
DEBUGGER REFERENCE MANUAL

Manual Number: MN253

10 March 1086

Valid Logic Systems, Incorporated
2820 Orchard Parkway

San Jose, California 95134
(408) 945-9400 Telex 371 9004

Copyright© 1983, 1Q84, 1985, 1986 Silicon Valley Software, Inc.

All rights reserved. No Part of this Debugger Reference
Manual may be reproduced, translated, transcribed, or
transmitted in any form or by any means manual, elec­
tronic, electro-magnetic, chemical, or optical without expli-
cit written permission from Silicon Valley Software, Inc.

Reprinted by Valid Logic Systems, Inc. with permission
from Silicon Valley Software, Inc.

TABLE OF CON'IENTS

Introduction... 1-1

Running the Debugger
Setting the Compiler Debug Flag.......................... 2-1
Obtaining a Debug Information File..................... 2-2
Debugging a Target Program................................. 2-4

Debugger ConcepUI and Commands
Concepts and Definitions....................................... 3-1
Debugger Commands.. 3-5

R - Run... 3-6
Q - Quit... 3-6
B - Breakpoints... 3-7
T - Tracepoints.. 3-8
C - Clearing Break and Tracepoints................ 3-9
P- Print the Value of a Variable..................... 3-11
S - Set the Value of a Variable........................ 3-12
M - Memory Set/Print..................................... 3-14
W - Walkback... 3-15
U - Move Environment Up............................. 3-15
D - Move Environment Down........................ 3-16
L - The List Command.................................... 3-16
< - Take Debug Commands from a File 3-19
> - Save Break and Trace Points.................... 3-19
! - Execute Shell Command............................. 3-20
I - Execute a Single Instruction....................... 3-20
N - Execute Next Statement........................... 3-21

.DBG File Fonnat
The .DBG Header.. 4-1
The .DBG Link Map.. 4-2
V Ariable and Type Descriptors 4-4

Type Descriptors.. 4-5
Variable Descriptors... 4-·9

Statement Offsets Descriptors................................ 4-12

SECTION 1
INTRODUCTION

The SVS symbolic debugger allows the interactive execu­
tion and debugging of programs written in SVS FOR­
TRAN, SVS Pascal, and SVS C.

Execution of a target program can be breakpointed or
traced at the entry points or exits of subroutines, or at any
statement boundary within a subroutine. After execution is
suspended at a breakpoint, the values of variables and data
structures can be examined and altered using their symbolic
names as they are known in the environment in which the
breakpoint occurred. When debugging Pascal and C, the
subroutines which are active can be displayed as a calling
sequence backtrace, and the debugger can be directed to
rhange its current symbol naming environment to any of
those which are active. Execution of the target program
ran be continued or terminated from a breakpoint, possibly
after break and/or trace points are set and/or cleared.

Low level operations for displaying and setting memory
loeations by address are also available. Break and trace
points may also be set at arbitrary addresses, although the
debugger offers a more limited set of functions at these
breakpoints if they occur in code which falls outside of the
normal breakpointing areas.

The debugger is entirely driven by tables of information
which describe the program being debugged. Thus, the
executable image of a target program is identical whether
or not it is run under the symbolic debugger. This allows
for debugging sessions after programs are placed into pro­
duction, eliminates problems related to finding program
behavior which comes and goes with minor changes in the
program or in the code generated for it, and allows for full
speed execution under the debugger.

3/10/86 1-1

Introduction Debugger

Debugger tables are created under control of compiler
option flags which can be toggled on and off as desired.
The size of unlinked object code will be larger based on the
amount of symbolic information included. The linking step
of the compile can be directed to consolidate the debugging
information from the object files which are being linked
and to place it in a file which is subsequently available for
utilization by the debugger. It is possible to link object files
created from more than one compile and from more than
one source language, some with, and some without sym­
bolic debugging information included. The symbolic
debugger is designed to operate with partial information
and with routines which originate from multiple source
languages.

The command language for the debugger is terse so that an
experienced user can operate it without overly cumbersome
typing. The number of commands has been kept down and
user friendly hints are provided by the system so that users
can develop expertise in operating the debugger quickly.

1-2 3/10/86

SECTION 2
RUNNING THE DEBUGGER

In order to utilize the symbolic debugger, a source program
should be compiled with the debugging flag set, the linker
should create a file of information for the debugger to util­
ize, and the target program should be executed under the
debugger.

2.1 SETTING THE COMPILER DEBUG FLAG

By default, the compilers do not place symbolic information
into the generated unlinked object code. The SYS Pascal,
SVS FORTRAN, and SVS C compilers will insert this
information if they are invoked with the + d command line
option. This option may appear anywhere on the command
line. Alternatively, symbolic information can be turned on
and off on a per procedure basis in each of the languages as
follows:

Pascal

FORTRAN

c

3/10/85

Comment toggle $D + for debugger infor­
mation on, $D- for debugger information
off.

Compiler control line beginning in column
one $DEBUG for debugger information
on, $NODEBUG for debugger information
off.

Compiler control line beginning in column
one #debug for debugger information on,
#nodebug for debugger information off.

2-1

Running the Debugger Debugger

Setting the debugger flag has no effect on the generated
object code except that certain additional tables of informa­
tion are placed into the unlinked object code. This infor­
mation is either consolidated or ignored by the linker, see
below. The executable image produced by a program is
identical regardless of whether or not the debug flag is set
when the program is compiled.

2.2 OBTAINING A DEBUG INFORMA.'1.ION FILE
FROM THE LINKER

On the Motorola 68000 implementation, when creating an
executable program, unlinked object code files (.obj files)
are linked with each other and with appropriate run time
libraries utilizing a linker program .. The linker can be
directed to consolidate all or the debugging information in
the object files it is linking and create, in addition to its
object code output file, another output file containing this
information for later use by the debugger. By convention,
this file will have the file name extension .dbg. Alterna­
tively, the linker may ignore the debugging information in
its input files.

The linker differs among the various environments in
which the SYS languages operate. In most environments
the linker accepts an optional command line argument:

+ sxxx.dbg

in any position on the command line as a directive to create
the information file and name it xxx.dbg. This is the pre­
f erred name for the information file which is to be associ­
ated with an executable program named xxx (with possible
system dependent extension indicating that the file is exe­
cutable). If the linker is operated in prompting mode, the
operation of the various linkers differs somewhat. Some of
the linkers prompt:

Symbol file -

2-2 3/10/86

Debugger Running the Debugger

To this prompt, a plain carriage return indicates that no
debugger information file is to be created. Any other input
is considered a directive to create a debugger information
file with the supplied name. The linker will supply the .dbg
file name suffix if it is not specified in the file name. The
other linkers do not prompt for the name of the debugger
information file. These linkers accept the input:

+ sxxx.dbg

to any prompt to direct the linker to create an information
file with the indicated name. No automatic coercion of the
file name suffix is done by these linkers. This input can be
specified to any prompt with identical results, regardless of
whether input files have or have not already been pro­
cessed.

On the National Semiconductor Series 32000, the linker
automatically produces a .dbg file if the debug option. had
been set during the compile being processed. These .dbg
files may be concatenated (for example using cat on UNIX)
to create a debugger information file containing information
from multiple compiles for use by the debugger.

Having created the .dbg debugger information file, the
remaining steps of the compile should be carried out,
resulting ultimately in an executable image associated with
this symbolic information. It is essential that when debug­
ging a given program, the matching .dbg file be provided to
the debugger, since the symbolic information will otherwise
not match the program being debugged. Under some
operating systems, the debugger will issue a warning if
incompatible symbolic and executable files are utilized, but
under some environments it is not possible to detect
mismatches.

The debugger can be used on programs with subroutines
from non SVS languages. Of course, the debugger will not
have any symbolic information about the portions of the
program which are not compiled under SVS languages.

3/10/86 2-3

Running the Debugger Debugger

Note: when performing the final link under UNIX like
operating systems, subroutines provided from non SVS
languages should be linked into the image following the
output of the SVS linker. If too much code is linked
before the output of the SVS linker, the debugger may not
be able to find the target image for debugging purposes.

2.3 DEBUGGlNG A TARGET PROGRAM

The debugger itself is a program named dbg (with appropri­
ate file name extensions in some environments to indicate
that the file is executable). In order to debug a program
named 'x' (possibly with file name extension as above) and
command line arguments to the program being debugged
pl, p2, ... pn, use the command:

dbg [-sxxx [.dbg] J x pl p2 ... pn

The optional -sxxx (or -sxxx.dbg) instructs the debugger to
utilize the file xxx.dbg as the debugger information file. If
this argument is omitted, the debugger will look for a file
named x.dbg as the debugger information file. In certain
environments, command line arguments are separated by
commas.

Under operating systems which allow redirection of stan­
dard input and standard output, the debugger can cause a
progran1 to be executed with either, or both, redirected.
This is accomplished by invoking the debugger with the
-iinfile (input) or -ooutfile (output) options as follows:

dbg [-sxxx[.dbg]J [-iinfile] [-ooutfile] x pl p2 ... pn

The -s, -i, and -o options may be specified in any order, but
all must precede the program name and its command line
arguments. An example of invoking the debugger with
input redirected is:

dbg -idatafile processdata processdatacommandlineargument

2-4 3/10/86

Debugger Running the Debugger

The debugger will read the .dbg file and prepare the target
program for execution. When this has occurred, the
debugger prompt (a minus sign) appears and debugger
command~. as described below, may be entered. At this
point, the target program is not broken inside any environ­
ment, so no variables are available to be examined or set
(see discussion of environments below). From this point
the program may be run with break and/or trace points set,
and various of the debugger tables may be examined.

Running the target program after setting a break point at
the entry of the main program (named in the program
statement in Pascal or FORTRAN, and named mam or
_main in C) will bring the debugger into a meaningful
environment from which static (global) data areas are
accessible.

3/10/86 .2-5

SEC110N3
DEBUGGER CONCEP'IS AND COM1\1ANDS

3.1 CONCEPTS AND DEFINITIONS

Several concepts and definitions used in explaining
debugger commands are listed below ..

ENVIRONMENTS

When interacting with the debugger, the program is, in
general, suspended at a break point. If this break point is
within the bounds of a subroutine (used throughout to
mean any procedure, function, or main program body), the.
symbolic names which are available to the target program
within that subroutine are the current naming environment.
The interpretation of data is based on the attributes of the
name in that scope.

This concept also applies to static (global) data areas, in
that the interpretation of static data areas may depend on
the common and/or equivalence statements in the broken
subroutine, whether or not the subroutine is within a Pas­
cal unit, and whether or not the current environment
belongs to a subroutine written in the ·c language.

At times the debugger is suspended outside of any environ­
ment. This is the case immediately after the debugging ses­
sion is initiated. It also occurs when a breakpoint is
encountered at an address which precedes the completion
of the entry code or follows the start of the exit code of a
subroutine, or at a breakpoint in a routine which was not
compiled with the debugging option enabled. In these
cases, no variables may be accessed symbolically.

The debugger allows display and manipulation of the
current environment from certain breakpoints. In cases
where it is possible, the debugger will allow interactive
changing of the current environment to the environment
from which the current subroutine was called, potentially

3/10/86 3-1

Concepts and Commands Debugger

all the way back to the main program. As the current
environment is changed, the debugger's perception of the
data areas will reflect the local declarations and source
language of the new environment.

Naming conventions which are altered by the scope of Pas­
cal WITII statements do not affect the naming conventions
used by the debugger.

BREAKPOINTS

Under interactive control, certain addresses in the target
program's executable object code can be designated break­
points. In the event that such an address is executed,
except as noted below, control is returned to the debugger
command level for further interactive debugging. The
address must correspond to the first word of a 68000
instruction, although the debugger will automatically insure
this for entry, exit, and statement breaks (i.e. all break­
points except those set using the arbitrary address break­
point specification).

The debugger will allow only one breakpoint per address,
regardless of whether that address can be described in
several different ways. For example, a given address which
is the entry address of a subroutine is usually also the
address of the first statement of that subroutine. In the
case of null statements, several statements may begin at the
same address. The debugger designates each breakpoint in
all of the appropriate ways, relative to entries, exits, line
numbers, and actual addresses, regardless of which method
was utilized to set the particular breakpoint. In the event
that an attempt is made to set more than one breakpoint on
an address, the debugger will describe the situation and
show the result of the conflicting commands.

An address on which a breakpoint is set can have skip
counts associated with it, such that not every execution of
the breakpoint returns control to the debugger. This is
further described in the section which explains the break­
point command.

3-2 3/10/86

Debugger Concepts and Commands

TRACEPOINTS

As an alternative to setting a breakpoint on a given
address, a tracepoint may be set. When executed, a tra­
cepoint causes an informative message to be displayed, but,
unlike the breakpoint, th.e program continues its execution.
Tracepoints also may have skip counts which control the
frequency with which the trace message is displayed.

In the event that both a trace and break are set on the
same address, the breakpoint takes precedence, although
the tracepoint becomes active again if the breakpoint is
cleared. As described under breakpoints, it is the address
which has the tracepoint properties, regardless of which
method was used to create the tracepoint. It is also the
address which has the skip count properties, so it is not
possible to set the counts independently for a tracepoint
and a breakpoint which are associated with the same
address.

PNAME

A pname refers to any object code entry point that is
resolved by the SVS linker. In general they are procedure,
function or subroutine names. They can also refer t.o
external or global entry points in assembly language
modules.

A pname can be either a user name or a link name. A user
name is the name of a procedure as it appears in a user's
source program. The debugger treats the case of user
names in the same manner that each programming
language does. That is, user names ignore case when com­
pared with Pascal or FORTRAN entry points, but preserve
case for C. There can be several instances of the same user
name in a single executable program, due to nested scopes,
static functions, etc.

A pname can also be a link name, i.e. the name used by
the linker to resolve code entry points. Link names come
in two forms: local and global. Local link names are of the
form dollar sign ($) followed by digits, as in "$12000". All
others are global.

3/10/86 3-3

Debugger Concepts and Commands

3.2 DEBUGGER COMMANDS

The debugger prompt character is the minus sign. To this
prompt, any of the debugger commands may be entered,
although the system may not accept certain commands in
inappropriate environments.

In general, blanks (spaces) are significant in debugger com­
mands, but not necessary unless omission of the blank
causes the command to have a different interpretation.
Thus, the debugger commands

B32 EF

and

B32EF

(see breakpoint command below) are both acceptable to the
debugger and are equivalent. The debugger would not
accept

B32EF

since the syntax of the break command calls for at most
one numeric value between the B and the E and the blank
creates two such values. Where possible, the debugger
accepts either upper or lower case letters. Exceptions are C
names, link names, and string values, for which case is
significant.

If a partial or incorrect command is encountered, the
debugger responds with a short summary of the commands
available at the point that the error is detected. For exam­
ple, the incomplete command 'B' would generate the line:

?BE BLnnn BX BA

indicating that the debugger was expecting the B to be fol­
lowed by an 'E' for breaking at an entry point, or an 'L'
followed by a line number for the break, and so forth.

3/10/86 3-5

Concepts and Commands Debugger

.R-RUN

Control is transferred to the target program by issuing the
run command to the debugger. It is simply:

R

The program executes as if it were not running under the
debugger until a breakpoint is encountered, with the excep­
tion that messages are printed on each instance of execu­
tion at a tracepoint. When a breakpoint is encountered,
control is returned to the debugger for further interactive
command dialog. If the program terminates normally, an
appropriate message is printed. In most instances in which
fatal run time errors are detected in the program control
returns to the debugger, although the debugger will, in
general, not allow the program to be restarted in this situa­
tion.

Q-QUIT

A debugging session may be terminated by entering the
quit command:

Q

This command prompts for confirmation:

Exit program (Y /N) ?

If the user really wishes to terminate the debugging ses­
sion, enter a Y, followed by a earriage return. Any other
input to the confirmation request cancels the quit com­
mand, and returns to the debugger for continuation of the
debugging session.

3-6 3/10/86

Debugger Concept.'3 and Commands

B -BREAKPOINTS

The breakpoint command is used to set new breakpoints in
a program being debugged. The general form of a break
point command to set a controlled breakpoint is:

B [nnn[*ll & s pname
{Lnnn}

The general form of a break point command to set an
uncontrolled breakpoint (set by address) is:

B [nnn[*ll A {pname [+ hexconstantl}
{hex constant [+ pname }

The optional integer count which follows the B command,
nnn, is interpreted to mean "break after nnn instances of
the specified breakpoint have been encountered". If omit­
ted, the effect is as if a count of 1 were specified. If the
asterisk follows the count, the breakpoint is activated on
every nnn'th encounter. If no asterisk is specified, the first
nnn encounters of the breakpoint are skipped, but each
subsequent encounter causes a break.

The pname in the command is the entry point name of the
subroutine relative to which the breakpoint is set. The
breakpoint may be set at the entry (E) of the subroutine,
the exit (X) of the subroutine, or before the nnn statement
(Lnnn) of the subroutine. Compiler generated program
listings are very useful in determining the statement
number of each source code line in the target program.

A given subroutine sets up its run time conditions (stack
frame creation, code to copy value parameters, initialization
of register pointers, etc.) in some code at the start of the
routine in what is commonly called the subroutine entry
code. Breaking on entry to a subroutine occurs after the
run time conditions for the routine have been set up, which
is the earliest that the environment of the subroutine is
meaningful. Similarly, breaking on exit occurs just before
the subroutines run time conditions are unwound. As a

3/10/86 3-7

Concepts and Commands Debugger

consequence of this, it is only possible to break on entry
and/or exit of a subroutine which was compiled with the
debugging option on, since the debugger requires informa­
tion as to the length of the subroutine entry and exit code
in addition to the simple address at which the entry point
occurs.

In the case of of uncontrolled breakpoints, the pname, if
provided, refers to the address which is the actual start of
the code for the subroutine. The hexconstant is specified
without a leading dollar sign character. If the hexadecimal
address immediately follows the "A", the debugger requires
the constant to begin with a recognizable digit (which may
be provided as a leading zero if necessary) to prevent ambi­
guity with the syntax of pname's. ·

Note that using uncontrolled breakpoints, any address may
be specified and it is the user's responsibility to insure that
the breakpoint is set at an address which is the first byte of
an actual instruction. An incorrectly placed uncontrolled
breakpoint will usually result in disaster!

T-TRACEPOINTS

The tracepoint command is used to set new tracepoints in a
program being debugged. The general form to set a con­
trolled tracepoint is:

T [nnn[*]]

3-8

{E }
{X }
{Lnnn}

pname

3/10/86

Debugger Concepts and Commands

The general form of a trace point command to set an
uncontrolled tracepoint (set by address) is:

T [nnn[*Jl A {pname [+ hexconstantl}
{hexconstant [+ pname }

The tracepoint command is exactly the same as the break­
point command except that the effect of encountering a tra­
cepoint while executing the target program is to print a
message, and then to continue execution without breaking.
The debugger allows breakpoints and tracepoints to be set
to occur upon encountering the same address, although in
this case the tracepoint is inactive until the breakpoint is
cleared.

Like breakpoints, tracepoints must only be associated with
the first byte of an actual instruction.

As explained in more detail in the concepts section of this
manual, the counts are associated with the address on
which the break or trace point occurs. Thus, it is not possi­
ble to set both break and trace points on the same address
with differing skip counts.

C - CLEARING BREAK AND TRACE POINTS

The debugger command to clear a breakpoint specifying the
address by entry, exit, and line number is:

C [BJ [nnn[*]]
{E }
{X } pname
{Lnnn}

3/10/86 3-9

Concepts and Commands Debugger

Alternatively, a breakpoint may be cleared by ref erring to
the address directly as follows:

c [BJ [nnn[*ll A {pname [+ hex constant]}
{hexconstant [+ pname }

To clear tracepoints, the following commands are accepted:

C T [nnn[*]]

or

C T [nnn[*]] A

{E }
{X } pname
{Lnnn}

{pname r+ hexconstantl}
{hex constant [+ pnaine }

The optional count and asterisk is allowed by the debugger
for consistency with the breakpoint and tracepoint com­
mand but is ignored by the clear break and trace point
command. The optional B in the clear breakpoint com­
mand is provided for consistency with the clear tracepoint
command and is ignored.

A break or trace point is associated with an address. The
break or trace point can be cleared using any of the avail­
able methods of specifying the address, regardless of which
description of the address was used when the break or trace
point was set.

In the event that both a break and trace point are set on
the same address, clearing one leaves the other set.

3-10 3/10/86

Debugger Concepts and Commands

Short commands are accepted by .the debugger to clear all
break points, all trace points, or all break and trace points.
These commands are:

CB* - Clear all break points.
CT* - Clear all trace points.
C* - Clear all break and trace points.

P -PRINT THE VALUE OF A VARIABLE

The print command is used to print either the value of a
single variable, or the value of all variables in the present
most local scope. The general form is:

P [var)

A solitary P prints the current value of alf printable vari­
ables in the present local scope. If a variable name follows,
then only the value of that variable is printed. Normally
the only values that can be printed are simple variables.
Structured values such as arrays, records, unions, et.c. can­
not be printed, but a single element of an array, field of a
record, member of a union, et.c. can be printed by using the
normal syntax expected in the appropriate programming
language to access subportions of structured types. Using
the solitary P does not print all of the variables available in
the environment, only those is the most local scope.

In the event that the target program is suspended outside
of a known environment (see the concepts section of this
manual), it is not possible to print variables symbolically.

3/10/86 3-11

Concepts and Commands Debugger

S-SETmEVALUEOF A VARIABLE

Values of variables in the current environment can be set
interactively using the debugger's S command. Its syntax
is:

S var [=, :=] value

The debugger accepts either assignment operator between
the variable to be set and the value it is to be set to, but
does not require' that an operator be present. The variable
may be simple, or include indexing (by constant indices),
field reference, indirection, etc. The value assigned to the
variable is expected to be an integer or real constant, possi­
bly preceded by a minus sign, or a string constant. The
value must be appropriate for assignment into the variable.
This implies that the variable, considered with all of its
qualifications, must not be of a structured type. T.he possi­
ble variable type, value type combinations accepted are
summarized in the following table:

3-12 3/10/86

Debugger Concepts and Commands

Language Var T,ype Value T,ype Not.es

Pascal inte_g_er in~er

scalar integer First=O,
next=l ...

real floating-point Includes double
or inte_g_er

Boolean integer O=FALSE,
or TRUE l=TRUE
or FALSE

char strinK len_g_th must be 1
strin_g_ striI!K_
pckd array string Trailing blank
of char filled

pointer integer or NIL

FORTRAN inte_g_er inte_g_er
real floating-point incl. double

or integer _])recision
logical integer 0=.FALSE.,

or TRUE 1=.TRUE
or FALSE

char string Trailing blank
filled

c inte_g_er inte_g_er

J.n char strin_g_
('"

float floatinkQ.oint includes double
_l)_ointer inte_g_er or NIL

In the event that the target program is suspended outside
of a known environment (see the concepts section of this
manual), it is not possible to set variables symbolically.

3/10/86 3-13

Concepts and Commands Debugger

M -MEMORY SET/PRINT

In addition to symbolic access to data areas, the debugger
also allows the low level operations of printing and setting
memory locations by address. On systems in which the
debugger operates in a different address space than the tar­
get program, the address referred to will be interpreted in
the target program's address space. All addresses and
values input to or printed by the memory commands are in
hexadecimal. The commands are:

MP xxx [xxx]

MS xxx xxx [xxx]

The memory print command expects the initial address to
be specified. This is optionally followed by another hexade­
cimal number which is interpreted as the number of bytes
to print if it is less than or equal to the initial address or as
the final address to print if it is greater than the initial
address. In the absence of a length, 16 bytes of memory
are displayed.

The memory set command expects an initial address to be
followed by one, or more, values to be placed into succes­
sive locations beginning at that address. Each value will be
interpreted as a single byte, a pair of bytes, or four bytes,
depending on the number of hex digits specified in the
value. That is, one or two hex digits sets a single byte, 3 or
4 sets two bytes, and 5 or more sets 4 bytes. If more than
8 contiguous hex digits are specified only the last 8 are
used.

3-14 3/10/86

Debugger Concepts and Commands

W-WALKBACK: PRINT CALLING SEQUENCE

When a program is suspended at a breakpoint, it is often
possible to determine where the current subroutine was
called from, where that calling context was called from, etc.
Where the informatfon is available, this calling sequence
walkback can be printed by the debugger using the follow­
ing command:

W [nnn]

The optional integer argument limits the number of levels
back that the debugger will show. The default number of
levels shown is three. In the event that the debugger can
not show the walkback, an appropriate message is printed.
In some contexts the debugger attempts to walkback
beyond the main program, resulting in an indication of an
environment for which no information is known.

U -MOVE ENVIRONMENT UP

If a target program is suspended at a breakpoint for which
it is possible to walk back through the calling environ­
ments, it is also possible to change the current environment
of the debugger to be one of those calling environments.
By doing this, it is possible to operate on the state of the
target program in these other environments, including
accessing data structures which are not visible in the
environment of the breakpoint itself. Moving up an
environment corresponds to changing to the calling context
of the current environment. The debugger command to do
this is:

U [nnn]

The optional count allows moving up through more than
one environment at a time. Note: if the target program is
restarted using the run command, execution continues
from the breakpoint's environment, regardless of what
environment has been set as current for the debugger.

3/10/86 3-15

Debugger Concepts and Commands

L E -List Entry Point Attribut.es

LE [pname]

If a pname is specified, detailed information is displayed
about the particular entry point. If pname is omitted, all
entry point names and their attributes are shown (except
those for those names beginning with the percent character
which is heavily utilized by the run time libraries). Attri­
butes always include the address at which the entry point is
located and, where known by 'the debugger, the language
which generated the entry point. For assembly and unk­
nown languages, ? ? ? is displayed as the language. In the
event that the pname specified is the percent character, all
entry points are displayed, including those which begin with
the percent character.

L V-List Variable Attribut.es

L Vvar

This command may only be applied to variables which are
accessible in the current environment. Attributes of vari­
ables include their type or type number and some indica­
tion of their storage location.

L F -List Record Fields / Struct or Union Members

L F var

For record variables which are accessible in the current
environment, this command lists information relating to
each field and its addressing attributes.

3/10/86 3-17

Concepts and Commands Debugger.

L T-List Type Description

LT [nnn]

If the optional integer is omitted, information is displayed
about all numbered types. Ir the optional integer is
specified, the debugger shows information only about the
type with that number.

L S -List Segmen1B Attributes

LS

A list of the program's segments and their attributes is
displayed. This information is primarily meaningful under
operating systems for which segments are usefully managed
by programmers.

· L D -List Data.Areas Attributes

LD

A list of the program's static data areas and their attribut.es
is displayed.

LR-List Regist.ers Values

LR

This command displays the contents of the registers in the
current environment whose values can be determined.

3-18 3/10/86

Debugger Concepts and Commands

< - TAKE DEBUGGER COMMANDS FROM A FILE

A command of the form:

< filename

is interpreted by the debugger as a directive to accept com­
mands from the named file instead of from the standard
input. When the file has been fully processed, the
debugger returns to the interactive debugging mode. Util­
izing this feature, it is possible ·to conveniently set up break
and trace points for repeated sessions with the debugger,
although the commands accepted from the file are not lim­
ited to these commands.

> - SA VE BREAK AND TRACE POINTS IN A FILE

A command of the form:

>filename

creates a file with the current break and trace points. The
file is suitable for reloading using the < command
described above. The break and trace points are saved by
address (as opposed to by entry, exit, or line number) so
that care should be taken if the saved break and trace
points are reloaded to debug binaries which are not identi­
cal to the one which created the command file.

The debugger places count directives into the created file
which correspond approximately, but not always perfectly,
to the counts associated with the break and trace points.

3/10/86 3-19

Concepts and Commands

! -EXECU'IE OPERA.TING SYS'IEM SHELL
COMMAND

Debugger

Under certain operating systems, the debugger will pass
commands to the operating system shell for execution.
The form of the command is:

!anything, possibly including blanks and delimiters

The argument string is passed directly on without any
interpretation or changes.

I -EXECU'IE A SINGLE INS1RUC'l10N

Under certain operating systems, programs can be single
stepped' on an instruction by instruction basis. Debuggers
operating under those conditions accept the following com­
mand:

I [nnn] [q]

This instructs the debugger to execute nnn machine
instructions (one instruction if nnn omitted) and then
return to the debugger as if a breakpoint had occurred.
The optional quiet (q) argument is used to silence the
default output that the debugger will produce on each
instruction if the quiet option is omitted.

This debugger command is not implemented on any system
in which trap instructions in the operating system interfaces
accept parameters from the instruction stream (including
UNIX and UNIX lookalike operating environments).

3-20 3/10/86

Debugger Concepts and Commands

Notes: Using this instruction execution mode results in
extremely slow target program execution. Also, using this
mode it is possible to get the debugger breakpointed in pro­
gram sections which were not compiled with the debug
option set, are part of the language's run time system, or
even inside the operating system. Potentially running in
single instruction mode, code located in ROM and/or trap
instructions with local parameter and return conventions
may be encountered, causing the instruction mode to fail,
possibly with ungracious behavior. The instruction mode
should not be considered a supported feature, although it
does sometimes provide a useful and working function.

N-EXECUTE NEXT STATEMENT

Under certain operating systems, it is possible to instruct
the debugger to operate in single instruction mode until the
next statement boundary is encountered. The command
for this is:

N [nnn]

The optional count specifies the number of statements
(default one) to process before the debugger breakpoints.

All of the notes mentioned in the section on single instruc­
tion execution apply to the next statement command.

3/10/86 3-21

SECTION 4
.DBG FILE FORMAT

AH symbolic:: information required by the SVS debugger is
contained in an auxiliary file. This file is created, upon
request, by the linker and is given a suffix .dbg. The exe­
cutable object code generated by SVS Pascal, FORTRAN
and C compilers is not altered by the setting of the debug
option. Thus, a production program can be debugged
without recompilation if the .dbg file is saved.

A .dbg file consists of 3 major sections: link map informa­
tion, variabiP and type definitions, and statement beginning
offsets in the object code. Each major section is created by
a different component in the SVS compilation system. The
link map information is output by the linker, variable and
type definitions are generated by the language front end,
and the object code statement offset tables originate in the
code generator.

Implementations on the National Semiconductor Series
32000 may produce a separate .dbg file from each run of
the linker. These files may be concatenated in order to
create a .dbg file for the program. This section describes
one such file, although the debugger accepts file formats
which are repeated instances of the following format.

4.1 'DIE .DBG HEADER

The first 16 bytes of a .dbg file are the header. The con­
tents of the header depends ttpon the target operating sys­
tem.

3/10/86 4-1

.D BG File Format Debugger

4.2 THE .DBG LINK MAP

The first section of a .dbg file describes the link map of the
associated program. This section contains three subsec­
tions: segment definitions, link name entry points, and data
area names.

The form .of the segment definition table is:

NumSage SQgmantl Ne.me S1zel Addrl

1 2 3

NumSegs

SegmentK Name

SizeK

AddrK

18

SQgmcmtN nama I S1zaN AddrN I
16N+2

The number of segments

The 8 character name of segment K

The size in bytes of segment K

The load address of segment K

Several of the various tables which follow contain VNarnes.
This is short for variable Ie.ngth names.

The format of a Vname is

Ne.me •••

1

Len A byte containing the number if characters in thi::
name.

Name... The actual name. If Len is zero, there are n<J
bytes in this field.

4-2 3/10/81

Debugger .DBG File Format

In addition, link name entries are used. They are of the
form:

[LinkID I VName ••• 1.

1 2 3 4

LinkID A two byte integer interpreted as follows:

If negative, the following name is to be used for
linking purposes.

Otherwise, the value of the integer is to be used
for linking purposes and the following name is
the user name.

VName The name of this item, in VName format.

The form of the entry point table is:

NEntrye [LtnkNamel ••• [Addrl[••• [LmkNameN ••• [AddrN

2 3

NEntrys The num her of entry points.

LinkNameK The link name entry (LinkID, Len, Name)
for entry pc>int K.

AddrK

3/10/86

The address of entry point K. The first byte
is the segment number, and the value in the
last three bytes is the segment relative oft' set.

4-3

.DBG File Format Debugger

The form of the data area table is:

I NoDatas DataNamel ••• S1zel Addrl ·

1 2 3

DataNamgN S1zgN I· AddrN

The number of data areas. NoDatas

DataNameK The link name entry (LinkID, Len, Name)
of data area K.

SizeK

AddrK

The size in bytes of data area K.

The load address of data area K.

4.3 VARIABLE AND TYPE DESCRIPTIONS

The general form of this section is:

I ProcQdurQ 1' s In-F~ I t Procgdurg N' s In-f'o , , FF" I
Th.at is, it is a list of subsections, each d~scribing the types
and variables of a single procedqre, terminated by a single
byte of $_fF. Each' pi:oce~ure's information is in the form:

I Lan I Vgr I Sub I Lgu I LmkNamlil... OutlilrLnkNamQ ••• ,

1 2 3 4 s

... 1 UserName. . . Typesl 00 00 Variables 1110

4-4 3/10/86

Debug~er

Lan

Ver

Sub

Lev

LinkName

.DBG File Format

The language in which this procedure is
written.

0 =Pascal
1 =FORTRAN
2 =BASIC
3=C

The language version number.

The language sub-version number.

The procedure's static level.

The link name entry (LinkID, Len, Name)
of this procedure.

OuterLnkname The link name entry (LinkID, Len, Name)
of an enclosing procedure. If none exists,
this field's length is zero.

UserName

Types

Variables

The user name of this procedure. It is in
VName format.

A description of any types defined by this
procedure. Its format is given below.

A list of any locally defined variables. An
extra terminating zero byte (Opt 00) is
appended to the variables if needed to
make the entire record even in length.
The format for variables is given below.

TYPE DF8CRlPTORS

The form of a type descriptor is:

TypaNo. Kind

1 2 3 7?

3/10/86 4-5

.DBG File Format Debugger

TypeNo. A 2 byte positive integer that is used to refer to
this specific type.

Kind A byte containing a packed flag (bit 4) and a vari­
ant tag (bits 0 .. 3). The format of the following
information depends upon the value of the tag.

SCALAR:

fi!ll!I Max V&I

3 4 5

SUBRANGE:

01

4 5 6 9 10 13

POINTER:

IZl2 Po1ntarTo

4 5

SET:

4 5

4-6 3/10/86

Debugger .DBG File Format

ARRAY:

04 IndexedBy ArrayO.f ~cl R
___ P_c_k_d_In_f_o_~IS

3 5 6 7 8 4

Pckdlnfo Signed bit is 1 if signed, bits 0 .. 3 are size
in bits of element. This field is only
present for packed arrays.

STRING:

3 4

FILE:

106 I r1 IQOf I
3 4 5

RECORD:

I ~ I Record Size I r1eldl I r1e ldN I 00

3 4 7 8 77

and the form of a Field descriptor is:

NLan N A M E: • • • I r I dType I O·Ffset I
~I LeftB1t NumB1ts g

Only Present 1f Packed

3/10/86 4-7

.DBG File Format Debugger

Note: If the sign bit of Offset is off, then offset is two
bytes in length, otherwise it is 4 bytes long, and the
sign bit is ignored. FieldNarile is in the form of a
VName.

CHARACTER:

, 09 , langth

1 3

FORTRAN ARRAY:

I OA I D1 ms I ArrayOf

1 2 3 4

... I Flagel I LoBoundll H1Boundll ElemS1zal

5 6. 8 10 13 14 17

FlagsK 00000000 = Constant Lo, Hi and ElSz
000000*1 =Lo computed, at LoBoundK(A6)
0000001* =Hi computed, at HiBoundK(A6)

If either Lo or Hi is computed, then ElemSize
is also computed, at ElemSizeK(A6)

Predefined type numbers are:

-1: integer, 1 byte
-2: integer, 2 bytes
-3: integer, 4 bytes
-4: integer, 1 byte, unsigned
-5: integer, 2 bytes, unsigned
-6: integer, 4 bytes, unsigned
-7: character, 1 byte
-8: character, 2 bytes

4-8 3/10/86

De Lugger .D BC File Format

-!.J: single preeision floating point (4 b~'tcs)
-10: double precision floating point (8 bytes)
-11: logical, l Lyte
-12: logical, 2 bytes
-13: logical, 4 bytes
-14: file;
-15: complex

VARIABLE DESCRIPTORS

The form of a variable descriptor is:

I VarName ••• , vtype locat1on I
1 2

VarName A VName giving the variable's name.

vtype The type number of this variable, as above.

location A description of where the variable is stored, as
described below:

REGISTER RELATIVE:

R0 O.ffset

R 0 The upper 4 bits specify a register. The signed 2
byte Off set is added to the contents of th~t register
to determine the variables address. The registers
specified are:

68000: 0 .. 7 is DO .. D7, 8 .. 15 is AO .. A7

32000: 0 .. 7 is RO .. R7, 13 is FP, 14 is SB

3/10/86 4-9

.DBG File Format Debugger

REGISTER RELATIVE INDIRECT:

I R1 I ONset

The fields are the same as R 0 above, but the location
so specified contains a 4 byte pointer to the actual loca­
tion of the variable.

REGISTER:

eJ2

0 2 The upper 4 bits specify a register that contains the
value of the variable. The registers specified are:

68000: 0 .. 7 is DO .. D7, 8 .. 15 is AO .. A7

32000: 0 .. 7 is RO .. R7, 8 .. 15 is FO .. F7

REGISTER INDIRECT:

03

The register specified is as in 2 above, but the value of
the register is the address of the variable.

4-10 3/10j86

Debugger .D BG File Format

EXTERNAL DATA AREA:

I 04 I DataName ... I OffsGt I
DataNameA link name entry (LinkID, Len, Name) of an

external data area.

Offset A 4 byte off set in the above data area.

REGISTER RELATIVE LONG:

I RB I OHset

The fields are the same as R 0 above, but the off set is
4 bytes in length.

REGISTER RELATIVE INDIRECT LONG:

[R7 I OHsat

The fields are the save as R 1 above, but the offset if .4
bytes in length.

3/10/86 4-11

.DBG File Format Debugger

4.4 STATEMENT OFFSETS DESCRIPTIONS

NumEntrys Reglnfo I

... , L, nkNamr;i... EntryLoc I Ex 1 tLoc *NUmEntrys

... 1 NumStmt StmtLoc 1 StmtLoc 2 I ... I StmtLoc N

Reginfo Describes which registers are saved by this
routine, and where, if known. See below for a
detailed description.

Linkname A link name entry (LinkID, Len, Name).

Stmtloc N A list of first instruction offsets for each state­
ment. They are stored as deltas from previ­
ous statement. The first one is a delta from
the first entry point for this subroutine.

The form of the register save information is. one of the fol­
lowing:

00

00 Indicates no register save information is available.

I 01 I DRegMaskl ARegMask SaveLoc

07 D0 A7 A0

·I-I~ 3/10/86

Debugger

01

.D BG File Format

In<licateR M68000 regiRter save information is
present.

DRegMask A set bit corresponds to a saved D register.

ARegMask A set bit corresponds to a saved A register.

SaveLoc The A6 relative location of the saved values.

I 02 I RRagMaskl F'RegMask I SaveLoc

02

R7 R0 F'7 +'0

Indicates N32000 register save information is
present.

RRegMask A set bit corresponds to a saved R register.

FRegMask A set bit corresponds to a saved F register.

SaveLoc The FP relative location of the saved values.

3/J.0/86 4-13

