COMPUTHR LANGUACES

D. E. Knuth -- December, 1964

The purpose of this lecture is to present, by means of examples,
various levels of language used with digital computer programs, and also
to give an introduction to programming.

The four>principal types of language used with computers are depicted

in this chart:

1. Flow chart or
flow outline
(informal)

T

{
o v
2. Compiler

! I3, Assembly !
§ language i language

é (algebraic) | (symbolic machine

i {“g@&%ﬂmwmg

1

N |
hN ¥

i 4, Machine languagei

§ (numeric, inter-|

I preted by machinei

>

1. The flow chart or flow outline is a step-By-step description

of the procedure to be followed{ A computational procedure must be spelled
out in detail, much like a recipe in a cookbook. The wérd algorithm is used
to denote a finite computational process which is well-defined and which
produces specified output when given specified input, A description of an

algorithm in & computer language is called a érégfam.

Flow charts and flow outlines serve as an aid to the person preparing
a prégram; most programmers like to get their thoughts in order by first
preparing a flow chart which shows how to carry out the desired solution.
Flow charts have a wide range of levels, depending on the prog:ammer's
taste; he may wish to give a brief overall picture of the "flow' of an
algorithm, or he may wish to make an extremely detailed flow description.
Language used in flow charts is usually a combination of English and mathe-
matics; in general, the language is sufficiently precise for the programmer
to understand, but is far too vague for a computer to understand (at least
until we build a computer that thinks). 1In other words, it takes common
sense to determine the meaning of a flow chart description of a program.
This is not true for the other languages we describe; théy will conform
to specific rules, and every statement will have a precise meaning, under-

standable by the computer,

2. Compiler language 1s a precise rendering of the flow chart into a
well-defined language, which still remains sufficiently closé to English and
mathematical language to make it easily readable for a non-specialist (after
a short briefing). There are dozens of different compiler languages, of which
the most commonly used are ALGOL and FORTRAN. (Computer programmers and
manufacturers are fond of using "acronyms'" for naming their programs; ALGOL
stands for ALGOrithmic Language, FORTRAN stands for FORmula TRANslator.) At
CalTech, the ALGOL compiler language is presently used for programs on the
Burroughs 220 computer. FORTRAN, which was actually the first compiler
language ever designed in this country still survivee today and is presently
used for programs on the IBM 7094 computer. The example compiler language

to be given in this lecture will be FORTRAN.

3,4. The machine language of a computer is the code in which

inst?uctions are stored inside the machine., The computer automatically
analyzes this code and carries out the instructions mechanically. People
find it harder to analvze such code, but machine circuitry naturally finds
numerically coded information easy to recognize, Assembly language is
directly related to machine language, except it is designed for human
comprehension. The programmer does not have to remember many of the
details of machine language code; these are abbreviated into a symbolic
language, closely related to the way people actually think about the machine
instructions. This makes, the creation of machine language programs in

the equivalent assembly language rather easy. Another important advantage
is the programmer's freedom from worrying about clerical details and,
consequently, he makes less errors. The programmer who uses an assembly
language must still, of course, be intimately familiar with the machine
characteristics, but a trained programmer can often dash off an assembly
language program as quickly as a flow chart. There will not be time in
this lecture to discuss assembly language and machine language in great

detail; only the flavor of those languages will be demonstrated.

I. Flow Diagrams

The problem we will iﬁvéstigate here is a simple everyday problem
of making exact change for a given amount of money, using the fewest possible
coins in the process. We will assume that the amount to be paid is less
than $10.00, and that we have enough coins of each kind to make up any such

amount. (The actual assumption is that we have at least one $5 bill, four

31 bi}ls, one half-dollar, one quarter, two dimes, a nickel, four pennies,
although we will never have to use all of these coins at once.) A simple
method to use for this problem is to find the largest coin less than or
equal to the amount, to take one of this coin, and repeat the process with
the remaining amount, until the total is reached.

The most important thing to know about computers is that they understand
very little about what they are told. Every part of a process must be
expressed clearly and unambiguously in simple basic steps. Merely to say
"find the largest coin less than or equal to the amount, etc.' is quite
insufficient; it is necessary to say what the coins are, how to search
for the largest one less than or equal to the amount, when it has been
found, etc.

A more precise way to state this algorithm is in terms of the flow
chart below. The flow chart itself is not very explicit about what is to

be done; it is accompanied by a flow outline, a set of steps explaining not

only what is to be done in the algorithm but why it is dome., It is a good
idea to prepare such a detailed description so that onme can remember

several months later what procedure was used.

Algorithm for making change
si, An AMOUNT is input for which we are to make up change.

s2. Set J =1, [J will later specify which coin is currently
being tried. The coins are (in terms of cents} 500, 100, 50,
25, 10, 5, 1 in that order.] Also set K = 0. [K equals the

number of coins accumulated so far as change.]

S3.

sS4,

S5.

S6.

87.

S8.

If AMOUNT is less than the J-th coin, the J-th coin is too big
so we go to step S4, If AMOUNT ic greater than or equal to the
J-th coin, go to step S5.

Increase J by 1 (thus specifying the next smaller coin) and
return to step S3.

We take one of the J-th coins as part of the change. This means
increase K by one, and set the K-th item of change to the J-th
coin.,

Decrease AMOUNT by the value of ;he J-th coin; this represents
the amount we must still make up.

1f AMOUNT is zero, we are done, so we go on to step S8; otherwise’
go back to step S3.

Print out the answers for this case, then return to step Sl.

START

|

[51. READ AN AMOUNT i

¢

[S2. INITIALIZE | |s8. PRINT ANSWERS|

T yes

S4. DECREASE COIN |/%% (53. AMOUNT < COIN?)-22(57. AMOUNT = 07)

tn0 1
S5. ’USE COIN el 86 AMOUNT‘@-REMAINDEéi

II. Compiler Language

Compiler language is quite similar to a flow description; the
main differences are that compiler language has a specified form for each
kind of operation, and that things are usually adjusted so they are all on
one line., 1Instead of writing %'one writes A/B; instead of writing X2 one
writes X(2); instead of writing X2 one writes X**2; instead of writing'Jk
one writes SORT(X). Further explanations of the meaning of each line of the

FORTRAN program given below (each line is a so-called "FORTRAN statement'')

appears together with the statements,

FORTRAN Statements Explanatory Notes
C MAKING CHANGE The "C" means this is a comment only.
DIMENSION COIN (8) This says there are eight coins called
x CHANGE (13) COIN (1), COIN (2),...COIN (8), and

that there are at most thirteen items of
change, called CHANGE (1), CHANGE (2),...
CHANGE (13). Note: The "x'" here means
that the information on that line is a
continuation of the preceding line.
COIN (1) = 500
COIN (2) = 100
COIN (3) 50
COIN (4) = 25
COIN (5) = 10

i

This series of statements sets up the

appropriste values of the coins.

COIN (6) = 5
COIN (7) =
COIN (8) = O

1 READ (5,100) AMCUNT

TOTAL = AMOUNT

2 J=1
K=20

3 IF (AMOUNT - COIN (J))
x 4,5,5

b JT=J+1

GO TO 3

5 K=K+1
CHANGE (K) = COIN (J)

This causes a unit of information from
a punched card to enter the computer;
this record is prepared in format
number 100 (see format statements
below); the data item is stored in
AMOUNT. If no more date is present,

the computer terminates the program.

Set the variable TOTAL equal to the
value of the variable AMOUNT., This
is done so that when later printing out
the answers we remember the original

amount.

The variables J and K are set respect-

ively to 1 and O.

The quantity AMOUNT~COIN(JI) is
computed. If it is negative, go to
statement number 4; if it is zero,

go to statement number 5; if it is
positive, go to statement number 5.
(Compare with step S3 of the flow out-
line.)

n_n

Increase J by 1. Notice that an =" sign
in FORTRAN has a different meaning than
its conventional mathematical usage; it
denotes the action of taking the value

on the right and using it as the new
value of the variable on the left.

Return to step 3

Increase K by 1
Set CHANGE(K) equal to COIN(J)
(Compare with step S5)

. 6 AMOUNT = AMOUNT - Decrease AMOUNT by COIN(J)
x COIN (I
7 IF (AMOUNT) 3,8,3 If AMOUNT is now negative or positive

(i.e. non-zero), return to step 3;
if AMOUNT is zero, go to step 8.

8 WRITE (6,200) Record onto the output page a unit of

X TOTAL, (CHANGE(I), information containing the original
I=1, K TOTAL amount, and the values of

CHANGE (1) through CHANGE(K),

using format number 200.

GO TO 1
100 FORMAT (¥8.0) . This is a special nctation for the
format in which the input cards are
punched. The code F8.0 means eight
card columns are used, and the numbers
. are given without any decimal places.
200 FORMAT({9HOAMOUNT = This format for the answers says to
x =~2P F7.2, 7H, COINS, double space, to print titles in the
x 7F7.2/30X, 6F7.2) form "AMOUNT = x.xx, COINS",
to convert from cents to dollars for
readability, and to give up to 13
answers with at most seven on the
first line.
END This indicates the end of the program.

ITI. Assembly Language and Machine Language

It would take one or two further lectures to explain the details of
assembly language and machine language so we will be content here to merely

present an example of each. The important thing to learn at this time is

merely'the fact that these languages exist, and to get some idea what they
look like.

The following assembly language program (written in a language called
MAP) corresponds to that part of the FORTRAN program above, following

statement number 1 up to and including statement number 7,

Name Op Address, Index
STC TOTAL
AXT 1,1
AXT 0,2

coMp CAS COIN.1

TXI USE,2,1
TXI. USE,2,1
TXI COMP, 1,1

USE LDQ COIN,1
STG CHANGE, 2
FSB COIN,1
TNZ COMP

The reader is not expected to undersfand this language at this time, but
we can give some idea of the correspondence: the two lines 'LDQ COIN, 1"
and "STQ CHANGE, 2", which are the 3-rd and 4-th last lines here, correspond
to the FORTRAN statement "CHANGE(K) = COIN(J)."

The machine itself works in quite ano#her kind of language: it deals

with signed 35-bit numbers in the binary number system, Here is an example

of machine language:

10

Location Machine language instruction
01000 +001100000601000000000000010000000000
01001 -7 +00111111100000000001.000000000000001
01002 +0011111110000600000100G60000000000000
01003 +00011100000000000001000011000000000
01004 +01000000000000001010000001.000000111
01005 +01000000000000001010006001000000111
01006 +01000000000000001001600001000000011
01007 -+00101110000000001000000011000000000
01010 -(01100000000000000100600100000000000
01011 +00011008000000000001000011.000000000

01012 -00001000000000000000000001000000000

This is in a form that the computer circuitry understands, The "location"
here means the place within the computer's memory in which the instruction
is stored.

This machine 1anguage.program is the exact equivalent of the assembly
language given above; i.e., the first instruction is the equivalent of
"STO TOTAL", the next is the equivalent of "AXT 1,1", and so on. The
point here is that assembly language ;nd machine language are very closely

related; the former is a symbolic form of the latter.

III. Discussion

Flow charts and compiler languages are customarily called

problem-oriented languages, and assembly or machine languages are known

a8 processor-oriented or machine-oriented languages. The big advantage

of problem-oriented languages, as far as most scientists are concerned,

is that it is for the most part unnecessary for the programmer to learn

the details about any specific computer, he can write up programs in a
fairly familiar way with little extfa training. Specially written computer
programs (called compilers) iake anything written in a compiler language
and automatically translate it into machine language; then the machine

executes the resulting machine language program.

1l

A;semb}y_languagas afe valuable to programmers who are trained
in the intricacies of machine language, as mentioned earlier; other specially
written computer programs (calied assémblers) translate assembly language
into machine language. In fact many compilers traﬂslate from the compiler
language into assembly language (as indicated by the broken line in the
diagram), and an assembler finishes the job.

There is bound to be some loss of efficiency resulting from the
automatic translation of compiler language igto'machine language. However,
the programs produced run 90-95% as fast as those written in assembly
language by a trained programmer. In fact, compiler-produced programs tend to
beat hand-coded problems written by an average programmer when the problem
is complex and 1engthy; | |

There are, on the other hand, classes of problems for which compiier
output compares poorly with hand-written programs; this is due to a number
of features of the machine which are never utilized by the output of a
compiler,’because‘of the nature of compiler language. Problems which make
heavy use of such facilities are much better when hand;written. (For some
éombinatorial problems, for exgmple, thg compiler programs are less than
one percent efficient! It is to be emphasized, however, that such problems

are definitely in the minority.)

Exercises

1. Rewrite the FORTRAN algorithm so as to alloﬁ 82 bilis in the change.

2, Would our algorithm always produce‘the least number of coins, if we
were not allowed to give nickels? (Hint: consider the case of 30¢.)

3. What would happen in our program if the original amount were zero?

L MAKING CHANGE
DIMENSTUN COIN{E), CHANGELLD)

COintL) = HOo
Cointzy = 106
Cuiai3) = v
COIN(B) = oo
COIK{S) = {0
CUinNto) = o
Cointry = |}
Coirts) = 4

1 REal{S5, 1001 AmOUNT
TCI AL = AMUUNT

2 J =1

K = ¢
3 IF(AMGUNT = CCINGJY) 44,7545
4 J = 3+ 1

GO G 3

9 K = K + 1
CHANGE(R) = COiRtd)
6 AMUUNT = AMOURNT - CLIntJd)
T IFCANMGURT Y 34543
B WRITE(6,200) T1aLy (CHANGE(IL)s 1 = Lyt)

GO 70 1

100 FORMAT (t2.0)

200 FORMAT (QUHCANMGUNT =4 =20 T2y THy CiINDy
X (E7.2 /7 30Ky 6F 1.2}
ENu

AMOUNT = Oadby CUIRS Cedd

AMUUNT 0.26y LCINS Calh Ve 011

]

AMOUNT = 040y LUINY ed" G 10 0.0%

AMOUNT = Cei3y CHINY 154 Ca25 0.10 0.05 0.01 .01 Q.01

AMOUNT = Dafing COINS LaBC Uad5 U010 0.10

0 1.006 1.00 1.0C Ce50 0.25

AMUUNT = Fe Yy COINS “«0U 1.0
16 0.10 0.C1 Q.01 0.01 O«01

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif

