 

PIE - Process In.terlace Entry - Sets up restricted input/output 
interlaces as defined on the Interlace Card, Card Type 4. 

PRE - Prepare Restrict Entry Routine - Edits restrict entry prior 
to processing as specified on the Restrict Card, Card Type 
2. 

PRN - Print Routine - Controls the printer listing of the ini­
tial specifications and the parallel listing of symbolic 
input and computer code instruction output. 

PSE - Process Specifications Entry Routine - Processes the speci­
fication entries on the Specifications Card, Card Type 6. 

PTE - Process Tag Equals Routine - Processes the tag equals en­
tries as defined on the Tag Equals Card, Card Type 3. 

PTR - Process Table Restrict Routine - Coordinates the restric­
tion of locations defined in restrict and Table specifica­
tion entries. 

PTS - Permanent Tag Search - Assigns an address when initial 
reference is made to a permanent tag and locates this ad­
dress at time of later references. Includes subroutine 
PTT for filing permanent tag entry in table. 

PUN - Punch Routine - Controls punching of X-6 machine coded 
output instructions. 

RES ~ Restrict Routine - Restricts memory table as entries on 
Card Types 2 through 5 are processed and as locations are 
assigned during assembly. 

STS - Specifications Table Search Routine - Searches specifica­
tions table for an identity when symbolic reference is 
made to an X-entry. 

200 - Band Relative Address Routine - Creates a hand relative 
address from a four digit absolute address. 

TAB - Prepare Table Entry Routine - Processes table entry as de­
fined on Table Card, Card Type 5. 

TAS - Table Address Routine - Calculates a specific tao~e address 
when a symbolic table reference is encountered. 

U 1 774.1 69 



TTS - Temporary Tag Search - Assigns an address when initial 
reference is made to a temporary tag and locates this ad­
dress at time of later reference. Includes subroutine 
TTT for filing temporary tag entry in table. 

U02 - Undigit Two Routine - Eliminates space bit configuration 
when necessary. 

UDC - Update Clock Routine - Updates latency clock according 
to information contained in clock option. 

UIE - Universal Input Edit Routine - Edits input card and trans­
fers fields to working storage. 

70 U 1774.1 



APPENDIX II 

X-6 Assembly System Flow charts 

Index To Routines 
Flow-Chart Flow-Chart 

Routine Page Routine Page 

AAR 79-80 IAT 86 
ACO 74 ICA 74 
AC1 74 1FT 84 
AC2 74 KWS 76 
AC3 74 MAR 81-82 
Ac4 75 MC 72 
AC5 75 MLC 87 
CAR 75 PAP 77 
CEP 75 PDC 73 
CON 76 PIE 84 
CPI 78 PRE 85 
EDA 85 PRN 77 
EDC 85 PSE 84 
EDM 85 PTE 85 
EMP 75 PTR 85 
EDS 85 PTS 84 
EDX 87 PTT 84 
FIE 78 PUN 77 

01"\ 

GNC 78 RES ov 

GNE 78 STS 84 
IA1 86 200 85 
IA2 86 TAB 85 
IA3 86 TAS 75 
IA4 87 TTS 84 
IA5 87 TTT 84 
lAB Qc. T'T"""""'" 78 

VV uv~ 87 IAQ 86 UDC 
lAP 86 UIE 78 
IAR 86 

U 1 774.1 71 



CARD TYPES 2-4 

/0-1 ~ ~1 HL.._;~_6_~~--, 

Q~0-L----....l 
\~)-G 

CARD TYPE 5 

~
ES /' 

CARD 
TYPE 5? 8 3 ,--

NO \ ~ 

MC') \, 

0-G 

MAIN CHAIN ROUTINES 

'­
CARD TYPE 6 

,~ 
~~G CARDTYPE7 
~ PRE PTR 1 

.-
/ , 

::~--~ . 
""c::~ 

~
o 

15 ENTRY , 
A SENTII~EL? 8 6) 3 

YES 

MC') 

'la ,\)"R 
20 MAS 
5b, 6b RES 
la MC8 
4a, 5a ,\CO 
2a, 3a .>.C2 
la, 2a, 40 PAP 
~a, 6a PUN 
3 To PDC 
1 8a, 1. 90 MA~ 
2b I.>.H 
50, 6a PUN 

FOR NEW 
ASSEMBL Y 



0-

EDIT INFO. TO 
PRINT FROM 

DETAIL CARD 

EDiT "0" AND ' 
CONTROL INDICATOR 

TO Pl~05 

CHECK OP. 
AND CARD 
NUMBER 

TEST CONTROL: 
INDICATOR 

KEY TO PRINT 

EDIT INSTR. CODE 
AND 11m" 

TO PI~06 

PROCESS DETAIL CARl) ROUTINE 

I 
I IF 
:"m" 

&-{5L 
I 

I 

• FINAL SENTINEL 
\ CARD 

0-B 

INDICATOR IN rA PUT CONTROL}-0-G 
FOR~ -+-rL CON 

FINAL SENTINEL 
CARD 

TEST 
MNEMONIC 

CODE 

MNEMONIC CODE 
IN FORM 

ZZZNNNO-O 
-.W.S.5 

INFO. WORD 
IN ,X, W.S. 5 

FROM ICA 

ANALYZE 
ACTION 
CODE 

/0-0 
NORMAL 

EDIT INSTRUCTION 
CODE TO ~ 
Pl~03 0 



INSTRUCTION CODE ANALYSIS ROUTINE 

NO MATCH 
IN TABLE 

ICT 

VALID CODES 

INCREMENTS OF 20 

TABLE S8 

ACTION CODE 0 ROUTINE 

lew 

INFORMATION WORDS 

FOR CODES 

INCREMENTS OF 20 

TABLE S9 

._----" YES 

HAVEALL~ 
TABLE ENTRI:S 2 
'3EEN CHECKED? 

NO 

ACTION CODE 1 ROUTINE ENTRANCE FOR AC2 AND AC4 

ACTION CODE 2 ROUTINE 

ACTION CODE 3 ROUTINE 



ACTION CODE 4 ROUTI~E 

ACTION CODE 5 ROUTINE 

EDIT C FOR PRINT ROUTINE 

CLOC:K ADJUSTMENT ROUTINE 

57-000 

57-010 

57-010 

57-019 

TABLE ADDRESS ROUTINE 

FREE INCREMENT ORIGIN 
..--... ..--... -----

o I 0 I 0 'I FI f 

TABLE 57 
30 WORDS 

• I • 1 5 1. 

--

--

--

,:=,~ 
CLOCK~ 



PROCESS CONSTANTS ROUTlNE~ 

INDICATOR 
IN rL 

ZN 0";0 

3 ) MUST BE Z 

-0 

K·CONSTANT WORKING STORAGE ROUTINE 

OBTAIN INCREMENT 
FROM DIGITS 8·10 

OF W.S. 0 

ABSOLUTE ADDRESS ABSOLUTE ADDRESS 

54000 

FOR K'S FOR W'S 

400 WORD"S 
INITIALl.Y FILLED 

WITH H'S 

S4299 '--__ _ 

TABLE 54 



PRINT ROUTINE 

~ 
V 
NORMAL 

ENTRANC E 

~ 
V-
SPECIAL 

ENTRANCE 

PRINT AND P UNCH ROUTINE 

1N SPAC~~ r::\ ~~RN -

P1~ 

~' 

0{ , , 
ti~ 
~ 

0--@PUN 

/ 1N 

/ 

, 
'~ 
~ 

PUNCH ROUTINE 

G:\ 
//~~~::::--

/' I - ...... -----

~
,' ~ SETONLY .... ==-.::.::----------

SENTINEL BY - --NOI~MAl CARD ~----:--.---
MC9 ~ -~ 

2 
.14d 2 .14. --0 ~ 140 2 

10N 

12N 

ENI) OF RUN 



GET NEXT CARD ROUTINE 

GET NEXT ENTRY ROUTINE 

2N 8:>NF -----I 
L.-___ ...... 

FIRST ENTRANCE 

I , , 
I 

, 

I b , 
, I 

I I 
, I 

I I 

" I I 

" II / 

H
~//' 

n I '~--- d 
1t1~lN , 

\\'" 
SUBSEQUENT \ \ " 
ENTRANCES \ \ , \ , \ , \ , \ 

\ \ \ \ 

\' 

~ 
FURTHER INPUT EDIT ROUTINE 

SPECIAL 
EXIT 

NORMAL 
EXIT 

····0 

UNIVERSAL INPUT EDIT ROUTINE 

ENTRANCE FOR CARD TYPES 8·9 

~~ 
~ 

ENTRANCE FOR CARD TYP ES 1·7 

ERROR CODE PRINT ROUTINE 

CLEAR PRINT 1 INTERLACE ROUTINE 

~~~ 
V---~~

UNDIGIT TWO ROUTINE

SPECIAL
EXIT

ZONE NUMERIC

R.\;- ~-c{
'0-0

SET IN AC2

. -0
MUST BE

H

MUST BE CLOCK

.---_.'t

ADDRESS ANAILYSIS ROUTINE

-0
MUST
BE R

NUMERIC

MUST BE

~ Nl~

IS X

l~

TENTATIVE BEST
NORMAL __

LAST ASSG. ADD.

W.S. U -- W.S.4

ALL TAGS)

---i'-_--_O_w~_t_8__iJ~

PRINT ERROR CODE G •
~'S IN PREVIOUS

~NSTRUCTION INDICATED
THAT THIS INSTRUCTION'

SHOULD BE /l'S ALSO.

ERASE ALL BUT
ZI AND Nl

FROM W.S. 0

IS
rL

MUST BE
rX

0-03 ~
-~W.S.~

CIJ
o

ADDRESS ANAL YSIS ROUTINE (CONT'D)

HINTERLACES

0---@--G
Q INTERLACES

ALL LOWER LEVEL ROUTINES
RETURN HERE. THIS IS ALWAYS

SET TO RETURN TO PROPER PLACE
I N MAIN CHAIN

R INTERLACES

P INTERLACES

SET SWI TCH TO
SEARCH LEFT

HALF OF TABLE

T.Z. INTERLACES

RESTRICT ROUTINE

~fis
~

DETERMINE]
BIT TO BE
BUFFED

~
/A:J ~

RES 2N

",~
\.Y~

DIGITS 1 AND 2
ARE IN rA

W.S. 80 - 0 OR 5 FOR SHI FT
W.S. 81 - AMOUNT OF SHIFT

BAND RELATIVE ADDRESS
W.S. 59 - UPDATING PATTERN
W.S. 82 - BAND RELATIVE LIMIT

171~

ENTRANCE FOR 0 LINE

~>-B-G
ENTRANCE FOR P LINE

~_r:L .. ~
~~

MAR
7N

RETURN LINE
IS IN rX

FREE ADDR'S
FO~§U'trDD P

16N

33N

SET
5.10
OR b

MEMORY AVAILABILITY ROUTINE· PART ONE

NORMAL 0---86.9 ,," ,,"
","

''':--0---8 ,'"
1.9 NORMAL PATH

MARDN • o-{'--K-E E-P-L-A-ST--'
a 7 BITS OF

W.S.4

so 000
.-------, CHECK NORMAL

MEMORY

/a-1'-_!...._._5·r_~8---'H ~;: ~[__ '---_....,

.... 0-1 ;:;;',~ J---lii~

NORMAL

ACCESS

BANDS

so 199

{

W.S. 4

W.S. 7

W.5; 11
W.S. 12

W.S.28
W.S.29
W.S. 38
W.S. 39
W.S.40
W.S.41
W.S.48
W.S.68

W.S.69

--'-
08 16 ~~ .. - ---

02 10 18

.....Q.!'- 12 20
06 14 22 --

AA

TABLE SEARCH 1.2 200 LIMIT FOR}B

Temporary storage nt exit: W.S. 13
Address ass igned to entry
being processed W.S. 63
Tentative best norm!]1 band
level
Current tab I .. SO word W.S.67
For 0 and P tags: address of tag
whict;' is not being processed
A - Absolute address counter
a - Value of a digit in table word
b - Value of a bit in table word
i-Band relative address
Updated table word
Li - Limit of table

~t~a~~ufnOtre:e~::~i~~ ~e::r%7:: when

part of storage has been checked
Bit in position for restricting and
updating

24 12 4000 4200 4400 4600
26 34 4050 4250 4450 4650

28 -36 4100 '!.JOO !~.Q 4700
30 38 4150 4350 4550 4750

4800

4850\

~Ol)
4950

T

TABLE SO

-rA

1 - Fast storage
o - Norma I storage!
9999 - Initial setting

1 - Fast storaue gone
o - Normal storage gone

a - Initial setting
1 - No consecutive normal addresses
2 - No consecutive fast addresses
9999 - No consecutive addresses in memory

000

049

FAST
ACCESS

BANDS

c:::

co
I\J

NO CONSECUTIVE
ADDR ESSES IN AT LEAST
ONE PART OF MEMORY

PREPARE TO
SEARCH NEXT

LINE FOR.Q.

NO CONSECUTIVE
ADDRESSES IN

NORMAL

G>-f3-1L-.._'X_-_,_A---IHL __ SR
_
P_...JH

MEMORY AVAILABILITY ROUTINE-PART ONE (CONT'D)

MAREN

8-
3N

,----t-B
23N

MEMORY AVAILABILITY ROUTINE-PART TWO

RETUlm IS TO
MAR7N IF P
LOCATION IS
FOUND FOI, 0;
IF NOT, :,IOTURN
IS TO M.·,.,<6N

OJ
W

TEMPORARY TAG SEARCH

o

PERMANENT TAG
TABLE 51

300 WORDS
INITIALL Y FILLED

WITH H'S

N. N]. 52000

SI :'99 '--_________ 52 1.(9

TABLE SI

MODIFY INSTRUCTION
SO THAT W.S.12

WILL B£ USED

0 a , 0 , a , a 0

ABSOLUTE
ADDRESS

TAGS
000

~
149

TABLE 52

0' a , 0'. S3000

ABSOLUTE
ADDRESS

TAGS
150

~
299 S3049

TEMPORARY TAG
TABLE S3
50 WORDS

INITIALLY FILLED
WITH H'S

TABLE S3

PERMAN ENT TAG SEARCH

-~ TAG HAS
BEEN~NED

PROCESS INTERLACE ENTRY

INTERLACE
NUMBER

TYPEOF r-~-r,-rL'=~,,-.-,
INTERLACE _ t

~~~~~-LJ-~~ 

RESTRICT UNPRIMED, 
PRIMED, AND DUOPRIMED 

FOR R.H. AND 0 
INTERLACES-

RESTRICT NUMERIC 
AND ZONE LOCATIONS 

FOR R.H. AND 0 
INTERLACES-

{
NUMERIC - W.S. 28 
ZONE - W.". 29 

, 
; 

/CV-E 

RESTRICT PRINT -<8
13 INTERLACE 

LOCATIONS 

PROCESS SPECS ENTRY ROUTINE 

!X!n!n!n!n!.!.!.!.!.! 

!X!n!n !n!n!.!t!t !t!t! 

BUILD INSTRUCTION 
FOR FILING 

SPECS TABLE SEARCH ROUTINE 

VO 000 Z 
1 

VO 019 

SPECS 
ADDRESSES 

TABLE'VO 

INITIAL FILL TABLES ROUTINE 

W.S.28 

W.S.29 

FILE 
W.S. 38 IN TABLE VO 
W.S. 39 IN TABLE VI 

VI 000 

VI 019 

X·6 
ADDRESSES 

TABLE VI 



PREPARE TABLE ENTRY ROUTINE 

t-IUM'3ER ORIGIN 

...... ; ----ITIIJ:lEEEEJ W.S. 28 

~ r __ w_.s_. 2_8_...J VI- ~,A 

PROCESS TABLE RESTRICT ROUTINE 

[3;>{ NUMClEROF 
PTR ENTRIES 

.... ,A 

PREPARE RI!STRICT ENTRY ROUTINE 

INCREMENT ORIGIN 

1,1,1 nl±1 nlTITl W.S. 28 

NUMBER 
OF ENTRIES 

~ORIGIN V"L ~W.S. 39 

INCREMi=NT 
NUMBER 

OF ENTRIES 

W.S. 82 _ 3AND 
RELATIVE LIMIT 

WILL BE 50 
OR 200 

PROCESS TAG EQUALS ROUTINE 

j NUMERIC - W.S. 28 
) ZONE - W.S. 29 

ABSOLUTE I f TAG-+ W.S. 0 
~OWR~S~ ~ ZZZZZNNNNN 

BAND RELATIVE ADDRESS ROUTINE 

EDIT A. M OR C ROUTINE 

t>----lL---J W.S.23 ~J-1 ~rA 

/ 
/ 

I 
W.S.25 
~,A ~J-1 / /0-1L-__ _ 

/~I 

8>-f/ \~--1L.. ___ _ ~ 
\ 

\ 

SET FOR a 
.... ,L 

\ 
\ 

W.S.25 
~,X \ v1 ~J-1 b>-d/I..---

'0-1L-__ SET FOR a ~ ~rL 

,A J-1 W.S.22 
_,X ~,A 

'~7 }1 W.S.24 }-~,A 

SL ~ ~-------



PRINTER INTERLACE ROUTINE 

RPU OUTPUT INTERLACE ROUTINE 

~-------I 
-0 

READER INTERLACE ROUTINE 

~~~~~--------------------~ 
RPU INPUT INTERLACE ROUTINE

-8

~.S.[}-09+
b 6 W.S. 40 5

,./ _rA

W.S.4'~ rA_ 8 IAH
W.S.4

TAPE INTERLACE ROUTINE

CALCULATE
INTERLACE

POSITION

INTERLACE ROUTINE 1

[>-------IL...---I
INTERLACE ROUTINE 2

C>

INTERLACE ROUTINE 3

INTERLACE ROUTINE 4
C'

MODIFY LATENCY COUNTER ROUTINE

AD

"m" MODIFI]--B-GER 0--.
+ CLOCK ,X 3 _,A

INTERLACE ROUTINE 5
[1~

r-----,

c~e
-O-_-COUNTER

1 EDM AAR ADJUST INDICATOR
Q1Z04

"---~

EIJIT X ROUTINE

o
UPDATE CLOCK ROUTINE

o
55000 56000

,"---r"--.-------r-....,

S5 009 '-" ___ ----''--_--'-_----J'--_-'----'-~ 56009

T ABL E 55 TABLE 56

	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88

