
Library Development
Guide

October 1, 1989

PIN: 900-00690 Rev. A

Valid Logic Systems, Incorporated
2820 Orchard Parkway

San Jose, California 95134
(408) 432-9400 Telex 371 9004

FAX (408) 432-9430

Copyright © 1989 Valid Logic Systems, Incorporated

This document contains confidential proprietary information which is not to be
disclosed to unauthorized persons without the prior written consent of an officer of
Valid Logic Systems, Incorporated.

The copyright notice appearing above is included to provide statutory protection in
the event of unauthorized or unintentional public disclosure.

While every attempt has been made to keep the information in this document as
accurate and as current as possible, Valid makes no warranty, expressed or im­
plied, with regard to the information contained herein, including, but not limited
to, the implied warranties of merchantability and fitness for any particular applica­
tion. Valid further assumes no responsibility for any errors that may appear within
this document or for any damages, direct or indirect, that may result from using
this document.

ValidGED, ValidPACKAGER, ValidCOMPILER, ValidSIM, ValidTIME, and Transcribe are
trademarks of Valid Logic Systems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

VAX, DECstation, VMS, and UL TRIX are trademarks of Digital Equipment Corporation.

Sun Workstation and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

ii 10/1/89

MANUAL REVISION HISTORY

Rev Date Software Release Reason for Change

A 10-1-89 Library Release 9.0 Initial release.

10/1/89 iii

10/1/89

Preface

T he Library Development Guide describes creating and
maintaining libraries. This guide is intended for use by
the System Librarian and/or Library Developer. The Li­
brary Developer is responsible for maintaining and
modifying all libraries and creating new libraries. Valid
recommends that the Library Developer have the follow­
ing qualifications:

• Knowledge of a system text editor

• Understanding of SCALD language
concepts

• Operating knowledge of any Valid
application necessary to create required
component models and the ability to
interpret the application results:

OED

ValidpACKAGER
ValidcOMPILER
ValidsIM
ValidTIME
Transcribe

v

vi

Valid recommends that you give some consideration to
library development decisions that are pertinent to your
site requirements. Some of the issues you should
resolve:

• Are you developing mil-spec or standard
components?

• What body standards should you follow?

• What are the minimum test procedures for a
completed component?

• What is the minimum size for a body or the
text included with a body?

• Are you using ANSI or commercial
components?

• What tools are you currently using? What
tools will you be using in the future: Timing
Verifier, Simulator? Should you save time by
creating models now for tools you might use
in the future?

• Will users be developing their own compo­
nents or will the Librarian be the only devel­
oper? Will the Librarian test user-developed
components?

The standards used in this manual are for commercial
components. If you are building ANSI library compo­
nents, you should follow the standards designed for
ANSI components.

10/1/89

10/1/89

Several Valid manuals are helpful during the library de­
velopment process. Valid recommends that the Library
Developer have access to the following documentation:

• Library Development Guide

• Library Reference Manual

• ValidcoMPILER Reference Manual

• ValidpACKAGER Reference Manual

• ValidsIM Reference Manual

• ValidTIME Reference Manual

• SCALD Language Reference Manual

• Tutorial I: Logic Design

• Tutorial IT: Using your Validation Designer

vii

The Library Development Manual covers the following
topics:

Section 1: Library conventions and syntax issues;
library organization; library maintenance.

Section 2: Creating library components.

Section 3: Creating the physical model.

Section 4: Creating the simulation model.

Section 5: Creating the timing model.

Section 6: Creating support components.

Section 7: Testing a new library.

Appendix A: Text file method of creating a library
drawing.

Appendix B: Changes in the library drawing method.

viii 1 0/1/89

Contents

Table of Contents

Library Fundamentals 1-1
The Library Development Process 1-2
Library Conventions and Syntax 1-3

Conventions 1-3
Signal Name Syntax 1-3

Library Organization 1-5
The Library Directory 1-5
Individual Libraries 1-7
The Master Library File 1-9
Library Components 1-11
Component Versions 1-14

Library Maintenance 1-17
Operating System Considerations 1-17
Maintaining Libraries on a Foreign Host 1-19

Component Creation 2-1
Basic Procedure (Checklist) 2-2
Creating A Library 2-3
Creating a New Component Drawing 2-6

Editing the .BODY Drawing 2-6
Moving the Body Name 2-8

Creating the Body Shape 2-9
Drawing Pins 2-11

Pass-through Pins 2-13
Bubbled Pins 2-15

Adding Pin Names 2-16
Adding Properties to Pin Names 2-17

Annotating Bodies 2-19

10/1/89 ix

Contents

Attaching Properties to the Body 2-21
NEEDS_NO_SIZE Property. 2-23
HAS_FIXED_SIZE Property. 2-24
Invisible Properties 2-25
BUBBLE_GROUP Property 2-26
BUBBLED Property. 2-29

Completing the Body Drawing 2-31
Building Other Body Versions. 2-32

Vectored Components 2-32
Sizeable Components 2-34

Pin Names for Sizeable Components 2-36
Modifying Existing Components. 2-38

The Smash Command 2-38
The Diagram Command . 2-40

Completing a Component 2-41

The Physical Model. .. 3-1
Creating the .PART Drawing
Modifying an Existing .PART Drawing
Creating the Physical Model: Basic Procedure (Checklist)
Creating the Library Drawing
Adding Body Properties

FAMILY Property .
POWER_PINS Property
BODY_TYPE Property '
COST Property
PART_NUMBER Property
PHYS_DES-PREFIX Property

Adding Pin_Number Properties
Pin Number Formats

Single Section Scalar Pins
Single Section Vector Pins
Multiple Section Scalar Pins
Multiple Section Common Pins
Multiple Section Common Vector Pins
Asymmetrical Components

Compact Pin Number Syntax

x

3-2
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-10·
3-10
3-10
3-11
3-13
3-14
3-14
3-16
3-17
3-18
3-19
3-20

1011189

Contents

Adding Other Pin Properties 3-22
OUTPUT_LOAD Property 3-24
INPUT_LOAD Property 3-24
BIDIRECTIONAL Property 3-25
PIN_GROUP Property 3-25
OUTPUT_TYPE Property 3-27

· Load Checking Properties 3-28
NO_LOAD_CHECK Property 3-28
NO_IO_CHECK Property 3-28
ALLOW_CONNECT Property 3-28
UNKNOWN_LOADING Property 3-28

Completing the Library Drawing 3-29
Modifying an Existing Library Drawing 3-29
Creating the Physical Model File 3-30
Archiving Library Drawings 3-31

The Simulation Model 4-1
Defining the Simulation Model 4-2

General Design Rules for Models 4-2
Delay and Pulse Width Standards 4-4

Calculating Delays 4-4
Data-Dependent Delays 4-5
Open Collector Gates 4-5
Pulse Width 4-5
One-Shots 4-6

Creating the Model: Checklist 4-7
The Simulator Primitives 4-10

Bubbled Pins 4-10
Truth Table Abbreviations 4-10
The Logic Gate Primitives 4-11
The Buffer Primitives 4-13
The JK Primitive 4-15
The Latch Primitives 4-16
The Register Primitives 4-19
The Multiplexer Primitives 4-24

10/1/89 xi

Contents

xii

The MEMORY Primitive 4-25
The COUNTER/SHIFT REGISTER Primitive 4-28
The Arithmetic Primitives 4-30
The Timing Checker Primitives. 4-33
Other Primitives 4-38
The FLAG Primitive 4-40
User-coded Primitives 4-40

Simulation Properties 4-41
Body Properties. 4-43
Pin Properties 4-45

Modifying Simulation Models 4-46

The Timing Model 5-1
Defining the Timing Model
Creating the Model: Checklist
Th T·· p ... e Imlng rlmltlves

Bubbled Pins
Truth Table Abbreviations
Standard Function Primitives
Non-Standard Function Primitives
Error-Checking Primitives

T·· P . Imlng ropertles
The DELAY Property
The RISE Property
The FALL Property
The SIZE Property

Modifying Timing Models

5-2
5-3
5-6
5-6
5-7
5-8
5-22
5-27
5-31
5-32
5-32
5-33
5-33
5-34

Creating Support Components 6-1
Creating A Connector

Creating a Second Version of the Connector
The .PART Drawing
The Physical Model
Creating Additional Physical Models
Creating a Connector Break
Using the Connector and Connector Break Bodies
Simulation and Timing Models

6-2
6-4
6-5
6-6
6-8
6-11
6-12
6-14

10/1/89

Contents

Creating A Resistor Pack. 6-15
The .PART Drawing 6-16
The Physical Model 6-16
Physical Part Tables 6-1 7
Simulation and Timing Models . 6-1 7

Creating A Ground . 6-18
The .LOGIC Drawing. 6-18
Simulation and Timing Models 6-19

Testing the Library 7-1

Creation Checklist 7-2
Testing Issues 7-7

Text File Method of Adding Physical Information
(UNIX Only) A-I

Using Phys_dat to Add Physical Information A-2
Phys_dat Syntax A-5
Pin Number Formats A-6

Single Section Scalar Pins A-6
Single Section Vector Pins A-7
Multiple Section Scalar Pins A-7
Multiple Section Common Pins A-8
Multiple Section Common Vector Pins A-1O
Asymmetrical Components A-11

Changes in the Library Drawing Method B-1

Previous versus Current Method B-2
Reasons for the Change B-4

Index .. . 1-1

10/1/89 xiii

T his section discusses:

Library
Fundamentals

• Library development process

• Library conventions

• Signal name syntax

• The library directory

• The master library file

• Library components

• Component versions

• Operating system considerations

• Maintaining libraries on foreign hosts

Library Fundamentals

The Library
Development
Process

Section 6 discusses creating
support components.

1-2

There are several steps involved in creating a new
library and new components. The section of this
manual that contains further information on a proce­
dure is noted beside each step.

1 Build a body drawing. (Section 2)

2 Create a physical model. (Section 3)

3 Create a simulation model (if required).
(Section 4)

4 Create a timing model (if required).
(Section 5)

5 Test the components. (Section 7)

6 Update the master library file. (Section 1)

When designing components, some decisions must
be made about how to assign values that are not
specified in the data sheets. The librarian must de­
cide what values are to be used and then must main­
tain consistency for all components in the library.
Such decisions should be documented in a file
placed in the directory so that other users of the
library can read them.

As a general rule, permissions on component mod­
els (body drawings, simulation models, and timing
models) are set so that only the librarian or root has
permission to change the models.

10/1/89

Library
Conventions and
Syntax

Conventions

Signal Name Syntax

10/1/89

Library Fundamentals

Library conventions and syntax affect how model
descriptions are entered for all libraries. The Valid
libraries conform to the following conventions and
syntax.

Conventions govern, to a large extent, the shape of
bodies in the libraries and how signals are named.
Conventions have far-reaching scope and affect all
libraries and all designs made with those libraries.
Global conventions must be decided on prior to pur­
chase or installation. Many conventions are deter­
mined by corporate policy; others are determined by
the user.

Signal names contain information about the signal
condensed into a very short space. Library models
use signal names to convey information and to cor­
rectly model parts. As a consequence, the designer
must follow the same syntax used in the libraries.

Valid supports five different signal syntaxes. These
are referred to as Library Formats 1 through 5.
Only one syntax or library format can be used at a
site.

Library Format 1 is the Valid standard library for­
mat. A signal name in Format 1 consists of five
fields in the following order:

negation name subscript assertion generalyroperties

1-3

Library Fundamentals

For more information on
signal syntax and a de­
scription of each Library
Format, see the SCALD
Language Reference
Manual.

The five library formats vary in four respects:

• The order of the five fields

• The bit ordering convention (left-to-right or
right-to-Ieft)

• The characters used to indicate low and high
assertion

• The character or characters used to indicate a
bit subrange

It is important to decide on a Library Format before
on-site installation. The signal syntax in use at any
given site is defined in the config.dat file. Table 1-1
gives the location of this file on the various
platforms.

Table 1-1. Config.dat File Locations

Platform

DECstation

PC AT

SCALDsystem

Sun

VAX

If the analysis programs
are to run on a VAX
mainframe, then an
identical config.dat file
must reside on the host.

1-4

File Location

/usr /valid/lib/ config. dat

/uO/scald/config.dat

/uO/scald/config.dat

/usr /valid/lib/ config. dat

SCALD$ROOT: [LANGUAGE] CONFIG.DAT

Signal syntax is often set by predefined company
standards. If your company has no standard, we
suggest you use the Valid standard library format
(Library Format 1). Examples in the documentation
assume Library Format 1 unless specified otherwise.

10/1/89

Libra~J

Organization

The Library
Directory

Library Fundamentals

A library consists of a main directory with subdirec­
tories for each component in the library. All of the
Valid-maintained libraries on your system have a
similar structure. Any library you create will also
have a similar structure.

All of the Valid-supplied libraries are installed in a
single library directory. Table 1-2 defines the loca­
tion of this directory on each of the Valid-supported
systems.

Table 1-2. Library Directory Locations

10/1/89

Host Directory Location

DEC station /usr /vaIi d/lib

PC AT /uO/lib

SCALDsystem /uO/lib

Sun

VAX

/usr /valid/lib

SCALD$ROOT: [LIBRARIES]

Figure 1-1 shows the structure of a typical Valid­
supplied library directory.

1-5

Library Fundamentals

tutorial

addr

xmplfchttrlprt

~

body.1.1
body.2.1

-{Library directory}

time sim

exor

inv

slm.1.1
slm.2.1

standard

20r

tlme.1.1
tlme.2.1

~

2and

Isttl

dff

part.1.1
part cn.1.1

Figure 1-1. Contents of a Typical Library Directory

1-6

I 0 Directory
I

i QFII9
I
L. _____________ _

master. lib
'-.J

tutorial. prt

'-.J

tutorial. lib
'-.J (SCALD

Directory)

10/1/89

Library Fundamentals

When you list the contents of the library directory,
you see the name of each Valid library installed on
your system and a few other files and directories. A
sample listing of the contents of the library directory
is shown in Figure 1-2.

di screte master. lib standard
sttl
phantom

time
tutorial
ttl

fast memory
lsttl sim

Figure 1-2. Contents of Sample Library Directory

Individual Libraries Each individual library is stored in a directory bear­
ing its name. For example, the tutorial library re­
sides in the directory:

DEcstationlSun:

SCALDsystem:

VAX:

10/1/89

lusr/valid/lib/tutorial

luO/lib/tutorial

SCALD$ROOT: [LIBRARIES]TUTORIAL.DIR

In addition to the subdirectories containing the com­
ponent drawings, a library directory may contain
these additional directories and files:

• Two reference drawing directories. The draw­
ing called "EXAMPLE OF EACH ... " includes an
example of every version of every part in the
library. It is primarily for documentation pur­
poses. The drawing is also useful for testing
the models for the library since, when used in

1-7

Library Fundamentals

These drawing names are
abbreviated within the
operating system.

1-8

a compilation, it invokes all versions of all of
the parts.

The other reference drawing includes the first
version of every part in the library. This draw­
ing usually has the same name as the library
(for example, the "TUTORIAL LIBRARY" draw­
ing). It can be used for library development.

• A SCALD directory. The extension .lib is re­
served for library SCALD directories (for ex­
ample, Isttl.lib). This file contains the map­
ping between GED drawing names and their
corresponding operating system directory
names.

• A physical information file. The optional .prt
file contains physical information about each
part in the library. It may be used by the
Packager and by the interface programs.

• A log file. Each library has a log file of all
updates made to the library since its initial re­
lease. The log for Valid libraries is main­
tained by Valid personnel and is in reverse
chronological order.

Figure 1-3 shows a listing of the contents of the tu­
torial library directory on the UNIX operating
system.

10/1/89

20r
addr

·dff

exor
inv
log
ttoriallibrary

Library Fundamentals

tutorial. lib
tutorial.prt
xmplfchttrlprt

Figure 1-3. Contents of the Tutorial Library (UNIX)

The Master Library
File

10/1/89

The names of the drawing files are not exactly the
same as the OED drawing names because of operat­
ing system limitations. The algorithm used to create
file names acceptable to the operating system:

• Removes any spaces or special characters

• Shortens the drawing name to a maximum of
14 characters by selectively eliminating char­
acters (beginning with vowels)

• Makes each name unique

The OED name-to-operating system name mapping
is done automatically by the SCALD directory file.

The master library file (master. lib) resides in the top
library directory. It contains the name of each li­
brary on your system and the full path to that li­
brary. Adding a library entry to the master. lib file
allows users to access that library.

The OED command library looks in the master li­
brary file for the full path to the specified library.

1-9

Library Fundamentals

It is not necessary to
update the master . lib
file if you only change
an existing library.

For instance, listing the LSTTL library in the
master.lib file allows you to enter the command:

library lsttl

If there is no entry, you would have to enter the
entire command line each time:

lib lusr/valid/lib/lsttl/lsttl.lib

A library can reside anywhere on the system as long
as 'it is listed correctly in master.lib. When you have
problems accessing a library, check the master li­
brary file and see if the library is listed.

The last thing you must do after you create and test
a new library is to update the master.lib file. Use a
text editor to access the file, and add an entry for
the new library that lists the abbreviation for the li­
brary and the full path to the library.

Figure 1-4 shows a sample master. lib file on the Sun
or DEcstation system. The last entry adds the
"userparts" library to the list of libraries that can be
accessed on this system.

file_type = master_library;
'time' 'Iusr/valid/lib/time/time.lib';
'sim' 'Iusr/valid/lib/sim/sim.lib';
'standard' 'Iusr/valid/lib/standard/standard.lib';
'tutorial' 'Iusr/valid/lib/tutorial/tutorial.lib';
'lsttl' 'Iusr/valid/lib/lsttl/lsttl.lib';
'userparts' 'Iusr/valid/lib/userpartsluserparts.lib';
end.

Figure 1-4. Sample Master.lib File

1-10 10/1/89

Library Fundamentals

Library Components A library component consists of a collection of draw­
ings that together define the part. Within GED, each
drawing has the same name and a different exten­
sion. The drawing names in GED are:

10/1/89

component. BODY This drawing defines the shape, pins, and general
properties of the library component; it is the sym­
bolic representation of the part. When you add a
library part to a drawing, the .BODY drawing ap­
pears on the screen. The .BODY drawing may repre­
sent an actual physical component, or it may repre­
sent a block of logic.

component. PART The .PART drawing tells the Compiler that this com­
ponent (body) is a low-level drawing that is added
to logic drawings. This drawing contains a
DRAWING body and its attached properties that de­
fine the physical component name for the Packager.
When the Compiler compiles for "logic," it includes
the global part information from the .PART drawing
for each body on your drawing. This information is
then passed on to the Packager.

component.SIM This drawing defines the simulation model for the
library component. When the Compiler compiles
for "sim," it includes the corresponding simulation
model contained in the .SIM drawing for each body
on your drawing. This information is passed to the
Logic Simulator.

component. TIME This drawing defines the timing model for the li­
brary part. When the Compiler compiles for
"time," it includes the corresponding timing model
contained in the '.TIME drawing for each body on

1-11

Library Fundamentals

body.l.l
body.2.1
chips_prt
part.l.l

your drawing. This information is passed to the
Timing Verifier to check the timing behavior of the
entire design.

When you list the contents of a component direc­
tory, the drawing files appear as shown in
Figure 1-5.

part_bn.l.l
part_cn.l.l
part_dp.l.l
phys_dat

sim.l.l
sim_bn.l.l
sim_dp.l.l

time.l.l
time_cn.l.l
time_dp.l.l

Figure 1-5. Contents of Sample Component Directory

Additional Files

1-12

Besides the four component drawings, a library com­
ponent directory contains these additional files:

• A chips_prt file. This file contains all the
physical information for a component. The
chips _ prt file is used by the Compiler and by
the section and pinswap commands in GED.

(It may also be used by the Packager.) It
allows you to preassign pin numbers to a
component during schematic creation.

• A phys_dat file. This is an optional file used
as input to a special program which can be
used to create the chips_ prt files. This file
appears in some Valid libraries; these librar­
ies may use a different procedure for modify-

10/1/89

If disk space at your site is
at a premium, the binary
files can be deleted. GED
can recreate any drawing
from the ASCII version of
the files.

There are some exceptions
that require a logic drawing
in a component directory.

10/1/89

Library Fundamentals

ing physical information. than do libraries
without phys_dat files. See Appendix A for
additional information on phys_dat files.

• The binary files (part_bn. I. I , sim_bn.I.I,
time_bn.I.I). These files contain the same in­
formation as the ASCII version of the draw­
ings, stored in a slightly different format.

• The connectivity files (part_cn.I.I, sim_cn.I.I,
time_cn.I.I). These files contain the logical
net lists for the Packager, Simulator, and
Timing Verifier.

• The dependency files (parCdp.I.I, sim_dp. I. I ,
time_dp.I.I). These files list each part used
in the drawing and its library directory. This
file is used by the GED update facility to en­
sure that the parts in the drawing are current.

Notice that there is no .LOGIC drawing in the compo­
nent directory. Library components do not normally
have logic drawings because components are the
lowest-level drawings that are added to logic draw­
ings. In flat designs, logic drawings are made up
entirely of library components connected together.
In hierarchical designs, logic drawings can be made
up of library components and symbols representing
other logic drawings connected together.

1-13

Library Fundamentals

Component Versions

If a version is not speci­
fied, drawing version 1
is used by default.

The version number for a
logic drawing should always
be II 1. " The page number
for a .BODY drawing
should always be Ill."

D Q

LS377

CE

Many library parts have more than one body draw­
ing to represent a part. Each of these body drawings
is called a version. The version number is defined by
the first digit following the drawing name extension
(the third field in the name). The version command
in GED selects which version of a part is used.

For example, there are two versions of the LS377

part in the LSTTL library: LS377.BODY.1.1 and
LS377.BODY.2.1. Figure 1-6 shows the two versions
of the LS377 component.

LS377
0 7
0 6
Os
0 4
03
O2
01
OeJ

VER5ION 1
(LS377. BODY. I. I)

VER5ION 2
(LS377.BODY.2.1)

This is Valid's convention
for defining body versions.
You are not restricted to
these conventions.

1-14

Figure 1-6. LS377 Versions 1 and 2

The Version 1 body drawing usually shows just one
representative section of a package. The Version 2
body drawing typically shows all of the sections. (In
the case of a simple gate, the second version usually
shows the DeMorgan equivalent of the gate.)

10/1/89

The Version 1 Drawing

For more information
on the SIZE property,
see Section 2.

The Version 2 Drawing

See the PIN_NUMBER
portion of Section 3 for
more information on
asymmetrical components.

10/1/89

Library Fundamentals

Because all sections of the LS377 are identical to
each other, the Version 1 body can be used to
represent:

• One section of a package

• Many sections of one or several LS377

packages

The Version 1 drawing of the LS377 is called a
sizeable body. The drawing can be used to represent
multiple sections by using vectored signal names
and attaching the SIZE property to the drawing (after
it has been added to a GED logic schematic).

The Version 2 drawing of the LS377 more closely
resembles the physical package of an LS377. The
LS377 package contains eight identical sections, and
the Version 2 drawing shows eight input pins and
eight output pins. The Version 2 drawing is used for
flat designs.

In most cases, the two body versions must have
equivalent pin names. An exception to this rule oc­
curs in parts with asymmetrical sections. In this
case the versions of the part that represent the dif­
ferent sections must have no identical pin names, so
that the different sections can be distinguished. Ad­
ditionally, there must be a property attached to each
section identifying the section. The Valid conven­
tion is to name this property "section" and to give
the property a value that identifies the section num­
ber of the part to which the body corresponds.

Some simple logic gates have versions (the DeMor­
gan equivalents) that represent the two different

1-15

Library Fundamentals

1-16

Version 1

Version 3

logical functions performed by the gate depending
on the polarity of the input signal. An LS08, for
example, performs an AND of high-asserted signals
or an OR of low-asserted signals. The versions of
the LS08 allow the designer to add either form of the
gate to a drawing.

If a part has sections that are not interchangeable
(such as the LS51), then there are additional ver­
sions that describe the additional sections.
Figure 1-7 shows the different sections of the LS51

component.

Version 2

Version 4

Figure 1-7. The LSS1 Asymmetrical Component

10/1/89

Library
Maintenance

Operating System
Considerations

Disk Space

Table 1-2 on page 1-5
lists the library directory
for each system.

UNIX/ULTRIX:

VMS:

UNIX/ULTRIX:

VMS:

10/1/89

Library Fundamentals

The System Librarian must be very familiar with the
SCALD system, the SCALD Language, and logic de­
sign. The librarian also needs to be reasonably con­
versant with the host's operating system and text
editor. Maintaining libraries requires considerable
caution since an error in a library affects many users
and many designs (including completed designs).

There are two important issues to consider for
libraries: disk space and file protection.

All libraries are stored in the library directory.
There must be enough space in the directory for the
libraries plus enough space left over for the users.
For Valid-supplied libraries, the library space re­
quirements are indicated in the individual library
descriptions.

To determine the amount of space required for a
user-created library:

1 Change directories to the library in question.

2 Determine how much directory space is used:

du -8

DIRECTORY/SIZE/GRAND_TOTAL [... J

3 Determine the amount of free space on the
disk:

df

SHOW DEVICE DUAO

1-17

Library Fundamentals

The amount of disk space
required varies depending
on the size and complexity
of a user's designs.

Protection

UNIX/ULTRIX:

VMS:

UNIX/ULTRIX:

VMS:

Files:
Subdirectories:

1-18

The disk usage commands show the number of free
blocks on IuD or lusr and DUAO, respectively. Leave
enough disk space for users to work with after the
libraries are installed. If installing a given library
results in fewer than 1000 free blocks, you should
either remove some files from IuD, lusr, or DUAO, not
install the library, or acquire more disk space.

The libraries and their directories should be write­
protected for everyone except the librarian. The
files in the library should be owned by lib or system.
Check library ownership by typing:

1s -1

DIRECTORY/OWNER/PROTECTION

If there are any files not owned by lib or system, you
can fix this by logging on as root or system, chang­
ing your directory to the library in question, and
typing:

find. -exec chown lib {} \;
SET DIRECTORY/OWNER=SYSTEM

In VMS, respond to the "Directory" prompt with:

[...]

The /s -/ and DIRECTORY/OWNER/PROTECTION com­
mands also show the permissions of all of the sub­
directories and files in the library directory.

With UNIX/UL TRIX systems, the correct permissions
should be:

-rw-r--r-­

drwxr-xr-x

10/1/89

Files:

Subdirectories:

Maintaining Libraries
on a Foreign Host

10/1/89

Library Fundamentals

This protection allows the user (which should be lib)
to read and write the files, but allows everyone else
only to read the files (UNIX/ULTRIX directories must
have execute permission set in order to look inside
the directory). If either the "group" or "other" write
permissions or both are set (for example,
-rw-rw-r-- or -rw-r--rw-), write permlsslon
should be removed by logging in as lib (since "lib"
owns all the files), changing your directory to the
library in question, and typing:

find. -exec chmod go-w {} \\A;

With VMS workstations, the correct permissions
should be:

RWED,RWED,R,R

RWED,RWED,RE,RE

With these protections, only the system and owner
can read and write files; everyone else only can read
the files. If either the "group" or "world" write or
delete permlsslons are set (for example,
RWED,RWED,RWE,RW), change the permission by
logging in as system and typing:

SET PROTECTION=(G:R,W:G) *.DIR/LOG

If you work on a foreign host such as a VAX main­
frame, keep a copy of the libraries on this machine.
Otherwise each user must keep a private version of
the libraries, which wastes disk space. These librar­
ies should be kept in a read-only directory.

1-19

Library Fundamentals

See the filecopy utility
in the System Utilities
Reference Manual for
details.

To copy libraries to or from the foreign host, use the
filecopy utility. You should run filecopy without a
transfer.log file when copying libraries to ensure that
all libraries are on the host. The transfer takes sev­
eral minutes.

On the VAX mainframe, each library is stored in a
directory under {SCALD. LIBRARIES] . Before you
transfer the libraries, log in to the VAX and create a
directory for each library you want to transfer.

For example, for a library named biblio, create the
directory {SCALD.LlBRARIES.BIBLlO] on the VAX. The
jilecopy.cmd file would include the following
directi ves:

report_files on;
copy_file 'biblio.prt';
directory 'biblio.lib';
host_kind VMS;
host_destination '/dev/vmslscald/libraries/biblio';
end.

1-20

Figure 1-8. Sample Filecopy.cmd File

Once the command file is set up, run the filecopy
utility to copy all necessary information to the VAX.

10/1/89

Component Creation

T his section discusses:

• Creating a library

• Creating a new component drawing

• Creating the body shape

• Drawing pins

• Adding pin names

• Annotating pins

• Attaching properties to the body

• Building other body versions

• Borrowing library parts

Component Creation

Basic Procedure
(Checklist)

2-2

Creating a body involves the following steps:

1 Create a new library.

2 Create the new component drawing.

3 Create the body shape.

4 Add pins to the body.

5 Attach pin names to the pins.

6 Annotate the pins (using the GED note

command).

7 Attach properties to the body.

8 Build other body versions.

Each of these steps is detailed in this section.

Throughout these procedures, there are creation
standards included for your information. These are
the standards used to create all of the Valid librar­
ies; they are the suggested standards for creating
your own libraries.

10/1/89

Creating A
Library

10/1/89

Component Creation

The first step in developing a new library is to create
a directory for the new library where you can store
any parts you create. Since any change made to a
Valid library is overwritten when that library is up­
dated, you should also create a library of your own
if you must modify an existing library part. Keeping
new parts in a special library means your Valid li­
braries can be updated without losing data.

To create a new library on a UNIX or UL TRIX sys­
tem, log in as user lib. By default the librarian's
working directory is IuD/lib on the SCALDsystem and
PC AT or /usr/valid/lib on the DECstation and Sun
workstation.

To prevent access to new components until they are
ready for distribution, create a permanent test direc­
tory under the lib directory. Use this directory to
and test all new components. Do not enter the test
directory name in the master library file. When the
components are complete, copy the component di­
rectory tree, place the component in the correct li­
brary, and enter the new library name in the master
library file.

To create new libraries on a VMS system, log in un­
der your own user name. A library can be cre­
ated under any user account and later moved to the
SCALD$ROOT: [LIBRARIES] directory (although the file
permissions and ownership will have to be changed
to user lib) .

2-3

Component Creation

2-4

Throughout this manual, a UNIX library named
newparts (which is located under user lib) is used as
a sample library.

Follow these steps to create the newparts library:

1 Log in as user 1 i b .

2 From the lusrlvalidllib directory, create the new
library subdirectory:

mkdir newparts

3 Copy the default GED files (* .cmd and
startup .ged) from a user directory into the new
directory.

4 Move to the new directory:

cd newparts

5 Edit the startup.ged file:

vi startup.ged

6 Change the "use" line to read:

use newparts.wrk

7 Delete the "masterlibrary" line.

1 0/1/89

10/1/89

Component Creation

8 Add a library command line for each existing
library you might need to create the new
library:

library lsttl
library ttl

9 Save the startup.ged file and exit the text
editor.

10 Use the text editor to change the name of your
SCALD directory in the .cmd files to the new
directory name:

directory 'newparts.wrk';

2-5

Component Creation

Creating a New
Component
Drawing

Editing the .BODY
Drawing

2-6

Because the TIL 293 binary counter component is
not included in the Valid library release, it is used as
an example throughout this manual to demonstrate
the process of adding a new component to your
library.

To create a new component drawing, you must:

• Edit the .BODY drawing

• Move the body name away from the origin

To create a new component called 293, use GED to
edit a new drawing called 293.body.2.I. Make sure
you add the .body.2.1 extension; if you do not, the
default drawing type is .logic and the default version
and page number reference is .1.1.

Version 2 of a body is the "flat" version; that is, it
has all pins explicitly marked. Version 1 of a body
is vectored, with multiple-bit input and output pins.
By building Version 2 first, you can more easily see
the relationship between the component logic and
the body representation.

When you edit 293.body.2.I, the screen shows a
body grid setting, the body name, and a small X
(the body origin) in the center of the screen.

10/1/89

Component Creation

alld Graph1cs,Edjtor (GED) 9,a ' . I .

I)

I~

I)
I~
I)
I}
I}

.. I)

n

. ~~U~UH~DO~~'lll
U REDO I)

10/1/89

Figure 2-1. Editing The TTL Body

o Others .. I)
(I EDIT I)

Y" When you edit a .BODY drawing, the grid is set
automatically to 0.05 2. This means there is
one-tenth of an inch (0.1 inch) between dis­
played grid lines. Always use this grid setting
when creating the body shape.

Y" Notes and connections to slanted lines (such as
occur on select inputs of multiplexers, for ex­
ample) can be placed on a grid of 0.01 10 if
necessary. Do not use any other grid settings
when creating bodies.

2-7

Component Creation

Moving the Body
Name

Shortening a Body
Name

If you change the size of
the note, it should still
conforms to the suggested
Valid standards.

2-8

The body name, 293, is a note that you can use to
label the component body. Be sure to include the
component name on the body. The split command
lets you move the body name note away from the
body origin (the small X that appears at 0,0).

To separate the body name and the body origin:

1 Select the split command from the OED menu.

2 Use the right mouse button to select the object
to move.

Do not move the body origin; if you do, the
editor produces an error message when the
body is written and moves the origin back to
the center. If your first button click makes the
origin move, just click again to select the body
name.

3 Move the note to the top of the screen and
place it down.

~ The origin body is used to specify the origin of
the body. All body properties are attached to
the origin body, and the body should be sym­
metrical about the origin (the origin should be
at the center of the body).

In some cases, you may have a body name that does
not easily "fit" into the shape of the body. If you
wish to shorten the body name on a drawing, you
can use the OED command change to shorten the
body name note or the display command to change
the size of the body name note to fit within the body
shape.

10/1/89

Creating the
Body Shape

Note that the TTL 293
is not centered horizon­
tally around the origin
but that the body falls
directly on the major
grid intervals.

10/1/89

Component Creation

Using GED, you can make a body any size and shape
you want: round, oval, trapezoidal, rectangular.
For consistency, the body shape should match the
body function. Follow the component representation
in the appropriate data book or use another Valid
library component to model the shape of the body.
In order for a body to integrate well with existing
libraries, it should be approximately the same size
as other library parts. When bodies are made a
standard size and labeled in a consistent manner,
schematics are easier to draw and maintain.

To create the shape of the TTL 293 body, use the
wire command to draw a rectangle 10 squares long
by 5 squares wide. Center the rectangle around the
body origin as much as possible while still keeping
the body shap on-grid. The basic shape of the
TTL 293 component is shown in Figure 2-2.

2-9

Component Creation

2-10

al1el GraphICS [dltor (1;[[1) 9.0

293. BODY.:;. 1 GRID 0.015 2 I'£IoPMTS.1oA< [I HELP I)

I)

• U UHDO I)

II REDO I)
II Others .. 11
i[£l)rc=Jl

Figure 2-2. The TTL 293 Body Shape

V The shape of the body should reflect (wherever
possible) the function of the body.

V The size and shape of the body depend on the
number of input and output pins required on
the body drawing.

V The body should be symmetrical about the
body origin.

V Bodies should be made as small as possible but
not crowded. Follow the sizes of existing bod­
ies in other libraries. Make flip-flops 0.4 by
0.8 inches. Make gates 0.3 by 0.6 inches.

10/1/89

Drawing Pins

The circle has a
a.l-inch diameter.

You can also use the
copy command to create
multiple wire stubs.

10/1/89

Component Creation

The following pin conventions are used in all Valid­
supplied libraries:

• High-asserted pins are shown with a wire stub.

• Low-asserted pins are shown with a circle.

Follow these steps to add pins to the TTL 293 body:

1 Use the circle command to add two low­
asserted clock pins to the left side of the body.
Place the first point of the circle halfway be­

tween the first grid interval and the body edge.
Place the second point of the circle on the body
edge.

2 Use the wire command to add four high­
asserted pins to the right side of the body.
Start each wire at the body edge and extend it

one grid interval out from the body.

3 Use the arc and wire commands to draw an
AND gate at the bottom of the body. Place the
first arc point one grid interval below the body
and halfway between the second and third ver­
tical grid intersections. Place the second arc
point along the same horizontal grid interval

and halfway between the third and fourth grid
intersections. Place the third grid point at the
bottom edge of the body halfway between the
first and second grid intersections. Use the
wire command to complete the gate and to add
wire stubs to the bottom of the gate.

2-11

Component Creation

Dots can be open or filled.
Use set dots_open or
set dots_filled to change
the default.

The pass-through clock
pins are along the right
side of the body. The
pass-through clear pins
are across the top of
the body

29'3. BODY. 2.1

4 Use the dot command to add a dot at the end
of each circle and wire stub. This dot tells
GED that this is a pin and that wires can be

attached to it and connections made. The dot
does not show up on the body when you add
the component to a logic drawing in GED.

Remember to add the connection dots to the
pass-through clock and clear pins.

5 Use the wire command and diagonal wires to

add the clock wedges to the body.

6 Write the drawing to save it.

The TTL 293 body now looks like the one in
Figure 2-3.

GRID 0.05 2 t£l.PARTS. loA< (IIIELP

I}
I)
I)
I)
I)

...... j j j j j j j j j j ; i ; ; ~ ; j j j j j j j j j j [I SIGHAHE U

°loolJ::t..:t°otToflf+:l4ilJlftO\::Jo:lootJ:'-rotto :: ::::::" ::

2-12

·······i······:···· .. :······:··· .. ·j······j·· :······:· j j"" : : j j j : ...•.• j······i···· .. :···· .. :···· .. j··· .. ·j······j·· .. ··:······j··· ... j [IDIRECTURy .. l)

t [I UNDO I)

~. (I R[OO Il
II Uthere .. I)

I}

Figure 2-3. The TTL 293 Body and Pins

10/1/89

Pass-through Pins

Pass-through clock pins

10/1/89

Component Creation

Y' Place input pins on the left and output pins on
the right. Place enable and select pins on the
bottom. Place bidirectional pins on either side,
usually on the right.

Y' Connect all pins to the body with either a
D.l-inch stub (made with a wire), or a bubble
(O.l-inch circle), or, if the pin is bubbleable,
with both a pin and a bubble (see page 2-15).

Y' Mark edge-triggered clock pins with a clock
wedge D.l-inch wide and D.l-inch long. Use
the white (center) button to draw the diagonal
lines.

Y' Add pass-through pins wherever possible, es­
pecially on clocks, enable, and select lines. Do
not add stubs or bubbles to pass-through pins.

Pass-through (or feed-through or bus-through) pins
are special "shortcut" pins placed on a body to
make it easier to wire a group of bodies together.
Many of the components in the Valid libraries are
provided with pass-th~ough pins on their clock sig­
nals. The pass-through pin is exactly opposite the
clock signal. It lets you easily wire the clock signals
of several library parts together.

Pass-through pins always appear on the .BODY

drawing of the library part, although they are invis­
ible when you add the body to a GED drawing.

For example, if you want to wire the clock signals of
two LS374 components together, the pass-through
pins allow you to wire in a direct line between com-

2-13

Component Creation

Wiring using
pass-through pins

Wiring without using
pass-through pins

ponents. Without the pass-through pins, the wire
would have to jog around the first component to
connect to the second component. Figure 2-4
shows two LS374 components wired using the pass­
through clock pins and two LS374 components wired
without using the pass-through pins.

D a
LS374

OE

OE

D a
LS374

OE

OE

Figure 2-4. Using Pass-through Pins

2-14

Pass-through
Standards

J/ Pass-through pins are always exactly opposite
the visible pin to which they are logically
connected.

J/ The pin names of the visible and the invisible
pin must be the same. Identical pin names
allow GED to interpret a wire connected to the
pass-through pin as also being connected to
the clock input pin.

1011189

Bubbled Pins

A bubbleable pin

10/1/89

Component Creation

Y" A pass-through pin never has a bubble, even if
the pin it is associated with has a bubble.

OED knows that pins of the same name are the
same pin, and if one of them is bubbled, the
other must be. This guarantees that correct
bubble checking is performed even for pass­
through connections.

Y" When defining a pass-through pin, make sure
that the pin it is associated with is obvious. In
Valid libraries, this is done strictly by its posi­
tion on the body, not by the use of a note.

The OED bubble command replaces the wire stub of
a pin on a body with a bubble that represents a low­
asserted signal. You must decide which pins can be
bubbled.

Since a circle indicates a low-asserted pin and a
stub indicates a high-asserted pin, a bubbleable pin
has both a stub and a circle. The length of the stub
is the diameter of the circle. The connection point
(marked by a dot) is at the far end of the stub,
where the stub and circle meet.

To use bubbled pins in OED, you must attach the
BUBBLED property to the body. For more informa­
tion on the BUBBLED property, see page 2-29.

2-15

Component Creation

Adding Pin
Names

You can use the text
justification commands
(SET LEFT, SET RIGHT,

SET CENTER) to align
the pin numbers.

The following conventions are used for pin names of
parts in the Valid-supplied libraries:

• All pin names are based on the names in the
relevant data books.

• On parts having mUltiple sections, the pin
names carry a numerical suffix to distinguish
among the sections (the bit subscript).

• Low-asserted pin names end with an asterisk
character (*).

Use the signame command to add pin names to the
TTL 293 drawing. Add the names as shown in
Figure 2-5.

alid Grilphlcs Edltor (GED) 9 B > I ~;.

~~.~D'!':2 •• 1 . .GR::D ~.~ ~ . ~TS:~ ..•.....•...••. [I HELP I,
.. Il

I}
I)

I)

Il

[I UNDO I)
:t~ II REDO I)

I :: ::::" ~:
Figure 2-5. The TTL 293 Pin Names

2-16 10/1/89

Adding Properties
to Pin Names

10/1/89

Component Creation

Use the show attachments command to ensure
that all pin names are properly attached.

Y' The pin names on a body must correspond ex­
actly to those on the logic, timing, and simula­
tion drawings associated with the body.

Y' Use the signame command to give the pass­
through pin the same name as the parent pin.

Y' For gates, letter the input pins as found in the
data books, or alphabetically. Letter the out­
put pins as found in the data books, or use Y.

Y' The pipe character (I) is not allowed in pin
names. This is to facilitate the syntax of the
BUBBLE_GROUP property.

There are two general properties that you can attach
to pins when you enter the pin names:

• \NAC

• \NWC

These properties are only used on body drawings.
They are not required in the corresponding timing
and simulation models or logic drawings.

2-17

Component Creation

\NAC Property

The backslash is the
general property
prefix character.

\NWC Property

2-18

\NAC stands for "no assertion check." \NAC allows
a signal of either assertion to be connected to a pin.
The Compiler assigns the assertion of the first signal
connected to the pin as the pin's assertion. This
forces any other signals connected to that pin to
have the same assertion as the first signal. The
\NAC property is used when the assertion level of
signals is not important, but all the signals must be
compatible.

\NWC stands for "no width check." This property is
used when the width (in bits) of a pin is not known
or when it is desired that signals of any width may
be connected to the pin. The Compiler determines
the actual bit width from the context in which the
\NWC property is used.

Figure 2-6 shows a sample merge body that carries
both the \NAC and \NWC properties.

A\NWC\NAC

Y\NWC\NAC
B\NWC\NAC

C\NWC\NAC

Figure 2-6. The \NAC and \NWC Properties

10/1/89

Annotating
Bodies

Notes on pins are important
since pin names do not ap­
pear when bodies are added
to logic drawings.

You can use a grid setting
of .01 10 if necessary for
better placement. Be sure
to set the grid spacing
back to .OS 2 after plac­
ing notes.

1011189

Component Creation

A body should be annotated with:

• The component name

• The pin names

• Any other important information

Annotation makes the function of the body and each
pin clear. The notes should be easily readable and
should not be crowded. Follow these steps to anno­
tate the TTL 293 body:

1 Use the note command and the notes shown
in Figure 2-7. Center the notes on the pins

inside the body and as close to the edge of the
body as possible.

2 After placing the notes, make them smaller to
minimize crowding. Use the display com­
mand to resize the notes as follows:

display .8: All Q pins
The CL pin

Pin A

Pin B

display .6: Bit subscripts 0, 1, 2, 3
The words BINARY CTR

3 Once the pins are the correct size, use the

move command to realign the notes.

The TTL 293 body now looks like the one in
Figure 2-7.

2-19

Component Creation

"lId ulaphlcs [OltOI (G[D) 9.0 , " " \

~.~DY:2 •. 1 . ~~D ~.~ ~ ~TS:~.............. [I HELP Ii
;I)

,)

• [I UNDO n

2-20

Figure 2-7. The Annotated TTL 293 Body

II REDO I)
II Others ;Ii
II EDIT ,)

V Make the body name note default size for
counters and shift registers, 0.8 for multi­
plexers and decoders, 0.75 for smaller gates,
and 2.0 for VLSI chips.

V Mark open collector and open emitter pins with
OC or OE placed immediately above the bubble
or wire stub for the pin. Display the note 0.6
of the default size.

V Do not mark tri-state pins with a note.

V Clocks do not normally require a note; only DC

clocks require a note.

10/1/89

Attaching
Properties to the
Body

Use the same procedure to
attach any body properties
to the body origin.

10/1/89

Component Creation

A property is a name and value pair that conveys
information about your design to the analysis tools.
The information represented by the properties in a
drawing is interpreted by the Compiler and then
passed on to the other programs.

The standard body properties that can be attached to
body drawings to affect component sizing and pin
assertion level are:

• BUBBLED

• BUBBLE_GROUP

Follow these steps to attach the NEEDS_NO_SIZE

property to the origin of the TTL 293 component:

1 Select the property command from the OED

menu.

2 Use the yellow button to select the body origin.

3 Type the name and value of the property:

NEEDS NO SIZE=TRUE - -

The word TRUE appears on the screen.

4 Use the yellow button to place the property
value one-half grid interval above the body
origin.

2-21

Component Creation

5 Type display invisible and point to the word
TRUE. The property name and property value

disappear.

Figure 2-8 shows the TTL 293 component with the
NEEDS_NO_SIZE property attached and visible.

'alid Graphlcs Editor (GED) 9.0

2-22

BODY. 2. 1 GRID 0. eJ5 2 ~TS.1oR<

'l"'+'''~''''l''''+'''+''+''''l''''l''''+''+''+'''+'''+''+' .. f· .. ·;·· ·+ .. ··l·· .. ;· f .. ··l .. ·+· .. f· .. ·;· .. ·+···+··+· .. ·j i + .. +··+ .. ·tI~~11
.... i ~ ~ i ~ i i ; i i ; l J ..•.. i l..: : .l i l i i ~ ~ l l i l i i l i i· .. :.U ~~~II

::·i::::!:J·:::i::::i:::i::J::::!:::t::!:::1::::i:::L:bt.:i::::¢.t~·j:::!::::L:t:::!·:::i:::t::r::t:J::::i:::·tJ·J:::fI~~~~11
.... ~ ~ ; + ~ ; ~ ~ +.. : ~ + ~ ~ ~ ~ + ~. ···i···· ;.... ~.o .. to .. of<· .. ~.

Figure 2-8. The TIL 293 Body with NEEDS_NO_SIZE Property

Once you have added the NEEDS_NO_SIZE property
to the TTL 293 component, the basic drawing of Ver­
sion 2 is complete. For information on building
other body versions, see page 2-32.

10/1/89

NEEDS NO SIZE
Property

For more information
on sizeable components
and the SIZE property,
see page 2-34.

LS138.80DY.1.1

EN2A*
EN! EN2B*

Y7*
Y6*

Component Creation

The NEEDS_NO_SIZE property is attached to all ver­
sions of a component when there are no sizeable
versions of the component.

• Version 1 of the body supports multiple-bit
pins having a fixed number of bits (for exam­
ple, PIN_NAME=Q <2 .. 0».

• Version 2 of the body shows each pin
explicitly.

Multiple-bit pins that support a fixed number of bits
(vectored pins) are not affected by the SIZE property
attached to the body when it is added to a logic
drawing; therefore, the component "needs no SIZE."

Attaching the SIZE property to a NEEDS_NO_SIZE

component produces a Compiler error.

Figure 2-9 shows two versions of the LS138 compo­
nent. Both versions have the NEEDS_NO_SIZE prop­
erty attached; neither version is sizeable. Version 1
has a vectored input pin with a fixed number of bits;
Version 2 has explicit input pins.

LS138.BODY.2.1

8 <2. .11) ~~~~-SIZE=TRUE S <2>
S <1>
S <II>

Y3*
Y2*
Yl*
Y0*

ENl EN2B*
EN2A*

Figure 2-9. NEEDS_NO_SIZE Property

10/1/89 2-23

Component Creation

HAS FIXED SIZE
Property

2-24

The other body property that affects component size
is the HAS_FIXED_SIZE property. This property is
attached to the non-vectored (explicit) version of a
component when one version of the component is
sizeable. HAS_FIXED_SIZE passes size information
through to the simulation primitives.

• Version 1 of the component supports multiple­
bit pins that include the SIZE parameter (for
example, PIN_NAME=Q <SIZE-1..0».

SIZE specifies the number of mUltiple bits the
pin represents. The value of SIZE-l depends
on the SIZE property attached to the body when
it is added to a logic drawing.· No SIZE prop­
erty is attached to the body drawing during
creation, only when the body is used in a
schematic.

• Version 2 of the body shows each pin explic­
itly. This is the version that carries the
HAS _FIXED _SIZE property.

During body creation, you attach a value to the
HAS_FIXED_SIZE property to define the final
size of the component; therefore, the compo­
nent "has a fixed SIZE." Attaching the SIZE

property to a HAS_FIXED_SIZE component
produces a Compiler error.

Figure 2-10 shows two versions of the LS367 compo­
nent. Version 1 is sizeable. There is no size
associated with the body drawing itself; the SIZE

property is attached to the body when it is added to

10/1/89

Component Creation

a logic drawing. Version 2 has a fixed size of four
bits (4B). Version 1 has vectored input and output
pins; Version 2 has explicit input and output pins.

LS367.BODY.1.1

A <SIZE-l •• B)~ Y <SIZE-l •• B)

OE*

A <3>

A <2>
A <1>
A <2»

LS367.BODY.2.1

OE>I<

Y <3>
~:..-j>-~F~X§B-SIZE=4B

Y <1>
Y <0>

Figure 2-10. HAS_FIXED_SIZE Property

Invisible Properties Some properties such as NEEDS_NO_SIZE and
HAS_FIXED_SIZE are required properties that should
not be changed by the user. These required proper­
ties, therefore, do not need to appear on your body
drawing. You can make these properties invisible.

10/1/89

Position any invisible property 0.05 inches from the
origin so that it may be easily located and not share
the same coordinates as a visible body property.

2-25

Component Creation

BUBBLE GROUP
Property

Use the procedure on
page 2-21 to add the
BUBBLE_GROUP prop­
erty to a body drawing.

2-26

V All body properties are attached to the body
origin.

V The only invisible properties on a body should
be section identifiers on asymmetrical bodies
and the NEEDS_NO_SIZE and HAS_FIXED_SIZE

properties. All other properties should be
visible.

V An invisible property must not be in the same
location as a visible object.

v When invisible properties are attached, locate
them 0.05 inches from the origin.

Some library parts have pins that are logically re­
lated to each other, so that if you bubble one of
these pins, you must also, by definition, bubble the
other pin. An LS367 component permits the A input
pin and the Y output pin to be bubbled. In fact, if
one of these pins is bubbled, the other pin must also
be bubbled. To prevent wiring errors, pins can be
assigned to bubble groups so that when one pin is
bubbled, other pins are also bubbled. For example,
if pins A, B, and C are in one bubble group, when
anyone of these pins is bubbled, they are all bub­
bled. The BUBBLE_GROUP property is used on the
body drawing to indicate which pins must bubble
simultaneously.

The BUBBLE_GROUP property is attached to the ori­
gin of the body. Each BUBBLE_GROUP property de­
fines one bubble group.

10/1/89

SYNTAX ... ~

EXAMPLES ~

10/1/89

Component Creation

BUBBLE_GROUP [group_name]=(pinlpin[lpinlpin] ...)

The group _name is an optional uppercase or lower­
case single letter name. The group _name is not nor­
mally used; it is not necessary to name bubble
groups except to define a bubble group that does not
fit on a single line in the editor. (The limit is 80
characters.) All BUBBLE_GROUP properties of the
same name define one large bubble group.

pin is the name of a pin to include in the bubble
group. You can abbreviate pin names, but make
sure you include enough of the pin name to make
the name unique. For example, the minimum ab­
breviation for the pin names A<2>, A<l>, and A<O>
is A<2, A<l, and A<O. Only the closing angle
bracket can be omitted. The pin names
Q <SIZE-1..0> and Q <SIZE-1..0>· must be typed ex­
plicitly since only the last characters of the pin
names differ.

EUEELE_GROUP=(A:Y>

BUBBLE_GROUP=(A <l:Y <1>

BUBBLE_GROUP=cI0:Y <SIZE-l •. 0>:Y <SIZE-l .. 0>*)

Figure 2-11 shows several BUBBLE_GROUP entries
attached to the origin of the LS367 component. (The
TIL 293 component does not require any bubble
groups.)

2-27

Component Creation

~BLE-GROUP=<A <S:Y (3)
" ~UBBLE-GROUP=<A <2:Y (2)

'" ~BLE-GROlP=<A <l:V (1)
"" qBLE-GROlP=<A <e: V <e)

"" ,OE*
"" , ~---4:~---,

" v-" " , LS 67 A <3> A Y3 Y <3>

A <2>
A <1>
A <0>

Y <2>
Y <1>
Y <0>

Figure 2-11. BUBBLE_GROUP Property

Asymmetrical Bubble
Groups

A small number of bodies (such as XOR gates and
parity generators) require an irregular arrangement
of bubbled pins in a group. Asymmetrical bubble
groups allow you to bubble some pins in the group
while excluding other pins in the group. For exam­
ple, if pins A and B are members of an asymmetri­
cal bubble group, then bubbling pin A bubbles pin
B, but bubbling pin B has no effect on pin A.

2-28

If an XOR gate has inputs A and B and output Y, the
bubble behavior should be as follows:

If a bubble Is added for: There should be a bubble for:

A y

B Y
Y A (but not B)

10/1/89

I SYNTAX I
x:::::::::::::::·:··:·····:···· .. ·::··

Component Creation

There is no way to express this using conventional
bubble groups, but it can be expressed as follows:

(AAy)
(BAy)
(yAA)

An asymmetrical bubble group has the syntax:

BUBBLE_GROUP=(pin1"pin2Ipin31·· .)

This means that if pinl is bubbled, all the other pins
are bubbled, but if any of the other pins are bub­
bled, there is no effect on pinl.

Figure 2-12 shows asymmetrical BUBBLE_GROUP

entries attached to the origin of the LS86 component.

<SIZE-i .. 0>

Figure 2-12. Asymmetrical Bubble Groups

BUBBLED Property

I SYNTAX I
3&& Ed::::;::: :1

10/1/89

Once the bubble groups for a body are defined, the
next step is to tell which pins start in the bubbled
state and which start in the non-bubbled state. The
BUBBLED property, also attached to the origin of the
body, contains this information.

BUBBLED=(pinrlpinlpin] ...)

pin refers to the pins that are bubbled by default.

2-29

Component Creation

2-30

When you. attach the BUBBLED property to a pin and
add the component to a logic drawing in GED, the
pin appears in the bubbled state, and the circle is
displayed. If you enter the bubble command in GED

and point to the bubbled pin, the pin toggles to the
non-bubbled state and the line is displayed.

Figure 2-13 shows the LS04 component with both
the BUBBLE_GROUP and the BUBBLED property at­
tached to the body origin.

Figure 2-13. The BUBBLED Property

When you add the LS04 component to a logic draw­
ing, the Y output pin is bubbled; the A input pin is
not bubbled. When you enter the bubble command
in GED and point to either pin, pin A is bubbled and
pin Y is unbubbled.

add Is04.body bubble

~ ~
Figure 2-14. The Bubbled Pins in GED

10/1/89

Completing the
Body Drawing

10/1/89

Component Creation

Once all the required properties are attached to the
body drawing, follow these steps to complete the
drawing:

1 Enter the show attachments command to ver­
ify that all property attachments are correct.
Use the reattach command to correct any in­
accurate attachments.

2 Enter the write command to check and save
the drawing.

2-31

Component Creation

Building Other
Body Versions

Vectored
Components

2-32

Once you, complete the explicit version of a compo­
nent, you can build other body versions of the same
component. The most common variations are a vec­
tored version and a sizeable version.

A vectored component has multiple-bit pins with a
fixed number of bits. A sizeable component allows
you to specify (with the SIZE property) the number
of bits the part can represent when you add the com­
ponent to a logic drawing.

Pins on a vectored component can have vectored or
scalar pin names. Vectored components are not af­
fected by the SIZE property attached to the body
when it is added to a logic drawing. A vectored
component has the NEEDS_NO_SIZE property at­
tached to the body origin.

Follow these steps to create a vectored version of
the TIL 293 component. For more information on
any step, refer to the page listed with each step.

1 Edit a new drawing called 293.body. You do
not need to specify the version and page num­
ber; the default is for the system to add ver­
sion 1 and page 1 (293. body. 1. 1).

2 Use the circle, wire, are, and dot commands
to draw the body shape, the pins, the AND

logic, the clock wedges, and the connection
dots. Draw only one output pin instead of add­
ing four individual output pins as you did on
the Version 2 body. (Page 2-9)

10/1/89

1011189

Component Creation

Remember to add the connection dots to the
pass-through clock and clear pins.

3 Use the signame command to add the pin

names to the body. Use the pin name Q <3 .. 0>

for the single output pin. (Page 2-16)

4 Use the note command to annotate the body
drawing. Use the display command to resize
the notes and the move command to realign
them if necessary. (Page 2-19)

5 Attach the NEEDS_NO_SIZE property to the
body origin. (Page 2-21)

6 Write the drawing to save it.

Figure 2-15 shows a vectored version of the TTL 293

component. The specific differences between Ver­
sion 1 and Version 2 are:

• Version 2 is 10 grid units high by 5 grid units
wide. Version 1 is 8 units high by 5 units
wide.

• Version 2 has four output pins with explicit pin
names. Version 1 has one output pin with a
vectored pin name that supports a fixed num­
ber of bits.

2-33

Component Creation

alid Graphics Ed,tor (GED) 9,0 !

293. BODY. 1. 1 GRID €I. €IS 2 NEWPARTS. WRK U HELP I)

;Ii

I~

• . II UNDO I)

Sizeable
Components

2-34

Figure 2-15. Version 1 of the TTL 293 Body

/I R[DO Il
[I Others ;I)
(I EDIT I)

When you add a new part to a library, you must
decide if it can be made into a sizeable part. If it is
possible to make a part sizeable, you must then de­
cide which control signals should be driven in paral­
lel and which should be provided on a per-bit basis.
At least one pin of a sizeable component must be a
sizeable pin (SIZE-l .. 0); all other pins can be size­
able, vectored, or scalar pins.

Consider creating a D flip-flop that has a preset and
clear for each section. Should these inputs be
sizeable (meaning that each bit can be cleared and

10/1/89

10/1/89

Component Creation

set individually), or should these be single-bit sig­
nals that set and clear all the flip-flops simultane­
ously? The answer depends on how you expect the
part to be used. The decision does not rule out any
particular design, but it does make some designs
easier to enter than others.

If you make the preset and clear sizeable, then a
user who wishes to clear the entire register must ex­
tend the clear signal to the correct size to prevent a
width mismatch. Since most sizeable flip-flops are
used as registers, this is a good argument for mak­
ing preset and clear single-bit signals.

On the other hand, if the signals are made single-bit
and the user really needs a register where each bit
can be asynchronously cleared and preset independ­
ently, you must draw the register with one body per
bit. This is equivalent to the non-vectored design
style for this particular register.

Not all parts can be made sizeable. In an ALU, for
example, CARRY IN and CARRY OUT are connected
neither in parallel nor on a per-bit basis. Therefore,
an ALU is not a sizable part. Gates, on the other
hand, require no control signals and can always be
made sizeable.

2-35

Component Creation

Pin Names for Sizeable
Components

See the SCALD Language
Reference Manual for
more information on sig­
nal syntax in the different
library formats.

2-36

When you build a sizeable library component, the
pins (or some of the pins) of the component must
also be defined as sizeable. Parts may be made to
handle an arbitrary number of bits by providing mul­
tiple-bit pins and vectored pin names with the
SIZE-l parameter. The width of the data path is
then determined by the SIZE property placed on the
component when it is added to a logic drawing.

For the standard Valid library format (format 1), a
sizeable pin name is specified as:

PIN_NAME=name <SIZE-1 •. 0>

The variable name is the name of the sizeable pin.
The parameter SIZE-l specifies the number of mul­
tiple bits the pin is to represent. The value of
SIZE-l depends on the value assigned to the SIZE

property attached to the body when it is added to a
logic drawing.

For example, if you attach the property SIZE=4B to a
sizeable component (in a logic drawing) with a
Y<SIZE-l..O> output pin, the resulting value is
Y <3 .. 0>. Attaching the property SIZE=2B results in
the value Y <1. .0>.

10/1/89

10/1/89

Component Creation

The top half of Figure 2-16 shows the sizeable body
version (Version 1) of the LS78 component. The
bottom half shows the component when you add it
to a logic drawing and attach the SIZE property.

J <SIZE-I .. el> a <SIZE-I .. el>

CLOCK*

K < SIZE-l. . el> a <SIZE-l .. 0>*

Figure 2-16. LS78 Sizeable Component

2-37

Component Creation

Modifying
Existing
Components

The Smash
Command

2-38

For some components you want to create, you may
be able to copy an existing library component and
alter the component for your use. For example, the
TTL 293 component looks exactly like the LSTTL

LS293 component; the differences are in the electri­
cal characteristics. You can use GED to make a
copy of the LSTTL component and modify it for use
as a TTL component.

There are two methods of copying library
components:

• Use the smash command on an added body
drawing.

• Use the diagram command to change the
name of a borrowed drawing.

Both of these are alternate methods of creating the
TTL 293 component you already created in this
section.

Follow these steps to create Version 2 of the TTL 293

body by copying the LS293 component.

1 Edit a new drawing called 293.body.2.1.

2 Add Version 2 of the LS293 component to the
new drawing:

add 18293 .. 2

Center the LS293 body around the origin of the
new drawing.

10/1/89

10/1/89

Component Creation

3 Enter the smash command and point to the
LS293 component. This command separates
the body into individual wires, arcs, and cir­
cles. Any properties attached to the LS293

component are deleted.

4 Use the delete command to remove the incor­
rect body name (LS293).

5 Use the split command to move the new body
name away from the body origin. Place the
new body name at the top of the body and dis­
play it to the correct size.

6 Use the dot command to place connection
points on each pin.

7 Use the signame command to add the pIn
names to the body.

8 Use the property command to attach the re­

quired properties to the body origin.

9 Write the drawing to save it.

2-39

Component Creation

The Diagram
Command

2-40

Follow these steps to use the diagram command to
create Version 2 of the TTL 293 drawing.

1 Edit Version 2 of the LS293 drawing:

edit ls293.body.2.1

2 Use the diagram command to rename the
drawing:

diagram 293.body.2.1

The system brings up the same drawing under
the new drawing name. All properties are at­
tached exactly as they were under the original
drawing name.

3 Enter the command:

ignore lsttl

This command removes the reference to the
lsttl library so you can write the drawing into
your own .wrk file.

4 Use the write command to save the drawing

under the new drawing name.

5 Enter the command

library lsttl

to reference the lsttl library again.

6 Use the change and move commands to edit

the body name and center it within the body.

7 Write the drawing to save it.

10/1/89

Completing a
Component

10/1/89

Component Creation

To complete a new component, you must:

• Create the physical model for the Packager
(add pin numbers, output type, etc.)

• Create a simulation model (if necessary)

• Create a timing model (if necessary)

• Test the component

If you use the smash or diagram method and mod­
ify an existing component to create a new compo­
nent, you also need to make the necessary changes
to the .PART, .SIM, and .TIME drawings for the body
to complete the new component.

2-41

The Physical Model

T his section discusses:

• Creating a .PART drawing

• Modifying an existing .PART drawing

• Creating a library drawing

• Adding body properties

• Adding pin properties

• Adding a drawing body

• Completing a library drawing

• Modifying an existing library drawing

• Editing the compiler.cmd file

• Compiling a library drawing

• Creating individual chips files

Physical Model

Creating the
.PART Drawing

The DRAWING body cannot
be added to a .BODY drawing
since it would appear with the
body on the schematic.

Compiling a component
without a .P ART draw­
ing produces the error
message II no useable
extension found."

3-2

The .PART drawing tells the Compiler that the com­
ponent is a primitive, or lowest-level, body. It is not
a hierarchical body; there is no logic below the body
or inside it. There is only one item included in a
.PART drawing: the DRAWING body.

The DRAWING body specifies properties of the entire
component. You attach the TITLE property (which
is the logical part name) and the ABBREV property
(which is an optional abbreviation for the compo­
nent name to be used when constructing path ele­
ments). If the physical part name is different than
the body name, you must also attach the
PART_NAME property. For example, the logical part
name LSOO corresponds to the physical part name
74LSOO.

Follow these steps to create a .PART drawing for the
TTL 293 component:

1 Access GED and edit a file named 293.part.

2 Add a DRAWING body to the file:

add drawing

3 Select the property command from the menu

and point to the DRAWING body.

4 Add the TITLE, ABBREV, and PART_NAME

properties below the word DRAWING:

title 293
abbrev 293
part_name 74293

10/1/89

10/1/89

Physical Model

5 Enter the command

display both

and point to each property.

6 write the drawing to save it. LAST_MODIFIED

now reflects the current date and time.

The .PART drawing for the TTL 293 component is
shown in Figure 3-1.

DRAWING

TITLE=293
ABBREV=293
PART_NAME=74293
LA5T_MODIFIED=Wed Aug 2 14:21:19 1989

Figure 3-1. The 293.PART Drawing

3-3

Physical Model

Modifying an
Existing .PART
Drawing

3-4

If you copy an existing component and modify it to
create a new component, you should also copy the
existing .PART drawing and modify the DRAWING

body to match the new drawing name, abbreviation,
and part name.

10/1/89

Creating the
Physical Model:
Basic Procedure
(Checklist)

10/1/89

Physical Model

Creating a physical model by adding physical infor­
mation to a library component requires the following
steps:

1 Create a library drawing and add the sizeable
or vectored version of the body.

2 Attach the body properties.

3 Attach the pin properties.

4 Verify property attachments, check and write
the drawing.

5 Edit the compiler.cmd file.

6 Compile the library drawing.

7 Move the chips.dat file to the individual com­
ponent directory and rename it chips _ prt.

Each of these steps is detailed in this section.

3-5

Physical Model

Creating the
Library Drawing

See Archiving Library
Drawings, page 3-31,
for more information
on archival.

Refer to Appendix B for
changes between the
previous library drawing
method and the current
library drawing.

3-6

Library Drawing
Standards

The library drawing is used to transfer physical infor­
mation from GED to the Packager. This drawing
shows the sizeable version of a component to be
packaged (usually Version 1).

The name of the library drawing should reflect the
component you are modeling. You can keep or dis­
card the library drawing for a component depending
on your choice of archival methods.

Follow these steps to create a library drawing for the
TTL 293 component:

1 Access GED and edit the library drawing:

edit newparts library

2 Add the sizeable version (Version 1) of the
component to be compiled:

add 293.body

II' Parts having asymmetrical sections should
have one of each of the sections added to the
drawing.

II' Asymmetrical sections cannot have any
common pin names.

10/1/89

Adding Body
Properties

On the UNIX operating
system, there is a text file
method of adding physical
information. Refer to
Appendix A for details.

10/1/89

Physical Model

Several body properties are attached to the origin of
a component on the library drawing. These proper­
ties pass information about the component to the
Compiler or other Valid analysis tools:

• FAMILY

• POWER PINS

• BODY TYPE

• COST

• PART NUMBER

• PHYS DES PREFIX - -
Follow these steps to add the FAMILY and
POWER_PINS properties to the TTL 293 component in
the NEWPARTS LIBRARY drawing:

1 Select the property command from the OED

menu.

2 Enter the FAMILY property for the 293
component:

FAMILY = TTL

3 Enter the POWER_PINS property:

POWER_PINS=(VCC:14;GND:7)

3-7

Physical Model

The TTL 293 component and body properties appear
in Figure 3-2.

alid Graphics Editor (GED) 9,0 1

NE\o.PMTS LlmARY. LOGIC. 1. 1 GRID 0. 1 5

29:3
.1 ' u.

a ••• r-

o HELP \)
[I SHOW ;J)
II VERSION I)
(I GROUP I)
[I SPLIT I;
II COpy I)
II DELETE Ii
(I NOVE I)
o WIRE \}

o 200M 0+1)

I· q
. 0 SIGNAHE I)

U CHANGE I)
[I PROPERlY I)

II ROOTE 11
!loIREcTOR'4I)

It UNDO U
II REDO Ii
!I Others ;Ii
I! EDIT Ii

Figure 3-2. The TTL 293 Body Properties

FAMIL V Property

3-8

The F AMIL Y property specifies the logic family of a
component. The property can have any value.
Some of the values used in the Valid libraries are:

FAMILY = TTL
FAMILY = LSTTL
FAMILY = ECL100K

Attach the FAMILY property to the body origin.

10/1/89

POWER PINS
Property

SYNTAX ~

supply

pin list

EXAMPLES'

10/1/89

Physical Model

The POWER_PINS property specifies the power and
ground pin assignments for each component. The
property specifies both the power supply (power
rail) names and the pin numbers of pins connected
to the supply.

POWER_PINS=(supply:pin list; supply;pin list; ...)

The power supply na~e. The name must be an al­
phanumeric identifier starting with a letter (for ex­
ample, vee). The supply name may include an
underscore (_).

A list of the pin numbers of the part that connect to
the supply. The pin numbers are separated with
commas.

A colon is used to separate the supply name and the
pin list. A semicolon is used to separate each sup­
ply specification.

The TMS40S0 RAM has the POWER_PINS property:

POWER_PINS=(VBB:l; VDD:IO; VSS:IB)

The 100123 bus driver has the property:

POWER_PINS=(VCC:6; VCCA:7.9.11.5.3.1; VEE:IB)

The order of the pin assignments is not important.
The POWER_PINS property only applies to library
parts and is ignored if attached to a body that is not
a library part. Attach the POWER_PINS property to
the body origin in the library drawing.

3-9

Physical Model

BODY_TYPE Property

You can also use the prop­
erty COMMENT _BODY=TRUE

to comment out a body.

COST Property

PART NUMBER
Property

PHYS DES PREFIX - -
Property

3-10

The BODY_TYPE property is used to "comment out"
bodies that have no logical function. For example, a
company logo requires a BODY_TYPE property be­
cause the logo has no logical meaning. The
BODY_TYPE property has the following syntax:

BODY _ TYPE=COMMENT

The .COST property specifies the cost of a component
at your site. This property is not used in the Valid
libraries since it contains site-specific information.
Since this property is not a constant value, it might
be handled more easily using physical part tables.
See the ValidpACKAGER Reference Manual for infor­
mation on physical part tables.

The PART_NUMBER property is used to assign an in­
ternal part number for the component. This prop­
erty is not used in the Valid libraries.

The PHYS_DES_PREFIX property allows you to
change the prefix of the physical descriptor to match
your requirements. For example, you can use physi­
cal reference designator of "IC" for an integrated
circuit rather than the default "u."

1 0/1/89

Adding
Pin Number -
Properties

10/1/89

Physical Model

Each pin (except pass-through pins) of every library
component (and all versions of a component) must
have a PIN_NUMBER property attached. The
PIN_NUMBER property tells the Packager:

• The pin number for the pin

• The number of sections of the component in a
package

• The pin numbers for each section

There must be one pin number on each pin for each
section. For example, if a package has four sec­
tions, there must be four pin numbers on each pin.
The Packager prints an error message when a pin is
found without a PIN_NUMBER property or without
the correct number of pins per section.

Follow these steps to add the PIN_NUMBER property
to the TTL 293 component in the NEWPARTS

LIBRARY drawing:

1 Choose the property command from the GED

menu and select the CLKA pin.

2 Enter the PIN_NUMBER property for the CLKA

pin:

PIN_NUMBER=(lO)

Locate the property to the left of the CLKA pin.

3 Select the CLKB pin and type the PIN_NUMBER

property for the pin:

PIN_NUMBER=(ll)

3-11

Physical Model

The pin number sequence
follows the pin name se­
quence (Q<3 .. 0».

3-12

Locate the property above the CLKA pin
number.

4 Select the CL 1 pin and type the PIN_NUMBER

property for the pin:

PIN_NUMBER=(12)

Locate the property near the CL 1 pin.

5 Select the CL2 pin and type the PIN_NUMBER

property for the pin:

·PIN_NUMBER=(13)

Locate the property near the CL2 pin.

6 Select the vectored Q pin and type the vectored
PIN_NUMBER property for the pin:

PIN_NUMBER=«9,5,4,8»

Locate the property near the Q pin.

The pin number properties for the TTL 293 compo­
nent are shown in Figure 3-3.

10/1/89

Physical Model

I

I'C~ LIMMY.LOGIC:.I.I GRID 0.1 !5 LI~~.1oJRt<

I~~

I~l

FAMILY=TTL Icmm:o~
POWER_PINS=(VCC: 14; GND: 7>

:293
I~~

BINARY l(]EIL:=Jl em PIN_NUMBER=«9,5,4.8» a~-0 ~
I~~ PIN_NUMBER=<ll> E t;>B

PIN_NUMBER=<10> !>A loo.ITCJl
CL

I~I

. -~ I~I
PIN_NUMBER=<12> PIN_NUMBER=<13> I~)

I II
II SID.IIME 1\

!~I
II PROPERU' ,\

100rr=J~

I~~

~i • I~~
.c~·

:~: 1(!m=::J~
~(I~I

I II HARDCOPY I~

Figure 3-3. The TTL 293 Component with Pin Numbers

Pin Number Formats There are different pin number formats available de­
pending on the type of library part you are develop­
ing. The formats define the following types of pin
assignments:

• Single section scalar pin

• Single section vector pin

• Multiple section scalar pin

• Multiple section common pin

• Multiple section common vector pin

• Asymmetrical components

10/1/89 3-13

Physical Model

Single Section Scalar
Pins

The clock and clear pins of
the TTL 293 component
are also examples of single
section scalar pins.

Single Section Vector
Pins

3-14

A scalar pin is a pin that corresponds to a single-bit
signal. A vector pin corresponds to a fixed number,
multiple-bit signal. A pin_id (the PIN.:...NUMBER

property) consists of any alphanumeric character
and/or the underscore character. The maximum
length of a pin number is 16 characters.

The PIN_NUMBER property for each pin of a simple
one-section part has the format:

PIN _ NUMBER= (pin _id)

The pins of the LS30 NAND gate are examples of
single section scalar pins.

PIN_NUMBER=(l)
PIN_NUMBER=(2)
PIN_NUMBER=(3)
PIN_NUMBER=(4)
PIN_NUMBER=<S)
PIN_NUMBER=(6)
PIN_NUMBER=(ll)
PIN_NUMBER=(12)

A vector pin has a fixed number of bits. It is not
affected by the SIZE property. Each bit of the vector
connects to the same section of the part. The
PIN_NUMBER format for a vector pin is similar to the
format for a scalar pin, except that each logical pin
number includes several physical pin numbers en­
closed between left and right angle brackets:

PIN_NUMBER=« pin_id, pin_id, 000 »

The angle brackets indicate that the pin represents
multiple bits. The pin numbers in the list are sepa-

10/1/89

1 0/1/89

Physical Model

rated by commas. For example, a 4-bit pin is speci­
fied as follows:

The bits of a multiple-bit pin are assigned to the
physical pin numbers specified in the PIN_NUMBER

property in the following manner:

1 The bit having the lowest subscript is assigned
to the first pin number in the list.

2 The bit with the next lowest subscript is as­
signed to the second pin in the list, and so on.

The least significant bit is assigned first because
there must always be at least one bit per pin.

PIN_NUMBER={<1,2,4,5»

The data buses of an LS181 ALU are examples of
single section vector pins.

PINLNUMEER=C(18.20.22.1»

PIN-NUMBER=C(3.4.5.6»

The Q pin of the TIL 293 component is also an ex­
ample of a single section vectored pin.,

3-15

Physical Model

Multiple Section Scalar
Pins

3-16

Many physical components contain several identical
logical components. Each logical component is con­
sidered a section of the physical component. For
example, the LSOO logical component is a single
2-input NAND gate; the 74LSOO physical component
contains four 2-input NAND gates, or four sections.
The pins on this type of component are defined as
sizeable pins.

To identify the sections of a component, each pin of
the logical component has a PIN_NUMBER property
that contains a list of pin numbers, one pin number
for each section in the part. For a multiple section
scalar pin, the PIN_NUMBER property has the follow­
ing syntax:

PIN_NUMBER={pin_id, pin_id, pin_id, pin_id, ...)

The pin numbers for each section are separated by
commas. Pins for the first section are in the last
position, pins for the second section are in the
second-last position, and so on.

The LSOO component is an example of a sizeable
component with multiple section scalar pins. If the
component is given the property SIZE=4B, each logi­
cal pin of the component has four pin numbers, one
for each section:

10/1/89

Multiple Section
Common Pins

Physical Model

Some multiple-section components have pins that
are common to several sections. For example, the
LS374 octal register has eight sections with a com­
mon clock pin and a common output enable pin.

The syntax for the PIN_NUMBER property is the
same for a multiple section common pin as for a
multiple section scalar pin:

The pin numbers for each section are separated by
commas. Pins for the first section are in the last
position, pins for the second section are in the
second-last position, and so on. Since common pins
have the same pin number for each section, and
each section must have a pin number entry, the
common pins have identical PIN_NUMBER entries.

Each logical pin of the LS374 component has eight
pin numbers, one for each section:

PIN-NUMBER=<3.4.7,8. 13. 14. 17,18) eQ PINLNUMBER=C2.5.6.9. 12.15. 16. 19)
L.S:374

PINLNUMBER=C11.11.11.11.11.11,11.11)

OE:

10/1/89

PINLNUMBER=C1.1.1.1.1.1.1.1)

The clock and enable pins are common to all eight
flip-flops in the package. The D and Q pins are
defined so that one bit is assigned to each flip-flop.

3-17

Physical Model

Some components with multiple-sections have pins
that are common only to certain sections of the part.
These are represented the same way as pins that are
common to all sections, except that the pin numbers
are present only in the sections for which they are
common. For example, the LS367 hex bus driver
component has the following pin number
assignments:

PIN_NUMBER=<2'4'6'10'12'14)~ PIN_NUMBER=<3.5.7.9.11.13l

PIN_NUMBER=(l,l, 1,1, 15, 15)

Multiple Section
Common Vector Pins

3-18

The pin numbers for the open emitter pin show that
one open emitter pin is common to four sections of
the component (pin 1), and one open emitter pin is
common to the other two sections of the component
(pin 15).

If a multiple-section component has vectored pins,
the PIN_NUMBER property has the following syntax:

Each pin number and section are separated by com­
mas. The pin numbers enclosed in angle brackets
specify individual bits of the pin, not different sec­
tion,s for the pin.

For example, a 3-bit pin in a component with two
sections might be specified as:

PIN_NUMBER=«1 ,2,3>,<5,6,7»

1011189

Physical Model

An LS189 16-word by 4-bit RAM is an example of a
component having vector pins and multiple sections.

PIN-NUHBER=C4.6. 10. 12)
-D ap PIN..NlJMBER=CS. 7. 9.11)

PINLNUMBER=C<l. 13.14. lS>. <1. 13. 14. lS).<l. 13. 14. is). <1.13. 14. lS»- AD,,-e

Asymmetrical
Components

LS189

CSWE.
CX)

PINLNUMBER=c2.2.2.2) PINLNUMBER=C3.3.3.3)

Some components have multiple sections that are
functionally different. In this case, one version of
the body is defined for each type of section in the
part. To identify which pins are present in a given
section, the pins of the different versions all have
different pin names.

Even though some pins may not be present in a sec­
tion, the PIN_NUMBER property values for the pins
specify all the sections of the part. Any pin that is
not present in a given section is specified with a pin
number of O.

For example, the LS241 bus transceiver has four
buffers with active-high enables and four buffers
with active-low enables. The pin numbers are de­
fined as follows:

PIN-NUMBER=(17'15'13'11'0'0'0'0)~ PINLNUMBER=(3.5.7.9.0.~.0.0)

PIN_NUMBER=C19. 19. 19. 19.0.0.0.0>

PIN-NUMBER=(~'~'~'~'2'4'6'B)~ PINLNUMBER=(~.~.~.~.lB.16.14.12)

PIN_NUMBER=C0.0.0.0.1.1.1.1>

10/1/89 3-19

Physical Model'

Compact Pin
Number Syntax

3-20

Rather than entering each individual pin number for
all the pins of a body, the PIN_NUMBER property
allows you to enter pin numbers in a more' compact
syntax. The syntax allows you to abbreviate bit sub­
ranges and repeated sections.

When specifying a subrange, the range values must
be separated by two periods (..) for all library
formats.

The subrange compact syntax allows a list of bit sub­
scripts to be abbreviated to include only the first and
last subscripts. The repeat section syntax allows
identical lists of bit subscripts to be abbreviated to
one list and reiterated using a multiplier character.
Combinations of these two syntaxes can be used to
identify more complex pin numbers.

The subrange and repeat section functions also ac­
cept alphanumeric pin designations. The beginning
and ending pin numbers of an alphanumeric sub­
range must:

• Begin with the same set of characters

• End with different integers

For example, PIN_NUMBER=(DA 7 .. DAO) is legal
while the PIN_NUMBER=(DA 7 .. AAO) is not legal.

Table 3-1 shows an example of each compact
syntax. The long pin number under "combination
syntax" is shown on two lines for documentation
purposes only.

10/1/89

Physical Model

Table 3-1. Compact Pin Number Syntax

Pin Type Subrange Syntax Abbreviation

Scalar PIN_NUMBER={7 ,6,5,4,3,2,1,0) PIN_NUMBER={7 .. 0)

Vector PIN_NUMBER={<7,6,5,4,3,2,1,0» PIN_NUMBER=«7 .. 0»

Repeat Section Syntax

Scalar PIN_NUMBER= (7 , 7 , 7 , 7) PIN_NUMBER=(7 * 4)

Vector PIN_NUMBER=«1 ,2,3,4>,<1,2,3,4» PIN_NUMBER={<1 .. 4> * 2)

Combination Syntax

Scalar PIN_NUMBER=(3,3,3,3,4,4,26) PIN_NUMBER=(3 * 4, 4 * 2, 26)

Vector PIN _ NUMBER= «2,3,4,5>, <2,3,4,5>, PIN_NUMBER=«2 .. 5> *3, <23,26,27,28»
<2,3,4,5>,<23,26,27,28»

1 0/1/89 3-21

Physical Model

Adding Other
Pin Properties

If you are attaching more
than one pin property to a
pin, you only need to se­
lect the pin once. That
pin becomes the default
attachment point for the
property command.

3-22

Besides the PIN_NUMBER property, there are several
other standard pin properties attached to the pins of
each component on the library drawing. These stan­
dard pin properties are:

• OUTPUT_LOAD • NO_LOAD_CHECK

• INPUT LOAD • NO_IO_CHECK

• BIDIRECTIONAL • ALLOW_CONNECT

• PIN_GROUP • OUTPUT TYPE

• UNKNOWN_LOADING

Follow these steps to add the remaining pin proper­
ties to the TIL 293 component:

1 Select the property command from the OED

menu and select the Q output pin.

2 Enter the OUTPUT_LOAD property for the Q
pin:

OUTPUT_LOAD=(16.0,-O.8)

Locate the property below the PIN_NUMBER

property for the Q pin.

3 Enter the INPUT_LOAD property for the CLKA

and CLKB pins. Although the pin properties
are identical, attach one INPUT_LOAD property
to each pin:

INPUT_LOAD=(-3.2,O.08)

Locate the property below the PIN_NUMBER

properties for the CLKA and CLKB pins.

10/1/89

. .. . l~lIlI!R!

Physical Model

4 Enter the INPUT_LOAD properties for the CL1

and CL2 pins. Although the pin properties are
identical, attach one INPUT_LOAD property to
each pin:

INPUT_LOAD=(-1.6,O.04)

Locate the properties below the PIN_NUMBER

properties for the CL1 and CL2 pins.

The loading properties for the TTL 293 component
are shown in Figure 3-4.

NEWPARTS LIBRARY.LOGIC.!.! GRID 0.1 5 NEWPFlRTS. ~ ~
!I SHOW ;J)

FAHILY=TTL II VERSION IJ
POWER_PINS=<UCC:14jGND:7) II GROUP IJ

293 II SPLIT I) mNRRY
CTR ~ PIN_NUMBER=«S,4,5,9})

~-IZI OUTPUT_LOAO=<16.0,-0.S> II Copy I)
PIN_NUMBER=(ll> t

~~ [I DELETE I) INPUT_LOAD=(-3.2,0.0B)
PIN_NUMBER=(10)

INPUT_LOAD=(-3.2,0.0B) CL [I MOVE I)

PINLNUMBER=(!2~INLNUMBER=(!3) UWIRE I)
[I ZOOM otI)

I NPUT_LOAD= (-1. 6, 0. 04> INPUT_LOAD=(-1.6, 0. 04> I; ,
(I SIGNAME I)
~ CHANGE I)
[I PROPERlY I)
[I ROOlE I,
(IDIRECTOR!;l~

.f~ II UNDO I)

I
(I REDO I)
[I Others ;J)
[I EDIT I)

Figure 3-4. The TTL 293 Pin Loading Properties

1011189 3-23

Physical Model

OUTPUT_LOAD
Property

See the ValidPACKAGER
Reference Manual for more
information on loading
properties.

INPUT LOAD
Property

3-24

", All pins must have either the OUTPUT_LOAD

or INPUT_LOAD property or both properties.

", If the pin is an output (has the OUTPUT_LOAD

property) and can be wire-tied to another out­
put, it must be given the OUTPUT_TYPE

property.

", If the pin is both an input and an output, the
BIDIRECTIONAL property is required.

The OUTPUT_LOAD property is attached to any pin
that is an output pin. The syntax of the
OUTPUT_LOAD property is:

OUTPUT _LOAD=(/ow current,high current)

OUTPUT_LOAD is typically measured in milliamps.
If there is a different measurement used in the data
book, convert the measurement to milliamps.

The Q pin of the TIL 293 component carries the
OUTPUT_LOAD property:

OUTPUT_LOAD=(16.0,-O.8)

If the loading on a component is not a critical factor,
there is a variable OUTPUT_LOAD syntax:

OUTPUT_LOAD=(*,*)

The INPUT_LOAD property is attached to any pin
that is an input pin. The syntax of the INPUT_LOAD

property is:

INPUT _ LOAD= (low current,high current)

10/1/89

BIDIRECTIONAL
Property

Physical Model

INPUT_LOAD is typically measured in milliamps. If
there is a different measurement used in the data
book, convert the measurement to milliamps.

The input pins of the TTL 293 component carry dif­
ferent INPUT_LOAD properties:

A & B inputs:
Clear inputs:

INPUT_LOAD=(-3.2,O.08)
INPUT_LOAD=(-1.6,O.04)

If the loading on a component is not a critical factor,
there is a variable INPUT_LOAD syntax:

INPUT_LOAD=(*,*)

A pin with the INPUT_LOAD and OUTPUT_LOAD

properties attached is an output pin which may also
load the net. To make the pin bidirectional, attach
the BIDIRECTIONAL pin property. A pin is not con­
sidered bidirectional unless the BIDIRECTIONAL

property is attached. The syntax of the property is:

BIDIRECTIONAL= TRUE

PIN_GROUP Property The PIN_GROUP property assigns the pins of a com­
ponent to pinswap groups. The Packager and the
GED command pinswap use the PIN_GROUP prop­
erty to identify swappable pins.

10/1/89

A pinswap group contains those pins that are logi­
cally equivalent and belong to the same section. If
two signals are swapped between two pins that are
in a pin swap group, the logical behavior of the cir­
cuit is not altered. The PIN_GROUP property has the
syntax:

PIN_GROUP=number

3-25

Physical Model

PIN-GROUP=!
PIN-GROUP=! B
PIN_GROUP=!

PIN-GROl..JP=2
PIN-GROUP=2
PIN-GROUP=2

PIN_GROUP=3 G

PIN_GROUP--3 H

PIN-GROUP=4 I

PIN_GROUP=4 ~

3-26

Each pin in a pinswap group must have a
PIN_GROUP property attached. All the PIN_GROUP

properties must have the same value. The value of
the PIN_GROUP property is not important, only that
all pins of a pinswap group have an identical value.
Any pin without the PIN_GROUP property cannot be
swapped with any other pins.

For example, the input pins of an LS30 NAND gate
(A, B, C, D, E, F, G, and H) all belong to the same
pinswap group. For each pin, the PIN_GROUP prop­
erty has the property value "1." The PIN_GROUP

property is not attached to the output pin (y*) since
this pin cannot be swapped with any other pin on the
component.

The LS51, 2-wide 3-input, 2-wide 2-input AND-OR­

INVERT gate is an example of an asymmetrical com­
ponent with more complex pinswap groups. There
are four pinswap groups, one for each AND gate.
The inputs for each AND gate are equivalent and
therefore swappable. However, inputs from differ­
ent AND gates are not swappable, so the PIN_GROUP

properties have a different value.

The output pins YO * and Y1 * do not have
PIN_GROUP properties because they cannot be
swapped with any other pins.

10/1/89

OUTPUT_TYPE
Property

Physical Model

The OUTPUT_TYPE property is added to the output
pins of open-collector, open-emitter, and tri-state
gates. The property serves three purposes:

• Allows the pin to be connected to other
outputs.

• Specifies the type of output so that only com­
patible outputs can be connected together.

• Specifies the logic function created by tying the
outputs together.

The OUTPUT_TYPE property provides information
that is needed by the Packager, the Timing Verifier,
and the Simulator. The property must appear on
both the timing and simulation models as well as in
the library drawing.

Each output pin that can be connected to other out­
put pins must have an OUTPUT_TYPE property. The
property value specifies the pin type and also the
logic function created by tying the outputs together.
The form of the OUTPUT_TYPE property value is:

OUTPUT _ TVPE=(output type,logic function)

Output type can be open collector, open emitter, or
tri-state (TS). Logic function can be AND, OR, or
tri-state (TS). Be sure there is no space after the
comma in the property value. The output type and
logic functions can be combined as follows:

OUTPUT _ TVPE=(OC,AND) Open collector, AND logic function

OUTPUT _ TVPE=(OE,OR) Open emitter, OR logic function

OUTPUT TVPE=(TS,TS) Tri-state, tri-state logic function

10/1/89 3-27

Physical Model

MAX..DEl..Ay= 1 ooee

~ OUTPUT _ TYPE=<OC. AND)

Load Checking
Properties

NO_LOAD _CHECK
Property

NO_IO_CHECK Property

ALLOW_CONNECT
Property

UNKNOWN_LOADING
Property

3-28

The LS09 component shows the open collector, AND

logic function OUTPUT_TYPE property.

Since tri-state pins are considered both input and
output pins, they need both INPUT_LOAD and
OUTPUT_LOAD properties. When a pin is in tri­
state mode, the tri-state loading is specified as the
INPUT_LOAD.

The properties NO_LOAD_CHECK, NO_IO_CHECK,

and ALLOW_CONNECT can be attached to a single
pin, a body, or a net (where they check all pins on
the net). The UNKNOWN_LOADING property can be
attached to a single pin or to a body. See the
ValidpACKAGER Reference Manual for more informa­
tion on the load checking properties.

When the NO_LOAD_CHECK property is attached to a
pin, it suppresses device loading calculations for that
pin. You can suppress the load check for the LOW

state, the HIGH state, or BOTH high and low states.

When NO_10_CHECK is attached to a pin, it sup­
presses the input/output checking for that pin. You
can suppress the input/output check for the LOW

state, the HIGH state, or BOTH high and low states.

Attach the property ALLOW _ CONNECT=TRUE if there
are pins which require multiple outputs of different
types to be connected together.

If there are parts in a design that have pins with
unknown or unspecified loading, use the property
UNKNOWN_LOADING=TRUE to suppress load and 110

checks on a pin.

10/1/89

Completing the
Library Drawing

Modifying an
Existing Library
Drawing

10/1/89

Physical Model

Once all the required properties are attached to the
library drawing, follow these steps to complete the
drawing:

1 Enter the show attachments command to ver­
ify all properties are present and correctly at­

tached. Use the reattach command to correct
any inaccurate attachments.

2 write the drawing to save it.

If you are copying an existing library and modifying
components in that library, the best way to create
the library drawing for the new library is to borrow
the library drawing from the library where you bor­
rowed the parts. If you are not changing the physi­
cal information, then you don't need to change any
of the information on the library drawing other than
its title and abbreviation. If you need to change
physical information, use the GED change com­
mand to change the values of the pin and body prop­
erties on the library drawing.

3-29

Physical Model

Creating the
Physical Model
File

Check the cmplst.dat
file if any compilation
errors occur. Correct
any errors and recom­
pile the drawing until an
error-free run occurs.

3-30

When the library drawing is correct and complete,
you must make the physical model file from the li­
brary drawing.

The physical model is used by the Packager and by
the section and pinswap commands to read the
pin numbers you attached to the component during
the design stage. To create the physical model, you
need to:

• Edit the compiler.cmd file.

• Compile the library drawing.

• Rename and relocate the resulting data file.

Follow these steps to create the physical model for
the TIL 293 component:

1 Edit the compiler.cmd file as follows:

• Change the ROOT_DRAWING directive to
reflect the correct drawing name.

• Change the output type to "chips."

• Make sure the DIRECTORY directive
points to the correct .wrk file.

2 Compile the library drawing to create the
chips.dat file.

3 After the drawing compiles successfully,
change the name chips.dat to chips_prt and
move the physical model to the correct compo­
nent subdirectory:

mv chips.dat 293/chips_prt

10/1/89

Archiving Library
Drawings

10/1/89

Physical Model

Once the physical information is complete and the
chips_ prt file exists, the library drawing is no longer
required. You can either archive the library drawing
or delete it.
You can archive library drawings by:

• Creating a "save" directory to store all library
drawings.

• Using a tape archive utility (such as tar) to
save library drawings off the system onto tape.

If disk space is at a premium, you can delete the
individual library drawings and just save the
chips _ prt files for each component.

If you must modify a component after you delete a
library drawing, you can either:

• Recreate the library drawing, incorporate the
old and new information, and recompile the
drawing.

• Use a text editor to make changes directly to
the chips_prt file.

Once you decide on a method of modifying compo­
nents, whether updating and recompiling the library
drawing or editing the chips_prt file, you should
continue to update that component in the same way.
If you edit chips _ prt and make a correction one
time, and then the next time you make a change you
modify the archived library drawing, the change you
made to the chips _ prt file is lost when you recom­
pile the drawing and recreate the file. Deciding on
one archival method to use saves you from inadver­
tently losing file changes.

3-31

This section describes:

The Simulation
Model

• Defining the simulation model

• General design rules for models

• Delay and pulse width standards

• Creating the model (checklist)

• Simulator primitives

• Simulation properties

• Modifying simulation models

Simulation Model

Defining the
Simulation
Model

General Design
Rules for Models

4-2

A simulation model emulates the behavior and opera­
tion of a design without having to physically build
the circuit. Simulation ensures the design's quality
early in the design process, when changes and cor­
rections are easier and less expensive to implement.

Simulation models are built from a specific set of
parts called simulator primitives. You decide which
simulator primitives to use by studying the func­
tional specification and data tables in the appropri­
ate data book. It is possible to create different simu­
lation models (using different simulator primitives)
for the same component, and obtain the same simu­
lation results.

There are several important goals you should keep
in mind when designing simulation models:

• Keep the model simple. Models do not need to
reflect the complete logical behavior of the part
in order to provide accurate information. Simple
models are easier to design, easier to under­
stand, easier to test, and execute faster. How­
ever, the model should be as large and complex
as necessary to make it easy to understand.
Ease of understanding by the user is better than
incremental improvements in execution.

• Try to make the layout of the model follow the
layout of the body. The interface signals in the
model should appear in approximately the same
physical relationship as on the body.

• Try to make it possible to understand all error
messages without having to refer to the model.

10/1/89

When applying this rule
remember that for all
practical purposes, NOT
bodies are wires.

10/1/89

Simulation Model

Reference everything back to the device itself
(the component being modeled).

• The user will not understand the internal struc­
ture of the models and does not want to have to
look at them. Any errors during timing analysis,
for instance, must be referred to signal names
the user understands. This will not be the case if
the model has a lot of unnamed signals. Models
should always be designed so that error mes­
sages are reported with signal names that mean
something to the user.

• All timing checker primitives (such as MIN

PULSE WIDTH and SETUP/HOLD) should have
their inputs connected to interface signals.
When this is not possible, signals internal to a
model (local signals) should be given names that
describe the signal. Checker bodies have negligi­
ble impact on verification time.

• Do not connect sign-extenders or mergers to the
interface signals of a body. (This generates con­
fusing synonyms.) Place a zero-delay, non­
inverting buffer of the appropriate SIZE between
such structures and the interface signal.

• Many parts have both a true and complement
output. Simulator primitives have only a true
output. To generate both outputs, use an invert­
ing and a non-inverting buffer, one buffer driv­
ing the complemented output and the other
buffer driving the un-complemented output.

4-3

Simulation Model

Delay and Pulse
Width Standards

Calculating Delays

One value present:

Minimum

Typical

Maximum

Two values present,
misSing value is:

Minimum

Typical

Maximum

4-4

The following standards are used in calculating de­
lay and pulse width information for the simulation
and timing models in the Valid libraries.

Data books frequently do not specify all three delay
values (minimum, typical, and maximum).
Table 4-1 shows how to calculate delay values
based on the available values. When two values are
present, calculate both of the values listed. For the
minimum or typical value, choose the lesser of the
two values to represent the missing value. For the
maximum value, choose the greater of the two val­
ues to represent the missing value.

Table 4-1. Calculating Delays

Minimum equals Typical equals Maximum equals

- 2 times min 3 times min

1/2 of typ - 2 times typ

1/3 of max 1/2 of max -

Use value of Use value of Use value of
Minimum Typical Maximum

- 1/2 of typ 1/3 of max

2 times min - 1/2 of max

3 times min 2 times typ -

10/1/89

Data-Dependent Delays

For a data-dependent
delay example, see the
LS244 simulation model.

Open Collector Gates

Pulse Width

Simulation Model

Most delays are functions of the value of the data.
Rise delay is usually different from fall delay. The
library part models usually include both rise and fall
delays. In models of tri-state parts, however, in­
cluding both rise and fall delays would add to the
complexity of the model. Therefore, tri-state parts
are modeled with a single delay from enable to out­
put, without consideration of whether the output is
rising or falling.

Open collector gates have no fixed, maximum time
delay. It is not possible for the analysis program to
compute the maximum delay from the OED drawing.
It is up to the designer to calculate the explicit maxi­
mum delay for each open collector gate.

When an open collector gate is added to a OED

drawing, the property MAX_DELAY appears above
the body with a value of 10000ns. The designer
must use the change command in OED to change
this value to the required value.

If minimum delays are not specified in the data
book, use a minimum pulse width equal to one-half
of the period of the input. For example, if the maxi­
mum toggle frequency is 10 MHz, estimate the pulse
width as follows:

Period = 1 = 0.1 X 10- 6

10 X 106

0.1 X 10- 6
Minimum pulse width = 2 = 50 ns

10/1/89 4-5

Simulation Model

One-Shots

4-6

One-shots have no fixed pulse width. It is not possi­
ble for the analysis program to compute the pulse
width from the OED drawing. It is up to the designer
to calculate the pulse width, taking into account all
the one-shot tolerances, external component toler­
ances, temperature variations, and drift over the life
of the circuit.

When a one-shot is added to a OED drawing, the
property PULSE_WIDTH appears above the body with
a value of 10000ns. The designer must use the
change command in OED to change this value to
the required value.

10/1/89

Creating the
Model:
Checklist

10/1/89

Simulation Model

Creating a simulation drawing requires the same ba­
sic steps as creating a logic drawing except that the
parts used are logic simulator primitives from the
Sim Library and support components from the Valid
Standard library.

1 Access the Sim library:

library sim

2 Create a drawing for your component with a
.81M extension (for example, 293.8IM).

3 Add the required simulator primitives.

4 Add a DRAWING body and attach the TITLE

and ABBREV properties.

5 Wire the model.

6 Name the input and output signals. Signal
names must include the \I interface signal
property and correspond to the names of the
signals in the body drawing for the part being
modeled.

7 Assign the required simulation properties.

8 Verify attachments, check, and write the
model.

4-7

Simulation Model

4-8

Y' Use a B SIZE PAGE as a border.

Y' Center the drawing on the page.

Y' Include the name of the drawing and the in­
itials of the creator in the boxes in the lower
right hand corner of the page border.

Y' Enter the page number of the drawing as a
note (text size 1. 5) in the form "1 of 1."

Y' Include a note block (notes enclosed with wires
to form a block) to document any assumptions
and/or critical design decisions that are not ob­
vious to the user.

Y' Add primitives only from the Standard and
Sim libraries.

Y' Every model must have a DRAWING body (with
TITLE and ABBREV properties attached).

Y' Follow SCALD signal syntax for signal names.

Y' Do not use bit lists in bit subscripts.

Y' Make sure all interface signals have the \I
property in the signal name.

Y' All interface signals should have an explicit
width specified unless the signal is a scalar.

Y' All properties attached to bodies should be
placed above the body or to the right. Place
the properties one above the other and left­
aligned. Display both the property value and
name for all properties except PATH.

10/1/89

lSP
IELAY=l'J

CLl \.1 SIZE=lB

Q2~\'~1 __ -L2_~~--------L-~

Simulation Model

Since it is possible to create different simulator
models for the same component, there is no step­
by-step description for creating a simulation model
for the TIL 293 component. Figure 4-1 shows one
possible simulation model for the TIL 293. Simula­
tor primitives and simulation properties are dis­
cussed in general following the drawing.

Figure 4-1. TTL 293 Simulation Model

10/1/89 4-9

Simulation Model

The Simulator
Primitives

For additional in/ormation
on simulation primitives and
directives, see the ValidSIM
Reference Manual.

Bubbled Pins

Truth Table
Abbreviations

4-10

The simulation primitives are stored in the Sim li­
brary. Many simulator primitives are available,
from simple logic gates to a complete ALU. The
behavior of each primitive is understood by the
Logic Simulator.

Sometimes there are components and primitives that
have similar names, for example, the "2AND" com­
ponent and the "2 AND" primitive. Be sure to leave a
space in the primitive names.

Each input and output pin on a primitive can be in­
dividually bubbled using the OED bubble command.
Bubbling a primitive pin inverts the logical function
of the primitive. An AND gate with a bubbled out­
put behaves as a NAND gate. Bubbling the output
pin of the simulator primitive BUF adds an inverter
to your model.

Table 4-2 shows the abbreviations used in the truth
tables for the simulation primitives.

Table 4-2. Truth Table Abbreviations

Abbreviation Meaning

ps Previous state

U Unknown value

X Can be any value

Z High impedance

-+ Transition

:F Not equal to

10/1/89

The Logic Gate
Primitives

AND Primitive

DELAY=0 IELAY=0
18 18

8- ~ DELAY=0
1B

B- DELAY=0
18

~ DELAY=0
1B

B- DELAY=0
IB

DELAY=0

~
1B

~

10/1/89

Simulation Model

There are three types of logic gate primitives:

• AND

• OR

• XOR

Since any pin of any primitive can be independently
bubbled, to create a NAND gate, simply bubble the
output of an AND gate.

There are seven AND primitives (two-input through
eight-input) :

• 2 AND • 6 AND

• 3 AND • 7 AND

• 4 AND • 8 AND

• 5 AND

Be sure to leave a space between the numeral and
the "AND."

The truth table for an AND primitive is shown in
Figure 4-2.

One or More All Other
Inputs Inputs Output

0 X 0

1 1 1

Z,U 1 U

Figure 4-2. AND Gate Truth Table

4-11

Simulation Model

OR Primitive

IELAY=0 DELAY=0
lB lB

B- ~ DELAY=0
lB

DELAY=0
lB B-

P-DELAY=0
lB

B>-
DELAY=0
lB

DELAY=0

P-lB

P>-

XOR Primitive

DELAY=0
18

jE>-

4-12

There are seven OR primitives:

• 2 OR • 6 OR

• 3 OR • 7 OR

• 4 OR • 8 OR

• 5 OR

The truth table for an OR primitive is shown in
Figure 4-3.

One or More All Other
Inputs Inputs Output

0 0 0

1 X 1

Z,U 0 U
Figure 4-3. OR Gate Truth Table

The XOR has only a two-input version. The truth
table for an XOR primitive is shown in Figure 4-4.

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

X U,Z U
Z,U X U

Figure 4-4. XOR Gate Truth Table

10/1/89

The Buffer
Primitives

BUF Primitive

DELAY=0
lB

~

10/1/89

Simulation Model

There are three buffer primitives:

• BUF

• TS BUF

• IDENTITY

The truth table for the simple buffer primitive BUF

is shown in Figure 4-5.

Input Output

0 a
1 1

Z,U U

Figure 4-5. BUF Truth Table

To create an inverting buffer, simply bubble the in­
put or output pin of a buffer. Non-inverting buffers
are commonly used for delays.

4-13

Simulation Model

TS BUF Primitive

DELAY=0
lB .-

IDENTITY Primitive

4-14

lB
IDENTITY

-t>-

The tri-state buffer primitive TS BUF has an enable
input that, when disabled, causes the output to take
the value high impedance (Z). The enable input has
a width of one bit. The truth table for the TS BUF is
shown in Figure 4-6.

Input Enable· Output

a a 0

1 0 1

Z,U a u
x 1 Z

X Z,U U

Figure 4-6. TS BUF Truth Table

The IDENTITY primitive is similar to BUF except that
it propagates the exact signal on the input pin to the
output pin, while the BUF primitive converts the Z
state to U and soft values to hard values. The truth
table for the IDENTITY primitive is shown in
Figure 4-7.

Input Output

a 0

1 1

Z Z

U U

Figure 4-7. IDENTITY Truth Table

10/1/89

The JK Primitive

DELAY=eJ
o 18

-.]" PR a-

->JK

-KCLaC)
U

J K

X X

X X

X X

X X

X X

X X

X X

a a

0 1

1 a

1 1

10/1/89

Simulation Model

The JK primitive models the J-K Flip Flop. The
primitive has the following features:

• Input pins for J and K data inputs

• Asynchronous set and reset functions

• An edge-triggered clock

If the clock input is not bubbled, then the primitive
output triggers on a positive edge; if it is bubbled, it
triggers on a negative edge. Outputs consist of Q
and Q* data outputs. Asserting both the set and
reset pins causes both of the outputs to go high.
The truth table for the JK primitive is shown in
Figure 4-8.

CLOCK PR* CL* Q Q*

X Z,U X U U

X X Z,U U U

X a a 1 1

X a 1 1 a

X 1 a a 1

X--.Z,U 1 1 U U

x--.a 1 1 ps ps

a--.1 1 1 ps ps

a-+-1 1 1 a 1

a-+-1 1 1 1 0

a--.1 1 1 ¢Q ¢Q*

Figure 4-8. JK Primitive Truth Table

4-15

Simulation Model

. The Latch Primitives

LATCH Primitive

Two other latch primitives,
SCAN LATCH and
SCAN LATCH RS, appear
in the Sim library. These
primitives are no longer
supported by Valid.

4-16

There are three latch primitives:

• LATCH

• LATCH RS

• LATCH RS COMP

The LATCH primitive has an enable input that is
level-sensitive. The truth table for the LATCH

primitive is shown in Figure 4-9.

Data Enable Q

0 1 0

1 1 1

X 0 ps

Z,U 1 U
¢ ps Z,U U
= ps Z,U ps

Figure 4-9. LATCH Truth Table

10/1/89

LATCH RS Primitive

10/1/89

Simulation Model

The LATCH RS primitive has an enable input that is
level-sensitive and asynchronous set and reset in­
puts that cause the outputs to take the values one
and zero, respectively. On the LATCH RS primitive,
reset prevails over set if both are asserted. The
truth table for the LATCH RS primitive is shown in
Figure 4-10.

Data Enable PR* CL* Q

X X X Z,U U
X X X a a
X X Z,U 1 U
X X a 1 1

= ps Z,U 1 1 ps

~ ps Z,U 1 1 U
X a 1 1 ps

a 1 1 1 a
1 1 1 1 1

Z,U 1 1 1 U
Figure 4-10. LATCH RS Truth Table

4-17

Simulation Model

LATCH RS COMP
. Primitive

IELAY=0
_0 lB

-0 PR Qr-

LATOi
RS

Cor-F

-EN Q:)
a..
U

Data
X

X

X

X

X

= ps

~ ps

X

0

1

Z,U

4-18

Enable
X

X

X

X

X

Z,U
Z,U

0

1

1

1

The LATCH RS COMP primitive has an enable input
that is level-sensitive and asynchronous set and re­
set inputs that cause the outputs to take the values
one and zero, respectively.

Complementary outputs are provided on the LATCH

RS COMP primitive, and both outputs take the value
one when both set and reset are asserted. The truth
table for the LATCH RS COMP primitive is shown in
Figure 4-11.

PR* CL* Q Q*
X Z.U U U

Z,U X U U
0 0 1 1

0 1 1 0

1 0 0 1

1 1 ps ps

1 1 U U

1 1 ps ps

1 1 0 1

1 1 1 0

1 1 U U
Figure 4-11. LATCH RS COMP Truth Table

10/1/89

The Register
Primitives

REG Primitive

DELAY=eJ
lB

REG 8
0

10/1/89

Simulation Model

There are five register primitives:

• REG • REG RS COMP 2

• REG RS • REG CKE

• REG RS COMP

The register primitives have an edge-triggered clock
input. When the clock input is not bubbled, the
primitive outputs trigger on a positive edge; when
the clock input is bubbled, the outputs trigger on a
negative edge. The REG RS, REG RS COMP, and
REG RS COMP 2 also have asynchronous set and re­
set inputs that cause the outputs to take the values
one and zero, respectively.

The truth table for the REG primitive is shown in
Figure 4-12.

Data Clock Output

0 0--.1 0
1 0--.1 1

Z,U 0--.1 U

X 1--.0 ps

= ps X--.Z,U ps

:F ps X--.Z,U U

Figure 4-12. REG Truth Table

4-19

Simulation Model

REG RS Primitive In the REG RS primitive, reset prevails over set if
both are asserted. The truth table for the REG RS

DELAY=0
primitive is shown in Figure 4-13.

0
lB

- DPRQ f- Data Clock PR* CL* Output
REG

X X X Z,U U RS

- t>a.. X X X 0 0
u X X Z,U 1 U

X X 0 1 1

= ps X-+Z,U 1 1 ps

~ ps X-+Z,U 1 1 U

0 0-+1 1 1 0

1 0-+1 1 1 1
Z,U 0-+1 1 1 U

X 1-+0 1 1 ps

Figure 4-13. REG RS Truth Table

4-20 10/1/89

Simulation Model

REG RS COMP Primitive Complementary outputs are provided on the REG RS

COMP, and both outputs take the value one when
both set and reset are asserted. The truth table for
the REG RS COMP primitive is shown in Figure 4-14.

DELAY=eJ
()

18

- nPRQ f- Data Clock PR* CL* Q Q*
REG X X X Z,U U U RS

COMP
P X X Z,U X U U Q

- >CL
u X X 0 0 1 1

X X 0 1 1 0

X X 1 0 0 1

= pS X~Z,U 1 1 ps ps

~ ps X~Z,U 1 1 U U

X X~O 1 1 ps ps

0 O~1 1 1 0 1

1 O~1 1 1 1 0

Z,U O~1 1 1 U U

Figure 4-14. REG RS COMP Truth Table

10/1/89 4-21

Simulation Model

REG RS COMP 2
Primitive

4-22

The REG RS COMP 2 primitive is a special purpose
version of the REG RS COMP primitive. The primi­
tive works the same as the REG RS COMP primitive
except that both outputs take the value zero when
both S lie and R * are asserted, and several additional
conditions govern the behavior of preset and clear.
The truth table for the REG RS COMP 2 primitive is
shown in Figure 4-15.

Data Clock S* R* T T*
X X X Z,U U U

X X Z,U X U U

X X 0 0 0 0

X X 0 1 1 0

X X 1 0 0 1

= ps X~Z,U 1 1 ps ps
¥: ps X~Z,U 1 1 U U

X X~O 1 1 ps ps
0 O~1 1 1 0 1

1 O~1 1 1 1 0

Z,U O~1 1 1 U U

Figure 4-15. REG RS COMP 2 Truth Table

The following additional conditions override the val­
ues in the REG RS COMP 2 truth table:

• When an instance of the REG RS COMP 2 primi­
tive has the body property DELAY attached
with a value d, and when s* and R* both
change value from zero to one within d

10/1/89

REG eKE Primitive

DELAY=0
lB

-D Q~

REG
C~KE

-t>

10/1/89

Simulation Model

or less of each other, then both T and T* take
the value U.

• When S* = U and LAST OUTPUT = 1, then
T = 1 and T* = o.

• When S * = U and LAST OUTPUT =F 1, then
T = U and T* = U.

• When R* = U and LAST OUTPUT = 0, then
T = 0 and T* = 1.

• When R* = U and LAST OUTPUT =F 0, then
T = U and T* = o.

• When S· = U and R* = 0, then T = 0 and
T* = U.

The REG eKE primitive is similar to the REG primi­
tive except that it has a clock enable input that en­
ables the clock when asserted.

4-23

Simulation Model

. The Multiplexer
Primitives

5
~§LAY=(2)cr~~AY=0

122
MUX r-ux

Y

S S

DELAY=0

1B p~~AY=0
I'1..IX

1
T

Ss

DELAY=eI
1B

4-24

DELAY=0
1B

There are three multiplexer primitives:

• 2 MUX

• 4 MUX

• 8 MUX

These multiplexer primitives have two, four, and
eight inputs, respectively. The SELECT inputs for
these parts have a fixed width of one, two, and three
bits, respectively. Using a multiplexer can often
dramatically reduce the number of simulator primi­
tives needed to model a part. The truth table for the
2 MUX is shown in Figure 4-16. The table can be
extended readily for the 4 MUX and 8 MUX.

S 10 : 11 Y

0 10 :F Z 10
10 = Z U

1 11 :F Z 11
11 = Z U

Z,U 10 = 11 :F Z 11
10 = 11 = Z U

10 :F 11 U

Figure 4-16. 2 MUX Truth Table

10/1/89

The MEMORY
Primitive

DEPTH=0
DELAY=0
18

- I TI-

MEMORY

-A
WE CS ~
UUI

See the ValidSIM Reference
Manual for information on
the MEM_STATE directive.

10/1/89

Simulation Model

The width of each word in the MEMORY primitive is
determined by the SIZE property. The number of
words is determined by the DEPTH property. The
A (address) input has a size corresponding to the
number of words. For example, a 256-word RAM

has an A input width of eight.

As a convenience to the model builder, the
WE (write enable) and CS (chip select) inputs on the
MEMORY primitive are bubbled because most actual
memory parts have these inputs low asserted. These
pins can be unbubbled (using the bubble command
in OED) if necessary. The MR (master reset) input,
when asserted, clears the entire MEMORY to zeros.

Memories can be modeled in either two-state or
four-state mode. The default is four-state mode.
In four-state mode, each bit of the memory assumes
one of three states: zero, one, or U. Use the
MEM_STATE directive to select two-state mode. In
two-state mode, each bit of the memory assumes
one of two states: zero and one.

The truth table for two-state mode is shown in
Figure 4-17. The truth table for four-state mode is
shown in Figure 4-18. The OUTPUT column shows
what value is output in each case. LOC means that
the addressed location is output. The WRITE column
indicates whether a write operation is performed.
No indicates that no write operation is performed.
A single letter indicates a write operation to the ad­
dressed location, and the value written. All indicates
that the given value is written to all memory
locations~

4-25

Simulation Model

TWO STATE MODE

MR CS* WE* A OUTPUT WRITE

0 1 X X Z no
0 O,U X > = DEPTH U no
0 0 1 UNDEF U no
0 0 1 DEF LOC no

0 0 0 DEF I I

0 0 U DEF 1 1
0 0 O,U UNDEF 1 1 all
0 U 1 X U no

0 U O,U DEF U 1
0 U O,U UNDEF U 1 all
1 1 X- X Z o all
1 0 X X 0 o all

1 U X X U o all
U 1 X X Z 1 all
U 0 X X U 1 all
U U X X U 1 all

Figure 4-17. Two-State MEMORY Truth Table

4-26 10/1/89

Simulation Model

FOUR STATE MODE

MR CS* WE* A OUTPUT WRITE

0 1 X X Z no
0 O,U X > = DEPTH U no
0 0 1 UNDEF U no
0 0 1 DEF LOC no

0 0 0 DEF I I

0 0 U DEF U U
0 0 D,U UNDEF U U all
0 U 1 X U no

0 U O,U DEF U U
0 U O,U UNDEF U U all
1 1 X X Z o all
1 0 X X 0 o all

1 U X X U o all
U 1 X X Z U all
U 0 X X U U all
U U X X U U all

Figure 4-18. Four-State MEMORY Truth Table

10/1/89 4-27

Simulation Model

The COUNTER SHIFT
REGISTER Primitive

DELAY=0
1B

-DI 00-
COUNTER

SHIFT
REGISTER

-8MSBIN TCO
CET
CEP

-~
I"'R 5cH!J
I I

This component is very
similar to the Fairchild
lOOK EeL component
(FlOOl36).

4-28

The COUNTER SHIFT REGISTER primitive operates as
either a modulo-16 up/down counter or as a four-bit
bidirectional shift register. This primitive has seven
inputs:

01 Parallel data in

MSB IN Serial data input for shift right. This
input produces two outputs: DO (data
out) and TC (terminal count; active
low).

CET Count enable trickle input (active low).
This input also acts as a serial input for
shift left.

CEP Count enable parallel input (active
low)

MR Master reset

CK Clock

s Select inputs (three bits)

10/1/89

10/1/89

Simulation Model

The function of the COUNTER SHIFT REGISTER

primitive is selected based on the S input as shown
in Figure 4-19.

S2 S1 SO FUNCTION

L L L Parallel Load

L L H Complement

L H L Shift Right

L H H Shift Left

H L L Count Down

H L H Clear

H H L Count Up

H H H Hold

Figure 4-19. COUNTER SHIFT REGISTER Function Table

The two count enable inputs are provided for ease of
cascading in multistage counters. These two enable
inputs must be both asserted for the count up/down
operations. One count enable (CET) input also
serves as a data input for the shift-left operation.
The output also can be cleared asynchronously by
bringing the master reset signal active.

4-29

Simulation Model

The Arithmetic
Primitives

ADDER Primitive

4-30

There are five arithmetic primitives:

• ADDER • CARRY SAVE ADDER

• ALU • COMPARATOR

• LOOKAHEAD

The ADDER primitive takes three inputs: A, B, and
CARRY IN; and produces four outputs: F, P, G, and
CARRY OUT. The SIZE property determines the
width of A, B, and F. F takes the sum of A, B, and
CARRY IN. CARRY OUT is asserted if an overflow
occurs. G is asserted if the addition of A and B

generates a carry. P is asserted if the addition of A,

B, and one propagates a carry.

10/1/89

ALU Primitive

DELAY=1Zl
18

The ALU primitive is pat­
terned after the Fairchild
100181 EeL component.

10/1/89

Simulation Model

The ALU primitive has inputs and outputs identical
to those of the ADDER primitive with the addition of
a four-bit select input that selects a function from
the table shown in Figure 4-20.

SELECT FUNCTION

0 A plus B (BCD)

1 A minus B (BCD)

2 B minus A (BCD)

3 o minus B (BCD)

4 A plus B

5 A minus B

6 B minus A

7 o minus B

8 (A and B) or (-A and -8)

9 (A and -B) or (-A and B)

10 A or B

11 A

12 -B

13 8

14 A and B

15 a
Figure 4-,!O. ALU Select Table

BCD stands for binary-coded-decimal. The behav­
ior of the BCD functions is not defined for SIZE val­
ues that are not multiples of four, or for data inputs
that are not valid BCD values. Plus and minus denote
two's-complement arithmetic. A '-' denotes one's­
complement.

4-31

Simulation Model

LOOKAHEAD Primitive

DELAY=0
1B

8
Co

LOOt<At£AD

G
CI

CARRY SAVE ADDER
Primitive

COMPARATOR Primitive

4-32

The LOOKAHEAD pnmltlve is a look-ahead-carry
generator with three inputs: P, G, and CARRY IN.

The primitive produces one output, CARRY OUT.

CARRY IN is one bit wide. P, G, and CARRY OUT

are sizeable. Each CARRY OUT bit is the carry calcu­
lated from CARRY IN and the P and G inputs from
the least significant bit through the CARRY OUT bit
of the primitive.

The CARRY SAVE ADDER takes three inputs: A, B,
and CARRY IN, and produces two outputs: T and
CARRY OUT. All are sizeable. The two-bit sum is
computed for each bit of A, B, and CARRY IN and is
stored in the corresponding bits of CARRY OUT

and T. T is the low-order bit of the sum, and
CARRY OUT is the high-order bit of the sum.

The COMPARATOR primitive takes two inputs, A and
B, and produces three one-bit outputs: LT (B>A), EQ

(A=B), and GT (A>B). LT is asserted if B > A. EQ is
asserted if A = B. GT is asserted if A > B.

10/1/89

The Timing Checker
Primitives

Simulation speed is
slower when these
primitives are used.

SETUP HOLD Primitive

E
-I

IE
SETUP=0.eI
HOLD=eJ.0

IE
SEnP SETUP=0.0
HOLD HOLD=eI.0

->EN
I

10/1/89

Simulation Model

Four timing checker primitives are available as
simulation primitives:

• SETUP HOLD

• SETUP RISE HOLD FALL

• EDGE TO EDGE

• MIN PULSE WIDTH

The TIMING_CHECK directive in the simulate.cmd file
enables and disables the timing checker primitives.
The TIMING_CHECK ON/OFF command can be used
to enable and disable the primitives interactively
during the simulation.

The SETUP HOLD primitive has a clock and data in­
put. For an active-high clock, it generates an error
message in the output listing when the data input is
not stable from SETUP ns before the rising edge of
the clock until HOLD ns after the clock is high. The
SETUP HOLD primitive has two default body proper­
ties attached:

SETUP = 0.0
HOLD = 0.0

The properties SETUP and HOLD are assigned the
required property ve lues by using the GED change
command. This primitive is used to check the set­
up and hold times of registers and latches.

The SETUP HOLD primitive has an optional enable
input that turns checking on and off. If the enable
input is any value other than ZERO, then checking is
enabled.

4-33

Simulation Model

SETUP RISE HOLD FALL
Primitive

-I

SETlF
RISE
HOLD
FALL

-~

-I

SETLP
RISE
HOLD
FALL

->EN
I

4-34

18
SETUP=0.eJ
HOLD=0.0

1B
SETUP=eJ.eJ
HOLD=0.eJ

The SETUP RISE HOLD FALL primitive has a clock
and data input. For an active-high clock, it gener­
ates an error message in the output listing if the data
input is not stable from SETUP ns:

• Before the rising edge of the clock

• While the clock is high

• Until HOLD ns after the clock has gone low

The SETUP RISE HOLD FALL primitive has two de­
fault body properties attached:

SETUP = 0.0
HOLD = 0.0

The properties SETUP and HOLD are assigned the
required property values by using the OED change
command. This primitive is used to check the set­
up and hold times of data being written into
memories.

The primitive has an optional enable input that can
be used to turn off checking. If the enable input is
used, any value other than zero enables checking. If
checking is enabled at any time between the rising
edge and the falling edge of the clock, checking is
performed for that clock pulse.

10/1/89

EDGE TO EDGE Primitive

~ge: M I N=el. el E 18

EDGE MAX=el.el

-I>
EDGE:

TO
EDGE:

-~EN
I

18
MIN=el.el
MAX=el.el

MIN PULSE WIDTH
Primitive

-I

MIN
PU..SE
WIDTH

-I

1E
LOW=el.0
HIGH=0.el

MIN lE
PULSE LOW=el.0
WIDTH HIGH=0. eI

EN
I

10/1/89

Simulation Model

The EDGE TO EDGE primitive has two inputs, CKl

and CK2. It checks that the RISING edge on CK2 is at
least a minimum delay from the RISING edge on CKl

and no more than the maximum delay. The EDGE

TO EDGE primitive has two default body properties:

MIN = 0.0
MAX = 0.0

The properties MIN and MAX are assigned the re­
quired property values by using the GED change
command. Use only rising delays.

The primitive has an optional enable input that turns
the checking on and off. If the enable input is any
value other than zero, checking is enabled. If check­
ing is enabled any time during the rising edge of
CK1, then checking is performed for that edge. If
there is no edge on CK2 (that is, if CK2 does not
change state), then no error message is generated.

The MIN PULSE WIDTH primitive has one data input.
It checks that its data input has no pulses on it that
are low for less than LOW ns, and no pulses on it
that are high for less than HIGH ns. The MIN PULSE

WIDTH primitive has two default body properties:

LOW = 0.0
HIGH = 0.0

The properties LOW and HIGH are assigned the re­
quired property values by using the GED change
command.

The primitive has an optional enable input that turns
checking on and off. If the enable input is any value

4-35

Simulation Model

The Encoder and
Decoder Primitives

8 BIT PRIO ENCODER
Primitive

DELAY=0

PRIORITY ENCODER
Primitive

IELAY=eJ

PRIORITY
hENCODER

DELAY=eJ

PRIORITY
_hENCODER

lIS Ta-e- - III Ta-t:~
Is -Is
14 -I ..
Is -13
12 ANY~ - 12 ANY~
Il -Il
Ie -Irs

4-36

other than zero, checking is enabled. If checking is
enabled any time during a given pulse, then the
width of that pulse is checked.

There are four encoder/decoder primitives:

• 8 BIT PRIO ENCODER

• PRIORITY ENCODER

• 1 OF 8 DECODER

• 8 BIT DECODER

The 8 BIT PRIO ENCODER primitive takes an eight-bit
input and produces two outputs: T, which is three
bits wide and ANY, which is one bit wide. ANY is
asserted if any input bit is asserted. T is the bit
number of the most significant bit asserted, if any,
where zero is the most significant input.

The PRIORITY ENCODER primitive takes eight one­
bit inputs, 17 . .10, and produces two outputs: T, which
is three bits wide, and -ANY,-which is one bit wide.
ANY is asserted if any input bit is asserted. T is the
bit number of the most significant input which is
asserted, if any, where 17 is the most significant in­
put and has a bit number of seven (111 binary).

10/1/89

1 OF 8 DECODER
Primitive

DELAY=0

1<2 •• 0>

X

i = defined value

(0/1.ZlU,0/1) etc.

i = defined value

(0/1.ZlU.0/1) etc.

8 BIT DECODER
Primitive

JEl.AY=Ci!I

IELAY=Ci!I

10/1/89

Simulation Model

The 1 OF 8 DECODER primitive takes two inputs:
SELECT (1<2 .. 0», which is three bits wide, and
OUTPUT ENABLE, which is one bit wide. It produces
an eight-bit output T <7 .. 0>. If OUTPUT ENABLE is
asserted, SELECT selects which bit of T is asserted.
When SELECT contains Z and/or U, those SELECT

bits are treated as "don't care" for selecting output
bits and the selected output bits are set to U.

OE T<7 .. 0>

1 all bits °
Z,U the i-th bit U and the rest °
Z.U the (0/1. * .0/1)-th bits U and the rest °
° the i-th bit 1 and the rest 0

° the (0/1. * .0/1)-th bits U and the rest 0

The 8 BIT DECODER primitive is identical in opera­
tion to the 1 OF 8 DECODER primitive except for the
output of the primitives. The output of the 1 OF 8

DECODER is an eight-bit bus. The output of the
8 BIT DECODER is eight individual bits.

4-37

Simulation Model

Other Primitives

PARITY Primitive

DELAY=0

PARITY a T

RES Primitive

~RES

4-38

There are four other Simulator primitives:

• PARITY

• RES

• PASS TRANSISTOR

• UNI PASS TRANSISTOR

The PARITY primitive's I input can be sized and pro­
duces a one-bit output T. T is one if the total of the
asserted (one) inputs is odd.

The resistor primitive RES is fully bidirectional and
acts like a wire except that HARD strength signals
are converted to SOFT strength when they pass
through. RES primitives always have zero delay.
The RES primitive is sizeable and the pins cannot be
bubbled.

10/1/89

PASS TRANSISTOR
Primitive

DELAY=0

DELAY=0
~ -.--

DELAY=0

~~ DELAY=0

UNI PASS TRANSISTOR
Primitive

DELAY=0

DELAY=0

i~t DELAY=0

t~~ DELAY=0

10/1/89

Simulation Model

The PASS TRANSISTOR primitive is fully bidirectional
and acts like a switch. The G pin of the PASS

TRANSISTOR controls whether the A and B pins are
connected together. An active G pin (zero if the pin
is bubbled, otherwise one) causes the PASS

TRANSISTOR to act like a wire, connecting the A and
B nets. An inactive G pin causes the PASS

TRANSISTOR to act as if it were not in the circuit.
The delay from A to B or B to A is always zero. The
G pin has an input delay that assumes the value of
the DELAY property on the PASS TRANSISTOR. The
A and B pins of the PASS TRANSISTOR are sizeable
and are not bubbled. The G pin is always one bit
wide and can be bubbled.

The UNI PASS TRANSISTOR is a unidirectional ver­
sion of the PASS TRANSISTOR and results in more
rapid simulation for MOS circuits. Pins and proper­
ties of the UNI PASS TRANSISTOR primitive are iden­
tical - a G pin that controls whether the A and B
pins are connected. However, because this transis­
tor is unidirectional, the A pin is an input pin rather
than an output.

4-39

Simulation Model

The FLAG Primitive

User~coded

Primitives

4-40

There are twelve different versions of the FLAG

primitive. The first four versions are primary input
flags. The second four versions are primary output
flags. The last four versions are bidirectional flags.

The FLAG primitives are used for formatting the
Primary I/O Trace program information. To use the
trace program, each primary I/O signal must be des­
ignated on the top level schematic (the root drawing)
with a FLAG body.

The question mark identifies the PATH. property at­
tached to the primitive. The PATH gets written auto­
matically; you do not have to define the property.

The Simulator allows you to code simulator models
in Pascal or C and refer to them using standard
SCALD drawings. Existence of these user-coded
primitives (UCPs) means that you can expand the
"parts set" understood by the Logic Simulator. For
more information on user-coded primitives, see the
ValidsIM Reference Manual.

10/1/89

Simulation
Properties

10/1/89

Simulation Model

When creating simulation models, you can size
simulation bodies and add delay values to each
primitive using body and pin properties. Simulation
body properties are:

• DELAY

• RISE

• FALL

• SIZE

Pin-to-pin delays are specified using the pin
properties:

• PDELAY

• PRISE

• PFALL

Simulation models can carry body properties and
pin properties simultaneously. When the delays
through a primitive are all one set of values except
for a single delay path, the one path can be speci­
fied using the pin properties, and the other delays
can be specified using the body properties. For de­
signs where delays are related to changes in output
loading, temperature, and voltage, the Delay Estima­
tor and Expression Evaluator can be used.

Table 4-3 summarizes the most common simulation
properties. For detailed information on simulation
properties and directives, refer to the ValidsIM
Reference Manual.

4-41

Simulation Model

Table 4-3. Simulation Properties

Prop Prop Controlling
Type Name Directive(s) Comments

Body Body properties attach to the origin of a primitive to
control the size or delay time of the primitive.

DELAY DELAY_MODE Specifies the delay time as a single value or the rise/fall
RISE_FALL delay values as [min,typ,max]. DELAY_MODE directive

selects which value to use for current simulation run;
max is the default. DELAY property is the default delay
value used if RISE_FALL directive is OFF.

RISE RISE_FALL Can be attached in addition to DELAY property. When
directive is ON (default), RISE delay overrides DELAY
property.

FALL RISE_FALL Can be attached in addition to DELAY property. When
directive is ON (default), FALL delay overrides DELAY
property.

SIZE Specifies the number of bits on a pin. Can also use
SIZE=SIZE to match primitive size to the SIZE property
attached to the body drawing.

Pin PIN_DELAY Pin delay properties are allowed on both input and output
pins. The PIN_DELAY directive affects all of the pin de-
lay properties; when the directive is ON, pin delay prop-
erties override body delay properties. If PDELA Y is not
defined and the RISE_FALL directive is OFF, the maxi-
mum value between PRISE and PFALL is used.

PDELAY RISE_FALL PDELAY overrides PRISE and PFALL when the RISE_FALL
directive is OFF.

PRISE RISE_FALL PRISE and PFALL override PDELAY when the RISE_FALL
directive is ON.

PFALL RISE_FALL PRISE and PFALL override PDELAY when the RISE_FALL
directive is ON.

4-42 10/1/89

Simulation Body
Properties

The DELAY Property

SYNTAX ~

10/1/89

Simulation Model

Simulation body properties are attached to the origin
of the primitive and control the behavior of the en­
tire primitive.

Delays are given in nanoseconds. Primitives without
an explicit DELAY are assumed to have a delay of
zero. By convention, primitives are given delays to
model the worst-case behavior of the part being
modeled, but this is not required. The syntax of the
DELAY property in simulation models is:

DELA Y= [min, typ,max] ,[min,typ,max]

Rise delay (the first set of values) and fall delay (the
second set of values) define the rise and fall times
of the output of the signal. The min, typ, max delays
must be enclosed in square brackets and separated
by commas. If the rise and fall delay values are the
same, only one [min, typ, max] entry is required.

The Simulator's DELAY_MODE directive selects
which of the three delay values is used for the cur­
rent simulation run (min, typ, or max; the default is
max).

For the Simulator to function correctly, the simula­
tion model must represent one of the possible timing
behaviors for the component. Exercise care when
specifying delay values; in particular, zero-delay
components can result in unexpected behavior in a
circuit.

4-43

Simulation Model

The RISE Property

The FALL Property

The SIZE Property

4-44

In addition to using the DELAY property, rise delays
can be specified using the RISE body property with a
rise delay time value. If the DELAY and RISE prop­
erties are both attached to a body, the Simulator's
RISE_FALL directive selects which delay value is
used.

In addition to using the DELAY property, fall delays
can be specified using the FALL body property with
a fall delay time value. If the DELAY and FALL

properties are both attached to a body, the
Simulator's RISE_FALL directive selects which delay
value is used.

Most simulator primitives can have a SIZE property
to specify the number of bits on a pin. For exam­
ple, to compute the sum of two 16-bit signals, a sin­
gle adder primitive with a SIZE of 16 can be used
instead of 16 adder primitives. A primitive can be
given the property SIZE=SIZE, which means that the
size of the primitive is taken from the SIZE property
attached to the part being modeled. Two special
primitives, the 8 BIT PRIO ENCODER and the 1 OF 8

DECODER have a fixed SIZE of eight bits.

Many primitives have inputs and outputs that are not
affected by the SIZE property. All enable inputs,
clock inputs, and chip select inputs have a fixed
width of one bit. The select input of an eight-bit
multiplexer is always three bits wide.

10/1/89

Simulation Pin
Properties

10/1/89

Simulation Model

For complex primitives with multiple input and out­
put pins, accurate modeling of the delays within the
primitive is tedious if not impossible. The pin-to­
pin delay feature allows you to associate separate
delay values for individual paths from input pin to
output pin.

Pin delay properties are allowed on both input and
output pins. Any conflict between input pin proper­
ties and output pin properties (two different delay
values specified for one pin-to-pin path) is reported
as an error. Delay values specified between two in­
put pins or two output pinss are also reported as an
error.

To override the specified body DELAY properties on
a model and use the pin delay properties, add the
directive PIN_DELAY ON to the simulate.cmd file (the
directive is OFF by default). This directive controls
whether the model uses the DELAY, RISE, and FALL

properties or PDELAY (pin delay), PRISE (pin rise de­
lay), and PFALL (pin fall delay). When the directive
is ON, pairs of input and output pins use the body
DELAY properties if pin delays are not specified.

4-45

Simulation Model

Modifying
Simulation
Models

4-46

Simulation models are designed to correctly model
the part while including no extraneous data. The
smaller the model, the faster the Simulator can run.
Models are therefore difficult to intuitively grasp;
make as few changes to models as absolutely neces­
sary. The most frequent change to a simulation
model is the change of the value of a delay property.
Use the change command in GED to change the
value. Be careful to change the correct instance of
the delay property in the model. To accommodate
different delay paths through the device, propaga­
tion delays are usually divided up and placed in dif­
ferent locations in the model. Examine the model
carefully to choose which delays you need to change.

10/1/89

The Timing Model

This section describes:

• Defining the timing model

• Creating the model (checklist)

• Timing primitives

• Timing properties

• Modifying timing models

Timing Model

Defining the
Timing Model

5-2

Timing models reflect the timing behavior of a design.
Models are built as simply as possible so that the
Timing Verifier runs quickly and efficiently. Timing
models therefore focus on timing characteristics and
do not exhaustively simulate the logical behavior of
the component.

Timing models are built from a specific set of parts
called timing primitives . You decide which timing
primitives to use by studying the functional specifi­
cation and data tables in the appropriate data book.
It is possible to create different timing models (using
different timing primitives) for the same component,
and obtain the same timing results.

Timing models need to correctly model the delays of
all signals through the component (propagation de­
lay). For clocked and complex components, the
model must check:

• Setup and hold times

• Pulse width

• Edge to edge time (when appropriate)

When designing timing models, you should keep cer­
tain goals in mind. These goals are the same as
those for designing simulation models and are
described under "General Design Rules for Models"
in Section 4, The Simulation Model. The standards
used in calculating delay and pulse width informa­
tion for the timing models are also the same as
those described under "Delay and Pulse Width Stan­
dards" in Section 4.

10/1/89

Creating the
Model:
Checklist

10/1/89

Timing Model

Creating a timing drawing requires the same basic
steps as creating a logic drawing except that the
parts used are timing primitives from the Time li­
brary or components from the Standard library.

1 Access the Time library:

library time

2 Create a drawing for your component with a
.TIME extension (for example, 293.TIME).

3 Add the required timing primitives and a
DRAWING body (with TITLE and ABBREV

properties) .

4 Add a PIN NAMES component. This compo­
nent accesses the .BODY drawing, collects all
the pin names assigned to the body, and lists
them beneath the PIN NAMES header. All
pins identified on the logic drawing must be
accounted for on the timing model.

5 Wire the model.

6 Name the input and output signals. Signal
names must include the \1 interface signal
property and correspond to the names of the
signals in the body drawing for the part being
modeled.

7 Assign the required timing properties.

8 Verify attachments, check, and write the
model.

5-3

Timing Model

5-4

"", Use a B SIZE PAGE as a border.

V' Center the drawing on the page.

"", Include the name of the drawing and the in­
itials of the creator in the boxes in the lower
right hand corner of the page border.

V' Enter the page number of the drawing as a
note (text size 1.5) in the form "1 of 1."

V' Include a note block (notes enclosed with wires
to form a block) to document any assumptions
and/or critical design decisions that are not ob­
vious to the user.

V' Add primitives only from the Standard and
Time libraries.

V' Every model must have a DRAWING body (with
TITLE and ABBREV properties attached).

V' Every model should have a PIN NAMES body.

V' Follow SCALD signal syntax for signal names.

"", Do not use bit lists in bit subscripts.

V' Make sure all interface signals have the \1
property in the signal name.

V' All interface signals should have an explicit
width specified unless the signal is a scalar.

"", All properties attached to bodies should be
placed above the body or to the right. Place
the properties one above the other and left­
aligned. Display both the property value and
name for all properties except PATH.

10/1/89

Z3fI ,
a

a. "---a

10/1/89

Timing Model

Since it is possible to create different timing models
for the same component, there is no step-by-step
description for creating a timing model for the
TIL 293. component. Figure 5-1 shows one possible
timing model for the TIL 293. Timing primitives
and timing properties are discussed in general fol­
lowing the drawing.

~.e

~.e

Figure 5-1. TTL 293 Timing Model

2EP
SIZZ)olB
=,""e

IP
--+--+--

Q (3..11) ~

5-5

Timing Model

The Timing
Primitives

For additional
information on timing
primitives and properties,
see the ValidTIME
Reference Manual.

Bubbled Pins

5-6

The timing primitives are stored in the Time library.
iThere are three groups of timing primitives:

• Standard function primitives (based on func­
tions like gates and flip-flops)

• Non-standard functions useful for timing
models

• Error-checking primitives added to models to
detect timing errors

Sometimes there are components and primitives that
have similar names, for example, the "2AND" com­
ponent and the "2 AND" primitive. Be sure to leave
a space in the primitive names.

Each input and output pin on a primitive can be in­
dividually bubbled using the GED bubble command.
Bubbling a primitive pin inverts the logical function
of the primitive. This allows you to create inverting
buffers, NAND gates, NOR gates, negative-edge­
triggered registers, and so on. For example, bub­
bling the output pin of the timing primitive BUF adds
an inverter to your model.

10/1/89

Truth Table
Abbreviations

10/1/89

Timing Model

Table 5-1 shows the abbreviations used in the truth
tables for the timing primitives.

Table 5-1. Truth Table Abbreviations

Abbreviation Meaning

C Constant

F Fall

ps Previous state

R Rise

S Stable

U Unknown value

X Can be any value

Z High impedance

-+ Transition

:F Not equal to

In cases where more than one entry applies to a
given set of input conditions, the first entry takes
precedence.

5-7

Timing Model

Standard Function
Primitives

AND Primitive

lB

-E>-
lB

B-
iB

:B-
1B

B-

5-8

~ p-
~ p-
~ p

These time primitives are based on familiar SSI and
MSI components. They perform some (not all) of
the functions of these parts. There are 11 standard
function primitives:

• AND • REG

• OR • REG RS

• XOR • 2 MUX
o LATCH • 4 MUX
• LATCH RS • 8 MUX
• TS BUF

There are eight AND primitives:

• AND • 5 AND

• 2 AND • 6 AND

• 3 AND • 7 AND

• 4 AND • 8 AND

The truth table for an AND primitive is shown in
Figure 5-2.

AND 0 1 S R F C U Z

0 0 0 0 0 0 0 0 0
1 0 1 S R F C U U
S 0 S S R F C U U
R 0 R R R C C U U

F 0 F F C F C U U
C 0 C C C C C U U
U 0 U U U U U U U
Z 0 U U U U U U U

Figure 5-2. AND Primitive Truth Table

10/1/89

OR Primitive

1B

-E>- ~ 60R

1B

=B-
~ 1B ?OR

B-
1B

B- P-BOR

~ 5~

10/1/89

Timing Model

There are eight OR primitives:

• OR • 5 OR

• 2 OR • 6 OR

• 3 OR • 7 OR

• 4 OR • 8 OR

The truth table for an OR primitive is shown in
Figure 5-3.

OR a 1 S R F C U Z

a 0 1 S R F C U U
1 1 1 1 1 1 1 1 1
S S 1 S R F C U U
R R 1 R R C C U U

F F 1 F C F C U U
C C 1 C C C C U U
U U 1 U U U U U U
Z U 1 U U U U U U

Figure 5-3. OR Primitive Truth Table

5-9

Timing Model

XOR Primitive

5-10

The XOR has only a two-input version. The truth
table for an XOR primitive is shown in Figure 5-3.

XOR 0 1 S R F C U Z

0 0 1 S R F C U U
1 1 0 S F R C U U
S S S S C C C U U
R R F C C C C U U

F F R C C C C U U
C C C C C C C U U
U U U U U U U U U
Z U U U U U U U U

Figure 5-4. XOR Primitive Truth Table

10/1/89

LATCH Primitive

lB

B
T

~

EN

° °
1
1
R
R

R
R
R
R

R
R
R

Timing Model

The LATCH primitive has a data input and an enable
input. The primitive is affected by the value of the
TRANSITION property and the value of the Timing
Verifier's LATCH_ERR_MODEL directive. The truth
tables for the LATCH primitive are shown in
Figure 5-5 and Figure 5-6. When enable is bub­
bled, the inverse of the truth table applies.

LATCH

Last Output Data Output

0,1,8 X = 0,1,8
R,F,e,U,Z x 8

X 0,1,8,R,F,e = DATA
X U,Z U

= DATA 0,1,U,Z 0,1,U,U
8 S s*

= DATA All other conditions e
¥: DATA U,Z U

° 1,S R
1 O,S F

R,F,e,U,Z 0,1,8 e
R,1 R R
F,O F F

R All other conditions All other conditions e

F = DATA 0,1,S,U,Z 0,1,S,U,U
F = DATA R,F,e e
F X U,Z U,U
F ° 1,8 R

Figure 5-5. LATCH Truth Table (Part 1)

* If there has been no data transition since EN was last 1 or R and the latch
is being simulated SMOOTH.

10/1/89 5-11

Timing Model

EN
F
F
F
F

F
8
S
S

S
S
S
S

S
C
C
C

Z
U

5-12

I
LATCH

Last Output Data Output
1 a,s F
C 0,1,S = DATA

R,1 R R
F,O R F

All other conditions All other conditions C
= DATA X = DATA
:F DATA 0,1,8 S

1 R R

a F F
:F1 R C
:Fa F c

X C C

All other conditions All other conditions U
X U,Z U

= DATA 0,1,S,R,F,C = DATA
All other conditions All other conditions C

X X U
X X U

Figure 5-6. LATCH Truth Table (Part 2)

If the DATA undergoes a transition while the latch is
closing (the ENABLE signal has the value F), then a
setup/hold time violation has occurred. Under these
conditions, the signal values are calculated as OPEN,

CLOSED, or CONSERVATIVE, depending on the value
of the LATCH_ERR_MODEL directive. The default
value is CONSERVATIVE. Figure 5-7 shows the
truth tables for each of the three values of the
LATCH_ERR_MODEL directive.

10/1/89

Last EN

F
F
F
F

F
F
F
F

Last EN

F
F

Last EN

F
F
F
F

F
F
F

10/1/89

Timing Model

LATCH ERR MODEL = OPEN

Last Output Data Output

x U,Z U
0 0,1,5 R
1 0,1,5 F
C 0,1,5 0,1,5

5,R,F,U,Z 0,1,5 C
R,1 R R
F,O F F·

All other conditions All other conditions C

LATCH ERR MODEL = CLOSED

Last Output Data Output

0,1,5 X 0,1,5
R,F,C,U,Z X 5

LATCH ERR MODEL = CONSERVATIVE

Last Output Data Output

x U,Z U
0 0,1,5 R
1 0,1,5 F

5,R,F,C,U,Z 0,1,5 C

R,1 R R
F,O F F

All other conditions All other conditions C
Figure 5-7. LATCH_ERR_MODEL Truth Table

The LATCH primitive has the default property
TRANSITION=GLITCHY. When the LATCH is clocked,
the output of the LATCH always changes, even when
the input remains stable. If . the property
TRANSITION=SMOOTH is attached to the LATCH, the
output of the LATCH does not change when the
LATCH is clocked and the input remains stable.

5-13

Timing Model

LATCH RS Primitive

The CHG function is
discussed on page 5-23.

RESET

a
0
a
a
a
0
a
a
X
1

R,F,C
U,Z

S
8
8

All

The LATCH RS primitive is a LATCH primitive that
has asynchronous set and reset inputs. First the
LATCH output is computed for the current input val­
ues, then the SET/RESET function is applied to the
outputs. The SET/RESET function inherits the state
of the TRANSITION property (SMOOTH/GLITCHY)

and functions differently depending on the value.
Figure 5-8 shows the truth table for the SET/RESET

function in GLITCHY mode. Figure 5-9 shows the
truth table for the SET/RESET function in SMOOTH

mode.

SET/RESET in GLITCHY MODE

SET OUTPUT NEW OUTPUT

a x OLD OUTPUT
X 1 1
1 ~1 1

R,F,C ~1 C

8 0,8 8
S R,F,C C
8 U,Z U

U,Z ~1 U

a a a
a x a
a ~ SET C
a ~ 8ET U

a 1,8 S
a R,F,C C
a U,Z U

other conditions CHG(OUTPUT, RE8ET, SET)
Figure 5-8. SET/RESET in GLITCHY Mode Truth Table

5-14 10/1/89

Timing Model

SET/RESET in SMOOTH MODE

RESET SET OUTPUT NEW OUTPUT

a a x OUTPUT
a 1 1 1
a x x 1
a R a R

a 5 0,5 S
a 5 R,F,C C

·0 5 U,Z U
a F,C x C
a U,Z x U

x a a a
1 a x a
R a a F

5 a 0,1,5 s
5 a R,F,C C
5 a u,z U
F,C a x C
U,Z a x U

1,R F 0,1,5 O,F,F
1,R F R,F,C C
1,R F U,Z U

F 1,R 0,1,5 R,1,R
F 1,R R,F,C C
F 1,R U,Z U

Figure 5-9. SET/RESET in SMOOTH Mode Truth Table

10/1/89 5-15

Timing Model

TS BUF Primitive

lB

~
~

See the ValidTIME Reference
Manual/or more in/ormation
on Timing Verifier directives.

5-16

The tri-state buffer primitive has two inputs, data
and enable. The data input and output signals are
affected when you attach the SIZE property to the
TS BUF primitive; the enable signal is common to all
buffers.

The default operating mode for the TS BUF primitive
is known as tri-state mode. When the enable is
STABLE, the output is unknown. This is a conserva­
tive model of tri-state behavior. The alternate oper­
ating mode is called wire-or mode. This mode is less
conservative and accommodates designs in which
the enable signal is specified as STABLE/CHANGING.

Mode selection for the TS BUF primitive is controlled
by the Timing Verifier's TS_BUF _TYPE directive.
Figure 5-10 shows the truth tables for tri-state
mode and wire-or mode for the TS BUF primitive.

10/1/89

Data
Input

Data
Input

10/1/89

TS BUF

0
1
S
R

F
C
U
Z

TS aUF

0
1
S
R

F
C
U
Z

Timing Model

Enable Input

TRI-STATE MODE
0 1 S R F C U Z

z 0 u c c c u U
Z 1 U C C C U U
Z S U C C C U U
Z R U C C C U U

Z F U C C C U U
Z C U C C C U U
Z U U U U U U U
Z U U U U U U u

WIRE-OR MODE

0 1 S R F C U Z

z 0 0 c c c u U
Z 1 1 C C C U U
Z S S C C C U U
Z R R C C C U U

Z F F C C C U U
Z C C C C C U U
Z U U U U U U U
Z U U U U U U U

Enable Input

Figure 5-10. TS BUF Truth Tables

If you tie together the outputs of two or more TS BUF

primitives, you create a tri-state bus, or TS BUS. The
TS BUS is a special type of primitive because it is not
represented by a GED drawing. You cannot add a
TS BUS to a timing model. A TS BUS is shown in
Figure 5-11.

5-17

Timing Model

DATAl

ENl

DATA2

EN2

5-18

Il

I2 BUS

Figure 5-11. TS BUS Primitive

Because the drivers are tri-state and share the use
of the BUS by means of separate ENABLE signals,
the logical function represented is not the same as
that of a wire-gate. With a tri-state bus, the only
two meaningful configurations are:

• Only one TS BUF is enabled at a time

• If two are enabled, they carry identical output
signal values

Almost all other conditions produce the signal value
U (unknown) on the bus.

The Timing Verifier evaluates this circuitry in accor­
dance with the tables shown in Figure 5-12. The
TS BUS, like the TS BUF primitive, operates in tri­
state mode by default but can also operate in wire­
or mode. Mode selection for the TS BUS is con­
trolled by the TS_BUF _TYPE directive.

10/1/89

Timing Model

11

TRI-STATE MODE

TS BUS 0 1 S R F C U Z

0 0 U U U F U U 0
1 U 1 U R U U U 1
S U U U U U U U S

12 R U R U R U U U R

F F U U U F U U F
C U U U U U U U C
U U U U U U U U U
Z 0 1 S R F C U z

WIRE-OR MODE

TS BUS 0 1 S R F C U Z

0 0 S S R F C U 0
1 S 1 S R F C U 1
S S S S C C C U S

12 R R R C R C C U R

F F F C C F C U F
C C C C C C C U C
U U U U U U U U U
Z 0 1 S R F C U Z

11

Figure 5-12. TS BUS Tables

10/1/89 5-19

Timing Model

REG Primitive
IB IB

yg
-0-0

Last Clock

° ° ° ° 1
1
S
R
F

C,U,Z
C,U,Z

Last Clock
x
X
X
X

Last Clock
x
X

Last Clock
x

The REG primitive implements a rising edge trig­
gered register. The truth table for the REG primitive
differs depending on the value of the clock signal.
The tables are shown in Figure 5-13.

REG when CLOCK = 1

Input Last Output Next Output
0,1 0,1 LAST OUT
1,R O,R R
O,F 1,F F
S S S*
X ¥: 0,1,S S
X 0,1,S LAST OUT
X X LAST OUT

0,1 S LAST OUT
X ¥: 0,1,5 5

INPUT = LAST OUT LAST OUT
INPUT :;6 LAST OUT S

REG when CLOCK = C or R

Input Last Output Next Output
0,1 0,1 LAST OUT
1,R O,R R
O,F 1,F F
S S S*

REG when CLOCK = 0, S or F

Input Last Output Next Output
x ¥: 0,1,S 5
X 0,1,S LAST OUT

REG when CLOCK = U or Z

Input Last Output Next Output
x x U

Figure 5-13. REG Truth Tables

* If the REG is smooth and there were no input transitions.

5-20 10/1/89

REG RS Primitive

2 MUX, 4 MUX, 8 MUX
Primitives

10/1/89

Timing Model

When the REG primitive has the property
TRANSITION=GLITCHY and the REG is clocked, the
output of the REG always changes, even when the
input remains stable. When the REG primitive has
the property TRANSITION=SMOOTH, the output of
the REG does not change when the REG is clocked
and the input remains stable.

The REG RS primitive is the same as the REG primi­
tive except that it also has asynchronous reset and
set inputs. First, the REG output is computed for the
current input values, then the SET RESET function is
applied to the output.

The SET/RESET function inherits the state of the
TRANSITION property (SMOOTH/GLITCHY) and func­
tions differently depending on the value. The
REG RS primitive uses the same SET/RESET truth
tables as the LATCH RS primitive. The truth tables
for the SET/RESET function are shown in Figure 5-8
(page 5-14) and Figure 5-9 (page 5-15).

The 2 MUX, 4 MUX, and 8 MUX primitives implement
two-input, four-input, and eight-input multiplexers,
respectively. If any of the select inputs on these
multiplexers has a known value of zero or one, then
only the possibly selected state inputs are considered
when calculating the output value. If more than one
data input might be selected, the output value is cal­
culated by using the CHG function on the set of se­
lected data inputs.

If the MUX has no TRANSITION property or if
TRANSITION=GLITCHY, then any input transition

5-21

Timing Model

Non-Standard
Function Primitives

5-22

causes an output transition of the appropriate slope.
If TRANSITION=SMOOTH, then if the output state be­
fore and after an input transition is the same, there
is no output transition.

The non-standard time primitives are particularly
suited to modeling timing functionality. Some of
these primitives (such as BUF and RES) are familiar
components, but may be used somewhat differently
in a timing model. Others (such as eHG) were cre­
ated especially for the Timing Verifier. These
components:

• Attach delay properties to various parts of a
model

• Provide accurate load calculations

• Assure efficient and correct functioning of the
model

There are seven non-standard function primitives:

• CHG • THRESHOLD

• BUF • TRANSMISSION GATE

• IDENTITY • UNI TRANS GATE

• RES

10/1/89

CHG Primitive

CHG 0

0 s
1 S
S S
R C

F C
C C
U U
Z U

10/1/89

1

s
S
S
C

C
C
U
U

Timing Model

The most important non-standard primitive is the
CHG (change) primitive. This primitive tells you
whether an input signal is stable, changing, or un­
known; frequently, this is all the information the
Timing Verifier needs. When you add delay to the
CRG primitive, you effectively model simple propa­
gation delay through a component.

For example, to model the propagation delay from
the A and B inputs to the sum (Y output) of an ad­
der, use the CHG primitive and attach the appropri­
ate DELAY property. This model is very simple be­
cause the delay through this component is the same
regardless of the values being added. Adding in the
appropriate delay for CARRY IN complicates the
model only slightly.

The truth table for a CHG primitive is shown in
Figure 5-14.

S R F C U Z

s c c c u U
S C C C U U
S C C C U U
C C C C U U

C C C C U U
C C C C U U
U U U U U U
U U U U U U

Figure 5-14. CHG Primitive Truth Table

5-23

Timing Model

BUF Primitive

lB

-&>-

5-24

The BUF primitive is used as a convenient place to
attach delay properties in a model. It is also used to
isolate outputs so that correct load calculations can
be performed. The value of a signal is not changed
by the BUF primitive (except the value Z). Buffers
are also used to isolate outputs for correct load
checking.

The truth table for the BUF primitive is shown in
Figure 5-15.

Input Output

0 0
1 1
S S
R R

F F
C C
U U
Z U

Figure 5-15. BUF Truth Table

To create an inverting buffer, simply bubble the in­
put or output pin. Non-inverting buffers are com­
monly used for delays.

10/1/89

IDENTITY Primitive

lB
IDENTITY

{>-

RES Primitive

1011189

Timing Model

The IDENTITY primitive is a special case of the BUF

primitive. It retains the identity of all signal values
including Z. It also retains the signal strength of all
input signals.

The truth table for the IDENTITY primitive is shown
in Figure 5-16.

Input Output

0 0
1 1
S S
R R

F F
C C
U U
Z Z

Figure 5-16. IDENTITY Truth Table

The resistor primitive RES has the same truth table
as the IDENTITY primitive. However, the RES primi­
tive converts the strength of HARD input signals to
SOFT signal strength. Since most other signal
strengths in a design are HARD, this means that the
value of the RES output can be overridden by a com­
peting HARD value. This primitive is used to assure
the correct modeling of circuits using pull-up resis­
tors. For HARD and SOFT input strengths, the RES

outputs a SOFT signal strength; for UNDRIVEN input
strengths, the RES outputs an UNDRIVEN signal
strength.

5-25

Timing Model

THRESHOLD Primitive

lB

TRANSMISSION GATE
Primitive

5-26

The THRESHOLD primitive has a threshold input and
a single output pin. The primitive behaves some­
what like an input-state (0 or 1) detector. Its output
remains changing until its threshold input is as­
serted. This primitive is seldom used.

The truth table for the THRESHOLD primitive is
shown in Figure 5-17.

Input Output

0 c
1 1
S C
R C

F C
C C
U U
Z U

Figure 5-17. THRESHOLD Truth Table

The TRANSMISSION GATE primitive has an enable
input (EN) and two bidirectional pins (Tl and T2). If
the enable input is zero, then both Tl and T2 are set
to high impedance (Z). If the enable input is one,
then Tl and T2 are tied together using the same
function as the TS BUS (see page 5-17).

10/1/89

UNI TRANS GATE
Primitive

Error-Checking
Primitives

SETUP HOLD Primitive

-I

lB
SETUP SETUP=eJ. eJ
HOLD HOLD=eJ.0

->

-I

lB
~~ SETUP=eJ.eJ

HOLD=eJ.0

-t>EN
I

10/1/89

Timing ModeJ

The UNI TRANS GATE primitive is a uni-directional
transistor. It has a gate input, an input· pin, and an
output pin. (The arrow points in the direction of the
output.) If the gate input is zero, then output is set
to high-impedance. If the gate input is set to one,
then the value and strength of the input pin is passed
to the output pin.

The error-checking primitives do not model func­
tionality. They are added to timing models of
clocked components to check for setup and hold
time violations and other clock-related errors.
There are four timing checker primitives:

• SETUP HOLD

• SETUP RISE HOLD FALL

• MIN PULSE WIDTH

• EDGE TO EDGE

The SETUP HOLD primitive has a clock and data in
put. For an active-high clock, it generates an error
message in the output listing when the data input is
not stable from SETUP ns before the rising edge of
the clock until HOLD ns after the clock is high. The
SETUP HOLD primitive has two default body proper
ties attached:

SETUP = 0.0
HOLD = 0.0

The properties SETUP and HOLD are assigned the
required property values by using the GED change
command. This primitive is used to check the set
up and hold times of registers and latches.

5-27

Timing Model

SETUP RISE HOLD FALL
Primitive

-I

SETUP
RISE
HOLD
FFLL

-t>

-I

SETUP
RISE
HOLD
FFLL

-l>EN
I

5-28

18
SETUP=el.0
HOLD=el.el

18
SETUP=eJ.0
HOLD=eJ.eJ

The SETUP HOLD primitive has an optional enable
input that turns the checking on and off. If the en­
able input is any value other than zero, then check­
ing is enabled. If checking is enabled any time dur­
ing the rising edge of the clock input, then checking
is performed for that edge.

The SETUP RISE HOLD FALL primitive has a clock
and data input. For an active-high clock, it gener
ates an error message in the output listing when the
data input is not stable from SETUP nanoseconds in
the following circumstances:

• Before the rising edge of the clock

• While the clock is rising

• While the clock is high

• During the falling edge of the clock

• Until HOLD nanoseconds after the clock has
gone low

The SETUP RISE HOLD FALL primitive has two de
fault body properties attached:

SETUP = 0.0
HOLD = 0.0

The properties SETUP and HOLD are assigned the
required property values by using the OED change
command. This primitive is used to check the set
up and hold times of data being written into
memories.

10/1/89

MIN PULSE WIDTH
Primitive

-I

MIN
PULSE
WIDTH

-I

lE
LOW=e:I.0
HIGH=0.0

MIN lE
PULSE LOW=eI. eI
WIDTH HIGH=0. eJ

EN
I

10/1/89

Timing Model

The primitive has an optional enable input that can
be used to turn off checking. If the enable input is
used, then any value other than zero causes check­
ing to be enabled. If checking is enabled at any
time between the rising edge and the falling edge,
checking is performed for that clock pulse.

The MIN PULSE WIDTH primitive has one data input.
It checks that its data input has no pulses on it that
are low for less than LOW ns, and no pulses on it
that are high for less than HIGH ns. The MIN PULSE

WIDTH primitive has two default body properties
attached:

LOW = 0.0
HIGH = 0.0

The properties LOW and HIGH are assigned the re­
quired property values by using the GED change
command.

The primitive has an optional enable input which
turns checking on and off. If the enable input is any
value other than zero, then checking is enabled. If
checking is enabled any time during a given pulse,
then the width of that pulse is checked.

5-29

Timing Model

EDGE TO EDGE Primitive

-p
EDGE:

TO
EDGE

-~EN
I

5-30

IB
MIN=0.0
MAX=0.0

The EDGE TO EDGE primitive has two inputs, CKl

and CK2. It checks that the beginning of a rising
edge on CK2 is at least a minimum delay from the
end of a rising edge on CKl and that the end of a­
rising edge on CK2 is no more than a maximum de­
lay from the beginning of a rising edge on CK1. The
EDGE TO EDGE primitive has two default body prop­
erties attached:

MIN = 0.0
MAX = 0.0

Use the OED change command to assign values to
the MIN and MAX properties. Only rising delays are
used.

The primitive has an optional enable input that turns
checking on and off. If the enable input is any value
other than zero, then checking is enabled. If check­
ing is enabled any time during the rising edge of
CK1, then checking is performed for that edge. If
there is no edge on CK2 (that is, if CK2 does not
change state), then no error message is generated.

10/1/89

Timing
Properties

Timing Model

When creating timing models, you can size timing
bodies and add delay values to each primitive using
body and pin properties. Timing properties are:

• DELAY • FALL

• RISE • SIZE

All Timing Verifier delay properties can be attached
to a signal or a pin. The delay is applied at each
input pin to which the wire with the delay property
(or signal name containing the delay property) is at­
tached. For designs where delays are related to
changes in output loading, temperature, and voltage,
the Delay Estimator can be used.

Table 5-2 summarizes the timing properties. For
detailed information on timing properties and direc­
tives, refer to the ValidTIME Reference Manual.

Table 5-2. Timing Properties

Prop Controlling
Name Directive(s) Comments

DELAY DELAY_MODEL Specifies the delay time as a single value or the rise/fall
RISE_FALL_MODELS delay values as min I max I or min-max. DELAY_MODEL

directive selects which value to use for current timing
run; min-max is the default.

RISE DELAY_MODEL Assigns RISE delay to a timing primitive. The directives
RISE_FALL_MODELS DELAY _MODEL and RISE_FALL_MODELS select delay

values.

FALL DELAY_MODEL Assigns FALL delay to a timing primitive. The directives
RISE_FALL_MODELS DELAY_MODEL and RISE_FALL_MODELS select delay

values.
SIZE Specifies the number of bits on a pin. Can also use

SIZE=SIZE to match primitive size to the SIZE property
attached to the body drawing.

10/1/89 5-31

Timing Model

The DELAY Property

SYNTAX ~

The RISE Property

5-32

Delays are given in nanoseconds. Primitives without
an explicit DELAY are assumed to have a delay of
zero. By convention, primitives are given delays to
model the worst-case behavior of the part being
modeled, but this is not required. The syntax of the
DELAY property in timing models is:

DELAY=min

DELAY=max

DELA Y=min-max

The Timing Verifier's DELAY_MODEL directive se­
lects which value (min, typ, or max) to use for cur­
rent timing run. Min tells the Timing Verifier to use
only minimum delays. Max tells the Timing Verifier
to use only maximum delays. Min-max is the de­
fault. It tells the Timing Verifier to use both the
minimum and maximum available delays.

For the timing to function correctly, it is only neces­
sary to define one possible timing behavior of the
part (min or max). Exercise care when specifying
delay values for parts; in particular, zero-delay
parts can result in unexpected behavior in a circuit.

Rise delays are specified using the RISE property
with a rise delay time value. The Timing Verifier's
DELAY_MODEL and RISE_FALL_MODELS directives
are used to select delay values.

10/1/89

The FALL Property

The SIZE Property

10/1/89

Timing Model

Fall delays are specified using the FALL property
with a rise delay time value. The Timing Verifier's
DELAY_MODEL and RISE_FALL_MODELS directives
are used to select delay values.

Most timing primitives can have a SIZE property to
specify the number of bits on a pin. A primitive can
be given the property SIZE=SIZE, which means that
the size of the primitive is taken from the SIZE prop­
erty attached to the part being modeled.

Many primitives have inputs and outputs that are not
affected by the SIZE property. All enable inputs,
clock inputs, and chip select inputs have a fixed
width of one bit. The select input of an eight-bit
multiplexer is always three bits wide.

5-33

Timing Model

Modifying Timing
Models

5-34

Timing models are carefully designed to correctly
model the part while including no extraneous data.
The smaller the model, the faster the Timing Veri­
fier can run. Models are therefore difficult to intui­
tively grasp; make as few changes to models as ab­
solutely necessary. The most frequent change to a
timing model is the change of the value of a delay
property. Use the change command in OED to
change the value. Be careful to change the correct
instance of the delay property in the model. To ac­
commodate different delay paths through the device,
propagation delays are usually divided up and
placed in different locations in the model. Examine
the model carefully to choose which delays you need
to change.

10/1/89

Creating Support
Components

T his section discusses creating and using the following

support components:

• Connector

• Resistor pack

• Ground

Support Components

Creating A
Connector

~
PINLNAME=CONLPIN<5IZE-1 •• 0)~C

6-2

There ar~ many sizes of connectors you might re­
quire to complete a design. Rather than creating
each size connector, you can create a generic "pin"
connector that you can use to design any size
connector.

Follow this procedure to create a generic connector:

1 Access OED and edit a new body drawing:

edit conn128.body.l.l

2 split the body name (note) away from the
body origin and delete the body name.

3 Use the wire command to create a single pin
shape (~). Center the pin on the origin.

4 Use the dot command to add a connection
point to the pin (~).

5 Use the signame command to attach the pin
name:

CON_PIN<SIZE-l .. O>\NAC

The \NAC (no assertion check) property tells
the compiler that both high-asserted and
low-asserted signals can be attached to the
pin. Place the pin name close to the pin.

6 Attach the $PN (pin number) property to the
pin and give the property the value "?" (ques-

10/1/89

Support Components

tion mark). Place the property to the left of
the pin, display it right-justified (so text ex­
pands to the left and does not overwrite the

pin), and display only the property value (?).

7 Attach the following properties to the body
origin:

LOCATION=?
PATH=?

Place the LOCATION property immediately
above the pin, display it left-justified, and
display only the property value. Place the
PATH property to the left of the pin, display it
right-justified, and make it invisible.

The conn128 connector is shown in Figure 6-1. The
top drawing shows all the attached properties, and
the bottom drawing shows how the conn128.body
drawing should actually appear.

I LOCATION=?
PATH=? $PN=?)(.

PIN_NAME=CON_PIN<SIZE-l .. 0>,NAC

•

Figure 6-1. Body Drawing for CONN128 Connector

10/1/89 6-3

Support Components

Tips on Attaching
Connector Properties

Creating a Second
Version of the
Connector

6-4

", Atta~hing the LOCATION, PATH, and $PN prop­
erties during component creation allows you to
define their default positions on a drawing.

", Making the LOCATION property a hard prop­
erty (not starting with a $) encourages the
user to assign a value to the property before
the schematic can be written.

", Attaching the $PN property as a soft property
allows the system to assign the pin number
but locates the number where you want it.

You can create a second version of the conn128 con­
nector where the pin extends to the left of the origin
(an output connector). The properties are the same
as the original version, but their placement is differ­
ent. Make the following changes to the attached
properties:

• Move the PATH and $PN properties to the
right of the pin. Make sure the $PN property
has enough space to print up to a three-digit
pin number.

• Make the PATH property display left-justified
and the LOCATION property display right­
justified. (The $PN property remains right­
justified.)

10/1/89

Support Components

Version 2 of the conn 128 connector is shown in
Figure 6-2. The top drawing shows all the attached
properties, and the bottom drawing shows how the
conn128.body drawing should actually appear.

LOCATION=?I
•)($PN=? PATH=?

PIN_NAME=CON_PIN<SIZE-1 .. 0>,NAC

CON_PIN< 5IZE-1. • 0> 'NAC IE ? I ?

Figure 6-2. Body Drawing for Version 2 of the CONN128 Connector

The .PART Drawing To define the connector as a lowest-level compo­
nent, create a .PART drawing that contains a
DRA WING body with the TITLE and ABBREV proper­
ties attached. The .PART drawing for the conn128
connector is shown in Figure 6-3.

10/1/89

DRAWING

TITLE=CONN128
ABEREV=128-PIN_CON
LAST_MODIFIED=Fr1 Sap 15 11:14:20 1989

Figure 6-3. Part Drawing for CONN128 Connector

6-5

Support Components

The Physical Model

Note:

Next, create the physical model of the conn128 con­
nector by adding physical information to a library
drawing. Follow these steps:

1 Create a library drawing and add the conn128

connector body:

edit conn library. logic
add conn128.body

2 Attach the PIN_NUMBER property. Use the
compact pin number syntax discussed in Sec­
tion 3 to enter the pin numbers:

PIN NUMBER=<128 .. 1>

3 Add a DRAWING body and attach the TITLE

and ABBREV properties.

4 Verify property attachments, check and write
the drawing.

When you check and write the conn library drawing,
you get the following error message:

"LOCATION" property is only a placeholder
... done checking
CHECK detected problems with this drawing.
Type ; to write anyway or anything else to abort

Enter a semicolon to write the drawing anyway. The
LOCATION property will be defined when the con­
nector is added to a drawing.

The conn library drawing now looks like the one in
Figure 6-4.

10/1/89

10/1/89

DRAWING

TITLE=CONN LIBRARY
ABBREU=CONLIB

Support Components

~ PIN_NUMBER=<128 .. 1>

LAST_MODIFIED=Fr1 Sep 15 17:28:48 1989

Figure 6-4. Conn Library Drawing for the CONN128 Component

Once you enter all the physical information into the
library drawing, follow these steps to complete the
physical model:

1 Edit the compiler.cmd file, change the
ROOT_DRAWING to conn library, redirect
OUTPUT from logic to chips, and make sure
the correct . wrk file is specified.

2 Compile the library drawing to create the
chips.dat file.

3 After the drawing compiles successfully,
change the name chips.dat to chips_ prt and
move the physical model to the correct com­
ponent subdirectory:

mv chips.dat conn128/chips_prt

The chips_prt file for the conn128 connector looks
similar to the one shown in Figure 6-5.

6-7

Support Components

FILE_TYPE=LIBRARY_PARTS;
TIME=~COMPILATION ON FRI SEP 15 13:43:34 1989~;
primitive ~CONNI28':

pin
~CON_PIN'<O>;

PIN_NUMBER='(128 .. 1)';
end_pin;
body

BODY_NAME='CONNI28~;

end_body;
end_primitive;
END.

(The body properties differ
from file to file depending
on the physical requirements
of a component.)

Figure 6-5. CONN128 Chips_prt File

Creating Additional
Physical Models

Once you create the body drawing for the generic
connector pin, you can create other components us­
ing the same body drawing. For each new compo­
nent you want to create, you need to:

6-8

• Copy the body drawing

• Create a new part drawing

• Edit the library drawing

• Compile the component

Follow these steps to use the conn128 connector to
create a connector called din3_32, a 96-pin connec­
tor that has three rows of 32 pins each.

10/1/89

You can copy both versions
of the conn128 to make
both versions of the
din3_32 if necessary.

The system name for the
din3_32 connector does not
contain an underscore.

10/1/89

Support Components

1 Edit the conn12B.body drawing and use the
diagram command to rename the drawing:

edit conn128.body
diagram din3_32.body

2 write the new drawing to save it.

3 Create a .PART drawing for the new
component.

4 Edit the conn library drawing and use the
change command to alter the PIN_NUMBER

property:

pin_number=<C32 .. CI,B32 .. BI,A32 .. AI>

5 Check and write the drawing. You still get
the error message about the LOCATION prop­
erty. Enter a semicolon to write the drawing
anyway. The LOCATION property will be de­
fined when the connector is added to a
drawing.

6 Compile the library drawing (output chips) to
create the chips.dat file.

7 After the drawing compiles successfully,
change the name chips.dat to chips_prt and
move the physical model to the correct com­
ponent subdirectory:

mv chips.dat din332/chips_prt

6-9

Support Components

6-10

The chips_ prt file for the din 3 _32 connector should
look similar to the one shown in Figure 6-6.

FILE_TYPE=LIBRARY_PARTS;
TIME='COMPILATION ON MON SEP 18 08:55:14 1989';
primitive 'DIN3_32';

pin
'CON_PIN'<O>:

PIN_NUMBER='(C32 .. C1,B32 .. B1,A32 .. A1)';
end_pin;
body

BODY_NAME='DIN3_32';

end_body;
end_primitive;
END.

10/1/89

Creating a
Connector Break

Since the connector
break is a comment­
body I it does not need
a .PART drawing and
it is not compiled.

1011189

Support Components

You can use the conn 128 body to create connectors
ranging from one pin to 128 pins. When you create
a small connector, it is simple to show the whole
connector in one place on a schematic. But if you
create a large connector, it may not be necessary or
even possible to show all the pins in the same loca­
tion on a schematic. A simple comment-body
called a connector break indicates that the connector
shown is only a portion of the complete connector.
Follow these steps to create a connector break body:

1 Edit a body drawing called conbrk and delete
the body name (note).

2 Use the wire command to create the follow­
ing shape:

Center the shape around the body origin.

3 Use the dot command to add connection
points to the ends of the wires:

4 Use the signame command to attach an NC

signal name to each end (since the pin can be
left unconnected):

NC~NC

5 Attach the property COMMENT_BODY=TRUE

to the body origin and make the property
invisible.

6-11

Support Components

Using the Connector
and Connector
Break Bodies

You can also
add a conbrk
to the top of a
connector body.

6-12

To create connector packages on a logic drawing,
you add as many connector pins and connector
breaks as you need. For example, you might need
to show eight pins of a 128-pin connector in one
place on a logic drawing. Follow these steps to cre­
ate the necessary connector on a schematic:

1 Edit your logic drawing and add a connector
pin:

edit test
add conn128

2 Use the change command to assign a value
to the LOCATION property, then make the
property invisible.

3 Select the copy command and copy the con­
nector pin seven times. Place the copies be­
low the original pin.

4 Add a conbrk body and place it slightly below
the connector pins (so that it is not over­
written by any pin numbers).

5 Use the wire command to complete the con­
nector shape. Start the wire at one end of the
connector break and place it over the connec­
tors to connect them. Use the signame com­
mand to attach the same signal name as you
assigned to the LOCATION property.

6 Use the section command to assign pin num­
bers to each connector pin.

1011189

Jl

127

5

15

33

54

1

45

89

-0-

10/1/89

conn128 connectors

Support Components

Figure 6-7 shows several versions of the connector
created using both versions of the conn 128 and
din3 32 bodies.

J2 J3 J4

91 AS B12

125 B8 B2

47 C6 B31

13 C21 C5

111 C4 A3

31 A8 Cll

51 A28 AlB

119 A9 B5

Ly\-- '+ -0-
din3 _32 connectors

Figure 6-7. Connector Examples

6-13

Support Components

Simulation and
Timing Models

The simulation information
is provided in Section 4
and the timing information
is provided in Section 5.

Create a simulation or timing model of the conn128
body to emulate the behavior and operation of the
connector. The .SIM and .TIME models for the con­
nector are identical. Both models are synonymed
(with the synonym body from the Standard library)
to the signal name NC because the connector is the
logical completion of the circuit.

Figure 6-8 shows the simulation or timing model
for the conn128 connector.

PIN NAMES
CON_PIN<SIZE-l •• 0>'NAC'I

lP
CON_PIN<sIZE_-_1_._._0_>_'N_A_C_'_I _____________________________ ~SIG-NAME=NC

Figure 6-8. Simulation or Timing Model for the CONN128 Connector

6-14 10/1/89

Creating A
Resistor Pack

Support Components

You can create a sizeable resistor that you can use
alone or that you can group to create a standard re­
sistor pack. Use OED to create the resistor body
resS sip6.body.l.l (5 resistor, 6-pin, single in-line
package) shown in Figure 6-9. Use the property
command to add the property VALUE=? and display
only the property value.

?
COMMON 'NAC~X <SIZE-i .. 0> 'NAC

10/1/89

Figure 6-9. Version 1 of the RESS SIP6 Resistor

This standard resistor pack includes five resistors
with one common pin. Create the resistor pack as
the second version of the original resistor. The
resS sip6.body.2.1 is shown in Figure 6-10. Attach
the VALUE property to the origin and display only
the property value. Attach the HAS_FIXED_SIZE=5B

property to the body origin and make the property
invisible.

?

COMMON "NAC X <4>
X <3>
X <2>
X <1>
X <0>

Figure 6-10. Version 2 of the RESS SIP6 Resistor

"NAC
"NAC
"NAC
"NAC
"NAC

6-15

Support Components

The .PART Drawing To define the resistor as a lowest-level component,
create a .PART drawing which contains a DRAWING

body with the TITLE and ABBREV properties
attached. The .PART drawing for the resS sip6 resis­
tor is shown in Figure 6-11.

DRAWING
TITLE=RES5 SIP6
ABBREV=R5S6
PART_NAME=RESSSIP6

LAST_MODIFIED=Sun Oct 1 16:54:38 1989

Figure 6-11. Part Drawing for RESS SIP6 Resistor

The Physical Model Create the physical model of the resS sip6 resistor by
adding physical information to a library drawing.
The drawing should look like the one shown in
Figure 6-12.

6-16

DRAWING:
TITLE=RES LIB
ABBREV=RES5

PATH=lP
PART_NAME=RES5SIP6
UNKNOWN_LOADING=TRUE
ALLOW_CONNECT=TRUE
PHYS_DES_PREFIX=Z

LAST_MODIFIED=Mon Oct 2 15:00:35 1989

Figure 6-12. Library Drawing for the RESS SIP6 Resistor

10/1/89

Note:

Physical Part Tables

Simulation and
Timing Models

Support Components

When you check and write the res lib drawing, you
get the following error message:

"VALUE" property is only a placeholder
... done checking
CHECK detected problems with this drawing.
Type ; to write anyway or anything else to abort:

Enter a semicolon to write the drawing anyway.
You define the VALUE property when the resistor is
added to a drawing.

After you enter all the physical information into the
library drawing, compile the library drawing (with
output chips) and move the chips.dat to the
chips _ prt file in the res5sip6 subdirectory.

You can use physical part tables to create different
types (versions) of resistors using res5 sip6 resistor
body. Resistor versions can vary in resistance value,
power dissipation, cost, or tolerance. For informa­
tion on creating and using physical part tables, refer
to the ValidpACKAGER Reference Manual.

The .SIM and .TIME models for the res5 sip6 resistor
are identical. Figure 6-13 shows the simulation or
timing model for the res5 sip6 resistor.

IP
SIZE=SIZE

3P
SIZE=SIZE:

COI'110N 'I --------1~
IIEM'ITY -----1C>>---- X <SIZE-I •• 21> 'I

Figure 6-13. .SIM or .TIME Drawing for the RES5 SIP6 Resistor

10/1/89 6-17

Support Components

Creating A
Ground

4:.
G

-

You can create a ground (logic 0) body to use as a
permanent enable input. Use GED to create the
symbol shown in Figure 6-14. Use the
display heavy command to change the thickness of
the horizontal lines.

<SIZE-1 .. 0>

Figure 6-14. BODY Drawing for the GND Ground

The .LOGIC Drawing

6-18

Making the ground body sizeable allows you to at­
tach the ground to a sizeable component (for exam­
ple, a pull-down through a sized resistor on a bus)
without having to replicate the ground each time.
You can ignore the size capabilities of the ground if
you do not need a sizeable ground, since SIZE=lB is
the default value of the SIZE property.

Because the ground body is not an actual physical
body, there is no .PART drawing defined for the
component. The ground body requires a .LOGIC

drawing to allow the Packager to resolve the ground
body into a net name.

10/1/89

For more information
on the replicate pa­
rameter (\R), refer to
the SCALD Language
Reference Manual.

Support Components

Figure 6-15 shows the .LOGIC drawing for the gnd
component. The pin name for the ground is
synonymed to gnd so that the entire ground net in a
schematic is synonymed to the same name. The
\R SIZE parameter replicates the ground to the size
specified by the SIZE property attached to the body
when it is added to a logic drawing. The \G global
parameter forces the entire net to have the same net
name when a schematic that includes the gnd body is
comoiled.

IP
G <SIZE-i .. 0> ,I

Figure 6-15. LOGIC Drawing for the GND Component

Simulation and
Timing Models

Figure 6-16 shows the .SIM or .TIME model for the
gnd body. The pin name for the ground is
synonymed to zero because the ground in a logic
design is typically zero. The \R SIZE parameter rep­
licates the ground to the specified size when it is
added to a logic drawing. There is no \G global
parameter attached since constants are global by
nature.

IP
G <SIZE-I .. 0> 'I

Figure 6-16. Ground .81M or . TIME Drawing

10/1/89 6-19

Testing the Library

T his section discusses:

• Creation checklist

• Testing issues

Testing the Library

Creation
Checklist

7-2

The following checklist summarizes some important
points to remember when creating models. If prob­
lems arise, check these areas to make sure the new
information meets the desired standards.

J" Are all the library files owned by the
librarian?

J" Do the model shape and the signal names
used on the model correspond to your corpo­
rate conventions?

J" Do the signal names follow the correct Valid
Library Format?

J" Do the signal names follow the correct bit
ordering?

J" If you are having problems accessing the li­
brary where the model resides, is the library
listed in the master.lib file?

J" Are you using a test directory instead of the
final directory to develop models for each
part (and avoiding problems with a produc­
tion directory)?

J" Are new components approximately the same
,size and shape as other library components
so they integrate well with other components
on the schematic?

J" Is your component centered around the body
origin?

1 0/1/89

10/1/89

Testing the Library

~ Are high-asserted pins drawn with a
O.l-inch wire and low-asserted pins with a
O.l-inch bubble (circle)?

~ Are clock pins marked with a clock wedge if
required?

", Did you use bus-through pins whenever
possible? Are their pin names the same as
the visible pin to which they are connected?

", Do low-asserted pin names end with the cor­
rect low-assertion character (an asterisk in
Library Format i)?

", Are all properties correctly attached?

", Are the \NAC and \NWC properties attached
to pins on bodies when necessary?

~ Does the body contain notes detailing each
pin name and the purpose of the body?

", If it is not a sizeable component, is the
NEEDS_NO_SIZE property attached to the
body?

~ If it is the flat representation of a sizeable
component, is the HAS_FIXED_SIZE property
attached to the body?

", Are pins assigned to bubble groups when
appropriate?

", Are pins that should start in the bubbled state
defined with the BUBBLED property?

7-3

Testing the Library

7-4

V' Have you created all the required versions of
a body?

V' If you used the smash or diagram commands
to create a new component, did you also copy
and change the ,PART, ,81M, and ,TIME draw­
ings if necessary?

V' Did you create a ,PART drawing for the new
component?

V' Do asymmetrical components have one of
each section represented in the library
drawing?

V' Are bodies that have no logical function
"commented out" with the property
COMMENT_BODY=TRUE or the property
BODY_TYPE=COMMENT?

V' Does each pin of each component have a
PIN_NUMBER property attached (except bus­
through pins)?

V' Do different sections of asymmetrical compo­
nents have different pin names?

V' Do all pins have an INPUT_LOAD or
OUTPUT_LOAD property (or both)?

V' Did you convert the INPUT_LOAD or
OUTPUT_LOAD to the required measurement
(typically milliamps) if the data book used a
different unit of measurement?

V' Are swappable pins assigned to the same pin
group?

10/1/89

10/1/89

Testing the Library

", Is the OUTPUT_TYPE property attached to the
output pins of open-collector, open-emitter,
and tri-state components?

", Are any necessary load-checking properties
attached to the library drawing?

", Did you rename the chips .dat file to chips _ prt
and move it to the correct subdirectory?

", Are all the nets on the simulation model
named so that there are no ambiguous error
messages due to unnamed signals?

", Did you make sure GED can access the re­
quired libraries (such as Sim and Time)?

", Do all the interface signals in the simulation
and timing models include the \I interface
property in the signal name?

", Do all interface signals that require an ex­
plicit width have the width specified?

", Do the simulation and timing models have
the correct body and pin delay properties?

", If pin delay properties are used in the simula­
tor model, is the PIN_DELAY directive set to
ON in the simulator.cmd file? Is the
RISE_FALL directive ON if the PRISE and
PFALL properties are to override the PDELAY

property?

", Are all delays calculated in nanoseconds?

7-5

Testing the Library

7-6

,.., Is the DELAY_MODE directive in the
simulator.cmd file set to the correct value
(min, typ, max)?

,.., Did you check for zero-delay parts in the
simulation and timing models to eliminate
unexpected behavior in the circuit?

,.., Did you add the PIN NAMES component to the
timing model to check that all the pins are
accounted for (and spelled correctly)?

10/1/89

Testing Issues

10/1/89

Testing the Library

There is no one program that tests all aspects of a
component. The main issue is to test the component
for accuracy throughout the various design tools you
use for your components.

The minimum testing of a new component should
include compiling the bodies and the models. Any
syntax errors are discovered during compilation and
can be corrected. Complex parts may take a long
time to verify; be sure to budget enough library de­
velopment time for testing.

~ If you have more than one component to test,
you can create an EXAMPLE OF EACH

LIBRARY PART drawing and use it for testing,
since when you compile that drawing, it in­
vokes all versions of all parts.

~ Make sure you can add all versions of a new
component.

~ Try the bubble command on appropriate pins
to make sure they are defined with a bubble­
able pin and they are in the correct bubble
group, if any.

~ Attach a wire to each connection point to be
sure that the wire attaches to the correct
location.

~ Wire bus-through pins to check that they con­
nect correctly.

~ For sizeable components, first set the SIZE

parameter to 1 (the default) and then to some

7-7

Testing the Library

7-8

other value to test the vector part
implementation.

V' Exercise timing models to make sure that the
model behaves correctly and that the DELAY,

RISE, and FALL property values have been
correctly assigned.

V' If a directive or property has more than one
possible value, test the model using the entire
range of values.

V' Generate errors in setup and pulse width to
make sure that the signals reported by the
Timing Verifier have names that are easily
understood without looking at the model; all
errors should be reported in terms of the pins
of the part.

V' Use the TIMES property to verify drive and
load capabilities. Try overloading the con­
nections and checking the resulting error
messages from the Packager to be sure all
loading violations are detected.

V' Use the section command to make sure the
component sections correctly.

V' Use the pinswap command to make sure the
pin groups have been defined properly.

10/1/89

Text File Method of
Adding Physical

- Information (UNIX Onl ~

T his section discusses:

• Using phys_dat to add physical information

• Phys _ dat file syntax

• Pin number formats for the phys _ dat file

Text File Method of Adding Physical Information

Using Phys _ dat
to Add Physical
Information

The chips.dat file is only
a template at this point.

A-2

On the UNIX operating system, you can use a text
file method to specify the physical information for a
library component. The text file is called the
phys_dat file, and the method is similar to the library
drawing method except that the pin and body prop­
erties are entered into a text file rather than directly
onto a drawing. This method may prove faster, es­
pecially with reference elements with a large number
of pins. Once the property information is entered
into the text file, the chips.dat file is automatically
updated with the information from the file by run­
ning the addphysinfo script. Follow these steps to
create a chips_ prt file using the phys_dat file:

1 Access GEO and edit a library drawing.

2 Add the sizeable version (Version 1) of the
component to be compiled.

3 Add a ORA WING body and attach the TITLE

and ABBREV properties.

4 write the drawing to save it.

S Edit the compiler.cmd file and change the
ROOT_ORA WING directive to the correct
library name. Make sure the correct . wrk file
is specified.

6 Compile the library drawing (output chips) to
create the chips.dat file.

7 Move to the component subdirectory and use
the system text editor to create a new file

10/1/89

10/1/89

PART 74293
FAMILY TTL
POWER_PINS

PINS
Q<3>
Q<2>
Q<l>
Q<O>
CLKA*
CLK.B*
CL1
CL2

END

Text File Method of Adding Physical Information

called phys _ dat. The file requires the same
information as described in Section 3, The

Physical Model:

• Part name

• Family
• Power and ground pin assignments

• Pin name

• Pin number(s)

• Output type

• Input/output load

• Bidirectional pins

The information must be entered in the order
shown above. Figure A-l shows a phys_dat
file for the TTL 293 component.

(VCC:14;GND:7)

(8) OUTPUT (16.0,-0.8)
(4) OUTPUT (16.0,-0.8)
(5) OUTPUT (16.0,-0.8)
(9) OUTPUT (16.0,-0.8)
(10) INPUT (-3.2,0.08)
(11) INPUT (-3.2,0.08)
(12) INPUT (-1.6,0.04)
(13) INPUT (-1.6,0.04)

Figure A-1. Phys_dat File for the TTL 293 Component

A-3

Text File Method of Adding Physical Information

A-4

8 Move up one directory level and execute the
addphysinfo script on the chips.dat file:

cd ..
addphysinfo chips.dat

The addphysinfo script automatically updates
the chips.dat file to include the information in
the phys_dat file. The script creates several
files that all begin with the prefix lib. For
example, the liblst.dat file contains a sum­
mary of execution. After an error-free run
of the script, these files can be deleted.

9 Change the name chips.dat to chips_prt and
move the physical model to the correct com­
ponent subdirectory:

mv chips.dat 293/chips_prt

10/1/89

Phys _ dat Syntax

SYNTAX I

pin

load

bidir

10/1/89

Text File Method of Adding Physical Information

The phys _ dat file specifies the same information as
the library drawing but uses a different entry format.
A pin entry in the phys _ dat file has the following
syntax:

pin (pin_id) output_type (load) [(load)] [bidir]

Separate the values in the pin entries with spaces or
tabs.

The pin name that was assigned in the body draw­
ing. Pin name entries can be scalar or vector.

Any combination of alphanumeric characters and/or
the underscore character that defines the pin
number. Pin numbers can be scalar or vector, sin­
gle or multiple section, or asymmetrical. The pin
number formats are described beginning on page
A-6.

Defines whether the pin is an input pin, output pin,
open collector pin, or tri-state pin.

The input/output loading value of the pin. If the pin
is a tri-state, there are two sets of load values to
define both the input load and the output load.

Specifies a pin that is both an input pin and an out­
put pin.

Section 2, Component Creation, contains more infor­
mation on pin names. Section 3, The Physical Model,
contains details on pin numbers, output types, load­
ing values, and the bidirectional property.

A-5

Text File Method of Adding Physical Information

Pin Number
Formats

Single Section
Scalar Pins

Q<3>
Q<2>
Q<l>
Q<O>
CLKA*
CLKB*
CL1
CL2

A-6

The pin number formats described in Section 3 can
also be defined in the phy_dat file:

• Single section scalar pin

• Single section vector pin

• Multiple section scalar pin

• Multiple section common pin

e Multiple section common vector pin

• Asymmetrical components

In single section scalar format, you enter each pin
and its associated pin number individually in the
phys_dat file. The phys_dat file for the TTL 293 com­
ponent contains examples of single section scalar
pin entries:

(8)
(4)
(5)
(9)
(10)
(11)
(12)
(13)

CLl CL2
2
BI~RY

CTR

x
B
A

0:3- Q <3 .. 0>

CLKB>f<
CLKA>f<

CL

CLl CL2

OUTPUT (16.0,-0.8)
OUTPUT (16.0,-0.8)
OUTPUT (16.0,-0.8)
OUTPUT (16.0,-0.8)
INPUT (-3.2,0.08)
INPUT (-3.2,0.08)
INPUT (-1.6,0.04)
INPUT (-1.6,0.04)

10/1/89

Single Section
Vector Pins

Q<3 .. 0>

CLKA*
CLKB*
CL1
CL2

Multiple Section
Scalar Pins

10/1/89

Text File Method of Adding Physical Information

Single section vector pins can be entered individu­
ally (like those of the TTL 293) or in a vector for­
mat. The Q pins of the TTL 293 can be shown in
vector format:

CLl CL2
2

BINARY
CTR

x
B
A

~- Q <3 .. 0>

CL

CLl CL2

(8,4,5,9) OUTPUT (16.0,-0.8)
(10)
(11)
(12)
(13)

INPUT (-3.2,0.08)
INPUT (-3.2,0.08)
INPUT (-1.6,0.04)
INPUT (-1.6,0.04)

Each pin of a multiple section is defined by a list of
pin numbers, one pin number for each section in the
part. The pin numbers for each section are sepa­
rated by commas. Pins for the first section are in
the last position in the phys _dat file, pins for the sec­
ond section are in the second-last position, and so
on.

The LSOO component is an example of a sizeable
component with multiple section scalar pins. If the
component is given the property SIZE=4B, each logi-

A-7

Text File Method of Adding Physical Information

A<O>
B<O>
Y<O>*

cal pin of the component has four pin numbers, one
for each section:

A <SIZE-l.. 0>,.--__

~ LSI2I~ ")<SIZE-l .. 0>*
B <SIZE-l.. 0>

(1,4,9,12) INPUT
(2,5,10,13) INPUT
(3,6,8,11) OUTPUT

(-0.4,0.02)
(-0.4,0.02)
(8.0,-0.4)

Multiple Section
Common Pins

The LS374 octal register is an example of a compo­
nent that has multiple sections with common pins.
The pin numbers for multiple sections appear more
than once in the file entry. Pins for the first section
of the part appear in the last position in the phys _ dat
file, pins for the second section are in the second­
last position, and so on.

D<SIZE-l. .0> - D Q - Q<SIZE-l. .0>
LS374

CLt<-~

Of:

ENA~LE*

D<O> (3,4,7,8,13,14,17,18) INPUT (-0.4,0.02)
OE* (1,1,1,1,1,1,1,1) INPUT (-0.4,0.02)
CLOCK (11,11,11,11,11,11,11,11) INPUT (-0.4,0.02)
Q<O> (2,5,6,9,12,15,16,19) TS (-0.02,0.02) (24.0,-2.6)

A-a 10/1/89

A<O>
OE*
y<o>

10/1/89

Text File Method of Adding Physical Information

The clock and enable pins are common to all eight
flip-flops in the package. The D and Q pins are
defined so that one bit is assigned to each flip-flop.

Pins that are common only to certain sections of a
component are represented in the same manner as
pins that are common to all sections, except that
these pin numbers are present only in the sections
for which they are common. The LS367 component
is an example of a component with multiple-section
common pins:

BUBBLE_GROUP=<A:Y)

A <SIZE-l .• ~> OE*
LSS6

Y < SIZE-l. . 0>
OE*

(2,4,6,10,12,14)
(1,1,1,1,15,15)
(3,5,7,9,11,13)

INPUT
INPUT
TS

(-0.4,0.02)
(-0.4,0.02)
(-0.02,0.02) (24.0,-2.6)

The pin numbers for the open emitter pin show that
one output enable pin is common to four sections of
the component, and one output enable pin is com­
mon to the other two sections of the component.

A-9

Text File Method of Adding Physical Information

Multiple Section
Common Vector
Pins

If a multiple-section component has vectored pins,
each pin number and section are separated by com­
mas. The pin numbers enclosed in angle brackets
specify individual bits of the pin, not different sec­
tions for the pin.

D<O>
AD<3 .. 0>
WE*
CS*
Q<O>*

A-10

An LS189 16-word by 4-bit RAM is an example of a
component having vector pins and multiple sections.

BUBBLED=(Q)
BUBBLE_GROUP=(D:Q)

CS* WE*
,.. ,..

D <SIZE-1 .. 0> c€ - - 09> Q <SIZE-l .. 0>* D

AD <3 .. 0> G- AD.3-e C) AD <3 .. 0>
x

LS1S9

CSWE

~
CS* WE*

(4,6,10,12) INPUT (-0.4,0.02)
«15,14,13,1>,<15,14,13,1>,<15,14,13,1>,<15,14,13,1» INPUT (-0.4,0.02)
(3,3,3,3) INPUT (-0.4,0.02)
(2,2,2,2) INPUT (-0.4,0.02)
(5,7,9,11) TS (-0.02,0.02) (24.0,-2.6)

10/1/89

Text File Method of Adding Physical Information

Asymmetrical
Components

Components with mUltiple sections that are function­
ally different, such as the LS241 bus transceiver,
need one version of the body defined for each type
of section in the component. To identify which pins
are present in a given section, the pins of the differ­
ent versions must have different pin names.

A<O>
OEO
YO<O>
B<O>
OE1*
Y1<0>

10/1/89

Even though some pins may not be present in a sec­
tion, the phys_dat file specifies all the sections of the
component. Any pin that is not present in a given
section is specified with a pin number of zero.

BUBBLE_GROUP=<A:Y>

~ A <SIZE-l.. 0> y_~ Y0 <SIZE-l.. 0>

OE0

BUBBLE_GROUP=(B:Y>

~ E <SIZE-l.. 0> ¥_~ Yl <SIZE-l.. 0>

OE1*

(17,15,13,11,0,0,0,0) INPUT (-0.2,0.02)
(19,19,19,19,0,0,0,0) INPUT (-0.2,0.02)
(3,5,7,9,0,0,0,0) TS (-0.02,0.02) (24.0,-15.0)
(0,0,0,0,2,4,6,8) INPUT (-0.2,0.02)
(0,0,0,0,1,1,1,1) INPUT (-0.2,0.02)
(0,0,0,0,18,16,14,12) TS (-0.02,0.02) (24.0,-15.0)

A-11

Changes in the
Library Drawing
Method

T he current library drawing method of creating the

physical model of a component differs from the previ­

ous method. This section discusses:

• The previous method versus the current
method

• Why the change occurred

Changes in the Library Drawing Method

Previous versus
Current Method

8-2

Creating a library drawing used to require changing
the entire library. Modifications in the Valid design
tools make it more reasonable to create and main­
tain the physical model for one component at a time.

Creating a library drawing for one component at a
time means that there is no· need to use the
makechipsfiles utility to separate the .prt file into
separate chips_ prt files. You can simply rename the
chips.dat file to chips_ prt and move it to the correct
subdirectory.

Table B-1 shows the differences between the previ­
ous method of creating a library drawing and the
current method.

6/1/89

Changes in the Library Drawing Method

Table B-1. Previous and Current Library Drawing Methods

PREVIOUS METHOD CURRENT METHOD

1 Create a library drawing. 1 Create a library drawing.

2 Add the sizeable or vectored 2 Add the sizeable or vectored
version of each component in version of one component to
the library to the drawing. the drawing.

3 Attach the body properties. 3 Attach the body properties.

4 Attach the pin properties. 4 Attach the pin properties.

5 Verify property attachments, 5 Verify property attachments,
check and write the drawing. check and write the drawing.

6 Edit the compiler.cmd file. 6 Edit the compiler.cmd file.

7 Compile the library drawing. 7 Compile the library drawing.

8 Move the chips.dat file to a file 8 Move the chips.dat file to the in-
with the same name as the library dividual component directory and
and a .prt extension (for example, rename it chips_prt.
lsttl.prt or newparts.prt).

9 Run the makechipsfiles utility on
the .prt file to create the individ-
ual chips files (chips _ prt files).

6/1/89 8-3

Changes in the Library Drawing Method

Reasons for the
Change
The .prt file is no
longer necessary.

Modifying the entire
library is not
required.

8-4

There are three reasons why the method of creating
the physical model changed.

OED originally did not accept pin numbers on a com­
ponent until the component was first compiled,
packaged, and back annotated. When the section
command was created, the system accepted pin
numbers during schematic entry, but the command
could not read the .prt file directly, so the physical
information for the component was placed in a new
file called chips _ prt. This file was located in the
component subdirectory along with the rest of the
component files. Since the chips_ prt file was new,
the Packager still read the .prt file for physical infor­
mation, and the section and pinswap commands
read the chips_prt file. Now the Packager has the
ability to retrieve information from the chips _ prt
file, so the .prt file is no longer required.

The original method of creating a library drawing
required updating the entire library each time you
created or modified a library component. When a
library drawing contains only the component that is
being modified, you save time and effort creating
the library drawing. Also, any manual changes you
made to the physical information files for the other
components in the library are not overwritten when
you recompile the library.

6/1/89

Physical information
for asymmetrical
components does
not get overwritten.

6/1/89

Changes in the Library Drawing Method

Asymmetrical components have always required that
you manually modify the chips _ prt file to include
the physical information for all the sections of the
component. When you update a single component
instead of the entire library, you do not overwrite the
manual changes to the chips_ prt file for asymmetri­
cal components, and you do not have to re-enter the
changes by hand.

8-5

Symbols
I (pipe character), 2-17

A
ABBREV property, 3-2 to 3-3

abbreviations, truth table, 4-10, 5-7

accessing libraries, 1-9 to 1-10

ADDER primitive, 4-30

adding
body properties, 3-7 to 3-10
bubbled pins, 2-15
physical information, 3-5 to 3-31

using phys_dat file, A-2 to A-4
pin

names, 2-16
properties, 2-17, 3-22 to 3-28

pins, 2-11

addphysinfo script, A-2 to A-4

ALLOW_CONNECT property, 3-28

ALU primitive, 4-31

AND primitive, 4-11, 5-8

annotating bodies, 2-19 to 2-20

annotation standards, 2-20

10/1/89

Index

Index

arc command, 2-11

archiving library drawings, 3-31

arithmetic primitives, 4-30 to 4-32

assertion
checking, 2-18
pin, 2-15

assigning
internal part numbers, 3-10
pin numbers, 3-11 to 3-21

asymmetrical
bubble groups, 2-28 to 2-29
components, 3-6

pin
names, 1-15 to 1-16
numbers, 3-19 to 3-28, A-11

attaching properties, 6-4
to components, 3-2

attachments, checking, 2-17

B
bidirectional pins, placing, 2-13

BIDIRECTIONAL property, 3-25

binary files, 1-13

bit subscript, 2-16

1-1

Index

bodies
adding physical information, 3-5 to

3-31
annotating, 2-19 to 2-20
creating multiple physical models,

6-8 to 6-10
DRAWING, 3-2
wiring together, 2-13

body
delays, 4-41
grid settings, 2-7
names, 2-8, 2-20
origin, 2-8
properties, 2-21 to 2-30

adding, 3-7 to ·3-10
BODY_TYPE, 3-10
COST, 3-10
FAMILY, 3-8
POWER_PINS, 3-9
PART_NUMBER, 3-10
PHYS_DES_PREFIX, 3-10
simulation, 4-41 to 4-42

shapes
creating, 2-9
standards, 2-10

versions
creating, 2-32 to 2-37
vectored, 2-6

.BODY drawing, 1-11
editing, 2-6

BODY_TYPE property, 3-10

bubble command, 2-30
simulator primitives, 4-10
timing primitives, 5-6

1-2

BUBBLE_GROUP property, 2-26 to 2-30
and pipe character (I), 2-17

bubble groups, 2-26 to 2-30
asymmetrical, 2-28 to 2-29

bubbled pins, 4-10, 5-6
default, 2-30
defining, 2-15
standards, 2-13

BUBBLED property, 2-29
BUF primitive, 4-13, 5-24

buffer, inverting, 5-24

buffer primitives, 4-13 to 4-14

bus-through pins, see pass-through
pins

c
calculating delays and pulse widths,

4-4 to 4-6

CARRY SAVE ADDER primitive, 4-32
change command

default properties, 4-5 to 4-6
modifying timing models, 5-34
shortening body names, 2-8
simulation primitives, 4-33 to 4-36
timing primitives, 5-27 to 5-30

checking
bit width, 2-18
pin loading, 3-28

CHG primitive, 5-23

chips.dat file, 3-30, 6-7, 6-9

chips_prt file, 1-12, 6-7, 6-9
creating, 3-30

10/1/89

circle command, 2-11

clock pins
annotating, 2-20
placing, 2-13

cmplst.dat file, 3-30

commands, see GED commands,
UNIX commands

common pins, multiple section compo­
nents, 3-17 to 3-18, A-8 to A-10

compact pin number syntax, 3-20 to
3-21

COMPARATOR primitive, 4-32

Compiler error messages, 3-30

compiler.cmd file, 3-30

complement output, generating, 4-3

completing new components, 2-41

component
cost specification, 3-10
directory, 1-12

components
asymmetrical, 3-6

pin
names, 1-15 to 1-16
numbers, 3-19 to 3-28, A-11

attaching properties, 3-2
completing, 2-41
copying, 2-38, 3-4
creating, 2-2 to 2-41

multiple versions, 6-17
library, 1-11 to 1-12

versioning, 1-14 to 1-16
modifying, 2-38, 3-31

10/1/89

components (continued)
multiple

section, 1-15, A-7 to A-11
version, 1-14

sizeable, 1-15, 2-34 to 2-37
numbering, 3-16

support, creating, 6-2 to 6-19
testing, 2-3
vectored, 2-32
zero-delay, 4-43

Index

configuration file (config. dat) , 1-4

connecting multiple outputs, 3-28

connection points, wiring, 2-12

connectivity files, 1-13

connectors, creating, 6-2 to 6-14

conventions
library, 1-3
signal name, 1-3 to 1-4

copy command, 2-11

copying components, 2-38, 3-4

COST property, 3-10

COUNTER SHIFT REGISTER primitive,
4-28 to 4-29

creating
bodY shapes, 2-9
components, 2-2 to 2-41
connectors, 6-2 to 6-14
grounds, 6-18 to 6-19
libraries, 2-3 to 2-5
library drawings, 3-6
multiple physical models for one

body, 6-8 to 6-10
.PART drawings, 3-2 to 3-3

1-3

Index

creating (continued)
physical

models, 3-5 to 3-31
part tables, 6-17

resistor packs, 6-15 to 6-17
simulation models, 4-7 to 4-46
support components, 6-2 to 6-19
timing models, 5-3 to 5-34

D

DIRECTORY commands, 1-17 to 1-18

data-dependent delays, 4-5

default
drawing version numbers, 2-6
properties, 2-25
simulation properties, 4-33 to 4-36

defining
primitives, 3-2
simulation models, 4-2
timing models, 5-2

delay
calculations, 4-4 to 4-6
rise and fall, 4-43

DELAY_MODE directive, 4-43

DELAY_MODEL directive, 5-32 to 5-33

DELAY property, 5-32 to 5-33
simulation models, 4-43
testing, 7-8

1-4

delays
body, 4-41
data-dependent, 4-5
modeling, 5-2
pin-to-pin, 4-41

DeMorgan equivalents, 1-15
dependency files, 1-13
design rules, simulation and timing

models, 4-2
determining

disk space, 1-17 to 1-19
file ownership, 1-18

developing libraries, 1-2
device loading, suppressing

calculations, 3-28
df command, 1-17
diagram command, 2-40
directives

simulation
DELAY_MODE, 4-43
MEM_STATE, 4-25
PIN_DELAY, 4-45
TIMING_CHECK, 4-33

timing
DELAY_MODEL, 5-32 to 5-33
LATCH_ERR_MODEL, 5-11 to 5-13
RISE_FALL_MODELS, 5-32

directories
component, 1-12
library, 1-5 to 1-7, 2-3
SCALD, 1-8

DIRECTORY directive, 3-30
disk space, 3-31

determining, 1-17 to 1-19

10/1/89

display command, 2-8, 2-19 to 2-22
Invisible, 2-22

dot command, 2-12

drawing
extensions, 2-6
names, in operating system, 1-9
pins, 2-11
version numbers, default, 2-6

DRAWING body, 3-2

drawings
.BODY, 1-11

editing, 2-6
"example of each ... ", 1-7
flat, 2-6
library

archiving, 3-31
creating, 3-6
modifying, 3-29

.LOGIC, 1-13

. PART, 1-11
creating, 3-2 to 3-3
modifying, 3-4

reference, 1-7 to 1-9
.SIM, 1-11
.TIME, 1-11

du command, 1-1 7

E
EDGE TO EDGE primitive, 4-35, 5-30

editing .BODY drawings, 2-6

8 BIT DECODER primitive, 4-37

8 BIT PRIO ENCODER primitive, 4-36

10/1/89

Index

encoder and decoder primitives, 4-36
to 4-37

error-checking primitives, 5-27 to 5-30

error messages, simulation model, 4-2

errors, compilation, 3-30

"example of each ... " drawing, 1-7

existing components, modifying, 2-38

extensions
drawing, 2-6
.lib, 1-8
.prt, 1-8

F
fall delay, 4-43

FALL property, 4-44, 5-33
testing, 7-8

FAMILY property, 3-8

feed-through pins, see pass-through
pins

file names, 1-9

file copy command, 1-20

files
binary, 1-13
chips.dat, 3-30, 6-7, 6-9
chips_prt, 1-12, 6-7, 6-9

creating, 3-30
cmplst.dat, 3-30
compiler.cmd, 3-30
configuration (config .dat) , 1-4
connectivity, 1-13
dependency, 1-13

1-5

Index

files (continued)
determining ownership, 1-18
jilecopy.cmd, 1-20
master library (master. lib) , 1-9 to

1-10
phys_dat, 1-12

creating, A-1 to A-11
pin number format, A-6 to A-11
syntax, A-5

physical information, 1-8
protecting, 1-18 to 1-20
startup.ged, 2-4
transfer.log, 1-20

find command, 1-18 to 1-19

FLAG primitive, 4-40

flat drawings, 2-6

flip-flop size recommendations, 2-10

foreign host library maintenance, 1-19
to 1-20

formats
library, 1-3 to 1-4
pin number, 3-13 to 3-21

phys_dat file, A-6 to A-11

G

gates
open collector, 4-5
size recommendations, 2-10

1-6

OED commands
arc, 2-11
bubble, 2-30

simulator primitives, 4-10
timing primitives, 5-6

change
default properties, 4-5 to 4-6
modifying timing models, 5-34
shortening body names, 2-8
simulation primitives, 4-33 to 4-36
timing primitives, 5-27 to 5-30

circle, 2-11
copy, 2-11
diagram, 2-40
display, 2-8, 2-19 to 2-22

invisible, 2-22
dot, 2-12
grid, 2-19 to 2-22
library, 1-9
move, 2-19 to 2-22
note, 2-19 to 2-22
pinswap, 3-25, 3-30
property, 2-21, 3-2
reattach, 2-31, 3-29
section, 3-30
set, 2-12
show

attachments, 2-17, 2-31, 3-29
properties, 3-29

signame, 2-16
pass-through pins, 2-17

smash, 2-38 to 2-39
split, 2-8
update, 1-13
version, 1-14
wire, 2-9, 2-11
write, 2-31

10/1/89

generating complement output, 4-3

grid command, 2-19 to 2-22

grid settings, body, 2-7

grounds, creating, 6-18 to 6-19

groups
bubble, 2-26 to 2-30

asymmetrical, 2-28 to 2-29
pinswap, 3-25

H
HAS_FIXED_SIZE property, 2-24

high-asserted pins, 2-11, 2-15

HIGH property, 4-35

HOLD property
simulation primitives, 4-33 to 4-34
timing primitives, 5-27 to 5-30

I
\I interface signal property, 4-7, 5-3

IDENTITY primitive, 4-14, 5-25

INPUT_LOAD property, 3-24 to 3-25

input pins, placing, 2-13

installing libraries, 1-18

interface signal property (\1), 4-7, 5-3

internal part numbers, assigning, 3-10

inverting buffer, creating, 5-24

10/1/89

invisible
pins, 2-14
properties, 2-25

Index

I/O checking, suppressing calculations,
3-28

isolating outputs, 5-24

J
JK primitive, 4-15

L
labeling pins, 2-19-2-20

LATCH_ERR_MODEL directive, 5-11 to
5-13

LATCH primitive, 4-16, 5-11 to 5-13

latch primitives, 4-16 to 4-18

LATCH RS COMP primitive, 4-18

LATCH RS primitive, 4-17, 5-14 to
5-15

.lib extension, 1-8

libraries
accessing, 1-9 to 1-10
copying components, 2-38
creating, 2-3 to 2-5
installing, 1-18
maintaining on foreign hosts, 1-19 to

1-20
protecting, 1-18 to 1-19
testing, 7-1 to 7-8

1-7

Index

library
components, 1-11 to 1-12

versioning, 1-14 to 1-16
conventions, 1-3
development process, 1-2
directory, 1-5 to 1-7, 2-3
drawings

archiving, 3-31
creating, 3-6
modifying, 3-29
standards, 3-6

formats, 1-3 to 1-4
maintenance, 1-17 to 1-20
organization, 1-5 to 1-16
permissions, 1-18 to 1-19
subdirectory contents, 1-7 to 1-9

library command, 1-9

load check properties, 3-28

loading, device, suppressing
calculations, 3-28

LOCATION property, 6-6

logic
family, specifying, 3-8
gate primitives, 4-11 to 4-12

.LOGIC drawing, 1-13

LOOKAHEAD primitive, 4-32

low-asserted pins, 2-11, 2-15

low-assertion character, 2-16

1-8

LOW property, 4-35

Is command, 1-18

M
maintaining libraries, 1-17 to 1-20

on foreign hosts, 1-19 to 1-20

master library file (master. lib) , 1-9 to
1-10

MAX_DELAY property, 4-5

MEM_STATE directive, 4-25
I

MEMORY primitive, 4-25 to 4-27

MIN PULSE WIDTH primitive, 4-35,
5-29

modeling delays, 5-2

models
delay and pulse width standards, 4-4

to 4-6
general design rules, 4-2
physical

creating, 3-5-3-31
multiples for one body, 6-8 to 6-10

simulation
creating, 4-7 to 4-46
defining, 4-2
error messages, 4-2
generating complement output, 4-3
modifying, 4-46

timing
creating, 5-3 to 5-34
defining, 5-2
modifying, 5-34

10/1/89

modifying
components, 3-31
default simulation properties, 4-33 to

4-36
existing components, 2-38
library drawings, 3-29
.PART drawings, 3-4
simulation models, 4-46
timing models, 5-34

move command, 2-19 to 2-22

multiple
component

sections, 1-15
versions, 1-14, 6-17

outputs, connecting, 3-28
physical models for one body, 6-8 to

6-10
section pins, 3-16 to 3-19, A-7 to

A-11

multiple-bit pins, see also vector pins
and NEEDS_NO_SIZE property, 2-23
numbering, 3-15

multiplexer primitives, 4-24, 5-21 to
5-22

N

\NAC property, 2-18

1011189

Index

names
body, 2-20
drawing, in operating system, 1-9
pin

adding, 2-16
pass-through, 2-1 7
sizeable, 2-36 to 2-37
visible and invisible, 2-14

signal, 1-3 to 1-4

NEEDS_NO_SIZE property, 2-23, 2-32

no assertion check, 2-18

NO_10_CHECK property, 3-28

NO_LOAD_CHECK property, 3-28

no width check, 2-18

non-bubbled pins, 2-30

non-standard function primitives, 5-22
to 5-27

note command, 2-19 to 2-22

notes
on bodies, 2-19 to 2-20
resizing, 2-19

numbering pins, 3-11 to 3-21
asymmetrical components, 3-19 to

3-28, A-11
common, 3-17 to 3-18
compact syntax, 3-20 to 3-21
phys_dat file, A-6 to A-11
sizeable components, 3-16

\NWC property, 2-18

1-9

Index

o
1 OF 8 DECODER primitive, 4-37

one-shots, 4-6

open
collector

gates, 4-5
pins, annotating, 2-20

emitter pins, annotating, 2-20

operating system file names, 1-9

OR primitive, 4-12, 5-9

organizing libraries, 1-5

origin, body, 2-8

OUTPUT directive, 3-30

OUTPUT_LOAD property, 3-24

output pins, placing, 2-13

OUTPUT_TYPE property, 3-27 to 3-28

outputs
isolating, 5-24
multiple, connecting, 3-28

ownership, file, 1-18

p

PARITY primitive, 4-38

.PART drawing, 1-11
creating, 3-2 to 3-3
modifying, 3-4

1-10

PART_NAME property, 3-2 to 3-3

PART_NUMBER property, 3-10

part numbers, assigning, 3-10

parts, library, see components

PASS TRANSISTOR primitive, 4-39

pass-through pins, 2-13 to 2-15
naming, 2-17
placing, 2-13
standards, 2-14

permissions
library, 1-18 to 1-19
setting, 1-2

PFALL property, 4-45

phys_dat file, 1-12
creating, A-1 to A-11
pin number formats, A-6 to A-11
syntax, A-5

PHYS_DES_PREFIX property, 3-10

physical
information

adding, 3-5 to 3-31
file (.prt) , 1-8
phys_dat method, A-2 to A-4
transferring to Packager, 3-6

models
creating, 3-5 to 3-31
multiples for one body, 6-8 to 6-10

part tables, 6-17
reference designator, 3-10

10/1/89

pin
assertion, 2-15
names

adding, 2-16
asymmetrical components, 1-15 to

1-16
attaching properties to, 2-17
sizeable components, 2-36 to 2-37
visible and invisible pins, 2-14

number formats, 3-13 to 3-21
phys_dat file, A-6 to A-11

numbers
assigning, 3-11 to 3-21
multiple-bit, 3-15
phys_dat file, A-6 to A-11

placement, 2-13
properties

adding, 3-22 to 3-28
simulation, 4-41, 4-45 to 4-46
standards, 3-24

standards, 2-13

PIN_DELAY directive, 4-45

PIN_GROUP property, 3-25 to 3-26

PIN_NUMBER property, 3-11 to 3-21

pin-to-pin delays, 4-41

pins
adding, 2-11
bubbled, 4-10, 5-6

default, 2-30
defining, 2-15
standards, 2-13

10/1/89

Index

pins (continued)
common, numbering, 3-17 to 3-18,

A-8 to A-10
drawing, 2-11
high-asserted, 2-11
labeling, 2-19 to 2-20
low-asserted, 2-11
multiple-bit

and NEEDS_NO_SIZE property, 2-23
numbering, 3-15

multiple section, 3-16 to 3-19
numbering

asymmetrical components, 3-19 to
3-28

phys_dat file, A-11
common pins, A-8 to A-10
compact syntax, 3-20 to 3-21
multiple section, 3-16 to 3-19
single section, 3-14 to 3-15

pass-through, 2-13 to 2-15
naming, 2-17

power and ground, 3-9
scalar, 3-14

multiple section, A-7
single section, 3-14 to 3-15
tri-state, 3-28
vectored, 2-23, 3-14, A-7

pinswap command, 3-25, 3-30

pipe character CI), 2-17

placeholder properties, 6-6, 6-17

placing pins, 2-13

power and ground pin assignments
3-9 '

POWER_PINS property, 3-9

1-11

Index

primitives
ADDER, 4-30
ALU, 4-31
AND, 4-11, 5-8
arithmetic, 4-30 to 4-32
BUF, 4-13, 5-24
buffer, 4-13 to 4-14
CARRY SAVE ADDER, 4-32
CHG, 5-23
COMPARATOR, 4-32
COUNTER SHIFT REGISTER, 4-28 to

4-29
defining, 3-2
EDGE TO EDGE, 4-35, 5-30
8 BIT DECODER, 4-37
8 BIT PRIO ENCODER, 4-36
encoder and decoder, 4-36 to 4-37
error-checking, 5-27 to 5-30
FLAG, 4-40
IDENTITY, 4-14, 5-25
JK, 4-15
LATCH, 4-16, 5-11 to 5-13
latch, 4-16 to 4-18
LATCH RS, 4-17, 5-14 to 5-15
LATCH RS COMP, 4-18
logic gate, 4-11 to 4-12
LOOKAHEAD, 4-32
MEMORY, 4-25 to 4-27
MIN PULSE WIDTH, 4-35, 5-29
multiplexer, 4-24, 5-21 to 5-22
non-standard function, 5-22 to 5-27

1-12

primitives (continued)
1 OF 8 DECODER, 4-37
OR, 4-12, 5-9
PARITY, 4-38
PASS TRANSISTOR, 4-39
PRIORITY ENCODER, 4-36
REG, 4-19, 5-20 to 5-21
REG CKE, 4-23
REG RS, 4-20, 5-21
REG RS COMP, 4-21
REG RS COMP 2, 4-22
register, 4-19 to 4-23
RES, 4-38, 5-25
SCAN LATCH, 4-16
SCAN LATCH RS, 4-16
SETUP HOLD, 4-33, 5-27 to 5-28
SETUP RISE HOLD FALL, 4-34, 5-28
simulation, 4-2, 4-10 to 4-40

and SIZE property, 4-44
standard function, 5-8 to 5-22
THRESHOLD, 5-26
timing, 5-2, 5-6 to 5-30
timing checker, 4-3, 4-33 to 4-36
TRANSMISSION GATE, 5-26
TS BUF, 4-14, 5-16 to 5-19
ts bus, 5-17 to 5-19
UNI PASS TRANSISTOR, 4-39
UNI TRANS GATE, 5-27
user-coded, 4-40
XOR, 4-12, 5-10

PRIORITY ENCODER primitive, 4-36

PRISE property, 4-45

10/1/89

properties
ABBREV, 3-2 to 3-3
added to pin names, 2-17
ALLOW_CONNECT, 3-28
attaching, 6-4

to components, 3-2
BIDIRECTIONAL, 3-25
body, 2-21 to 2-30

adding, 3-7 to 3-10
BODY_TYPE, 3-10
BUBBLE_GROUP, 2-26 to 2-30

and pipe character (I), 2-17
BUBBLED, 2-29
COST, 3-10
default, 2-25
DELAY, 5-32 to 5-33

simulation models, 4-43
testing, 7-8

FALL, 4-44, 5-33
testing, 7-8

FAMILY, 3-8
HAS_FIXED_SIZE, 2-24
HIGH, 4-35
HOLD

simulation primitives, 4-33 to 4-34
timing primitives, 5-27 to 5-30

INPUT_LOAD, 3-24 to 3-25
invisible, 2-25
load check, 3-28
LOCATION, 6-6
LOW, 4-35
MAX_DELAY, 4-5
\NAC, 2-18
NEEDS_NO_SIZE, 2-23, 2-32
NO_IO_CHECK, 3-28
NO_LOAD_CHECK, 3-28

10/1/89

properties (continued) .
\NWC, 2-18
OUTPUT_LOAD, 3-24
OUTPUT_TYPE, 3-27 to 3-28
PART_NAME, 3-2 to 3-3
PART_NUMBER, 3-10
PFALL, 4-45
PHYS_DES_PREFIX, 3-10
pin

adding, 3-22 to 3-28
simulation, 4-41
standards, 3-24

PIN_GROUP, 3-25 to 3-26
PIN_NUMBER, 3-11 to 3-21
POWER_PINS, 3-9
PRISE, 4-45
PULSE_WIDTH, 4-6
\R (replicate), 6-19
RISE, 4-44, 5-32

testing, 7-8

Index

SETUP, 4-33 to. 4-34, 5-27 to 5-30
signal interface (\1), 4-7, 5-3
simulation, 4-41 to 4-45

body, 4-41 to 4-42
modifying defaults, 4-33 to 4-36
pin, 4-45 to 4-46

SIZE, 4-44, 5-33
on version 1 body, 1-15
te~ting, 7-7

timing, 5-31 to 5-33
TITLE, 3-2 to 3-3
TRANSITION, 5-11 to 5-16, 5-21
TS_BUF_TYPE, 5-16 to 5-19
UNKNOWN_LOADING, 3-28
VALUE, 6-17

property command, 2-21, 3-2

1-13

Index

property standards, 2-26

protecting libraries, 1-18 to 1-19

.prt extension, 1-8

pulse width calculations, 4-4 to 4-6

PULSE_WIDTH property, 4-6

R
\R replicate property, 6-19

reattach command, 2-31, 3-29

reference drawings, 1-7 to 1-9

REG CKE primitive, 4-23

REG primitive, 4-19, 5-20 to 5-21

REG RS COMP primitive, 4-21

REG RS COMP 2 primitive, 4-22

REG RS primitive, 4-20, 5-21

register primitives, 4-19 to 4-23

replicate property (\R), 6-19

RES primitive, 4-38, 5-25

resistor packs, creating, 6-15 to 6-17

resizing notes, 2-19

rise delay, 4-43

RISE_FALL_MODELS directive, 5-32

RISE property, 4-44, 5-32
testing, 7-8

ROOT_DRAWING directive, 3-30

1-14

s
saving library drawings, 3-31

scalar pins
defining, 3-14
multiple section, A-7
numbering, 3-14

SCALD directories, 1-8

SCAN LATCH primitive, 4-16

SCAN LATCH RS primitive, 4-16

section command, 3-30

sections, asymmetrical, see asymmetri­
cal components

separating body names and origins,
2-8

SET commands, 1-18 to 1-19

set command, 2-12

setting permissions, 1-2

settings, grid, 2-7

SETUP HOLD primitive, 4-33, 5-27 to
5-28

SETUP property, 4-33-4-34, 5-27 to
5-30

SETUP RISE HOLD FALL primitive,
4-34, 5-28

shapes, body, creating, 2-9

shortening body names, 2-8

show command
attachments, 2-17, 2-31, 3-29
properties, 3-29

SHOW DEVICE command, 1-17

10/1189

showing library permissions, 1-18 to
1-19

signal
interface property (\1), 4-7, 5-3
name syntax, 1-3 to 1-4
syntax, defining, 1-4

signame command, 2-16
pass-through pins, 2-17

.SIM drawing, 1-11

simulation
directives

DELAY_MODE, 4-43
MEM_STATE, 4-25
PIN_DELAY, 4-45
TIMING_CHECK, 4-33

models
creating, 4-7 to 4-46
defining, 4-2
delay and pulse width standards,

4-4 to 4-6
error messages, 4-2
general design rules, 4-2
generating complement output, 4-3
modifying, 4-46

primitives, 4-2, 4-10 to 4-40
ADDER, 4-30
ALU, 4-31
AND, 4-11
and SIZE property, 4-44
BUF, 4-13
CARRY SAVE ADDER, 4-32

10/1/89

simulation primitives (continued)
COMPARATOR, 4-32

Index

COUNTER SHIFT REGISTER, 4-28
EDGE TO EDGE, 4-35
8 BIT DECODER, 4-37
8 BIT PRIO ENCODER, 4-36
FLAG, 4-40
IDENTITY, 4-14
JK, 4-15
LATCH, 4-16
LATCH RS, 4-17
LATCH RS COMP, 4-18
LOOKAHEAD, 4-32
MEMORY, 4-25
MIN PULSE WIDTH, 4-35
multiplexer, 4-24
1 OF 8 DECODER, 4-37
OR, 4-12
PARITY, 4-38
PASS TRANSISTOR, 4-39
PRIORITY ENCODER, 4-36
REG, 4-19
REG CKE, 4-23
REG RS, 4-20
REG RS COMP, 4-21
REG RS COMP 2, 4-22
RES, 4-38
SETUP HOLD, 4-33
SETUP RISE HOLD FALL, 4-34
TS BUF, 4-14
UNI PASS TRANSISTOR, 4-39
user-coded, 4-40
XOR, 4-12

1-15

Index

simulation (continued)
properties, 4-41 to 4-45
bod~ 4-41 to 4-42
FALL, 4-44
modifying defaults, 4-33 to 4-36
PFALL, 4-45
pin, 4-45 to 4-46
PRISE, 4-45
RISE, 4-44

single section pins, numbering, 3-14 to
3-15, A-7

SIZE-l in pin names, 2-36

SIZE property, 4-44, 5-33
on version 1 body, 1-15
testing, 7-7

size recommendations for bodies, 2-10

sizeable components, 1-15, 2-34 to
2-37

numbering, 3-16

smash command, 2-38 to 2-39

split command, 2-8

standard function primitives, 5-8 to
5-22

standards
annotation, 2-20
body

origin, 2-8
shape, 2-10

grid, 2-7
library drawing, 3-6
pass-through, 2-14
pin, 2-13

1-16

standards (continued)
pin property, 3-24
property, 2-26

startup.ged file, 2-4
storing library drawings, 3-31
subdirectories, library, 1-7 to 1-9

support components, creating, 6-2 to
6-19

supressing
device loading calculations, 3-28
I/O checking, 3-28

syntax
compact pin number, 3-20 to 3-21
phys_dat file, A-5
signal name, 1-3 to 1-4

T
testing

components, 2-3
libraries, 7-1 to 7-8

THRESHOLD primitive, 5-26
.TIME drawing, 1-11
timing

checker primitives, 4-3
directives, LATCH_ERR_MODEL, 5-11

to 5-13
models

creating, 5-3 to 5-34
defining, 5-2
delay and pulse width standards,

4-4 to 4-6
general design rules, 4-2
modifying, 5-34

10/1/89

timing (continued)
primitives, 5-2, 5-6 to 5-30

AND, 5-8
BUF, 5-24
CHG, 5-23
EDGE TO EDGE, 5-30
error-checking, 5-27 to 5-30
IDENTITY, 5-25
LATCH, 5-11
LATCH RS, 5-14
MIN PULSE WIDTH, 5-29
multiplexer, 5-21
non-standard function, 5-22
OR, 5-9
REG, 5-20
REG RS, 5-21
RES, 5-25
SETUP HOLD, 5-27 to 5-28
SETUP RISE HOLD FALL, 5-28
standard function, 5-8
THRESHOLD, 5-26
TRANSMISSION GATE, 5-26
TS BUF, 5-16
UNI TRANS GATE, 5-27
XOR, 5-10

properties, 5-31 to 5-33
TRANSITION, 5-11 to 5-16, 5-21
TS_BUF_TYPE, 5-16 to 5-19

TIMING_CHECK directive, 4-33

timing checker primitives, 4-33 to 4-36

TITLE property, 3-2 to 3-3

transfer.log file, 1-20

10/1/89

Index

TRANSITION property, 5-11 to 5-16,
5-21

TRANSMISSION GATE primitive, 5-26

tri-state
buffer, see TS BUF primitive
bus, see TS BUS primitive
mode, TS BUF primitive, 5-16 to 5-19
pins, 3-28

annotating, 2-20

truth table abbreviations, 4-10, 5-7

TS BUF primitive, 4-14, 5-16 to 5-19

TS_BUF_TYPE property, 5-16 to 5-19

TS BUS primitive, 5-17 to 5-19

u
UCPs, see user-coded primitives

UL TRIX commands, see UNIX com-
mands

UNI PASS TRANSISTOR primitive, 4-39

UNI TRANS GATE primitive, 5-27

UNIX commands
df, 1-17
du, 1-17
filer.opy, 1-20
find, 1-18 to 1-19
Is, 1-18

UNKNOWN_LOADING property, 3-28

update command, 1-13

user-coded primitives, 4-40

1-17

Index

v
VMS commands

DIRECTORY, 1-17 to 1-18
SET, 1-18 to 1-19
SHOW DEVICE, 1-17

VALUE property, 6-17

vector pins, see also multiple-bit pins
defining, 3-14
multiple section components, A-I0
numbering, 3-14
single section components, A-7

vectored
body versions, 2-6
components, 2-32
pins, 2-23

version command, 1-14

version numbers, default, 2-6

versions
components, multiple, 1-14, 6-17
creating, 2-32-2-37
library component, 1-14

1-18

visible and invisible pins, 2-14

w
width checking, 2-18

wire command, 2-9, 2-11

wire-or mode, TS BUF primitive, 5-16
to 5-19

wiring
bodies together, 2-13
connection points, 2-12

write command, 2-31

x
XOR primitive, 4-12, 5-10

z
zero-delay components, 4-43

10/1/89

