F O RTZ R AN II

for the

UNIVAC SOLID-STATE COMPUTERS

(uss I & USS IT1)

(by D.E. Kauth)

As presented at
UNIVAC USERS Conference
Palm Springs, California
October 3, 1962

U N I V AC

DIVISION OF SPERRY RAND CORPORATION

3 ¢ ¢ 3 3¢
* ¥ ¥ 3
* #*

3#*

PRELIM. SPECS-

»

CHAPTER I

I. INTRODUCTION

Fortran is a language which was created to simplify the preparation

of problems for computers. A programmer can write out his method of-
solution in the Fortran language, which resembles ordinary mathematical
notation, and the computer will carry out the translation from this
language into its own peculiar machine code. It is not necessary for
the programmer to know anything about machine code; he need only con-
cern himself with the Fortran II language, since the other details are

carried out automatically by the Fortran translator program.

As an example of how a Fortran program looks, here is a simple one
which reads in 100 numbers A (1) through A (100), computes 1/A(1) + 1/A(2)
+ ...+1/A(100), and then prints out the numbers together with the answer.
The numbers are punched 10 to a card, each occupying 8 columns of the

card. The program in FORTRAN could be written as follows:

EVALUATE SUM OF RECIPROCALS

DIMENSION A (100)

READ 3, A

SUM = 0.0

DO 1, I =1, 100

SUM = SUM + 1.0/A (I)

PRINT 2, A, SUM

STOP

FORMAT (10F8.2)

FORMAT (LQHTHE 100 NUMBERS ARE, 10(2/10F10.2), 2/,
1 31HTHE SUM OF THEIR RECIPROCALS IS, E30.8, 43/)

The C at the left of the first line indicates it is merely a comment.

" The second line says that A(1l) through A(100) is an "array" of 100 numbers.
The third line causes 10 cards to be read in, containing the 100 values.
Then a running sum is started at zero. The "DO" statement says that the next

line, statement 1, is to be executed for valﬁes of I =1, 2, 3, ..., 100 .

After 100 times, the desired sum has been evaluated, and the PRINT

statement causes printing out of the data and the answer.

Do not expect to understand the preceding Fortran program in
detail, it was just given as an example to introduce the flavor of

Fortran languages.

We will now begin to discuss the details of the language.

USS FORTRAN II.

This manual contains the specifications for the Fortran II compilers

for Univac Solid State Computers. There are five versions of the compiler:

Version Number Configuration
8001 80-column cards with 5000-word drum.
8002 80~column cards with 2600-word drum, 1280-word core.
9000 90-column cards with 5000-word drum, no tape.
9001 90-column cards with 5000-word drum, tape system.
9002 90-column cards with 2600-word drum, 1280-word core.

These systems must have hardware multiply-divide, a read-punch unit, a

card reader, and a printer with at least 100 print positions. No use is made

of magnetic tape in these versions. The entire Fortran system programs are

built to be run with the "9800 suppress" switch set ON to turn off the

band-modification feature with index registers.

This Fortran II language is actually somewhat more than many Fortran II

translators will accept. Programs written for other Fortran II translators

are acceptable to this translator without change, except

(1)

(2)

The word length is a fixed size of 8-place precision for floating

‘point numbers and 4 digits for fixed point numbers.

The allocation of COMMON storage is made in ascending order.
The 8002 and 9002 versions do not accept EQUIVALENCE statements.

Arithmetic Statement functions must be rewritten in a straight-

forward way as FUNCTION subprograms.

Six-letter identifiers whose first five characters agree, such as
ALPHAl and ALPHA2, must be changed so that their first five

characters are different. There are also a few new reserved words.

Names of library functions should be changed (i.e. LN for LOGF),
and this can be done by defining the word LOGF (see Appendix I).

IF (SENSE SWITCH) has no meaning on the solid state computer.

CHAPTER II

Constants, Identifiers and Special Symbols

The Fortran language is made up of constants, identifiers, and special

symbols.

Constants

Constants areé used to represent numbers which appear in formulas. Each

constant corresponds to a ten-digit number inside the machine.
There are four kinds of constants:

A. Integer constants.

The simplest kind of constant is an "integer constant" which is
merely composed of one to four digits. These appear inside the computer

as a number with extra zeroes attached at both the right and the left.

Examples:
Fortran constant Machine representation
1234 0012340000
123 0001230000
1 0000010000
0 0000000000

B. Floating point constants.

Integer constants can represent only whole numbers, but "floating-point"
constants allow a great range of numbers. Examples of floating point constants
are 3.1415927 or .005 or 6024E23. The last constant means 6.024 times 1023;

the letter E 1is used in Fortran to indicate a power of 10.

You can always tell a floating-point constant from an integer, since a
floating point constant always has a decimal point or am "E" in it. The 19
possible types of floating-point constants are summarized in chart form

as.;

number { number blank
blank blank E number

E + number

E - number

E number
or {numbef} ' E + number .

E - number

Floating constants may have any number of leading zeroes; but after

leading zeroes they should be rounded to eight significant digits at
most.
Inside the machine a standard representation is given which accounts

for the name "floating point". The ten-digit number YYXWWWWWWW is either

(1) zero, representing 0.0
(2) non-zero, in which case it is true that X is not zero.

Then the number represents X.WWWWWWW E(YY - 50) .

For example, 5010000000 represents 1.0 E 0 = 1.0 ; similarly, 5212000000
represents 1.20 E 2 = 120.

More examples of floating point constants:

Fortran constant Machine representation
1.0 5010000000
3.1415927 5031415927

«R345E-27 2223450000
5E20 7050000000
. 0000000000001 3710000000

There are at least 34 different ways to write the number 1.0 as a floating
point constant using 5 characters or less; how many of these can you find?

They all have the same machine representation.

C. Hollerith Constants

The remaining two types of constants are used mainly in non-scientific
Fortran programs. Alphabetic information is represented by so-called
"Hollerith constants", named after a man who pioneered in punched card

equipment many years ago.

-6 -

These constants consist of 1 to 5 letters, and are written as nH
followed by the alphabetics, where n is the number of letters. (Numerics

and special characters may be used as well as alphabetic letters.)

The machine representation of Hollerith constants differs for 80.and
90 column equipment. In the 80-column versions this representation is
ZZZZZNNNNN where Z represents the zone part and N the numeric part of
the character in MC-6 machine code. On 90-column systems the representation
is PPPPPUUUUU where P represents the primed part and U the unprimed
part of the character in Remington card code. If the number of letters is

less than 5, zeroes are filled in at the right.

Examples of Hollerith constants:

Fortran 80-column machine 90-column machine
1HA 1000010000 2000070000
5HABC12 1110012312 2010277122
14/ 3000010000 ' 3000090000

D. Machine constants

Machine constants make it possible to represent any 10-digit bit con-
figuration on a Solid State computer. These are written nM followed by n
numbers or the letters A, B, C, F, G, or H, The letters are used to re-
present "undigits" 4/1, 4/2, 4/3, 4/6, 4/7, and 4/8 respectively. If n is
less than 10, zeroes are filled in at the left.

Examples of machine constants:

- Fortran constant Internal representatipn
1M5 : 0000000005
; LALLLL
10OM120ABCFGHO9 1201236789
Lb4LlL,
5MBBBBB OOOOO22222

Types

Quantities manipulated in the Fortran language are of three "types": integer,
floating~-point, or unspecified. It is important for the Fortran programmer

to be careful about the "types" of the gquantities he uses.

-7 -

Integer type means the values have a range of integers only, with the possible

values of
-9999’ -9998, eee o -l, O, +l, seeey +9998, +9999-

Floating point type means the values have a range of anywhere from 1.0E-50

to 9.9999999EL9, positive or negative; or zero.

Unspecified type means the value can be thought of as either integer or

floating, or that the type is immaterial.

A constant of zero has unspecified type; other integer constants have type
integer, and other floating point constants have floating point type. Hollerith

and machine constants have unspecified type.

The question that probably is occurring now to the reader is: Why so many
types? All the possible values for type integer occur also in the floating-
point range, so why could we not dispense with integer type completely? The
reason is that calculations with floating-point quantities are more difficult
for the computer, so they take much more time for execution; Therefore if
one 1s working solely with integers it is much faster to use integer type,
and only when fractional quantities or very large quantities are involved
need the slower floating-point arithmetic be used. Unspecified type is

useful when performing operations on alphabetic and other non-numeric quantities.

Identifiers

Identifiers are the names given to Fortran quantities. An identifier is a
string of letters and digits, starting with a letter. Examples are A, I,
ALPHA, A23, AR/, BR280, FORTRAN. The letters and digits used do not have any
special meaning in the Fortran language. The programmer is free to choose
the names for his own convenience. There is.no connection between A23 and

A24. An identifier ends with the first non-letter or non-digit following it.

It is preferable to choose names which have five characters or less, although
it is possible to use more letters. When using longer names there is a chance
that two different ones will be treated as though they were the same. 1In

USS Fortran II two identifiers are "the same" if

-8 -

(1) they have the same length, and

(2) they have the same first five characters.
ALPHA is different from ALPHAl, but ALPHAL is the same as ALPHAZ2.

There are some identifiers which must not be used as names, because they
have special meaning in Fortran. These words, such as READ, PRINT, IF, DO,
AND, etc. will be introduced in the text giving them special significance,

and they are all listed together in Appendix II for reference.

Important note: The first letter of the identifier determines its type.

Identifiers are used to give names of variables, and each variable takes

on either integer values or floating-point values. If the first letter is
I, J, X, L, M, or N, the variable may take on only integer values and is of
type integer. Any other first letter means the variable may take on only

floating~point values, and is of floating-point type.

Meaning of Blank Spaces

In most cases blank spaces may be inserted freely in Fortran statements;
that is, we might equally well write X = (Y +1.0) as X = (Y+1.0) .
- However, spaces must not appear in the middle of an identifier. More

exactly, a space is ignored except that

(1) It marks the end of an identifier

(2) After the letter H 1in Hollerith constants or in Format strings

| it indicates the character "space'.

(3) After the letter M in machine constants a blank space should
not be used. That is, 3M123 must not be written 3M 123,

A space is important at times to separate identifiers; for example in the
program given earlier it would have been incorrect to write READ2 or DO1,
or PRINT3. There are other cases such as "C AND Y" where both spaces are

necessary, since "CANDY" has quite a different meaning.

Special Symbols

We have so far introduced uses for letters, digits, spaces, and decimal
points. The other special characters which appear in USS computers have

significance in the language too, as follows:

1s used for an = sign
, () are punctuation marks used in the ordinary manner
+ - % / are used for arithmetic operations
s may be used to put several statements on one line, rather
- than starting a new line for each one

' (apostrophe) must never be used except in Hollerith constants

Since some "Fortran" keypunches for 80 column cards have special codes
for certain symbols, the other codes are also acceptable and are

equivalent internally, according to the correspondence below:

% may be used for (
: may be used for)
& may be used for +

$ may be used for ;

- 10 -

CHAPTER III

Varisbles and Expressions

Simple Variables, Array Variables

All symbols in Fortran are written on one'line, so "subscripts" are

not really written as lowered numbers (e.g., Ay By etc.) but rather are

written using the parenthesis convention A (1), A(2), etc. They are called

subscripts anyway.

By a "simple variable" we mean a variable which has only a single value
and therefore has no subscripts. It is also possible to have subscripted
variables, in which case a single name references many values. For example,
in the first program given the 100 numbers A(1), A(2), etc. were all values
of the subscripted variable A. Subscripted variables are called "array

variables".

It is possible to use many subscripts, if desired. A vector variable
usually has just one subscript, but matrix variables usually have two; when

. more than one subscript appears, commas are used to separate them, e.g.,
B(3,4).

Before an array variable is used in a Fortran program, a !Dimension
declaration" is given to tell how many subscripts there are, and how many

values the array has. For example,
DIMENSION A(100), B(10,20), K(2,2,2,4)

specified that A, B, and D are array variables. A 1is a vector with elements
A(1l) through A(100). B is a matrix with 10 rows and 20 columns, and K is a
four-dimensional array with 32 elements (a typical element is K(2,l,l,3)).

The DIMENSION declaration will be discussed in more detail later.

The type of an array is determined by the first letter of the name, just as
for simple variables. Thus, A and B take on only floating point values,

while all elements of K have integer values.

- 11 -

Arithmetic Expressions

Variables and constants are combined with arithmetic operations to form
expressions which look very much like ordinary algebraic expressions. But
in this case also it is important to be able to write the expression on one

line. Thus, instead of

X +Y
Z

we would write (X + Y)/Z .

. . 2 .
Exponents (superscripts), as in X~, cannot be used in formulas for the
same reasons, so there is a new way to write exponents. Two asterisks in

a row are used to indicate exponentiation (i.e., taking to a power). For

example, X2 is written X¥¥2., The expression

VA
XY would be written X% (¥#%7)

The symbols + and - are used in the usual way, for addition and
subtraction, and a minus sign may also be used to indicate negation, e.g., -X.

The symbol * is used for multiplication. This sign must always be used,
and it is important not to drop it out as is often done in algebra. One should

not write 2(I + J), it should rather be written 2% (I + J):

The symbol / is used for division.

Use of Types in Arithmetic

Care should be taken not to mix integer quantities with floating-point
quantities in an arithmetic expression. It is perfectly proper to write
X+Yor I+ J, but one must not write X + J or I+7. Similarly, it is
correct to write A(3) + 1.0, but not correct to write A(3)+l since the constant
1 is integer type and the array A is floating-point. Array subscripts (as

the 3 in A(3)) are integer.

If either operand is of unspecified type the calculation will proceed as

- 12 -

if it has the type of the other specified operand. The following table lists
all possibilities for the binary operations +, -, ¥, / . Here I stands for

integer, F for floating, U for unspecified.

Operation Type of Arithmetic Used Types of Result
FopPF. F F
Fopl not allowed -
FopdU F F
IopF not allowed -
Topl ' I
IoplU I I
U op F . F F
Uopl I I
UoplU I U

If the programmer wishes to perform the operation X + J it is possible to do
this in floating-point arithmetic by writing X + FLOAT(J). In general if we
have any integer expression like J+3%*K(1,2,1,4) it can be changed into floating-

point type by writing FLOAT (J+3*K(1,2,1,4)).

The oposite function to "FLOAT" is "FIX". If we have any floating-paint
expression like A(3) + 3.0%X we can write FIX (A(3) + 3.0%¥X) to convert it to
integer type. In this case any digits to the right of the decimal point are
dropped, there is no rounding. For example, FIX(3.1) = 3, FIX(+3.9) = 3, FIX
(-3.9) = -3, If rounding is desired for a positive quantity Q, one could
write FIX(Q+.5). General rounding for positive or negative Q can be accomp-

lished by using some tricks which will be explained later, by writing
FIX(Q + (Q AND O OR .5)).

Integer division operates like FIX in dropping the fractional part.
For example, 12/5 = 2.

Exponentiation has some'special rules. When doing integer exponentiation
I*¥*J, if J 1is negative the fractional part is dropped as in FIX, This usually

gives a result of zero, e.g., 3%%¥-2 =0,

- 13 -

When doing floating-point exponentiation X*¥*Y the base X must be a
positive quantity, not zero or negative. In this case the logarithm of X
is evaluated and multiplied by Y, then antilogarithms taken to give the

proper result.

It is possible to mix floating-point and integer types only in one
case, and that is with exponentiation. Although it 1s i1llegal to write
X+ I, it is quite all right to use X¥*I, It is, however, still not
possible to use I*¥*X. When doing floating-point to an integer power as in

X**T there 1s no restriction that X be a positive quantity.

Boolean Operations

When doing non-numeric calculations it is occasionally useful to use
the 10:-digit numbers manipulated by the Univac in other ways as if they
were 40 independent bits which were either on or off. To use all facilities
of the Boolean operations of Fortran requires a knowledge of the way informa-
tion is represented in the computer. However, for operations on the integers
0 and 1 (taking O as "false", 1 as "true") the operations NOT, OR, and AND
have the following effect:

I NOT I
0 1
1 0
I J I AND J IORJ
0 0] 0 0
0 1 0 1
1 0 0] 1
1 1 1 1

The result of a Boolean operation has unspecified type.

It is also possible to obtain more complex Boolean manipulations on
entire computer words. NOT interchanges 1 and O throughout a word. AND

is the solid-state "erase" command which produces O bits except where inputs are 1;

- 14 -

OR is the Solid-state "buff" command which produces 1 bits unless both
inputs are 0. NOT, AND, OR operate differently on values of type integer,
floating and unspecified. The result of any Boolean operation is of un-

specified type.

Examples: 1.0 AND 1OMHHOOOOOOQ0O = 10M5000000000,
1.0 AND 8MHHHHHHHH = 1000,
NOT P OR P = 1OMHHHHHHHHHH

1OMHHOO000000 .

NOT 8MHHHHHHHH

The result of NOT always has a plus sign, but the result of AND and OR with
signs is difficult to predict. For simple operations like "P AND Q" where P
and Q are simple variables or constants the sign of P 1s the sign of the
result. It is best not to use AND and OR with signed numbers, except in

the cases
Q AND 0O OR .5

which gives a constant of .5 with the sign of Q,

or
-1 AND O OR @

which unconditionally attaches a minus sign to the quantity Q . Note that
-10OMHHHHHHHHHH is pot the constant "minus all H's" because of the way sub-
traction works on the computer; to get "minus all H's" one should write -1

AND O OR 1OMHHHHHHHHHH .

Precedence of Operators

It is customary in Algebra to perform certain operations first; for
example, in A+B*C we would calculate B times C first, then add A. If one
writes X*¥*Y**Z, however, spme people would interpret this as X¥* (Y**Z) and
others would interpret Et as (X#*Y)¥*Z, Fortran takes the latter interpretation
(which is effectively X*¥ (Y¥Z)). In certain cases it is important to know which

order is taken by Fortran.

- 15 -

Operations are done in the following order:

NOT

%

In case of ties, operations are done left to right.

Examples: Fortran interpretation
A+B*C A+ (B*C)

A*B+C (A%B)+C

A/B*C ' (4/B)*C

A¥B/C (a%B)/C

YRy -(X**Y)

-X-Y (-X)-Y

A+B OR I (A+B) OR I

-X-Y-Z ((-X)-Y)-Z

~XHERY = (X% (<Y))

Note especially the third line A/B*C = (A/B)*C which is contrary to many

people's ideas and is a frequent source of errors.
As a final example of writing expressions the reader should try to write

the discriminant for a quadratic equation: b2 - 4ac. The correct answer is
B#%*2 — 4 ,0%A*C .

Notice several things:

(1) The exponent 2 is written using the *¥* operator.
(2) The multiplication signs between 4 and a and ¢ must be written.
(3) It would have been wrong to write 4*A*¥C because 4 is an integer

constant which can't be mixed with floating variables A and C.

- 16 -

(4) It would have been wrong, on the other hand, to write B¥¥2.0
even though B 1is floating point, since B*¥2,0 is allowed
only for positive values of B. B¥¥2 is the correct form for

positive, zero, and negative values of B.
(5) The precedence of operators causes the above expression to be

interpreted (B¥*2) - ((4.0%A)%C).

If any of these things seem unfamiliar to the reader at this time, he

should reread the present section.

Array subscripts

Any expression which is of integer type may be used for subscripts,
with the restriction that the final value of the expression is between 1 and
the maximum size of the dimension. A subscript expression which‘has the
value O or less must never be used. Here are some examples, which show

various degrees of complexity in subscripts:

A(I+5)

K(2,2,2,2)

A (I**J+3*FIX (X-Y/Z))
M(M(M(T+2)))

BM(I), M({J))
A(FIX(A(T)))

K(K(2,2,2,2), I, J, M(3))

More information about array subscripts is given in Appendix III.

Standard functions

To take the absolute value of a quantity, write ABS; e.g., ABS(X+Y) or
ABS(I). The type of the result is unchanged, i.e. ABS(I) is integer type,
while ABS(X+Y) is floating point.

- 17 -

The standard functions of énalysis are standard equipment in Fortran also.

These functions are:

ARCTAN (X)

square root of X

natural logarithm of X
2.7182818**X (e to the X).
sine of X, X in radians
cosine of X, X in radians
tangent of X, X in radians

arctangent of X, in radians

Only floating point expressions may be used as parameters. It is in-

correct to write SQRT(I).

Final examples of arithmetic expressions:

The quadratic formula

b + Jb° = 4ac

2a

= (-B + SQRT (B*#*2-4.0%A*C))/ (2.0%A).

The Wolontis function

= SIN (X)/SQRT (L.O+EXP (-X*%3))

SIN X

1+e X

- 18 -

CHAPTER IV

STATEMENTS

In the first three chapters we have'developed the basic fundamentals of the
Fortran language. Now we are ready to learn how to put them together to

describe a problem-solving procedure;

The Arithmetic Statement

The arithmetic statement, or replacement statement as it is sometimes

called, is of the form
variable = expression

and means that the value of the expression is to be evaluated, then stored

as the new value of the variable.

Examples:
A =B means store the value of B in A.
I =1I+1 means increase the value of I by l.
T(I) =0 means clear the value of T(I) to zero. T is an
array variable.
I+1 =1 is improper; there must be only a variable at the

left of the equal sign.

If the expression is of type integer and the variable is floating point, the

statement is automatically converted into
"variable = FLOAT (expression)" .

Similarly a floating expression with an integer variable would be converted
into
"variable = FIX (expression)" .

If several variables are to be set to the same value, this can be done by

using several equal signs, e.g.

X=Y=2=0,

C19-

which sets X, Y, and Z all to zero. The only restriction is that the

variables must all be of the Same arithmetic type.

Ambiguous usage should be avoided; e.g, consider
M(I)=I1=1.

Supposing I has a value of 2,vthen is M(2) or M(1) set equal to 1? This

situation is undefined in Fortran and should not be tried.

General Rules for Statements

A Fortran program is a series of statements punched onto cards, normally
one card per statement. The arithmetic statement which we have just dis-

cussed is one of over 20 kinds of Fortran statements.

Refer to the program in Chapter I; it begins with a DIMENSION statement,
then a READ statement, and then SUM = 0.0, an arithmetic statement.

If desired, statements can be numbered, as the statements numbered
1, 3, and 2 in that example. These numbers needn't be in order; they merely
serve as reference numbers. The READ statement says READ 3, and this refers

to the FORMAT statement number 3.

Several statements may be put on one card, if desired, by separating

them with semicolons; for example,

X=Y=0;I=1; M(3) =3%J

The GO Statement

Fortran statements are executed in the order written, unless special
statements to break this sequence are used. The simplest way to specify a

change in sequence is with the "GO statement”.
Example:
| GO TO 3
means the next statement to be executed is statement number 3.

There is also a more complex form for a GO TO statement, where transfer is

made to one of a list of statements. Example:

GO TO (3,3,2,4525,1,1), I

- 20 -

This means, "If I is 1 or 2, GO TO 3; if I is 3, GO TO 2; if I is 4, GO TO 4;
if T is 5, GO TO 25; if I is 6 or 7, GO TO 1; if I is zero, continue on".

The list of statement numbers may be of any length. In place of I, any
integer expression may be used. The value of this expression must not be

negative or greater than the amount of statement numbers.

Assigned GO TO

The statement "ASSIGN 3 TO I" means that the simple variable I 1is replaced
by the machine address of statement number 3., It is possible then to say
"GO TO I", which would mean GO TO 3 in this case. Subscripted variables may

not be used in this context.

IF statement
A powerful 3-way branch is provided by the "IF statement",
IF (expression) n, z, p.

Here n, z, and p are statement numbers, and the meaning is: 1if the value
of the expression is negative, GO TO n; if the value of the expression is
zero, GO TO z; if the value of the expression is positive, GO TO p.-

The parentheses around the expression are important, even though the

expression may be quite simple. -
Examples:
IF(X)3,3,5 if X is greater than zero go to 5 otherwise to 3
IF(1-J)6,10,6 if I equals J go to 10 elst to 6

IF (ABS (X=XBAR)~EPSITON)2,4,4 if | X-X|< e go to 2 else 4.

The above definition of the IF statement is good enough for all Fortran
programs, except those which are using alphabetic or non-numeric data, when a
more precise definition is necessary. This is because the positive constant
IMA for example, which involves the undigit A, is less than zero. A more
accurate definition of the IF statement deals with the internal ten-digit

machine representations, as follows:

- 21 -

The form of an IF statement is changed automatically to
IF (expression - expression) n, z, p,

if it is not of this form already, by reyriting it
IF (expression - 0) n, z, p.

Once the IF statement is in this form a comparison between the values of
the two expressions i1s made; they are not subtracted. The result of this
comparison, less, equal, or greater is used to make the 3-way branch, The

rules for comparison are:

(1) Any number with a minus sign is less than any number with a
plus sign

(2) The order of the digits and undigits is
C<BCKAKOKLIK2<K3<4<K5<K6<KT7<8<K9<KHKKGKYF.,

It is impossible to generate the value "minus zero" in Fortran object programs

without using Boolean operations.

The DO Statement

A common occurrence in programming is the desire to execute a series of
statements repeatedly as the value of some variable gets changed a step at a
time. For example, in our first program (Chapter I) we wanted to add up
1/A(1) + ... + 1/A(100). It is the "..." which is an immediate clue that a

DO statement is desired.

The statement "DO 4, I =1, 100, 3", as one example, means: "Do all
statements from here down to statement number 4 for values of the variable 1
equal to 1, then 4, then 7, then 10, etc. until I is greater than 100".
The "1" means I is to start at 1; the "100" means I is to stop at 100; and
the "3" means that I goes up by 3 each time.

The general form for a DO statement is

DO statement-number, simple-variable = start, stop, step.

- 22 -

The comma after the statement number is optional and may be omitted. In fact
in many Fortran systems it must be omitted! The other commas are essential.

Another form for a DO statement is

Do statement-number, simple-variable = start, stop
in which case "step" is taken to be 1.

_ In these forms, "start", "stop", and "step" .represent expressions of the
same arithmetic type as the simple variable. If these expressions are anything
more complicated than a simple variable or constant, they are evaluated only
once, before the DO "loop" is started. These expressions must all have posi-

tive values, and they must not involve the simple variable; e.g., it is
improper to write
D0 2, I=1,1I
The statements after the DO up to and including the final statement

indicated by the statement number are called the "range" of the DO statement.

The simple variable is called the "index" of the DO statement., A DO state-

ment is often called a "DO loop".

Example:
DO 12, J =1, 10
B(J) = M(J)
12 AQ@) =J*M(@)

Here the range of the DO statement is the pair of arithmetic statements, and

- the index is J. These statements cause the following to take place:

(1) M(1) is converted to floating point and stored in B(1)
(2) 1#*M(1) is converted to floating point and stored in A (1)
(3) M(2) converted to floating point and stored in B(2)

(4) 2%¥M(2) is converted and stored in A(2)

(20) 10*M(10) is converted and stored in A(10).

If several statements separated by semicolons are on the same card as the
numbered statement, they are also included in the range of the DO. For

example, the above could have been written equivalently

DO 12, J =1, 10
12 B(J) =MWJ); A@) = JI*M(J)
There may be other DU statements in the range of a DO. For example:
D0 7, I =1, 19
Do 7, J = I+1l, 20
7 B(I,J7) =B(J,I)

These statements cause the following sequence of operations:

B(2,1)
B(3,1)

—~ o~
N
~— O~
- -
H 1l

(19) B(1,20) = B(20,1)
(20) B(2,3) B(3,2)
(1) B(2,4) = B(4y2)

I

(37) B(2,20) = B(20,2)
(38) B(3,4) =B(4,3)

(190) B(19,20) = B(20,19)

The range of a DO statement is always executed at least once. The sequence

can be written in terms of other Fortran statements, e.g.:

variable = start

GO TO 1

2 IF (variable + step = stop) 1,1,3
variable = variable + step

1 range of DO statement
GO TO 2

3 next part of program.

-2 -

There are three important rules to observé when using DO statements:

1. If the range of a DO statement includes another DO statement, the range of

the latter must be entirely contained within the range of the former.

2. It is not legal to GO TO a statement inside the range of a DO statement
from outside the range of that statement. Entry must be made only via the
word DO. It is quite all right, however, to go out of the DO loop from

inside, and this terminates the loop.

3. After a DO loop is finished, there is no telling what value the index
variable has. If the termination of the loop was caused by a GO TO leading

out of the loop, however, the index variable will retain its last value.

Example: It is known that one of the elements of the 100-place array
A is zero, but the problem is to find the Eirst one which is zero. Solution

DO 2 J = 1,100 \

IF(A(T)) 2,3,2
CONTINUE

at this point J indicates the first zero value.

(The CONTINUE statement does nothing but it is often used to indicate the
end of a DO loop.)

A final example for DO loops is to calculate n! = 1¥2%¥3%,,.¥n, For n
bigger than 7, n! is bigger than four digits, so we will calculate the value

in floating point. Solution:

FN = N
FACT = 1.0
D0 1,X = 2.0,FN,1.0

1 FACT = FACT*X

- 25 -

PAUSE and STOP statements

There are two ways to stop the computer if necessary while it is
running your program, using PAUSE and STOP statements. The allowable forms

are

PAUSE
STOP
or PAUSE expression

STOP expression .

In the latter cases the value of the expression is displayed in register A
when the machine stops, After a PAUSE, the machine can be restarted at the

same point in the program; but STOP is a final, unrestartable halt.

NOTE: PAUSE can be used in a peculiar way for low-volume input and output.
Consider the statement
X = PAUSE (Y)

THE MACHINE STOPS, displaying the value of Y. The operator keys a value in
floating-point code into register A and then depresses RUN, whereupon the

keyed-in value is stored in X.

- 26 -

CHAPTER V

INPUT-OUTPUT

We now know how to compute the answers for the most complex problems
(more or less) but still haven't a good way to get data into the computer
and to get answers out. Fortran provides an elaborate set of facilities
for both input and output, allowing quite flexible formats for these

purposes.
In the example program in Chapter I, the output statement
PRINT 3, A, SUM

appears., Here 3 is the statement number of a FORMAT statement (we will
discuss FORMAT statements later), which specifies in what manner the answers
are to appear on the page. Following the format number is a list of the
values which are to be output. In this case A 1s an array which appeared
on the dimension declaration as A(100), while SUM is a simple variable.

This is a list of. 101 outputs, 100 for A and 1 for SUM.
Another way to write the same statement would be
PRINT 3, (A(I), I =1,100), SUM
where a notation analogous to DO loops is used.

To illustrate these "implied DO loops" we will dive into an extremely
complicated example. If the reader can figure out the following example
he will have no trouble with any input-output lists:

PRINT 3, A, B(3),(C(I), D(I,K)**2, I=1,10),
((B(1,J), I=1,10,2), F(J,3), J=1,2%K)

The following "program" describes what happens:

- 27 -

D0 1, I =1,100

1 OUTPUT A(I)
OUTPUT B(3)
Do 2, I =1,10
OUTPUT C(I)

2 OUTPUT D (I,K)**2
DO 3 J =1, 2%K
D0 4 I =1,10,2

4 OUTPUT E(I,J)

3 OUTPUT F(J,3)

As another extreme, the list may be completely empty, although the

comma must still appear:
PRINT 3,

In this case no answers are output, but the format 3 might be merely a

title line or one which skips to the top of a page.

The items appearing in an input list may only be variables, but any
expression. is permitted in output lists. In the examplé above, D(I,K)¥#2
would be allowed in an output list, but not in an input list. The only
restriction is that functions occurring in input-output lists do not use

any input or output themselves.
The general forms of input-output statements are:

READ format-number, input list
PUNCH format-number, output list
PRINT format-number, output list

Instead of the format numbér, a simple variable may be given which was

assigned the format number in an ASSIGN statement.

Input-output of arrays with more than one dimension are done by varying

the left-hand dimension most rapidly. For example,

DIMENSION D(2,4,6,8)
READ 2, D

- 28 -

would cause the input to go in the following order:

D01l I=1,8
D01 J=1,6
D01 K = 1,4
D01 L =1,2

1 INPUT D(L,K,J,I)

FORMAT Statements

The format for input-output is given as a string of peculiar looking
items which are a kind of program in themselves. The format statement looks

like

n FORMAT (String)
where n 1is the number of format statement.
Example: 2 FORMAT (15H THE ANSWERS ARE,3X, 3I5)

In this example the first 15 columns are for the title "THE ANSWERS ARE",
Then the "3X" specification means to leave 3 blank spaces. Finally, 3I5

indicates 3 outputs of integer numbers, each taking a 5-column field.

If we wrote PRINT 2, 30, - 512, 01 this would print a line with the

following information at the left:
THEbANSWERSPLAREbbbbbb30b-512bbbl

where we use the small letter "b" to indicate a blank column.

OQutput Formats

Now we will give the more precise rules for specifying format. At
first, we will consider only output formats, as if they were written for a
printer. It would be similar for a punch, except that "skipping a line"
means punching a blank card, and only 80 or 90 columns may be punchéd on

a card while a printer can hold up to 130 columns.

The format specifications are of the following forms:
1. wH followed by w characters, means the w columns are to be filled
with the characters specified. For example 3HXY= means "XY=" is

to be printed.

5.

- 29 -

wX, means insert w blank columns.

Tw, must be used only with output expressions which are not
floating point. The integer value is printed at the right
of a field w columns wide, with a preceding minus sign if
it is negative. The example above, with I5 and a value of
-512, prints b-512. If for any of these outputs w is too
small, an asterisk is printed. For example, trying to

print -512 with the format I3 would print bb¥*.

Ew or Ew.d, (Ew is equivalent to Ew.0) means floating-point
output and must not be used with integer dutputs. The number
of columns, w, must be at least d+6. Otherwise the field
overflow asterisk is printed. The number is printed in
floating-point constant format with the E being used to
indicate power of ten notation. Signs are printed for both
the exponent and mantissa. A plus is indicated by a blank
column. If more room exists in the field, blanks will be
filled on the left.

Fw or Fw.d, (Fw is equivalent to Fw.0) means floating-point
output with a fixed place for the decimal point on the answer
form, without an E exponent. F must not be used with
integer outputs. Exactly d digits are printed to the right
of the decimal point and the sign appears at the left of the
field with a plus sign being indicated by a blank column. The
field width w must be at least dt2

Examples
Machine Representation Format Output

5031415927 F3 b3.

-50314159:7 F3 -3.
5031415927 F8.4 bb3.1415
5031415927 F6.5 bbbbb*

-4827160000 F4.1 - bbb-.0
6031415927 F10.8 bbbbbbbbb*
6031415927 Fl13 b31415927000.

(Here b is used to denote a blank column)

10.

- 30 -

Aw, means alphabetic output of w columns. The output should
be values in the form ZZZZZNNNNN or PPPPPUUUUU as described in
Chapter II under Hollerith constants. If w 1is greater than
5, an error is indicated during the running of the object

program.

Mw, means machine output of w columns. The output should be
values in the form as described in Chapter II under Machine

constants. If w is less than 10 the rightmost w characters
are used. If w 1is greater than 10 an error will be indicated

during the running of the object program.

I, E, F, A, and M formats may be preceded by a repeat number
which indicates how many adjacent fields have the same specifi-
cation. For example, "2I10,3E20,6" is equivalent to "I10, 110,
E20.6, E20.6, E20.6",

A string of specifications may be grouped in parentheses and
preceded by a repeat number. For example, "2(I110,F20.6)" is
entirely equivalent to "I10, F20.6, I10, F20.6". If the

repeat number is omitted, it means infinite repeat, i.e.
repeating until the output list is exhausted. In particular,
the whole FORMAT string is enclosed in parentheses without a
repeat number, thus specifying infinite repeat. The termination

of output occurs when

a. An I, E, F, A, or M field 1s to be processed but there

are no more values in the output list.

b. The ")" of an indefinite repeat is encountered and there

are no more values in the output list.

/, means print the preceding information: (or a blank line if
there was no preceding information). One can also say n/ which
means print (or punch) the preceding information followed by

n-1 lines (or dards).

- 31 -

11l. Format specifications are separated by commas. No comma is
actually necessary after a / or P or X or H field, but

extra commas don't hurt.

12. The specification nP or +nP or -nP found in certain
versions of Fortran is allowable in a format string but is

ignored by the standard USS format package.

Input Formats

Input formats are very similar to output formats; in fact, exactly the
same format string may be used to input data from cards as was used to punch
it onto cards. There is much more flexibility, however, which is provided

for economy in key-punching the cards.

1. Blank columns are ignored, and the number may appear in any

place in the field on I, E, and F formats.

2. Plus signs can be indicated by blank columns, or by punching

~a + sign or an & sign.

3. Numbers input for E or F fields may be in either E or F
format. The decimal point may be punched in any column, so that
if a decimal point is punched in the card the "d" part in Ew.d
has no effect. However, if no decimal point is punched, d

decimal places are assumed.

L+ An E need not be punched, it may be replaced by a plus sign
(or, if the exponent is negative, by the minus.sign). Thus,
3.14+5 is like 3.14E5, 3.14-5 is like 3.14E-5.

5. M input is not allowed on the 90-card system (version 9000

of Fortran).

6. wH on input means that the w characters read from the card
are to replace the w characters of the format string; later

references to this format string use the new characters.

- 32 -

CHAPTER VI

SUBPROGRAMS AND SPECIFICATIONS

A Fortran program may be divided into independent parts called subprograms.

The general layout of the program is:

{ subprogram}
END

{ subprogram}
END

{subprogram}
END

FUNCTION declarations

The beginning of a subprogram may be a Function declaration, e.g.,
FUNCTION F(X,Y)

Here F 1is the name of the function, and X and Y are parameters of the
function. There are one or more parameters, whose identifiers are simply

listed on the FUNCTION card.

The value of the function is determined by assigning a value to the

function name, treating it as a simple variable.

Exit from a function must be made by using a RETURN statement or by

running across the END card.

As a simple example of a function, here is one which evaluates ~X+Y

if X4Y 1s positive, else is defined to be zero:

FUNCTION F (X,Y)
IF (X+Y)1,1,2

F = 0.0; RETURN

F = SQRT (X+Y)

END
In another program, one could write S=F(T,Q)+F(2.0,F(T,Q)).

I}

- 33 -

DIMENSION declarations

Every array variable must appear in a DIMENSION declaration before it
is first used as an array. The DIMENSION declaration merely lists arrays

with the maximum subscript sizes, e.g.
DIMENSION A(10),B(3,15),K(8,2,2,4,7)

indicates that A, B, and K are array variables, with 1, 2, and 5 subscripts,

respectively.

COMMON declarations

Because subprograms are independent, the identifier X will represent
an entirely different quantity in a different subprogram. Various sub-
programs can communicate with each other by using parameters, but there is
another powerful way to communicate, by using the COMMON declaration. For

example suppose in one subprogram we have the declarations

DIMENSION A(10), B(20,20)
COMMON A,B,I

and in another we have

DIMENSION A (100), B(R00)
COMMON A,B,X

The memory space used by programs is divided into three parts: program
storage, data storage, and common storage. Program storage is used for the
machine code instructions corresponding to the Fortran program, data storage
is used for constants and variables not declared COMMON, and common storage is
used for variables which appeared in the COMMON declaration. Each subprogram
has its own program area, and data areas, but all use the same COMMON area. In

the example above COMMON would look like this:

- 34.-

Location (C is base) Subprogram 1 Subprogram 2
c A1) A1)
C+1 A(2) A(2)
C+9 A(10) A(10)
c+10 B(1,1) A(11)
C+11 B(2,1) A(12)
C+29 B(20,1) A (30)
C+30 B(1,2) A(31)
C+99 B(10,5) A(100)
C+100 B(11,5) B(1)
C+299 | B(10,15) B (200)
C+300 B(11,15) X
C+409 B(20,20) not used
C+410 I not used

There are always at least 700 memory cells allocated to COMMON storage,
and this storage has the highest possible priority, so as much data should

be put into COMMON as possible. More details about storage allocation will
be found in Appendix V.

EQUIVALENCE declarations
NOTE: The 8002 and 9002 versions of Fortran do not allow EQUIVALENCE.
The EQUIVALENCE declaration allows several identifiers to name the same
variable. For example,
EQUIVALENCE (X,Y), (I,J,K)
states that variables X and Y are the same, and variables I, J, and K are
the same.

The EQUIVALENCE declarations are affected by preceding DIMENSION and
COMMON. Suppose, for example, X 1is an array variable but Y is not. Then
EQUIVALENCE (X,Y) indicates that the simple variable Y is the same as the
first location X(1) of the array X.

- 35 -

If a variable occurring in an EQUIVALENCE has appeared in a dimension
statement, constant subscripts may be given for it, e.g. EQUIVALENCE
(X(3),Y) which states that Y 4is the same as the third location X(3) of
the array X. '

Several dimensioned variables may be equivalenced. For example,

DIMENSION X (100), Y(100), Z(100)
EQUIVALENCE (X(0), Y (50), Z(100))

The subscript 0 is alloﬁed Only‘in an EQUIVALENCE statement; negative

subscripts are never allowed. The preceding reserves 200 locations

=) (=) [=)
(]
— — — — —
~— ~ ~— ~ ~
N s N3 > B b
V4
N

according to the pattern shown in the diagram.
A further example of what can be done using EQUIVALENCE is:

DIMENSION A (100), B(50)
EQUIVALENCE (R,A(0)), (S,A(1)), (T,B(2)), (4,B,C)

which allocates 101 storage locations as follows:

. N
N O
O~ n\ —
N S—r N
=< d >
AJ ; 7
£ N
\ 7
3
\/H
m
L
m»

- 36 -

When any variables are equivalenced to variables in COMMON, no change
of the COMMON assignment occurs. The COMMON statement specifies, once and
for all, how COMMON storage is allocated.

The important thing is, what cannot be done using EQUIVALENCE?

(1) Two things may not explicitly or implicitly be equivalenced
if they have both been assigned in COMMON.

(2) Two things which are already equivalent may not be made
equivalent again., For example, you can't say EQUIVALENCE
x,Y), (X,2), (¥,Z). Redundant things should be dropped.

(3) Nothing should be assigned to a place less than the lowest
address of COMMON or greater than the highest address of

COMMON.

(4) DNothing should be equivalenced to a parameter.

Order of Declarations

Important: The declarations listed above must appear in the following order

if used:

FUNCTION or SUBROUTINE
DIMENSION

COMMON

EQUIVALENCE

Rest of program

END

Functions and Subroutines

A subprogram may be designated as a FUNCTION, as mentioned earlier, or as

a SUBROUTINE. The differences are:

(1) A FUNCTION has a numerical value when it is used, but a
SUBROUTINE does not. "

(2) A SUBROUTINE need not have any parameters at all.

- 37 -

With both SUBROUTINE and FUNCTION, exit should be made by means of a
RETURN statement.

The parameters to a FUNCTION or SUBROUTINE may be
(1) Simple variables
(2) Array variables.

If a parameter is an array variable, it should appear in a DIMENSION

statement.
- For example,

‘SUBROUTINE SUBL(A,IA, S)
DIMENSION A(20,20), IA(100), B(30)

indicates that A and IA areAarray parameters, while S 1is a simple

variable parameter, and B 1is a new array which is internal to the subroutine.

A maximum of 40 other subprograms may be called by any one subprogram.

A SUBROUTINE is used by another subprogram by using the CALL state-
ment, e.g.,
CALL SUBL(Q,K4,T)

which means that the array Q 1is ﬁsed in SUBL wherever A - appears there,‘
that KA is used for IA, and that the simple variable T is used for S .
Suppose in SUBL we have the statement S = A(IA(3),J)* S; then when CALL

SUB 1(Q,KA,T) is performed the action is

T = Q(KA(3),J)*T

The variables A, IA, .and S are called "formal parameters", while the variables
Q, KA, and T are called "actual parameters". When a FUNCTION or SUBROUTINE

is called, the actual parameters effectively replace the formal parameters.

In a statement such as S=expression, where S 1is a formal parameter, it
is assumed that the actual parameter will be a variable also, for it would
make no sense if the actual parameter were a constant or an expression. It

is also assumed that the actual parameter is not the index variable of a DO

loop, for it is not legal to change that index variable by means of a

FUNCTION or SUBROUTINE.

- 38 -

A SUBROUTINE without parameters would be declared simply by giving its

name, e.g.,

SUBROUTINE @ ADJ

This subroutine is used by saying

CALL ADJ

The number of parameters when calling a FUNCTION or SUBROUTINE can be less
than the number of parameters in the declaration as long as the missing
parameteérs are not used. A FUNCTION can be called by using a CALL statement
but then its numerical value is lost; to get the numerical value, a FUNCTION
should be embedded in an arithmetic expression. It would be wrong, however,
to call a SUBROUTINE by embedding it in an expression since there is not

numerical value.

NOTE: The object program for FUNCTION and SUBROUTINE assumes that simple
variable parameters will be used at least 4 places within the subprogram

for most efficiency. If, however, a formal parameter which is a simple
variable is used only once or twice inside the subprogram, it is efficient
to declare it as an array variable of length 1 and to use it in that fashion.
For example, if S as a formal parameter is only used in one place such as

T=S in the subprogram, it is best to write

DIMENSION S(l)
and then T = 5(1)

achieving the same effect with a faster running program.

Here is an example of a SUBROUTINE which finds the roots of a quadratic

equation, assuming there are two real roots:

SUBROUTINE QUADROOT (4,B,C, ROOT1,RO0T2)
D = B¥¥2 — /.O%A%C

IF (D) 1,2,2

STOP

E = 2.0%A; F = - B/E; D = SQRT(D)/E
ROOT1 = F+D; ROOTR2 = F-D

END |

39

A very slight increase in the speed of the running program could be made
here by writing parameters as "dimensioned variables" since this subroutine

is so short.
In another subprogram the statement

CALL QUADROOT(1.0,B,C+H,X1,X2)

would set X1 and X2 to the two roots of the equation X2 +BX+C+H=0.
It is important to match up arithmetic types between the actual and formal

parameters. One could not get any meaningful answer if he wrote

- CALL QUADROOT (1,B,C+H,X1,X2)

To solve X2 + IX +J =0 we could write

CALL QUADROOT (1,0, FLOAT(I), FLOAT(J), X1, X2).

- 40 -

CHAPTER VII

OPERATING INSTRUCTIONS

Punching Fortran Statements onto Cards

Fortran programs are written on coding forms which correspond to the

way the statements get punched onto cards.

If column 1 is a "C" the entire card is a comment so it is not processed

by the translator exéept to appear on the listing of the program.

If column one is a "#" +the card is a special reserved-word card des-

cribed in Appendix I.

Otherwise columns 1-5 are used for statement numbers. If this is not a
numbered statement, columns 1-5 are left blénk; otherwise the statement

number is punched anywhere in columns 1-5.

Column 6 is the "continuation column". It is usually left blank, but
if it is punched it should be punched with a numeric digit. The number O
is equivalent to blank, but any other digit indicates that this card is a
continuation of the preceding statement. Columns 1-5 are ignored on continuation

cards.

Column 7 is where the Fortran statement starts. On 80-column cards the
statement is punched in columns 7-72; Columns 73-80 are ignored.
On 90-column cards the statement is punched in columns 7-40 and in columns 46-85.

Columns 41-45 and 86-90 at the right edge of the card are ignored.

END cards are special in that information after the word END is ignored;

and there should be no continuation cards after an END card.

Batch compilation of subprograms

Subprograms are of three kinds:
(1) FUNCTION, indicated by a FUNCTION declaration.
(2) SUBROUTINE, indicated by a SUBROUTINE declaration.
(3) MAIN PROGRAM, indicated by a lack of FUNCTION or SUBROUTINE

declaration.

- 41 -

Each subprogram terminates with an END card.
Any number of subprograms may be compiled together.

The object program cards can be separated (their format is given in

Appendix V), and each subprogram is an independent unit.

When running the object program, any subprograms (possibly even compiled
on different days or on different machines) may be put together with the
restriction that there is exactly one MAIN program, all the rest are FUNCTIONs
or SUBROUTINEs. The program starts by executing the MAIN program.

There is another form of compilation, called "load-and-go", which is
possible. In this form, all subprograms which are to be run are compiled
together and then they are immediately loaded and the object program is

executed.

Header cards

Each subprogram has associated "header cards" which give its requests
for amounts of program, data, and common storage and also its requests for
other subroutines used. Header cards have an identifying punch in column
6 (0 on 80-column cards while other cards have 1, blank on 90-column cards
while other cards have 0). On 80-column systems header cards are ejected

automatically into a special pocket after punching.

The header information is printed with each subprogram. The user will
ordinarily not concern himself with this information but the meaning will be

given here for reference:

ZZZZZNNNNN name of the subprogram (MAIN* is

X3

First word

used for a MAIN program) in MC-6.

Second word : POCCCC QQQQ P = priority of data storage,
CCCC = amount of common storage, QRQQ = amount of

data storage.

priority of program storage,

Third word . PL0001QQQQ P
QRQQ

amount of program storage.

- 42 -

Succeeding words: ZZZZZNNNNN names of subrottined called, in MC-6

code. Library subroutines are named FLPK¥,
EXPK*, EDPK¥, TRIG*.

Input deck

The input decks are arranged as follows:

Batch Compiling Load-and-go
Compiling:
1. Translator 1. Translator
2. Fortran subprograms 2. Fortran subprograms

(in any order, each ends
with END card)

Running:
1. Loader 3.
2. Header cards (for be
each subprogram desired) 5

3., Library

4. Program cards (for each
subprogram desired) 7

5. Transfer cards

6. Data (if any)

(in any order, each ends with
END card. One of these is
the MAIN program)

Loader

Library

Program cards from the punch
hopper-delete header cards.

Transfer card

Data (if any)

Note that header cards are not necessary in the load-and-go mode of

operation. Also that it does not hurt to include header cards or program

cards for programs that will not be used.

Calling seguence

To load in either the Fortran Translator or the Fortran Loader, set the

console switch to "9800 suppress" and proceed as follows:

1. Set computer on one instruction

2. Key 96 0001 0025 for 80-column versions,

96 0000 0021 for 90-column version into register A

43

3. Key 72 0000 000A into register C.

4. Depress CONTINUOUS, GENERAL CLEAR, and RUN.

5. Stand back.

If only one card has read in and the computer loops, you forgot to throw

the switch to 9800 suppress. It is not necessary to reload the cards,

you can restart without any trouble:

g. Set the computer on one instruction.

b. Set the switch to 9800 suppress.

c. Key into register C the instruction
0B 0399 0073 for 80-column cards
OB 0399 0122 for 90-column cards

d. Depress CONTINUOUS, GENERAL CLEAR, RUN.

If the machine stops with 1111 in the m address during loading of the decks

one of the following has occurred:

a. The reader hopper is full; to continue remove the cards from
the full hopper and depress GENERAL CLEAR, RUN.

b. The cards are out of sequence (the sequence number is in
columns 7 thru 10). The number of the next card expected
is displayed in the four low order digits of rA. Take the
cards from the reject hopper, reorder them and place the
deck back into the reader. Depress GENERAL CLEAR, RUN.

c. A sum check failure occured. This is probably just a reader
error, take the cards from the reject hopper and place them
in front of the remaining deck. Depress GENERAL CLEAR, RUN to

try again.

The object programs start in location 0004 and end in location 00LO.

Error stops during translation

The following stops may occur during translation (identified by the m

address in register C)

1111 : Read-punch unit off normal. Fix, depress RUN.

1112 :

1212 :

RRRR ¢

2223

3333 :
OAZA :

..44_

The card which has just been read at the 2nd read station of the
punch unit has either been punched improperly or has been read back
improperly. This is a potentially dangerous and unrestartable
situation, but if you choose to ignore it you may depress RUN. The
loader will reject the card if it is actually punched improperly;

and it may be possible to correct & bad card by hand, if you are
familiar with the card format (Apﬁendix V). The safest policy,
however, is to run an ' END card followed by the last subprogram

back through the translator, if doing batch compilation; else start
from scratch if doing load-and-go compilation. Discard the mispunched

cards.

Too many identifiers and/or constants in a subprogram. Correct program

by dividing it into several smaller subprograms.
High-speed reader off normal. FIX, depress RUN.

The high-speed reader should now be off-normal; this is the normal
stop on "out of cards". Insert more cards into hopper, depress
GENERAL CLEAR, and RUN. Or, if this is the end of a batch compila-
tion, take your cards out of the reader and punch and sit down, you

are done.

If the 2223 stop occurs with the high-speed reader normal
this indicates that somehow somebody stopped the translator program
and hit GENERAL CLEAR before restarting, or else there is a card jam.
Chéck if all cards in the reader stacker have been printed on the
printer; insert in the hopper the Fortran cards starting with the
first card not printed.
The high-speed printer is off normal. Fix, depress RUN.
This stop looks like "HLT X X". An attempt is being made to do
load-and-go compilation but either
1. An error has been detected in the Fortran statements so
you cannot "GO".
or 2. The number of words of header information has exceeded the internal
capacity, so the program should be run as if it were a batch compila-
tion. This is the case if no error messages were prirted during

translation.

45

The translator should not stop for any other reason. If it does it represents
an accumulation of errors in the Fortran statements. The user may attempt to
restart by transferring control to location 4140 without depressing GENERAL
CLEAR.

Error stops while loading:

2222 ¢ Reader off normal. Fix, depress GENERAL CLEAR, RUN.

2221 : A sum check failure occurred. This is probably just a reader error,
take the cards from the reject hopper and place them in front of the
remaining deck. Depress GENERAL CLEAR, RUN to try again.

1001 : The cards are out of sequence (the sequence number is in columns 7
thru 10). If the problem can be solved by reloading the deck beginning
with the expected sequence number do so and continue by depressing
GENERAL CLEAR and RUN. (the expected sequence number is displayed in
rA). Otherwise you will have to restart.

Two definitions for the same external reference entry have occurred.
This is not restartable.

1002

1003 : An entry definition line (relocation digit 6) has occurred for a
routine that does not exist. This is not restartable.

1004 : Header cards out of sequence. This is not restartable.

1007 : The header cards for a necessary subroutine have been omitted.
This is not restartable.

1008 : Too many subroutines have been used. Reduce the number so that
there are fewer than 200.

1009 : The Fit Table does not contain a memory section long enough to
fill the current request (see Appendix V).

3333 The printer is off normal, repair, depress GENERAL CLEAR, and RUN.

oo

Error stops while running

When the object program is running .the following stops may occur:

1245 : A PAUSE statement has occurred. The contents of rA may be changed.
Depress RUN to continue.

5421 ¢ A STOP statement has occurred. Depressing RUN sends control to
location 0010.

- 46 -

1111 : Punch off normal. Fix, depress GENERAL CLEAR, RUN.

2222 : Reader off normal. Fix, depress GENERAL CLEAR, RUN.

3333 : Printer off normal. Fix, depress GENERAL CLEAR, RUN.

In addition to the above stops the following errors may be printed on the
High Speed Printer in the form ERROR nnn.

001 Exponent overflow

002 Division by zero

003 Square root of a negative number

004 Logarithm of a number less than or equal to zero

005 Sine of a number greater than lO8

006 Integer division with a result whose magnitude is greater than 9999

007 Result of fixing a floating-point number is larger than 9999 or less
than -9999.

900 Undefined format Letter.

902 Format and input (or output) list is incompatible.

906 The w field in an A format specification is bigger than 5.

907 The w field in an M output specification exceeds 10.

967 The M output specification was given on the 9000 compiler system.
968 The M input specification was given on the 9000 compiler system.

969 More than 5 columns of A input or more than 10 columns of M input were
requested.

971 An "E" or a "." occurred on an I specification input.

972 An input value has too large a power of ten exponent.

Error messages during translation

Extensive checking of the Fortran program is made by the translator.

If errors are found they are printed along with the source statements.

- 47 -

Such an error message will always appear after the line on which the error
was made, but it may appear one or two lines after the erroneous line. That
is, an error message need not apply to the immediately preceding line and in

many cases it doesn't.

After an error has been detected, the translator attempts to keep
runmine, Since it is then dealing with potentially bad information, however,
successive error messages after the first may not be actual errors in the

program. If no apparent errors are noted, fix the first one and sometimes

the others will go away as if by magic.

No guarantee is made that all syntactical errors will be detected,
just most of them. In fact, no doubt many users will discover that quite
a few of the restrictions in this manual are not enforced and that a knowing
use will allow them to achiéve certain "nice" effects in their programs. To
these people we say, "Do not try to run your programs with any other Fortran

system, or on next year's Fortran system".

Here is a list of error printouts which might occur, and their theoretical

significance:

Exror Meaning

A/I ERROR Attempt to mix up arithmetic types, e.g. A/I

A*I ERROR Attempt to mix up arithmetic types, e.g. A*I

A+I ERROR Attempt to mix up arithmetic types, e.g. A+l

BAD CONSTANT An impropér constant; e.g., a floating point
constant out of range. Or, perhaps a multi-
plication symbol was forgotten.

BAD DIMENSION An array of too large a size has been declared,

or a DIMENSION declaration has been fouled up
e.g., DIMENSION A(B), C(3.8) etc.

BAD EQUIVALENCE One of the rules for EQUIVALENCE statements has
been violated, or an attempt has been made to
include an EQUIVALENCE declaration in version
8002 or 9002 of the translator.

BAD LABEL

BAD MESS

EXP # ERROR

EXTRA COMMA

EXTRA OPERAND

EXTRA RIGHT PARENTHESIS

EXTRA SUBSCRIPT

F(I) ERROR
FLOATING SUBSCRIPT

FLOATING SUBSCRIPT OR
I*A ERROR

I+A ERROR
I**A ERROR
I/A ERROR

I'M FULL
MISSING COMMA

MISSING LEFT PARENTHESIS

- 48 -

Something besides a label has occurred in
label context; perhaps in columns 1-5 of
the card. By label we mean a statement
number,.

An accumulation of errors has caused the
translator to get completely lost. There
is no telling what was the last straw.

An expression has occurred on the left

side of an equal size, not just a variable;
e.g., X+*Y¥ = Z. Cause might be an array
variable which was not DIMENSIONed; or an
attempt to write an arithmetic function
statement (which is not allowed in this
FORTRAN) such as F(X) = X+Z.

A comma has occurred where there was no
occasion for it.

Too many gquantities and not enough operators
to go around, e.g. "Y = X3" with a space
between X and 3; or an expression which is

not set equal to anything. This may also
indicate a "spurious continuation card"

with some strange thing in column 6 by mistake.

Arig ht parenthesis has occurred with no corres-
ponding left parenthesis.

More subscripts have appeared than were given
in the DIMENSION declaration for an array
variable.

Integer expression used as parameter to a
function such as SQRT.

A floating-point expression has been used for
a subscript.

Floating subscript or attempt to mix up
arithmetic types, e.g., I*A.

Attempt to mix up arithmetic types e.g. It+A.
Attempt to mix up arithmetic types, e.g., I**A.
Attempt to mix up arithmetic types, e.g., I/A.

1212 stop has occurred. See above under 1212 stop.

You forgot a comma somewhere, e.g., in an IF
statement.

A left parenthesis has been left out e.g.,
after the word IF.

MISSING OPERAND

MISSING RIGHT PARENTHESIS
MISSING SUBSCRIPT

- 49 -

A quantity has been forgotten, e.g,, a
statement "Y=" with nothing at the right.

This may also indicate a "spurious continua-
tion card" with some strange thing in column 6
by mistake.

An unmatched left parenthesis was used.

A dimensional variable used without a sub-
script in an illegal place.

[IF NOTHING ELSE WORKS, READ THE INSTRUCTIONS]

- 50 -

APPENDIX I

In addition to the features already described, a few more things

have meaning in USS Fortran II.

THROUGH
The word THROUGH can be used in place of the word DO. For example,
THROUGH 7, V = 5.0, X-Y, 1.0

can be used. THROUGH is almost equivalent to DO; the only difference is

a possible difference in the object program, as explained in Appendix IV.

TRACE

To aid in debugging a Fortran program, "tracing" is provided. When
tracing is in operation, the result of every arithmetic statement is printed

on the printer. For example, the printer listing might contain
Y = 5010000000 0437

when the statement Y = 1.0 is executed. The printout is
variable namé = value in internal code loc

(The "loc" is a cryptic reference to the place in the program and is the
machine location of the beginning of the following statement. This can be
correlated to the place in the symbolic program, if necessary, as explained

in Appendix VI.)
This printout occurs for

1. Arithmetic statements
2. ASSIGN statements
3. READ statements on input.

On the 90-card system (version 9000) the name Y is not printed in alphabetic
form, only in ZZZZZNNNNN code (MC-6).

- 51 -
APPENDIX I (continued)

Modes of Compilation
There are four independent modes which ¢an each be "turned on" or

"turned off" when compiling. These are LIST, TRACE, CORE, and CARDS.

The statement "LIST", for example, may be inserted anywhere in the
Fortran program and it causes LIST mode to be turned on. Any of these
four words may be preceded by the word "NO"; for example, "NO LIST"
would cause LIST mode to be turned off.

TRACE mode: When trace mode is on, additional instructions are inserted
in the object program to cause entry to the TRACE subroutine described

above whenever an assignment occurs to a variable.

LIST mode: When list mode is on, the compiled instructions of the object
program are printed as they are generated. The format is explained in

Appendix VI,

CARDS mode: The object program is punched onto cards; if CARDS mode is off
there is no object program punched. "NO CARDS" is used when merely checking

for errors in a newly-written program.

CORE mode: Whenever a solid state II is used and there is a chance that the
data storage or common storage may be located in core, CORE mode must be in
effect. There are two differences in the object program when CORE mode 1is
on:

1. The method of assigning program locations is changed to

make the program run approximately 8 times as fast when

data is in core, or 4 times slower when data is not in core.

2. In certain cases the object program which would work on the
drum will fail when relocated in core storage, so extra
instructions are added when CORE mode is in effect to make

it work in either case.

- 52 -

APPENDIX I (continued)

When the translator is loaded into the computer it is in the following

state:
8001-9000-9001 versions 8002-9002 versions
NO TRACE NO TRACE
NO LIST NO LIST
CARDS ' CARDS
NO CORE ‘ CORE

Using CORE and NO CORE it is possible to compile programs on one computer
configuration to be run on another configuration. (Programs may be run

on a step configuration or any combinations of drum or core.)

Caution. The modes of compilation are not reset when entering another
subprogram, so if using any non-standard mode it should be reset at the
end of each man's program so as not to affect others in a large batch

compilation.

Another word of warning: It is completely disastrous to change from CORE
to NO CORE, or vice versa in the middle of a subprogram! These should be
changed only at the beginning or after the END card, or else end the program
with

STOP ; NO CORE

END

instead of merely END. There is no similar problem with TRACE, LIST, or
CARDS which may be turned on or off anywhere.

Reserved words

The following feature is actually intended only for those with an
intimate knowledge of the Fortran translator, but can be used in certain

cases by anyone to create a new reserved word.

A card with a "#" in column 1 is used for this purpose. Starting in

column 7, give an identifier which is not already a reserved word. After

- 53 -

APPENDIX I (continued)

the identifier give a 10-digit constant which is in a special code telling
the "meaning" of the new reserved word. The following cards can be used
to enter new reserved word codes for standard functions to end with "F",

for compatibility with some other Fortran compilers:

SQRTF 10M9841190000
SINF 10M9841200000
COSF 10M9841210000
TANF 10M9841220000
ATANF 10M9841230000
4 LOGF 10M9841.240000
4 EXPF 10M9841250000
ABSF 10M984,1260000

These cards should only be used at the beginning of a subprogram. They

affect all succeeding subprograms.

Punching a Translator Deck

To punch a translator deck, if it is desired to modify the translator,
make the modifications when it has been loaded on the drum (possibly adding

a few reserved words) and read in a card like
C USS FORTRAN ITI 3 VERSION (number—month—date-place)
This title will appear as the first line printed on every compilation.

Transfer control manually to location 2200; the compiler will be
completely punched out except for several cards of its loading routine
which are unchanged at the beginning and the five cards at the end of the

deck. Cards are identified by sequence numbers in columns 1-10.

Statements allowed

(Brackets are used to

Arithmetic statement

GO statement
Assigned GO
Computed GO

Assign statement
IF statement
DO statement

THROUGH statement

CONTINUE statement
PAUSE statement

STOP statement
FUNCTION declaration
SUBROUTINE declaration
CALL statement

READ statement

PUNCH statement

PRINT statement
FORMAT statement
RETURN statement
DIMENSION declaration
COMMON declaration

EQUIVALENCE declaration

54

APPENDIX II

Summary of Statements and Reserved Words

indicate optional parts of the format.)

variable = expression

T . _ . .
variable = variable = expression, etc.

GO {To} statement-number
GO {TO} simple-variable

GO {TO} (list of statement numbers), integer
expression

ASSIGN statement-number {TO} simple-variable
IF (expression) negative, zero, positive

DO statement number {,} variable-start,

stop {,step}

THROUGH statement number {,} variable = start,
stop {,step}

{CONTINUE }

PAUSE {expression}

STOP {expression}

FUNCTION name (parameter list)

- SUBROUTINE name { (parameter list)}

CALL name {(parameter list)}
READ format, input list

PUNCH format, output list

PRINT format, output list

FORMAT (format string)

RETURN

DIMENSION array list

COMMON variable list

EQUIVALENCE 1list of equivalences
(not on versions 8002 or 9002)

MODE declarations

END statement :

List of reserved words

ABS DIMENSION
AND DO

ARCTAN END

ASSIGN EXP

CALL EQUIVALENCE
CARDS FIX

COMMON FLOAT
CONTINUE FORMAT

CORE FUNCTION

COS GO

- 55 -

APPENDIX II (continued)

o}
{0}
{10}
fro}

END

TRACE
LIST
CORE

CARDS

IF
LIST
LN

NO
NOT
CR
PAUSE
PRINT
PUNCH
READ

RETURN

SIN

SQRT

STOP
SUBROUTINE
TAN
THROUGH

TO

TRACE

56

APPENDIX III

ARRAY SUBSCRIPTING

Arrays are stored internally so that the left-most subscript varies
most rapidly, then the next from the left and so on. For example, consider

the 8 locations allocated for DIMENSION A (2,2,2)

Loc 1

Loc
Loc
Loc
Loc
Loc
Loc

Loc

0 3 00~ WD

A(1,1,1)
A(2,1,1)
A(1,2,1)
A(2,2,1)
A(1,1,2)
(2,1,2)
(1,2,2)
(

A
A
A(2,2,2) .

Suppose we have, in general,

DIMENSIO

N

A(W: Xy Yo Z)

the address of A(I, J, K, L) would be

Address of A(1,1,1,1)
(1-1)

wt (I-1)

w¥x* (K-1)
w¥x¥y* (L-1).

+

+
+
+

It is possible to use an array with less dimensions than appear in the

DIMENSION declaration.

added automatically.

a whole array at once.

In

this case, additional subscripts of 1 are

The feature is often convenient for dealing with

For example, to set

5

Do
DO

5
5

I
J

a

A(I,J) =0

20 x 20 matrix to zero, we could write

= 1,20
= 1,20

- 57 -

APPENDIX III (continued

but it would be much easier to write

D0 5 I =1,400

(and the latter version is also much faster running.)

In the main body of the text the restriction was made that subscripts
must be greater than zero and at most the amount appearing on the DIMENSION

statement. This rule is, more precisely:

(1) FEach subscript position must have a value greater than zero.
(2) The final computed address must lie within the storage

allocated for this array.

- 58 -

APPENDIX IV

DO _loops

"DO" loops and "DONT!" loop

In the object program, DO loops are divided into "DO" and "DONT™"
loops, meaning "DO keep the value of the index variable in index register

1" or "DONT keep the value of the index variable in an index register",

When a DO statement occurs, the loop becomes a "DO" loop, unless one

of the following occurs, in which case it is a "DONT" loop:

1. This loop is specified by the word THROUGH instead of DO.

or 2. This loop is nested inside of a "DO'" loop.
or 3. The index variable is floating point.
or 4. The start and step values are not both constants.

A "DO" loop causes a speed increase of appraximately a factor of 3
whenever the index variable occurs in a simple way in the left-most sub-

script of an array, since the array is addressed in a single instruction.

Since "DO" loops are not hested - in a nest of DO's only one index
variable is kept in an index register - there can be gains in efficiency
depending on which index variable is kept in an index register. Sometimes

this is desired in the inner loop, sometimes in the outer loop.

For example,

DO 5 I =1,10
po 5 J =1,10
5 A(I,7) = B(I)

it is better to put I in an index register, because it occurs in the left

part of subscripts and J doesn't.

The compiler's rule, given above, will often choose the outerloop
as the "DO" loop. In order to geb:the compiler to choose an inner loop,
in those cases where it is desired, use the word THROUGH for the outer

loops. For example, if the last statement in the above had been

5 A(J,I) =B(J)

one could write

- 59 -

APPENDIX IV (continued)

THROUGH 5 I = 1,10
DO 5 J =1,10
5 A(J,I) =B(J) .

The following instructions were given for DO statements in the main

part of this manual:

(4)

Do not GO TO from outside into the range of a DO statement

Do not assume any value for the index variable at the close

of a DO statement

Do not change the value of the index variable by using a

function or subroutine call

Start stop, and step must not involve the index. Start stop

must be printed.

Actually these restrictions apply only to "DO" loops and not to "IHROUGH"
loops. In a THROUGH loop the index variable has the last used value at exit.

- 60 -

APPENDIX VI

The Object Program Listing

The translator allocates storage for the main program in an interlaced

fashion; in a band the locations used are

000
057
114
171
028

143
200
257, etc.

when in NO CORE mode. With CORE mode the increment is 7 rather than 57.

Thus, the drum is like a sequential storage, and if the location of an

instruction is given one can determine where it appears in the program.

The Program Listing

With LIST mode on, the interested user can see if his program gets
translated correctly.

The format is

RRR S AAAA OPMMMMCCCC Comment

The RRR specify, for A, M, or C respectively, the type of relocation. S 1is the
sign
absolute

date relative

program relative
common relative

external reference (see table following)

o W W © I
1]

"
oUW O

request another subprogram.

=61 -

APPENDIX VI (continued)

The comment part is filled in with names of variables in order to.help
understand the M address of the instruction. This field might also say
"CONST" or "TEMP" referring generically to a constant or temporary storage
location, respectivelu. The comment " (CORE ONLY)" comes out only when
the compiler has had to add additional instructions to properly handle
relocation in core. If "(CORE ONLY)" does not appear on the listing, the
program could have been compiled with NO CORE and still be relocated in

core.

When the comment is all asterisks, the line 1s an out-of-sequence line. In
this case the program listing would appear more logical perhaps if the line
following a series of asterisk lines is brought ahead of all the asterisk

lines.

There is often a one-card delay between the card images as printed and the

beginning of the instructions for those statements.

On the 9000 version the comment is not given in alphabetic form, but rather

in the ZZZZZNNNNN MC-6 code.

At the right of the card image the program-relative approximate location
of the current object coding is listed for later reference. This can be used

together with the interlace tables to find locations in a program.

- 62 -

APPENDIX V

The Fortran Loader

Card Formats

The general card formats for the operational decks in the USS Fortran

systems are as follows:

Information 90 Column Cards 80 Column Cards
Identification 1 thru 5 1 thru 5
Card Type 6 6
Card Number 7 thru 10 7 thru 10
Data Words 11 thru 40

46 thru 75 11 thru 70
Check Sum 76 thru 85 71 thru 80

Cards are punched untranslated in the 90 systems, while they are punched

translated in the 80 systems with the following undigit conventions.

Undigit Card Character Punch Combination

- 11
blank blank
1-4-8
3-5-8
4=5-8
4,-6-8

oo EQW e
- e~

The check sum is generated by adding up the numeric part of the first

seven words on the card from left to right.

- 63 -
APPENDIX V (Continued)

The Loader Functioning

The loader program is divided into two sections, the body loader and the
allocator, The body loader operates from locations 0400 to 0899 and the
allocator from locations 2000 to 2399 and 4000 to 4199, The rest of the 2600

word Step configuration memory is used for tables.

The loader program is the first deck through the reader. When it is
loaded, the allocator portion assumes control and reads all of the Header
Cards and retains them in memory. If the "Load and Go" option was used the
Header Card information is left in memory by the compiler and any Header Cards
from the input deck are added to it. Header Cards for the same program must
be in sequence, but there are no other sequence rules governing Header Cards.

In fact, Header Cards for unwanted subroutines can be included without harm,

The allocator begins by repeatly searching the Header Card file for
information about the main program MAIN*, It determines which subroutines
MAIN* requires and scans for information about these, and also about any
subroutines these subroutines may require. Scanning continues until all the
header information about all the necessary subroutines has been collected, or
untlil the machine determines that Header Cards for an essential routine have

not been loaded. In the latter case an unrestartable stop occurs.,

Header Cards

Header cards are identified by a 0 in column 6. All Header cards must
appear first. There are six entries per card and as many cards as required.
Entries of zero are ignored. The Headers for a new subroutine are detected
by 0000 in the Card Number,

The first three entries are required and have the format as follows,
A. Entry 1 - Routine Name
ZZZZznnnnn
where zzzzz is the zone information of the routine's MC6 coded name
nnnnn is the numeric information of the routine's MC6

coded name

The name of the main program must be MAIN¥*

- 64 -

APPENDIX V (Continued)

B, Entry 2 - Data Specification

p O cccc dddd

where p is the priority of the data space for the routine
= 0 for floating package only

ceee is the amount of COMMON required by the routine

dddd is the number of local data locations that must be
available to the routine.

C. Entry 3 - Program Specifications
p! 1 eeee iiii

where p! is the priority desired .for the program instruction
area

= 0 for the floating point package only

eeee is the number of entry points to this routine

iiii is the amount of storage required for program

D. Additional Entries

A1l additional entries are of the form
7Z777% nnnnn

and name the other routines required for operation of the subroutine.

A1l of the body decks for the library and compiler output will then be
loaded or passed over as required, When the transfer deck is encountered

it will be passed over also and execution will commence at location 0004,

The following is a ~tabulation of the additional card formats:

Body Cards

Each body card contains three two-word groups defined as follows:

WORD 1 amec 0 s O AAAA
WORD 2 op MMMMCCCC
where a : ig the relocation code (R) applicable to the address
m is the relocation code applicable to the m-address of the
word to be loaded
c is the relocation code for the c-address of the word
to be loaded
s is the sign of the word to be loaded
AAAA is the address (unrelocated) of the instruction

opMMMMCCCC is the word to be loaded into nominal AAAA with sign s,
and after relocation according to m and c

‘.

- 65 -

APPENDIX V (Continued)

A, Instruction Entries

For computer instruction words, the values of relocation, R, are as

follows. (The 4-bit is ignored in a, m, c.)

R EXPLANATION
0 The nominal address is to be used as the true address
1 The nominal address refers to the data area for this routine,

and will be relocated by the beginning location of own local data.

2 The nominal address refers to the program area for this routine,
and will be relocated by the first location assigned to the routine.

3 The nominal address references COMMON and will be relocated by
the base of the COMMON area.

5 The nominal address is an external reference, xxyy, and will be
replaced by the true address as required.

g8 This code is reserved for the floating-point package, and for
that subroutine complex is treated as program relative.

Note: Codes 3 and 5 should never be used in a, especially 5.

B. External Reference Entry

WORD 1 600000XX00
WORD 2 ZZ%ZZNNNnn
where XX is the number used by this routine to reference the

subroutine named (in MC6) in WORD 2

C. Entry Definition

WORD 1 70c0000000
WORD 2 0000yyCCCC
where ¢ is the relocation code for CCCC in WORD 2, and may
not be 5
vy is a number of an entry point into this routine

is the nominal address equivalent to entry number yy

For the Data cards of each routine, the first card must be numbered
0000, with cards in strict sequence. The first data word pair is
treated as follows:

WORD 1 ignored
WORD 2 Z7277Znnnnn

- 66 -

APPENDIX V (Continued)

Where WORD 2 contains the MC6 nkme of the routine being loaded. It
is not required by the program being loaded, it will be ignored; the
cards are passed through the reader without processing.

Deck Arrangement
Decks are loaded in the following sequence:

Loader
Header Cards for programmers routines

Library
Body €ards for programmers routines, with each routine beginning

with card number 0000
Body Transfer Deck
Data for the program

W -
. .

[OARN,}

Loader Transfer Card

80 Column Cards 90 Column Cards Contents
1 thru 10 1 thru 10 00 0002 0000
11 thru 70 11" thru 40 all zeroes
46 thru 75
71 thru 80 76 thru 85 00 0002 0000

Body Transfer Deck

This deck consists of 6 cards. Card i (0£1i<5) looks like

80 Column Cards 90 Column Cards Contents
1 thru 10 1 thru 10 00 0003 0001
11 thru 70 - 11 thru 40
L6 thru 75 all zeroes
71 thru 80 76 thru 85 00 0003 0001

All of these cards fall into the standard card format described earlier.

During the scanning of the Header information, the items which
corresponded to entries 2 and 3 of the Header Card are removed from the
Header Card table and placed in a separate table called the Request Table.

This table controls memory allocation.

In the object program there are three types of memory: Program, Data

)
and Common,

a) Program. This class of memory contains object instructions
compiled by Fortran and Library programs. A separate memory
area is allocated for each program.

APPENDIX V (Continued)

b) Data. This class of memory contains values of variables,
arrays, format statements, subroutine parameters and other
things compiled by Fortran., One Data area is allocated for
each program.

c) Common. The Common area contains all quantities named
in the Common declaration of each program., Only one
Common area is allocated.

Because it contains a copy of the loader during loading, Common will

always be at least 600 locations and probably more. Programs using large

data stores should declare as much of the data as possible to be Common.

This may save a large number of memory cells,
The allocation process is carried out as follows:

a) The Request Table is sorted. Since the leading digit of
each entry is the priority digit, this controls the sort.,

b) The requests in the Request Table are allocated beginning
with priority zero (priority zero is reserved for the floatlng
point arithmetic packages).

Located in locations 4000 to 4009 is a table called the Fit Table.

It contains entries in the format

00 nnnn bbbb

where nnnn is the number of words available and
bbbb is the first address.

Each word in the table specifies a block of available memory. An ending
‘sentenial of -50 0000 0000 concludes the table,

Memory is allocated by'searching the table, beginning at location 4000,
until a specification is found which is large enough to satisfy the request.
The memory specification is then updated and the next request is allocated.

The request for Common storage must be and is allocated first.

The Fit Table for the Step memory configuration looks like

4000 00 0200 4000
4001 00 2000 0400
4002 =50 0000 0000

There are a few restrictions governing the entries in the Fit Table.
a) The floating point routlnés will be placed in upper core

if and only if the: first entry of the Fit Table specifies
a block in core.

- 68 -

APPENDIX V (Continued)

b) Locations BOOO to BO29 should not be made available.
¢) Locations 0000 to 0399 should not be made available.

d) Common should not begin at any of the locations 0401 to
0899. It should begin at 0400 or above 0900. Remember
Common is allocated first and contains more than 600 locations.

e) All bese addresses should be multiples of 50. All allocation
is done in multiples of 50. Pairs of addresses coded to
handle c+1 conditions are not permitted on the level pairs

0049, 0050
0099, 0100
0149, 0150
0199, 0000

Their levels, and hence their operation may change during
relocation, creating mysterious new bugs if this rule is
violated., For the same reason I-O interlaces are verboten

in hand-coded subroutines., Hand-coded subroutines may use band
0000 for a card interlace and band 0200 for a tape interlace
if necessary.

Every attempt should be made to favorably place data either in high-speed

bands or in core.

The Fit Table is loaded from the seventh and sixth last cards of the

loader as follows:

Seventh last card

Columns Location

21 thru 30 C ' 4000
31 thru 40 4001
41 thru 50 4002
51 thru 60 4003
61 thru 70 4004

Sixth last card

21 thru 30 4005

31 thru 40 4,006

41 thru 50 | 4007
51 thru 60) 4008~
61 thru 70 : : 4009

You won't be able to forget the check sum (which is in columns 71 thru 80).

- 69 -

APPENDIX V (Continued)

At the end of the allocation phase a page is printed giving the memory
allocation which was chosen. Common base address is printed on the top
line. Three columns are printed. The first column contains the name of the
program (on the 9000 compiler system this appears in zzzznnnn MC6 code).

The second column contains the Program base and the third the Data area

base. This printout is invaluable as an aid to debugging for the skilled

machine language coder.

After the allocation printout, the loader begins loading the body cards.
The first deck in should be a relocatable copy of the loader which will load
into the lower locations of the Common area. (This is the reason for the
0401 thru 0899 rule for Fit Table entries. The loader must overlay itself
either exactly or not at all). When a loader transfer card appears, control
is transferred to the relocated loader. If common goes into a higher speed

memory, loading will be accelerated.

Communication between programs

It is sometimes desirable to communicate between programs by leaving
data sitting in the Comma area, This is possible in USS Fortran under the

following restrictions.

1) Common for both programs must allocate to the same place.
One may have to fudge with the Fit Table to accomplish this.

2) The data to be transmitted must be at the end of Common.
The first 0600 plus locations are overlayed by the loader.
It is difficult to know how big plus is, but the formal
rules for calculating the amount are

606 location, plus
3 for each package or subroutine or function used,
plus the total number of entry points in all the

routines used.

800 will almost always be adequete and. 1000 certainly will be.

3) The part of Common chosen for communication should also avoid
locations 0000 to 2399 and 4000 to 4199 since these are used
also by the loader and allocator.

Card Formats for the Compiler and Loader Decks

Each user may have need to modify the compiler or loader for his
individual application, hence the card formats and the deck construction

are given here.

- 70 -

APPENDIX V (Continued)

The compiler and loader decks have the following construction

1)

2)

The Bootstrap Loader (twenty four cards). These cards
are recognized by an identification (columns 1 thru 10)
of the form:

" L
BOOT o B0

where nn is a sub-sequence number starting at one and
either a L or a T appears depending upon whether is
bootstrap loader is for the loader or compiler, respectively.

The compiler or loader deck. Cards in this deck have the
format:

80 Column Cards 90 Column Cards Information
1 thru 10 1 thru 10 Identification
11 thru 70 11 thru 40 Instructions
L6 thru 75
71 thru 80 76 thru 85 Check Sum

The identification is of the form
#*LOADniiii or *TRANniiii

where n is a type number and iiii is the sequence number. If
n is 4 the following instructions are loaded into locations
rB1 thru rB1+5; if n is 9 then columns 11 thru 20 contain an

instruction of the form OB xxxx 000C, which is executed and
causes the following five instructions to be loaded into

locations rB1 thru rB1+4.

Five trailer cards which transfer control to elther the
compiler or the loader., These cards have the formats

Card 1
80/90 Column Cards Information
1 thru 10 *LOADOLfff, for the loader
or *TRANOFfff, for the compiler
11 thru 20 96 0001 0130, for the 80 systems

or 96 0000 0031, for the 90 systems.

- 71 =
APPENDIX V (Continued)

Cards 2 thru 4

80/90 Column Cards Information

11 thru 20 96 0001 0130, for 80 systems
or 96 0000 0031, for 90 systems

Card 5

11 thru 20 00 XXXX XXXX

where xxxx 1s the starting location for the compiler or loader,
(Unfortunately this will vary with time as the compiler or
loader is re-assembled).

Card Types
Card formats have all been given in appropriate places in the text.

To summarize the card types given in column 6, we have

Column 6 Card Type

Header Card

Body Card

Loader Transfer Card
Transfer Card

Loader or Compiler Deck Card
Loader or Compiler Deck Card

OH~Wnn =0

- 72 -

APPENDIX VII

Library Glossary and Subroutine and Function Conventions

The following information defines those subroutine entrance and exit condi-
tions required of elements in the Fortran object program. The use of non-Fortran
produced subroutines is permitted by the system as long as the compatible inter-
face is achieved. Subroutines externally prepared must be provided according to

the requirements of the Fortran Loader.

Intrinsic Functions

The intrinsic functions are divided into two groups: those which are gener-
ated in the compiler and those hardware extensions (e.g. floating-point arithmetic)
which are obtained through subroutines. The elements of this latter category are

used as follows:

A. Entrance Requirements
Arguments (not over two) must be provided in registers A and L.
The following notation applies to the arguments:

is the fixed point argument required in rA,

is the fixed point argument required in rL,

is the floating-point argument required in rA,

is the floating-point argument required in rL.

X, Y are the arguments in rA and rL with arbitrary type

W

B, Entrance:

LIR 3 return name

where return is the location at which control is restored
on completion
name is an entry into one of the three intrinsic
packages

C. Exit Conditions:

1. The result will appear in both rA and rL.
2. 71X will contain nothing of value.
3. rB and rB2 will be destroyed in most cases. rBl, if used,

will be resotred to its entry value.

D. Subroutine Packages

The standard packages provided with Fortran II are (1) FLPK¥,
floating-point, (2) EXPK*, exponentiation, roots, and logarithms,
and (3) TRIG*, trigonometric functions. Reference to any entry in

a package causes the entire package to be incorporated in the program.

> » . _73—

APPENDIX VII (Continued)

External Functions

Routines'defined'by FUNCTION and SUBPROGRAM compilations are called
by the following sequence:)

A, Entrance Requirements:

1. A parameter list of the n arguments, i1f any, must begin at -
' some location p, as follows:

p return instruction

p+1 00 1oc1 0000

p+2 o0 1002 0000

p+l 00 1oci 0000

p+n 00 1ocn 0000 -

where - - return instruction will be executed on completion
loci ‘ is the first location of the i-th

actual parameter

2. rA, rX, rL are not used,

B. Entrance:

LIR3 P name

where P is the first location of the parameter list
name 1s the entry to the subprogram,

For any CALL or functlion designation, Fortran generates references
to entry 00 which is understood to correspond to the name of the
routine,

Error Subroutine

A single routine, ERR*, is included in all object programs, The routine
may be entered by any external function to record the presence of an error
condition., The user may program his own error procedure as required by
installation operating conventions, .

-7 -

APPENDIX VII (Continued)

Entrance Requirements

1. rB2 contains an error number for identifying the type of error.

2. rB3 specifies the return location.

Entrance:

LIR2 code

LIR3 retrn ERR*
Exit Conditions:

The particular action will be noted and return to retrn will occur.
The contents of fA, rL, rX and rB, will not be saved,

- 75 =
APPENDIX VII (Continued)

Floating-Point Package

Subprogram Name: FLPK*

Entry number Name Explanation
0 MUL* I%J
1 NMUL* —(I*J)
2 DIV#* 1/J
3 NDIV* -(1/7)
A RDIV* J/I
5 NROV* -(3/1)
6 FADD* A+B
7 RFSB* B-A
8 FSUB* - A-B
9 FMUL* A*B
10 NFML* -A*B
11 FDIV* A/B
12 NFDV * -A/B
13 RFDV* B/A
14 NRFD* -B/A
15 COMP* -X (Boolean NOT)
16 FLT* FLOAT(I)
17 VFLT* ~FLOAT(I)
18 LFLT* FLOAT(J)
19 NLFT#* -FLOAT(J)
20 FIX* IFIX(A)
21 NFIX* -IFIX(4)
22 LFIX* IFIX(B)
23 NLFX* -IFIX(B)
2/ FXSQ* T#%2
25) FLSQ* A¥xD
27 PAUSE

28 STOP

Exponentiation Package

Subprogram Name:

Entry Number

OO ~WDHO

APPENDIX VII (Continued)

EXPK*

- 7% -

Name

SQRT*
NSQR*
NEXP*
EXP*

NLN*
LN*

PLL*

PLL2%*
PLL3*
PLLA*
RPLL*
PLL6%*
PLL7%*
PLL8%*
PLX3*

PLX2*
PLX3*
PLX/ *
RPLX*
PLX6*
PLX7%
PLX&*
PXX*
PXX2%*
PXX3%
PXX/*
RPLX*
PLX6*
PLX7%
PLX8*

Explanation

A¥* 5
(-A)*¥%,5
eX*-A
e
In(-A)
1n(A)

A¥*%B
(-4)**B
A*%(-B)
(-4)%*(-B)
B#%#A
(-B)*xA
B*¥%(-A)
(-B)**(-
AxnJ
(=A)*xJ
Ax%(=J)
(-8)%*(-J)
B¥%*T
(-B)**I
B¢ (=T1)
(-B)#*(-T)
TH%J
(-I)%*%J
I**(=J)
(<I)%*(=J)
J¥#T
(=J)**T
J¥*(=I)
(-3)#%(-1)

4)

Subprogram Number

WM HEO

- 77 -

APPENDIX VII.(Continued)

Trigonometric Routines

Name

SIN*
COS*
TAN*

- ATAN*

Explaination

sin(A)
cos(A)
tan(4)
arctan(A)

- 78 -

APPENDIX VIII

SAMPLE FORTRAN PROGRAM

- 79 -

INPUT FORTRAN DECK

: N2
(/7¢€h 48°n€3 ¢S1 SAVOONIO3Y MIIAML 40 WNS IHIMTIC
$/7 V(20T 40T/2)0T ¢34V SHICWNN 0OOT IHIHAT) Lvwwod
_ (7°84NT) LYwrOd
Anle
WNS ¢y 42 INTNd
(1IV/NeT4WNSHWNS
00T+TH#I o1 0O
0 ndNg
Vic AvaN
119
(0OT)Y NOISNIWTO
SIVOONdIO3N 40 WNS 31VNIvA3

- 80 -

LIST OF OBJECT PROGRAM - Page 1

ok 3 3k ok 3k 5k ok ok oK
*Hd4
WNS

J
30k 3k ok 3k S 3k ok K 5K

JSNOD

k 2 sk sk 3k e sk ok o ok
LeT0

JSNOD

WNS
BETC

*WA03
Hheno

*] %

1SNOD

*] %
3k 9K 3k 2k %K 3¢ 3k 3k %K sk

* %
*5d02

LEOO
- 00
ke 3k ok 3K ok ok ok oK oK
ok 3 3k sk 3K sk sk ok X ok
a4 3k 3k vk ok 3 ok 3k K sk
ocoo
0000

(o]afele;

20006€T0CH
9NTo0ZR00 N
§Z2n0s0T00C
1711086710 N
T11020000¢C
?2LE9P2c¢cT
Hen09OT0S>
00n0L6T100N
nnNnonnol1oe

2110€R00LS
OrTOHOTCOS
92001000t N
2T10100C N
£CN0sOT1009

8610861097
HNHOTHIO N

TL10€010G09
9600.L2004°
1300H0100¢€
0,L10€CTO0L
0000001000
£T101000LN
9c001000L0
6610200008
-0n02H100L
sen0c0T108?
10408200 O
0000HTTOON
00h00n00 O

5000000000
0200507000
0n000L<00CO

ZLhe?221T

6710
<?n0
8C10
1710
€00
alad {o)
LE10
raRde
SATH

oh10
9700
6210
ccno
RETO

T+10
{700

s€n0
he00
0LT0
€710
H0T0
6610
#7110
e+10
SE0n0
/700
1,10
0000
+CO0

elalole)
1000
2000
0CHho

DD 4D AD

27D D

~4DADIDOODNDODODMD DD -~

> Bo s o

oer
ce?
21?7
ce?
217
oo
z1?
0e?
oot
WNS dw 42 INTMNA

cer
217
207
207
21?7
(1YY /Nne T4aWNGHWNS

22?7
[Ard
O0TiTdl sT 0N

212
2e?
21z
212
oot
207
207
21e
0ez
217
ce?
oet
c10
Nenuune

o000

oct

oer

Qoo ,
Vi< Ov3IN

letM

(00T)vy NOISNAWTIQ

hele
o
O
a0
®
n,
1
m HEeT0
i [&)
- &
0 N
IR =
S
= .
m
S)
By
)
e 0e0C
I
i
Cl=2fe!

ok K 3k sk 3k sk sk 3k oK Ak
3 3k e sk 2k 3k ok ok K oK
ke ok 3k o 3K 3k ok oK oK ok
ko 3k o 3k 3k ok e ok ok

ak e ok 5k 2k vk ok ok 3K ok
7k 3k 2k sk 3k o ok 2k 3K %K
2k ok ok ok 3K e ok ok ok %k
2% 9k 3k s 3 o ok ok 3K ok
ok e 5k ok 3K sk ok ok 3 ok
3k sk 3k 5k 3k 3k ok b K K
2k 3k 3k 3k 3K 3k 3k 33k k¢
2k 3k 3 ok 3k 9k ok 3 K K
sk 3k 3k 3k 3 v i 3k K e
ok 3 3k s 2K sk 3 3k 3k ok
2k ok 3k sk K 3 s Sk 3 3k
3k 2k 3k ok 2 ok sk 3k %K ok
ok 3K ok sk ok oK ok ok 3K sk

2% 3 3k ok 3K sk ok 3 ok %k
3k sk sk s 3 o ok sk oK ok
3k 2k 5 3k 2 sk ok o ok
3 3k ok ok ok e ok 2k kK ok

*HedT1d

*Md403
* M0

wns
%] %

1 SNOD
% I %

*MN403
v

* 1%k

66Re TIILD €10 ¢ 007
99 Hnh120ck of1Cc N~ Cov
2z s8g¢OTIC 6710 € 001
1£0001£080 §71C © 0OT

(/€h 48°AC3 1S1 STIVIONAIOIY MIFHL 40 WNS IHIHTE
0020000001 L710 0 001
2000001010 9?10 0 001
200100105 6?10 © 00T
0070000007 #7710 © 001
0000000009 €210 0 OOt
0100007000 2210 0 001
0561 01210 1710 0 001
26G2hHe2T12 0710 ¢ 001
he 00§Z00N 6710 € 001
T ¢8¢00T1¢ 8110 C 001
6100061060 L7110 © 00t
0060000000 ST10 0 00t
0000000000 €110 0 001
6€10011020 LS00 0 212
0000000066 #110 © 001

$(2°0T40T/2)0T 434V SHIPWAN 00T IHIHAT)
2000001010 £T10 0 00T
208000T0§0 2110 0 001
0000000000 TT10 © 00t
0000000000 0TT0 0 001
RZ10L600 9 H610 1 c2?
h610H671092 LET0 ¢ 22?7
hOHOLETO O 0ROO 1 627
10400800 O £200 1 cz?
£70050T0S? 6010 © 217
€6n0£0T009 RET10 O 217
BCT060TOLR 6o10 ¢ 227
9Q10H0T00¢ 7€00 € 212
2600€0T00L G610 C 212
S4T0T000L 1€00 © 207
RETOTOO0LO SE10 0 207
T0n0T800 0 t200 1 S22
©200200057 1910 © 217
-N00L9TOOL 0110 ¢ 027
0110501057 £S00 0 212
000056T00N LOTO € 021

bse

(7°84n1)

| YWMO 4

IYWwaO 4

“Anle

- 82 -

LIST OF OBJECT PROGRAM - Page 3

HeTO

(SHIOVIH)
(SHIOY3H)
(S¥3nv3IH)
(S¥30OV3H)
(S¥30V3H)

2k ke 3k 3k 3 ke ok 2k XK 3k

i o ok ok ok ok ok e oK oK
ok 3 o sk K ke o ok ok K
ok ok ok ok ok o ok ok
ko sk sk ok ok sk ok oK 3K
ke Sk ok ok ok e ok ok oK K
ke ok ok o 3k ok ok ok ke
k sk ok ke ok ok ok oK KoK

zLE97¢cct
ZLheecelt
002010001L
0h1000000%
C6Thedl12
0TN00sTT0CH
0000000064

0000000010
00€H000001
8N0€0000NN
000020000¢€
6 2€110€CT
goslerieet
£c6 611207

6€10
&¢T0

8¢T0
LS10
9¢10
ce10
H€10
§¢10
?€10

29

DODDOOO

otz
oot

007
oot
oot
001
007
o071
oot

“

- 83 -

INPUT DATA TO OBJECT PROGRAM

0*007
0°06
0°*0Ff

- 0°04

0°0¢
0*0¢
0°0h
0*o¢
0°07?
o°01t

0*6h
069
06/
C*60
0*6c

“0*6h

0°6¢
0*6”
067

0°e

[oLX-T1.)
(R 4-1:]
L X-¥}
O*no
0*acS
O*ph
0¢g¢
0*R?
ot
Oe8

0°L6
0°L8
0°LL
0°L0
0°Ls
0Lt
0*LE
0*L2
0*LY

o*L

0°%6
0°98
0°9L
0°90

0°9S -

0°9h
0°9¢
0°97
0°9t

0°9

0°*sé
o*se

o°sL
-C*&9

0*sq
0°Sh
0°*s¢
0°*s2
o°st

0°s

0*hé
0°he
0°he
0°hS
0°*nc
0°nh

o*he .

o*ne
o*nl
Ot

0°¢cé
0°¢e
o°¢€L
0°¢€9
0°¢e
0°¢h
1y 4
0°¢?
n°¢gt
Qeg¢

NeZ2a
n*z2a
0eZ)
020
nezZe

D°Zh

Qe2¢
02>
0y

0>

0*1a
0o*1n

0*1)
. 0et0

Oete
OeTh
0Oet¢c
(13 §4
Ot
N1 i

-84 -

MEMORY ALLOCATION TABLE PRODUCED BY FORTRAN LOADER

o0oh

058h
osst
0oLt

0S8h

0oLt

vive

NOWWOD

0061
ocah
o0h
o8
ooLt

o0Nd

*Nd0 1
*MUNT
xS
*NdO3
*NTVW
WYYOONd.

NOILvI0TIY AMOWIW

:

2 ._ |

5 | 10 3hisc)816° : ST STIWI0MATI3Y NIIHL 40 WNS 3l

M cceoot ore6e6 00°e6 00°*Le 0096 . 00°S6 00°+6 Of°*¢6 00°26 _on°te
i 2 ceen6 cre6s oo.mm, 00*L8 - 0098 00°S8 00°+8 olal Yo} 00e2g C OACTR
© m cceos or*6L oc*8L o0 LL 00°9L 0NeSL 00°hL : 00 gL 00°*2, nnetTL
| .m oce oL or*6s 00°89 0020 00+99 0059 0049 00°€9 00+26 0n°T6

2 oc 09 orees 00°2g c0* L5 00°9S 0ONeSg 00°*tS ote€s 00°2c onete

m , cce0g orset 00*eh 0N 005t 00°Sh 00t 0C¢n 00°24 0A*TH

m Ce*Oh ore6¢ 00°e¢ on*Le 00°9¢ 0ON°*S¢ 00°* g 0Cecc 00°2¢ onete

,m cecog oreee 00*8Zz = o00*LeZ 00°+92 00°52 - 00°te ofecz 0022 nnetz

cceoz Of6T oo*er 00 L1 0091 00°G1 00°n1 - . 00°ct 00°21 ansTr

oceor cre6. 00°8 00°L 00°0 00°s 00°% 00eg 00e2 onet

¥y SMIAWNN 60T M|

o

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif
	p 0040.tif
	p 0041.tif
	p 0042.tif
	p 0043.tif
	p 0044.tif
	p 0045.tif
	p 0046.tif
	p 0047.tif
	p 0048.tif
	p 0049.tif
	p 0050.tif
	p 0051.tif
	p 0052.tif
	p 0053.tif
	p 0054.tif
	p 0055.tif
	p 0056.tif
	p 0057.tif
	p 0058.tif
	p 0059.tif
	p 0060.tif
	p 0061.tif
	p 0062.tif
	p 0063.tif
	p 0064.tif
	p 0065.tif
	p 0066.tif
	p 0067.tif
	p 0068.tif
	p 0069.tif
	p 0070.tif
	p 0071.tif
	p 0072.tif
	p 0073.tif
	p 0074.tif
	p 0075.tif
	p 0076.tif
	p 0077.tif
	p 0078.tif
	p 0079.tif
	p 0080.tif
	p 0081.tif
	p 0082.tif
	p 0083.tif
	p 0084.tif
	p 0085.tif
	p 0086.tif

