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PREFACE

Preface (about the guide itself -- prerequisites, its organiza-
tion and why).

Microprograms are aptly called firmware to place them
between the realms of software and hardware. Where
those two conventional divisions of a computer overlap is
an area which provides many of the best features of both.
The' use and benefits of microprogramming depend upon
the user having an understanding of both and their
complex interaction. :

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly-language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is that
many more times more needed. Also the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram the designer must
be aware of the eventual applications. Combining operators
which are often used in the same sequence could form a
single microprogrammed operator with a greater overlap-
ping of actions.

All components of a computer system seem to be
increasingly complex yet easier and easier to use. Though
microprogramming adds more complexity the result is to
make a system easier to use. One goal of this guide is to
bring microprogramming into the range of a good program-
mer. To that end the guide is written in simple language
(with a minimum of exotic terms and a glossary to look up
any of those) and a gradual progression from the big
picture to the details through numerous examples. The
examples are annotated and explained with the same tools
that will aid in the planning as well as understanding.

This guide is both an introduction and a reference. If
microprogramming is new to you, start at the beginning of
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this and use it as a tutorial. Later the book can be used for
reference. The charts and examples are built up in a
logical development so that the complete examples will be
a pattern for your programming.

Varian Data Machines does not assume responsibility for
microprograms written and implemented according to the
recommendations outlined herein.

To improve the usefulness of this guide please return the
reader questionaire in the back after reading and using
this volume.

Related Documentation

The Writable Control Store manual (98 A 9906 08x)
provides information about the installation, theory of
operation, maintenance and test programs for the
hardware storage of microprograms.

Information about the Varian 73 processor is contained in
the Varian 73 system handbook (98 A 9906 01x) and in
more detail in the processor manual (98 A 9906 02x).

The VORTEX Reference Manual (98 A 9952 10x) describes
the use of the VORTEX operating system. The MOS
(Master Operating System) Reference Manual (98 A 9952
09x) provides similar information necessary to use
microprogramming software with that operating system.

The following Varian manuals provide additional aids to the
understanding of Varian 73 Computer System.

Title Document Number

Core Memory Manual
Semiconductor Memory Manual
Option Board Manual
Power Supply Manual

98 A 9906 03x
98 A 9906 04x
98 A 9906 05x
98 A 9906 06x
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SECTION 1
INTRODUCTION

Most of this book discusses how to microprogram. As an
incentive to read further here are some general reasons
why to microprogram. The advantages of microprogram-
ming are based upon a comparison with a conventional
system either completely without microprogramming or
where it is not accessible. After a brief summary of the
advantages a comparison with a conventional system gives
more details and a specific picture of a microprogrammed
operation.

1.1 ADVANTAGES

A basic reason to microprogram is the one stated at first.
The initial idea was proposed for a "'systematic’’ approach
to the " usual somewhat ad hoc procedure" used to design
the control system of a machine. The narrow view in the
design of either software or hardware without an
awareness of the other can lead to a less efficent
functioning, like a refrigerator converted into a vacuum
cleaner -- there may be some common useful parts but we
would push around a great deal that did not help the
vacuuming. Good basic operators which match the eventual
application will improve the entire efficiency.

The usual random logic can be reduced with a more
structured organization. A conventional computer system
uses a collection of counters, special flip-flops, decoding
networks and other components unique to a particular

purpose for control logic. In contrast a microprogrammed
memory replaces most of this. The microprogram storage
is formed of regular and repetitive units. There are fewer
components thus increasing the reliability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system in ways so basic that they
are not at all feasible in a fixed instruction set. Field
changes can be made by merely changing the controlling
microprograms. Final systems definition can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulation of a number of diverse devices, not only
processors but peripheral controllers for instance, can be
carried out on a single microprogrammed  system.
Simultaneous emulation of some devices can be made or
the target system can be changed depending upon needs.
This would save some reprogramming and retraining and
yet gain the speed and reliability of a more advanced
system. Also the documentation and minor logistic
problems of a new machine would be avoided.

For more reliability and the continuous performance
necessary in many uses of computers, diagnostics and
servicing aids may be implemented in the control store. To
pinpoint problems the microprocessor can both test and
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set states not available to the assembly-language program-
mer on a conventional machine.

4
Standard
Software
Execution Coding
Time
MICRO-
PROGRAMS
Special
Purpose
Hardware
Cost e

Instructions Tailored To Particular Environments

In general, microprogrammed instructions permit more
compact program representation. They use less main
memory than the equivalent would in conventional code.
Consequently, fewer memory fetches for anything other
than data are needed.

As an example of a possible microprogrammed operator
which reduces memory fetches, consider a common use of
arrays. Higher-level programming languages, such as
FORTRAN, BASIC, COBOL -- in fact, nearly all-- have
facilities for expressing a repetitive linear data structure, a
list or array. Arrays are an integral part of a large class of
techniques for diverse problems. Yet good operators for
arrays as such are not available as simple, single
instructions in a conventional machine.

In usual machine code the function of adding two
numerical arrays of the same size and number of elements
usually requires a series of actions as follows for each pair
of elements:

a. load memory to register

b. add memory to register

c. storeregister result in memory

d. update indices and close loop

The first two steps would each require a memory fetch and
the last step as many as three memory fetches.

A microprogrammed instruction would provide initializing
data descriptors and repetitively executing micro-operators

1.1
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over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array

b. load the result's starting address, increment and
extent

c. define the end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing memory retrieval
of instructions occurs in some special cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose micro-
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored as
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data
transfer and transformations, conditional tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to use flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)
Conversion steps and tables

Examples from-section 3

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

Decoder control store, 1/0 control and additional topics
(section 8)

Format and use of optional decoder control store

170 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. 1X for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High-
order and leftmost are synonymous to select a particular
bit or group of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a required parameter
Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.

1.2




For example, the syntax for the MIDAS FORM statement is
as follows

label FORM field(1), field(2),..., field(n)
Where:

label is a symbol as defined in MIDAS
basic elements

each field is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses

Numbers

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand-
ing of microprogramming this section clarifies some terms
we use.

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside in the
system's control store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is called
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-length word in control
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words

look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to plan a

INTRODUCTION

good system one needs to be very aware of the actual
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional components of the Varian 73
processor are the central control, the data loop, the
memory control, 1/0 data control, and 170 control. The
processor communicates with the console via the 170 bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Control

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and /0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis-
ters. The memory control might be requested to begin the
fetch of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents for
the control buffer. The control buffer is always loaded from
64-bit central control store. Thus, execution of a
microprogram basically consists of the control buffer being
sequentially loaded with the appropriate 64-bit values.
Central control store on the Varian 73 system is divided
into pages, each consisting of 512 64-bit words. Page zero
of central control store always contains a set of
microinstructions which direct the processor components
to behave like a 620/1. This set of 512 microwords is thus
called the 620/f emulation, and resides in read-cnly
memory (ROM). Other central control store pages may Je
added with the writable control store (WCS) option, thius
allowing the user to specify in detail the actions of the
processor components.

The microprograms for the standard instruction set are
described in the V73 microinstruction flowcharts in volume
2 of the Varian 73 Maintenance Manual and in assembly

_ language in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters.

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

1.3
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Figure 1-2. Varian 73 Processor Block Diagram
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such as addition and the common logical functions
including AND and OR. ALU output can be directed to a
number of places, including registers and counters in the
data loop, registers in the 1/0 data loop, and to memory
control.

Memory Control

The memory control section of the processor performs
tasks initiated by the central control, 1/0 control and
options. These tasks consist of reading a 16-bit word from
memory or writing a word or byte into memory.

Memory control acknowledges receipt of the signal to the
requesting sections and signals when done with the task.
When one request is accepted no others are acknowl-
edged until the current one is completed, but central
control can override its own prior request.

1/0 Data Loop

The 1/0 data loop contains a multiplexor, 1/0 data register,
and drivers and receivers. Three sources of data are
applied to the 1/0 data loop: data from the 1/0 bus, data
from the arithmetic and logic unit, and from the memory
170 register (MIOR). The input data is selected by the |/0
multiplexor under control, of the 170 control signals and
transferred on to the bidirectional 1/0 bus.

In addition to being applied to the 1/0 drivers, the output
of the 1/0 data register is applied to the data loop and
memory control sections.

1/0 Control

The 1/0 control operates under control of an independent
read-only memory (ROM). It performs /0 operations
initiated either by the central control or I/0 device activity.
This permits /O operations to proceed with minimal
impact on internal processor functions. The 1/0 performs
programmed 1/0 initiated by the central control. Both
normal and high-speed direct memory access (DMA) are
handled by the 1/0 control. 1/0 interrupts are processed
by 1/0 control.

1.4.2 Writable Control Store

The Writable Control Store (WCS) extends the Varian 73
processor’s read-only control store to permit addition of
new instructions, development of microprogrammed
diagnostics and optimal tailoring of the computer system
to its applications.

Unlike the read-only control store which contains the
Varian 73 standard instruction set and cannot be altered,
the writable control store can be loaded from the

INTRODUCTION

computer's main memory under control of 1/0 instructions.

This capability of altering the contents of the WCS gives
the user complete access to the resources of the Varian 73
computer system.

A:test program for the WCS hardware is provided to assist
in maintaining the system. Operating the test program is
described in the maintenance manual for the WCS.

Configurations

The WCS is available in three configurations:

1. One page (512 words) of control store and a subroutine
stack (Model 7040)

2. Half page of control store and a subroutine stack
(Model 7041)

3. One page with a subroutine stack, a writable decoder
control store and a writable 170 control store (Model
7042)

Model 7042 is shown in the block diagram " Control Store
Configurations” , figure 1-4. The three control stores shown
in this diagram are the writable counterparts for read-only
components of the processor.

The decoder control store replaces the instruction buffer,
decoder, and decoding logic in the processor to improve
instruction set changes. It is formed from two 16-word by
16-bit memory arrays with the logic that decodes main
memory instructions into an address for the central
control store.

The central control store is a counterpart of the page zero
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store
to specify the actions to occur. A typical microinstruction
may define several operations s'ich as selecting the next
control store microinstruction to be executed, test condi-
tions for branching, initiating memory opera:i~ns and
selecting ALU functions.

The 170 control store contains a 256-word memory array of
16-bit words.

A standard feature with all writable control store models is
the subroutine stack that increases storage efficiency by
providing a call and return capability for suubroutines of
microinstructions. Up to 16 addresses for branches can be
stored in the stack. Operations are provided for pushing,
popping and deleting an entry.

Up to three writable control store pages (2048 words
including the page-zero read-only store) can be installed in
a Varian 73 system. Each writable control store page unit
is contained on a printed-circuit board that plugs into a
Varian 73 mainframe chassis.

1-6




varian data machines [@——

r'y

JHOLS TOYLINOD 119V IIYM

4

viva
_ |
(Q¥vO8 NOILO) _ 3OLs v1va >
* 104INOD 0/] JONWMOU aE VIva
_ < $539aav
SSMaav
7 ]
N | v
sng O/1
v _
_ »ﬁé
S | & 5530y
> ¥OSSIDOY >
IVIINGD | vivd
_ vivdg v
A A
| - ADVIS
$s3yaay A $S3YQAQv INILNOYENS
_ wnois |* vivd
] T04INOD >
(VIVQ) SNE AJOWIW 4300530 |<. viva
$sIWaAav

[

TOY¥INOD ANV IDVH4YILINI

VTIl-1816

Figure 1-4. Contro! Store Configurations

1.7



varian data machines

1.4.3 Software Modules

Microprogram preparation uses a sequence of software
provided with the writable control store. First the program
is written and assembled with a special assembler called
MIDAS. Upon error-free assembly the code is run in a
simulated environment which is completely independent of
a writable control store. The ability to trace and correct
the execution is available with the microsimulator. These
first two steps can occur without a WCS. Then only when
the microprograms are checked completely the code can

S

USER-DEFINED
MICROPROG

QURCE

be loaded in the WCS with the micro-utility program. In
addition to loading the utility provides some diagnostics.
These steps are depicted in figure 1-5 ""Steps for Realizing
Microprograms''.

All the components of the microprogramming software were
designed to operate both under operating systems, MOS
and VORTEX, and as stand-alone programs on the 620-
series or 73 computers. Operating systems require a

minimum configuration (see the manual for the particular

NO

VTII-1799

WORKING

\4
—_—
[ recopep MICRO \
= AT L »(  ASSEMBLER
MIDAS
4
ASSEMBLY
LISTING
BINARY
OBJECT ]
v
MICRO UTILITY
KEYBOARD L > —
DIRECTIVES SIMULATOR PROGRAM
v
DIAGNOSTIC —  conTROL =
AIDS = store

YES

Figure 1-5. Steps for Realizing Microprograms

1-8




INTRODUCTION

operating system). Table 1-1 lists the hardware require-
ments for microprogramming software.

Assembler

An assembler is a computer program which translates
symbolic statements into machine instructions. The
symbols are more meaningful than the strings of bit
settings they represent. In addition to simply translating
from symbolic to the executable code, the assembler
assigns storage locations to the assembled instructions
and produces a form of the instructions for loading into
the processor's writable control store. '

The microprogram data assembler (MIDAS) allows the user
to prepare microprograms for the Varian 73 WCS.
Through the use of operation mnemonics, symbolic
addressing, address-field calculation, macro definitions,
error detection and automatic program documentation the
assembler makes writing microprograms easier.

MIDAS is designed to provide the user with a tool for
microprogram implementation. While relieving the user of
much of the tedious housekeeping associated with
generating microinstructions and their data fields, it also
allows the user to describe the microinstructions at their
most fundamental level.

Simulator

Verifying that the microprogram does indeed solve the
problem is the next step. A logical step in implementing a
microprogram is to run it with the microsimulator. The
effects of executing a faulty microprogram are likely to be
worse than those caused by poor assembly-language
coding.

The simulator runs the output from the assembler within
main-memory storage. At selected times conditions and the
contents of data locations can be changed and examined.
Projected changes can be simulated to evaluate eventual
changes to the microprograms.

After determining that the'code is error-free the writable
control store can be loaded with the utility program, which
uses a command set as consistent as possible with the
simulator.

Utility

Loading the control store with the assembled and test
microcode is performed by the microprogram utility,
MIUTIL. In addition, on-line debugging directives are
available through the utility.

Table 1-1. WCS Software Configuration Matrix

Operating Memory (K)
Program System 8 12 16 20 24 32
Micro- VORTEX X R OO
Assembler
MIDAS MOS XR O 0 OO
SA XR O 0 OO
Micro- VORTEX X R O
Simulator
MICSIM MOS X R OO
SA X R O O
Micro- VORTEX X 0 0O
Utility
MIUTIL MOS XR O 0 0O
SA XR O 0 0O
WCS Test XN N NNN
Program

High-

TTY TTY TTY Speed
Keyboard/ PT PT - PT
Printer Reader Punch Reader

X N N (o]

X X N (o]

X X X (0]

X N N X

X X N R

X X N R

X N N X

X X N R

X X N R

R (o] N X

(continued)
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INTRODUCTION
Table 1-1. WCS Software Configuration Matrix
(continued)
High-
Speed .
Operating Memory (K) PT Card Card Line
Program System 8 12 16 20 24 32 Punch Reader Punch Printer
Micro- VORTEX X R OO 0 R 0 R
Assembler
MIDAS MOS XR O 0 0O 0 R R R
SA XR O 00O N R N R
Micro- VORTEX X R O N R N R
Simulator
MICSIM MOS X R OO N R N R
SA X R OO N R N R
Micro- VORTEX X 0 0O N R N R
Utility
MIUTIL MOS XR O O 0 O N R N R
SA XR O 0 N R N R
WCS Test XN N N N N N N
Program
Operating Memory (K) Mag Rotating WCs
Program System 8 12 16 20 24 32 Tape Memory Option
Micro- VORTEX X R OO 0 X
Assembler
MIDAS MOS XR O 0 0O X (o}
SA XR O O 0O 0 N
Micro- VORTEX X R O 0 X
Simulator
MICSIM MOS X R OO X 0
SA X R OO (o} N
Micro- VORTEX X 0 0O 0 X X
Utility
MIUTIL MOS XR O 0 0 O X R X
SA XR O O 0O (o} N X
WCS Test XN N N N N N N X
Program
Legend:
X = minimum configuration
R = recommended (recommended in place of
its minimum counter part)
O = optional (can be used but program
will function completely
without it)




SECTION 2
CAPABILITIES

This section describes micro-operations available with the
Varian 73 system. The operations are grouped into the
following categories: :

a. data transfer and transformation
b. addressing and conditional actions
€. memory access

d. other controls

A basic example follows these sections. Some important
timing considerations are presented at the conclusion of
this section of capabilities.

This section describes only central control store
programming.

170 and decode control store are treated in section 8.

2.1 GENERAL MICROINSTRUCTIONS

The sixty-four bits of the microinstruction are grouped into
fields referenced by either an ordinal number or a two-
letter name for the microprogram assembler. The full
resources of the system can be exploited by the user who is
familiar with all the defined microinstruction fields. To
start most common operations a limited set of fields is
involved.

Whenever a combination of bits is not defined, i.e., of the
264 values of the microword some are not assigned a
meaning, the user should be cautious and avoid coding
those settings not defined. Undefined codes for fields may
be assigned new meanings in the future.

varian data machines
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2.2 DATA TRANSFER AND Table 2-1. ALU Input A Bus Selections
TRANSFORMATION
ALU Input A Bus Source Fields
2.2.1 ALU Input Sources A SH B
Input to the arithmetic and logic unit is selected by a Program counter 01 XXX XX
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the General-purpose 00 Neither OX
same sources are not available for both buses. Some register (any one X01 nor
inputs to the ALU can be sent on either bus and some on of 16) specified X1X
both. The general-purpose registers can be selected as in AA
input upon either bus and a specific register selected for
each bus. General-purpose 00 XXX 1X
register (any one
Any of the general-purpose registers can be shifted on its of 16) specified in
way on the A bus to the ALU. Shifting can be one bit AA
position to the left or right.
All zeros input 00 X01 0X
Input to the ALU can be from one or two of the general-
purpose registers. The use of one of these registers is All ones input 00 X1X oX
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is General register (in 10 See 0X
specified in AA and/or BB. AA) shifted left below
For example to use registers R2 and R4 as the input to the Bit 15 = register 0XX
ALU bit 14
Bit 15. = register 1XX
field LB LA BB AA bit 15
Bit 00 = zero X00
value 0 0 2 4 Bit 00 = register X01
(hex.) bit 15
Bit 00 = operand X10
Mnemonic  B$GPR A$GPR R2 R4 register bit 15
LA can also specify that the register indicated by AA is General register (in 11 See 0X
shifted or rotated. Shift left and shift right are indicated in AA) shifted right below
the LA field and the shift field, SH.
Bit 15 = multiply 000
sign flag
Special Registers as ALU Input Bit 15 = register 001
bit 00
By setting the LB field to one, SREG for special register the B[I)titlf5 = register 010
value in the BB field takes on a different meaning: Bit 15 = operand 011
0 OPR Operand register Bri'? gi?e;biztego 100
1 MIR Memory input register
2 IOR 1/0 register
3 STAT Processor status word
4 ORSE Operand right byte sign extended
5 OLSE"  Operand left byte sign extended
(75 8522: 822:222 ::gm gﬁ: iz:r:h‘f;ﬂ X ind.icate:f, the bit in that position is of no consequence
. . to this action.
left byte position zero fill
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PURPOSE
REGISTERS

RO, R1,...,RF

X SHIFT/ROTATE

varian data machines @—-ﬁ

CAPABILITIES

OPR

> OPERAND

REGISTER .

N J\/[

v

W

ALU INPUT A

L

ALU INPUT B

é
=

VTIi-1802
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Table 2-2. ALU Input B Bus Selections

ALU Input B Bus Source Fields
LB | BB

General-purpose 00 Specifies
register (any one register
of 16)

Operand register 01 0000

full word
Operand register (0]] 0100

right byte with
sign extended
Operand register 01 0101
left byte with
sign extended
Operand register 01 0110
right byte with
zeros in left byte
Operand register 01 0111
right byte in left
byte position; zeros

in right
Memory input register 01 0001
(MIR)
170 register '(IOR) 01 0010
"Processor status word 01 0011
(STAT)
Instruction register 10 Part of
masked by 16-bit mask

literal constant
consisting of fields

MF, CF, WR, SC, VF, WF,
XF, SH and BB. A one
in the mask fields

forces the corre-
sponding ALU input

bit to a zero.

16-bit literal 11 Part of
constant consisting constant
of the ones com-
plement of fields
MF, CF, WR, SC, VF,
WF, XF, SH and BB

NOTE: When the 16-bit literal or mask is used, the ALU
mode is forced to the arithmetic mode if the FF field bit 1
is a zero and to the logical mode if the FF field bit 1 is a
one. A carry of zero is forced. The ALU output may not be
written into any general register in this case. The WR field,
which would specify such an operation is disabled for use
as part of the 16-bit literal or mask.

Processor Status Word

The processor status word may be applied to the ALU input
B bus when the LB field equals 01 and the BB field equals
0011. Processor status bits are assigned as follows:

Bit  Function Name

00 Not used (logic 1)

01 Supervisor mode flag SUPR

02 ALU zero flag ALUZ

03 Shift counter bit 00

04 Shift counter bit 01

05 Shift counter bit 02

06 Shift counter bit 03

07 Shift counter bit 04

08 Overflow flag OVFL
09 ALU all ones flag ALUO
- 10 ALU sign flag ALUS
11 ALU carry flag ALUC

12 Processor key register
bit 0

13 Processor key register
bit 1

14 Processor key register
bit 2

15 Processor key register
bit 3

2.2.2 ALU Functions

Two sources for data, an action to be performed by the
arithmetic and logic unit and a destination for the result
are all specified in a single microinstruction.

The ALU function is determined by three fields in
microinstruction. These fields, function, mode and carry,
are grouped together to give meaningful names to some
common operations, like ADD for addition. This entire
group of fields can be set to execute combinations which
do not have convenient names in the assembler.

One basic ALU action or an operator is chosen. There are
three categories of operations. Arithmetic operations
available at this level include addition, subtraction,
increment etc. Logical operators which have convenient
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single-word names are AND, OR, exclusive OR, NOT
implication and equivalence. Also the ALU can perform
more complicated logical functions explained later in this
section.

Some general operators for transferring the unchanged
contents of the A or B bus, or all zeros or all ones, or
shifting (though the ALU is not the only place for shifting,
also the operand register is capable of shifting).

Table 2-3. ALU Operations

oP Assembler ALU

field Mnemonic Action FF MF CF
03 INCA A+ 1 0000 0 11
04 NOTA A 0000 1 00
08 OR AVB 0001 0 00
1C ZERO all zeros 0011 1 00
2C NOTB* B 0101 1 00
33 suB* A—B 0110 0 11
34 EOR ANB 0110 1 00
3C . AND AAB 0111 1 00
49 ADD A+B 1001 0 00
54 TRNB 8 1010 1 00
60 SHFA A+A 1100 0 00
64 ONES FFFF 1100 1 00
78 DECA A—1 1111 0 00
7C TRNA A 1111 1 00

*cannot be used when input B is mask or literal

varian data machines I@!
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ALU Mode

There are two modes available for the ALU, arithmetic and
logical. In the arithmetic mode the user selects a type of
carry input to the ALU to be used with the arithmetic
action. In logical functions the value of the carry field (CF)
is ignored. The mode is directly set as either arithmetic or
logical by the MF field. Indirectly the mode can be set
when the actual mode field is part of a literal or literal
mask. If the LB field is 10 or 11 in binary, the MF and CF
fields are part of a 16-bit constant. In this case the ALU
mode is taken from the bit 1 setting of the FF field
(consequently this limits the functions available with a
literal or mask).

Carry Flag

The CF field specifies carry input to the ALU as follows:
CF Value of Carry In

00 Zero

01 Stored carry

10 Stored carry complement
11 One

The carry flag ALUC, bit 11 of STAT, is altered only if SF is
set to zero or two, TF to zero and the GF field to XX1X.

Under these conditions carry is set or reset to the carry
produced by the ALU. The only meaningful conditions for
carry are the arithmetic functions such as add, increment,
decrement and subtract. For these conditions the carry
flag is set as follows. MF is zero for all of the following.
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Table 2-4. Carry Flag Settings

FF Function IfCarryin =0 If Carry In = 1

0000 A Reset Set if result = 0

0001 AvB Reset Set if result = 0

0010 AVB Reset Set if result = 0

0011 —1 Reset Set unconditionally

0100 A+ (AAB) X X

0101 (AV B) + (A V B) X X B

0110  A-B-1 Set if [(A,, = B,)) A (A2 B)]y Setif [(A,, = B,;) A (A > B)l\y
[(A; = B A (AL O)] [(As = B) A (AL Q)]

0111 (AA §) —1 Set if resuilt is = —1 Set unconditionally

1000 A+ (AAB) X X

1001 A+B Setif [(A< O)A (B<O)y Setif [(A<O) AB<O)]V
(A = Bi)A [(A,#B,) A (A, = O)A
(A = O)A (A 2B)V
(1Al 2 18I v
[(A;, = Bis)A [(Ai; = By) A(By; = O)A
B, =0)A (B 2 A)] v [Result = O]
1Bl 2 1AD)]

1010 (AVB) +(AAB) X X

1011 (A AB)—1 Set if result # —1 Set unconditionally

1100 A+ A Setif A, = 1 IfA; =1

1101 (AVB)+A X X

1110 (AVB) +A X X

1111 A—1 Set if result # —1

Set unconditionally

Arithmetic Operations

The FF field determines an arithmetic operation as
indicated below when the MF field is 0. Carry input is set
independently. When bit 1 of FF is zero the arithmetic
mode is selected when the actual mode field is part of a
mask or literal. The expressions in parentheses are
evaluated first from left to right. Any further evaluation is
performed from left to right.

Logical Operations

When MF is one, the logical operations occur as indicated
below by FF field settings. The carry field is ignored.
Symbol indicates exclusive OR operation.

Arithmetic Functions

FF Value

TMOOWPOONOODHWN=O

ALU Action

A

AV B

AV B

All ones

A+ AAB

(AV B) + (A A B)
A—B —1
AAB—1

A+ (AAB)

A+ B

(AVB)+ (AAB)
(A A B)—1
A+ A
(AVB)+A
(AVB)+ A

A —1

SYMBOLS

V Inclusive OR

M Exclusive OR

+ Addition

— Subtraction
logical AND

¢ complement
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Logical Functions

FF Value

MTMUOWPORNONDLWN =O

ALU Action

>

> >1>
n2><
2 ww
o
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1> > >
> >
ol @

AvB

Table 2-5. ALU Output Data Destination

Destination

.tion to the general-purpose registers, some of the special
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2.2.3 ALU Output Destinations

The ALU output will be determined by the function
performed. This data can be directed by the microinstruc-

registers, counters, and indirectly to memory and 1/0.

A multiple destination can be one of the general-purpose
registers and a special register.

The direct assignments of the ALU result is specified by a
combination of fields, WR, LB, AA and RF. The first three
are used to specify any one of the 16 general-purpose
registers while RF selects sending data to the program
counter, operand register, shift counter or key register.

Control Fields

DIRECT CONTROL

General register (any 1 of
16) (Specified in AA)

Program counter

Operand register

Shift counter

Processor key register
INDIRECT MEMORY CONTROL
NOTE: Transfer occurs only

if cycle is successfully
initiated)

Memory data bus

Memory address register

Memory input register and
instruction buffer

INDIRECT 1/0 CONTROL
1/0 register

NOTE: Transfer is under
direct control of |/0
control. Operation is
specified by TS, AB, MR
fields and contents of
1/0 control store.

RF

001
011 or
111
010

110

WR | SF IM LB
1 0X
Not 00 XX1X
Not 00 01XX
00 0100
00 111X
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2.2.4 Other Registers

Shift Counter

The shift counter is an 8-bit counter which may be
incremented and tested independent of the ALU. It is thus
useful in keeping track of iteration in a microprogram. The

counter may be tested for overflow using test addressing.

The overflow condition occurs when the shift counter is
minus one.

An instruction which both increments and tests the shift
counter will be testing the old value. |f the counter is
loaded with negative number and incremented to 0, the
one instruction delay is no problem. This is because
checking the old value for — 1 produces the same result as
checking the new value for zero.

Program Counter

The program counter is a 16-bit register which can be
incremented and/or used as a memory address, indepen-
dent of the ALU. The following are considerations when
incrementing the program counter:

a. if the same microinstruction uses the P register for a
memory address, the new value of P will be used.

b. if the microinstruction both increments P and uses P as
an ALU input, unpredicatable results are obtained. In
general, using P as an ALU input and incrementing P
should not be done in the same instruction.

Processor Key Register (KEY)

A four-bit processor key register supplies signals for
memory operations initiated by the processor. These four
bits in conjunction with the high-order bits of the normal
memory address are used by the memory map option
determine physical addresses. It should be noted that this
key register is different from the map register used under
VORTEX 1. The latter is loaded over 1/0 and cannot be
conveniently accessed from the micro level.

1/0 Key Register

A similar key register for 1/0 is a four-bit register which
supplies signals to the memory map option during memory
operations initiated by the 1/0 control.

Operand Register

The operand register is a 16-bit register which has special
shifting abilities. As previously noted, the ALU input A bus
may have any of the 16 general-purpose applied shifted
teft or right one-bit position. In addition, the operand
register may be shifted left or right independently or in
conjunction with shifting of any general register. This can
occur any time the 16-bit literal or mask is not in use.

When the LB field is equal to 0X (no literal/mask) the SC,
WF and XF fields define operand register shifting.

When the SC field equals 0 no shifting takes place. When
the SC field equals 1, the operand register is shifted left if
the WF field equals 0 and right if the WF field equals 1.

For left shifts the next contents of the operand register bit
00 is specified by the XF field. If XF equals 00 operand
register bit 15 is copied to bit 00 to permit independent
circular shifting. If XF equals 01 bit 15 of the general
register specified by the AA field is copied to bit 00.

This permits double-length circular shifting. If XF = 10 the
complement of the ALU output bit 15 is copied to bit 00. If
XF = 11 the operand register bit 00 is set to zero.

For right shifts the next contents of the operand register bit
15 is specified by the XF field. |f XF equals 00 operand

regisier bit 00 is copied to bit 15 to permit independent
circular shifting. If XF equals 01 bit 00 of the general

Table 2-6. Operand Register Shift Operations

Control Field

LB | SC WF | XF

No shifting 0
No shifting 1X
Shifting of operand register | Ox 1

Left shifting 0

Bit 00 = operand 00
register bit 15

Bit 00 = general 01
register bit 15
(specified in AA)

Bit 00 = ALU bit 15 10
complement
Bit 00 = zero 11
Right shifting 1
Bit 15 = operand 00

register bit 00

Bit 15 = general 01
register bit 00
(specified in AA)

Bit 15 = operand 10
register bit 15

Bit 15 = SHFT (shift 11
flag)
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register specified by the AA field is copied to bit 15 to
permit double-length circular shifting. If XF equals 10 the
operand register bit 15 is maintained at its current state
to permit independent arithmetic shifting. If XF equals 11
the shift flag (SHFT) is copied to bit 15. ‘

2.3 ADDRESSING

2.3.1 General

Executing instructions in an order other than strictly
sequential gives programs flexibility and compactness. The
ways in which the order of microinstructions can be varied
are similar to those used in assembly-language programs.
For the microassembler the usual order of execution takes
the next instruction -- the contents of word five after word
four and so on -- unless a jump or branch specifies the
change in order. In reality each and every microinstruction
specifies the next one to be executed, but usually the
assembler constructs sequential-execution addressing
automatically.

A jump in a microprogram can be a conditional action
based on the true or false state of flags or signals in the
system. In microinstructions the jump is not a separate
instruction but the sampling and/or testing and the
branch itself are specified in fields of a microword. in
addition to conditional and unconditional branches, the
branch may be from one page to another. The page jump
is described following a few simpler cases and conditions.

Three basic types of addressing create the address of the
next microinstruction to be executed in three ways.
Normal addressing is the simplest case in which the next
address is determined by the current microinstruction and
the instruction register field specify the address for the
next microinstruction. In decode addressing (using the
decoder control store) the instruction buffer specifies the
next address (section 8 in this manual describes the use of
this feature).

Three other types of addressing are similar to the basic
types. Conditional addressing uses testing of various
conditions to choose one of two addresses. The page jump
can specify both the page and word number within the
page for the next microinstruction. Interrupt addressing
uses both the microinstruction and the system's interrupt
logic to determine the next microinstruction.

2.3.2 Normal Addressing

Normal addressing is used to arbitrarily specify the next
microinstruction  address. No conditional testing is
involved, no interrupts are active or they are disabled and
decoder addressing is not specified. The FS and TS fields
are set equal to 0000 and the MT field equals 0 so the low
order address contribution (bits 0-3) is governed entirely
by the MS field. The high order bits (4-8) are supplied by
the AF field.

varian data machines
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8l7|6|5|4 3|2|1|o

AF MS

Control Store Address -
Normal Addressing

No reset

No interrupts
No decoding
FS = 0000
MT = 0

TS = 0000 or
TF =0

Normal Addressing with TS Field

The TS field may be used to form bits 1 through 4 of the
control store address when none of the following
conditions is true:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF and TF field both 00; GF field
equals X1XX)

c. 1/0request (SF field equals 00; IM field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

The address is formed by the inclusive OR of the TS field
into bits 1 through 4 of the address obtained with normal
addressing (FS field equals to 0000; no decoding; no
interrupts, MT field equals 0).

3l2|1|0
MS I

inclusive or

I

8|7 |6 |5|4
AF

0]0 10 |0 TS 0

Control Store Address
Normal Addressing with
TS Field

2.3.3 Field Select Addressing

The contents of the instruction register and a number of
processor flags may be used to form a control store
address. Any one- to five-bit contiguous field from the
instruction register may also be used in forming the low-
order five bits of control store address. Thus, up to a 32
way branch may be performed based on instruction
register contents. This permits detailed instruction

a—

2-13




_@ varian data machines

CAPABILITIES

decoding. In addition, the interrupt flag, byte address flag,
shift flag and console step mode may be selected to alter 8 | 7 l6 |5 |4 3l2111o0
the control store address.

AF

cjojo]o
Field select add‘ressing is used any time the FS field is not l
equal to 0000. The field select address contribution for all

inclusive
values of the FS field is shown in the tables below. Any bit or
of the field select contribution may be forced to a zero by
use of the MS and MT fields. The field masks bits 0-3 of the b | OJ 0 |0 I TS+ I o
field select contribution. The MT field masks bit 4. A zero
in any bit of the MS and MT fields forces the contribution inclusive
of the corresponding field select bit to zero. When an 1/0 or
request is issued (SF field equal to 00 and IM field equal to
111X) the MT field is used as part of the I/0 operation olololo (FS)**
specification. In this case, the MT field is ignored and bit 4 _l
of the field select address contribution is masked to zero. and ——di
The field select address contribution is shown below for all olololo [mT MS _l
values of the FS field. T
High-order address bits 4 through 8 are provided by the AF Control Stpre
field. Address Field

Select

The TS field is logically ORed into the control store address
bits 1° through 4 under the same conditions as normal “ . ) o )
addressing into TS field. Thus, the composite field select TS field is not used in bits 1-4 of address formation

address is formed as follows: when:

a. Register field extraction (AB field als0lor 10
Control Store Address Bit & ¢ eld equ )

b. Interrupts allowed (SF, TF fields both 00, IM field

4 3 2 1 0 FS Field equals 111X)
One One One One One 0
One One One One INT 1 c. 1/0request (SF field equals 00; IM field equals 111X)
, One 01 One SHFT | BYTA 2
One One One One STEP 3 d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)
04 03 02 o1 00 4
05 04 03 02 01 5 e. Testaddressing is specified (TF field not equal 00)
06 05 04 03 02 6
07 06 05 04 03 7 ** (FS) is the contents of the field specified by the FS field
08 07 06 05 04 8 *%% MT is replaced by a zero when an 1/0 request is
09 08 07 06 05 9 present (SF field equals 00; IM field equals 111X)
10 09 08 07 06 A
i1 10 09 08 07 B Normal addressing and normal addressing with TS field
are a subset of the field select addressing set, i.e. the FS
12 11 10 09 08 c field equals 0000 and the MT field equals 0.
13 12 11 10 09 D
14 13 12 11 10 E
15 14 13 12 11 F 2.3.4 Test Addressing
Numbers 00 through 15 refer to instruction register bits Two addresses must be specified when test operations are
performed -- one for use if the test passes and one for use
INT is the interrupt flag (complement) if it fails. Testing is specified whenever the TF field is not
equal to 00. If the test is to pass when the condition tested
BYTA is the byte address flag is true, the TF field must be equal to 10. If the test is to
pass when the condition tested is false, the TF field must
SHFT is the shift flag be equal to 11. The condition to be tested is specified by
the GF field.

STEP is true when the console is in the STEP mode

The address used if the test passes is identical to that
Figure 2-3. Field Select Address Contribution formed by field select addressing. The address used if the
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test fails is made up of the AF and TS fields as shown
below.

8 |7 Ie |5 |4 al2|1]o
AF

olojo]o “‘]

inclusive
or

0jo0jojo T8 0 |

Control Store Address --
Test Fails

2.3.4.1 Conditions

Whether or not a test is to be done and the way the test
passes are indicated in the test field (TF). Testing is
specified whenever the TF is not zero. If the test is to pass
when the condition is true, the TF is equal to 10. If the test
is to pass when the condition is false, the value of the TF
should be 11.

The condition to be tested is specified in the GF field.

Summary of Conditions Mnemonics

Value of Mnemonic
GF for Assembler

OVFL
IOSR
SSW3
SSW2
SSW1
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QUOS

MTMOOWPOONOITDWN —=O

Meanings and Use of Conditions

OVFL Overflow may be set and reset unconditionally. It

may sample data-loop conditions. Automatically reset.

by system reset or microinstruction in which the GF
value is TFIR and the instruction register bit O is set
and the test met.

varian data machines -
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IOSR  1/0 Sense Response (discussed in 170 section)

SSW3, Sense switches are set and reset
SSw2 only by manual manipulation on the
and control panel.

SSw1

TFIR  Test from instruction register which determines a
set of conditions tested simultaneously. Nine bits of
the instruction register cause the following tests:

Overflow

Positive/NOT bit

Negative/NOT bit

RO of General-purpose registers

R1 of General-purpose registers

R2 of General-purpose registers

Sense switch 1

Sense switch 2

Sense switch 3

ONOO D WN=O

ALUO ALU allones

ALUS ALU sign flag
ALUC ALU carry flag
ALUZ ALU all zeroes

SHFT  Shift flag copies bit 15 of the general register
specified in the AA field whenever the literal or mask is
not being used and the VF value is 1. This flag may
be shifted into the operand register bit 15. It may be
tested by a microinstruction to cause a branch to
either of two microinstructions.

MIRS  Memory input register sign
SFTC  Overflow of the shift counter
GPRS General-purpose register 0 bit 15 (sign)

NORM Normalize flag is set after any microinstruction
which the ALU output bus bit 15 is not equal to bit 14. It
will be reset after any microinstruction during which
the ALU output bus bits 14 and 15 are the same.

QUOS Quotient flag copies bit 15 of the ALU output after
a microinstruction in which the literal or mask is not
being used and the WF value is right or 1 and SC
field is zero.

MULS Muitiply sign sets any microinstruction during
which any of the following three conditions existed:
1. ALU output bit 15 and ALU input A bit 15 were
both equal to 1

2. ALU output bit 15 and ALU input B bit 15 were
both equal to 1

3. ALU input A bit 15 and input B bit 15 were both
equaltol.

This flag may be applied to the ALU input A bus during
right shift operations
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BYTA Byte address flag copies bit 00 of the general unless the ALU is all zeroes and sampling is requested.
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the The following table lists some of the major flags. ALUZ,
ALU input A bus. This flag may be used to determine ALUC, ALUS, and ALUO are sampled together by any
the address of the next microinstruction and for microinstruction in which SF equals X0, TF equals zero,
memory byte store operations (SF not equal to zero and GF equals XX1X.
and IM field equal XX11) determines which byte of
the addressed memory location is to be altered. If Summary of flags requiring sampling for microprogrammed
BYTA equals zero, the left byte is selected. BYTA conditions.

equal to one selects the right byte. BYTA is set or
reset during the microinstruction rather than at the

end. Flag Sampling

A wide variety of flags are available for use in micropro- NORM no
gramming. in general, they may be tested no sooner than MULS no
the microinstruction after which they were set. in other SHFT yes
words, a microinstruction which both changes a flag and QUOS yes
tests will be testing the old value of the flag. BYTA no

OVFL yes
The conditions that cause a flag to be set depend on the ALUZ yes
particular flag. In addition some flags require that the ALUC yes
microinstruction specify sampling before they will be set. ALUO yes

For example, the ALU all zeros (ALUZ) flag will not be set ALUS yes

Table 2-7. Overflow Flag Control
OVERFLOW FLAG CONTROL

Conditions
Operations Fields Bit 15
ALU|input | ALU Output
TF SF GF FF AA | BB
Set overflow 00 01 X01X
Reset overflow 00 01 X10X
Sample overflow 00 01 X11X
(ADD) 1XXX
SET 0 0 1
1 1 0
DON'T SET* 1 0 X
0 1 X
(SUBTRACT) OXXX
SET 1 0 0
1 0 1
DON'T SET* 0 0 X
1 1 X

Also, reset by system reset or a microinstruction specifying
test of the 620/f test condition with the instruction
register bit 00 on in which the test passes.

Overflow may be sampled to be set if SF = 00 and GF =
1IXXX. It will not be reset even if no overflow exists.

# |f set previously, overflow will remain set regardless of
sampling conditions.
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2.3.4.2 Addresses in Branches

The destination address when the test fails must be an
even word address. The destination addresses of both the
pass and fail conditions must be within 32 words of each
other.

Procedure for Address Assignment

Following completion of a flowchart assignment of control
store, address assignment may be performed. A useful
procedure is:

1. Assign the microprogram entry addresses consistent
with the desired format of the BCS instructions.

2. Assign addresses to microinstructions to be executed
upon receipt of an interrupt. These addresses must be
X XXXX 0111.

3. Assign addresses to all microinstructions to be
executed following those using TEST ADDRESSING
where the "'test fails’’ condition prevails.

4. Assign addresses to all microinstructions to be
executed by field Select Addressing. If field selection
specifies test of the interrupt, byte address, shift, or
console step flags assign addresses to the microin-
structions to be executed in accordance with the
following restrictions:

Flag On Flag Off
Interrupt X XXXXXXXX0 XXXXXXXX1
Byte Address X XXXXXXXX1 XXXXXXXXO0
Shift X XXXXXXX1X XXXXXXX0X

Console Step X XXXXXXXX1 XXXXXXXXO0

5. Recheck all field select and test addressing
microinstructions for addressing consistency. Prepare
a list of assigned addresses and corresponding
microinstruction numbers labels (keyed to the flow-
chart) to avoid duplicate assignments.

6. Other microinstructions may have their addresses

arbitrarily assigned by the programmer or the
assembler.

varian data machines @——
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2.3.5 Page Jump Addressing

The microinstruction specifies a branch to a location in

" another 512-word page by executing a page jump. In this

case, a 13-bit address is generated which sets a new active
page number and specifies an address within that page.
The page number is specified by the TS field. The word
address is specified by field select addressing.

12|11|10|9 8|7|6 2

1o

JE

TS Address modified field
select addressing

Control store address
page jump

A Page Jump with memory is specified by the TF field equal
to 00; the SF field equal to 10; and the GF field equal to
X1XX.

A page jump without initiating a memory cycle is specified
by setting the TF and SF fields to zero, IM = 0011, and bit
2 of GF to zero.

2.3.6 Interrupt Addressing

When interrupts are allowed and an interrupt is active in a
class which is enabled by the TS field, the low-order four
bits of the control store address are supplied by the
interrupt logic and the high order bits from the AF field.

8|7|6|5|4 3|2|1|0
AF

1A

“HA is supplied by interrupt logic.

1A is 7 for 170 interrupts and 1 for second tests of /0
interrupts after initiation of the 170 interrupt sequence.

The TS field enables interrupts whenever bits are set as
follows:

Bit Set  Enables

0 170 interrupts

1 170 interrupts only if memory
protect is installed

2 Memory protect interrupt

3 STEP, console step mode interrupt

2.4 MAIN MEMORY CONTROL

Memory access may be initiated in a microinstruction
which indicates the type of operation and the address
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source. Main memory access includes the fetching and
storing of data to and from the memory through the
memory buses. Memory can either be the core or
semiconductor variety (as distinct from the disc or drum
storage often cailed rotating memory, which is accessed as
a peripheral device through 1/0 facilities).

When a microinstruction initiates an access, the memory
control section handles the complete operation. This
permits the microprogram to initiate access to/from
memory and perform other functions (ALU etc.) while the
access actually occurs the microprogram can detect the
completion of the memory access by specifying a wait for
memory done.

Two different types of fetches can be requested. The
instruction fetch (IF) moves the contents of a 16-bit word
from main memory to the memory input register (MIR)
and the instruction buffer (IBR). The operand fetch (QOF)
moves a 16-bit word to the memory input register and does
not change the instruction buffer. Instruction fetches are
usually used for fetching 16-bit macroinstructions for
decoding from the IBR. The operand fetch is used for
general data and address fetches. The microword which
requests a fetch provides the address in main memory.
After the request is made it is handled completely by
memory control and requires no further actions in the
following microinstructions.

Example of fetch sequence

n n+1 n+2
request wait for (data is
instruction memory ready for
fetch done use in MIR)

Memory requests to store data are of two types. The first is
the operand store (OS), which stores a 16-bit word in main
memory. The second is the byte store (BS), which stores
only an 8-bit byte. As with the fetch operations, the
microinstruction which requests the store must furnish the
main-memory address for the operation. Microinstructions
following the request for a store must provide the data to
be stored on the ALU until the memory operation is
complete.

Example of store sequence

n n+1 n+2

request store RO — ALU| (operation

using P as wait for complete)
address memory
done

Completion of a memory operation is detected either with
the wait-for- memory-done function or by requesting
another memory operation.  Wait- for-memory-done sus-
pends microinstruction execution until the memory

operation is complete. Requesting another memory opera-
tion has the same effect because microword cannot

complete until its memory request is acknowledged by
memory control and requests are not acknowledged until
any previous request is complete.

Override

An active memory access may have the type of operation
changed by the next microinstruction. By making an
immediate change the immediately prior action 3
overridden. This can be conditional upon the result of the
same test available for addressing (GF field).

Example:

Microinstruction Microinstruction Microinstruction

Cycle n Cycle n+1 Cycle n+2
Initiate memory memory
memory store store
store starts continues
override too late
possible to override

Memory cycles may be initiated by microinstructions either
unconditionally or depending on the results of a test.

2.4.1 Unconditional Cycle Initiation

A memory cycle is unconditionally initiated or overridden
when the SF field equals 01 or if the SF field equals 10 and
the TF field equals 00.

The IM field specifies the type of operation and the address
source. Permitted operations are:

IM
Value Action

XX00 Read data from memory into the instruction
buffer and memory input register (instruction fetch).

XX01 Read data from memory into the memory input
register (operand or address fetch).

XX10  Write the full word output of the ALU into memory.
XX11  Write the byte from the ALU specified by the byte

address flag (BYTA) into the corresponding memory
byte. The other memory byte at the designated word

2-18




address is unaffected. If BYTA is false, the left byte is
written. If BYTA is true, the right byte is written.

BYTA, the byte address flag, copies bit 0 of the general
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the
ALU input A bus.

The operation may be changed by the following microin-
struction by specifying the new operation with the IM field
equal to 00XX. This permits, for example, conversion of a
store cycle into a fetch or an instruction fetch into an
operand fetch.

The data to be written to memory must be maintained at
the ALU output by the microinstruction(s) following
initiation until the cycle is complete.

The source to be used for loading the memory address
register is specified as follows:

IM = 01XX ALU output
IM = 10XX Program counter
IM = 11XX Memory input register

2.4.2 Conditional Cycle Initiation

A memory cycle may be initiated (or overridden) or not
depending on the results of a test specified by the GF field.
Conditions tested were described previously in the section
of test addressing.

If the TF field is not equal to 00 and the SF field equals 10,
the cycle will be initiated (or overridden) if the tested
condition is false.

If the SF field is equal to 11, the cycle will be initiated (or
overridden) if the tested condition is true.

In either case, the IM field specifies the operation to be
performed and the address source to be used as described
in the previous section.

2.4.3 Special Transfer

ALU output data may be transferred to the instruction
buffer and memory input register by using the memory
data bus. This does not involve activation of any memory
module. To initiate this transfer the SF field must be equal
to 00 and the IM field equal to 0100. The ALU output data
must be set up by the initiating microinstruction and
maintained for one more microinstruction.

2.4.4 Wait for Memory Done

The wait-for-memory-done function suspends microinstruc-
tion execution until memory control signals completion of
central control's prior request. This function is SF = 0
and IM = 0001. If no central control has no prior request
active, the wait-for-memory-done has no effect.

varian data machines @—
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Table 2-8. Memory Operations

Control Field
Function SF TF M

UNCONDITIONAL INITIATION —o01
or

L1000
CONDITIONAL INITIATION
Condition True 11
Condition False 10 | Not 00
(Condition Specified in GF)
EITHER
Operation XX00

Read memory data into
instruction buffer and
memory input register

Read memory data into XX01
memory input register
Write ALU word output XX10
Write ALU byte output XX11
Address Source or Override
Override operation 00XX
ALU output 01XX
Program counter 10XX
Memory input register 11XX
SPECIAL TRANSFER
(ALU output to instruction 00 0100
buffer and memory input
register)

2.5 MICROPROGRAMMING EXAMPLE

General

As an example of instruction implementation using Varian
73 microprogramming, the steps of a single-word address-
ing load accumulator LDA in the direct address mode will
be traced.

SS1M

Initially the instruction pipeline is assumed to be empty so
a new instruction must be fetched from main memory. The
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first microinstruction studied will be that obtained from
control store location 13E (all addresses are given in

hexadecimal). This location has the label SS1M, which is
one of the microprogram's standard states.

The microinstruction fields at 13E a}e:

TS AF Ms MT FS TF SF GF
0000 01001 0010 O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 000 0000 00

CF WR SC VF WF XF SH BB AA
0 0 0O O 0 00 00O 0000 000O

The function of this microinstruction is to initiate an
instruction fetch from the memory address specified by
the program counter. Note that the SF field equal to Ol
specifies unconditional initiation of the memory cycle. The
IM field specifies use of the program counter for an
address source and the instruction buffer and memory
input register as destinations for data received from
memory. The FS, MT, TS and TF fields contain all zeros so
normal mode addressing is specified. The next control store
address will be 092. No other fields of the microinstruction
are pertinent.

S$S2M

Location 092 is another microprogram standard state
labeled SS2M. It continues the process of filling the
pipeline by initiating another instruction fetch using the
incremented contents of the program counter.

The microinstruction fields at 092 are:

TS AF MS MT FS TF SF GF
0000 00010 1101 0O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0 O O 00 000 0000 0OOO

Again the SF field is equal to 01 and the IM field is equal to
1000 specifying another instruction fetch using the
program counter. In this case, however, the RF field equals
100 specifying that the program counter will be incre-
mented before it is used an address. This microinstruction
will not be immediately executed as the previous microin-
struction initiated memory activity and the memory

interface will remain busy until the first instruction from
memory is loaded into the instruction buffer and the
memory input register. At the time, the current microin-
struction completes and the next microinstruction from

location 02D becomes active. Normal addressing occurs
again due to FS, TS, MT and TF fields being zero. No other
fields of the microinstruction are pertinent.

SS3M

Location 02D is another microprogram standard state
labeled "SS3M". It causes decoding of the instruction
fetched from memory while checking for interrupts. It also
copies the instruction buffer into the instruction register to
make room for the next instruction from memory.

The microinstruction fields at 02D are:

TS AF Ms MT FS TF SF GF
1110 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 00 00 COO 0000 O

CF WR SC VF WF XF SH BB AA
000 0 0O O 00 00O 0000 0000

This microinstruction manipulates no data paths nor does
it initiate any memory cycles. Its sole purpose is to check
for interrupts and, if there are none, cause a branch to the
required microsequence. The TF and SF fields are both
equal to 00 and the GF field bit 0 is a one causing transfer
of the instruction buffer to the instruction register. The GF
field bit 2 is a one, thus enabling interrupts and decoder
addressing. The TS field defines the interrupts which are
enabled -- all except 1/0 interrupts unless the memory
protect option is installed. The IM field specifies selection
of the interrupt flag. If this flag were set, interrupts would
be suppressed. The flag is reset by this microinstruction. If
an interrupt were active and the interrupt flag had not
been set, the next control store address would be 0DX
where X designates the four bits supplied by the interrupt
logic. This would produce a branch to the interrupt
microprogram sequence.

Assuming no interrupts are present, the new control store
address will be determined by the decoder logic. The
instruction fetched from memory is assumed to be 10F9
(hexadecimal) or 010371 (octal). This is a V73 "LDA”

instruction with direct addressing of location O0OF9 (hex-
adecimal). The most significant four bits of the instruction
buffer address the first decode control store at location
one. The next four bits address the second decode control
store at location 00. The decode control store contents are:

1st decode

Control store B12 =1

location 1 B8-BO = 110000010
2nd decode

Control store A8-A0 = 010000000
location 0

Since B12 equals 1, the B8-BO and A8-A0 address
components are logically ORed to produce an address of
182.
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SWAI10

Location 182 contains the first microinstruction of the
single word addressing sequence (SWA10) for the
instruction fetched from memory. It forms the effective
address by masking bits 00 through 10 from the
instruction register. It also initiates the operand fetch.

The microinstruction fields at 182 are:

MT FsS TF SF GF
0000 00 01 0000

TS AF MS
0000 10010 1111 0

MR AB IM LB LA RF FF
0O 00 0101 10 00 011 1010

MF CF WR SC VF WF XF SH BB AA
1 11 1 1 0 0 00 000 0000 0000

]
= == ===~ ==~ 16-bit mask literal-=-~-=--- <

The LB field equals 10 so the ALU B input bus will have the
contents of the instruction register masked by the 16 bits
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a
zero in the mask enables the corresponding instruction
register bit). The mask equals F800 so the low order 11 bits
of the instruction are used.

The ALU mode is determined by the FF field (1010) in
conjunction with the LB field (forces logical mode)
resulting in an ALU function of the ALU = B.

The RF field equals 011 so the ALU output is copied into
the operand register.

The SF field equals 01 so unconditional memory control is
specified by the IM field (0101) to be fetch an operand
into the memory input register using the ALU output for
an address source. This microinstruction will complete
when the memory cycle initiated by the microinstruction at
092 compiletes.

The FS, TS, TF and MT fields all contain zeros so normal
addressing is used and the AF and MS fields specify the
next control store address of 12F.

SWA20

Location 12F contains the second microinstruction of the
single word addressing sequence (SWA20). It decodes bits
13-15 of the instruction register contents to determine the
class of the single word addressing instruction.

The microinstruction fields at 12F are:

TS AF Ms MT FS TF SF GF
0000 11110 1100 1 1111 00 00 0000

MR AB IM LB LA RF FF MF
0 00 0000 00 00 000 0000 O

CAPABILITIES

CT WR SC VF WF XF SH BB AA
000 0 O O 00 000 0000 0000

No data manipulation or memory control operations are
performed by this microinstruction. It serves only to
branch to the specific microsequence for the class of
single-word addressing instruction contained in the
instruction register. Field select addressing is used to
perform this decoding (FS field is not equal to 0000). The
FS field is equal to 1111 so the selected field is bits 11
through 15 of the instruction register. The composite
address formation is illustrated:
876543210
AF field contribution: 111100000
or=111100000

TS field contribution: 0000000O0O0
Field selected from
instruction register:
(I = 10F9)

000000010
and = 000000000

Mask consisting of MT 000011100

and MS fields

Final effective address
produced by inclusive or

111100000

The address of the next microinstruction is then 1EO.

LDA1

Location 1EO is the first microinstruction specific to the
LDA instruction (LDA1).

This microinstruction increments the program counter and
initiates another instruction fetch from main memory.

TS AF MS MT FS TF SF GF
0000 01011 0101 0O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
000 0 O O OO0 000 0000 0000

The RF field equals 100 specifying that the program
counter will be incremented during this microinstruction.

The SF field equals 01 so unconditional memory control is
specified by the IM field (1000) to fetch an instruction into
the instruction buffer and memory input register using the
program counter for an address source. (Note that the

D
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program counter is incremented during the microinstruc- P SSTM (13E)
tion so the new value will be used for the memory cycle).

INITIATE INSTRUCTION
FETCH USING P

Normal addressing is used to specify the next microinstruc-
tion address (TF, TS, FS, MT fields are all zero). The AF -
and MS fields define the address to be 0B5.

SS2M (092)
LDA2 INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

Location OB5 is the second microinstruction specific to the
LDA instruction (LDA2). This microinstruction transfers
the contents of the memory input register to the
accumulator, RO; transfers the instruction buffer contain- SS3M v (02D)
ing the next ipstructign to the instruction register to make ) DECODE INSTRUCTION

room for the instruction whose fetch was initiated by the BUFFER

microinstruction 1EOQ; decodes the instruction buffer to
determine the starting address of the next microsequence
and checks for interrupts.

TRANSFER BUFFER TO
INSTRUCTION REGISTER

ENABLE INTERRUPTS
The microinstruction fields at OB5 are: SELECT AND RESET
INTERRUPT FLAG

TS AF MS MT FS TF SF GF

1111 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF SWAI10 v (182)
0 00 0110 10 00 000 1010 1 INSTRUCTION REGISTER

BITS 00 THRU 10 ALU
LOAD OPERAND REGISTER

START MEMORY OPERAND
FETCH USING ALU

CF WR SC VF WF XF SH BB AA
0017 0 0 O 00 000 0001 0000

The ALU B input is specified by the LB field (equal to 10) to
be one of the special registers. The BB field (equal to
0001) defines the memory input register as the source.

SWA20 . (12F)
The ALU operation is specified to be in the logical mode FIELD SELECT INSTRUCTION
(MF = 1) with the ALU output equal to the ALU B input REGISTER BITS 13 - 15
(FF = 1010).

!]3 _ ]5= 000

The WR bit equals a one so the ALU output data will be LDA] 160
written into the register specified by the AA field (AA = y (1E0)
0000) which is the accumulator (A register). This is the INCREMENT P
execution phase of the LDA instruction. INITIATE INSTRUCTION

FETCH USING P

The SF and TF fields are both equal to 00 and the GF field
bit 0 is a one so the instruction buffer contents are copied

into the instruction register. The GF field bit 2 is a one so LDA?2 v (0B5)
trr\]e antructlon decoder is enabled and interrupts are COPY MEMORY INPUT
checked. REGISTER INTO RO

The IM field equal to 0110 with the SF field equal to 00 TRANSFER BUFFER TO

selects and resets the interrupt flag. This will suppress INSTRUCTION REGISTER
interrupts if the flag is set. All interrupt classes are DECODE INSTRUCTION
enabled as the SF field contains all ones. If an interrupt BUFFER

was active and the interrupt flag was off, the decode SELECT RESET INTERRUPT
address would be suppressed and the next microinstruction FLAG

would be fetched from the address specified by the AF
field and the interrupt logic. This would be ODX where X is
the address supplied by the interrupt logic.

DECODED SINGLE WORD
ADDRESSING INSTRUCTION

If no active enabled interrupts exist the next microinstruc- VTH-1938
tion will be fetched from the address specified by the Figure 2-4. Flowchart for LDA Instruction
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IDENT SS1M SS2M SS3M SWA10 SWA20 LDA1 LDA2
(hex. addr.) (13E) (92) (2D) (182) (12F) (1EO) (0B5)
FUNCTION fetch fetch fetch fetch fetch fetch
LDA | hext _ next operand operand third
inst. inst. inst.
REQUEST IF IF OF IF
ADDRESS TP P ALU P
INPUT A
INPUT B I A O7FF MIR
OUTPUT TRNB TRNB
DESTINATION see RO
below
SAMPLE
L%SJE DECODE FIELD DECODE
SELECT
113-115
ADDRESS SS2M SS3M from SWA20 LDA1 + X LDA2 from
decoder where X = decode
0,4,8,...28
SPECIAL INCP erable INCP IBR — |
ACTIONS inter- enable
rupts interrupts
IBR — |
NOTE:

Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond

memory cycle time is assumed). ’

VTII-2026

Figure 2-5. Flow Diagram of LDA Instruction

decode control store logic. If the instruction buffer
contains another single-word addressing instruction, the
next address will be 182 (SWA10) and the sequence will be
repeated.

Figures 2-4 and 2-5 show a flowchart and flow diagram of
the microinstruction sequence described. Note that the
pipeline effect of buffering instructions permits efficient
use of the memory. (A 330 nanosecond semiconductor
memory was assumed).

2.6 TIMING CONSIDERATIONS

Most microinstruction operations take place at the conclu-
sion of the cycle. Certain exceptions do exist. ALU inputs
are sampled at the midpoint in time of the cycle. Control-
store address information, memory addresses, and most
register and flag changes occur at the end of the
microinstruction execution. The areas below should be
considered while planning microprograms.

Program counter incrementation (RF = 100 or 111)
Incrementation takes place at the midpoint of the

microinstruction. Thus the program counter value
applied to the ALU input will not be the incremented
value. The new value will be used as a memory
address, if the program counter is specified as an
address source.

Byte address flag
The byte address flag is set or reset at the temporal
midpoint of the microinstruction. Thus its new value
may be used to determine the byte of the addresses
memory location to be altered.

Memory write operations

ALU inputs, function, mode and carry must be
maintained constant throughout any memory write
cycle. This is accomplished by specifying another
memory cycle immediately following the current cycle
thus interlocking execution of the next microinstruc-
tion with completion of the memory cycle in progress
or by using the wait for memory done function (SF =
00, IM = 0001).

Special transfers
The transfer of ALU data to the instruction buffer and
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memory input register requires ALU data to be
maintained for two microinstructions.

1/0 operations
If the 1/0 section is not idie when a new |/0 operation is
specified, microinstruction execution will not occur
until the 1/0 becomes idle. A wait for 1/0 done
function (SF = 00, and IM = 0010) will cause a
similar wait condition until the 1/0 DN bit becomes
true.

Use of the 1/0 register
If direct memory access or similar 1/0 operations are
possible the 1/0 register may be altered. Care in use of
this register is indicated. Control of the 1/0 register is
described in the 170 section of this guide.

2.7 ADDITIONAL CAPABILITIES

2.7.1 Register Field Control

Many types of instruction words contain fields which
specify registers which contain operand data. If all
combinations of operations on all possible registers had to
be specified by individual microinstructions, the control
store size would be quite large.

The Varian 73 system permits three- or four-bit fields to be
selected from the instruction register and stored and
maintained in the control-buffer-register specification
fields. This permits a single microinstruction to handle all
combinations of registers for any operation.

This register field extraction is performed independently of
the field select addressing function and both may be used
simultaneously.

The AA and BB fields of the microinstruction contained in
control store are copied into their corresponding positions
in the control buffer any time the AB field equals 00 and
the MR field equals 0. This is the normal mode of
operation.

When the SF field equals 00 and no 170 request is active,
the AB field equals 01 or 10; the TS field specifies a four
bit field of the instruction register to be loaded into the
control buffer’'s AA or BB field. The field not being loaded
will be loaded into the control buffer's AA or BE field. The
field not being loaded will be maintained at its last value.
A code of AB equals 01 and loads the field selected into
the BB field. A code of AB equals 10 and loads the field
selected into the AA field.

The MR bit is used to mask the most significant bit of the
selected field. |f MR equals zero, the most significant bit cf
the selected field will be treated as a zero. If MR equals
one, the most significant bit of the selected field will be
loaded into the designated field.

The AA and BB fields can be maintained in their current
state by specifying and AB field equal to 11 while the SF
field equals 00 and no |/0 request is present.

I1f no 170 request is present, the AB field equals 00 and the
MR field equals 1, the control buffer AA field will be
maintained at its current value and the BB field will be
forced to either of two addresses depending on data loop
conditions and the WF field.

WF field equal to 1

Operand register bit 01 = 1; BB = 1111

Operand register bit 01 = 0; BB = 1110
WF field equal to O

ALU bit 15 = 1; BB = 1111

ALU bit 15 = 0; BB = 1110

This function is used by the Varian 73 standard instruc-
tions microprograms for multiply and divide.

Register field control operations are summarized in the
tables following.
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Table 2.9, Register Field Control
- Control Fields
Function SF AB MR TS WF
Load A and B fields from o0 | o0 ]o
control store ) i
Inhibit loading of A field 00 01 Mask most Selects
and place selected 4 bit significant field
field (masked) from in- bit of BB field
struction register into
B field
Inhibit loading of B field .00 10 Mask most Selects
and place selected 4 bit significant field
field (masked) from in- bit of AA field
struction register into
A field
Inhibit loading of A and 00 11
B fields
Inhibit loading of A field ) 00 1 0
and force B field to 1110
if ALU output bit 15 = 0 or
to 1111 if ALU bit 15 = 1
Inhibit loading of A field 00 1
and force B field to 1110
if operand register bit
01 = 0 or to 1111 if operand
register bit 01 = 1
All functions are inhibited
if an 170 request is issued.
Table 2-10. Register Field Selection Enable Jump Signal
Bits Selected From . ) . ) 4
Instruction Register A sngngl is ser?t to the mgmory-protect voptlon dqunatmg a
TS Field for register file jump instruction by setting the LB high-order bit to zero
and the SC field to zero and the XF field equal to 11 or 10.
000 03 02 01 00 If the XF field equals 11, the interrupt flag will be reset.
001 04 03 02 01
010 05 04 03 02
o011 06 05 04 03 . Reset Interrupt Flag
100 07 06 05 04
101 08 07 06 05 The interrupt flag will be reset if the LB field equals 00 or
110 09 08 07 06 01 and the XF field equals 11 or O1.
111 10 09 08 07 .

Enable Special ALU Mode
Other Controls

(This feature is useful for the standard instruction set, but

Transfer instruction buffer to instruction register ' not generally suggested)

The contents of the instruction buffer will be transferred to The ALU mode, carry input and overflow sampling may be
the instruction register when TF and SF both equal zero, forced according to the contents of the instruction register
and GF has a low-order bit set to 1. by setting the LA and LB fields equals to either 00 or 01
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(high-order bit equals zero) and the SH high-order bit
equal to 1. In this case, the ALU function will be as follows:

Bit

3 As specified by FF field

2 most significant 2 bits
1 Instruction register bit 7
0 Instruction register bit 7

complemented

2.7.2 Memory Addressing to 64K

The standard instruction set has addressing capability to
32K words with 15-bit addresses. The use of bit 15 to
select indirect addressing mode removes it from use as an
address bit. The memory modules can recognize a 16-bit
address which increases the range of addresses to 64K
words.

The most significant bit of the memory address bus is
normally grounded to prevent any address generated by
the standard instruction set from attempting to access
above 32K words. This is necessary since the high-order bit
can be set by indirect memory reference in the host
instruction set.

The WCS permits use of the full 16-bit addressing
capabilities of the V73. This enabling is automatically
inhibited while executing from page zero so standard 620
programs will execute correctly in the lower 32K words of
memory.

User-written microprograms in the WCS can generate 16-
bit addresses to cause access to the full 64K words. This
mode is enabled or disabled with a group of control fields
in the microinstruction. Once enabled this mode s
retained until explicitly disabled as described below or a
system reset occurs. The enabled mode is not effective
when page zero is active.

64K Mode of Memory Addressing

Enable Disable

SF=0 SF=0

TF=0 TF=0
IM=1101 IM=1101
LB=11 LB=11
MF=1 CF=11 or 10

Changing the memory mode requires all the
conditions set as indicated. Figure 2-5 illus-
trates memory bus control.

2.7.3 Memory Bus Lockout Status

Systems in which multiple processors share the use of
common memory modules often require the capability of

SYSTEM RESET )
Q__ﬂ.,

64K
ADDRESSING
DISABLED

l

MICROPROCNINO
EN@LE

64K
ENABLED
IF PAGE 0

l

FICROPROGNO
DISé\)BLE

(D)  ENABLE=IM=1101A(T=0) A
(S=0)A(LB=11) A(MF = 1)

(@ DISABLE= (IM = 1101)A (T = 0) A
(S=0)A(LB=11)A(C = 10V11)

VTI1-1806

Figure 2-6. Flowchart of Memory Address Control

testing the contents of some memory locations and
modifying those contents (if the results of the test indicate)
without the possibility of another processor gaining access
to that location between the test and the change.

WCS Implementation

The writable control store permits use of a function
allowing the processor it controls to temporarily lockout all
memory modules connected to its memory bus. While the
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memory system is locked out on one port, no accesses are
permitted on the other port. To prevent simultaneous
lockout from both processors the lockout mode for any
memory bus only becomes enabled when  the requesting
bus actually gains access to the memory (so the other bus
cannot establish the lockout mode). The memory lockout
mode is set or reset with the following microinstruction
fields:

Set Reset
Field LOCKOUT LOCKOUT
SF 0 0
TF 0 0
M 1101 1101
LB 11 11
CF X1 X0
AA XXX0 XXX1

X indicates a bit position not involved in this operation.

varian data machines @_
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If priority memory access (PMA) is present in the system,
caution must be exercised to prevent the PMA from
establishing its own lockout mode while either processor is
in lockout mode. Simultaneous lockout would prevent all
further accesses to memory and "lock-up"” the system.
Figure 2-6 illustrates memory bus lockout.

Lockout is removed by system reset.

- 2.7.4 Stack Use

Three stack operations, branch/push, branch/pop and
branch/delete are used on the microprogram-return stack.
All are global and effect a page selection. On the branch/
push and branch/delete, the TS field gives the new page
number. On the branch/pop, the word at the top of the
stack gives the new page number. The return address
which is pushed is an independent 13-bit specification

PROCESSOR

A MEMORY 5

PROCESSOR

t )

PORT A

MEMORY BUS LOCKOUT STATUS

MEMORY CYCLES
PERMITTED

PROCESSOR A
ACCESSES
FOR TEST

l

PROCESSOR A
MODIFIES

VTII-1808

Figure 2-7. Memory Bus Lockout

1 0

PORT B

MEMORY CYCLES
FORBIDDEN

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR B
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES
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provided by mask field of microinstruction from the
destination of the branch. The 13-bit specification is made
up from the foliowing fields of the microinstruction:

PAGE Word

12111110 ¢ 8 7 654 3210

WR| SC | VF | WF XX SH BB

All stack operations have a value of zero for the SF and TF
fields, IM set to 1110 and LB set to 3. Push requires bit 1
of the AA field set to 1. Pop is designated by bit 2 of the AA
field set to 1 and bit O of the BB field set to 0. Branch/
delete is the same as branch/pop except bit O of the BB
field is set to 1.

TF SF IM LB AA BB

Branch/push 0 0 D 3 bitl
=1
Branch/pop 0 0 D 3 bit2 bito
=1 =0
Branch/delete 0 0 D 3 bit2 bito
=1 =1

In initializing the stack an error branch can be pushed into
the first location. If a microinstruction tries to ""pop" this
return, an underflow condition will occur and the error
branch will be taken. An attempt to ""push’ one more level
than the sixteen allowed causes a branch to the address at
stack location zero.

In addition to pop and push operations on the stack, a
stack entry delete operation is provided. This causes a
page branch to the address specified by the processor and
deletes one entry from the top of the stack.

All stack return addresses including the error return are

restricted to the WCS. This avoids conflicts with processor-
generated addresses during the pop operation.

Questions and Answers About Microprogramming Stack

Q: The WCS stack push and pop operations do not appear
to be mutually exclusive. If both are specified, would the
stack first pop the new address then push the return
address?

A: Such an operation is undefined and should be avoided.
Q: Do micro stack operations proceed at fuil speed?

A: The stack operates at the same speed as other writable
control store operations -- 190 nanoseconds.

2.7.5 Memory Addressing Using the
Optional Memory Map

The processor key register is four bits which may be applied
to the ALU input bus B as part of the status word. It is

loaded froni ALU output bus bits 12-15 and applied to the
memory address bus as a four-bit extension to the 15-bit
memory address register. The key register provides bits 15-
18.

18 17 16 15|14 0

key register Memory Address Register
memory map input
19 bits

when 64K mode is enabled, bit 15 of the memory address
register is also ORed into the effective map input bit 15.

During memory cycles initiated by 1/0 (DMA), the 1/0 key
register is applied instead.

Care must be taken in using the processor key register as
an input to the ALU input bus B. No 1/0 initiated memory
bus activity must take place during application of the
status word or the value of the 1/0 key register may be
used instead of the processor key register.

As an option, the map can be wired to operate with the
processor key register. This mode is not supported by
standard Varian software.

2.7.6 Memory Protection

If the memory protection is enabled, write operations are
automatically  inhibited. A memory-protection internal
interrupt is generated as well as an 1/0 interrupt request.
The memory-protection option may be disabled only by
appropriate 1/0 instructions, not by microinstructions. Care
must be taken in using the memory protection if more
than 32K words of memory - are to be addressed (bit 15 of
memory address is enabled). Such use is very specialized
and should only be undertaken after consultation with
Varian Data Machines.

2.8 QUESTIONS ABOUT
MICROPROGRAMMING CAPABILITIES

Q: If a current memory cycle is to alter the memory input
register, and the memory input register is specified as
the memory address source by the current microin-
struction (awaiting remory cycle completion), are the

old or new contents of the memory input register
used for the next cycle’s address? Does the
situation change if the memory input register is an’
ALU input and the ALU is selected as an address
source? Does the WCS clock rate affect this?

A: The new value of the memory input register is used
when the memory input register is used as an address
source. The memory input register should not be
used through the ALU to determine the address of the
next memory cycle when it can be altered by the
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current memory cycle. The WCS clock rate does not
affect this.

: What is the standard entry point to branch to when an
interrupt is detected?

: Interrupts, when enabled, cause a branch to the
address specified by the AF field and interrupt address
supplied by the 170 control. Standard 1/0 interrupts
supply an address component of 0111 to the least
significant four bits. The most significant five bits are
specified by the user (AF field) and may be anywhere
in the currently active control store page. At that

address, the microprogram should perform the
functions of the V73 IWAIT microinstruction (location
OD7 on page zero) and then branch to INT1 (OD1
page zero) or perform in the current page the
functions of INT1, INT2, INT3 and INT4.

‘Q: Is data in the memory input register protected against

DMA and PMA operations?

varian data machines

CAPABILITIES

: Yes, DMA and PMA operations do not alter the memory

input register.

: When reading data from memory is the data available

in the memory input register at a fixed number of
microinstructions following memory initiation, or
must a wait for memory done be placed before using
the data or starting another memory cycle?

: Data arrives in the memory input register no sooner

than the second microinstruction after its initiafion. It
may arrive after that. The access time depends upon
DMA or PMA or other memory bus cycles, semicon-
ductor memory refresh cycles or core memory rewrite
cycles in progress at the time. If a new memory cycle
is to be initiated immediately following completion of
the current cycle, interlocking is automatic as the
execution of microinstructions will cease until the
new cycle initiation is accepted by memory control.

Otherwise a wait-for-memory-done function must be

specified.
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SECTION 3
TECHNIQUES

This section describes the use of flow diagrams in writing
update microprograms and the interface of microprogram-
ming hardware and software. Several detailed examples of
flow diagrams for sample microprograms are included
here. These examples will be continued in later sections,
where the flow diagrams will be translated into assembly
language.

3.1 INTERFACE OF MICROPROGRAMMING
HARDWARE AND SOFTWARE

3.1.1 Execution of Microprograms

Branch to Control Store Implementation

The V73 instruction which causes a branch to the writable
control store (BCS) always goes to page one. The control
store word in page one is specified in bits 0 - 4, allowing a
branch to one of the first 32 words, which contain vectors
to microprogrammed rountines. The BCS instruction is a
special coding of an 1/0 instruction and, as such, is not a
generic. mnemonic within the DAS assembler language.
This instruction for use in symbolic DAS coding must be
defined by the user.

The BCS macro is decoded directly on the WCS page during
primary decode time as defined by the processor logic. A
BCS is performed only if decoder control store page zero is
currently selected. Any other control store selected causes
the macro to be taken as part of a different instruction set.
The BCS page branch does not change the decoder control
store selection. A local page-branch micro-operation can
change the selection of a decoder control store to page
one.

The BCS will only perform from decoder page zero of the
control store. Page one of central control store becomes
enabled at the time the BCS is performed. A primary
decode should never be allowed to occur in the micro-
operation following the BCS decode.

3.1.2 Steps in Instruction Execution

The following are the general stages in the execution of a
16-bit macro instruction:

1. A microinstruction initiates an instruction fetch.

2. The instruction is transferred from memory to the
instruction buffer.

3. The instruction is copied into the instruction register
and a request is made for a decode of the instruction

varian data machines [@—

buffer contents. This decode simply identifies the
instruction to be a member of a certain class of
instructions and effectively causes a branch to a
microroutine which does any work common to that
class; for example, single-word memory-addressing
instructions may use the same microroutine for
computing the effective memory address.

4. Secondary decoding of the instruction determines its
exact identity. This is done by such features as field-
select addressing, which allows using bits from from
the instruction register to determine a microprogram
branch address. Using such methods, the microin-
structions which complete the actual execution of
the instruction are reached.

5. Microinstructions which form the instruction are
executed.

3.1.3 Instruction Pipeline

In our system, the term instruction pipelining refers to the
technique of fetching the next instruction from memory
before the current one has finished executing. This is
possible due to the availablility of two 16-bit registers for
holding instructions. The first is the instruction buffer
(IBR), which receives the instruction being fetched from
memory. In IBR the next instruction is held while the
current instruction being executed is in the instruction
register (l). When ready, the instruction buffer is
transferred to the instruction register and the next
instruction may be fetched from memory.

The chief advantage of this method lies in the fact that the
microinstructions are much faster than the fetches from
memory.

Thus, without the pipeline, a one or two microinstruction
delay would be added to the execution of each instruction
while the processor waited for the instruction from
memory.

Interfacing with the Pipeline

The instruction pipeline is crucial to the execution of the
standard instruction set. Thus, any new instructions
being added through microprogramming must consider
and be cautious of the effects and requirements of the
pipeline. Because of the pipeline, user's microroutines in
WCS can rely on certain things being true when they
receive control from page zero. Likewise they must make
sure certain techniques are used when they exit to read-
only memory.
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Upon entry to WCS by a BCS instruction, the following
conditions exists:

a. The program counter (P) is pointing to the word
following the BCS.

b. The BCS command will be in the instruction register.

c. The word following the BCS will be on its way from
memory to the instruction buffer and memory input
buffer.

On exit from WCS the microprogram must set conditions
for the next command, and maintain the pipeline. In
particular the following are required:

a. The next instruction to be executed is in the instruction
buffer. This will often be the word after the BCS, which
was already on its way there on entry. If the BCS has
a parameter, or if the instruction buffer was
modified, then the instruction may have to be
fetched.

b. The program counter should be incremented to one
beyond the location of the next instruction and an
instruction fetch initiated. This will not only preserve
the pipeline but will also make sure any memory
activity necessary to complete setup of condition
).

¢. The instruction buffer should be copied into the
instruction register in preparation for its execution.

d. A request for decoding of the instruction buffer
contents should be made along with a page branch
back to page zero, i.e., ROM. The decode will result in
the correct microroutine getting control for execution
of the next instruction.

In most cases, the preceding steps can be summarized by
the rule:

The second to last microinstruction should
increment P and do an instruction fetch.

The last microinstruction should transfer IBR to
| and request decode addressing.

3.1.4 ROM Standard States

Much of the interfacing with the pipeline can be done by
using standard microinstructions (standard states) in
page zero. These were developed explicitly for this purpose
for use by the 620/f emulation. The most common ones
make up the three microword sequence listed below. They

may be used simply by doing a page jump directly to
whichever microword is appropriate.

Address Label Function

13E SS1IM Restarts the pipeline at P with
an instruction fetch by P. It
then branches to SS2M.

92 SS2Mm Maintains the pipeline by incre-
menting P and requesting an
instruction fetch. It branches
to SS3M.

2D SS3M This instruction decodes the

IBR contents to determine the
next microinstruction to execute.
It also copies the IBR into 1.

3.1.5 Summary of Branches Between WCS and
ROM Control Store

From ROM to WCS
BCS Macro (from Decoder Page Zero Only)

This macro ensures the start of a processor fetch during
the primary decode of the BCS according to the V73
pipeline rule. The clock change and page selection occur
during the primary decode microinstruction.

1/0 Branch

Control is transferred to the selected page of central
control store during the data phase of the /0 command.
170 branch can go to any central control store page and
does not select a decoder.

This mechanism assures that no DMA 1/0 memory
transfers and no processor memory transfers are in
process during the clock change.

From WCS to ROM

The 170 branch is not a viable mechanism from WCS to
ROM.

A micro level page branch is the standard method for going
from WCS to ROM. This cperation is the converse of the
BCS disscussed above.

Standard state sequences in the ROM provide pipeline
start up and various other housekeeping functions for the
standard instruction set. These may be of interest for
particular microprogramming entrances.

32




3.1.6 Varian 73 Register Usage

The 620 emulation on the Varian 73 system uses some
general-purpose registers. Using the standard instructions
with his own microprograms a user is responsible for
preserving the settings and restoring those necessary to
their original conditions. The use and reguirements for
particular registers are described below. All others are only
used by user's microprograms.

Registers 0, 1, and 2 are used for the emulation of the A, B,
and X registers respectively. These need not be restored
by user's microprograms.

Register 3 is forced to all zeros by the halt microprogram
and used as a source of zeros by the standard instruction
set. Its restoration is required.

Register 4 is also used by the halt program and saves the
contents of the instruction register. While the standard
microprograms are running it is not used and therefore
does not require resetting.

Register 5 is a source of ones for the standard micropro-
grams and must be reestablished as such by a user's
microprogram.

Registers E and F (15 and 16) are used as temporary
storage for some standard instructions yet their use does
not extend beyond the particular single instruction so
these two do not need to return to a set value.

Register Usage

Number Standard Use Restore
0 A register no
1 B register no
2 X register no
3 All zeros yes
4 Saves | no
5 All ones yes
6-D None no
E Temporary no
F Temporary no

3.2 FLOW DIAGRAM

3.2.1 Rationale

As the reader should now be aware, the 64-bit microword is
both extremely powerful and extremely complex. This
results in several problems. A beginning microprogrammer
can be completely bafiled how to start. Intermediate
microprogrammers tend to be confused about how much
or how little can be done in single microinstruction.

The microprogram flow diagram is designed to minimize
these problems. Making a flow diagram for a micropro-
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gram is roughly comparable to the low-level flowcharting
of an assembly language program. The flow diagram,
however, is designed to provide special assistance to the
microprogrammer. It gives the basic capabilities of the
standard microword, thus providing reminders of both
what can be done and what should be done in each
microword.

3.2.2 Format

A sample blank microprogram flow diagram form can be
seen in figure 3-1. The vertical columns each represent a
single microinstruction.

The horizontal rows are divided into the type of operations
that can be performed. A microinstruction is created by
going down a column and filling in the appropriate boxes
with the specific operations desired in each general
category. Many of these operations can be specified using
the mnemonics introduced in the previous section. Table
3-1 provides an ordered list of mnemonics.

Specifically, the first row of the flow diagram is used for
identifying the particular microword. Labeled IDENT, this
row is usually left blank unless the microword is
referenced elsewhere in the microprogram. Such reference
occurs most often when the microword is the target of a
jump from another microword. When not empty the box
usually contains the label which will be carried through to
the actual assembly language version. Depending upon the
programmers preference absolute or relative addresses
could also be assigned here.

The group of three rows under MEMORY specifies both the
current state of memory and the requests for memory
operations being made in the current microword. The
FUNCTION row specifies the former. it is useful for
charting out memory activity and optimizing the memory
usage. In microprograms where memory activity is not
critical, this row could be left blank.

The REQUEST row indicates the type of memory request
being made in the microword. The ADDRESS row specifies
the source of the memory address for the requested
operation. If no request is made, then both these rows can
be blank.

The ALU section of the flow diagram consists of four rows.
These rows specify the two inputs for the ALU, the
operation to be performed on them, and the destination of
the result.

Two rows are included in the STATUS section. The first,
SAMPLE, specifies which flags and status bits are to be
sampled during that microinstruction. Sampling is usually
necessary before the flag or status indicators can be

tested. The TEST row specifies which flag or status bit, if
any, is being tested in the current microword. This testing
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IDENT
FUNCTION
REQUEST
ADDRESS
INPUT A

INPUT B
OUTPUT

DESTINATION

MODE
D

SPECIAL
ACTIONS
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Figure 3-1. Sample Flow Diagram Form
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may be used both for conditional memory requests and
conditional addressing.

The two rows of the ADDRESSING section specify the
addressing method or mode being used and the resulting
effective address or addresses. These boxes are often left
blank to signify normal addressing with the next column
on the right to be executed next. The label contained in the
IDENT row can also be used here.

The SPECIAL ACTIONS section is provided for the micro-
operations which do not fit conveniently into the other
sections. Most common among these are the operations on
the special registers and counters. These include the
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operand register, program counter, and shift counter. Such
things as register field control or even general comments
could also be included here.

3.3 FLOW DIAGRAM MNEMONICS

The following table 3-1 lists the sections of the flow
diagram and some applicable: mnemonics. These
mnemonics represent the most common values and should
be sufficient for many microprograms. Other functions
without mnemonics can be described in whatever way the
user finds clearest. The ways could range from actually
writing the field values to putting in verbal commentary.

Table 3-1. Mnemonics for Microprogramming Flow

Diagrams

Row ' Mnemonic
IDENT None
MEMORY None
FUNCTION
MEMORY IF
REQUEST OF
oS
BS
TESTF-
TESTT-
WAIT, MEMDN
MEMORY ALU
ADDRESS P
MIR
OVR
ALU Rn (n = 0,12,..,F)
INPUT A Rn, SL
Rn, SR
P
ZERO
ONES
ALU Rn (n = 0,1,2,....,F)
INPUT B MIR

Comments
User-supplied labels and addresses

User-supplied commentary on memory
operations

Instruction fetch

Operand fetch

Operand store

Byte store

Conditional request (on test conditi
false)

Conditional request (on test conditi
true)

Wait for memory done (before going
to next microword)

ALU output

Program counter

Memory input register

Override memory operation of the pre
microword using its memory address

General register 'n’

General register 'n' shifted left on
bit position.

General register 'n’ shifted right o
bit position

Program counter

All zeros (0)

All ones (FFFF)

NOTE: When using a shifted general
register, user must specify conditio
of high and low bits.

General register 'n’

Memory input register
(continued)
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Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Row Mnemonic Comments

IOR 170 register

STAT Status word

LIT The 16-bit value from O to FFFF

MSK Instruction register masked by 'xxxx

OPR Operand register

ORSE Operand register right byte, sign
extended

OLSE Operand register left byte, sign ext

ORZF Operand register right byte, zeros i
left byte.

OLZF Operand register right byte in left

byte position, zeros in right byte

NOTE: When using MSK or LIT, caution
be used to avoid field conflicts wit
other mnemonics.

ALU ZERO All zeros (0)
OUTPUT ONES All ones (FFFF)
TRNA A (transfer input A)
TRNB B (transfer input B)
INCA A+ 1
INCB* AVB + 1 (B + 1 when A = 0)
DECA A-1
DECB A + B (B- 1 when A = FFFF)
ADD A+ B
SuUB* A-B
SHFA A + A (shift A left one)
AND AANB
OR AVB
EOR A~B (exclusive OR)
NOTA A
NOTB* B _
TCB* AVB + 1 (two's complement B
when A = 0)

*cannot be used when input B is MSK or LIT.

ALU Rn (n = 0,1.2,...,F) General register 'n’
DESTINATION Special registers Refer to special actions row
NOTES:

1) general register cannot be used
here if input B was LIT or MSK.

2) general registers used for both
input A and destination must be the
same general register.

STATUS, SHFT Set shift flag
SAMPLE
OVFL Set overflow flag
ALU Set ALU related flags (i.e., ALUO,
ALUS, ALUC, and ALUZ)
STATUS, OVFL Overflow flag
TEST IOSR 1/0 sense response

(continued)
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Row

ADDRESSING,
MODE

ADDRESSING,
ADDRESS

SPECIAL
ACTIONS

Mnemonic

SSW3
SSw2
SSW1
TFIR

ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC

GPRS
NORM
QuUOSs

PJMP to n
FSEL

INT
DECODE
TESTT
TESTF

POPJMP

P -

F -

POUT

SCOUT
OPROUT

INCP

INCSC

INCP, OPROUT
SHFTOP, LFT

SHFTOP, RGHT

IBR to |
PUSH,X

POPDEL

TECHNIQUES

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Comments

Sense S\n;itch three

- Sense switch two

Sense switch one

Test from instruction register
ALU ones flag

ALU sign flag

ALU carry flag

ALU zeros flag

Shift flag .

Memory input register sign
Shift counter all ones flag (i.e.,
overflow)’

General register 0 sign
Normalize flag

Quotient flag

Page jump to page 'n’
Field select addressing

Interrupt addressing
Addressing by decode control store
test addressing; pass if test con-

dition true

Test addressing: pass if condition
false

Branch/pop to an address specified
by stack

NOTE: these are only a basic set of
abbreviations, to be used alone or i
combination.

Test pass address
Test fail address

Load program counter with ALU output
Load shift counter with ALU output
Load operand register with ALU outpu
Increment the program counter
Increment the shift counter

Does both.

Shift operand register left one bit
position

Shift operand register right one
bit position

NOTE: high/low bits must also be
specified by user on these two
operations

Transfer instruction buffer to
instruction register.

Push value x on the stack (requires
PJMP addressing mode)

Delete entry at top of stack
(requires PJMP addressing mode)
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3.4 FLOW DIAGRAM EXAMPLES
The following examples are included:

1. BCS Entry Point Initialization

2. Memory-to-Memory Block Move

3. Reentrant Subroutine Call

4. Fixed-point ADD to any of 16 general registers with
direct addressing to 64K.

5. Cyclic Redundancy Check (CRC) Generation.

Each of the examples includes a description of the problem,
a description of how it was handled, and a flow diagram.
Later in this manual, the examples will be continued in the
form of assembler listings of the code produced from each
of the flow diagrams in section 5.

3.4.1 BCS Entry Point Initialization

This is essentially an example of making a micro subrou-
tine which is simply a NOP. From the standpoint of being
an example, it details how to reach WCS and then return
to the macro level. From a functional standard point, it
provides meaningful initialization for the 20 (hex) BCS
entry points in WCS. By loading this program before all
others, any unused BCS entry points will have meaningful
contents (as opposed to possibly fatal random contents).

Referring to the flow diagram, (figure 3-2) the thirty-two ~

entry points are all initialized to the same microinstruc-
tion. It is simply a page branch to a standard microword,
SS2M, on page zero. This will result in a return to the
macro level by maintaining the pipeline and returning
control to the ROM central control store.

3.4.2 Memory-to-Memory Block Move

This microprogram is designed to move a block of n words
from one area in memory to another.

For purposes of this example, the microprogram is called by
executing a BCS to word zero of WCS page one. It takes its
arguments in the following format:

A register (RO): to address
B register (R1): from address
X register (R2): block length

When called, words are sequentially copied from their old
location (from address) to their new position (to address).
The number of words moved is equal to the block length.

The following commentary describes how the microprogram
operates. Refer to the flow diagram figure 3-3.

Word zero in page one is the entry point for the BCS
instruction. It contains a branch to a microword labeled
MBM, which may be on any WCS page. This is the actual
beginning of block move and no further decoding of the
BCS is done.

The microprogram starts by setting up its parameters. The
current program counter value is saved in R7. Next, the
from address minus one is put in its place. Having it in the
program counter will allow easier use of it as an address
source for memory requests. The to address is also
decremented. These addresses are decremented because
they are incremented in the instructions which request
the memory operations.

After this initialization, a three microinstruction loop is
entered which does the actual block move. The first
microword, (MBMA), increments the from address in the
program counter. It then requests that the word at that
address be fetched from memory. It also puts the memory
input register (MIR) onto the ALU output. Once the looping
is begun, the MIR will contain the word just fetched from
memory. Placing it on the ALU will cause it to be stored at
the to address, since the previous micro in the loop
requested a write of ALU output into memory.

The second mircoword in the loop decrements the block
length in R2. The ALU output (i.e.,, the new value) is
sampled for testing in the next microword.

The next microword, the third and last in the loop,
increments the to address in RO and tests the ALU sign
flag. If it is off, then the block length has not yet become
negative and the necessary number of words has not yet
been moved. In this case, an operand store is requested
using the to address as. the destination. The next
microword will have to specify the the value to be stored,
so a loop is made back to MBMA which will do this. This
loop "also causes the next word to be fetched and the
process continues until the block length goes negative. In
that case the loop is exited and the extra memory fetch
requested is simply forgotten.

Microword MBMB receives control after the loop is exited.
The necessary number of words have now been moved and
a return can be made to ROM. MBMB maintains the
pipeline and restores the program counter. Then, a branch
is made directly to SS3M on page 0. That ROM standard
state will decode the next 'macro’ instruction currently in
the IBR, and will result in control returning to ROM central
control store.

3.4.3 Reentrant Subroutine Call and Return

This example provides call and return microprograms for
reentrant subroutines. The subroutine call stores its return
address in the X register (R2) and saves the original
contents of X on a stack pointed to by the B register (R1).

The subroutine return simply pops the stack back into the
X register and branches back to the return address.

3-8




varian data machines

VTII-2028

TECHNIQUES
}_‘
g a
2 =3 | 28
£ Q = » =
e
F3
> (=}
-
o o Bl < ||k |2y a 22
- T w w - = 2| 2 & w u S0
o E) € | 515 &8 | E|& |k w « o8
&2 2 /8 2|2|5(a|3|a 9 8 4
a 2 & < z Z <] o » = = < B
~AHOW3ANW ny SNLVLS ONIss3daav H3HI10

Figure 3-2. Flow Diagram for BCS Entry Point Initialization

e

3-9



varian data machines

TECHNIQUES

[
-
dONI d SNOILOV| T
1Nod o 1no WVioads H
(azo) YWEW-4
WESS aNEN-d L Ssawaav| 3
)
m
3
@
z
00} o
dWrd 11s31 dinrd Elefe ]
sSNv 1831 m_.
»
=
ny FdNVS | »
Mojaq 99s oY 2d - mojaq ass oy Y NOILVYNILS3a
YONI VYONI vo3a’ aNvdl vO3a vO3a VYNVYL ilndino »
e
c
dIN 8 1NdNI
14 oy 2y - 1y oy d V 1NdNI
nmv nv d ss3yaav
A
SO F 4
Ell 41531 40 1S3n03y w
<
elep ejep ejep
Buiyoyay Buyolsy Bunols NOILONN
| abed
an
an YWan W8W 0 pIom 1IN3QI i

VTI1-2029

Figure 3-3. Flow Diagram for Memory-to-Memory Block Move

3-10



For purposes of this example, the subroutine call is
executed by doing a BCS to word 1 of WCS page 1. The
word following the BCS is taken as the effective address of
the subroutine being called. The subroutine return is
made by executing a BCS to word 2 of WCS page 1.

The stack operations are performed in the following way. A
push causes the B register to be decremented and the X
register stored at the resulting address. A pop causes the
X register to be loaded from the memory location pointed
to by the B register followed by the B register being
incremented.

The following is a detailed description of the subroutine
call. Refer to the flow diagram in figure 3-4.

The first microinstruction of the routine is at the BCS entry
point. On the memory-to-memory block move, this first
microword of the program did nothing but branch to the
actual microroutine. The only reason for not combining it
with the next microinstruction was to clarify the relation-
ship of the entry point and the rest of the program. In an
actual application where execution time s critical, the
microwords would have been combined. This is done on
the subroutine call example. The first microword decre-
ments the stack pointer (R1) and begins saving the
contents of R2 at the resulting address. It then does a
page branch to the rest of the microroutine which could be
on any WCS page.

The second microword places R2 on the ALU so that it will
be stored by the memory request in the first microword.
R2 must be on the ALU for the entire duration of the write
into memory. Since this could take a variable amount of
time, (depending on the type of memory in the system), a
request is made to wait for the memory-done signal. This
means the next microword will not be executed until the
write operation is complete and thus, R2 will stay on the
ALU for the necessary time.

The third microword saves the return address in R2. The
program counter is currently pointing to the word after th
BCS instruction. That word contains the effective address
of the subroutine to be called. Thus, the return address is
obtained simply by incrementing the program counter and
then storing it in R2. This microword also begins the
actual transfer to the subroutine to be called. This is done
by restarting the pipeline at the address of the subroutine.
That address is already in the MIR due to the fact it was
the word after the BCS.

The fourth microword sets the program counter to the
second word in the subroutine call and requests it be
fetched. This completes the restarting of the instruction
pipeline and a return can be made to ROM control. This is
done with a page jump to SS3M on page 0. Note that the
fourth microword has performed all the functions of SS2M.

The following is a detailed description of the subroutine
return. Refer to the flow diagram in figure 3-5.
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The first microword begins restarting the instruction
pipeline at the return address. Also, the program counter is
restored.

The second microinstruction begins the fetch of the original
contents of R2 off the stack.

The third microword increments the stack pointer to finish
the pop of the stack. It also finishes the restart of the
instruction pipeline by requesting another instruction
fetch by the incremented program counter.

The last microword restores the old contents of R2, which
by now have been transferred from memory to the memory
input register (MIR). Since the pipeline has now been
restored, the microword can return to ROM using a page
jump and with request for decode addressing. The decode
will generate the next address in page zero based on the
next 'macro’ instruction to be executed.

Note that the second to last microword performs the
functions of SS2M and the last microword performs the
functions of SS3M.

3.4.4 64K-Memory ADD to any of the
General-Purpose Registers

This example adds the contents of any location in 64K
words of memory to the contents of any of the 16 general-
purpose registers, RO, R1,..,RF. The sum replaces the.
previous contents of the specified register. If overflow
occurs, the overflow status bit will be set. The addressing
mode for this example will be indexing by general register
R1.

In execution the contents of LOC bit 8 - 15 specify a branch
to control store (BCS) instruction. Bits 0 - 3 define the
operation to the performed and the addressing mode to be
used. Bits 4 - 7 specify the general register affected.

With indexing the contents of all LOC + 1 are added to the
contents of the register (R1), and the 16-bit sum is used
as the effective address of the operand. The operand is
fetched from memory and is added to the contents of the
register specified by the LOC 4 - 7.

A flow diagram follows as figure 3-6.

The strategy used for the operation described above has
the following steps:

1. (AD1 or AD1A) enter from decode of BCS in page zero.
Address fetch cycle has been initiated. Initiate next
instruction fetch and increment P.

2. Transfer contents of MIR (address value) to OPR to
preserve against alteration by previously initiated
instruction fetch.

3. Perform indexing by adding contents of R1 to contents
of OPR. Initiate operand fetch using ALU output as

effective address. (continued)
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4. Wait for completion of operand fetch by specifying next
instruction fetch with incremented program counter
and field select register specifications from instruc-
tion bits 4 - 7 into AA field. Set BB field to select MIR.

5. Add contents of MIR to contents of previously selected
register and store sum in selected register. Sample
overflow condition. Page jump to V73 page zero with
decoding of instruction fetched by step 1.

Execution Time Estimate

Execution time depends upon the memory speed involved.
With 330 nanoseconds semiconductor memory the pipeline
is kept full. The number of microinstruction times from
decode to decode is 6. All of these are from writable
control store. The execution time is therefore 6 times 190
or 1140 nanoseconds. Since 3 memory cycles are involved
the effective cycle time is 1140 divided by 3, or 380
nanoseconds.

3.4.5 Cyclic Redundancy Check (CRC) Generation

INSTRUCTION FORMAT

15 987 43 0
1 0 5 CRC Vector Loc
Data Array Word Address ) LOC + 1
Byte Count LOC + 2

DATA FORMAT: Packed 2 bytes in each word as follows:

Byte 1 Byte 2
Byte 3 Byte 4
Byte N-1 Byte N
may be last

byte

The packed byte array at the specified address is scanned
and the 16-bit cyclic redundancy check is performed. The
16-bit CRC is left in the accumulator (A register or RO). If
.the accumulator is not cleared before entry, the accumula-
tor’s contents will be included in the CRC.

The CRC polynomial word is X — + X' + X® + 1,
which is commonly used in binary synchronous
communication.

Since array size can be quite large, the instruction can be
interrupted  after service of every two bytes. When
interrupt service is completed, the process of CRC
generation is resumed and runs to completion (except as
interrupted). The overflow flag is used to signal an
interrupted instruction. If it is set, contents of the B and X
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registers are taken as data address and byte count
respectively.

RO, R1 and R2 (A, B and X) registers are used by this
instruction. RO is the current CRC value. R1 is the current
data array address. R2 is the current byte count value. RF
contains the CRC polynomial (octal 100005). The overflow
flag is used to designate an incomplete instruction.

The calling sequence normally used would be:

TZA (clear accumulator)

ROF (reset overflow flag)

BCS CRC

Address (data array address)

Byte count (number of bytes in array)

Detailed Description of Procedure

1.  Enter from decode of BCS in page zero. Address fetch
cycle has been initiated. The overflow flag is used to
designate an incomplete instruction, i.e., one which
was interrupted before the entire byte array was
scanned for CRC generation. If such an interrupt had
occurred the current data array address and byte
count in registers R1 and R2 should be used rather
than the corresponding values used when the instruc-
tion was initiated. A memory cycle to fetch the byte
count is initiated conditionally. The overflow flag is
tested for an 'off' condition. The 16-bit word
representing the CRC polynomial is placed in OPR. If
the overflow flag is off, the next step is step 2. If it is
on, step 1A is executed.

2. Thedata array address is copied from MIR into R1.

3. The contents of R1 is used as an address (through the
ALU) and the first pair of bytes is fetched. The overflow
flag is set to indicate that the instruction is
incomplete.

4.  The byte count is copied from MIR into R2. ALU status
is sampled so that the byte count can be tested for zero
in step 5.

5. The shift counter is loaded with - 8 (the number of bits
per data byte). The ALU zero status flag is tested to see
if the byte count was zero. Execution is suspended
(by a "wait for memory done") until the two data
bytes are fetched. If the ALU zero flag is off, the next
step is 5A; otherwise, step 18 is next.

5A. The CRC polynomial placed in OPR in step 1 is now
placed in RF.

6. The data bytes in MIR are copied into OPR.

(continued)
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10.

10A.

11.

12.

13.

14,

15.

15A.

15B.

16.

Steps 7, 8, 9, 10, 10A, and 11 constitute the iterative
loop which accumulates the CRC for the left data byte.
In step 7, RO (the CRC) is shifted one bit left and
applied to the ALU input A while the shift counter is
incremented. Bit 15 of RO is copied into the shift flag
(DSB). Bit 15 of OPR is applied to ALU input A bit
00. OPR is also shifted one bit left. The CRC
polynomial in RF is applied to ALU input B. The
exclusive OR is performed by the ALU and the result
is placed into RO. The shift counter is tested to see if
the eighth bit of the left byte has been processed. If it
has, step 10 is executed next; if not, step 8 is next.

The DSB flag is tested to see if a correction cycle is
needed. (If bit 15 of the old CRC was a zero, the
exclusive OR operation of step 7 must be cancelled.)
If a correction cycle is necessary, step 9 is executed
next; otherwise, the next bit of the data byte is
processed by returning to step 7.

This correction cycle exclusively ORs the CRC in RO with
the polynomial in RF. The result is placed in RO. When
this is done the resulting CRC is that which would
have been obtained if step 7 had not performed an

exclusive OR. The next bit of the data byte is next 7

processed by returning to step 7.

This step is entered from step 7 after the last bit of the
left data byte is processed. The DSB flag is tested to
determine the need for a correction cycle. The byte
count in R2 is decremented. The ALU status is
sampled so that it can be tested for zero in step 11. If
a correction cycle is necessary, step 10A is executed;
otherwise, step 11 is next.

This is a correction cycle identical to step 9.

The shift counter is reinitialized to — 8 for processing
the right data byte. The ALU zero status flag is tested to
determine if the right byte should be processed. If
ALUZ is not equal to one, the next step is 12; if ALUZ
equals one, the next step is 18.

This step is identical to step 7. The right data byte
which has been shifted left in OPR is now processed.

This step is identical to step 8.

This step is identical to step 9.

The operations of step 10 are performed. The DSB flag
is tested as in step 10. If it is set, step 15B is next;
otherwise, the correction cycle of step 15A is next.

This step is identical to step 10A.

This step tests for interrupts. If an interrupt is
present, step 20 is next; otherwise, step 16.

The data array address pointer in R1 is incremented
and used as an address for a fetch of the next operand
byte pair, if the ALU zero flag is off (indicating the
decremented byte count at step 25 was not zero). If

17.

1A

18.

19.

20.

the byte count was not zero, step 17 is next;
otherwise, step 18 is executed.

The shift counter is initialized to — 8 and execution is
suspended until the next pair of data bytes is fetched
from memory. Step 6 is next.

If step 1 determines the overflow flag to be set
indicating an incomplete instruction, step 1A initiates
the fetch of a data word from memory using the
contents of R1 as an address. Step 17 is executed
next.

If step 16, 11, or 5 determines the byte count to be
zero, step 18 resets the overflow flag to indicate
completion of the instruction. The program counter is
incremented and the net instruction fetch is
initiated.

A page jump to ROM (page zero) V73 standard state
/8S2M, is executed. /SS2M will initiate another
instruction fetch to fill the pipeline.

If an interrupt was detected at step 15B, the interrupt
status must again be tested by step 20. This is because
interrupts can be overriden by DMA traps and must
be checked twice to ensure that a trap has not
occurred which would abort the interrupt. The 1/0
control is requested to perform an 1/0 interrupt
sequence. Decoding is inhibited since only the
interrupt status is to be tested. If an interrupt is
found, step 21 is next; otherwise, step 16 is next.

20B. The cycle is performed as in step 10A.

21.

22.

23.

24.

If an interrupt was found at step 20, the data array
address in R1 is incremented and the ALU zero flag is
tested to determine if the byte count at step 15 was
zero. If it was not zero, step 22 is next; otherwise,
step 24 is executed.

The program counter is reduced by 3 to point to the
BCS instruction. After completion of the interrupt
routine this instruction will be refetched and the
overflow flag will be tested in step 1 to determine the
need to initialize R1 and R2 from the instruction
second and third words.

Execution is suspended until the 170 control signals
completion of the interrupt sequence; then a page
jump to ROM V73 standard interrupt state/INT2 is
performed.

If the byte count was zero, the overflow flag is reset
and an instruction fetch is initiated with the
incremented program counter value.
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CRC Generation Timing

Execution time depends on memory speed and data array
size. If no interrupts occur the timing consists of (a)
initialization -- fetch of BCS, address and byte count and
first byte pair. This involves one ROM decode cycle and
WCS microinstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at
190 nanoseconds (assuming a 330 nanoseconds main
memory cycle). Initialization thus amounts to 1520
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nanoseconds. (b) CRC processing -- each byte takes 16 to
24 steps with the average 20 plus steps 10, 11, 15, 15B
and 16 all at 190 nanoseconds. Processing takes an
average of 8550 nanoseconds for each byte pair. (c)

cleanup involves steps 18 and 19 from WCS at 190"
nanoseconds, and the memory cycle of SS2M at 330
nanoseconds. Clean up takes a maximum of 710 nanonec-
onds. Altogether the timing for an array of N bytes
averages (2230 + 1/2(N—- 2)) times 8550 nanoseconds.
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FROM DECODE

(ADDRESS FETCH IS UNDERWAY)

000 F

INCREMENT P
POLYNOMIAL TO OPR

START BYTE COUNT FETCH IF INCOMP
FLAG IS OFF (OVERFLOW)

TEST INCOMPLETE FLAG (CVERFLOW)

INITIAL SETUP

020[1A]

FETCH DATA
WORD

P [2]

SAVE ADDRESS IN R1

CALLING
SEQUENCE

DATA ARRAY
FORMAT

033 [_3_7
FETCH DATA WORD
SET INCOMPLETE FLAG (OVERFLOW)

TZA (OPTIONAL - SEE TEXT)

ROF (OPTIONAL- SEE TEXT)

BCS |

CRC

DATA ARRAY ADDRESS

BYTE COUNT

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE N-1

(MAY BE LAST BYTE)

BYTE N

DURING EXECUTION

RO (A REGISTER CONTAINS CRC
R1 (B REGISTER) CONTAINS THE CURRENT

ADDRESS OF DATA

R2 (X REGISTER) CONTAINS THE CURRENT

BYTE COUNT

ADDRESS STEP #

VT12-402

023[ 4]

SAVE BYTE COUNT IN R2
SAMPLE ALU STATUS

022117

024 [?
INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR ZERO BYTE CT
WAIT MEMORY DONE

INITIALIZE SHIFT COUNTER
WAIT MEMORY DONE

026 [5A]

TRANSFER OPR

TO RF

v

Microprogram (1 of

.18

027 [ 6]

TRANSFER DATATO OPR

4)

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation




02 [ 7]

SHIFT RO LEFT TO ALU A INPUT
SHIFT OPR LEFT

RO(15) —DSB

OPR (15) —=ALU INPUT A BIT 00
POLYNOMIAL (RF) TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS

LOAD RO

INCREMENT SHIFT COUNTER

TEST SHIFT COUNT OVERFLOW

sC

PROCESS FIRST
BYTE
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029 [10]

OVERFLOW
=0

02f |8

TEST DSB FLAG

VTi2-400

DECREMENT BYTE COUNT (R2)
SAMPLE ALU STATUS
TEST DSB FLAG

—_

(22

()—

[ 032 [11]

INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR
ZERO BYTE COUNT

028 [9]
RO TO ALU A INPUT

RF TO ALU B INPUT

EXCLUSIVE OR ALU INPUTS

LOAD RO

(CORRECTION CYCLE)

+

@

030 IIOE
RO TO ALU A INPUT -
RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO
(CORRECTION CYCLE)

Microprogram (2 of 4)

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
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E5
ALU=0
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RESET OVERFLOW
INCREMENT P
FETCH NEXT INSTRUCTION
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PAGE JUMP TO ROM

/SS2M
(060)

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (3 of 4)
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7 INTERRUPT
Al
037 [20
ENABLE
INTERRUPTS DISABLE DECODE
START 1/0 INT SEQUENCE
\ 036[ 3
INTERRUPT 4 2 I
031 |21
INCLEMENT ADDRESS (R1)
TEST ALU = 0 FLAG (BYTE COUNT = 0)
ALU=0
02D |24 02C |22
RESET OVERFLOW ' P-3—P
INCREMENT P (RESET PROGRAM COUNTER TO
INSTRUCTION FETCH START CAUSE REFETCH OF BCS

l

v

o2F [23]

WAIT FOR 1I/O DONE

036125

PAGE JUMP TO ROM

/INT 2
(OFF)

VTii-1803 Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (4 of 4)
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SECTION 4

MICROPROGRAM DATA ASSEMBLER,.
MIDAS

For execution the microprograms must be expressed in the
internal machine language, yet during their development it
is advantageous to express the program in a symbolic
language which has more meaning to the person writing
the program. This symbolic language is then translated into
the executable machine language by the assembler.
In addition MIDAS assembler provides

« symbolic addressing

« macro-definition capability

« user-defined microword formats

« user-defined opcodes

¢ address field calculations

« error detection

+ concordance listing with MOS or VORTEX using the
concordance program CONC

4.1 BASIC ELEMENTS

The source language input to the assembler consists of a
sequence of records. Each record contains 80 character
positions.. These characters are represented internally in
standard 8-bit ASCIl codes. The following paragraphs
describe the content and format of the input to MIDAS.

Characters

The characters forming the symbolic source statements are
described below. Characters not in this set can appear
only in the comment field.

Alphabetic: A through Z
Numeric: 0 through 9
Special / slash
Characters: * asterisk

+ plus signh

- minus sign

space (blank)
' apostrophe

( left parenthesis
) right parenthesis

MIDAS statements are formed from the character set
above. The comment field can contain valid 73/620 ASCII
characters in addition to any from the MIDAS character
set. Literals may be formed from any ASCH characters.

varian data machines

Symbols

The programmer may create symbols to be used for
statement labels or to define numeric values. A symbol

- may contain one to six characters from the alphabetic or

numeric subset. The first character of a symbol must be
alphabetic.

Examples of correctly formed symbols
ABCY INPUT1 SAVE4X P23456

Symbols may also use the pound sign ( #) or dollar sign ($)
character in any character position.

Example

A$B#C1 $RUN ASTOP #FIVE
Constants

A constant is a self-defining term. Four types of constants
are available: decimal integer, hexadecimal, octal and
binary.

A decimal constant is an unsigned sequence of decimal
digits. The value of a decimal constant may not exceed
32767.

A hexadecimal constant is an unsigned sequence of
hexadecimal digits, base 16, preceded by the letter X and
an_apostrophe. The maximum hexadecimal number
processed by the assembler is X'7FFF.

An octal constant is an unsigned sequence of octal digits, 0
through 7, preceded by the letter O and an apostrophe. An
octal constant can not exceed 0’77777.

A binary constant is an unsigned sequence of ones and
zeros preceded by the letter B and an apostrophe. Binary
constants may be as large as 16 bits.

Expressions

An expression is a single term or a series of terms
connected by the following operators. All are integer
operators.

+ Addition

- Subtraction

* Multiplication

/ Division
A term is a symbol, constant, or a special symbol, *, which
denotes the program location counter. A term is associ-
ated with a value inherent to the term in the case of a
constant, or assigned by the assembler.
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Multi-term expressions are evaluated from left to right. No
parentheses are allowed. Expressions are reduced to a
single value by the procedure below.

1. Eachterm is given a value

2. Multiplication and division are performed from left to
right

3. Addition and subtraction are performed left to right

4. 1t an expression has a leading minus sign, the value is
computed as though a zero term preceded the minus
sign. A leading plus sign is ignored.

5. The value resulting is right-justified in its generated
resultant  field. Unspecified leading bit positions
contain zeros.

Program Location Counter

The assembler maintains a program location counter which
is automatically initialized to zero at the start of each
assembly. As program statements are processed the
assembler assigns consecutive memory (WCS) addresses to

the microinstructions generated, unless the program
location counter is explicitly modified. The counter may be
modified by the ORG and ALOC directives. The asterisk (*)
character as a label denotes the current value of the
program location counter.

4.2 GENERAL FORM OF STATEMENTS

Input to the assembler is in the form of statements in
punched-card images. The statement is contained in a
fixed format in character positions 1 through 72. 73
through 80 are reserved for sequencing information and
have no effect on the generated microprogram.

A statement is divided into a label, operation, continuation,
operand, and comment field. These are discussed in order
below.

Label

A source statement can be associated with a symbolic
label, which allows the statement to be referenced from
other statements in the program. The label, if present,
must begin in character position 1 and is terminated by a
space. A label may be a one to six character symbol.

Operation

The operation field may consist of the format-defining
operator FORM, the label of a predefined or user-defined
format statement, a macro name or an assembler

directive. The operation field begins in position 8 and is
terminated by a space.

Continuation

Continuation lines may be used when additional lines of
coding are required to complete a statement originating on
one line. There can be up to three continuations per
statement. This is designated by the character C in
position 15. The actual statement continues in positions 16
through 72. Continuation lines are only valid for the
format and program statements.

Operand

The operand field begins in position 16 and is terminated
by a space. The operand field may contain subfieids
separated by commas.

Comment

The comment field is optional for documenting programs.
The content of this field is output on the assembly listings
but in no way has an effect upon the assembly process.
The comment field begins with the first non-blank
character following the operand field.

4.3 STATEMENT DEFINITIONS

MIDAS processes four types of statements: format, pro-
gram, assembler-directive and comment.

4.3.1 Format Statement

The format statement labels and describes a structure for
the microinstruction generated by the program statement.
Each program statement specifies a format in which the
user has grouped and broken up fields within the
microword to 'set values. Two predefined formats are GEN
and GMSK, "'standard” formats shown in figure 4-1. The
user may define additional formats through the use of the
format statement.

The general form of the format statement begins with a
required label followed by the word FORM followed by the
field identifiers separated by commas. A field identifier
consists of a field length in decimal, which may be followed
by a-hexadecimal constant enclosed in parentheses.

label FORM field(1) , field(2), . . ., field(n)
Where:
label is a symbol formed according to
the basic elements
each field is a field identifier which is the

field length in decimal, followed

by an optional hexadecimal constant

enclosed in parentheses
length(constant)
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ordinal field
field size
number name in bits
1 TS 4 ]
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1
9 AB 2
10 IM 4
11 LB 2 GEN
12 LA 2
13 RF 3
14 FF 4
15 MF 1
16 CF 2
17 WR 1
18 SC 1
19 VF 1
20 WF 1
21 XF 2
22 SH 3
23 BB 4
24 AA 4 ]
ordinal field
field size
number name in bits
1 TS 4
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1 GMSK
9 AB 2
10 IM 4
11 LB 2
12 LA 2
13 RF 3
14 FF 4
15 MK 16
16 AK 4

Figure 4-1. Predefined Formats Recognized by MIDAS

Field length can not exceed 16 bits. Fields are specified
from left to right. Each field identifier has an implicit
ordinal field number associated with it for reference. All
64 bits of the microinstruction word must be allocated.

Fields to which constant values have not been assigned are
initialized to zero.

Possible errors in the format statement include allocating
more than or less than 64 bits and using a constant value
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exceeding the size of the field. If an attempt is made to
redefine a format, an error is indicated and the format is
ignored.

Continuation lines can be used on the format statement
but a field identifier may not be carried across lines. A
comma must complete the field identifier before continuing
the statement on the next line. iIf the last non-blank
character of the operation field is a comma, it implies the
next record will be a continuation.

Example:
LIST FORM

14,04,2(x'3),2,4,1,2,
Cc4,2,2,7,16(X'1FFF) , U

4.3.2 Program Statement

The program statement represents the encoding of the
microinstructions in  symbolic notation. Each program
statement references a format statement to be used in
building the microinstruction. The format of the program
statement is an optional label followed by a format label
followed by a program field.

label format program-field

Where:

the program-field consists of one or more of the following
separated by commas.

One address expression
Predefined opcode
User-defined opcode
Field constant

The single address expression specifies the mode of
addressing to be used in fetching the next microsinstruc-
tion. The address expression, if present, must be the first
item in the program field. The format of an address
expression is:

/mode (expression, fail address)

Where mode is a key denoting the following possibie
address modes:

Normal addressing
Test

Field Select

Test and field select
Page jump

Implicit

sgwT—HZ

The value of the first expression in parentheses is the an
address of the next instruction under non-test conditions,
or if the test passes. The value of the second expression is
the address of the next instruction if the test fails.
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Modes N, F and P require only the first expression. T and S
must use both expressions. None is given for the implicit
mode.

Address evaluation is performed with the following
considerations:

When the. address mode uses field selection (modes F and
S), the value of the expression must refer to the
lower address selected in that field. This address
must be an even numbered address.

The contents of the mask field (MS) and the mask exten-
sion field (MT), ~which provide the mask for the
field address, must be defined by the user.

In the test or the test-and-field-select modes of addressing,
the fail address must be an even numbered word and
must be greater than pass address taken modulo 16.

For example, if the pass address is X'16, the range of the fail
address must be from X'10 to X'1E and an even word.
If the pass address is X'26, the fail address may
range (on even words only) from X'20 to X'3E.

The value is 13 bits with the high-order four bits specifing
a page number and the low-order 9 a word within
the page.

The implicit mode generates normal addressing to the
program location counter plus one.

In a page jump the expression specified must produce a
value which contains both the page and word
addressing information. This destination can be
defined through use of the EQU directive.

If the test field (TS) is being used to select interrupts or
to specify AA or BB field definition, its value must be
defined by the user.

Predefined Opcodes

When a predefined opcode is used in the program field, it
specifies that a particular value be placed in a field of the
microinstruction as defined by the format statement.

Predefined opcodes are symbols consisting of three to six
characters. The first two characters identify a field of the
defined formats and the following characters specify the
value in hexadecimal notation to be placed in the field.
These field names must not be used as labels in user-
defined opcodes. The two-character names for fields and
the permissible range for each is given below.

Predefined opcodes may be used with user-defined formats
since each of these opcodes has an ordinal field number
associated with it. There is no predefined opcode for the
combined address field AF/MS.

Fields of the Microinstruction

Ordinal
Name Number Range
TS 1 0-F
MT 3 0-1
FS 4 0-F
TF 5 0-3
SF 6 0-3
GF 7 0-F
MR 8 0-1
AB 9 0-3
M 10 0-F
LB 11 0-3
LA 12 0-3
RF 13 0-7
FF 14 0-F
MF 15 0-1
MK 15 0 - FFFF
CF 16 0-3
AK 16 0-F
WR 17 0-1
SC 18 0-1
VF 19 0-1
WF 20 0-1
XF 21 0-3
SH 22 0-7
BB 23 0-F
AA 24 0-F

User-Defined Opcodes

Users can assign values to symbols through the EQU
directive. The opcode is placed in parentheses and
preceded by the decimal ordinal field number designating
the format field for the value.

Statement labels and user-defined opcodes must avoid
naming conflicts.

Field Constant

A field constant denotes a value to be placed in a
microinstruction field. Either decimal, hexadecimal, octal
or binary constant is placed in parentheses and preceded
by a decimal ordinal field number.

Error Conditions

The effect of error conditions upon the continuing assembly
depends upon the type of error. The errors listed below are
indicated on the listing. The action shown in parentheses
is taken in the program statement.

a. Retference to a non-existent format (program statement
is ignored)

b. Value exceeds the size of field (value truncated)
(continued)
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c. Both operand in the program field and a format
constant are specified for the same field (inclusive OR
of the values inserted)

d. Multiple values generated for a field (first used)

e. Inconsistency between the address mode specified and
the values of the address control fields e.g., normal
addressing and test field (TF) non-zero. (Mode is
used to generate address)

Additional Considerations

The assembler evaluates each operand in the program
field, and then uses the format indicated to form a
microinstruction. Operand values and format field
constants are placed in the appropriate fields.

Values computed for a field are inserted in the field right-
justified. Fields whose values are not explicitly defined in
either the format or program statement are set to zero.

A program statement may have continuation lines, but an
operand may not be carried across lines. A comma must
complete the operand before continuing the statement on
the next line. If the last non-blank character of the
operation field is a comma, it implies the next record will
be a continuation line.

Example:

/N(EXC2),LB3,RF3,FFA,
CMKF7FF

EXC1 GMSK

4.3.3 Assembler Directives

Instructions to the assembler are known as directives.
These statements have label, operation, operand and
comment fields. The operation field contains the name of
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MA
and EMAC. -

The directives for macro definition MAC and EMAC are
described in a later section. Other assembler directives are
discussed in order below.

EQU -- Equate

The EQU directive is used to assign symbols to a given
value or the value of another symbol. The symbol in the
label field is required in this directive. It is defined to have
the value of the expression in the operand field.

The format of the EQU directive requires both a symbol in
the label field and expression in the operand field. If the
expression in the operand field contains a symbol, it must
have been previously defined.
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If the symbol in the label field has been previously defined
or if there is no label, an error is indicated and the
statement is ignored.

Examples:

THREE EQU 3

sCz EQU X'FE

v EQU THREE+2

ORG -- Origin

The ORG directive sets the program location counter to the
value of the expression in the operand field.

A symbol in the label field is optional in the ORG directive.
The expression to which the program location counter is
set must be in the operand field.

If an expression in the operand field contains a symbol, it
must have been previously defined. A value of zero or a
negative value in the operand field causes an error to be
indicated and the statement is ignored. If the expression
exceeds the page size, it is an error and causes the
assembly to be terminated.

At the beginning of each assembly pass the assembler
initializes the program location counter to zero.

Examples:
ORG X'1E0
ORG BEGIN

ALOC -- Allocate

The ALOC directive informs the assembler that it is to skip
over previously allocated locations as it is assigning
sequential addresses to the generated microinstructions.

From the beginning of an assembly pass until the
occurrence of the ALOC directive the assembler will keep a
list of all assigned locations. After the ALOC directive is
processed the assembler will test each new program

location counter setting against the list of allocated
locations. if a new value is in allocated space, the
assembler will increment the counter and again make the
test. The sequence will continue until unallocated space is
found. '

The format of the ALOC directive requires an expression in
the operand field, but the symbol in the label field is
optional.

»An error is indicated and the statement ignored, if the
operand field contains a negative value, zero or exceeds
the page size.
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In the implicit addressing mode the address of the next
instruction is the next allocatable location.

Examples:
ALOC FIELD*U
ALOC ZERO'20
SPAC -- Space

The SPAC directive provides a blank line on an assembly
listing to improve readability.

Both the label and operand fields of the SPAC directive are
ignored. A symbolic source listing shows a blank line in
place of SPAC directives.

Examples:

SPAC

SPAC ADD HERE LATER
EJEC -- Eject

The EJEC directive causes the assembly listing device to
advance to the first print location of the next output page.

Both the label and operand fields are ignored. EJEC is
listed.

END -- End

The END directive causes an assembly to be terminated.
An END directive is required as the terminal source
statement for each assembly.

A symbol in the label field is optional and assigned the
value of the program location counter. The operand field
is ignored.

4.3.4 Comment

A statement with an asterisk in the first character position
is entirely commentary. Its contents have no effect upon
the assembly process, however the statement is output to
the listing.

4.4 ASSEMBLY-LANGUAGE EXAMPLES

These examples of microinstruction implementation use
MIDAS. The following examples show how representative

microinstructions in the WCS could be coded as source
statements for MIDAS.

Example 1:

EXC1 GMSK /N(EXC2),LB3,RF3,FPFA,MKF7FF

_This example uses the norrnal mode of addressing.

Example 2:

LASL1  GEN /T(LASL2,LASL1) ,TF2,GFC,LA2,

CRFS,WR1,8C1,XF3, SH6

This example shows the use of the test mode of addressing,
and the use of a cntinuation record.

Example 3:

BT10 GEN /F(BT20),2(X'F) ,FS4 ,RF4,XF1

This example shows the use of the field select mode of
addressing. The field address mask is provided by the
hexadecimal field constant.

Example 4:

SWA22 GEN /S(LDA2,SWA26),2(X'C),MT1,FSF,

CTF3,GFB,LB1,RF3,FFA,MF1,BB1

This example shows the use of the test and field select
mode of addressing. The field address mask is provided by
the hexadecimal field constant and the predefined opcode
MT.

Example 5:

SEN2 GEN /%*,1(B"'1) ,IMF,LB1,FFA ,MF1,WR1,

CXF1,AAE

This example shows the use of the implicit mode of
addressing. The instruction initiates I/0 activity and the
binary field constant provides part of the |/0 control store
starting address.

Example 6:

P EQU X'200 PAGE ADDRESS (PAGE 1)

GMSK /P(DIV+P),IMD,LB3,
C15(*+1+4P) ,AK2

This example shows the use of the branch/push operation.
The operation effects a page selection and the destination
and return addresses are global. The destination address
is generated by the address expression. Note the page
address contribution of P. The expression for field 15

generates the global address which is pushed on the
microprogram return stack. P contributes to this again.
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Control returns to the instruction immediately following
the branch/push instruction in this example.

Example 7:

GEN IMD,LB3,AAY

This example shows the use of the branch/pop operation.
The global return address used is the last item pushed on
the stack.

Example 8:

8S1M EQU X'13E

GEN P(SS1M) ,SF2,GF

This example shows the use of the page jump mode of
addressing. In page selection the value in the address
expression must contain both the page and word
contribution to the global address. In this example the page
jump is to a standard state in the central control store
(page 0) from some other page.

Example 9:

SS3M GMSK /N{(SS2MI), 1(X'E) ,GF5,IM6

This example uses the normal mode of addressing but
selects the decode-ROM and samples interrupts (GF field
bit 2 is true). The hexadecimal constant defines the
interrupts which are enabled.

The following examples show the use of page branch,
branch/push, and branch/pop operations.

Example 10:
S52M EQU X'092
MW1 GEN /P(582M),IM3,SF0,TFO

This example of a microword, labeled MW1, does a page
jump to one of the standard states in read-only memory.

Example 11:
PAGE EQU X'200 PAGE ONE SPECIFICATION
MW2 GMSK /P(SUBR+PAGE) ,TFO0,SFO0,

CIMD,LB3,AK2, 15 (MW2+ 1+PAGE)

SUBR GEN

EXIT GEN TFO0,SF0,IMD,LB3,AA4,BBO

" adding page and word numbers, the subroutine returns by
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This example calls a micro subroutine and uses the stack
to save the return address. The subroutine call is labeled
MW2. It forms the return address by adding the word and
page numbers, and then pushes the address on the stack.
Likewise, the address of the subroutine is formed by

a microinstruction labeled EXIT which does a pop jump.

4.5 MACRO CAPABILITY

A macro provides a convenient way to generate a sequence
of assembler source statements many times in one or more
programs. The macro definition is written only orce, and a
single statement, the macro reference, is written each time
the user wishes to generate the desired sequence of
statements. These statements are then processed like any
other assembler statements. Macro definition uses the
MAC and EMAC directives.

MAC -- Macro

The MACRO directive introduces a macro definition. This
definition is terminated by the EMAC DIRECTIVE. The
name of the macro is the symbol which appears in the
label field of the MAC directive. Operand field parameters
may be passed from the macro-reference source statement
to the macro through use of the special parameter symbols
P(1) through P(n).

A macro is invoked by the appearance of the maero name
in the operation field of a statement.

The label field must contain a symbol.

In the macro-reference statement the operand field may
contain a list of parameters. At the time the macro-
reference is encountered, each parameter is evaluated and
stored into a table within the assembler. The parameters
may be labels, constants, or user-defined opcodes. Prede-
fined opcodes are not permitted. The macro definition is
then processed with the values in the table being
substituted for the special symbols P(1) 4hrough P(n). For
example, if the operand field of a macro-reference state-
ment appears as:

2,ABC,X'E0

then within the generated macro the value of P(1) is 2, P(2)
is the value of the symbol ABC, and the value P(3) is 224.

All arguments in the macro-reference parameter list are
evaluated prior to invoking the macro.

An error is indicated and the MAC direction ignored, if the
label field does not contain a symbol. Also an error is
indicated and the reference is ignored if the macro has not
been defined prior to its being referenced.

If a symbol is present in the label field of a macro-reference
statement, it is assigned the value of the program location
counter at the time the macro is invoked.
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A macro definition may contain a reference to another
macro definition, nesting definitions. However, a macro
may not be called recursively.

EMAC -- End Macro

The EMAC directive terminates a macro definition. The
contents of both the label and operand fields are ignored.

Example:

The following example shows the use of macro definition
and reference.

ONE EQU 1
TWO EQU 2
THREE EQU 3
FOUR EQU 4

SHFT MAC
GEN /T(*,SS3M1),TF3,SF3,
CGFC,IM8,12(P(1)),RF5,
CWR1,22(P(2)),AA1

El.dAC
ASLB SI;FT TWO, FOUR
LRLB S!.;IFT TWO,ONE
ASRB Sl:lFT THREE , TWO

4.6 OPERATING INSTRUCTIONS

This section describes the operating procedure for MIDAS
in each of its three environments: VORTEX, MOS and as a
standalone program.

MIDAS runs under VORTEX as a level 0 background task
and may be cataloged into the background library using
the procedures described in the VORTEX  Reference
Manual (Varian document 98 A 9952 10x).

MIDAS under MOS must be added to the system file using
the system preparation Program as described in the
Varian Master Operating System Reference Manual
(Varian document 98 A 9952 09x).

MIDAS in the standalone environment makes use of the
Standalone FORTRAN IV loader, runtime 1/0 and runtime
utility. Use of the components are describe in the Varian
620 FORTRAN |V Reference Manual (Varian document 98
A 9902 03x).

" 4.6.1 VORTEX Environment

MIDAS is scheduled from the background library at level 0
by the /LOAD,MIDAS directive. MIDAS terminates when
the END statement is encountered, and exits to the
executive. Only one source program can be assembled for
each load of MIDAS.

MIDAS inputs symbolic source statements from the
processor Input device (Pl) and outputs these statements
on the processor output device (PO). When the END
statement is encountered, MIDAS rewinds the PO file and
commences pass two. During pass two, it inputs source
statements from the system scratch device (SS) and
produces an assembly listing on the list output device
(LO), and object records on the Binary Output device (BO).

PO and SS devices not only must be the same physical
device, but the same magnetic tape, drum or disc unit. If
Pl is assigned to a Rotating Memory Device (RMD)
partition, MIDAS assumes the source records are blocked
three 40-word records per RMD 120-word physical record.
However, if Pl is the same logical unit as the System Input
Device (SI), and it is assigned to a RMD partition, MIDAS
assumes the source records are not blocked but consist of
one source record per RMD 120-word physical record. If BO
is assigned to a RMD partition, the output is blocked two
60-word object records per RMD 120-word physical reocrd.
The assembler's table space may be expanded and
consequently larger source programs assembled by use of
the VORTEX /MEM directive.

4.6.2 MOS Environment

MIDAS is loaded from the system file by the system loader
by means of the /ULOAD,MIDAS directive.

It reads the source records from Pl and outputs them to
PO. Pass two source input is from SS. When the END
statement is encountered on pass one, the SS file is
repositioned and reread. During pass two, the output can
be directed to BO for the object module and to LO for the
assembly listing. When an END statement is encountered
on pass two, control is returned to MOS. Therefore, it is
necessary to reload MIDAS with another /ULOAD directive
if multiple assemblies are desired.

4.6.3 Standalone Environment

MIDAS is loaded by the 620 Standalone FORTRAN IV
loader, along with the runtime 1/0 and runtime utility. The
description of this loading procedure and subsequent
execution is described in the Varian 620 FORTRAN 1V
Reference Manual, where MIDAS is substituted for the DAS
MR Assembler. Upon execution, MIDAS will input source
records from logical unit 3 (Pl), output source records for
pass two to logical unit 9 (PO), input pass two source
records from logical unit 8 (SS), output binary object
records to logical unit 2 (BO), and output assembly listing
to logical unit 4 (LO). When the first assembly is
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completed, subsequent assemblies may be performed by
restarting MIDAS at location 0541.

4.7 ASSEMBLER INPUT AND OUTPUT

The following section contains a description of the source
records required for assembler input and the object
records and listing produced by the assembler.

Source Records

The assembler input consists of a sequence of logical
records containing 80 character positions. If a logical
record contains more than 80 positions, only the first 80
are input and the remainder are ignored. |f a record
contains less than 80 positions, blank characters are
supplied by the assembler to fill 80 character positions.

Only the first 72 are considered in the assembly process.
Character positions 73 through 80 may be used as
desired.

Listing Format

An assembly-listing page consists of 44 lines per page with
each line containing no more than 120 characters. The
lines per page count may be changed when running under
an operating system. Each page contains the following:

Page number and title line followed by a blank line
Program listing containing two less than the current
lines/page count

At the end of an assembly a symbol table will be printed
followed by a line containing the message "mmmm
ERRORS ASSEMBLY COMPLETE" where mmmm is the
accumulated error count expressed as a decimal number.

The line format for the title line is a function of the
environment in which MIDAS runs. The following Yescrip-
tion pertains to the standalone and MOS versions, with the
comments in parentheses referring to VORTEX. Beginning
with the first character position the format is illustrated
below.

Object Code Records

MIDAS produces object code which is input for the
microsimulator and the microutility programs. Logical
records of the object code are a fixed length of 60 words.
Word 1 is the record control word. Word 2 contains an
exclusive OR checksum of word 1 and the remaining words
of the record. Word 3 through 11 optionally contain a
program identification block. Words 12 through the end of
the record (or 3 through end of record if there is no
program identification block) contain data fields.
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Record Control Word Format

The format of the record control word is as follows:

15 14 13 12 11 10 210
1 ddd

9876543
al 1l bec 00ddddd

where a is 1 if the checksum is suppressed, b is 1 if not
starting record, c is 1 when it is not the last record, and d
is binary record number modulo 256.

Program ldentification Block

This block appears in words 3 through 11 of the starting
record of each program. Word 3 contains the highest value
of the program counter during the assembly, words 4
through 7 contain an eight-character ASCIl program
identification, and words 8 through 11 contain an eight-
character ASCIHl program creation date.

Data Field Format

Data fields contain either one- or four-word entries. One-
word entries are loader control words, and four-word
entries consist of data words.

The format of the loader control word is code in bits 13-15
and an address/count in the low-order 13 bits. A code of
zero instructs the loader to ignore this entry. One is the
code for setting the loading location counter to the vaiue
contained in bits O through 12. A value of two indicates
the following microinstructions should be loaded. The
number of microinstructions minus one is specified in bits
1 through 12,

Data Words

Data words contain microinstructions. Each microinstruc-
tion is comprised of four 16-bit words. Word 1 contains bits
63 through 48 of the microinstruction while word 4
contains bits 15 through O of the microinstruction. A
microinstruction will not be carried across a logical record
boundary. If insufficient space remains on a logical record
for the four-word microinstruction, the remaining space
will be ignored and the microinstruction started on the
next logical record.

4.8 ADDING MIDAS TO VORTEX

The micro assembler resides on the background library
under VORTEX. After system generation, the user must
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catalog it in the background library. The following
procedure is used to do this.

1. Position the Bl device to the microassembler object
material.

2. issue the following directives:
/LMGEN
TIDB,MIDAS,ONE, ZERO
LD,BI

LIB
END,BL,E

Detailed descriptions of these directives are in the VORTEX
Reference Manual.

4.9 ASSEMBLY ERROR MESSAGES

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and 10 errors terminate the assembly.

Each error code with the exception of |10 is followed by a
space and two decimal digits indicating the character
position the assembler was scanning when the error was
detected.

The error codes and their meanings are listed below.

Error
Code Meaning

AD  Address expression or associated fields in error
(see below)

CcC Continuation not expected
CE Numeric conversion error
DD lllegal redefinition of a symbol

ER Syntax error

EX An expression contained an illegal construction
FN Field number inconsistent with format
10 1/0 error

LC Program location counter setting exceeds the
maximum WCS page size (512 words)

MF Duplicate field reference

NR No memory available for addition of an entry to
assembler’s tables

NS No symbol in the label field where required
oP Operation field undefined

SE Symbol in label field has a value during pass 2 that
is different from the value determined in pass 1

SY Undefined symbol. A value of zero is assumed

SZ A value too large for the size of a field, or the fields
defined in a format statement do not equal 64 bits

The AD error may occur under these circumstances:

a. With the character pecinter in, or at the end of, an
address expression:

1. A test fail address is not on an even num-
bered word.

2. A field select origin address is not on an
even boundary.

3. The displacement between the test pass and
the test fail addresses is too great.

b. With the character pointer at the end of the
operand field:

1. Normal addressing mode and the FS or MT
or TF field is not equal to zero.

2. Test addressing mode is used and the TF
field is equal to zero.

3. Field select addressing is the mode and the
FS field is equal to zero.

4., Test and field select addressing mode and
either the FS or TF field equals to zero.

5. Page-jump addressing mode and either the
FS or TF field is not equal to zero.
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SECTION 5
CODING FROM FLOW DIAGRAMS
5.1 GENERAL Each column in the flow diagram will produce a single

assembler program statement. This transformation can
be performed as follows:

This section details the conversion of flow diagrams, (as 1. Fillin the label field if necessary, this will often be from

developed in section 3), into code which MIDAS accepts. the IDENT section.

As examples actual assembler listings of the sample 2. Choose either GEN or GMSK as format label. The latter,

microprograms discussed in section 3 are included. GMSK, is used only when the 16-bit literal/mask is
needed.

Flow diagram conversion is basically a matter of table- 3. Derive the appropriate address expression

lookup. Tables are included in this sectioq which list the 4. For each of the standard mnemonics in the column,
stz:jndard mnemonics and the corresponding assembler add the statements shown in the conversion tables.
code.

5. Replace any nonstandard mnemonics with appropriate
field value assignments.

Assembler code produced is given in two different formats. In addition to this translation, other assembler directives
The first format produces code using only the predefined must be included to set the location of the program in
assembler opcodes for the GEN or GMSK statements. The WCS. In doing this, addressing considerations must be
second format is based around user-defined opcodes taken into account. For example, in test addressing the
which follow the mnemonics developed thus far as closely failure branch must always be to an even location.

as possible. As these are not predefined, some burden is .

placed on the user to include the necessary EQU directives The following table (5-1) lists the standard mnemonics and
(these EQUs are available from Varian as a software part). the assembler code they produce. Following the table, the
However, the resulting code is considerably more readable EQU statements which define the format Il opcodes are
than that produced in the first format. listed in table 5-2.

Table 5-1. Conversion Table

Row Mnemonic Format | Format Il

IDENT None

MEMORY None

FUNCTION

MEMORY: IF,OVR MO 10(IF$OVR)

REQUEST, IF,ALU . IM4 10(IF$ALU)

ADDRESS IF,P IM8 10(1F$P)
IF,MIR IMC 10(IF$MIR)
OF,0OVR IM1 10(OF$0OVR)
OF,ALU IM5 10(OF$ALU)
OF,P M9 10(OF$P)
OF,MIR IMD 10(OF$MIR)
0S,0VR M2 10(OS$0OVR)
0S,ALU IM6 10(OS$ALU)
OSs,P IMA 10(0S$P)
OS,MIR IME 10(OS$MIR)
BS,0VR IM3 10(BS$0OVR)
BS,ALU M7 10(BS$ALU)
BS,P IMB 10(BS$P)
BS,MIR IMF 10(BS$MIR)
Unconditional SF1 (or SF2,TFO) 6(MEMC)[or

6(MEMCS$,5(0))

(continued)

5-1
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Row

ALU
INPUT A

ALU
INPUT B

ALU
OUTPUT

——@ varian data machines

Table 5-1. Conversion Table (continued)

Mnemonic

TESTT
TESTF
WAIT,MEMDN

Rn
Rn,SL
Rn,SR
P
ZERO
ONES

Rn
MIR
I0R
STAT
LIT,x
MSK,x

OPR

ORSE
OLSE
ORZF
OLZF

ZERO
ONES
TRNA
TRNB
INCA
INCB
DECA
DECB
ADD
SuB
SHFA
AND
OR
EOR
NOTA
NOTB
CcB

Format |

SF3
SF2 (and not TFO)
SFO,IM1

LAQ,AAN
LA2,AAn
LA3,AAN
LAl

LAO,SH1
LAOQ,SH2

LB0,BBn
LB1,BB1
LB1,BB2
LB1,BB3
LB3,MKy
LB2,MKy

LB1,BBO
LB1,BB4
LB1,BB5
LB1,BB6
LB1,BB7

FF3,MF1
FF3
FFF,MF1
FFA,MF1
CF3
FF1,CF3
FFF

FF9

FF9
FF6,CF3
FFC
FFB,MF1
FF1
FF6,MF1
FFO,MF1
FF5,MF1
FF2,CF3

Format II

6(TESTT)
6(TESTF)
6(SPEC), 10(WAITMD)

12(A$GPR),24(Rn)
12(A$GPRL),24(Rn)
12(A$GPRR),24(Rn)
12(A$P)
12(A$SPEC),22(AZERO)
12(A$SPEC),22(AONES)

Note: 1) when using
shifted general register
user must specify high-
low bits through SH field

2) when using the GMS
use 16(Rn) instead of 24(Rn)
and AKn instead of AA

11(B$GPR),23(Rn)
11(B$SPEC),23(MIR)
11(B$SPEC),23(I0R)
11(B$SPEC),23(STAT)
11(LIT), 15(y)
11(MSK),15(y)

Note: y is the one's
complement of x

11(B$SPEC),23(OPR)

11(B$SPEC),23(ORSE)
11(B$SPEC),23(0LSE)
11(B$SPEC),23(ORZF)
11(B$SPEC),23(0OLZF)

14(ZERO),15(LOG)
14(ONES)
14(TRNA),15(LOG)
14(TRNB),15(LOG)
14(INCA),16(CRY1)
14(INCB),16(CRY1)
14(DECA)
14(DECB)

14(ADD)
14(SUB),16(CRY1)
14(SHFA)
14(AND),15(LOG)
14(OR)
14(EOR),15(LOG)
14(NOTA),15(LOG)
14(NOTB),15(LOG)
14(TCB),16(CRY1)

Note: The mnemonics
INCB and TCB require
input A to be ZERO.

Mnemonic DECB require
input A to be ONES.
(continued)
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Row

ALU
DESTINATION

STATUS
SAMPLE

STATUS
TEST

ADDRESSING:

MODE,
ADDRESS

SPECIAL
ACTIONS

Table 51 Conversion Table (continued)

Mnemonic

Rn

SHFT
OVFL
ALU

OVFL
IOSR
SSW3
ssw2
SSW1
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QuOS

blank
FSEL
INT

PJMP to n:

1) using stack

2) without memory

3) with memory

POPJMP

DECODE

1) with IBR to |
2) without IBR to |

TESTT

TESTF

POUT

scouT
OPROUT

INCP

INCSC
INCP,OPROUT

Format |
WR1,AAN

VF1

Refer to Table 2-7

TFO,SF0,GF2

GFO
GF1
GF2

- GF3

GF4
GF5
GFé
GF7
GF8
GF9
GFA
GFB
GFC
GFD
GFE
GFF

/*
/F(base),FSx

user supplied

/N(word),TSn
/N(word),TSn,
SFO,TFO
/N(word),GF4,
SF2,TFO

TFO,SFO,IMD,
LB3,AA4,BBO

TFO,SFO,GF5
TFO,SFO,GF4

/T(pass,fail),
TF2

/T(pass,fail),
TF3
RF1
RF2
RF3
RF4
RF5
RF7

varian data machines @—

CODING FROM FLOW DIAGRAMS

Format ||
17(GPROUT),24(Rn)

19(S$SHFT)
TFO,SF0,7(S$ALU)

7(OVFL)
7(10SR)
7(SSW3)
7(SSW2)
7(SSW1)
7(TFIR)
7(ALUO)
7(ALUS5)
7(ALUC)
7(ALUZ)
7(SHFT)
7(MIRS)
7(SFTC)
7(GPRS)
7(NORM)
7(QUOS)

Note: TF field must
also be set in test
addressing.

/ﬂ
/F(base),FSx

user supplied

/P(word + page)

/P(word + page),
10(PJMP),SFO,TFO
/P(word + page),
7(PJMP$),6(MEMCS$),TFO

10(STACK),24(POPJMP),
LB3,TFO,SF0,BBO

5(0),6(0),7(DECOD$)
5(0),6(0),7(DECODE)

/T(pass,fail),5(TT)

/T(pass,fail),5(FT)

13(POUT)
13(SCOUT)
13(0OPROUT)
13(INCP)
13(INCSC)

RF7 (continued)
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Row

ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONES
AZERO
A$GPR
A$GPRL
A$GPRR
A$P
A$SPEC

BS$ALU
BS$MIR
BS$OVR
BS$P
B$GPR
B$SPEC

CRY1

DECA
DECB
DECODE
DECOD$

EOR

FT

_@ varian data machines

CODING FROM FLOW DIAGRAMS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

\

Table 5-1. Conversion Table (continued)

Mnemonic

SHFTOP,LFT
SHFTOP,RGHT

IBR to |
with decode
without decode

PUSH,x

POPDEL

Format |

SC1,WFO
SC1,WF1

TFO,SF0,GF5
TF0,SFO,GF1

TFO,SFO,IMD,
LB3,AK2,MKx

TFO0,SF0,IMD,
BB1,AA4,LB3

Format Il

18(SHFTOP),20(LFT)
18(SHFTOP),21(RGHT)

Note: on shifting OPR
XF and AA fields used
to determine high/low
bits.

TFO,SF0,7(DECODS$)
TFO,SFO,7(IBR$1)

10(STACK),16(PUSH),
15(x),LB3,TF0,SFO

10(STACK),23(POPDEL),
LB3,TFO,SFO,AA4

Table 5-2 is the assernbler directives needed for the user

defined

request as released software parts.

Table 5-2. User-Defined Opcodes

O 2L WNOaAaNXWUIOOW
o]

o]

- O M WX
o

W

GPROUT
GPRS

IBRS$I
IF$ALU
IF$MIR
IF$OVR
IF$P
INCA
INCB
INCP
INCSC
IOR
IOSR

LFT
LIT
LOG

MEMC$
MEMC
MIR
MIRS
MSK

NORM
NOTA
NOTB

OF$ALU
OF$MIR

opcodes of format Il. These are available on

EQU
EQU

M
o

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

O

B NUIE 2000 X & o

o

EQU
EQU
EQU

-w

EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU

EQU
EQU

[ S-Sy ]
o

0N o X

5
X'D
(continued)
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Table 5-2. User-Defined. Opcodes (continued)

OF$OVR
OF$P
OLZF
OLSE
ONES
OPR
OPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
OS$0OVR
OS$P
OVFL

PIMPS
PIMP
POPDEL
POPJMP
POUT
PUSH

QuOSs

RO
R1
R2
R3
R4
R5
R6
R7
RS
R9
RA
RB
RC
RD
RE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

HMEMMNYOONOUVETWN SO

=

O MM OO R AWOoOWWUNNLWL =
kY

N =2 aawE

<
o]

(cdntinued)

varian data machines __

*CODING FROM FLOW DIAGRAMS

RF EQU X'F
RGHT EQU 1
SCOUT  EQU 2
SFTC EQU X'c
SHFA EQU X'c
SHFT EQU X'A
SHFTOP EQU 1
SPEC EQU 0
SSW1 EQU 4
SSW2 EQU 3
SSW3 EQU 2
STACK EQU X'D
STAT EQU 3
SUB EQU 6
S$ALU  EQU 2
S$SHFT EQU 1
TCB EQU 2
TESTT EQU 3
TESTF EQU 2
TFIR EQU 5
TRNA EQU X'F
TRNB EQU X'A
TT EQU 2

WAITMD EQU

—_

ZERO EQU

5 2 EXAMPLES OF MICROPROGRAMS IN
ASSEMBLY LANGUAGE

The five examples of section 3 were coded using the
techniques outlined in this section. Comments on the

encoding and actual assembler listings follow.

The first three examples use the equates in. table 5-2.

5-5
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CODING FROM FLOW DIAGRAMS

5.2.1 BCS Entry Point Initialization

Since physical addresses were assigned at the flow diagram
level, the transformation was quite straightforward. Note
that a standard deck of all the EQU statements was used
though not all were needed.

0009
0008
0006
0007
0009
000B
0002
0001
QQo0
0002
0003
0001
0000
0007
000F
0003
000B
0000
0001
0003
000F
0009
0004
0005
0006
0003
0001
000D
0001
0004
000C
0000
0008
0000
0001
oood

0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
000B
0002
000E
0000
0005
0005
000D
0001
0009
0007
0005
0003
0000
0003
0001
0004
0006
0006
000E
0002

N EWN =

LR IR 2 2%

* % % B

*

ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONE
AZERO
A$GPR
AS$GPRL
ASGPRR
ASP
A$SPEC
BS$ALU
BS$MIR
BS$OVR
BS$P
B$GPR
B$SPEC
CRY1
DECA
DECB

.DECODE

DECODS$
EOR

FT
GPROUT
GPRS
IBRSI
IF$ALU
IF$MIR
IF$OVR
IFS$P
INCA
INCB
INCP

INCSC
IOR
IOSR
KoUuT
LFT
LIT
LOG
MEMC
MEMCS$
MIR
MIRS
MSK
NORM
NOTA
NOTB
OF$ALU
OF$MIR
OF$OVR
OF$P
OL2ZF
OLSE
ONES
OPR
OPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
OS$OVR

THIS IS INITIALIZATION FOR BCS ENTRY POINTS

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EAODON T aXawlNLEtOUXWa2OM WX NO A WNOANXONOOY

NN E S WOWUNO S XNUVNOXNN 2N WO s W

o

|

o

F

w

o

(continued)
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0000

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
Q00B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D

000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
0008
0009
000A
000B
0oo0C
000D
000E
000F
0001
0002
000C
000C
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000

125
126
127
128
129
130

132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

ossp
OVFL
PJIMP
PJIMPS$
POUT
Quos
RO
R1
R2
R3
R4
RS

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
SCouT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
TT
WAITMD
ZERO

SS1M
SS2M
SS3M

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU
EQU
EQU

ORG

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

>

VIEWNAOX 2EWO N
]

WAaNXXUNWNSONOAWNWEOaXXXNaXXXX XXoowo
>

X'13E
X'092
X'02D

0

/N(8S2M), 10(PIMP) ,
/N(S52M),10(PIMP),
/N(SS2M), 10(PJIMP) ,
/N(SS2M), 10(PJIMP),
/N(SS2M), 10(PJIMP),
/N(ss2M),10(PIMP),
/N{(SS2M),10(PIMP),
/N(SS2M), 10(PIMP),
/N(ss2M), 10(PJIMP),
/N(ss2M), 10(PJIMP),
/N(SS2M),10(PIMP),
/N(ss2M),10(PIMP),
/N(ss2M),10(pPJMP),
/N(SS2M), 10(PIMP),
/N(SS2M),10(PIMP),
/N(SS2M),10(PIMP),
/N(S882M), 10 (PJIMP),
/N(SS2M),10(PIMP),
/N(SS2M), 10(PJIMP),
/N(SS2M), 10(PIMP),
/N(8S2M),10(PIMP),
/N{SS2M), 10(PJIMP),
/N(882M),10{PIMP),
/N{SS2M),10(PIMP),
/N(sS2M),10(PJIMP),
/N(SS2M),10{PIMP),
/N(SS2M), 10(PIMP),
/N(ss2M),10{(PIMP),
/N(SS2M),10(PIMP),
/N(SS2M), 10(PIMP),

1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
100)
100)
1(0)
1(0)
1(0)
1(0)
1(0)
100)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
1(0)
100)
1(0)
100)

RESTART PIPELINE 3 P
MAINTAIN PIPELINE
DECODE NEXT INSTRUCTION (IN IBR)

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

varian data machines

ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
(continued)

CODING FROM FLOW DIAGRAMS

]
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CODING FROM FLOW DIAGRAMS

001E 0490000180000000
001F 0490000180000000

SYMBQOLS
0000 AS$GPR
0009 ADD
000B AND
0007 BS$ALU
000F DECA
0003 FT
000C IFS$MIR
0004 INCP
0000 LFT
0001 MIR
0005 NOTB
0005 OLSE
0001 OR
0002 OS$OVR
0001 POUT
0003 R3
0008 R8
000D RD
0006 S$OVFL
000A SHFT
002D ss3M
0006 SUB
000F TRNA

0002
ooo0s8
0002
000F
0009
0001
0000
0005
0003
000B
0005
0007
0004
000A
000F
o004
0009
0COE
0001
0001
o0ou
0002
000A

164

165

167
A$GPRL 0003
ALUC 0006
AONE 0001
BS$MIR 0003
DECB 0005
GPROUT 000D
IF$OVR 0008
INCSC 0002
LIT 0001
MIRS 0002
OF$ALU 000D
OLZF 0003
ORSE 0006
0ss$p 0000
QuUoSs 0000
RY 0005
R9 000A
RE 000F
S$SHFT 0002
SHFTOP 0000
SSW1 0003
TCB 0002
TRNB 0002

0 ERRORS ASSEMBLY COMPLETE

GEN

GEN
END
A$GPRR 0001
ALUO 0007
AZERO 0000
BS$OVR 000B
DECOD$ 0004
GPRS 0001
IF$P 0000
IOR 0001
LOG 0001
MSK 000E
OF$MIR 0001
ONES 0000
ORZF 0006
OVFL 0003
RO 0001
R5 0006
RA 000B
RF 0001
sSCOUT 000C
SPEC 013E
SSW2 0002
TESTF 0003
TT 0001

/N(SS2M) 1
/N(SS2M) ,10(PJIMP),

AS$P
ALUS
B$GPR
BS$P
DECODE
IBRS$I
INCA
IOSR
MEMC
NORM
OF$0VR
OPR
OS$ALU
PJIMP
R1

R6

RB
RGHT
SFTC
SS1M
SSW3
TESTT
WAITMD

0000
0009
0001
0003
0006
o004
0001
0006
0002
0000
0009
0003
000E
0004
0002
0007
ooocC
0002
agocC
0092
0003
0005
0003

0(PJIMP),

AS$SPEC
ALUZ
B$SPEC
CRY1
EOR
IF$ALU
INCB
KOUT
MEMCS$
NOTA
OF$P
OPROUT
OS$MIR
PJIMP$
R2

R7

RC
S$ALU
SHFA
SS2M
STAT
TFIR
ZERO

1(0)
1(0)

RETURN TO ROM
RETURN TO ROM
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The subroutine was assigned physical location 101, page 1
as its first address. This places word MBMA on an even
word, as it must be. Since the microroutine is on page 1,
the need for the page jump from the BCS entry point no
longer exists. It was included never the less.

1 *
2 x :
3 x MEMORY-TO-MEMORY BLOCK MOVE
4 o*
5 % CALL: BCS TO WORD 0
6 *
7 * PARAMETERS: A REG - 'TO' ADDRESS
8 * B REG - 'FROM' ADDRESS
9 * X REG - BLOCK LENGTH
10 *
11 x
0001 13 R1 EQU 1
14 *
15 * THE FOLLOWING ARE SUPPLEMENTAL OPCODES
16 * FOR USE WITH THE MICRO ASSEMBLER
17 *
18 *
0009 19 ADD EQU 9
0008 20 ALUC EQU 8
0006 21 ALUO  EQU 6
0007 22 ALUS EQU 7
0009 23 ALUZ 'EQU 9
000B 24 AND EQU X'B
0002 25 AONE EQU 2
0001 26 AZERO EQU 1
0000 27 ASGPR EQU 0
0002 28 AS$GPRL EQU 2
0003 29 AS$GPRR EQU .3
000t 30 AS$P EQU 1
0000 31 AS$SPEC EQU 0
0007 32 BS$ALU EQU 7
000F 33 BS$MIR EQU X'F
0003 34 BS$OVR EQU 3
000B 35 BS$P EQU X'B
0000 36 BS$GPR EQU 0
0001 37 BS$SPEC EQU 1
0003 38 CRY1 EQU 3
000F 39 DECA EQU X'F
0009 40 DECB EQU 9
0004 41 DECODE EQU 4
0005 42 DECODS$ EQU 5
0006 43 EOR EQU 6
0003 44 FT EQU 3
0001 45 GPROUT EQU 1
000D 46 GPRS EQU X'D
0001 47 1IBR$I EQU 1
0004 48 IF$ALU EQU [
000C 49 IF$MIR EQU X'c
0000 50 IF$OVR EQU 0
0008 51 IF$P EQU 8
0000 52 1INCA  EQU 0
0001 53 INCB EQU 1
0004 54 INCP EQU 4
0005 55 INCSC EQU 5
0002 56 IOR EQU 2
0001 57 IOSR EQU 1
0006 58 KOUT EQU 6
0000 59 LFT EQU 0
0003 60 LIT EQU 3
0001 61 LOG EQU 1
0001 62 MEMC EQU 1
0002 63 MEMC$ EQU 2
0001 64 MIR EQU 1
000B 65 MIRS EQU X'B
0002 66 MSK EQU 2
000E 67 NORM EQU X'E
0000 68 NOTA  EQU 0
0005 69 NOTB EQU 5
0005 70 OF$ALU EQU 5
000D 71 OF$MIR EQU X'D
0001 72 OF$OVR EQU 1
0009 73 OF$P EQU - 9
0007 74 OLZF EQU 7
(continued)

5.2.2 Memory-to-Memory Block Move

CODING FROM FLOW DIAGRAMS
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0005
0003
0000
0003
0001
0004
0006
0006
000E
0002
000A
0000
0003
0004
0001
000F
0000
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
C00E
000F
0001
0002
0oo0C
ooocC
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0000

0000 1808000180000000

0101

0101 0810000008F90007

0102 0818000000F10000

129

131
132
133
134
135
136

138

140
141

143
145
146
147
149

151
152

154

156
157

159

161
162

OLSE
ONES
OPR
OPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
OS$OVR
os$p
OVFL
PJMP
PJIMP$
POUT
Quos

R2

R3

R4

RS

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
sSCouT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB

WAITMD
ZERO

SS1M
SS2M
SS3M

*

*

*

MBM

*

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

'A
'B

'D
'E
'F

'C
'c
'A

WalNXXOUNWNaONOUWUNWEO XXMM aXXMXMXXNOONNUNSTWNOX S FWOXNXOAINSE aWwoww
a

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X'13E RESTART PIPELINE @ P

EQU X'092 ' MAINTAIN PIPELINE

EQU X'02D DECODE NEXT INSTRUCTION (IN IBR)}
ORG 0

FOLLOWING IS BCS ENTRY POINT

GEN /N(MBM) , 10(PJIMP), 1(1) BRANCH TO BLOCK MOVE ROUTINE

FOLLOWING IS ACTUAL BLOCK MOVE ROUTINE

*

ORG X'101

SAVE P IN R7

GEN /%*,12(A$P), 14 (TRNA), 15(LOG), 17 (GPROUT) , 24 (R7)

DECR 'TO' ADDR

GEN /*,12(A$GPR) ,24(R0O), 14(DECA), 17 (GPROUT)

DECR 'FROM' ADDR ; PUT IT IN P
(continued)
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CODING FROM FLOW DIAGRAMS

0103 0820000001F00001 164 GEN /*,12(A$GPR) ,24(R1), 14(DECA), 13(POUT)
166 *
167 * FIRST LOOP MICROWORD; STORE AT 'TO'; REQUEST FETCH OF INCR 'FROM'
169 MBMA - GEN /%*,10(OF$P),6(MEMC),11(B$SPEC),23(MIR), 14(TRNB), 15(LOG),
0104 08280404ALA80010 170 C13(INCP) -
172 *
173 = SECOND LOOP MICROWORD; DECR BLOCK LENGTH; SAMPLE RESULT FOR TEST
0105 0830008000F10002 175 GEN /*,12(A$GPR) ,24(R2), 14 (DECA), 17 (GPROUT) , 7 ( S$ALU)
177 *
178 * FINAL LOOP MICROWORD; EXIT OR CONTINUE THE LOOP WITH REQUEST
179 = FOR A STORE AT INCREMENTED 'TO' ADDR
181 GEN /T(MBMB,MBMA) ,5(TT), 10(0S$ALU) ,6(TESTF),
0106 283829C300070000 182 €12(A$GPR), 24 (R0), 14(INCA), 16 (CRY1), 17 (GPROUT), 7 (ALUS)
184 =*
185 * EXIT MICROWORD ; RESTORE P AND THE PIPELINE
187 MBMB GEN /N(SS3M),7(PJIMP$),1(0),10(IF$ALU),6(MEMCS),5(0),
0107 0168090201060007 188 C12(A$GPR) ,24(R7), 14 (INCA),16(CRY 1), 13(POUT)
190 END
SYMBOLS
0000 ASGPR 0002 ASGPRL 0003 ASGPRR 0001 AS$P 0000 A$SPEC
0009 ADD 0008 ALUC 0006 ALUO 0007 ALUS 0009 ALUZ
000B AND 0002 AONE 0001 AZERO 0000 B$GPR 0001 B$SPEC
0007 BS$ALU OOOF BS$MIR 0003 BS$OVR 000B BS$P 0003 CRY1
000F DECA 0009 DECB 0005 DECOD$ 0004 DECODE 0006 EOR
0003 FT 0001 GPROUT 000D GPRS 0001 IBR$I 0004 IFS$ALU
000C IF$MIR 0000 IF$OVR 0008 IFS$P 0000 INCA 0001 INCB
0004 INCP 0005 INCSC 0002 IOR 0001 IOSR 0006 KOUT
0000 LFT 0003 LIT 000! LOG 0101 MBM 0104 MBMA
0107 MBMB 0001 MEMC 0002 MEMC$ 0001 MIR 000B MIRS
0002 MSK 000E NORM 0000 NOTA 0005 NOTB 0005 OF$ALU
000D OF$MIR 0001 OF$OVR 0009 OF$P 0005 OLSE 0007 OLZF
0003 ONES 0000 OPR 0003 OPROUT 0001 OR 0004 ORSE
0006 ORZF 0006 OS$ALU 00OE OS$MIR 0002 OS$OVR O00OA OS$P
0000 OVFL 0003 PJIMP 0004 PJMP$ 0001 POUT 000F QUOS
0000 RO 0001 R1 0002 R2 0003 R3 0004 RY
0005 RS 0006 R6 0007 R7 0008 R8 0009 R9
000A RA 000B RB 000C RC 000D RD 000E RE
000F RF 0001 RGHT 0002 S$ALU 0006 S$OVFL 0001 S$SHFT
0002 SCOUT 000C SFTC 000C SHFA 000A SHFT 0001 SHFTOP
0000 SPEC 013E SS1M 0092 S52M 002D SS3M 0004 SSW1
0003 SSW2 0002 SSW3 0003 STAT 0006 SUB 0002 TCB
0002 TESTF 0003 TESTT 0005 TFIR 000F TRNA 000A TRNB
0002 TT 0001 WAITMD 0003 ZERO

0 ERRORS ASSEMBLY COMPLETE
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0009
0008
0006
0007
0009
000B
0002
0001
0000
0002
0003
0001
0000
0007
000F
0003
000B
0000
0001
0003
000F
0009
0004
0005
0006
0003
0001
000D
0001
0004
000C
0000
0008
0000
0001
0004

0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
000B
0002
000E
0000
0005
0005
000D
0001
0009
0007
0005
0003

5.2.3 Reentrant Subroutine Call and Return

These routines were assigned locations beginning at word
110, page 1. As with the previous example, the page jumps
are no longer necessary since the routines are on the same
page as their BCS entry points. In this case they were
simply coded using normal addressing.

1 =
2 %

3 ox

4o

5

[y *

7 *

8 *

9

10 =*

12 *

13 *

14 =

15 =*

16 *

17 ADD

18 ALUC
19 ALUO
20 ALUS
21 ALUZ
22 AND

23 AONE
24  AZERO
25 A$GPR
26 ASGPRL
27 ASGPRR
28 ASP
29 AS$SPEC
30 BS$ALU
31 BSS$MIR
32 BS$OVR
33 BSS$P
34 BS$GPR
35 B$SPEC
36 CRY!
37 DECA
38 DECB
39 DECODE
40 DECODS$
41 EOR

42 FT
43 GPROUT
44 GPRS
45 IBRS$I
46 IF$ALU
47 IF$MIR
48 TIF$OVR
49 IFS$P
50 INCA
51 INCB
52 INCP
53 INCSC
54 IOR

55 IOSR
56 KOUT
57 LFT

58 LIT

59 LOG

60 MEMC
61 MEMCS$
62 MIR

63 MIRS
64 MSK

65 NORM
66 NOTA
67 NOTB
68 OF$ALU

69 OF$MIR
70 OF$O0OVR

71 OFs$p
72 OLZF
73 OLSE
74 ONES

REENTRANT SUBROUTINE CALL AND RETURN

CALL:

FOR SUBROUTINE CALL : BCS TO WORD 1
FOR SUBROUTINE RETURN: BCS TO WORD 2

PARAMETERS:

B REGISTER - STACK POINTER

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

FaeOMOXEaX AW UEUXWaOXWXNOaAWNOaNXONO®W

WUNOUaSXUNUOXNDXaNaawwonh=sNbWn

(continued)
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0000
0003
0001
0004
0006
0006
000E
0002
000A
0000
0003
0004
0001
COOF
0000
0001
0002
0003
o004
0005

0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0001
0002
000C
00o0C
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0001

0001 0880040300F10001

0t10

0110 0888000080F80002

PN NN

130
131
132
133
134
135

137
138
139
141

143
144

146
147

149
150
151
153

155
156

158

OPR
OPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
O0S$0OVR
0s$pP
OVFL
PJIMP
PIMPS
POUT
Quos
RO

R1

R2

R3

RY

R5

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
scour
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$OVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
T
WAITMD
ZERO

SS1M
SS2M
SS3M

*

*

* ¥

LAB1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

>

NMEWNaAOXaAaDWwoOoXNDXOOE awo
o]

EQU
EQU
EQU
EQU
EQU
EQU
EQU -
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

TROOQD

'C

A

WaNXXUNWNSONOAWNWEOaXXXNaXXXXXMXOONT o
o

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X'13E RESTART PIPELINE 3 P
EQU X'092 MAINTAIN PIPELINE
EQU X'02D DECODE NEXT INSTRUCTION (IN IBR)

FOLLOWING IS CODE FOR SUBROUTINE CALL

ORG 1

BCS ENTRY POINT PUSHES OLD R2 ON STACK

GEN /N(LAB1),10(0S$ALU) ,6(MEMC), 12(A$GPR),24(R1), 14(DECA),

C17(GPROUT)

REST OF ROUTINE

ORG X110

WAIT ON STORE OF R2

GEN /*,6(SPEC), 10 (WAITMD)

, 12(A$GPR),24(R2), 14 (TRNA), 15(LOG)

varian data machines —

CODING FROM FLOW DIAGRAMS

(continued)
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0111 0890040608070002

0112 0168090221160110

0002

0002 08AB040201F80002

0115

0115 08B0040280F80001

0116 08BB0O40404070001

0117 00000141A0A90012

SYMBOLS

0000 ASGPR 0002
0009 ADD 0008
000B AND 0002
0007 BSS$SALU 000F
000F DECA 0009
0003 FT 0001
000C IFS$MIR 0000
0004 INCP 0005
0110 LAB1 0115
0001 MEMC 0002
000E NORM 0000
00017 OF$OVR 0009
0000 OPR 0003
0006 OSSALU 000E
0003 PJIMP o004
0001 R1 0002
0006 R6 0007
000B RB 0o0o0C
0001 RGHT 0002
000C SFTC 000C
013E SS1M 0092
0002 SSW3 0003
0003 TESTT 0005
0001 WAITMD 0003

FETCH FIRST INSTRUCTION OF SUBR ;

FETCH SECOND INST OF SUBR;

STORE INCR P IN R2

/*,10(IF$MIR) ,6 (MEMC), 12(A$P), 14(INCA), 16 (CRY1),
C17 (GPROUT) , 24 (R2)

SET NEW P; BACK TO ROM

/N(ss3M),7(PJMP$),1(0),10(IF$ALU), 6 (MEMCS),5(0),
C12(AS$SPEC),22(AZERO),
C11(B$SPEC),23(MIR), 14 (INCB),16(CRY1), 13(POUT)

FOLLOWING IS CODE FOR SUBROUTINE RETURN

BCS ENTRY POINT -~ BEGINS FETCH OF INST AT RETURN ADDRESS

/N(LAB2), 10(IF$ALU),6(MEMC), 12(A$GFR),24(R2),
C14(TRNA), 15(LOG), 13(POUT)

REST OF THE ROUTINE

X'115

FETCH OLD R2 VALUE FROM STACK

FETCH SECOND INSTRUCTION AT RETURN ADDRESS ;

/*,10(OF$ALU), 6 (MEMC), 12{A$GPR) ,24(R1), 14 (TRNA), 15(LOG)

INCR STK PTR

/%*,10(IF$P),6(MEMC), 12(A$GPR) ,24(R1), 14 (INCA), 16(CRY1),
C17 (GPROUT) , 13 (INCP)

RESTORE R2 ;

160 =*

161 *

163 GEN

164

166 *

167 *

169 GEN

170

171

173 =*

174 =

175 =

177 ORG

179 =

180 =*

182 GEN

183

185 =*

186 =*

187 *

189 ORG

191 =

192

194 LAB2 GEN

196 *

197 =

199 GEN

200

202 »

203 *

205 GEN,

206

208 END
A$GPRL 0003 A$GPRR 0001
ALUC 0006 ALUO 0007
AONE 0001 AZERO 0000
BS$MIR 0003 BS$OVR 000B
DECB 0005 DECOD$ 0004
GPROUT 000D GPRS 0001
IF$OVR 0008 IFS$P 0000
INCSC 0002 IOR 0001
LAB2 0000 LFT 0003
MEMCS$ 0001 MIR 000B
NOTA 0005 NOTB 0005
OF$P 0005 OLSE 0007
OPROUT 0001 OR 0004
OS$MIR 0002 OS$OVR 000A
PJMP$ 0001 POUT 000F
R2 0003 R3 0004
R7 0008 RS 0009
RC 000D RD 000E
S$ALU 0006 S$OVFL 0001
SHFA 000A SHFT 0001
SS2M 002D SS3M 0004
STAT 0006 SUB 0002
TFIR 000F TRNA 000A
ZERO

0 ERRORS ASSEMBLY COMPLETE

0(PJMP) , 1
C14 (TRNB) , 1

A$P
ALUS
B$GPR
BS$P
DECODE
IBRSI
INCA
IOSR
LIT
MIRS
OF$ALU
OLZF
ORSE
OS$P
QuUos
R4

R9

RE
S$SHFT
SHFTOP
SswWi1
TCB
TRNB

0000
0009
0001
0003
0006
0004
0001
0006
0001
0002
000D
0003
0006
0000
0000
0005
000A
000F
0002
0000
0003
0002
0002

BACK TO ROM

,7(DECOD$), 11(B$SPEC),23(MIR),

0)
(LOG), 17 (GPROUT) , 24 (R2)

A$SPEC
ALUZ
B$SPEC
CRY1
EOR
IFS$ALU
INCB
KOUuT
LOG
MSK
OF$MIR
ONES
ORZF
OVFL
RO

RS

RA

RF
scouT
SPEC
SSW2
TESTF
TT




0000

0000 06100040404000000

0010

0010 0100040404000000

0020

0020 0108000023A80010

0021 01100402A0900001

0022 4118043404000010

0023 000003C1A0910000

SYMBOLS
0000 AD1 0010 AD1A
0023 ADS

varian data machines

CODING FROM FLOW DIAGRAMS

5.2.4 64K Add to General-Purpose Register

1 *ADD TO ANY REGISTER FROM 64K MEMORY INDEX BY R1

2 *

3 ORG 0

L

5 AD1 GEN /N(AD2),SF1,IM8,RF§

6 *

7 *THIS ENTRY USED FOR EVEN REGISTER ADDRESSES.

8 *INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
9 *

10 ORG Xx'010

11 %

12 ADIA GEN /N(AD2),SF1,IM8,RFY

13 *

14 *THIS ENTRY USED FOR ODD REGISTER ADDRESSES.

15 *INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
16  *

17 ORG X'020

18 *

19 AD2 GEN /#*,LB1,RF3,FFA,MF1,BB1
20 *
21 *TRANSFER MEMORY INPUT REGISTER TO OPERAND REGISTER TO PREVENT LOSS
22 *DUE TO PREVIOUSLY INITIATED FETCH. THIS IS THE BASE ADDRESS.
23 *
24 AD3 GEN /%,SF1,IM5,LB1,LAO0,FF9,AA1
25 *
26 *PERFORM INDEXING BY ADDING R1 TO OPERAND REGISTER. INITIATE OPERAND
27 *FETCH USING ALU OUTPUT.
28 *
29 ADY GEN /*,TS4 ,MR1,AB2,BB1,SF1,IM8,RF4
30 *
31 *FIELD SELECT REGISTER SPECIFICATION FROM INSTRUCTION BITS 4-7 TO
32 *A FIELD OF MICROINSTRUCTION. SET B FIELD TO SELECT MEMORY INPUT
33 *REGISTER. INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED
34 *PROGRAM COUNTER.
35 =*
36 AD5 GEN /P(X'0000),LB1,LAO,FF9,GFF,WR1,IM3
37 %
38 *ADD CONTENTS OF MEMORY INPUT REGISTER TO THAT OF PREVIOUSLY SELECTED
39 *REGISTER AND STORE BACK THE SUM. PAGE BRANCH TO ZERO AND DECODE
40 *INSTRUCTION PREVIOUSLY FETCHED. OVERFLOW AND CONDITION CODES ARE
41 *SAMPLED. TRANSFER INSTRUCTION BUFFER TO INSTRUCTION REGISTER.
42 *
43 END

0020 AD2 0021 AD3 0022 ADY

0 ERRORS ASSEMBLY COMPLETE

=
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5.2.5 Cyclic Redundancy Check Generation

*THIS MICROPROGRAM COMPUTES THE CYCLIC REDUNDANCY CHECK WORD ON A

1
2 *PACKED BYTE ARRAY USING THE POLYNOMIAL:
3 * X**16+X** 154+ X*%2+1
4 *ENTRY IS VIA A BCS TO LOCATION 0 OF PAGE 1
5 *THE WORD FOLLOWING THE BCS IS THE DATA ARRAY ADDRESS
6 *THE WORD FOLLOWING THE DATA ARRAY ADDRESS IS THE BYTE COUNT
7 *
8 *THE 16 BIT CRC IS LEFT IN RO
9 *RO,R1,AND R2 ARE ALL USED BY THIS INSTRUCTION (A,B,X). RF IS ALSO USED.
10 *R0O IS THE CURRENT CRC
11 *R1 IS THE CURRENT WORD ADDRESS OF THE DATA
12 *R2 IS THE CURRENT BYTE COUNT
13 *RF CONTAINS THE CRC POLYNOMIAL B'1000000000000101
14 *THE MICROPROGRAM MAY BE INTERRUPTED AFTER EVERY TWO BYTES ARE PROCESSED
15 =*IF THE OVERFLOW FLAG IS SET UPON ENTRY THE CURRENT VALUES OF R1 AND
16 *R2 ARE USED INSTEAD OF THOSE SPECIFIED BY MEMORY CONTENTS.
17 *THE ACCUMULATOR (RO) SHOULD BE CLEARED PRIOR TC ENTRY UNLESS CRC IS TO
18 *BE ACCUMULATED WITH A PRIOR CRC VALUE.
19 *
20 *
21 *TYPICAL ENTRY SEQUENCE 1IS:
22 * TZA
23 = ROF
24 = DATA 0105000
25 = DATA ADDR
26 * DATA COUNT
27 *
28 =
29 *CRC GENERATION
30 =x*
0000 31 ORG X'0
0000 01083804E7A7FFAF 32 CRCt GMSK /T(CRC2,CRC1A) ,TF3,SF2,IM9,LB3,RF7,FFA,MK7FFA, AKF
33 = :

34 *ENTRY IS FROM DECODE OF THE BCS. THE ADDRESS FETCH HAS BEEN INITIATED.
35 *QVERFLOW FLAG IS TESTED TC DETERMINE IF INSTRUCTION WAS INTERRUPTED
36 *FETCH OF BYTE COUNT 1S INITIATED USING INCREMENTED PROGRAM COUNTER
37 *THE POLYNOMIAL IS PLACED IN OPR
38 *IF OVERFLOW IS ON GO TO CRC1A OTHERWISE CRC2
*

39
0020 40 ORG X'020
0020 0110040280A80010 41 CRC1A GEN /N(CRC17),SF1,IM5,FFA,BB1,MF1
42 *

43 *COME HERE IF OVERFLOW FLAG WAS ON WHEN INSTRUCTION WAS FETCHED
44 *FETCH DATA BYTE PAIR
*

45

0021 0198000020A90011 46 CRC2  GEN /N(CRC3) ,LB1,FFA,WR1,BB1,AA1,MF 1
47 x
48 *SAVE DATA ARRAY ADDRESS IN R1 (FROM MIR)
49 =

0022 01380000E2A00070 50 CRC17 GMSK /N(CRC6),IM1,LB3,RF2,FFA,MK0O007
51 =

52 *SET SHIFT COUNTERVTO -8
53 *WAIT FOR MEMORY DONE FROM DATA FETCH

sS4 =
0023 0120008020A90012 S5 CRCH GEN /*,GF2,LB1,FFA,BB1,MF1,AA2, WR1
56

57 *SAVE BYTE COUNT IN R2
58 *SAMPLE ALU STATUS TO CHECK FOR ZERO BYTE COUNT

59 =
0024 31282240E2A00070 60 CRCS GMSK /T(CRC18,CRC5A),TF2,GF9,IM1,LB3,RF2,FFA,MK0007
61 *

62 *PUT -8 IN SHIFT COUNTER (8 BITS PER BYTE)

63 *TEST ALU ZERO STATUS FLAG TO SEE IF BYTE COUNT WAS ZERO
64 *WAIT FOR MEMORY DONE FROM DATA FETCH

65 *IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRCSA

66 *
0025 0158050404000000 67 CRC18 GEN /N(CRC19) ,SF1,GF4,IM8,RF4
68 *

69 *WHEN BYTE COUNT WENT TO ZERO RESET OVERFLOW TO INDICATE COMPLETION
70 *START NEXT INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER
*

0026 0138000020A9000F ;; CRC5A GEN /% ,FFA,MF1,AAF ,WR1,LB1
;z :MOVE POLYNOMIAL (IN OPR) TO RF

0027 0150000023A80010 ;2 ZRCG GEN /N(CRC7) ,LB1,RF3,FFA,BB1,MF1
;g :TRANSFER DATA BYTES FROM MIR TO OPR

0028 01500000006900F0 §§ §RC9 GEN /ﬁ(CRC7),FF6,HF1,HR1,BBF

82 *THIS IS A CORRECTION CYCLE
83 *R0 TO ALU INPUT A

(continued)
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0029

0190808000610032

002A 714823001569DAFO

002B

002C

002D
002E

002F

0030

0031

0032

0033

0034

0035

0036
0036

0037
0037

o038

0490090000000000

01780000692900030

0178050404000000
4110800000000000

0180000100000000

01900000006900F0

6168224000070001

D128224062A00070

0118048280A80010

4190800000000000

41F0808000610032

07F8000180000000

71FC012700000000

01D00000006900F0

PPN P (Y
PN g = X =X =]
(=R ]

ONOANEWN =

_——
NNNDN =
wh=0wv

124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
133
140
141
142
143
im
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

CODING FROM FLOW DIAGRAMS

*RF TO ALU INPUT B

*EXCLUSIVE OR ALU INPUTS TO RO

* .

CRC10 GEN 2(X'032) ,MTO0,FS2,GF2,FF6,MF0,AA2,BB3,WR1
* .

*AFTER LAST BIT IS PROCESSED TEST DSB FLAG FOR A CORRECTION CYCLE

*DECREMENT BYTE COUNT

*SAMPLE ALU STATUS TO ALLOW CHECK FOR BYTE COUNT ZERO

*IF CORRECTION CYCLE NECESSARY GO TO CRC10A OTHERWISE CRC11

* -

CRC?7 GEN -/T(CRC10,CRC8),TF2,GFC,LA2,RF5,FF6,MF1,WR1,S8C1,VF1,
CXF3,SH2,BBF

*

*SHIFT RO LEFT TO ALU INPUT A

*SHIFT OPR LEFT

*RO(15) TO SHIFT FLAG (DSB)

*OPR(15) TO ALU .INPUT A BIT 00

*POLYNOMIAL (RF).TO ALU INPUT B

*EXCLUSIVE OR ALU INPUTS.TO RO

*INCREMENT SHIFT.COUNTER

*TEST FOR SHIFT- COUNTER OVERFLOW, IF OVERFLOW GO TO CRC8 OTHERWISE CRC10

*

CRC19 GEN '/P(X'0092),SF2,GF4

*

*PAGE JUMP TO-PAGE 0 LOC 060 (SS2M)

*
CRC22 GMSK /N(CRC23),LB3,LA1,RF1,FF9,MK0003
. . “3 >
*SUBTRACT 4 FROM PROGRAM COUNTER TO CAUSE REFETCH OF THE BCS INSTRUCTION
*AFTER INTERRUPT PROCESSING

*

CRC24 GEN . /N(CRC23),SF1,GF4,IM8,RFY

CRC8 GEN /F(CRCY9),FS2,2(X'022),TS4

*

*TEST SHIFT (DSB) FLAG TO SEE IF CORRECTION CYCLE IS NEEDED. IF BIT 15
#0OF THE OLD CRC WAS A ZERO THE EXCLUSIVE OR PERFORMED AT CRC7 MUST

#BE CANCELLED. IF DSB WAS 1 GO TO CRC7 OTHERWISE CRC10

*

CRC23 GEN /N(CRC25) ,IM2

*

*WAIT FOR IO DONE
*
CRC10A GEN /N(CRC11) ,FF6 ,MF1,WR1,BBF

*
*THIS IS CORRECTION CYCLE SIMILAR TO CRC8
x .

CRC21 GEN /T(CRC24,CRC22) ,TF2,GF9,FF0,MF0,CF3,WR1,AA1

*

*INCREMENT DATA ARRAY ADDRESS (R1)

*TEST ALU ZERO FLAG FOR ZERO BYTE COUNT IF ALU ZERO IS ON GO TO CRC24
*OTHERWISE CRC22 :

M -

CRC11 GMSK /T(CRC18,CRC12),TF2,GF9,LB3,RF2,FFA,MK000"

*

*PUT -8 INTO SHIFT COUNTER

*TEST ALU ZERO STATUS FLAG TO SEE IF RIGHT BYTE SHOULD BE PROCESSED
*IF SO GO TO CRCJ12 OTHERWISE CRC18

*
CRC3  GEN /N(CRCH4) ,SF1,GF2,IM5,FFA,BB1,MF1
. -

*USING R1 AS ADDRESS INITIATE FETCH OF TWO BYTES.
*SET OVERFLOW FLAG TO INDICATE INCOMPLETE INSTRUCTION
*

CRC13 GEN . /F(CRC14) ,FS2,2(X'032),TS4
*

*IDENTICAL TO CRCS8

*

CRC15 GEN 1(X'4),2(X'03E) ,MT0,FS2,GF2,FF6,MF0,AA2,BB3,WR1
*

*PERFORM OPERATIONS OF CRC10. IF DSB IS SET GO TO CRC15B OTHERWISE
*CRC15A
*

ORG - X'036 -
CRC25 GEN /P(X'00FF), IM3
*PAGE JUMP TO PAGE 0 LOC OFF (INT2)
*
ORG X'037
CRC20 GEN 2(CRC16) ,1(X'7) ,MT1,GF4,MR1, IME
*

*WHEN CRC15 DETECTS AN INTERRUPT CHECK IT AGAIN TO SEE IF IT WAS
*OVERRIDEN BY A DMA TRAP.

*START IO INTERRUPT SEQUENCE

*IF INTERRUPT GO TO CRC21 OTHERWISE CRC16

*

CRC14 GEN /N{(CRC12) ,FF6,MF1,WR1,BBF

*

(continued)
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003E

003E 71F8010600000000

003F 11282A4280070001

003A

003A 21A823001569DAFO

003C
003C 01F00000006900F0

SYMBOLS

0000 CRC1 0029 CRC10
0034 CRC13 0038 CRC14
003F CRC16 0022 CRC17
0021 CRC2 0037 CRC20
002D CRC24 0036 CRC25
0026 CRC5A 0027 CRC6

varian data machines

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

CODING FRROM FLOW DIAGRAMS

*IDENTICAL TO CRC9Y
*
ORG X'03E
»
CRC15B GEN 1(X'7),2(X'03F),GF4,IMC
*

*LOOK FOR INTERRUPT
*

*

CRC16 GEN /T(CRC18,CRC17),TF2,SF2,GF9,IM5,FF0,CF3,AA1,WR1

*

*INCREMENT ARRAY ADDRESS (R1) . .

*FETCH NEXT BYTE PAIR IF ALU ZERO FLAG IS OFF (BYTE COUNT NOT ZERO)
*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC17

*

ORG X'03A : 3
CRC12 GEN /T(CRC15,CRC13),TF2,GFC,LA2,RF5,FF6,MF1,WR1,SC1,XF3,
CSH2,BBF,VF1
*
*IDENTICAL TO CRC?. THIS PROCESSES THE RIGHT BYTE OF DATA WHICH HAS
*BEEN SHIFTED LEFT IN OPR
*x
ORG X'03C .
CRC15A GEN /N(CRC15B) ,FF6,MF1,WR1,BBF
*

*IDENTICAL TO CRC10A
*

*
END

0030 CRC10A 0032 CRC11 003A CRC12

0035 CRC15 003C CRC15A 003E CRC15B

0025 CRC18 002B CRC19 0020 CRCI1A

0031 CRC21 002C CRC22 002F CRC23

0033 CRC3 0023 CRCH 0024 CRCS -
002A CRC? 002E CRCS8 0028 CRCH

0 ERRORS ASSEMBLY COMPLETE




SECTION 6 -
MICROPROGRAM SIMULATOR, MICSIM

The Microprogram Simulator (MICSIM) helps the user find
and correct microprogram bugs. Any program develop-
ment includes some time to verify that the program solves
the problem. Testing may find that it does not. Running
the microprogram simulator aids in both the discovery and
correction of microprogram errors.

When the microprogram is free of errors, the simulator can

be used to determine the performance before the design is
final, measure the efficiency of the technique and evaluate
changes and extensions.

MICSIM runs on all V73 system. Microprograms can also

be simulated on 620 systems without WCS. The hardware
requirements depend upon the operating system used.

6.1 BASIC ELEMENTS

In general this simulator provides the basic facilities for
inputting, modifying and outputting the contents of the
simulated control store, tracing, and address halt of the’
microinstructions.

The fundamental program blocks of the simulator are:

a. Simulation control, inputs the simulator commands
and directs their execution.

b. Simulator command execution represents the actual
execution of the simulator commands.

c. Microinstruction execution, executes a micro-
instruction by simulating its effect.

d. Simulation information accumulator and list outpu't.

The relationships of the basic program blocks are illus-
trated in figure 6-1.

Note: The 170 functions of the computer are not simulated.

6.2 GENERAL FORM OF STATEMENTS
The simulator processes three types of directives. All
directives begin with a single letter indicating the type.
The following types of actions are handled by the
simulator:

a. initialize simulator and storage

b. change and examine storage

c. trace, dump and contro! execution

Table 6-1 summarizes the directives for quick reference;
section 6.7 provides detailed description and examples.

VIII-1810

A.
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MICRO
SIMULATION
CONTROL

SIMULATOR
CONTROL
EXECUTIVE

INTERFACE
PROGRAM

OPERATING
SYSTEM

PERIPHERAL
1/O

Figure 6-1. Microsimulator Control Flow

Table 6-1. Summary of Microprogram Simulator

Directives

Initialize Simulator and Storage

Pn

LC

LDA

Initialize simulator
Select page n (o through 4)
Load central control store (CCS)

Load decoder control store (DCS) A
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LDB - Load decoder control store (DCS) B
MS  Select Pl as input device
MR Select Si as input device
B. Change and Examine Storage
Ar Alter/Display register r, where r is

ALU output

Shift counter

Instruction register

Key register in data loop
Memaoary input register
Operand register
Program counter

Status register

wowoZX—O>

ARn Alter/Display general register n
(0 through F hexadecimal)

AJn  Alter/Display stack position n
(0 through F hexadecimal)

Cm  Change/Display main memory word m

ECn Change/Display CCS word n

EDdn Change/Display DCS d (A or B) word n
C. Trace, Dump and Control Execution

D Dump complete CCS

Dm  Dump contents of CCS starting at CCS
word m

Dm,n Dump contents of CCS from word m to n
D,n Dump from word zero to n

TS Trace set

TR Trace reset

TSn,m Trace from CCS word n to word m

Bn Begin simulated execution at CCS word n
Hn,n Halt at CCS address(es) n

SS | Single step set

SR Single step reset

R Return to MOS or VORTEX; Halt iﬁ
standalone

Two methods of correcting typographical errors are availa-
ble to the operator. An entire line can be deleted by
typing the backslash character (shift/L). The backslash is
output as a visual aid. A line feed and a carriage return

are output to indicate that the line has been deleted. A
character just entered can be deleted by typing the
backarrow character. The backarrow character is printed
on the Teletype page printer as a visual indicator of the
deletion. As many backarrows as necessary can be entered;
each deletes one character (but not beyond the beginning
of the line). :

Each simulator directive is checked for syntax errors as the
input is interpreted. When an error is detected by the
simulator an error message is output to the Teletype page
printer. The simulator then is ready to receive the corrected
directive.

The simulator will operate under VDM MOS or VORTEX. For
the MOS or standalone versions the hardware is described
in VDM document number 98 A 9952 09R, VDM 620
Master Operating System. For the VORTEX version the

hardware is described in VDM document number 98 A
9952 10R, VORTEX Reference Manual. In addition, the
computer must have the arithmetic option, at least 16K
(20K for VORTEX) of memory and for two control store

pages another 4K of memory is needed. The input/output
interface for the MOS and standalone versions is
described in the document 98 A 9952 09R and VDM

document number 83A0023 VDM 620 MOS Input/Output
Control System.

The input/output interface for the VORTEX version is
described in the above document number 98 A 9952 10R
and VDM document number 89A0202, system external

Specification for the VORTEX Operating System.

6.3 STATEMENT DEFINITIONS

In the following discussion of simulator dialog, simulator
input will be in bold type. This will not appear during
actual runs.

All numeric values denoted in the following discussion of
the simulator directives are hexadecimal (0-F). Numeric
values which are entered on S| are right justified with
unspecified leading bit positions containing zeros.

6.3.1 Select Input Media (M)

The select input media directive is used to select the device
from which simulator directives will be entered. Normal
operation uses the S| device assigned at load time. Using
this directive, the Pl device assigned at load time can be
used as an alternate input device.

The two formats of the directive are:

MS  Select Pl as input device
MR  Select S| as input device

6.3.2 Initialize Simulator (1)

The initialize directive is used to initialize to zero the
contents of the simulator registers, the test condition
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flags, CCS control buffer and the CCS word execution
count table. Also, the single step option is reset, the trace
option is set and the CCS address halt is set to 200 hex.
This directive is normally used at the beginning of each
simulation run. The simulator CCS’s are not initialized.

6.3.3 Page Select (P)

This directive is used to select the control store page upon
which the simulator directive will be executed. Initializa-
tion selects page 0. Once a page is selected, all directives
will refer to that page until it is change by a new P
command or until the system is reinitialized. The format
for this command is:

Pn where n = 0, 1, 2, or 3.

6.3.4 Load Control Store (L)

This command is used to read the micro assembler output,
assemble the data into usable 64-bit (CCS) words or 16-bit
(DCS) words and store the words into the simulator control
store.

The format for this command is:
LC -- Load Central Control Store (CCS)
LDA -- Load Decoder A Control Store (DCS)
LDB -- Load Decoder B Control Store (DCS)

The statement LOAD COMPLETE will be output to the
Teletype following successful loading of the control store.

6.3.5 Alter/Display Simulator Registers (A)

This directive is used to display and change, or display

only, the contents of general registers, stack positions and

any of the following simulator registers:

Program Counter P
Instruction Register 0]
Status Register S)
Operand Register )
Shift Counter ©
Memory Latch M)
Processor Key Register (K)
ALU Output (A)

a. The format for display or change of the registers above
in this directive is:

Ar
mmmm

varian data machines
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Where r is one of the register letters above and ¢ is a
comma, carriage return, a value followed by a comma or a
value. mmmm is the contents of that register (output by
the simulator) and nnnn is the desired contents. If the
command is terminated with a comma (,), the simulator
will output the letter A (signifying you are still in this
routine) and wait for another register designator. If the
directive is terminated with a carriage return (c/r), the
simulator returns to the executive. If no change value is
input, the contents remain the same.

For the file registers and jump stack, the specific file
register or stack position must also be designated upon
initial entry.

b. For general-purpose registers
ARi

mmmm
c

Where n is a hexadecimal number O through F designating
the specific register and ¢ is a comma, carriage return, a

. value or a value followed by a comma.

c. For stack positions

Aln
mmmm
c

Where n is a stack position and ¢ is a comma, carriage
return, a value or a value followed by a comma.

The rest of the format is identical to that for the other
registers except that the comma terminator causes the
display of the number and contents of the next sequential
file register or stack position. A comma terminator to
register or stack position F effects a return to the simulator
executive.

Example 1:

AP Display Program Counter
0776

, No change, stay in command
AM Display Memory Latch
14FC

(c/r) No change, return
Example 2:

AS Display Status Word

0000

FFFF Change Status to All Ones
Example 3:

ARA Display General register 10
FFFF

0000, Change to all zeros

(continued)
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B Display general regiéter 11
1234
(c/r) No change, return

6.3.6 Change/Display Memory (C)

This directive is used to display or display and change a
memory location. Both the location and its contents are in
hexadecimal notation.

The format of the command is:

Cmmmm
hhhh
c

Where c is as defined above and mmmm is the hexadecimal
address of the memory location, hhhh is the contents of
that word output by the simulator. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next memory location. If the
simulator directive is terminated with a carriage return,
the change/display memdry directive is terminated. If no
change value is input, the contents remain the same.

6.3.7 Change/Display CCS Word (EC)

The change/display CCS word simulator directive is used to
display and/or change the contents of a CCS word.

The format for the change/display CCS word simulator
directive is:

ECmmmm nnnnnnnnnnhhnnnn
hhhhhhhhhhhhhhhh Where b ={ nnnnnnnnnnnnnnnn,
b .
(c/1)

Where mmmm is the (hexadecimal) address of a CCS word,
hhhhhhhhhhhhhhhh is  the contents of that CCS word
(output by the simulator) and nnnnnnnnnnnnnnnn is the
desired contents of that CCS word. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next CCS word. If the simulator
directive is terminated with a carriage return (c/r), the
change/display CCS word simulator directive is terminated.
If no change value is input, the contents remain the same.

If less than 16 digits are input for a change, the digits are
right justified and zeros will appear in the most significant
bits not specified.

Example 1

EC8A

0123456789ABCDEF
FEDCBA9876543210

Example 2:

ECDC
FFFFFFFFFFFFFFFF
DD
AAAAAAAAAAAAAAAA

0

6.3.8 Change/Display DCS Word (ED)

This directive is used to display and change, or display
only, the contents of a DCS A or DCS B word.

The format for the directive is:

EDdi nnnn
mmmm  Where ¢ = nnnn,

c '
(c/r)

Where d-is the letter A or B designating DCS A or B, i is the
DCS address (0-F), mmmm is the contents of the location
and nnnn is the desired contents. A comma terminator
causes the display of the next sequential address and its
contents. A comma terminator to address F effects a return

to the simulator executive as does the carriage return
terminator. If no change value is input the contents
remain the same.

6.3.9 Begin Simulated Execution (B)

The begin-simulated-execution simulator directive is used
to start the simulated execution of the CCS
microinstructions.

The format for the begin-simulated-execution directive is:
Bmmm

Where mmm is the control store memory address for the
start of the simulated execution. If no CCS address is
given, then the starting address is the CCS address
generated as the next CCS address from the last
microsimulation. However, if the simulator is initialized in
the meantime, the address will be word zero.

Examples:

BO Begin at word 0 of current page
B7F
B Begin from last calculated address

6.3.10 CCS Address Halt (H)

The CCS address hait simulator directive is used to set an
address into the simulator such that whenever that CCS
address is accessed by the simulator, the simulation
process will stop. Since control store addresses are between
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0 and 1FF (hexadecimal), specifying an address outside
this range effectively "'turns off”” the address halt. Up to 5
halt addresses may be set per page. The default value is
200 (CCS word 512).

The format for the CCS address halt simulator directive is:
Hnnn ,nnn, ...
Where nnn is the (hexadecimal) halt address.

NOTE: To set multiple halts all addresses must be entered
under the same H command.

The halt addresses are set in the page currently seiected.
To set halt addresses in another page that page must be
selected with the "'P’' command.

Example:

H3A9
H100, 10A,IFF,0

When the halt address is reached, the location and control
buffer fields are listed on the line printer if the trace
option is ON. Also, the message "CCS HALT" is output to
the TTY and line printer. Then the simulator returns to the
executive.

6.3.11 Single Microinstruction Step (S)

The single microinstruction step simulator directive is used
to set or reset the single step option in the simulator. When
the single step option is on, instruction simulation is
ceased after the execution of each microinstruction.

The formats for the single microinstruction simulator
directive are:

SS Single step ON
SR Single step OFF

The first control store word to be executed must be
specified via the begin (B) command. To continue with the
next microword enter the B command without an address.

A special form of the SR directive (set single step OFF) can
be used to set a limit on the number of microinstructions
to be executed before returning to the simulator executive.

The format of this directive is:
SRnnnn

Where nnnn is 1-4 hex digits specifying the execution limit.
When this limit is reached, control is returned to simulator
executive. Omission of nnnn results in an unlimited run
count.

6.3.12 Trace (T)

The trace directive controls output to the line printer. The
trace option is normally ON and pertinent data and
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execution results are listed on the line printer after the
simulated execution of each control store instruction.

The format for the directive is:

TS Set trace ON

TR Set trace OFF

TS,nnn,mmm Set trace ON from word nnn
to word mmm

If nnn is missing, its value is defaulted to zero. If mmm is

missing, its value is defaulted to 200 hex (word 512). If TS

is specified with bounds, the current and next CCS

addresses are output to LO regardless of whether or not

the address is within the bounds; however, the remainder

of the trace is suppressed.

The following information is listed on the line printer (LO)
for each control store word executed:

1. CCSword address

2. List of CCS word fields and their values
NOTE: Fields AA, BB, and FF are dynamically aitered
and need not be equal to the value of the CCS word.

3. Next CCSword

4. Current top of stack

5. Number of items on stack
6. ALUAinput

7. ALUBinput

8. ALU output

9. Carryin status (CF)
10.Carry out status (ALUC)

11.Contents of the 16 general-purpose registers (RO-RF).
(4 per line by 4 lines)

12.Contents of the following registers and flip-flops:

P Program counter

SC Shift counter

OPR Operand register

KREG Key register processor

|I0KR 170 key register

IBR Instruction buffer

| Instruction register

STAT Status register

IOR 1/0 data register

SHFT Sign store of register A bit 15

QUOS Storage of sign bit (DAL 15) of
ALU output

13.Memory Operations Data
The values listed are the values at the end of the
memory operations for that CCS word. The memory
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operations performed are a function of conditions/
codes upon entry (values from the last CCS word
executed).

When MCCO = 2 the following memory operations
data will appear twice per microword trace. The first set
is an intermediate value while the second set
represents the values at the end of the memory
operation.

Memory Condition Code

MCCO = 0 Idle
MCCO = 1 Active but not done
MCCO = 2 Active and done

Memory Operation Code

MOPC = 0 Transfer ALU output to MIL
and IBR

MOPC = 1 Read from main memory to
MIL and IBR

MOPC = 2 Read from main memory to MIL

MOPC = 3 Write 16-bit ALU output to
main memory

MOPC = 4 Write a byte of ALU output

to main memory (byte is
specified by MBYC)

Main Memory Address Source

MADS = Address is ALU output

MADS Address is program counter

MADS = 2 Address is memory input
register (MiR)

Invalid address source

[
- O

MADS

I
x

Byte Designator for Write Operations

MBYC

I

0 Right byte

MBYC

1 Left byte

NOTE: The byte (of the memory word) not designated is not
altered.

Memory Interface Registers

The contents of registers MIL and IBR are listed.

Main Memory Address (MMAD)

The main memory address (as specified by MADS) is listed.
It is listed for every CCS word executed regardless of the
actual memory operation as specified by MCCO and
MOPC.

Status of test conditions (test inputs). Each status bit
stored in a separate word of memory and the 16-bit word
is listed (XXXX). The 16 test conditions are fisted on 2
lines, 8 per line. Each test bit is listed as 0000 = false
condition; or 0001 = true condition.

Test Bits

ALU overflow

1/0 sense

SSw3

SSw2

SSwi

620/f test (for JMP, JMPM,

XEC groups of instructions)

6 ALU equals

7 ALU sign

8 ALU carry

9 ALU zero

10 DS bit

11 MIL 15 (sign bit of memory input register)

12 Shift count = -1

13 A15 - sign of A register for multiply
operations

14 DAL 15/DAL 14 (ALU output bits 15 and 14)

15 QS bit

O WN—=O

6.3.13 Dump Contents of CCS (D)

The dump CCS directive is used to list on the line printer
selected contents of the simulator control CCS and the
count of the number of times each word was executed.

The formats for the directive are:

Dmmm,nnn
Dmmm
D,nnn

D

Where mmm and nnn are the beginning and ending
hexadecimal CCS address to dump. If mmm is omitted,
dump begins at CCS word 0. If nnn is omitted, the
complete contents of the simulated CCS table is dumped
starting at mmm. If both m and n are omitted, the
complete simulated CCS table, starting at location zero is
dumped.
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_The line printer list format is:

ADDR HEXADECIMAL BINARY EXECUTED

aaaa hhhhhhhh  hhhhhhhh  bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb  xxxx
bbbbbbbbbbbbbbbb  bbbbbbbbbbbbbbbb

aaaa hhhhhhhh  hhhhhhhh  bbbbbbbbbbbbbbbb  bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb  bbbbbbbbbbbbbbbb

Where (aaaa) is the address of the CCS word in hexadeci-
mal, (hhhhhhhh hhhhhhhh) is the contents of the CCS
word in hexadecimal, (bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb) is the contents of the CCS word in
binary and xxxx is the execution count in hexadecimal.

The field identifier words and the contents and count of up
to 14 locations are listed on each page.

6.3.14 Exit to VDM, MOS or VORTEX (R)

The exit to VDM MOS or VORTEX simulator directive is
used to effect a transfer of control from the simulator to
MOS or VORTEX. NOTE: The use of this directive with the
standalone version will produce a halt. .

6.4 OPERATING INSTRUCTIONS

The simulator program operates under either VDM MOS,
VORTEX, or standalone environments. The simulator

executive communicates with the software environment in
which it is running by means of the appropriate interface
program, INTR, provided with the simulator. The user
communicates to the program via the system Teletype. The
BLD I loader is required when loading of MIDAS object
programs for execution under the simulator (MOS or
standalone only).

When operating under VORTEX, the five background global
control blocks (FCB’s) are used when the logical unit is an
RMD thus permitting the stacking of jobs. The following
restraints are made on the use of RMD logical units:

1. Si, Pl,and LO are to be in unblocked format.

2. Bimust be blocked.

The simulator data flow is shown in figure 6-2.

OPERATING
SYSTEM

Pl
DEVICE
«—
51 L »| SIMULATOR
DEVICE
«—
Bl
DEVICE
LO e
DEVICE DEVICE

VTI1-1809

Figure 6-2. Microsimulator Data Flow
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6.4.1 Program Loading

Under VORTEX, MICSIM can be scheduled from the
background library at level zero by the /LOAD,MICSIM
directive. Before scheduling, the number of WCS pages in
addition to page zero which will be needed should be
determined and a /MEM,X directive given. In the /MEM
directive, X should be the number of additional WCS pages
(beyond page zero) times 4.

Under MOS, each time the simulator is to be executed its
relocatable binary object deck should be positioned on the
Bl device and the /LOAD directive given.

In the standalone environment, MICSIM is loaded by the
620 standalone FORTRAN IV loader, along with the
runtime /0 and runtime utility. (Refer to VDM document
number 89 A 0226, Overview and External Specification for
information on the Varian 620 Standalone FORTRAN IV
Loader.) The simulator uses logical unit numbers 2, 3, 4, 5,
and 6 for Sl, SO, Pl, LO, and BIl. The standalone loader
should be instructed to assign these units to meaningful
devices.

Examples:
Sample Loading Procedures

1. VORTEX
/JOB, SIM
/LMGEN'
TIDB,SIM,1,0
LD,6
Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)
LIB
END,BL,E
/MEM, x
/LOAD, SIM

x value = 0, only 1 WCS page; = 4, 2 WCS
pages; = 8, 3 WCS pages; = 12, 4 WCS pages.

2. MOS
/JOB,SIM
/LOAD
Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)

3. STANDALONE

Load Standalone Loader

With AID Il change absolute location 7 (SPED)
to the desired start load address

Return to the loader

Enter the following:

200300402504602 (c/r)

(to set SI = TY, SO = TY, Pl = PT, LO
= =77, Bl = PT)

Mount simulator tape in reader

Enter the following:

PM
Load Runtime 1/0
Load Runtime Utility

6.4.2 Initial Condition Selection

After loading, the simulator program is automatically
entered and outputs the following to SO:

VARIAN 73 MICROSIMULATOR
INPUT HIGHEST NUMBER WCS PAGE DESIRED

The user then inputs on S| one of the following:

(for ROM page only)

(for ROM and WCS page 1)

(for ROM and WCS pages 1 and 2)
(for ROM and WCS pages 1, 2, and 3)

WN =O

Any other input is an error and the request will be
repeated. Following a correct input, the following is output
to SO:

SI**

An St** indicates that the programis in the simulator
executive awaiting a user command. Control is returned to
the executive following execution of each command.

All simulator dialog is entered through the Si device and
echoed on the SO and LO devices. Dialog may be either
conversational or batch depending on the Sl device
assignment. All of the simulator directives must be
terminated with a carriage return; the simulator will output
a line feed.

6.4.3 Loading Simulator Central Control Store
(CCS) and Decoder Control Store (DCS)

Use the P directive to select the WCS page in which
simulation is to take place.

Use the L directive to load the micro assembler output into
the specified simulator control store (central or decoder).

Use the M directive to select the input device; either Sl or
Pi.

Use | directive to initialize to zero all the simulator
registers, test conditions, control store buffer, status
registers and execution count table.

Use the A directive to initialize the program counter, file
registers, and instruction register as required.

Position the 620/73 sense switches as required. The
simulator program monitors the 620/73 sense switches
similar to the Varian 73 sensing of its console sense
switches.
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6.4.4 Other Control (As Required)

Use the E directives to make any patch corrections to the
CCS or DCS.

Use H directives to set simulation halts when the specified
control store address is reached. The initialized address is
200 hex. and will remain such until specified otherwise.

Use S directives to specify single step operation as
required. The initialized condition is run (not step).

Use T directives to specify operation with or without trace
listing as required. The initialized condition is with trace.

6.5 PROGRAM EXECUTION
After all initialization and start-up conditions are specified,

use the B directive to begin execution at the specified
control store address.

6.6 AFTER SIMULATION

6.6.1 Control Store Dump

Use the D directive to dump the control store words and
the execution counts for each control store.

6.6.2 Initialization

Use | directive to initialize registers, tables, etc. prior to
making another run.

6.6.3 Return to MOS, VORTEX
Use the R directive to return to MOS or VORTEX as

required. (NOTE: In the standalone version this command
effects a halt).

6.7 620 EMULATION

To run programs using the 620/f emulation ROM, the
following sequence of events must be done:

1. Load CCS page 0 and DCS page O with the 620/f
emulation microinstructions.

2. Set CCS halt to 080 (hex) via H command.
3. SetR5to FFFF (- 1)via AR5 command.
4. Setother registers and sense switches as needed.

5. Set pseudo P register to location (hex) of first macro to
be executed via AP command.

6. Settrace and step/run mode as needed.

7. Begin at 13E via Bcommand.

MICROPROGRAM SIMULATOR, MICSIM

The sequence of events 1 through 6 may be in any order
but must be done before event 7. Event 7 begins
simulation at standard state 1.

6.8 ADDING SIMULATOR TO VORTEX

The microsimulator resides on the background library
under VORTEX. After system generation, however, the user
is responsible for cataloging it into the background library.
The following procedure may be used to do this. First,
position the Bl device to the simulator object material.
Then, issue the following directives:

ILMGEN
TIDB,MICSIM, 1,0
LD,BI

LIB

END,BL,E

(For detailed descriptions of these directives, refer to the
VORTEX Reference Manual.)

6.9 MAIN MEMORY SIMULATION

Simulation of main memory operations is restricted so that
a simulation run does not destroy the simulator or related
programs. This is accomplished by not simulating writes
to memory addresses below 1000 octal or above the start
of the simulator. Any attempt to do this will be flagged as
an error and the write not be performed; simulation will
continue however. A read may be made anywhere in
available memory. Memory addressing above 32K will
effect wraparound if available on the computer.

Creation of a Main Memory Biock
VORTEX:

Since VORTEX does not allow a start load address (it is
always 1000 octal) for background tasks, the user must
create a load module with an empty block at the beginning
of the module. A possible way to do this is to set up an
object stream as below:

Macro Test Program
BSS Block

DATA O

Simulator

EOF

Using the BSS block effectively moves the simulator higher
in core and thus leaves the memory between 1000 (octal)
and the start of the simulator available for main memory.
The size of the BSS block depends on the amount of

-memory available for background and the needs of the

user. Too large of a BSS block will cause the load module
to abort loading.

MOS:

The same method can be used for MOS as was used for
VORTEX or at load time. The start load address may be set

6-9
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to some value larger than the default value (500 octal). For CS Loading
example, to get a main memory block of 1024 words, the
load directive might be /L,PR =2500.

MS07 Read error on Bl device.

6.10 SIMULATOR ERROR MESSAGES MS08 EOF encountered before load complete.

MESSAGE REASON ' MS09 EOD/BEOD encountered before load complete.
MS10 Sequence error on Bl

General

MS11 Invalid loader code.

MSO01 Input could not be interpreted as a valid
command. MS12 Checksum error.

MS02 A non-hex character was encountered when

hex expected. Memory

MS13 Undefined macro opcode.
Initialization

MS14 Attempted to write to memory outside defined
MSO03 Insufficient common area to contain specified main memory.
number of pages.

MS04 The selected page number was not valid.

CS Addressing

MSO05 An attempt was made to jump to an unavail-
able WCS page.

MS06 A BCS instruction was encountered when WCS
page 1 is unavailable.
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6.11 EXAMPLE OF SIMULATOR OUTPUT

Figure 6-3 shows the simulation listing of the LDA example

developed in section 2.

FAGE 0000 09/07/73 VORTEX MICSIM

VARIAN 73 MICRO SIMULATOR
INPUT HIGHEST NUMBER WCS PAGE DESIRED

0

MSAwn

PO

MSwhx

wC

.OAD COMPLETE
MSww

LDA

LOAD COMPLETE
MSwux .
LDB

LOAD COMPLETE
MSwn

C4a00

0000

10F9

MSw%

LF9

0036

MSax
AP

0000
400
MSen
SR7
MS %
ByJE

SELECT PAGE ZERD
LOAD CENTRAL CONTROL STORE, 620 EMULATION

LOAD OECDDER A, 620 EMULATION
LOAD DECODER B, 620 EMULATION

PUT AN 'LOA! INSTRUGTION IN MEMQRY FOR SIMULATION
LDA FROM MEM LOC 'F9!
CHECK WHATS TO BE LOADED

SET PROGRAM COUNTER TO THE 'LDA!

EXECUTE SEVEN MICRO!'S
START EXECUTION AT STANDARD STATE ONE, SSiM

Figure 6-3. Simulator Output Format




PAGE 0001
Ccs (0ocC
TS AF
00 09
RF FF
00 00
NEXT

01

MS
02

MF
00

MICROPROGRAM SIMULATOR, MICSIM

09707773
SE PAGE
MT FS
00 00
CF WR
00 00

CCS ADDRESS

ALU QUTPUY
CIN O
CouT 0
RO 0000
R4 0000
RB 0000
RC 0000
P SC
0400 0000
MCCO 1§
MOPC 1
MADS |
MByYC 0
MIR 0000
1BR 0000
MMAD 0400
UVFL,  8ENS
0000 0000
ALUC ALUZ
0000 0000

Ri
RS
R9
RD

orP
00

TEST

SS
00

SH
00

00

R
00

W3
00

FT
00

0092

CURRENT TOP OF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
ALU INPUT B 0000

00

0000
0000
0000
0000

KREG
0000

S5W2
0000

MIRS
0000

r__@ varian data machines

0

TF
00

sC
00

oo

R2
R6
RA
RE

SF
01

VF
00

PAGE

00
0

0000
0000
0000
0000

I0KR
0000

5S4
0000

SFTC
0000

GF
00

WF
00

I8
00

EM
00

RO
00

VORTEX

R3
R7
R8
RF

R
00

CONDITION STATES

UL
00

AD
0o

MR
00

XF
00

AB
00

SH
00

0000
0000
0000
0000

0000

ALUO
0000

NORM
0000

MICS

IM
08

B8
00

STAT
0000

ALUS
0000

QuOs
0000

Figure 6-3. Simulator Output Format (continued)

IM

L8
00

AA
00

LA
00

I0R
0000

SHFT
0000

QuQs
0000
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PAGE 0002
€cs Loc
TS AF
00 02
RF FF
04 00

00

MS
on

MF
00

NEXT CCS ADDRESS

CURRENT TOP OF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
ALU INPUT B8 0000

ALU DUTPUT
CIn O
coutT o
RO 0000
R4 0000
R8 0000
RC 0000
P SC
0401 0000
MCCO 2
MOPC
MADS 1
MBYC ©
MIR 0000
IBR Q000
MMAD 0400

09/07/73
92 PAGE 0
MT FS TF SF
00 00 00 0%
CF WR SC VF
00 00 00 00
0020  PAGE
0000
0
0000
R1 0000 R2 0000
RS 0000 R6 0000
RO 0000 RA 0000
RD 0000 RE 0000
0PR KREG I0KR
0000 0000 0000

GF
00

WF
00

0

iB
00

VORTEX

R3
R7
RB
RF

R
0o

MR
oo

XF
00

AB
00

SH
00

0000
0000
0000
0000

0000

varian data machines @—
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MICS

IM
08

ag
00

STAY
0000

Figure 6-3. Simulator Output Format (continued)

IM

L8
00

AA
00

LA
00

I10R SHFY @QuUOSs
Q000 0000 0000
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PAGE.

Mcco
MOPC
MADS
mMByYr
MIR

1BR

MMAD

OVFL,
0000

ALUC
0000

0003

10F9
10F9
N401

SENS
0000

ALUZ
0000

——@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

VORTEX

CONDITION STATES

09/707/73
TEST

SSW3  SSW2

0000 Q000

SHFT MIRS

0000 0000

S8W1
0000

SFTC
0000

EMUL
0000

ROAD
0000

ALUD
0000

NORM
0000

MICSIM

ALUS
0000

QuOos
0000

Figure 6-3. Simulator Output Format (continued)
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PAGE 0004
ces Loc
TS AF
0E 0D
RF FF
00 00

00

MS
06

MF
00

09/07/73
2D PAGE
MT FS
00 00
CF WR
00 00

NEXT CCS ADDRESS

o182

CURRENT TOP OF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
ALU INPUT B 0000

ALU QUTPUT
CIN O
coutr o
RO 0000
R4 0000
R& 0000
RC 0000
P SC
0401 0000
MCCO 2
MOPC 1
MADS |
mMBYC ©
MIR 10F9
IBR {0F9
MMAD 0401

R1
RS
R9
RD

oP

0000

R

0000
0000
0000
0000

KREG
0000 0000

Figure 6-3. Simulator Output Format (continued)

VORTEX

0
TF SF GF MR AB
00 00 03 00 00
8§C VF WF XF SH
00 00 00 00 00

PAGE ©
0000

0

R2 0000 R3 0000
R6 0000 R7 0000
RA 0000 RB 0000
RE 0000 RF 0000

I0OKR IBR 1

0000 {0F9

10F9

varian data machines @—-

MICROPROGRAM SIMULATOR, MICSIM

MICSIM
IM LB LA
06 00 00
BB AA
00 00

STAY 1IOR SHFT QUOS
0000 0000 0000 0000
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PAGE

MCcco
mMopPC
MADS
mMBYC
MIR

18R

MMAD

UVFL
0000

ALUC
0000

000%

O e -

0000
0000
0401}

SENS
0000

ALUZ
0000

_@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

VORTEX

CONDITIDN STATES

09/07/73
TEST

SSW3 SSw2
0000 0000
SHFT MIRS
0000 0000

S8W1
0000

SFTC
0000

EMUL
0000

ROAD
0000

ALUO
0000

NORM
0000

MICSIM

ALUS
0000

Quos
0000

Figure 6-3. Simulator Output Format (continued)
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PAGE 00086 08/07/73

ccs Loc

TS
00

RF
03

AF
12

FF
0A

01

MS
oF

MF
01

82

MT
00

CF
03

NEXY CCS ADDRESS

PAGE

FS
00

WR
01

012F

CURRENT TOP OF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
ALU INPUT 8 OOFS

ALU QUTPUT

CIN

0

cour o

RO
R4
R&
RC

P
0401}

MCCO
MOPC
MADS
MAYC
MIR

18R

MMAD

UVFL
0000

ALUC
0000

0000
0000
0000
0000

SC
0000

OO -

0000
0000
00F9

SENS
0000

ALUZ
Q000

00

R1
RS
R9
RD

QPR
00F9

TES
SSW3

0000

SHFT
0000

FQ

0000
0000
0000
0000

KREG
0000

4]

TF
00

SC
01

00

R2

R6

RA
RE

SF
01

VF
Q0

PAGE

00
0

0000
0000
0000
0000

I0KR
0000

VORTEX

GF
00

WF
00

R
R7
RA
RF

IBR
0000

T CONDITION STATES

SSw2
0000

MIRS
0000

St
0000

SFTC
0000

EMUL
0000

ROAD
0000

MR
00

XF
00

AB
00

SH
00

0000
0000
0000
0000

10F9

ALUO
0000

NORM
0000

varian data machines [@—
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MICS

IM
05

B8
00

STAY
0000

ALUS
0000

Quos
0000

Figure 6-3. Simulator Output Format (continued)

IM

.8
02

AA
00

LA
00

I0R SHFT QuOS
0000 0000 0000
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PAGE
CCS |

TS
00

RF
00

ALY
ALU

AL U

CIN
COy

RO
R4
R8
RC

P
0401

MCCN
MOPC
MADS
MBYC
MIR

1BR

MMAD

0007

oc

AF
{E

FF
00

_[@ varian data machines
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01

M3
ocC

MF
00

09/07/73

2F PAGE O
MT FS TF
01 OF o0
CF WR SC
00 00 00

NEXT CCS ADDRESS O0tEO

CURRENTY TOP (F STACK 00
NUMBER OF ITEMS ON STACK

INPUT A 0000
INPUT B 0000

QuUTPUTY

0
T

0000
0000
0000
0000

SC
0000

OOoOTNN

0000
0000
00F9

0000

R1 0000 R2
R5 0000 R6
Rg 0000 RA
RD 0000 RE

OPR KREG
00F9 0000

SF
0o

VF
00

PAGE

00
0

0000
0000
0090
0000

I0XR
0000

GF
0o

wWF
00

1B
00

VORTEX

RJ3
R7
RBA
RF

R
0o

MR
00

XF
00

AB
00

SH
00

0000
0000
0000
0000

LOF9

MICSIM
IM LB
00 00
B8 AA
00 00
STAY

0000

Figure 6-3. Simulator Output Format (continued)

LA
00

I0R
0000

SHFT
0000

Quos
0000
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PAGE

mcco
moPC
MADS
MBYC
MIR

18R

MMAD

UVFL
0000

ALUC
0000

0008

DO N O

0036
0000
00F9

SENS
0000

ALUZ
0000

09/07/73 VORTEX MICSIM

TEST CONDITION STATES

SSWd
0000

SHFTY
0000

varian data machines @——
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SSW2 SSWi EMUL ALUOD ALUS
0000 0000 0000 0000 0000

MIRS SFTC ROAO NORM QUODS
0000 0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)
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PAGE 0009
Ccs Loc
TS AF
00 08
RF FF
04 00
NEXT

-_@ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

09/07/73
01EO PAGE
M8 MT FS
05 00 00
MF CF WR
00 00 00

CCS ADDRESS

ALU OUTPUT
CIN 0
coyt 0
RO 0000
R4 0000
R8 0000
RC 0000
P sc
0402 0000
MCCO 1
MOPC 1
MADS |}
MBYC 0
MIR 0036
IRR 0000
MMAD 0402
UVFL SENS
0000 0000
ALUC  ALUZ
0000 0000

Ry
RY
R9
RD

oP
00

TEST

00

R
F9

SSwd
0000

SH
00

FT
00

0085

CURRENT TOP OF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
ALU INPUY B 0000

00

0000
0000
0000
0000

KREG
0000

SSwW2
0000

MIRS
o000

0

TF
00

sc
00

00

R2
R6
RA
RE

SF
01

VF
00

PAGE

00
0

0000
0000
0000
0000

10KR
0000

SSwWi
0000

SFTC
0000

GF
00

WF
00

VORTEX

MR

RJ3
R?
RA

RF

I8

R

00

XF
00

0000

EM
00

RO
00

CONDITION STATES

UL
00

AD
0o

AB
00

SH
00

0000
0000
0000
0noo

10F9

ALUO
0000

NORM
0000

MICS

IM
08

88
0o

STAT
0000

ALUS
0000

Quas
0000

Figure 6-3. Simulator Output Format (continued)

IM

L8
0o

AA
00

LA
00

INR
0000

SHFY Quns

0000

0000




PAGE 0010
CCS LDC
T8 AF
OF 0D
RF FF
00 O0A

09/07/73 VORTEX MICSIM
0085 PAGE ©
MS MT FS TF SF GF MR AB IM | B LA
06 00 00 00 00 05 00 00 06 01 00
MF CF WR SC VF WF XF SH BB AA
0t 00 01 00 0O 00 00 00 01 00

NEXT CCS ADDRESS

CURRENT TOP OF STACK 0000
NUMBER OF ITEMS ON STACK O

ALU INPUT A 0000
ALU INPUT B 0036

ALU QUTPUT

CIN
cny

RO
R4
R8
RC

P
0402

mCCo
MOPC
MADS
mBYC
MIR

IBR

MMAD

0
T O

0036
0000
0000
0000

SC
0000

QO o e N

0036
0000
0402

R1
RS
RS
RD

opP
00

0036

R
F9

varian data machines @]——

MICROPROGRAM SIMULATOR, MICSIM

0080 PAGE ©

0000 R2 0000 RJI 0000
0000 RSB 0000 R7 0000
0000 RA 0000 RB 0000
0000 RE 0000 RF 0000

KREG IDKR IBR 1 STAYT IOR SHFTY QUOS
0000 0000 0000 0000 0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)
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PAGE

MCCO
MARPC
MADS
MAYC
MIR

IBR

MMAD

DVFL
voao

ALUC
0000

MSwx
[

0011

O =D

0000

0000
0402

SENS
0000

ALUZ
0000

—-@ varian data machines
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09/07/73

TEST CONDITION STATES
SSW3 SSW2 SSA1 EMUL
0000 0000 Q000 0000
SHFT MIRS SFTC ROAQD
0000 00060 0000 0000

EXECUTION LIMIT SATISFIEOD

VORTEX

ALUO
0000

NORM
Q000

MICSIM

ALUS
0000

Quos
0000

Figure 6-3. Simulator Output Format (continued)
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SECTION 7

MICROPROGRAM UTILITY PROGRAM,
MIUTIL

The microprogram utility (MIUTIL) loads information into
writable control store and provides an interface with
hardware features of the WCS.

Two sets of directives are provided. The basic set will allow
the user to load the WCS with microassembler output,
examine single WCS words and list WCS contents. The
second group of directives gives the user access to the
debugging features of the control store. With these
directives single microstep execution can be done.

The utility operates in three environments, under the
VORTEX operating system, MOS operating system and as
a standalone program. A standard interface program
provides compatibility.

7.1 BASIC ELEMENTS

The microprogram utility accepts directives as similar as
possible to those of the microprogram simulator.

7.2 GENERAL FORM OF DIRECTIVE

In general a utility directives consists of a unique first
character, followed by a string of parameters, terminated
by a carriage return. The following sections describe the
meaning of each of these first characters and permissible
parameters. Table 7-1 summarizes the utility directives.

The following are the utility directives available to the user:

Table 7-1. Summary of Utility Directives

A. Basic Command Set

Pn Page select

LC Load central control store (CCS)

LDA Load decoder control store (DCS) A

LDB Load decoder control store (DCS) B

MS Media set, selects Pl for input

MR Media reset, selects Sl for input

Exm Examine/change control store x word m
Dxm,n Dump control store x word m through n

R Return the operating system or exit from

utility in standalone environment

B. Debugging Directives

Nx Enables control store x

TS Trace set

TR Trace reset

Gn Set microprogram execution at CCS word

(continued)

varian data machines @-——

Xn Execute n microinstructions
| Initialize CCS

Bn Branch to CCS word n

Hn Halt execution at word n

7.3 DIRECTIVE DEFINITIONS

In the following discussion of utility directives, the
characters the user inputs are in bold-face type and
explanation of the action in regular type.

All numeric values are hexadecimal.

7.3.1 Select Page (P)

This directive selects a particular WCS page for the
commands which follow. the commands for loading, and
dumping do not accept a page number and thus rely on
the previous P command for page selection.

Before the first P command is given by the user, a default
page value of 1 assumed.

The letter P is followed by a hexadecimal digit for the page
number. For example P3 would select page 3.

7.3.2 Load Control Store (L)

This command loads microassembler output into the
writable control store. The user specifies which page is to
be loaded by the prior P command. The user specifies
which control store should be loaded by the one parameter
following the letter L. C indicates central control store, DA
or DB for decode control store A or B, and | for 1/0 control
store.

For example, after P2 a command LC would load page two
of the central writable control store.

7.3.3 Examine/Change Control Store (E)

Through this command a single word of WCS may be either
examined or changed. The user specifies which control
store and the word number. The page is obtained through
the previous P command.

The form of the E command is Exmmm where x is either C,
DA, DB or | for central, decode and 1/0 control stores
respectively, and mmm is the address of the control store
word in hexadecimal notation.

7-1
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The utility will type out the contents of the location followed
by a carriage return. The user must then do one of the
following:

1. Change the contents of the location by typing a new
hexadecimal value followed by a carriage return

2. Change the contents of the location and then examine
the next location by typing a new hexadecimal value,
followed by a comma, followed by a carriage return

3. Examine the next location by typing a comma followed
by a carriage return

4. Typeacarriagereturn

For example
Action Caused
P1 selects page
E129 Examine 1/0 control store location 29
12A3 computer types contents
0, ) user changes contents to zero
1233 computer types location 2A
0 user changes its contents to zero
ECF utility accepts another command

7.3.4 Dump Control Store (D)

The dump directive provides a listing of the control store
contents. The page is determined by the prior P command.
The user specifies the locations and control store type in
the parameters.

The general format for the dump command is:
Dxmmm,nnn

where x is C, DA, DB or | for the specific control store (as
above), mmm is the hexadecimal location where the dump
is to start, and nnn is last location to be dumped. If the
final location is missing, the last location of the page is
assumed. If the first address is omitted, it is assumed to
be zero.

Dump command example:

P2

DC provides listing of central control
store page 2

DI30,5A provides listing of the 170 control
store, locations 30 through 5A

DI,5A list from location zero through 5A

7.3.5 Return to Operating System (R)

This command causes exit from the utility. If running under
MOS or VORTEX, control is returned to the operating

system. If the utility is running in a standalone
environment, the R directive causes a halt. There are no
parameters, merely the letter R.

The utility will respond with '"MIUTIL EXITED' as its last
output.

7.3.6 Media Set and Reset (M)
This directive allows the selection of an alternate device for
input of utility directives. 'M$' selects the 'PI' unit for

input. 'MR’ returns the utility to the Sl unit for input.

Note that receiving an illegal command will cause the media
to be automatically reset to Sl.

The following directives are designed to operate in the
special hardware configuration described in section 7.2.

7.3.7 Enable Control Store (N)

This directive allows the user to enable the specified control
stores. The page number used is the one specified by the
last P command.

The general form of the N directive is:

Nx

Where x is D or |, which specifies the decoder or 1/0 control
respectively to be enabled.

For example:

Pl
ND  enables decode control store, WCS page 1.

7.3.8 Trace Execution (T)

The purpose of this directive is to provide the user with a
means of following micro execution while it is in progress.
To accomplish this, the address of each microinstruction is
typed before it is executed.

The general form of the T directive is:

Ta

Where a is one of the following: S for setting or enabling
trace mode, or R for resetting or disabling trace mode.

Before the first T directive is given, the trace mode is reset,
i.e., turned off.

7.3.9 Set Micro Execution Address (G)

This directive allows the user to choose a location for
starting microprogram execution.
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This routine will do the following:

1. Step the WCS to stop any execution that might bé in
progress

2. load the micro address register with fhe specified
address

3. step the WCS to load the first micro into the control
buffer.

4. if trace mode, the next control store address to be

executed will be read from the WCS and output to the
user.

This directive does not begin execution. It serves only as
the setup for an X directive.

The format of the G directive is as follows:
Gn

where n is from one to three hex digits specifying a word
number in central control store.

The page is obtained from the last P directive.

7.3.10 Execute Microinstruction (X)

This directive is used after the G directive to begin actual
micro execution. It can be used to specify free-running
execution or execution of a fixed number of micro's
followed by a halt. By requesting execution of a single
micro, followed by a halt, it can be used to stop free-
running execution.

If free-running execution without trace is requested, the
fine clock will simply be enabled to run free. There are
two ways of interrupting this. An X directive specifying
execution of one microinstruction will step the WCS. It can
then be restarted by another X directive. The G directive
will also stop free-running execution. It sets a starting
address, however, and thus it should not be used if the
interrupted execution is to be restarted where it left off.

If free-running execution is requested in trace mode, then
the WCS is simply single stepped an indefinite number of
times. This allows reading of the WCS address before each
single step.

If execution of a fixed number of microinstructions is
requested, the WCS will simply be stepped the appropriate
number of times. if trace mode, then the address will be
accessed from the WCS and returned to the user before
each micro is executed.

The following is the format of the X directive:
Xn

Where n is zero for free-running execution or non-zero to
request execution of n microinstructions.

MICROPROGRAM UTILITY PROGRAM, MIUTIL

The default value’for nis 1.

For example:

X7 execute 7 microinstructions
X0 enable free run execution

X execute one microinstruction (note: this
would halt the previous free run)

7.3.11 Initialize WCS (1)

The purpose of this directive is to execute an EXC 07X
command. This will deselect all WCS control stores,
terminate any DMA operations in progress and enable free
run of the fine clock. The result is that control will return
to the ROM with all WCS activity suspended.

This command should only be used when a meaningful
ROM location will- receive control. Thus, it should not be
used for such things as halting a free-running
microprogram.

7.3.12 Branch to CCS (B)

This command simply executes an 1/0 branch to the
specified address in central control store. Such a branch
causes free run execution to begin at that location. The B
command thus produces a similar effect to a Gn, XO
command sequence. The B command never steps the
WCS, though, and thus cannot respond to the trace flag.

The general form of the B directive is:
Bn

Where n is from one to three hex digits specifying a word
number in central control store.

The page number is obtained from the last P directive.

7.3.13 Set Halt Address (H)

This directive may be used with the X directive to single
step microprogram execution to a certain address in WCS.

The format of the H directive is:
Hn

where n is from one to three hexadecimal digits specifying
a word in control store. The page number is specified in
the last P directive.

Single stepping as a result of an X directive will be
terminated when the specified location is the next one to
be executed. A message in the trace format will be output
to signal this.

7-3




— varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

Trace may be removed by entering HO. Only one halt
address may be set at a time.

7.4 OPERATING INSTRUCTIONS

7.4.1 Program Loading

Under for VORTEX, load VORTEX as described in the
VORTEX Reference Manual, 98 A 9952 10R. The utility
should be in the foreground library. It can be put there at
system generation time or added later using the load
module generator.

To load the utility and begin execution, an OPCOM
schedule directive is necessary. For example:

; SCHED,MIUTIL,3,FL,F
schedules the utility at priority three.

Under for MOS, load MOS as described in the MOS
Reference Manual, 98 A 9952 09R. Then, the MOS loader
may be used to load the utility program. Execution will
begin on successful completion of the load.

For example:

/JOB, UTIL

/LOAD

Utility program binary object
EOF (2-7-8-9 multi-punch)

In a standalone environment, load the Varian 620 Stand-
alone FORTRAN IV system loader as described in VDM
document number 89 A 0226. Instruct the loader to
change its logical unit numbers by entering appropriate
values. Next, load the utility binary object, followed by the
FORTRAN IV standalone system runtime tape and the 170
control tape. On completion of load, the machine will go
into step. Press run to start execution.

7.4.2 Program Execution

After successful loading, the utility program is entered
automatically. The program will first type MICRO
UTILITY to identify itself. Next, the configuration will be
determined by the following request:

DEBUG CONFIG? (Y OR N)

The user should then type 'Y’ followed by a carriage return,
if his system is in the special two processor debug
configuration described in section 7.2. Otherwise, if his
system is simply the standard configuration, the user
should type , followed by a carriage return.

The micro utility will then type
EVEN WCS DEV ADDR

The user should then type either 70, 72, or 74, depending
on the hardware configuration followed by a carriage
return.

The utility will then type:
MU * *

To indicate that it is ready to accept a command.
Whenever an illegal command is given, an error message
is typed. Description of the various messages can be found
in section 7.5. Note that a command may be in error either
due to bad syntax or due to context. An example of the
latter case is giving a debug command in a non-debug
configuration.

During execution of the D and X directives, SENSE switch 3
may be set to terminate their execution prematurely.

SENSE switch 1 may be set during tracing to suppress
listing of page zero addresses.

7.5 DEBUGGING CONFIGURATION

The additional debugging directives of the utility cannot
operate on the WCS of the processor on which the utility
itself is running. For this reason, a special hardware
configuration is needed to use these directives.

The special configuration must have two computer systems:
one with a WCS and the other actually operating the
utility. The WCS must have the configuration described for
the stand-alone environment above.

The system which runs the utility program must have the
hardware appropriate for the type of operating system or
for stand-alone operations, but the processor need not
have any writable control store and the processor itself can
be either a 700X, 620/f or 620/L. Operating system
requirements prevail, since VORTEX does not run on a
620/L.

The Writable Control Store Reference Manual (Varian
document number 98 A 9906 08x) describes the physical
properties of this two-processor system for debugging.

7.6 ADDING UTILITY TO VORTEX

The microutility resides on the foreground library under
VORTEX. After system generation, however, the user is
responsible for cataloging it there. The following procedure
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may be used to do this. First, position the Bl device to the
microutility object material. Then, issue the following
directives:

/LMGEN
TIDB,MIUTIL,2,0
LD, BI

LIB

END,FL,F

(For detailed descriptions of these directives, refer to the
VORTEX Reference Manual.)

Under VORTEX I, the WCS reload task and WCS image file
must also be created and placed on the appropriate
libraries. To do this, position the Bl device to the object
material for the reload task and then issue the following
directives:

/LMGEN
TIDB,WCSLOD,2,0
LD,BI

LIB

END,FL,F

The WCS image file, WCSIMG, can be created using the
following directives:

/FMAIN
CREATE,OM,P,WCSIMG, 120, xx

where xx is 20, 40, or 60 for 1, 2, or 3 WCS pages,

respectively.

(Detailed information on this directive can be found in the
VORTEX Reference Manual.)

varian data machines @—

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.7 UTILITY ERROR MESSAGES
Message Reason
General

MUO1l Input could not be interpreted as a valid
command.

MUO2 A non-hex character was encountered when hex
expected.

MUO3 EOF detected on Sl. Return mode to operating
system.

MUO4 The selected page number was not valid.
WCS Access
MUO5 Unable to access WCS: WCS is busy.
MUO6 Unable to access WCS: BIC load in progress.
CS Loading
MUO7 Read error on Bl device.
MUO8 EOF encountered before load complete.
MUOS EOD/BOD encountered before load complete.
MU10 Sequence error on Bl.
MU11 Invalid loader code.

MU12 Checksum error.
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7.8 EXAMPLES

The following is a sample of microutility output:

MICROPROGRAM UTILITY PROGRAM, MIUTIL

MU % w
ves,?

Figure 7-1. Utility Output

PAGE 0000 09/07/73 VORTEX MIUTIL
VARIAN 73 MICRO UTILITY

VEBUG CONFIG 7 (Y DR N)

N

EVEN WCS DEVY ADDR

72

MU %

EC28

0000000000000000

¢

0026

0000000000000000

'

Q027

0000000000000000

BA,

0028

0000000000000000

M %

UDAB,B

PAGE 000% 09/07/73 VORTEX MIUTIL
DCS A , PAGE 01}

0008 0000 0000 0000 0000

MU &

]}

FAGE 0002 09/07/73 VORTEX MIUTIL
DCS 8 , PAGE 01

D000 0000 Q000 0000 Q000 0000 0000 0000 0000
Co08 0000 0000 Q000 0000 0000 0000 Q000 0000
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PAGE 0003 09/07/73 ) VORTEX MIUTIL
cCcs L oc 0005 PAGE 01

TS AF M8 MT FS TF SF GF MR AB IM LB LA
00 00 00 00 00 00 00 00 00 00 00 00 OO

RF FF MF CF WR SC VF WF XF SH BB AA
00 00 00 00 00 00 00 00 00 00 00 00

ccs .0C 0006 PAGE 01

TS AF MS MT FS TF SF GF MR AB IM LB LA
00 00 00 00 00 00 00 00 00 00 00 00 00

RF FF MF CF WR 8C VF WF XF SH BB AA
00 00 00 00 00 00 00 00 00 00 OO0 00

CCs Loc 0007 PAGE 01t

TS AF MS MT FS TF SF GF MR AB IM |B LA
00 00 00 00 00 00 00 00 00 00 00 00 00

RF FF MF CF WR 8C VF WF XF SH 8B AA
00 00 00 00 00 00 00 00 00 00 00 00

MUx»

LC

LDAD COMPLETE
Miisxw

L1

LOAD COMPLETE
Miiaxw

R
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SECTION 8

DECODE CONTROL STORE, 1/0
CONTROL AND ADDITIONAL TOPICS

These topics are not of interest to all microprogrammers.
Both decoder and 1/0 control stores are options and also
less trivial to program. Not all applications require an
understanding of the item treated as additional topic
which is muitiple environment applications.

8.1 DECODER CONTROL STORE

Preliminary decoding of instructions in the instruction
buffer is performed by the instruction decoder control
store and the instruction decode logic. These ‘elements
translate the 16-bit instruction into a 9-bit control-store
address according to the contents of the instruction
decoder control store.

The instruction decoder control store consists of two 16-
word by 16-bit memory arrays. The prodcessor implements
this with programmable read-only memory (PROMS). An
option of the WCS permits selection of read/write arrays to
permit alternate decoding strategies.

The decoder B control store array uses instruction buffer
bits 12 through 15 as an address. The decoder A control
store array uses instruction bits 08 through 11 as an
address. The formats for these two control store arrays are
in figure 8-1.

The decoders are identified as A and B. Bits within them
numbered right to left starting with zero, so that bit 10 of
decoder B is identifed as B10. A and B designations are
accepted by microprogram simulator and utility programs.

The decoder address is enabled by the TF and SF fields
both equal to 00 and the GF field equal to X1XX. If an
interrupt is present, decoding is inhibited and interrupt
addressing is used.

Decoder addressing will be inhibited if the IM field equals
11X0. If decoder addressing is so inhibited and no
interrupts are present, field select addressing is used.

The possible components of a decoded address are shown
in figure 8-1 and 8-2. The 9 low-order bits obtained from
the decoder B are always used in decoder addressing.

The most significant 5 bits (4-8) in decoder A are included
in the control store address bits 4 through 8 by an

inclusive OR, if either of the following bit combinations
exist in the first decoder output:

B12 equals zero
or
B15 equals zero

The least significant 4 bits of decoder A are included in the
control store address bits O through 3 by an inclusive OR if
either of the following bit combinations exist in the first
decoder output.

B12 equals zero and B10 equals one
or
B15 equals zero and B10 equals one

The contents of instruction buffer bits 04 through 07 are
included in the control store address bits O through 3 by
an inclusive OR, if either of the following bit combinations
exist:

B14 equals zero
or
B15 equals zero and Al3 equals one

The contents of instruction buffer bits 00 through 03 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
exist:

B13 equals zero
or

B15 equals zero and Al3 equals one

One exception to this is the contribution of instruction
buffer bits 04 through 07. The contribution to control store
address bit 2 will be the contents of instruction buffer bit
03 instead of bit 06, if the decoder B bit 00 equals one
and the decoder A9 equals one.

Decoder addressing is used to perform a preliminary
instruction decoding function. It permits instruction
classes to be discriminated with the detailed decoding
performed later by field select addressing after the
instruction buffer is transferred to the instruction register.

The meaning of other bits in the two decoder control store
words is shown in figures 8-1 and 8-2. These signals are
available at a processor connector and are used by Varian
73 options to detect certain instruction classes.

8-1
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Figure 8-1. Decoder Control Store Format
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CONTROL STORE

ADDRESS BIT 8|7J615l4|3|2|‘l°
(FROM DECODER B)
88-BO (DECODED FROM BITS 12-15

OF INSTRUCTION BUFFER)

A3-AD
AB-Ad DECODED FROM BITS 08-11
(FROM DECODER A) OF INSTRUCTION BUFFER

B15=0 OR B12=0

INSTRUCTION BUFFER
BITS 00-03

ENABLED COMPONENTS ARE LOGICALLY OR'ed, B13=0 OR (815 =0 AND AI3 = 1)

ALL DECODER COMPONENTS ARE INHIBITED UNLESS
THE SF FIELD EQUALS 00 AND THE GF FIELD EQUALS

X1XX AND NO ENABLED INTERRUPT REQUESTS ARE INSTRUCTION BUFFER
ACTIVE, BITS 04-07

IN ADDITION, DECODING MAY BE INHIBITED BY THE I

IM FIELD EQUAL TO 11X0. Bl4 =0 OR (B15=0 AND Al4 = 1)

% THIS BIT IS FORCED TO STATE OF INSTRUCTION BUFFER BIT 03
IF DECODER 1 BIT 00 IS ON AND DECODER 2 BIT XX5 1S ON,
VTII-1937
Figure 8-2. Decoder Address Components

8.2 1/0 CONTROL STORE the SF field equal to 00 and the IM field equal to 0010.
Execution of this and subsequent microinstruction will be

inhibited until the I/0 sequence is completed. If the 1/0 is
busy performing a sequence and an 1/0 request is issued
execution of the microinstruction specifying new 1/0
activity will be inhibited until the 170 completes its current
sequence.

8.2.1 Microprogram Initiation

The microinstruction can initiate 1/0 activity by signaling
an 1/0 request while forming a starting address for the
independent 1/0 control store. An 170 request is made by
setting the SF field equal to 00 and the IM field equal to
111X. (If the IM field equals 1110, decode addressing is
inhibited).

Standard 1/0 page zero starting addresses for processor-
initiated 1/0 are:

The 170 control-store starting address is specfied by the Hexadecimal

MT, MR and TS fields. Address Action
04 Sense, EXC or EXCA 1/0 sequences
7 6 5 4 3 2 ! ° oc Data Input
MT | MR TS ABL*| 0 1C Data Output
1/0 operations can be initiated by external events such as
1/0 request 1/0 Control .
SF = 00 Store Starting DMA traps. Standard 1/0 page zero addresses are:
IM = 111X Address .
Hexadecimal
*AB1 is most significant bit of the AB field Address Action
40 DMA trap out
50 DMA trap in
70 High-speed DMA trap out
The microinstruction can wait for completion of 1/0 activity 80 High-speed DMA trap in
by specifying a wait for 1/0 done. This is coded by setting DC Interrupt
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8.2.2 1/0 Microprogramming

The 170 control section performs 1/0 sequences initiated
from either the Varian 73 processor microprograms or
external DMA trap requests or interrupts.

1/0 microprogramming must be undertaken only with a full
knowledge of the hardware function of the 1/0 control
section. This is described in the maintenance manual
(Varian document number 98 A 9906 080) for the Varian
73 system and in accompanying logic diagrams.

No simulator program exists to aid in debugging 1/0
microprograms.

All special 1/0 microprogramming must be considered an
engineering design more than a programming task.

1/0 control performs the following functions in accordance
with the sequence |/0 microinstructions stored in the 1/0
control store:

« Control the source of data applied to the /0 register
input bus.

* 1/Oregister input bus.
* Control loading on byte shifting of the | /O register.

« Initiate memory cycle requests to the Varian 73
memory control section.

* Initiate 1/0 bus control signals.

« Wait for completion of external events such as memory
cycles, new processor microprogrammed requests,
external control signals, etc.

» Signal completion of 1/0 activity to the processor’s
central control section.

1/0 control store formats are shown .in figure 8-3.

The 170 address counter is automatically incremented at
completion of each microinstruction unless a "WAIT" or
"IDLE" state is entered. This counter is cleared to zero by
system reset.

I/0 microinstructions are executed from sequential ad-
dresses until the end of the sequence whereupon the 1/0
becomes idle and ready to accept new requests.

As the address counter is loaded with its starting address,
the 170 control buffer is loaded with the contents of 1/0
control store location corresponding to the last contents
of the address register. Following a system reset this will be
the contents of 1/0 control store address zero. At all other
times it will be the ending address of the previous 1/0
sequence. In either case, the standard data will cause bits
IDLE and DN to become true.

IDLE true indicates the 170 control is not idle and further
requests are to be ignored as long as IDLE is true, the 1/0
address counter and |/0 control buffer are enabled.

At each succeeding microinstruction time the address
counter is incremented and the 1/0 control buffer is
loaded with the contents of the address designated by the
address counter. The 16 bits of the 1/0 -control buffer
control all 170 functions. Their use is described below:

CDO  Control the processor’s
CD1 1/0 data loop multiplexor (IOMXX +)

CD -

1 0 1/0 Register Input
00 ALU

01 Memory 1/0 register
1 0 /0 bus byte swapped
11 1/0 bus

CD2  Control the processor’s
CD3  1/0 register

CD
32

0 0 No action

0 1 Shift right (left byte to right byte)
1 0 Shift left (right byte to left byte)
11 Load from ALU

These bits do not directly control the 1/0 register. The 1/0
register may also be controlled by IDLE (when the 1/0 is
idle, the register is continously loaded from the ALU).

CD4 Enables the processor's 170 register onto
the E-bus.
FRY Initiates an 1/0 function ready (FRYX-1)

signal. RYX-| is terminated 247.5 nano-
seconds later by signal HIT-.

Spare Not used.
DRY Initiates an 1/0 bus data ready (DRYX-I)

signal. DRYX-| is terminated 247,5 nano-
seconds later by signal IEDRYN + derived

from IIIT-

IDLE Determines idle/busy status of 1/0 control.
While busy the 1/0 can accept no new re-
quests.
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Figure 8-3. 1/0 Microinstruction Format
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ADDRESS ADDRESS FROM CONTROL
GENERATOR MICROINSTRUCTION

1/O ADDRESS COUNTER

1/O CONTROL STORE

I/O CONTROL BUFFER

TRAP AND
INTERRUPT [ .
REQUESTS MEMORY REQUESTS

$ CONTROL SIGNALS TO

1/O REGISTER
/0O BUS DRIVERS
/O REGISTER INPUT BUS

» /O DONE
—» 1/O IDLE

A 4

I/O BUS CONTROL INTERFACE

1/O BUS CONTROL SIGNALS

VTII-1934

Figure 8-4. 1/0 Control Simplified Block Diagram
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WAIT Places the |/0 control in a ''wait"” Any 1/0 sequence continues through successive ROM
state by inhibiting address counter and addresses until address counter and ROM buffer clocks
ROM buffer clocks until receipt of a are inhibited by either of two conditions:
designated signal. The 1/0 may wait for . IDLE becomes false signifying end of sequence or
any of the following: WAIT becomes true signaling that the current sequence

must stop to wait for some external event such as:

* memory cycle

¢ new processor request
+ new processor request
. processor interrupt flag reset «  new processor request
» interrupt flag set
. data memory cycle complete
« external wait line active
. external wait signal For programmed 1/0 sequences signal DN will become
active and at the next microinstruction time IDLE will
become active also. IDLE causes 170 sequencing to stop.
Selection of the specific condition is The 1/0 sequence is thus completed leaving the address
determined by the function bits EF2, counter loaded with an address whose contents IDLE and
EF1 and EFO of the 1/0 control buffer. DN. This will be the first data loaded into the ROM buffer
when clocks are reenabled.
RQM Requests a DMA memory cycle from the

processor's memory control.

CRY Channel request. Reserved for
future option.
DN Results in an 170 done signal (IDNC- 8.2.3 Example of 1/0 Microprogram:
low) to signal the processor of completion Clear and Input to A
of the 1/0 sequence.
F2 Function bits which control:
The flowchart and code sheet following describe the
. selection of "wait’" condition standard programmed 1/0 sequence for V73 input data
' transfers. The corresponding flowchart for the processor
. advance of interrupt clock counters microprogram to initiate the 1/0 transfer may be found in
the second volume of the V73 Maintenance Manual.
. steering of DRY
Referring to the processor microprogram flowchart for the
. acknowledge interrupt requests' sequence required to start the 1/0 operation, the first
central control address is 1A0. This was obtained with
. loading of new sequence addresses decode addressing. The entire sequence will now be
traced.
IABM1 (1A0)
EF This microinstruction causes the operand register to be
2 1 0 loaded with a mask word containing only bit 13 true.
Normal addressing specifies the next address.
0 0 0 Select wait on external signal 1EXW +
0 0 1 Load new sequence address from CPU if IABM2 (1C3)
CRQIO +
01 0 Advance IUCX and IUCF clock counters This microinstruction specifies an 1/0 request with an 1/0
01 1 Select wait for memory cycle complete starting address of OC. If the 170 was idle (the 1/0 control
1 0 0 Select wait on CPU request store buffer IDLE bit was a zero) the 170 control accepts
1 01 Steer DRY to DRYX-| - the starting address and simultaneously loads its control
1 1 0 Acknowledge interrupt sequence request buffer with a standard code of 0088. This places the 170 in
from CPU its "'busy" state and signals the processor that the 170
1 1 1 Not used operation was accepted.
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During this microinstruction the processor transfers the
operand register to register E (this register has been
designated S1).

IABM3 (1F3)

This microinstruction logically OR’s the contents of register
E with the masked (bits 0-8) contents of the instruction
register. This places the device address, function code and
bit 13 (specifying an input transfer) at the ALU output.

In the 1/0 control the 1/0 microprogram is executing the
microinstruction  at location OC which loads the 1/0
register with ALU output data. '

The processor microprogram specifies a '"Wait for 1/0
Done’ which causes further processor operations to be
suspended until the 1/0 control signals completion. The
remainder of the 1/0 sequence will now be traced.
Addresses are sequential.

170 address OC is "NOP"'. It performs no function.

Table 8-1. 1/0 Microprogram Example Code

1/0 address of continues to enable the 1/0 register to the
170 bus and generates the IFRYX:| control signal to signal
1/0 devices that a new address and function code may be
sampled.

1/0 address 10 performs the same function as OF. This
allows for 1/0 bus settling time.

|70 address 11 selects the 170 bus as an input to the 1/0
register. The selected 1/0 device may place its data on the
170 bus.

170 address 12 continues to select the 170 bus as an input
to the I/0 register and generates control signal IDRYX-I.

170 address 13 continues to select the [/0 bus as an input
to the 170 register, continues to generate IDRYX-l and
causes the 1/0 register to be loaded with the data placed
on the 170 bus. 1/0 control buffer bit "DN' becomes false
permitting microinstruction execution to proceed.

170 address 14 returns the 1/0 control to an idle condition.
Simultaneously the next central control microinstruction is
executed.

CIA (09D)

This microinstruction transfers the 1/0 register contents to
register O (the A register). The program counter is
incremented and a new instruction fetch is initiated. The
microprogram branches to SS3M (02D) where the instruc-
tion buffer is decoded to branch to the start of the next
instruction.

Note that /0 address 15 will be executed when the next
170 operation is started. This microinstruction contains
the standard code of 0088 which will place the 1/0 in its
"busy" state.

8.3 MULTIPLE ENVIRONMENT APPLICATIONS

This section describes using the Varian 73 WCS for
extended instruction execution and dual/multi environ-
ment applications.

This section discusses the application of WCS to extend the
standard V73 emulation of a Varian 620/f to perform
additional instructions and functions. It also discussed a
dual environment implementation, which can be extended
to multi-environment machine.

Application of the WCS to Extend V73 Execution

Capabilities

Using the V73 macro BCS, it is possible to define entry
points in extended micro store for a large number of
special functions. These extended functions can be
defined to use V73 hardware not explicit in the 620/f
emulation such as 16 general purpose accumulator
registers and more explicit status testing. Examples of
application of this capability would be implementation of
floating point arithmetic, stack organizations and so on.
Characteristic of extended operations is that no primary
decodes would occur during the operation (exceptions are
possible of course). It is possible to enable interrupts while
disabling primary decode so it would be possible to allow
interrupts during very long microsequences. However, the
point of interruptability and its ramifications would have
to be carefully considered.

Application of the WCS to Dual/Multi

Environment Operation of the V73

Emulation of instruction architectures other than that of
the host machine is achieved by performing primary
control store address decoding in the WCS extended
control store. It is possible to have unique architecture in
each 512 word block of control store. Some possible
examples of this would be:

1. Hardware emulation of a VXX machine under control of
WCSin the V73.

2. Implementation of a higher level language processor
operating under control in the V73.

3. ETC.

8-8
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Figure 8-5. Flowchart of 1/0 Microprogramming Example
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Figure 8-5. Flowchart of 1/0 Microprogramming Example (continued)
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An Example of a Second Environment

Architecture and V73 Call Sequence

For our example, we will define a second environment E2
(as distinguished from the V73 environment E1) which can
use general registers of the V73 as stack pointers, general
purpose accumlators and so forth. The question arises as
to interruptability of this second environment and what
registers are available to E2.

A macro sequence to call E2 from the V73 could be:

P BCS (105000) page jump to E2 entrance
micro

P +1 xxxxx LOC of first instruction of E2 in
main memory

Py + 2 BCS (105001) page jump to E2 interrupt
return entrance

E2 Entrance and Interrupt Micro Code

The normal entrance micro code saves (P) + 2 at register
E for reference in case of an interrupt. Also, it can be used
to return jump to the next V73 instruction when
environment 2 is completed.

Upon receiving an E1 interrupt while in E2, the microse-

quence (simplified) is as follows:

[ 3

E2 STORE
IWAIT STATE RETURN 7
REQ. /0 PATD

' :
.

PAGE JMP
to V73 interrupt micro
2 SAVE REG. processor
3 3TOA
4 4 TO0 B
5TO0C
\4 - . .
in V73,620/f environment
RESTORE . .
5 REG. 3.5 reglster .5 is all ones
6 's to '5 | J and register 3 is all
0's to 3 ‘zeros. Registers 4,E
and F are temporary

. storage.

(continued)

varian data machines @]—

The content of E is the return instruction location as
required by control word OD1. Only registers 3,4,5, E and F
may be subsequently modified by 620 code and it is only
necessary to save 3,4,5 as the return path will supply
restoration of E.

The interrupt return is implemented via the BCS at the V73
interrupt return reference. The interrupt return entry code
restores registers 3,4,5 from A, B and C respectively and
stores the location of the interrupt return BCS in E. The
code then restarts the instruction pipeline at the reference
stored in D. Note that the V73 interrupt routine is
responsible for maintaining A, B and X registers (0,1,2).

E2 Register File Usage

We can now see that the second environment has 10
registers (0-9) available for general purpose use, while E is
allocated for the interrupt return page jump instruction
address. Registers A, B, C, D and F are also available for
intermediate usage between interruptable states.

Considerations of Saving and Storing Status

The above example does not define how status is to be
saved and restored. This should be considered when
defining the interruptability of the second environment. In
any event, register and overflow status will be maintained
by the V73 environment interrupt routines but the equal,
less than and greater than status is more difficuit. This
may involve saving the status in the interrupt return micro
code.

Further Discussion of Multi-Environment Systems

The above example of interrupt handling in multi-environ-
ment machine is presented as an exploration of a
mechanism which solves the problem given a particular set
of system restraints (interrupt service routines are in the
host 73 environment and do not use other than normal
620/f instructions, i.e., instructions only use registers 0, 1,
2,3,4,5 EF).

Each different set of environments may require different
mechanisms of interrupt handling. Some will require
saving registers in main memory, possibly at locations
relative to the location of the interrupt return page jump.
An alternate environment might utilize its own 1/0 drivers,
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which would involve locking out interrupts and swapping
out interrupt entrance code and possibly also the interrupt
processing routines. In this situation the second environ-
ment might offer system executive contral as well as its
optimized functions. When environment, register save/
restore will probably have to be comprehensive and in main
memory.

Other Multi-Environment Considerations for
the V73 System Reset

The system reset function will normally be wired to return
control to the host module (normally zero).

Power Fail/Restart

The system executive is expected to contain the necessary
job restart information in case of a power fail. Therefore,
the host environment is not required to save facilities of an
alternate environment (some of which are unknown to the
host machine). The E2 environment could be saved if
desired by using a special instruction such as a 620/f
extension macro which saves and restores the file.

Step Mode

If it is desirable to single step computer operation in
alternate environments, it is necessary to micro code a
halt loop in that environment. The alternate environment
has the option of enabling or disabling the step function in
its micro code.

Conclusion

These are two basic applications for the Varian 73
computers extendable WCS. Iits use for extending the
instruction set of the standard 620 emulator is quite
straight forward. Its application to produce a dual or multi
environment machine was also seen to be practical and
feasible with the system problem of interrupt handling
examined in some detail. In fact, a second environment
which offered 10 general purpose registers and 5 scratch
registers for implementing stack/queue pointers, floating
point registers or whatever, was demonstrated.

Because of the ability to add new instructions to the 620
emulation in the V73 and the flexibility of micro coding,
the example is really only one of many possibilities. The
mechanism generally will be designed to meet require-
ments of the system definition.
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SECTION 9
GLOSSARY OF MICROPROGRAMMING

MICROPROGRAMMING GUIDE
GLOSSARY/INDEX
Entries are a brief definition followed by the page number

or numbers in this test where additional discussion can be
found. These definitions reflect the usage preferred for

varian data machines

source on the B bus or a part of
mask literal

consistency and a minimum of terms. Whenever two words BCS mnemonic for Branch to Control
have been used previously for the same item a choice was Store, a 16-bit MACRO
made in favor of the most meaningful and unambiguous. instruction which initiates
execution of microprograms
AA microinstruction field of bits 0 - 3 in WCS
. to select an ALU source on bus A
and/or destination BIC Buffer Interlace Controller
AB microinstruction bit 35, which is binary numbering system in which only two
used in field-select addressing and states are represented, one and zero
1/0 requests
q BYTA flag which indicates left or right
addressing determination of next instruction byte of word
to be executed . )
byte 8-bit unit
AF microinstruction field which contri-
butes to address generation ) )
central unit which performs and controls
ALU Arithmetic and Logical Unit, the processor execution of instructions
‘Iogical and storage providing data o ) ) ]
transfer and basic arithmetic and CF microinstruction field which varies
logical operations in the processor the type of carry action on ALU
actions
ALUC flag for ALU carry, bit 11 of proc- . o
essor status word control contains current microinstruction
. buffer being executed; separate for
ALUO flag for ALU output all ones, bit 9 central control logic (64 bits)
of processor status word and 170 control logic (16-bits)
ALUS flag for ALU sign, bit 10 of proc- control memory in which microinstructions
essor status word store are stored
ALUZ flag for ALU output all zeros, bit cycle time required to execute one micro-
2 of processor status word instruction
application program oriented to solving problems cycle, time required to access and restore
software rather than managing systems memory storage in main memory
resources
cyclic technique for validating storage or
ASCIHI American Standard Code for Infor- redundancy transmission reliability
mation Interchange codes for char- check
acter representation
assembler computer program which transiates
symbolic statements into machine )
executable instructions, see MIDAS data path transfer media for data within CPU
DCS Decode Control Store, optional
BB microinstruction field of bits 4 programmable control store for
through 7, which specify the ALU instruction decoding
(continued)
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DMA

direct
addressing

emulation,

620

FF

field select

GF

GPR

GPRS

hexadecimal
or hex

instruction
buffer

instruction
register

10CS

IOR

key register
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Direct Memory Access

instructions contain actual effective
memory address to be used, in con-
trast with relative or indirect ad-
dressing

standard microprogram which
resides in control store page
zero, ROM; directs execution
of Varian 620 instructions

microinstruction field which specifies
ALU action

technique of addressing which uses
the bits of the instruction re-
gister to determine a microprogram
branch address

microinstruction field, which specifies
condition to be tested

general-purpose register, one of 16
16-bit registers

general-purpose register 0
bit 15 (sign)

numbering system using base 16, re-

presenting numbers with digits and
letters A through F

Instruction Fetch

interrupt address. supplied by option
board to indicate type of interrupt

microinstruction field designating
type of memory control

storage for instruction immediately
after fetched from memory

storage for instruction for an
instruction to be executed

for 1/0 Control Store, optional

unit of programmable store for varying

1/Q rates and disciplines

170 Register

four-bit register which supplies
signals for memory operations used
by memory-map option

LA -

LB

MAD

mask

map, memory
microinstruc-
tion

microprogram

MIR
MIRS

MK
MR
MS
MT
MULS
NORM

OF

oP

OPR

overflow

page

microinstruction field which in
conjunction with AA specifies the
ALU input on bus A
microinstruction field which in

conjunction with BB specifies the
ALU input on bus B

Memocry Address Register

literal constant ANDed with instruc-
tion register

hardware option to allow addressing
memory to 256K

64-bit word from WCS specifying the
actions to occur during one cycle

vehicle for implementing control
function of a computer

Memory Input Register
flag for memory input register sign

16-bit mask field (assembler
mnemonic)

microinstruction bit 37 used to
specify 1/0 address bit 6 or to
control AB field use

microinstruction addressing field

bit 50 of microinstruction which
specifies bit 7 of an 1/O address

Muitiply Sign flag

Normalize flag

Operand fetch

microinstruction fields combined to
specify ALU action (bits 23 - 17)

operand register
ALU action indicated by OVFL flag;
condition caused by attempt to

push too many addresses into micro-
program stack

program counter

unit of writable control store of
512 words, 64 bits each
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page jump

pop

program
counter

push

pipelining

QUOS

RF

ROM

SC

SF

SH

SHFT

SHTC

a branch with a microprogram béyond
the extent of the page currently being
executed

to remove an address from top
of microprogram stack

register for memory address;
usually used for keeping track
of MACRO level execution

to add an address to top
of stack

technique which allows next instruc- _
tion to be fetched during an other-
wise unused memory cycle

flag for quotient

microinstruction field of bits 24
through 26 used to specify transfer
and increment of some special
registers

Read Only Memory; page zero of V73
system control stores; contains

the microinstructions to emulate
Varian 620 system

bit 15 of microinstruction; specifies
shift of operand register or is part
of mask literal

bits 42 and 43 of microinstruction;
specify interpretation of the M
field

microinstruction field which
specifies some special ALU
actions or shift operations

flag for shift

flag for overflow of the shift
counter

stack,
microprogram

STAT

STEP

SSwW

SUPR

TF

TS

" underflow

VF

WCS

WR

WF

varian data machines
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linked storage locations (16) used
in microprogram subroutine call and
return

processor status word

mode of computer execution one
instruction at a time

SENSE switch 1 - 3 on control panel

supervisor mode flag, bit 1 of
processor status word

microinstruction field of bits 45
and 46 which specify whether
testing occurs and whether it is
for true or false condition

microinstruction field of bits 60
through 63, which selects a field
from the instruction register,

specify a page number for a page
jump, or contribute a portion

of an 1/0 address or enable selected
interrupts

condition upon attempting to remove
or pop more addresses than are in
a microprogram stack

microinstruction bit 14, which
specifies moving bit 15 of RO to
divide-sign bit (DSB), or a part
of mask

Writable Control Store; which is read
and written over the 1/0 bus

microinstruction field bit 16
specifies whether or not there is a
write into the general-purpose
registers

single bit (13) in microinstruction
to designate transfer of the ALU
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