
TECHNICAL BULLETIN 

S-4 ASSEMBLY SYSTEM 

8Y8TIM8 llRDllRAMMINll 
Ll•RARY •••v1c1• 

90 Card Conflguraf:lons 

Programmers Reference 

Flrsf: Edlf:lon 

UP 1774.7 



8Y8TIM8 PRDllRAMMINll 
LllAAAY 81RVICl8 

ADDENDA to "S-4 ASSEMBLY SYSTEM, 
90 Card Configurations" Manual 

UP 1774. 7 

1. Recovery from Possible Main Memory Error 

\~lllll41~.,J 
UNIVAC® 

SOLIC-STATE SYSTEMS 

ADDENDA 

Because of certain internal program conditions, a particular main-memory (parity) 
error may occur (under very rare circumstances) when S-4Cl0 is used. 

S-4Cl0 is built to operate without index registers. However, the routine, for its. 
own purposes, carries certain instructions negatively. In effect, this is 
equivalent to modifying the instructions by IR2 , and for this reason, if IR2 is 
present in the computer, it must be cleared to zeros. S-4Cl0 tests to see whether 
or not IR2 , if it is present, contains anything other than zeros. It does this 
by loading a constant into rA, and then loading the contents of the same location, 
modified by a IR2, into rL. If rA and rL test equal, then either IR2 is not present 
or it is set to zeros, either of which is acceptable, and S-4Cl0 proceeds to normal 
processing. If rA and rL test unequal, then IR2 is present and is set to some 
value other than zeros, in which case S-4Cl0 proceeds to load IR2 with zeros prior 
to normal processing. 

If the address fabricated is inval-id, when the"30" (load rL) instruction is 
modified by IR2, the computer will halt with -.30 1660 2663 displayed in rC, along 
with a main-memory error indication. Should this occur, recovery can be easily 
effected by selecting "c" and depressing the RUN button. 

2. Modifications for Effecting Double-Spacing on the Printer 

In order to effect double-spacing on the Printer, the following modifications 
should be made to S-4Cl0: 

1774.7(A) 

LOCATION 

4589 
4097 

NON IS 

30 4704 4420 
30 4704 4556 

SHOULD BE ----
30 4079 4420 
30 4079 4556 

Addenda Sheet 



P R E F A C E 

This manual is intended as a programmer's reference manual to 
familiarize the programmer with the basic elements of the 
S-4 90-Card Assembly System. The S-4 assembler is designed 
to facilitate the coding of data-processing applications by 
reducing both coding time and error frequency. 

The S-4 90-card system operates on a bdsic 5000-word system 
which must contain as a minimum configuration, a Card-Reader, 
a Read-Punch Unit, and a Printer. 

UP 1774.7 i 



TABLE OF CONTENTS 

Page 

I. INTRODUCTIQN . . . . . . . . . • . . . . . . ' 1-1 

A. INSTRUCTION FORMAT . . . . . . . 
"' . 1-1 

' 

l. Symbolic u au Field . . . . . . . . . . • • 1-2 

2. Class Field . . . . . . . 1-2 

3. Symbolic "OP .. Field . . . . . . . . . 1-3 

4. Index Register Field . . . . . . . . . . 1-4 

5. Symbolic "m" Field . . . . . . . 1-4 

6. Symbolic tic" Field . . • 1-4 

7. Word-Time Field . . . . . . . . . 1-4 

B. REMARKS . . . . . . . . . . . . . . . . t 1-5 

c. DATA CONSTANT CODING . . . . . . . . . . l-5 

II. S-4 ADDRESSING . . . . . • 2-1 

A. BLANK ADDRESSING . . . . . . . . . . . • 2-1 

B. TAG ADDRESSING . . . . . . • 2-3 

1. Permanent Tags . • . . . . . . . . . . 2-4 

2. Temporary Tags . . . . . . . . . . 2-5 

3. Overflow ( c+ 1) Addressing . . . . . . . • 2-6 

4. LRP (Local Reference Point) Tags I 2-7 . . . . • 

c. ABSOLUTE ADDRESSING . . . . . . . . . . . 2-11 

D. REGISTER ADDRESSING . . . . . . . . . . . . 2-12 

E. REGIONAL ADDRESSING . . . . . . . . . . . . . 2-12 

. F. INTERLACE ADDRESSING . . . 2-13 

ii UP 1774.7 



Page· 

III. S-4 CONTROL OPERATORS . . . . . . . . . . . . . . . . 3-1 

A. ASSEMBLY CONTROL OPERATORS . . . 3-1 

B. STORAGE ALLO:ATION OPERATORS . . . . • . 3-2 

1. BLR - Block Reservation . . . . . . . . . . • . 3-2 

2. BLA - Block Availability . . . . . . . . . • 3,_3 

3. REG - Regional Specifications . . . . . • 3~4 

4. INT - Interlace Pattern Reserve . . • ., 3-.5 

5. SYN - Synonym . . . . . . . . . . . . . . 3-6 

c. ALLCX:ATION CONTROL OPERATORS . . . . • • 3 ... 7 
\. 

l. HED B - Initiate a Forward Search . . . . • • 3-.8 

2. HED A - End Forward Search . . . . . • .. . 3.9 

3. HED D - Allocate in High-Speed Memory . • 3-9 

4. HED E - Terminate HED D and HED H 
Functions . . . . . . . . . • 3-9 

5. HED F - Assign High-Speed and Core 
Storage . . . . . . . . 3-9 

6. HED N - Resume Normal Allocation . . . . . . 3-9 

7. HED Z - Allocate in Standard-Access; Execute 
in High-Speed Storage . . . . . . . . 3-9 

8. HED Y - Terminate HED z Control . . . 3-10 

9. WOT - Word-Time Control . . . 3-10 

D. TAG-TABLE CONTROL OPERATORS . . . 3-12 

l. EQU - Equivalence . . . . . . . . . 3-12 

2. HED C - Clear Temporary Tag Table 3-13 

E. CONSTANT LIBRARY CONTROL OPERATORS . . . 3-13 

1. HED L - Process Constant Library . . . . . . 3-14 

2. HED K - End Constant Library Processing . 3-14 

UP 1774.7 iii 



F. PROGRAM TESTING OPERATQRS . . . . . 

1. HED X - Printer Output .•. 

2. HED P - Resume RPU Output 

3. PPA - Print and Punch Availability Table 

4. PAT - Print Avai.iabil.i ty Table 

5. SYP Print Symbol Table ... 

IV. ASSEMBLY FEATURES 

A. ASSEMBLY OUTPUT . . • • 

B. 

c. 

1. Punched-Card Output 

2. Printer Output 

3. Printer Error Codes . • . 

PREPARATION FOR ASSEMBLY 

THE FORWARD SEARCH OPERATION 

V. OPERATING PRCX:::EDURES 

A. LOADING S-4 ASSEMBLY 

1. Read-Punch Unit 

2. Printer 

Console and Card Reader 

. . . 
3. 

4. Optional Punch-Check Section 

8. EXECUTING S-4 ASSEMBLY 

Page 

3-14 

3-14 

3-14 

3-14 

3-16 

3-16 

4-1 

4-1 

4-1 

4-1 

4-1 

4-3 

4-4 

5-1 

5-1 

5-1 

5-1 

5-1 

5-2 

5-2 

C. LOAD ERROR STOPS . • . • . • . . . • . . . • 5-2 

D. ERROR STOPS DURING EXECUTION . . • . • • 5-2 

APPENDIX A - CODING FORM 

APPENDIX B - SUMMARY IOF INSTRUCTION CODES 

iv UP 1774.7 

A-1 

B-1 



I. INTRODUCTION 

The S-4 Assembly System is a one-pass assembly-langudge 
translator. Input is a source program coded in S-4 
assembly language. Output is an object program in 
UNIVAC~ Solid-State machine code acceptable to a standard 
loading-routine .. For documentation and desk-checking 
purposes, printed listings of both the source and object 
programs, and printouts of the various tables of the 
assembly system are provided. 

The source program for an S-4 assembly is written on the 
S-4 coding form (see Appendix A). Each line consists 
of 49 character positions, and is equated to a particular 
columnar position on the punched card. The four leftmost 
character positions are primarily for the convenience of 
the programmer and are used to specify program line­
sequence. This information, though punched on the card, 
is ignored by the assembler since it sets up its own 
line or card sequence. 

A. INSTRUCTION FORMAT 

The basic S-4 instruction is specified in the following 
format: 

a OP m c 

-----------cl~ IR WORD TIME 

I I I I I I 11 I I I I I I I I I I I I I I I I 
1 .2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

It consists of a symbolic a, m, and c field; a symbolic 
OP code field; a class designation, an index register 
specification and a word-time field. The instruction 
is contained in columnar positions 46-68, Explanation 
of each element in the instruction format follows. 

UP 1774.7 l-1. 



1-2 

1. Symbolic"a"Field 

This field, specified in columns 46-50 contains 
the address of an instruction or constant and 
may be any one of the following: 

a. Absolute machine address 
b. Permanent tag 
c. Tem'porary tag 
d. Local reference point 
e. Blank address 
f. Interlace address 
g. Overflow address 
h. Register address 
i. Regional address 

The various types of specifications listed above 
are discussed in chapter 3. 

2. Class Field 

This field, specified in column 51, is used when 
the information in the remaining fields, columns 
52-90, is to be treated in a special way by the 
assembly program. Any one of eight specifications 
may be made in this field. The following is a 
list of the specifications and the actions they 
cause the assembler to perform: 

Character 

c 

p 

u 

Assembler Action 

The data in columns 52-90 is to be 
treated as a comment and, therefore, 
carried ovet to final output 
unchanged. · 

If the line represents a constant, 
the primed portion of the contents 
of columns 56-65 will be stored 
in the object program. 

If the line represents a constant, 
the unprimed portion of the con­
tents of columns 56-65 will be 
stored in the object program. 

) 

UP 1774·. 7 



\ 

Character 

N 

z 

I 

* 

3. Symbolic "OP" Field 

Assembler Action 

If the line represents a constant, 
the contents of columns 56-65 
will be translated and the numeric 
portion stored in the object 
program. 1 

If the line represents a constant, 
the contents of columns 56-65 
will be translated and the zone 
portion stored in the object 
program. 1 

The tens complement of the data 
produced from 56-65 will be 
stored in the object program. 

No special action imposed. 

The line is treated as a title 
line and is printed on the 
assembly record at the beginning 
of a new page. 

The 3-digit symbolic operation-code field, columns 
52-54 may contain any of the following: . 
{a) ~ (blanks) to indicate that the content of the 

m and c fields, columns 56-65 is a constant and 
should be treated as column 51 directs. 

(b) A 3-digit symbolic.OP code or an S-4 control 
operator. If a symbolic OP code, it will be 
translated to its machine code equivalent during 
assembly. 

(c) A 2~digit machine coded instruction in form ~nn. 
It will appear in final output unchanged. If this 
option is used, the word-time field must also be 
employed. 

1 In normal 90-card assemblies, this specification will not 
apply; however, the S-4 Assembly System provides the 
ability to assemble 90-Tape programs on the 90-card 
computer. 

UP 1774.7 1-3 



1-4 

4. Index Register Field 

. 5. 

The index register field, column 55 
contains a numeric specification when index­
register modification is indicated for the m 
address of the associated instruction: 

Entry Meaning 

l Use index register l. 

2 Use index register 2; load 
negative. 

3 Use index register 3. 

Symbolic umu Field 

The symbolic m field, columns 56-60, may contain 
any of the entries specified .for the symbolic a 
field. In addition, it may also be part of a 
constant entry. 

6. Symbolic ttc" Field 

The symbolic c field, columns 61~65, specifies 
the next instruction and may contain any of the 
entries indicated for the symbolic a field. It 
may also be part of a constant entry. 

7. Word-Time Field 

The word-time field, c~lumns 66-68, is analyzed 
during assembly. If it contains a numeric speci­
fication, the numeric value will be assigned as 
the maximum number of word-times for the operation 
specified in the OP field. If the field is not 
entirely numeric, it is treated as part of the 
remarks field. When the entry in the symbolic 
OP field is a machine-coded instruction, the number 
of word-times from a to c is specified by the 
programmer in the word-time field. With this, an 
additional specification is entered in the most 
significant position of the field, column 66 
to direct the assembly of the instruction line. 
The format of the entry in the word-time field is; 

xnn 

UP 1774.7 



where; 

B. REMARKS 

x is a u or 5 bit if c specifies the 
next instruction. 

4 bit if m specifies the next 
instruction. 

7 bit when m is not to be used 
to update the latency 
counter (the clock), 

1 bit if x is considered part 
of nn field. 

lnn is the number of word-times between 
a and c. If three digits are 
needed to express the number of 
word-times, the l bit in the x 
position may be employed. 

The remarks field, columns 66-90 if the word-times 
field is not used, contains comments concerning the 
source program. All data is this field will be 
part of the side-by-side, object and source-code 
listing printed by the assembler. 

C. DATA CONSTANT CCDING 

The following considerations apply when data constants 
are specified in the source program: 

1. The OP portion of the instruction will contain 
blanks (~). 

2. The IR field indicates the sign of the constant; 

~ if positive 

- if negative 

3. The constant is entered in the symbolic m and c 
fields. 

4. If the constant contains undigits, the class field 
must be blank (ti). 

UP 1774.7 1-5 



5. A blank in the constant field will be interpreted 
as a zero. 

6. The class field may contain any of the values 
I, N, Z, U, P, or ~. 

7. The following designations are used for undigits: 

Bit-Pattern Character 
0101 A 

0110 B 

0111 c 
1101 F 

1110 G 

1111 H 

1-6 UP 1774.7 



II. S-4 ADDRESSING 

I 
The S-4 Assembly System provides for many types of 
addressing to ensure a high degree of programming 
flexibility. That is, programmers aie able to 
select from a variety of addressing forms that format 
most suited to a particular need in a computer ap?lication. 
This capability increases the power of the system as a 
programming tool and provides a versitility not present 
in ordinary machine coding. The following is a listing 
of the various addressing forms provided by the S-4 
System: 

l. Blank Addressing 
2. Tag Addressing 
3. Absolute Addressing 
4. Register Addressing 
5. Regional Addressing 
6. Interldce Addressing 

A. BLANK ADDRESSING 

If the generation of absolute addresses in the 
object program is to be left to the assembler, the 
a, m, or c portion of the instruction involved may 
be left blank. If either the m or c field of an 
instruction is left blank, it will be an indication 
to the assembler that a reference is being made to 
the next consecutive line of coding; therefore, the 
a field of the next instruction must also be left 
blank to allow the assembler to assign the same 
absolute address as the m or c of the previous 
instruction which made the reference. For example: 

a 

x 

y 

UP 1774. 7 

OP 

LOA 

STA 

LDL 

IR m c 

y 

00000 00005 

z 
p Q 

?-.1 



2-2 

Assuming that X, Y, Z, P, and Q are some form of 
S-4 address specification, the converted machine-
coded version might appear in final output as; 

a OP m c 

0404 25. 0406 0408 

0406 00 0000 0005 

0408 60 0410 0412 

0412. 30 0414 0557 

When both the m and c symbolic address fields are 
left blank, the symbolic a fields of the next two 
instructions in sequence must also be left blank. 
The blank m field will reference the next line in 
sequence; the blank c address will reference the 
second line down. For example; 

a OP IR m c 

X LOA 

00000 00001 

ADD y z 
Z STA 

Assuming that X, Y, and Z are some form of S-4 
address specification, the converted machine-
coded version might appear in the final output as; 

a OP m c 

0200 25 0202 0204 

0202 00 0000 0000 

0204 70 0207 0209 

0209 60 

It should be noted that absolute addresses will be 
assigned in the object program only if the blank m or 
c portion is normally specified in the machine-coded 
instruction. That is, certain instructions require 
no specification in either the m or c field; for 
example, a 26 (CLA) or 06 (CLX) in which the c portion 
is not specified, or the 77 (AIL) in which the m 
address is not specified. 

UP 1774.7 



B. TAG ADDRESSING 

A tag is a symbolic specification or address that 
relates nonconsecutive lines of coding. Tags pro­
vide connecting links between operations by relat~ 
ing the m or c portion of an instruction with the 
a portion of another instruction that has been, or 
is yet to be specified. They may be used to denote 
the entrance and exit lines of a common subroutine; 
to transfer from one operation to another; to reference 
lines that are to be modified; or to transfer control 
to a common line at the end of a branching chain of 
instructions. 

Provision is made in S-4 for three types of tag 
specification: 

l. Permanent tags 

2. Temporary tags 

3. LRP (Local Reference Point) tags 

Permanent tags are employed to preserve relation­
ships that will be maintained throughout the pro­
gram. That is, since programs are normally sub­
divided into logical units or sections, the per­
manent tag provides a method of referencing either 
across or within these program sectioQs. Temporary 
tags are generally employed to establish relation­
ships between lines of coding within a logical 
section of the program and are generally not 
referenced by lines of coding from another section. 
The LRP tag is a special form of temporary tag. It 
is generally used within comparatively short coding 
segments and allows a relationship to be established 
without exhausting the combined total of 300 temporary 
and permanent tags permitted in a program. 

As each tag is specified, it is entered in a tag 
table along with its assigned absolute address. 
Temporary ta9s may be cleared from the tag tabl.e 
at any time (but usually at the end of a logical 
progra~ section) to permit their reassignment in 
another portion of the source program. Permanent 
tag entries are maintained in the tag table through­
out the program. However, should a permanent tag 
become inactive (that is, no reference made to it 
during the remainder of the program), it may be 
cleared from the symbol table. Clearing of the 
tag table will be discussed when the S-4 control 
operators are considered. 

UP 1774.7 2-3 



2-4 

Program subdivision is left entirely to the discretion 
of the programmer since no formal method is provided 
by the S-4 System.· It should be nrited, however, that 
sections assembled first will receive preferential 
treatment as far as optimization is concerned. 
Therefore, it is in the interest of the pro~rammer 
to assemble. t~e most important sections first. 

1. Permanent
1 

tags 

The permanent tag is specified in the a, m, or 
c field in the following format: 

Here; 

·xnnnm 

x is any alphabetic or special character. 

nnn is any combination of alphabetic, , 
alphanumeric and/or special characters. 

m is the area in storage to which the 
tag is to be assigned and should 
contain one of the following: 

a. A blank for standard-access memory 
assignment.. 

b. Any character for high-speed-access 
memory assignment except an 0 or P. 

c. An 0 or P for overflow (c+l) 
condition. (See "Overflow 
Addressing.tt) 

Ideally, a permanent tag specification should, 
in some way, be indicative of the function per­
formed by the tagged procedure or should conform 
to some meaningful tag coding scheme. For 
example, the tag 

G R 0 S S 

might specify the location at which the result 
of a gross-pay compution is stored in high­
speed-access memory. 

UP 1774.7 



2. Temporary Tags 

A temporary tag is specified in the a, m, or 
c field in the following format: 

Here; 

x n n b y 

x n n is the tag identifier. 

x may be any alphabetic, numeric or 
special character except ~. 

nn may be any two-digit numeric if the 
tag is to be assigned to standard­
access memory; it must be blank if 
the tag is to be assigned to high­
speed-access memory. 

b is blank if fast-access memory is to 
be assigned; it is numeric if high­
speed-access memory is to be assigned. 

y must be a numeric if b is numeric. 
If b is blank, y may be one of the 
following: 

(a) blank 

(b) 0 or P for an overflow condition. 

When employing a temporary or permanent tag specif i­
cation, the following should be observed: 

a. Absolute locations may be assigned to temporary 
tags by the programmer. 2 

b. Individual tags may be cleared from the tag 
table (released for reassignment) at any time 
during an assembly. 3 

2 See SYN Control Operator. 

3 See EQU Control Operator. 

UP 1774.7 2-5 



c. The tag table may be entirely cleared of 
temporary tags at any time during an 
assembly and new temporary tags initiated. 4 

d. Once a tag has been clearP.d from the table, 
any further reference to the tag is treated 
as if no previous reference had appeared, 

·consequently, a new absolute address will 
be assigned. 

3. Overflow (c+l) Addressing 

Overflow and c+l conditions can result from either 
an arithmetic operation or an abnormal condition 
in an inpu~ or output unit. In an arithmetic 
operation, it is caused by the generation of a 
numerical quantity beyond the digit capacity of 
the register that is to receive it. In an input 
or output unit, it might be the result of any of 
a number of mechanical conditions (Printer out of 
paper, RPU card jam, for example). In either 
case, the instruction that will be executed next 
is determined by the addition of 1 to the c address 
of the instruction in which the overflow or c+l 
condition occurs or is detected. 

There are eight instruction codes that can result 
in overflow or c+l conditions: 

S-4 Code Machine Code 

ADD 70 
SUB 75 
DIV 55 
PRN 11 
PFD 16 
HCC 72 
RCC 81 
TBU F6 

Whenever one of these codes is used, a subroutine 
should be coded that will handle the possible 
overflow or c+l condition. In S-4 coding this 
is accomplished by the use of temporary or per­
manent tags with an O, or P in the LSD of the 
tag. 

If there is no overflow, control will be sent to 
the instruction coded with the 0 tag in the a 
address portion. If overflow occurs, control is 
sent to the instruction containing the P tag in 
the a address portion. 

4 See HED C Control Operator. 

2-6 UP 1774.7 



When coding for overflow and c~l conditions, 
the following should be observed: 

a. The c address portion of the line in which 
overflow may occur must be in the 0 
form of a permanent or temporary tag. 

b. 0 and P tags do not have to follow the 
line in which overflow may occur but may 
be placed at any point during the assembly. 
The only restriction is that when temporary 
tag form is used, all program references 
must be made before a HED C control operator 
is introduced. 

c. Overflow tags must be counted as part of 
the tag limits. Each set (0 and P) is 
counted as one tag. 

d. Unless a HED F control operator is in , 
effect, 0 and P tags will be assigned to 
fast-access memory. 

Examples of overflow (c+l) coding: 

a 

LOli.iO 
LOlbP 

OP 

LDA 
ADD 
STA 
JMP 

m 

Xl2b.D. 
Xl36Li 
Xl41'.ib 

c 

LOl~O 
Nl~M 

The temporary tag LOl contains an 0 
in the LSD. The c~l tag contains a 
P in the LSD. 

4. LRµ (Local Reference Point) Tags 

UP 1774. 7 

LRP tags permit relationships to be established . 
between nonconsecutive lines of coding without using 
permanent or temporary tags. The LRP tags a line 
with which communication is to be made, through an 
rn or c oortion of a prior, a succeeding, or the same 
instruction. 

The LRP tag is specified in the following format: 

n~x 

2-7 



2-8 

Here; n is the LRP identifier and m~ist be a numeric 
in the range 0-9 

~ is always blank. 

x is the storage-allocation position and may be: 

8 (blank) if standard-access memory is 
to be assigned. 

H if high-speed access memory is to be 
assigned. 

An LRP tag is referenced in the following manner. 
Note that the reference must indicate the direction or 
relation of the tagged line to the line referencing it; 
that is, whether the tagged line is a previous, a 
succeeding, or the same instruction. The format is: 

nyMx 

Here; n is the identifier assigned to the LRP tag (0-9) 

y is the direction indicator when the LRP being 
referenced is assigned by the assembler to 
standard-access storage; otherwise, this 
position is blank (~). 

x is the direction indicator when the LRP being 
referenced is assigned by the assembler to 
high.-speed access storage; otherwise, this 
position is blank (~). 

LlLl is always blank. 

Note that either x or y may be specified at one time 
and never both. One or the other will always be blank 
depending on the storage assignment of the LRP. The 
following may be entered in either x or y: 

B if the LRP-tagged line, with which communication 
is made, exists in a backward direction from the 
referencing line. B may be either in y or x and 
is the only reference not dependent on storage 
assignment. 

F if the LRP-tagged line, with which communica­
tion is made, exists in a foreward direction 
from the referencing line. 

UP 1774.7 



H if the LRP-tagged line, with which communica­
tion is made, is the same as the line in which 
the reference occurs. If this specification 
is employed but there is no LRP tag in the a 
address, the assigned address of the current 
entry in the a field is established in the 
LRP table as the address of that LRP tag. 

LRP tags are assigned in a two-part tag table, 
based on their order of specification. The 
two parts of the table are designated B(back­
ward) and F(forward). When an LRP is specified 
in a field, its absolute address is entered in 
B. For example, the LRP lliil~H indicates that a 
high-speed storage assignment is to be made for 
LRP 1. The table entry is made in the following 
manner: 

LRP 

0 

1 

2 
3 

4 

5 

6 

7 

8 

9 

B F 

4211 

• From this point on, all backward references to 
LRP 1 will address 4211. The address will 
remain valid until a new LRP 1 appears in a 
succeeding instruction. When a new LRP 1 
appears, 4211 will be cleared from the table 
and a new assignment will be made. 

UP 1774.7 
2-9 



2-10 

If a forward reference to an LRP is made from 
an m or c field, its absolute value is assigned 
in F. For example, lF~ indicates that the 
next LRP l encountered is in standard-access 
memory. The table entry is then made in the 
following manner. 

LRP 

0 

l 

2 
3 

4 

5 

6 

7 

8 

9 

B F 

1342 

When the LRP 1 is encountered in some succeeding 
instruction, it shifts from F to its correspond­
ing position in B clearing any entry in that 
position. Until this shift occurs, any entry 
made for a previous LRP 1 in the B column will 
remain valid. 

LRP 

0 

1 

2 

3 
4 

5 

6 
7 

8 

9 

B F 

1342 

UP 1774.7 



Examples of LRP coding: 

a. a OP m c 

1 LDA GIN SIN 

LRP 1 is assigned in standard-access storage. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

GIN LDA 18 SIN 

18 refers to previous LRP 1. 

GIN STA SIN 2. F 

Next LRP 2 encountered is in high-speed 
access storage. 

4 H LDL GIN SIN 

LRP 4 is assigned in high-speed access 
storage. 

GIN LDX 4F SIN 

Next LRP 4 encountered is in standard­
access storage. 

SIN LDX 5H GIN 

LRP 5 is assigned the address given to 
SIN. 

GIN LDL SIN 2 B 

L B refers to previous LRP 2. 

GIN LDA 2 F SIN 

Next LRP 2 encountered is in high-speed 
access storage. 

C. ABSOLUTE ADDRESSING 

Fixed computer locations (absolute addresses) are 
referenced in the following manner: 

Here; 

UP 1774.7 

u n n n n 

ti must be blank. 

nnnn must be the specific memory address and 
must be within 0000 and 4999. 

2-11 



D. REGISTER ADDRESSING 

When it is necessary to address a register, the 
address is coded by using the two most significant 
digits of the desired symbolic address field. 

Here; R must be R. 

n may be A, X, or L depending upon the 
register to be referenced. 

~6 must be blank. 

Whenever program control passes to a register address, 
the contents of the register should be displayed on 
the next line with the appropriate register address 
in the symbolic a field. 

Register addresses always produce the following 
absolute addresses: 

RAJBu 

RXullli 

RWLill 

OOOA 
oooc 
0008 

E. REGIONAL ADDRESSING 

Data, or instructions stored as data, are flaced in 
reserved areas of memory known as regions. An 
entry in any of these areas may be referenced by a 
regional address. The format of a regional address 
is: 

Here; 

a n n n n 

a is any alphabetic or non-blank special 
character. 

nnnn is the entry number within the region area. 
This will be in the range 0001 through the 
highest entry number reserved. Thus, if 
200 locations, 0200 through 0399, have been 
reserved for region 8, the 8 regional 
addresses would be BOOOl through 80200. BOOOl 
would be location 0200; 80009 w::>uld be 0208, 
etc. If 50 locations four word-times apart 
have been reserved irt band 10 for region C, 
the C regional addresses would be COOOl through 
C0050. COOOl would be location 1000; C0002, 
1004, etc. 

4 See REG Control Operator. 

2.-12 UP 1774.7 



F. INTERLACE ADDRESSING 

Reference to an input or an output interlace is 
accomplished by use of symbolic interlace address. 5 

The format of this address is: 

Here; 

k i m n z 

k represents the input/output device and 
must be one of the following: 

H - Card Reader Interlace. 
R - Read-Punch Unit Read Interlace. 
O Read-Punch Unit Output (Punch) Interlace. 

P - Printer Interlace. 
T - Tape Interlace. 6 

D - RANDEX Drum Interlace. (Also for 
first or second tape interlace if 
desired.) 6 

i represents the number of the interlace and 
must be a numeric in the range 0 through 9. 
S-4 provides ten interlace patterns for 
each input/output unit. 

m refers to the particular level of an 
interlace word or to the band of the 
interlace. It must be one of the 
following: ' 

U - Unprimed portion of a word 
P - Primed portion of a word 
N - Numeric portion of a word 
Z - Zone portion of a word 6 

B - Entire interlace (used with buffer load 
and unload instructions) 

nz specifies the word referenced. This specif i­
cation depends upon the input or output unit 
designated by k. When k is H, R, or 0: 

n is l when the word being addressed is 
located in the first read interlace of 
the Card Reader or RPU; or the punch 
interlace of the RPU. 

5 See INT Control Operator. 
6 Applicable only for USS 90 Tape assemblies. 

UP 1774.7 2-13 



2-14 

n is 2 when the word being address is 
located in second read interlace of the 
Card Reader or RPU. 

z is the card word; 0-9. 

When k is T: 7 

nz is a numeric in the range 00 through 99. 

When k is P: 

nz is a numeric in the range 01 through 13. 

When k is D: 

nz is a numeric in the range 00 through 47. 
If a number greater than 47 is specified, 
it will be treated as a tape interlace. 
This capability permits 20 interlace 
patterns to be specified for tape as 
opposed to ten for all other units.? 

When an entire interlace is specified (m is B): 

nz is 00 for the untranslated interlace. 

01 for the translated interlace. 

nz is the number of lines to advance on 
the printer if k is P. 

7 See footnote 6. 

UP 1774.7 

( 



Ill. 5 .. 4 CONTROL OPERATORS 

Command of the S-4 Assembly process is exercised by the 
use of Control Operators. Their function is to provide: 

l. Memory allocation controls. 

2. Access to, and control of, tag table content. 

3. The use of a Constant Library. 

4. Development of program testing aids and their 
inclusion in an nbject 9rogram. 

Control operators are coded in the Symbolic Operation 
Field as three digit mnemonics. 

A. ASSEMBLY CONTROL OPERATOR 

RST - Initi~lize For Assembly 

The RST Operator sets conditions for an assembly. ~y 
using the RST Operator between programs, a series of 
programs can be assembled in one computer run. The 
functions performed by the RST Operator are: 

l. Sets HSP listing page number to 1. 

2. Clears the Availability Table. 

3. Clears the Symbol Table. 

4. Clears the Interlace Table. 

5. Clears the Region Table. 

6. Stores the new program title from the RSI Operator 
(see RST Op~rator format). 

7. Clears the Card Number Counter. 

8. Clears the Word-Time Clock. 

9. Initializes the assembly program to non-forward 
search mode. 

UP 1774.7 3-l 



3-2 

10. Initializes modes of some Control Operators 

HED D 

HED K 

HED N 

HED P 

HED Y 

The RST format is: 

OP m c 

RST PPP PP PPP PP 

RST is the mnemonic used in the symbolic OP field. 

pppppppppp is the ten-digit positions for the 
alphanumeric and/or special characters 
that identify the source program to be 
assembled. Unused positions are coded 
as blanks (A). The specification is 
punched in columns 1-10 of the output 
cards and is printed in columns 121-
130 of the page header-line of the 
printed listing. 

B. STORAGE ALLOCATION OPERATORS 

In any program, certain areas and/or locations must 
be restricted from assignment during the assembly 
process (data-storage locations, interlaces, tables, 
packaged subroutine locations, etc.). In S-4 coding, 
this is accomplished by the use of the following 
Control Operators. 

1. BLR - Block Reservation 

The BLR Operator is used to reserve a given number 
of locations at a fixed increment from each other 
beginning and ending at specified addresses. 

The format is: 

OP m c w/t 

BLR bbbbb eeeee iii 

UP 1774.7 

( 



BLR is the mnemonic for Block Reservation. 

bbbbb is the absolute address or defined symbol 
at which block reservation is to begin. 

eeeee is the absolute address or defined symbol 
at which reservation is to end. 

iii is the increment between locations. If this 
field is blank or 000 the increment is 
considered to be 001. Increments less than 
200 are modulo drum size. Increments greater 
than 200 are modulo 200 and will remain 
within the band specified. 

Examples of BLR coding: 

a. OP m c w/t 
------------------------~~-----
SLR 0403 0793 005 

This would reserve every fifth location, 
beg inning with 0403, through 0793. · 

b. BLR 4400 4599 257 

This would reserve every fifty-seventh 
location within band 44. 

c. SLR GET START 

This would reserve every location between 
the previously defined tags GET and START. 

2. BLA - Block Availability 

UP 1774.7 

The BLA operator makes available a given number 
of locations at a fixed increment from each other 
beginning and ending at specified addresses. It 
is the reverse of the BLR operator. 

The SLA coding is in the same format as that of 
the SLR. 

Examples of BLA coding: 

a. SLA 0403 0798 005 

This would make available for S-4 Assembly 
assignment every fifth location, beginning 
with 0403, through 0798. 



3-4 

b. BLA 4400 4599 257 

This would make available for S-4 Assembly 
assignment every fifty-seventh location 
within band 44. 

3. REG - Regional Specification 

The REG Operator defines a region composed of a 
specified number of elements beginning at a 
certain location and separated by a given incre­
ment. REG coding is in the f9llowing ~ormat:. 

OP c' w/t 

REG xnnnn yyyyy iii 

REG is the mnemonic for Regional Specification. 

x is an alphabetic or non-blank special 
character. 

nnnn is the absolute address at which the region 
is to begin. 

yyyyy is the absolute address or defined symbol at 
which the region is to end. If yyyyy is 
blank, the region will be defined but the 
elements of the region will not be restricted 
in the memory table. 

iii as defined under BLR. 

Examples of REG coding: 

a. REG Al700 ~1842 

This would reserve every location from 1700 
through 1842 for Region A. Uilil. could also 
have been coded 000 or 001. 

b. REG 81200 ~1350 010 

This would reserve every tenth location from 
1200 through 1350 for Region B. 

c. REG S4600 203 

This would set up every third location within 
band 46 (modulo 200) as region S. The region 
will not be restricted because yyyyy is blank. 

UP 1774.7 



4. INT - Interlace Pattern Reserve 

The INT Operator reserves an interlace for the 
input/output unit specified in the m field. 
This interlace will be located in the memory 
area specified in the symbolic c field: 

OP m c 

INT ~nnnn 

INT is the mnemonic for Interlace Pattern Reservation. 

x is the particular input or output unit interlace: 

H - Card Reader Interlace. 

R - Read-Punch Unit Read Interlace. 

0 - Read-Punch Unit Output (Punch) Interlace. 

P - Printer Output Interlace. 

T Tape-Synchronizer Interlace. 8 

D - RANDE)(-'v Drum Interlace (also for Tape 
Interlace if desired). 8 

y is the number of the interlace and must be a 
decimal digit in the range 0 through 9. This 
allows up to ten interlaces for each input/ 
output unit (twenty for tape since both T and 
D may be used). 

L'itl these digits are always blank. 

z is 0 if automatic translation is not to be used 
(unless x = D). 

is 1 if automatic translation is to be used 
(unless x = D). a 

is ~ (blank) if the input/output unit involved 
does not use translation (such as Tape and 
RANDEX units).a 

8 Applicable for USS 90 Tape assemblies only. 

UP 1774.7 3-5 



If x = D, z = 0 if a RANDEX input interlace 
is desired (200 locations). z = 1 if a 
RANDEX output interlace is desired (48 loca­
tions). 

~nnnn is space followed by the memory area in which 
the interlace is to be reserved. nnnn must 
be an even band number (0200, 0400, 1000, 
4200, etc.). 

It should be noted that while overlapping of 
interlaces is permissible, the condition must 
be kept in mind when coding the source program. 

Examples of INT coding: 

a. INT HlMl 2000 

This would reserve the locations for an HSR 
translated interlace on band 20. 6 

b. INT DlMO 0800 

This would reserve the locations for a RANDEX 
input interlace on band 08. 

5. SYN - Synonym 

The SYN Operator will reserve a single location. 
It may be used for the following purposes: 

a. To equate a tag to specific memory location. 

b. To provide a time relationship between two 
tags. 

The coding of a SYN Operator is: 

OP m c w/t 

SYN xxxxx yyyyy iii 

SYN is the mnemonic for Synonym. 

xxxxx is the symbolic address which is to be 
equated to the content of the symbolic 
c field. 

3-6 UP 1774.7 



yyyyy may be{l) a previously defined symbol, the 
location of which is assigned. 

(2) an absolute address to be assigned. 

If yyyyy is an undefined symbol the SYN 
Operator will be bypassed and an error note 
5 will be printed. 

iii is the word-time increment to be added to 
yyyyy before assigning the xxxxx address. 

Examples of SYN coding: 

a. SYN STOPti ~0674 

This will cause the tag STOP to be assigned 
0674 as its address. If tag STOP had already 
been assigned an address, this would establish 
0674 as the address. 

b. SYN JO@~ SPJN.hl 015 

The tag JOE will be assigned an address 
fifteen word-times greater than that 
assigned to tag SAM. 

c. SYN ENTM EXITLi 030 

The tag ENT will be assigned an address 
thirty word-times greater than that 
assigned to tag EXIT. 

C. ALLCX:ATION-CONTROL OPERATORS 

Certain control operators included in the S-4 Assembly 
System permit control of the allocation processes 
governing the ~ddress assignments of instructions, 
constants, and tag addresses without source program 
revision. Thus, latency needs, discernable only 
from an over-all understanding of a source program, 
can be met. 

These Allocation Control Operators are coded in the 
symbolic OP field and the most significant digit 
position of the symbolic m field: 

UP 1774.7 3-7 



3-8 

OP m 

HED aMM 

HED is the mnemonic used in the Symbolic OP Field. 

aAAAA is the alphabetic designating the desired 
Allocation Control Operator followed by four 
blanks. 

The Allocation Control Operators are: 

1. HED B - Initiate Forward Search 

The use of a HED B Operator will cause a 
scanning of lines ahead of the line which 
an undefined symbolic specification is 
encountered. This scanning will proceed until: 

a. A •c" is found in column 51 (46). 

b. A constant is detected. 

c. Ten lines have been scanned. 

d. Any operator is encountered (this stops it 
temporarily } • 

e. A HED A Operator is encountered (this stops 
it permanently). 

When any one of these conditions is met, forward 
search is terminated for that sequence and 
allocation is made on ~ reverse direction; that 
is, from the line on which forward search is 
stopped, back to the line in which it was begun. 
When forward search has been initiated, it will 
continue to operate until a HED A control 
cperator is encountered. That is, when any of 
conditions a through d has been met, allocation 
is made. Normal allocation is then resumed until 
an undefined symbolic specification is encountered; 
forward search again takes effect. This process will 
continue until a HED A control operator is found. 

Under certain conditions a HED B Operator will 
have no effect: 

a. 

b. 

the memory table is filled. 

the symbol table is filled. 

UP 1774.7 



2. HED A - End Forward Search 

The HED A Control Operator terminates the forward 
search initiated by a HED B Control Operator, if 
any. 

3. HED D - Extend to High-Speed Memory (when necessary) 

The HED D Control Operator, in effect, extends 
allocation from standard-access to high-speed 
memory for minimum latency address assignment. 
That is, if a HED D Control Operator is in 
effect, and an unassigned address cannot be 
optimally assigned in standard-access memory, 
high-speed-access memory is examined for an 
optimum location. If such a location is found, 
the assignment is made. If no such assignment 
is possible in the high-speed area, the standard­
access area is searched for the next best location. 
If not found, high-speed memory is searched. This 
process continues until assignment is made. 

4. HED E - Terminate HED D 

The HED E Control Operator eliminates the 
allocation modes initiated by a HED D Control 
Operator. 

5. HED F - Assign High-Speed Storage 

The HED F Operator will cause all succeeding 
unassigned ~ymbolic and blank addresses to be 
assigned in high-speed-access memory. 

6. HED N - Resume Normal Allocation 

The HED N Operator eliminates the assembly modes 
initiated by an HED F Control Operator. 

7. HED Z - Allocate in Standard-Access; Execute 
in High-Speed Storage. 

UP 1774.7 

The HED Z Operator is only applicable for source 
programs that will operate on tape configurations. 
The instruction lines following a HED Z Operator 
will have addresses allocated in standard-access 
memory. The m and c addresses, however, will be 
allocated in high-speed memory. The address assign­
ment is such that when a band-to-band transfer through 
the tape buff er is made the instructions will occupy 
the correct locations for minimal latency. 

3-9 



3-10 

Before a HED Z Operator is used, all of memory 
must be reserved except the area in which the 
instructions are to be executed. Besides this 
memory reservation, the m and c fields of the 
HED Z line must contain the band specification 
of the standard-access band in which allocation 
is to begin and the high-speed band in which 
execution will take place. 

For example: 

OP m c 

HED Z2000 ~4600 

This would cause succeeding instructions to be 
allocated to locations beginning in band 20 
for execution in band 46. 

8. HED Y - Terminate HED Z Control 

The HED Y Operator returns the assembly process 
to the normal allocation mode. 

9. WOT - Word-Time Control 

The WOT Control Operator is used to modify the 
word-time clock; setting, resetting, and/or 
adding to it for the next instruction or a 
portion of the next instruction. The information 
concerning the desired modification to the word­
time clock is coded in the m, c and word-time 
fields. 

OP m c w/t 

WDT sssss iii 

WDT is the mnemonic for word-time clock control 
operator. 

sssss is a tag or a word-time level or an absolute 
address if x is S or blank. 

6ii these columns are always blank. 

x is A if an increment is to be added to the 
word-time clock. 

is S if the word-time clock is to be set to a 
particular level. 

UP 1774.7 

( 



y is A if next a address is to be modified. 

is M if next m address is to be modified. 

is c if next c address is to be modified. 

z is b. (blank) if the word-time clock is not to 
be reset after the action specified by x. 

is R if the word-time clock is to be reset to 
its previous level plus normal incrementation. 

NOTE: If xyz are blank, it will be interpreted as SAA. 

UP 1774.7 

Examples of WDT coding: 

a. WDT l\t\/\/\;\ 015 

Would result in the word-time clock being 
set to the level of SAM plus 15 for the next 
a address. 

b. WDT u0013 000 

Would set the a address of the next line to 
be assembled to level 013. 

Ce WOT 010 

d. 

e. 

Would set the next assembled a address to the 
level of SAM plus 10 then reset the word-time 
clock to its prior setting plus normal 
incrementation. 

WDT L\iv\/\/\ MAP.A 015 

Would add 15 to the word-time clock before 
assigning the next a address. 

WDT Cll~{~i~{~ MAMR 015 

Would add 15 plus normal incrementation to 
the word-time clock before assigning the next 
m address and then reset the word-time clock 
to its previous setting plus normal 
incrementation. 

f. WDT 61345 MSC~ 000 

Would set the word-time clock to level 145 
(band relative address of 1345) before assign­
ing the next c address. 

3-11 



g. WDT Li0015 025 

Would add 25 plus normal incrementation to 
the word-time clock before assigning the 
next m address and 15 plus normal 
incrementation after assigning the next m 
address. 

h. WDT ~0006 MAAR 007 

Would add 7 to the word-time clock before 
assigning the next a address. The clock 
would then be reset to its reading before 
the a address assignment and 6 in addition 
to normal incrementation added to it before 
assigning the next m address. 

D. TAG TABLE CONTROL OPERATORS 

3-12 

Specific control of the Tag Table content is pro­
vided through the use of two Control Operators: 

1. EQU - Equivalence 

The EQU Control Operator can equate a tag to a 
specific value or location or clear the symbolic 
tag from the Tag Table so that the tag may be 
reused. It is similar, though not identical to 
the SYN Control Operator (see page 3-6). An EQU 
will not restrict a location in the memory table. 

The coding of an EQU Operator is: 

OP m c 

EQU xxxxx yyyyy 

EQU is the mnemonic for Equivalence. 

xxxxx is the symbolic address to be equated to 
yyyyy. 

yyyyy is the defined actual value or symbolic 
address or spaces if xxxxx is to be erased 
from the Tag Table. 

Examples of EQU coding: 

a. EQU CAM6 Al~ 

UP 1774. 7 



It ls assumed that Al2 has been defined in 
the assembly process. This EQU will cause 
CAA to be permanently stored in the symbol 
table whereas Al2 will be erased by the 
next HED C card. 

b. EQU INCRA L.l0002 

This will relate INCRA to an increment of 
0002 when used in the symbolic m field of 
a LIR or !IR instruction line. 

c. EQU GROSS HlU21 

HlUNl was previously defined by an INT 
entry. The processing of this EQU will 
equate GROSS to card word 1, unprimed, 
HSR,second read station. 

d. EQU BEOOb 1\1\;\i\1 \ 

Since the Symbolic c Field is blank, 
permanent tag BED is erased from the 
Tag Table and is available for 
redefinition. 

2. HED C - Clear Temporary Tag Table 

The HED C Control Operator clears the temporary 
tag table. It is usually used to mark the end 
of a particular section or segment of coding 
within the source program. 

E. CONSTANT LIBRARY OPERATORS 

A constant library may be established for an 
installation using the S-4 Assembly System. This 
is done by assigning each constant a tag. Thus, a 
source program may be prepared using the specific 
tags for the constants that are desired. Through 
the use of HED L and HED K control operators, the 
ent:.ire constant library may ·be introduced as part 
of the source program. Only those constants whose 
tags have been referenced during the previous assembly 
of the source program coding will be used. Constants 
not referenced will be ignored. 

UP 1774.7 3-13 



1. HED L - Process Constant Library 

The HED L Control Operator is used just before 
the constant library deck is introduced. It 
will cause only those constants whose tags have 
been referenced by the pr.eviously assembled 
source program to be accepted from the constant 
library. 

2. HED K - End Constant Library Processing 

The HED K Control Operator indicates that the 
processing of the constant library is finished. 
Normal assembly mode will be resumed. 

F. PROGRAM TESTING OPERATORS 

3-14 

The S-4 Assembly System includes a number of control 
operators designed to aid in program testing and to 
permit assembly around previously allocated portions 
of memory. 

1. HED X - Printer Output 

The HED X Control Operator eliminates the 
assembly output on the RPU. Printer 
output continues. 

To eliminate the assembly mode initiated by a 
HED X Control Operator, HED P Control Operator 
must be used. 

2. HED P - Resume RPU Output 

The HED P Control Operator causes assembly 
output to be resumed on the Read-Punch Unit. 
Printer output continues. 

3. PPA - Print and Punch Availability Table 

The PPA Control Operator provides a printed 
listing of locations not used and a punched 
card deck as a reloadable record of the 
me~ory availability table. The deck_produced 
is in multiple word-per-card format (8 words 
per 90-column card). By loading such a deck 
in another assembly run, the memory avail­
ability table would be restored and further 
assembly could be initiated without any 
overlay of previous assembly allocation. 

UP 1774.7 



The format of the printed listing caused by a 
PPA Control Operator is: 

0000 nnnnn 0800 1000 nnnnn 1800 4000 nnnnn 4800 
0001 nnnnn 0801 1001 nnnnn 1801 4001 nnnnn 4801 
0002 nnnnn 0802 1002 nnnnn 1802 4002 nnnnn 4802 

0199 nnnnn 0999 1199 nnnnn 1999 4199 nnnnn 4999 

UP 1774. 7 

The first n after 0000 refers to location 0000; 
the second n after 0000 refers to location 0200; 
the third n to 0400; the fourth n to 0600; the 
fifth n to 0800; and so on for the balance of 
the printout. 

Each n will contain a utilization key the 
interpretation of which is: 

0 

1 

2 

3 

4 

5 

6 

8 

9 

for an unused location. 

for a location used in an a address. 

for a location used as a data address in 
the m address field. 

for a location used as a next instruction 
address in the m or c address field. 

for a location used as a next instruction 
address and data address. 

for a location used as an a address and 
next instruction address. 

for a location used as an a address, data 
address, and next instruction address. 

for a location reserved by a BLR or INT 
operator. 

for a location reserved by a REG or SYN 
operator. 

3-15 



3-16 

4. PAT - Print Availability Table 

The PAT Control Operator will provide only a 
Printer listing of the Memory Availability 
Table. No punched card deck will be produced. 

5. SYP - Print Symbol Table 

The contents of the Symbol Table may be listed 
on the Printer at any time during the S-4 
Assembly by use of an SYP Control Operator. Each 
line of the listing consists of five symbol sets 
each of which is in the following format: 

ttttt f aaaa 

ttttt is the tag. 

f is the utilization key (the interpretation 
is the same as for the PPA utilization keys). 

aaaa is the address allocated to the tag. 

UP 1774.7 



IV. ASSEMBLY FEATURES 

A. ASSEMBLY OUTPUT 

1. Punched Card Output 

The output deck of an S-4 Assembly is the machine­
coded object program in a one-instruction-per­
card format plus the symbolic coding and remarks. 
This format is acceptable to the standard loading 
routine of the object program. 

The output of the S-4 90 Card System conforms to 
PTA01-PTA02 format. All fields on the card 
are punched in card code except the assembled 
instruction which is in the USS code and located 
in the unprimed portion of columns 21-30. Positive 
instructions have a key of 3; negative a key of 
4. A four bit,when netessitated by IR modifi­
cation, is automatically buffed onto the instruction. 

2. Printer uutput 

The S-4 Assembly Printer output is a si~e-by-side 
listing of the assembled and the symbolically 
coded lines (including the Word-Time and Remarks 
Field) and codes to indicate error detected during 
the assembly processing. The latter, when 
necessary, are printed on the extreme right of 
the listing. 

3. Printer Error Codes 

The error codes that may appear on the Printer 
listing are: 

UP 1774.7 

Code 

w (Blank) 

1 

2 

3 

4 

Error 

No error detected. 

Region or interlace not defined. 

A non USS form of machine 
(absolute) address was encountered. 

An input error in blank-address 
linkage was discovered. 

Incorrect Class or Symbolic OP 
code was used. 

4-1 



Code 

5 

6 

7 

8 

Error 

This line was bypassed because 
of an error condition. Error 
condition was one of the 
following: 

a. SYN Operator -

(l) c address symbol undefined. 

(2) an address is unavailable. 

b. EQU Operator -

Spaces in m and c 

c. HED Operator -

Invalid HED designation. 

d. INT Operator -

Invalid INT designation. 

e. BLR and BLA Operators -

Invalid address in m 

f. REG Operator -

(1) Invalid address in m 

(2) Invalid REG designation 

Symbolic specification has already 
been defined in a previous a address. 

Two consecutive locations are 
not available for assignment to 
an overflow (c+l) set. 

Memory full indicator. May be 
result of one of the following: 

1. All memory was depleted and 
no assignment could be made. 

4-2 UP 1774.7 



b. A band-relative address required 
by a SYN Operator was unavail­
able. The next best address 
level was assigned. 

If several errors appear on a line they will be 
noted in the same order as detected (class, 
OP, a, m, c). 

For example, if both the class and OP were 
erroneous and the m address was a defined 
regional reference, 4, 4, 1 would appear as 
the error note. 

B. PREPARATION FOR ASSEMBLY 

After the program has been coded it is punched, one 
instruction line per card. The resultant deck is 
the input to the S-4 Assembly program. The sequence 
of the input cards is: 

UP 1774.7 

a. RSI Card: The RST card contains the name of 
the program in the m and c field of the card. 

b. Specials: If desired, PPA cards may be 
entered at this point, in order to restore 
the memory allocation as it was at the time 
of punching the PPA cards so that further 
assembly will be an area other than used in 
the prior program. In addition, cards 
controlling package routine changes, inter­
lace changes and so on, should be entered at 
this point. 

c. BLR: Block Reservation cards. 

d. REGion: Regional Reservation cards. 

e. INTerlace: Interlace Reservation cards. 

SYNonym: Synonym Cards. 

g. EQUivalence: Equivalence Cards. 

4-3 



4-4 

h. HED: HED cards as needed prior to 
initiation of main program detail 
card assembly. 

i. Detail: Main program detail cards plus 
Control Operator cards as required. 

j. HED L: If the constant assembly option 
(Paragraph 2.06) is utilized, a HED L 
card followed by the constant pool 
followed by a HED K card is required 
at this point. 

k. SYP: Symbol Table printout (recommended but 
not required). 

1. PPA/PAT: Print-Availability Table or Print 
and Punch-Availability Table. 

m. RST: If further compilation to re-initialize. 

C. THE FORWARD SEARCH OPERATION 

The Forward Search function of ·S-4 ~s primarily 
intended to optimize latency where a branching 
operation is involved. This function enables the 
assembler to scan up to 10 lines ahead when a pre­
viously undefined symbolic specification is encountered 
and then make assignments in a backward direction. 

A HED 8 Control Operator will initiate the function. 
It sets a switch that causes S-4 to enter Phase 1 
(Forward Scanning) of Forward Search when the first 
undefined symbolic tag (LRP not included) is 
encountered. The data on this card and on sub­
sequent cards will be stored in a special table that 
will be accessed when Backward Assignment (Phase 2) 
commences. 

Forward Scanning will normally continue for up to 10 
lines. However, if certain conditions are encountered, 
the assembler will enter Phase 2 prior to encountering 
this limit. Further, depending upon the condition, 
Backward assignment will commence either with the line 
in which the condition occurs or with the line preced­
ing. Upon execution of Phase 2, the normal processing 
mode resumes, but only until another undefined symbolic 
tag is encountered, at which point the Forward Search 
cycle will be repeated. 

UP 1774.7 



If it is desired to permanently eliminate the Forward 
Search mode, a HEDA card must be introduced. If, at 
this point, Phase 1 is in effect, Phase 2 of the 
current cycle will be executed before termination. 

The conditions that suspend Phase 1 of Forward 
Search are as follows: 

1. Where backwara assignment will begin with the 
preceding line: 

a. A constant has been encountered. 

b. The card contains a "C" in the class field. 

c. Any control operator is encountered. 

d. Any LRP if the suffix is: 

(1) blank 

(2) H and the a address did not contain this LRP. 

2. Backward assignment will begin with the same line 
when the 10th line has been scanned. 

The 11 C91 class field comments cards is used as a 
control for Forward Search processing. Those sections 
of coding containing branches to a common exit point 
should be preceded and followed by 11 C11 cards. The 
HED A and HED B are also required to initiate and 
terminate the function. 

UP 1774.7 
4-5 





V. OPERATING PROCEDURES 

The S~4 Card 90 Assembly deck is composed of two sections: 

a. The load section; Cards are numbered l through 44 
in columns 89-90. 

b. The multi instruction-card section; Each card 
contains up to 8 instructions in machine code in 
words O, 1, 2, 3, 5, 6, 7 and 8 (unprimed portion), 
column 86 contains the number of instructions on 
the card. Cards 87-90 contain the first location 
to be loaded; the remaining instructions are 
loaded n+l. 

A. LOADING S-4 ASSEMB~Y 

1. Read~Punch Unit 

a. Fill inpvt magazine with blank cards. 

b. Depress FEED ONE CARD button three times • 

. c. Depress RESET button. 

2. Printer 

a. Determine adequacy of paper supply. 

b. Advance paper until six holes are above 
holding clamps. 

3. Console and Card Reader 

a. Place S-4 self-loading deck in Reader input 
magazine. 

b. ~epress GENERAL CLEAR. 

c. Depress ONE INSTRUCTION button. 

d. Key 72 0000 0000 into Register C. 

e. Depress RUN button (HSR should feed one card). 

f. Key 96 0000 0011 into Register C. 

g. Depress CONTINUOUS and RUN buttons. 

h. Upon successful load, the computer will stop on 
67 3500 3500. 

UP 1774.7 5-1 



5-2 

4. Optional Punch-Check Section 

A punch-check section may be included by either manual ( 
key-in or by punching two cards with the following 
information: 

Location 

3515 
4901 

B. EXECUTING S-4 ASSEMBLY 

Instruction 

05 4917 4619 
26 4354 0000 

1. Place program deck in the input magazine of the Card 
Reader 

2. Release 96 button. 

3. Depress GENERAL CLEAR and RUN button. 

C. LOAD ERROR STOPS 

67 [all bits in m] 0025 

A mislead; reload deck again. 

67 6YY6 0150 

A read error in the Card Reader. Recommit the cards 
in stacker 1 and depress GENERAL CLEAR and RUN buttons. 

67 0149 0150 

The input hopper is empty. To continue loading, 
put cards in input hopper and depress GENERAL CLEAR 
and RUN buttons. 

67 YTTY 0164 

The card count on the sentinel card does not 
agree with the number of cards loaded. Locate 
the missing card and reload. 

D. ERROR STOPS DURING EXECUTION 

67 0444 cccc 

Punch malfunction (c+l): 
If card jam occurs, remove cards from output 
hopper. Clean out punch, reposition cards, 
depress ONE CARD three times, depress RESET, 
GENERAL CLEAR and RUN buttons. 

UP 1774.7 



67 0888 cccc 

Punch malfunction: 
Six attempts have been made to punch read check 
card with no success. Repair punch unit. To 
omit bad card and continue, depress RUN button 
(manually create 16st card from printer listing). 

67 0111 cccc 

Empty input magazine indication in Card Reader: 
Either the Reader input magazine is empty or the 
picker knife has failed to feed a card. Take 
remedial action, select· c, depress GENERA~ CLEAR 
and RUN buttons to continue. 

::·'·, .. ·'.) 

UP 1774.7 5-3 



UP 1774.6 

APPENDIX A -CODING FORM 

The coding form shown on the following 
page can be used for the S-4 90 Card 
Assembly. 

A-1 



::i> 
I 
I\) 

~71.and~ 
DIVISION Of SPEHY ~AND CORPORATION 

L LINE SYMBOLIC 
I NO. "A" 
N 
E 

13 14 15 16 46 47 48 49 50 
I I I 1 I I 

1 I 

_L _l _l l J_ J_ 
l T I I I I I 

2 I 

+ + + i l + + I 

3 I 

-t -t + 
I 

+ + + 4 I 

J_ + + 
I 

+ + + I 5 
J_ J l 

: 
J l i 

I l I ; l I l 

6 
_l _l _l 

I J J_ _l 
-!· -r I I I I 

7 I 
I 

...l _l _j_ 
I 

_l _j_ -t r r I I I 

8 
_l _l _l l _l J_ 
I I I I I I I 

9 I 

l l J_ I J_ J_ J_ 
I l r : r r 

10 I 

I I _l I ..I. J_ J_ 
I I I I I I 

11 
-t -t -t I 

-t -+ + ; 
12 I 

-+ -t l 
I _[ 1 _J 

I -: I I -r 

13 I 

+ I _[ 
I 

-t 1 J_ 

14 
l I -, I 

I 

I I J_ J_ J_ l 
T T I r r I 

15 ; 
J_ _l i .l J_ .l 
T T I l I l 

16 I 

I _l i I + + + I I I : 17 I 

J_ J_ J_ J_ + -+ I l I I 

18 
1 l _i J_ J_ _l 

T T r : I I I 
19 I 

L I J_ J_ J_ l 
I T I I ! I 

20 I 

...l J_ _J_ _l _l 1 
T l I I I I 

21 
I I _l _l J_ _l 

T I I I 

22 
l I _l : 

...l _l J. 
I T I : I I I 

23 
_l_ _l ..1 + J. 
T l I I 

24 I 

+ -t .l _l J_ _l 
T T l : 

25 ; 
I _l ..1 _l I 

OPERATION 
IR 

CL Symbolic 

51 52 53 54 55 
r 

! l ; I 
I 
I 

J_ 

: 
I 

I + 
: 

_l 

: I 

: l 
I 

I 
I 

-t I 

I 

l _l 
I 

I 
I 

_l 
I 

I 
I 

J. 
I I 
I 
I 

l 
I 

I 

I 

-t : 
I 

J 
: I 

J __[ 
I 

I 

I 

l 
: I 
I 

_l 
I I 
I 
I + i 
I 
I 

I + 
: 

..1 
I I 
I 
I 

_l 
I I 
I 

I 
J__ 
I 

I 

l 
I 

I 

I 

...1 
I 

l 
I 
I 

_j_ 
I 

I j 
I I 

..I. 

s 4 ASSEMBLY FORM 

UNIVAC SOLID-STATE SYMBOLIC SYSTEM 

SYMBOLIC SYMBOLIC 

l "M" "C" WORD 
TIME 

56 57 58 59 60 61 62 63 64 65 66 67 68 i 69 70 75 
_l 

i I I I 
I 

I I 1 1 I "T l 
I I I I I 

I I I 

I J. + t + + + I J_ 
I 

J_ ..1 ..1 ..1 J_ 
I 

! I : I I I 
: 

I I I I 

: I I I 

J_ l J_ J_ _L I I I -t l _l + + l 
I 

I I I I : I I I ; l ; T I ; 
I : : : I 

J_ l l J. ..1 1 I I l J J_ J_ _l 
I I I I I -r l 1 l -r I r l 

I 
I I I 

I 
I i J. l 

I 
l J_ _l l I 

I 
_l. J_ _l J_ _l 

: I I I : I l T 1 l -r I r I : 
: l i J : l J_ l J_ J 

I 
J 

I i i l J l 
I I I I I I l l l l I l I l 
I : 

: -t + -t i + -+ -t -t -t ~ -t l -t + -+ --+-----+ 
: I 

i _l _j_ -t I I I I 
I 

_l I ...l _j_ _j_ 

: I I I 1 1 l 1 : l l I r r I 
I I ; 
I 

J. l l 
I 

J_ I I I l J_ l l J. J. 
: I I I : I l l l l : I I I I I 

I 

: 
J_ l l 1 -t -t -+ -+ -+ 

_;_ 
-+ 

_[ _l _l _[ 

I I I I r l l l 
: : I 

..I. l j j J J _J_ _l 
I 

l j J J. J 
I r I i I l 1 I 1 l I r T I l 

I I 

_l I 
...1 ...! j I .i _l _[ I -t J. _J_ l _l l _l _l 

; I I I : I l I I r : I r r r 
I 

I ; I 
I i ..I. ...! 

I 

-t + + J_ _l _J_ l J J J I 

I 
I I I ! I I : I ! I I I I : 

I I I : 
__[ J. _1 I j -t + J _l _J_ _l J J J 

I I I I : I I I I 
I 

I I I I ! 
I : ; I 

l J. + + + + + -+ + i l + + I I I : : I I : I I 
I 

.l .1 ..1 
I 

J. J_ l J_ _l _j_ J_ J. _l _l 
I 

I I r ! I I I I T ; I I I, I T I 
I : l J_ + 

I 
_l I I I l J_ + J_ + + 

I 

; I I : I I T I T I I ; 
: I ..1 .1 + l i + + I l + + + + + : I I 

I 
T T : 

: l + + l .1. l _l _l + + + I _l J_ _l 
I I ; I r I i I ! I 

I 
I _l t + ~ + J_ J_ J_ + J_ + _l i i J_ 
: I I I I 

I : I I I I : 
I I 

1 _l j ..!. ..J. l _l _l _l J_ J_ J_ J_ ...1 ..1 
I I I I : I I I l I T T T T I : 
I I : I + + + i + _l _l j' J_ I 

-+ + _l J_ J_ 

: I I I l ! ; I I I 

I : l J_ J. J. i ...1 + + J_ J_ l J_ l l _l 

: I l I I I I : I I I I I ~ I 
I 

...l .l. .l. 
I 

_j_ I I -t -t + -t I 

-+ ...1 _l 
I I I I 

I 
I I l : T I I : I I : ; 

I 

.l + _l i + J J_ l _l J J_ J. J : 
: I I : I I -, l : I ! I I r l : I I I 

: J. J. J. 
I 

J. l _! J. J. .l. _l .l ..1 ..1 J. 

BC 
PAGE: __ OF __ _ 

REMARKS 

80 85 90 
I I I I I I I I I I I I 

I 

J_ ..1 ...l J. .1 l J_ ..1 J_ .1 _l ..1 
I r I I : I I I I : I I r I 

+ + + + 1 -+ + + J. J. l + I 
I I I T 

J_ J_ + -t ~ + + + + + -+ + + -+ r I 

J_ _l _l _l J_ _l -t + + -t + I 
I I I I 

I 
r I 1 

_l J_ l J. 
I 

J l J_ l ..L l l _l l 
I T I I : l I I I I I I l 

: 
J. -+ -t -t + -t ...l _l ...l _l l -r : I I I -T l 

I 

: 
...l _l _l ...l -t -t + + ~ j _j_ l 
r I I l : I I r r 

J. _l J_ J. 
I 

l + -+ -t l -t _l J_ 
I I I I I ' 

I I 
I 
I 

_l i -+ -+ -+ + i J. 
I 

l ..I. _l _J_ 
I I I I l l 

; 
J. l j J. ...! l j J. l _l I ..I. 
I I I I : l I I I I I I I 

: J. _l _J_ ...1 i -t -+ -t i ..I. J _l J_ 
I I I I 

I 
I I l l 

: 
-+ i + J. l ...! j + ..I. j J J_ 

I I I I I I I I 

i j ...! J. ...! J. J J. ..I. j J J. 
I I I I I I I I I I I r 

+ + + + + + l .1 l + l + ~ I I ~ I I 

J_ l .1 .1 l .1 l J_ l j J_ _l 
r I I l I I l I I I T T 

I 

_l l ..1 .1 
I 

i .1 l + J. .1 I l 
I I r I 

I 
I I I ! I I T T 

I : 
-+ 

J_ ..1 J_ l .1 ..1 + ..1 J_ _l 1 
I I I I I I I I T T 

I 

l + + + 
I _l + J. l I J_ t + + I ~ I I I I I 

: I 

J. t + l _l + -+ 
l l -+ + -+ I l I I I 

I I 

...l _l .1 l 
I 

..!. .1 i .l ...1 l _l ...1. .J. 
I l I I 

: 
I I I I I I I T 

J. l + + + l J_ _l _l + + _l 
I I I I I I l 

I 

_l _l i + 1 + j J__ ' .1 _l _l 
I I I l I I I I T 

.l. _l + + _;_ 
-t + _l j _j_ I _l ..1 

I I I I I I 

J _l I I I I I i I l I 
-r I I I 

l J. l ..I. _l I J. J. ---...._______l_ __ -



APPENDIX B-SUMMARY OF INSTRUCTION CODES 

S-4 OP 
ASSEMBLER CD m c DESCRIPTION WORD TIMES 

ARITHMETIC 

ADD 70 m c (m) + (rA) -+ rA, if Overflow C=c +l. 5 

SUB 75 m c (rA) - (m) -+ rA, if Overflow C=c +l. 5 

MUL 85 m c (rL) x (m) -+ rA MSD, rX LSD. 5 + ND+ SD 

DIV 55 m c (m) + (rL) -+ rA Quot, rX Rem. if 
Overflow C=C + 1. 20 + SOD + STCED 

TRANSFER 

LOA 25 m c (m) -+ rA 4 

LOX 05 m c (m) -+ rX 4 

LDL 30 m c (m) -+ rL 4 

STA 60 m c (rA) -+ m; m may not be a .register 4 

STX 65 m c ( rX) -+ m; m may not be a register 4 

STL 50 m c (rL) -+ m; m may not be a register 4 

ATL 77 c (rA) -+ rL 3 

CTA 23 m (re) -+ rA 3 

CLX 06 m Zeros -+ rX; sign + 3 

CLA 26 m Zeros -+ rA; sign + 3 

CLL 31 m Zeros -+ rL; sign + 3 

CAA 36 m Zeros -+ rA; retain original <>ign 3 

CAX 86 m Zeros -+ rA, rX; sign of rL -+ r~, rX 14 

LCXlICAL 

BUF 20 m c Superimpose (m) on ( rA) -+ rA 4 

ERS 35 m c Extract (m) from (rA) -+ rA 4 

SHR 32 OnOO c Shift right n places. (rA) -+ (rX) -+ rA 3 + n 

SHL 37 OnOO c Shift left n places. Zeros -+ rA LSD 3 + n 

ZUP 62 c Suppress Zeros, Commas, RR in rA, rX. 4 

JMP 00 m Skip 2 

HLT 67 Halt 

COMPARISON 

TEQ 82 I= (rA) (rL) 3 

TGR 87 > < (rA) (rL) 3 

UP 1774.7 B-1 



S-4 
ASSEMBLER 

TBU2 

TRD 

TWR 

RANDEX 5 

LSR 

DPT 

DBT 

TBU2 

TBL 

TBT 

TST 

PDH 

DWT 

ORD 

DWC 

DSW 

DSR 

PAPER TAPE5 

RPT 

PBU 

TTR 

PPT 

TPB 

lAdd 1 word 

OP 
CD 

F6 

G2 

H2 

40 

43 

92 

F6 

C6 

C7 

C2 

18 

28 

38 

48 

58 

68 

Al 

A2 

A3 

A7 

AB 

II c 

c 

Oxyz c 

OxyO c 

m c 

OnOO c 

Yes No 

c 

c 

Yes No 

Yes No 

OUDSSTTB5 

OUDSSTTB5 

OUDSSTTB5 

OUDSSTTB5 

OUDSSTTB 5 

OUDSSTTB5 

m c 

0000 c 

m c 

c 

m c 

DESCRIPTION WORD TIMES 

(B) ~ Tape Interlace on n band. L 198; 
NI 003. If AOT (rC) ~ rA, NI in C+l. 205 

Read 1 blk. from tape ~ B 17 

Write 1 blk. from B ~ Tape 17 

(m) ~ SIR 4 

Test Unit N; if head in position set 
H.P.F.F. 4 No=3 Yes=4 

Test H.P.F.F. 4 ; if set (re)~ rA; Nl ~ m 3 

(B) ~ Tape Interlace on n band. L 198; 
NI.003. If AOR (re) ~ rA, Nl in C+l. 205 

Tape Interlace on m band. B. L 048; Nl 053 205 

Buffer Test: Yes, (re),~ rA, Error FF~ rL No=3 Yes=4 

Synchronizer Test: Yes, frC) ~ rA 

Position Read-Write Head. 125-550 ms. 

Write RANDEX Blk (B) ~ Blk. specified 

Read RANDEX Blk. Blk specified ~ B 

Write/Check RANDEX Blk. (B) ~ Blk, 
specified and check. 

Search Write. (B) ~ Blk. identified 
by Search. 

Search Read. (Blk.) identified by 
Search ~ B. 

Read paper tape. If interlock rC ~ rA; 
NI at m. 

(B) ~ rA & rX. Numeric ~ rA; Zone~ rX. 
If parity error c=c +l. 

Input Buffer-Loaded Test: Yes, (rC) ~ rA 

No=3 Yes=4 

125 m. s. (min) 

35 m.s. (min) 

105 m.s. + Lat. 

105 m.s. +Lat. 

35 m.s. + Lat. 

35 m.s. 

3 if c; 4 if m 

3 

NI at m. 3 if c; 4 if m 

(rA) & (rX) ~ B: Initiate output 
punching. 

Output Buffer Free: Yes, (rC) ~ rA. 
NI at m. 

3 

3 if c; 4 if m 

1 Add 1 Word Time to instructions employing IR modification. 

2 If not executed, (rC) ~ rA, next instruction~ c+J. 

s m = bbOO if drum: where bb is band address. 

4 H.P.F.F. = Head Position Flip Flop. 

5 Instruction executed in SIR. 0 = unused digit position; U = RANDEX Unit D = Drum Half; 
SS = Sector; T = Track; B = Block. 

5 For use when assemblinq on USS 90 Card configuration for USS 90 Tape configuration. 

UP 1774. 7 8-2 



S-4 
ASSEMBLER 

TRANSLATE 

CTM 

MTC 

MTX 6 

XTM 6 

INDEX REGISTER 

LIR 

IIR 

PRINTER 

PRN2 

PFD2 

PBT 

CARD READER 

HBT 

HSU 

HCC2 

HSS 

READ-PUNCH 

RBT 

RBU 

RBU 6 

RCC2 

llCC2t6 

RSS 

MAGNETIC TAPE 6 

TST 

TBL 

TBT 

TRW 

U? 1774.7 

OP 
CD 

12 

17 

Cl 

C3 

02 

07 

11 

16 

27 

42 

96 

96 

72 

47 

22 

46 

46 

81 

81 

57 

C2 

C6 

C7 

F2 

m 

m 

m 

bbnn 

OOnn 

Yes 

Yes 

bbOO 

bbOl 

m 

OnOO 

Yes 

bbOO 

bbOl 

bbOO 

bbOl 

Yes 

Yes 

OxyO 

c 

c 

c 

c 

cl 

cl 

c 

c 

No 

No 

c 

c 

c 

c 

No 

c 

c 

c 

c 

c 

No 

c 

No 

c 

DESCRIPTION 

RR (rA and rX) ~ MC-4 (rA). 

MC-4 (rA) ~ RR (rA and rX) 

MC-4 (rA) ~ XS-3 (rA) 

XS-3 (rA) ~ MC-4 (rA) 

m of instruction word ~ IRi 

Zeros ~ rX 

m of instruction word + (IRi) ~ IRi, and 
m of rA. Zeros ~ balance of rA 

Advance nn lines, print bb band. (rA), (rX) 
destroyed Ll97 : NI 189 

Advance nn lines 

Printer Test: Yes (re) ~ rA 

Buffer Test: Yes (rC) ~ rA 

(B) ~ J interlace on bb and: L 198; 
NI 001 

(B) ~ MC-6 ~ JI interlace on bb band. 
L 198; N 013 

Card Cycle. Interlock (rC) ~ rA. NI ~ m 

Select Stacker n (n = O, 1, 2) 

Buffer Test: Yes, (re) ~ rA 

(B) ~ Ir Interlace on bb band. L 098; NI 101 

(B) ~ MC-6 ~ Ir interlace on bb band ~ B. 
L 098; NI 113 

Card Cycle. 0 interlace on bb band ~ B. 
L 098; NI 001 

Card Cycle. MC-6 in Or interlace on bb band 
~ CC ~ B. L 098; NI 108 

Select Stacker 1 (sort) 

Synchronizer Test: Yes, (rC) ~ rA 

Tape Interlace on m band ~ B. L 048; NI 053 

Buffer Test: Yes, f~) ~ rA, Error FF~ rL 

Rewind UNISERVO x. (x=0-9) y=O, no 
interlock. y=2, interiock 

WORD TIMES 

3 

3 

3 

3 

3 

4 

592 

4 

No=3 Yes=4 

No=3 Yes=4 

203 

215 

3 if c; 4 i.f m 

3 

No=3 Yes=4 

203 

215 

103 

210 

3 

No=3 Yes=4 

205 

No=3 Yes=5 

600 ms. 

B-3 


