N

SEMINAR SERIES ON COMPUTER APPLICATIONS TO BIOLOGY

COMPUTER LANGUAGES bypongm E,e Knuth February s." 1963

The purpose of this lecture is to present, by meana of examples,

various levels of language used thh dtgxta.l compnter programs. and also

to give an mtroductmn to yrogrammmg. B

The four principal types of langua.ge we will discuss are dcp wtcd in

this chart:
i Flow chart or
o ' (int'orna],')j*f :
Z Comptl.er | - 3. Aasembly '

ianguage - - - - - ------

(algebratc)

4. Machine lauguge

(numericg, inter-
ted by machine

1. The flow chart or flow outline is a step-by-step description

of the proced\ire‘ to be followed. This is just an aid to the person preparing
a program; most :'programmers like to get their thoughts in order by first
preparing a flow éhart which shows how to carry out the desired solution.
Flow charts have a wide range of levels, depending on the programamer's

taste; he may wish to give a brief overall picture of the ""flow' of a program,

or he may wish to make an extremely detailed flow description. Language
used in flow charts is usually a combination of English and mathematics;
in general, the language is sufficiently precise for the programmer to
understand, but is far toc vague for a computer to understand (at least
until we build a comnruter that thinks). In other words, it takes common
sense to deterniine the meaning of a flow chart description of a program.,
This is not true for the other languages we describe; they will conform
to specific rules, and every statement will have a precise meaning,
understandable by the computer.

2. Compiler language is a precise rendering of the flow chart

into a well-defined language, which still remains sufficiently close to
English and mathematical language to make it easily readable for a non-
specialist (after a short briefing). There are dozens of different compiler
 languages, of which the most commonly used are ALGOL and FORTRAN.,
| { Computer programi;:ers and manufacturers are fond of using acronyms
for naming their programs; ALGOL stands for ALGOrithmic Language,
FORTRAN stands for FORmula TRANslator.) At CalTech, the ALGOL
compiler language is presently used for programs on the Burroughs 220
computer, FORTRAN, which was actually the first compiler language
ever designed, still survives today and is preseatly used for programs
on the IBM 7090 compﬁter. The example compiler language to be given
in this lecture will be'f‘ORTRAN. and you will be getting several lectures
on FORTRAN programming in the next few weeks.

3,4 The machine language of a cbmputer is the code in which

instructions are stored inside the machine. The computer automatically
analyzes this code and carries out the instructions mechanically. People

find it harder to analyze such code, but machine circuitry naturally finds

LEN]
]

numerically coded information easy to recognize., Asgembly language

is directly related to machine language, except it is designed for human
comprvehension. The programmer does not have to remember many of
the detaile of machine language code; these are abbreviated into a sym-
bolic language, closely related to the way people actually think about the
machine instructions. This makes the f:reation of machine language
programs in the equivalent assembly language rather easy. Another
important advantage is the programmer's freedom from worrying about
clerical details and, consequently, he makes less errors. The prog-
rammer who uses an'assembly language must still, of course, be intimately
familiar with the machine characteristics, but a trained programmer can
often dash off an assembly language program as quickly as a flow chart,
In this lecture we will discuss FAP (Fortran Assembly Program), an
assembly language used for the IBM 7090. A quite different kind of
assembly language, which apparently has néver been given a name, is
now being used here on the Burroughs 220; it is numeric rather than
alphabetic and somewhat more closely related to machine language
because of the relative lack of equipment for entering alphabetic inform-
ation into the 220.

Flow charts and compiler languages are customarily called

problem-oriented languages, and assembly or machine languages are

known as processor-oriented or machine-oriented languages. The

big advantage of problem-oriented languages, as far as most research
workers are concerned,' is that it is for the most part unnecessary for
the programmer to learn the details about any specific computer, he

can write up programs in a fairly familiar way with little extra training.

' .

Specially writien computer programs (called compilers) take anything
written in a compiler language and automatically translate it into machine
language; then the machine executes the resulting machine language
program.

Assembly languages are valuable to programmers who are
trained in the iﬁtricaciee of machine language, as mentioned earlier;
other specially written computer programs (called assemblers) tfanalate
assembly language into machine language. In fact many compilers
translate from the compiler language into assembly language (as indic-
ated by the broken line in the diagram), and an assembler finishes the
job.

There is bound to be some loss of efficiency resulting from the
automatic translation of compiler language into machine language.
However, the programs produced run 90-95% as fast as those written
in assembly language by a trained programmer. In fact, compiler-
produced programs tend to beat hand-coded problems written by an
average programmer when the problem is complex and lengthy.

There are, on the other hand, classes of problems for which
compiler output compares poorly with hand-written programs; this is
due to a number of features of the machine which are never utilized by
the output of a compiler, because of the nature of compiler language.
Problems which make heavy use of such facilities are much better when
hand-written. (For some combinatorial problems, for example, the
compiler programs are less than one per cent efficient! It is to be

emphasized, however, that such problems are definitely in the minority.)

1, Flow Diagrams

The p:"oblem we will investigate here is a2 simple everyday
problem of making exact change for a given amount of money, using
the fewest possible coing in the process. We will assume that the amount
to be paid is less than $10,00, and that we have enough coins of each
kind to make up any such amount, (The actual assumption is that we
have at least one $5 bill, four $1 bills, one half-dollar, one quarter,
two dimes, a nickel, four pennies.) A simple method to use for this
problem is to find the largest coin less than or equal to the amount, to
take one of this coin, and repeat the process with the remaining amount,
until the total is reached.

A more explicit way to state this algorithm is in terms of the
flow chart below. For communicating an algorithm to other people, I .
personally tend to favor a flow chart without much detail inside the boxes,
accompanied by a flow outline, a set of steps explaining not only what is
to be done in the algorithni but why it is done. It is a good idea to prepare
such a detailed description so that one can remember several months later
what he has done.

Algorithm for makin‘ change

sl. An AMOUNT is input for which we are to make up change.

S2. . SetJ = 1. J will later specify which coin is currently being tried.
The coins are (in terms of cents) 500, 100, 50, 25, 10, 5, 1l in
that order. AlsosetK = O, K equals the number of coins
accumulated so far as change.

S3. If AMOUNT is less than the J-th coin, the J-th coin is too big so

we go to step S4. If AMOUNT is greater than or equal to the J-th
coin, go to step S5.

S4. Increase J by 1 (thus specifying the next smaller coin) and
return to step S3.

Ss. We take one of the J-th ccins as part of the change. This
means increase K by one, and set tho‘l(-th item of change to
the J-th coin.

86. Decrease AMOUNT by the value of the J-th coin; this represents

the amount we must still make up.

87. If AMOUNT is sero, we are done, 80 we go on to step 88,
otherwise go back to step S3.

88. Print out the answers for this case, then return to step 8Sl.

84. DECREASE COIN

yes

S1. READ AN AMOUNT |

|

82, INITIALIZE

S8. PRINT ANSWERS

L

yes

83. AMOUNT < comN?)22(

87. AMOUNT = 0°?)
¥

IL Comriler Language

85. USE COIN

86. AMOUNT*REMAINDER

Compiler language is quite similar to a flow description; the

main differences are that compiler language has a specified form for

each kind of oper ation, and that things are usually adjusted so they are

all on one line. Instead of writing -g- one writes A/B; instead of writing

X, one writes X(2); instead of writing)(z one writes X**2; instead of

writing4X one writes SQRTF (X).

Further explanations of the meaning of

each line of the FORTRAN program given below (each line is a so-called

"FORTRAN statement'') appears together with the statements.

FORTRAN Statements

C MAKING CHANGE
DIMENSION COIN (7),
X CHANGE (13)

COIN (1) = 500
COIN (2) = 100
COIN (3) = 50
COIN (4) = 25 r
COIN (5) = 10

COIN (6) = 5

COIN (7) = 1 J

1 READ INPUT TAPE 5, 100,
*x AMOUNT

TOTAL = AMOUNT

Explanatory Notes

The "C'"" means this is a comment only.
This says there are seven coins called
COIN (1), COIN (2),...COIN (7), and
that there are at most thirteen items of
change, called CHANGE (1), CHANGE (2), ..
CHANGE (13).

This series of statements sets up the

appropriate values of the coins.

This causes a unit of information from
the input tape to enter the computer;
this record is prepared in format
number 100 (see format statements
below); the data item is stored in
AMOUNT. If no more data is present,
the computer terminates the program.

Set the variable TOTAL equal to the
value of the variable AMOUNT. This
is done so that when later printing out
the answers we remember the original

amount,

100

J =1
K =20

IF (AMOUNT - COIN (J))
4,5,5

J=J + 1
GO TO 3

K=K+ 1

CHANGE (K) = COIN (J)

AMOUNT = AMOUNT -
COIN (J)

IF (AMOUNT) 3,38,3

WRITE OUTPUT TAPE 6,
200, TOTAL, (CHANGE(D,
I=1, K)

GO TO 1
FORMAT (F8.0)

The variables J and K are set respect-
ively to 1 and 0.

The quantity AMOUNT-COIN(J) is
computed. If it is negative, go to

if it is zero,

if it is
positive, go to statement number 5.
(Compare with step S3 of the flow out-

statement number 4;
go to statement number 5;

line.)

Increase J by 1
Return to step 3

Increase K by 1
Set CHANGE (K) equal to COIN(J)
(Compare with stép S5)

Decrease AMOUNT by COIN(J)

If AMOUNT is now negative or positive
(i. e. non-zero), return to step 3;
if AMOUNT is zero, go to step 8.

Record onto magnetic tape a unit of
information containing the original
TOTAL amount, and the values of
CHANGE(1) through CHANGE (K),
using format number 200.

This is a special notation for the

format in which the input cards are
punched. (Note: the cards are {irst
key-punched, then transferred to mag-
netic tape before entering the computer.)
The code F8.0 means eight card columns
are used, and the numbers are given
without any decimal places.

200 FORMAT (8BHCAMOUNT=, This format for the answers says to
X -2P, F7.2, TH, COINS, 13F7.2)| double space, to print titles in the
form "AMOUNT= x.xx, COINS",
to convert from cents to dollars for
readability, and to give up to 13

answers.

END This indicates the end of the program.

III. Assembly Language

It is not appropriate to explain very much about the internal
machine operations in this lecture; a little bit of explanation should be
enough to give the basic ideas involved. The IBM 7090 is designed to
execute instructions in sequence, and these instru;tione manipulate numbers.
Over 32, 000 numbers are kept in the "'memory' of the computer. There is
a special part of the machine's memory called its registers. The registers
that concern us here are the AC register, the MQ register, and the so-
called index registers 1 and 2, We will keep the values of TOTAL, COIN,
and CHANGE in the ordinary memory, but we will make special assignments
as follows:

J is kept in index register 1.

K is kept in index register 2.

AMOUNT is kept in the AC register.
Now here is the same change-making algorithm, expressed in the FAP
assembly language. To avoid going into the details of input and output,
we will give here only those steps between the "READ INPUT TAPE'" and
the "WRITE OUTPUT TAPE" parts of our program. An instruction in

FAP has four main parts:

NAME OoP ADDRESS, INDEX

15~

NAME is the optional symbclic name of the instruction (if the programmer
wants to name it); OP specifies the operation to be performed by the machine;
ADDRESS specifies on what quantity the operator is to be performed; and
INDEZX, if it appears, specifies an alteration of the ADDRESS by an index
regisfer. FEach instruction will be translaied into English so that the

actual meaning of each line of the code is cleas:

NAME OF ADDRESS, INDEX REMARKS
STC TOTAL At the begianing we assume the initial

AMOUNT is given to us in the AC
register. '"STO", in general, means
store the AC register into the location
given by the address. Therefore, this
instruction says, ''Store the contents
‘ of the AC register into the memory
location called TOTAL." It corres-
ponds exactly to the FORTRAN state-
ment in the preceding section TOTAL =
AMOUNT, since AMOUNT is in the
AC register,
The contents of the AC register are
not destroyed by the STO instruction.
AXT L1 "Set index register 1 equal to 1."
This corresponds to the FORTRAN
statement J = 1, because J is kept
in index register 1 here.
AXT 0,2 \"Set index register 2 equal to 0."
(Compare with the preceding instruct-
ion,) This corresponds to the state-
ment K = 0 in FORTRAN.

CMPARE CAS COIN, 1 This is by far the trickiest instruction
o of the lot; it is named CMPARE.

TX! USE, 4,1

TX{ UBE, ¢,1

TXK CMPARE, 1,1

The precise meaning is, '"Compare
the conients of the AC register with
the number in the memory location
called COIN modified by index register
1 ". This can be translated in our case
into "Compare AMOUNT with the J-th
coin'’, If the result of the comparison
is greater, the computer goes on to
the next instruction. If the result of
the comparison is equal, it skips the
next instruction and goes on to the
following one. Finally if the result

of the comparis~n is less, it skips

two instructions and takes the third,

We get to this instruction if AMOUNT
is greater than the J-th coin, as we
menticred in the discussion of the
previous instruction, This command
means, 'Increase index register 2

by 1, and tke next instruction to exec-
ute is the one called USE'", In other
words, K = K + 1, and we skip to
the step named USE below.

We get to this instruction if AMOUNT
is exactly equal to the J-th coin. ft
is exactly the same insiruction as the

previous,

This instruction reads, '"Increase index
register 1 by 1, and the next instruction
to execute is the one called CMPARE",
Note the analogy between this and the
preceding; it performs step 3 of our
algorithm for us.

LDQ COIN, 1

8TQ CHANGE, 2

FSB COIN, 1

TNZ CMPARE

-12-

Here is the instruction called USE,

It says, "Load up the conteats of the
MQ register with the number in
memory locatica COIN modified by
index register 1". In other words,

the valus of the J-th coia is copled into
the MQ rogimr;.

"Store the contents of the MQ register
in the memory location called CHANGE,
modified by index register 2. K is
index register 2, so the effect of the
last two instructions is to record the
value of the J-th coin as the K-th plece
of change; CHANGE(K) = COIN(J).
Compare this instruction STQ with the
first instruction STO. The difference
is ounly in the change from AC to MQ
register,

"Subtract the value of the J-th coin

from the AC register, leaving the

result in the AC register'. This instruc-
tion performs the function AMOUNT =
AMOUNT - COIN(J) of the FORTRAN
program. ‘

“If the contents of the AC register are
not sero, the next instructioa to exec-
ute is the one called CMPARKE; other-
wise continue on to the next imstruction'.
Thus if the remaining AMOUNT is not
sero we continue with step 3 of our
procedure, otherwise we have computed
all the change as required.

-13-

The next instruction, not given here, would then be the beginning
of the steps for writing the answers onto the output tape. This completes
our example of an assembly language program.

IV. Machine Language
The IBM 7090 internally deals with numbers expressed in the

binary system; each ordimary memory location contains a number with

3% binary digits and a plus-or-minus sign. Numbers in the binary system
can be easily thought of as numbers in the octal (base 8) number system,
by simply grouping binary digits together three at a time; for example,
the binary number
+ 00 110 000 001 000 000 000 000 010 000 000 000
(which is the actual way the first instruction, below, appears inside the
computer) is easily expressed as the octal aumber
+060100002000,
and for convenience we will use the octal form.

The memory positions inside the computer uc specified by zumber,
using the octal aumbers 00000 through 77777. The instructions ofa
program are coded as numbers, and they are put into the memory aloang
with the numbers mipduod by the program. We will assume the instruct-
ions of our program are stored in ascending locations starting with 01000,
We also assume that

TOTAL is memory location 02000

COIN is memory location 03000

CHANGE is memory location 04000.
The FAP language program given in part 3 corresponds 1-for-1 with the
machine language. For example, the operation STO is Qritten +0601 in

-14-

machine language. There are five parts to the machine language instruct-
ions: the memory location where it is stored is one, then the contents of
that loca:tion have four parts, the OP part (as in FAP), the D part (special
use depending on the OP), the 'l‘ part (corresponding to the INDEX in FAP),
and finally the ADDRESS part (as in FAP)., The reader should compare the
address parts given with the corresponding FAP address; the FAP program
is reproduced here, copied from part IIL,

FAP e Machine Language
NAME OP ADDRESS, INDEX Location oP D T ADDRESS
STO TOTAL,1 01000 +0601 00 O 02000
AX7T 1,1 ‘ 01001 +0774 00 1 00001
AXT 0,2 01002 +0774 00 2 00000
CMPARE
CAR COIN,] ' 01003 +0340 00 1 03000
TXI USEZ2,1 01004 +1000 01 2 01007
TXI USEZ2,1 01005 +1000 op 2 01007
TXX CMPARE,]1 01006 +1000 01 1 01003
USE LDQ COQIN,1 01007 +0560 00 1 03000
STQ CHANGE,2 01010 -0600 00 2 04000
FS8B COIN,) - 01011 40302 00 1 03000
TNZ CMPARE ol1012 -0100 00 O 01000
Exercises

1. Rewrite the FORTRAN algorithm so as to allow $2 bills in the change.
2. Would our algorithm always produce the least number of coins, if we
_were not allowed to give nickels? (Hint: consider the case of 30¢.)

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif

