
CHAPTER 9

DIAL

DIAL User's Manual

9.1 INTRODUCTION

DIAL
DIAL User's Manual

The Design Interface and Access Library (DIAL) has been
created to give users of the SCALDsystem access to the
various components of the design data base. It consists of
a collection of routines, subprograms, and support utilities
that can be assembled into a powerful user-defined interface
program written in Pascal. Pascal was chosen as the
implementation language for several reasons:

1. Pascal is a well known programming language; the user
is likely to have people with Pascal experience
available.

2. Pascal, as a general purpose programming language,
places no restrictions on the user in terms of the kinds
of operations that can be performed.

3. As the SCALDsystem evolves, the interface language
remains the same. New library functions may be added,
but old interfaces will always work. There is no danger
they will become obsolete or have to be changed with new
releases.

4. Interfaces written in Pascal, like all of the
SCALDsystem software, can be executed on Valid's
hardware or the user's host.

DIAL provides the user with a flexible and powerful
interface into the SCALDsystem data base. Numerous common
operations are provided as utility procedures. Routines
that read and process each of the data base files are
provided to minimize the amount of work required to
implement a custom interface. Using these procedures, the
user can format desired reports, output lists, make queries,
and perform design verification.

While DIAL can be used for many things, this document
is primarily concerned with the implementation of interfaces
between the SCALDsystem and other CAD/CAE systems. The use
of DIAL for generating reports, performing design rule
verification, or making general queries follows naturally
from the capabilities described below.

9-3

DIAL
DIAL User's Manual

It is assumed that the reader is familiar with the
SCALDsystem, its programs and data bases, and the
programming language Pascal.

9.2 TYPES OF INTERFACES

DIAL can be used to implement two kinds of interfaces:
logical and physical. These interfaces differ in the kinds
of information they access, what type of system they are
intended to interface to, and how they fit into the
SCALDsystem design process. A logical interface is used to
access the logical description of the design. It is used,
for example to interface to a logic simulator. A physical
interface is used to access the physic~l description of the
design. It is used, for example, to interface to a physical
layout system. These interfaces are described in more
detail in the following sections.

-- SCALDsystem Interface Process Flow --

+----------+ +-----------+
I I I I

SCALD I SCALD I expanded

I Compiler 1--> expansion -->1 Packager 1--> part and
file net list

+----------+

v
+-----------+
I
I Logical

Interface
I
+-----------+

I
v

Logical
CAD system

9-4

+-----------+

<-- primitive
libraries

I
v

+-----------+
I I

-->1 Physical I
Interface

I I
+-----------+

I
v

Physical
CAD system

LOGICAL INTERFACE

DIAL
DIAL User's Manual

A DIAL logical interface processes the output of the
SCALD Compiler (the expansion file). No physical
information (pin numbers, location designators, etc.) is
accessable by a logical interface since this information is
added to the design by the Packager. Information about the
design hierarchy, however, is available and, with
appropriate restrictions in the use of the SCALD III
language, hierarchical descriptions of the design can be
generated. SIZE replication can be performed for components
that use the SIZE property, so that the user can take
advantage of vectored components. TIMES expansion, WIRE
GATE elimination, and signal versioning are not performed
since these are strictly Packager functions. Designs that
use these features MUST be processed with a physical
interface or they must be handled by whatever system the
interface is being used to communicate with. A logical
interface can also access primitive libraries if such are
needed by the particular interface.

There is no provision for feedback when using a logical
interface since the feedback is handled by the Packager. A
logical interface bypasses the Packager making it impossible
to generate feedback information that the Packager can
understand. If feedback from the destination system is
needed, a physical interface MUST be used.

Logical interfaces are used when interfacing to logical
CAD tools such as a logic simulator. These tools require a
logical descriptio~ of the design and do not need physical
information. Such tools also commonly handle hierarchical
designs which are capable of being described with a logical
interface.

PHYSICAL INTERFACE

A DIAL physical interface processes the output of the
Packager (the expanded part and net lists). The interface
has access to all of the physical information in the design,
but little of the hierarchical structure - the design is
treated as being flat. The interface can also access part
libraries if needed. Since the design is processed by the
Packager before reaching the physical interface, there are
no restrictions in the use of the SCALD III design language.

Feedback from the destination system is possible since
the interface processes the Packager's output files.

Physical interfaces are used when interfacing to
physical CAD tools such as a PC layout system. The tools
require, in general, a flat description of the physical

9-5

DIAL
DIAL User's Manual

design complete with pin numbers, location designators, and
the like. Hierarchical interfaces to physical CAD systems
are not directly supported.

9.3 STRUCTURE OF AN INTERFACE

A DIAL interface, whether logical or physical, is
implemented in Pascal. The user writes procedures that
perform the desired processing of the data base and outputs
information in the desired format. DIAL includes several
utilities to make the task of implementing an interface
easier. Included are procedures to parse input files,
handle character strings, create and manipulate data
structures, sort items, output information. These are
further described below.

DIAL INTERFACE PROGRAM FLOW

A DIAL interface program consists of several phases.
DIAL includes routines for each of the phases except output
generation, which must be written by the user. The program
phases are:

1. Initialization

2. Read the data base

3. Perform processing

4. Design analysis

s. Output the results

The first three steps are common to all DIAL interfaces.
The output phase is customized for the particular interface
of interest. A template is supplied with DIAL which a
user's program should be designed from. This template will
define the intended order in which the DIAL procedures
should be called. The user may choose to restructure the
interface program. The phases listed above are intended
only as a guide. The method in which a program can be set
up and run on a specific operating system is de$cribed in
the appendices.

INITIALIZATION

Various tables and runtime "constants" are initialized
in this phase. The user can add his own initialization code
as well. The initialization also includes the reading of a
directive file to allow user-settable control of the
execution of the interface program. The following routines
do the initialization:

9-6

DIAL
DIAL User's Manual

1. INIT DIAL -- Initialize the DIAL constants.

2. READ DIRECTIVES FILE -- DIAL is supplied with a set of
standard directives which makes it possible to change
the environment for an interface every time it is run.
It is also possible for the user to add new directives
to the interface by using the routine
PROCESS DIRECTIVES.

DATA BASE INPUT PHASE

Files must be read in to set up the data base to
represent a design. The data base to be set up can be
either a logical or physical data base. There are three
routines which are supplied to set up the appropriate data
base. The routines which are supplied are:

1. READ LOGICAL DATA BASE -- Read in the compiler expansion
file-and set-up a-data base which can be used to be
related to by a logical simulation device. This routine
will read in the expansion file, do expansion of
replicated parts, assign physical net names, and give a
logical part a physical designator.

2. READ PHYSICAL DATA BASE -- Read in the Packager produced
expanded net and part list files. These files are used
to set up a data base which represent the design in a
way which can be used for a physical device.

3. READ DATA BASE -- This routine makes it possible for
interface-to be either logical or physical. The
standard directive INTERFACE TYPE is supplied which
makes it possible for the interface to tell whether
data base should be set up as logical or physical.
see Read directives file for information about
directives)

DESIGN ANALYSIS

an

the
(

The user may wish to apply some site-specific design
rule verification to a design. This is accomplished in this
optional phase. A user-written routine is used to walk the
data structures and apply certain tests to detect specific
problems. Utilities are provided to make accessing the data
structures simple and direct.

9-7

DIAL
DIAL User's Manual

OUTPUT PHASE

During the output phase, the design is output to text
files with user-su~plied routines. These routines decide
which data are to be output and what the format should be~
Utilities are provided to make I/O as straight forward as
possible. The user has complete control of the format of
the output. An output procedure designed as the last phase
of a logical interface can be added as the last phase of a
physical interface without modification. This allows the
user to get maximum mileage from development efforts. See
the section on utilities for a description of routines for
implementing the output phase.

9.4 DATA STRUCTURES REPRESENTING THE DESIGN

The design is represented in memory in a number of data
structures supported by DIAL. The data structures will be
described in this section, but the source declarations for
all of the data structures can be found in the type
declaration section of the types.pas file. These data
structures are designed to be able to represent both the
logical and the physical design. For this reason, much of
the structure formation revolves around the relation of the
logical data to the physical data. When designing a logical
interface, some of the physical information may not be
needed.

The word "physical", in the case of logical DIAL, means
an element which is not in SCALD format. The SCALD language
allows considerable latitude in naming parts, signals and
pins. Most systems being interfaced with have considerably
more restricted notions of what a legal name may consist of.
A "physical" name is, in general, an abbreviation of the
SCALD name to a simpler form. In the case of a physical
interface, these abbreviations take the form of location
designators (U31), pin numbers and net names. The notion of
physical names is used in a logical interface to make the
notions consistent for all DIAL interfaces. In logical
DIAL, a physical name is a name not in SCALD format, but is
in the user system format. In logical DIAL a physical part
is a one section part which has a one to one correspondence
with each Valid logical part.

DRAWING NAMES

A Drawing Name is the occurrance of ~ drawing in a
design. A Drawing_name is defined as:

drawing name structure =
record -

next_in_generic_bucket: drawing_name_ptr;

9-8

DIAL
DIAL User's Manual

next in instance bucket: drawing name ptr;
first generic bucket: drawing name ptr;
generic name:-string; - -
instance name: string;
is unique: boolean;
parts: logical part ptr;

end· - -
'

A drawing name is entered into two tables: the
generic drawing table and the instance drawing table. The
instance table has an entry in it for each time a drawing is
used in a design. The instance drawings are connected by
the thread NEXT IN INSTANCE BUCKET. The name
(INSTANCE NAME)-of-the entry is the name of the drawing,
with the path of the drawing it is in proceeding it. The
generic drawing is the occurance of the actual drawing
itself. The name (GENERIC NAME) of the generic drawing is
the actual name of the drawing. If the generic drawing is
used more than once in a design IS UNIQUE is FALSE, and
FIRST GENERIC BUCKET points to the-first entry in the
generic table-for the drawing. All of the parts which are
in the drawing are contained on the list of parts (PARTS).

LOGICAL PARTS

A logical part represents an instance of a part in a
drawing. It's name is the path name of the instance which
is created and assigned by the SCALD Compiler. The Logical
part structure is defined as:

logical_part_structure = record

next in bucket:
next-sorted:
drawing:
part_name:
part type:
body-properties:
pins-on part:
TIMES property:
expanded parts:

end· -
'

logical part ptr;
logical-part-ptr;
drawing-name-ptr;
string;- -
part_type_ptr;
property ptr;
logical pin ptr;
times property range;
SIZE_expanded_part_ptr;

{ part table thread }
{ list of all parts }
{ part's drawing }
{ name of logical part }
{ physical part type }
{ part propertiess }
{ pins of the part }
{ TIMES property }
{ SIZE-expanded parts }

The logical parts are kept in a table and linked
together with the NEXT IN BUCKET field. The NEXT SORTED
field links together aTl ~f the logical parts in ~
particular drawing. The DRAWING field points to the drawing
table entry describing the drawing in which the part
appears. The logical part name is stored in PART NAME. The
part type is specified by PART_TYPE which points to the

9-9

DIAL
DIAL User's Manual

library part type description. Properties which are
specific to the part are kept in BODY PROPERTIES. The pins
attached to the part are kept in a list pointed to by
PINS ON PART. The TIMES property attached to the part is
specified by TIMES PROPERTY (This field is not used in
Logical DIAL, it will always be zero}. The SIZE expanded
parts are kept in a list pointed to by EXPANDED PARTS.

SIZE EXPANDED PARTS

A SIZE expanded part describes a SIZE replicated
logical part. Every logical part has at least one SIZE
expanded part (since SIZE> O). The Size expanded parts
represent a two dimensional array of SIZE by TIMES
properties (in logical DIAL this will always be a one
dimensional array since there is not a TIMES property). A
SIZE expanded part is defined as:

SIZE_expand_part_structure • record

next part of parent:
next-version:
parent part:
nodes on part:
physical-sections:
SIZE offset:
version number:

end;

SIZE expanded part ptr;
SIZE-expanded-part-ptr;
logical part ptr; -
node ptr; -
physical section ptr;
bit range; -
version_number_range;

{ SIZE parts }
{ version of part
{ parent part }
{ nodes }
{ sections }
{ value for SIZE]
{ TIMES repl vers

The list of SIZE expanded parts is rooted on a logical
part and threaded together with NEXT PART OF PARENT. If
there is a TIMES property associated-with-a part, the list
of new versions is rooted in a SIZE expanded part and
threaded with NEXT VERSION. The parent logical part is
specified by PARENT PART. The nodes connected to the part
are NODES ON PART and are sorted by physical pin number
(after physical section assignment}. The physical section
allocated to the SIZE expanded part is listed by
PHYSICAL SECTIONS. - -

LOGICAL PINS

For each pin on the logical part, there is an
associated logical pin structure which describes this pin.
The Logical Pin structure is defined as:

logical_pin_structure • record

next pin on part: logical pin ptr; { list of pins of part }
pin def:- - pin def-ptri { physical pin description }
left bit: bit:range; { the MSB of the bit subscri•

9-10

DIAL
DIAL User's Manual

right bit:
was scalar:
pin properties:

end· -

bit range;
booTean;
property_ptr;

{ the LSB of the bit subscript }
{ not used }
{ instance specific properties }

'

Logical pin list are rooted on a logical part and
threaded with NEXT PIN ON PART. The physical pin is
described by PIN DEF (where the pin name and pin numbers can
be found). The bit subscript for the pin are kept in
LEFT BIT (the most significant bit) and RIGHT BIT (the least
significant bit). The field WAS SCALAR will not be used by
a DIAL program. The properties of the pin (instance
specific properties) are listed in PIN PROPERTIES.

NODES

A node describes a pin on a specific part. The node
structure is defined as:

node structure = record

next node on net:
next-node-on-part:
next-version-of node:
net:
SIZE expanded part:
physical pin:­
logical pin:
bit offset:
node type or version:

end• - - -
'

node ptr;
node-ptr;
node ptr;
net ptr;
SIZE expanded part ptr;
section pin ptr;
logical-pin-ptr;
bit range; -
version_number_range;

Lists of nodes are found on nets (using the

{ nodes on a net }
{ nodes on a part }
{ not used }
{ net node is on }
{ logical part }
{ physical pin desc }
{ logical pin desc
{ bit offset }
{ unused }

NEXT NODE ON PART thread) and SIZE expanded logical parts
(using the NEXT NODE ON PART thread - ordered by pin and
offset). The NEXT VERSION OF NODE field is not used by a
user's DIAL program. Each-node points to the net to which
it is connected (NET). The pin is described by PHYSICAL PIN
and LOGICAL PIN (which also uses the logical bit offset -
(BIT OFFSET). The logical part for the node is
SIZE-EXPANDED PART. The NODE TYPE OR VERSION field is not
used-by a user's DIAL program7

NETS

A net describes a one bit wide logical/physical net.
The net structure is defined as:

net structure = record

9-11

DIAL
DIAL User's Manual

next logical net in bucket:
next-physical net in bucket:
logical name:- - -

net_ptr;
net ptr;
string;
bit range; bit offset:

physical name:
nodes on-net:
version number:
versions used:
net properties:

end· -
'

string;
node ptr;

version number range;
version number:range;

property_ptr;

{ logical net name thread
{ phys net name thread }
{ logical net name }
{ bit subscript }
{ physical net name }
{ nodes on the net }
{ version due to TIMES }
{ not used }
{ properties of the net }

The logical name for the net (LOGICAL NAME) is the
logical signal name. The logical name als~ includes a bit
offset (BIT OFFSET). If the logical net name is a scalar
(has no bit-subscript), the bit offset is set to -1. Each
net also has a physical name (PHYSICAL NAME). The nets are
kept in two tables: physical net table (using the
NEXT PHYSICAL NET IN BUCKET thread) and the logical net
table (using the NEXT LOGICAL NET IN BUCKET thread). Each
net has a list of nodes to which It is attached
(NODES ON NET). If the net was created because of TIMES
property processing, it is given a version number
(VERSION NUMBER). It is not possible to have versions in
Logical DIAL, so this field does not apply. The properties
of the net are listed in NET PROPERTIES. The field
VERSIONS USED is not used by-DIAL.

There are three special nets which are passed from a
design to DIAL. These nets are the NC, 0 and 1 nets. The
NC net contains all of the nodes which are not explicitly
connected to any net. If these nodes are to be printed out,
each node should have an integer appended to it. Then, all
of the nodes will not be tied together.

The O and 1 nets are constant signals. The 0 net has a
logical net name of the numeric 0 and the physical net name
of "ZERO". This net can be used in a logic simulator to
show the net has a constant value of o. The 1 net has a
logical net name of the numeric 1 and a physical net name of
"ONE". This net can be used in a logic simulator to show
the net has a constant value of 1.

PART TYPES

A PART TYPE describes a physical part type. The part
types are defined in a chips file. The Part Type structure
is defined as:

part_type_structure = record

next in bucket: part_type_ptr; { next part }

9-12

part type name:
sections on part:
number_of_plns:
pins:
pin defs:
has-common pins:
common pins:
body properties:
partially allocated parts:
fully allocated parts:
number of sections:
power pins:
is wire or:
is-wire-and:
is-flag-body:
found in Chips file:

end· - -
'

DIAL
DIAL User's Manual

string;
section def ptr;
pin count range;
pin-list ptr;
pin-def ptr;
boolean;
pin_def_ptr;
property ptr;
physical-part ptr;
physical-part-ptr;
section number range;
power pin list-ptr;
boolean; - -
boolean;
boolean;
boolean;

{ name of part }
{sections}.
{ # pins on part }
{ pins of part }
{ pin names }
{ if common pins }
{ common pins }
{ properties }
{ not used }
{ fully alloc }
{ # of sections }
{ power pins }
{ not used }
{ not used }
{ flag body }
{ if found }

A table of part types is kept with entries threaded by
NEXT IN BUCKET. The name of the part type is specified by
PART TYPE NAME. A list of the sections and all of the pins
connected-to each type is stored in SECTIONS ON PART. The
number of the pins on the part is stored in NUMBERS OF PINS.
The pins of the part are listed in order (by ascending-pin
number) in a list specified by PINS. The names of the pins
are specified in a list rooted at PIN DEFS. If the part has
any pins common to more than one section, HAS COMMON PINS
will be TRUE. If HAS COMMON PINS is true, COMMON PINS
threads the PIN DEFS of the pins. The properties-of the
part type are kept in BODY PROPERTIES. The field
PARTIALLY ALLOCATED PARTS is not used in DIAL. A list of
all physical parts of this part type is kept in .
FULLY ALLOCATED PARTS. The number of sections contained in
the part is spe~ified in NUMBER OF SECTIONS. The power pins
of the part are kept in a list (POWER PINS). The fields
IS WIRE AND and IS WIRE OR are not used in DIAL. When the
part type is found-in the Chips file and completed, the
FOUND IN CHIPS FILE flag is set TRUE.

There are some part types which are not part of the
design, but they may appear in the logical design. These
parts are the wire gate bodies which are used for versioning
and flag bodies and a root part type which are used to find
the interface signals. When a design is being written out,
it should be taken into account that these bodies are not
part of the actual design, but they are still there. There
are routines which are supplied to handle these parts.

9-13

DIAL
DIAL User's Manual

PIN DEFS

A PIN DEF describes a physical pin as defined in a
chips file7 A pin_def is defined as:

pin_def _structure = record

next pin on part: pin def ptr;
next:common:pin: pin_def ptr;
part type: part type ptr;
pin name: string; -
bit-offset: bit range;
left bit: bit-range;
right bit: bit:range;
pin properties: property ptr;
is output pin: boolean;-
is-input pin: boolean;
drive 0 state: real;
drive-1-state: real;
load 0 state: real;
load-1-state: real;
is_a common_pin: boolean;
is a total common pin: boolean;
containing-sections: set of sections;
section pins: section pin ptr;
is wire-gate output: boolean; -
found in Chips file: boolean;

end· - - -
'

{ thread for pins }
{ common pins }
{ pin's part type }
{ logical name }
{ bit offset }
{ MSB }
{ LSB }
{ properties }
{ pin is output }
{ pin is input }
{ o-state drive }
{ 1-state drive }
{ 0-state load }
{ 1-state load }
{ pin in)1 section }
{ common to ALL sect }
{ sections with pin }
{ pin by section }
{ not used }
{ in Chips file }

A list of all the pins for a part is rooted on the part
type and threaded with NEXT PIN ON PART. The next pin in
the list of common pins of the part type is NEXT COMMON PIN.
The part type the pin is part of is specified by-PART TYPE.
The name of the pin (logical name) is specified by PIN NAME.
The bit offset for the pin is specified by BIT OFFSET (which
is -1 if the pin is a scalar). The union of the bit
subscripts ref erred to by all of the logical parts is
specified by LEFT BIT (the Most Significant Bit) and
RIGHT BIT (the Least significant Bit). After the Chips file
is read, LEFT BIT and RIGHT BIT specify the range for the
pin on a physical part section.

The properties attached to the pin are specified by
PIN PROPERTIES. If the pin is an input pin, IS INPUT PIN is
TRUE. If the pin is an output pin, IS OUTPUT PlN is TRUE.
The DC current drive and loading for both the-0-state and
1-state are specified by DRIVE 0 STATE, DRIVE 1 STATE,
LOAD 0 STATE and LOAD 1 STATE.- lf the pin appears in more
than-one section, the-IS A COMMON PIN flag is TRUE. If the
pin is common to ALL sections of the part and has the same
pin number on all sections the IS A TOTAL COMMON PIN flag is

9-14

DIAL
DIAL User's Manual

set to TRUE.

A set of the sections (by number) in which the pin
appears is kept in CONTAINING SECTIONS. The pins of the
part are listed in order by section in SECTION PIN. Each
pin def is initially constructed when a pin is-referenced in
the-compiler expansion file. When the pin is found in the
Chips file and completed, the FOUND IN CHIPS FILE flag is
set to TRUE. The field IS WIRE GATE OUTPUT Ts not used in
DIAL.

POWER PINS

A power pin describes a pin of the part connected to a
power supply. A power pin on a part is defined as:

power pin list =
-record

next power pin: power pin list ptr;
power pin:-power pin name-ptr;-
pin number: name-ptr; -

end· - -
'

{ next in the list }
{ name of the pin }
{ power pin number }

The next pin in the list of the power pins is given by
NEXT POWER PIN. The POWER PIN points to a description of a
generic power pin. The pin number corresponding to the
power pin is given by PIN NUMBER. The list is rooted in a
part type and is sorted by position contained in the power
pin name description.

A power pin name describes a generic power pin. This
list contains all of the power pins in the design and it is
rooted in a global variable (POWER PIN NAMES) and is sorted
by pin name. The power pin name is defined as:

power pin name =
- record

next power_pin: power_pin_name_ptr;
pin name: name ptr;
position: power_pin_position_range;

end;

{ next in list }
{ name of the pin }
{ position in output }

The next in the list of power pin names is given by
NEXT POWER PIN. The name of the power pin is PIN NAME. Its
position in the output list is specified by POSITION.

9-15

DIAL
DIAL User's Manual

SECTION DEFS

A section def describes all the pins attached to a
section of a part. The definition of a section def is:

section def structure = record

next on part:
section-number:
number of pins:
pins: - -

section def ptr;
section-number range;
pin count range;
section_pin_ptr;

{ next section }

end;

{ section number }
{ number of pinss }
{ list of pins }

The list of sections is rooted in a part type and
threaded by NEXT ON PART. The number of the section is
SECTION NUMBER. -NUMBER OF PINS specifies the number of pins
that appear in this section. An ordered list of all the
pins on the section is kept in PINS.

SECTION PINS

A Section pin describes a pin of a section. The
section pin is-defined as:

section_pin_structure = record

next on section:
next-section of pin:
next-common pin:
first common pin:
section number:
pin def:
pin-number:

end• -
'

section pin ptr;
section-pin-ptr;
section~pin-ptr;
section-pin-ptr;
section-number range;
pin_def_ptr; -
name_ptr;

{ list of pins }
{ list of sections }
{ next common pin }
{ first common pin }
{ section number }
{ pin description }
{ pin's number }

The section pins are listed by pin name (in s list
rooted at a pin def) and threaded by NEXT SECTION OF PIN.
All pins on a section are listed (in a li~t roote~ on a
section def) and threaded by NEXT ON SECTION. A list of all
pins that are common (share the same-physical pin) are
threaded by NEXT COMMON PIN. The number of the section in
which the pin re~ides i~ SECTION NUMBER. The pin definition
is specified by PIN DEF. The pin number is specified by
PIN NUMBER.

PHYSICAL PARTS

A physical part describes an instance of a physical
part. A physical part may be a physical package, as in
physical DIAL or a physical part may be a a part which has

9-16

DIAL
DIAL User's Manual

been transformed out of the VALID representation into
another representation, as in logical DIAL. A physical part
is defined as:

physical_part_structure = record

next in bucket:
next-part of same type:
sections_of_part:­
part_name:
part type:
ti-as bee_n--removed:
group:

end;

physical part ptr; { next part }
physical-part-ptr; { next same type }
physical-section ptr; { sections }
string; - ,-;_,,. { LOCATION }
part type ptr; { part's type }
boolean; - { not used }
group_ptr; { not used }

All physical parts are kept in a table whose entries
are threaded by NEXT IN BUCKET. A list of all the physical
parts that have the same part type are threaded by
NEXT PART OF SAME TYPE which is rooted in the appropriate
part type. A list of all of the sections of the part is
rooted in SECTIONS OF PART. The physical part's name is
stored in PART NAME. -The part type of the physical part is
indicated by PART TYPE. The fields HAS BEEN REMOVED and
GROUP are not used by DIAL.

PHYSICAL SECTIONS

A physical section describes a section of a physical
part. A physical section is defined as:

physical_section_structure = record

next section of part:
physical part: -
section number:
SIZE expanded part:

end· - -,

physical section ptr;
physical-part ptr;
section number range;
SIZE_expanded_part_ptr;

{ next sect }
{ phys part }
{ which sect }
{ which part }

All sections of a particular physical part are linked
by the NEXT SECTION OF PART thread (the entries in the list
are ordered-by ascending section number) rooted in the
physical part that these sections are a part of (specified
by PHYSICAL PART). The section number for the section is
specified by SECTION NUMBER (the same section number as
specified in the part type). The logical part that the
section is allocated to is specified by SIZE EXPANDED PART.
If SIZE EXPANDED PART is NIL, the physical section has yet
to be allocated.

9-17

DIAL
DIAL User's Manual

PROPERTIES

Properties can appear on almost every object in the
design: logical parts, logical pins, part types, part type
pins, and nets. A property is defined as:

property_list = record
next: property_ptr;

name: name ptr;
text: string;

end;

{ next property }
{ property name }
{ property value }

The list of properties are threaded by NEXT. The
property has a property name associated with it (NAME), as
well as a value for the property (TEXT).

9-18

DIAL
DIAL User's Manual

9.5 GRAPH OF STRUCTURES

The following graph is a simple pictorial description
of the interrelation of the data structures.

+------------------+ +------------+ +------------------+
I I I I I I
1logical_part_table1---->,logical_part1---),SIZE_expanded_part,-) •••

I I +------------+ +------------------+
I I I I I I
+------------------+ v v I +-----------+ +------+

!logical pinl---------->1 node
I - 1-- I
+-----------+ +------+

I I
v v

• I I
v v • I I +----------+ +---------+ +-------+ •

part tablel-----> part typel----->lpin defl-->···
- --> - I I - I

+---------+ +-------+
I I I +----------+ v v v

+-----------+ +-----------+
section def ---> section pinl---> •••

- - I
+-----------+ +-----------+

l----------------1 I
v v

+-------------------+ +-------------+ +----------------+
'physical part tablel---->lphysical partl---->lphysical section!

- - I I - I <----1 - I I +-------------+ +----------------+
+-------------~-----+

9-19

DIAL
DIAL User's Manual

9.6 TABLE STRUCTURE ROUTINES

The main data structures
in the structure section, are
tables. Each of these tables
designed to manipulate them.
below.

LOGICAL PARTS

of DIAL, which are described
kept in their respective
have routines which are
The routines are described

The Logical Part Structure, which was described in the
structure chapter, is kept in the Logical Part Table. The
following routine is supplied to find entries in this table:

FIND LOGICAL PART

function find logical part(name: string;

NETS

var-part: logical_part_ptr): boolean;

Search for the given logical part (specified by the
part's path name only) in the table. If found, return
TRUE and a pointer to the part. If not found, return
FALSE.

The two Net structures, which are described in the
structures section, are kept in two tables. The Physical
Nets are kept in the Physical Net Table and the Logical Nets
are kept in the Logical Net Table. Both tables have a
routine which makes it possible to find entries in the
tables. The routines are:

FIND LOGICAL NET

function find logical net(name:string; subscript:
integer; version number: version number range;
var net: net_ptr): boolean; - -

Search for the given logical net in the logical net
name table and return FALSE if not found. If found,
return TRUE and a pointer to the net.

FIND PHYSICAL NET

function find physical net(name: string; var net:
net_ptr): boolean;

Search for the given physical net in the physical net

9-20

DIAL
DIAL User's Manual

table. If not found return FALSE, otherwise return
TRUE and a pointer to the net.

PART TYPES

The part type structures, which are described in the
strucure chapter, are kept in the part type table. The
routine which finds entries in this table is:

FIND PART TYPE

function find part type(part name: string;
var part=typeT part_type_ptr): boolean;

Search for the given part type in the part type table.
If not found return FALSE, otherwise return TRUE and a
pointer to the part type.

PHYSICAL PARTS

The physical part structures, which was described in
the structure chapter, are kept in the physical part table.
The routine to find entries in this table is:

FIND PHYSICAL PART

function find physical part(part name: string;
var physTcal_partT physical:part_ptr): boolean;

Search for the given physical part in the physical part
table. If not found return FALSE, otherwise return
TRUE and a pointer to the physical part.

9.7 OTHER DIAL DATA STRUCTURES

There are several utility data structures provided that
are intended to make it easier to implement a DIAL
interface. These are described below.

NAMES

The standard form for character manipulation is with
the ALPHA type defined as follows:

ALPHA= PACKED ARRAY [1 •• 16] OF CHAR;

This construct is useful for much work with text but is
severely restricted (see the section on strings below for a
more flexible character string manipulation mechanism).
Alpha names are used most frequently to represent property

9-21

DIAL
DIAL User's Manual

names. Since property names (and other name as well) are
often reused - the PATH property, for example, appears on
every logical part - all alpha names are placed in a table.
This allows names to be compared by comparing pointers: a
definite efficiency improvement. The table is maintained
with the following routine:

ENTER NAME

function enter_name(name: alpha): name_ptr;

Search the alpha name table for the given alpha name.
If not found, enter it into the table. Return a
pointer to the name.

Names are represented by the pointers from this table and
have the form:

NAME PTR = ANAME TYPE;
NAME-TYPE = RECORD

STRINGS

NEXT NAME: NAME PTR;
NAME: ALPHA; -

END;

Pascal provides no support for a dynamic string type.
A heap allocated string package is therefore provided. The
basic data type is the STRING with the following
definitions: ·

MAX STRING LENGTH • 255;
STRING - ASTRING TYPE;
STRING TYPE• PACKED ARRAY [O •• MAX_STRING_LENGTH) OF
CHAR;

The first element of the string is interpreted as being the
string's length. IT IS FIXED AT THE TIME OF CREATION AND
CANNOT BE CHANGED! A dynamic string is available by
creating a string of MAX STRING LENGTH. The length of such

. strings can be manipulated. The manipulation routines
assume that the string's length can be extended to
MAX STRING LENGTH with the first character defining the
string's current length. Strings can be released and the
space returned to a free list from which future strings will
be allocated. The routines that form the string package
are:

CREATE A STRING

procedure create_a_string(var str: string; length:
string_range);

9-22

DIAL
DIAL User's Manual

Create a new string of the given length. If there is a
string of the desired length in the free string list,
use it, otherwise create a new string from the heap.

RELEASE STRING

procedure release_string(var str: string);

Release the given string returning the string to the
free string list.

COPY STRING

procedure copy_string(source: string; var dest: string);

Copy the source string to the destination string. If
the destination string is not the correct length,
release it, create a new string of the correct length,
and copy the source string into it.

COPY FROM STRING

procedure copy_from_string(str: string; var name: alpha);

Copy from the given string into the given ALPHA.
Truncate if the string is longer than 16 characters and
blank pad if shorter.

COPY TO STRING

procedure copy_to_string(name: alpha; var str: string);

Copy from the given ALPHA to the given string. Do not
copy trailing blanks. If the string is not of the
correct length, release it, create a new string, and
~opy to it.

CMPSTRLEQ

function CmpStrLEQ(sl, s2: string): boolean;

Return TRUE if the first string is <= the second
string.

9-23

DIAL
DIAL User's Manual

CMPSTRLT

function CmpStrLT(sl, s2: string): boolean;

Return TRUE if the first string is < the second string.

CMPSTRGT

function CmpStrGT(sl, s2: string): boolean;

Return TRUE if the first string is > the second string.

CMPSTREQ

function CmpStrEQ(sl, s2: string): boolean;

Return TRUE if the two strings are equal.

COMPARE STRINGS

function compare_strings(sl, s2: string): compare_type;

Return an enumerated type (LT, EQ, GT) after comparing
the two given strings.

ADD CHAR TO STRING

function add char_to_string(str: string; ch: char):
boolean;

Add the given character to the end of the given string.
It is assumed that the string can be extended to
MAX STRING LENGTH. Return FALSE if the string is
overflowed:-

ADD STRING TO STRING

function add stririg_to_string(dest, source: string):
boolean;

Add the second string to the end of the first string.
It is assumed that the destination string has been
created with MAX STRING LENGTH. This is very important
since the routine assumes this is the case and if this
is not the case some other string on the heap will be
changed when the two strings are added together. The
best way to use this procedure is to have the

9-24

DIAL
DIAL User's Manual

destination string be a temporary storage string. The
reason for this is that if a lot of string adding is to
be done, a lot of strings of MAX STRING LENGTH must be
created and this will eat up all-of the-storage
allocated for the string heap very quickly. The temp
string should be created with MAX STRING LENGTH, then
the first byte of the string should be set to zero
length by the following Pascal instructions:

create a string(foo, MAX STRING~LENGTH):
fooA[O_]_:;-chr(O);

These two instructions cause a string named 'foo'
to be created with MAX STRING LENGTH. The string is
then changed to make it of length zero but there are
still MAX STRING LENGTH bytes allocated to it. Now
when another string is added to 'foo' there will be
enough bytes allocated to make it possible to make the
addition. If the total number of bytes when the two
strings are added together are greater than
MAX_STRING_LENGTH, the funclon will return FALSE.

ADD ALPHA TO STRING

function add_alpha_to string(dest: string; ident: alpha):
boolean;

Add the given alpha to the end of the given string. Do
not copy trailing blanks from the alpha. It is assumed
that the string can be extended to MAX STRING LENGTH.
Return FALSE if the string is overflowed.

ADD NUMBER TO STRING

function add number to string(str: string; number:
integer): boolean;

Add the given integer (signed) to the end of the given
string. It is assumed that the string can be extended
to MAX STRING LENGTH. Return FALSE if the string is
overflowed.

CONCAT STRING TO STRING

function concat string to string(var dest: string;
sl~ s2: string): boolean;

Add one string (S2) to the end of another string (Sl).

9-25

DIAL
DIAL User's Manual

Another string will be created ori the string heap which
will hold the result of the add~tion of the strings.
If the lengths of the two strings add up to more than
MAX STRING LENGTH characters, the resulting string will
be truncated to MAX STRING LENGTH characters and the
function will return FALSE7

CONCAT ALPHA TO STRING

function concat alpha to string(var dest: string;
- str: string;

ident: alpha): boolean;

Add the alpha (!DENT) to the end of the string (STR).
A string (DEST) will be made which contains the result
of the addition. If the resulting string is greater
than MAX STRING LENGTH characters, the string will be
truncated and the function will return FALSE.

CONCAT CHAR TO STRING

function concat char to string(var dest: string;
str7 string;
ch: char): boolean;

Add the character (CH) to the end of the string (STR).
The result will be put into a newly created string
(DEST). If adding the character makes the string
greater than MAX STRING LENGTH the character will not
be added and the-function will return FALSE.

CONCAT NUMBER TO STRING

function concat number to string(var dest: string;
str: string;
number: integer): boolean;

Add the number (NUMBER) to the end of the string (STR).
The result will be placed into a newly created string
(DEST). If the addition results in a string which is
greater than MAX STRING LENGTH, the result wil be
truncated and the function will return FALSE.

9-26

PROPERTIES

DIAL
DIAL User's Manual

The property structure, which was described in the
structures section of this manual, is greatly used in DIAL.
Therefore the following routine is needed to find an entry
in a list of properties.

ADD TO PROP LIST

procedure add_to_prop_list(var prop_list: property_ptr;
property name: name ptr;
property value: string);

Add the given property to the property list.
PROPERTY NAME is the name which the property will be
known as~ and PROPERTY VALUE is the value of the new
property.

FIND PROPERTY

function find_property(prop_list: property_ptr;
name: name ptr;
var property: property_ptr): boolean;

Search for the property pointed to by the name pointer
in the property list pointed to by the property
pointer. If not found return FALSE, otherwise return a
pointer to the property and return TRUE.

9-27

DIAL
DIAL User's Manual

9.8 DIAL UTILITIES

DIAL includes several utilities for use in implementing
interfaces. It should be noted that it is Valid's goal to
develop and support programs that run on the VAX, and 370 as
well as the VALID machines. For this reason, ALL of Valid's
analysis tools are written in standard Pascal (Jensen and
Wirth). This is true for DIAL as well. Utilities are
provided that extend the capabilities of Pascal and make it
easier to use. None of the DIAL utilities use non-standard
extensions to Pascal that may be present in any particular
pascal compiler.

INPUT/OUTPUT

File I/O Routines

The following routines are designed to be used to
control the user's files, so they can be written and read
from in a correct manner.

RESET FILE

function reset file(filename: string;
which: parse file type): boolean;

U>1 r /!(' I//-;:: - ~~ ,' .Q-

Open the specified file for read using the given file
name (FILENAME). If the file cannot be opened, return
FALSE otherwise return TRUE.

OPEN A FILE

function open a file(filename: lt.,tring;
which: parse_file_type): boolean;

Open the specified file (F) for read.
to read the first token from the file.

Calls INSYMBOL
If the file

cannot be opened, return FALSE, otherwise return TRUE.

REWRITE FILE

function rewrite file(var f: textfile;
which: output_file_names): boolean;

Open the specified file (F) for write. If the file
cannot be opened, return false, otherwise return TRUE.

9-28

CLOSE OUTPUT FILE

procedure close_output_file(var f: textfile;

DIAL
DIAL User's Manual

which: output_file_names);

Close the specified output file (F). If the file
cannot be closed, output an error message.

CLOSE PARSE FILE

procedure close_parse_file(which: parse_file_type);

Close the specified input file (WHICH). If the file
cannot be closed, output an error message.

REWRITE NAMED FILE

function rewrite named file(var f: textfile;
- - file_name: alpha): boolean;

Open the specified file (F) for writing. The file will
be opened using the given name (FILE_NAME).

CLOSE NAMED FILE

function close named file(var f: textfile;
- - file_name: alpha): boolean;

Close the specified file (F). The file will be closed
using the given name (FILE_NAME).

Simple Print Routines

Simple print routines are given to make it easier for
a user to print specified data types out to a file. These
routines do not have any formatting capabilities.

PRINT CRLF

procedure print_crlf(var f: textfile);

Print an Eoi (end_of_line) to the given file (F).

9-29

DIAL
DIAL User's Manual

PRINT INDENT

procedure print indent(var f: textfile; num:
natural_number);

Print the given number (NUM) of blanks to the given
file (F).

PRINT STRING

procedure print_string(var f: textfile; str: string);

Print the given string (STR) to the given file (F).

PRINT_STRING_WITH_QUOTES

procedure print string_with_quotes(var f: textfile; str:
string);

Print the given string (STR) to the given file (F) with
quotes delimiting.

PRINT ALPHA

procedure print_alpha(var f: textfile; name: alpha);

Print the given alpha (NAME) to the given file (F).

PRINT NAME

procedure print_name(var f: textfile; name: name_ptr);

Print the name which is pointed to by a pointer
(NAME_PTR) to the given file (F).

PRINT INTEGER

procedure print_integer(var f: textfile; num: integer);

Print the given integer (NUM) to the given file (F).

Print With Continue

These routines enhance the user's capability to
print out specified data structures. With these
routines it is possible for a user to specify a line
length. If the given data structure is too long to fit
on a given line, a user specified continuation

9-30

DIAL
DIAL User's Manual

character will be printed out on the current line and
the remainder of the data structure will be printed on
the next line.

The following variables can be specified by the user:

continuation char:

This variable specifies the continuation character
which will be printed out when a line is
overflowed. The default is a tilde "-".

max_output_file_length:

Specifies the maximum line length. The default is
80 characters per line.

continue at end:

Specifies whether continuation character
(CONTINUATION CHAR) should be printed at the
beginning or the end of a line when it overflows.

column:

Keeps track of the column of the current line.

Since column is an integer, it is not possible for the
print continue routines to be used by more than one
file. If more than one file is to be written to using
the print continue routines, the current value of
column must be saved and restored whenever changing
from printing to one file to another file.

INIT OUTPUT CONTINUE

procedure init_output_continue;

Iriitialize the column global variable for continuation
output. This routine must be called before any
Print Continue routine is to be used on a file.

PRINT CRLF CONTINUE
~

procedure print crlf_continue(var f: textfile);

Print an EOL (end-of-line) to the given file (F).
Column is set to zero.

9-31

DIAL
DIAL ~ser's Manual

PRINT INDENT CONTINUE

procedure print indent_continue(var f: textfile;
num: natural_number);

print out the given number of blanks (NUM) to the given
file (F). The global variable COLUMN is incremented
for each blank which is output.

PRINT STRING CONTINUE

procedure print string_continue(var f: textfile; str:
string);

Print the given string (STR) to the given file (F). If
the end of the current line is reached, a continuation
character will be printed, and the string will be
continued on the next line.

PRINT_STRING_QUOTED_CONTINUE

procedure print string quoted_continue(var f: textfile;
str: string);

Print the given string (STR) to the given file (F) with
quotes surrounding the string. If the end of the
current line is reached, a continuation character will
be printed at either the end of the current line or the
beginning of the new line depending on the value of
continue at end. The rest of the string and the ending
quote will be printed on the new line.

PRINT ALPHA CONTINUE

procedure print_alpha_continue(var f: textfile; name:
alpha);

Print the given alpha (NAME) to the given file (F). If
the end of the current line is reached, a continuation
character will be printed, and the alpha will be
continued on the next line.

PRINT NAME CONTINUE

procedure print name_continue(var f: textfile; name:
name_ptr);

Print the name table entry pointed to be NAME PTR to
the given file (F).

9-32

PRINT CHAR CONTINUE

DIAL
DIAL User's Manual

procedure print char_continue(var f: textfile; ch: char);

Print the given character (CH) to the given file (F).
If the end of the current line is reached, a
continuation character will be printed, and the char
will be continued on the next line.

PRINT INTEGER CONTINUE

procedure print integer_continue(var f: textfile; num:
integer);

Print the given integer (NUM) to the given file (F).
If the end of the current line is reached, a
continuation character will be printed, and the integer
will be continued on the next line.

Print Token Routines

These routines enhance the user's capability to
print out specified data structures. With these
routines it is possible for a user to specify a line
length. If the given data structure is too long to fit
on a given line, a user specified continuation
character will be printed out on the current line and
the data structure will be printed on the next line.

The following variables can be specified by the user:

continuation char:

This variable specifies the continuation character
which will be printed out when a line is over
flowed. The default is a tilde "-".

max_output_file_length:

Specifies the maximum line length. The default is
80 characters per line.

continue at end:

Specifies whether continuation character
(CONTINUATION CHAR) should be printed at the
beginning or the end of a line when it overflows.
If continue at end is TRUE the continuation
character will-be printed at the end of the line.

9-33

DIAL
DIAL User's Manual

column:

Keeps track of the column of the current line.

Since column is an integer, it is not possible for the
print continue routines to be used by more than one
file. If more than one file is to be written to using
the print continue routines, the current value of
column must be saved and restored whenever changing
from printing to one file to printing to another file.

PRINT STRING TOKEN CONTINUE

procedure print string token_continue(var f: textfile;
str: string);

Print the string (STR) to the given file (F). If the
current value of column plus the number of printable
characters in the string will make the line greater
than MAX OUTPUT FILE LENGTH then a contiuation
character is printed7 The continuation character is
either printed at the end of the current line or the
beginning of the next line depending on whether
continue at end is TRUE or FALSE. After a continuation
character is printed and a new line is started, the
printable characters in the string are printed.

PRINT ALPHA TOKEN CONTINUE

procedure print alpha token_continue(var f: textfile;
name: alpha);

Print the alpha (NAME) to the given file (F). If the
current value of column plus the number of printable
characters in the alpha will make the line greater than
MAX OUTPUT FILE LENGTH then a continuation character is
p.rinted. The continua ti on character is either printed
at the end of the current lJne or the beginning of the
next line depending on whether continue at end is TRUE
or FALSE. After a continuation character Ts printed
and a new line is started, the printable characters in
the alpha are printed.

PRINT NAME TOKEN CONTINUE

procedure print name token_continue(var f: textfile;
name: name_ptr)T

Print the name pointed to by the pointer (NAME_PTR) to

9-34

DIAL
DIAL User's Manual

the given file (F). If the current value of column
plus the number of printable characters in the name
will make the line greater than MAX OUTPUT FILE LENGTH
then a contiuation character is printed. The -
continuation character is either printed at the end of
the current line or the beginning of the next line
depending on whether continue at end is TRUE or FALSE.
After a continuation character is printed and a new
line is started, the printable characters in the name
are printed.

PRINT INTEGER TOKEN CONTINUE

procedure print integer token_continue(var f: textfile;
num: integer);

Print the integer (NUM) to the given file (F). If the
current value of column plus the number of digits in
the number will make the line greater than
MAX OUTPUT FILE LENGTH, then a contiuation character is
printed. The continuation character is either printed
at the end of the current line or the beginning of the
next line depending on whether continue at end is TRUE
or FALSE. After a continuation character Ts printed
and a new line is started, the integer is printed.

PRINT CHAR TOKEN CONTINUE

procedure print char token_continue(var f: textfile; ch:
char);

Print the character (CH) to the given file (F). If the
current value of column plus one will make the line
greater than MAX OUTPUT FILE LENGTH, then a
continuation character Ts printed. The continuation
character is either printed at the end of the current
line or the beginning of the next line depending on
whether continue at end is TRUE or FALSE. After a
continuation character is printed and a new line is
started, the character is printed.

PRINT CRLF TOKEN CONTINUE

procedure print crlf token_continue(var f: textfile);

Write a carriage return-linefeed into the specified
file (F). Column is set to zero.

9-35

DIAL
DIAL User's Manual

PRINT INDENT TOKEN CONTINUE

print_indent_token_continue(var f: textfile);

Write out as many blanks as specified by the variable
continue indent, If the spaces cannot fit on the
current line, a new line will be started and the new
line will be indented those spaces.

Print Left Justified Routines

These routines enhance Pascal to print out a given
data type left justified in a field with a given
length.

PRINT STRING LEFT JUST

procedure print string left just(var f: textfile;
str: string;-length: natural_number);

Print the given ~tring (STB.) to the given file (F) left
justified in a field of the given length (LENGTH), If
the string is less than the specified length, print the
string and pad with blanks. If the string is greater
than the specified length, truncate the string.

PRINT ALPHA LEFT JUST

procedure print alpha left just(var f: textfile;
name: alpha;-length: natural_number);

Print the given alpha (NAME) to the given file (F) left
justified in a field of the given length (LENGTH). If
the alpha is less than the specified length, print the
alpha and pad with blanks. If the alpha is greater
than the specified length, truncate the alpha.

PRINT NAME LEFT JUST

procedure print name left just(var f: textfile;
name: name_ptr; length: natural_number);

Print the entry in the name table which is pointed to
by NAME PTR to the given file (F). If the name is less
than the specified length (LENGTH), print the name and
pad with blanks. If the name is greater than the
specified length, truncate the name.

9-36

(

\

PRINT INTEGER LEFT JUST

DIAL
DIAL User's Manual

procedure print integer left just(var f: textfile;
num: integer; length7 natural_number);

Print the given integer (NUM) to the given file (F)
left justified in a field of the given length (LENGTH).
If the integer is less than the specified length, print
the integer and pad with blanks. If the integer is
greater than the specified length, truncate the
integer.

Print Right Justified

Print out the given data structure right justified in
a field of the given length.

PRINT STRING RIGHT JUST

procedure print string right just(var f: textfile;
str: string;-length7 natural_number);

Print the given string (STR) to the given file (F)
right justified in a field of the given length
(LENGTH). If the string is less than the specified
length, print the string and pad with blanks. If the
string is greater than the specified length, truncate
the string.

PRINT ALPHA RIGHT JUST

procedure print alpha right just(var f: textfile;
name: alpha;-length: natural_number);

Print the given alpha (NAME) to the given file (F)
right justified in a field of the given length
(LENGTH). If the alpha is less than the specified
length, print the alpha and pad with blanks. If the
alpha is greater than the specified length, truncate
the alpha.

PRINT NAME RIGHT JUST

procedure print name right just(var f: textfile;
name: name_ptr; length:-natural_number);

Print the name which is pointed to by NAME PTR to the
given file (F). If the name is less than the specified
length, print the name and pad with blanks. If the
name is greater than the specified length, truncate the

9-37

DIAL
DIAL User's Manual

alpha.

PRINT INTEGER RIGHT JUST

procedure print integer right just(var f: textfile;
num: integer; length7 natural_number);

Print the given integer (NUM) to the given file (F)
right justified in a field of the given length
(LENGTH). If the integer is less than the specified
length, print the integer and pad with blanks. If the
alpha is greater than the specified length, truncate
the integer.

PARSING

A lexical analyzer is provided that returns tokens from
an input stream. This can be used to construct, along with
other routines, a recursive descent parser. The routine is:

INSYMBOL

procedure insymbol;

Read a token from the input etream and return it as an
enumerated type element. There are four global
variables of interest:

-SY:
-ID:

IDENT.
-coNST VAL:

CONSTANT.
-LEX STRING:

current token returned from INSYMBOL.
value of the identifier if SY •

value of the constant is SY =

value of string if SY • STRINGS.

Recursive descent parsers are provided to read the
Compiler expansion file, the primitive library files,
and the expanded part and net lists. Another important
p~rsing routine is:

PARSE STRING

procedure parse string(str: string; way_to_parse:
parse_type); -

Use the specified string (STR) as the input to
INSYMBOL. WAY TO PARSE will be used to decide how the
string is to be parsed. The two ways to parse are:

9-38

DIAL
DIAL User's Manual

1. parse transparently: The string is parsed as if it
is just a line being read from an input file.

2. parse separately: Parse the string as a stand
alone7 Keywords cannot be par~ed using this
method.

POP PARSED STRING

procedure pop_parsed_string(string_to_parse: string);

Pop the top of the parse string stack until a string
found on the stack matches the string passed to the
routine.

GET NUMBER

procedure get_number(var number: name_ptr);

SKIP

Parse the input string for an alphanumeric pin number.
The routine will check to see if the token is a
identifier or a constant. If the token is an
identifier, it will be entered into the name table and
the pointer will be passed back as the parameter
(NUMBER). If the token is a constant, it will be
converted into an alpha and padded with nulls so it
will sort correctly. The alpha will then be entered
into the name table and the pointer will be passed back
in the parameter (NUMBER). This routine should be
called by a parser in place of INSYMBOL if the next
token to be checked for is to be alpha-numeric. For
example, this routine would be called in place of
INSYMBOL if a pin number is expected in the input
stream to the parser.

procedure skip(syms: setofsymbols);

Read in symbols until SY is equal to an element in
SYMS.

ERROR REPORTING

An error reporting package is supported that allows the
user to define error messages and to report information
about the error condition. The routines supported are:

9-39

DIAL
DIAL User's Manual

ERROR

procedure error(error_num: error_range);

Print the error message corresponding to the given
error number. If this error occurs during scanning an
input line, print the input line along with a pointer
to the current position in the line.

ERROR DUMP LOGICAL PART

procedure error dump_logical_part(part:
logical_part_ptr);

Output the name of the given logical part as part of
the error message.

ERROR DUMP SIZE EXPANDED PART

procedure error dump size expanded part(expanded part:
SIZE expanded_part_ptr); -

Output the name of the given SIZE expanded part as part
of the error message.

ERROR DUMP LOGICAL NODE

procedure error_dump_logical_node(node: node_ptr);

Output the name of the given node as part of the error
message.

ERROR DUMP LOGICAL NET

procedure error dump_logical_net(net: net_ptr);

Output the name of the given net as part of the error
message.

ERROR DUMP PART TYPE

procedure error_dump_part_type(part: part_type_ptr);

Output the name of the given part type as part of the
error message.

9-40

ERROR DUMP PHYSICAL PART

procedure error dump physical_part(part:
physical_part_ptr);

DIAL
DIAL User's Manual

Output the name of the given physical part as part of
the error message.

ERROR DUMP PROPERTY

procedure error dump_property(name: name_ptr; text:
string);

Output the given property as part of the error message.

ERROR DUMP FILE NAME

procedure error dump_file_name(file_name: string);

Output the name of the current input file as part of
the error message.

ERROR DUMP FILE TYPE

procedure error_dump_file_type;

Output the current file type as an error message.

ERROR DUMP PIN DEF NAME

procedure error dump_pin_def_name(pin_def: pin_def_ptr);

Output the pin name of the given pin def as part of the
error message.

ERROR DUMP STRING

procedure error_dump_string(str: string; print_CRLF:
boolean);

Output the given string as part of the error message.
Print an EOL (end-of-line) after the string if
print_CRLF is TRUE.

9-41

DIAL
DIAL User's Manual

ERROR DUMP ALPHA

procedure error_dump_alpha(data: alpha; print_CRLF:
boolean);

Output the given ALPHA as part of the error message.
Print an EOL (end-of-line) after the alpha if
print_CRLF is TRUE.

ERROR DUMP INDENT

procedure error_dump_indent(indentation: natural_number);

Output the specified number of spaces to the error
file.

ERROR DUMP INTEGER

procedure error dump integer(int: integer;
- - print_CRLF: boolean);

Output the given integer (INT) as part of the error
message. Print an EOL (end-of-line) after the integer
if print_CRLF is TRUE.

REPORT EXCEPTION ERROR

procedure report_exception_error;

Report information about the exception error which was
last encountered. An exception error may occur when
some file function could not be done. For example, a
file could not be opened.

DISPLAY ERROR SUMMARIES

pro'cedure display_error_summaries;

Display the error information for the entire run of
DIAL.

9-42

DEBUGGING

DIAL
DIAL User's Manual

A very important part of interface development is the
debugging of the program. DIAL includes a debug mechanism
along with several routines that dump the data structures.
Debug statements take the form of a test of a global debug
flag (20 are supported) and calling a debug routine, or
writing to the debug file. The debug flags are settable
with directives processed by the interface program. Debug
output is directed to a special file. the major debug
routines are:

ASSERT

procedure assert(assertion_number: assert_range);

Generate an assertion failure message corresponding to
the given number. Used to check assumptions about the
relationships between data items. This is very useful
in detecting bugs within the program.

DUMP PROPERTIES

procedure dump properties(var f: textfile;
- prop list: property ptr;

indent: naturalnumber);

Dump the specified property list to the debug file.
Indent the line by the given amount.

DUMP NETS

procedure dump_nets(var f: textfile);

Dump all the nets to the debug file.
logical net name and the physical net
the nodes connected to the net.

DUMP LOGICAL PARTS

Output both the
name. Output all

procedure dump logical_parts(var f: textfile);

Output all of the logical parts to the debug file. For
each part, output is: part type, name, body
properties, logical pins, and size expanded parts.
Output the node list for each SIZE expanded part.

9-43

DIAL
DIAL User's Manual

DUMP PART TYPES

procedure dump_part_types(var f: textfile);

Output all of the part types to the debug file. For
each part output: name, type, properties, number of
pins and what they are. For each pin output: its
name, pin number(s), and properties.

DUMP PHYSICAL SECTIONS

procedure dump physical sections(var f: textfile;
- section list:

physical_section_ptr);

Output the names of the physical sections in the given
list to the debug file. Bindings are also printed out.

DUMP PHYSICAL PARTS

procedure dump physical_parts(var f: textfile);

Output all of the physical parts to the debug file.
For each part output its name, physical sections, and
part type.

DUMP ALL NODES

procedure dump_all_nodes(var f: textfile);

Output all of the nodes to the specified file (F). The
routine will walk through all of the logical parts and
output the nodes which are connected to each SIZE
expanded part. Each SIZE expanded part will be output
with the nodes which are connected to that part. The
information about each node will be output. This
information will include the node's physical and
logical name, along with the pin the node is connected
to.

DUMP CONFIGURATION

procedure dump_configuration(var f: textfile);

The configuration in which a signal is represented will
be dumped.

9-44

DUMP INSTANCE DRAWING TABLE

DIAL
DIAL User's Manual

procedure dump instance drawing_table(var f: textfile);

Dump all of the entries in the instance drawing table
to the file (F).

DUMP GENERIC DRAWING TABLE

procedure dump generic drawing_table(var f: textfile);

Dump all of the entries in the generic drawing table to
the file (F).

GENERAL

WIDTH OF INTEGER

functlon width_of_integer(i: integer): natural_number;

Return the number of characters needed to print the
given integer.

WIDTH OF ALPHA

function width_of_alpha(name: alpha): natural_number;

Calculates the number of characters in the given alpha
(NAME) and returns the total.

WIDTH OF STRING WITH NULLS

function width of string_with_nulls(str: string)
: string_range;

Calculates the length of the given string (STR)
ignoring the null character. The total number of
printable characters is returned.

ADD NULLS TO ALPHA

procedure add nulls_to_alpha(var name: alpha);

Add leading nulls to an alpha to make it sort
correctly.

9-45

DIAL
DIAL User's Manual

CONVERT ALPHA TO NUMBER

function convert alpha to number(name: alpha;
var number: integer): boolean;

Convert the given alpha (NAME) to an integer number
(NUMBER).

CONVERT NUMBER TO ALPHA

function convert number to alpha(number: integer;
var name: alpha): boolean;

Convert the given number(NUMBER) into an alpha(NAME).

FIND PIN FROM SECTION

function find pin from section
-(section number: section_number_range;

part type: part type ptr;
var pin_number:-name ptr): boolean;

Find a pin number which is unique to the given section
number (SECTION NUMBER). The part type which the
section is on is also passed as PART TYPE.

FIND SECTION FROM PIN

function find section from pin
(pin_number: pin_number_range;

part type: part type ptr;
var section: section=pin_ptr);

Find a section pin which corresponds to the given pin
number (PIN NUMBER). If the pin number corresponds to
a common pin SECTION is passed back with a NIL value.

IS BOGUS PART

function is_bogus_part(part: part_type_ptr): boolean;

Check to see if the part (PART) is a real part. If it
is, then TRUE is returned. Parts which are not
considered TR!J_!_~J'.J!-tJ1.e .. -x.on,t type part and flag bodies.
Anytime the ,'p-art type tabJ.~~)is traversed, this routine
should be cal led-f or"·each entry in the tab le.

9-46

FIND ALL FLAG NODES

DIAL
DIAL User's Manual

function find_all_flags_nodes(root_drawing: string):

node_and_pin_list_ptr;

A flag body is a body which is put on an interface
signal to help determine whether the interface pin is
an input, output, or bidirectional pin. If this body
is not on an interface pin, a DIAL program will not be
able to determine where the interface pins are. This
routine will find all of the flag bodies in the logical
parts table and return a sorted list of the nodes
connected to each. For logical DIAL,. if there is not a
root part in the chips file, then the pin number for
the interface pins will be automatically generated.
For physical DIAL, the pin numbers will always be
automatically generated.

OUTPUT GENERIC INTERFACE PIN LIST

procedure output generic interface_pin_list(var f:
textfile):

Output the list of interface pins for the current
module to the given file. It is assumed that the file
has been opened. If a header is to be output to the
file, it should already have been written to the file.

NOT SINGLE NODE NET

functi~n not single_node_net(net: net_ptr): boolean;

TRUE is returned if the given net has more than one
node on it or if the global flag allowing single node
nets is on. The global flag can be set by a standard
directive (See below).

INIT PARSE ENVIRONMENT

procedure init_parse_environment;

Initialize the parse environment. This routine should
be called any time a new file is to be parsed.

ADD NULLS TO DESIGNATOR

procedure add nulls to_designator(source, dest: string);

9-47

DIAL
DIAL User's Manual

Pad the physical designator with nulls for .sorting
purposes. The routine will search a physical name from
the beginning until it finds a numeric character. It
will then pad the leading characters with nulls until
the name takes up the specified number of bytes. This
will make it possible to correctly sort the physical
names.

UPPER_CASE_CHAR\

function upper_case_char\(ch: char): char;

Take.the given character (CH) and convert it into an
upper case character. Return the result to the calling
routine.

FIND DIRECTIVE

function find directive(name: name ptr;
var directive: directive_type): boolean;

See if the given name corresponds to a standard DIAL
directive. If the name is a directive, then return the
enumerated type in a parameter (DIRECTIVE) and return
TRUE.

NEW PHYS DES PREFIX

procedure new phys des prefix(var list:
phys_des_prefix_ptr); -

Create a new physical designator pref ix and add it to
the head of the given list (LIST).

IS CHAR IN STRING

function is char_in_string(str: string; ch: char):
boolean;

Check to see· if the given character (CH) is in the
given string (STR). If the character is in the string,
then the procedure returns TRUE. Otherwise FALSE is
returned.

9-48

PRINT BEFORE CHAR

DIAL
DIAL User's Manual

procedure print before char(var f: textfile; str: string;
delimiter: char);

Print the contents of the given string (STR) until the
given delimiter is found. If the delimiter is not in
the string, the entire string will be printed.

PRINT AFTER CHAR

procedure print after char(var f: textfile; str: string;
delimiter: char);

Print the contents of the string which occurs after the
delimiter is found. If the delimiter is not found,
none of the string will be printed.

GENERATE CROSS REFERENCES

procedure generate_cross_references;

Generates the various cross references for the design.
The structures which are to be output are: the local
parts for each drawing, the global signals and the
global parts.

HEAP MANAGEMENT

Management Routines

Two routines are needed to control the heap structures.
One is called by programs which must use some of the heap,
while the other routine reports how much storage the heap
structures use.

INCREMENT HEAP COUNT

procedure increment heap count(structure:
heap_structures; numbytes: integer);

Increment the space used for the specified structure by
one instance.

9-49

DIAL
DIAL User's Manual

REPORT HEAP USAGE

procedure report_heap_usage(var f: textfile);

Report the heap space usage by structure, The
following structures have heaps associated with them:
strings, name table, logical pins, logical parts, pin
defs, nodes, nets, SIZE expanded parts, properties,
part types, section pins, physical parts, physical
sections, net list, section def, part type list,
physical part list, pin list, power pin list, power pin
name, drawing names and physical designator prefixes,

When this routine is called, the name of the structure
whose emunerated type is passed will be printed out
with the number of bytes which are used by that data
structure,

Allocation Routines

There is a group of routines which can allocate or
release storage for a specified data structure in a linked
list, These lists are used by the merge sort which is
described below. The following routines manipulate the
structures:

NEW NET LIST

procedure new_net_list(var list: net_list_ptr);

Create a new net list element and assign it to the
specified pointer (LIST).

RELEASE NET LIST

procedure release_net_list(var NLP: net_list_ptr);

Release the specified net list element (NLP) to the
free list.

NEW NODE LIST

procedure new_node_list(var list: node_list_ptr);

Create a new node list element and assign it to the
specified pointer (LIST).

9-50

RELEASE NODE LIST

DIAL
DIAL User's Manual

procedure release_node_list(var NLP: node_list_ptr);

Release the specified node list element (NLP) to the
free list.

NEW PART TYPE LIST

procedure new part type list(var list:
part_type_list_ptr);

Create a new part type list element and assign it to
the specified pointer (LIST).

RELEASE PART TYPE LIST

procedure release part_type_list(var PTLP:
part_type_list_ptr);

Release the specified part type list element (PTLP) to
the free list.

NEW PHYSICAL PART LIST

procedure new physical part list
(var list: physical_part_list ptr);

Create a new physical part list element and assign it
to the specified pointer (LIST).

RELEASE PHYSICAL PART LIST

procedure release physical part list
(var-PPLP: physical_part_list_ptr);

Release the specified physical part list element (PPLP)
to the free list.

NEW LOGICAL PART LIST

procedure new logical part list(var list:
logical_part_list_ptr); -

Create a new logical part list element and assign it to
the specified pointer (LIST).

9-51

DIAL
DlAL User's Manual

RELEASE LOGICAL PART LIST

procedure release logical part list
(var LPLP: Iogical_part_list ptr);

Release the specified logical part list element (LPLP)
to the free list.

NEW DRAWING NAME LIST

procedure new.drawing name list(var list:
drawing_name_list_ptr);

Create a new drawing name list element and assign it to
the specified pointer (LIST).

RELEASE DRAWING NAME LIST

procedure release drawing name list
(var DNLP: drawing_name_list_ptr);

Release the specified drawing name list element (DNLP)
to the free list.

NEW FILE NAME LIST

procedure new file name list(var list:
f ile_name_list_ptr); -

Create a new file name list element and assign it to
the specified pointer (LIST).

SORTING

A number of routines are provided that search for items
in the data structures and sort elements of the data
structures. There are two routines which are supplied to
accomplish the sorting. The first routine is needed to make
up the list of elements to be sorted. The second routine
will get the next element which comes in the list. The
routines which are supplied are:

INIT PHYSICAL NET SORT

function init_physical_net_sort: net_list_ptr;

Initializes the physical net sorting algorithm.

9-52

DIAL
DIAL User's Manual

GET PRYSICAL NET

function get physical_net(firstpart: net_list_ptr):
net_ptr;

Return the next physical net in the given list of
physical nets. The next net will be the next net in
alphabetical order. When a specific entry in the list
of nets is empty, the entry is released to the heap as
a free element. When all of the nodes are released,
the routine will return NIL.

!NIT LOGICAL NET SORT

function init_logical_net sort: net list ptr;

Initializes the logical net sorting algorithm.

GET LOGICAL NET

function get_logical_net(firstpart: net_list_ptr):
net_ptr;

Get the next sorted logical net from the net list.
entries in the table will be sorted by name. When
node in the net is pointing to NIL the node is
released. When all of the nodes are released the
routine will return NIL.

INIT PRYSICAL PART SORT

The
the

function init physical part sort: physical part list ptr;
- 1-- ---

Set up a list of the physical parts for sorting. The
list will contain all of the entries in the physical
part table.

GET PHYSICAL PART

function get physical part(firstpart:
physical_part_list_ptr): physical_part ptr;

Get the next physical part from the specified list of
physical parts. The physical parts will be sorted by
name. When the last physical part is released from the
list, the routine will return NIL.

9-53

DIAL
DIAL User's Manual

!NIT LOGICAL PART SORT

function init logical_part_sort: logical_part_list_ptr;

Set up a list of the logical parts for sorting. The
list will contain all of the entries in the logical part
table.

GET LOGICAL PART

function get logical part(firstpart:
logical part-list ptr):

- - - logical_part_ptr;

Get the next logical part from the specified list of
logical parts. The list will be sorted by name, then
size number, then version number. When the last logical
part is released from the list, the routine will return
NIL.

!NIT PART TYPE SORT

function init_part_type_sort: part_type_list_ptr;

Set up the part types in a list for merge sorting. The
list will be sorted by name. Each element in the list
will be a copy of an entry in the part type table array.
Therefore, each element in the list points to more than
one entry in the part type table.

GET PART TYPE

function get_part_type(var firstpart: part_type_list_ptr):
part_type_ptr;

Get the next sorted part type from the specified list of
pa~t types. The entries in the list will be returned in
a order sorted by name. After all of the entries which
are pointed to by an element in the list are used, that
element is released.

!NIT GENERIC DRAWING SORT

function init generic drawing_sort: drawing_name_list_ptr;

Sort the table of generic drawings. The drawings are
sorted by name.

9-54

GET GENERIC DRAWING NAME

function get_generic_drawing_name

DIAL
DIAL User's Manual

Get the next entry from the specified list of sorted
generic drawing names. When all of the names have been
received from the list, the routine will return NIL.

INIT INSTANCE DRAWING SORT

function init instance drawing sort:
drawing_name_list_ptr;- -

Sort the table of instance drawing names. The list is
sorted by name.

GET INSTANCE DRAWING NAME

function get instance drawing name
(var first part:-drawing-name list ptr):
drawing_name_ptr; - -

Get the next entry from the specified list of sorted
instance drawing names. When all of the entries have
been received from the list, the routine will return
NIL.

INIT SIZE PART NODE SORT

function init SIZE part node sort
(SIZE: SIZE expanded part):
node_list_ptr; -

Make a list of the nodes attached to the specified SIZE
expanded part. The nodes on the part will be sorted by
name.

INIT PHYSICAL SECTION NODE SORT

function init physical section node sort
(section: physical section ptr):
node_list_ptr; - -

Make a sorted list of the nodes attached to the pins of
a physical section of a part. The list will be sorted
by alpha-numeric pin name.

9-55

DIAL
DIAL User's Manual

!NIT PHYSICAL PART NODE SORT

function init physical part node sort
(part: physical part ptr):
node_list_ptr;- -

Make a sorted list of the nodes associated with the pins
which are attached to the specified physical part. The
nodes will be sorted by the pin's alpha-numeric pin
name.

!NIT NODE ON NET SORT

procedure init node on net sort(net: net_ptr);
node_list ptr)T

Make a sorted list of the nodes attached to the
specified net. The nodes will be sorted by physical
part name, then alphanumeric pin name.

GET NODE

function get_node(var first_node: node_list_ptr):node_ptr;

Get the next node from the specified list of sorted
nodes. As each node is picked off of the list, the list
element will be released. When the list element is
picked off of the list, NIL will be returned.

The init routines must be called before the get routines or
else there will not be anything to sort. The init routines
return a pointer to linked list of elements. The get routine
gets the next element and returns a pointer to it. NIL is
returned when there aren't any elements left in the list.

NODE LIST ROUTINES

There are a set of routines which are supplied to make a
list of nodes contain only a certain type of node. There are
three types of nodes: input, output and bidirectional.
These routines will make it possible to make a list contain
only the nodes which are desired. All of the routines are
passed a list of nodes which is then changed to only contain
the nodes which are desired. These routines are destructive
routines in that they do not keep the node list as it
originally is when it is passed to the routine. One of the
node sort ini.tialization routines must be called to get a
list of nodes before any of these routines can be used (See
above).

9-56

GET INPUT ONLY PINS

procedure get input_only_pins(var node list:
node_list_ptr);

DIAL
DIAL User's Manual

This routine will change the list of nodes so that only
the nodes which describe input pins will be included in
the new node list. These pins will be strictly input
pins. Bidirectional pins will not be included in this
new list.

GET OUTPUT ONLY PINS

procedure get output_only_pins(var node list:
node_list_ptr);

This routine will change the list of nodes so that only
the nodes which describe output pins will be included in
the new node list. These pins will be strictly output
pins. Bidirectional pins will not be included in this
new list.

GET BIDIRECTIONAL PINS

procedure get bidirectional pins(var node list:
node_list_ptr); -

This routine will change the list of nodes so that only
the nodes which describe bidirectional pins will be
included in the new node list. These pins will be
strictly birectional pins. Input and output nodes will
not be included in this list.

GET INPUT PINS

procedure get_input_pins(var node_list: node_list_ptr);

This routine will change the list of nodes so that every
node which describes a pin which has an input load will
be included in the new list of nodes. This means that
all the nodes which describe an input or bidirectional
pin will be included in the new list.

GET OUTPUT PINS

procedure get_output_pins(var node_list: node_list_ptr);

This routine will change the list of nodes so that every

9-57

DIAL
DIAL User's Manual

node which describes a pin which has an output load will
be included in the new list of nodes. This means that
all the nodes which describe an output or bidirectional
pin will be included in the new list.

TIME KEEPING ROUTINES

There are two routines supplied which make it possible
to find out how much time is spent in DIAL. The routines
are:

EXEC TIME

procedure exec time(var last elapsed time: integer;
- var last CPU time: integer;

just_delta: boolean);

Display the execution time, both in CPU time and elapsed
time. If JUST DELTA, then only the delta time from
last CPU time to the current CPU time is displayed. The
last-CPU-time and last_elapsed_time are reset.

PRINT TIME

procedure print_time(var f: textfile; current time:
integer);

Print the time to the given file (F). Zeroes will be
output for all of the time allocation spaces which are
not filled. For example, if the time to be represented
only has seconds in it, the minute spaces will be filled
with zeroes.

9.9 MODIFICATION ROUTINES

DIAL is designed for the user to be able to customize
procedures, so the job of modifying the output of DIAL can be
easily accomplished. Templates for several routines have
been su~plied to meet this goal. The templates supplied make
it possible for the physical net names, physical part names
and a directives processor to be easily changed to fit the
user's needs.

PHYSICAL NET ROUTINES

Two routines are supplied to name the physical nets.
One of the routines produces a net name, while the other
routine makes sure the physical net name is unique. Both of
these routines can be modified to produce any type of net
name which the user might need. The routines are:

9-58

CREATE NET ABBREVIATION

DIAL
DIAL User's Manual

function create_net_abbreviation(net: net_ptr): string;

Create an abbreviation for the logical net name to be
used as the physical net name. The template supplied
will produce an alpha-numeric name. The name created
will be the returned value.

FIX NAME

procedure fix_name(var name: string);

Fix the name given. This is done if the net name to be
entered is found to already be entered in the physical
net list. The template supplied will increment the last
alphabetic character in the name. This is so the bit
offset (appended to the end of the abbreviation) is
preserved.

A routine is also provided which makes it possible to
change the physical net names from their existing assignment
within the data base. This routine is:

REASSIGN PHYSICAL NET NAMES

procedure reassign_physical_net names;

This routine will delete all of the current physical net
names. It will then call the user routine
create net abbreviation (see above) to rename the nets
in a way which is specified by the user.

PHYSICAL PART ROUTINES

Templates for two routines are supplied which make it
possible to create a physical part name. One of the routines
is designed to create the name, while the other routine will
make the name unique.

FIND_PREFIX_AND_UNIQUE_NUMBER

procedure find prefix and unique_number(part:
logical part ptr;

var prefix:
phys des prefix ptr;

var prefix name: string;
var unique-number:

natural:number);

9-59

DIAL
DIAL User's Manual

A physical part name is created. The template routine
will check to see if a physical designator prefix
property is associated with the part. If there is, then
that prefix is used and a unique number is attached to
it to make a physical part name. If the property is not
found the letter "U" is used and a unique number is
attached to it.

INCREMENT_UNIQUE_NUMBER

function increment unique number(prefix:
phys_des_prefix_ptr): natural_number;

Increment the unique number and attach it to the prefix.
Return the new unique number, so it can be saved for the
next call to this routine.

DIRECTIVE ROUTINE

A template for a routine is supplied which makes it
possible to add new directives to a particular interface.
This routine is called from READ DIRECTIVES FILE which is
described below.

PROCESS DIRECTIVES

procedure process_directives;

Process directives gives the user the ability to create
directives to make it possible to create a variable
environment for an interface. Process directives is
called by READ DIRECTIVES FILE if ther~ is a directive
in the directives file which is not a standard
directive. In order to create a new directive, the
following must be done:

1. The directive which is to be used must be
initialized before the procedure
READ DIRECTIVES FILE is called. This is done by
making a variable of name ptr type and initialize it
to point to an entry in the name table which has an
alpha of the directive name. An example is:

loc directive name := enter_name('LOC');

This statement creates an entry in the name table
which has the alpha value of LOC. The entry is
pointed to by loc directive name.

9-60

DIAL
DIAL User's Manual

2. The LOC directive can now be used by the interface,
but process directives must be made to recognize the
directive. If the LOC directive is a directive
which sets a string variable, so process directives
would be changed to appear as:

procedure process_directives;

begin
if idA.name = LOC directive name then

begin
insymbol;
if sy = strings then

copy string(lex string, LOC string);
else error(33 { string expected });
insymbol;

end
else

error(Sl { unknown directive });
skip({semi,endofdatasy]);

end;

The READ DIRECTIVES FILE routine will pass an
identifier to-PROCESS directives, so the example checks
to see if the name pointer for the identifier is the
same value as the pointer to the LOC directive. If the
values are not the same an error message is written out
which states that the current identifier is not a
directive. This is done since all of the standard
directives have been checked and all of the user's
directives have been checked.

If the pointers are found to be the same, INSYMBOL
is called. The next symbol should be a string. If it
is, then the value of LEX STRING is copied into
LOC STRING. The copy must be done because the value of
LEX-STRING will be constantly changing and LOC STRING
should not change. After the string is copied~ INSYMBOL
must be called again. This will make the parser pass up
the string which is the value of the directive. (SKIP
is then called to skip all of the symbols until a
semicolon or the end of the file is found.) This is
done so the parser will not be messed up. The process
will then return to READ DIRECTIVES FILE and continue
parsing the directives file.

9-61

DIAL
DIAL User's Manual

9.10 DIAL INITIALIZATION ROUTINES

There are a few routines which are included in DIAL
which make it easy to set up the data base for a specific
interface. These routines will set initialize DIAL and read
in the correct files. A routine is also available to make it
possible to read in directives to make the running of DIAL
easier.

!NIT DIAL

procedure init_DIAL;

Initialize DIAL to set up the data base and run the
interface. Init dial will initialize all of the global
variables and tables which are used in the running of
DIAL. This routine must be the first DIAL routine
called by an interface. Any other DIAL routine will not
run until this routine has been called.

READ DIRECTIVES FILE

procedure read_directives_file;

This routine reads in a file of directives to make it
possible to make an interface be more flexible. For
example. an interface can be made to read different
libraries for different data bases by using the library
file directive. There are several directives which are
built into the read directives routine and can be used
by any interface. These directives are:

1. LIBRARY FILE: This directive makes it possible to
specify-a specific library for a design. An example
of the library directive is:

2.

LIBRARY_FILE 'lsttl.prt';

This example tells DIAL that the LSTTL library is to
be used with the design run at this time.

DEBUG:
DIAL.

This directive turns on a debug flag in
An example of this directive is:

DEBUG l;

This example causes the flag debug_l to be turned
on.

9-62

DIAL
DIAL User's Manual

3. INTERFACE TYPE: This directive tells DIAL whether
the data base is to be set up as a logical interface
or a physical interface. This directive must be
used if the routine READ DATA BASE (See below) is to
be used. This directive-causes the global variable
LOGICAL INTERFACE FLAG to be set to TRUE if the
interface is to be logical, or FALSE if the
interface is physical. For example,

INTERFACE_TYPE LOGICAL;

This tells DIAL that the interface is a logical
interface.

4. HEADER FILE: This directive makes it possible to
read in a file which is used as a header in the
interface's output file.The HEADER FILE directive
puts the string in the directive into the
header file variable. This file will be read and
output-when the routine OUTPUT HEADER FILE is
called. An example of this directive-is:

HEADER_FILE 'header.dat';

This example cause will the file header.dat to be
read and output when the routine OUTPUT HEADER FILE
is called.

S. INCLUDE IO LIST: This directive tells DIAL to set
the global-variable INCLUDE IO LIST to TRUE or
FALSE. This variable tells-the interface whether
global IO is to be output and whether the interface
pins of the design should be found. For example:

INCLUDE IO LIST ON;

This example causes the variable to be set to TRUE.
The toutine FIND ALL FLAG NODES must be called,
since this is the routine-which sets up the
interface pins.

6. SINGLE NODE NETS: This directive tells DIAL to set
up the-global variable OUTPUT SINGLE NODE NETS to
TRUE or FALSE. This variable-determines "ff the
interface outputs single node nets. For example:

SINGLE NODE NET ON;

This example causes the variable to be set to TRUE,
and the interface can output single node nets.

9-63

DIAL
DIAL User's Manual

7. MAX ERRORS: Used to specify the maximum number of
errors allowed before DIAL terminates• When the ,,
condition occurs, an error message is"printed. For
example:

, MAX_ERRORS 500;

This sets the maximum number of errors,to 500. If
not specified, the run is terminated after 1000
errors.

8. SUPPRESS: Used to suppress specific warning and
oversight messages. Warnings and oversights are
used to grade the severity of error conditions.
Warnings are considered,to be the least severe
followed by oversights,.and then errors. Since
neither warnings nor oversights are as severe as an
error, and since there may be many of these messages
in a good design, this directive is supplied to
suppress the message that would be produced. A list
of warning messages may be specified. For example:

SUPPRESS 132,133;

This supresses messages 132 and 133• All warning
messages can be suppressed with the WARNING
directive (see below). Error messages cannot be
suppressed. If unspecified,. no warnings or
oversights are suppressed.

9. WARNINGS: Used to control whether warning messages
should be printed. This directive can be used to
suppress all warning messages (although it would be
better to make the changes in the design). The
total number of warning conditions encountered is
reported at the end of the program regardless of
whether warnings are displayed or notA . For example:

· . WARNINGS OFF;

This causes the interface to suppress all warning
messages. The default is that warning messages will
be output.

10. OVERSIGHTS: Used to control whether oversight
messages are to be displayed. An oversight should
be corrected but the design will probably run
without fixing it. The total number of oversights
detected is al•ays·reported at the end of the
program regardless of whether they were printed or
not •. This directive is used to turn off all
oversight messages. For example:

9-64·

OVERSIGHTS OFF;

DIAL
DIAL User's Manual

This causes the interface to suppress all oversight
messages. The default is that oversight messages
will be output.

11. PART NAME LENGTH: This directive can be used in
logical DIAL to set up the maximum length of
physical part names. For example:

PART_NAME_LENGTH 6;

This causes DIAL to create physical part names of no
more than six characters.

12. NET NAME LENGTH: This directive makes it possible
to limit-the length of a name assigned to a physical
net. This directive can always be used in logical
DIAL and it can be used in physical DIAL if the net
names are to be reassigned. For example:

NET NAME LENGTH 6;

This causes The DIAL physical net naming routine to
create names of no more than six characters.

If a directive is found which is not one of these
standard directives, PROCESS DIRECTIVES will be called
to see if the directive is a-user defined directive.

READ DATA BASE

procedure read_data base;

Check the global variable LOGICAL INTERFACE FLAG to see
if the data base is to set up for-a logical-or physical
interface. If the variable is set to TRUE then the data
base is to be set up for a logical interface. The
directive INTERFACE TYPE can be used to set up the
variable. This routine makes it possible to make an
interface able to run both as a logical and physical
interface, just by using a standard directive. If this
routine is used, the routines read Logical data base and
read_Physical_data_base must not be used. - -

READ LOGICAL DATA BASE

procedure read_logical_data base;

The data base is set up for a logical interface. This

9-65

DIAL
DIAL User's Manual

causes the interface to always be logical. If this
routine is used the routines READ PHYSICAL DATA BASE and
READ DATA BASE must not be used.

READ PHYSICAL DATA BASE

procedure read_physical_data base;

The data base is set up for a physical interface. If
this routine is used, the routines
READ LOGICAL DATA BASE and READ DATA BASE must not be
used~

9.11 DIAL HINTS

These sections will describe some hints which will make
it easier to develop a DIAL program. They are designed to
make the development of a DIAL program simpler and quicker.

ADDING ERROR MESSAGES TO A PROGRAM

A designer of a program may decide that there are
certain problems that a user of his program should be aware
of, and an error message may be used to do this. DIAL makes
it easy for a program designer to add error messages to a
program. The error numbers 200-250 are available to the user
for errors.

The error message must be added to the error table.
This is done by deciding what the error number is to be, and
initializing the entry in the error table for that error
number. This is done by having a line like:

error_strings[200] := 'Not legal type , . ,
in the program. Now when an error is called with the number
200, this error message will be printed out.

FILES IN DIAL

There are many files which are supplied with DIAL.
These file variables are:

1. INFILE: This variable is initially used to read in the
directives file. This file can also be used to read any
other file. This can be done by passing this file
variable and an alpha file name to the open_parse_file
routine.

9-66

DIAL
DIAL User's Manual

2. OUTFILE: If the debug flag is turned on, all of the
debug information will be written out to the file which
this variable is assigned to.

3. CmpExp: This variable is set to read in the compiler
expansion file. By default, the file _CMpJ~:~P!Dl\T is read
in when this variable is used.

4. Chips: This variable is used to read in the chips files
which are specified in the directives file. When this
variable is used, an alpha name is passed with it to open
a file.

s. PstXNet: This file is set to read in the expanded net
list. By default, the file PSTXNET.DAT will be read in
when this variable is used.

6. PstXPrt: This variable is set to read in the expanded
part list. By default, the file PSTXPRT.DAT will be read
in when this variable is used.

7. monitor: This variable is used to write information out
to the console.

8. DIALLst: The information which summarizes the run of the
DIAL program will be written out to this variable.

9. DIALSPEC: This variable can be used to output the
information which the user's program is designed to
output.

9.12 DIAL ON THE VAX

The files which are to be used to create a DIAL
interface on the VAX are stored in a logical directory which
is named SYS$DIAL. The files which the directory contains
are:

1. consts.pas - This file contains all of the global
constant declarations for DIAL. This file is to be
included in the design program and should be used as
reference in writing a DIAL program.

2. types.pas - This file contains all of the global types
declarations for DIAL. This file is to be included in
the design program and should be used as reference in
writing a DIAL program.

3. vars.pas - This file contains all of the global variable
declarations for DIAL. This file is to be included in
the design program and should be used as reference in

9-67

DIAL
DIAL User's Manual

writing a DIAL program.

4. vaxuser.pas - This file contains all of the global
procedure declarations for DIAL. This file is to be
included in the design program and should be used as
reference in writing a DIAL program.

5. dial.obj - This is the pre-compiled DIAL library. It is
linked with the user's DIAL program to create an
executable program. It contains all of the DIAL
procedures and functions.

6. dialassgn.com - This file contains assignments of DIAL
logical environment variables to standard DIAL VAX file
names. It can be copied to the user's local directory if
the run time bindings of logical file to VAX file name
are to be changed.

7. template.pas - A Pascal source file template for a DIAL
program is provided. This program is provided to be used
as the starting point for a user's DIAL program. It
should be copied to a local directory and edited.
Comments in the file describe how to make a logical or a
physical DIAL program.

8. utilities.pas - This is the source of the user modifiable
routines. It contains definitions for several routines
used by DIAL which the user may wish to modify. If it is
to be modified, it should be copied to a local directory
and edited.

9. dial.cmd - This is an example of a directives file for
DIAL. This example will create a logical data base (if
the routine READ DATA BASE is used to set up the data
base). The command file also says the LSTTL library is
to be used as a CHIPS file.

CREATING A DIAL PROGRAM

Before starting to write a DIAL program, the user should
create a local directory in which to do the development. The
skeleton should be copied to the local directory with the
following command:

copy sys_$dial:template.pas (user's program name)

The template program should look like the following:

(*$S-*) (* allow non-standard Pascal features *)
(*$C+*) (* turn on range checking *)

9-68

(*$X-*) (* save a few trees
(*$W-*) (* don't display warnings

*)
*)

DIAL
DIAL User's Manual

program userprog(CmpExp, Chips, PstXNet, PstXPrt, PstXRef, monitor,
DIALLst, DIALSPEC, inprog, infile, outfile, DIALback,
DIALStat, DIALSigB, DIALPrtB);

{ this is a template source file for a DIAL program. The user
should copy this file to a local directory and edit to create
a DIAL program. }

const

%INCLUDE 'sys$dial:CONSTS.PAS'

type

%INCLUDE 'sys$dial:TYPES.PAS'

var

{ input files }

infile,
inprog,
CmpExp,
Chips,
PstXNet,
PstXPrt,

{ output files }

{
{
{
{
{
{

input file }
user input file }
compiler expansion
library chips file
expanded net list
expanded part list

file
}

}
}

{ cross reference file }

}

PstXRef,
monitor,
DIALLst,
DIALSPEC,
DIALback.,
DIALStat,
DIALSigB,

{ output execution running summary }
{ main list file - errors + summary }
{ special output format }

DIALPrtB: textfile;

{ back annotation file }
{ State file }
{ Signal State file }
{ Part State file }

%INCLUDE 'sys$dial:VARS.PAS'

%INCLUDE 'sys$dial:VAXUSER.PAS'

%INCLUDE 'sys$dial:UTILITIES.PAS'

9-69

DIAL
DIAL User's Manual

(*********************************~******)
(* *)
(* USER'S PROCEDURES GO HERE *)
(* *)
(**)

procedure close all files;
{ close all of the files which are still open }

begin
close output file(DIALLst, list_file);

end; { close all files }

begin { main program body }

init_DIAL; { initialize DIAL }

read directives_file; { read the DIAL directives·}

{ Set up the correct data base: LOGICAL or PHYSICAL.
Only one of the three routines can be used in a program. }

read_data_base;

read_logical_data_base;

read_physical_data_base;

{ The directive INTERFACE TYPE can be
used to define whether the design is
to be logical or physical. }

{ read the logical design and CHIP
files to set up data base structures

{ read the physical design and CHIP
files to set up data base structures

{ call to find all flag nodes is not needed for physical DIAL or ~

the I/O signals for the design are not available or needed.
The directive INCLUDE IO LIST can be used to set the finding of
flag nodes on. }

if (errors encountered * fatal_errors = []) and
\include-IO list THEN
flag_nodes :m find_all_flag_nodes(root_drawing_name);

9-70

(**)
(* *)
(* CALLS TO USER'S PROCEDURES GO HERE *)
(* *)
(**)

if errors encountered * fatal errors <> [] then
error(ll2 { run stopped });

DIAL
DIAL User's Manual

display_error_summaries; { report errors encountered }

exec_time(start_elapsed_time, start_CPU_time, FALSE);

close_all_files;

end.

The following changes should be made and the following
precautions should be taken in changing the template program:

1. Change the program name from userprog to a name which is
more meaningful for the program being created.

2. Any user defined global variables should be entered after
the VARS.PAS include file. If there are any variable
definitions before the INCLUDE file, the program will not
work.

3. If any of the user modifiable procedures which are
supplied in the file UTILITIES.PAS are to be changed,
then the line

%INCLUDE 'sys$dial:UTILITIES.PAS'

must be changed to:

%INCLUDE 'UTILITIES.PAS'

This will cause the utilities file which is in the local
directory to be used during compiliation rather than the
utilities file which is in SYS$DIAL.

4. Create the user's portion of the program. Put the
procedures and the calls to the procedures in the correct
places in the main program.

9-71

DIAL
DIAL User's Manual

s. The main program must be changed to set up the correct
data base. There are three routines to set up the data
base and only one can be used by the program. The
correct one should be kept and the calls to the other two
should be deleted.

MAKING AN EXECUTABLE DIAL PROGRAM

Now that a DIAL program has been designed and written,
it must be compiled and linked. The process to do this
procedure is very simple. To compile the program the line

pascal (user program name)

must be entered. Any of the standard VAX PASCAL compiler
options can be added to this line as needed. If the program
does not compile without errors, the problems must be fixed
and the program must be recompiled.

When the program compiles correctly without any errors,
it must be linked. The line

link <user program name),SYS$DIAL:dial.obj

must be entered to do the linking. It is possible to use any
of the standard VAX linker options while doing the linking.
There should not be any problems with the linking as long as
the two include files UTILITIES.PAS and VAXUSER.PAS are
included in the source of the program. If there are any
problems check to see if these two files are included. If
the program links correctly, there is now an executable file
of the program.

9-72

RUNNING A DIAL PROGRAM

DIAL
DIAL User's Manual

Once the DIAL program has been compiled and linked, it
is possible to run the program. The following must be done
before the program can be run.

1. A DIAL directives file must be created. The easiest way
to do this is to copy the file DIAL.CMD from SYS$DIAL and
make the necessary changes for the particular design.
The libraries which are needed to run the design must be
specified in this file. If the routine READ DATA BASE is
used to set up the data base, a INTERFACE TYPE directive
should be in the file. It may be desired-to put other
standard directives or user supplied directives into this
file.

2. A test case must be created. If the program is a logical
DIAL program a compiler expansion file must be present.
If the program is a physical DIAL program an expanded net
list and an expanded part list must be present.

3. The user may wish to change the logical file assignments.
If this is to be done, the assignment file can be copied
by entering:

copy SYS$DIAL:dialassgn.com (user's name)

The logical file assignment names can now be changed. It
is suggested that the assignment names of the expansion
files are kept as they are, since these are the names
they are output as.

Now that all of these changes have been made, the
program can be run. First the logical file assignments must
be done. This is done by entering one of the following,
depending on whether the file has been customized.

@SYS$DIAL:dialassgn
@<user's name)

{ file hasn't been changed }
{ file has been changed }

The interface program can now be run by entering:

run <user's program name)

If everything has been done correctly the program should
terminate properly and a list file and output file should be
written. If the program does not run correctly, check for
logic errors in the program or check to see that all of the
procedures to run the program have been followed correctly.

9-73

DIAL
DIAL User's Manual

9.13 DIAL on UNIX

The files which are to be used to create a DIAL
interface in UNIX are stored in /uO/scald/dial. The files
which the directory contains are:

1. consts.pas - This file contains all of the global
constant declarations for DIAL. This file should be used
!!._S J='.E!_~_~re-o..c.e in writing a DIAL program.

2. types.pas - This file contains all of the global types
declarations for DIAL. This file should be used as
reference in writing a DIAL program.

3. vars.pas - This file contains all of the global variable
declarations for DIAL. This file should be used as
reference in writing a DIAL program.

4. procs.pas - This file contains all of the global
procedure declarations for DIAL. This file should be
used as reference in writing a DIAL program.

5. dialint.obj - This is the object module which contains
the constant, type, variable and procedure definitions.
This is a module which is used by the user's program.

6. dial.obj - This is the pre-compiled DIAL library. It is
used by the user's DIAL program to create an executable
program. It contains all of the DIAL procedures and
functions.

7. dialassign.com - This file contains assignments of DIAL
logical environment variables to standard DIAL UNIX file
names. It can be copied to the user's local directory ~f
~-~c:_~me-bi-nd-1-n-g--S-{l_t__l o g i ca l __ .~_:IJ,.~.--J;_o __ JJ:!'!_I X f _~ nam-:__~
are to be changed. --·- ---·-·

8. template.pas - A Pascal source file template for a DIAL
program is provided. This program is provided to be used
as the starting point for a user's DIAL program. It
should be copied to a local directory and edited.
Comments in the file describes how to make a logical or a
physical DIAL program.

9. userunit.pas - This file is the source for the DIAL
routines which can be modified by the user.

10. userunit.obj - This object module is the compiled version
of the userunit.pas source program. This module should
be used by the user if he has not made any changes to
userunit.pas.

9-74

I

\

DIAL
DIAL User's Manual

11. dial.crf - This is a cross reference file which is used
when the user's program is shortened so the program can
be properly compiled and linked.

CREATING A DIAL PROGRAM ON UNIX

Before starting to develop a DIAL program, the user
should first create a local directory in which to work. The
file template.pas should then be copied from the directory
/uO/scald/dial into the local directory. This can be done
with the following command:

cp /uO/scald/dial/template.pas <user program name)

The template program should look like the following:

program user(infile, outfile);

{ this is a template source file for a DIAL program. The user should
copy this file to a local directory and edit it to create a DIAL
program.

uses

The USERUNIT described below is provided in
routines contained therein may be modified.

(*$U /uO/scald/dial/dialint.obj*) dialint,
(*$U /uO/scald/dial/userunit.obj*) userunit;

(**)
(* *)
(* USER'S PROCEDURES GO HERE *)
(* *)
(**)

procedure close all files;

source
}

{ close all of the files which are still open }
begin

close output file(DIALLst, list_file);
end; { close all files }

begin { main program }

init_DIAL; { initialize DIAL }

9-75

form so that the

DIAL
DIAL User's Manual

read_directives_file; { read the DIAL directives }

{ The correct data base must be set up for the program. The
following three routines are provided. Only one of the
routines can be used in a program. The calls to the other
two routines must be deleted. }

read_data_base;

rea~_logical_data_base;

read_physical_data_base;

{ The directive INTERFACE TYPE is used t
tell whether the program is a logical
or physical interface }

{ read the logical design and CHIP files
to set up data base structures }

{ read the physical design and CHIP file
to set up data base structures }

{ call to find all flag nodes is not needed for physical DIAL or w
the I/O signals for the design are not available or needed
the directive INCLUDE IO LIST makes it possible to set the globa
variable include IO lTst-to either TRUE or FALSE depending on
whether the flag-nodes are needed. }

if (errors encountered * fatal errors = []) and
include-IO list then

flag_nodes := find all flag nodes(root drawing_name);

(**)
(* *)
(* CALLS TO USER'S PROCEDURES GO HERE *)
(* *)
(**)

if errors encountered * fatal errors <> [] then
error(ll2 { run stopped });

display_error_summaries; { report errors encountered }

exec_time(DIALLst, starting_time, FALSE);

close_all_files;

end.

The following changes should be made in the template program:

9-76

DIAL
DIAL User's Manual

1. Change the program name from userprog to a name which is
more meaningful for the program being created.

2. If any of the user modifiable procedures which are
supplied in the file userunit.pas are to be changed, then
the line

(*$U /uO/scald/dial/userunit.obj*) userunit;

must be changed to:

(*$U userunit.obj*) userunit;

This will cause the utilities file which is in the local
directory to be used during compilation rather than the
utilities file which is in /uO/scald/dial.

3. Create the user's portion of the program. Put the user's
procedures and the calls to the procedures in the correct
places in the main program.

4. The main program must be changed to set up the correct
data base. There are three routines to set up the data
base and only one can be used by the program. The
correct one should be kept and the calls to the other two
should be deleted.

Userunit.pas contains the routines which a user can
modify to customize an interface. It may be desired to
modify the routines which are in the file. If this is to be
done, the file can be copied into the current directory by
issuing the command:

cp /uO/scald/dial/userunit.pas user.pas

User.pas can now be edited to meet the user's needs. If
there are global variables and types which are needed in both
the userunit and the main program, the variables and types
should be defined in the interface section of the userunit.
Userunit.pas can then be compiled by issuing the following
commands:

cp /uO/scald/dial/userunit.make makefile
make

If this command runs without any errors, then a file named
userunit.obj will be present in the current directory. Now
every time user.pas is to be compiled, only the second (make)
command has to be input.

9-77

DIAL
DIAL User's Manual

COMPILING AND LINKING A DIAL PROGRAM

Once the program has been edited to accomplish the job
which is desired and userunit has been changed and compiled,
the main program must be compiled and linked. To do this,
the following must be done:

1. The makefile must be copied to the current directory by
typing:

cp /uO/scald/dial/usermakefile makefile

If the makefile which compiles userunit exists, it should
be moved to another file before issuing this command.

2. If a new userunit was made, the line

shorten long.pas userprog.pas

must be changed to:

shorten long.pas userprog.pas shorten.crf

3. The makefile should be edited to change the occurrence of
"long.pas" to the name of the user's PASCAL program.

4. All occurrences of the name "userprog" should be changed
to a name the user would like the program to be run as.

~ 5; If the userunit supplied has been changed, the makefile
should be changed to reflect it. Every occurrence of
${DDIR}userunit.obj should be changed to userunit.obj.

The makefile is now ready to compile and link the main
program. This is done by issuing the command:

make

If errors occur during the make, they should be fixed. If it
compiles and links correctly the program is ready to run.

RUNNING A DIAL PROGRAM

After the user's program has been edited, compiled and
linked properly, it is ready to run. Before the program is
to be run, it may be desired to change the name of the files
which the program is to produce. This can be done by copying
the file assignment file to the current directory and
modifying it to output more meaningful names. The file can
be copied by issuing the command:

9-78

DIAL
DIAL User's Manual

cp /uO/scald/dial/dialassign •

A file~~now be made which will do the file
assignment and run the program. This file will contain two
lines and the first line will be:
~---., .--··-··-7 r ~ . .fu0/sca1:i/dia~s"sign. i { if file names are not changed }

feri'c::iJ I OR
l'\e_ce,$S"tlf)'.' • ---,

1--: <u-ser' s file assignment file)· { if changed }

The second line will be:

\~~s~r ~ J>:r~gram

The program can now be run by typing in the name
two line command program which has just been edited.
the run is complete the program should be checked for
accuracy and debugged.

9.14 DIAL ON IBM

of the
After

The files which are used to create a DIAL interface are:

1. CONSTS PASCAL - This file contains all of the global
constant declarations for DIAL. This file should be used
as reference in writing a DIAL program.

2. TYPES PASCAL - This file contains all of the global type
declarations for DIAL. This file should be used as
reference in writing a DIAL program.

3. VARS PASCAL - This file contains all of the global
variable declarations for DIAL. This file should be used
as reference in writing a DIAL program.

4. PROCS PASCAL - This file has definitions for all of the
routines which are provided with DIAL. This file should
be used as reference in writing a DIAL program.

s. DIALINC MACLIB - This file is a macro library which has
all of the constant, type, variable and routine
declarations in it. It is used when the DIAL program is
compiled.

6. TEMPLATE PASCAL - A PASCAL source file template for a
DIAL program is provided. This program is provided to be
used as the starting point for a user's DIAL program. It
should be copied to a local directory and edited.

9-79

DIAL
DIAL User's Manual

Comments in the file describes how to make a logical or a
physical DIAL program.

7. UTILS COPY - This program contains the source for the
DIAL routines which can be modified by the user.

8. UTILS MACLIB - This file contains the DIAL routines which
can be modified by the user. This macro libray was made
so the user could use it if it is not desired to change
the routines in the utils file.

9. MAKEUTIL EXEC - This command file is to be used if the
user decides to change UTILS COPY. This file will make
the changed UTILS into a macro library. MAKEUSER EXEC -
This command file is supplied to make it easy for a user
to compile and link his program. The command file can
have the name of the program to be compiled passed to it,
or the default value of USER PASCAL will be used.

10. DIAL TEXT - This is the pre-compiled DIAL library. It is
used by the user's DIAL program to create an executable
program. It contains all of the DIAL procedures and
functions.

11. DIAL CRF - This is a cross reference file which is used
when the user's program is shortened so the program can
be properly compiled and linked.

CREATING A DIAL PROGRAM ON THE IBM

To create a DIAL program, it is suggested to start the
development from the template program which is provided. The
file TEMPLATE PASCAL should be copied from the SCALD disk to
the current disk. The template program should look like
this:

/

\

program userprog(CmpExp, Chips, PstXNet, PstXPrt, PstXRef, monitor,
DIALLst, DIALSPEC, inprog, infile, outfile, DIALback
DIALStat, DIALSigB, DIALPrtB);

{ this is a template source file for a DIAL program. The user
should copy this file to a 1ocal directory and edit to create
a DIAL program. }

const

%INCLUDE CONSTS

type

%INCLUDE TYPES

9-80

DIAL
DIAL User's Manual

var

{ input files }

infile,
inprog,
CmpExp,
Chips,
PstXNet,
PstXPrt,

{ output files }

{ input file }
{ user input file }
{ compiler expansion file }
{ library chips file }
{ expanded net list }
{ expanded part list }

{ cross reference file } PstXRef,
monitor,
DIALLst,
DIALSPEC,
DIALback,
DIALStat,
DIALSigB,

{ output execution running summary }
{ main list file - errors + summary }
{ special output format }

DIALPrtB: textfile;

%INCLUDE VARS

{ back annotation file }
{ State file }
{ Signal State file }
{ Part State file }

{ user defined global variables go here }

%INCLUDE PROCS

%INCLUDE UTILS

(**)
(* *)
(* USER'S PROCEDURES GO HERE *)
(* *)
(**)

procedure close all files;
{ close all of the files which are still open }

begin
close output file(DIALLst, list_file);

end; { close all files }

begin { main program body }

init_DIAL; { initialize DIAL }

9-81

DIAL
DIAL User's Manual

read_directives_file; { read the DIAL directives }

{ Set up the correct data base: LOGICAL or PHYSICAL.
Only one of the three routines can be used in a program. }

read_data_base;

read_logical_data_base;

read_physical_data_base;

{ The directive INTERFACE TYPE can be
used to define whether the design
is to be logical or physical. }

{ read the logical design and CHIP
files to set up data base
structures }

{ read the physical design and CHIP
files to set up data base structures }

{ call to find all flag nodes is not needed for physical DIAL or wh
the I/O signals tor the design are not available or needed.
The directive INCLUDE 10 LIST can be used to set the finding of
flag nodes on. }

if (errors encountered * fatal_errors = []) and
include-IO list THEN

flag_nodes :~ find_all_flag_nodes(root_drawing_name);

(**)
(* *}
(* CALLS TO USER'S PROCEDURES GO HERE *}
(* *}
(**}

if errors encountered * fatal errors <> [] then
error(ll2 { run stopped }};

display_error_summaries; { report errors encountered }

exec_time(start_elapsed_time, start_CPU_time, FALSE);

close_all_files;

end.

The user should then make the following changes to the

9-82

template program:

DIAL
DIAL User's Manual

1. Change the program name from userprog to a name which is
more meaningful for the program being created.

2. Any user defined global variables should be entered after
the VARS include file. If there are any variable
definitions before the INCLUDE file, the program will not
work.

3. Create the user's portion of the program. Put the
procedures which do the work in the correct place. Then
but the calls to the procedures in the correct place in
the main program.

4. The main program must be changed to set up the correct
data base. There are three routines to set up the data
base and only one can be used by the program. The
correct one should be kept and the calls to the other two
should be deleted.

It may be desired to change some of the routines which
are supplied in DIAL. In the file UTILS PASCAL, there are
five routines which can be changed by the user. If any of
the routines are to be changed the file UTILS PASCAL must be
copied from the SCALD disk to the current disk. The file can
then be edited.

After the file has been changed, it must be made into a
macro library. There is a command file which is provided to
do this. The file is MAKEUTIL EXEC. The macro library can
be made by issuing the command:

MAKEUTIL

The macro library is now ready to be used when the main
program is compiled.

Now that the program has been changed to do what it is
supposed to do, and the necessary changes have been made to
the routines in the UTILS PASCAL file, the program can be
compiled and linked. This can be done by issuing the
command:

MAKEUSER (user's program name)

If the command file completed without any errors, then the
interface is ready to run.

9-83

DIAL
DIAL User's Manual

RUNNING A DIAL PROGRAM

Once the DIAL program has been compiled and linked, it
is possible to run the program. The following must be done
before the program can be run.

1. A DIAL directives file must be created. The libraries
which are needed to run the design must be specified in
this file. If the routine READ DATA BASE is used to set
up the data base, a INTERFACE TYPE directive should be in
the file. It may be desired to put other standard
directives or user supplied directives into this file.

2. A test case must be created. If the program is a logical
DIAL program a compiler expansion file must be present.
If the program is a physical DIAL program an expanded net
list and an expanded part list must be present.

3. The user may desire to copy the file RUNDIAL EXEC from
the SCALD disk. This command file set the run time
environment for the program. The user may wish to change
some of the file names to names which are more
meaningful.

After all of these things have been completed, the program
can be run by issuing the command:

RUNDIAL <user's program name)

If the program runs to a successful conclusion, the results
should be checked and changes should be made if needed.

9-84

CHAPTER 10

INTERFACES

Interfaces
SCALD Interface Program

SCALD Interface Program

10.1 INTRODUCTION

The SCALD Interface Program provides an interface
between the SCALDsystem and the user's physical design
environment. The files output by this program are intended
to supply all of the information needed by physical design
systems. The SCALD Interface Program reads the expanded net
and part lists created by the Packager and produces files
for the user's physical design system. These output files
include concise net list, concise part list, etc ••

10.2 INTERFACE FILES

All output files are text files. Each file has a
header which identifies the file, and the date and time of
the Packager run. Each output file described in this manual
is of the form:

(header)
(some list of items)
END (name of list)

where (header) describes the name of the list and the run of
the Packager that created it. The header is of the
following form:

(name of list) - 1 (date)
(user information)

where (name of list) identifies the output file and the
information it contains, (date) is a string containing the
date and time when the Packager was run, and (user
information) is user specified information (such as
engineer, revision, etc.) that is supplied in the header
input file (which may be as many lines as desired). An
example header:

CONCISE NET LIST - 1 12-AUG-1982 13:18:10.21
Revision 2a. A. E. Steinmetz
TTL (Transistor-Transistor-Logic) Example

10-3

Interfaces
SCALD Interface Program

There are five interface files which can be produced by
the SCALD Interface Program. These files are:

1 • dialcnet - Concise Net List

2. dialcprt - Concise Part List

3. dialbonl - Body Ordered Net List

4. dialstf - Part Stuff List

5. dialpgnd - Power and Ground List

The user can specify which files are to be produced by
a run of the SCALD Interface Program by using a directive.
This will be described in the section on running the SCALD
Interface Program. The following sections describe the
format of each file which can be produced by the program.

CONCISE NET LIST

The concise net list is a list of the nets in the
design that have at least two nodes; that is, nets
connecting one pin (such as NC nets) are not present in this
net list. Single node nets are included if specified with
the SINGLE NODE NETS ON; Packager directive (see the
section on-DIAL-directives in Chapter 9 for details).

The form of the concise net list is as follows:

(header)
(list of nets)
END CONCISE NET LIST

Each net entry in the (list of nets) appears on one line. A
net entry is of the following form:

(net name) (part designator) (pin number) (part type)

where (net name) is the physical net name assigned by the
Packager. (part designator) is the physical part designator
assigned by the Packager. (pin number> is the pin number
assigned by the Packager. (part type) is the physical part
type Packager expanded part file. Each element in the entry
is separated from the next by at least one space.

An example net list:

CONCISE NET LIST - 1
XYZ
XYZ

10-4

12-AUG-1982 13:18:10.21
U31 1
U31 2

74LSOO
74LSOO

Interfaces
SCALD Interface Program

END CONCISE NET LIST

CONCISE PARTS LIST

The concise parts list consists of a list of all the
physical part types used in the design and the quantities.
The physical part type is assigned in the libraries defining
the part. The format of the file is as follows:

(header)
(list of parts)
END CONCISE PARTS LIST

An entry in the (list of parts) has the following form:

(physical part type) (internal part number) (quantity)

where (physical part type) is the part name from the
libraries, (internal part number) is the value of the
PART NUMBER property attached to the part (see PART NUMBER
in the glossary), and (quantity) is the number of those
parts used in the design.

An example of a concise parts list:

CONCISE PARTS LIST - 1
74LSOO
74LS04
END CONCISE PARTS LIST

STUFF LIST

12-AUG-1982 13:18:10.21
1820-0121
2002-4312-2

12
2

The stuff list consists of a list of physical part
types and physical part designators. The list is ordered by
physical part type and has the following form:

(header)
(list of parts)
END STUFF LIST

An entry in the (list of parts) has the following form:

(part type) (internal part number) (part designator)

where (part type) identifies the physical part type,
(internal part type) is the value of the PART NUMBER
property attached to the part in the library (see the
section describing PART NUMBER), and the (part designator)
identifies the physical-part designator. Physical part
designators for a given physical part type are listed in
order. A blank line and a line consisting of '------'
separates entries of different part types.

10-5

Interfaces
SCALD Interface Program

An example stuff list:

STUFF LIST - 1
74LSOO
74LSOO

74LS04
74LS04
END STUFF LIST

POWER AND GROUND LIST

12-AUG-1982 13:18:10.21
1820-2002
1820-2002

2003-2-3333
2003-2-3333

U31
U32

U27
U29

This list consists of physical part designators,
physical part types a~d their power and ground pins. The
list is ordered by physical part designator and has the
following form:

(header)
(column labels)
(list of parts)
END POWER AND GROUND LIST

The first line of the list of parts is (column labels)
which identifies the meanings of the columns. The first two
labels are DESIGNATOR and PART TYPE. The rest of the
columns (every eight places) are the names given the power
pins in the libraries (such as VCC, GND, VEE, etc.). For
example:

DESIGNATOR PART TYPE vcc GND

An entry in the (list of parts) has the following form:

(part designator) (part type) (power pin list)

where (part designator) identifies the physical part
designator and the (part type) identifies the physical part
type. The elements of the (power pin list) are arranged in
columns; one per power supply specified in the design (see
the section on power and ground pin specifications). If the
power pins have multiple pin numbers, the additional pin
numbers are printed on successive lines in their proper
columns with the (part designator) and (part type) fields
left blank. The supply names are listed alphabetically.

An example power and ground list:

POWER AND GROUND LIST - 1 12-AUG-1982 13:18:10.21
DESIGNATOR PART TYPE GND VCC
U27 74LS04 7 14

10-6

(

U31 74LSOO
U99 74LS75
END POWER AND GROUND LIST

CONCISE BODY ORDERED NET LIST

Interfaces
SCALD Interface Program

7
5

14
12

This list contains the same information as the Concise
Net List (described above) but is ordered by physical part
designator (body) rather than by net.

The form of the concise body ordered net list is as
follows:

(header)
(list of parts)
END BODY ORDERED NET LIST

An entry in the (list of parts) appears as follows:

(physical part designator) (physical part type)
(list of physical pins and nets)

where (physical part designator) is the physical part name
of the part. (physical part type) is the name of the part
type. The pins of the part are given in
(list of physical pins and nets) each entry of which has the
following form:

(physical pin number) (physical net name)

where the (physical pin number) specifies the pin number of
the part with pin numbers listed in increasing order. The
net connected to the pin is specified by
(physical net name).

An example body ordered net list:

BODY ORDERED NET LIST - 1 12-AUG-1982 13:18:10.21
Ul 74LSOO 1 XYZ

2 OUTl
3 OUTO

U2 74LS10 1 XYZ
2 FDBCK
3 CNTRL
4 XTRYL
5 OUTOUTl
6 OUTOUTO
8 FDBCK
9 CNTRL
10 BOTTOM
11 DIS
12 OUTPUT!

10-7

Interfaces
SCALD Interface Program

13 OUTPUTO
END BODY ORDERED NET LIST

10.3 RUNNING THE SCALD INTERFACE PROGRAM

The SCALD Interface Program is very easy to run. All
that has to be done is to make certain that there are three
files resident in the current directory (the files are
described below). The three files which the program needs
are:

1. Expanded Part List - This is an Expanded Part List
which has been produced by a run of the Packager.
This file is made by the Packager after a design has
been edited, compiled and then packaged.

2. Expanded Net List - This is an Expanded Net list
which has been produced by a run of the Packager.
Note that the Expanded Net and Part lists must be
produced by the same run of the Packager.

3. Command File - This file serves two purposes:
describe the libraries which are needed to run
design and to specify the files which are to be
produced. The file will be named:

scald.cmd
scald cmd

{ VAX and UNIX }
{ CMS }

See the next section for the definition of the
directives which can be used to run the SCALD
Interface Program.

to
the

After the expanded part and net lists are present in
the current directory and the directives file contains the
information which is needed to run the SCALD Interface
Program, the program is run by entering the following
command:

gscald

The program produces the files which are specified in the
directives file and a list file which contains a summary of
the run of the program.

10.4 THE SCALD INTERFACE DIRECTIVES FILE

The SCALD Interface Program uses a directives file to
specify which libraries are to be used for the design and
which files are to be output by the program. Two directives
are used to accomplish this. These directives are:

10-8

Interfaces
SCALD Interface Program

LIBRARY FILE

OUTPUT

Specifies the names of files containing library
components. These files are produced by the SCALD
Compiler using the OUTPUT CHIPS directive. Any number
of libraries can be specifed with this directive. The
names can be placed in a list separated by commas or
listed individually with separate LIBRARY FILE
directives. For example, the directive: -

LIBRARY_FILE 'lOOk.prt', 'lsttl.prt';

specifies two library files, lOOk.prt and lsttl.prt,
and is equivalent to the directives:

LIBRARY FILE 'lOOk.prt';
LIBRARY-FILE 'lsttl.prt';

The SCALD Interface Program checks to make sure
that a file is not specified more than once.

Controls which output files are produced by the
Packager. Each of the various output listings can be
individually suppressed or enabled. All files are
generated by default. The first OUTPUT directive
encountered causes all output files to be turned off
(so that they may be individually turned back on)
unless the '-' option is used, in which case files are
deleted individually. The 'ALL' identifier can be
used to turn all files on or off. For example, the
directive:

OUTPUT;

is equivalent to the directive

OUTPUT -ALL;

which turns off all output files.

The names of these files are listed separated by
commas in a single OUTPUT directive or can be
specified with multiple OUTPUT directives. For
instance, the directive:

OUTPUT CONCISENETLIST,CONCISEPARTLIST;

is equivalent to:

10-9

Interfaces
SCALD Interface Program

OUTPUT CONCISENETLIST;
OUTPUT CONCISEPARTLIST;

In both of the above examples, the only output files
that will be generated are the concise net list and the
concise part list.

Each of the OUTPUT files are listed below. See
previous sections for a description of the format and
content of each file.

CONCISENETLIST
Causes the concise net list to be output to the
file DIALCNET.

CONCISEPARTLIST

STUFFLIST

Causes the concise part list to be output to the
file DIALCPRT.

Causes the stuff list to be output to the file
DIALSTF.

POWERANDGNDLIST
Causes the power and ground list to be output to
the file DIALPGND.

CBODYORDEREDLIST
Causes the concise body-ordered net list to be
output to the file DIALBONL.

CROSSREFERENCES
Causes all of the cross references to be output to
the file SCALD.XREF.

LOCALPARTXREF
Causes the local part cross ref~rence to be output
to the file SCALD.XREF.

GLOBALSIGNALXREF
Causes the global signal cross reference to be
output to tQe file SCALD.XREF.

GLOBALPARTXREF
Causes the global part cross reference to be output
to the file SCALD.XREF.

10.5 EXAMPLES OF FILES

The following sections contain examples of the files
which can be produced by the SCALD Interface Program. Each
section contains the following information:

10-10

(
I
\

Interfaces
SCALD Interface Program

1. The name of the file which contains the information.
The file names are given for the three operating
systems on which the program can be run.

2. An example of the format and information produced and
placed into the file.

CONCISE NET LIST

The Concise Net List is named:

dialcnet.dat
dialcnet.dat
dialcnet data

{ in VMS }
{ in UNIX }
{ in CMS }

The format of the concise net list is:

CONCISE NET LIST - 1 TUE JAN 10 13:23:53 1984
UN12MERGE8PAO U2 8
UN12MERGE8PAO U3 4
UNl 2MERGE8 PAl U2 7
UN12MERGE8PA1 U3 1
UN12MERGE8PA2 U2 4
UN12MERGE8PA2 U3 13
UN12MERGE8PA3 U2 3
UN12MERGE8PA3 U3 10
UN12MERGE8PBO Ul 4
UN12MERGE8PBO U2 18
UN12MERGE8PB1 Ul 1
UN12MERGE8PB1 U2 17
UN12MERGE8PB2 Ul 13
UN12MERGE8PB2 U2 14
UN12MERGE8PB3 Ul 10
UN12MERGE8PB3 U2 13
UN1LS28310PCIO Ul 9
UN1LS28310PCIO U3 7
ZERO Ul 7
ZERO U2 1
END CONCISE NET LIST

CONCISE PART LIST

The Concise Part List is named:

dialcprt.dat
dialcprt.dat
dialcprt data

10-11

{ in VMS }
{ in UNIX }
{ in CMS }

74LS374
74LS283
74LS374
74LS283
74LS374
74LS283
74LS374
7 4L.S28 3
74LS283
74LS374
74LS283
74LS374
74LS283
74LS374
74LS283
74LS374
74LS283
74LS283
74LS283
74LS374

Interfaces
SCALD Interface Program

The format of the concise part list is:

CONCISE PART LIST - 1
74LS283

TUE JAN 10 13:23:53 1984
2

74LS374 1

Total 3
END CONCISE PART LIST

BODY-ORDERED NET LIST

The Body-Ordered Net List is named:

dialbonl.dat
dialbonl.dat
dialbonl data

{ in VMS }
{ in UNIX }
{ in CMS }

The format of the body-ordered net list is:

BODY ORDERED NET LIST - 1 TUE JAN 10 13:23:53 1984
Ul 74LS283 1 UN12MERGE8PB1

4 UN12MERGE8PBO
7 ZERO
9 UN1LS28310PCIO
10 UN12MERGE8PB3
13 UN12MERGE8PB2

U2 74LS374 1 ZERO
3 UN12MERGE8PA3
4 UN12MERGE8PA2
7 UN12MERGE8PA1
8 UN12MERGE8PAO
13 UN12MERGE8PB3
14 UN12MERGE8PB2
17 UN12MERGE8PB1
18 UN12MERGE8PBO

U3 74LS283 1 UN12MERGE8PA1
4 UN12MERGE8PAO
7 UN1LS28310PCIO
10 UN12MERGE8PA3
13 UN12MERGE8PA2

END BODY ORDERED NET LIST

10-12

Interfaces
SCALD Interface Program

POWER AND GROUND LIST

The Power and Ground List is named:

dialpgnd.dat
dialpgnd.dat
dialpgnd data

{ in VMS }
{ in UNIX }
{ in CMS }

The format of the power and ground list is:

POWER AND GROUND LIST - 1 TUE JAN 10 13:23:53
DESIGNATOR PART TYPE
Ul 74LS283
U2 74LS374
U3 74LS283
END POWER AND GROUND LIST

STUFF LIST

The ltuff List is named:

dialstf.dat
dialstf.dat
dialstf data

GND
8
10
8

{ in VMS }
{ in UNIX }
{ in CMS }

The format of the stuff list is:

STUFF LIST - 1 TUE JAN 10 13:23:53 1984

vcc
16
20
16

74LS283 Ul
74LS283 U3

74LS374 U2

END STUFF LIST

10-13

1984

