
PASCAL REFERENCE MANUAL

Manual Number: MN251 Revision B

23 1fay 1086

·Valid Logic Systems, Incorporated
2820 Orchard Parkway

San Jose, California 95134
(408) 945-9·100 Telex 371 900·1

Copyright © 1983, 1984, 1985, 1986 Silicon Valley Software, Inc.

All rights reserved. No Part of this Pascal Reference Manual may be
reproduced, translated, transcribed, or transmitted in any form or by
any means manual, electronic, electro-magnetic, chemical, or optical
without explicit written permission from Silicon Valley Software, Inc.

Reprinted by Valid Logic Systems, Inc. with permission from Silicon
Valley Software, Inc.

ii

Rev

A

B

5/23/86

MANUAL REVISION HISTORY

Date

3-10-86

5-23-86

Software
Release

SVS Pascal
Release 2.5
SVS Pascal
Release 2.5

Reason for Change

First release.

Added system specific
information to chapter 9,
Appendix F and G.
Added Appendix H (con­
taining PC AT informa­
tion) and an index.

iii

PREFACE

This Pascal Reference Manual describes the Pascal Pro­
gramming language as implemented by Silicon Valley
Software, Inc. Throughout this manual, SVS Pascal is to
mean that version of Pascal as implemented by Silicon Val­
ley Software, Inc.

SVS Pascal implements the Pascal language as defined in
the proposed ISO Standard that appeared in Pascal News,
Number 20, December 1980. Appendix C ~Relationships to
ISO Pascal describes areas where SVS Pascal deviates from
the ISO standard.

In common with many Pascal implementations, SVS Pascal
has extensions. These mainly derive from features imple­
mented in the UCSD Pascal System. Primarily, those
extensions revolve· around facilities for compiling code
modules separately and string handling. The other major
areas of extension are concerned with input and output
facilities, single and double precision floating point, and
with standard procedures and functions. Differences from
U QSD Pascal are noted in Appendix D - Relationships to
UCSD Pascal.

SVS Pascal is available on host computers based on the
Motorola 68000 processor family and on hosts based on the
National Semiconductor Series 32000 family of processors.
SVS Pascal operates under many operating systems, the
range of which spans a wide spectrum of capabilities and
application domains. Since internal data representations,
addressing, and calling conventions differ between the
Motorola 68000 and the National Series 32000, and since
the range of operating systems is so great, it is impossible
to achieve perfect compatibility among the various imple­
mentations of SVS Pascal, although every attempt has been
made to be as compatible as possible so that programs writ­
ten in SVS Pascal can be ported by simply recompiling on
the target host.

5/23/86 v

Preface Pascal

SCOPE OF TIIIS MANUAL

This manual is a reference manual for SVS Pascal. It is not
intended as a user manual or a tutorial. Readers are
expected to already have some grasp of programming con­
cepts, terminology, and have at least a minimal understand­
ing of Pascal. There are approximately 50 books on Pascal
programming in the commercial market.

OVERVIEW OF TIIIS MANUAL

The overall layout of this manual loosely follows that of the
Pascal User Manual and Repor~ by Kathleen Jensen and
Niklaus Wirth. The phrase Jensen and Wi'rth is used to
refer to that book. There is somewhat more detail in this
reference manual than in Jensen and Wirth.

In general, the order that topics are presented in is: first
some narrative introductory material, then formal descrip­
tions, followed by examples.

Section 1 - Introduction is an introduction to Pascal terms
and concepts. It contains an overview of the Pascal
language. There is a description of the metalanguage. that
this manual uses to describe the Pascal Language. Finally
there are descriptions of the basic elements of Pascal.

Section 2 - Defining Data Types introduces the concepts of
data types and discusses the notations by which data types
are defined and declared.

Section 3 - Variables describes the means whereby vari'ables
.are declared and referenced.

Section 4 - Expressions describes Pascal expressions which
are used to derive new data values.

Section 5 - Statements presents Pascal statements and how
they are used to achieve computing actions.

vi 5/23/86

Pascal Preface

Section 6 - Input and Output covers Pascal input and output
facilities.

Section 7 - Program Structure describes Program Structure
in Pascal, including the ideas of independent compilation
units.

Section 8 - Standard Procedures and Functions describes
Pascal standard procedures and functions, that is, those
built in facilities of the language that a user program need
not provide.

Section 9 - Pascal Compile 'lime Options describes the
compile time options available to the programmer, in order
to exercise control over some of the actions of the Pascal
compiler and the run time system.

Appendix A - Messages from the Pascal System is a list of
·diagnostic messages from the Pascal compiler and the run­
time library.

Appendix B - Pascal Language Summary provides a sum­
mary of the Pascal language syntax.

Appendix C - Relationships t.o ISO Pascal covers the
differences between SVS Pascal and ISO standard Pascal.

Appendix D - Relationships t.o UCSD Pascal covers the
differences between SVS Pascal and UCSD Pascal.

Appendix E - Da1a Represen1ations covers machine­
dependent issues such as data representation, data packing
and parameter passing.

Appendix F - Operating the SVS· Pascal System describes
the system independent aspects of operating the system and
the considerations involved in linking programs written in
several languages.

Appendix G - UNIX Specific Information (S-32/S-320}
describes how t.o run the Pascal compiler on the UNIX
operating system on the S-32/S-320. It also covers details
of specific dependencies and interfacing requirements (if
any) of the UNIX operating system.

5/23/86 vii

Preface Pascal

Appendix H - UNIX Specific lnfonnation (PC A1' I
describes how to run the Pascal compiler on the UNIX I
operating system on the PC AT. It also covers details of
specifie dependencies and interfacing requirements (if any) I
of the UNIX operating system. I

viii 5/23/86

TABLE OF CONTENTS

Introduction
Overview of the Pascal Language.......................... 1-2
Metalanguage.. 1-8
Elementary Lexical Constructs.............................. 1-10

Alphabet... 1-10
Pascal Identifiers... 1-11
Nu1nbers ... 1-12
Pascal Strings _.. 1-13
Pascal Labels... 1-15
Basic Symbols ... 1-15
Conventions for Spaces.................................... 1-18
Con1ments .. 1-18

Defining Data Types
Defining Constants... 2-1
Standard Types ,.................... 2-3
Defining Data 'Types... 2-5
Sim pie Types... 2-5

Scalar 'Types.. 2-5
Su brang_e 'Types .. ,... 2-6

Structured Types•.................................•.......... 2-7
Array Types.. 2-8
String 'Types.. 2-10
Record 'Types.. 2-11
Set 'Types.. 2-13
File 'Types... 2-14

Pointer Types.. 2-15
'Type Identity and Assignment Compatibility........ 2-17

Identical Types.. 2-17
Assignment Compatible 'Types........................ 2-18

Variables
Declaring Variables 3-1
Predeclared Variables 3-2
Establishing Variables .. 3-2

5/23/86 ix

Table of Contents Pascal

Lifetime of Variables.. 3-3
Global Variables ... 3-3
Lifetime of Formal Parameters....................... 3-3
Lifetime of Dynamic Variables........................ 3-4

Referencing or Accessing Variables 3-4
Entire Variables.. 3-5
Component Variables....................................... 3-5
Pointer Referenced V.ariables 3-9

Expressions
Operators in Expressions....................................... 4-1

Address Evaluation Operator ~.............. 4-2
NOT Operator... 4-3
Multiplying Operators....................................... 4-3
Adding Operators... 4-5
Sign Operators... 4-6
Relational Operators... 4-7

Out of Range Values.. 4-11
Order of Evaluation in Expressions....................... 4-12
Compile Time Constant Expressions.................... 4-13

Dead Code Elimination.................................... 4-13

Statements
Statement Labels.. 5-1
Assignment Staten1ents.. 5-1
Procedure Reference Statement............................ 5-3
Structured Statements.. 5-4

BEGIN .. END - Compound Statements........ 5-4
IF .. THEN .. 'ELSE Statements...................... 5-4
CASE Statements... 5-6
WHILE .. DO Statements................................ 5-7
REPEAT .. UNTIL Statements....................... 5-8
FOR .. DO Statements..................................... 5-0

·The WITH Statement-................. 5-11
The GOTO Statement.. 5-12

x 5/23/86

Pascal Table of Contents

Input and Output
General File Handling Procedures......................... 6-1

The File Buffer Variable.................................. 6-1
GET - Get Component from File................... 6-3
PUT- Append Component to a File............... 6-3
RESET - Open an Existing File....................... 6-4
REWRITE - Create or Overwrite a File.......... 6-5
Buffering Option on RESET/REWRITE......... 6-5

Text File Handling Procedures.............................. 6-6
READ and READLN Intrinsics...................... 6-6
WRITE and WRITELN Intrinsics................... 6-8
WRITE Parameters .. 6-9
SEEK - Random Access to Typed Files.......... 6-14
CLOSE - Close a File....................................... 6-14
PAGE- Skip to New Page............................... 6-16

Block Input Output Intrinsics................................. 6-16
BLOCKREAD - Read Block from File........... 6-16
BLOCKWRITE- Write Block to File.............. 6-17

IORESULT- Return Input-Output Result............ 6-18

Program Structure
Compilation Units.. 7-2
Declaration and Scope of Identifiers...................... 7-9
Program Heading.. 7-11

Predeclared Variables....................................... 7-11
Declarations.. 7-13

Constant Definition.. 7-13
Type Definition .. 7-13
Variable Declaration... 7-13

Procedure and Function Declaration..................... 7-14
External and Forward Attributes..................... 7-16
Paramete1·s for Procedures and Functions...... 7-17

Standard Procedures and Functions
String Manipulation Facilities................................ 8-1

LENGTII - Determine String Length............. 8-2
COPY - Copy a Substring................................ 8-3
CONCA T - Concatenate Strings...................... 8-4
POS - Match a Substring in a String................ 8-4
SCANEQ and SCANNE - Scan for Character 8-5
DELETE - Delete Characters from String...... 8-6
INSERT- Insert Characters into String.......... 8-7

Table of Contents Pascal

Storage Allocation Procedures............................... 8-8
NEW - Allocate Storage................................... 8-8
DISPOSE - Dispose of Allocated Storage....... 8-10
MARK - Mark Position of Heap..................... 8-11
RELEASE - Release Allocated Memory......... 8-11
MEMAVAIL - Determine Memory 8-12

Arithmetic Functions... 8-12
ABS - Compute Absolute Value..................... 8-12
SQR - Compute Square of a Number............. 8-12
SIN - Trigonometric Sine................................. 8-12
COS - Trigonometric Cosine........................... 8-12
ARCTAN - Trigonometric Arctangent........... 8-13
EXP - Compute Exponential of Value............ 8-13
PWROFTEN - Compute Ten to a Power....... 8-13
LN - Natural Logarithm of Value................... 8-13
SQRT- Square Root of Value......................... 8-13

Predicates or Boolean Attributes........................... 8-14
ODD - Test Integer for Odd or Even............. 8-14
EOLN - Determine if End of Line.................. 8-14
EOF - Determine if End of File...................... 8-14
ISNIN, ISINF, ISNUM 8-14

Value Conversion Functions................................. 8-15
TRUNC - Truncate to Nearest Integer........... 8-15
ROUND - Round to Nearest Integer.............. 8-15
ORD - Convert Type to Integer Value........... 8-15
ORD4 - Convert to Long Integer.................... 8-16
CHR - Integer to Character Representation... 8-16

Other Standard Functions...................................... 8-17
SUCC - Determine Successor of Value.......... 8-17
PRED - Determine Predecessor of Value....... 8-17

Miscellaneous Low Level Routines....................... 8-17
MOVELEFT and MOVERIGHT..................... 8-17
FILLCHAR - Fill a Storage Region................ 8-19
SIZEOF - Determine Size of an Element....... 8-20
POINTER - Convert Integer to Pointer.......... 8-20

Control Procedures :-.......................... 8-21
EXIT- Exit from Procedure............................ 8-21
HALT- Terminate Program with Return Value8-22
CALL - Call Another Program :......... 8-22

Compile Time Options.. 9-1

xii 5/23/86

Pascal Table of Contents

Appendix A: Error Messages
Compile Time Lexical Errors................................ A-1
Compile Time Syntactic Errors.............................. A-1
Compile Time Semantic Errors............................. A-3
Specific Limitations of the Compiler..................... A-7
Input Output Errors.. A-8
Code Generation Errors... A-9
IORESULTError Codes .. A-9

Appendix B: Pascal Language Summary
Predefined Identifiers... B-1
Pascal Syntax Definitions....................................... B-2

Appendix C: Relationship to ISO Pascal

Appendix D: Relationship to UCSD Pascal
Differences from UCSD Pascal............................. D-1

Appendix E: Data Representations
Storage Allocation.. E-1
Representation of Integers..................................... E-3
Representation of Reals and Doubles................... E-4
Representation of Extreme Numbers.................... E-5

Hexadecimal Representations.......................... E-7
Deviations from the IEEE Standard................ E-7
Arithmetic Operations...................................... E-8

Representation of Sets... E-10
Representation of Arrays....................................... E-11

Representation of Pointers.............................. E-11
Packing Methods.. E-12
Parameter Passing Mechanism.............................. E-16
Register Conventions... E-18
Limitations on Size of Variables............................ E-18
Compiler Generated Linker Names...................... E-19

Appendix F: Operating the SVS Pascal System
System Components... F-1

Compiler Front End... F-1
Code Generator.. F-2
Linker ... F-2
Libraries .. '"'.......... F-3
Error Messages F -4

5/23/86 xiii

Table of Contents Pascal

Command Line Directives and Options................ F-4
Linking Programs - C and Fortran ~......... F-7

The Main Program.. F-7
Dynamic Memory Allocation.......................... F-7
Parameter Conventions.................................... F-8
Run Time Libraries.. F-11
External Naming Conventions........................ F-12
Prepended Underscore to External Names..... F-12

Appendix G: UNIX Specific Information (S-32/8-320)
Compiling a Simple Program................................. G-1
Error Message File... G-2
Ulinker .. G-2

Ulinker Inputs ;.......... G-3
Ulinker Outputs.. G-3
Running Ulinker from the Command Line.... G-5
Running Ulinker Interactively......................... G-5
Running Ulinker - Redirected Standard Input G-6
Unresolved External References..................... G-6
Segments ~................................... G-7
Errors Detected by Ulinker G-7.

Linking to UNIX Assembly Code......................... G-8
ARGC and ARGV ... ·G-9
Features not Implemented Under UNIX.............. G-9
Return Values from Pascal Programs.................... G-9

Appendix H: UNIX Specific Information {PC AT)
Compiling a Simple Program................................. H-1
Error Message File'...................... H-2
Jlinker•........................... ·......................... H-3

Jlinker Inputs.. H-3
.flinker Outputs ~......................... H-3
Running .flinker from the Command Line..... H-5
Running .flinker Interactively H-5
Unresolved External References..................... H-6
Errors Detected by Ulinker H-6

Linking to UNIX Assembly Code......................... H-7
ARGC and ARGV ... H-8
Features not Implemented Under UNIX.............. H-8
Return Values from Pascal Programs.................... H-8

xiv 5/23/86

SEar.ION 1
INTRODUCTION

Pascal is a modern computer programming language
designed by Professor Niklaus Wirth (of the Eidgenossiche
Technische Hocheschule, Zurich, Switzerland) in reaction
to the perceived disorder of contemporary programming
languages. Originally intended as an aid to teaching rigorous
and disciplined computer programming, ·Pascal has since
gained international acceptance as a programming language
for a multiplicity of applications ranging from writing com­
pilers (including Pascal compilers) to controlling a grain
elevator. Pascal is not an acronym for anything. Pascal is
named after Blaise Pascal, the 17th century philosopher and
mathematician.

Pascal is one of the many derivatives of Algol-60. Algol
introduced the notion of nested control structures such as
if .. then .. else that form the basis of today's structured pro­
gramming methods. In addition to the control structures,
Pascal goes one step further with the notion that data struc­
tures play at least as important a part in rigorous program­
ming as do control structures. The absence of an adequate
data structuring notation was seen as Algol's most obvious
deficiency.

Pascal's major contribution to the advance in programming
technology is the concept of user definable data types. This
provides powerful facilities for defining new data types and
data structures in terms of a few basic types.

This reference manual describes the Pascal language as
implemented by Silicon Valley Software, Inc. Throughout,
the term SVS Pascal means the Pascal implementation as
described in this reference manual.

3/10/86 1-1

Introduction Pascal

1.1 OVERVIEW OF THE PASCAL LANGUAGE

A Pascal program consists of a series of declarations and
statements. Declarations serve to define program objects.
Statements determine actions to be performed upon such
objects. These two things, declarations and statements,
serve to describe a computer program.

Definable Pascal objects in elude variables, functions, pro­
cedures, and files. Declaring an instance of an object
requires an identifier and, usually, a type description. An
object's identifier serves to identify that object so that it can
be referenced later. The type associated with an object
defines its operational characteristics, and in some cases,
indicates a referential notation.

It is important to note that all user supplied objects must be
fully described, especially as to their type. Pascal is unlike
many other programming languages in that it does not sup­
ply any default attributes for undeclared identifiers.

One of Pascal's strongest points is the ability for users to
define new types. Pascal supplies a small number of
predefined or basic types, such as integer. Pascal then sup­
plies notations for defining new (user defined) types, both
in terms of the basic types, and in terms of other user
defined types.

A type can be described directly in a declaration, or, a type
can be referenced by a type identifier which, in tum, must
be defined by another explicit type declaration.

In general, a Pascal object is only subject to operations that
lie inside of a domain indicated by its type. For example,
most binary operators are restricted to objects of the same
type (for instance, characters and integers cannot be added
directly). These operational constraints are rigid, as are the
rules for type identity and assignment compatibility. Depar­
tures from the rules have to be spelled out explicitly in
terms of conversion functions.

1-2 3/10/86

Pascal Introduction

The basic data type is the scalar type, often referred to as
an enumerated type. A scalar definition indicates an ordered
set of values, where each identifier in the set stands for a
specific value.

In addition to the definable scalar types, there are six stan­
dard basic types:

• integer

• longint

• char{ acter)

• real

• double

• Boolean types.

With the exception of the Boolean type, their values are
denoted by numbers or quoted characters, instead of by
identifiers.

A type may also be defined as a subrange of a scalar type by
indicating the lower and upper bounds of the subrange.

Structured types are aggregates, defined by describing the
types or their component.s, and by indicating a structuring
method. The structuring methods differ in the way that
component.s or a structured variable are selected, and the
operations in which they can participate. Pascal provides
five basic ways t.o construct an aggregate object:

• Barray

• record

• set

• string

• file

3/10/86 1-3

Introduction Pascal

An array has components which are all of the same type.
A component is selected by a computable index. The type
of such an index must be a scalar, and is determined at the
time the array is declared.

A record has components called fields which need not be all
of the same type. A field selector for a component of a
record is an identifier that is uniquely associated with the
component to be selected. Unlike an array element index,
a field selector is not a computable quantity. The field
selectors are defined at the same time that the record is
defined. A record type may consist of several variants.
This means that different variables or the same record type
may actually contain different structures. That is, the
number and types of the components may differ between
different instances of the same type. The particular variant
which the specific variable assumes is indicated by a field
called the tag field, common to all variants of that record.

A set is a homogeneous collection of elements selected
from some base type. The base type might be a user
defined scalar type or a subrange or some scalar type such
as integer or char. A Pascal set is the collection of values
comprising the powerset or the base type. That means, the
set or all subsets of that base type.

A string data type is a sequence of characters whose length
can vary dynamically during program execution. A string
has a maximum length (its static length) which is deter­
mined when it is defined. There are a rich set of intrinsic
procedures and functions to manipulate strings.

A file is a sequence or components of the same type. The
sequence is normally associated with external storage or
input and output devices, so that files are the means
whereby a Pascal program communicates with the world
outside or the computer. Files can be sequential such that
there is a natural ordering, and only one component of the
file is accessible at any one time, or they can be rando·m,
such that any given component of the file is accessible on
demand.

1-4 3/10/86

Pascal Introduction

Explicitly decla.!-ed variables are called static, in that they are
known at compile time (lexically st.a.tic). A declaration
associates an identifier with the variable. The identifier is
subsequently used to refer to that variable. In contrast to
st.a.tic variables, dynamic variables are created by execut.a.ble
sta.temen18. Such a dynamic creation of a variable yields a
pointer (which substitutes for an explicit declaration), that is
subsequently used to refer to the dynamically allocated
variable. Any given pointer variable may only assume
values pointing to variables of a specific type, and is said to
be bound to that type. A pointer may be. assigned to other
pointer variables of the same type. Any pointer can
assume the value . nil - a universal pointer that is not
bound to a specific type.

The assignment statement is the fundamental Pascal state­
ment. It assigns a newly computed value to a variable or a
component of a variable. New values are obtained by
evaluating expressions. Expressions consist of variables,
constan18, se18, operators, and functions,- operating on
specified objec1s, to produce new values. Operands of
expressions are either declared in the program, or are stan­
dard Pascal entities.

Pascal defines a fixed set of operators that can be con­
sidered to define a mapping from given operand types into
result types. Operators encompass the four groups:

• arithmetic operators

• Boolean operators

• set operators

• relational operators

A procedure statement causes execution of a designated pro­
cedure. This is known as activating or calling the procedure.

3/10/86 1-5

Introduction Pascal

Assignment and procedure statements are the basic ele­
ments of structured statements. Structured statements specify
sequential, selective, or repetitive execution of their com­
ponent statements.

Sequential execution is obtained by the compound statement
Conditional and selective execution is obtained by the if
statement and the case statement. Repetitive execution is
specified by the while statement, the repeat statement, or
the for statement.

A statement can be given a name (an identifier), and sub­
sequently be referenced via that name. The statement is
then called a procedure, and its declaration is a procedure
declaration.

A procedure declaration can itself contain type declarations,
variable declarations, and further procedure declarations.
These subsequent declarations can only be referenced
within that procedure, and are thus said to be local to the
procedure.

The program text that comprises a procedure body is called
the scope of any identifiers declared local to that procedure.
Since procedures may be declared local to other pro­
cedures, scopes may be nested. Objects declared in the
main program block, not local to any procedure, are said to
be global, in that their scope is that of the entire program.

A procedure can have a number of parameters (determined
at procedure declaration time), each parameter being
denoted by an identifier called the formal parameter. When
a procedure is activated, each of the formal parameters has
an actual quantity substituted so that quantity is accessed by
reference to the formal parameter identifier. These quanti­
ties are called actual parameters.

1-6 3/10/86

Pascal Introduction

There are three sorts of parameters:

• value parameters

• variable parameters

• procedure or function parameters

A value parameter is an actual parameter which is
evaluated once. The formal parameter then represents a
local variable conveniently initialized to the value of the
actual parameter.

In the case of a variable parameter, the actual parameter is
a variable; the formal parameter actually references and can
alter that variable.

Possible array indexes are evaluated before activation of
the procedure or function. In the case of a procedure or
function parameter, the actual parameter is a procedure or
function identifier. ·

Functions are declared in the same way as procedures. The
difference is that a function returns a value. Pascal func­
tions have intuitive similarities to the mathematical notion;
that is, a function is a computational entity that is applied
to some arguments and generates a result. Pascal functions
differ from the rigorous mathematical notion of functions
in that they can have side effects.

The type of the returned value must be specified as part of
the function declaration. Functions can only return scalar
types or pointer types. A function reference must appear in
the context of an expression.

Pascal procedures and functions are inherently recursive.
That means that a procedure or function can call it.self anew
before the current activation is complete. On each activa­
tion, a fresh set of local data is created.

3/10/86 1-7

Introduction Pascal

Recursive activation can be direct (the reference is con­
tained within the procedure or function itself) or indirect
(the reference is from another procedure or function which
in turn is referenced from the current procedure or func­
tion).

1.2 METALANGUAGE

A metalanguage is a collection of notations that describes
another language. In this case, the language being
described is Pascal. The metalanguage used in this manual
to describe Pascal is a modified version of the ubiquitous
Backus-Naur Form, or BNF (first used to describe Algol).
A description of the metalanguage follows.

1-8

• Syntactic constructs which are enclosed between
angle brackets (< and >) define the basic language
elements. Every language construct should eventu­
ally be defined in terms of basic lexical constructs
defined in the remainder of this chapter.

• A construct appearing outside the angle brackets
stands for itself, that is, it is supposed to be self
denoting. Such a construct is known as a terminal
symbol.

• The symbol::= is to be read defined as.

• The symbol .. means through, indicating an ordered
sequence of things where only the start and end ele­
ments are specified. (The reader is left to inf er the
middle elements).

For example, the notation 'a' .. 'z' means the
ordered collection starting with the letter 'a', ending
with the letter 'z', and containing the letters 'b',
'c' 'x ', 'y' in between. In other words, all the
lower case letters.

3/10/86

Pascal Introduction

• The vertical bar symbol (I) is read as or. It separates
sequences of elements that represent a choice of one
out of many.

• The metalanguage construct { ... } (elements inside
braces) encloses elements which are t.o be repeated
zero t.o many times. Although the braces are also
used as one of the forms of comment delimiters in
Pascal, this should not cause any ambiguity. The
one case where ambiguity would occur is in the
definition of comments, and this is explicitly pointed
out at that time. ·

It is recognized that the syntactic descriptions a.re not com­
pletely rigorous in that they do not cover semantic issues.
For example, the syntactic definition of a decimal number
does not mention how big a number can be. Where the
formal descriptions fall short, they are augmented with nar­
rative English prose.

3/10/86 1-9

Introduction Pascal

1.3 ELEMENTARY LEXICAL CONS'l'RUCTS

Pascal language lexical units, identifiers, basic symbols, and
constants, are construct.ed from one or more (juxtaposed)
elements of the alphabet described below.

ALPHABET

SVS Pascal uses an ext.ended form of the ASCII charact.er
set for all t.ext-relat.ed processing. ASCII is the American
Standard Code for Information Int.erchange. There are 128
charact.ers in the ASCII charact.er set: 52 letters (upper case
A through Z, and lower case a through z), 10 digits, space
(oft.en called blank), 33 control codes (such as carriage
return and line feed), and 32 graphic charact.ers such as
colon, equals sign, and so on. Pascal also allows an addi­
tional 128 values to he used as data values, for a total of
256 possible data values.

The Pascal compiler recognizes the following alphabet or
character set

<letter>

<digit>

<hex digit>

<ASCII graphic charact.ers>

::= 'A' .. 'Z', 'a' .. 'z',
and'_'

::= 'O' .. '9'

::= <digit> I 'a' .. 'f' l
'A' .. 'F'

::= ! " # $ % & ' () * =
+-,./<>?\[@Al
-'{};:]

Not.e that the definition of <lett.er> above includes the
underline charact.er.

1-10 3/10/86

Pascal Introduction

PASCAL IDENllFIERS

Pascal identifiers serve to denote constants, variables, pro­
cedures, and other language objects.

<identifier> ::= <letter> { <letter> I <digit> }

A Pascal identifier must start with a letter or an underline
character. It can contain letters, digits, and the underline
charaeter. The underline is usually used to mark off spaces
in the identifier to provide for readable and meaningful
names. A Pascal identifier may be any length, but only the
first 31 characters are significant to the compiler. Upper
and lower case letters are all folded to a single ease in the
compiler, making them equivalent.

Examples of Identifiers

here_and_there August_IQ70 Steve_and_Jeff

_.X25 Tau~psilon_Xi DragonsEgg

UPanddown upandDOWN upANDdown

The last three identifiers in the examples are equivalent
because the compiler folds letters to a single case.

Examples of Invalid Identifiers

lst_chara.cter_must_be_a_letter

m ustn 't_have_odd_#$"(_chara.cters_in_it

3/10/86 1-11

Introduction Pascal

NUMBERS

Numbers are used to denote integer, real, and double data
elements. Integers are assumed to be in the decimal
number base, unless designated as a hexadecimal number.

<unsigned integer> ::= <digit> {<digit>}

<unsigned real> ::=
<unsigned integer>.<unsigned integer>

I <unsigned integer>.<unsigned integer>E<scale factor>
I <unsigned integer>E<scale factor>
I <unsigned integer>.<unsigned integer>D <scale factor>
I <unsigned integer>D <scale factor>

<unsigned number> ::= <unsigned int.eger> I <unsigned real>

<scale factor> ::= <unsigned int.eger> I <sign> <unsigned integer::::

<sign> ::= + I-

<hex number> ::=$<hex digit> {<hex digit>}

Hexadecimal numbers are considered unsigned, unless they
are explicitly written as 32-bit values with the most
significant bit a one. For instance, the value $ffff is 65535
and not -1. The value $ff ff ff ff is a negative number.

Integer numbers are represented internally in the two's
complement notation. As a consequence, there is one
more negative integer than there are positive integers.

1-12 3/10/86

Pascal Introduction

Values of type double are designated by a letter D preced­
ing the exponent part of the number.

666

+ 99 -457

$3e8

o.o
3.14159

1.23Dl0

5.

.618

5.ElO

2FC9

F034

Examples of Valid Numbers

{ unsigned decimal integer }

{ signed decimal numbers }

{ a hexadecimal number }

{ the real number zero }

{ a double number }

Examples of Invalid Numbers

{ should be a digit after the point }

{ should be a digit before the point }

{ should be a digit after the point }

{ Invalid decimal number }

{ An identifier, not a hex number }

PASCAL S'IRINGS

Sequences of characters enclosed in apostrophes are called
strings. Strings of one character are constants of type char.
A string of 'n' characters, where 'n' is greater than one, is
an ambiguous constant that is either a string value, or is a
value of the type packed array [1 .. n] of char; The exact
type of such a string constant is determined from the con­
text in which it appears.

3/10/86 1-13

Introduction Pascal

A string constant which is just simply two juxtaposed apos­
trophes (") represents a variable string constant of length
zero.

SVS Pascal provides for entering any character value into a
string by coding its two-digit hexadecimal value preceded
by a reverse slash (). This means that non-printing charac­
ters such as BEL and ETX may be entered into a string. A
sign followed by a non-hexadecimal digit is simply that

character. Thus '\Y' is equivalent to 'Y', '\'represents '\'
and '\3X' represents '\03X'. This last case is interesting in
that leading zeros are implicit in the hexadecimal number if
there is only one hexadecimal digit followed by a non­
hexadecimal digit.

An apostrophe in a string is represented by two juxtaposed
apostrophes. The rules for reverse slash character
representations above means that an apostrophe can also be
represented by the string '\", or by the string '\27'.

<string> ::='<character> {<character>}'

<character value> ::= <two digit hexadecimal number>

Examples of Strings

'This is a string constant'

'This string has an embedded " apostrophe'

'here is how to get a \07 bell character in a string'

'to get a back slash, just type \\'

1-14 3/10/86

Pascal Introduction

PASCAL LABELS

A label is used ro mark statements as the potential target of
a goro statement.

Pascal labels are unsigned integer constants in the range 0 ..
9999.

<label> ::= <unsigned integer>

BASIC SYMBOLS

Pascal has a set of basic symbols which the compiler uses
for specific purposes in the language. These basic symbols
include selected identifiers (reserved words), graphic char­
acters, and pairs of graphic characters. These basic symbols
are used as keywords, operarors, delimiters and separarors.
Such symbols are introduced throughout the body of this
manual.

Note that user-defined identifiers may not be the same as
any Pascal reserved word.

There are two lists of basic symbols shown below. One is a
list of Pascal reserved words and the other is a list of the
special graphic symbols that Pascal uses.

3/10/86 1-15

Introduction Pascal

Pascal Reserved Words

and end label program until
array file mod record uses
begin for nil repeat var
case function not set while
const goto of string with
div if or then
do implementation otherwise · to
down to in packed type
else interface procedure unit

Pascal Special Symbols

+ Adding Operator.

*
I

1-16

Subtracting Operator.

Multiplying Operator.

Division Operator (for real and double data
types).

Assignment Operator.

Terminates a Pascal Compilation Unit; Separates
integer from fraction in a real or double
number; Indicates reference to a field of a
record.

Separates items in lists.

Statement and Declaration Separator.

Used after case labels, statement labels, variable
and parameter descriptions.

3/10/86

Pascal

<>

<
<=

>=

>
(and)

[and]

{and}

Introduction

String delimiter.

Relational equality operator; Used in constant
and type definition.

Relational operator for inequality.

Relational operator for less than.

Relational operator for less than or equal to.

Relational operator for greater than or equal to.

Relational operator for greater than.

Encloses lists of elements; encloses parts or
expressions that are to be considered indivisible
factors.

Encloses array subscripts and lists or set ele­
ments.

Comment delimiters.

(* and *) An alternative form of comment delimiters.

pointer dereference operator.

Indicates a range of elements.

3/10/86 1-17

Introduction Pascal

CONVENTIONS FOR SPACES

Spaces (also called blanks) are used to separate lexical
items. Identifiers, reserved words and co.nstants must not
abut each other, neither may they contain embedded
spaces. Multiple-character basic symbols such as <= must
not contain embedded spaces.

Other than that, spaces may be used freely (to improve
program readability for instance). They have no effect, out­
side of character and string constants, where a space
represents itself.

COMMENTS

Comments in Pascal may appear anywhere that a space may
appear, and in fact, serve the same purpose as do spaces.
But note that a comment within a string constant is part of
the string constant and is not really a comment. Pascal
comments are enclosed between braces {. .. } or between the
characters (*and *).

<comment> ::= { <any printable characters except"}"> }
I(* <any printable characters except"*)"*)

In the description above, the braces enclosing the comment
are the comment delimiters, not metalanguage symbols.

For historical reasons, Pascal accepts two forms of com­
ment delimiters. The open and close braces { } can be used
where the character set provides such. Most modern com­
puter systems and terminals accommodate those characters.
Those systems which do not accommodate the full ASCII
character set can use the alternative forms of (* and *) to
delimit comments.

1-18 3/10/86

Pascal Introduction

Comments that start with one kind of opening delimiter
must end with the corresponding closing delimiter. For
example:

{ this Pascal comment is enclosed in braces }

(* this comment uses the alternative delimiter *)

{ this Pascal comment would go on for ever because *) (*
does not close the comment. For that we need a closing
brace }

Pascal comments can span multiple lines, thus providing a
block comment capability.

3/10/86 1-19

SEGTION2
DEFINING DATA TYPES

One of Pascal's major attractions is the ease with which
users can describe and manipulate data. An important
aspect of structured programming technology is the ability
to structure data as well as control statements. This is pro­
vided in Pascal through the notion of a data type.

A type defines a collection of values that a variable, con­
stant or expression may take on. A type has an associated
size, but of itself reserves no storage space. Storage is only
reserved when a variable is declared as an instance of that
type. Although Pascal data types can be quite complex,
they are ultimately composed of simple unstructured com­
ponents. An example is the predefined type integer. Its
size is two bytes (16 bits). The set of values it contains is
-32768, ... , -1, 0, 1. .. , 32767.

In addition to having a size and a set of values, a type has a
collection of operations in which values of that type can
participate.

Pascal provides a number of predefined types (some of
which were described in Section 1), as well as the means
for users to define their own types. Section 2.2 of this
chapter describes all predefined Pascal types.

Type constructors are the means by which users can define
their own types. Structured type constructors facilitate the
definition of new and larger types based upon other existing
types as components.

2.1 DEFINING CONSTANTS

A literal constant is a value that denotes itself; its value is
manifest from its appearance. The integer 1776 and the
string "Manila" are literal constants. A constant definition
introduces an identifier that is a synonym for a constant.
Using the identifier is equivalent to using the associated

3/10/86 2-1

Defining Data Types Pascal

literal constant. Whereas the string "3.14159" is a literal
constant, an identifier called "Pi" could be defined which is
a synonym for the number. The identifier is then known as
a constant identifier, or just a constant.

<constant identifier> ::= <identifier>

<constant> ::= <urn~igned number>
<sign> <unsigned number>

<constant identifier>
<sign> <constant identifier>

<string>

<constant definition> ::= <identifier> = <constant>;

The definition above means that a constant may be defined
to be another constant, but prohibits constant expressions.

PREDEFINED CONSTANTS

Pascal provides three constants that are automatically
declared as part of the language. The three constants are:

true Represents the truth value for a Boolean type.

false Represents the falsity value for a Boolean type.

maxint An integer constant representing the largest

2-2

integer that Pascal can store. Maxint is
currently defined as 32767.

Examples of Constant Definitions

Liters_per_bottle = 0.750;
Bottles_per_Case = 12;
first_vowel = 'a';
Winery= 'Chateau Montelena';
Carriage__Return = ' d';

{ standard bottle is 750 ml }
{ standard case }
{ a char constant } .
{ a string constant }
{ carriage return character }

3/10/86

Pascal Defining Data Types

2.2 STANDARD TYPES

SVS Pascal has eight predefined types available:

integer

longint

real

double

3/10/86

Integer type represents an implementation
defined subset oC the integers. It is
equivalent to a subrange defined by a type
definition that looks like:

integer = -32768 .. 32767

The integer data type thereCore occupies 16
bits or data storage.

Is a long integer type. It is equivalent to a
subrange defined by a type definition that
looks like:

longint = -2147483648 .. 2147483647

The longint data type therefore occupies 32
bits of data storage.

Real type is a subset of the continuum or
real numbers. Reals are represented in
floating point format which consists of a
fractional part (a mantissa) and an
exponent. The range of real numbers is
approximately -3.4E38 .. + 3.4E38, with a
precision of approximately seven decimal
places. In addition, the real data type can
take on extreme values, such as plus
infinity, minus infinity, and Not a Number
(abbreviated NaN), which arise Crom
overflow and division by zero. There is a
detailed discussion of extreme values in
Appendix E: Data Representations.

Double type is a double precision form of
the real data type described above, and is a
subset of the continuum of real numbers.
Double numbers are represented in floatr
ing point format which consists of a frac­
tional part (a mantissa) and an exponent.

2-3

Defining Data Types Pascal

Boolean

char

text

interactive

2-4

The range of double numbers is approxi­
mately -1.8D 308 .. + 1.8D 308, with a pre­
cision of approximately 15 decimal places.
In addition, the double data type can take
on extreme values, such as plus infinity,
minus infinity, and Not a Number (abbre­
viated NaN), which arise from overflow
and division by zero. There is a detailed
Discussion of extreme values in Appendix
E: Data Representations.

Boolean type represents the ordered set of
truth values whose constant denotations
are false and true. Boolean is conceptually
equivalent to an ordinal type specified by a
type definition that looks like:

Boolean = (false, true)

Character type defines the set of 256
values of the ASCII character set, and is
equivalent to the subrange defined by a
type definition that looks like:

char = '\ \O' .. '\ \255'

An unpacked char data item occupies one
word or 16 bits of data storage. A packed
char data item occupies one byte or 8 bits
of data storage.

Is equivalent to a packed file of char.

Is a file type the same as that of text,
except that the standard procedures
READLN and WRITELN treat the end­
of-line in a way that is more suitable for
interactive (terminal) devices.

3/10/86

Pascal Defining Data Types

2.3 DEFINING DATA TYPES

Pascal data types (or just types for short), are used t.o define
sets of values that Pascal variables may assume and in
many cases, a notation for referencing such variables. Pas­
cal provides a small number of predefined types, reserved
identifiers for these types, and a notation for defining new
types in terms of existing types.

Type declarations introduce new (user defined) types, and
identifiers for those newly-declared types.

<type spec> ::= <type identifier> = <Pascal type>;

Type declarations can be used for purposes of brevity, clar­
ity and accuracy. Once declared, a type may be referred t.o
elsewhere in the program by its declared type-identifier.

2.4 SIMPLE TYPES

Simple types are those that have neither structure nor com­
ponents. The simple types are as follows:

<simple type> ::~ <scalar type>

I <standard type>
<subrange type>

I <type identifier>

SCALAR TYPES

A scalar type defines a well-ordered set of values by
enumerating the identifiers that denote those values. A
scalar type is also known as an enumerated type or an ordinal
type. An ordinal type is represented by the ordered set of
integers 0, 1, 2, 3, , with the first identifier being 0, up
t.o the last identifier which is "n"l, where "n" is the
number of identifiers in the list.

<scalar type> ::= (<identifier> {,<identifier>})

3/10/86 2-5

Defining Data Types Pascal

Examples of Scalar Type Definitions

salad_greens =(Spinach, Lettuce, Coriander, Escarole,
Watercress);

bottle_sizes = (Fillette, Bottle, Magnum, Marie_Jeanne,
Jeroboam, Imperial);

mealtimes = (Breakfast, Elevenses, Lunch, Afternoon­
Tea, Dinner);

SUBRANGE TYP~

A subrange type represents. a subrange of values of another
scalar type. It is defined by a lower and an upper bound.
The lower bound must not be greater than the upper
bound, and both bounds must be of identical scalar types.

Values from a subrange and values from its parent range
(or another subrange of its parent range) can be assigned to
each other and can enter into the operations of assignment,
comparison, and other binary operations.

<subrange type> ::=
<subrange type identifier> I <lower> .. <upper>

<lower> ::= <signed scalar constant>
<upper> ::= <signed scalar constant>

Examples of Subrange Type Definitions

small_integer =
days_in__year =

positive_integer =
lower_case_letters =

colors=
hot_colors =

cold_colors =
hues=
days=

2-6

weekdays=
weekends=

0 .. 15;
1 .. 366;
0 .. 32767;
'a' .. 'z';
(red, orange, yellow, green, blue);
red .. yellow;
green .. blue;
red .. blue;
(Saturday, Sunday, Monday, T,

W, T, Friday);
Monday .. Friday;
Saturday .. Sunday;

3/10/86

Pascal Defining Data Types

2.5 S'IRUCTURED TYPES

Structured types represent collections of objects. They are
defined by describing their element types and indicating a
structuri'ng method. These differ in the accessing mechan­
isms and in the notation used to select elements from the
collection.

Pascal makes available five structuring methods: array,
string, set, record and file. Each type is described in the
subsections to follow.

A structured type may be given the packed storage attri­
bute. This advises the compiler that the structure is to use
data storage economically, by packing the components of
the structure densely. Packing is often achieved at a cost of
larger code size and slower execution speed. Furthermore,
a component of a packed variable can not be passed as a
var parameter to a procedure or function (this restriction
applies to components of packed array of char). A full dis­
cussion on how components are packed can be found in
Appendi:l: E: Data Representations.

<structured type> ::= <unpacked structured type>
!packed <unpacked structured type>

<unpacked structured type> ::= <array type>
<string type>

<record type>
<set type>

<file type>

3/10/86 2-7

Defining Data Types Pascal

ARRAY TYPES

An array type is a structure consisting of a fixed number of
components, all of the same type (called the component
type). Array elements are designated by indexes, which are
values belonging to the so-called index type. The array
type-definition specifies the component type as well as the
index type.

<array type> ::=array [<index list>] of <type>

<index list> ::= <simple type> {, <simple type>}

If 'n' index types are specified, the array is an 'n' dimen­
sional array. Note that the above definition for an array
type means that there are two alternative ways of specifying
an array. By definition, a component of an array can be
another array type. Thus a three dimensional array could
be specified as follows:

blivet = array [1..10, 11..20, 21..30] of blimps;

widget= array [1..10] of array [11..20] of
array [21..30] of blimps;

The alternative forms of specifying array types are
equivalent. The first form can be thought of as a short­
hand notation for the second form. There is a similar
choice of notations when specifying the index elements for
accessing an array component.

2-8 3/10/86

Pascal Defining Data Types

When the index type is a subrange of the type integer, the
type:

packed array [1 .. n] of char

is a special case. Objects of this type up to a maximum
length of 255 characters can be compared as single entities,
whereas arrays of other data types must be compared ele­
ment by element. A literal string constant can be assigned
to a packed array of char, providing that the lengths are the
same. The type of a literal string of length 'n', where 'n' is
greater than 1 is compatible with the type:

packed array [1 .. · n] of char

Examples of Array Type Definitions

rows= 1 .. 3;
columns = 1 .. 4;

bottle_quantities = array [bottle_sizes] of integer;

standard_case = packed array [rows]
of array [columns]

of bottles;

token = packed array [1 .. 100] of char;

3/10/86 2-9

Defining Data Types Pascal

STRING TYPES

SVS Pascal has a structured type constructor called string.
A string variable has a maximum length (called its static
length) which is determined when the string is defined. A
string variable also has a dynamic length which can vary
over the range 0 through its static length during execution
of a program. The standard function LENGTH can be
used to determine the string's dynamic length. The max­
imum static length of a string variable is 255 characters.

Strings can be manipulated by standard Pascal syntax, or by
using string handling intrinsics, described in Section 8: Stan­
dard Procedures and Functions.

<string type> ::=string[<static length>]

<static length> ::=integer constant in the range 1 .. 255

A string constant which is " (two juxtaposed apostrophes)
represents a null or zero-length string.

Example of String Type Definition

manila = string[100];
punched_card =string[SO];

2-10 3/10/86

Pascal Defining Data Types

RECORD TYP:El!;

A record type is a structure consisting of a fixed number of
component.s that may be of different types. For each com;,.
ponent, or field of the record, the definition specifies both a
type and an identifier used to reference the field. The
scope of these field identifiers is the definition of the record
it.self. This means that the same field identifier may appear
in more than one record. A field identifier is also accessi­
ble within a field designator when ref erring to a variable of
this record type.

Record components which are themselves records do not
inherit the packing attribut.e of the containing record. Each
component which is a record has independent packing attri­
but.es.

A variant record caters to the need for a record composed of
a portion which is always the same, plus one or more vari­
ants whose layouts differ between different instances of the
record. The specific variant that is select.ed in , any given
instance is det.ermined by an optional tag field. Such a
structure is called a variant record or a discriminat.ed union ..
The tag field is oft.en called a discriminant. The tag field's
value indicat.es which vari~t the record assumes at a given
time. Each variant structure is identified via a case label
which is a constant of the tag field's type. Referencing a
field of a variant that is inconsist.ent with the tag· fields's
value is a serious programming error.

<record type> ::=record <field list> end;
<field list> ::= <fixed part>

I <fixed part> ; <variant part>
I <variant part>

<fixed part> ::= <record section> {; <record section>}
<record section> ::= <field identifier list> : <type>
<field identifier list> ::= <field identifier> {,<field identifier>}

3/10/86 2-11

Defining Data Types Pascal

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>

<variant list> ::= <variant> {; <variant>}
<variant> ::= <case label list> : (<field list>)
<case label list> ::= <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

Note that the <tag field> is optional in a va}iant record
definition. r

Examples of Record Type Definitions

{ the example to follow illustrates an }

~{ ordinary record called ComplexNumber, }
which contains two fields, namely the }
real part and the imaginary part. }

ComplexNumber = record
RealPart: real;
Imaginary: real;

end;

{ The example below illustrates a variant }
{ record type which has different sections }

{ First we define an enumerated type which } {
{ that are accessed depending on the tags. }

is used as the variant case selector. }

shapes = (rectangle, triangle, circle, polygon);

angle = -180 .. + 180;

2-12 3/10/86

Pascal Defining Data Types

PositionRec =record
x_position: real;
y_position: real;
case what.shape: shapes of

rectangle: (recbase: real;
recheight: real);

triangle: (tribase: real;
triheight: real;
triskew: angle) ;

circle: { cirradius: real);
polygon: (SideCount: integer;

polradius: real);
end;

SETTYPE.S

A set type definition serves t.o define the base type that the
set is t.o use in future manipulations. Sets are limited t.o
2032 element.s. The range of the set elements must be
within the range 0 .. 2031.

<set type> ::=set of <simple type>

Examples of Set Type Definitions

salad_base =set of salad_greens;

dressings= set of salad_dressings;

lower_case =set of 'a" .. 'z';

3/10/86 2-13

Defining Data Types Pascal

FILE TYPES

A file type defines a sequence of elements. A file is usually
associated with external storage devices or communication
devices. SVS Pascal supports the standard Pascal typed
files, untyped files and an interactive file type more suitable
for terminals.

When a file variable 'f' with components of type 'T' is
declared, there is an additional implied declaration of a so
called buffer variable or 'window'., also of type 'T'. This
window is referenced by the notation r where 'f' is the file
variable. This window is used in conjunction with the GET
and PUT procedures (see Section 6: Input and Output) and
serves to append components to the file when writing, and
to access the components when reading from the file.

<file type> ::= file of <type>
I file

SVS Pascal supports untyped files. An untyped file can be
considered to not have a window variable. Such files must
be accessed using the BLOCK.READ and BLOCKWRITE
functions described in Section 6: Input and Output

A file of the pre-defined type text can be considered to be
defined by a type definition of the form:

text = packed file of char;

Such a file is special in that the range of its components
(characters) are extended to include an end-of-line marker.
Such a file can then be conveniently structured into lines.
The EOLN predicate described in Section 8: Standard Pro­
cedures and Functions, covers how the end-of-line is
detected.

2-14 3/10/86

Pascal Defining Data Types

SVS Pascal also supports an interactive file type which
display different behavior in the way that the READ,
READLN and RESET intrinsics work. The differences are
covered in Section 6: Input and Output An interactive file is
more suitable for use with interactive terminals.

Examples of File Type Definitions

block_access = file;

numbers= file of integer;

Capping_Line = file of bottles;

Terminal = interactive;

legible_file = text;

2.6 POINTER TYPES

Explicitly declared variables are accessible by reference to
the identifier used to declare them. Such variables are
accessible during the activation (scope) of the procedure in
which they are declared. These variables are called static,
that is, lexically static.

Variables may also be created dynamically, in other words,
with no correlation to the program structure. These
dynamic variables are created via the procedure NEW.
Since such variables do not have an associated name, they
are accessed via a pointer value which is generated when the
variable is allocated. A pointer type is therefore a value
which points to a variable of a specific type.

3/10/86 2-15

Defining Data Types Pascal

There is a universal pointer value called nil, which belongs
to any pointer type. It represents a pointer which points to
no element. ·

<pointer type> ::= A <type identifier>

Examples of Pointer Type Definitions

blackboard= record
long_side: integer;

short_side: integer;
end;

cue = Ablackboard;

Two Way = record
next: ATwo Way;
previous: ATwo Way;
stuff: array[O .. 10] of integer;

end;

Sym Tree = record

2-16

name: string[3l];
LeftNode: ASymTree;
RightNode: ASymTree;

end;

3/10/86

Pascal Defining Data Types

2.7 TYPE IDEN'DTY AND ASSIGNMENT
COMPA'llmLITY

Pascal has strict type checking so that objects of one type
cannot be combined in operations with objects of a
different type. There are two major concepts ro be
described here, namely identical types and assignment compa­
tible types.

IDEN'DCAL TYPES

Two types, Tl and T2 are considered identical under the
Collowing conditions: ·

• Tl and T2 are the same type.

• Tl is declared as synonymous with another type 1'3,
where T2 and T3 are identical.

Examples ot Type Identity

type_x = integer;

type_y = integer;

type_l = set or char;

type_2 = set or char;

id_type = type_l;

In the above example, the types 'type_x' and 'type_y' are
identical, because they are defined ro be the same type,
integer. The types 'type_l' and 'type_2' are not identical,
since they occur in different type definitions. The types
'type_l' and 'id_type' are identical however, because
'id_type' is defined ro be the same as 'type_l '.

3/10/86 2-17

Defining Data Types Pascal

ASSIGNMENT COMPAllBLE TYPES

A value of type Tl is considered to be assignment compati­
ble with a variable of type T'2 if any of the following condi­
tions are true:

2-18

• Tl and T'2 are identical and do not contain a file as a
component.

• Tl is a subrange of T'2, or

• T'2 is a subrange of Tl, or

• Tl and T'2 are subranges of identical types.

• Tl is assignment compatible with integer and T2 is
real or double.

• Tl and T'2 are both variable string types.

• Tl and T'2 are sets of elements of types T3 and T4,
and T3 is assignment compatible to T4.

3/10/86

SECTION 3
VARIABLES

This chapter covers two topics. First there is a discussion
of how Pascal variables are declared in terms of the data
types described in the previous chapter. Then there is a
description of the way that variables of different types are
accessed or referenced.

3.1 DECLARING V ARIABLFS

A variable has a type and a storage area in memory. At any
given time, a variable takes on one value out of the collec­
tion of values that define its type. A variable is initially
undefined, and remains so until it is initialized by an expli­
cit assignment.

All variables in a Pascal program must be declared explicitly
and prior to their use.

Variable declarations consist of a list of identifiers that
represent the variables, followed by the type of the vari­
able.

<variable declaration> ::=
<identifier> {,<identifier>}: <data type>;

Examples of Declaring Variables

Impedance: Com plexN um her;
ChainHead: Two Way;
TreeTop: SymTree;
First, Middle, Last: integer;
ValueFile: Numbers;
CurChar: char;
Omega: real;

3/10/86

{ a record variable }
{ another record }
{ and another }
{plain integers }
{ a file variable }
{ a character variable }
{ a real variable }

3-1

Variables Pascal

3.2 PREDECLARED VARIABLES

SVS Pascal has five pre-declared variables. These are:

• input, output, and std.err

Default files associated with the standard input, the
standard output, and the standard error output file,
respectively.

On those operating systems which do not have a
standard error output file, the file stderr is directed
to the same place as the output file.

• argc and argv

Are variables which provide access to the command
line that invoked the current Pascal program.

These pre-declared variables are covered in detail in Section
7: Program Structure.

3.3 ESTABLISHING VARIABLES

Establishing a variable is a process that involves:

• Determination of the variable's type.

• Allocation of storage for the values that the variable
takes on.

Explicitly declared variables are automatically established
on each entry to the procedure or function block in which
they are declared. Global variables (declared in the outer­
most block) are established once and only once.

3-2 3/10/86

Pascal Variables

Formal parameters of procedures or functions are automati­
cally established on each activation of that procedure or
function.

So-called dynamic variables are explicitly established by
storage management operations (for type determination
and storage allocation), and by assignment operations (for
initialization).

3.4 LIFETIMES OF VARIABLES

The lifetime of a local variable is that of the block in which
it is declared. Allocation occurs on each entry to that
block, and de-allocation occurs on each exit from that
block.

GLOBAL VARIABLES

Global variables are those variables declared in the outer­
most block (in the program block). The lifetime of such
global variables is the lifetime of the entire program.

LIFETIME OF FORMAL PARAMETERS

The lifetime of a formal parameter is the lifetime of the
procedure or function which that formal parameter is a part
of. The formal parameter becomes established upon each
entry to the procedure or function, and becomes undefined
upon exit from the procedure or function.

3/10/86 3-3

Variables Pascal

LIFETIME OF DYNAMIC VARIABLES

Dynamic variables are established (but not initialized) by
an explicit allocation operation (such as NEW). Dynamic
variables become undefined when they are explicitly freed,
or when no pointer variable points to them. Note that
generally a pointer value has a finite lifetime which may be
different from that of the pointer variable that can point to
it. Local variables belonging to procedures and functions,
cease to exist on exit from the block in which they were
declared. Dynamic variables, on the other hand, cease to
exist when they are explicitly freed or when no pointer
variable points to them. Attempts to reference non­
existent variables beyond their lifetimes is a programming
error, usually with undesirable results from the
programmer's viewpoint.

3.5 REFERENCING OR ACCESSING V .ARIABLES

The method by which a variable or a component of a vari­
able is accessed differs depending on the structuring
method used in the type definition for that variable. There
are three basic access methods:

• An entire variable is a variable of a simple type (no
structure). An entire variable is referenced simply
by giving its name.

• A component variable is a variable of array, record or
file type. The access methods are explained below.

• A referenced variable is accessed through a pointer.

<variable> ::= <entire variable>

3-4

I <component variable>
<referenced variable>

3/10/86

Pascal Variables

EN'IIRE VARIABLES

An entire variable is denoted by its identifier. Since an
entire variable has no structure, its identifier alone is
enough t.o reference it.

<entire variable> ::= <variable identifier>

:Examples of Entire Variable References

Chicken Teeth
GiddyGoatHorns
First

COMPONENT VARIABLES

A component of a variable is denot.ed by the variable fol­
lowed by some selector that specifies the component. The
form of the selector depends on the structuring method
used to access the variable.

<component variable> ::= <indexed variable>

3/10/86

I <field designator>
<file buffer>

3-5

Variables Pascal

Relerencing Indexed Variables

A component of an "n"-dimensional array variable is
denoted by the variable followed by "n" index expressions.
An entire array (which can be a component) of an array
can be denoted by giving "n"-1 index expressions. In such
a case, the entire last dimension of the array is indicated.
This occurs when an entire array or an entire subarray is
passed as an actual parameter to a procedure or function.

<indexed variable> ::= <array variable> <subscript list>

<subscript list> ::= [<expression> {,<expression>}]
I [<expression>] {[<expression>]

The {,<expression>} in the definition above implies that
there are as many expressions in the subscript list as there
are dimensions in the array variable. Just as in defining an
array type, there are two alternative methods for ref erenc­
ing an array variable. Either the subscripts can be listed,
separated by commas, inside the brackets, or there can be a
list of bracketed subscript expressions.

The index expression types must correspond with the index
types declared in the array type definition.

Ekamples or Array Variable Relerences

ladder[top]

stairs[flight] [step]

Footing[Left, Center, Right]·

3-6 3/10/86

Pascal Variables

Ref'erencing Strings

String variables can be referenced as single entities (when
the entire string is being operated upon) or single charac-­
ters from a string can be referenced just like a packed array
of char. Values can be assigned to string variables using
assignment statements, string intrinsics or the READ or
READ LN procedure. String indexing is based from one
(1) so that the expression on the string "s":

s[LENGTH(s))

correctly yields the last character in the string. The
dynamic length of the string may be addressed as :he
zeroth element of the string. Thus the statement 's[O) :=
chr(3)' would set the dynamic length of the string to 3.
The length must never be set to a value greater than the
maximum declared for that string! It is an error to refer­
ence a string "s" with an index less than zero or greater
than LENGTH(s).

Ref'erencing Fields of Records

A component of a record variable is denoted by the record
variable followed by the component's field identifier. The
field identifiers are separated by periods.

<field designator> ::= <record variable>.<field identifier>

It is an error zero (which is not flagged by the Pascal sys­
tem) to reference a field of a variant record that is incon­
sistent with the tag field for that variant.

3/10/86 3-7

Variables Pascal

Examples of Accessing Fields in Record Variables

{ The first example is a simple field reference }

impedance.RealPart

{ The second example illustrates a reference
to a field of an array of records }

bottles[BurgundyType] .Loire

{ The third example illustrates a
deeply nested field reference }

King_Caractacus.Court.Ladies.Faces.Noses

Referencing File Buffers

At any time, only the one component determined by the
current file position (read/write head) is directly accessible.
This component is called the current file component, and is
reP.resented by the file's buff er variable.

<file buffer> ::= <file variable> A

<file variable> ::= <variable>

3-8 3/10/86

Pascal Variables

POIN'IER REFERENCED VARIABLES

<referenced variable> ::= <pointer variable> A

<pointer variable> ::= <variable>

If 'p' is a variable which is a pointer to type 'T', 'p' means
the pointer variable and its pointer value, whereas 'p·•
means the variable of type 'T' that 'p' references.

Examples of Point.er Reference

TreeTop.LeftNode· ' { Left Node in the tree variable }

cue A .longside { gets Long Side of Blackboard }

3/10/86 3-9

SEOllON 4
EXPRESSIONS

An expression is a construct which defines the rules 6f
computation for creating a value by performing operations
(specified by operators) on operands (specified by variables,
constants, and function references). These newly-created
values can then be used in assignment statements or can be
used (in conditional expressions) to control subsequent
program actions.

<unsigned constant> ::= <unsigned number>
I <string>
I <constant identifier>
I nil

<factor> ::=<variable>
I <unsigned constant>
I <function.designator>
I <set constructor>
J (<expression>):
I not <factor>

<set constructor> ::= [<element> {,<element>} J
<element> ::= <expression>

I <expression> .. <expression>

<term> ::= <factor>
I <term> <multiplying operator> <factor>

<simple expr> ::=<term>
I <simple expr> <adding operator> <term>
I <~ding operator> <term>

<expression> ::=
<simple expr>

I <si~ple expr> <relational operator> <simple expr>

3/10/86 4-1

Expressions Pascal

4.1 OPERATORS IN EXPRESSIONS

Operators perform operations on a value or a pair of values
to produce a new value. Most operators are defined only
on basic types, though some are defined on most types.
The following subsections define the applicable range, as
well as the result, of the defined operators.

With the exception of the @ operator, an operation on a
variable or field which has an undefined value, produces an
undefined result.

ADDRESS EVALUATION OPERATOR

The @ operator generates the address of a variable, user
procedure or user function. The type of the resulting
expression is the same as the type of the value nil. Thus
an address can be assigned to any pointer variable.

The precedence of the @ operator is above that of all other
operators, but below that of array indexing and record field
referencing. It can be applied to unpacked fields of records
and unpacked array elements and to the dynamic variables
pointed to by a pointer. It cannot be applied to com­
ponents of any packed structure.

Examples of the @ Operator

@ Uncle_Bill Generates the address of a variable
named "U ncle_Bill".

@ 'IYPeWheel(tilde] Generates the address of the tilde
element of the array "Type Wheel".

The @ operator, when applied to a user procedure or user
function on some of the National Semiconductor Series
32000 implementations of SVS Pascal, may generate the
link table entry form of the address of the procedure or
function instead of the absolute address of the procedure or
function.

4-2 3/10/86

Pascal Expressions

NOT OPERATOR

The NOT operator applies to factors of type Boolean or
integer.

When applied to type Boolean, the meaning is negation.
That is, not true = false, and not false = true.

When applied to type integer, the NOT operator negates all
the bits in the value. That is, it performs a one's comple­
ment negation of each bit in the operand. The result of
applying the NOT operator to a value of type integer is type
integer.

MUL 'llPL YING OPERATORS

The multiplying operators have the next highest precedence
after the NOT operator.

<multiplying operator> ::= * I / I div I mod I and

The following table shows the multiplying operators, the
permissible types of their operands, and the result types.
Operands of the * (multiplication) and / (division) opera­
tors can be mixed integer, real, and double data types.

If both operands of the * operator are of type integer, the
result is of type integer.

If either operand is of type double, the other operand is
converted to type double, and the result is of type double.
Otherwise, if either operand is of type real, the result is of
type real. The result of the / operator is either real, or in
the case when one or both operands are of type double, the
result is of type double.

3/10/86 4-3

Expressions Pascal

Ooerator Ooeration Ooerands Result
real, double, real, double,

multiplication or integer or integer
and

set intersection al!Y_set~ T T

I division real, double, real
or inte_g_er double

div division with integer integer
truncation

mod modulus inte_ger inte_g_er
logical and Boolean Boolean

and
bitwise and inte_g_er inte_g_er

The div operator applies to values of type integer only and
represents truncating division.- div always truncates towards
zero. It is an error to divide by zero. If the signs of the
operands are the same, the result is positive; if the signs
are different, the result is negative.

The mod operator defines the modulus operation between
two values of type integer. It is an error if the right
operand of mod is zero. The interpretation of mod is:

a mod b =a - (a div b) * b

When applied to operands of type Boolean, the and opera­
tor produces a result of type Boolean as one might expect.
When applied to operands of type integer however, the and
operator performs a bitwise logical and on the operands and
produces a result of type integer.

4-4 3/10/86

Pascal Expressions

ADDING OPERATORS

The adding operators have the next highest precedence
after the multiplying operators.

<adding operator> ::= + I - I or

The following table shows the adding operators, their per­
missible operand types, and the result types. Operands of
the + (addition) and - subtraction operators can be mixed
integer, real, and double data data types.

If both operands of .the + or - operator are of type integer,
the result is of type integer.

If either operand is of type double, the other operand is
converted to type double, and the result is also of type dou­
ble. Otherwise, if either operand is of type real, the result
is also of type real.

rands Result
real, double, real, double,

+ or integer or integer

set union an set eT T
subtraction real, double, real,double

or integer or integer

set difference an set eT T
logical or Boolean Boolean

or
bitwise or inte er inte er

When applied to operands of type Boolean, the or operator
produces a result of type Boolean as one might expect.
When applied to operands of type integer however, the or
operator performs a bitwise logical or on the operands and
produces a result of type integer.

3/10/86 4-5

Expressions Pascal

SIGN OPERATORS

The '+' and'-' signs can be used as unary operators. They
apply to integer, real, and double data types only. Applying
a unary operator to a data type produces a result which is
the same data type as that of the operand.

<sign operator> ::= + 1-
The table below shows the sign operators, their permissible
operand types and their result types.

0

+

negation

4-6

real, double,
or inte er

real, double,
or inte er

Result
real, double,

or inte er
real, double,

or inte er

3/10/86

Pascal Expressions

RELA'I10NAL OPERATORS

The following table shows the relational operators, their
permissible operand types, and the result type.

()perat.or Operand T.vt>es Result Type

any scalar or subrange type

=<> set type
pointer type Boolean

packed array of char
striq

any scalar or subrange type

<= >= set type
packed array of char Boolean

strin_g_
any scalar or subrange type

< > packed array of char 'Boolean
striq

in any scalar or subrange type Boolean
and its set~ re~ectiveh'._

Note that all scalar types define ordered sets of values.

3/10/86 4-7

Expressions Pascal

Comparison of Scalars

All six relational operators (<, <=, >, >=, = and
< >) are defined between operands of the same scalar
type.

For operands of type integer, real, or double, the operators
have their usual meaning. Operands of integer, real, and
double data types are considered to form a hierarchy, with
the integer data type at the bottom of the pecking order,
the double data type at the top, and the real data type in
the middle. If the operands are of different numeric types,
the lower type of operand is converted (or promoted) to
the type of the other operand prior to the comparison. For
example, in the expression:

integer type < double type

the integer operand is converted to double before the com­
parison is made.

For operands of type Boolean, the relation false < true
defines the ordering.

For operands of type char the relation 'a' op 'b' holds if
and only if the relation ORD(a) op ORD(b), holds, where
op denotes any of the six comparison operators and ord is
the mapping function from type char to type integer defined
by the ASCII collating sequence.

For operands of any ordinal type 'T', 'a' = 'b' if and only
if, 'a' and 'b' are the same value; 'a < b' if and only if, 'a'
precedes 'b' in the ordered list of values that define 'T'.

4-8 3/10/86

Pascal Expressions

Comparison of Booleans

If 'p' and 'q' are Boolean expressions, 'p = q' means
equivalence, and 'p <= q' means implication of 'q' by 'p'.

Direct Pointer Comparison

Two direct pointers can be compared if they are pointers to
identical types. To compare pointers of differing types, take
their ORD. (See Section 8: Standard Procedures and Func­
tions).

Pointers may be compared for equality or inequality only.

Two pointers with the value nil are always equal.

String Comparison

All six relational operators may be applied to string
operands. The relational operators compare both packed
array of char and string values.

In the case of a packed array of char, both operands must
be the same size. The maximum length of string com­
parison of values of packed array of char is 255 characters.
That is, a variable whose declaration is like:

var
strtype: packed array [1 .. 255] of char;

is the largest string variable that can be compared in one
operation.

In the case of string comparison, the operands may be of
different sizes. If the operands are of different sizes, trailing
spaces are significant. That is, the string

'A'

compares less than the string

'A'

3/10/86 4-Q

Expressions Pascal

Comparison of string operands or packed array of char
· operands denotes alphabetical ordering according to the
ASCII character set collating sequence.

Note that because a string data type is represented
differently from a packed array of char, they cannot be
compared with each other. On the other hand, a character
string constant is of ambiguous type, and so a string con­
stant can be compared either to a string operand or to a
packed array of char operand, because the type of the string
constant is converted to the type of the other operand in
comparison operations.

Set Comparison

The relation "scalar_value" in "some_set" is true if the
"scalar_ value" is a member of the "some_set". The base
type of the set must be the same as, or a subrange of, the
type of the scalar.

The set operations = (identical to), and <> (different
from), <= (is included in), and >= (includes) are
defined between two set values of the same base type. For
two sets 'Sl' and 'S2' of the same base type:

Sl = S2

81 <> 82

81 <= 82

Sl >= 82

4-10

is true if all members of Sl are con­
tained in 82, and all members of S2 are
contained in 81.

is true when 81 = 82 is false.

is true if all members of Sl are also
members of 82.

is true if all members of 82 are also
members of Sl.

3/10/86

Pascal Expressions

Non-Comparable Types

Certain Pascal types cannot be compared. These include
files, arrays, variant records, and records containing fields
or non-comparable types. The exception to this rule is that
packed array or char operands can be compared if they are
the same size.

4:.2 OUT OF RANGE VALUES

It is possible that expression evaluation can yield results
which are outside 9r the range or values for a given data
type. Expressions involving the real and double data types
can generate several different extreme values.

The extreme value or positive or negative infinity is a result
either or overflow, or by dividing a non-zero, value by 0.0.

underflow generates a value or zero.

Dividing 0.0 by 0.0 generates a value or Not a Number
(NaN).

Appendix E: Data Representations contains a Description of
the extreme values and their behavior in comparisons.

3/10/86 4-11

Expressions Pascal

4.3 ORDER OF EVALUATION IN EXPRESSIONS

The rules of composition for expressions specify operator
precedence according to five operator classes. The pre­
cedence is as follows:

1. The address of @ operator has the highest pre­
cedence.

2. Then the NOT operator.

3. Then the multiplying operators.

4. Then the adding operators.

5. The lowest precedence is the relational operators.

Operators at the same precedence level are applied left to
right, except where parentheses are used to override the
normal order of evaluation. The order in which operators
are applied is according to the rules above. The precise
order of operand evaluation is undefined. Some operands
may not be evaluated at all, if the value of the expression
can be determined without the value of that particular
operand.

4-12 3/10/86

Pascal Expressions

4.4 COMPILE TIME CONSTANT EXPRESSIONS

The Pascal compiler evaluates certain types of integer and
Boolean constant expressions at compile time. integer
expressions consisting of constant expression operands and
the following operators are folded into constant expres­
sions:

Binary Operators

Unary Operators

- <> + - *

Boolean expressions consisting of constant expression
operands and the fbllowing operators are folded into con­
stant expressions:

Binary Operators

Unary Operators

= <> and or

not

DEAD CODE ELIMINATION

The Pascal compiler recognizes code of the form:

if FALSE then statement_l else statement_2

and generates code for statement_2 only. Similarly, if the
Boolean expression is TRUE, only statement_l is gen­
erated. Constant expressions which fold into constants are
recognized as constant TRUE or FALSE. This feature
facilitates keeping several versions of similar source in the
same file without adding extra generated code after the
code is compiled.

3/10/86 4-13

Expressions

Example of Conditional Compilation

const
version = 10;

if version = 7 then
writ.eln('Too old!')

else
writ.eln('Not too old!');

Pascal

The code fragment above, with the constant version set
equal to 10, has the same effect as a code fragment like
this:

writeln('Not too old!');

4-14 3/10/86

SECTION 6
STAT.ElVIENTS

Stat.ements denot.e algorithmic actions, and are said to be
executable. Stat.ements define the actions that are to be per­
formed on program objects that were introduced via type
and variable declarations, discussed earlier in this manual.

5.1 STATEMENT LABELS

A stat.ement can be labelled by preceding it with an
unsigned int.eger constant in the range 0 .. 9999, followed
by a colon. The stat.ement can then be explicitly ref erred
to by a GOTO stat.ement.

SCOPE OF STATEMENT LABELS

The scope of a stat.ement label is the body of the procedure
or function in which the label is declared and all nest.ed
procedures and functions. This means that a GOTO stat.e­
ment cannot transfer control into a procedure or function
body unless that procedure or function has been activated.

5.2 ASSIGNMENT STA'IEMEN'IS

The assignment statement replaces the current value of a
variable with a new value derived from expression evalua­
tion, or defines the value that a function variable returns.

<assignment statement> ::=
<variable> := <expression>
<function identifier> := <expression>

3/10/86 5-1

Statements Pascal

ASSIGNMEN'IB TO VARIABLES AND FUNC'llONS

The part to the left of the assignment symbol, :=, is
evaluated to obtain a reference to some variable. The
expression on the right side is evaluated to obtain a value.
The referenced variable's current value is discarded and
replaced with the expression's value.

The variable on the left hand side of an assignment state­
ment must be assignment compatible (see Sect,ion 2:
Defining Data Types) with the type of the expression on the
right hand side.

A string constant may be assigned to a variable of type
packed array [1..n] of char, providing that the string value
is the same length as the array object. The maximum
length of such an assignment is 255 characters.

Examples of Assignment Statements

x :=5 { simple assignment to variable }

y := x * 10 + 18 { assignment of expression }

ch := CHR(10) { assignment of function value }

rope := 'hemp' { string assignment }

poke:= POINTER($200)

pokeA := 0 { clobber the system vector }

5-2 3/10/86

Pascal Statements

5.3 PROCEDURE REFERENCE STATEMENT

A procedure reference statement creates an environment
for execution of the specified procedure and transfers con­
trol to that procedure.

<procedure call statement> ::=
<procedure identifier> <actual parameter list>

I <procedure identifier>

<actual parameter list> ::=
(<actual parameter> {,<actual parameter>})

<actual parameter> :!= <expression>
I <procedure identifier>
I <function identifier>

The actual parameter list must be compatible with the for­
mal parameter list of the procedure. An aetual parameter
corresponds to the formal parameter which occupies the
same ordinal position in the formal parameter list.

Only formal parameters that are value parameters can have
an actual parameter which is an <expression>. Value
parameters must be assignment compatible with the type of
the formal parameter.

Formal parameters that are var parameters must have
actual parameters that are identical types. In addition, the
actual parameters must not be components of packed
objects.

3/10/86 5-3

Statements Pascal

5.4 S'IRUCTURED STATEMEN'IS

Structured statements are constructs composed of state­
ment lists. They provide scope control, selective execution,
or repetitive execution of the constituent statement lists.

<structured statement> ::= <begin statement>
<if statement>

<while statement>
<repeat statement>

<for statement>
<case statement>

BEGIN •• END -COMPOUND STATEMEN'IS

A BEGIN statement specifies execution of a statement list.
Exit from the statement list is either through completing
execution of the last statement in the statement list, or
through explicit transfer of control.

<begin statement> ::= begin <statement list> end

<statement list> ::= <statement> {; <statement>}

IF •• THEN •• ELSE STATEMEN'IS

The IF statement specifies that another statement be exe­
cuted (or not) depending on the truth (or falsity) of a-con­
ditional expression. If the value of the conditional expres­
sion is true, the statement is executed. If the value of the
conditional expression is false, either no subsequent state­
ment is executed, or the statement following an else clause
is executed.

<if statement> ::=
if <Boolean expression> then <statement>

I if <Boolean expression> then <statement> else <statement>

5-4 3/10/86

Pascal Statements

Because Pascal stat.em en ts are open forms, it is possible to
construct a chain of else if clauses to select one out of
many di:ff erent conditions.

In common with similar languages, Pascal has what is called
the "dangling else" problem. If an IF stat.ement contains
another IF statement as a subordinat.e, when an else clause
is encount.ered, which IF stat.ement does the else clause
apply to? In Pascal, the else clause matches the most
recent IF statement that does not have an else clause. One
of the examples below clarifies this point.

Ex&Jillples of IF Stat.em.ents

{ example of a simple IF statement }

if day in [Monday •• Friday) then
Get_up_a.nd_go

else
Roll_ over

{ an IF statement with a
compound block }

if sun > yardarm then
begin

make_cocktails;
prepare_snacks;
relax

end
else

ftog_on

{ an else if chain }

if weather = raining then
sleepjn

else if lawn = wet then
clip_the_hedge

else if grass > 6. then
mow_the_lawn

else
turn_onJawn_sprinklers

3/10/86 5-5

Statements

{ A dangling else clause }

if condition_! then { 1 }
if condition_2 then { 2 }

if condition_3 then { 3 }
..... statements

else { goes with statement 1 }
.•..• statements .•...

else { goes with statement 2 }
....• statements .••.•

else { goes with statement 3 }
.•.•• statements•

CASE STATEMEN'l'S

Pascal

A CASE stat.ement selects one of its component stat.ements
depending on the value of an expression. The expression
is called the case selector. Each of the component stat.e­
ments is tagged with one or more simple scalar constants.
The tags are called selection specifications (<selection
specs> for short). If the value of the selector matches
that of one of the stat.ement tags, that stat.ement is exe­
cut.ed. If the selector value matches none of the stat.ement
selection specifications, the stat.ement (if any) following an
otherwise symbol is execut.ed.

Not.e that this Pascal implementation differs from the ISO
standard in the provision of the otherwise clause. ISO Pas­
cal has no provision for what to do if none of the case
selectors match the selector expression. Strict Pascal .con­
siders this situation a run-time error.

<case stat.ement> ::=case <expression> of <cases>
{otherwise: <statement>} end

<cases> ::= <a case> {<a case>}
<a case> ::=

<selection spec> {, <selection spec>}: <stat.ement>;

<selection spec> ::= <scalar constant>

5-6 3/10/86

Pascal Statements

Case selectors and the stat.ement tags must be non-real
scalar types. In addition, the case selectors and the stat.e­
ment tags must be of assignment compatible types.

It must be stressed that the selection specifications which
the component stat.ements are tagged with are not labels in
the Pascal sense, and as such, cannot be used as the target
of a GOTO stat.ement, and neitheJ should they appear in
any label declaration part.

Examples of CASE Statements

case wine_type of

Champagne:
Anything_goes;

Cabernet:
Roast_Lamb;

Chardonnay:
Veal_Piccata;

otherwise:
Hamburger; end;

WHILE •• DO STATEMENTS

A WHILE stat.ement controls repetitive execution of
another stat.ement until evaluation of a Boolean expression
becomes false.

<while statement> ::= while <expression> do <stat.ement>

3/10/86 5-7

Statements Pascal

The <statement> is repeated while the value of <expres-
. sion> remains true. The <expression> must be of type
Boolean. When <expression> becomes false, control
passes to the statement aft.er the WHILE statement. If the
value of <expression> is false at the time that the
WHILE statement is encountered for the first time, the
subordinate statement is never executed at all. Thus the
WHILE statement provides a means to "do nothing grace­
fully". Contrast this behavior with the REPEA Tstatement
described below.

Example of WHILE Statement

while byt.es_to_go > 0 do
begin

if byt.es_to_go <= BlockSize then
TransferLength := byt.es_to_go

else
TransferLength := BlockSize;

Do Transfer;
byt.es_to_go := byt.es_to_go - TransferLength;
BlockNumber := BlockNumber + 1

end

REPEAT •• UNTIL STA'JEMENTS

The REPEAT statement controls the repetitive execution
of a list of statements. The statements are executed .. until
the condition at the end of the statement evaluates to true.
The form of a repeat statement is:

<repeat statement> ::= repeat <statement list> until <expression>

5-8 3/10/86

Pascal Statements

The expression controlling repetition must be of type
Boolean. The statement between the repeat and until sym­
bols is executed repeatedly until the expression becomes
true. Note that the body of a REPEAT statement is always
executed at least once, since the termination test is at the
end. Contrast this behavior with the WHILE statement
described in the previous subsection.

Example of REPEAT Statement

repeat
consume_glassfull;
refill_glass;

until (Champagne_Volume <= 0) or (Consumer= Blotto)

FOR •• DO STA'IEMENTS

The FOR statement executes it.s subordinate statement
repeatedly, while a progression of values is assigned to a.
conll'ol variable of the FOR statement.

<for statement> ::=
for <control variable> :=<for list> do <statement>

<for list> ::= <initial value> to <final value>
I <initial value> downto <final value>

<control variable> ::= <identifier>

<initial value> ::= <expression>
<final value> ::=<expression>

3/10/86 5-9

Statements Pascal

The control variable is set t.o the initial value. Aft.er every
· it.eration the control variable is either incremented (t.o) or
decrement.ed (downt.o) until its value is greater than or less
than the final value.

The control variable, the initial value, and the final value,
must all be of the same scalar type or a subrange of that
scalar type. No part of the stat.ement controlled by the
FOR stat.ement may alt.er the control variable during the
execution of the FOR stat.ement.

Neither the control variable, nor the initial value, nor. the
final value, may be of type real. The control variable must
be local t.o the procedure or function that contains the FOR
stat.ement.

The value of the control variable is undefined on normal
t.ermination from the FOR stat.ement. If the FOR stat.e­
ment is exited prematurely (via a GOTO stat.ement), the
value of the control variable is defined.

Examples of the FOR Statement

{ initialize an array t.o zero }

for index := 1 t.o 100 do
row[index] := 0

{ scan from the end of an array }

for where := 200 downt.o 1 do
if what[where] = thing then

f oundit := true

5-10 3/10/86

Pascal Statements

5.5 mE Wim STATEMENT

The WITH statement provides a shorthand notation for
referring to fields in a record. The WITH statement
effectively opens the scope that contains field identifiers of
a specified record variable.

<with statement> ::=
with <record variable> {,<record variable>}

do <statement>

Within the body of the WITH statement, fields of the
specified record variable do not need to be qualified by the
name of the record.

If there is a local variable 'x' and a field 'x' in a record 't'
which is the subject of a WITH statement, the, statement:

with r do

hides the local variable 'x' until the end of the WITH state­
ment.

A WITH statement which has multiple <record variable>
fields is interpreted as nested WITH statements. The state­
ment:

with record_!, record_2, record_3 do

is equivalent to the statement:

with record_! do
with record_2 do

with record_3 do
..... statement

3/10/86 5-11

Statements

Example of the Wim Statement

var
TreeTop: SymTree;

with TreeTop do
begin

Lef tN ode := nil;
RightNode :=nil

end { with }

This is a shorthand for the following statements

TreeTop.LeftNode := nil;
TreeTop.RightNode := nil

5.6 mE GOTO STATEMENT

Pascal

The GOTO statement names as its successor, a labelled
statement designated by a label.

<goto statement> ::= goto <label>

The following should be noted concerning the GOTO state­
ment and the label that it designates:

The scope of a label is the procedure in which that label is
defined and all nested procedures and functions. The ref ore
it is not possible (nor valid) to jump into a procedure when
no activation of the procedure exists.

Every label in a procedure must be declared in the label
declaration part at the head of the procedure.

Example of GOTO Statement

if status = error then
goto gggg { exit to end of procedure }

5-12 3/10/86

SECilON6
INPUT AND OUTPUT

Input and Output facilities allow a Pascal program to com­
municate with the world outside the computer system on
which it runs.

SVS Pascal supports the input-output facilities as defined by
standard Pascal, and additionally supports untyped (block
access) files, interactive files, random access to typed files
and unit input-output (direct access to the devices on the
system).

6.1 GENERAL FILE HANDLING PROCEDURES

· This Section covers the standard Pascal procedures for han­
dling files of any type. The four supplied procedures are
GET, PUT, RESET and REWRITE.

THE FILE BUF'F'ER VARIABLE

A Pascal file of some_type is a sequential file; its com­
ponents appear in strict sequential order (ignore the SEEK
procedure for the duration of this discussion). Writing
implies appending a component to the end of the file.
Reading implies that the next component in sequence is
obtained from the file. The following discussion applies
only to typed files.

Associated with each typed file variable there is an implicit
buffer variable, often called the file "window". The buff er
variable can be thought of as a place holder where the
current file component is held. The buff er variable holds
the next available component when reading. When writing,
it holds the component that will be appended to the file by
a PUT procedure call.

3/10/86 6-1

Input and Output Pascal

For a given file variable 'f', the buff er variable is refer­
enced by the notation •r•. Consider the following declara­
tions:

type
whammo =file of gobion;

var
frammis: whammo;
Curcomp: gobion;

When the file "frammis" is opened for reading via the
RESET procedure call, the first component of the file is in
the buff er variable. An assignment statement of the form:

CurComp := frammisA;

assigns the contents of the buffer variable to the variable
"CurComp". The contents of the buff er variable then
become undefined. The next component from the file is
moved into the buff er variable by a GET procedure call.

When the file "frammis" is opened for writing via the
REWRITE procedure call, the buff er variable is undefined.
An assignment of the form:

frammisA := CurComp;

assigns the value of the variable ''CurComp" to the buff er
variable. A subsequent PUT procedure call appends the
contents of the buffer variable to the file "frammis". The
contents of the buff er variable become undefined until
another assignment defines it.

6-2 3/10/86

Pascal Input and Output

For files of type interactive, the handling of the buff er vari­
able is different. In standard Pascal, when a file is RESET,
the first element of the file is read and placed in the file
buff er variable. This means that the system would expect
the user to type a character at the terminal, else the system
would "hang". Thus a· RESET on an interactive file does
not perform an immediate GET. This affects the way that
EOLN functions. When an end-of-line is read, EOLN
becomes true and the character read is a space.

GET- GET COMPONENT FROM F1LE

The procedure GET obtains the next element from a file
(assuming there is a next element to be obtained). A call
on the GET procedure of the form:

GET(file)

advances the current file position to the next component in
the file. The value of this component is then assigned t.o
the buffer variable fileA.

If there was no "next component" in the file, the value of
the buffer variable is undefined and the predicate EOF(file)
becomes true.

If the predicate EOF(file) is already true, a GET(file) (in
other words, trying to read past end-of-file) has an
undefined result.

PUT-APPEND COMPONENT TO A F1LE

A call on the PUT procedure of the form:

PUT(file)

appends the value of the buffer variable fileA to the file
"file". The value of fileA becomes undefined after the call
to PUT. The predicate EOF(file) becomes true after the
PUT.

3/10/86 6-3

Input and Output Pascal

If the predicate EOF(file) was false before the call to PUT
(in other words, there were intervening GET's on the file),
the call to PUT has an undefined result.

RESET- OPEN AN EXISTING FILE

A call to the RESET procedure of the form:

RESET(file, string [, buffering option])

opens the file named "string" and positions it at the begin­
ning of the file. If the file variable had previously been
opened, access to the previous file is lost, and no close or
buffer flushing is done. For a proper closing of any opened
file, a specific call to CLOSE must be done. If the file is not
empty, the first element of the file is assigned to the buffer
variable file· and the predicate EOF(file) becomes false. If
the file is empty, the buffer variable file· is undefined and
the predicate EOF(file) becomes true.

If the file is an interactive file, RESET does not read the
first element of the file.

SVS Pascal requires a second parameter to RESET. This
parameter is the name of an existing disk file or device.
The parameter takes the form of a string constant or vari­
able.

The third parameter to RESET is an option to determine
whether the file is buffered or unbuffered. The buffering
option may be specified as the keyword BUFFERED or
UNBUFFERED, and it is described in the subsection fol­
lowing REWRITE, below.

6-4 3/10/86

Pascal Input and Output

REWRITE -CREATE OR OVERWRITE A FILE

The REWRITE procedure creates a new file of a specified
name and discards any existing file of the same name.
Thus a call of the form:

REWRITE(file, string[, buffering option])

discards the current value of the file variable "file",
effectively creating a new file. The value of the buff er vari­
able "file'" is undefined and the predicate EOF(file)
becomes true.

If the variable had previously been opened, access to the
previous files is lost, and no close or buff er flushing is
done. For a 'proper' closing or any opened file, a specific
call to close must be done.

SVS Pascal requires a second parameter to REWRITE.
This parameter is the name or a disk file. The parameter
can be a string variable or constant.

The third parameter to RESET is an option to determine
whether the file is buffered or unbuffered. The buffering
option may be specified as the keyword BUFFERED or
UNBUFFERED, and it is described in the subsection
below.

THE BUFFERING OPTION ON RESET
ANDREWRlTE

The optional "buffering option" parameter to RESET and
REWRITE can be specified as either BUFFERED or
UNBUFFERED. On some operating systems, there is a
significant difference in throughput between buffered and
unbuffered input output.

Normally, buffered input output is much more efficient
than unbuffered input output. But, there can also be
undesirable side effects in buffered input output, most not­
ably that output does not appear at a terminal until a full
buff er has been collected.

3/10/86 6-5

Input and Output Pascal

The "buffering option" parameter provides a means to
request either buffered or unbuffered input output for the
file specified in the RESET or REWRITE request. A given
operating system might well override the request, depend­
ing on the nature of the device on which the file resides.
The standard situation is unbuffered input output, in the
absence of the

6.2 'IEXT FILE HANDLING PROCED~

Pascal provides standard procedures for controlling text-file
input and output. These procedures apply to files of type
text or interactive.

READ AND READLN INTRINSICS

READ and READLN read character strings representing
numbers from a textfile and convert them into their inter­
nal representations. There is more on converting numbers
later in this subsection.

READ (v1, v2, ... , vn)

is equivalent to a

READ(input, v1, v2, ... , vn)

READ (file, v 1, v 2, ... , v n)

is equivalent to a sequence of READ procedure calls as fol­
lows:

6-6

READ (file, v);
READ(file, v2~;
READ(file, v~J]

3/10/86

Pascal Input and Output

If 'ch' is a variable of type char, the two programs
displayed here are equivalent:

var
ch: char;

rasp: file of char;

READ (rasp, ch)

end

var
ch: char;

rasp: file of char;

ch := raspA;
GET(rasp)

end

It 'v' is a variable of type integer, any subrange of integer,
real, or double, the procedure reference:

READ (file, v)

reads a sequence of characters from the file referenced by
"file". The sequence of characters should form a valid
number according to Pascal's rules for numbers (described
in Section 1). Note that if a real or double number con­
tains a decimal point, there must be at least one digit on
either side of the decimal point. When the number is
formed, it is then assigned to the variable 'v'. Blank lines
and spaces preceding the number are skipped in the file.
Reals are read in the same way as integers. Booleans cannot
be read via a READ or READLN call. Structured types
cannot be read.

If the sequence of characters read from the file do not form
a valid number according to the syntax rules, one of two
actions are taken: if 1/0 checking is on, the Pascal run-time
system issues an error diagnostic; if 1/0 checking is off,
READ or READLN return zero (0) and the IORESULT
code is set. See Appendix A: Messages from the Pascal Sys­
tem for a list of 1/0 error codes.

3/10/86 6-7

Input and Output Pascal

READ (from a file of any type)

The READ procedure can also read from a file of any type.
A READ procedure call of the form:

READ(file, vl' v2, .. ., vn);

is equivalent to the sequence:

v l := file:; GET(file);
v2 :=file ; GET(file);

v ·- fileA· GET(file)·, n .- '

GET(file);

where the "v n" are the list of variables to read into.

Note that the type of each variable in the list must be
identical to the type of the elements in the file.

WRITE AND WRITELN INTRINSICS

The WRITE and WRITELN intrinsics append character
strings to a textfile. Usually the character strings are gen­
erated by converting one or more WRITE parameters (see
below) from their machine representations into external
re presentations.

The procedure WRITELN differs from the procedure
WRITE only in that WRITELN sends an end-of-line to the
output file after the write is complete.

6-8 3/10/86

Pascal Input and Output

<write intrinsic> ::=WRITE(<file> <write parameters>);

<writeln intrinsic> ::= WRITELN(<file> <write parameters>);
IWRITELN;

<file> ::= <file variable>,

<write parameters> ::= <write parameter> {, <write parameter>}

The <file> parameter in all cases is a file variable which
refers t;o the file on which t;o append character strings. If
the <file> parameter is omitted, output is written to file
output (the computer standard output).

WRITE PARAME'IERS

The WRITE and WRITELN procedures can control the
format of the individual element"! that are written. Each
parameter t;o WRITE or WRITELN is of the form:

<write parameter> ::= <element>

"

I <element>:<field width>
I <element>:<field width>:<fraction size>

<element> ::= is the value to be written.
(see descriptions below)

<field width> ::= <integer expression>

<fraction size> ::= <integer expression>

<element> is the value to be written. It may be of type
char, integer, real, double, Boolean, string or packed array
of char.

<field width> and <fraction size> are optional. If
<fraction size> is present, <field width> must also be
present.

3/10/86 6-9

Input and Output Pascal

<field width> specifies the size of the output field into
which the converted value is written. If the converted
value is smaller than <field width>, the field is filled out
with leading spaces.

<fraction size> is only applicable when the <element> is
of type real or double (see below).

Integer Element

The value of the integer expression is converted into a
string representation of that expression in the base 10. The
resulting string is placed right justified into the output field
if a field width greater than needed is specified. If <field
width> is too small to contain the resulting character
string, the output field is expanded until it can contain the
output string. If the integer expression is negative in value,
a minus sign precedes the leftmost significant digit in the
field. If the integer expression is positive, no space pre­
cedes the character string unless the <field width> is
greater than the number of characters to be printed. If
<field width> is omitted, the default field width is the
minimum required to print the value.

Real or Double Element

A real or double element is converted much the same as an
integer element, except that there can be a specification for
the number of digits after the decimal point. In this case,
<fraction size> specifies the number of digits to appear
after the decimal point. The converted value is then writ­
ten in so called "fixed point" notation. If <fraction size>
is omitted, the converted number is written out in the
floating or exponential notation. The diagram below illus­
trates the different forms of writing real elements.

6-10 3/10/86

Pascal Input and Output

WRI1E(number:f)

results in a number of the form:

+ x.yyyyyE+ nn

where 'f' is the total number of characters in the converted
number. There is one digit before the decimal point and
'f'-7 digits after the decimal point.

WRI1E(number:f:w)

results in a number of the form:

xxx.yyy

where 'f' is the total number of characters (including the
decimal point), and 'w' is the number of digits after the
decimal point.

The extreme real and double values are printed as follows:
positive infinity prints as a row of + signs; negative infinity
prints as a row of minus (-) signs; NaN (Not a Number)
prints as a row of ? marks.

Scalar Subrange Element

A write parameter which is a scalar subrange is handled
exactly as the scalar range of which it is a subrange.

3/10/86 6-11

Input and Output Pascal

Characler Element

A write parameter which is a character is output as a single
string character right justified in the output field. If <field
width> is greater than one (1), the field is filled with lead­
ing spaces.

Furthermore, an <element> of type char means that the
two programs displayed below are equivalent.

WRITE(file, <char expression>:<field width>)
is equivalent to

file· := ' '; { these two statements repeated }
PUT(file); {<field width> - 1 times }

file· := <char expression>; PUT(file)

String Element or Packed Array of Char

A write parameter which is a string or packed array of char
expression is placed right justified into the output field with
leading spaces. If <field width> is less than the dynamic
length of a string expression, the output field is expanded
to contain the string. If <fieldwidth> is less than the
length of a packed array of char expression, then only the
first <fieldwidth> characters are output. If <field width>
is omitted, the output field is the minimum length needed
to hold the string.

Boolean Element

An expression which is of type Boolean is written as one of
the predefined identifiers False or True. If <field width>
is greater than the length of the resulting string (5 for
"False"; 4 for "True"), the string is written with leading
spaces. If <field width> is less than the length of the
string, the field is expanded to contain the string. If the
value of the expression is not a valid Boolean, the string
"UNDEF" is printed.

6-12 3/10/86

Pascal Input and Output

Hexadecimal Output

Integer expressions may also be output in hexadecimal
representation. This is accomplished by appending the
identifiers hex to the right of the value, or in the call that a
field width is given, after. the field width. Exactly <field
width> characters are output. Since all such expressions
are converted to type longint prior to output, a maximum
of 8 hexadecimal digits are printed. Any extra characters
are blank. If less than 8 characters are specified, then the
least significant portion of the value is output. The default
field width is 8.

Pointer Output

Pointer may also be written to text files. Their value is
output in hexadecimal notation. An optional field width is
accepted, the default width being 8.

WRITE (t.o file of any type)

The WRITE intrinsic can also write to a file of any type. A
WRITE procedure call of the form:

WRITE(file, expr1, expr2, ... , exprn);

is equivalent to the sequence:

file::= expr1; PUT(file);
file := expr2; PUT(file);

fileA := expr ; PUT(file); n

where the expr are a list of expressions to be written to
the file. n

Note that the type of each expression in the list must be
the same as the type of the elements in the file. Integer
subranges are converted to the proper length as needed.

3/10/86 6-13

Input and Output Pascal

SEEK-RANDOM ACCESS TO TYPED FILES

SVS Pascal supports random access to files of specific types.
The SEEK procedure has two parameters, namely the file
variable and an integer specifying the record number to
which the file window should be moved. SEEK can only be
applied to typed files that are not text files. The format of
SEEK is:

procedure SEEK(file: file_type; position: longint);

file is the file variable for the specified file.

position is the number of the record to which the file
window is to be moved. Records are num-
bered sequentially from zero (0).

SEEK moves the file window to the "position"th record in
the file specified by "file". The EOF and EOLN predicates
are set to false.

An attempt to PUT a record beyond the physical end of file
sets the EOF predicate true. The physical end of file is the
place where the next record in the file would overwrite
another file on the storage device.

If a GET or PUT is not performed between two SEEK pro­
cedures, the contents of the file window are undefined.

CLOSE-CLOSE A FILE

CLOSE removes the association of a file variable with an
external file. A CLOSE procedure call marks the file as
closed. The file variable for that file is then undefined. If a
file is already closed, a CLOSE call does nothing. The form
of the CLOSE procedure is:

procedure CLOSE(file [, close_option]);

6-14 3/10/86

Pascal

file

close_option

Input and Output

is a file variable.

is an optional parameter that controls the
disposition of the closed file.

"close_option" can be on~ of the following:

normal

lock

purge

crunch

3/10/86

The state of the file is set t.o closed. If the
file was opened with a RESET procedure
call, the "normal" option means that the
file is retained in the file system. If the file
was opened with a REWRI1E procedure
call, the "normal" option means that the
file is removed from the file system under
operating systems where the old file of the
same name is still intact. The "normal"
option is the default.

Makes the file permanent in the disk sys­
tem if it is a disk file. Any existing file of
the same name is removed from the file
system. If the file is not a . disk file, a
"normal" close is done.

Deletes the file from the file system if the
file is on a block-structured device. If tbe
file associated with "file" is a device
instead of a block-structured volume, the
device is set off-line. If no physical device
or file is associated with "file", a "nor­
mal'' close is done.

Is the same as the "lock" option but in
addition, truncates the file at the point at
which it was last accessed. That is, the end
of the file is the position at which the last
PUT or GET was performed. This option
only works under certain operating sys­
tems.

6-15

Input and Output Pascal

PAGE-SKIP TO NEWPAGE

The procedure PAGE may be used to skip to the top of a
new page on a text or interactive file. The form of PAGE
is:

procedure page(file: text);

A call to PAGE actually does not guarantee that the device
being written to will advance to a new page. Instead it out­
puts a single ASCII for feed character, 'OC', to the
specified file. In most cases this will result in a form feed.

6.3 BLOCK.INPUT OUTPUT INTRINSICS

BLOCKREAD and BLOCKWRITE support random (block
level) access to untyped files only. A block is 512 bytes of
data regardless of the actual file system blocking factor.

BLOCKHEAD -READ BLOCK FROM FILE

BLOCKREAD reads specific blocks from an untyped file.
The function definition is:

function BLOCKREAD(file, where, blocks [,relblock]): integer;

file

where

blocks

relblock

6-16

is an untyped file.

is a variable of any type. The variable
must be large enough to contain the
number of blocks requested.

is an integer value which specifies the
number of blocks to read from the file.

is an optional parameter. If "relblock" is
present, it represents the block number at
which to start reading from. Blocks are
numbered relative to zero (0).

3/10/86

Pascal Input and Output

If "relblock" is omitted, it implies a sequential read of the
next block in the file. When the file is opened, or when
the file is reset, the starting block number is set to zero
(0). Thus a BLOCK.READ with the "relblock" parameter
omitted starts reading from block zero, and reads sequen­
tial blocks on every subsequent call that has the "relblock"
parameter omitted.

The return value of BLOCK.READ is the number of blocks
actually read. If the value is zero, it indicates either end­
of-file or an error condition. If the value is greater than
zero, it indicates the number of blocks read. If the return
value is less than the number of blocks specified in the
function call, it is possible that an end-of-file was encoun­
tered during the read.

BLOCKWRI'IE -WRI'IE BLOCK TO FILE

BLOCKWRITE writes specific blocks to an untyped file.
The function definition is:

function BLOCKWRITE(file, where, blocks [,relblock]): integer;

file

where

blocks

rel block

3/10/86

is an untyped file.

is a variable of any type. It must be large
enough to contain the number of blocks to be
transferred.

is an integer value which specifies the number
of blocks to write to the file.

is an optional parameter. If "relblock" is
present, it represents the block number at
which to start writing to. Blocks are num­
bered relative to zero (0).

6-17

Input and Output Pascal

If "relblock" is omitted, it implies a sequential write of the
next block in the file. When the file is opened, or when
the file is reset, the starting block number is set to zero
(0). Thus a BLOCKWRITE with the "relblock" parameter
omitted starts writing to block zero, and writes blocks
sequentially on every subsequent call that has the "rel­
block" parameter omitted.

The return value of BLOCKWRITE is the number of
blocks that were actually written. If the return value is
zero or a less than the number of blocks specified, it means
either that there was an error or that there is no room for
the blocks on the device.

6.4 IORESULT-RETURNINPUT-OUTPUT
RESULT

IORESULT is a function that can be used after an input.
output operation to check on the validity of the operation.
The function definition is:

function IORESUL T: integer;

Use of the IORESUL T function is only appropriate if I/O
checking has been turned off. The $I- compiler option
turns checking off. If I/O checking is on (as it is by
default) or turned on via the $I+ compiler option, any I/O
error generates a non-recoverable run-time error.

If I/O checking has been turned off, I/O errors do not gen­
erate run-time errors, and the programmer can then use
IORESUL T to check the completion status of each input
output operation.

The value of IORESULT is zero if an input-output opera­
tion has a normal completion. If the value is non-zero, it
indicates some form of error has occurred. See Appendix A:
Messages from the Pascal System for a list of error codes.

6-18 3/10/86

Pascal Input and Output

Example Using IORESUL T

{$I-} { Turn off the I/O Checking }
type

data_file = text;
var

data: data_file;

RESET(data, '/source/printfile');
if IORESULT <> 0 then begin { <> 0 =problem}

REWRITE (data, '/source/printfile'); { so create it }
if IORESUL T < > O then begin

WRITELN('Cannot create /source/printfile');
HALT

end;
end;

In the above example, the $1- comment toggle turns off the
1/0 checking for that part of the program. The IORESUL T
function returns a non-zero value to mean that the file
could not be RESET, so the program then tries a
REWRITE statement. If that fails, then the program halts.

IORESULT is cleared by each I/O operation. Thus, the
sequence:

read(x);
writeln('The value of IORESUL T is ',IORESUL T);

does not print the IORESUL T set by the read, since the
write of the string clears IORESULT before it is printed in
the writeln. The proper technique for accessing IORESULT
is as follows:

read(x);
iovariable := IORESUL T;
writeln('The value of IORESULT is ',iovariable);

3/10/86 6-19

Input and Output

Even more subtle is the following situation:

readln(x);

which is equivalent to

read(x);
readln;

Pascal

in which the readln will clear the IORESULT associated
with the read before it can be examined by the program.

6-20 3/10/86

SEGTION7
PROGRAM STRUCTURE

A Pascal program is a collection of declarations and state­
ments which is meant to be translated, via a compilation
process, into a relocatable object-module. Object modules
obtained from other, separate compilations can be com­
bined, via a linking process, into a form suitable for execu­
tion.

The collection of declarations and statements may also
include compiler directives which control the compilation,
and do not change the meaning of the program.

The results of compilations, the object modules, are some­
times referred to as ".obj" files since this is the normal file
name extension for such files. SVS Pascal is very flexible
in the mechanisms for creating ".obj" files which are not
complete executable programs and combining them in the
linking process.

The unit mechanism, derived from UCSD Pascal, is pro­
vided for secure independent compilation. Using this
mechanism, a group of declarations and procedures can be
compiled into an ".obj" file. This ".obj" file can be used
by other Pascal compilations to insure that interfaces are
consistent, and subsequently iinked with the ".obj" files
created in these compilations. Alternatively, independent
compilation via the external (or cexternal) mechanism can
be used for insecure independent compilation of Pascal rou­
tines, or for linking Pascal to routines written in other SVS
languages or assembly language.

3/10/86 7-1

Program Structure Pascal

In some operating environments ".obj" linkable object
code is further processed into a form of linkable object
code in the format expected by the host operating system.
This second form of linkable object code will be referred to
as ".o" object code, since this is a common file name suffix
for these files. Under some operating systems compilations
of SVS Pascal programs (and units) routinely are processed
into ".o" files, in which form separately compiled pieces of
the program are combined and in which form the run time
libraries are linked in with the user's programs. In other
operating system environments separately compiled Pascal
programs (and units) and the run time libraries are linked
in ".obj" form creating a single ".o" file in the format of
the target system.

The discussion in this chapter describes the properties of
".obj" files. On systems in which the ".obj" file is rou­
tinely processed into ".o" form, there is always an operat­
ing procedure or option which will make the ".obj" form
of the object code available for the purposes described here.

7.1 COMPILATIONUNITS

Before describing in detail the various compilation units
and their components, the following are some examples of
compilation units with accompanying explanations.

Example of Complet.e Program Compilation Unit

program complete;
var i: integer;

begin
i := 17;
writeln(i);

end.

The above program is complete and can be compiled and
executed. It does not make use of any separate compila­
tion.

7-2 3/10/86

Pascal Program Structure

Example of Program with Insecure Separat.e Compilation

program missingsomething;
var i: longint;

procedure getvalue(var ii: longint); external;

procedure callme;
begin

writeln('I got called!');
end;

begin
getvalue(i);
writeln(i);

end.

This example illustrates the call on an external procedure
called getvalue which will have t.o be supplied in the linking
process in order t.o make a complete executable program.
It is possible that this external procedure has been written
in assembly language, or in SYS FOR1RAN, or in Pascal.
(Note: if the procedure had been written in SYS C, the cal­
ling sequence t.o the external would have t.o be different
and the programmer should have coded getvalue as a
cexternal instead of an external).

Regardless of the origin of getvalue, the Pascal system will
make no attempt t.o match parameter types, etc. between
the call and the code called. Pascal is satisfied that the
external declaration describes the interface and it is the
programmer's responsibility t.o insure that the receiving
subroutine is suitable. Thus, this method of independent
compilation is referred to as insecure.

The example also contains a procedure callme which may
well be referenced in some other compilation unit as an
external. This other compilation unit must not, however,
contain a main program, since it is not allowed t.o link
t.ogether object files containing more than one main.

3/10/86 7-3

Program Structure

Example of a Simple Unit

unit IHideAndHoldAndPrintX;
interface

var publicinteger: integer;

procedure setx(fx: real);
procedure printx;

implementation
var x: real;

procedure setx;
begin

x := fx;
end;

procedure printx;
begin
writeln (x);
end;

end.

Pascal

This example creates a unit with two procedures in its pub­
lic part and a private variable. The ".obj" created by the
Pascal system for this unit contains linkable object code for
the two procedures and contains the source code for the
interface section of the unit. Let us assume that the
created object code for this unit is named hide.obj.

When another compilation uses this unit (see example
below), which is to say uses the ".obj" code of this unit,
the interface source code declarations are extracted from
the unit's ".obj" file and processed to insure that interfaces
match properly. This is why the unit mechanism is ref erred
to as secure,independent compilation.

7-4 3/10/86

Pascal Program Structure

Example of Program Using a Unit

program . Use Unit;
uses {$U hide.obj} IHideAndHoldAndPrintX;

begin
publicinteger := 99;
setx(17.3); printx;
writeln(pu blicin teger);

end.

This program has available the variables in the interface
section of the referenced unit as well as the procedures
declared there (by actual inclusion of the source code which
is part of the unit's ".obj" file). The Pascal system checks
and enforces that the interfaces are matching between this
compilation and the unit.

The Pascal system must be told what the file name of the
".obj" of the referenced unit is. This is done using the $U
directive. In the event that more than one unit is to be
used, the following method should be utilized:

uses {$U filel.obj} FirstUnit,
{$U file2.obj} SecondUnit;

The order in which these units are used may be important.
If the SecondUnit unit used FirstUnit when it was com­
piled, it more than likely depended on FirstUnit to make its
own declarations meaningful. In this event, the order must
be as shown.

The examples shown here illustrate only a few of the possi­
bilities. Units can use units. Global procedure and func­
tion names in programs and interface procedures and func­
tions in units become available for reference via the exter­
nal mechanism, etc.

The key to properly using units is to remember that the
interface information is included in the using compile as
source declarations. This fact determines the order in
which compilation must be done and what must used
where and in what order.

3/10/86 7-5

Program Structure Pascal

On systems in which ".obj" and ".o" object code is avail­
able, the form of the object code which is used by a uses
statement must always by the ".obj" form. Other linkage
of separately compiled compilation units may, or may not,
be possible using ".o" object code. See Appendix F and G
for details relating to specific operating environments.

The more formal details of compilation units follows.

A compilation unit is either a program (a main program),
or a unit. A complete executable program consists of a sin­
gle program and zero or more units.

A program is a main program, consisting of all the state­
ments between a program statement and an end. statement.
The main program is described in more detail later in this
chapter, in the section entitled Program Heading.

A unit is a collection of declarations and statements pack­
aged so as to make parts of the declarations in the unit
public to other parts of the same compilation unit or
separate compilation units. Units are useful for sharing
common code among different programs or as a means to
avoid compiling a huge program every time one line is
changed. Units are compiled separately.

A program or unit that uses another unit is known as a
host. A host uses other units' declarations by naming
those units in uses declarations. The uses clause appears
after a program heading or it appears in a unit at the start
of the interface section (see below).

A unit contains two major parts, namely an interface part
which describes how other units view this unit, and an
implementation part which supplies the actual body of code
to implement this unit.

7-6 3/10/86

Pascal Program Structure

<unit> ::=unit <identifier>;
<interface part>
<implementation part>

end.

<interface part> ::= interface
<uses clause>.
{<constant definition part>

<type definition part>
<variable definition part> }
<procedure and function declaration part>

<implementation part> ::=
implementation
{ <label declaration part>

<constant definition part>
<type definition part>
<variable definition part> }
<procedure and function declaration part>

<uses clause> ::= uses <identifier> {,<identifier>};

The interface part declares constants, types, variables, pro­
cedures and functions that are globally available. A host
program that uses that unit has access to those objects just
as if they had been declared in the host program itself.

Procedures and functions declared in the interface part con­
sist only of the procedure or function name and the
description of the formal parameters. These declarations
serve as procedure or function prototypes - there is no exe­
cutable code associated with them. This is equivalent to a
forward declaration except that no forward attribute is
allowed.

The implementation part follows the interface part. Local
objects are declared first, then the global procedures and
functions are declared. Formal parameters :;ind function
result type declarations are omitted from the implementa­
tion part, since they were already declared in the interface
part.

3/10/86 7-7

Program Structure Pascal

A unit can consist entirely of interface declarations (con­
stants, types and variables). There need not be any pro­
cedure or function declarations.

The declarations in the interface part of a unit are accessi­
ble in another compilation only after that unit is specified in
a uses statement of that compilation. The uses clause is
used in conjunction with the $U compiler option. The unit
will be searched for the file specified in the most recently
appearing $U option. The file searched will be the file
name with and ".obj" suffix. Thus the unit must have
been previously compiled.

The overall layout of a unit is like this:

unit GanipGanop;

interface { This part declares the }
{ interface section }

uses names of { This part is optional if }
other units { GanipGanop does not use any }

{ things from other units }
{ Note that if any declarations }
{ imported from other units are }
{ referenced in the interface }
{ part of GanipGanop then the }
{ compilation that uses }
{ GanipGanop must first uses }
{ that other unit.

{..... declarations and
procedure headings

for the GanipGanop unit.
All these declarations and procedure

headings are PUBLIC to other units• }

implementation { This part declares the }
{ implementation section }

{..... declarations and
code for the GanipGanop unit.

All these declarations and code are
PRIVATE to GanipGanop }

end. { of the GanipGanop unit }

7-8 3/10/86

Pascal Pf9gram Structure

7.2 DECLARA'llONS AND SCOPE OF IDEN'llFIER.S

Declarations introduce program objects, together with their
identifiers, which denote these objects elsewhere in a pro­
gram.

<declaration> ::=<label decl&raUon>
I <canst.ant declaration>
I <type declaration>
I <variable declaration>
I <procedure or function declaration>

The program region (over which all uses of an identifier are
associated with the same object) is called the scope of the
identifier. Within a compilation unit, such a region is
either a unit body or a block body. In the case of a unit,
the scope is a declaration list. In the ease of a block, the
scope is a statement list preceded by an optional declaration
list.

The scope of an identifier is determined by the context in
which it was declared.

A program or a unit is a static construct intended to control
the scope of identifiers according to these rules:

• The scope of an identifier declared at the outermost
level of a program .is the body of that program.

e The scope of an identifier listed in the interface part
of a unit is the body of that unit, and is also
extended outwards to any other unit that uses that
unit.

• Identifiers declared at the outermost level of the
implementation part of a unit have the entire body
of that unit as their scope, but are private to that
unit.

3/10/86 7-9

Program Structure Pascal

Procedure or function blocks also control the scope of
identifiers. There are both similarities with, and differences
from, programs or units.

Like programs or units, blocks control the scope of
identifiers.

Unlike programs or units, blocks control the processing of
declarations and determine when the declarations take
effect.

The block-structured scope rules are as follows:

7-10

• The scope of an identifier declared in the declaration
list of a block is the body of that block.

• If the scope of an identifier includes another block,
its scope is extended inward to include the body of
that inner block, unless the body contains a re­
declaration of that identifier.

• An identifier which is declared as a formal parameter
of a procedure or function has as its scope the body
of that procedure or function.

• Field selectors are identifiers introduced as part of
the definition of a record type for the purpose of
selecting fields of records. The scope of a field selec­
tor is the record in which it is declared. As with the
nesting of procedures, the existence of an inner
scope identifier masks the accessibility of any outer
identifiers. of the same name. Field selectors must
be unique within the declaration of a record.

• Identifiers must be unique within the bounds of a
given scope.

3/10/86

Pascal Pr.ogram Structure

'1.3 PROGRAM HEADING

The program statement identifies the main program for a
Pascal compilation. In SVS Pascal, the program header is
scanned but otherwise ignored. A program has the same
form as a procedure declaration except for the heading.

<program> ::= <program heading> {<uses clause>} <block>.

<program heading> ::=
program <identifier> {(<program parameters>)};

<program parameters> ::= <identifier> {,<identifier>}

The identifier following the word program is the program
name. It has no further meaning inside the program.. The
program parameters are optional. No global identifiers in
the program may have the same name as any of the pro­
gram parameters.

PREDECLARED VARIABLES

SVS Pascal supplies five pre-declared variables. First there
are standard files:

input

output

stderr

3/10/86

is the standard file from which console
input can be done via READ and
READLN statements.

is the standard file to which console output
is directed via WRITE and WRITELN
statements.

is the standard error output file. On those
operating systems which support a separate
file for error responses, stderr is connected
to that stream. On those operating sys­
tems which do not support a separate file
for error responses, stderr is connected to
the same place as output.

7-11

Program Structure Pascal

Then there are the two variables associated with obtaining
arguments from the operating system command line (see
the next subject heading below):

argc is a count of the number of arguments supplied
on the command line.

argv is an array of pointers to the character strings
containing the command line arguments.

ARGO and ARGY - Access to Command Line

As mentioned above, argc and argv provide access to the
Pascal program's command line as the user typed it. argc
and argv can be considered to be defined by a declaration
of the form:

type
stringtype = string[anylength];
pstring = ·stringtype;

var
argc: integer;
argv: array[l .. argc] of pstring;

Each element of argv contains a separate field from the
command line that invoked this Pascal program. If argc is
zero (0), no attempt should be made to reference argv.
The first element of argv is the first parameter from the
command line. The name of the command itself may or
may not be available as the first command line argument
depending on the operating system under which the pro­
gram is run. Avoid assigning to any element of argv.

7-12 3/10/86

Pascal Program Structure

7.4 DECLARA.'llONS

LABEL DECLARA'llONS

The label declaration part declares all labels (which tag
statement.s) in the statement part of the block.

<label declaration part> ::= label <label> {, <label>};

CONSTANT DEFINI'llON

The constant definition part declares all constant names and
their associated values that are local to the procedure or
function definition.

<constant definition part> ::= const <constant definition list>

<constant definition list> ::=
<constant definition> {<constant definition>}

TYPE DEFINI'llON

The type definition part contains all the type definitions that
are local to the procedure or function definition.

<type definition part> ::= type <type definition list>

<type definition list> ::= <type definition> {<type definition>}

VARIABLE DECLARA'llON

The variable declaration part contains a definition of all the
variables that are local to the procedure or function.

<variable declaration part> ::=var <variable declaration list>

<variable declaration list> ::=
<variable declaration> {<variable declaration>}

3/10/86 7-13

Program Structure Pascal

7.5 PROCEDURE AND FUNCTION DECLARATION

A procedure declaration or a function declaration associates
an identifier (the procedure or function name) with a col­
lection of declarations and statements. A Pascal statement
can then cause that procedure to be executed (activated) by
giving its name in a procedure reference statement. A func­
tion declaration is similar to that of a procedure with the
additional capability that a function can compute and return
a value, called the value of the function. A function is
referenced by giving its name in an expression, when the
value of the function appears as a factor in that expression.

The type of value that a function returns is specified when
the function is declared. The function return value is the
value l~t assigned to its function identifier before a return
is made from the function. Returning from a function
without ever assigning a value to the function designator
(for the current activation of the function) produces an
undefined result (usually with undesirable results from the
programmer's viewpoint).

Using a procedure or function identifier within the dedara­
tion of that procedure or function implies recursive activa­
tion of that procedure or function, except when a function
identifier appears on the left hand side of an assignment
statement, (implying assignment to the function variable
rather than recursive activation - see below).

<procedure declaration> ::= <procedure heading> <block>

<block> ::= { <label definition part>
<constant definition part>

<type definition part>
<variable declaration part> }

<procedure and function declaration part>
<statement part>

<statement part> ::= begin <statement list> end

<statement list> ::= <statement> {; <statement>}

7-14 3/10/86

Pascal Program Structure

All the definition and declaration parts above are optional,
with the exception of the <statement part>.

SVS Pascal accepts multiple declaration parts in each block
and unit interface and implementation section. The usual
declare before usage rules apply. That is, the declarations
are processed in the order in which they occur, as con­
trasted with processing all of the constant sections followed
by all of the type sections, etc. Forward pointer type ref er­
ences are resolved in each type definition part without
regard t.o definitions which occur in later declaration sec­
tions. This feature facilitates the inclusion of files of
declarations which are logically complete without forcing
the user t.o segregate declared items based on whether they
are constants, types, or variables.

The procedure headi"ng specifies the identifier that names the
procedure, and any formal parameters for that procedure.
Procedure parameters are either value parameters, variable
parameters, or procedure or function parameters.

<procedure heading> ::=
procedure <identifier>; {<attribute>;}

I procedure <identifier> (<formal parameters>); {<attribute>;}

<function heading> ::=
function <identifier>: <result type>; {<attribute>;}

I function <identifier>(<formal parameters<);{<attribute>;}

<formal parameters> ::=
<formal parameter> {;<formal parameter>}

<formal parameter> ::=
<parameter group>

I var <parameter group>
I <procedure heading>
I <function heading>

<parameter group> ::=
<identifier> {,<identifier> }:<type identifier>

<attribute> ::=external I forward I cexternal

<result type> ::= <simple type>

3/10/86 7-15

Program Structure Pascal

Note that the external, forward, and cexternal attributes
are optional.

EXTERNAL AND FORWARD AT'TRIBUTES

A Pascal host can use routines that are separately compiled
or assembled in languages other than Pascal. To use an
external routine, the host must make a procedure or func­
tion declaration for that external routine just as if it is a
Pascal routine that is declared in this compilation unit or
another compilation unit. The declaration is then followed
by the external attribute to indicate that the body routine
does not appear in the current compilation unit. External
routines must conform with the Pascal calling conventions
and data representation methods as defined in Appendix E:
Data Representations.

The cexternal attribute means that the compiler generates
calls to external procedures in a manner which is compati­
ble with the SVS C compiler. Another feature of the
cexternal declaration is that the external name of the pro­
cedure or function is not coerced to upper case letters, but
is handled by the system in exactly the case (or combina­
tion of cases) as provided by the programmer in the cexter­
nal declaration.

Pascal normally dictates that procedures and functions be
declared before they can be referenced. There are cases
when program layout makes this impossible, such that a
procedure or function must be referenced before it can be
declared. The forward attribute indicates that the particu­
lar procedure or function declaration consists only of the
header, and that the body of that procedure or function
appears later in the program source text, possible after it is
referenced. A forward-declared procedure or function,
then, is actually declared in two distinct parts: its header or
prototype is declared, with the forward attribute, before any
reference is ever made to it; at some later point in the pro­
gram source text, its body is declared. At this later point,
the formal parameter section must not appear.

7-16 3/10/86

Pascal

PARAMETERS FOR PROCEDURES
AND FUNC'IlONS

Pf9gram Structure

Parameters (also called argument.s) provide a dynamic sub­
stitution method such tha.t a procedure or function can pro­
cess different set.s or data. in different activations.

There is a correspondence between the formal parameters
declared in a procedure or function heading and the actual
parameters supplied when the procedure or function is
activated.

The procedure or function heading declares a list or formal
parameters. These are dummy variables that are assigned
values when the procedure or function is activ~ted.

A reference to the procedure or function supplies a list of
actual parameters that are substituted for the formal param­
eters, which then become local variables initialized to the
value or the actual parameters.

There are tour kinds or formal parameters:

• Value parameters.

• Variable or Reference parameters.

• Procedure parameters.

• Function parameters.

A parameter group without a preceding specifier, implies
that the parameter is a value parameter.

3/10/86 7-17

Program Structure Pascal

Value Parameters

Value parameters are those whose formal parameter declara­
tion has no symbol marking them as one of the other three
forms. The corresponding actual parameter must be an
expression. In the body of the procedure or function, the
formal parameter is initialized to the value of the expres­
sion at the time the procedure or function is activated. The
formal parameter is then just like a local variable. The
value of the formal parameter may be changed by assign­
ment - the actual parameter remains unchanged.

Variable Parameters

Variable parameters, also called reference parameters, are
those whose declarations start with the symbol var (for
variable). The actual parameter must be a variable of a
type which is identical to that of the formal parameter. The
formal parameter directly represents, and can change, the
actual parameter's value during the entire execution of the
procedure or function.

var actual parameters must be distinct actual variables. It is
a programming error to supply the same variable to more
than one actual parameter in a procedure or function refer­
ence.

All index computations, field selection and pointer dere­
ferencing are done at the time the procedure or function
reference is made.

7-18 3/10/86

Pascal Prqgram Structure

Procedure and Function Parameters

Procedure and Function parameters are the names and param­
et.er lists of procedures or functions that can be referenced
by the current procedure.

These paramet.ers are indicat.ed by the symbol procedure or
function in the formal paramet.er declarations. Such pro­
cedures or functions are called parametric. Actual parame­
t.ers to parametric procedures and functions must be of
identical type to those declared in the formal parameter
declarations.

Ekamples of Procedure and Function Declarations

{ a procedure with only value parameters }

procedure ByTheBook(Section, Verse: integer);
begin

Sect.ion:= 1; {does not change the caller's
version of Section }

end;

{ a procedure with variable parameters }

procedure Change(var winds: integer);
begin

winds:= 76; { Changes the caller's version }
end;

· { the Ackerman function }

function Ackerman(m, n: integer):integer;
begin

if m = 0 then
Ackerman := n + 1

else if n = 0 then
Ackerman := Ackerman(m - 1, 1)

else
Ackerman:= Ackerman(m - 1, Ackerman(m, n - 1))

end;

3/10/86 7-10

Program Structure

{ parametric function parameter }

function lntegrate(lo, hi: real;
what(x: real):real): real;

var
start: integer;
finish: integer;
point: integer;
current: real;
sum: real;

begin
start:= TRUNC(lo);
finish:= ROUND(hi);
sum:= 0.0;

for point := start to finish do
begin

current := point;
sum := sum + what(current);

end;
Integrate :=sum / (finish - start);

end;

7-20

Pascal

3/10/86

SEC'110N8
STAND.ARD PROCEDURES AND FUNC'IIONS

SVS Pascal (in common with other Pascal implement.ations)
supplies a number oC st.andard (built in) procedures and
functions. This section covers those. The st.andard pro­
cedures and functions Call int.o several logically related
groups, as follows:

• St.l'ing Manipulation

These intrinsics handle the SVS Pascal dynamic
string types.

• Memory Management

These intrinsics deal with dynamic memory alloca­
tion and de-allocation.

• Arithmetic Functions

• Boolean Predicates

• Conversion Functions

• Miscellaneous Low Level Procedures and Functions

8.1 Sm.ING MANIPULA1ION FACILI1IES

This section discusses those facilities for manipulating st.l'ing
data types in Pascal. For purposes of this section, st.l'ing
data.types are those declared string[I>.], Cor some n, not
pa.eked array[l..n] of char. The type stringtype utilized below
should be read as matching any type declared stringfnf.

3/10/86 8-1

Procedures and Functions Pascal

Here is a brief summary of the facilities:

CONCAT concatenate a number of strings into one
string.

COPY extract substring of a string ..

DELETE delete characters from a string.

INSERT insert characters into a string.

LENGTH determine the current dynamic length of a
string.

POS scan for a pattern within a string.

SCANEQ and SCANNE
scan for a specific character within a string.

LENGllI -DE1ERMINE STRING LENGllI

LENGTH is an integer function that returns the length of a
string expression. The function definition is:

function LENGTH (source: stringtype): integer;

LENGTH returns an integer value which is the dynamic
length of the string source.

The length of the string" is zero (0).

Examples of LENGllI

alphabet:= 'abcdefghijklmnopqrstuvwxyz';
WRITELN(LENGTH(alphabet), ' ',

alphabet[1], ' ',
alphabet[LENGTH(alphabet)], '
LENGTH("));

the following output is displayed

26 a z 0

8-2

' '

3/10/86

Pascal Procedures and Functions

COPY-COPY A SUBS'IRING

COPY returns a stringtype which is a substring of another
string. The function definition is:

function COPY(source: stringtype;
index: int.eger;
size: integer): stringtype;

COPY returns a string which is a substring of the string
source. COPY extracts size charact.ers from source, starting
at the charact.er position given by index.

The first chara.ct.er in the string is numbered 1.

If index is negative or zero, the result is a null string.

If index is great.er than LENGTH(source), the result is a
null string.

If index+ size is greater than LENGTH(source), the result
is a string which ext.ends from index to LENGTH(source).

Example of COPY

var
left: string[100];
middle: string(100];
right: string(100);
title: string[255 J ;

title := 'Left Side. Middle Part. Right Side.';
left:= COPY(title, 1, 10);
middle := COPY(title, 12, 12);
right:= COPY(title, 25, 11);
WRI1ELN(left); .
WRI1ELN(middle);
WRI1ELN(right);

This should generat.e the output:

Left Side.
Middle Part.
Right Side.

3/10/86 8-3

Procedures and Functions Pascal

CONCAT- CONCATENA'IE STRINGS

CONCA T returns a stringtype result, which is the concate­
nation of its (string) parameters. The function definition of
CONCAT is:

function CONCAT (sl: stringtype;
s2: stringtype;
sn: stringtype): stringtype;

Each of the Sn is a string variable or a string constant or a
literal value. There may be any number of source strings,
each separated by a comma from the next. There must be
at least two source strings.

Example of CONCAT

title:= CONCAT('Here', ',there',', and everywhere');
WRITELN(title);

This should generate the output:

Here, there, and everywhere

POS -MATCH A SUBSTRING IN A STRING

POS is used for string matching. The function definition is:

function POS (pattern: stringtype;
inwhat: stringtype): integer;

POS scans from left to right trying to find an instance of
the string pattern in the string inwhat. If a match is found,
POS returns an integer value that is the position in i"nwhat
at which the pattern starts to match.

8-4 3/10/86

Pascal Procedureii and Functions

If there is no match, the result is zero (0).

If pattem is longer than in.what, the result is zero (0), or no
mat.ch.

If no pattem is the null string, ", the result is one (1), since
the null string matches the first position in any string.

Example of POS

herbs := 'Basil, Chervil, Fennel, Tarragon';
WRITELN(POS('Chervil', herbs},' ', POS('Nutmeg', herbs));

This should generat.e the output:

8 0

SCANEQ AND SCANNE-SCAN FOR CHARACTER

SCANEQ and SCANNE search a charact.er array until they
find (SCANEQ) or do not find (SCANNE) a specified char­
act.er in the array. The function definitions are:

function SCANEQ(len: integer; what: char, object): integer;
function SCANNE(len: integer; what: char; object): integer;

SCANxx scans object for len charact.ers, or until the charac­
t.er what is found (SCANEQ) or not found (SCANNE).
The result is the off set into object where the scan stopped.
If the charact.er what is not found (SCANEQ) or is found
(SCANNE), SCANxx returns the value len. If the len
parameter is positive, scanning is from left to right; if the
len paramet.er is negative, the scan proceeds from right to
left, and a negative value is returned.

3/10/86 8-S

Procedures and Functions Pascal

Note that the SCANxx functions simply look at bytes in
memory. They ignore any higher level structure that the
user might perceive or might have imposed on the object.
Thus object is simply an address in memory at which to
begin scanning (or in the case where len is negative, to end
the scan). Thus, for example, if the programmer were to
do a SCANEQ on a data type of string[80], the length byte
of that string would also be scanned, and the results might
be unexpected.

DELETE-DELETE CHARACTERS FROM STRING

DELEIB removes a specified number of characters from a
string. The procedure definition is:

procedure DELEIB (destination: stringtype;
index: integer;
size: integer);

destination is a string. index and size are integers.

D ELEIB removes size characters from destination, starting
at the position specified by index.

If index is greater than LENGTH(destination), there is no
action taken.

If either index or size is negative or zero, there is no action
taken.

If index + size is greater than LENGTH(destination),
DELEIB removes all characters from i"ndex up to the end
of the destination string.

8-6 3/10/86

Pascal Procedures and Functions

Example of DELE'lE

var
large: string(100);

large:= 'A long exhausting rally, eh what, chaps';
DELETE(large, 8, 11);
WRITELN(large);

This should generate the output:

A long rally, eh what, chaps

INSERT-INSERT CH.AR,A.C'IERS INTO Sm.ING

INSERT inserts one cha.ract.er string into another charact.er
string at a specified place. The procedure definition is:

procedure INSERT (source: stringtype;
destination: stringtype;
index: int.eger);

The source string is insert.ed into the destination string at a
position det.ermined by the value of index.

If the length of destination is less than the value of index,
then no action is taken.

No check is made as to if the length of the result string is
great.er than the maximum length of the destination string.
The result in such a case is usually not what the program­
mer int.ended.

3/10/86 8-7

Procedures and Functions Pascal

8.2 STORAGE ALLOCATION PROQEDURES

Dynamically allocated storage is held in a large common
storage pool, called a heap. Storage is allocated from that
pool by using the procedure NEW. Storage is released back
tQ the pool (de-allocated) by using the DISPOSE procedure.
Alternatively, some Pascal implementations handle memory
de-allocation via the MARK and RELEASE proced.ures.
SVS Pascal provides MARK and RELEASE for compatibil­
ity.

NEW is responsible for allocating storage~

DISPOSE is responsible for freeing or releasing storage
back to the common storage pool.

MARK provides a means to remember the current
top of the heap.

RELEASE releases memory from a previously MARK'ed
point.

MEMA V AILdetermines the amount of memory available
for allocation.

NEW-ALLOCA'IE STORAGE

The procedure NEW allocates dynamically available storage.
If 'p' is a variable of type pointer to 'T', NEW(p) allocates
storage for a variable of type 'T' and assigns a pointer to
that storage to the variable 'p'. There are two forms of the
NEW procedure reference:

NEW(p) allocates a new variable 'v', and assigns the
pointer reference of 'v' to the pointer variable
'p'. If the type of 'v' is a variant record, storage
is allocated for the largest variant of the record.

8-8 3/10/86

Pascal Procedures and Functions

Storage for a specific variant can be allocated by using the
second f onn of the NEW procedure, as follows:

NEW(p, ti' ~, ... , tn)

allocates a variable of the variant, with tag fields t ..
~n· The tag fields must be lisred contiguously and1in
r.ne order of their declaration in the variant record
type definition.

If NEW is used to allocate stDrage for a specific variant
record, the subsequent call to DISPOSE must use exactly
the same variant. Any mismatch between the varianiB
specified on the call to NEW and those on the DISPOSE
call can damage the integrity of the heap, causing stl'ange
behavior at best and system crashes at worst.

If NEW fails to allocate the requested stDrage (usually
because the storage is not available), the pointer variable
'p' contains the value nil upon retum from the procedure.
In some environmeniB failure to obtain stDrage resuliB in a
fat.al run time error. Note: Under some operating syst.ems
processes which grow to very large sizes cause such serious
perf onnance degradation that the actual exhaustion of
available memory can take a very significant amount of
clock time.

3/10/86 8-9

Procedures and Functions

Example of NEW

const
UpperLimit = 255;

type
LArray =array[! •. UpperLimit] of integer;
ArrayAddr = ·LArray;

var
head: ArrayAddr;

NEW(head);
if head = nil then

..... take some recovery action
else

begin
head.(lJ := O; { zero fill array }
MOVELEFT(head.(l], head.(2),

SIZEOF(integer)•(UpperLimit- l));
..... and so on

end

Pascal

DISPOSE-.DISPOSE OF ALLOCA'IED STORAGE

DISPOSE frees (or de-allocates) dynamically allocated
storage. The procedure reference:

DISPOSE (p);

frees up the allocated storage referenced by the pointer
variable 'p'. Upon return from DISPOSE, the pointer vari­
able 'p' contains the value nil.

Attempts to DISPOSE using a pointer variable that contains
nil is a no-op and is ignored.

If NEW was used to allocate a variable with a specific vari­
ant, DISPOSE should be called with exactly the same vari­
ant, else the heap is likely to be corrupted.

In some operating environments, DISPOSE currently does
not return the deallocated memory to the heap (see appen­
dices for details relating to your implementation).

8-10 3/10/86

Pascal Procedures. and Functions

MARK-MARKPOSI'l10N OF HEAP

MARK is used to remem her the current position of the top
of heap. MARK and RELEASE are used together to de­
allocate memory and return the top of the heap to a previ­
ously MARK'ed point. For example, a procedure might,
upon entry, MARK the heap top, then allocate large
numbers of variables, and then, just prior to exiting,
RELEASE all the allocated memory. Such a situation
might occur, for instance, in allocating the local symbol
table for an assembly unit. At the end of the unit, all the
local labels need to disappear, MARK and RELEASE pro­
vide a handy means to dispose of storage in bulk. The pro­
cedure definition of MARK is:

procedure MARK(HeapPointer: Aanything);

HeapPointer must be a pointer - the pointer type is
irrelevant but conventionally it is a pointer to a longint.
H eapPointer must not be used for any purpose other than as
a MARK pointer.

RELEASE-RELEASE ALLOCA'IED MEMORY

RELEASE is used to cut the heap back to a point previ­
ously MARK'ed. The procedure definition of RELEASE
is:

procedure RELEASE(HeapPointer: Aanything);

As for MARK, H eapPointer is a pointer of any type but
conventionally is a pointer to longint. RELEASE cut.s the
heap back to the place indicated by H eapPointer. Heap­
Pointer must have been properly initialized by a previous
call to MARK. MARK's and RELEASE's must be
mat.ched properly.

3/10/86 8-11

Procedures and Functions Pascal

MEMA VAIL -DE'IERMINE AVAILABLE MEMORY

MEMA VAIL returns the number of bytes available for
allocation in the storage pool. The function definition of
MEMA VAIL is:

function MEMA VAIL: longint;

MEMA VAIL is not meaningful under operating systems in
which processes grow dynamically.

8.3 ARimME'llC FUNC'l10NS

ABS -COMPU'IE ABSOLU'IE VALUE

ABS(x) computes the absolute value of its argument 'x'.
The type of the result is the same as the type of 'x', which
must be either integer, real, or double.

SQR - COMPU'IE SQUARE OF A NUMBER

SQR(x) computes the square of 'x', that is, it computes
x*-·· The type of the result is the same as the type of 'x',
which must be either integer, real, or double.

SIN -TRIGONOMETRIC SINE

SIN(x) computes the trigonometric sine of the argument
'x'. The type of 'x' may be either integer, real, or double.
The return type of SIN is always real or double. The argu­
ment is in radians.

COS -TRIGONOMETRIC COSINE

COS(x) computes the trigonometric cosine of the argument
'x'. The type of 'x' may be either integer, real, or double.
The return type of COS is always real or double. The argu­
ment is in radians.

8-12 3/10/86

Pascal Procedures and Functions

ARCTAN-'IRIGONOME'IRIC ARCTANGENT

ARCTAN(x) computes the trigonometric arctangent of the
argument 'x'. The type of 'x' may be either integer, real,
or double. The return type of ARCTAN is always real or
double.

EXP -COMPU'IE EXPONEN'll.AL OF VALUE

EXP(x) computes the exponential of the argument 'x'.
The type of 'x' may be either integer, real, or double.
The return type of EXP is always real or double.

PWROFIEN - COMPUTE TEN TO A POWER

The function PWROF1EN(x) returns a value which is 10
raised to the power specified by the argument. The func­
tion definition is:

function pwroften (exponent: integer): real;

The valid range or the exponent argument is 0 .. + 38.

LN-NA1.URAL LOGARimM OF VALUE

LN(x) computes the natural logarithm of the argument 'x'.
The type or 'x' may be either integer, real, or double.
The return type or LN is always real or double. It is an
error to supply an argument less than or equal to zero.

SQRT-SQUARE ROOT OF VALUE

SQRT(x) computes the square root or the argument 'x'.
The type or 'x' may be either integer, real, or double. The
return type or SQRT is always real or double. It is an error
to supply an argument less than or equal to zero.

3/10/86 8-13

Procedures and Functions Pascal

8.4 PREDICATES OR BOOLEAN AT'llUBUTES

ODD -TEST INTEGER FOR ODD OR EVEN

ODD(x) determines if the argument is odd or even. The
type of the argument 'x' must be integer. The result is
true if 'x' is an odd number, false if 'x' is an even number.

EOLN-DETERMINE IF END OF LINE READ

The function EOLN returns true if the textfile position is at
an end-of-line character. Otherwise the EOLN function
returns false. EOLN is only defined for files whose com­
ponents are of type text or interactive.

EOF -DETERMINE IF END OF FILE READ

The function EOF returns true if a read from a file
encounters an end-of-file. EOF returns false in all other
cases. To set EOF true for a file attached to the console,
the EOF character must be typed. In SVS Pascal this is
Control-D. For a textfile, EOF being true implies that
EOLN is true as well.

If a file is closed, EOF returns true. After a RESET takes
place, EOF is false for the RESET file. If EOF becomes
true during a GET or a READ, the data obtained is not
valid.

ISNIN, ISINF, ISNUM

The three predicates ISNIN, ISINF, and ISNUM take
either a real or double parameter and return true if that
value is Not A Number, is an INFINITY value, or is a
NUMBER, respectively. Otherwise they return false.

8-14 3/10/86

Pascal Procedures and Functions

8.5 VALUE CONVERSION FUNCTIONS

'IRUNC -'IRUNCATE TO NEAREST INTEGER

The function TRUNC{x) truncates its argument 'x' to the
nearest integer. 'x' must be of type real or double. If the
result of truncating the argument 'x' cannot be stored in an
integer variable, the maximum negative longint value is
returned.

For x >= 0, the result is the largest integer<= x.

For x < O, the result is the smallest integer >= x.

ROUND -ROUND TO NEAREST INTEGER

The function ROUND(x) rounds its argument 'x' to the
nearest integer. 'x' must be of type real or double. The
result is of type integer. If the result of rounding the argu­
ment 'x' cannot be stored in an integer variable, the max­
imum negative longint value is returned.

For x >= O, the result is TRUNC(x+ 0.5).

For x < 0, the result is TRUNC(x-0.5).

ORD -CONVERT TYPE TO INTEGER VALUE

The function ORD(x) returns an integer which is the ordi­
nal number of the argument 'x' in the set of values defined
by the type of 'x'. The argument 'x' can be any non­
fioating point scalar.

3/10/86 8-15

Procedures and Functions

For example:

var
one_letter : char:
converted : integer;

begin
one_letter := 'm';
converted := ORD(one_letter);

Pascal

·At the end of this program fragment, the variable converted
has the value 109, since that is the ordinal position of lower
case 'm' in the ASCII character set.

ORD4 -CONVERT TO LONG INTEGER

The function ORD4(x) returns a longint which is the ordi­
nal number of the argument 'x'. As for ORD, the argu­
ment 'x' can be any non-floating point scalar.

CHR -INTEGER TO CHARACTER
REP~ENTATION

The function CHR(x) converts its argument 'x' to a char­
acter. The argument 'x' must be an integer. The result
type of CHR is the character whose ordinal number is 'x'.
The argument must therefore lie in the range 0 .. 255 for
CHR to return a valid result.

8-16 3/10/86

Pascal Procedures and Functions

8.6 omER STANDARD FUNCTIONS

SUCC -DETERMINE SUCCESSOR OF VALUE

The function SUCC(x) accepts an argument which is any
scalar type except real or double. The result of SUCC is
the successor value of the argument, if such a successor
value exists.

SUCC(x) is undefined if 'x' does not have a successor
value.

PRED -DE'IERMINE PREDECESSOR OF VALUE

The function PRED(x) accepts an argument which is any
scalar type except real or double. The result of PRED is
the predecessor value of the argument, if such a predeces­
sor value exists.

PRED (x) is undefined if 'x' does not have a predecessor
value.

8.7 MISCELLANEOUS LOWLEVEL ROUTINES

MOVELEFT AND MOVERIGHT

MOVELEFT and MOVERIGHT transfer a number of bytes
from a source to a destination. MOVELEFT starts at the
leftmost byte in the source (the first byte), while
MOVERIGHT starts at the rightmost byte in the source
(the last byte). In all cases, the source and destination
strings can overlap, with the appropriate undesired results if
the move is in the wrong direction.

3/10/86 8-17

Procedures and Functions

The format of MOVELEFT and MOVERIGHT is:

procedure MOVELEFT(var source, var destination, length);

procedure MOVERIGHT(var source, var destination, length);

source

destination

is the place to move bytes from.

is the place to move bytes to.

Pascal

length is an integer specifying the number of
bytes to move.

source and destination can be any sort of type. If either
source or destination is an array, the array can be sub­
scripted. If either source or destination is a record, a field
specification can be given.

For a MOVELEFT, the byte at source is moved to destina­
tion and so on until the byte at source+ length-l is moved to
destination+ length-1. For a MOVERIGHT, the move starts
from the other end, so that the byte at source+ length-l is
moved to destination+ length-l and so on until the byte at
source is moved to destination.

Neither MOVELEFT nor MOVERIGHT perform any range
checking. They should therefore be used with a modicum
of caution. Moreover, code written using MOVELEFT
and/or MOVERIGHT is highly non portable between the
processors on which SVS Pascal is implemented.

Example of MOVELEFT

The example shown below illustrates how MOVELEFT can
be used to zero fill an array.

var
manifold: array[I .. 100] of -128 .. 127;

manifold[1 J := O; { place an initial zero }
MOVELEFT(manifold[l], manifold{2], 99);

8-18 3/10/86

Pascal Procedures and Functions

F'ILLCHAR - FILL A STORA.GE REGION WITII A
CHARACTER

FILLCHAR is a procedure that replicates a byte throughout
a region of storage. The procedure definition of
FILLCHAR is:

procedure FILLCHAR{var address; integer count; char byte);

address

count

byte

is the address of an arbitrary storage loca­
tion in memory. Note that address is a var
parameter to FILLCHAR, so it may not be
the address of a packed object.

is the number of times that the next
parameter, byte, should be replicated.

is a single character value which is repli­
cated throughout the region of storage
starting at address and ending at
address+ coun~ 1.

Example c:I F'ILLCHAR

The example shown below illustrates how FILLCHAR can
be used to space fill a print buff er

var
printbuf: array[1 .. 256) of char;

FILLCHAR(printbuf, 256, ' ');

3/10/86 8-19

Procedures and Functions Pascal

SIZEOF - DETERMINE SIZE OF DATA ELEMENT
OR TYPE

SIZEOF is a function that returns the number of bytes that
a variable or type is allocated. The function definition of
SIZEOF is:

function SIZEOF(identifier): integer;

where identifier is a variable name or a type identifier. The
SIZEOF function is particularly useful as a parameter to
MOVELEFT or MOVERIGHT, or in performing unit
input-output, where the number of bytes to transfer must
be known.

POINTER - CONVERT INTEGER EXPRESSION TO
POINTER

POINTER converts an integer expression to a pointer
value. The function definition of POINTER is:

function POINTER(expression): universal;

POINTER converts the expression, which must be an
integer expression, to a pointer value. The result type of
POINTER is a universal pointer type that has the type of
nil, which means that it may be assigned to any pointer
variable.

8-20 3/10/86

Pascal Procedures and Functions

8.8 CONTROL PROCEDURES

EXIT-EXIT FROM PROCEDURE

EXIT provides the means to get out of a procedure prema­
turely. EXIT finds especial use in recursive applications
such as expression evaluators or tree-walking procedures.
Its effect is to cause an immediate (and clean) return from
a named procedure or function. The procedure definition
of EXIT is: .

EXIT(name);

where name is the name of the procedure or function to be
exited.

If the name parameter is the name of a recursive procedure
or function, the most recent activation of that procedure or
function is terminated.

Files that are local to an EXIT' ed procedure or function are
not implicitly closed upon exit; they must be closed expli­
citly before the EXIT statement.

If an EXIT statement is made inside a function before any
assignment is made to the function identifier, the result of
the function is undefined.

EXIT is exactly the same as a goto a label at the end of the
named procedure or function.

3/10/86 8-21

Procedures and Functions Pascal

HALT - TERMINA'IE PROGRAM WITH RETURN
VALUE

The HALT procedure terminates the currently executing
program. HALT returns a value to the host operating sys­
tem to indicate a successful termination or an error termi­
nation. The procedure definition of the HALT procedure
is:

HALT(i: integer);

The 'i' parameter is optional. If the 'i' parameter is omit­
ted, by simply executing a

HALT

statement, the correct no error code is returned to the
host operating system.

The HALT procedure also returns a value to the CALL
function, described below.

CALL - CALL UP ANOTHER PROGRAM

The CALL function requests the host operating system to
execute another program. The function definition of
CALL is:

function CALL(pathname: stringtype;
var infile, outfile: interactive I text;
fargv: ? ; fargc: integer): integer;

The parameters to the CALL function are:

pathname

8-22

is a string containing the pathname of
the file in which the program resides
which is to be run. The definition of
what constitutes a pathname is
operating system dependent.

3/10/86

Pascal

infile and outfile

fargv

f argc

Procedures and Functions

specify the standard input and stan­
dard output for the program specified
by pathname. In addition, the
definition specifies whether the stan­
dard input and standard output files
for that program are text files resid­
ing in the file system, or the user's
terminal.

is an array of pointers to strings con­
sisting or the options and filename
arguments for the program in ques­
tion.

is an integer count of the number of
arguments in f argv.

The value returned from the CALL function is either the
value which a program returns via a HALT call, or is one
of the operating system error codes.

NOTE: The CALL function is not available under all
operating systems. See Appendix G for specifics about this
operating system.

3/10/86 8-23

SECTION9
COMPILE TIME OPTIONS

Pascal compile-time options are introduced via toggles
embedded in comments. Comment toggle format is like:

(~T params*)

or

{$T params}

where either the (* and *) form, or the { and } form of
comment delimiters may be used.

The toggle must immediately follow the opening comment
delimiter, with no intervening spaces.

A comment toggle is always introduced by a $ sign. The $
sign is followed by the toggle letter, either in upper or
lower case, followed by the parameters for that toggle.
Compiler options that are followed by a + or - may be
given in a list:

{$C+,I+ ,L- }

There must not be any spaces after the commas in the list.
Scanning of a list of compiler options terminates if any
incorrect syntax is encounte1·ed.

Compiler options do not obey any of the Pascal scope rules.
Once an option is selected by a toggle, it remains in effect
until another toggle in the source text deselects that option.
Compiler options are described in the list below.

Some of the descriptions of the compiler options make
references to the options specified on the compiler com­
mand line. A description of the command line options can
be found in Appendix F: Operating the SVS Pascal System.

5/23/86 9-1

Compile Options

$C+ or $C-

$D+ or $D-

$E filename

$N+ or $N-

$I filename

$I+ or $I-

$L filename

$L+ or $L-

9-2

Pascal

Turns Code generation on (+) or off
(-) . This is done on a procedure by pro­
cedure basis. The value of the options
at the end of a procedure controls code
generation. The default is C+ .

Turns on or off the generation of inf or­
mation for the SVS Symbolic
Debugger.

Starts listing Errors to the file specified
by filename. Also see the $L option
below.

Checks the result of floating point
expressions for validity. If this option
is enabled, then the VALUE of most
floating point expressions are checked
for the values Not A Number and
INFINITY. If present, a run time error
is caused. The default is off. This
option applies only to the S-32/S-320.

Includes the file specified by filename at
this point in the source.

Turns automatic Input Output checks
on (+)or off(-). The default is I+.

Makes a compilation Listing on the file
specified by filename. If a listing file
already exists, that file is closed and
saved before the new file is opened.

Turns Listing on (+) or off (-) without
changing the listing file name. The list­
ing filename must be specified before
turning listing on. The default is $L+
(listing on) when a listing file has been
specified on the compiler's command
line or $L- (listing off) when a listing
file was not specified. When the list
option is on, the listing is directed to
whatever list file was specified on the

5/23/86

Pascal

$F+ or $F-

$P+ or $P-

$Q+ or $Q-

$R+ or $R-

5/23/86

Compile Options

Pascal compiler's command line.

On the S-32/S-320, this option gen­
erates code to use floating point
hardware (+) or software (-). The
default is off (i.e., use software). Note
that this option applies only to the S-
32/S-320.

Specifies whether the Pascal compiler
should prompt the user for corrective
action when errors are detected. The
$P+ option indicates that the compiler
should pl'ompt the user as to whether
to continue the compilation when
errors are detected. The $P- option
disables the prompting feature. This
feature is also available via the -p or
+ p option on the compiler command
line. The default is $P- for the S-
32/S-320 and PC AT.

Controls the amount of messages that
the Pascal compiler prints while compil­
ing a program. The $Q+ option results
in fewer messages. The $Q- option
results in more messages. The default
is $Q+ for the S-32/S-320 and PC AT.

Turns run-time Range checking on
(+) or off (-). At present, range
checking is done in assignment state­
ments, on array indexes, and for string
value parameters. The default setting
is $R+.

Range checking is only done for user
defined subrange, and SCALERS and
for array indexing. The type integer is
NEVER range checked. Compile-time
range checking (i.e., v:=constant) for
user defined types is always enforced.

9-3

Compile Options

$S segment

$U filename.

$o/o+ or $%

9-4

Pascal

Places code modules into the Segment
specified by segment. The default seg­
ment name is ' ' (eight spaces),
which is where the main program and
all built-in support code are always
linked. All other code can be placed
into any segment. Under most operat­
ing systems, segmentation is automati­
cally done by the system and there is
no reason to explicitly segment pro­
grams (see Appendices G and H for
more specific information if segmenta­
tion is meaningful in your environ­
ment).

Searches for subsequent Units in the
file specified by filename.

Specifies that the percent sign % is a
valid character (+) or is not a valid
character { -) in identifiers. The default
is $%. Procedures which begin in the
percent s.jgn character may be called
using a 'different calling sequence, see
the $E- option above.

5/23/86

APPENDIX A
ERROR :MESSAGES

This appendix describes the error messages that the Pascal
syst.em generat.es.

A.1 COMPILE 'llME LEXICAL ERRORS

10 Too many digits

11 Digit expected after'.' in a real number

12 Integer Overflow

13 Digit expected in the exponent of a real number

14 End of line encountered in a string constant

15 Invalid character in input

16 Premature end of file in source program

17 Extra characters encountered aft.er the end of the pro­
gram

18 End of file encountered in a comment

A.2 COMPILE 'llME SYNTA.C'llC ERRORS

20 Illegal symbol

21 Error in simple type

22 Error in declaration part

23 Error in parameter list of a procedure or function

3/10/86 A-1

Error Messages Pascal

24 Error in constant

25 Error in type

26 Error in field list of a record declaration

27 Error in factor of an expression

28 Error in variable

29 Identifier expected

30 Integer expected

31 '(' expected

32 ')' expected

33 ' [' expected

34 'J ' expected

35 ':' expected

36 ';' expected

37 '=' expected

38 ',' expected

39 '*' expected

40 ':=' expected

41 program keyword expected

42 of keyword expected

43 begin keyword expected

44 end keyword expected

A-2 3/10/86

Pascal Error Messages

45 then keyword expect.ed

46 until keyword expect.ed

47 do keyword expect.ed

48 to or downto keyword expect.ed

50 if keyword expect.ed

51 '.' expect.ed

52 implementation keyword expect.ed

53 int.erface keyword expect.ed

A.3 COMPILE '11ME SEMAN'llC ERRORS

100 Identifier declared twice in the same block

101 Identifier is not of the appropriat.e class

102 Identifier not declared

103 Sign not allowed

104 N um her expect.ed

105 Lower bound exceeds upper bound

106 Incompatible subrange types

107 Type of constant must be int.eger

108 Type must not be real

109 Tagfi.eld must be a scalar or subrange

110 Type incompatible with tagfield type

3/10/86 A-3

Error Messages

111 Index type must not be real

112 Index type must be scalar or subrange

113 Index type must not be integer or longint

114 Unsatisfied forward reference

Pascal

115 Forward reference type identifier cannot appear in a
variable declaration

116 Forward declaration - repetition of parameter list not
allowed

117 Forward declared function - repetition of result type
not allowed

118 Function result type must be scalar, subrange, or
pointer

119 File is not allowed as a value parameter

120 Missing result type in function declaration

121 F-format for real type only

122 Error in type of parameter to a standard function

123 Error in type of parameter to a standard procedure

124 Number of actual parameters does not agree with
declaration

125 Illegal parameter substitution

126 Result type of parametric function does not agree
with declaration

127 Expression is not of set type

128 Only test.s for equality allowed

A-4 3/10/86

Pascal Error Messages

12Q Strict inclusion not allowed

130 Comparison or file variables not allowed

131 Illegal type or o·perand(s)

132 Operand type must be boolean

133 Set element type must be scalar or subrange

134 Set element types not compatible

135 Type or variable is not array or string

136 Index type is not compatible with declaration

137 Type or variable is not record

138 Type or variable must be file or pointer

13Q Illegal type or loop control variable

140 Illegal Expression type

141 Assignment or files not allowed

142 Case select.or incompatible with selecting expression

143 Subrange bounds must be scalar

144 Operand type conflict

145 Assignment t.o standard function is not allowed

146 Assignment t.o formal function is not allowed

147 No such field in this record

148 Type error in read

14Q Actual parameter must be a variable

3/10/86 A-S

Error Messages Pascal

150 Multiply defined case select.or

151 Missing corresponding variant declaration

152 real or string tagfields not allowed in variant record

153 Previous declaration was not forward

154 Substitution of standard procedure or function not
allowed

155 Multiple defined label

156 Multiple declared label

157 Undefined label

158 Undeclared label

159 Value parameter expected

160 Multiple defined record variant

161 File not allowed here

162 Unknown compiler directive (not external or for-
ward)

163 Variable cannot be a packed field

164 Set of real is not allowed

165 A field of a packed record cannot be a var parameter

166 Case select.or expression must be a scalar or a
subrange

167 String sizes must be equal

168 String t.oo long

169 Value out of range

A-6 3/10/86

Pascal Error Messages

170 Cannot take the address or a standard procedure or
function

171 Assignment to function result must be done inside
that function

172 Control variable of a for statement must be local

173 BUFFERED or UNBUFFERED expected

17 4 NORMAL, LOCK, PURGE, or CRUNCH expected

175 File variable expected

176 Must be within the procedure or function being
exited

177 Cannot pass cexternal as procedure or function
parameter

178 Label value must be 0 to 9999

190 No such unit in this file

A.4 SPECIFIC LIMITATIONS OF mE COMPILER

300 Too many nested record scopes

301 Set limits out of range (maximum sized set is 0 ..
2031)

302 String limits out or range

303 Too many nested procedures or functions

304 Too many nested include or uses files

305 Include not allowed in interface section

306 Pack and unpack are not implemented

3/10/86 A-7

Error Messages Pascal

307 Too many units

308 Set constant out of range

309 Maximum comparable packed array of char is of size
255 characters

310 Too many nested with statements

311 Too many nested function references

312 Record too big (maximum size is 32766 bytes)

313 Too many elements in an array (maximum number
of elements is 32766 in each dimension)

315 Only 32766 bytes of parameters allowed in argument
list

350 Procedure too large

351 File name in option too long

A.5 INPUT OUTPUT ERRORS

400 Not enough room for code file

401 Error in rereading code file

402 Error in reopening text file

403 Unable to open uses file

404 Error in reading uses file

405 Error in opening include file

406 Error in rereading previously read text block

A-8 3/10/86

Pascal Error Messages

407 Not enough room for intermediate code file

408 Error in writing code file

409 Error in reading intermediate code file

410 Unable to open listing file

A.6 CODEGENERA'IIONERRORS

1000+ Code generator errors - in theory should never
happen

Normally these errors indicate that an erroneous .I file has
been specified as the input file to the code generator.

A.7 IORF8ULTERROR CODES

The codes listed below are those that the IORESUL T func­
tion returns. Not all codes are issued under all operating
systems.

0 No Error - indicates a good result

1 Parity error or CRC error

2 Invalid device number

3 Invalid inputroutput request

4 Nebulous Hardware Error

6 Volume went off-line

6 File lost in directory

7 Bad file name

3/10/86 A-9

Error Messages

8 No room on volume

9 Volume not found

10 File not found

11 Duplicate directory entry

12 File already open

13 File not open

14 Bad input information

15 Ring buff er overflow

16 Write protect

17 Invalid seek 64 Device error of unknown origin

A-10

Pascal

3/10/86

.APPENDIXB
PASCAL LANGUAGE SIDv.IMARY

B.1 PREDEFINED IDEN'llFIERS

Constants

maxint 1RUE FALSE

Types

Boolean interactive longint t.ext
char integer real double

CLOSE
DELETE
DISPOSE
EXIT
FILL CHAR
GET
GOTOXY

3/10/86

Variables

Argc Argv Input Output
Stderr

Procedures

HALT
INSERT
MARK
MOVELEFT
MOVERIGHT
NEW
PAGE

PUT
READ
READLN
RELEASE
RESET
REWRITE
SEEK

UNITCLEAR
UNI1READ
UNITSTATUS
UNITWRITE
WRITE
WRITELN

B-1

Language Summary Pascal

Functions

ABS EOLN MEMAVAIL SCANEQ
ARC TAN EXP ODD SC ANNE
BLOCKREAD FILL CHAR ORD SIN
BLOCKWRITE IORESULT ORD4 SIZEOF
CHR IS INF POINTER SQR
CONCAT ISNAN POS SQRT
COPY ISNUM PRED succ
cos LENGTH PWROFTEN TRUNC
EOF LN ROUND UNITBUSY

B.2 PASCAL SYNTAX DEFINITIONS

Syntactic constructs enclosed between angle brackets < and
> define the basic language elements. Every language con­
struct should eventually be defined in terms of basic lexical
constructs defined in the remainder of this appendix.

A construct appearing outside the angle brackets stands for
itself, that is, it is supposed to be self denoting. Such a
construct is known as a terminal symbol. Terminal symbols
and reserved words appear in bold face text.

The symbol ::=is to be read defined as.

The symbol •. means through, indicating an ordered
sequence of things where only the start and end elements
are specified. (The reader is left to infer the middle ele­
ments). For example, the notation 'a' .. 'z' means the
ordered collection starting with the letter 'a', ending with
the letter 'z', and containing the letters 'b', 'c''x', 'y' in
between. In other words, all the lower case letters.

The vertical bar symbol I is read as or. It separates
sequences of elements that represent a choice of one out of
many.

B-2 3/10/86

Pascal Language Summary

The metalanguage construct { ... } (element.s inside braces)
enclose element.s which are to be repeated zero to many
times. Although the braces are also used as one of the
forms of comment delimiters in Pascal, this should not
cause any ambiguity. _The one case where ambiguity would
occur is in the definition of comment.s, and this is explicitly
pointed out at that time.

The Pascal compiler recognizes the following alphabet or
charader set

<letter> ::= 'A' .. 'Z', 'a' .. 'z', and '_•

<digit> ::= 'O' .. 'g'

<hex digit> ::= <digit> l'a' .. 'f' I 'A' .. 'F'

<ASCII graphic characters> ::= ! " # $ % & ' () * =
+-,./<>!_\[
@ ~ 1-, {}; : I

<identifier> ::= <letter> { <letter> I <digit> }

<unsigned integer> ::= <digit> {<digit>}
<unsigned real> ::=

<unsigned integer>.<unsigned integer>
I <unsigned integer>.<unsigned integer>E<scale fact.or>
I <unsigned integer>E<scale factor>
I <unsigned integer>.<unsigned integer>D<scale fact.or>
I <unsigned integer>D<scale fact.or>

<unsigned number> ::= <unsigned integer> I <unsigned real>

<scale fact.or>::= <unsigned integer> I <sign><unsigned intt;>

<sign>::=+ 1-

<hex number> ::=$<hex digit> {<hex digit>}

<string> ::='<character> {<character>}'

<character value> ::=\<two digit hexadecimal number>

<label> ::=<unsigned integer>

3/10/86 B-3

Language Summary

<conunent> ::= {<any printable characters except"}"> }
I(* <any printable characters except"*)"•)

<any printable character> includes carriage-return, line-feed,
tab, and so on.

<constant identifier> ::= <identifier>

<constant> ::= <unsigned number>
I <sign> <unsigned number>
I <constant identifier>
I <sign> <constant identifier>
I <string>

<constant definition> ::= <identifier> =<constant>

<type declaration> ::=type <type spec> {;<type spec>}

<type spec> ::= <type identifier> =<Pascal type>

<simple type> ::= <scalar type>
I <standard type>
I <subrange type>
I <type identifier>

<scalar type> ::= (<identifier> {,<identifier>})

<subrange type> ::=
<subrange type identifier> I <lower> •• <upper>

<lower> ::= <signed scalar constant>
<upper> ::= <signed scalar constant>
<structured type> ::= <unpacked structured type>

I packed <unpacked structured type>

<unpacked structured type> ::= <array type>
I <string type>
I <record type>
I <set type>
I <file type>

<array type> ::= array [<index list>] of <type>

Pascal

B-4 3/10/86

Pascal Language Summary

<index list> ::= <simple type> {, <simple type>}

<component type>::= <type>

<string type> ::= string(<static length>)

<static length> ::=integer constant in the range 1 .. 255

<record type> ::= record <field list> end;
<field list> ::= <fixed part>

I <fixed part> ; <variant part>
I <variant part>

<fixed part> ::= <record section> {; <record section>}
<record section> ::= <field identifier list> : <type>
<field identifier list> ::= <field identifier> {,<field identifier>}

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>

<variant list> ::= <variant> {; <variant>}
<variant> ::= <case label list> : (<field list>)
<case label list> ::= <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

<set type> ::=set or <simple type>

<file type> ::= file or <type>
I file

<pointer type> ::=•<type identifier>
<variable declaration> ::=

<identifier> {,<identifier>}: <data type>;

<variable> ::= <entire variable>
I <component variable>
I <referenced variable>

<entire variable> ::= <variable identifier>

3/10/86 B-5

Language Summary

<component variable> ::= <indexed variable>
I <field designator>
I <file buffer>

<indexed variable>::= <array variable> <subscript list>

<subscript list> ::= [<expression> {,<expression>}]
I [<expression>] {[<expression>]

<field designator> ::= <record variable>.<field identifier>

<file buffer>::= <file variable>"
<file variable> ::= <variable>

<referenced variable> ::= <pointer variable>·

<pointer variable> ::= <variable>
<unsigned cons~ant> ::= <unsigned number>

I <string>
I <constant identifier>
I nil

<factor> ::= <variable>
I <unsigned constant>
I <function designator>
I <set constructor>
L (<expression>)
I not <factor>

<set constructor> ::= [<element> {,<element>} J
<element> ::= <expression>

I <expression> •• <expression>

<term> ::= <factor>
I <term> <multiplying operator> <factor>

<simple expr> ::= <term>

Pascal

I <simple expr> <adding operator> <term>
I <adding operator> <term>

B-6

<expression> ::=
<simple expr>

3/10/86

Pascal Language Summary

I <simple expr> <relational operator> <simple expr>

<multiplying operator> ::= * I / I div I mod I and

<adding operator> ::= + I - I or

<sign operator> ::= + I-

<relational operator> ::= =I<> I> I< I>= I<= lin

<assignment statement> ::=
<variable> :=<expression>

I <function identifier> := <expression>

<procedure call statement> ::=
<procedure identifier> <actual parameter list>

I <procedure identifier>

<actual parameter list> ::=
(<actual parameter> {,<actual parameter>})

<actual parameter> ::= <expression>
I <procedure identifier>
I <function identifier>

<structured statement> ::= <begin statement>
, I <if statement>

I <while statement>
I
I
I

<repeat statement>
<for statement>

<case statement>

<begin statement> ::= begin <statement list> end

<statement list> ::= <statement> {; <statement>}

<if statement> ::=
if <Boolean expression> then <statement>

3/10/86 :B-7

Language Summary Pascal

I if <Boolean expression> then <statement> else <statement>

<case statement> ::=case <expression> of <cases>
{otherwise: <statement>} end

<cases> ::= <a case> {; <a case>}
<a case>::=

<selection spec> {, <selection spec>}: <statement>

<selection spec> ::= <simple constant scalar expression>

<while statement> ::= while <expression> do <statement>

<repeat statement> ::= repeat <statement> until <expression>

<for statement> ::=
for <control variable> := <for list> do <statement>

<for list,> ::= <initial value> to <final value>
I <initial value> clownto <final value>

<control variable> ::= <identifier>

<initial value> ::= <expression>
<final value> ::= <expression>

<with statement> ::=
with <record variable> {,<record variable>}

do <statement>

<goto statement> ::= goto <label>

<unit> ::=unit <identifier>;
<interface part>
<implementation part>

end.

<interface part> ::=-= interface
<uses clause>

B-8 3/10/86

Pascal Language Summary

{<constant definition part>
<type definition part>
<variable definition part> }
<procedure and function declaration part>

<implementation part> ::= implementation
{ <label declaration part>

<constant definition part>
<type definition part>
<variable definition part> }
<procedure and function declaration part>

<uses clause> ::=uses <unit name> {,<unit name>}

<declaration> ::= <constant declaration>
I <type declaration>
I <variable declaration>
I <procedure or function declaration>

<program> ::= <program heading> <block>.

<program heading> ::=
program <identifier> (<program parameters>);

<program parameters> ::= <identifier> {,<identifier>}

<label declaration part> ::= label <label> {, <label>};

<constant definition part> ::= const <constant definition list>;

<constant definition list> ::=
<constant definition> {; <constant definition>}

<type definition part> ::= type <type definition list>;

<type definition list> ::= <type definition> {; <type definition>}

<variable declaration part> ::= var <variable declaration list>

<variable declaration list> ::=

3/10/86 B-9

Language Summary Pascal

<variable declaration> {;<variable declaration>}

<procedure declaration> ::= <procedure heading> <block>
<function declaration> ::= <function heading> <block>

<block> ::= { <label definition part>
<constant definition part>

<type definition part>
<variable declaration part> }

<procedure and function declaration part>
<statement part>

<statement part> ::= begin <statement list> end

<statement list> ::= <statement> {; <statement>}

<procedure heading> ::=
procedure <identifier>; {<attribute>;}
procedure <identifier> (<formal parameters>);

{<attribute>;}

<function heading> ::=
function <identifier>:<result type>; {<attribute>;}
I function <identifier> (<formal parameters>):

<result type>; {<attribute>;}

<formal parameters> ::= <formal parameter> {;<formal parameter>}

<formal parameter> ::= <parameter group>
I var <parameter group>
I <procedure heading>
I <function heading>

<parameter group> ::=
<identifier> {,<identifier> }:<type identifier>

<attribute> ::=external I forward I cextemal

<result type> ::= <simple type>

B-10 3/10/86

APPENDIXC
RELATIONSHIP TO ISO PASCAL

The Int.ernational Standards Organization (ISO) and the
American National Standards Institut.e (ANSI) are engaged
in a joint effort to define a Pascal Standard.

In general, SVS Pascal conforms to the (proposed) ISO
Pascal standard as defined in Pascal User Group News,
Number 20, December 1980. There are however some
differences that are spelled out here.

In SVS Pascal, thirty-one charact.ers are significant in
identifiers. Linkable ext.ernal names have only eight
significant charact.ers.

The Pascal standard procedures PACK and UNPACK are
not supplied.

Conformant arrays are not implement.ed in accordance with
the level 0 (U.S) standard.

There is a small difference in the way that a t.ext file is han­
dled if the t.ext file is associat.ed with an int.eractive t.ermi­
nal.

There is a string basic data type implemented.

There is a double basic data type implement.ed. The dou­
ble data type is a double precision real data type.

There is an otherwise clause in the case stat.ement. This
provides a solution if the case selector mawhes none of the
cases. Standard Pascal considers this situation an error.

3/10/86 C-1

Relationship to ISO Pascal Pascal

SVS Pascal implements a longi.nt data type, which occupies
four byres instead of the two bytes of the standard int.eger
data type.

The and, or, and not operators can be applied to operands
of type integer as well as operands of type Boolean. When
applied to operands of type integer, these operators per­
form bitwise logical and, logical or, and logical not opera­
tions on their operands.

SVS Pascal supports many extensions. These mainly derive
from the UCSD P-System.

C-2 3/10/86

APPENDIXD
RELATIONSHIP TO UCSD PASCAL

The University of California at San Diego (UCSD) imple­
mented a widely used Pascal system, oriented towards
small, personal computer systems. This implementation is
known as UCSD Pascal.

SVS Pascal uses a number of ideas from UCSD Pascal.
The main areas where SVS Pascal conforms to UCSD Pas­
cal are:

• Independent compilation is supported through the
unit concept of UCSD Pascal. The interface, imple­
mentation and uses statements are implemented.

• There is an include capability.

• Many of the UCSD Pascal compatible standard pro­
cedures and functions are implemented the same as
U CSD Pascal.

D.1 DIFFERENCF.8 FROM UCSD PASCAL

In SVS Pascal, the underline character _ is significant in
identifiers. In UCSD Pascal it is ignored so that the
identifiers Space_Out and SpaceOut are identical. In SYS
Pascal, they are considered two different identifiers.

SVS Pascal supports a long integer type, with the
predefined type name longint. The UCSD construct
integer[nn] is not implemented.

There is a double basic data type implemented. The dou­
ble data type is a double precision real data type.

Fields of packed records and elements of packed arrays can
never be passed as reference parameters to procedures,.
even in those places where UCSD Pascal allows.

3/10/86 D-1

Relationship to UCSD Pascal Pascal

The SVS Pascal string type packed array[low .. high] of char
must have a lower bound of 1 to be compatible with literal
strings, or to be used in array comparisons. UCSD Pascal
allows any lower bound.

SVS Pascal does not have the reserved word segment.
Consequently there is no segment procedure or segment
function. To segment a SVS Pascal program, use the $S
compiler option, which directs the compiler to place gen­
erated object code in a named segment. See Section 9
which contains a section on compiler options.

SVS Pascal does not implement unit initialization code.

SVS Pascal does not supply special units such as APPLES­
TUFF or TURTLEGRAPHICS.

SVS Pascal does not have any default string length.
Instead of the declaration

var x: string;

use the declaration

var x: string[SO];

SVS Pascal dbes not have a predefined file called keyboard.

SVS Pascal implements sets with elements 0 through 2031,
whereas UCSD Pascal implements 0 through 511.

Packing algorithms for arrays and records are different.

Internal storage for sets is different.

SVS Pascal does not support comparison of arrays and
records, with the single exception that packed array[1..n] of
char can be compared.

D-2 3/10/86

Pascal Relationship to UCSD Pascal

Predefined string procedures and functions must have
string variable or string literal parameters. That is, not
packed array of char or char variable parameters.

SVS Pascal does not implement the procedure STR, since
there is no integer[nn] type.

The file procedures RESET and REWRITE require two
parameters, namely (file,string).

End-of-file character from the keyboard is Control-D
instead of Control-C.

SVS Pascal text files must be declared as packed file of
char.

SVS Pascal text file reads allow additional parameters of
packed array of char.

SVS Pascal text file writes allow additional parameters of
packed array of char and Boolean.

Under most operating systems, SVS Pascal does not imple­
ment the unit . I/O routines such as UNITREAD,
UNITWRITE, and UNITW AIT.

SVS Pascal does not implement TREESEARCH.

SVS Pascal limits the EXIT procedure to exiting statically
compiled procedures or functions or the main-program.
The argument to EXIT must be the name of the routine to
exit. That is, EXIT(PROGRAM) is not allowed.

The MEMA VAIL procedure returns the num her of bytes of
available memory. The return parameter is of the type lon­
gint. See the Section on Memory Management. Under
some operating systems MEMA VAIL is not meaningful.

SVS Pascal implements two procedures SCANEQ (scan
equal) and SCANNE (scan not equal), whereas UCSD Pa&­
cal implements a single SCAN procedure with a = or < >
parameter.

3/10/86 D-3

Relationship to UCSD Pascal Pascal

SVS Pascal does not have any INTRINSIC units.

SVS Pascal does not implement the unit initialization sec­
tion in units.

SVS Pascal implements an optional otherwise clause in case
statements. If the otherwise clause is present, it must be
the last statement. For example:

case huh of
1: do_this;
3,5: do_that;

otherwise:
do_the_other;

end;

SVS Pascal implements true global got.o statements. The
UCSD Pascal {$G+} compiler option is not needed in
order to use got.o statements.

SVS Pascal has predeclared variables ARGC and ARGV
that describe the number and value of any parameters
passed from the command line to a running program.

Procedures ~d functions may be passed as parameters.
The implementation is consistent with the proposed ISO
standard Pascal.

ORD(Boolean.Expression) works properly in SVS Pascal.

The mod operator works properly in SVS Pascal.

SVS Pascal has added the unary operator @, which stands
for address of. Placing the @ in front of a variable, func­
tion, or procedure, generates the address of that entity.
The type returned is the type of nil, that is, it can be
assigned to any pointer variable. The @ operator does not
work with most of the predefined procedures and functions
such as ORD or READLN.

D-4 3/10/86

Pascal Relationship to UCSD Pascal

SVS Pascal has added the function ORD4. It is the same as
ORD except that it returns a 32-bit integer.

All integer arithmetic operations are done at a precision of
either 16 or 32 bits, depending on the maximum size of
any arguments. The rules are similar t.o FORTRAN's sin­
gle and double precision reals.

SVS Pascal statement labels are restricted t.o the range 0
through 9999, as in the ISO Pascal standard.

SVS Pascal provides for hexadecimal integer constants. A
hexadecimal constant is prefixed with a $ sign. Hexade­
cimal numbers must be 32 bits long t.o be considered
signed numbers, that is, $FFFF represents 65536, not -1.
To represent -1, code the hexadecimal constant
$FFFFFFFF.

The and, or, and not operat.ors can be applied t.o operands
of type integer as well as operands of type Boolean~ When
applied t.o operands of type in'b!ger, these operat.ors per­
form bitwise logical and, logical or, and logical not opera­
tions on their operands.

3/10/86 D-5

APPENDIXE
DATA REPRESENTATIONS

This appendix describes the ways that SVS Pascal
represents data in storage, how that data is packed for data
objects that have the pa.eked storage attribut.e, and the
mechanisms for passing paramet.ers to procedures and func­
tions. The information in this appendix is specific for
implementations of SVS Pascal on the Motorola 68000 fam­
ily of processors. It is int.ended as a guide to those pro­
grammers who wish to writ.e modules in languages other
than Pascal and have those modules int.erf ace to Pascal.

E.1 STORAGE ALLOCATION

This section describes the way in which storage is allocat.ed
to variables of various types. The storage allocation
described here is for unpacked it.ems. ·

In general, any word value is always aligned on a word
boundary. Anything larger than a word is also aligned on a
word boundary. Values that can fit into a single byt.e are
aligned on a byt.e boundary. Variables are not necessarily
allocat.ed in the order in which they are declared since the
compiler repositions variables to improve the efficiency of
access addressing.

A Boolean variable

Occupies one byt.e of storage, aligned on a byt.e boun­
dary. A value of 0 represents the value false. A value
of 1 represents the value true. Any other value is an
undefined Boolean value.

3/10/86 E-1

Data Representations Pascal

A scalar (ordinal) type

Of 128 elements or less, occupies one byte of storage,
aligned on a byte boundary. If there are more than 128
elements in the scalar types, it then o·ccupies a word.
Scalar types are assigned the values 0, 1, 2, , n-1,
where n is the cardinal number of elements in the
scalar.

Subrange elements

In the range -128 .. 127 occupy one byte, aligned on a
byte boundary. A subrange element in the range
-32768 .. 32767 occupies one word, aligned on a word
boundary. A subrange element greater than that occu­
pies two words, aligned on a word boundary.

An unpacked char element

Is considered to be a subrange of 0 .. 255. This means
that it occupies a word.

An int.eger element

Occupies one word, aligned on a word boundary.

A longi.nt element

Occupies two words, aligned on a word boundary.

real elements

E-2

Occupy two words, aligned on a word boundary. A
real element has a sign bit, an 8-bit exponent and a
24-bit mantissa. SVS Pascal real elements conform to
the IEEE standard for reals as defined in the March
Hl81 Computer magazine. 'The layout of a real ele­
ment is shown below. The range of real numbers is
approximately -3.4E38 .. + 3.4E38, with a precision of
approximately seven decimal places. Normal arithmetic
operations upon real data types can result in the
extreme values of plus infinity, minus infinity, or Not a
Number (NaN). These are described below.

3/10/86

Pascal Data Representations

double elements

Occupy four words, aligned on a word boundary. A
double element has a sign bit, an 11-bit exponent and a
53-bit mantissa. SVS Pascal double elements conform
to the IEEE standard for double precision as defined in
the March HJ81 Computer magazine. The layout of a
double element is shown below. The range of double
numbers is approximately -1.0D308 .. + 1.0D308, with
a precision of approximately 15 decimal places. Normal
arithmetic operations upon double data types can result
in the extreme values of plus infinity, minus infinity, or
_Not a Number (NaN). These are described below.

Whatever the size of the data element in question, the
most significant bit of the data element is always in the
lowest numbered byte of however many bytes are required
to represent that object. The diagrams below should clarify
this.

E.2 REP~ENTA'llON OF INTEGERS

btt-lllt-7 l!I

EH11t 1nteg11r I byte ra I
15 "

1nteg11r I byta " I byte
1 I

31 11!1

long mt byta
11!1 I byta

1 I by ta 21 byta 3

3/10/86 E-3

Data Representations Pascal

E.3 REPRESENTATION OF REALS AND DOUBL~

real and double data elements are represented according to
the proposed IEEE standard as defined in Computer maga­
zine of March, 1981. The diagrams below illustrate the
representation.

31 23 22

Exponant Mantissa

real Data Representation

The format for a real or single-precision floating-point
number is as shown above. The three field of a real are as
follows:

• a one-bit sign bit designated by S in the diagram
above. The sign bit is a 1 if, and only if, the
number is negative.

• an 8-bit biased exponent. The values of all ones and
all zetos are reserved values for the exponent.

• a 24-bit mantissa, with.the high order 1 bit hidden.

63 62 52 51

, . S I Exponent Mantissa

sibn I ~nt1ssa c52 + 1 bits>
e:'xponant, b1aaad bu 1023

double Data Representation

E-4 3/10/86

Pascal Data Representations

The parts of double numbers are as follows:

• a one-bit sign bit designated by "S" in the diagrams
above. The sign bit is a 1 if, and only if, the
number is negative.

• an 11 bit biased exponent. The values of all zeros
and all ones are a one-bit sign bit designat.ed by "S"
in the diagrams above.

• a normalized 53-bit mantissa, with the high-order 1
bit hidden.

A real or double number is represent.ed by the form:

2exponent-bias * l.f

where 'r is the bits in the mantissa.

Normalized real and doulie numbers are said t.o contain a
hidden bit, providing for one more bit of precision than ..
would normally be the case.

E.4 REPRESENTA'ltON OF EX.'IREME NUMBERS

When real or double data elements are st.ored in the sys­
. t.em, there arises the question of how t.o represent values
such as positive and negative infinity. The discussion below
describes the representations of these extreme numbers,
and their behavior in expression evaluation.

zero (signed)

is represented by an exponent of zero, and a mantissa
. of zero.

3/10/86 E-5

Data Representations Pascal

denormalized numbers

are a product of "gradual underflow". They are non­
zero numbers with an exponent of zero. The form of a
denormalized number is:

2exponent-bias+ 1 * O.f

·where 'f' is the bits in the mantissa.

signed infinity

(that is, affine infinity) is represented by the largest
value that the exponent can assume {all ones), and a
zero mantissa.

Not-a-Number {NaN)

is represented by the largest value that the exponent
can assume {all ones), and a non-zero mantissa. The
sign is usually ignored.

Normalized real and double numbers are said to contain a
hidden bit, providing for one more bit of precision than
would normally be the case.

E-6 3/10/86

Pascal Data Representations

HEXADECIMAL REPRESENTA'IlON OF SELECTED
NUMBERS

Value real double

+o 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

DEVIA'llONS FROM 'DIE PROPOSED IEEE
STANDARD

Deviations from the proposed IEEE standard in this imple­
mentation are as follows:

• Affine mapping for infinities

•. normalizing mode for denormalized numbers

• Rounds approximately fu nearest - 7 or more guard
bits are computed, but the sticky bit is not

• Exception flags are not implemented

• Conversion between binary and decimal is not imple­
mented

3/10/86 E-7

D at.a Representations Pascal

ARl'IHME'llC OPERA'.I10NS ON EX.'lREME VALUES

This subsection describes the results derived from applying
the basic arithmetic operations on combinations of extreme
values and ordinary values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow,
underflow, and cancellation are assumed not to happen.

In all the tables below, the abbreviations have the following
meanings:

Abbreviation MeaniD.2
Den Denormalized Number
Num Normalized Number

In Infinity (positive or negative)
NaN Not a Number
Uno Unordered

Addition and Subtraction
Left Ri~ht Operand

Operand' 0 Den Num Inf NaN

0 0 Den Num Inf NaN
Den Den Den Num Inf NaN
Num 'Num Num Num, Inf NaN
Inf Inf Inf Inf Not.e 1 NaN

NaN NaN NaN NaN NaN NaN

Not.e 1: Inf+ Inf= Inf; Inf- Inf= NaN

E-8 3/10/86

Pascal Data Representations

Multi_ID.ication
Left Right Operand

Operand 0 Den Num Inf NaN

0 0 0 0 NaN NaN
Den 0 0 Num Inf NaN
Num 0 Num Num Inf NaN
Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Division
Left Right Operand

Operand 0 Den Num Inf NaN

0 NaN 0 0 0 NaN
Den Inf Num Num 0 NaN
Num Inf Num Num 0 NaN
Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Com_..l!arison
Left RiE ht Operand

Operand 0 Den Num Inf NaN

0 - < < < Uno
Den > < < Uno
Num > > < Uno
Inf > > > Uno

NaN Uno Uno Uno Uno Uno

Not.es: NaN compared with NaN is Unordered, and also
resulta in inequality.
+ 0 compares equal to -0.

3/10/86 E-9

Data Representations Pascal

Max:
Left Right Operand

Operand 0 Den Num Inf NaN

0 0 0 0 0 NaN
Den Den Den Num Inf NaN
Num Num Num Num Inf NaN
Inf Inf Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Min
Left Ri~ht Operand

Operand 0 Den Num Inf NaN

0 0 0 0 0 NaN
Den 0 Den Den Den NaN
Num 0 Den Num Num NaN
Inf 0 Den Num Inf NaN

NaN NaN NaN NaN NaN NaN

E.5 REPRESENTATION OF SETS

SVS Pascal represents a set like a giant integer. The zeroth
element of a set is always present in the set. Suppose that
a type and a variable are defined a.s in ihis example.

tYPe
days_in_year =set of 1 .. 366;

var
blarg: days_in_year;

E-10 3/10/86

Pascal Data Representations

The representation for the variable blarg is as in the
diagram below:

bit-.366 0

byta I 0 I I I I I I I I 451

The number of bytes required to contain this a set of 1 ..
366 -is 366 /8 which is 46 bytes. The storage is allocated
accordingly as shown in the above diagram. The value 366
mod 8 is 6, and there is one unfilled bit in the least
significant byte of the set.

E.6 REP~ENTATION OF ARRAYS

Component.s of unpacked. arrays and records are allocated
contiguously as defined above. There is no attempt made
to conserve space in units smaller than bytes.

Arrays are stored in row order, that is, the last index varies
fastest. This follows from the strict definition that a multi­
dimensional array in Pascal is actually an:

array(first index) of array(second index) .••••
otarray(n'th index) of whatever type;

~ENTATION OF POINTERS

Pointers always occupy four bytes. The nil pointer is
represented by a value of zero (0).

3/10/86 E-11

Data Representations Pascal

E.7 PACKING MEmODS

Packed records are expensive in terms of the amount of
generated code needed to reference a field of a packed
record. In general, avoid packing records unless there are
many more instances of a particular records than there are
references to it.

Components of a pa.eked record are allocated in the order
in which they appear. Components never cross word boun­
daries. The allocator never backtracks to fill in holes in the
structure.

Within a word, components are allocated on bit boundaries.
The allocation proceeds from the most significant end of
the word towards the least significant end. If there is not
enough room in the current word for a component, a hole
is left in the current word, and the next word is started.

After allocation, it is possible that the allocator might shift
and expand fields in a word to utilize what would otherwise
be holes in the record. For example, a signed field might
be expanded to use the remainder of a word for faster
access, or two 5-bit fields might be allocated a full byte
each. The diagrams below provide graphic illustrations of
the packing 'methods. In each case, a type definition is
given, followed by a diagram of how that type is allocated.

E-12 3/10/86

Pascal

packed record
a: 0 .. 7;
b: char;
c: 0 .. 3;
d: Boolean;
e: 0 .. 3;

end;

a b

packed record
a: 0 .. 4095;
b:char;

end;

extended

packed record
a: 0 .. 63;
b: 0 .. 63;

end; ·
b1t.-1s

3/10/86

a

. ' .

lli!I 9

Data Representations

s 4 3 2 i es

ll

B

b

4 3

b hCIQ

E-13

Data Representations Pascal

The record above is allocated as in the above picture, but
will be re-allocated as shown below.

b1~15 14 13

a

packed record
a: -1024 .. + 1023;
b: 0 .. 7;

end;

b1t-.1s

a

B 7 6 5 0

b

5 4 3 2 0

I ho IQ b

In the last example above, the signed subrange field was
moved up tO the left hand end of the word and sign
extended for faster access.

Packed arrays are also code consuming, with one excep­
tion: packed array of char is treated ~ a special case, and
the generated code is compact.

Elements of packed aJTays are stored with multiple values
in a byte whenever more than one value can fit in a byte.
Elements are allocated on 1, 2, 4 or 8-bit boundaries. This
only happens when the value requires 4 bits or less. 3-bit
values are stored in 4 bits.

E-14 3/10/86

Pascal Data Representations

The first value in a packed array is stored in the lowest
numbered bit position of the lowest addressed (that is, the
most significant) byte. Subsequent values are stored in the
next available higher numbered bit positions in that byte.
When the first byte is full, the same positions are used in
the next higher addressed byte. Consider the following
examples:

var
a: packed array[1 .. 12] of boolean;

bytci l

I aB I a7 I as as a4 a3 a2 I all
byte 2

unusgd • • • I a12l all I a101 asl

var
b: packed array[3 .. 8] of 0 .. 3;

byte l bit 0

bC6J bCSJ bC:4J bC3J

byte 2

• • • unusrad bCSJ bCSJ

3/10/86 E-15

Data Representations Pascal

var
c: packed a.ITay[O .. 2] of 0 .. 7;

or

c: packed a.ITay[O .. 2] of 0 .. 15;

byte 1 b1t 0

c [!J C[IZJJ

byte 2

••• unused cC2J

E.8 PARAMETER PASSING MECHANISM

This Section describes the way in which parameters are
passed in SVS Pascal.

Parameters are passed on the stack. Parameters are pushed
onto the stack in order in which they are declared in pro­
cedure and function declarations.

If the callee is not a procedure or function at the global
level, the static link is the last thing pushed onto the stack
before the routine is called.

E-16 3/10/86

Pascal Data Representations

Upon return from a routine, all parameters are discarded
from the stack. Nothing should be on the stack upon
return.

var parameters (call by reference) always have a four-byte
pointer to the variable pushed onto the stack.

Value parameters are divided into the three categories of
sets, doubles, and everything else.

The caller always pushes sets onto the stack. A set which
occupies one byte is pushed with a move.b instruction. A
set which occupies more storage than one byte is pushed
with the least significant element in the most significant
word. Thus the representation of a set on the stack is the
same as the representation in memory.

The caller always pushes doubles onto the stack as well.
This is usually accomplished by two move.I instructions in
such a manner that the representation a double on the
stack is the same as the representation in memory (that is,
with the sign bit in the lowest addressed byte).

Other value parameters are pushed as follows:

• a one-byte value is pushed with a move.b instruc­
tion.

• a two-byte value is pushed with a move.w instruc­
tion.

• a four-byte value is pushed with a move.I instruc­
tion.

• if a value is longer than four bytes, and not a dou­
ble, the address of the data is pushed onto the stack
and the called procedure or function copies the data
into local storage.

3/10/86 E-17

Data Representations Pascal

Procedure and function parameters are pushed as follows:

• the address of the procedure or function is pushed
onto the stack.

• the static link is then pushed onto the stack if the
procedure or function is not at the global (outer­
most) level. If the procedure or function is global
(at the outermost level), the value nil(0) is pushed
onto the stack instead of the static link.

Function results are returned in register DO, or in the case
of a double function in DO and Dl.

E.9 REGISTER CONVENTIONS

Registers AO, Al, DO, Dl, and D2 are available as scratch
registers. That is, they may be clobbered by a function or
procedure. All other registers must he preserved across
calls. In addition, register A4 and A5 must contain their
original values whenever any external routine is called. A4
is used in addressing external entry points and A5 is used
to access the standard input and output, argc and argv,
ioresult, etc.

E.10 LIMITATIONS ON SIZE OF VARIABLES

There is no limitation on the number of bytes allocatable
for variables. However, a maximum of 30K bytes of value
parameters cannot be exceeded. Furthermore, when more
than 30K bytes of variables exist in either the main
program's global scope, or in any local scope of a procedure
or function (but not unit globals), the largest values will be
accessed via a pointer, resulting in somewhat slower code.
This mechanism is transparent to the user, so that no
changes to source code are required.

E-18 3/10/86

Pascal Data Representations

Global variables in units are accessed via 32-bit absolute
addressing modes. Therefore the pointer mechanism does
not apply to units with more than 30K bytes of globals.

The maximum size of a record variable is 32K bytes.

There is no limitation on the size of variables which can be
allocated by the NEW procedure.

E.11 COMPILER GENERA'lED LINKER NAMES

This section describes the manner in which the Pascal com­
piler generates names of local and global procedures so that
the Linker can resolve external references at link time.

Procedures which are global (or external) are given the
names which the user assigns to them. The compiler con­
verts all such names to upper case, and truncates them to
eight characters in length.

Procedures which are local (not visible in the global scope)
are assigned names of the form:

$nnn

where nnn is a decimal number. The numbers may possi­
bly have trailing spaces. Procedures of the same name but
in different scopes have different names. In other words,
all local names in a given compilation unit are unique.

When the linker or librarian sees a collection of compiled
units, the local names may be renumbered, but the actual
name that the user assigned to the procedures are carried
along with the number.

3/10/86 E-19

APPENDIXF
OPERATING THE SVS PASCAL SYSIBM

This appendix will describe those characteristics of the SVS
Pascal system which are similar among the various
environments in which the system operates. The appen­
dices that follow describe the implementation specific
details of the Pascal system under your operating system.
The information in this appendix describes the Pascal sys­
tem in the form it is released by SVS.

F.1 SYSTEM: COMPONENTS

In order to most effectively utilize the SVS Pascal system,
it is necessary to understand the function and operation of
its various components. In all environments a completely
straight forward procedure is provided for compiling and
executing simple Pascal programs (see Appendices G &
H). The information provided here will only be necessary
for more complicated situations involving separate compila­
tion and multiple source languages.

COMPILER FRONT END

Pascal source programs (actually Pascal compilation units)
are accepted by the compiler front end, syntax checked,
and an intermediate representation of the program is writ­
ten to a file. This file is passed to the code generator which
generates object code. The input source program may
include other files (see Section 9). In addition to the input
source file, the Pascal compiler front end accepts certain
directives from the command line, which are described in
the Command Line Directives and Compiler Options sec­
tion of this appendix.

Input files to the Pascal front end generally are files with
names which end in .pas. The output file from the Pascal
compiler front end is an intermediate representation of the
program which is placed in a file which generally ends in .i.

5/23/86 F-1

Operating Pascal Pascal

There is virtually nothing which can be done with this .i file
except provide it as input to the code generator.

CODE GENERATOR

The code generator for the Pascal system accepts as input
the .i file produced by the front end and generates linkable
object code in a file with a name which generally ends in
·.obj.

The same code generator is utilized in compiling SVS Pas­
cal and SVS FORTRAN.

LINKER

In order to operate in a given host environment, the SVS
Pascal system always includes a subsystem which creates
object files which are in the format expected by the operatr
ing system. On the S-32/S-320, this utility is a linker for
.obj files as well as a formatter of object code. The
language's run time system is linked with the user's pro­
gram at the .obj level. On the PC AT, there is a compile
by compile conversion of the object code to the form
expected by the operating system. The language's run time
system is bound into user programs by the operating
system's linker. The remainder of this section and the fol­
lowing section on libraries describe the linker form of the
object code formatter.

The ulinker and jlinker are utilities provided with SVS Pas­
cal on the S-32/S-320 and PC AT, respectively. The
ulinker links .obj files with each other, and also links run
time libraries which are part of the language system. The
jlinker formats .obj files into .o files. How the ulinker and
jlinker operate is described in detail in Appendices G and
H. However, general information which applies to both
linkers is described in this section.

The ulinker and jlinker accept .obj files as input. Output is
produced as an object file. The linker's output file is
further linkable with object code generated by _the operating
system assembler, etc. Note that the ulinker may be run

.F-2 5/23/86

Pascal Operating Pascal

only once per executable image while the jlinker must be
run once for each .obj file. The input to both linkers must
contain exactly one main program but may contain many
object files derived from units.

LIBRARIES

On the S-32/S-320 object files in .obj format may or may
not be libraries. The result of a run of the code generator
is an .obj which is not a library, although it is possible that
such a file contains object code which corresponds to many
subroutines. The main difference between .obj files which
are libraries and those which are not libraries is that the
linker includes all of the object code from non-library input
files, but only that object code which is referenced from
library input files. The determination of what is referenced
is made based on unresolved external code references in
previous input files to the linker. Therefore the order that
files are presented to the linker is important.

When linking Pascal programs, the run time library pro­
vided with the system, paslib.obj, must be the last input
file to the linker.

On the PC AT, the operating system linker binds separate
compilation units and run time libraries, including the Pas­
cal library. This library is generally called /usr/lib/libp.a and
must be provided during the system linking phase of the
compile.

ERROR MESSAGES

The Pascal system contains a file of compile time error
messages. If this file is given the appropriate name, the
compiler will generate English error messages along with
error numbers. If not, the compiler will only give error
numbers.

5/23/86 F-3

-Operating Pascal Pascal

F.2 COMMAND LINE DIREC'TIVES AND COMPILER
OPTIONS

The Pascal compiler front end is invoked to compile a
source file named prog.pas with a command line of the
form:

/uO/pascal/pascal prog.pas {options ... }

Any num.ber of command line options may appear and they
may appear in any order. The possible command line
options are:

+q-q

+p -p

+f -f

F-4

Show more (-q) or less (+ q) information on
the progress of the compile to the user. The
default is + q for the S-32/S-320 and PC AT. I
Prompt (+ p) or don't prompt (-p) to the I
standard input in the case of a compile time I
error. Prompting mode is useful so that
error messages do n.ot fly off CRT screens 1
but is awkward when compiling in back- I
ground mode .. The default is -p for the S- I
32/S-320 and PC AT.

Generat.e code for the Sky floating point
hardware board (+ f) or generate code for
software floating, point (-f). This option is
only enabled in systems which have a Sky
board and will result in an error if not I
installed. The default is -f for the S-32/S-
320. The PC AT accepts only the -f option. I

5/23/86

Pascal Operating Pascal

Note: If the Sky floating point hardware interface is to be
used, the entire program must be compiled with the + f flag
set and the resulting object code must be linked with
sky.paslib.obj instead of paslib.obj. Programs compiled
for the National Semiconductor Series 32000 always use the
hardware floating point coprocessor. Therefore, the PC AT
does not accept the + f option.

-lfname Create a listing file of the source program in the
file named fname.

-efname Place a summary of the compile time errors in
the file named fname.

-if name Name the .i file fname. If this option is not pro­
vided, the .i file when compiling a source pro­
gram named prog.pas is named prog.i.

-ofname Name the .obj file fname. If this option is not
provided, the .obj file when compiling a source
program named prog.pas is named prog.obj.
This option applies only to the S-32/S-320.

To invoke the code generator on the S-32/S-320, use the
following command:

/uO/pascaljcode prog.i { optionalfname }

where leaving off the optional file name results in an output
file named prog.obj. If the optional file name is provided,
the output file is named optionalfname.

To invoke the code generator on the PC AT, use the fol­
lowing command:

/uO/pascal/ncode prog.i

See the appendices that follow for a description of com­
mand line arguments and options related to the ulinker and
jlinker.

5/23/86 F-5

Operating Pascal

F.3 LINKING PROGRAMS WHICH USE
C AND FOE.TRAN

Pascal

There are certain rules which must be observed by pro­
grammers wishing to combine object code compiled under
more than one language processor. Throughout the follow­
ing discussion, Pascal and FORTRAN refer to the SVS
implementations of these languages.

WHAT LANGUAGE MUST SUPPLY THE
MAIN PROGRAM

In all cases in which FORTRAN code is present, the main
program must be FORTRAN. In the case where Pascal
and Care to be present, the main program must be Pascal.

DYNAMIC MEMORY ALLOCATION AND
DEALLOCATION

A program may utilize the C library memory allocation and
deallocation package (malloc, free, etc.) providing that Pas­
cal components of the program do not call release. Simi­
larly, Pascal components should not call release if FOR­
TRAN components performing any 1/0 are present. On
the S-32/8-320, C routines must not utilize any dynamic
memory allocation or deallocation directly or through the
operating system run time library.

PARAMETER CONVENTIONS

Pascal contains a cexternal declaration (similar to Pascal
external) which generates calls to C routines in which the
parameters are popped off at the calling site after the sub­
routine returns. The parameters must appear in reverse
order in the Pascal call as compared to the order expected
by c.

F-6 5/23/86

Pascal Operating Pascal

Calling C from Pascal

The Pascal program should contain a cexternal declaration
with all parameters four bytes in length (except floating
point which should be double precision). Addresses may
be passed by specifying the parameters to be var parame­
ters. The following declaration in Pascal

function cfunct(i,j: longint; d: double): longint; cext.e:r­
nal;

can be used to call the c function

cfunct(d,j,i)
int i,j;
doubled;
{
if(d == 0.0) return(i+j); else return(i-j);
}

No assembly language is necessary to link these routines.

Note: On the PC AT the C system prepends underscores
to external names and the Pascal declaration would have to
be for a function named _cfunct rather than a function
named cfunct.

Calling Pascal from C

There is no way to tell the C system that an external refer­
ence is to a non C routine. Therefore, either the $E­
option must be set in the compiled Pascal program, or the
use of an assembly language wrapper to adjust the stack is
possible. Using the types of the variables from the previ­
ous example, a C call of the form

i = pasfunc(d,j,i);

would require an assembly language wrapper of the form
(shown here using 68000 assembly language for illustration,
similar code can be written on the Series 32000)

5/23/86 F-7

Operating Pascal

.text

.globl pasfunc

.globl PASFUNC
pasfunc:

movl sp@ + ,savera
jsr PASFUNC
subl #16,sp
movl savera,sp@ -
rts
.bss

savera: . = . + 4

to call a Pascal function declared with the header

function pasfunct(i,j: longint; d: double): longint;

Pascal

The important items to note are: Pascal entry point is in
upper case, C external reference is in the same case as the
programmer specified. The .globl for the C entry point
may need a prepended underscore on some operating sys­
tems. The wrapper will not work if the inter language call is
recursive. The C calling site expects to pop off 16 bytes of
parameters after the call returns, but the Pascal function
has already popped off the parameters. Therefore, the
wrapper decrements the stack pointer by the amount the
calling site expects to pop off.

The exact syntax of the assembly language will vary from
system to system. In general the object code for wrappers
is linked into the executable program at the last linking step
of the compile. Normally, a wrapper is required for each C
to Pascal call unless the $E- compile option is used when
compiling the Pascal program.

The above procedure will not work with C systems other than
SVS C because other C systems expect called subroutines
to preserve different registers than Pascal functions
preserve. In this case, the wrapper must be enhanced to
preserve the registers required by the calling C language
subroutine.

F-8 5/23/86

Pascal Operating Pascal

Calling FORTRAN from Pascal

It is straight forward to call FORTRAN subroutines from
Pascal. The called routines should be declared to be ext.el'­
nal in the Pascal compilation with formal parameter
declarl;l.tions which match FORTRAN parameter conven­
tions. In particular, Pascal var parameters will match the
FORTRAN call by reference convention.

If the receiving FORTRAN routine expects a character
parameter, it will he necessary to pass the length of the
packed array of char as an explicit four byte value parame­
ter (as described in the parameter passing section of the
FORTRAN reference manual).

Note: Pascal strings are not compatible with the FOR­
TRAN character datatype.

Calling Pascal from FORTRAN

When calling an external routine from FORTRAN, it is
merely invoked without any special declaration. This called
routine may have been written in Pascal. In the event that
it is, the routine should be written with formal parameters
declared in the manner which is consistent with what FOR­
TRAN would expect from a receiving routine written in
FORTRAN. Pascal formal parameter declarations are ada­
quate for expressing all of the interfaces expected by FOR­
TRAN calling sites.

RUN TIME LIBRARIES

When linking Pascal and Fortran languages, the last input
file provided to the linker must always be paslib.obj for the
S-32/S-320 or /usr/lib/libp.a for the PC AT. Immediately
preceding paslib.obj must be ftnlib.obj, and immediately
preceding /usr/lib/libp.a must be /usr/lib/libf.a).

5/23/86 F-9

Operating Pascal Pascal

UPPER AND LOWER CASE EXTERNAL NAMING
CONVENTIONS

It is the convention in Pascal and FORTRAN to upper
case all external names except routine names which are
declared cext.ernal in Pascal. These names are passed
directly to the linker as they appeared in the cext.ernal
declaration. In C, upper and lower case letters are distinct,
so it is the convention to pass letters directly through as
they were supplied by the programmer. For interfacing
purposes, use upper case names in C, or use cexternal in
Pascal, or use assembly language to bridge the naming
conventions.

PREPENDED UNDERSCORE TO EXTERNAL NAMES

On the PC AT, the underscore character is prepended to C
external names. Pascal cexternal names do not get under­
score prepended to them in any environment, but Pascal
accepts underscore as a letter so that the user may generate
Pascal cexternals with leading underscores.

F-10 5/23/86

APPENDIXG
UNIX SPECIFIC INFORMATION

Although the SVS Pascal system appears to be almost
identical under a wide variety of operating systems, there
are minor differences, particularly related to the linker and
in operating procedures, among the various environments.
This appendix will provide the implementation dependent
details related to SVS Pascal running under the UNIX
operating system.

G.1 COMPILING A SIMPLE PROGRAM

The instructions provided here for compiling and linking a
Pascal program reflect the system as it is released by SVS.
Some vendors of the system provide additional utilities for
sequencing compiles for which there may be separate docu­
mentation.

Appendix F of this manual described in some detail the
components of the SVS Pascal system. For most Pascal
programs, the following simple procedure will be com­
pletely adequate for sequencing a compile:

Create a shellscript called Pascal with the following com­
mands:

set-e
pascal $1.pas
code $1.i
ulinker -1 $1.o $1.obj paslib.obj
cc $1.o
mv a.out $1
rm $1.o $1.obj

3/10/86 G-1

UNIX Pascal

To compile a Pascal program in a file named prog.pas, exe­
cute:

Pascal prog

The Pascal program and the shellscript can be created
using the system text editor. The mode of the shell script
should include execute permission (i.e. chmod + rwx Pas­
cal). The shellscript assumes that pascal (the Pascal com­
piler front end), code (the code generator), and ulinker
(the linker) reside in the system in directories from which
they can be executed. The shellscript also assumes that
paslib.obj is the correct pathname for accessing this file.
These names will most likely have to be changed to reflect
the location of these files on your system.

The lines of the shellscript do the following: The set -e
cau13es the compiling sequence to terminate after an error is
detected. The next lines run the front end and code gen­
erator on files whose names are derived from the command
line in which the shellscript is invoked. The linker is run
(in its simplest form, see below for more details) with -1
inhibiting a linkmap listing file, with output file $1.o, and
with two input files, including the SVS supplied library.
Ulinker produces a file which is then linked to those UNIX
system calls which are utilized by the program in the cc step
(which invokes the UNIX system linker). The final two
lines rename the executable program and remove the
unlinked object code files.

G.2 ERROR MESSAGE FILE

SVS Pascal includes a file called pascterrs which should be
placed in either the /lib or /usr /lib directory. This will
allow the compiler to display English messages for errors
which it detects.

G-2 3/10/86

Pascal UNIX

G.3 ULINKER

Under UNIX, ulinker is the SVS linker. The general
operation of the linker is described in Appendix F. This
section will describe in detail the modes of operation of
ulinker and its load map listing option.

ULINKER INPUTS

Ulinker links object code in .obj format, including libraries.
In addition, ulinker accepts input from the command line
or interactively as described below.

ULINKER OUTPUTS

Ulinker creates partially linked object code in UNIX .o for­
mat as its primary output. Optionally, ulinker can produce
a listing file which is a load map of global entry points in
the created .o file. The form of this map and information
contained in it is best described by the following example
with subsequent explanations:

Example of Ulinker Listing File

Linking segment' ' (670)
MC68000 Unix Object Code Formatter 22-Aug-83

File: prog.o

Memory map for segment '

COMPUTES - COMPUTES OOOOlE
F AIRL YSI - F AIRL YSI 000054
$START - $START 000054
%£>830701 - %£>830701 000082
o/o_TERM - %_TERM OOOlEO
o/o_END - %_END 0001E2
% VERS - % VERS 0001E6
~_MUL4 - %i_MUL4 OOOlEC
%1 MOD4 - %1 MOD4 00021C
o/ol=D IV 4 - %I_D IV 4 000228

3/10/86 G-3

UNIX

No: Segment: Size:
0.' ' 00029E

Start Loe = 000054
Code Size = 00029E
Global Size = 000006

Explanation of Ulinker Listing File

Pascal

The listing file was generated from the following Pascal
program:

program fairlysimple;
var i: integer; Ii: longint;

procedure computesome;
begin
li := (li *Ii) mod 99999;
li :=Ii div 17;
end;

begin
li := 2;
for i := 1 to 100 do

computesome;
end.

The segment named by 8 blanks had 670 (decimal) bytes in
it. Under UNIX there is no reason for programmers to
explicitly deal with segments, since ulinker handles this
automatically.

There were ten entry points in the linked files. Eight of
these were pulled out of the library and two are recogniz­
able as user function names. The addresses of these entry
points are given in hex and are text area relative, but will be
further relocated by the cc step of the compilation. The relative
addresses (distance between them) will remain intact
through the cc step.

G-4 3/10/86

Pascal UNIX

There would be a data areas shown associated with each of
the uni1B in the link, mapped to the data or bss area
depending upon whether the area is initialized at compile
time (which is possible using FOR'IRAN block data and
named common). Sizes and locations of these data area
listings are in hex and relative to the start of the data or bss
area as appropriate.

RUNNING ULINKER FROM THE COMMAND LINE

The command line Corm of running ulinker is:

ulinker listfname outputfname inputfname { inputfname .. }

where the optional listing file is created on a file named
listfname providing that listfname is not equal to -1 (no list­
ing file to be created directive). The command line argu­
mentB are positional. No file name suffixes are enforced by
ulinker in this mode so complete file names must be
entered.

RUNNING ULINKER INIERA.C'llVEL Y

It is often not convenient or not possible to have a com­
mand line which is long enough to have all of the input
files listed. In this event, ulinker can be run interactive.
Execute ulinker without any command line arguments and
it prompts:

Listing file -

Any file name provided creates the listing file. Enter just
return to suppress the optional listing file. The next
prompt is:

Output file [.o] -

3/10/86 G-5

UNIX Pascal

Ulinker requires an output file. If the file name provided
does not end in .o, ulinker will append this file name exten­
sion onto the name which is input. Following this prompt,
ulinker will repeatedly prompt:

Input file [.obj] -

for its input files, until a plain return is typed, indicating
that the input file list is completed. Ulinker will append the
.obj suffix onto input file names if it is not supplied by the
user. Running in this mode, there is no limit on the
number of input files which ulinker can process.

RUNNING ULINKER WITH STANDARD INPUT
REDIRECTED

With many input files, it is most convenient to operate
ulinker in its interactive mode with standard input
redirected. For example, run ulinker as follows:

ulinker <cmd

where the file cmd contains a line for the listing file name,
a line for the output file name, lines for the input file
names, and a blank line to terminate the input file list.

Symbol Table Information Placed in Output File

Utilizing the UNIX utility nm it is possible to examine the
symbol table information placed in the output file by
ulinker. In general, all entry points which are not local to
another procedure (a situation which only occurs in Pascal)
are placed into the .o file symbol table. All entry points
appear in the ulinker listing file, including those which are
Pascal local procedures. There are also symbol table entries
for unresolved external references and for the program
entry point {named _main under UNIX).

G-6 3/10/86

Pascal

TREA'IMENT OF UNRESOLVED EXTERNAL
REFERENCES

UNIX

Unresolved external references are passed through into the
output file for potential linking in the cc step of the com­
pile. In the event that these references are not resolved at
that stage, an error message is generated then.

SEGMENTS

Under some operating systems other than UNIX, the SYS
Pascal system contains a meaningful object code concept
referred to as segments. Under UNIX, there are segments
in the object code, but they are not semantically meaning­
ful. Ulinker automatically creates segments as needed and
there is no reason for the user to do anything explicitly
about creating and/or naming segments.

ERRORS DETECTED BY ULINKER

Most of the error messages which come out of ulinker are
completely self explanatory. The error message:

*** In data area named ABC
*** at off set 999 byt.es into that data area
***Fatal Error - overlapping data initialization

is caused by user programs initializing the same location in
the named data area more than once. The error message:

*** Error - Double defined: ABC

is caused by the same entry point name being used in more
than one input file. Only 8 characters are significant for the
linker. The error message:

3/10/86 G-7

UNIX Pascal

***Error - Double defined unit

is caused by linking more than one unit with the same
name. The link name for Pascal units begins and ends in
slashes and contains the six initial characters of the Pascal
unit user name between the slashes. This facilitates initial­
izing Pascal unit globals using FORTRAN named common
and data statements. One consequence of this link naming
convention is that only six characters of the user unit name
are utilized for resolving naming conflicts. The error mes­
sage:

***Error - Multiple start locations

is caused by having more than one main program among
the input files.

G.4 LINKING TO UNIX ASSEMBLY CODE

It is normal for the output of ulinker to contain unresolved
external references to UNIX system calls (such as _open,
_close, and _write). These are resolved by the cc linking
step by using the operating system default library of UNIX
object code. The user may do the same kind of linking to
UNIX assembly code by providing the assembly language
source as an additional argument to the cc compilation step
which will automatically invoke the operating system
assembler.

One limitation on code which is linked in with code gen­
erated by the SVS languages is that no UNIX system calls
on malloc, free, sbrk, or related routines (directly, or
through other linked in routines) may be used. The SVS
languages handle the UNIX break area of memory, includ­
ing versions of malloc and free in the SYS C library, in a
manner which is not fully compatible with the UNIX rou­
tines.

G-8 3/10/86

Pascal UNIX

Users should also beware of differing floating point for­
mats. Some of the UNIX systems do not use IEEE format
floating point. In this event, passing floating point values
will result in strange results.

It is not guaranteed that I/O will work as expected across
language boundaries, particularly with respect to object
code generated by non SVS systems.

Any code linked into programs generated by the SVS
languages must obey the register and calling conventions
assumed by the system. In particular, all called routines
must preserve registers D3 through D7 and A2 through
A6. More details on the calling conventions are provided
in the appendix on data representations.

G.5 ARGC AND ARGY

Under UNIX, the name of the program is the first argu­
ment in the argv list of the invoked program, that is
argv[l] A. Argc is always at least 1. The first user supplied
command line argument is argv[2] A. This is sometimes
confusing for UNIX programmers who are more used t.o
seeing the name of the invoked program as the zero'th
argv in the C programming language and the first user sup­
plied command line argument as the one referenced using
array index 1 on the argv array. The Pascal numbering
scheme is consistent with the fact that argv is a one origin
indexed array.

G.6 FEATURES NOT IMPLEMEN'IED UNDER UNIX

The following features of SYS Pascal are not implemented
under UNIX: call, unit I/O (such as unitread, unitwrite,
etc.), and memavail (not implemented under most UNIX
implementations).

3/10/86 G-9

UNIX Pascal

G. 7 RETURN VALUES FROM PASCAL PROGRAMS

A Pascal program can issue the call:

halt(integervalue)

to generate a UNIX system termination code equal to the
value specified. If a zero value is provided, UNIX will con­
sider that the program succeeded, otherwise UNIX will
treat the process as having terminated with an error. This
is useful for interacting with shellscripts which test the
UNIX error flag after executing programs written in Pascal.

G-10 3/10/86

APPENDIXG
UNIX SPECIFIC INFORMATION

(S-32/S-320)

Although the SVS Pascal system appears to be almost
identical under a wide variety of operating systems, there
are minor differences, particularly related to the linker and
in operating procedures, among the various environments.
This appendix will provide the implementation dependent
details related to SVS Pascal running under the UNIX
operating system. Note that the information in this appen­
dix applies only to the S-32/S-320, for related information
on the PC AT, see Appendix H.

G.1 COMPILING A SIMPLE PROGRAM

The instructions provided here for compiling and linking a
Pascal program reflect the system as it is released by SVS.

Appendix F of this manual describes the components of the
SVS Pascal system. For most Pascal programs, the fol­
lowing simple procedure will be completely adequate for
sequencing a com pile:

Create a shellscript called Pascal with the following com­
mands:

set-e
/uO/pascal/pascal $1.pas
/uO/pascaljcode $1.i
/uO/pascal/ulinker -1 $1.o $1.obj paslib.obj
cc $1.o -o $1
rm $1.o $1.obj

5/23/86 G-1

UNIX Pascal

To compile a Pascal program in a file named prog.pas, exe­
cute:

Pascal prog

The Pascal program and the shellscript can be created
using the system text editor. The mode of the shell script
should include execute permission (i.e., chmod + rwx Pas­
cal).

The lines of the shellscript do the following: The set -e
causes the compiling sequence to terminate after an error is
detected. The next lines run the front end and code gen­
erator on files whose names are derived from the command
line in which the shellscript is invoked. The linker is run
(in its simplest form, see below for more details) with -1
inhibiting a linkmap listing file, with output file $1.o, and
with two input files, including the SVS supplied library.
Ulinker produces a file which is then linked to those UNIX
system calls which are utilized by the program in the cc step
(which invokes the UNIX system linker). The final two
lines rename the executable program and remove the
unlinked object code files.

G.2 ERROR MESSAGE FILE

SVS Pascal includes a file called pascterrs which is in the
/usr /lib directory. This will allow the compiler to display
English messages for errors which it detects.

G.3 ULINKER

Under UNIX, ulinker is the SVS linker. The general
operation of the linker is described in Appendix F. This
section will describe in detail the modes of operation of
ulinker and its load map listing option.

G-2 5/23/86

Pascal UNIX

ULINKER INPUTS

Ulinker links object code in .obj format, including libraries.
In addition, ulinker accepts input from the command line
or interactively as described below.

ULINKER OUTPUTS

Ulinker creates partially linked object code in UNIX .o for­
mat as its primary output. Optionally, ulinker can produce
a listing file which is a load map of global entry points in
the created .o file. The form of this map and information
contained in it is best described by the following example
with subsequent explanations:

Example of Ulinker Listing File

Linking segment ' ' (670)
MC68000 Unix Object Code Formatter 22-Aug-83
File: prog.o
Memory map for segment '

COMPUTES - COMPUTES OOOOlE
F AIRL YSI - F AIRL YSI 000054
$START - $START 000054
%P830701 - %P830701 000082
%_TERM - %_TERM OOOlEO
% END - % END 0001E2
%-VERS - %-VERS 0001E6
%I MUL4 - o/d MUL4 OOOlEC
%(MOD4 - %(MOD4 00021C
%I_D IV 4 - %I_D IV 4 000228

No: Segment: Size:
0.' ' 00029E

Start Loe = 000054
Code Size = 00029E
Global Size = 000006

5/23/86 G-3

UNIX Pascal

Explanation of Ulinker Listing File

The listing file was generated from the following Pascal
program:

program fairlysimple;
var i: integer; Ii: longint;

procedure computesome;
begin
Ii := (Ii * Ii) mod 9{HH)9;
Ii:= Ii div 17;
end;

begin
Ii:= 2;
for i := 1 to 100 do

computesome;
end.

The segment named by eight blanks had 670 (decimal)
bytes in it. Under UNIX there is no reason for program­
mers to explicitly deal with segments, since ulinker handles
this automatically.

There were ten entry points in the linked files. Eight of
.these were pulled out of the library and two are recogniz­
able as user function names. The addresses of these entry
points are given in hex and are text area relative, but will be
further relocated by the cc step of the compilation. The relative
addresses (distance between them) will remain intact
through the cc step.

There would be one data area per block data and named
common. Sizes and locations of these data area listings are
in hex and relative to the start of the data or bss area as
appropriate.

G-4 5/23/86

Pascal UNIX

RUNNING ULINKER FROM THE COMMAND LINE

The command line form of running ulinker is:

ulinker listfname outputfname inputfname { inputfname ... }

where the optional listing file is created on a file named
listfname providing that listfname is not equal to -1 (no list­
ing file to be created directive). The command line argu­
ments are positional. No file name suffixes are enforced by
ulinker in this mode so complete file names must be
entered.

RUNNING ULINKER INTERACTIVELY

It is often not convenient or not possible to have a com­
mand line which is long enough to have all of the input
files listed. In this event, ulinker can be run interactive.
Execute ulinker without any command line arguments and
it prompts:

Listing file -

Any file name provided creates the listing file. Enter just
return to suppress the optional listing file. The next
prompt is:

Output file [.o] -

Ulinker requires an output file. If the file name provided
does not end in .o, ulinker will append this file name exten­
sion onto the name which is input. Following this prompt,
ulinker will repeatedly prompt:

Input file [.obj] -

for its input files, until a plain return is typed, indicating
that the input file list is completed. Ulinker will append the
.obj suffix onto input file names if it is not supplied by the
user. Running in this mode, there is no limit on the
number of input files which ulinker can process.

5/23/86 G-5

UNIX

RUNNING ULINKER WITH STANDARD INPUT
REDIRECTED

Pascal

With many input files, it is most convenient to operate
ulinker in its interactive mode with standard input
redirected. For example, run ulinker as follows:

ulinker <cmd

where the file cmd contains a line for the listing file name,
a line for the output file name, lines for the input file
names, and a blank line to terminate the input file list.

SYMBOL TABLE INFORMATION PLACED IN OUT­
.PUT FILE

Utilizing the UNIX utility nm it is possible to examine the
symbol table information placed in the output file by
ulinker. In general, all entry points which are not local to
another procedure (a situation which only occurs in Pascal)
are placed into the .o file symbol table. All entry points
appear in the ulinker listing file, including those which are
Pascal local procedures. There are also symbol table entries
for unresolved external references and for the program
entry point (named _main under UNIX).

TREATMENT OF UNRESOLVED EXTERNAL
REFERENCES

Unresolved external references are passed through into the
output file for potential linking in the cc step of the com­
pile. In the event that these references are not resolved at
that stage, an error message is generated then.

G-6 5/23/86

Pascal UNIX

SEGMENTS

Under some operating systems other than UNIX, the SVS
Pascal system contains a meaningful object code concept
referred to as segments. Under UNIX, there are segments
in the object code, but they are not semantically meaning­
ful. Ulinker automatically creates segments as needed and
there is no reason for the user to do anything explicitly
about creating and/or naming segments.

ERRORS DETECTED BY ULINKER

Most of the error messages which come out of ulinker are
completely self explanatory. The error message:

***In data area named ABC
*** at off set \J99 bytes into that data area
*** Fatal Error - overlapping data initialization

is caused by user programs initializing the same location in
the named data area more than once. The error message

***Error - Double defined: ABC

is caused by the same entry point name being used in more
than one input file. Only 8 characters are significant for the
linker. The error message

***Error - Double defined unit

is caused by linking more than one unit with the same
name. The link name for Pascal units begins and ends in
slashes and contains the six initial characters of the Pascal
unit user name between the slashes. This facilitates initial­
izing Pascal unit globals using FORTRAN named common
and data statements. One consequence of this link naming
convention is that only six characters of the user unit name
are utilized for resolving naming conflicts. The error mes­
sage

5/23/86 G-7

UNIX Pascal

*** Error - Multiple start locations

is caused by having more than one main program among
the input files.

G.4 LINKING TO UNIX ASSEMBLY CODE

It is normal for the output of ulinker to contain unresolved
external references to UNIX system calls (such as _open,
_close, and _write). These are resolved by the cc linking
step by using the operating system default library of UNIX
object code. The user may do the same kind of linking to
UNIX assembly code by providing the assembly language
source as an additional argument to the cc compilation step
which will automatically invoke the operating system
assembler.

One limitation on code which is linked in with code gen­
erated by the SVS languages is that no UNIX system calls
on malloc, free, sbrk, or related routines (directly, or
through other linked in routines) may be used.

It is not guaranteed that I/O will work as expected across
language boundaries, particularly with respect to object
code generated by non SVS systems.

Any code linked into programs generated by the SVS
languages must obey the register and calling conventions
assumed by the system. In particular, all called routines
must preserve registers D3 through D7 and A2 through
A6. More details on the calling conventions are provided
in the appendix on data representations.

G-8 5/23/86

Pascal UNIX

G.5 ARGC AND ARGY

Under UNIX, the name of the program is the first argu­
ment in the argv list of the invoked program, that is
argv[l] A. Argc is always at least 1. The first user supplied
command line argument is argv[2] A. This is sometimes
confusing for UNIX programmers who are more used to
seeing the name of the invoked program as the zero'th
argv in the C programming language and the first user sup­
plied command line argument as the one referenced using
array index 1 on the argv array. The Pascal numbering
scheme is consistent with the fact that argv is a one origin
indexed array.

G.6 FEAT{JRE'; NOT IMPLEMENTED UNDER UNIX

The following features of SYS Pascal are not implemented
under UNIX: call, unit I/O (such as unitread, unitwrite,
etc.), and memavail.

G.7 RETURN VALUES FROM PASCAL PROGRAMS

A Pascal program can issue the call:

halt(integervalue)

to generate a UNIX system termination code equal to the
value specified. If a zero value is provided, UNIX will con­
sider that the program succeeded, otherwise UNIX will
treat the process as having terminated with an error. This
is useful for interacting with shellscripts which test the
UNIX error flag after executing programs written in Pascal.

5/23/86 G-9

APPENDIXH
UNIX SPECIFIC INFORMATION

(POAT)

Although the SVS Pascal system appears to be almost
identical under a wide variety of operating systems, there
are minor differences, particularly related to the linker and
in operating procedures, among the various environments.
This appendix will provide the implementation dependent
details related to SVS Pascal running under the UNIX
operating system. Note that the information in this appen­
dix applies only to the PC AT, for related information on
the S-32/S-320, see Appendex G.

H.1 COMPILING A SIMPLE PROGRAM

The instructions provided here for compiling and linking a
Pascal program reflect the system as it is released by SVS.

Appendix F of this manual described in some detail the
components of the SVS Pascal system. For most Pascal
programs, the following simple procedure will be com­
pletely adequate for sequencing a compile:

Create a shellscript called Pascal with the following com­
mands:

set-e
/uO/pascal/pascal $1.pas
/uO /pascal/ncode $1.i
/uO /pascalfjlinker $1
cc $1.o -o $1 -Ip
rm $1.o $1.obj

5/23/86 H-1

UNL"'\: Pascal

To compile a Pascal program in a file named prog.pas, exe­
cute:

Pascal prog

The Pascal program and the shellscript can be created
using the system text editor. The mode of the shell script
should include execute permission (i.e., chmod + rwx Pas­
cal).

The lines of the shellscript do the following: The set -e
causes the compiling sequence to terminate after an error is
detected. The next lines run the front end and code gen­
erator on files whose names are derived from the command
line in which the shellscript is invoked. The linker is run
(in its simplest form) with just the base name of the pro­
gram, $1. The linker appends a ".obj" to the base name and
uses it as an input file. The jlinker produces a file which is
input to cc. The default output file is $1.0. The last line
removes the unlinked object code files.

H.2 ERRORM~SAGEFILE

SVS Pascal includes a file called pascterrs which is in the
/usr/lib directory. This will allow the compiler to display
English messages for errors which it detects.

H.3 JLINKER

Jlinker is the SVS linker. The general operation of the
linker is described in Appendix F. This section will
describe in detail the modes of operation of jlinker and its
load map listing option.

H-2 5/23/86

Pascal UNIX

JLINKER INPUTS

Jlinker formats .obj files into object code in UNIX .o for­
mat. In addition, jlinker accepts input from the command
line or interactively as described below.

JLINKER OUTPUTS

Jlinker creates partially linked object code in UNIX .o for­
mat as its primary output. Optionally, jlinker can produce a
listing file which is a load map of global entry points in the
created .o file. The form of this map and information con­
tained in it is best described by the following example with
subsequent explanations:

Example of Jlinker Listing File

NS32000 Object Code Formatter 10-Mar-86
File: maplist.o
Memory map:

000000 COMPUTESOME
00002C F AIRL YSIMPLE
00002C $START

Data Areas:

000008 (common)
000064 (common)

Code Size = 000058
Data Size = 000000
BSS Size = 000000

5/23/86

//GLOBALS//
//regs//

H-3

UNIX Pascal

Explanation of Jlinker Listing File

The listing file was generated from the following Pascal
program:

program fairlysimple;
var i: integer; Ii: longint;

procedure computesome;
begin
Ii:= (Ii* Ii) mod 9~HHHJ;
Ii := Ii div 17;
end;

begin
Ii:= 2;
for i := 1 to 100 do

computesome;
end.

There were three entry points in the file. Two of these are
recognizable as user function names. The addresses of
these entry points are text area relative, but further relo­
cated by the cc step of the compilation. The relative
addresses (distance between them) will remain intact
through the cc step.

There would be one data area per unit shown in the link.
Each unit is mapped to the data or bss area depending upon
whether the area is initialized at compile time. Sizes and
locations of these data area listings are in hex and relative
to the start of the data or bss area as appropriate.

H-4 S/23/86

Pascal UNIX

RUNNING JLINKER FROM TIIE COMMAND LINE

The command line form of running jlinker is:

jlinker -llistfname inputfname

where listfile is the name of the map list file. The inputfile
name can be either the base name or the complete file
name (test.obj or test).

RUNNING JLINKER INTERACTIVELY

The jlinker can be run interactive. Execute jlinker without
any command line arguments and it prompts:

Listing file -

Any file name provided creates the listing file. Enter just
return to suppress the optional listing file. The next
prompt is:

Output file { .oj -

Jlinker requires an output file. If the file name provided
does not end in .o, jlinker will append this file name exten­
sion onto the name which is input. Following this prompt,
jlinker will prompt:

Input file [.obj] -

for the input file. Jlinker will append the .obj suffix onto
the input file name if it is not supplied by the user.

5/23/86 H-5

UNIX

SYMBOL TABLE INFORMATION PLACED
IN OUTPUT FILE

Pascal

Utilizing the UNIX utility nm it is possible to examine the
_symbol table information placed in the output file by
jlinker. In general, all entry point5 which are not local to
another procedure (a situation which only occurs in Pascal)
are placed into the .o file symbol table. All entry points
appear in the jlinker listing file, including those which are
Pascal local procedures. There are also symbol table entries
for unresolved external references and for the program
entry point (named _main 1.lnder UNIX).

TREATMENT OF UNRESOLVED EXTERNAL
REFERENCES

Unresolved external references are passed through into the
output file for potential linking in the cc step of the com­
pile. In the event that these references are not resolved at
that stage, an error message is generated then.

ERRORS DETECTED BY JLINKER

Most of the error messages which come out of jlinker are
completely self explanatory. The error message:

*** In data area named ABC
*** at off set 999 bytes into that data area
*** Fatal Error - overlapping data initialization

is caused by user programs initializing the same location in
the named data area more than once.

H.4 LINKING TO UNIX ASSEMBLY CODE

It is normal for the output of jlinker to contain unresolved
external references to UNIX system calls (such as _open,
_close, and _write). These are resolved by the cc linking
step by using the operating system default library of UNIX
object code. The user may do the same kind of linking to
UNIX assembly code by providing the assembly language

H-6 5/23/86

Pascal UNIX

source as an additional argument to the cc compilation step
which will automatically invoke the operating system
assembler.

One limitation on code which is linked in with code gen­
erated by the SVS languages is that no UNIX system calls
on malloc, free, sbrk, or related routines (directly, or
through other linked in routines) may be used.

It is not guaranteed that I/O will work as expected across
language boundaries, particularly with respect to object
code generated by non SVS systems.

Any code linked into programs generated by the SVS
languages must obey the register and calling conventions
assumed by the system. In particular, all called routines
must preserve registers D3 through D7 and A2 through
A6. More details on the calling conventions are provided
in the appendix on data representations.

H.5 ARGCAND ARGY

Under UNIX, the name of the program is the first argu­
ment in the argv list of the invoked program, that is
argv[l] '. Argc is always at least 1. The first user supplied
command line argument is argv[2] '. This is sometimes
confusing for UNIX programmers who are more used to
seeing the name of the invoked program as the zero'th
argv in the C programming language and the first user sup­
plied command line argument as the one referenced using
array index 1 on the argv array. The Pascal numbering
scheme is consistent with the fact that argv is a one origin
indexed array.

H.6 FEATURES NOT IMPLEMENTED UNDER UNIX

The following features of SVS Pascal are not implemented
under UNIX: call, unit I/O (such as unitread, unitwrite,
etc.), and memavail.

5/23/86 H-7

UNIX Pascal

H.7 RETURN VALUES FROM PASCAL PROGRAMS

A Pascal program can issue the call:

halt(integervalue)

to generate a UNIX system termination code equal to the
value specified. If a zero value is provided, UNIX will con­
sider that the program succeeded, otherwise UNIX will
treat the process as having terminated with an error. This
is useful for interacting with shellscripts which test the
UNIX error flag after executing programs written in Pascal.

H-8 5/23/86

ABS, 8-12
access to command line

ARGC, 7-12
ARGV, 7-12

accessing variables, 3-4
adding operators, 4-5

INDEX

address evaluation operator, 4-2
allocate storage, 8-8
ARCTAN, 8-13
ARGC, 7-12, G-9, H-8
ARGV, 7-12, G-9, H-8
arithmetic functions

ARCTAN, 8-13
cos, 8-12
LN, 8-13
PWROFTEN, 8-13
SIN, 8-12
SQR, 8-12
SQRT, 8-13

arithmetic operations on extreme values, E-8
arithmetric functions, 8-13
array

types, 2-8
examples,2-9
representation of pointers, E-11

assembly code
linking to UNIX(PC AT), H-7
linking to UNIX(S-32 /S-320), G-8

assignment compatible types, 2-18
assignment statements, 5-1
attributes

external, 7-16
forward, 7-16

5/23/86 1-1

Index

basic symbols, 1-15
BEGIN .. END compound statements, 5-4
block input output intrinsics, 6-16
BLOCKREAD, 6-16
BLOCKWRITE, 6-17
boolean attributes see predicates
boolean element, 6-12
buffer variable, 2-14

REWRITE, 6-5
REWRITE, 6-5

C and Fortran, F-6
call another program, 8-22
CALL, 8-22
case statements, 5-6
character element, 6-12
CHR, 8-16
close a file, 6-14
CLOSE, 6-14
code generation errors, A-9
code generator, F-2
code systems linker, F-2
·command line

directives, F-4
running jlinker, H-5
running ulinker, G-5

comment toggle, 9-1
comments, 1-18
comparison of booleans, 4-9
comparison of scalars, 4-8

complete program, 7-2
compilation units

insecure separate compilation, 7-3
simple unit, 7-4
using a unit, 7-5

compile time

1-2

constant expressions, 4-13
lexical errors, A-1
options, 9-1
semantic errors, A-3
syntactic errors, A-1

Pascal

5/23/86

Pascal

compiler front end, F-1
compiler generated linker names, E-19
compiler options, F-4
complete program compilation, 7-2
component variables, 3-5
compound statements, BEGIN .. END, 5-4
compute absolute value, 8-12
compute exponential of value, 8-13
compute square of a number, 8-12
compute ten to a power, 8-13
CONCAT concatenate strings, 8-4
constant definition, 7-13
constants

literal, 2-1
predefined, 2-2

control procedures
CALL, 8-22
EXIT, 8-21
HALT, 8-22

conventions for spaces, 1-18
convert integer to pointer, 8-20
convert to long integer, 8-16
convert type to integer value, 8-15
copy a substring, 8-3
COPY, 8-3
cos, 8-12

data representations
arrays, E-11
compiler generated linker names, E-19
extreme numbers, E-5
hexadecimal, E-7
integers, E-3
limitations on variable size, E-18
packing methods, E-12
parameter passing mechanism, E-16
pointers, E-11
reals and doubles, E-4
register conventions, E-18
sets, E-17
arithmetic operations, E-8

5/23/86

Index

I-3

Index

data types, 2-1, 2-5
dead code elimination, 4-13
declarations

procedure and function, 7-14
constant definition, 7-13
label, 7-13
type definition, 7-13
variable, 7-13
scope of identifiers, 7-9

declaring variables, 3-1
declaring variables, examples, 3-1
·delete characters from string, 8-6
DELETE, 8-6
determine

end of file, 8-14
end of line, 8-14
memory, 8-12
size of an element, 8-20
string length, 8-2
successor of value, 8-17

deviations from IEEE standard, E-7
direct pointer comparison, 4-9
DISPOSE, 8-10
dispose of allocated storage, 8-10
double element, 6-10
dynamic memory

allocation, F-6
deallocation, F-6

dynamic variables, lifetime of, 3-3

element
boolean, 6-12
integer, 6-10
string, 6-12

elementary lexical contructs, 1-10
elements

I-4

character, 6-12
double, 6-10
real, 6-10
scalar subrange, 6-11

Pascal

5/23/86

Pascal

EOF, 8-H
EOLN, 8-14
error message file

S-32/S-320, G-2
PC AT, H-2

error messages
code generation, A-9
compile time

lexical, A-1
semantic, A-3
syntactic, A-1

input output, A-8
IORESUL T, A-9
specific limitions of compiler, A-7

errors
detected by jlinker, H-6
detected by ulinker, G-7

establishing variables, 3-2
evaluation in expressions, 4-12
exit from procedure, 8-21
EXIT, 8-21
EXP, 8-13
external attributes, 7-16
external naming conventions, F-10
extreme numbers

arithmetic operations, E-8
deviations from IEEE standard, E-7
hexadecimal representations, E-7
representation of, E-5

extreme values, arithmetic operations on, E-8

features not implemented UNIX(S-32/S-320), G-9
field indentifiers, 2-11
file buff er variable, 6-1
file handling procedures, 6-1
file types, 2-14
fill a storage region, 8-19
FILLCHAR, 8-19
FOR .. DO statements, 5-9
formal parameters, 3-3
forward attributes, 7-16

5/23/86

Index

I-5

Index

GET procedure, 2-14, 6-3
global variables, 3-3
GOTO statement, 5-12

HALT, 8-22
handling procedures

CLOSE, 6-14
PAGE, 6-16
SEEK, 6-14

hexadecimal
output, 6-13
representation of selected numbers, E-7

identifiers, declarations and scope, 7-9
IEEE standard, deviations from, E-7
IF .. THEN .. ELSE statements, 5-4
indentical types, 2-17
indentifiers, predefined, B-1
input output errors, A-8
inputs jlinker, H-2
inputs ulinker, G-3
insecure separate compilation, 7-3
insert characters into string, 8-7
INSERT, 8-7
integer element, 6-10
integer to character representation, 8-16
integers, representation of, E-3
IORESULT, 6-18
ISNIN, 8-14
ISO pascal, C-1

jlinker

I-6

errors detected by, H-6
unresolved external references, H-6
inputs, H-3
outputs, H-3

Pascal

5/23/86

Pascal

label declaration, 7-13
LENGTH, 8-2
libraries, run time, F-9
libraries, F-3
lifetime of

dynamic variables, 3-3
formal parameters, 3-3
variables, 3-3

limitations
of compiler, A-7
variable size, E-18

linker, F-2
linking programs

C and Fortran, F-6
dynamic memory

allocation, F-6
deallocation, F-6

external naming conventions, F-10
language, F-6
main program, F-6
parameter conventions, F-6
prepended underscore, F-10
run time libraries, F-~

linking to UNIX
assembly code, G-8

LN, 8-13
lowlevel routines

FILLCHAR, 8-19
MOVELEFT, 8-17
MOVERIGHT, 8-17
POINTER, 8-20
SIZEOF, 8-20

mark position of heap, 8-11
MARK, 8-11
MEMA VAIL, 8-12
metalanguage, 1-8
MOVELEFT, 8-17
MOVERIGHT, 8-17
multiplying operators, 4-3

5/23/86

Index

I-7

Index

natural logarithm of value, 8-13
NEW procedure, 2-15
NEW, 8-8
non-comparable types, 4-11
NOT operator, 4-3

ODD, 8-14
operators

adding, 4-5
address evaluation, 4-2
examples, 4-2
in expressions, 4-2
multiplying, 4-3
NOT, 4-3
relational, 4-7
sign, 4-6

ORD, 8-15
ORD4, 8-16
ordinal type, 2-5
out of range values, 4-11
outputs, jlinker, H-3
outputs, ulinker, G-3

packed arrays
of char, 6-12
packing methods, E-14

packing methods, E-12
PAGE, 6-16
parameter conventions

calling C from Paseal, F-7
calling FORTRAN from Pascal, F-9
calling Pascal from C, F-7
calling Pascal from FORTRAN, F-9

parameter passing mechanism, E-16
parameters

WRITE, 6-9
procedures and functions, 7-17

Pascal indentifiers, 1-11
Pascal labels 1-15
Pascal programs

1-8

PC AT, H-8
S-32/S-320, G-9

Pascal

5/23/86

Pascal

Pascal reserved words, 1-16
Pascal special symbols, 1-16
Pascal standards, C-1
Pascal strings, 1-13
Pascal synta,\'. definitions, B-2
PCAT

ARGC, H-8
ARGY, H-8
error message file, H-2
features not implemented under UNIX, H-8
linking to UNIX assembly code, H-7
return values from pascal programs, H-8
pascal program, compiling, H-1

pointer output, 6-13
pointer referenced variables, 3-9
pointer types, 2-15
pointer types examples, 2-16
POINTER, 8-20
POS match a substring in a string, 8-4
predeclared variables

input, 7-11
output, 7-11
stderr, 7-11

predicates
ISINF, 8-14
ISNIN, 8-14
ISNUM, 8-14
ODD, 8-14

prepended underscore, F-10
procedure and function

parameters, 7-17
declaration, 7-14

procedure reference statement, 5-3
procedures

GET, 6-3
PUT, 6-3
READ intrinsics, 6-6
READLN intrinsics, 6-6
RESET, 6-4
REWRITE, 6-5
WRITE, 6-8
WRITELN, 6-8
text file handling, 6-6

5/23/86

Index

I-9

Index

program heading, 7-11
PUT procedure, 2-14, 6-3
PWROFTEN, 8-13

random access to typed files, 6-14
read block from file, 6-16
READ intrinsics, 6-6
READLN intrinsics, 6-6
real element, 6-10
reals and doubles, representation of, E-4
record types, 2-11
record types, examples, 2-12
redirected standard input, ulinker, G-6
·register conventions, E-18
relational operators, 4-7
release allocated memory, 8-11
RELEASE, 8-11
REPEAT .. UNTIL statements, 5-8
representation of arrays, E-11
representation of pointers, E-11
representation of set.s, E-11
RESET buffering option, 6-5
RESET procedure, 6-4
return input-output result, 6-18
REWRI'IB

buffering option, 6-5
procedure, 6-5

round to nearest integer, 8-15
ROUND, 8- ll>
run time libraries, F-9
running jlinker

from command line, H-5
interactively, H-5

running ulinker

I-10

from command line, G-5
interactively, G-5
redirected standard input, G-6

Pascal

5/23/86

Pascal

S-32/S-320
error message file, G-2
Pascal program

compiling, G-1
return values, G-9

scalar subrange element, 6-11
scalar

types, 2-5
examples, 2-6

scan for character, 8-5
SCANEQ, 8-5
SCANNE, 8-5
scope of statement labels, 5-1
SEEK, 6-14
segments, ulinker, G-7
set comparison, 4-10
set types, 2-13
sign operators, 4-6
simple types, 2-5
simple unit, example, 7-4
SIN, 8-12
size of variable, limitations, E-18
SIZEOF, 8-20
skip to new page, 6-16
SQR, 8-12
SQRT, 8-13
square root of value, 8-13
standard functions, SUCC, 8-17
standard types, 2-3
statement labels, 5-1
statement labels, scope of, 5-1
statements

assignment, 5-1
procedure reference, 5-3

5/23/86

Index

I-11

Index

storage allocation procedures
DISPOSE, 8-1 O
MARK, 8-11
MEMAVAIL, 8-12
NEW, 8-8
RELEASE, 8-11

storage allocation, E-1
string comparison, 4-9
string element of char, 6-12
string manipulation facilities

CONCAT, 8-4
COPY, 8-3
DELETE, 8-6
INSERT, 8-7
LENGTH, 8-2
POS, 8-4
SCANEQ, 8-5
SCANNE, 8-5

string types,2-10
string variable, 2-10
structured statements

BEG IN .. END, 5-4
FOR .. D 0 statements, 5-9
GOTO, 5-12
IF .. THEN .. ELSE, 5-4
REPEAT .. UNTIL, 5-8
WHILE .. DO, 5-7
WITH, 5-11

structured types, 2-7
subrange types, 2-6
succ, 8-17
SVS Pascal

differences from UCSD Pascal, D-1
similarities to UCSD Pascal, D-1

syntactic constructs, 1-8
syntax definitions, B-2
system components

I-12

code generator, F-2
compiler front end, F-1
error messages, F-3
libraries, F-3

Pascal

5/23/86

Pascal

tag field, 2-11
terminate program with return value, 8-22
test integer for odd or even, 8-14
text file handling procedures, 6-6
trigonometric

arctangent, 8-13
cosine, 8-12
sine, 8-12

TRUNC, 8-15
truncate to nearest integer, 8-15
type

declarations,-5
definition, 7-13
indentity, 2-17

types
array, 2-8
assignment compatible, 2-18
file, 2-14
inden ti cal, 2-17
non-comparable, 4-11
pointer, 2-15
record,2-11
scalar, 2-5
set, 2-13
simple, 2-5
standard, 2-3
string, 2-10
structured, 2-7
subrange, 2-6
data, 2-5

5/23/86

Index

I-13

Index

UCSD Pascal
differences from SVS Pascal, D-1
similarities to SVS Pascal, D-1

ulinker
ARGC, G-9
ARGV, G-9
errors detected, G-7
inputs, G-3
segments, G-7
unresolved external references, G-7
inputs, G-3

UNIX
error message file

S-32/S-320, G-2
PC AT, H-2

assembly code linking to, G-8
compiling pascal program

S-32/S-320, G-1
PC AT, H-1

features not implemented under
S-32/S-20, G-9
PC AT, H-8

jlinker, H-3
ulinker, G-3

unresolved external references
jlinker, H-6
ulinker, G-7

value conversion functions
CHR, 8-16
ORD, 8-15
ORD4, 8-16
ROUND, 8-15
TRUNC, 8-15

variable

I-14

file buffer, 6-1
buffer, 2-14
declaration, 7-13
string, 2-10

Pascal

5/23/86

Pascal

variables
input, 3-2
output, 3-2
predeclared, 3-2
predeclared, 7-11
stderr, 3-2
accessing, 3-4
argc, 3-2
argv, 3-2
component, 3-5
entire, 3-5
global, 3-3
lifetime of, 3-3
pointer referenced, 3-9
referencing, 3-4

variant record, 2-11
WHILE .. DO statements, 5-7
WITH statement, 5-11
WRITE

parameters, 6-9
intrinsics, 6-8

write bloek to file, 6-17
WRITELN intrinsics, 6-8

5/23/86

Index

I-15

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	9-01
	9-02
	9-03
	9-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G1-01
	G1-02
	G1-03
	G1-04
	G1-05
	G1-06
	G1-07
	G1-08
	G1-09
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15

