
X-6

PROGRAMMING

X-6 ASSEMBLY SYSTEM

... a programming aid

e 1151 • SPlllY IAMO COIPOllTION

Contents

1. INTRODUCTION • . • • . 1

Purpose And Advantages • • • • . 1

The Nature of the X-6 Assembly System 1

Additional Features and Conveniences•.......................... 1

2. X- 6 ADDRESSING . • • • • • 3

Abs o 1 u t e Address e s . • . 3
Interlaces ~•.......•....•............ ~•... 4
Tables . • • 5
Spaces • • • . • . . . • . • . . . 6
K and W Areas • . • . . 6
Tags . • . . . 7

Temporary Tags • • • . 7
Permanent Tags . • 8

Register Addresses . 8
Library Routines . . • • • • . 9
Sample Problems • • . • • . • . 9

3. ASSEMBLY PREPARATION 0 ••••• 0. 0 0 ••• 0 0 ••••• 0. '0. 0 •••• 0 •••• 0 0 11

General Information•......... , •......•......... 11
Card Types . • . 11

Label .. 11
Restricts . • . . . • . . . 12
Tag Equa 1 s • . • . . 13
Interlaces•...................•.......... 13
Tables•...• 14
Specifications ...•. 15
Header . • . 15
De t a i 1 . 16
End-Operation Sentinel ·~ 17
End Input . 17

4. CONST ANTS .. · ~ 19

Introductory Considerations .. 19
Non-Numerics ... 19
Summary .. 19

5. HOW X-6 WORKS .. 21

Input Processing ... 21
Detail Card Processing ... 22
Minimization ... 22

6 . PROGRAMMING PROCEDURE ·1.. • • • • • • • 2 5

F 1 ow - Ch art in g . 2 5
Coding ... 25
Preparation for Assembly '....................... 26
Assembly . 26

7. OPERATING INSTRUCTIONS . 27

Loading and Assembling . 27
Error Codes . 28
Stop Codes . 29

APPENDIX I - Problem Solutions 31

APPENDIX II - X-6 Memory Layout 33

APPENDIX III - Sample Listing .. 35

1. Introduction

PURPOSE AND ADVANTAGES

The X-6 Assembly System for the UNIVAC Solid-State 80 Computer is another
in the series of Remington Rand relative coding systems designed to sim­
plify the coding of data processing runs. Of the many advantages that
can be claimed for the system, probably the most significant is the elimi­
nation of many sources of programming errors. X-6 reduces debugging time
by permitting the programmer to code small sections of a problem indivi­
dually, later assembling these segments into a larger unified program.
The system also permits division of a large program among several pro­
grammers thus reducing overall coding time. Coding time is further re­
duced because X-6 performs automatically many of the jobs which are nor­
mally done by the programmer using computer code.

Automatic minimization, program list preparation, and conversion from a
format convenient for coding and key punching, to an efficient format for
a standard loading routine are also provided by the system.

THE NATURE OF THE X-6 ASSEMBLY SYSTEM

Programs, by nature, are composed of a number of subsections each de­
signed to perform a definite function. These subsections, or the lines
of coding which form them, are commonly called subroutines or operations.
The X-6 Assembly System is a program which receives as input a series of
these operations, assigns them as an integrated unit to storage locations,
and produces as output a complete program deck as well as a parallel printer
listing. During the assembly, relative and symbolic addresses are con­
verted to absolute or actual storage locations in the computer.

ADDITIONAL FEATURES AND CONVENIENCES

Included among the many conveniences provided for the programmer by X-6
is a system of relative and symbolic addressing. Basically, a relative
address is one which indicates a relationship between a line being refer­
enced and some other line whose location has already been determined. A
symbolic address is any arbitrary combination of characters defined within
a system to represent a storage location. The value of the particular
symbol is provided in some specified way by the programmer or the as­
sembler. Also included in the system are simplified notations for ex­
pressing constant and working storage locations.

In addition to the features already mentioned, the X-6 Assembly System
provides mnemonic instruction codes. Table I lists this code with its
computer code equivalents as well as a description of each instruction.

This manual is intended as a reference manual for the X-6 programmer and
a thorough understanding of the UNIVAC Solid-State 80 computer code and
programming techniques is assumed.

1

Minimum
Time Machine Function
In wt Code

25 Load rA

26 CI ear rA lo zeros

60 Store rA

36 Clear rA •Original sign
remains

30 Load rL

31 CI ear rL to zeros

50 Store rL

05 Load rX

06 C (ear rX to zeros

65 Store rX

77 rA•rL

70 Add: rA t m

75 Subtract: rA • m

105 85 Multiply: rL x m

115 55 Divide: m ! rL

20 Buff: m onto rA

35 Erase: rA controlled by m

In rA
62 Zero suppress:

and rX

17 Translate: computer•fo·
card code

12 Translate: card-to•Computer

code

3tn 32 Shift right: rA and rX

3.+n 37 Shift left: rA

82 Test equal: rA & rL

87 Test greater: rA & rL

00 Jump

Ind. 67 Stop·

3(4 If c') 22 RPU Buffer Test

203* 46 RPU Buffer Unload

203* 81 RPU Card Cycle

57 RPU Select Stacker 1

3(4 if c') 42 HSR Buffer Test

203* 96 HSR Buffer Unload

3(4 If c') 72 HSR Card Cycle

47 HSR Stacker Select

3(4 if c') 27 Printer test

16 Printer advance

592 11 Advance & print

14 86 Clear rA and rX, sign of
rL goes to rA and rX

23 rC-rA

02 Load Index Register

07 Increment Index Register

* Applicable only when d = O.

2

INSTRUCTION CODES

X-6

LOA

C·LA

STA

CAA

LDL

CLL

STL

LOX

CLX

STX

ATL

ADD

SUB

MUL

DIV

BUF

ERS

ZUP jl

MTC jl

CTM

SHR

SHL

TEQ c'

TGR c'

JMP

STP c'

RBT c'

RBU Rnood

RCC Onood

RSS

HBT c'

HBU Hnood

HCC c'

HSS noo

PBT c'

PFD yy

PRN Pnoee

CAX

CTA

LIR

llR

y

y

jl

Notes

LEGEND:

1. Unless otherwise noted, standard X-6
m and c addresses may be used.

2. Allmand c addresses use leading spaces
to make up the 5 digits allowed.

3. c Indicates address of next Instruction In
other than standard position,

4. Y Indicates that this address Is Ignored:
any 5 digits may be used.

n =number of places lo shift= 0, 1, ••• 10

n =number of places to shift= 0, 1, ••• 10

c' = next Instruction If rA = rL

c' =next instruction if rA>rL

c' =alternative next• Instruction (requires manual intervention)

c' =next Instruction if RPU free for use

n = 0, 1, ••• 9 for 0th thru 9th RPU input interlace J d = 0, normal translation

n = 0, 1, ••• 9 for 0th thru 9th RPU output lnterlacel d = 1, '"on the fly"

c' =next Instruction if HSR free for use

n = 0, 1 ••• 9 for 0th thru 9th HSR interlace (dis specified as in RBU, RCC)

c' =next instruction if HSR busy

n = 0, 1, 2 for stacker #0, #1, or #2

c' =next instruction if printer is free for use

YY = 00, 01, ••• , 79 =no. lines to advance

n = 0, 1, ••• 9 for Oth thru 9th print Interlace

ee as in PF D above

2. X-6 Addressing

ABSOLUTE ADDRESSES

In the X-6 Assembly System, the a, m, and c addresses contain a five­
digit field in the form:

aaaaa hhh mmmmm ccccc

where aaaaa 1s the address of the instruction 1n storage.

hhh 1s the mnemonic instruction code.

mmmmm is the address of an operand; the location of the next in­
struction to be executed; or can be ignored depending upon
the instruction to be executed.

ccccc is the address to which control 1s to be transferred.

When referencing an absolute storage address, the address is placed 1n
the least significant digit positions of that part of the instruction to
which it applies. The unused portion of the most significant digits 1s
filled with deltas.

For example, an instruction in 3465 to load register A with the contents
of storage location 1959 and then go to storage location 0372 would
appear as:

63465 l.DA 61959 66372

The delta is used as an empty column or space indicator and is inserted
mainly for the convenience of the Key Punch operator. However, as greater
familiarity is gained with X-6, the filler symbol may be omitted,thus
reducing the burden on the programmer. It should be noted that zeros
may be substituted for spaces, and

63465

may be written

03465

Any n um er i c or s p ace in the f i rs t ·dig i t po s i ti on o f an address w i 11 c au s e
the last four digits to be regarded as absolute and not to be modified in
any way.

3

4

Certain instructions require parameters which are classified here as

absolute addresses merely to indicate that X-6 does not process them.

1. The m address of a shift instruction 1s written as

where N 1s 0 through 9 and NN is 10.

2. The m address of stacker select instructions 1s entered as

b.b.NOO or b.ONOO

where N 1s 0, 1, or 2.

3. The m address of a paper feed 1s entered as

or t::.OOYY

whe,;re YY can be 0 0- 79.

INTERLACES

A five-digit address in the m portion of an instruction references a
specific word location in an interlace. The five digits have the follow­
ing significance.

Digit 1 may be:

H for the read interlace of the High-Speed Reader.

R for the read interlace of the Read-Punch Unit.

0 for the punch interlace of the Read-Punch Unit.

p for the print interlace of the High-Speed Printer.

Digit 2 may be:

0-9 thus allowing ten different interlaces for each type of input­
output unit.

Digit 3 may be:

U or P, or D for unprimed, primed, or duo-primed.
N or Z for the numeric or zone word.

H, R, or 0 interlaces are specified in card type 4* as either two or
three part images. If a two part image has been specified, only N or Z
should be used to reference the particular words.

Digits 4 and 5 may be:

10-17 for read station lof the High-Speed Reader or the read inter­
lace of the Read-Punch Unit or 20-27 for the second read station.

10-17 for the punch interlace.

01-13 for the print interlace.

To address the primed image in the seventh word location of a card at
the first read station of the High-Speed Reader and stored in an input
band assigned to contain interlace number two, the following five-digit
address would be used:

H2Pl7

The address of the same data after it has been read at the second read
station would be:

H2P27

Referencing a location in the print interlace is slightly different in
that no indication is made to a particular station. Instead only the
desired word location is entered in the last two digits of the address.
Since the print interlace consists of 13 word locations, the last two
digits may be any in a range of 01 to 13. The address of the unprimed
image in the fourth word location of a print interlace assigned as in­
terlace number two, would be:

P2U04

However, when addressing a complete interlace, digits 3, 4, and 5 are
specified differently. For example, the instruction to advance the paper
two lines and print the contents of the P2 interlace is entered as

PRN P2002 c

It should be noted that the H, R, and 0 interlaces
3, 4, and 5 when data is in its three part form.
noted that if digit 5 is a 1, the instructions RCC,
interpreted as a call for translation 'on the fly'.

TABLES

have zeros in digits
It should be further

RBU, or HBU will be

A table maybe defined as a series of values put into storage at regular­
ly spaced intervals. To address entries made in tables, the programmer
need only indicate the type and number of the table and the number of
the entry within the table. This address is in the form:

1nxxx

*See pages 13 and 14. 5

6

where i is the type of table (S, U or V).*

n 1s the number assigned to that table.

xxx 1s the number of the entry in the table.

For example, the address of the fifteenth entry under a table assigned
the symbol Sand designated as table number two would be:

S2015

X-6 allows 30 tables of up to 1000 words each with their successive en­
tries separated by an increment. This increment must remain constant
within a table.

SPACES

Spaces may be used to denote the next instruction. This method reduces
the amount of writing for the programmer. If spaces are used in either
the m or c portion, the next a address must also be spaces. For example,

a op m c

00249 LOA 66666 00251

66666 [CONSTANT]

00251 STA 00365 66666

66666 [NEXT INSTRUCTION]

Note: this device does not apply to instructions where m or c is ignored
and spaces ~re used as fillers.

K AND W AREAS

The K and W areas contain constants and working storage addresses, res­
pectively, whose locations are not dependent upon their relationship to
each other. Addressing of these entries is in five-digit notat1on and
in the form:

i6xxx

where i is the letter assigned to an area.

6 is ignored.

xxx is the number of the desired entry.

*X-6 makes no distinction between these three types of tables.

Any operation may reference these K or W areas in the m or c addresses.
The programmer may enter the initial value in any working storage by
writing an operation, usually WWW with the five-digit notation as the a
addresses.

Similarly, the constants themselves may be entered as an operation, usually
KKK, with K6660, K6661, and so on, as the a addresses.

There are 400 pooled constants and 400 working storages allowed in X-6.
All pooled constants and all worKing storages are automatically assigned
to high-speed access storage unless it has been filled. However, as far
as the constant pool is concerned, better access time will occur if it
is assembled after the operations referencing it. If constants contain
relative or symbolic addresses they may not be placed in the pool.

TAGS

Tags are used to identify instructions in the program to which reference
may be made. These tags are used as a addresses for lines of coding
or constants which are referenced in the m and c portions of other lines
of coding. The programmer may assign them to high-speed or standard access
storage. X-6 provides for two types of tags, temporary and permanent.

TEMPORARY TAGS

The temporary tag is used to identify references within an operation and
are meaningful only within that operation. These tags are in the form:

where 66 1s ignored.

xx is the tag identifier.
alpha-numeric.

It may be numeric, alphabetic, or

i is N or F indicating that the line is to be assigned to
standard or high-speed access storage.

is Q in a c address indicating an instruction the execution
of which could result in overflow. Q in an a address in­
dicates the next instruction to be executed if overflow
does not occur.

is P indicating the line to which control will be trans­
ferred should overflow occur (c+l):

The following 1s an example illustrating a possible use of Q and P 1n an
overflow condition:

*Q and P are automatically assigned to high-speed storage.

7

8

a op m c

666/::J~ ADD W6661 66620 (Indicates overflow condition)

6662Q [if no overflow]

6662P [if overflow occurs]

L\6666 [next instruction]

Note: Temporary tags do not have to be in any particular sequence. Only
50 temporary tags may be used in any one operation, usually 61
through 50 to assist the programmer to avoid exceeding the limit.

PERMANENT TAGS

These tags serve the same function as temporary tags but are not restricted
to singular operations~* They provide a means of communication among
different operations or different elements within any one operation.
Permanent tags can be assigned absolute addresses. These tags are in the
form:

nnnx1

where nnnx is the tag identifier and may be alphabetic or numeric.
It 1 s of ten des irab 1 e to enter nnn as the operation num­
ber.

i is N for standard access.

F for high-speed access.

The permanent tag

Q or
c + 1

P to indicate whether the tag applies to a c or
line in case of overflow.**

2054F
indicates that this tag, tag 4 in operation 205, is to be assigned an
address in high-speed access storage.

The tag

SIN SN
is tag 5 in operation SIN and is to be assigned an address in standard
access storage.

REGISTER ADDRESSES

666RA, 666RL, ahd 666RX are used as register designations in X-6. It is
recommended that when an instruction is being executed in a register,
this line of coding be listed on the coding paper with the register as
the a address. This line will not be punched in the output but it will
show on the listing and will allow X-6 to do a more efficient minimization.

*See card type 3, page 13.
**Q and P are automatically assigned to high-speed storage.

LI BRA RY ROUTINES

An X-6 library routine differs from any other operation only in that it
may contain variable addresses in the a, m, or c portion of an instruc­
tion, Variables are written in the form:

where nn may be any number from 61 to 20 for any single operation. Var­
i able addresses permit the programmer to supply parameters for any li­
brary routine he uses. It should be noted that any X-6 operation may be
written as a library routine. Furthermore, the individual programmer
can increase the usefulness of the system by initially coding commonly
used functions as library routines thereby making them available for use
by others.

SAMPLE PROBLEMS

l" Add·(3178) to (3182). Place the sum in 3210. If overflow occurs
place 0000000001 in 3200 and (rA) in 3210. In both cases, the next
instruction (following storage of the sum) is in 0271.

2. Given:

Data

Income
Number of dependents
Deductions other than

for dependents

Form

GGGGGG~GOO
ONNJlOOOOOO

OOAAAAfAOO

Location

W6661
W6662

W6663

A deduction of $600 is allowed for each dependent. The tax is 2-0%
of taxable income. Store the tax in location 4073 in the form:

3. Gi_ven:

Data

Quantity ordered
Unit price

Form

0 OQQQQ,t) 0 0 0
PJAPPOOOOOO

Location

W6661
W66.6.2

If the quantity is greater than or equal to 100, apply a discount of
40%. Otherwi~e, apply a discount of 30%. Store the charge in loca­
tion 4053 in the form:

ooccccc~c

9

3. Assembly Preparation

GENERAL INFORMATION

Each operation in a program has a header card, detail cards (cards con­
taining coding and constants), and an end-operation sentinel card. Library
routines are considered operations. However, they may have additional
specification cards which serve the purpose of particularizing any vari­
ables within them. In addition, summary cards are introduced for con­
trol purposes or to increase the efficiency of the routines.

CARD TYPES

The following 1s a list and description of the various input cards used
in an operation. It should be noted that card types 1, 7, 8, 9, and 10
are always used while the other summary cards can be considered optional
and dependent upon the specific operation.

CARD TYPE 1 - LABEL

A label card contains the output program identification and any title
information desired on the printer listing.

CARD
COMMENTS - ANY DESCRIPTIVE ENGLISH

I 1 l • S 6 1 I 9 ID II 11 ll U 15 16 11 U U 1~ 11 111l H 15 16 27 1119 30 31 32 3J H H 36 l7 31 J9 40 41 42 O u 45 46 41 O 49 50 51 H 5J ~· ~5 56 57 51 59 60 U 61 61 64 65 66 r.1 68 69 70 71 n 1l 14 15 76 11 71 1' 80

11

12

Here, xxxxx is the five-digit program identification.

mmddyy is month, day, year.

CARD TYPE 2 - RESTRICTS

Restrict cards mark off certain areas or locations as unavailaLle for the
assembly. This means that the system will not assign a relative or sym­
bolic address to a storage location in a restricted area. The programmer,
however, may specify an absolute address, an interlace, or a table within
this area if he deems it necessary. Up to seven entries may be made on the
card with no limit on the number of cards used. The last valid entry is
followed by a word of 9's as a sentinel.

CARD
ENTRY I ENTRY 2 ENTRY 3 ENTRY 4 ENTRY 5 ENTRY 6 ENTRY 7 TYPE

2 ffnnnnssss ffnnnnssss ffnnnnssss ffnnnnssss ffnnnnssss ffnnnnssss ffnnnnssssO

I

2

3

4

5

6

7

8

9
I 13II611!10 11111111111617111!10 11111311111617111!30 ll 37 13 34 n 36 31JS3940 41 41 41 u 4$,, 41 48 49 5~ 11111111111617111!60 ~I 61 63 61 61 66 61 61 6! I~ 11nnn7$16 11 1s,, so

Here, ff 1s the increment.

nnnn 1s the total number of restricted addresses.

ssss 1s the absolute starting address.

CARD TYPE 3 - TAG EQUALS

This card makes it possible to assign absolute addresses to permanent tags
used 1n a program. Up to seven entries may be made with no restriction
on the number of cards used. The last valid entry is followed by a word
of 9' s.

CARD

TYPE ENTRY 1 ENTRY 2 ENTRY 3 ENTRY 4 ENTRY5 ENTRY 6 ENTRY 7

tttttf::.nnnntttttf::.nnnntttttf::.nnnntttttf::.nnnntttttf::.nnnntttttf::.nnnntttttf::.nnnnO

Here, ttttt 1s the tag.

nnnn 1s the absolute address.

CARD TYPE 4- - I HTERLACES

All input-output interlaces required 1n the problem
Up to seven entries may be made with no restriction
cards. The last valid entry is followed by a word of

CARD
ENTRY 1 ENTRY 2 ENTRY 3 ENT RY 4 ENTRY 5

TYPE

are entered here.
on the number of

9' s.

ENTRY 6 ENTRY 7

4 tnf::.f::.f::.xbboo tnf::.f::.f::.xbboo tnf::.f::.f::.xbboo tnf::.f::.f::.xbboo tn6.f::.f::.xbboo tn6./if::.xbboo t n l\AA x b boo 0

I

2

3

4

5

6

7

8

9
I 1 l. ~ 6 1 I ' 10 1111111'151'11111'10 b1 1111 14 11 11 11 1! 1' JO ll 3; 1l H l'> 3' 17 18 l• 40 ti 41 '1 u •'> u," ti! n 1io \I \l '> l ~4 ',', ~6 \1 '>II ' ' 60 61'76J '4 6'> 66 '7U6• 10 111111141\16111111•110

13

14

Here x 1S 0 for a three part interlace.*

1 for a two part interlace.

2 if both kinds are specified.

t 1S the type of interlace, R, P, 0, or H.

n 1S interlace number (0-9).

bboo 1s the absolute address of the band. (bb must be an even number).

CARD TYPE 5 - TABLES

Tables are arrays of numbers separated by a fixed increment. The entries
are 1n pairs with a word of 9's following the last valid entry.

CARD
ENTRY 1 ENTRY 2

TYPE
ENTRY 3 ENTRY 4 ENTRY 5 ENTRY 6

s tn6666ssss ff f 666n n n n t n 6666 s s s s fff666nnnn tn6666nnnn fff666nnnn 0

1

2

3

4

5

6

7

8

9
I 1J4I611!10 II 11 13 U IS 16 17 U 19 70 11111l2'1516271!1!JO JIJ1JJJ4l5l6Jll!J!40 '1H0 u 45 •6 '7 •8 0 50 51 51 51 "'' '5 56 57 5! 59 60 ~I &i 61 U 65 66 61 ~R 69 IC' 1111117'151617787980

Here, t 1S the type of table; s, u, or v.

n 1S table number (0-9).

ssss 1.S the absolute starting address.

fff 1S the increment.

nnnn 1S the total number of entries 1n the table.

*The notations here for x are not applicable to the print interlace.

CARO TYPE 6 - SPECIFICATIONS

Specification cards precede library routines and are used to modify coding
within the routine before it is assembled. These cards will use the
operation number of the library routine. Therefore, the first card 1s
card number 1. The last valid entry is followed by a word of 9's.

CARD OPER CARD
TYPE NO NO ENTRY 1 ENTRY 2 ENTRY 3 ENTRY 4 ENTRY S ENTRY 6 ENTRY 7

6hhh yyy xnnnneeeee xnnnneeeee xnnnneeeee x.nnnneeeee xnnnneeeee xnnnneeeee xnnnn"""""O

I

2

3

4

5

6

7

8

9
I 1 l •I 6 1 I !10 11111111111617111!10 11111l1•111117111!JO ll ll ll H llll l1 ll l!•O 41u0 u u •&47 414'50 11111l14111il7111!i0 Uilll6'61"i1616170 11111ll•711illlllll0

Here, hhh 1S the operation number.

yyy 1S the card number.

xnnnn 1S the nth variable, as xOOO 1.

eeeee 1S the X-6 equivalent address.

CARO TYPE 7 - HEADER

A header card begins each operation (unless preceded by specifications)
and may contain, for listing purposes, a description of the function per­
formed by the operation.

CARD OPER CARD
TYPE NO NO COMMENTS - ANY DESCRIPTIVE ENGLISH

7hhhyyy

15

16

Here 1 hhh 1s the operation number.

yyy 1s the next card number (001 if no specification cards are used).

CARD TYPE 8 - DETAIL

These cards are the lines of coding and the constants. The card numbers
are in ascending sequence starting one higher than the header. An opera­
tion may not exceed 999 lines.

CARD OPER CARO

TYPE NO NO

8hhhyyy

INST
CODE

I I I

COMMENTS - ANY OESCRIPTIVE ENGLISH

lmmmmmccccc

I 7 l • ~ 6 1 I , 10 11 IZ 13 u I 16 17 18 19 10 ll n 111• lS 16 111119 JO 11 31 J3 H 35 36 37 31 39 40 u 42 nu 45 ., ., 0 "50 51 51 53 54 55 56 57 51 59 60 ~I 61 61 u 6S 66 67 61 '9 70 71 n 13 14 75 76 77 78 79 80

Here, hhh 1S the operation number.

yyy 1S the card number.

aaaaa 1S the X-6 a address.

III 1S the mnemonic instruction code.

mmmmm 1S the X-6 m address.

CC CCC 1S the X-6 c address.

Control 1S 1, 2' or 3 for the appropriate index register.
u, P, or D for three part alphabetic constants.
N or z for two part alphabetic constants.
2 for a negative constant.

CARD TYPE 9 END-OPERATION SENTINEL

CAllD OPER CARD COMMENTS - ANY OESCRIPTIVE ENGLISH
TYPE NO NO

9hhh yyy

111. 5 5 I I t 10 II II ll II l5 U 1111UIOll11111115151111It10 l1 32 3l 34 35 3' 31 31 39 40 u 0 0 u 4S ,, '1 41 0 50 51 52 5] 54 55 56 57 51 59 60 61 62 63 fi4 65 " '1 " u 10 71 72 7] 14 75 ,, 71 ,, ,, 10

Here, hhh 1s the operation number

yyy 1s the card number.

CARD TYPE 10 - END INPUT

0

1

2

3

4

5

6

7

8

9

This is an end-of-input sentinel card containing the first instruction of
the assembled program which will be executed after the program is fully
loaded.

CARD
TYPE

1 0

I NS T
CODE

I I I

COMMENTS· ANY DESCRIPTIVE ENGLISH

I 1 l ' 5 ' , I ' 10 11 1' I] II 15 16 11 u u 10 n n 2l 24 H~6 1118 71J]~JI 11 n H]5 36 17 JS 19 40 41 4l nu •5 H '7"., 'iO 51 ~1 51 ~5 56 57 ~8 ,, 60 flu 6] ,. f,~ 66 61 f.11 n 70 11 11 I] 14 75 Hi 11 11 ,, BO

Here, fields III, mmmmm, and ccccc are the same as for the detail card.

17

4. Constants

INTRODUCTORY CONSIDERATIONS

Whether pooled or included with the coding, constants are recognized by
the blanks in the columns reserved for mnemonic instruction codes. The
10-digit constant is listed in the m and c address columns on the coding
sheet. Positive constants are indicated by a space (~) in the control
column and negative ones by a two (2).

Sometimes alphabetic constants are needed in either a two or three part
form for printer or punch output. As a convenience, X-6 allows the pro­
grammer to write the alphabetic constant twice with N and Z or U, P, and
D in the control column. This makes it unnecessary for the coder to
break up the alphabetic characters into the machine pulse patterns which
will re-create the desired alphabetics when printed or punched.

NON-NUMERICS
There are six non-numeric computer-coded characters. The alphabetic
equivalents for these six characters are represented in the following
manner.

0101 A
0110 B
Olll C
1101 D
lllO G
llll H

Again, a space (~) or a two (2) in the control column will indicate a
positive or negative value.

SUMMARY

a. Positive numeric constants have a space (6) in the control column.

b. Negative numeric constants have a two (2) in the control column.

c. A, B, C, F, G, and H are equivalents for the six non-numeric com­
puter-coded characters.

d. Alphabetic constants (positive only) have a U, P, D, N, or Z in the
control column.

19

20

GET Fl RST
CARD & EDIT

GllC • UIE

I
I L _________ H~

GET NEXT
CARD HOIT

GllC • UIE

GET NEXT
CARD & ED IT

GllC • UIE

GET NEXT
CARD&EDIT

GNC • UIE

GET NEXT
CARD &ED IT

GNC • UIE

END OF "ONE
TIME" WORK
INITIALIZE

FOR OUTER LOOP

GET NEXT
CARD& EDIT

GNC • UIE

IS IT A

HEADER CARD?
(TYPE 7)

GET NEXT
CARD & ED IT

GMC ·UIE

DO All ENO
OF RUN

WORK

IS IT LABEL INITIALIZE FI LL ALL TABLES

CARD? HANDLE LABEL WITH PROPER
CARD • PR INT FILL

(TYPE I) PRN

NO

ERROR
STOP
0003

IS IT RESTRICT FURTHER ED IT
CARD? PRINT

(TYPE 2) FIE· PRM

IS IT TAG
EQUALS CARD?

(TYPE 3)

FURTHER ED IT
PRIMT

FIE· PRM

IS IT A
SPECS CARO?

(TYPE 6)

EDIT & PRINT
INITIALIZE

FOR INNER LOOP

IS IT A
DET A I L CARO?

(TYPE 8)

NO

HO

ERROR
STOP
0007

FURTHER EDIT
PR INt

FIE • PRN

FURTHER EDIT
PRINT

FIE· PRN

FURTHER ED IT
PRINT

FIE· PRN

HANDLE A
DETAIL CARD

POC

00 ALL EMO
OF OPERATION

WORK

FINAL STOP HIT START

H~--G) TO DO A
CODE SECOND

8888
IN ASSEMBLY

SYMBOLS
IFT

THIS IS
INNER LOOP

THIS IS
OUTER LOOP

GET NEXT
EMTRY FROM

RESTRICT CARD

GET NEXT
ENTRY FROM
SPECS CARD

IS IT A
SEMTINEL?

YES

IS IT A
SENTINEL?

HANDLE A
RESTRICT ENTRY

PRE

HANDLE A
TAG E?UALS
ENTRY PTE

HANDLE AN
INTERLACE ENTRY

PIE

HANDLE A
TABLE ENTRY

TAB

HANDLE A
SPECS ENTRY

PSE

X-6 BLOCK CHART

5. How X-6 Works

IN PUT PROCESS I NG

Programmers will be able to make more effective use of X-6 if they un­
derstand how it performs its function.

Each input card type follows a different path. A brief statement of the
steps performed on each card type follows:

1. The fields 1n the label card (type 1) are carried over to the
output without modification.

2. The entries in restrict cards (type 2) are used to mark off loca­
tions in the storage availability table. X-6 must not allocate
any restricted addresses.

3. The entries in tag-equals cards (type 3) are filed in internal
tables equated to the given absolute addresses. The absolute
addresses are marked off in the storage availability table.

4. The entries in interlace cards (type 4) are used to mark off in­
terlace positions in the storage availability table, and the
or1g1ns are filed for future use.

5. The entries 1n table cards (type 5) are handled in a similar
fashion. The only change is that increments as well as or1g1ns
are saved for future use.

Card types 1-5 must have been received in order, and after the first type
6 or 7 card, no additional 1-5 cards will be accepted. At this point
the initial phase of X-6 is complete, and from this point on the routine
expects card types 6-9 or 7-9 on a per-operation basis.

6. The entries in specifications cards (type 6) are filed 1n tables
for direct substitution later.

7. The header card (type 7) is used to initialize for the detail/
cards which follow.

8. Detail cards (type 8) encompass all of the lines of coding and
constants which m~ke up a routine. Only detail cards cause
output punching. Processing these cards is the primary function
of X-6.

21

22

9. The end-operation card (type 9) sentinels the end of a group of
detail cards.

10. The end-problem card (type 10) sentinels the end of a run and
contains the instruction which will be used by the loading rou­
tine to start the execution of the assembled program.

DETAIL CARD PROCESSING

The processing of detail cards involves four basic steps:

1. Handle the a address.

2. Analyze the instruction code, separating instructions from con­
stants. For instructions, a code word is obtained which controls
further processing by indicating the increment needed between
various addresses as well as the computer code equivalent. for the
mnemonic code. It also indicates which addresses are significant.

3. If required, handle the m address.

4. If required, handle the c address.

MINIMIZl\TION

The table of Instruction Code Information -Words (Table 2) indicates
how X-6 minimizes if it is free to choose the addresses. The a, m, and
c addresses, if all three are important, go through the same analysis.
As a result of this analysis an absolute address is assigned and never
altered. It is the input order which controls the allocation rather
than the sequence of execution of these instructions. For straight-line
sections of coding, X-6 will do as well as the careful programmer. The
first reference to any address will be minimum. A simple example will
serve to clarify the procedure.

a INST m c

IN LOA HlUlO
STA W 6 2N

Is IN a new temporary tag? If yes, use clock* to establish tentative
best address. The clock reads 058. Get an address. 0258 is free, so
use it and mark it off in the storage availability table. File it
opposite IN in the temporary tag table. Look up the information word
for LOA. Add two word times to establish 060 as the tentative best
address. Send HlUlO through address analysis. 4003 must be assigned.
Adjust the clock to 103. Add two word times to establish 105 as the

tentative best band address. Send the blanks inc through address analysis.

*The clock is a counter whose value lies between 000 and 199. The value
increases as each instruction is assigned to storage. The function of the
clock is to indicate the current band level.

Get an address. 305 1s free, so use it and mark it off. Set a switch
so that 305 will be used for the next a address. If a tag 1s found
there,an error code will be printed. Print and punch the output and go
to the next input instruction.

The second instruction will take four word times unless W6 or 2N have
been encountered previously.

As experience 1.S gained, programmers will be able to code operations
and order input to achieve better minimization from an X-6 assembly process.

TABLE 2. INSTRUCTION CODE INFORMATION WORDS

If control column indicates Index register modification, add one more word timebeforem.

ADD
BUF
DIV
ERS
LDA
LDL
LDX
MUL
STA
STL
STX
SUB

LIR
II R

ATL
CTM
MTC
ZUP

CLA
CLL
CLX
JMP
CAA
CAX
CTA

HSS
PFD
RSS
SHL
SHR

HBU
PRN
RBU
RCC

HBT
HCC
PBT
RBT
STP
TEQ
TGR

Digits
1-2

70
20
55
35
25
30
05
85
60
50
65
75

02
07

77
12
17
62

26
31
06
00
36
86
23

47
16
57
37
32

96
11
46
81

42
72
27
22
67
82
87

Digit 3
Action
Code

0
0
0
0
0
0
0
0
0
0
0
0

0
0

2
2
2
2
2
2
2

3
3
3
3
3

4
4
4
4

5
5
5
5
5
5
5

Digits
5-7
Before m

002
002
002
002
002
002
002
002
002
002
002
002

000
000

000
000
000
000

003
003
003
002
003
014
002

000
222
000
111
111

198
197
198
198

004
004
004
004
003
003
003

Digits
8-10
Before c

003
002
113
002
002
002
002
I 03
002
002
002
003

003
004

003
003
003
004

000
000
000
000
000
000
000

003
003
003
003
003

203
592
203
203

003
003
003
003
003
003
003

222 is a code not affecting timing

11 I means use amount of shift

23

6. Programming Procedure

FLOW-CHARTING

The only suggested modifications 1n standard flow-charting practices are
as follows:

1. Define your operations as you flow-chart -- keep them short.

2. Use large circles for communication links between operations; ass1gn
permanent tags to these circles.

3. Use smaller circles for communication links within operations; ass1gn
temporary tags to these circles.

4. Use X-6 symbology in the flow chart. Assign table and interlace
symbols, and working storage addresses at this time.

CODING

1. Start each operation with a header, card type 7, on a new p1ece of
coding paper.

2. Code the main chain first and then the lesser used branch paths.
Since each address is allocated the first time it is encountered,
this technique will produce better minimization.

3. Use the comments columns liberally. The X-6 edited listing will be
more valuable if full comments are appended. Limit your comments to
numbers and the alphabetics.

4. Use the card number as a cross reference to the box on the flow chart.

5. End each operation with an end-operation sentinel, card type 9.

6. Be sure all working storages are filled properly initially. Main
storage is often filled with stop orders rather than zeroes.

7. Buffer tests must be inserted by the programmer .when required. Ac­
curate estimates can be made by consulting the section on 'Minimi­
zation'.

25

26

PREPARATION FOR ASSEMBLY

1. Have all operations keypunched and verified.

2. Obtain any needed library routines and prepare specification cards.

3. Prepare card types 1, 2, 3, 4, 5, and 10 if this has not.already been
done. Be sure to restrict the area used by the standard loading
routine.

4. Arrange the input deck in the desired order. If the program is very
large, place the most important operations first; they will get better
minimization.

5. Sight check the separate operations to make certain that card types
7, 8, and 9 within each operation are identically punched in columns
3-5, (operation number).

6. Either manually or by machine, check that card numbers are ascending
within operations ·with no omissions.

ASSEMBLY

1. Follow the X-6 operating instructions.

2 . Check the e di t e d li s t in g c a r e f u 11 y , a 11 de t e c t e d i n put d at a e r r o rs
are coded and tabulated in print word 01 on the listing. These errors
must be corrected before debugging can commence.

3, The output program deck is complete in stacker zero of the Read-Punch
Unit. Any cards in stacker 1 should be destroyed.

7. Operating Instructions

LOADING AND ASSEMBLING

1. Load X-6 program deck. Successful stop 1s 67TTTT000T.

2. After X-6 is loaded, or earlier:

a. Feed blank cards through to all stations of the RPU.

b. Advance paper 1n HSP so six free holes show above the paperhold-
1ng clamps.

c. Put X-6 input program deck 1n the HSR.

3. To assemble a program:

a. Go on continuous, general clear, and run.

b. Successful stop is 678888cccc.

c. Error stops are listed on the following pages along with error
codes which do not stop the computer.

4. Get a memory dump to preserve the information accumulated during the
assembly which will be useful for debugging.

The X-6 Memory Layout in Appendix II can be used to interpret the
memory dump.

27

28

ERROR CODES (THESE APPEAR ON LISTING)

CODE

A

B

c

D

E

F

G

H

ORIGINATES IN OP.

PTS

TTS

KWS

MAR

MAR

STS

AAR

PDC
(AC2)

ICA

MEANS

More than ~00 perm. tags.
Address 9999 has been assigned.

More than 50 temp. tags.
Address 9999 has been assigned.

Address higher than K 399 or W 399 has
been requested.
9999 has been assigned.

No more storage -- have assigned 9999.

No two consecutive addresses free.
Have assigned 9999.

Nothing in specs table matches this "X"
symbolic address. Absolute 9999 has
been assigned.

An incorrect a address.
Previous instruction had blanks in m or
c part. This a should have been blank.
This a has been processed properly -
the previous 1 ine must be fixed.

Spaces in m and c. Spaces in m will be
assumed to be in error.

Invalid instruction code.

STOP CODES (IN M PART OF STP ORDER)

CODE ORIGINATES IN

0001 GN2

0002 GNC

0003 MCO

0004- PSE

0005 PRN

0006 PUN

0007 MC9

0008 POC

0009 POC

8888 MCK

MEANS

The card being diverted to HSR Stacker
#2 has failed to pass read check. Re­
position cards and hit start to try
again.

Malfunction in HSR has caused overflow.
Fix trouble. Hit start to try again.

No label card (type I). Prepare label
card. Reposition input deck. Hit start
to begin again.

Too many specs for current 1 ibrary rou­
tine. Hit start to proceed. Error code
F will appear later.

Malfunction in printer has caused over­
flow. Fix trouble. Hit start to print
current 1 i ne.
(IT WAS PRN ORDER THAT CA USED IT)

Malfunction in RPU. Fix trouble. Hit
start to execute punch order.

Card type sequence error. Check last
card read. If it is a type 7 card, hit
start to get to next stop order. Go to
c to process card. If it is type 8, go
to m of next stop order.

Operation number on detail card is in­
correct. Hit start and machine will
stop on 67 order. Go to m to process
card. Go to c to get next card.

Card number on detail card incorrect.
Same action as 0008 STOP.

Final successful stop.
Follow normal operating instruction be­
fore hitting start if new assembly is
wanted,

29

Appendix I

PROBLEM SOLUTIONS

Problem I Solution

a op m c

M~61N LOA 63182

ADD 63178 6662Q Tag indicates possible overflow condition

M62Q STA 63210 66271 If overflow does not occur

6662P LOX 666.3N If overflow occurs

00000 00001

6663N STX 63200 6M.2Q

Problem 2 Solution

a op m c

6661N LDL W6662

MUL 6662N Total deduction for dependents

600Al0 00000

6662N LOX 666rA

LOA W6661

SUB 666rX

SUB W6663

ATL

MUL 6663N Derive tax

ooloo 00000

6663N STA 64073 Store tax

31

Problem 3 Solution

a op m c

6661N LOA W6661 Quantity~rL

LDL 6662N

00009 ~000

6662N TGR 6663N Compare for magnitude

MUL W6662 Quantity x Price~rA

ATL

MUL K6661 6664N K6661 = A7000000000

6664N STA 64053

STP

6663N MUL W6662 Quantity x Price~rA

ATL

MUL K6662 6664N K6662 =A6000000000

32

Appendix II

X-6 MEMORY LAYOUT

A memory dump at the end of a successful assembly is desirable for debug­
ging and patching of object programs.

LOCATION NAME

1200 Table SB

1216 Table S9

2110-2117 Table V3

2118-2130 Table V4

2100-2109 Table SS

2200 Band 02 Interlace

2400-2449 Table S3

2450-2465 Table V2

2470-2479 Table S6

2480-2509 Table S7

2520-2539 Table VI

2540-2559 Table VO

2600-2999 Table S4

3000-3199 Table S2

USE

Valid mnemonic codes stored 20 words
apart.

Information words for each mnemonic code
stored 20 words apart.

Two or three part interlace word posi­
t ion for O.

Two part interlace word position for P.

Interlace origins (from card type 4).

Repunching of output cards which fail
read check.

Temporary tags with absolute addresses.
Cleared after every operation. No value
after complete assembly.

Two and three part interlace word posi­
t ions for H and R.

Interlace origins (from card type 4).

Table origins and increments (from card
type 5) I

X-6 equivalents for last set of speci­
fications.

Specifications. Cleared after every
operation. No value after complete as­
sembly.

Kand W addresses and absolute addresses
are stored as follows:

2600 KO and WO as OKKKKOWWWW
2601 Kl and WI as OKKKKOWWWW

Addresses of permanent tags in same or­
der as Table SI, stored as: OaaaaOaaaa
Left half-words used for first 200 tag­
addresses, then right half-words are
f i 11 ed I

33

34

LOCAT I OH

3200-3599

3600-3799

3800 Band

qooo Band

q200 Band

ll200 Band

qqoo Band

000-0199

NAME

Table SI

Tab le SO

PO Interlace

HO Interlace

01 Interlace

RO Interlace

Pl Interlace

Restricted

USE

Permanent tags.
The 5 character alpha-numeric tag is
stored as zzzzznnnnn. One tag per word.

Storage availability. Each word of
tab 1 e represents a band relative address,
0-199. The 20 bits in the left half­
word are zero for unused or I for used
representing the 20 standard access bands.
The 20 bits in the right half of words
3600-361l9 represent high-speed access
storage. Addresses llOOO, qo50, lllOO and
q150 are included in first digit of
right half-word. Right half of words
3 650-3799 a re unused.

Header for X-6 1 isting.

High-Speed Reader read-in area.

Output punching area.

Read-Punch Unit read-in area.

Detail lines for X-6 listing.

Used to load X-6 and later filled with
memory dump routine.

Appendix Ill

SAMPLE LISTI NG

The following 1s a sample of the listing produced by X-6 which affords the programmer a detailed correlation of computerand X-6 code.

X6B80 OP CD LOCA OP MMMM CCCC K

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

AAR

2 0200 50 4002 204

3 0204 31 207

4 0207 25 4009

5 021 I 82 4 14

6 0414 50 4116

21 I

214

218

7 0218 30 4002 254

8 0214 05 4009 261

9 0261 26 264

10 0264 32 0500 272

I I 0272 20 T 276

12 0276 35 4028 280

13 0280 30 K 284

14 0284 06 287

15 0287 32 0500 295

16 0295 37 0500 303

17 0303 12 306

18 0306 17 309

19 0509 32 0500 317

20 0317 37 0500 325

21 0325 20 T 329

22 0329 82 532 332

23 0532 25 4009 361

24 036 I 35 40 13 365

25 0365 37 0500 373

A TAG C

AARIN

AAR2N

AAR3N

19N

IN

48N

OP M TAG C TAG

STL AAR5F AAR2N

CLL

LDA W

TEQ

ST L W

0 AAR3N

I 9 N IN

13

LDL AAR5F MARIN

LDX W 0

CLA

SHR 5

BUF RX

ERS K 29

LDL RA

CLX

SHR 5

SHL 5

CTM

MTC

SHR 5

SHL 5

BUF RX

TEQ

LDA W 0

ER S K 8

SHL 5

47N

6N

TP

7

CD

8 0001

8 0002

8

8

8

0003

0004

0005

8 0006

8 0007

8 0008

8 0009

8 0010

8 00 I I

8 0012

8 0013

8 0014

8 0015

8 0016

8 0017

8 0018

8 0019

8 0020

8 0021

8 0022

8 0023

8 0024

COMMENTS 071659

ADDRESS ANALYSIS ROUTINE

SET EXIT

REENTRY POINT CIRCLE I

ZZZZZNNNNN

PAGE

SWITCH I A SETTING LDX AAR6N

ZERO TO FN INDICATOR

GO TO STORAGE AVAILABILITY ROUT I NE

ZZZZZNNNNN

NNNNNZZZZZ

OOOOHOOOOH

OOOONOOOOZ

OOOODOOOOO

RA IS I I I IN I I I I I RX ,IS OOOOZOOOOO

OOOONOOOOZ

IF NOT EQUAL DIGIT 5 IS ALPHA

ZZZZZNNNNN

HHHHHHOOOO

2

UNPRIMED PART OF DIGIT I DOOOOOOOOOOO

35

~77lland~
DIVISION OF SPERRY RAND CORPORATION

