
ValidPACKAGER'™ REFERENCE MANUAL

Manual Number: MN223 Rev A

10 March H>86

Valid Logic Systems, Incorporated
2820 Orchard Parkway

San Jose, California 05134
(408) 045-0400 Telex 371 0004

Copyright© Hl86 Valid Logic Systems, Incorporated

This document contains confidential proprietary informa­
iion which is not to be disclosed to unauthorized persons
without the prior written consent of an officer of Valid
Logie Systems Incorporated.

ii

V:didPACI<G\GER is a trademark of Valid Logic Systems, Inc.
\.:ilidCO.i\JPILER is a trademark of Valid Logic Systems, Inc.
l' \lX is a trademark of AT&:TDell Laboratories

NEW PACKAGER FEATURES

This manual describes version 7.28 of the Packager pro­
gram. You may be using version 7.25. When you run the
Packager, the first line of your listing file (PSTLST) will
show the version of the Packager:

Valid Logic Systems, Inc. Packager 7.25:1June85

or

Valid Logic Systems, Inc. Packager 7.28:1June85

If you are using version 7.25 of the Packager program, then
several of the features described in this manual will not be
available to you. These include the following:

• The GROUP property.

• The subdirectory (-s) option of the "package" com­
mand.

• These directives:

FREE_GROUPING
HARD _GROUPING
HARD _LOC_SEC
LIBRARY
PART_TYPE_LENGTH
PRINT_PIN_LIST
USE_PIN_GROUP
D OCUMENT_ERRORS

• The following output files:

PSTPCHG (physical changes file)
PSTBCHG (binding changes file)

• The subtype suffix specification for physical part
tables.

3/10/86 iii

New Packager Features Packager

iv

• The verbose (-v) option for feedback diagnostic
messages.

• Feedback: in the 7.25 Packager, if you don't list all
pins for a section, the Packager ignores that section
and doesn't do feedback on it. In the 7.28 Packager,
if a pin isn't listed, the Packager assumes that the
pin is not connected (i.e., it is connected t.o the 'NC'
net).

• Compact PIN_NUMBER syntax specification (see
Appendix A).

3/10/86

TABLE OF CONTENTS

Overview
How to Use This Manual.. 1-1
Introduction to the Packager 1-1

Running the Packager
Initial Packager Run .. . 2-1
Subsequent Packager Runs 2-7
The Packager Listing File 2-9
Error Messages in Listings 2-12
Commonly-Used Directives 2-12
Interfaces to Physical Design Systems 2-14
The Subdirectory Option 2-14

Sta.t.e Files
Using State Files .. . 3-1

Overview of Packager Functions
Logical to Physical Assignments 4-1
Creating Net and Parts Lists 4-2
Creating the PSTCHIP File 4-3
Expansion of Structured Parts 4-3
Removing Phantom Bodies 4-4
Load and Net Checks .. . 4-5

User Directions From the Schematic
Location Property .. . 5-2
Section Command 5-3
Pinswap Command .. . 5-3
Group Property .. . 5-4
Location_Class Property .. . 5-6
Flag Bodies and Interfaces 5-6
Suggestions for Use 5-7

Feedback t.o the Packager
Types of Feedback 6-1
Common Errors to A void 6-4
Running the Packager with Feedback 6-4
Feedback File Formats .. . 6-6

3/10/86 v

Table of Contents

Physical Part Designator Transformations
Physical Section Transformations
Feedback Net List
Physical Net Name Transformations

Back Annotation
When to Back Annotate .. .
How to Back Annotate .. .
Design Techniques and Annotation
Soft and Hard Properties
Special Uses of Properties

Packager Functions in Detail
Net and Part Name Assignment
Size Expansion
Times Expansion
Wire-Gate and Wire-Tie Expansion
Net Checks .. .

Output Type Check
Input and Output Pin Checks

Device Loading Calculations
Single State Pin Drive and Loading
No_Load_Check Property
U nknown_Loading Property

Tables Comparing Net/Load Check Properties

Librarries and Physical Part Tables
Library Files .. .

Pin_Number and Power_Pins Properties
Pin Swapping

Physical Part Tables
How to Use the Physical Part Tables
Note on Scale Factors
Format of the Physical Part Table
Modified Part Types in Pysical Part Tables

Times avers /Troubleshooting

Advanced Topics

Packager Directives
Annotate .. .
D ocun1ent_Errors .. .

vi

Packager

6-7
6-7
6-8
6-9

7-1
7-2
7-3
7-4
7-5

8-1
8-2
8-4
8-6
8-9
8-10
8-11
8-12
8-14
8-15
8-16
8-17

9-1
9-3
9-3
9-4
9-7
9-8
9-9
9-16

10-1

11-1

12-2
12-3

3/10/86

Packager Table of Contents

Fecdback_Order .. .
Filt.er_Propcrty
Free_C~rouping .. .
liard_G rouping .. .
I-I ard_Loc_Scc .. .
Include_Io _List .. .
Library
Library_File
1\-J a..x_Errors .. .
Net_Na111e_Length .. .
Output .. .
O\'ersights .. .
Part_Na111e_Length .. .
Part_Table_File .. .
Part_Type_Length
Pass_Property .. .
Print_Pin_List .. .
Report .. .
Suppress
Use_Pin_Group
U se_State_Files .. .
\Varnings .. .

Packager Output Files
General Notes on Output Format

Cross Ref ere nee Files
Local Part Cross Reference Overview
Global Signal Cross Reference Overview
Global Part Cross Reference Overview
Path Properties and Path Elements
Controlling Cross Reference Generation
Local Part Cross RefercncC' File Format
Global Signal Cross Reference Format
Global Part Cross Reference File Format

Logical Changes Summary
Binding Changes List .. .
Physical Changes List .. .
Reports File
The Expanded Net List
The Expanded Part List .. .

Glossary .. .

3/10/86

12-3
12-4
12-5
12-5
12-6
12-6
12-7
12-8
12-8
12-9
12-9
12-10
12-11
12-11
12-12
12-12
12-13
12-13
12-14
12-14
12-15
12-15

13-2
13-3
13-4
13-4
13-5
13-5
13-7
13-8
1:3-11
13-13
13-14
13-15
13-15
13-15
13-16
13-20

H-1

vii

Table of Contents

Packager Error Messages
Format of Messages .. .
Directives Affecting Error Messages
Special Messages Reporting
Summary of Messages by Number

Packager

15-2
15-2
15-3
15-4

Index.. I-1

viii 3/10/86

SECTION 1
OVERVIEW

1.1 HOW TO USE mis MANUAL

This manual is a reference guide for the Packager. Sections
1 through 4 contain an overview of the Packager, an intro­
duction to running the Packager, and some basic informa­
tion on specific functions and concepts necessary to under­
stand the Packager. Sections 5 through 11 describe impor­
tant Packager features and cover important concepts in
greater depth and detail. Sections 12 through 15 are strictly
reference material: output file formats, error messages,
directives, and a glossary.

Everyone should read sections 1 through 4. Most users
will also need to read portions of Sections 5 through 11.
The manual has a "top-down" design; the first few sections
provide a global view of the Packager and contain forward
references to later sections that describe particular functions
in more detail.

1.2 IN'IRODUCTION TO THE PACKAGER

After a logical design is completed, it must be translated
into a physical design. The logical design must be "pack­
aged" into physical chips on a printed circuit board. The
Packager is a bridge between the logical and physical
designs, and information flows in both directions across this
bridge. The Packager processes the compiled logic design
and produces files for a physical design system. The Pack­
ager also accepts feedback files from a physical design sys­
tem (to modify the Packager's original physical design) and
produces a back annotation file that is used by the Graphics
Editor to incorporate physical part numbers and physical
pin numbers into the original logical design. During the
packaging process, the Packager creates "state files" to

3/10/86 1-1

Overview Packager

maintain a consistent physical design for successive packag­
ing runs. Figure 1 shows an overvie\Y of the Packager's
relation to the Graphics Editor, the Compiler, and a physi­
cal design system.

The Packager performs the follo\\·ing functions:

1-2

• Logical to Physical Assignments

• Expansion of Structured Parts

• HemoYing Plrnntom Wire-OR nnd Wire-AND Bodies

• Checking Loading Constrnints and Uneonneetecl Sig­
nals

• Processing Feedback Files

• Creating Net and Parts Lists

• Preparing the Back Annotation File

l'ackagc•r

oack
annotation
file

net and
part
Its ts

formatted
net and
part
lists

GRAPHICS
EDITOR

COMPILER

PHYSICAL
INTERFACE
PROGRAM

PHYSICAL
DESIGN
SYSTEM

user
drawings

compiler
expansion.
synonym
Ille

Overview

reformatted
teed back
lites

feed back
files

Figure 1-1. Overview of Packager and Relat.ed Syst.ems

3/10/86 1-3

Overview Packager

LOGICAL TO PHYSICAL ASSIGNMENTS

Each logical part, signal, and pin is given a physical name
by the Packager. (These names can be changed by the
user.)

EXPANSION OF STRUCTURED PARTS

Parts with a SIZE property are expanded into the
corresponding number of parts, and the vectored signals
connected to the "sized" part are assigned to the expanded
parts. The Packager also creates new versions of parts with
TIMES properties.

REMOVING PHANTOM WIRE-OR AND WIRE-AND
BODIES

All wire-OR and wire-AND bodies in the design are
replaced with explicit wire ties.

NET AND LOAD CHECKS

The Packager checks each net to make sure that the loading
specifications of the parts are not violated. The Packager
also checks for unconnected signals on nets.

PROCESSING FEEDBACK FILES

The Packager processes feedback files from the physical
design system to modify its original physical design.

CREA TING NET AND PARTS LISTS

The Packager creates a net list and part list which contain
the information to be passed to a physical design system.

PREPARING THE BACK ANNOTATION FILE

The Packager creates a back annotation file for the Graph­
ics Editor.

1-4 3/10/86

SECTION 2
RUNNING THE PACKAGER

This section describes how to run the Packager and
discusses the input and output files as well as the overall
data flow. The Packager is an unusual program in that some
of its output files are used as inputs to the next Packager
run for the design. Thus, the initial Packager run differs
from later runs.

2.1 INITIAL PACKAGER RUN

Figure 2 shows an overview of the input and output files
for an initial run of the Packager. The files CMPEXP and
CMPSYN are the expansion and synonym files from a
Compiler run for logic. These files contain the logical
design description. The file packager.cmd is a text file
maintained by the user that contains directives (commands)
from the user to the Packager. These commands control
specific Packager functions. The library files and physical
part tables contain physical information about the parts
included in the logical design (e.g., pin numbers, number
of sections per physical part, and electrical characteristics of
the part). The Packager processes information from these
input files and produces more than a dozen output files.

3/10/86 2-1

Running the Packager

cmpsyn dat

cmpexp.dat

L1hrary Filps and
Phvstc<'ll Pm! fables

Packager

PACKAGER

output files

Figure 2-1. Overview of Initial Packager Run

Before running the Paekager, you must compile your
design for logic and prepare a Packager directiYcs file. To
run the Packager, enter this command after the prompt:

package

When you enter this eomrnand. the Packager uses the
rnrrent Compiler output files, the PaekagC'r direetiYC'S Ilk
(packager.cm cl), and the library files and physieal part tahll's
spccifiPd in the directiYC'S file. (ThC' "packnge" command
can also be used in the form .. package [-s] [root drawing
name]''. This enables yon to package dilfcrent clC'signs in
the same directory but still maintain the design !iles
separately. This option is diseussed in more det:1il at the
end of this section.)

\Yhile it is running, the Packager sends nwssages to the ter­
minal l'C'porting on the progress of aetivity. \\'hen the
Packager finishes, the t<•rminal shows the number of errors
(if ~rny) and CPU time. Ilcre is an cxnmp!P of a simpl<•

:2-2 :3/10/8G

Packager Running the Packager

Packager directives file:

library _file '/uO /lib/lsttl/lsttl.prt';
warnings on;
oversights on;
end.

The first three lines of the example file are directives. Each
directive ends with a semicolon (;). The last line of the file
is always "END." Directives allow you to specify certain
choices for the Packager. For example, WARNINGS ON
tells the Packager to print warning messages. Most direc­
tives are optional. If you omit them, the Packager uses a
preset choice called a default. However, the
LIBRARY _FILE or LIBRARY directive is required to
specify the library file(s) containing the physical informa­
tion for the parts in your design. Some of the more
commonly-used directives are discussed later in this sec­
tion. Section 12 contains a complete description of all
Packager directives. The directives are listed in that section
in alphabetical order, with syntax and purpose fully defined.

NOTE: The Packager directives file and the
Compiler output files must be in your current
directory when you enter the command
"package". Libraries can be in a different
directory, since the LIBRARY _FILE directive
includes the full path name for the library file.

Figure 3 sho"\vs the input and output files from a first run
of the Packager. All Packager output files have names
beginning with the letters "pst" which stands for "post
processing." You are now "post processing" your design
for use with another system. This manual refers to output
files by their logical name. The actual name depends on the
particular operating system. The UNIX file name is the
logical file name in lower ca5e followed by the extension
".<lat". For example, PSTLST becomes pstlst.dat. The
output files are described below.

3/10/86 2-3

Running the Packager

Libraries

Physical Part L..--------'
Tables

STATE FILES

pstsigb.dat
pstprtb.dal
pststat.dat
pstpswp.dat

Packager

BACK
ANNOTATION

FILE

pslback.dal

USER FILES

pstlsldat
pstlog.dat
psllchg.dat
pslbchg.dat
pstpchg.dat
psbcrel.dat
pslrprt.dat

NET/PART FILES

pstxnet.dat
psbcprLdat
pstchip.dat

Figure 2-2. First Run of the Packager

2-4 3/10/86

Packager Running the Packager

Net/Part Files: to be processed by interface programs
before going to physical layout.

• Expanded Net List (PSTXNET). Lists each
net on your design (alphabetically by signal
name) and the nodes connected to it (by U­
number).

• Expanded Parts List (PSTXPRT). Lists each
physical part in the design in order (by U­
n umber) and tells what logical part (by PATH
property) is assigned to each section.

• New CHIPS File (PSTCHIP). Lists the physi­
cal information from the library chips files and
physical part tables for each different library
part that your design utilizes. This informa­
tion is excerpted from the library chips files.
Since this file is much shorter than the library
chips files, it is passed on to subsequent pro­
grams for them to use.

User Files: documentation and statistics for the Packager
run, for user's reference.

• Listing File (PSTLST). Provides process informa­
tion and error messages for the user.

• Log File (PSTLOG). Provides process information
and other data for use by Valid personnel.

• Cross References (PSTXREF). Lists, for cross
reference purposes, signal names and the net names
to which they correspond, and logical part names
(library part names and PATH properties) and the
physical assignment (U-number, section, and pin
numbers) to which they correspond.

• Logical Changes Summary (PSTLCHG). Lists the
logical parts that were added or deleted from the
design since the last run of the Packager.

3/10/86 2-5

Running the Packager Packager

• Physical Changes Summary (PSTPCHG). Lists all
physical parts that were added to the design or
deleted from the design during this run.

• Binding Changes Summary (PSTBCHG). Lists all
bindings that were added to the design or deleted
from the design during this run. (A binding is a
mapping of a logical part to its allocated physical sec­
tion.)

• Reports File (PSTRPRT). Lists the remaining spare
sections (if any), and how many packages of each
physical part your packaged design requires.

Back Annotation File: for back annotation through GED.

• Back Annotation File (PSTBACK). Lists the infor­
mation in the expanded net list and the expanded
parts list ordered by body name and PA TH property
so that GED can write in physical part designators
(e.g., U-numbers) and pin numbers for each body
on the drawing.

Output Files for Use in Later Packager Runs (State Files)

• Logical Signal Name to Physical Net Name Binding
(PSTSIGB) and Logical to Physical Part Designator
Binding (PSTPRTB). These two files contain the
information in the expanded net list and the
expanded parts list, in a somewhat different format.

• State File (PSTSTAT). This brief file time-stamps
the current Packager run and identifies the compila­
tion run used for input.

• Pin Swap File (PSTPSWP). This file lists the pins
swapped during the current Packager run. If no pins
have been swapped, the file includes only a header
and "end."

Section 13 contains detailed descriptions of Packager output.
files and includes a complete discussion of file format and
synta,,x.

2-G

Packager Running the Packager

Th<' back annotation file is used by the Graphics Editor
(GED) to annotate the schematic with the physical part
dC'::-;ignators (e.g., U-numbers) and pin numbers. See Sec­
tion 7 for a detailed discussion of back annotation.

2.2 SUBSEQUENT PACKAGER RUNS

Figure 4 shows the overall data flow for subsequent Pack­
ager runs. Notice how the state files from the previous
Packager run become input for the next run. The state
files ensure consistency in the Packager's physical assign­
ments from one run to the next Section 3 discusses state
files. The feedback files can come from the physical design
system or can be created manually. Feedback files typically
contain changes in U-numbers and pin assignments to
optimize the design and shorten wire lengths. You can also
change net names and swap sections. The Packager then
incorporates these changes. See Section 6 for a detailed
discussion of feedback files.

3/10/86 2-7

Running the Packager

(cmpexp.dat)t-----.... .-/
... cmpsyn dat _

(Libraries) .. ___ .,_,

(Packager.cmd)•------~•

FEEDBACK FILES

STATE FILES

psts1gb.dat
pstprtb.dat
pststatdat
pstpswp.dat

Packager

BACK
ANNOTATION

FILE

pstback.dat

USER FILES
pstlst.dat
pstlog.dat
pstlchg.dat
pstbchg.dat
pstpchg.dat
pstxref.dat
pstrprt.dat

NET/PART FILES

pstxnet.dat
pstxprt.dat
pstchip.dat

Figure 2-3. Subsequent Packager Runs

2-8 3/10/86

Packager Running the Packager

2.3 TIIE PACKAGER LISTING FILE

An example of a Packager listing file is shown in Figures
5A and 5B. The listing file is contained in PSTLST. The
listing consists of several parts. The paragraph numbers
below correspond to the "call out" numbers on Figure 5.

1. The first part of the listing file is the header.
It tells you which version of the Packager you
used, and the time and date of the Packager
run.

2. The next part of the listing file is the direc­
tives list. It tells you every directive that was
in effect for this run. This includes all the
directives you entered in PACKAGER.CMD
as well as the default settings for the direc­
tives you omitted.

3. The next part of the listing gives the drawing
name and the date and time it was compiled.
This information is taken from the Compiler
expansion file.

4. The next several items on the listing file are
process statements. As the Packager does its
work, it reports at each stage. Errors are
noted as they are found.

5. The listing file ends with a recap of the
number of errors, oversights, and warnings
found by the Packager, and the elapsed time
and CPU time for this run.

3/10/86 2-9

Running the Packager Packager

1

2

3

4

Val Id Logic Sy1tems, Inc. Packager 7.2Shr1June85

Packager run on Fri Jun 7 16143151 l985

.................................
Starting to read directive••...............•••....•...•

------ Directives

WARNINGS ON:
USE PIN GROUP ON:
SUPPRESS <none>:
OVERSIGHTS ON;
DOCUMENT_ERRORS ON:
OUTPUT EXPANOEONETLIST,

EXPANOEOPARTLIST,
LOGICALCHANGES.
LOCALPARTXREF.
GLOBALSIGNALXREF,
GLOBALPARTXREF,
BACKANNOTATION;

at 16:43:51.0'0'

LIBRARY_FILE '/u0'/l lb/tutorial/tutorial .prt':
INCLUOE_IO_LIST OFF;
REPORT SPARES,

PARTSUMMARY;
ANNOTATE BODY,

PIN;
USE_STATE_FILES ON:
PART NAME LENGTH l6;
NET NAME LENGTH 24;
UNNAMEO_CHANGES ON;

Starting to read compiler output••..••...•.......•.••.•..••••••••.
------ Expansion f Ile Information ------

ROOT DRAIJING•'SUBTRACTOR';
TIME~' COMPILATION ON FRI JUN 7 l6r38:55 l985 ';

Starting to read 1 lbrary description•.•..••.••••..•.••••••..•..•.......
.................................

Starting to read state file•...............
..
* Starting assignment of SIZE replicated part• ...•••.......•....••..••.......••.••...........••.
................................

Starting TIMES replication
.............................

Figure 2-4A. Packager Listing File

2-10 :3/10/Rf\

Packager

5

Running the Packager

Starting to thread nets
.......................•...........•...

Starting to assign physical parts
.............................•.
* Starting to evaluate nets•.....................

Starting to check nodes•........•..............
..•.........•.................•••..••.....•.
* Starting to assign physical part names *•....•..•••.............••••...........
............................•..••..........
* Starting to assign physical net names * •.•.............•.••...........••..........
.........•........•............•.............

Starting to assign physical group names•.................•••..•..........
....•••.••••......•.•••............
* Starting to perform pin swaps •....•........•.......••...........
...............•..•.............•..••
* Starting state files generation *••..•.•..........•..............
...................•...........•..•..

Starting output list generation•..........•..............

Packager run on Fri Jun 7 161,3151 1985

Design name•
SUB TRACTOR

Design compilation•
COMPILATION ON FRI JUN 7 I6138155 1985

Library creation•
COMPILATION ON THU JUN 6 11187186 1985

No errors detected
9 oversights detected
4 warnings detected

Start time
Ending time
Elapsed time
CPU time

• I6•43•51.8•
• 16•44•38.•• , ... • ••••••u.z•

Figure 2-4B. Packager Listing File

3/10/86 2-11

Running the Packager Packager

2.4 ERROR MESSAGES IN LISTINGS

Packager error messages are also included in the listing file.
Errors, oversights, and warnings are all listed together. An
error is a serious problem which must be fixed before you
can continue. An oversight is a less severe problem which
should be fixed, but which does not halt progress. A warn­
ing is a minor problem which you may or may not choose
to fix. Here is an example of a warning message:

#2 WARNING(132): No input on net

In this example, "#2 WARNING" means that this is the
second warning message from the Packager. Errors, over­
sights, and warnings are numbered separately. (For exam­
ple, the third error would appear as "#3 ERROR".) The
number "132" is the number of the warning message. The
Packager has 229 different messages. The text "No input
on net'' is the warning message itself. See Section 15 for
more detailed information on error messages. It contains all
messages in numerical order with a descriptive paragraph
for each. These descriptions are also printed in the listing
file as short paragraphs after the list of errors, one para­
graph for each type of error, oversight, or warning. (To
omit these paragraphs, use the directive
DOCUMENT_ERRORS OFF.)

2.5 COMMONLY-USED DIRECTIVES

The following directives are used frequently:

2-12

• FEEDBACK_ORDER - specifies the feedback files
and the order in which the Packager will process
them. This directive causes feedback to occur.

• LIBRARY _FILE - specifies the libraries containing
physical information for parts in the design. This
directive or the LIBRARY directive is always
required.

• LIBRARY - same function as LIBRARY_FILE, but
uses the short library name instead of the full path

3/10/86

Packager Running the Packager

name.

• OUTPUT - this suppresses and enables selected out­
put files.

• OVERSIGHTS - if set to OFF, this suppresses all
oversight messages in the listing.

• PART_TABLE_FILE - specifies the files containing
physical part tables to be referenced by the Packager.

• SUPPRESS - this suppresses one or more warning or
oversight messages.

• USE_STA TE_FILES - controls the generation of
state files.

• WARNINGS - if set to OFF, this suppresses all
warning messages in the listing.

See Section 12 for detailed descriptions of the format and
functions of all Packager directives.

Most Packager directives have default values. Here is the
current set of default directives:

USE_PIN_GROUP ON;
WARNINGS ON;
SUPPRESS <none>;
OVERSIGHTS ON;
DOCUMENT_ERRORS ON;
OUTPUT EXPANDEDNETLIST,

EXPAND ED PARTLIST,
LOGICALCHANGES,
PHYSICALCHANGES,
BINDINGCHANGES,
LOCALPARTXREF,
GLOBALSIGNALXREF,
GLOBALPARTXREF,
BACKANNOTATION;

INCLUDE_IO_LIST OFF;
REPORT SPARES,

PARTSUMMARY;

3/10/86 2-13

Running the Packager Packager

ANNOTATE BODY,
PIN;

USE_STATE_FILES ON;
PART_NA}.IE_LENGTH 16;
NET_NA~IE_LENGTH 24;
UNNA~11ED_CIL\NGES ON;

2.6 INTERFACES TO PHYSICAL DESIGN SYSTEMS

The following output from the Packager is sent to a physi­
cal design system:

• Expanded Net List (PSTX:NET) - lists each net and
its attached nodes

• Expanded Part List (PSTXPRT) - lists each physical
part an<l shows the logical part assigned to each sec­
tion.

• CHIPS File (PSTCIIIP) - physical characteristics of
the parts in the design, extracted from the libraries
and physical part tables.

These files must be reformatted by a physical interface pro­
gram before they can be processed by a physical design sys­
tem. Likewise, the output from the physical design system
must be reformatted for feedback to the Packager. Section
6 discusses the feedback process and covers th<' format of
feedback files.

2.7 THE SUBDIRECTORY OPTION

The "package" command whieh runs the Packager has a
subdirectory option which allows you to package differC'nt
designs in the same directory and keep separate sets of out­
put files for each design. The subdirectory option can also
be used to save the current state of the design by kPPping a
copy of the Compiler expansion file and a copy of the
current Packager output files in a subdirectory. In this way,
the subdirectory can provide a backup for a Packager run.
The format of the "package" command with the subdiree­
tory option is as follows:

2-14 :~I 10 /8G

Packager Running the Packager

pa<"kage [-s] [root drawing name]

The option "-s" tells the Pa.cka.ger to save a copy of the
output files from this run in a subdirectory. The name of
the subdirectory is pack~ where i is an integer between 1
and 9. When you run the Packager with the "-s" option, it
searches through all subdirectories for a Compiler Expan­
sion file with the same root drawing name specified in the
"package" command. If none is found, a new subdirectory
is created. If the root drawing name was not specified, the
Packager uses the name in the Compiler Expansion file in
the directory. Herc arc some examples:

If you use the command "package -s" without the root
drawing name, the Packager saves a copy of the Compiler
Expansion file and all Packager output files in a subdirec­
tory. The Packager first searches for an existing subdirec­
tory containing a root drawing name which matches that in
the Compiler Expansion file in the current directory. If
there is none, then the Packager creates one to store the
files.

If you use the command "package -s DESIGNl", the
Packager searches for an existing subdirectory with a Com­
piler Expansion file that contains the root drawing
DESIGNl. Note that if the root drawing name contains
blanks, you must enclose it in double quotes.

The subdirectory "snapshot" of the design is overwritten
every time the design is repackaged with the "-s" option.
If you want to save several different copies or the same
design, you must rename the drawing in GED so that the
root drawing name is different from the previous Packager
run.

3/10/86 2-15

SECTION 3
STATE FILES

A small change in the logical design should cause only a
small change in the physical design. This makes it possible
to modify a design while physical design is in progress
without redoing the physical layout. State files are used to
keep Packager assignments consistent from one run to the
next.

State files provide the Packager with the assignments from
the previous run. Those assignments which are still legal in
the current run are performed. Any new logical parts, nets,
or pins are then assigned. (An assignment is legal if the
parts, nets, or pins it references still exist in the logical
design.)

The Packager generates and reads the part bindings
(PSTPRTB), signal bindings (PSTSIGB), pin swap
(PSTPSWP), and design information (PSTSTAT) state
files. These files record the logical to physical part alloca­
tion, logical to physical net name assignment, logical to
physical pin assignment, the pin swaps, and global design
information for the last run of the Packager.

If the use of states files is enabled and these files exist
when the Packager is run, they are used to guide logical to
physical part allocation and logical to physical net name
assignment, and logical to physical pin assignment. The
Packager reports whether the state files are being used in
the listing file (PSTLST) under the sections "Assign Physi-,
cal Parts", "Assign Physical Net Names", and "Perform
Pin Swaps''.

3.1 USING STA.TE FILES

When state files are enabled, the Packager reads them if
they exist, and generates them after the logical to physical
assignments have been completed. Since the state files for
any design are named PSTPRTB, PSTSIGB, PSTPSWP,

3/10/86 3-1

State Files Packager

and PSTSTA T, it is necessary to keep each design in a
separate directory, or for IBl\1I mainframe systems, a
separate disk. This ensures that a state file for one design
will not be applied to a different design.

If you want to disable the use and generation of state files,
you must use the Packager directive USE_STA TE_FILES
OFF, since the default is ON. In general, you should use
state files to preserve the consistency of the design from
one run to the next.

Since the assignments specified in the state files are based
on the history of the design, the component packing which
they specify may not be as tight or as regular as that the
Packager might generate from scratch. Deleting the odd
bits of a bus might, for example, result in a set of buffers
where every other section is used. If common pin usage
allows, new logical part<; will be allocated to the unused sec­
tions, but this may result in a physical design which is
difficult to wire.

For these reasons, you may choose to delete the state files
occasionally, to allow the Packager to rf'pack the design in
the most compact form. Deleting the state files \\'ILL
GREATLY CHANGE THE ASSIGNl\'fENTS for a design,
and may result in slightly diJTerent loading on nets connect­
ing to common pins. Obviously, the state files should
NEVER be deleted for designs which have already been
built. Rather than deleting the state files, they should be
SAVED so that they may be used if the new assignnH'nts
arc for some reason undesirable. .

The state files should never be edikd in order to chang<'
the physical design. Only the feedback files should be used
to alter the design. Refer to Section 6 for more informa­
tion on feedback.

3-2 3/10/85

SECTION 4
OVERVIEW OF PACKAGER FUNCTIONS

This section contains a brief description of the following
Packager functions:

• Logical to Physical Assignments

• Creating Net and Parts Lists

• Creating PSTCIIIP File for Physical Design Systems

• Expansion of Structured Parts

• Hemoving Phantom Wire-OH and Wire-AND Ilodies

• Load and Net Checks

These functions are covered here to provide a better
overall understanding of the Packager. They are discussed
in more depth later in the chapter.

4.1 LOGICAL TO PHYSICAL ASSIGNMENTS

The Packager transfers a design from the logical realm to
the physical realm. During this transfer, the Packager
makes the following assignments:

FROM LOGICAL DESIGN TO PHYSICAL DESIGN
logical parts
logical signals
logical nodes

are assigned to
are assigned to
become

physical sections
physical nets
physical pins

The Packager assigns the logical parts to physical chips
("packages") which will be placed on a printed circuit
board. A logical part is a body on the drawing created
through the Graphics Editor. The Packager assigns logical
parts to a section of a physical part. Physical parts are
named by physical part designators (e.g., Ul, U2, U3).

3/10/86 4-1

Overview of Packager Functions Packager

Note that logical part names and physical part designators
have no correspondence. That is, there is no connection
between the two names.

Physical net names are created from an abbreviation of the
logical signal name for the net. (See Section 8 for a
detailed description of the rules for abbreviating logical sig­
nal names.) If there are several signal names on one net,
the Compiler picks one for the Packager to use.

The Packager assigns logical nodes to physical pins on a
chip (e.g., AO becomes pin 5, CE becomes pin 1). The
Packager uses the library model of the logical part to deter­
mine the pin numbers. See Section 9 for more information
on library models and pin number assignments.

4.2 CREATING NET AND PARTS LISTS

The Packager creates expanded net and parts lists which
contain all the information about the physical design.
These lists are organized by physical information, and they
can be sent to a physical design system. (They are usually
reformatted by a physical interface program before going to
the physical design system.) The user cross reference file
(PSTXREF) contains the same information in a more
accessible form.

The Expanded Net List is ordered by physical net name
and contains the properties for each net and the logical to
physical binding of nets and nodes as well as node proper­
ties. The Expanded Part List is ordered by physical part
name and contains the properties and logical to physical
bindings of each part.

Section 13 has sample expanded net and parts listings and
detailed explanations of the file format. It also contains a
detailed description of the user cross reference file
(PSTXREF).

4-2 3/10/86

Packager Overview of Packager Functions

4.3 CREATING THE PSTCHIP FILE

The Packager uses information from libraries and physical
part tables to determine the physical characteristics of the
various parts in a design. The Packager extracts informa­
tion from these files for each part in the design and places
it in the output file PSTCHIP. This output file can then be
used by physical design systems.

Library files contain information attached to the body. This
information includes the pin numbers for the part, the
input and output loads for each pin, and the family of the
part.

Physical part tables provide a way to create new part types
from a basic part type. For example, you can create many
different types of resistors and capacitors from a single
basic resistor or capacitor. The various resistor types may
have different resistance values, power dissipation, cost,
reliability, etc. All of these characteristics can be specified
in a physical part table. There is only one library definition
for the part, and therefore only one copy of the models.
The Packager uses the properties attached to the part to
differentiate it from other instances of the same part.

Physical part tables thus allow you to attach new body pro­
perties to a part type without having to recreate or modify
the library files containing the part type definitions. An
important use of this capability is the addition of new pro­
perties to the libraries for certain interfaces to physical
design systems. These properties describe to the interface
the type and shape of each component.

4.4 EXPANSION OF STRUCTURED PARTS

The Packager expands any structured parts present in the
logical design. A logical part with the SIZE property is
expanded into the corresponding number of parts, and the
vectored signals connected to the "sized" part are assigned
to the expanded parts. The Packager also creates new ver­
sions of parts with TIMES properties.

3/10/86 4-3

Overview of Packager Functions Packager

The SIZE property is used to generate a multiple-bit com­
ponent and to connect it to a group of signals. The TIMES
property is used to replicate an output that must drive
many inputs. See Section 8 for more information on SIZE
and Tl~IES.

4.5 REMOVING PHANTOM BODIES

Figure 4-1 shows an example of "phantom'' wire-OR and
wire-AND bodies. These bodies are simply representations
that you may use in your design to document the logical
operation that is performed at a wire-tie. Phantom bodies
may be accessed with the Graphics Editor by entering the
command "library phantom." Of course, these are not
''real'' gates, and the Packager replaces them with wire-ties
(also called "wire-gates"). For more information on this
topic, see Section 8.

PHANTOM WIRE:-ANO G-

PHANTOH WIRE:-OR ~

lP

2P

lP

2P

Figure 4-1. \Vire-OR and \Vire-AND Phantom Bodies

4-4 3/10/8()

Packager Overview of Packager Functions

4.6 LOAD AND NET CHECKS

A net is a single bit signal and the nodes that are connected
to it. The Packager performs the follo,Ying net error checks:

• Output-Type Check: make sure that output
pins connected together have the proper tech­
nology (e.g., open collector, open emitter,
tri-state).

• I/O Check: make sure every net is connected
to at least one input pin and at least one out­
put pin.

The Packager calculates the loading for each net for both
logic states ("O state" and "l state"). The Packager per­
forms the following load checks:

• For eaeh logic state, the input and output
loads must have opposite signs.

• For each logic state, the absolute value of the
smallest output load must be greater than or
equal to the absolute value of the total input
loads on that net.

See Section 8 for a complete description of the Packager's
net and load checks. This section also discusses prop<'rties
which suppress load checks in certain cases (e.g., unknown
loading).

3/10/86 4-5

SEC'llON 5
USER DIREC'llONS FROM "IHE SCHEMATIC

There are often cases where you need t.o direct the assign­
ments made by the Packager. For example, you may want
t.o assign four gates performing a particular function t.o the
same package, and there is no guarantee that the Packager
will make such an assigment. To solve this type of prob­
lem, there are several properties and commands you can
use on your schematic which affect the Packager's assign­
ment scheme. These include the following:

• LOCATION Property

• SECTION Command

• GROUP Property

• LOCA TION_CLASS Property

• PINSWAP Command

• FLAG Bodies and Interfaces

This section discusses each of the above properties and
commands in the order listed above. This is followed by a
paragraph containing suggestions for using these properties
most effectively. You can use the above properties and
commands on your logical design in the Graphics Edit.or.
There are several other properties which are used at the
"body" level when new parts are added t.o a library (e.g.,
PIN_NUMBER, PIN_GROUP). See Section 9 for more
information on these properties and how they affect the
Packager. The Graphics Edit.or reference chapter contains
detailed instructions on the use of these commands and
properties in GED.

The following properties do not affect the Packager assign­
ment scheme but do affect load and net checks or physical
part designat.ors:

3/10/86 5-1

User Directions from Schematic Packager

• UNKNOWN_LOADING - indicates that device load­
ing is not known

• NO_LOAD _CHECK - suppresses device loading cal­
culations

• NO_IO_CHECK - suppresses input and output net
checks

• ALLOW _CONNECT - permits an output pin to be
connected to a net regardless of other outputs on the
net

• PHYS_D ES_PREFIX - specifies the prefix to use for
the physical part dC'signator. This can be defined in
the library to set the default prdix for that part.
This property docs not affect the physical part desig­
nator if the part has already been named in a preYi­
ous Packager run and if the current Packager run is
using State fiks. If the part has already been named
and you must use State files, then use the LOCA­
TION property to change tl1C' physical part designa­
tor.

5.1 LOCATIONPROPERTY

Use this property to assign a particular physical part name
to a logical gate on a design. The LOCATION property
always takes precedence oYer a physical part name assigned
by the Packager. If you assign the same name to seYcral
gates, this has the effect of grouping them together; how­
ever, grouping is NOT the main purpose of this property.
Use the GROUP property if you just want to group parts
and don't have a particular physical part name to use. Fig­
ure 7 demonstrates the use of the LOCATION property.
Note that it is an error to assign the same LOCA TTON
name to more gates than will fit in the same physical part.

The LOCATION property can be attachPd only to physical
part bodies. LOCA TJON properties attached to h iPrarch ieal
drawings are errors and are ignored. The LOCATION pro­
perty is not inherited as a body property.

5-2 :3/I0/8G

PackagPr

lP
l-OCATION=U4

lfser Directions from Schematic

lP
U4

Figure 5-1. Use of the LOCATION Property

5.2 SECTION COMMAND

This command assigns a logical gate to a particular section
within a physical part. The SECTION command does not
specify the particular physical part; it simply assigns the gate
to a particular section within a part of a given type. You
can use the LOCATION property and SECTION command
together.

Currently, the only parts that can be assigned to a particular
section must have a SIZE of 1 or have the property
HAS_FIXED _SIZE.

5.3 PINSWAP COMMAND

A swappable group of pins are those pins which are logically
equivalent and belong to the same section. This means
that if two nets are swapped between two pins that are in a
swappable group, the logical function of the circuit is not
altered. The PIN SW AP command allows you to perform
this operation on sectioned bodies.

3/10/86 5-3

User Directions from Schematic Packager

A common example of this occurs for the inputs of a
NAND gate such as a 74LSOO. The two input pins are phy­
sically equivalent in terms of loading and prop::gation delay
from input to output. Thus, if the nets to the input pins
are swapped, the behavior of the circuit is unchanged.

A set of pins on a given part that are swappable must have
the same value for the PIN_GROUP property attached to
them. Any pin without the PIN_GROUP property is not
swappable with other pins. The value of the PIN_GROUP
property is not important, but all pins of a swappable group
must have the identical value. If you want to swap pins
which do not have the PIN_GROUP property, use the
directive PIN_GROUP OFF to permit this.

The Packager and the section and pin assignment program
used by the Graphics Editor recognize the PIN_GROUP
property on pins of parts in the CHIPS files. The property
is used to assign the logical pins to pin equivalent and swap­
pable groups so that the Packager can perform legal pin
swaps.

5.4 GROUP PROPERTY

This property allows you to group logical parts together into
the same set of physical packages. Logical parts with
different GROUP properties (or no GROUP property) are
placed in different physical packages. For example, in Fig­
ure 8 the NAND gates with GROUP = A will all be placed
in the same set of physical packages, say Ul and U2, those
gates with GROUP = B will be placed in U3, and those
gates with no GROUP property will be placed in U 4.
Grouping allows you to force physical allocation yet not be
concerned with specific physical part designators (e.g., U­
numbers). The GROUP property applies to the entire
design.

When using the GROUP property, you do not need to
know the name of the physical package, and you also do
not need to keep track of the number of gates in a group. If
there are more gates in a group than will fit on a single
part, the surplus gates automatically spill over to another
part of the same type.

5-4 3/10/86

Packager User Directions from Schematic

If you want to mix grouped part.s with part.s which are not
grouped, use the directive FREE_GROUPING ON. Other­
wise, use the directive FREE_GROUPING OFF (the
default is ON). This ensures a tight placement, yet still
keeps distinct groups on separate parts. For example, in
Figure 5-2 FREE_GROUPING ON would place the NAND
gates with no GROUP property into either U2 or U3.

GROUP=A

GROUP=A

GROUP=A

GROUP=A

GROUP=B

Figure 5-2. Use of the GROUP Property

Note that you can use LOCATION, GROUP, and SEC­
TION on the same logical part, but you should be very
careful in your assignment.s. For example, you cannot
assign the same LOCATION to part.s in different groups.
However, parts in the same group can be in different physi­
cal packages. Note that you cannot use both GROUP and
LOCATION_ CLASS in the same design.

3/10/86 5-5

User Directions from Schematic Packager

If the State files arc used and some members of a group are
deleted after their initial assignment, on subsequent runs
the Packager will assign the remaining members of the
group according to their previous assignments as recorded
in the State files.

5.5 LOCATION_CLASS PROPERTY

This property is similar to GROUP. The difference is that
logical parts without the LOCA TIO::"J_CLASS property are
always used to fill physical packages that contain parts with
a LOCATIO~_CLASS property. This capability is now
replaced by using the GROUP property and the directive
FREE_GROUPING ON. Note that LOCA TION_CLASS
works on a page of the design, whereas GROUP applies
across the entire design. You cannot use both GROUP and
LOCA TION_CLASS in the same design.

5.6 FLAG BODIES AND INTERFACES

Interfaces between a circuit and its external components
must be defined in some manner. In board ll'vel designs
this is normally done by implicitly defining interface signals
through connectors spread throughout the design. Many
gate array design systems, ho-\.vcver, treat interface signals
differently from internal signals. Often they must be
declared in separate parts of the net list and must have
extra information attached. For this reason, the Packager
must be able to distinguish interface signals and treat them
accordingly.

The Packager supports the use of FLAG bodies in the
drawings to define the connection of interface signals in a
root drawing to some external component such as a gate
array chip carrier. To define a signal as an interface signal,
attach a FLAG body to the signal. When the
INCLUDE_IO_LIST ON directive is specified, the Paeknger
will attach the IO_NET property to the interface signals
with the value INPUT, OUTPUT. or BIDIRECTIONAL, as
defined by the FLAG body. These properties are then out~
put in the Expanded Net List .

.5-6

Packager User Directions from Schematic

5.7 SUGGESTIONS FOR USE

Here are some suggestions for effective ways to use these
commands and properties:

l. Before the first Packager run, use the GROUP
property to group related parts. If you are
certain of the names for particular parts, use
the LOCATION property. Likewise, if you
are sure of the placement of certain sections
within parts, use the SECTION command.
Otherwise, don't use LOCATION and SEC­
TION.

2. If you want to change your LOCATION or
SECTION assignments during a feedback run,
use the directive HARD_LOC_SEC OFF.
Then be sure to back annotate and recompile
the design to keep everything synchronized.
Likewise, to move a section from one group's
physical part to another group's physical part
during feedback, use the directive
HARD _CROUP OFF and back annotate. De
sure to recompile before repackaging the
design. De very careful when you use these
directives because they leave all LOCATION,
SECTION, or GROUP assignments open to
change. Inadvertent feedback errors can be
very damaging in these circumstances. Also,
note that if you change a location or section
assignment in this way, the LOCATION and
SEC properties are removed from the affected
logical parts, while GROUP properties are
changed according to the new assignments.

3/10/86 5-7

SECilON6
FEEDBACK TO THE PACKAGER

The physical design generated by the Packager may not be
optimal for layout. The physical design system may rear­
range parts, swap equivalent sections within parts, and swap
equivalent pins on a section. Without feedback and back
annotation, these changes will not appear on the schematic.
Also, if there are further modifications to the logical
design, the Packager and the physical design system will be
"out of synch."

Feedback files inform the Packager of physical design
changes. In this case, the files are usually generated
automatically by the physical design system. Sometimes
you may want to make manual changes to the Packager's
physical design through feedback files. For example, you
may want to make a small change without going through
GED and recompiling. If you do this, remember that you
must keep the Packager listings and physical design system
files synchronized. It is also a good idea to back annotate
the physical changes.

This section discusses the following topics:

Types of Feedback
Warnings
Running the Packager with Feedback
Feedback File Formats

6.1 TYPES OF FEEDBACK

There are four types of changes that can be made through
feedback files:

1. Physical part name changes

When a design is laid out, the physical part
designators are often changed to include

3/10/86 6-1

Feedback to the Packager Packager

position information. A typical scheme is to
give a part a name of the form letter number
where letter and number represent coordinates
in two dimensions on a board. For example,
G13 could represent row G, column 13.

2. Physical section reallocation

To simplify wiring, it is often desirable to
group together those parts that connect to
each other. Since the sections in a part may
connect to different groups of parts, it is
sometimes necessary to move a section from
one part to another part of the same type. If
all sections of the destination part are in use,
then it is necessary to move one of them
somewhere else. This process is often done. by
swapping two sections between different parts
of the same type. Sections are sometimes
reassigned within a single part to improve wir­
ing.

3. Physical pin reallocation within a section

To simpliCy wiring even more, equivalent
input pins of a section may be reassigned or
swapped. This is frequently done to parts
having many equivalent inputs.

4. Physical net name changes

Changing physical net names does not affect
the layout or wiring of a design, but users
ma.y wish to rename nets for documentation
or standardization reasons.

Note that you cannot change part types through feedback.
You must use the Graphics Editor (GED) to change the
part type on the logical design and then recompile and
repackage. For example, you cannot swap a 74LSOO for a
5·1LSOO or 7 4LS32 through feedback; this change must be
made on the logical design.

6-2 3/10/86

Packager Fef'dback to the Packager

If the dir0ctive JIARD _LOC_SEC is set to OFF, then you
can change section and location assignments through feed­
back files even if the assignments were attached as proper­
ties in the Graphics Editor. Also, if HAR.D_GROUPING is
OFF, you can reassign sections without regard to their
groups. However, be sure to back annotate to keep the
logical design in GED synchronized with the Packager's
physical design. You must also recompile the design before
running the Packager again.

The Packager currently can process four types of feedback
files. You have the freedom to use any or all of the files as
the situation requires. Only these files should be used to
change the physical design. You should never edit the state
files. The feedback files are as follows:

PSTPRTX. - Physical part designator transformations file

Use this file to rename a physical part. The file
coatains a list of old physical part designator
and new physical part designator pairs.

PSTSECX - Physical section transformations file

Use this file to reassign a logical part from an
old physical section to a new physical section.
The file contains a list of old-physical-section
to new-physical-section pairs.

PSTNETX - Physical net name transformations file

Use this file to change physical net names.
The file contains a list of old physical n<'t
name and new physical net name pairs.

PSTFNET - Feedback net list

Use this file for physical part designator
changes, physical section swapping, and pin
swapping. You cannot change physical net
names with this file. The Feedback Net List
file is frequently used by physical design sys­
tems to make several types of changes at one

3/10/86 6-3

Feedback to the Packager Packager

time. If you are generating feedback files
manually, use the Feedback Net List file only
if you are swapping pins. Otherwise, use the
other feedback files, since they have simpler
formats and are easier to use.

6.2 COMMON ERRORS TO AVOID

1. Never recompile a design between the time it
was packaged for a physical design system and
the time you use feedback from that system.
The Packager uses the Compiler expansion
and synonym files, the Library files, and State
files during feedback processing. If any of
these have changed since the previous Pack­
ager run, this will generate errors. You
should save the following files for any design
that is sent to a physical design system:

Compiler output files
Library files
Physical part tables
Packager state files

2. Never add or delete a part in the physical
design system. Also, never change a net
name. Many physical design systems are
capable of making these changes, but the
function of the design must be controlled
from the Graphics Editor.

3. The directive NET_NAME_LENGTH should
not be changed from the previous Packager
run to the feedback run. This ensures that
net names remain the same.

6.3 RUNNING THE PACKAGER WITH FEEDBACK

Feedback requires the state files from the previous Pack­
ager run. Be sure to include the directive USE
STA TE_FILES ON in the directives file when you plan to

6-4 3/10/86

Packager Feedback to the Packager

do feedback on the next Packager run. This directive is also
required for the feedback run.

The FEEDBACK_ORDER directive specifies the type of
feedback files to be used and the order in which the Pack­
ager will process them. When you include this directive in
the directives file, you are telling the Packager to perform
feedback. The format of this directive is as follows:

f eedba.clc_order [-v J file type [,filetype] ... '

where filetype can be:

part_trans Physical part designator transformations
file (pstprtx) - to change part names

section_trans Physical section reallocation file
(pstsecx) - to change part names and
section connections

feedba.clc_netlist Feedback net list (pstfnet) - to change
pin connections, section connections,
and part names

net_ trans Physical net name transformations file
(pstnetx) - to change net names

For example,

FEEDBACK_ORDER NET_TRANS, FEEDBACK_NETLIST;

specifies that physical net name feedback occurs first, fol­
lowed by feedback net list changes.

The "-v" (verbose) option generates additional error infor­
mation for certain errors found during feedback processing.
For example, error #149 "Match not found for feedback
section" generates a list of the closest partial matches for
the entry. Normally, only the first three partial matches are

3/10/86 6-S

Feedback to the Packager Packager

listed. The "-v" option outputs all partial matches in the
listing file (pstlst).

You should be careful to list the feedback files in the
correct order. For example, if you refer to new net names
in the Feedback Net List file, you should list NET_TRANS
before FEEDR\CK_NETLIST. In general, do part name
changes first, section reallocations second, and pin connec­
tion changes third.

6.4 FEEDBACK FILE FORMATS

This section describes the formats of the four feedback
files. These are text files that begin with a header and ter­
minate with the marker "END.". Tlw header lines identify
the file and the name of the design. The form of the
header lines is

FILE_T'YPE = file type ;
ROOT_DRA \\'ING ='drawing name'

where file type specifies the file's type and 'drawing name'
(enclosed in single quotes) is the name of' the root drawing
of the expansion f1le. For example, a header for the Physi­
cal Part Designator Transformations file for the drawing
SAMPLE would appear as:

FILE_TYPE = PAHT_THANS;
HOOT_DRAWTNG = 'SA~IPLE';

Comments may be placed in the fiks if enclosed m brnces
({ }). A comment may appear any,vhcre a space may
appear. Comments may cross line boundaries but canno1
be nested.

If an item is too long to fit on a line (80 charac1A'rs). it
must be broken into more than one line. A tilde () is
used as a continuation charaeter to indicate 1hat the current
item is continued on the next line. A line break can app<'ar
between any two characters in the file. A tilde, however. is
only significant if it occurs at the end of the line.

6-6 3/]()/8G

Paekager Feedback to the Packager

PHYSICAL PART DESIGNATOR
TRANSFORMATIONS (PSTPRTX)

Use this file to rename physical parts. The physical part
designator identifies a particular occurrence of a physical
part. The file type is PART_TRANS, and it consists of' a list
of transformations in the form

'old physical part designator' 'new physical part designator'

where old physical part designator is the physical part desig­
nator assigned by the Packager during its last run and new
physical part designator is the new physical part designator to
be assigned. For instance, the physical part designator U31
can be changed to U32 as follows:

FILE_TYPE = PART_11lANS;
ROOT_DRA WING = 'SAl\IPLE';
'U31' 'U32'
END.

PHYSICAL SECTION TRANSFORMATIONS
(PSTSECX)

No layout knowledge is used during the initial Pac·kager
section assignment. \Vhen more reasonable section assign­
ments are known, they can be given to the Packager which
will use that information to reassign sections. The Physical
Section Transformations file is used to specify section
changes; its file type is SECTION_IBANS.

The file contains a list of old physical pin designators (as
assigned by the Packager during its last run) and new physi­
cal pin designators. A physical pin designator consists of a
physical part designator and a UNIQUE pin number of the
section (not a common pin). The Packager reassigns the
sections as specified in this file.

Logical parts with the LOCATION and/or SEC properties
cannot be reassigned unless you use the directive
HARD LOC SEC OFF. This is also true for GROUPed
section~ unle-;s you use the directive HARD GROUPING
OFF. If you use.these directives to make such-changes, you

3/10/86 6-7

Feedback to the Packager Packager

must back annotate the design so that the changes will be
reflected on the schematic. Also, you must then recompile
the design before running the Packager again. The only
other way to change section assignments assigned through a
property in the logical design is to change the logical design
through GED.

The file consists of a list of transformations in the form

'old part name' old pi"n number' new part name' new pin number

where old part name and old pin number specify the current
section assignment, and new part name and new pin number
specify the new section assignment. For example, given a
7 4LSOO (quad NAND gate), a swap of the first two sections
on the part U31 might appear as follows:

FILE_TYPE = SECTION_TRANS;
ROOT_DRAWING ='SAMPLE';
'U31' 1 'U31' 4
'U31' 4 'U31' 1
END.

FEEDBACK NET LIST (PSTFNET)

You can use this feedback file to swap pins, reassign sec­
tions, and rename physical parts. Y cu CANNOT change net
names or physical part types with this feedback file. If you
are generating feedback files manually, use the Feedback
Net List file only if you are swapping pins. Otherwise, use
the other feedback files since they have simpler formats
and are easier to use.

The file type is FEEDBACK_NETLIST, and it consists of a
list of nodes in the form

'physical part designator' 'physical part type' pin number
'physz'cal net name' ;

where physical part designator is the new physical part desig­
nator, physical part type is the part type of the physical part,
pin numb er is the new pin n um her of the node, and physical
net name is the name assigned by the Packager to the net

6-8 3/10/86

Packager Feedback to the Packager

where the node is connected.

The file MUST be sorted by physical part designator so that
all the pins of a physical part appear together. The ordering
of the pins on the part does not matter. An example of
this file might appear as follows:

FILE_TYPE = FEEDBACK_NETLIST;
ROOT_DRA WING = 'SAMPLE';
'Ul' 'LS08' 1 'AO';
'Ul' 'LS08' 2 'BO';
'Ul' 'LS08' 3 'CO';
'Ul' 'LS08' 4 'Al';
'Ul' 'LS08' 5 'Bl';
'Ul' 'LS08' 6 'Cl';
'Ul' 'LS08' 8 'C2';
'Ul' 'LS08' 9 'A2';
'Ul' 'LS08' 10 'B2';
'Ul' 'LS08' 11 'C3';
'Ul' 'LS08' 12 'A3';
'Ul' 'LS08' 13 'B3';
END.

NOTE: If you rename a part, you must enter all the pins
for that part since omitted pins are assumed to be 'NC'
(not connected). Also, if you reassign a section, you must
list every pin in that section.

PHYSICAL NET NAME TRANSFORMATIONS
{PSTNE'IX)

This file is used to change the name of a physical net, and
it has the file type NET_TRANS. Each net is originally
assigned a name by the Packager that can be changed with
this file. The file consists of a list of transformations in the
form

'old physical net name' 'new physical net name'

where old physical net name is the name assigned to the net
by the Packager in the last run and new physical net name is
the new name to be assigned to the net. For example, the

3/10/86 6-9

Feedback to the Packager

net NOOOOl can be changed to XYZ as follows:

G-10

FILE_TYPE = NET_TRANS;
ROOT_DRA \YING= 'SA~1PLE';
'NOOOOl' 'XYZ'
END.

Packager

:l/I0/8G

SECTION7
BACK ANNOTATION

Information usually flows from the drawings of the logical
design, through the Compiler and Packager, and on to a
physical design system. However, there is an important
class of information that flows from the end of this process
to the beginning. The Packager and the physical design
system add physical data to the design that you may wish to
see reflected in the drawings, such as the physical part
designator for each part and the pin number for each pin.
The process of taking information created or added down­
stream in the design process and bringing it upstream is
called "back annotation."

7.1 WHEN TO BACK ANNOTATE

There are two different times in the design cycle when it is
important to back annotate your GED drawing. The first
of these is after the first error-free run of the Packager, and
the second is after the design has been sent to a physical
design system (producing feedback files) and the design ha'3
been repackaged to reflect the changes in physical assign­
ments. The following shows the typical order of design
steps from the Packager through a physical design system
including back annotation.

GED
COMPILE
PACKAGE
BACKANNOTATE
(physical interface program)
(physical design system)
PACKAGE
BACKANNOTA TE

The first time you back annotate your design is after your
first error-free run of the Packager. After you have
corrected any errors found by the Packager in your design,

3/10/86 7-1

Back Annotation Packager

and run the Packager on the corrected design, you want to
record the physical assignments (the U-numLers and pin
numbers) on your GED drawing for reference.
Remember, however, that these physical assignments may
be modified by your physical design system. That is why
you will have to back annotate again later.

After this first back annotation, you send the Packager out­
put to a physical interface program to format it for a physi­
cal design system, and then to a physical design system.
The physical design system creates feedback files that are
used as input files to the Packager. You may also create
your own feedback files to force the Packager to make cer­
tain assignments. You then run the Packager again and it
reassigns parts on the basis of the instructions in the feed­
back files. Now you want to update your GED drawing
again so that it corresponds exactly with the physical design
you have produced. This is the second time that you back
annotate your design.

7.2 HOW TO BACK.ANNOTATE

Back annotation brings physical design data from the Pack­
ager and adds it to the logical design drawings. The Pack­
ager generates a back annotation file that contains physical
information grouped by drawing.

To generate this file, use the directive OUTPUT BACK.AN­
NOTATION when running the Packager. Backannotation
can occur on three types of elements: bodies, pins, and
nets. Use the ANN OTA TE directive to select among these
elements. If this directive is not specified, the default
options are bodies and pins. If the net option is specified,
the synonyms file from the compilation must be available.
The back annotation information is written to the logical
file PSTBACK. This file must be renamed to
BACKANN.CMD to be used by the Graphics Editor. You
can then use the GED command BACKANNOTATE to
automatically add all the physical assignments made by the
Packager to your drawing. Back annotation saves a lot of
time and tedious work and ensures that the drawing accu­
rately reflects the physical part assignments.

7-2 3/10/86

Packager Back Annotation

It is recommended that you keep a backup of all drawings
before back annotation is performed. This will give you
both non-annotated and annotated versions of the drawings
that may be useful since it does take time to remove the
annotated properties from a set of drawings. Figure 7-1
shows an example of a back annotated drawing.

Ul
7P

.. IZI

U4
SP

DRAWING
TITLE=SUBTRACTOR

Figure 7-1. Back Annotation of Schematic

7.3 DESIGN TECHNIQUES AND ANNOTATION

If a logical design has structured elements such as SIZE and
TIMES, back annotation may not show all the physical
assignments on the drawing. Only non-structured elements
are annotated. Back annotation cannot be done on struc­
tured elements because the physical and logical representa­
tions of the drawing are very different. A "flat" drawing
has no structured elements and can be completely back
annotated. If you have a design that is structured and you
must have complete back annotation, you must re-enter

3/10/86 7-3

Back Annotation Packager

the finished design as a flat drawing.

Likewise, if you have a hierarchical design, you can only
back annotate the "lowest" levels of the design.
Remember that the top level of a hierarchy does not have a
one-to-one correspondence to the physical design. For
both hierarchical and structured designs, cross reference
listings from the Paekager (file PSTXREF) may be used to
supply the complete set of physical information. These list­
ings arc organized such that all data can easily be tracked
back to the design drawings. Cross reference listings and
the design drawings may be used together for design troub­
leshooting when a fully backannotated print is not neces­
sary.

7.4 SOFT AND HARD PROPERTIES

You may sometimes not.ice that certain parts may be
updated with new physical information during successive
back annotation runs. The properties which may change
from one back annotation to the next are called "soft" pro­
perties. These arc properties which are attached by the
Packager program, and they may change from one run to
the next.

Properties which you assign are called "hard" properties,
and these arc not altered by the Packager unless you use
the directives HARD _LOC_SEC OFF and/or
HARD_GROUPING OFF and modify them through the
feedback files. Th us, these properties do not change unless
you specifically alter them through feedback or through the
Grnphics Editor.

For example, you may wish to attach the LOCATION pro­
perty to a body to ensure that the part is assignPd to :i

specific physical part designator. You would not \'.rant this
to be changed by the Packager. Thus, LOCATION is a
hard property. Other hard properties that you may us<' :ire:

7-4

GROUP
LOCA TION_CLASS
SEC (you assign this with the SECTION com111:rnd)
PN (you assign this with the PINSWAP (·ommand)

:3/J0/8fi

Packager Back Annotation

Soft properties, on the other hand, arc added during back
annotation, and they arc subject to change on subsequent
back annotation runs. You want these to be updated. The
Graphics Edit.or differentiates between hard and soft pro­
perties so that it can update information correctly. Soft pro­
perties that may be added by the Packager include:

$LOC
$SEC
$PN

Note that soft properties are AL \VA YS preceded with a
·'$'" in the property name. Also, soft properties do not
force assignments in the Packager; only hard properties can
control assignments.

7.5 SPECIAL USES OF PROPERTIES

Although users can assign sort properties, this is generally
done by GED during bnck annotation. IloweYer, you may
wish to attach a soft property to a .DODY drawing as a
placeholder for back annotation purposes. The "$" defines
the property as "soft", and the "?" is a placeholder that is
later substituted with a U-number.

3/10/86 7-5

SECTION 8
PACKAGER FUNCTIONS IN DETAIL

This section contains detailed discussions of various Pack­
ager functions which were discussed more briefly earlier in
this manual. This section covers the following topics in the
order listed below:

Net and Part Name Assignment
SIZE Expansion
TIMES Expansion
Wire-Gate and Wire-Tie Expansion
Net Checks
Load Checks

8.1 NET AND PART NAME ASSIGNMENT

The Packager assigns physical names to both signals and
parts. Physical net names are created from the abbreviation
of the logical signal name for the net. If there are several
logical signal names on a net, the Compiler picks one for
the Packager to use. The maximum length of net names is
controlled by the NET_NAME_LENGTH directive. The
path name portion of the logical signal name is not used in
the abbreviation. The abbreviation is created as follows:

1. Remove all special characters. These are all
characters except A-Z and 0-9.

2. If the signal is low asserted, add a trailing 'L'.

3. If the name starts with a digit, change it to a
letter.

4. If the signal is vectored, append the off set as a
number.

3/10/86 8-1

Packager Functions in Detail Packager

5. If the signal is versioned, append 'V' and the
version number when the version number is
not zero.

G. If the resulting name is greater than max­
imum net name length, remove all the
vowels.

7. If the resulting name is still too long, then
truncate the name to the maximum net name
length.

8. If the resulting name is not unique, make it
unique by incrementing the last non-numeric
character of the name. This is to preserve the
bit offset that was appended to the name.

For example, the logical net name "READ ADR B<2>"
would become the physical net name ''READ AD RB2' '.
Physical part names are created by starting with the value
of the PIIYS_DES_PREFIX property found on the part
type in the library or on the logical part in the design. If
there is no prefix on the library part, the Packager uses the
standard prefix 'U'. If the name is not unique, it is made
unique by adding a number (e.g., UI2, Ult). The max­
imum length of the names is controlled by the
PART_NA~1E_LENG'11I directin. Note that the
PHYS_DES_PREFIX property does not override the old
part names from the last Packager run if the current run
uses state flies. That is, the Packager uses the pr<'lix only if
the part is new or if there are no state file;;;.

8.2 SIZE EXPANSION

The SIZE property is usNI to generate multiple compo1wnt.'>
in one body representation and connect them to a group of
signals (a bus). SIZE is used in the logi<'al (ksign to pro­
vide a concise means of represC'nting many logi<':il p:wh as
one part together with bus not atio 11. Figu I"<' 10 shows an
example of a SIZEd part .. Th<' Paekag<'I' g<'n<'rnlPs SIZE
number of expanded parts and assigns a new logical de-.;ig­
nator to each. A logical part ean h :we pins eo rn 1110 n to all

8-2 :~/llli"li

Packager Packager Functions in Detail

seetions as well as pins unique for each section. Common
pins arc connef·i<'d in parallel for all sections and the unique
pins itre connected to independent pieces of the signal con­
neeted to the original part. The PIN_NUl\,IBER property
for eaeh pin in the body definition specifies whether the pin
is c·ommon or unique for each section. The PIN_NUMBER
property also specifies the width of the pin to which it is
attached. The Packager allocates this number of bits from
the original signal to each expanded part. The assignment
of bits of a signal to physical parts is done sequentially so
that adjacent bits are assigned to the same physical package
if possible. Figure 8-1 shows an example of the packing of
a SIZEd part. See the Library reference manual for more
detail.

IN<3 .. IJ>

QJ(

3/10/86

IN<3>

CU<

SIZE=4B

OUT<3 •. 0>

n""o IN<2>

LS74

<1. Q

IN< 1>

Ul
SIZE:=1B :r =•" D --

•
Q

Ul
SIZE=1B

~
u

•
Q

~¥ze:=1B

U2
SIZE:=1B

OUT< l>

OUT<il>

Figure 8-1. SIZE Expansion and Packaging

8-3

Packager Functions in Detail Packager

8.3 TIMES EXP ANSI ON

In digital designs, it is often convenient to have several
different signals available which each have the same
behavior. One such case is where a net has more input
loads than the output is capable of driving. This fan-out
error must be corrected if the circuit is to function as
designed. A good way to fix this type of problem is to
divide the inputs on the net into two or more groups,
where each group presents a small enough load to be
driven by one output. Each group is wired together and is
said to connect to a "version" of the net. To keep the
operation of the design unchanged, each version must have
the same logical behavior. To avoid fan-out errors, each
version of the net must have a different output driving it.
This is accomplished by connecting each version of the net
to a different version of the output, where each output ver­
sion behaves the same. Figure 8-2 shows an example.

8-4 3/10/86

Packager Packager Functions in Detail

DATA
Ul

OUT

EN
....

Ul -
Ul

Ul

....

Til"Cl=4T
7P

DATA OUT

EN ...
6P

SP

<4$>

Figure 8-2. TIMES Expansion and Packaging

You can generate multiple versions of the outputs of any
part by attaching the TIMES property to the part. The
value of the TIMES property equals the number of versions
to be generated. The outputs are generated by creating
TIMES number of physical sections and, for all physical
sections, connecting the inputs as shown in the drawings.
Thus, since the inputs to each of the components are ident­
ical, each output signal will exhibit the same logical
behavior over all the versions.

Replication by TIMES is useful where an output must drive
many input loads. The Packager will divide the loads among
the versions of an output so that the specified loading rules
will be obeyed. In the process, the Packager generates one
version of the net for each version of the output. When
more versions of an output exist than are necessary to
drive the net to which it is connected, the Packager will

3/10/86 8-5

Packager Functions in Detail Packager

attempt to divide the loa<ls evenly among all output ver­
sions. If loading rules require more output versions than
are specified, the Packager determines the number of addi­
tional versions which are needed and flags the error.

When several outputs are connected to one net (wire-tied),
and several versions of the net are desired, each output
should have a TIMES value equal to the number of ver­
sions of the net desired. If several outputs on the same net
have different TIMES values, the number of versions of
the net generated is the minimum of the output TI~11ES
values. Physical parts with no TIMES properties have a
TIMES value of one. Figure 8-2 illustrates these rules.

8.4 WIRE-GATE AND WIRE-TIEEXPA..."l'IJSION

For designs that contain parts with connected outputs, you
have the option of tying the output signals together in a
",vire-tie" or using phantom bodies to explicitly document
the logical operation that is taking place. A phantom body
is simply a logical representation of a wire-AND or wire­
OR gate that is available for use in your design. An exam­
ple of wire-ties and phantom bodies is shown in Figure 8-3.

lP lP
oc

:3P

2P 2P
oc oc

Figure 8-3. VVire-Ties and Phantom Bodies

A wire-tie (or wire-gate, as it is also ealled) is simply the
connection of two or more outputs to thf' samf' signal.
This is often used to connect several drivers to a common
bus. Designers also term a wire-tie a "wire-gate" beeaus£•
a logical operation is performed. A phantom body is used

8-6 3/10/86

Parka.ger Packager Functions in Detail

in the dc>sign to cxplieitly demonstrate the function of the
win'-tif'. When using the TIMES property, phantom bodies
also provide a meam; for using the input signals of the
phantom body elsewhere in the design. In this case, a
wire-tie will not work because it would connect all signals
to the same net. Figure 8-4 illustrates the difference
between using wire-ties and phantom bodies with the
THvIES property.

INA

INB

INC

IND

lP
TIME:S=2T

2P

lP
TIME:S=2T

2P

::IP

::IP

Figure 8-4. Wire-Ties/Phant.om Bodies TIMES Property

The phantom body connects versions of the signals used
only in the gating function. This way a signal is generated
which has the required behaYior, and the behavior of the
other versions of the constituent signals remains unchanged
wherever else they are used. This allows the designer to
treat wire-gates the same as "real" gates, which makes
complex wire-gate designs understandable.

3/10/86 8-7

Packager Functions in Detail Packager

The Packager replaces phantom bodies with ' ire-ties (or
wire-gates) having first "expanded" the desig 1 such that
the logical function is maintained (see Figure 8- ').

11"
TIME5=2T 31"

INC oc

IND
21"

oc

~
31"

INC
11"

=-==Q [:YO

INC
11"*1

oc

IND
21"

oc

Figure 8-5. Replacing Phant.om Bodies with Wire-Ties

TIMES properties on phantom bodies function exactly the
same as on physical parts. Several versions of a net are
generated, each with different output versions. One version
of each of the phantom gate input nets is used for each
version of the phantom gate output net. If a net connects
to a phantom gate input, then enough versions of the net
must exist to drive the "real" loads on the net plus the
"induced" loads on the output net of the phantom gate. If
a phantom gate has no TIMES property, it is ignored when
determining the number of versions of the output net, and
it assumes the TIMES value required by the net. Each ver­
sion of the output net will use one version of each input
net whether the phantom gate has a TIMES property or

8-8 3/10/86

Packager Packager Functions in Detail

not. The Packager indicates any extra versions of outputs
which are required, making it simple to arrive at the correct
TIMES values for outputs driving even a complex combina­
tion of "real" and phantom gate inputs.

After a number of versions of a net have been generated
by use of the TIMES property, the versions are distributed
to wire-gate inputs first. The "real" loads on the net are
then divided among the remaining versions of the net.
Therefore, a net with 10 versions which gives 3 versions to
wire-gate inputs will have 7 versions left to drive "real"
inputs.

The constant signals "O" and "1" may be applied to the
inputs of phantom gates and function as they would on
"real" gates. If a wire-AND has an input connected to the
"1" net, that input is ignored, since the other inputs will
determine the value of the output. If a wire-AND has an
input connected to the "O" net, then all loads on the out­
put net are connected to the "O" net, since 0 AND any­
thing is 0. The same is true for wire-OR's, with "O" and
"1" reversed.

8.5 NETCHECKS

A net is a single bit signal and the nodes that are connected
to it. The Packager performs three net error checks:

1. Output-Type Check: make sure that output
pins connected together have the proper tech­
nology (e.g., open collector, open emitter,
tri-state).

2. 1/0 Check: make sure every net is connected
to at least one input pin and at least one out­
put pin.

3. Loading Check: make sure loading rules are
not violated.

The checks listed above can be suppressed for a signal by
attaching various properties to the signal. These properties
are discussed in detail later on in this section and are also

3/10/86 8-9

Packager Functions iu Detail Packager

summarized in a table at the encl of this section:

• ALLOW _CONNECT - allows outputs of
different types to be tied together (e.g., open
collector, tri-state)

• NO_IO_CIIECK - suppresses input/output
checks

• NO_L01\D _CIIECK - suppresses load checks;
Packager checks surrounding loads

• UNKNOWN_LOADING - indicates that load­
ing is uncertain; Packager stops load checks
for unknown areas

OUTPUT TYPE CHECK

Outputs can only be tied together (making wire gates) if
they are given explicit permission to do so. Permission is
given either by the OUTPUT_TYPE property included in
the CHIPS file for that part, or by atbwhing the
ALLO\V_CONNECT property to the output pins.

Parts in Valid libraries h:we the follo\\·ing standard
OUTPUT_TYPE property rnlues:

OC,AND {open collector; AND logic function }
OE,OR {open emitter; OR logic function }
TS, TS { tri-state; tri-state logic function }

Other property values can be used. The valut' is only used
to match output pin types and has no other meaning to the
Packager.

\Vhen the Packager detects outputs tied together that do
not have the OUTPUT_TYPE property or output;-; tiPd
together that have incompatible OUTPUT_TYPE proper­
ties. it produces an error message indicating th(' output pins
as well as the net name.

Occasionally there is a need to conned outputs of difl'cr('nt
types. The ALLO\V_CONNECT property c:rn b<' 11c-cd to

8-10 :l/11)>'\(i

l'a('kager Packager Functions iu Detail

allow multiple outputs to be connected together by specify­
ing which outputs arc to be "ignored" during the output­
typc cheek.

Th<' ALLOW _CONNECT property may appear on a library
part (lll'i in the case of a standard connector) or in a logical
design. If the ALLOW _CONNECT property is used as a
net property, it applies to all the output pins on the nets.
\Vhen used as a body property, it applies to all the output
pins of the body. When used as a pin property,
ALLOW _CONNECT applies only to the pin to which it is
attached.

INPUT AND OUTPUT PIN CHECKS

The Packager understands that every net must be driven
and must also drive. Therefore, each net is checked to
make sure that it connects to at least one input as well as
one output pin. If this is not the case, a message is printed
indicating the condition detected and the net for which it
was detected. \\'hen parts are created, special properties
are attached to their pins to indicate whether the pin is an
input, an output, or bidirectional. The INPUT_LOAD pro­
perty on a pin indicates that the pin is an input, the
OUTPUT_LOAD property indicates that the pin is an out­
put, and the BIDIRECTIONAL property indicates that the
pin is both an input and an output. These input and output
checks can be suppressed on a pin-by-pin, body-hy-body, or
net-by-net basis. The NO_IO_CHECK property is used for
this purpose. The NO_IO_CHECK property can be given
one of three values as follows:

LOW
This causes the •·o state" I/O check to be
suppressed. The "l state" check is per­
formed.

HIGH
This causes the "1 state" 1/0 cheek to be
suppressed. The "O state" check is per­
formed.

3/10/86 8-11

Packager Functions in Detail Packager

BOTH or TRUE
This causes both the "O state" and the "1
state" I/O checks to be suppressed.

The NO_IO_CHECK property may appear on a library part
(as in the case of a standard connector) or can be attached
to various pins, bodies, or nets on the drawings. If the
NO_IO_CHECK property is used as a net property, it
applies to all the pins on the net. When used as a body
property, it applies to all pins on the body. When used as a
pin property, NO_IO_CHECK applies only to the pin to
which it is attached.

8.6 DEVICE LOADING CALCULATIONS

Once a design has been expanded into physical components
and the interconnections among them are complete, it is
necessary to check that loading rules have been obeyed.
The loading values are unitless quantities and need not
represent any physical values.

The loading for each part is specified in the SCALD library
defining the part. The loading for each pin of the part is
specified by a property attached to the pin. The property
has the following form:

(low value, high value)

where low value is the DC load the pin presents when in the
"O state" (the most negative voltage state). The high value
is the DC load the pin presents when in the "1 state" (the
most positive voltage state). The actual value is an integer
or a real number that specifies the load in some consistent
units.

The values used for some Valid libraries (such as the
LSTTL library) are the amount of current which an output
may source or sink, and the amount of current required to
set an input to each of its states. These loading values are
specified in mA (Amps x 0.001). By convention, current
flowing into a pin is positive and current flowing out of a
pin is negative. Some libraries (such as the lOOK library)
use values which have no physical meaning but instead

8-12 3/10/86

Packager Packager Functions in Detail

describe the maximum fan-out for an output pin.

There are two properties used to specify loading:
INPUT_LOAD and OUTPUT_LOAD. INPUT_LOAD is
used to specify the load a pin presents when it is used as an
input or when not driving the signal. An input pin should
always have an INPUT_LOAD property. An output pin is
given an INPUT_LOAD property whenever that pin can
also place an input load on the signal. For instance, a
'IRI-STA TE or an open collector output also presents a
load when not driving the signal. This load needs to be
considered when calculating the loading of the entire net.

The OUTPUT_LOAD property is used to specify the load
presented by a pin when used as an output pin. By
definition, the presence of the OUTPUT_LOAD property
indicates that the pin is an output pin. If a pin does not
have the OUTPUT_LOAD property, it is assumed to be an
input pin. When a pin is both an output and an input (e.g.,
a transceiver pin), both the INPUT_LOAD and
OUTPUT_LOAD properties must be present. In addition,
the BIDIRECTIONAL property must be used to indicate
that the pin is both an input and an output.

The Packager calculates the loading for each net for both
logic states ("O state" and "1 state"). The Packager per­
forms the following checks:

1. For each logic state, the input and output
loads must have opposite signs.

2. For each logic state, the absolute value of the
smallest output load must be greater than or
equal to the absolute value of the total input
loads on that net.

Here is an example for a net with four nodes. The loading
properties for each node are given as a pair of numbers for
the low and high logic states:

3/10/86 8-13

Packager Functions in Detail Packager

Lo Hi
Node 1 (Out.put pin) U.T'ITTJT_LOAD = (3.0, - 1 . 8)
Node 2 (Input pin) Il\1'UT_LQ\D =(-1.2, 0.2)
Node 3 (Input pin) Il\'PllT _LQ\D = (-1.2, 0.2)
Node 4 (Bi-di pin) Il\1'UT_LQ.\D = (-1.2, 0.2)

(Bi-di pin) U'TPUT _LOAD = (0 .4' -1. 8)

Note that No<le 4 is a bidirectional pin that hrn;; both an
INPUT_LOAD and an OUTI=>UT_LOAD.

Check 1: For the low logic :-;tate, all output loa(l values are
positive and all input load rnluPs arc negative. Likewise,
for the high logic state, all out.put load values arc nPgativc
and all input load values are positive. In both cases, the
input and output loads have opposite signs, satisfying the
first Packager load check.

Check 2: For the low :-;tale, the :,;malk,;;t output load is OA
(l'\ode '1), while the total input load b -3.6 (sum of nodes
2. :l, and 4). ~ince the absoluw value of 0.1 is l(•ss than
the absolute valu<' of" -3.6. this net needs additional output
loading and ,\·ill be flagged a;:; an error. For the high state,
the smallest output load value is -1.8, and the total input
load is 0.6. Thus, the output loading is suflicient for the
high state.

If a net loading error exists and can be fixed by the use of
more versions of the net, the Paekager will flag the net a5
having a loading error and will try to generate more ver­
sions of the net to eorrect, the error as well as printing an
error message. This may in turn cause errors if there are
not enough versions of the out.put5. (Note that this do<>s
not actually change the design.) If a net has a loading C'rror
which cannot be fixed by more versions (e.g., an output
which cannot drive even a single ii1put); tlw Paekager will
flag this error and not try to generate more versions of the
net.

LOADING FOR PINS 'IHAT DRIVE OR LOAD ONE
STATE ONLY

Some out.put pins ean only drivP to orH' statc>. For <'X:11n­
ple, an open collector pin tan only drivP to the ··o state"'.

8-1 l :~/10/Sfi

Paekager Packager Functions in Detail

For these pins, it is meaningless to specify a loading for the
opposite state. Further, the I/O (input/output) and loading
checks for the net for the other state should not assume
that this pin is an output.

Likewise, sonH' input pins only present a load for one state.
Th us the T/O and loading checks for the net for the other
state should not assume that this pin is an input. To sup­
port this, the Packager allows loading for either the "O
state" or the "l state" to be specified with an '*' to indi­
cate that the pin does not drive or load the net. For exam­
ple, the output loading for an open collector pin might be
specified as:

OUTPUT_LOAD = (-2.0,*)

indicating that it can drive a 2.0 load in the "O state" but
does not drive the net in the "1 state".

NO_LOAD_CHECK PROPERTY

Device loading calculations may be suppressed on a pin­
by-pin or body-by-body basis. The NO_LO.:\D_CHECK
property is used for this purpose. It can be given one of
three values as follows:

LOW
This causes the "O state" loading check to be
suppressed. The "1 state" cheek is per­
formed.

HIGH
This causes the "1 state'" loading check to be
suppressed. The "O state" check is per­
formed.

BOTH or TRUE
This causes both the "O state" and the "1
state" loading checks to be suppressed.

The NO_LOAD _CI-IECK property can appear as a body
property on a library part or on a logical part in the design.
When used as a body property, it applies to all pins of the

3/10/86 8-1.5

Packager Functions in Detail Packager

body. This property can also be attached to hdividual pins
of a library part or a logical part in the design. When used
as a pin property, NO_LOAD _CHECK applh s only to the
pin to which it is attached. When the NO_LOAD _CHECK
property is attached to a net, it applies to all pins on that
net.

UNKNOWN_LOADINGPROPERTY

Occasionally there are parts in a design that have pins with
unknown or unspecified loading such as the pins of a con­
nector. The Packager makes it possible to include such
components in a design without causing net loading or I/O
check errors.

The property UNKNOWN_LOADING tells the Packager
that loading is unknown, and this inhibits load checks and
I/O checks. When UNKNOWN_LOAD ING is attached as
a body property to either a library part or a logical part in a
design, the property applies to all pins of the body. When
attached to an individual pin on the library part or on a log­
ical part, UNKNOWN_LOADING applies to the entire net
to which this pin is attached.

If you attach NO_LOAD _CHECK to a pin with
UNKNOWN_LOAD ING on either the pin or body, load
checking will not be suppressed for the entire net, but only
for this pin, as specified by the value of
NO_LOAD _CHECK. Likewise, attaching NO_IO_CHECK
to a pin will only suppress I/O checking for the pin, as
specified by the value of NO_IO_CHECK. This mechanism
allows you to "suppress" the effects of the
UNKNOWN_LOADING property on a pin-by-pin basis.
This is useful in the case where UNKNOWN_LOADING is
attached to the body of a library part.

8-16 3/10/86

Packager Packager Functions in Detail

8.7 TABLES COMPARING NET/LOAD CHECK PRO.
PER'llF.s

The following tables compare these properties:

• ALLOW _CONNECT

• NO_IO_CHECK

• NO_LOAD _CHECK

• UNKNOWN_LOADING

Not.e that UNKNOWN LOADING differs from the other
properties: when attached to a pin, it applies to all other
pins on the same net.

ALLOW _CONNECT

Used on:
Applies to:

Pin only All Dins on body All Dins on net
Pin x

Body x
Net x

NO_IO_CHECK

Used on:
AOOiies to:

Pin only All pins on bodY_ All_l>ins on net
Pin x

Body x
Net x

3/10/86 8-17

Packager Functions in Detail Packager

NO_LOAD _CHECK

Used on:
Applies to:

Pin onlv Ail....12.ins on bodv All_.£!ns on net

Pin x
Body x
Net x

UNKNO\VN_LOAD I'.'\G

Used on:
Applies to:

Pin only All..r~_ins on body Ail..2)ns on net
Pin x

Boclv x x

8-18 :: I I O/'il(i

SECTION 9
LIBRARIES AND PHYSICAL PART TABLES

The Packager uses information from libraries and physical
part tables to determine the physical characteristics of the
various parts in a design. The Packager extracts inf orma­
tion from these files for each part in the design and places
it in the output file PSTCHIP. This output file can then be
used by physical design systems.

This section briefly discusses several properties which are
important to the Packager and which are attached only to
library parts (e.g., PIN_NU~IBER., INPUT_LOAD). See
the Library reference manual for a more complete discus­
sion.

This section also includes a detailed description of physical
part tables, including the use and format of the tables.

9.1 LIBRARY F1LES

The CHIPS file contains a description of every physical part
in the libraries. It is generated by compiling the library
description drawings with the OUTPUT CHIPS directive.
The Compiler produces the file CHIPS which is read by the
Packager with the LIBR.AR.Y _FILE directive in the Pack­
ager directives file. The library manager has the responsi­
bility to see that the CHIPS files used by the the designers
are up to date. The CHIPS file must be recreated when­
ever the libraries are modified.

The CHIPS file contains physical information that is
entered on the system describing the part. The Packager
expects the following information for each part:

1. PIN_NUMBER. property for every pin.

2. INPUT_LOAD or OUTPUT_LOAD (or both) pro­
perties for every pin.

3/10/86 9-1

Libraries and Physical Part Tables Packager

3. POWER_PINS property for the part.

4. FAMILY property for the part.

Other properties recognized by the Packager but not
required:

1. BIDIRECTIONAL pin property if the pin is
both an output and an input.

2. UNKNOWN_LOAD ING pin or body property
indicating that device loading is not known.

3. NO_LOAD _CHECK pin or body property
used to suppress device loading calculations.

4. NO_IO_CHECK pin or body property used to
suppress input and output net checks.

5. WIRE_GA TE body property indicating that
the body is a phantom wire gate (such as a
WIRE-OR).

6. WIRE_ GA TE_ OUTPUT pin property indicat­
ing that this is an output pin of a wire gate.

7. OUTPUT_TYPE pin property which specifies
whether other outputs can be connected to
the pin and what type they must be.

8. ALLOW _CONNECT pin property to permit
an output pin to be connected to a net regard­
less of whether there are other outputs on the
net.

IJ. PHYS_DES_PREFIX body property which
specifies the prefix to use for physical part
designator creation.

10. PIN_GROUP pin property which specifies
whether a pin belongs to a group of swappable
pins or not.

9-2 3/10/86

Packager Libraries and Physical Part Tables

11. AUTO_GEN body property to create a default
"library" for parts that don't exist in the
libraries but need to be packaged.

PIN_NUMBER and POWER_PINS PROPERTIES

Library parts must be given PIN_NUMBER properties so
the Packager will know how to assign pin numbers, swap
sections, etc. The PIN_NUMBER property is attached to
each pin of the body (except for bus through pins) and
conveys the following information:

• The pin number for the pin.

• How many sections of the part are in a package.

• The pin numbers for each section.

The Packager will print an error message if a pin is found
with no PIN_NUMBER property. If a part has multiple
sections, the PIN_NUMBER must specify the pin numbers
for each section.

Power and ground pin assignments for each part are
specified with the POWER_PINS property attached to the
part within the libraries. The POWER_PINS property is
used to specify both the names of the power rails as well as
the pin numbers. The POWER_PINS property only applies
to parts found within the libraries and is ignored if found
elsewhere.

PIN SWAPPING

The Packager and the section and pin assignment program
used by the Graphics Editor recognize the PIN_GROUP
property on pins of parts in the CHIPS files. The property
is used to assign the logical pins to pin equivalent and swap­
pable groups so that the Packager can perform legal pin
swaps.

A swappable group of pins are those pins which are logically
equivalent and belong to the same section. This means

3/10/86 9-3

Libraries and Physical Part Tables Packager

that if two net5 are swapped between two pins which are in
a swappable group, the logical function of the circuit is not
altered.

A common example of this occurs for the inputs of a
NAND gate such as a HLSOO. The two input pins are phy­
sically equivalent in terms of loading and propagation delay
from input to output. Thus, if the nets to the input pins
are swapped, the behavior of the circuit is unchanged.

Any set of pins that are swappable must have the
PIN_GROUP attached to them with the same value. Any
pin without the PIN_GHOUP property is not swappable
with other pins. The value of the PIN_GHOUP property is
not important, only that all pins of a swappable group have
the identical value.

If you want to swap pins but the library part does not con­
tain the PIN_GROUP property, use the directive
USE_PIN_GROUP OFF.

9.2 PHYSICAL PART TABLES

Physical part tables provide a way to create new part types
from a basic part type. For example, you can create many
different types of resistors and capacitors from a single
basic resistor or capacitor. The various resistor types may
have cliff eren t resistance values, power dissipation, cost,
reliability, etc. All of these characteristics can be specified
in a physical part table. There is only one library definition
for the part, and therefore only one copy of the models.
The Packager uses the properties attaC"hed to the part to
differentiate it from other instances of the same part.

Another use of physical part tables is to attach IH'W body
properties to a part type without having to recreate or
modify the library files containing the part type definitions.
An important use of this capability is the addition of new
properties to the libraries for certain interfaces such as SCI­
CARDS. These properties describe to the int.erfaee the
type and shape of each component.

9-4 a/10/86

Packager Libraries and Physical Part Tables

By using several physical part tables, you can change the
way part types are handled without changing the library
files. This is useful when a design is processed by several
different interfaces. The properties for each new interface
need not be added to the libraries, but instead are concen­
trated together into their own special physical part table.
You only need to specify the physical part table to be used
by the Packager.

You can create a physical part table with any text editor.
Since the files are kept in tabular form, they can easily be
read and updated.

Below is an example of a physical part table for 1/4-watt
resistors. The line n um be rs on the left are not actually in
the file but will be used to describe the format of the table.
Note that comment5 are enclosed in braces, and in this
example they precede the clement they describe.

1. FILE_ TYPE = MUL TI_PHYS_TABLE;
2.
3. { 1/4-watt resistor table }
4.
5. PART '1/4W RES'
6.
7. { SCI CARDS specific properties }
8.
9. SCI_PART = RES1/4W
10. SCI_SHAPE = CR1/4W
11.
12. {table format}
13.
14. : VALUE= PART_NUMBER, COST;
15.
16. { actual table entries for the resistors }
17.
18. lK = CB1025, $0.05
19. 1.2K = CB1225, $0.05
20. 1.5K = CB1525, $0.05
21. 2.2K = CB2225, $0.05
22. 2.7K = CB2725, $0.05
23. 3.3K = CB3325, $0.05
24. 3.9K = CB3925, $0.05

3/10/86 9-5

Libraries and Physical Part Tables

25. 4.7K = CB4725, $0.05
26. 5.6K = CB5625, $0.05
27. 6.8K = CB6825, $0.05
28. 8.2K = CB8225, $0.05
29.
30. {end of the 1/4W RES entries }
31.
32. END_PART
33.
34. {end of the physical part table file }
35.
36. END.

Packager

Line 1 is used to start the physical part table file and tells
the Packager that the file is a multiple physical part table
file. This means it may contain more than one part type.

Blank lines and comments such as lines 2 and 3 are ignored
by the Packager to allow you to make the file more read­
able. The comments are enclosed by '{' and '}'. Comments
can cross line boundaries; they cannot be nested.

Line 5 starts the physical part table entries for the 'l/4W
RES' part type. The part type name must be enclosed by
quotes. Lines 9 and 10 indicate that ALL 1/4-watt resistors
have the body properties SCI_PART and SCI_SHAPE
added to the part type with the values 'RES1/4W' and
'CR1/4W' respectively.

Line 14 describes the format for each line in the table for
the 1/4-watt resistor. In this example, the property that
may be used to modify the resistor is VALUE and the pro­
perties added to the new part types are PART_NUMBER
and COST. Another point to be noted is that the separator
between the PART_NUMBER and COST properties is a
comma. This defines the separator character between the
PART_NUMBER and COST values to be a comma within
the table that follows.

Lines 18 to 28 are the actual physical part table entries
which the Packager searches through to determine the new
part types to be created. For example, line 18 specifies that
all 1/4-watt resistors that have a VALUE property with a
value of 'lK' will be assigned to a new part type. This new

9-6 3/10/86

Packager Libraries and Physical Part Tables

part type will have the same definition as a 1/4-watt resistor
without a VALUE property plus the additional properties
PART_NUMBER and COST with the values of 'CB1025'
and '$0.05' respectively. If the 1/4-watt resistor had a
VALUE of '4.7K' the added PART NUMBER and COST
would instead be 'CB4725' and '$0.05'. Finally, line 32 is
used to denote the end of the part table for the part type
'1/4W RES' and line 36 denotes the end of the file.

HOWTOUSEmEPHYSICALPARTTABLES

Use the PART_TABLE_FILE directive to tell the Packager
the names of the files which contain physical part tables.
Any number of tables can be specified with this directive.
The names can be placed in a list separated by commas or
listed individually with separate PART_TABLE_FILE direc­
tives. For example, the directive:

PART_TABLE_FILE 'res.tab', 'cap.tab';

specifies two physical part table files, res.tab and cap.tab,
and is equivalent to the directives:

PART_TABLE_FILE 'res.tab';
PART_TABLE_FILE 'cap.tab';

If a part has a table associated with it, the Packager will
read the table format definition line to find the properties
that can be used to alter the part. If any of these properties
are found on an instance, their values are checked against
the entries in the table. If the Packager cannot find an
entry in the table for the given values on a part, an error
message is generated. You must either change the property
values in the drawings or must update the part tables.

The Packager creates a unique library part definition for
each entry in the table that matches a use in the drawings.
These are summarized as though they were unique physical
part types. The associated information from the tables is
added to each new library part created and can be used to
guide the Packager's execution. For e~ample, attaching a
NO_LOAD _CHECK property to a new part type will turn

3/10/86 Q-7

Libraries and Physical Part Tables Packager

off load checking for all instances of that part type.

To inform other programs, such as DIAL interfaces, that
these new library part definitions were created from the
physical part tables, the Packager builds a chips file contain­
ing all the new part types that are used in the design. This
file is written to the logical file PSTCHIP which is bound by
default to PSTCHIP.DAT in Vt-.1S, pstchip.dat in UNIX,
and to PSTCHIP DA TA in CMS.

For DIAL interfaces which are run after packaging, you
must include the LJBRARY_FILE directive to use the
Packager-generated chips file. Thus the interface's direc­
tives file might contain the following line:

LIBRARY _FILE 'pstchip.dat';

NOTE ON SCALE FACTORS

When the Packager searches the physical part table entries,
Lhe property values on the instance in a design must exactly
match the values defined in the entry. This means that a
VALUE property of '1000' on an instance will NOT match
an entry with a value of 'lK'.

To avoid these problems, it is suggested that you use a con­
sistcn t set of scale factors for numeric values. One com­
mon set of scale factors are those defined for SPICE which
are as follows:

T = 1E12
G = 1E9
MEG= 1E6
K = 1E3
M = lE-3
u = lE-6
N = lE-9
p = lE-12
F = lE-1.5

For example, use '1.234K' instead of '1234', and 'lMEG'
instead of '1 OOOK' or '1000000'.

9-8 3/10/8G

Packager Libraries and Physical Part Tables

FORMAT OF THE PHYSICAL PART TABLE

Each physical part table file can contain information for
more than one part type and has the following general
form:

FILE_TYPE = MUL TI_PHYS_TABLE;
part type table
part type table

END.

where each part type table is the physical part table for a part
type. The part type table has the form:

PART 'part name'
part type property list
table format definition
table entries
END_PART

where part name is the name of the part type being
redefined by the table entries, part type property list is a list
of new properties to be added to the part type, and table
format definition describes the format of the table which
consists of the table entries. The end of the part type table
is marked with 'END _PART'.

The part type property list section of the part tables can be
used to add new properties to a part type without having to
modify the chip files or library drawings. This is useful if
you wish to add properties independent of any set of pro­
perties attached to a logical part. Entries in the part type
property list are of the form:

property name = property value

and appears one per line. The property name is a standard
SCALD property name (e.g., a string of letters, digits, or
'_' starting with a letter and no longer than 16 characters).

3/10/86 9-9

Libraries and Physical Part Tables Packager

The property value can be any string of characters, and it is
terminated by the end of the line. If the value is too long
and cannot fit on one line, a tilde (-) may be used as a con­
tinuation character. It must appear as the last character in
the line. The tilde may appear between any two characters
in the line. For example, the line

SCI_PART = RES1/4W

is equivalent to

SCI_PART = RES-
1/4W

Notice that multiple spaces are considered to be one space
and that leading and trailing spaces about property values
are removed. If leading or trailing spaces are required, the
property values must be entered with quotes. Thus the line

SCI_PART = ' RES1/4W'

which defines a SCI_PART value with a leading and trailing
space. You may use either single quotes (') or double
quotes ("). This allows the use of quotes in the property
value by using the other quote character. You can also use
the quote character in a quoted string by doubling it when
used. For example, the line

HOW_ARE_YOU ="I'm OK"

is equivalent to the line

HOW _ARE_YOU = 'I"m OK'

which uses two single quotes within the quoted string to
create the quote character (').

The table format definition is used to describe the format of
each table entry and has the form:

: instance property list = part property list ;

!J-10 3/10/86

Packager Libraries and Physical Part Tables

instance property list is a list of property names that can be
attached to an instance of the part. These properties are
used to control the selection and customization of the part.
For a resistor, this property may be VALUE. This list has
the form:

property name and attributes
or

property name and attributes separator char ...

where if there is more than one property name and attributes
in the list, they must be separated by a separator char.

The separator char may be any character but a letter, digit,
'_', '=', '(', ')', '{', '}', ·-·, ':',';',single quote('), or
double quote(").

Each property name and attributes has the form:

property name
or

property name (attribute list)

When present, the attribute list describes any special attri­
butes the property may have during processing of the phy­
sical part table. The form of the attribute list is as follows:

attribute
or

attribute , attribute ...

where if there is more than one attribute in the list, they
must be separated by commas.

Currently the only attribute understood by the Packager is
whether a property is optional on an instance of a part. If a
property is not optional on a part and is not present on the
part, a warning is generated to remind you that the pro­
perty is missing. To specify that a property is optional,
attribute has the form:

OPT
or

OPT = 'def a ult value'

3/10/86 9-11

Libraries and Physical Part Tables Packager

where default value is the default value for the property if it
is not present on the instance of a part. This default value
must appear as a quoted string.

As an example, the definition

: VALUE(OPT='lK') = PART_NUMBER;

specifies that the VALUE property is optional on the part.
If not present on the part, the Packager will assume a
default value of 'lK' and not generate any warning mes­
sages.

The part property list is a list of the properties to be associ­
ated with the new part type by the Packager. For example,
a resistor table may specify the PART_NUMBER property.
This property list has the form:

property name
or

property name separator char ...

where if there is more than one property name in the list,
the property names must be separated by a separator char.

There is no limit to the number of properties that can be
specified. The table format definition may cross several lines.
The semicolon (;) is used to mark the encl of the
definition.

In the resistor table example, each line is defined to start
with a VALUE property followed by an equal sign(=).
The next field is the PART_NUMBER property value fol­
lowed by the COST property value separated by a comma
(,). An alternate file with the same information is:

FILE_TYPE = MUL TI_PHYS_TABLE;

PART 'l/4W RES'

9-12 3/10/85

Packager Libraries and Physical Part Tables

: VALUE= PART_NUMBER COST;
lK = CB1025 $0.05
1.2K = CBl 225 $0.05
1.5K = CDl 525 $0.05

END_PART
END.

Here the separator has been changed to a space(' '). If the
separator is a space, any number of spaces can appear.

The separator characters defined in the format line will be
used as the separator characters for property values defined
in the table entries. Thus when the separator character was
changed from a comma to a space, the comma is no longer
special and can be used as part of a property value. Also
the ability to change the separator character can be used to
make the file more readable. A more creative use of
separator characters might be as follows:

FILE_TYPE = 1'ULTI_PHYS_TABLE;

{ -- - -- - - -- -- - ---- --- - - - - -- - - - }
: VALUE = PART_NlJ1',ffiER I COST
{ - - - - - - - - -- - - - - - - - - - - - - - - -- - -}

lK = CB1025 I $0. 05
1. 2K - CBI 2 2 5 I $ 0. 0 5
1.5K - CB1525 $0.05
2. 2K = CB2 2 2 5 I $ 0. 0 5

{ - - - - - - - -- }

END.

3/10/86 9-13

Libraries and Physical Part Tables Packager

where the separator character is defined to be a vertical bar
(I) .

The table entries are the actual physical part table entries the
Packager searches through to determine the new part types
to be created. Each table entry has the form:

instance values = part type values
or

instance values = part type values : new properties

where the second form is only used when there are addi­
tional new properties to be added for the part type created
for this table entry. Since a colon (:) is used to separate
the last part type property value from any new properties,
the last property value must be enclosed in quotes if it con­
tains a colon.

The new properties are a list of new part type properties to
be added to the new part type created for a particular table
entry. The new properties have the form:

property
or

property , property ...

where each property has the form:

property name = 'property value'

The property values must be enclosed in quotes. For
example if we have the table

9-14

FILE_TYPE = MUL TI_PHYS_TABLE;
PART '1/4W RES'
: VALUE= PART_NUMBER, COST;
lK = CB1025, $0.05: TOLERANCE= '5%'
l.2K = CB1225, $0.05
l.5K = CB1525, $0.05
END_PART
END.

3/10/86

Packager Libraries and Physical Part Tables

not only will the part type created for resistors with a
VALUE of 'lK' have a PART NUMBER of 'CB1025' and
a COST of '_$0.05', but also h;:-ve a TOLERANCE of '5%'.
Resistors with a VALUE of '1.2K' or '1.5K' will NOT have
the TOLERANCE property added to the new part type.

Each table entry must each appear on one line. If an entry
is too long, we can again use the tilde (-) as a continuation
character. For example, the resistor example can be
entered as:

FILE_TYPE = MUL TI_PHYS_TABLE;

PART '1/4W RES'

: VALUE= PART_NUMBER,
COST;

lK = CB1025, -
$0.05

1.2K = CB1225, -
$0.05

1.5K = CB1525, -
$0.05

END_PART
END.

If more than one property is specified in the instance pro­
perty lis~ the AND of the values is used. For example,

3/10/86 9-15

Libraries and Physical Part Tables

FILE_TYPE = MUL TI_PHYS_TABLE;
PART '1/4W RES'

Packager

: VALUE, TOLERANCE= PART_NUMBER COST;
lK, 5% = CB1025 $0.05
lK, 1 % = CB1021 $0.50
1.2K, 5% = CB1225 $0.05
l.2K, 1 % = CB1221 $0.50
END_PART
END.

Note that both the VALUE and TOLERANCE properties
must match the values as specified in the table before the
property entry can be found. In this case, changing the
TOLERANCE property on a lK resistor causes a different
part to be selected (with a corresponding change in cost).

MODIFIED PART TYPES IN PHYSICAL
PART TABLES

The Packager normally generates the new part type names
for modified part types (subtypes) by appending a dash (-)
and an integer to the part type name. Examples of subtype
names for the part "RESISTOR" are RESISTOR-1,
RESISTOR-2, and RESISTOR-3.

These subtype part type names are not guaranteed to be
associated with the same parts from one run to another.
For example, the Packager might assign the name
RESISTOR-1 to the part 12P in the first run, and then
assign the name RESISTOR-2 to the same part in another
run.

You can assign your own subtype name in the physical part
table by attaching it to the property name. In this way the
subtype name remains the same from one Packager run to
the next. Here is an example of a physical part table with
subtype names:

line PART 'RESISTCR'

1 : VALUE, TOLERANCE PART_~Uv1BER CX>ST
2 lK 2% (lK) 1285 $.50

9-16 3/10/86

Packager Libraries an <l Physical Part Tab I es

;{ 2 .3K l {j(, (2 . 3K) 1300 $.50
4 lK 5% (lK, 50,7c~ 1024 $.24
5 5K 1% (!) 1000 $.43
6 lK 3% (!) 1028 $.24
7 lK 4% 1028 $.24

The subtype names (suffixes) are enclosed in parentheses.
The suffixes are of two types: explicit or implicit. Implicit
subtypes are denoted by an exclamation point (!). They
cause the Packager to append the property values to the
part type name. The Packager places commas (,) between
property values. For example, line 5 above would result in
the subtype RESISTOR-5K,1% and line 6 would be
RESISTOR-lK,3%

Explicit subtypes appear directly within the parentheses.
For example, line 3 would result in the subtype
RESISTOR-2.3K, while line 4 would be RESISTOR-lK,5%

The characters which are allowed within a suffix are as fol­
lows:

• a through z

• A through Z

• 0 through 9

•
• $

• %

• #

• &

• *

3/10/86 9-17

Libraries and Physical Part Tables Packager

• +

•

•
The length of the part type and the suffix together cannot
exceed 255 characters or the length of a legal part type
name as defined by default or directive. If the name is
longer than this limit, it is truncated. The
PART_TYPE_LENGTH directive controls the part type
name length limit.

If no suffix is specified, the Packager creates a numeric
suffix and appends it to the part type name. For example,
line 7 might be RESISTOR-2.

9-18 3/10/86

SEG110N 10
TI:MESA VERS /'IROUBLESHOOTING

This section covers several timesaving techniques for
advanced Packager users and also offers some pointers for
troubleshooting a design.

Here are some timesaving techniques:

1. Only generate the output files you really need. If it
is early in the design and you don't need to keep
consistent assignments from one run to the next,
then omit the state files. Likewise, if you are not
doing back annotation, omit the back annotation file.
The report files and cross reference files are another
set of optional files which you may not need for all
Packager runs. You can control the generation of
these files through the directives OUTPUT,
REPORT, and USE_STA TE_FILES. (Note: be sure
to turn State files on when tracking design informa­
tion.)

2. You can make some changes through feedback files
instead of going through the Graphics Editor and
recompiling the design. However, be sure to back
annotate and recompile at a later point to keep the
schematic and the Packager output synchronized.

3. If you have not introduced any components of a new
part-type into the design, and if there are no changes
to the physical part tables or libraries for the design,
you can use the output file PSTCHIP as the input
library file for the design. This saves time because
the Packager does not need to search through the
various libraries and physical part tables to extract
the parts for the design. Be careful when doing this,
because if there are any new part types, the Packager
run will fail. For example, if your original design
contains only the components LSOO and LS04, you

3/10/86 10-1

Tim es ave rs /Troubleshooting Packager

can use PSTCHIP as the input library file for the
next Packager run only if the new design contains
only LSOO and LSO 1 parts.

To use PSTCHlP as your new input library, rename
the Ille, as in this example

%mv pskhip.dat mylib.prt

and then enter thl' file name in the LIBRARY _FILE
directive:

LIBRARY_F1LE 'mylib.prt';

Then run the Packager.

When you arc troubleshooting a dl'sign, it is ofkn helpful
to back annotate and print a copy of the annotated
sehematic. Also, there arc several output files which are
useful for finding problems:

• PSTLST - the listing fik, which sho\\·s error mes­
sages.

• PSTLCHG - shows the logical parts which wcrl'
added or deleted since the last Paekag('r run.

• PSTPCHG - sho\YS all physical parts which \Yere
added or deleted sinec the last P:1ckagn run.

• PS'l13CHG - shows all bindings which were added or
deleted since the last run.

• PSTXREF - contains three cross referl'nce files:
local part, global signals, and global part.

• PSTRPRT - contains two r('ports sho"ing tlH'
remaining spare sections and the number of packaµ;f's
of each physical part required for th is dc'sign.

For more inforrnation, sf'c tlw detailed ckscriptions of
Packager output liles in Sect.ion 1 :~.

10-2 :~/10/"G

SECTION 11
ADVANCED TOPICS

This section is not yet available. It will appear in later edi­
tions of the Packager manual.

3/10/86 11-1

SECTION 12
PACKAGER DIRECTIVES

Directives are commands to the Packager program. You
enter these commands in the text file packager.cmd. The
file consists of a series of directives followed by "end."
Here is an example:

library _file '/uO /lib/lsttl/lsttl.prt';
warnings on;
oversights on;
end.

Each directive is followed by a semicolon (;). The direc­
tives can appear in any order. You can enter directives in
upper or lower case characters. However, if you reference
UNIX files, be sure to put the file name in lower case.
Comments are allowed but must be enclosed in curly
braces ({ }) . The file can be free-form: the Packager
ignores end-of-line and multiple spaces.

Note that you must always specify a library in packager.cmd
through either the LIBRARY _FILE or LIBRARY directive.
Otherwise, the Packager will not be able to find the physical
characteristics of the logical parts in the design.

This section describes the format and function of all Pack­
ager directives. The directives appear in alphabetical order.
The syntax illustrations for the directives use the following
conventions:

[] Square brackets enclose optional entries

name Names in italics stand for specific

3/10/86

entries which you supply or pick from a list

Ellipses indicate that you can repeat the
previous entry

12-1

Directives Packager

text Items in standard text should be copied
exactly (e.g., directive titles, semicolons)

Here is an example to illustrate the synta.'\'. conYentions:

report rptname [,rptnamej;

rptname

spares List 0 f spnre physical sections available
for use

partsummary Summary of all the physical part5 used
in the design

In the above example, rptname stands for the entries
"spares" and "partsummary". Since the second
occurrence of rptname is optional, both of the following are
syntactically correct:

REPORT SPARES;
REPORT PARTSUM!v1ARY, SPARES;

The synta.'\'. illustrations use lowercase characters because
they are easier to react. The directives em bedded in the
text are shown in upper case for clarity of expression.
However, the directives file itself is not case-sensitin'.

ANNOTATE

Use this directive to specify the information to be ineluded
in the back annotation file (PSTBACK). The Graphics Edi­
tor uses this file to mark physical part designators, pin
numbers, and/or physical net names on the schematic.
This directive controls only the data to he indudcd in the
file; the OUTPUT directive controls whether the fik is pro­
duced. The form of this directive is:

annotate option [,option] [,option];

option
body

12-2

Back annotak physical part. designators

:~/10/SG

Packager Directives

pin
net

Back annotate physical pin numbers
Back annotate physical net names

Default: When you omit this directive, the Packager gen­
erates back annotation for DODY and PIN.

Notes: The NET option is for scalar nets only and requires
the synonym file from compilation (CMPSYN). Also, if the
ANN OTA TE directive appears more than once in the direc­
tives file, the Packager ignores all but the last one.

DOCUMENT_ERRORS

Use this directive to control the printing of detailed error
messages in the listing file (PSTLST). This does not con­
trol the printing of the original, brief error message. The
detailed error messages are short paragraphs which appear
after the list of errors and give more information about
possible causes of the error. This information is also avail­
able at the back of this manual in Section 15.

document_errors on;

document_errors off;

print detailed error messages in
listing

do not print detailed error mes­
sages

Default: This directive is ON if omitted.

FEEDBACK_ ORDER

This directive specifies the feedback files and the order in
which the Packager will process them. The files are pro­
cessed in the order they are listed in the directive. (See
Section 6 for a detailed discussion of feedback files.)

feeclback_order [-v] filetype [,fi,letype] ... ;

3/10/86 12-3

Directives

file type

part_ trans

section_trans

feed back_n etlist

net_ trans

Packager

Physical part designator transfor­
mations file (PSTPRTX) to
change part names

Physical section reallocation file
(PSTSECX) to change part
names and section connections

Feedback net list (PSTFNET) - to
change pin connections, section
connections, and part names

Physical net name trnnsf ormations
file (PSTNETX) - to change net
names

The "-v" (verbose) option generates additional error infor­
mation for certain errors found during feedback processing.
For example, error #149 "Match not found for feedback
section" generates a list of the closest partial matches for
the entry. Normally, only the first three partial matches are
listed. The "-v" option outputs all partial matches in the
listing file.

Default: When you omit this directive, the Packager does
not perform feedback processing.

Notes: This directive can appear only once in the direc­
tives file. Also, state files must be generated for feedback;
otherwise, the changes cannot be saved. Therefore, you
must also include the directive USE_STA TE_FILES ON.
The state files must also currently exist; that is, the Pack­
ager run prior to the feedback run must create state files.

FIL TER_PROPERTY

This directive specifies properties to be omitted from the
expanded net and part lists. Other files are not affected.
You can list any number of properties, and you can enter
this directive as many times as needed in the directives file.

12-4 3/10/86

Packager Directives

This directive is useful for filtering out properties from
library part descriptions which are irrelevant to the design.

filter_property property [,property] ... ;

property Any property specified for this
design through the Graphics Editor.

Default: No properties are filtered.

Not.e: A related directive is PASS_PROPERTY, which is
performed before FIL TER_PROPERTY. In this way, pro­
perties can be explicitly passed and then filtered.

FREE_ GROUPING

This directive controls the assignment of parts lacking the
GROUP property.

free_grouping off;

free_grouping on;

Parts without the GROUP pro­
perty are in the "default" group
and cannot be assigned to the
same package as parts in other
groups.

Parts without the GROUP pro­
perty are "free" and can be
assigned to the same package as
parts with the GROUP property.

Default: This directive is OFF if omitted.

HARD _GROUPING

This directive temporarily nullifies the effect of the
GROUP property for the entire design so that you can
overwrite this property. Use this directive to move a section
from one group's physical part to another group's physical
part during feedback. Note that inadvertent feedback errors

3/10/86 12-5

Directives Packager

can be very damaging in these circumstances, so use the
directive with caution. Also, be sure to back annotate to
record these changes on the schen1atic. and then recompile
the design before packaging it again.

h ard_gro u ping on; The GHOUP property lS

in eff eet

hard_grouping oIT; The GROUP property is
nu llifi eel

Default: This directive is ON if omitted.

HARD_LOC_SEC

This directive temporarily nullifies the effect of the LOCA­
TION and SECTION properties for the entire design so that
you can overwrite them. Use this clireetive if you want to
change LOCA TJON or SECTION assignments during a
feedback run. Note that inach'ertent feedback errors can be
very damaging in these circumstances, so use the directive
with caution. Also, be sure to back annotate to record
these changes on the schematic, and then recompile the
design before packaging it again.

hard_loc_sec on;

harcl_loc_scc off;

LOCATION and SECTION
properties are in etfed

LOCATION and SECTION
properties can bf' overwrit..
ten

Default: This directive is ON if omitted.

INCLUDE_IO_LIST

Use this directive to mark interfacP sign:1ls \rith thP
IO_NET property. Interface signals an• those attached to a
FLAG body. The type of F'LAG body ddcrrnines thP Y;ilu<'

12-G :;;10/s1;

Packager Directives

of IO_NET (INPUT, OUTPUT, or BIDIRECTIONAL).

include_io_list on;

include_io_list off;

output the IO_NET property for
interface signals marked with
the FLAG body

do not output the IO_NET pro­
perty for interface signals

Default: This directive is OFF if omitted.

LIBRARY

This directive is similar to LIBRARY _FILE, but you can
use the short version of the library name instead of the full
path name. Use the directive to specify the libraries con­
taining physical information for parts in the design. The
directiYe can appear more than once, but a library file can­
not be listed more than once.

library 'shortname';

shortname The short name assigned to a full
path name.

Example: library 'lsttl', 'sttl';

For example, the short name for /uO/lib/lsttl/lsttl.prt is
lsttl. Most standard Valid libraries have short names that
you can use. These are the same names you use with the
LIB command in the Graphics Editor. Be sure to enclose
the short file name in single quotes. Note that you can use
LIBRARY and LIBRARY _FILE together in the same
directives file.

Default: None. You must use LIBRARY or
LIBRARY _FILE at least once in the directives file, since
the Packager must know the part libraries.

3/10/86 12-7

Directives Packager

LIBRARY_FILE

This directive specifies the libraries containing physical
information for parts in the design. The directive can
appear more than once. A library file cannot be listed
more than once. Note that you can use the short version
of a library file name with the directive LIBRARY.

library _file 'file' [, 'file'] ... ;

file The full path name of the library
file. The path name must be
enclosed in single quotes.

Example: library_file 'uO/lib/lsttljlsttl.lib';

Default: None. You must use LIBRARY or
LIBRARY _FILE at least once in the directives file, since
the Packager must know the part libraries.

MAX_ERRORS

This directive specifies the maximum number of errors
allowed before the Packager halts. When this happens, the
Packager prints a message and terminates with a summary
of the execution.

max_errors n;

n The number of errors allowed before the
Packager halts.

Default: If you omit this directive, the Packager ter­
minates after 1000 errors.

12-8 3/10/86

Packager Directives

NET_NAME_LENGTH

This directive controls the maximum length for physical net
names generated by the Packager. If the maximum length
is too short (e.g., 6), the Packager will be unable to gen­
erate unique names for all physical net names and will print
an error message.

net_name_length length;

length Maximum number of characters for
a physical net name

Default: If you omit this directive, the maximum length is
set to 24 characters.

OUTPUT

Use this directive to suppress particular output files. The
OUTPUT directive can appear more than once in the direc­
tives file. For example, you can use OUTPUT; to suppress
all the output files and then use OUTPUT ABC; to enable
only file ABC. The OUTPUT directive controls only the
files listed below under outfile.

output all;
output -all;
output -sample;
output;

Enable all output files
Suppress all output files
Suppress output file "sample"
Suppress all output files

output outfile [,outfilej ... ;

outfile

chipsfile

3/10/86

Output the chips file to
PS TC HIPS

12-9

Directives

expandednetlist

expandedpartlist

logicalchanges

physicalchanges

bindingchanges

crossref erences

localpartxref

glo balsignalxref

glo balpartxref

backannotation

Packager

Output the expanded net list
to file PSTXNET

Output the expanded part list
to file PSTXPART

Output the summary of
changes in logical parts in the
design to file PS1LCH G

Output physical changes to file
PSTPCHG

Output binding changes to file
PSTBCHG

Output all cross references to
file PSTXREF

Output local part cross refer­
ences to file PSTXREF

Output global signal cross
references to file PSTXREF

Output global part cross refer­
ences to file PSTXREF

Output back annotation to file
PSTBACK

Default: If you omit this directive, the Packager produces
all the above files except the cross reference files.

OVERSIGHTS

Use this directive to control the display of oversight mes­
sages. An oversight is a condition which is more serious
than a warning but not as serious as an error. An oversight
should be corrected, but the design will probably work

12-10 3/10/86

Paek ager Direct.in;;

without the correction. The total number of oversights is
always reported at the end of the Packager listing flit'
(PSTLST). This directive controls the printing of detai!Pd
oversight messages.

oversights on; display all oversight messages
on the Packager listing file

oversights off; omit oversight messages

Default: Display oversight messages.

Note: Use the SUPPRESS directive to turn off individual
oversight or warning messages.

PART_NAME_LENG'IH

This directive controls the maximum length for physical
part names generated by the Packager. If the ma.'<:imum
length is too short (e.g., 4 characters), the Packager will be
unable to generate unique names for all physical part5 and
will print an error message.

part_name_length length;

length maximum number of characters

Default: If you omit this directive, the maximum length is
set to 16 characters.

PART_TABLE_FILE

This directive specifies the files containing physical part
tables to be referenced by the Packager. There is no limit
on the number of files. You can use this directive more
than once in the directives file, but a file name can be listed
only once. (For more information on physical part tables,
see Section 9.)

3/10/86 12-11

Directives Packager

part_table_file 'filename'[, 'filename'] ... ;

filename The full path name of the physical
part table. Be sure to enclose the
path name in single quotes.

Default: You must use this directive to reference any phy­
sical part tables.

PART_TYPE_LENGTH

This directive limits the length of the names of part types
! Ii :11 ~irf' modified by physical part tables. (For more infor-
111 at ion on physical part tables, see Section 9.) This direc­
t.in' controls the length of subtype suffixes which can be
attaehed to part type names.

part_type_length n;

n

Default: 21

The maximum part type length, where n
is an integer between 0 and 255.

Note: The maximum part type length must be an integer
l>Pt WP<'11 0 and 255, and it must be greater than or equal to
the length of the longest part type name used in the design.

P ASS_PROPERTY

This dircetive specifies properties to be passed through to
the expanded net and part lists. Other files are not
afTPctcd. You can list any number of properties, and you
can enter this directive as many times as needed in the
directives file. Use this direc1iYP to explicitly select proper­
ties which are to be passed: those not named will be
exeludccl from the expanded net and part lists.

12-12 3/10/86

Packager Directives

pass_property property [,property] ... ;

property Any property specified for this
design through the Graphics Editor.

Default: All properties are passed.

Note: A related directive is FILTER_PROPERTY, whieh is
performed after PASS_PROPERTY.

PRINT_PIN_LIST

This directive generates a file required by the Drawing Flat­
tener. The file (PSTPIN) contains the PIN_NUl'vIBER. of
each PIN_DEF of the PART_TYPES used. The Packager
marks with "$S" each pin that:

• Is not a common pin

• Is sizeable (contained in more than one section)

• Is not a vectored pin

print_pin_Iist on; Generate the file PSTPIN for the
Drawing Flattener.

print_pin_Iist off; Do not generate the file PSTPI.N

Default: The file PSTPIN is not generated.

REPORT

This directive specifies the user reports to be included in
the output file PSTRPRT.

report -all;
report all;
report;

3/10/86

omit all reports
include all reports
omit all reports

12-13

Directives Packager

report rptname /,rptnamej;

rptname

spares

partsummary

List of spare physical sections
available for use

Summary of all the physical parts
used in the design

Default: If you omit this directive, all reports are pro­
duced.

SUPPRESS

Use this directive to suppress specific warnings and over­
sight messages. You: cannot suppress error messages. The
design conventions assumed by the Packager are conserva­
tive and rigorous. You may choose to design in a more
liberal style and may want to ignore certain messages.

suppress n /, nj ... ;

n The number of the warning or oversight
message to be suppressed

Note: You can suppress all warnings with the WARNINGS
direethe and all oversights with the OVERSIGHTS direc­
tivP.

USE_PIN_GROUP

This directive is useful if you want to do a pin swap and are
u::;ing a library without the PIN_GROUP property in the pin
dP.,.cription. Normally, the Packager only swnps pins with
the same PIN_GROUP property rn.\ue. The Packager will
ignore this requirement if you specify USE_PIN_GROUP
OFF.

12-1 I 3/10/86

Packager

use __ pin_group ofT;

use __ pin_group on;

Dirertins

Ignore pin_group prop<'rty for
pin swaps.

Check pin_group property for
pin swaps.

Default: If you omit this directive, it defaults to ON.

USE __ STATE __ F1LFS

This directive controls the use of state files.

use __ state __ files on;

use __ state __ files off;

Use state files if present and
generate new state files.

Do not use or generate any
state files.

Default: If you omit this directive, the Packager will use
and generate state files.

Note: If you are using feedback files, you must use state
files as well.

WARNINGS

Use this directive to control the display of warning mes­
sages. A warning is a condition which is less severe than
an oversight or error. You should correct it, but the design
will work without corrections. The total number of warn­
ings is always reported at the end of the Packager listing file
(PSTLST). This directive controls the printing of detailed
warning messages.

warnings on;

3/10/86

Display all warning messages
in the Packager listing file.

12-15

Directives Packager

warnings off; Display no warning messages.

Default: Display warning messages.

Note: Use the SUPPRESS directive to turn off individual
oversight or warning messages.

12-15 3/10/85

SECTION 13
PACKAGER OUTPUT FILES

This section contains detailed format descriptions of Pnck­
ager output files. The Packager produces the following out­
put files:

User Files
Listing File (PSTLST)
Log File (PSTLOG)
Cross References (PSTXREF)
Logical Changes Summary (PS TL CHG)
Binding Changes List (PSTBCII G)
Physical Changes List (PSTPCHG)
Reports File (PSTRPRT)

Net/Part Files
Expanded Net List (PSTXNET)
Expanded Parts List (PSTXPRT)
Chips File (PSTCHIP)

Back Annotation File (PSTBACK)

State Files for Later Packager Runs
Logical Signal Name to Physical Net

Name Binding (PSTSIGB)
Logical to Physical Part Designator

Binding (PSTPRTB)
State File (PSTSTA T)
Pin Swap File (PSTPSWP)

Within the section, these output files are described in the
order they appear above. However, the following files are
not described:

Listing File
Log File
Chips File
Back Annotation File

3/10/86 13-1

Packager Output Files Packager

State Files

The Listing File contains error information for the user,
and the Log File contains error information for use by
Valid personnel. The Listing File is deseribed in Section 2.

The following files are creakd by the Packager for use by
other programs. D 0 NOT ED IT THESE FILES. Since
they are created in a specific format, they will not work
properly if you change them.

• The Chips File contains information about parts used
in the design. This information is extrackd from
library files and combined with property data from
Physical Part Tables (if present). The Chips File is
used by physical design systems.

• The I3ack Annotation File is used by the Graphics
Editor.

• The State Files are used by the Packager to maintain
consistent assignments from one run to the next.

GENERAL NOTES ON OU'I'PUT FILE FORMAT

The Valid canonical signal name form is used for all logical
signal names and pin names. The assertion and name por­
tion of the signal are. in quotes. No bit lists appear. The
\'alid canonical syntax is:

·[-] name' <subscript>

\Yhen' ·-' i::; required for low asserted signals. The subscript
appe:1r;-; within angle brackets (< >).

Com :nents may be placed in the expanded net and part lists
if Pnelos('d in '{' and . r. A COll11lH'llt may appear any­
\\ here' a spacP m:1y :ip]){'ar. Comment-; may eross li1w
hound:1rics but 111:1,v not he nest<'<!.

Ir ;111 item is too long to fit on a line (80 eharnckrs). it
11111:,;t lw broken into more than one lint>. A tilde () 1s

I :J-:! :3/10/8G

Packager Packager Output FilPs

used as a continuation character to indicate that the eurrC'nt
item is continued on the next line. A line break may
appear between any two characters in the file. A ti!dC' i.s
only significant if it occurs at the end of the line.

Some of the Packager output files have very complex for­
mats. For the descriptions in this section, the file structure
is broken down into simpler parts in a hierarchical manner.
The overall structure of the file is shown first, followed by
the main individual parts. Some parts have substructures
that are also discussed in detail. Repetitive elements in a
file are indicated by ellipses (...) .

13.1 CROSS REFERENCE F1LF.S (PSTXREF}

There are many questions that need to be answered during
the design, test, debugging, and construction of a design.
The Cross Reference files are intended to directly or
indirectly answer many of these questions. There are two
basic cross reference types. The local cross ref'erence is
sorted by logical information and relates to a single draw­
ing. The global cross reference is sorted by physical infor­
mation and relates to the design as a whole.

There are three cross references contained within this out­
put file:

Local Part Cross Reference
Global Signal Cross Reference
Global Part Cross Reference

You can omit any or all of these cross references through
the OUTPUT directive. (See "Controlling Cross Reference
Generation" below for more details.) These cross refer­
ences appear in PSTXREF in the order listed above.

This section is organized as follows:

Overview of the three cross references
Explanation of path properties and path elements
Controlling cross reference generation through

3/10/86 13-3

Packager Output Files Packager

the OUTPUT directive
Detailed format descriptions for the three cross

references

LOCAL PART CROSS REFERENCE OVERVIEW

The Local Part Cross Reference file contains information
about the logical parts in the design and the physical assign­
ments given them. It is produced for each drawing in the
design and lists all of the logical parts that are found in the
drawing. It identifies a logical part by giving its name and
the PA TH property attached to it. (See below for an expla­
nation of PA TH elements.) Given a logical part in a draw­
ing, the designer can easily find the corresponding entry in
Lh is cross reference since it is ordered by logical part desig­
nator. If there is more than one instance of a particular
logical part within the drawing, the specific logical part can
be identified by its PA TH property. The physical part to
which the logical part has been assigned is also given. If a
logical part has been assigned to more than one physical
part due to SIZE or TIMES replication, the physical part is
given for each SIZE and TIMES replicated logical part.

The logical and physical signal names are given for each pin
on the logical part. The designer can see the logical signal
name in the drawing and this cross reference gives the phy­
sical net name assigned to it. The Global Signal Cross
Reference (which is indexed by physical net name) can be
checked to find all of the other logical parts on the net. If
there is more than one signal name for a signal in the
drawing (because of synonyms or interface signals), this
eross reference can be used to determine which name the
system uses to ref er to the signal.

GLOBAL SIGNAL CROSS REFERENCE OVERVIEW

The Global Signal Cross Reference contains information
about each net in the entire design. It is sorted by physical
net name. For each physical net, the logical signal name is
shown. This is the same logical signal name that appears in
the drawings. The loading on the net is given for both the
0-state and the 1-state. This loading is the sum of all of the

13-'1 3/10/86

Packager Packager Output Files

input loads on the net.

Each node on the net appears with its associated physical
part name and pin number. This information makes it pos­
sible to trace a net in the physical design. The part type
and pin name are also given. To make it possible to find
the node in the drawings, the logical part corresponding to
a particular pin is given by specifying a PATH element and
the drawing in which the logical part can be found. (See
below for an explanation of PATH elements.)

GLOBAL PART CROSS REFERENCE OVERVIEW

The Global Part Cross Reference contains the same infor­
mation as the Local Part Cross Reference except that it is
sorted by physical part rather than logical part and refers to
the entire design rather than a single drawing.

The part type is given for each physical part along with the
pins on the part. For each pin, the physical and logical sig­
nal names are given. The logical part corresponding to the
particular pin is given by the PA 11-I element of the part and
the drawing where the part appears. To find the part, get
the drawing that is referenced (it refers to a specific page),
find the part on the drawing, and make sure it has the
PA TH property given in the PATH element. (See below
for an explanation of PA TH elements.) Note that the G lo­
bal Signal Cross Reference shows the parts to which a phy­
sical net is connected.

PATH PROPERTIES AND PATH ELEMENTS

This section explains the syntax associated with path pro­
perties and path elements so that you can interpret the out­
put files correctly. PA TH information is used in several
places to specify a particular logical component. The term
"PA TH property" refers to the PA TH property attached to
a logical component. The term "PA TH element" refers to
a specific SIZE and/or TIMES replicated logical part. For
example, examine the following part:

3/10/86 13-.5

Packager Output Files

PA1H 2P
SIZE=32B
TIMES=2T

+ - - - - - - -+
I I

- ID QI-

I I
I LS374 I

I I
- ICLK I

I I
+ - - - - - - -+

Packager

The LS37 4 (an octal register) has been given three proper­
ties. The PA TH property serves to identify this LS374 on a
particular drawing, the SIZE property causes this LS37 4 to
be 32 bits wide, and the TIMES property causes two ver­
sions of each output to be created (thereby doubling the
number of components).

The PA TH property for the LS37 4 in the drawing is 2P.
This property describes a particular component as it appears
in a drawing. A component in a drawing may be described
in terms of many logical components. The LS37 4 above
represents 64 (SIZE 32 x TIMES 2) logical components.
The SCALD III language has a consistent method for nam­
ing each of the logical components. This name is called the
"PATH element." A PA TH element has the form:

PATH property# SIZE index *TIMES index

PATH property is the PATH property attached to the com­
ponent in the drawing. As SIZE expansion is performed, a
SIZE index is used to number each of the logical com­
pon<'nts. The LS37 l above is given SIZE indices that run
fro111 0 to 31 (since the SIZE property value is 32). The
SIZE ind<'x Ynluc is appended to the PA TH property
c-cparated hy a '#'. As Til\lES expansion is performed, a

l :l-(i 3/10/Sf;

Packager Packag;er Output Fill'~

TIMES index is used to number eaeh of the logical com­
ponents. The LS37'1 above has TLMES indiee8 that rnn
from 0 to 1 (sinee the TL:\IES property value if' 2). The
TIIVIES index value is appended to the PA 111 element af'((']'
the SIZE index, separated by an'*'· PATii elements for
the LS37 4 above are:

2P
2P*l
2P#l
2P#l * 1
2P#2
2P#2*1
2P#3
2P#3*1

2P#31
2P#31*1

Note that the SIZE or TI}.1IES index value is omitted when
it is zero. This prevents SIZE (#0) and TIMES (*O) values
on parts that have no SIZE or TIMES properties.

CONTROLLING CROSS REFERENCE GENERATION

The cross references are generated by the Packager under
the direction of the OUTPUT directive. There are two
ways to control the cross rderences: they may all be
tunH'd on together, or they may be turned on individually.
13y default, the Packager generates all of the cross refer­
ences. To direct the Packager to generate all of the cross
references, use the directive:

OUTPUT CROSSREFERENCES;

This causes ALL of the cross references to be generated.
Each cross reference may be individually selected as well.
The following direetive generates the Local Part Cross
Reference:

3/10/86 13-7

Packager Output Files Packager

OUTPUT LOCALPARTXREF;

All of the cross references are output to the file PSTXREF.
If more than one cross reference is output, they are
separated by page ejects. All local cross references are
separated by page ejects since each local cross reference
refers to a single drawing page. The file may be split up
in to individual cross references by breaking at the page
ejects. The cross references always appear in the same
order in the PSTXREF file independent of the order that
they are specified in the OUTPUT directives. The cross
references are all output assuming at least 132 characters
ar<' permitted in a line. There is no provision to specify the
\Yidlh of the output file.

LOCAL PART CROSS REFERENCE FILE FORMAT

:\ Local Part Cross Reference is produced for each drawing
in the design. It is a list of all of the logical parts in the
drawing sorted by logical part name. The following infor­
rnation is given for each part:

Logical part name
Part's PATH property
Physical designator for part
Li:·'t of pins of the part with:

Pin number for each pin
Physical net name connected to each pin
Pin name for each pin
Logical signal connected to each pin

TliC' general form for a cross reference entry is as follows:

logical part PATH property physical part

13-8

pin numb er physical net pzn name
pin numb er physical net pzn name
pin number physical net pzn name

logical net
logical net
logical net

3/10/86

Packager Packager Output Files

An entry in such a cross reference for the logical part
100166 might appear as follows:

1001 () () 29P Ul 8
1 OPI32 B<2> OP B<2>
2 OPl31 B<l> OP 13<1>
3 OPBO B<O> OP B<O>
4 LTL 13>A -LT
5 EQ -A B EQ
8 GT A>B GT
9 OPAO A<O> OP A<O>
10 OPAl A<l> OP A<l>
l l OPA2 A<2> OP A<2>
12 OPA3 A<3> OP A<:3>
13 AO A<4> 0
14 AO A<5> 0
15 AO A<6> 0
16 AO A<7> 0
17 AO A<8> 0
19 AO 13<8> 0
20 AO B<7> 0
21 AO 13<6> 0
22 AO 13<5> 0
23 AO 13<4> 0
24 OPB3 B<3> OP B<3>

The first line gives the logical part name (10016G), tlw
part's PATH property (29P), and the name of the physi('al
part where this logical part was placed (UIS).

The rest of the lines in the entry show each pin of the part.
The first line shows the pin number (1), the physic·al net
name (OPB2), the logical pin name for the pin (B<2>J.
and the logical signal name connected to the pin (OP
B<2>).

If the logical part is given a SIZE or Tl:OvIES property, the
cross reference entry summarizes the common portions of
the logical part and then list<; each of the SIZE and/or
TIMES replicated sections. For example, the logical part
100145 with SIZE=4 might appear as follows:

3/10/86 13-\J

Packager Output Files Packager

100145 26P SIZE-----1 Summary of comnon pins:
1 READADRB2 AR<2> READ ADR D<2>
2 READADRBl AR<l> READ ADR D<l>
3 READADRBO AR<O> READ ADR B<O>
14 C2L -OEO -C2
15 C2L -OEl -C2
16 ClL -~EO -Cl
17 ClL -\'\El -Cl
1 g MR l\1R l\1R
20 \\RITEADRABO A\'\'<:0> \\RITE ADR AB<O>
21 ~RITEADRABl A\\'<:L> \\RITE ADR Alk:l>
22 \\RITEADRAB2 A~2> \\RITE ADR AB<2>
2 3 ~RI TEADRAB3 A\'\<:::3> \\RI TE ADR AB<3>
2 4 READADRB3 AR<3> READ ADR B<3>

S e c t i on : 2 6 P#3 U 1
4 OPB3 Q<3> OP B<3>
13 RESUL T3 D<3> RESUL T<3>

Section: 26P#2 Ul
5 OPB2 Q<2> OP D<2>
1 2 RESUL T2 D<2> RESUL T<2>

Section: 26P#l Ul
8 OPBl Q<l> OP D<l>
11 RESUL Tl D<l> RESUL T<l>

Section: 26P
g OPBO
10 RESULTO

Ul
Q<O> OP B<O>
D<O> RESUL T<O>

The first line contains the logical part name (100145), the
part's PATH property (26P), and a SIZE value specification
:"howing the number of SIZE and/or TI~fES replicated
parts (SIZE=4). After the first line, the common pins of
the part are shown in the same format as the 100166 exam­
ple shown above:

pin number physical net pin name logical net

For example:

HE .. "\Dc\DRD2 AR<2> READ ADR B<2>

Th<' SIZE and/or TT~lES replicated sections of the logical

I :~-10 3/10/86

Packager Packager Output Filrs

part appear after the common pins summary. The form for
each SIZE and/or TIMES replicated section is:

Section: PATH element physical part designator
pin list

The PATH element consists of the PA TH property followed
by the SIZE replicated index (#1, #2, #3, ...) and the
TIMES replicated index (*l, *2, *3, ...). The name of the
physical part to which the logical section is assigned is given
last. The pin list is of the same form as the pin list in the
common pins summary; only pins that are unique to the
specified section are listed.

GLOBAL SIGNAL CROSS REFERENCE FORMAT

A Global Signal Cross Reference is produced for the entire
design. It consists of a list of all of the signals in the design
sorted by physical net name. The following information is
given for each net (signal) in tl1e cross reference:

Physical net name
Low state input load
High state input load
Logical signal name of the net
List of nodes on the net with:

3/10/86

Physical part designator
Pin number on the part
Pin name of the pin
Part's part type
Corresponding logical part
Drawing on which this signal resides

13-11

Packager Output Files Packager

The general form for an entry in this cross reference is:

physical net net loading logical signal

node description
node description

An entry in the cross reference might appear as follows:

READADRB2 3.0
U1 AR<2>

U2 24 Q<26>

-3.0 READ ADR B<2>
100145 26P#3 Al.Lcx:;IC.1.1

26P#2 Al.Lcx:;IC.1.1
26P#l Al.Lcx:;IC.1.1
26P Al.Lcx:;IC.1.1

100150 33P#26 Al.Lcx:;IC.1.1

The first line of the above entry shows the physical net
(READADRB2). Following the net name is the total load
on the net presented from all the inputs on the net. Both
the 0-state (:3.0) and the 1-state (-3.0) loading are shown.
The last entry on the first line is the logical signal name for
the net (READ ADR B<2>). Following the first line is a
list of all of the nodes on the net. Each node description
has the form:

physical part designator pin number pm name part type PATH drawing

In the above example, the physical part designator is Ul,
the pin number is 1, the pzn name is AR<2>, and the part
type is 100145. The PATH element is (26P#3), and the
drawing in which the part appears is Al.LOGIC.LL The
PA TH element is made up of the PA TH property on the
logical part and the SIZE and TIMES replication values for
this expanded instance. Note that the physical part, pin,
and part type information are not listed for the next three
entries. Instead of repeating identical information, the
cross reference leaves it blank. This is intended to make
the cross reference easier to read.

13-12 3/10/85

Packager Packager Output Files

GLOBAL PART CROSS REFERENCE FILE FORMAT

A Global Part Cross Reference is produced for the entire
design. It is a list of all of the physical parts in the design
sorted by physical part designator. The following informa­
tion is given for each part:

Physical part name
Part type
List of the nodes on the part with:

Pin number of each pin
Physical net connected to the pin
Logical signal name connected to the pin
PA TI-I element for the logical part
Drawing on which the logical part is found

The general form for an entry in this cross reference is:

physical part designator part type

pin number physical net logical net PATH
pin number physical net logical net PATH
pin numb er physical net logical net PA TII

drawing
drawing
drawing

An entry in such a cross reference for the part 10014:)
might appear as follows:

Ul 100145
1 READADRB2 READ ADR Ik2> 26P#3 Al .LCGIC. l. 1
2 READADRBl READ ADR Ik::I> 26P#3 Al .LCDIC.1. I
3 READADRBO READ ADR IkO> 26P#3 Al .LCDIC.1 . 1
4 OPB3 OP Ik:3> 26P#3 Al .LCDIC. l . 1
5 OPB2 OP B<2> 26Pffe2 Al .LCDIC.1 . 1
8 OPBl OP Ik:l> 26P#l Al .LCDIC. 1 . 1
9 OPBO OP Ik:O> 26P Al .LCDIC. l .1
10 RESULTO RESULT<O> 26P Al .LCDIC. l .1
11 RESULT! RESULT<l> 26P#l Al .LCDIC.1 . 1
12 RESULT2 RESULT<2> 26P#2 Al .LCDIC. l .1
13 RESULT3 RESULT<3> 26P#3 Al .LCDIC. l .1
14 C2L -C2 26P#3 Al .LCDIC.1.1
15 C2L -C2 26P#3 Al .LCDIC. l. 1

3/10/86 13-13

Packager Output Files

16 OIL -Cl
17 OIL -Cl
19 Ml Ml
20 VIRI'IEADRABO \\RI1E ADR AB<O>
21 \\Rl'IEADRABl \\RI1E ADR Alkl>
22 \\Rl'IEADRAB2 v\Rl1E ADR Ail<'2>
23 VIRI'IEADRAB3 \\Rl1E ADR Alk3>
2 4 READADRB3 READ ADR lk3>

26P#3
26P#3
26P#3
26P#3
26P#3
26P#3
26P#3
26P#3

Packager

Al .LOOIC. l. I
Al .LOOIC.1 .1
Al .LOOIC. 1. I
Al .LOOIC. l. I
Al .LOOIC. 1. I
Al .L<XHC. l .1
Al .LOOIC.1 .1
Al .LOOIC.1 .1

The first line of the entry shows the physical part designator
which is Ul in this example. Following that is the part
type, 100145. The following lines show the pins of the part
in numerical order. The pin number, physical net name,
and logical net name are given for each pin. The last two
entries on the line describe the logical part that
corresponds to the pin. The logical part is described by
giving its PA TH element and the drawing on which the
logical part appears ..

The first entry in the pin list above is:

1 READADRB2 READ ADR B<2> 26P#3 Al.LCGIC.1.1

which shows pin number 1 connected to the physical net
READADRB2 which is also the logical signal READ ADR
B<2>. The logical part corresponding to this pin has a
PA TH property of 26P with a SIZE replication index of 3.
This part appears in the drawing Al.LOGIC.1.1.

13.2 LOGICAL CHAN~ SUMMARY {PSTLCHG)

The Logical Changes Summary shows the logical parts that
were added to or deleted from the design since the last run
of the Packager. The format of the logical part description
is:

(logical part path name) part type ;
#SIZE *TIMES

An example is:

13-1-1

(SPT .8SIP2P) 8SIP;
#0*0

3/10/86

Packager Packager Output Fiks

For more information on the format of the logical part path
name, see the SCALD III Language reference manual.

13.3 BINDING CHANGES LIST (PSTBCHG)

The Binding Changes List shows all bindings that were
changed or deleted during the Packager run. A binding is
a mapping of a logical part to its allocated physical section.
Changed bindings are listed in the form:

(logical part path name} part type #SIZE *TIMES
IS ASSIGNED TO physical part SECTION section number

For example:

(SPT .8SIPIP} 8SIP #1*0 IS ASSIGNED TO U3 SECTION 1

For more information on the format of the logical part path
name, see the SCALD III Language reference manual.

13.4 PHYSICAL CHANGES LIST (PSTPCHG)

The Physical Changes List shows all physical part designa­
tors that were added to or deleted from the design during
the Packager run.

13.5 REPORTS FILE (PSTR.PR'lj

The Reports File consist..;;; of two reports: the Spares List
and the Part Summary. The Spares List shows all the
spare physical sections in the design. These are sections
that have not been allocated to a logical part. Spares are
listed in the form:

physical part designator - pin number

For example, "U3-3" indicates that the section containing
pin 3 of physical part U3 has not been allocated.

The Part Summary is an alphabetical list of abbreviations
for all the part types used in the design. It also shows the

3/10/86 13-15

Packager Output Files Packager

number of physical parts of each part type in the design.
Here is a sample report:

- PART SUMMARY -

TADD
TDFF
TINV

Total

2
2
1

5

13.6 THE EXPANDED NET LIST (PSTXNET)

The Expanded Part List and Expanded Net List are input
fi ks to physical design systems. These files contain a com­
plete description of the design and can be converted into a
form compatible with some target physical design system.
The files are organized by physical information.

The Expanded Net List is ordered by physical net name
:incl eontains all net properties and the logical to physical
binding of nets and nodes. The form of the Expanded Net
List is as follows:

FILE_TYPE=EXPAND ED NETLIST;

net description;

END.

13-15 3/10/86

Packager Packager Output Files

The net description is of the form:

NET_NAME
physical net logical net version :

net property

' node description

where NET_NAME is used to mark the beginning of a net
entry. The physical net is a quoted string of lctt(•rs and
digits. The logical net is the signal in Valid canoni<'al syn­
tax. The version is an optional field of the form

* version numb er

where version number specifies which version of the THd ES
replicated signal matches the physical net. Versions of th<'
signal are numbered from 0 to number_of_versions - 1. If'
version number is 0, then it is omitted. A colon (:) is used
to mark the end of the logical net name. Each net property
has the form:

property name = 'property value'

Each element in the list of properties is separated by a
comma (,). The last element in the list is followed by a
semicolon (;) . This list may cross several lines. If th er<'
are no properties, only a semicolon appears.

3/10/86 13-17

Packager Output Files Packager

There are node descriptions for each of the nodes on the
net, including node properties. Each node description has
the form

NODE_NAME
physical part designator pin number

logical node description

where physical part designator is the name of the physical
part. The name is a string of letters and digits. pin number
is the pin number on that part. There is a logical node
description for each logical node corresponding to the physi­
cal node. The logical node description has the form

logical designator bit version : pin name :
node property

where logical designator is the name of the logical part
corresponding to the physical part. It is a quoted string of
characters.

The optional field bit specifies which bit of a SIZE­
replicated component matches the physical section. Bits of
the component are numbered from 0 to number_of_bits -
1. If bz"t is 0, then it is omitted.

The versz"on is an optional field described above for net
descrz"ption. The pin name is the logical name of the pin
corresponding to the pin number given. It has Valid
canonical synta'\'. (see the paragraph "General Notes on
Output File Format'' at the beginning of this section).

A colon (:) is used to mark the end of the pin name and
the start of the node propertks. The node properties are
output in the same manner as the net properties described
nboYe.

3/10/86

Packager Packager Output Files

Here is an example of an Expanded Net List:

FILE_TYPB=EXPAN)EDNETLIST;
NET_N.\.\1E

'DATA.2'
- 'DATA.2'<2>:

LEl\G'.IH=' 2' ,
BREAD'.IH=' 4 ' ;

l\1CDE_N\ME

{physical net DATA.2 }
{ 1 o g i c a 1 n e t n ame }
{ property of the net }
{ property of the net }
{ first node on the net }

U31 2 { physical part designator
and pin number }

'(1EST1 AID2P#2 3.4GN2P TF1.14P#l SDPlP 1BB23P -
GDP2P .74.5P)74LS74': 'Q'<O>: {note line break}

{previous line contains
the logical designator
and pin name }

INPU'F '23' ; { node property }
{ second node on the net }

l\1CDE_N\NlE
Ull 3 { physical node }
'(TEST! .00.12P)74LS00'#2"'1: {bit 2, version 1}

'Y'<O>: {first logical node}
{ no node property }

' (TEST! . 00. 13P) 7 4LSOO' :
'Y'<O>: { second loghc:a) node }

{ no node property }
NET_N\ME { the ne:x t net }

{ and so on }

EN>.

The Expanded Net List is designed to be easily reacl. Net
descriptions are marked by the NET_NAME keyword and
thus cannot be confused with a net name since physical net
names cannot contain the underscore character (_). The
net name entry is always terminated by a semicolon (;)
which comes at the end of the net property list.

The physical net name is always followed by the logical
name which has a restricted form making it easy to inter­
pret. A colon is used to mark the end of the logical net
name so that there is no chance for confusion with proper­
ties.

3/10/86 13-19

Packager Output Files Packager

After the net names and properties are the node entries.
Each of these is marked by the NODE_NAME keyword
and terminated with a semicolon (;) which falls at the end
of the list of node properties. The logical designator is fol­
lowed by a colon (:) to mark the start of the pin name.
The pin name is followed by a colon to mark the beginning
of the node properties. Line boundaries are not
significant; they should not be used to determine where
one item begins and the other ends. The file is totally free
form.

13.7 THE EXPANDED PART LIST (PSTXPRT)

The Expanded Part List is ordered by physical part desig­
nator and contains all the information known by the Pack­
ager for each of the parts. This includes all the properties
and the logical to physical bindings of parts.

The form of the Expanded Part List is as follows:

FILE_TYPE=EXPANDEDPARTLIST;
DIRECTIVES

ROOT_DRA WING=' root drawing name';
COMPILE_TIME=' compilation time';
POST_TIME='packaging time';
global design properties

END _DIRECTIVES;

part description;

END.

root drawing name
Name of the root drawing that was compiled.

compilation time
The time and date of the compilation of the design.

packaging time
The time and date when the design was packaged.

glob al design properties
A list of design-wide properties specified in the

13-20 3/10/86

Packager Packager Output Files

directives section of the Compiler command file.

Each entry in global des£gn propert£es is of the form

property name = 'property value';

where property name is the name of the property and pro­
perty value is the value of the property (which is enclosed
by quotes).

The list of parts is of the form

PART_NA}.IE
phys£cal part des£gnator part type name : ;

log£cal part descr£pt£on

where PART_NAME is used to mark the beginning of a
part entry. The log£cal part descr£pt£on shows all the logical
parts that are allocated to the physical part. It has the form

SECTION_NUMBER sect£on number
log£cal des£gnator b£t version :

log£cal part property

where sect£on number is a number indicating which section
of the physical part matches the logical part. The log£cal
des£gnator is the name of a logical part. The b£t and vers£on
are the optional fields specified above for the expanded net
list. A colon (:) is used to mark the encl of the logieal part
designator. The log£cal part propert£es are the properties of
the logical part. These properties are read from the Com­
piler expansion file and come from your drawings. The
properties in the list have the form:

property name = 'property value'

3/10/86 13-21

Packager Output Files Packager

Each element in the list of properties is separated by a
comma(,). The last element in the list is followed by a
semicolon (;) . This list may cross several lines. If there
are no properties, only a semicolon appears.

Here is an example of an Expanded Part List:

FILE_TYPE=EXPANJEDPAR1L I ST;
DIRECTIVES

ROOT_DRAWil'G='RISC';
CXMPILE_TIME=' CXMPILATirn rn date/time';
POST_TlME='l9-0CT-1983 ';

EN) _DIRECTIVES;
PART_N\ME
U31 {physical part U31 }

'74LSOO':;
SECT I rn_N..MBER 1

{first logical part }
' (1EST1 AID2P#2

CDP2P . 7 4 . 5P) ' :
·3. 4GN2P TFl .14P#l SDPlP TBB23P

{ note I ine break }
{previous line contains

the 1 o g i c a 1 par t name }
SIZB=' 1';

SECTirn_l\l~.Il3ER 2
{ logical part property }

{ second logical part in the 74LSOO
'(1EST1 .00.2P)'#2*1:; {no properties}

SECTICN"_~.Il3ER 3
{ third logical part }

' (1EST1 AID2P#2 . 00. 5P) ' :
SIZB=' 2',
TIMES=' 1';

SECTICN"_Nl.IDER 4
{ fourth logical part }

' (1EST1 FGllP DD2P . 00. 1 lP) ' : ;
PART_N\l\1E { the next part }

{ and so on }

f<N).

}

The Expanded Part List is designed to be easily read. Part
desC'riptions are marked by the PART_NAME keyword
and thus cannot be confused with a part name, since physi­
cal part designators cannot contain the underscore charac­
ter (_). The physical part designator is always krminated

I :~-22 3/10/86

Packager Packager Output Fiks

by a semicolon (;) which comes at the end of the part type
property list. The physical part designator is always fol­
lowed by the part type name which is in quotes to make i1
easy to identify.

A colon and semicolon are used to mark the end of thC'
part type name and the beginning of the physical sections.
Each of these physical sections is terminated with a semi­
colon (;) which falls at the end of the list of logical part
properties. Each physical section begins with
SECTION_NUMBER which makes it easy to recognize.
The logical designator is in quotes making it easy to inter­
pret. It may be followed by SIZE and TIMES replication
information. Next is a colon (:) to mark the beginning of
the logical part properties. Line boundaries are not
significant; they should not be used to determine where
one item begins and other ends. The file is totally free
form.

3/10/86 13-23

SECTION 14
GLOSSARY

The following glossary is included in the hope that it will
make this chapter easier to understand.

Binding

A mapping of a logical part to its allocatf'd physical
section.

Expanded Part

Each logical part is expanded to the numhC'r of it,-;
SIZE and/or TIMES property. An expanded part is a
unit of this expansion. For example, a logical part
with SIZE=4 will have four expanded parts.

Fatal Error

This is a class of errors. \Vhen an error in this class
is detected the Packager does not alter any state flip-;
or produce any output files other than tlH' error list­
ings. Execution continues after the deteetion of a
fatal error in order to find any other errors that may
be present.

Logical Part

A body on the design drawing created in the Graph­
ics Editor. It may have SIZE and TIMES properties
attached that are used by the Packagf'r to generate
several logical parts (sections).

Logical Part Designator

The name given to a particular occurrence of a logi­
cal part. This name is assigned by the Compiler and

3/10/86 14-1

Glossary Packager

consists of the path name for the part and the logical
part type. The path name is augmented by the Pack­
ager when replicating parts with SIZE properties or
creating new versions because of TIMES properties.
Logical and physical part names have no correspon­
dence.

Logical Pin Designator

A logical part designator and a logical pin name
separated by a space.

Logical Pin Names

The name given a pin of a body drawing.

Net

A connection among nodes.

Node

A pin connected to a net.

Part Type

The part type is assigned in the libraries as the
PART_NA~lE property. If the PART_NAME pro­
perty is not present, the logical part type is the same
as the drawing name.

Path Name

A unique name assigned by the Compiler to each
logical part (e.g., lP, 3P, 8P).

Path Pro1wrty

1-l-~

The name the Packager assigns to each expanded
part This name is deri,·ed from the path name.

3/10/86

Packager

Phantom Gate

A ·'phantom" library body r0presenting a wir0-gat0
which connects \'ersions of 1he signals us<'d only in
the gating function.

Physical Name String

A sequence of characters consisting only of letters.
digits, or '_'.

Physical Net Name

Each net has a logical signal name (assigned by the
Compiler and derived from the drawings) and a
corresponding name used by the physical system.
The physical net name is the name used by the phy­
sical system to refer to the net.

Physical Part

A physical chip on a board -- a "package".

Physical Part Designator

The name given to an instance of a physical part.
Each physical part in a design has a unique physical
part designator that can be assigned manually by the
designer or automatically by the Packager. Logical
and physical part names do not have a one-to-one
correspondence.

Physical Part Type

The name of a physical part as assigned in the
SCALD library. For example, a package of TIL
NAND gates may have the physical part type
7 '1LSOO. This name may in many cases be a generic
part name or it may be an internal part name.

3/10/86 14-3

Glossary Packager

Physical Pin Designator

Consists of a physical part designator and a physical
pin name separated by a space.

Physical Pin Name

The name given a pin on a physical part. By conven­
tion this name is a number or an identifier (not
more than 16 characters). It is specified by the
PIN_NUMBER property on the library component
describing the physical part type.

Section

A section is a place to assign a logical expanded part
to a physical part. Each expanded part is placed in a
section of a physical part.

Signal Name

A name assigned to a net or a portion of a net.

Wire-Gate

The connection of two or more outputs to the same
signal.

Wire-Tie

Same as wir<'-gate.

14-4 3/10/86

SECTION 15
PACKAGER ERROR :MESSAGES

There are three classes of problems detected by the Pack­
ager:

1. Errors

An error is a problem that must be fixed
before further progress can be made. For
example, a missing drawing would be con­
sidered an error since some portion of the
design is missing. Some errors are fatal and
cause the Packager to stop. For example, if
an input file is missing, the Packager will gen­
erate an error message and stop.

2. Oversights

An oversight is a less severe problem than an
error. For example, if a library is specified
twice in the directives file, the Packager gen­
erates an oversight message. The design will
work; however, since the file is specified
twice, there may be confusion and the design
may be difficult to work with. In general,
oversights may be ignored for a while, but
should be fixed eventually.

3. Warnings

A warning is a problem that is very minor.
For example, if a directive is specified more
than once, the Packager generates a warning
message. There is no reason to remedy this
condition because the Packager will always
produce the same output. The user may elect
to correct warning conditions.

3/10/86 15-1

Error Messages Packager

15.1 FORMAT OF MESSAGES

The Packager's error, oversight, and warning messages
have the following format:

#n ERROR(m): message
#n OVERSIGHT(m): message
#n WARNING(m): message

where n indicates how many of the particular class of mes­
sages have occurred so far, mis the message code number,
and message is the text of the message. For example,

#27 ERROR(22): String length exceeded

is the 27th error found in this run of the Packager. In
addition, the error code is 22, which indicates "String
length exceeded''. This means that some string (a quoted
sequence of characters) is longer than the allowable max­
imum of 255.

Following the message are several lines describing where
the error was detected, the part, the pin on the part, etc.
This information is intended to specify the location of the
error as accurately as possible to simplify finding and
correcting the problem.

The error, oversight, and warning messages are counted
separately. At the end of compilation, the total number of
each is reported. Here is an example:

47 errors detected
No oversight.;; detected
G warnings detected

15.2 DIRECTIVES AFFECTING ERROR MESSAGES

You ran use the DOCUMENT_ERRORS directive to con­
trol the printing of detailed error messages in the listing file
(PSTLST). This does not control the printing of the origi­
nal, brief error message. The detailed error messages are
short parngraphs which appear after the list of errors and

15-:l 3/10/86

Packager Error t>.lessages

give more information about possible causes of the error.
These are the same paragraphs which appear in this section.
The directive DOCU:MENT_ERRORS ON prints detailed
error messages in the listing. Use D OCU~vlENT_ERRORS
OFF to omit the detailed messages. If you omit this direc­
tive, it dcfault5 to ON.

There are several other directives which affect the printing
of oversights and warning messages. The WARNINGS
directive controls the display of warnings messages. If you
use WARNINGS ON, warning messages are printed as
usual. WARNINGS OFF omits all warning messages. The
OVERSIGHTS directive works in the same way for over­
sight messages. To suppress an individual warning or over­
sight message, use the SUPPRESS directive with the
number(s) of the specific message(s) to be omitted. The
SUPPRESS directive cannot be used for errors; only for
warnings or oversights.

If you want the Packager to halt after a certain number of
errors, use the directive MAX_ERRORS. The Packager
normally halts after encountering 1000 errors, but you can
use MAX_ERRORS to change this to a different number.

15.3 SPECIAL MESSAGE REPORTING

Some problems are detected while reading input files.
These usually are syntax problems, typically occurring when
text was mistyped. For these errors, the Packager prints
the text being read and points with the character ''' to the
position in the text where the problem was detected. For
example, given the signal name:

DATA < 0 [the first bit} .. 31 {the last bit}>

an error #20 will be displayed as follows:

DA TA < 0 [the first bit} .. 31 {the last bit} >

#1 ERROR(20): Unmatched closing comment character

The error really occurs earlier where ' [' wa5 used instead of

3/10/86 15-3

Error Messages Packager

'{'. It is usually impossible for the Packager to accurately
determine the true position of the error; the pointer is
always at the position where the error was detected.

15.4 SUMMARY OF MF.SSAGES BY NUMBER

The remainder of this section consists of the Packager error
messages. The messages are listed in numerical order.
Each listing consists of the error, oversight, or warning
message itself followed by an explanatory paragraph.

ERROR #1: Expect.ed identifier

The Packager expected an identifier (a string of letters,
digits, or '_' starting with a letter) and found some other
data. Identifiers are used as names in properties, text mac­
ros, and as operands for the Packager directives. The Pack­
ager prints the input line with a pointer to the position in
the line where the problem was detected.

ERROR #2: Expect.ed =

The Packager expected an equal (=) and found some other
data. Equals are used in many places: between property
names and values, in expressions, and in the FILE_TYPE
specification at the beginning of data files. The Packager
prints the input line with a pointer to the position in the
line where the problem was detected.

ERROR #3: Expect.ed (

The Packager expected an opening bracket ([) and found
some other data. The Packager prints the input line with a
pointer to the position in the line where the problem was
detected.

15-4 3/10/86

Packager Error Messages

ERROR #4: Expected]

The Packager expected a closing bracket (]) and found
some other data. The Packager prints the input line with a
pointer to the position in the line where the problem was
detected.

ERROR #5: Expected a const.a.nt

The Packager expected a constant (sequence of numeric
characters) and found some other data. The Packager prints
the input line with a pointer to the position in the line
where the problem was detected. Constants are expected
in many places. For example, the bit off set on a SIZE
expanded part is a constant.

ERROR #6: Expected subrange specifier

The Packager expected a subrange specifier (e.g., the " .. ' ·
in <15..0>) and found some other character. The Pack­
ager prints the input line with a pointer to the position in
the line where the problem was detected.

ERROR #7: Expected)

The Packager expected a right parenthesis ()) and found
some other character. The Packager prints the input line
with a pointer to the position in the line where the problem
was detected.

ERROR #8: Expected ,

The Packager expected a comma (,) and found some other
character. The Packager prints the input line with a pointer
to the position in the line where the problem was detected.

3/10/86 15-5

Error Messages Packager

ERROR #9: IDxpecled *

The Packager expected an asterisk (*) and found some
other character. The Packager prints the input line with a
pointer to the position in the line where the problem was
detected.

ERROR #10: IDxpect.ed <

The Packager is expecting a left-angle bracket (<) and
found some other character. The Packager prints the input
line with a pointer to the position in the line where the
problem was detected.

ERROR #11: IDxpect.ed >

The Packager expected a right-angle bracket (>) and found
some other character. The Packager prints the input line
with a pointer to the position in the line where the problem
was detected.

ERROR #12: IDxpect.ed ;

The Packager expected a semicolon (;) and found some
other character. The Packager prints the input line where
the problem was detected. The Packager continues to read
the input despite the missing semicolon.

ERROR #13: IDxpecled :

The Packager expected a colon (:) and found some other
character. The Packager prints the input line with a pointer
to the position in the line where the problem was detected.

15-6 3/10/86

Packager Error 1\frssagrs

ERROR #14: Unexpected symbol in integer expression

The Packager found something unexpected while reading
an expression (e.g., a selection expression or a bit sub­
script). The Packager prints the input line with a pointer to
the position in the line where the problem was detected.
The Packager expected one of the following:

1. A constant

2. An expression in parentheses, e.g. (2+ 3).

3. NOT followed by an item from this list.

ERROR #15: Expected (

The Packager expected a left parenthesis (() and found
some other character. The Packager prints the input line
with a pointer to the position in the line where the problem
was detected.

ERROR #16: Bit value invalid

The Packager read a bit subscript and found an illegal bit
value. The Packager prints the input line with a pointer to
the position in the line where the problem was detected.
The bit value is also printed. Bit values are invalid if they
are negative or are greater than the largest allowed bit
number. Since the largest allowed bit number is 2**31-1
(21474836·17), this error usually means that the bit value is
negative. This error is most likely to occur when specifying
a bit with an expression. An example is DATA<SIZE-
2 .. 0> when SIZE=l.

ERROR #17: Non-unique PAm_NAME in
CMPEXP.DAT

The Package found the same PA TH_NAME on more than
one logical part. Each logical part should have a
PA'ffI_NAME that identifies it uniquely throughout the

3/10/SB 15-7

Error Messages Packager

design. PATI-I_NA~1Es are produced by the Compiler.
This error is often caused by manual edits to the Compiler
expansion file. To fix this error, compile the design again
before re-packaging.

ERROR #18: Unused.

ERROR #19: Unused.

ERROR #20: Unmatched closing comment character

The Packager encountered a closing comment character (})
without a previous matching starting comment character
({). The Packager prints the input line with a pointer to the
position in the line where the problem was detected.

ERROR #21: Unused.

ERROR #22: String length exceeded

The Packager read a string exceeding the maximum
allowed length. Strings are limited to 255 characters. The
Paekagf'r prints the input line with a pointer to the position
in the line where the problem was detected. The string is
truneated at the current position (pointed to by the Pack­
ager) and the Packager reads until it finds the closing quote
or the encl of the input line. l'vfake the string shorter.

ERROR #23: Illegal character found

The Paekager found an illegal charader in an input file. All
non-printing characters except TAB are illegal. The Pack­
ager prints the input line with a pointer to the position in
the line where the problem was detected. Remove the
character.

15-8 3/10/86

Packager Error Messages

ERROR #24: Expression value overflow

The Packager evaluated an expression whose value
overflowed. The Packager prints the input line with a
pointer to the position in the line where the problem ·was
detected. An overflow does not cause the Packager to
abort; it assigns the value zero (0) to the result (unless it
knows a more reasonable value) and continues.

ERROR #25: Division by zero

The Packager detected division by zero during evaluation
of an expression. The Packager prints the input !inf' with a
pointer to the position in the line where the problem was
detected. Division by zero does not cause the PackagPr to
abort; it skips the division and continues with the packag­
ing.

ERROR #26: Unused.

ERROR #27: Unused.

ERROR #28: Unused.

ERROR #29: Unused.

ERROR #30: Unexpecled symbol in bit subscript

The Packager found unexpected characters in a bit sub­
script. The Packager prints the input line with a pointer to
the position in the line where the problem was detected.
The symbols expected by the Packager in a bit subscript
are:

1. A subrange symbol (..) .

2. A colon (:) specifying a bit step.

3. A comma (,) specifying the start of the next element
in a bit list.

3/10/86 15-9

Error Messages Packager

4. A right angle-bracket (>) indicating the end of the
subscript.

ERROR #31: Unused.

ERROR #32: Non-printing ASCII characier found

The Packager detected a non-printing character while read­
ing from an input file. This is illegal. The Packager prints
the input line with a pointer to the position in the line
where the problem was detected.

ERROR #33: Expected a string

The Packager expected a string (a quoted sequence of print­
ing characters) and found some other data. The Packager
prints the input line with a pointer to the position in the
line where the problem was detected. Strings arc expected
in the following places, among others:

1. In signal names: a signal property must have a pro­
perty value specified as a string.

2. In the Packager directives: the name of the library
file for the design must be specified as a string.

ERROR #34: Comment not closed before end of input

ThC' Packager did not find the encl of a comment before the
C'nd of the file. A comment is started with the "{"character
and ended with the ''}" character. The Packager prints the
input line with a pointer to the position in the line where
tlH' problem was detectC'd.

ERROR #35: Unused.

ERROR #36: Unused.

15-10 3/10/85

Packager

ERROR #37: Expected.

The PackagC'r expected a period (.) and found somC' othC'r
character. The Paekager prints the input line with a point<'r
to the position in the line "·here the problem wa;.; ck·teC'l<'cl.
This oversight is most commonly caused by omitting the '.'
following the END at the end of the directives or text filf'.

ERROR #38: Unused.

ERROR #39: Undefined identifier in expression

The Packager found an undefined identifier (a string of
letters, digits, or '_' starting with a letter) in an expression.
Identifiers are used as names in properties and text macros.
The Packager prints the input line with a pointer to the
position in the line where the problem wa5 detected. If the
identifier is supposed to be a defined text macro, check the
DEFINE bodies to make sure it was correctly defined. If it
was supposed to be a parameter of the body, check the
body definition to make sure that it was correctly defined
there.

ERROR #40: Expected END

The Packager reached what it expected to be the end of a
file and did not find an END statement. The most com­
mon places where an END is required are at the end of the
directives file, a text macro, and property attribute files.
The Packager prints the input line with a pointer to the
position in the line where the problem was detected.

ERROR #41: Identifier length exceeded

The Packager encountered an identifier (a string of letters,
digits, or '_' starting with a letter) with more than 16 char­
acters. Identifiers are used as names in properties and text
macros. The Paekager prints the input line with a pointer
to the position in the line where the problem was detected.

3/10/So 15-11

Error Messages Packager

The Packager ignores the rest of the identifier and contin­
ues.

ERROR #42: Unused.

ERROR #43: Unused.

ERROR #44: Unused.

ERROR #45: Unused.

ERROR #46: Unused.

ERROR #47: Unused.

ERROR #48: Unused.

ERROR #49: Unused.

WARNING #50: This file name was already specified

A file name was specified more than once in a directive.
~lost likely, a library file name was given more than once
in the directives file.

ERROR #51: Unknown directive

The Packager found an unknown directive in the directives
file. The Packager prints the input line with a pointer to
the position in the line where the problem was detected.
This error will not normally prevent the Packager from
reading the rest of the directives.

ERROR #52: Invalid specification for directive

The Packager found an invalid operand while reading the
directives file. The Packager prints the input line with a
pointer to the position in the line where the problem was
detected. Several of the Packager directives require an

15-12 3/10/86

Packager Error Messages

operand (e.g., WAR.NIN GS requires either ON or OFF as
its operand). If the operand for any of these directives is
not what the Packager expected, this error is generated.
See the Packager directives documentation for a complete
description of the directives.

ERROR #53: Input line exceeds maximum length

The Packager tried to read a line longer than its 255-
character input buffer. The first 205 characters of thl' input
line are printed with a pointer to the last character. Tlw
input line must be broken into shorter lines before thC'
Packager can read it. Although the Packager's input buffer
is 255 characters long, we recommend that input linC's lw
no longer than 80 characters for ease of viewing on a termi­
nal.

ERROR #54: Unexpected error for suppression

The parameter for the directive SUPPRESS is not in the
legal range. This value should be an integer in the range 0
to 250.

ERROR #55: This error cannot be suppressed

The parameter of the SUPPRESS directive corresponds to
an error that cannot be suppressed. It is only possible to
suppress OVER.SIGHTS and WARNINGS, which indieate
user flaws that do not prevent the packaging of the dC'sign.
More serious errors cannot be suppressed.

ERROR #56: Unused.

3/10/86 1-5-13

Error Messages Packager

ERROR #57: End of input before end of expression

The Packager found an incomplete expression in an input
file. The Packager prints the input line with a pointer to
the position in the line where the problem was detected. A
blank line printed by the Packager means that the input line
was null. This may occur when an empty string was given
as a parameter to a text macro that expects an integer
parameter.

ERROR #58: Extraneous characters at end of expression

The Packager found extra characters at the end of an
expression. The Packager prints the input line with a
pointer to the position in the line where the problem was
detected.

ERROR #59: Unused.

ERROR #60: Number of errors must be > 0

The directive MAX_ERRORS was issued with an illegal
parameter. The parameter for this directive must be a posi­
tive integer.

ERROR #61: Radix must be in range 2 t.o 16

The Packager encountered a constant signal name with an
illegal radix specification. The Packager prints the input
line with a pointer to the position in the line where the
problem was detected. Signal constants may be specified in
any base from 2 to 16. All other bases are illegal. The
default base is 2.

15-1·1 3/10/86

Packager Error I\lessagps

WARNING #62: Physical name length must be > 1 and
< 255

The directive PART_NAJ\IE_LENGTH was issued with an
illegal parameter. The parameter for this directive must be
an integer between 1 and 255.

ERROR #63: Unused.

ERROR #64: HAS_F1XED_SIZE property conflicts with
SIZE property.

The values of the HAS_FIXED _SIZE property and the
SIZE property are unequal. The HAS_FIXED _SIZE pro­
perty is normally added only to body drawings, and not to
the components in the design. The value of the
HAS_FIXED _SIZE property implies a SIZE property of the
same value. It is an error to attach both of these properties
with different values to the same component.

ERROR #65: HAS_F1XED_SIZE property value exceeds
or sections in package.

The value of the HAS_FIXED _SIZE property is greater
than the number of available sections on the physical pack­
age. The name of the off ending logical part is printed along
with the error message. Look up the library description for
this part to find the number of sections available on the
package. This information could be determined from the
PIN_NUMBER property. For example, the following pro­
perty

PIN_NUMBER='(1,3,9,13)'

indicates that there are four sections on this part. The
HAS_FIXED _SIZE propei:ty of any instance of this part in
the design should have a value of four or less.

ERROR #66: Unused.

3/10/86 15-15

Error Messages

ERROR #67: Unused.

ERROR #68: Unused.

ERROR #69: Unused.

Packager

ERROR #70: Non-contiguous bit subscripts for pin

The hit subscripts of a vectored pin are not contiguous.
The part type and the pin name of the part in error are
printed after the error message. Change the library entry
for this part type so that the bits of each vectored pin are in
consecutive order. This error could also be caused by
conflicting signal names for the same net. Note that the
Packager currently does not support the segmentation of a
vectored pin. For example, the pin BUS<l5 .. 0> may not
appear in the design as I3US<l5 .. 8> and BUS<7 .. 0>.

ERROR #71: Unused.

ERROR #72: Unknown signal syntax specific..ation

An unknown signal syntax directive is found in the direc­
tives block of the Compiler expansion file. This error will
not occur if the directives block of this file is not manually
edited. since the file is machine-generated. If the error
occurs, recompile the design before packaging again.

ERROR #73: Signal syntax element found twice

A signal syntax directive appears twice in the directives
block of the Compiler expansion file. If the Compiler
expansion file has not been manually edited, check for a
duplicate syntax entry in the directives block.

15-16 3/10/86

Packager Error Messages

ERROR #74: Every syntax MUST have a name portion

The signal synta.x in the directives block of the Compiler
expansion file has no NAME portion. This portion of the
syntax is needed in order to name the signal. This error
probably resulted from manual edits to the Compiler
expansion file. Try compiling the design again before re­
packaging.

ERROR #75: Every syntax MUST have a subscript

The signal syntax in the directives block in the Compiler
expansion file does not contain a SUBSCRIPT portion.
This portion of the syntax is required to process YC'ctored
signals. This error probably resulted from manual edit<; to
the Compiler expansion file. Try compiling the design
again before re-packaging.

ERROR #76: Illegal form for signal syntax

The directives block of the Compiler expansion file is not
in the format expected by the Packager. This error occur;:;
when the Packager does not find one of the following items
in the beginning of the signal syntax specification:

NAME
NEGATION
ASSERTION

This error is most likely caused by user edits to the Com­
piler expansion file. Try compiling the design again before
re-packaging.

ERROR #77: Symbol must be one character

This is an error in the directives block of the Compiler
expansion file. The error occurred because the value for
some configuration parameter is more than one character
long. The values for the following parameters may be no
more than one character long:

3/10/86 15-17

Error Messages

LOW _ASSER'IlON
HIGH_ASSERTION
NEGATION
N AME_PREFIX
GENERAL_PREFIX
CONCATENATION

Packager

This error is most probably caused by user edits to the
Compiler expansion file. Try compiling the design again
before re-packaging.

ERROR #78: This symbol cannot be used here

A parameter in the directives block has a forbidden symbol
for a value. The forbidden symbols include the following
characters:

1.

2. <

3. >

4. The digits 0 through 9

5. #

This error is probably due to manual edits to the Compiler
expansion file. Try compiling the design again before re­
packaging.

ERROR #79: Subrange symbol must be < .. > or
<:>

The SUBRANGE directive in the directives block of the
Compiler expansion file has a value other than a colon (:)
or a double period (..). These are the only values under­
~tood by the Packager for the directive SUBRANGE.

15-18 3/10/86

Packager

ERROR #80: No pins found on part in drawing

A part in the drawing has no pins. This is unaccept:ibk to
the Packager. The part must either be deleted from the
design or changed.

ERROR #81: No Pins found on library part

A part in the design contains no pins in its library descrip­
tion. This is unacceptable to the Packager, and the librar~·
description for the part must be changed to include some
pins.

ERROR #82: Cannot open Mast.er Library file.

The file specified by the directive MASTER_LIBRARY
does not exist, or it cannot be opened due to permission
problems.

ERROR #83: Subtype suffix is illegal

The Packager detected an illegal user-specified subtype
suffix in the physical part tables. When the Packager
creates a new part type from the properties in the physical
part table, it makes a new name for this "subtype" by
appending to the original part type name a'-' and a suffix.
The user may specify this suffix in the physical part table.
The subtype suffix must be given following the instance
property value, and must be enclosed in parentheses. For
example:

PART 'RESIS1DR'
: \ J\Ll TE' 1DLER\NCE
(string) lK
(!) lK

.5°((IK)
3(1:"(t .) .. (.

CDST
$I
$2

The subtype suffix can be gin'n in either of the two for­
mats shown above: (string) or(!). The subtype resulting
from the first line of this example is 'RESISTOR-lK'. In
the second format (line 2), the Packager appends to the

3/10/85 15-19

Error l'"fessages Packager

original part type name all instance property values for the
new part type, separated by commas. The subtype for line
two of the above example is 'RESISTOR-lK,3%'. For
further details, see the Packager reference chapter section
on physical part tables.

WARNING #84: Changing HARD_GROUPING from
OFF t.o ON causes split of parts

The Packager separated logical parts of different GROUPs
that were previously assigned to the same physical package.
Logical parts having different GROUP property values are
normally assigned to separate packages. They can be forced
into the same package, however, by doing FEEDBACK
with the directive HARD _GROUPING OFF. To keep these
pnrts in the same package, the user should back annotate,
then compile before running the Packager again.

Without baekannotation and a compilation, the Packager
would split the parts according to the GROUP properties if
IL\HD_GROUPING is ON. This message does not indi­
c·ate an error; it informs the user that a change in assign­
nwnts was made due to HARD _GROUPING ON.

ERROR #85: Expected FILE_ TYPE specification

The Packager started reading an input file and did not find
a FILE_TYPE specification. All SCALD system data files,
except the <:lirectives file, are identified with a FILE_TYPE
speeification at the beginning. The Packager prints the
input line with a pointer to the position in the line where
the problem was detected. It ignores the rest of the
off ending file. To fix this error, check the given file to
make sure that it is the correct file, and then add the
proper FILE_TYPE specification.

1.5-20 3/10/85

Packager Error Messages

ERROR #86: File is not of the correct type

The Packager found an input file with the wrong
FILE_TYPE specification. All SCALD system data files,
except the directives file, must be identified with n
FILE_TYPE specifier which allows the programs to check
the validity of input data. The Packager prints the input
line with a pointer to the position in the line where th<'
problem was detected, and it ignores the rest of the
offending file. To fix this error, make sure that it is the
correct file, and then change its FILE_TYPE specification.

ERROR #87: Unused.

ERROR #88: Cannot assign part to feedback section.

The Packager cannot assign a part to the feedback location
specified in the feedback files. This is probably due to
some conflict with the GROUP or LOCA TION_CLASS
property. Be sure that parts of different GROUPs are not
being fed back to the same package unless the directive
HARD_GROUPING is OFF.

ERROR #89: String not closed before the end of line

The Packager found that a string (a quoted sequence of
characters) did not have a closing quote before the end of
the current line. This most commonly occurs when a quote
is accidentally placed in a signa.l name. The Packager prints
the input line with a pointer to the position in the line
where the problem was detected. Check the line to make
sure that the string is correct.

ERROR #90: Vector PIN_NUMBER < pin's width

The size of a vectored pin in a library description for a part
is less than the width of the pin. The size of the vectored
pin is the number of physical pins sharing the same pin
name on the package. The width of the pin is the number

3/10/86 15-21

Error Messages

of bits in this pin. Consider the following example:

PIN
'A'<3 .. 0>

(width= 4)

PIN_NUMBER property
'(1,4,9)'

(3 physical pins)

Packager

This will cause an error because the pin is defined as having
a width of four while there are only three physical pins
available.

Change the library so that the bit width of the vectored pin
matches its number of physical pins.

ERROR #gl: VectorPIN_NUMBER >pin's width

The size of a vectored pin in a library description for a part
is greater than the \\;idth of the pin. The size of the vec­
tored pin is the number of physical pins sharing the same
pin name on the package. The width of the pin is the
number of bits in this pin. Consider the following example:

PIN
'A'<2 .. 0>

(width= 3)

PIN_NUMBER property
'(1,4,9,13)'

(4 physical pins)

This will cause an error because the pin is defined as having
a width of three while there are four physical pins available.

Change the library so that the bit width of the vectored pin
matches its number of physical pins.

ERROR #g2: Invalid operand of SUPPRESS directive

The operand of the SUPPRESS directive is an error code.
This is invalid since only warnings or oversights may be
suppre8sed. The Packager print'< the input line with a
point<'r to the position in the line where the problem was
dl'!C'cted.

3/10/86

Packager

ERROR #93: Expected direct,ory file name

The Packager did not find a directory file name wherP it
expected one. The Packager prints the input line with :1

pointer to the position in the line where the problem was
detected. This error may oeeur for three reasons:

1. The file name may simply have been forgotten.

2. The file name may not have been quoted.

3. A comma was found after a file name with no other
file names following.

ERROR #94: PIN_NUMBER values are all zero

All of the pin numbers for a part in the library are zero.
This is obviously illegal since every pin on the part must
have at least one valid pin number for mapping. The pin
numbers for the library part must be changed.

ERROR #95: Feeding back multiple nets for a common
pin

There is an error in the Feedback Netlist File (PSTFNET).
The Packager has detected multiple net names fed back to a
common pin.

In a physical package having multiple sections sharing a
common pin, this shared pin connects to a single net.
When giving feedback information, all common pins of the
same PIN_NUMBER must have the same net name.

ERROR #96: Cannot split HAS_F1XED_SIZE part

A logical part with the HAS_FIXED _SIZE property has
been forced into different packages. A entire
IIAS_F LXED _SIZE part must stay together a<i a unit when
it is allocated to physical packages. A part with
HAS_FIXED _SIZE = 4, for instance, is equivalent to one

3/10/86 1.5-23

Error Messages Packager

with SIZE = 4, except that all four expanded parts must be
assigned to the same package. This error is most likely
caused by user-generated feedback which assigned the
expanded parts of a logical part to different packages.

ERROR #97: Expansion file not for Packager

The Compiler expansion file does not have the correct file
type. The file type is found in the first line of the file. For
a Compiler expansion file, the first line should be:

FILE_ TYPE=EXPANSION_FILE;

This error should not occur if the design was compiled for
LOGIC and the expansion file wa5 not manually edited.
Try compiling the design again before re-packaging.

ERROR #98: This property has already been specified

Either the FIL/fER_PROPERTY or the PASS_PROPERTY
was specified more than once in the directives file. The
Packager allows only one occurrence for each of these
directives. Delete the extra directive(s).

ERROR #99: Error limit exceeded

The number of errors has exceeded the error limit set with
the MAX_ERRORS directive. (The default value is 1000.)
The Packager halts after printing this error message.

ERROR #100: Assertion check failure. Save PSTLOG
file

An assertion check has been detected. Assertion errors
indicate a problem internal to the Packager. If this error has
not been caused by manual edits to a VALID file, save all
input and output files and contact VALID.

15-24 3/10/86

Packager Error Messages

ERROR #101: Compiler expansion file not found

The Compiler expansion file was not found. Make sure
that the expansion file has been produced and that it
resides in the current working directory.

ERROR #102: Compiler expansion file has wrong type

The Compiler expansion file does not have the correct file
type for the Packager. The file type is found in the first
line of the file. For a Compiler expansion file, the llr:-;t
line should be:

FILE_TYPE=EXPANSION_FILE;

This error should not have occurred if the design was com­
piled for LOGIC, and if the Compiler expansion file was
not hand edited. Try compiling again (for LOGIC) before
re-packaging.

ERROR #103: Library parts file has wrong type

A file defined by the directives as a library file has thP
wrong type. The first line of a library file should be:

FILE_TYPE=LIBRARY_PARTS;

To fix the error, make sure that the file is indeed a library
file, and that its first line is as above.

ERROR #104: Library part has pin without
PIN_NUMBER

A pin on a library part has no PIN_NUMBER. Add a
PIN_NUMBER property to the pin on the library part.

3/10/86 15-25

Error Messages Packager

ERROR #105: Incompatible number of sections for pin

The number of sections, as described by the pins of a
library part, is inconsistent. The PIN_NUMBER property
of a pin gives the physical pin number for that pin in each
section. For example, a PIN_NUMBER of '(1,4,9,13)' for
pin Y means that there are four sections in this package,
each containing the said pin number for pin Y. Check the
library to make sure that the pin descriptions are correct.

ERROR #106: Pin has vect.or pins of different widths

The library description of a part has two or more vectored
pins with different widths. The vectored pins on a part in a
library must all have the same width. This error indicates a
library error; the library part must be changed.

ERROR #107: Cannot open directives file

The Packager failed to open the directives file
(PACKAGER.CMD). Most likely, this file is missing from
the current working directory, or the user does not have
permission to access this file.

ERROR #108: Part type used not found in libraries

There is a part type in the design which is not defined by a
library entry. (LSOO, for example, is a part type.) All part
types in a design must have a corresponding part definition
in a library file unless the part has an AUTO_GEN property
attached to it. Make sure the directives file includes all of
the libraries which were used to make the design.

ERROR #109: Library part does not define used pin

A pin on a part is used in the design but is not defined in
the library description for the part. All of the pins of a part
used in a design must be defined in the library part, unless
the part is to be AlTTO_GENed by the Packager. The

3/10/86

PaC'kager Error ~[pssag<'"

Packager print'> the part type and the pin name after tht>
error message. Check the library and change the part
description.

ERROR #110: Duplicate pin number for section part

A pin is defined twice in the part library description. The
part type and the name of the pin are printed after the
error message. The library description for this part must lw
changed.

ERROR #111: Unused

ERROR #112: Run stopped because errors were detected

Fatal errors were found while packaging the design. The
Packager stops processing after printing this message.

ERROR #113: Cannot open library file

Either the LIBRARY_FILE directive is missing, or the file
specified by this directive does not exist. Make sur<' that
the directives file contains a LIBRARY _FILE specification
and that this shows the correct path name for the library.

ERROR #114: Common pins must have same pin name

The Packager has found some common pins with different
pin names and is very confused. It expects all common
pins within a part to haYe the same name and has printed
the names of the pins in question. Please check your
library.

3/10/86 15-27

Error Mes~ages Packager

ERROR #115: No library chips file has been specified

No library file was specified in the LIBRARY_FILE direc­
ti\'e or the LIBRARY directive. The Packager needs the
path name of the library to access physical information
about the parts used in the design. To fix this error, give
the library file name as follows:

LIBRARY _FILE 'library_file_name';
or

LIBRARY 'short_library _name';

where lihrary_file_name is the full path name of the file,
and 'short_library_name' is a short name for one of the
standard libraries of Valid known to the Packager. See the
reference section on Packager directives for more details.

ERROR #116: Design using both GROUP and
LOCATION_CLASS properties

The Packager detected both the GROUP property and the
LOCA 110N_CLASS property in the same design. These
two properties, though similar, cause the Packager to assign
parto;; to packages differently, and they cannot be used
together in the same design. Both are "body-properties"
associated with logical parts.

The Packager guarantees to assign parts to packages accord­
ing to these properties only if one (and not both) of the
two properties is used in the design. Although the Pack­
ager proceeds with the assignment when both are present,
it does not guarantee to meet all of the conditions for both
properties. Delete all instances of either property from the
design.

ERROR #117: Could not fit logical part at LOCATION

There are more logical parts with a LOCATION value than
can be put into a physical part. For example, when an
LSOO is given a SIZE value of 8 and a LOCATION value of
Ul, this will cause an error because an LSOO package has

15-28 3/10/86

Packager Error ~lessagcs

only 4 sections. This error can also occur if too many parts
are forced into a package by feedback. If this error occurs,
the LOCATION property should be removed or changed
on some logical part, or the feedback file should be
changed.

ERROR #118: Different part types have same
LOCATION

The Packager found two logical part5 of different part types
with the same LOCATION value. An example of this is a
LOCATION value of Ul for both an LSOO and an LSO l.
Since it is not possible to put two logical parts of diffrrC'nt
part types into one physical package, the LOCATIO'.'\ pro­
perty value of one of the parts should be ehanged.

ERROR #119: Logical part matches no physical section

There is a discrepancy between a logical part in the dC',..;ign
and its library description, or there is illegal USC' of a ve(·­
tored pin. Every logical part in the design must haYe :i

library description unless the part is to be AUTO_GENecl
by the Packager. The part in error is printed following the
error message and should be checked against thC' lil>rnry
representation.

ERROR #120: Wire-gate has multiple outputs

Sorry, no documentation for this error yet.

ERROR #121: Wire-gate has no output

Sorry, no documentation for this error yet.

3/10/86 1.5-29

Error Messages Packager

ERROR #122: Inconsist.ent drive values

The Packager detected output values of pins on the same
net which have different signs for one of the logic states.
The Packager expects all outputs for either the High or
Low logic state to have drive currents in the same direc­
tion. Consider the following example where a net has two
output pins with these loading values:

Logic State LO HI
Pin 1 OUTPUT_LOAD=(-8.0,-0.4)
Pin 2 OUTPUT_.LOAD =(8.0,-0A)

The output values for these two pins have different signs
for the low logic state and will cause a Packager error. To
fix this error, check the library to make sure that all ou~
puts on the same net have drive values of the same sign
for each of the logic states. The IGNORE_O_LOADING or
IGNORE_l_LOADING pin properties may also be used if
load value checks are not desired.

ERROR #123: Zero drive output

The outputs have zero drive while there are input loads on
the net. Check the library to make sure that the outputs
have the correct drive values. Also make sure that the ou~
puts on this net have enough loading capacity for the inputs
connected to the net.

ERROR #124: Insufficient output drive

An output pin has insufficient drive for all the input(s) on
its net(s). Although this pin may not cause a loading error
for some particular nets that it is tied to, the output drive
of this pin is too low for the tot.al input loading that it must
support. To fix this error. the user may use another part
with higlwr output drive, or increase the TIMES property
ntlue of this component, or buffer the out.put to increase
it:;; drin•.

3/10/86

Packager Error ~I Ps~agcs

ERROR #125: Inconsistent load values

Input load values have different signs. For eitlH'r tlw high
or low logic state, the Packager expects all inputs in tlrnt
state to have the same current direction. To fix this error.
check the library to make sure that all inputs on tht> same
net have load values of the same sign. The user may also
attach to the pin the IGNORE_O_LOADING or
IGNORE_l_LOADING properties if load value checks are
not desired (as in the case of connectors).

ERROR #126: All versions used

Sorry, no documentation yet.

ERROR #127: Inconsistent drive/load values

The input load values and output drive values on a net
have the same sign; some input and output currents are in
the same direction. Check the library to make sure the
drive and load values have opposite signs. You may also
attach to the pins the IGNORE_O_LOADING or
IGNORE_l_LOADING properties if load value checks are
not desired (as in the case of connectors).

ERROR #128: Outputs cannot drive their input loads

Output driYe values are insufficknt for the inputs on the
net. The Paekager compares the lowest drive value against
the total input load values to insure that any of the outputs
has sufficient drive for all of the input loads. This error is
issued if the output drive is too low. To fix this error, you
can use other output gates with higher output drive, or
increase the Til\fES property value of the output com­
ponent<;, or buff er the outputs to increase their drive.

3/10/86 15-31

Enor Messages Packager

ERROR #129: Individual load t.oo large for outputs

The output drive values are insufficient for the largest of
the input loads on the net. For each net, the Packager
compares the smallest output drive against the largest input
load value. You can change an output gate to another with
higher output drive, or increase the TIMES property value
of the output component, or buffer the output to increase
its drivP.

ERROR #130: Input to wire-gate is also an output

An input and output of the same wire-gate are connected to
the sm11e net.

ERROR #131: No output on net

,\ n input pin is not connected and hence gets no drive
currC'nt. ~lake sure that the net printed by the Packager is
wir0cl as intended. Note that this message does not indi­
cak au error if the pin is a primary input. In this case, you
may want to attach the NO_IO_CHECK property to the pin
to suppress input/ouput checks. This property has the
f'o rm:

NO_IO_CHECK = logic_state
where logic_state may be 0, 1, or BOTH

If I/O checks are not desired for either logic state, use the
valnP BOTII. To quiet this error message altogether, use
Ill<' directive SUPPRESS 131.

ERROR #132: No input on net

An output pin has no subsequent blocks to drive. Make
sure that the net printed by the Packager is wired as
intended. Note that this message does not indicate an error
if the pin is a primary output. In this case, you may want
to attach the NO_IO_CI-IECK property to the pin to
suppress input/output checks. This property has the form:

15-32 3/10/86

Packager Error .Messages

NO_IO_CHECK = logic_state
where logic_state may be 0, l, or BOTH

If I/O checks are not desired for either logic state, use the
value BOTH. To quiet this error message altogether, use
the directive SUPPRESS 132.

ERROR #133: Illegal value for NO_LOAD_CIIECK
property

The NO_LOAD _CI-IECK property has an illegal vnlue. The
allowed values for this property are:

LOW
HIGH
BOTII
TRUE

The LOW and HIGH values inhibit load checking in th<'
low and high state respectively. The BOTH and TH l 1 I·~
values inhibit load checking in both states. Any othPr
values for this property cause an error.

These properties can be applied to pins, bodies, or nd:;.
Note that attaching the NO_LOAD _CHECK property to a
body suppresses load checking for every pin of the body:
when attached to a net, this property suppressPs load chPek­
ing for the entire net; and when attached to a pin, load
checking is suppressed ONLY for this pin, and not for
other pins on the same net.

WARNING #134: Unused.output versions

The output current of some gate(s) exceeds that required
for the inputs on the net. This is probably due to a TIMES
property with too high a value. The Packager print'> those
output gates that are unnecessary to drive the inputs. To
make the design leaner, reduce the TIMES value associated
with the gates in question.

3/10/86 15-33

Error Messages Packager

ERROR #135: Illegal value for WIRE_ GATE property

The Packager finds a WIRE_GA TE body property with an
illegal value. The allcnrnble values for this property are
AND and OR. Any oth('r WIRE_GATE values will cause
error.

ERROR #136: Unused.

ERROR #137: Zero load values should not be used

The lon<l vaine for a pin r fuund in librnry) i:-. Z<'ro for either
the high or low logic state. Tl1c Paekagc·r do(':-. not accept
zero for ;) lo:ld \·aillf'. fr !I pill [ll'l'SPTlh IJO Ion<\ 011 the ll!'f

for a particular state. its load \alnc should he s1wcified as*·
For cxamplP. a piu with no oupul load value,,; for both
states would have the following property:

OUTPUT_LOAD =(*.*)

ERROR #138: Illegal value for NO_IO_CIIECK
property

The NO_IO_CITECK pin property has an illegal value. The
allowable val11Ps for this property are:

LOW
HIGH
DOTil
THUE

The· LO\\. and HIGH values inhibit input/output checks in
the lo\\ and high state respectively. The BOTII and TRUE
\ ;1iul':" inhibit I/O checks in both states. Any othn value
:·()r thi:-. propert.'· causes an error. Not<~ that
"O_TO_CI I ECK b n pin property. When attached to a pin,
it -.,uppresses I/O «heeks O'.'\LY for that pin. and not for
ollwr pins on th(' same tH't.

:3/10/SG

Packager Error l\ I essages

ERROR #139: Multiple outputs have incompatible type

Outputs of different types are tied together without explicit
permission. Output pins may be tied together only if they
are of the same output type, or if the ALLOW_CONl\ECT
property has been added to the bodies. This error can bP
fixed by either adding the ALLOW _CONNECT property to
the logical body on the drawing, or by adding the
OUTPUT_TYPE property to each of the pins of the snme
type that are to be tied together. The OUTPUT_TYPE pro­
perty values must match and be of the form:

(output type, logic function)

The standard OUTPUT_TYPE values for parts in Valid
libraries are:

OC,AND { open collector; AND logic funtion }
OE,OR {open emitter; OR logic funtion }
TS, TS { TRI-STA TE; logic function handled specially }

ERROR #140: Error det.ect.ed during feedback

Errors were detected during the f eedbaek process. Other
error messages list the specific errors.

ERROR #141: Feedback file has wrong file type

The Packager opened one of the user-generated files during
feedback, and it was the wrong type. A user-generated file
is identified by its first line, which has the form:

FILE_TYPE = file type

The files that the Packager may use during feedback and
their file types are as follows:

3/10/86 15-35

Error Messages Packager

Files File Type

Physical Part Designator PART_TRANS
Transformations (PSTPR TX)

Physical Net Name Transformations NET_TRANS
(PSTNETX)

Physical Section Transformations SECTION_TRANS
(PSTSECX)

Feedback Net List (PSTFNET) FEEDBACK_NETLIST

Check the headers of the feedback files and make sure that
their file types are correct.

ERROR #142: Old physical part does not exist

This error occurs during feedback while the Packager is
attempting to swap sections using the physical section
transformation file (PSTSECX). The Packager reads this
file for the name of the old physical part, ·and tries to
search for the part among those used in the design. In
cnse of failure, it issues error 142 and prints the name of
the physical part that it could not find. Check this feedback
f11e to make sure that all physical parts referenced are
present in the design.

ERROR #143: Pin number does not define section

This error occurs during feedback while the Packager is
attempting to swap sections using the physical section
transformation file. The PackagN reads the file for the
physical part and the pin number of the old section, and it
tries to locate a section on the physical part from this
information. IL generates error 143 if no section is uniquely
defined by the pin number. Check the file PSTSECX to
make sure that the pin number exists for the physical part,
and that this pin is not a common pin or a power pin.

15-36 3/10/86

Packager Error Messages

ERROR #144: Physical net does not exist

The Packager cannot find the physical net name given in
the Feedback Net List file (PSTFNET). Each physical net
name in this file must correspond to an existing net in the
design, i.e., the feedback net name must match exactly
one of the net names in the Expanded Net List
(PSTXNET).

This error could be caused by manual edits to the Feed­
back Net List file which cause the misspelling of a name.
Otherwise, the error may be caused by changing the rwt
name from the last run to the current run (i.e., by chang­
ing the design without recompiling and repackaging with
USE_STA TE_FILES on, or by performing Feedback Net
Transformation, or by changes to tlH'
NET_NAME_LENG TH directive).

Remember that to do feedback, the design must remain
exactly the same from the last Packager run to the eurr0nt
feedback run. If any of the above changes hav0 oc·c·urrcd.
back up and restore the design to the old state. To find
the previous name of the net that is now not recognized by
the Packager, look in the Expanded Net List (PSTXNET)
for a list of all nets known to the Packager.

ERROR #145: Part type not present in design

A part type in the feedback net list file (PSTFNET) was
not found in the design. The feedback net list file
specifies the net transformations that are to take pl:wP.
The information in this file includes the name of the signal
to be reconfigured and the name of the new physical part
and the corresponding part type to which the signal will lw
connected. This part type should already be in the design;
the Packager issues an error message otherwise. Check
the feedback net list file to make sure that the specified
physical parts and part types exist in the present design.
Remember that the design is not to be modified before
packaging with feedback.

3/10/86 15-37

Error Messages Packager

ERROR #146: Old section not in use

This error occurs during feedback ·while the Packager is
attempting to swap sections using the physical section
transformation file (PSTSECX). The Packager reads the
file for the physical part and the pin number of the old sec­
tion. It tries to access the corresponding logical part, and
then performs the section transformation on this logical
part. Error 146 appears if the Packager cannot find a logi­
cal component in the design that corresponds to the infor­
mation from the feedback file. To fix this error, check the
section transformation file to make sure that the correct
physical part name and pin number are given. The physi­
cal part name and pin number of logical parts can be found
in the cross reference file (PSTXREF) or by doing back
annotation.

WARNING #147: Feedback section matches multiple
parts in design

The Packager finds more than one logical part matching a
section specified in the feedback netlist file (PSTFNET).
While doing feedback, the Packager tries to match the
clesl'ription of a section in the feedback file with logical
parts in the design. It prints a warning if it cannot find a
unique match, but proceeds to assign the feedback part to
one of the matching parts in the design. A possible cause
for this error is feedback of parts of the same type that are
connected in parallel. Consider a design having a number
of resistors in parallel. The information from the Feed­
bac·k Netlist file, namely the part type and the nets con­
neC'tcd to the part, is insufficient for the Packager to isolate
a single resistor.

\\'hen this error occurs, check the feedback net list file to
make sure that the information in this file is correct and
uniquely id en ti fies thP desired part to the Packager. If you
h:ffc furthC"r difficulty swapping components, try doing
fC"eclhack with the physical sPction transformations file
(P:-;TSECX).

3/10/86

Packager Error i\l Pss:1gC's

ERROR #148: Pin in feedback net list not on part

A pin specified by the user in the feedback net list fik
(PSTFNET) is not on the physical part. When the Pack­
ager encounters an instance of a pin in the feedback nt't
list file, it tries to match this pin with one of the pins on
the physical part in the library. If there is no match, error
#148 is issued. Make sure that the library describes all of
the pins for the physical part, and that only defined pins
are referenced.

ERROR #149: Mat.ch not found for feedback section

This error is generated when the Packager cannot find the
section matching that described by the nodes in the feed­
back net list file (PSTFNET).

To get rid of this error, check the feedback net list file to
make sure that:

1. An entry is listed for each of the pins of the section.
(A missing pin is assumed to be connected to the
net 'NC'.)

2. The part_type is spelled correctly. (Make sure the
EXACT part_type name is given. The Packager dis­
tinguishes between 'LSOO', for instance, and
'74LSOO'.)

3. Each net name for the section must match exactly
an existing net name in the design. Make sure that
the directive NET_NAME_LENGTH has not been
added, deleted, or changed from the last Packager
run.

Also be sure that:

1. The design ha<> not been changed without recompil­
ing and repackaging.

2. The library used in the current Packager run is the
same as the one used during the previous run.

3/10/86 15-39

Error Messages Packager

Following the message, the Packager prints the feedback
entries that it is trying to match with a section from the
design and the partial matches it found for each entry.
t-.fake sure that these entries are as intended for the
specific section. If the Packager prints redundant entries, it
means some pins are missing for this section, and the
Packager fills these in as pins connected to 'NC' nets. If
some partial matches are not generated, try the "verbose"
option of the FEEDBACK_ORDER directive for the com­
plete list of partial matches. This option is:

FEED BA CK_ ORD ER -V FEED BA CK_NETLIST;

ERROR #150: Feedback file may be used only once

The Packager encountered more than one instance of a
feedback file type given in the directive

FEEDBACK_ORDER file_type

The feedback file types that you can specify with this direc­
tive include:

PART_TRANS
SECTION_TRANS
NET_ TRANS
FEED BA CK_NETLIST

You can enter more othan one file type, but you cannot
enter a given file type more than once.

ERROR #151: Illegal value for feedback file name

The Packager encountered an unknown feedback file type
in the directive

FEEDBACK_ORDER file_type

The feedback file types that you can specify with this direc­
tive include:

15-40 3/10/86

Packager

PART_TRANS
SECTION_TRANS
NET_ TRANS
FEEDBACK_NETLIST

Any other file types will cause an error.

Error Messages

ERROR #152: FEEDBACK_ORDER directive allowed
once

The FEEDBACK_ORDER directive was given more than
once in the directives file (PACKAGER.C:MD). Delete
the extra directive(s).

ERROR #153: Section transformations file not found

The Packager was instructed to swap sections using the
physical section transformations file, but cannot find th<'
file. When using the directive FEEDBACK_ORDEH
SECTION_TRANS, you must supply the physical section
transformations file (PSTSECX) in the current working
directory. This file shows the pairing of old physical sec­
tion to new physical section. See the Packager documenta­
tion on feedback processing for a complete description of
the format of this file.

ERROR #154: Part transformations file not found

The Packager was instructed to swap physical part5, but,
cannot find the physical part designator transformation file.
When using the directive FEED BA CK_ ORD ER
PART_TRANS, you must supply the physical part designa­
tor transformations file (PSTPRTX) in the current working
directory. This file shows the pairing of old physical part
designator to new physical part designator. See the Pack­
ager documentation on feedback processing for a complete
description of the format of this file.

3/10/86 15-41

Error Messages Packager

ERROR #155: Feedback net list file not found

The Packager was instructed to perform changes in the
design using the feedback net list file, but can not find the
file. When using the directive FEEDBACK_ORDER
FEEDBACK_NETLIST, you must supply the feedback
netlist file (PSTFNET) in the current working directory.
See the Packager documentation on feedback processing
for a complete description of the format of this file.

ERROR #156: Net transformations file not found

The Packager was instructed to swap nets using the physi­
cal net name transformations file, but cannot find the file.
When using the directive FEEDBACK_ORDER
NET_TRANS, you must supply the file PSTNET.X: in the
current working directory. This file contains a list of the
pairs of old physical net name and new physical net name.
See the Packager documentation on feedback processing
for a complete description of the format of this file.

ERROR #157: Attempting to do feedback on wrong
design

The ROOT~D RA WING name is not given in the feedback
file header, or the ROOT_DRA WING name does not
match the current design name. Make sure that you are
using the right Compiler expansion file and that the root
drawing name is given correctly in the feedback file.

ERROR #158: Unknown user assigned section number

An SEC (section) value assigned to a pin is out of the
range known to the Packager. For example, it is an error
to nssign an SEC value greater than the number of sec­
tions in a physical part.

15-12 3/10/86

Packager Error Messages

ERROR #159: SIZE/TIMES < > 1 for section
assignment

Sorry, no documentation for this error yet.

ERROR #160: SEC not the same on all pins of section

Different SEC (section) values are assigned to the pins of
a logical part in the design. To assign a logical component
to a physical section, you should apply the SEC property to
either the body or one of the pins in a section. This error
occurs when the SEC properties attached to pins of the
same section are not of the same value. Change this in
the design.

ERROR #161: SEC same on some of the sections of
logical part

The SEC (section) property was used illegally on some
HAS_FIXED _SIZE part. A HAS_FIXED _SIZE part is a
logical part that contains more than one section. All of the
sections within the same logical part must go to the same
physical package, and thus cannot get·the same SEC value.
Make sure that all of the sections of ·this component have
unique SEC values.

ERROR #162: Logical part has already been allocated

A logical part was allocated to a physical part before the
Packager assigned it. This error is internal to the Packager
and should be reported to Valid.

ERROR #163: Could not find pin number on part type

The pin num her specified in the pin swap file does not
exist in the definition of the part type. The Packager prints
the pin number and the path name of the logical part fol­
lowing the error message. Check the library definition for
this part.

3/10/86 15-43

Error Messages Packager

ERROR #164: Pins are not swappable

The Packager cannot swap the pins as specified by the user.
To be swappable, pins must be in the same section and
must have the same PIN_GROUP value. Make sure that
the pins to be swapped are logically equivalent and are in
the same section of the part, and then change the library
so that these pins have the same PIN_GROUP value. If
PIN_GROUP checking is not desired for the entire design,
use the directive USE_PIN_GROUP OFF.

ERROR #165: Value out of range

The Packager was reading the pin swap file and found a
value out of the allowed range. The offending number
could be the size offset of a pin, or the version number of
the part, or the bit subscript. The Packager prints the
value in question following the error message.

ERROR #166: Can't change user defined pin
assignment

The Packager cannot perform pinswapping because of pre­
vious user assignments.

ERROR #167: Pin Swap file has wrong file type

The Packager opened the pin swap file and the
FILE_TYPE was the wrong value.

ERROR #168: Unused.

ERROR #169: Unused.

15-44 3/10/86

Packager Error Messages

ERROR #170: Illegal value for BODY_TYPE property

The Packager was reading the library CHIPs file, and a part
has the BODY_TYPE property with an illegal value. The
two allowed values for the BODY_TYPE property are:

FLAG_BODY
STL_CHIP _DEF

Any other values cause an error.

ERROR #171: LOCATION in multiple GROUPs

The LOCATION property is forcing logical parts of
different GROUPs into the same physical part. The
GROUP property requires that logical parts of different
GROUPs be assigned to different physical parts. It is an
error for such parts to have the same LOCATION property
value.

WARNING #172: Directive has already been specified

The directives file contains more than one occurrence of
the HEADER_FILE directive. Delete the extra directive.

ERROR #173: Unused.

ERROR #174: Cannot open temporary bindings file

The Packager failed to open a file for storing new logical to
physical bindings while doing feedback. This is usually due
to some protection or disc space problem. Make sure that
the user has write permission in the current working direc­
tory and that there is enough space to run the Packager.

3/10/86

Error Messages

ERROR #175: LOCATION in multiple
LOCATION_CLASSes

Packager

Logical parts in different LOCATION_CLASSes cannot be
assigned to the same physical part and hence cannot have
the same LOCATION property value.

ERROR #176: Cannot alloc part due to
LOCATION_ CLASS

It is an error to feed back logical parts of different
LOCATION_CLASSes to the same physical part.

ERROR #177: Part bindings file has wrong type

The Packager opened the Part Bindings State File
(PSTSTA T) and it was the wrong type. State files are gen­
erated and maintained only by the Packager. You should
NOT change the state files in any way. Delete all of the
state files (PSTSTAT, PSTPRTB, PSTSIGB, PSTPSWP)
and rerun the Packager to regenerate these files before
proceeding.

ERROR #178: Signal bindings file has wrong type

The Packager opened the signal bindings state file
(PSTSIGB) and it was the wrong type, State files are gen­
erated and maintained only by the Packager. You should
NOT change the state files in any way. Delete all of the
state files (PSTSTAT, PSTPRTB, PSTSIGB, PSTPSWP)
and rerun the Packager to regenerate these files before
proceeding.

ERROR #179: Physical net name reused in state file

A physical net name occurs more than once in the Signal
Bindings State File or the Expanded Net List File. The
name of the offending net is printed after the error mes­
sage. This is most probably caused by the illegal

15-46 3/10/86

Packager Error rviessages

assignment of a net name to more than one net. To flx
this error, either rename the offending nets using feed­
back, or back up to the previous stage by deleting the state
files (PSTSTAT, PSTPRTB, PSTSIGB, PSTPSWP), and
then rerunning the Packager with the directiYe
USE_STA TE_FILES ON.

ERROR #180: Error clet.ect.ed in part bindings file

An error occurred while the Packager was in the process of
assigning physical sections. See other error messages for
details on the nature of the problem.

ERROR #181: Error clet.ect.ed in signal bindings file

Sorry, no documentation on this error yet.

ERROR #182: Cannot open file for writ.e

The Packager failed to open an output file. This is usually
due to some protection or disc space problem. The name
of the file is printed. Check the prote'ctions for the file and
the user to make sure they are compatible.

ERROR #183: Cannot close output file

This error most likely occurs because the file has not been
opened or because the file is already closed. Make sure
that the file name printed with this error message is open
and has not been previously closed.

ERROR #184: Cannot close input file

The file has not been opened or has already been closed.
:rvtake sure that the file name printed with this error mes­
sage is open.

3/10/86 15-47

Error Messages Packager

ERROR #185: LOCATION too long

The LOCATION property value assigned to the part is
longer than allowed. The limit on the length of a physical
part name is set by either the PART_NAME_LENGTH
directive or a default value of 16, whichever is lower. To
correct this error, either shorten the value of the LOCA­
TION property or change the PART_NAME_LENGTH
directive to allow for a longer name.

ERROR #186: Error detected in state file

The Packager opened the design information state file
(PSTSTA T) and found that it was of the wrong type.
State files are generated and maintained only by the Pack­
ager. You should NOT change the state files in any way.
Delete all of the state files (PSTSTAT, PSTPRTB,
PSTSIGD, PSTPSWP) and rerun the Packager to regen­
erate these files before proceeding.

ERROR #187: Cannot do feedback due to
changes/ errors

This error can be caused by:

1. Absence of the state files (e.g., the last Packager
run had the directive USE_STA TE_FILES OFF, or
the state files were deleted.

2. Manual edit<; to the state files or to the Compiler
expansion file.

3. Changes to the design without a subsequent recom­
pile and repackage to generate current state files
before the feedback attempt.

State files must be present if feedback is to take place. If
there are no state files, run the Packager once with the
directive USE_STA TE_FILES ON. State files are gen­
erated and maintained only by the Packager. If you have
modified the state files, delete them and run the Packager

15-48 3/10/86

Packager Error Messages

again before doing feedback. Also, the Packager expects
the design to remain the same from the last run to the
current run if there is feedback processing.

ERROR #188: Cannot change LOCATION property
value

The Packager cannot overwrite a user-assigned LOCA­
TION by feedback unless you use the directive
HARD_LOC_SEC OFF. To fix this error, either delete the
LOCA 110N property of the part from the design and
recompile, or change the feedback file to avoid conflict.
You can also enter HARD_LOC_SEC OFF into the direc­
tives file for the Packager. This tells the Packager that
feedback assignments may overwrite previous LOCATION
and SECTION assignments. (Be careful! Be sure that you
want to overwrite the current LOCATION/SEC proper­
ties.) If you use HARD_LOC_SEC OFF, be sure to back
annotate and recompile to make the changes permanent.
Then reset HARD_LOC_SEC back to ON to protect your
new assignments.

ERROR #189: Cannot change section assignment

The Packager was in the process of swapping sections and
found that the logical part to be swapped was already
assigned to a physical section. Unless the user ha5 been
tampering with the state files, this error is internal to the
Packager and is not caused by the user. The problem
should be reported to Valid.

ERROR #190: Pin found that is neither IN nor OUT

Sorry, no documentation for this error yet.

ERROR #191: Unused.

ERROR #192: Unused.

3/10/86 15-49

Error Messages Packager

ERROR #193: Signal name has length zero

A user-assigned signal name is empty, or it contains only
the character '-'. Make sure that every signal name con­
tains at least one character.

ERROR #194: Invalid margin values

The margins of the output are set so large that there is no
room left for printing. This is an error internal to the
Packager and should be reported to Valid.

ERROR #195: Synonym file has wrong type

The Packager opened the Compiler synonym file and
found it was the wrong type. This is probably caused by
user tampering with the file header. Try compiling the
design again before running the Packager.

ERROR #196: Drawing name too long

The drawing name that the Packager read from the Com­
piler synonyms file was too long. Shorten the name of the
design drawing.

ERROR #197: Expected DRAWING

The Packager cannot find the DRAWING entry in the
Compiler synonyms file. This may be due to user tamper­
ing with this file. Try compiling the design again before
rerunning the Packager. If the error still occurs, then the
problem is probably within the Compiler.

15-50 3/10/86

Packager Error 11essages

ERROR #198: Not all output.shave same
OUTPUT_ TYPE

OUTPUT_TYPE is a pin property on output pins. Output
pins on the same net must have the same OUTPUT_TYPE
unless the ALLOW _CONNECT property is present.

ERROR #190: Cannot determine WIRE_ TYPE of the
net

Sorry, no documentation for this error yet.

ERROR #200: Cannot open CMPSYN for net
annotation

The Packager failed to open the Compiler Synonym file for
output of synonym signals to the back annotation file
(PSTBA.CK). This is usually due to some protection or
disc space problem. Check the protections for the file and
the user to make sure they are compatible.

ERROR #201: Overlapping bit subseript.s for pin

The Packager encountered confusing information ahout a
pin. The part type for this pin is printed in the error mes­
sage. This error could be caused either by incorrect
modeling of the parts in the library or by illegal use of sig­
nal names in the design.

A common violation is to specify a part type more than
once in the library. Check the CHIPS file to make sure
that the part type printed is uniquely described. If there is
more than one library, be sure that the part type is not
multiply defined in different libraries.

Another possible cause for this error is the breaking of a
vector pin into subranges. Although each bit of a vector
pin may be used in the design, subranges are not allowed.
For example, a vector pin A<7..0> may be specified as
A<7>, A<6>, ... , A<O>. However, it is illegal to

3/10/86 15-51

Error Messages Packager

represent this vector pin as A<7 . .4> and A<3 .. 0> in the
drawing.

ERROR #202: Net name in bindings file is too long

The Packager was reading the signal bindings state file and
found a physical net name longer than it expected. This
usually happens when the user changes the net name
before running the Packager with the directive
USE_STA TE_FILES ON. Delete the state files
(PSTSTAT, PSTPRTB, PSTSIGB, PSTPSWP) and rerun
the Packager with the state files directive before proceed­
ing.

ERROR #203: Cannot create unique physical net name

The Packager ran out of unique names for physical nets.
The maximum length set for physical net names was too
short for the number of nets in the design. Increase the
operand for the directive NET_NAME_LENGTH in the
directives file.

ERROR #204: PHYS_DES_PREFIX value is too long

The PHYS_D ES_PREFIX property value that you a5signed
to a body is longer than the Packager allows. The Pack­
ager prints the path name of the logical part in question.

ERROR #205: Cannot create unique physical part name

The Packager ran out of unique names for physical parts.
The ma.\'.imum length set for physical part names was too
short for the number of parts in the design. lncrea5e the
operand for the directive PART_NAME_LENGTH in the
directives file.

15-52 3/10/86

Packager Error Messages

ERROR #206: HAS_FIXED_SIZE part found in the
library

A part with the HAS_FIXED _SIZE property was found in
the part library. The Packager expects all parts to be
SIZE-expandable, and does not understand that a
HAS_FIXED _.SIZE part in the library can also have the
SIZE property. To be able to use a HAS_FIXED _SIZE
part in a design, you should model only a single-size ver­
sion of the part in the library. Remove this property from
the library part.

ERROR #207: HAS_FIXED_SIZEvalue does not
mat.ch part

The HAS_FIXED _SIZE property value of a logical part
was incorrect. A quadruple MUX LS157, for example, is
logically equivalent to four single LS157's, and should
have a HAS_FLXED _SIZE property value of four. Any
other value is an error. This error is probably caused by
incorrect library information.

ERROR #208: Could not read Expanded Net List

The Packager cannot open the Expanded Net List
(PSTXNET) while assigning net names to signals in the
design. Make sure the user has permission to read this
file.

ERROR #209: Cannot do feedback with state files off

The Packager was instructed to do feedback with the state
files off. When the Packager sees the directive
FEEDBACK_ORDER, it expects the state files to be used.
To fix this error, first get the state files by running the
Packager with the directive USE_STA TE_FILES ON and
no FEEDBACK_ORDER. Then add the
FEEDBACK_ORDER directive again for packaging with
feedback.

3/10/86 15-53

Error Messages Packager

ERROR#210: Unused.

ERROR#211: Unused.

ERROR#212: Unused.

ERROR#213: Unused.

ERROR#214: Unused.

ERROR#215: Unused.

ERROR #216: Unused.

ERROR#217: Unused.

ERROR #218: Unused.

ERROR#219: Unused.

ERROR #220: Cannot open physical part table file

The Packager failed to open the physical part table file.
This is usually due to some protection or disc space prob­
lem. Check the protections for the file and the user to
make sure they are compatible.

ERROR #221: Expected PART

The keyword PART is missing at the beginning of a part
type table. The first line in the part type table should have
the form:

PART 'part name'

where PART NA~\IIE is the name of the part type to be
redefined by the information in the table. An example is:

PART' 1/!W RES'

3/10/86

Packager Error :\ [C'ssagt'~

ERROR #222: Unexpected characters at end of line

There are redundant characters at the end of a line for n
part type property entry. While processing the physical
part table, the Packager expects each part type property to
be specified on a single line in the format:

property name = property value

To fix this error, remove any extra characters following
the part type property.

ERROR #223: Expected END_P ART

The key word END _PART is missing at the end of a part
type table. Insert the END_PART after the part type table.

ERROR #224: Added property not unique on part type

A property was specified more than once for a part type in
the physical part table. The Packager prints the property
name and the part type following the error message.

ERROR #225: Unknown property attribute

An unknown property attribute was specified in the physi­
cal part table. Currently, the only attribute understood by
the Packager is the OPT attribute, which indicates whether
a property is optional on an instance of a part. Any other
property attributes in the physical part table will. cause
error. Please see the Packager chapter section on physical
part tables for more details.

ERROR #226: Property specified more than once

A property was specified more than once in the physical
part table. The Packager prints the name of the property
following the error message.

3/10/86 15-55

Error Messages Packager

ERROR #227: Duplicate physical part t.able entries

A physical part table entry was specified more than once in
the physical part table. The Packager prints the entry after
the error message.

ERROR #228: Property not found on logical part

An instance property in the physical part table was missing
its value. You may add or modify the values of instance­
specific properties on logical part5 by giving new property
values in the physical part table. If such a property is not
optional (as indicated by the attribute OPT following the
property name), the Packager expects to find a value given
for each instance property. l\fake sure that the appropriate
values arc given in the table for non-optional properties.

ERROR #229: Physical part t.able entry not found

The Packager cannot find a logical part with the instance
properties specified in the Physical Part Table. Check the
physical part table to make sure that the entry the Pack­
ager printed ha..'> the correct properties.

I !5-56 3/10/86

INDEX

ALLOW_CONNECT property, 5-2, 8-10
(table) 8-17

ANN OTA TE directive, 12-2
AUTO_GEN property, 9-3

back annotation, 7-1
file, 2-6

BACKANN.CMD file, 7-2
BIDIRECTIONAL property, 8-11, 8-13
binding changes list

format, 13-15
summary, 2-6

binding, definition, 14-1

CHIPS file, 2-5, 9-1
CMPEXP, 2-1
CMPSYN, 2-1
compilation run, 2-6
Compiler expansion file, 2-15
cross reference file, 13-3, 2-5
cross reference generation, 13-7

default prefix, 5-2
directives

file, 2-2, 12-1
default, 2-13
syntax, 12-1

DOCUMENT_ERRORS directive, 12-3, 15-2
drawing flattener, 12-13

error, defined, 15-1
error message

in listings, 2-12
directives, 15-2
format, 15-2
list of all, 15-4

expanded net list, 2-5, 4-2
format, 13-16

3/10/86 I-1

Index

expanded part, definition, 1-1-1
expanded part list, 2-5, 4-2

format, 13-20

FAMILY property. !J-2
fatal error, definition, l l-1
feedback, 6-1

file formats. 6-6
common errors, 6-4
net list, 6-8
physical net name, 6-Q
physical part designator, 6-7
physical section, 6-7

FEEDBACK_OHDER <lirectivP, 6-5, 12-3
FIL TER_PROPERTY directive, 12-1
FLAG bodies, 5-6
FREE_GROUPING dir<'ctive, !'i-5, 12-5

GED, 5-1
global part cross reference

file format, 13-1:3
overvie\V, 13-5

global signal cross refrrence
overview, 13-'1
file format, 13-11

Graphics Editor, 5-l
CHOUP property, 5-1

hard properties, 7-1
IIAHD_GROUPING directive, !'i-7, 6-:3, 7-4, 12-5
lIARD_LOC_,SEC dir<'ctive, !'i-7, 6-3, 7--1, 12-6

11\CLlTDE_IO~LIST directive, 5-6, 12-6
11\Pl:T_LOAD property, 8-11, 8-1:3. !J-1
in terrace properties, !J-1
in terrace :"ignals, 5-6
IO_l\ET property, 5-6
library fik~, '1-:3, !J-1

Lllm AHY clirectiYe. 2-:3, 12-7
L!IHL\ ffY_FILE dire<"tiY0. 2-:3, 12-8
li~ting lik. 2-5

example. '..l-!J

I-:!

Packager

3/10/86

Packager

load checks, 8-12
example, 8-14
summary, 4-5

loading values, 8-12
local part cross reference

file format, 13-8
overview, 13-4

LOCATION property, 5-2
LOCA TION_CLASS property, 5-6
log file, 2-5
logical changes summary, 2-5

file format, 13-14
logical nodes, 4-1
logical part, 4-1

definition, H-1
logical part designator, definition, 14-1
logical part path name, 13-15
logical pin designator, definition, 14-2
logical pin names, definition, 14-2
logical signal name to physical net name binding, 2-6
logical signals, 4-1
logical to physical assignments, 4-1
logical to physical bindings, 13-20
logical to physical part designator hinding, 2-6

MAX_ERRORS directive, 12-8, Il'}-3

NC pins, 6-!J
net, 4-5

definition, 1-1-2
net checks, 8-9

summary, 4-5
net list feedbaek, 6-8
net loading errors, 8-1-1
NET_NAJdE_LENGTH directive, 6-4, 12-9
node, definition, 1-1-2
NO_TO_CHECK propert.y, .5-2, 8-11

table, 8-17
NO_LOAD_CI-rnCK, 5-2, 8-15

table, 8-17

open eolleetor pin, 8-15
OUTPUT CHIPS directiYe, !J-1

3/10/8G

Ind("'

I-3

Index

OUTPUT directive, 12-9
output type checks, 8-10
OUTPUT_LOAD property, 8-11, 8-13, 9-1
OUTPUT_TYPE property, 8-10
oversight, defined, 15-1
OVERSIGHTS directive, 12-10, 15-3

package command, 2-2
Packager

directives, 12-1
listing file, 2-9
output files, 2-3, 13-1
version, 2-9

PA CKAGER.C.MD file, 2-1, 12-1
part type, 6-2

definition, U-2
suffixes, 9-16

PART_NAME_LENGTH directive, 12-11
PART_TABLE_FILE directive, 9-7, 12-11
PAHT_TYPE_LENGTI~I directive, 12-12
PASS_PROPEHTY directive, 12-12
PATH

ekment, 13-5
property, 13-5, 14-2

path name, definition, 14-2
phantom body, 8-6

TIMES property, 8-7
phantom wire gate, 9-2

definition, U-3
phantom wire-AND, 4-4
phantom wire-OR, "1-4
physical changes list, 13-15
physical changes summary, 2-6
physical design system, 2-U
physical name string, definition, 14-3
physical net, 4-1
physical net name, 8-1

definition, 14-3
feedback, 6-9

physical part designator, 4-1
default, prefix, 5-2
definition, 14-3
feedback, 6-7

I-4

Packager

3/10/86

Packager

physical part names, 8-2
physical part tables, 4-3, {l-4

example, {l-5
format, {l-{l
modified part types, {l-16
scale factors, {l-8
using, {l-7

physical part type, definition, 14-3
physical part, definition, 14-3
physical pin, 4-1
physical pin designator, definition, 14-·1
physical pin name, definition, 14-4
physical section feedback, 6-7
physical sections, 4-1
PHYS_DES_PREFIX, 5-2, 8-2
pin checks, 8-11
pin swap file, 2-6
pin swapping, 5-3, {l-3
PINSWAP command, 5-3
PIN_GROUP directive, 5-4
PIN_GROUP property, 5-4, {l-3
PIN_NUMBER property, 8-3, {l-3
PN (pinswap), 7-5
POWER_PINS property, {l-2, {l-3
PRINT_PIN_LIST directive, 12-13
PSTBACK file, 2-6, 7-2
PSTBCHG, 2-6

file format, 13-15
PSTCHIP, 2-5, 4-3, {l-1, {l-8, 10-1
PSTFNET file, 6-8
PSTLCHG, 2-5

file format, 13-14
PSTLOG, 2-5
PSTLST, 2-5, 15-2

example, 2-{l
PSTNETX file, 6-{l
PSTPCHG, 2-6, 13-15
PSTPIN, 12-13
PSTPRTB, 2-6, 3-1
PSTPRTX, 6-7
PSTPSWP, 2-6, 3-1
PSTRPRT, 2-6

file format, 13-15

3/10/86

Index

I-5

Index

PSTSECX file, 6-7
PSTSIGB, 2-6, 3-1
PSTSTAT, 2-6, 3-1
PSTXNET, 2-5

file format., 13-lG
PSTXPR.T, 2-5

file format, 13-20
PSTXR.EF, 2-5

file format, 13-3

R.EPORT directive, 12-13
reports file, 2-6

file format, 13-15
root drawing name, 2-15

SEC (section property), 7-5
SECTION command, 5-3
section, definition, u~4
signal name form, 13-2
signal name, definition, 14-'1
SIZE

expansion, 8-2
index, 13-6
property, 4-3

soft properties, 7-1
state files, 2-6, 3-1
subdirectory option, 2-1-1
subtype part names, 9-16
SllPPRESS directive, 12-14, 15-3
swappable pins, 5-3

time-stamp file, 2-6
TIJ\IES property

and wire-ties, 8-6
expansion, 8-4
index, 13-6
phantom bodies, 8-7
pro1wrty. 4-1
wire-tics. 8-7

timesaxers. 10-1
troubleshooting, 10-2

[-Ci

Packager

3/!0/8G

Packager

UNKNOWN_LOAD ING property, 5-2, 8-16
table, 8-17

USE STA TE_FILES directive, 6-·1
USE_PIN_GROUP directive, {)-4, 12-14
USE_STA TE_FILES directive, 12-15

Valid canonical sig'Ilal name, 13-2
vectored signals, 4-3
versions, 8-4

warning, defined, 15-1
WARNINGS directive, 12-15, 15-3
wire OR, 9-2
wire-gate

definition, 14-4
expansion, 8-6

wire-tie
definition, 14-4
expansion, 8-6

WIRE_GA TE property, {)-2
WIRE_ GA TE_ OUTPUT property, {l-2

3/10/86

Index

1-7

