
VARIAN 620 

SUBROUTINE DESCRIPTIONS 



varian data machines IEl 

VARIAN 620 

SUBROUTINE DESCRIPTIONS 

Specifications Subject to Change Without Notice 

~ varian data machines/a varian subsidiary 
~ £ 1971 

98 A 9902 044 



98 A 9902 044 

98 A 9902 044 

SEPTEMBER 1971 



varian data machines ~l 

FOREWORD I 

This manual describes standard subroutines that can be used with the Varian 620 family 
of computers. It is assumed that the reader is familiar with 620 programming 
terminology. 

Section 1 provides subroutine entry and exit data, and the formats used to describe the 
subroutines in the sections that follow. 

Section 2 contains programmed arithmetic routines; section 3, elementary function 
routines; and section 4, conversion routines. An index of included routines is provided at 
the beginning of each section. 

98 A 9902 044 iii 





TABLE Of CONTENTS 

SECTION 1 
GENERAL DESCRIPTION 

varian data machines ~l 

CONTENTS 

1.1 Subroutine Entry and Exit .................................................................................... 1-1 
1.2 Format ...................................................................................................................... 1-2 

SECTION 2 
PROGRAMMED ARITHMETIC 

2.1 General .................................................................................................................... 2-1 
2.2 Index ....................................................................................................................... 2-1 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

3.1 General ..................................................................................................................... 3-1 

3.2 Index·······'················································································································ 3-1 

SECTION 4 
CODE CONVERSION ROUTINES 

4.1 General .................................................................................................................... 4-1 
4.2 Index ....................................................................................................................... 4-2 

98 A 9902 044 v 





SECTION 1 

varian data machines ~l 

SECTION 1 
GENERAL DESCRIPTION 

GENERAL DESCRIPTION 

1.1 SUBROUTINE ENTRY AND EXIT 

If a subroutine requires only one parameter or argument, programmed entry will be made 
by first loading the desired parameter into the A register and then executing a return 
jump to the subroutine. 

Where more than two input parameters are required, the parameter will be entered into 
the program following the return-jump to the subroutine. The following sequence of 
instructions will be used: 

Location Instruction 

p Return jump 

p + 2 Parameter 

p + 3 Parameter 

p + 4 Parameter 

P + n Parameter 

P + n + 1 Normal return 

98 A 9902 044 

Remarks 

Return jump to subroutine. 

Parameters or parameter locations for 
subroutine. 

Parameters or parameter locations for 
subroutine. 

Parameters or parameter locations for 
subroutine. 

Parameters or parameter locations for 
subroutine. 

Continuation of program. 

1-1 



SECTION 1 
GENERAL DESCRIPTION 

1.2 FORMAT 

Each routine is organized in the following order: 

IDENTIFICATION 

PURPOSE 

USE 

METHOD OF ALGORITHM 

Symbolic title and description 

Calling sequence or operational procedure 
Arguments or parameters 
Space required (decimal) 
Temporary storage requirements (decimal) 
Error returns or error codes 
Input and output formats 
Sense switch settings 
Accuracy 
Cautions to users 
Equipment configuration 
References 

Items which are not applicable to a particular subroutine have been omitted. 

1-2 98 A 9902 044 



SECTION 2 

SECTION 2 
PROGRAMMED ARITHMETIC 

PROGRAMMED ARITHMETIC 

2.1 GENERAL 

This section contains programmed arithmetic routines, separated into distinct packages. 
Each routine is described according to the format presented in section 1. Items which are 
not applicable to the routine have been omitted. 

2.2 INDEX 

The routines included in this section are listed below, alphabetica-Hy by symbolic title, 
along with the page number where they appear. 

Symbolic Title 

ABS 

ABS (FORTRAN version) 

IABS 

IABS (FORTRAN version) 

ISIG 

SIGN 
XBTD 

XDAD 

XDCO 

XDDI 

XDIV 

98 A 9902 044 

Description 

Absolute value, floating point 
(type real) 

Absolute value, floating point 
(type real) 

Absolute value, fixed point 
(type integer) 

Absolute value, fixed point 
(type integer) 

Transfer of sign, fixed point 
(type integer) 

Copy sign 
Fixed-point, single-precision 

integer, binary-to-decimal 
conversion 

Fixed-point, double-precision, 
add 

Fixed-point, double-precision, 
2's complement 

Fixed-point, double-precision, 
divide 

Fixed-point, single-precision, 
divide 

2-1 

Page 

2-17 

2-19 

2-18 

2-20 

2-21 

2-22 

2-3 

2-9 

2-8 

2-15 

2-7 



~~riood~am~~n~---------------------~ 

SECTION 2 
PROGRAMMED ARITHMETIC 

Symbolic Title Description Page 

XDMU Fixed-point, double-precision, 
multiply 2-13 

XDSU Fixed-point, double-precision, 
subtract 2-11 

XDTB Fixed-point, single-precision 
integer, decimal-to-binary 
conversion 2-4 

XMUL Fixed-point, single-precision, 
multiply 2-5 

$FAS Floating add or subtract 2-28 
$FMS Separate mantissa 

(same as $FSM) 2-23 
$FSM Separate mantissa (same as $FMS) 2-23 
$HS Floating-point number to integer 

number 2-24 
$NML Normalize 2-25 
$QK Floating add 2-26 
$QL Floating subtract 2-27 
$QM Floating-point multiply 

(same as $QN) 2-29 
$QN Floating-point divide 

(same as $QM) 2-29 
$QS Integer number to floating-point 

number 2-31 

2-2 98 A 9902 044 



IDENTIFICATION 

SECTION 2 
PROGRAMMED ARITHMETIC 

XBTD Fixed-point single-precision integer; 
binary-to-decimal conversion. 

PURPOSE 

XBTD converts the absolute value of the integer in the A register, module 10,000, to a 
binary-coded decimal integer in the B register. The input is retained in the A register and 
the X register is unchanged. The output range is 0 through 9999 inclusive. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Accuracy 

Cautions to user 

METHOD 

CALL XBTD 

The binary argument is in the A register 
before and after execution. 

28 words 

Four words 

Exact 

An input of -2
1 ~ Wll.l. set overflow and 

provide a meaningless result. 

Successive division of binary integer by 10 111 with concatenation of remainders. 

98 A 9902 044 2-3 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

XOTB 

PURPOSE 

Fixed-point, single-precision integer, 
decimal-to-binary conversion. 

XOTB converts the binary-coded decimal integer in the A register to a binary integer in 
the B register. The input is retained in the A register with the X register unchanged. The 
output range is + 0 through + 9999 inclusive. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Accuracy 

Cautions to users 

METHOD 

CALL XOTB 

The decimal argument is in the A register 
before and after execution. 

25 words 

Four words 

Exact 

Input is not checked for legal bed codes, 
but is evaluated as: 

1 0 
3 ., 

1 0 I 03* + D2 * 1 0 ~ +DI * 

+ Do ... 10 0 

where D is a four-bit binary number. 

Successive multiplication of digits by powers of 10 with accumulation. 

B = ((1003 + D 2 ) 1 0 + DI ) 1 0 + D 0 

2-4 98 A 9902 044 



IDENTI FICA Tl ON 

SECTION 2 
PROGRAMMED ARITHMETIC 

XMUL Fixed-point single-precision multiply. 

PURPOSE 

XMUL provides the software version of the (optional) hart..i"iv·are multiply instruction. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns 
or codes 

Accuracy 

Cautions to user 

METHOD 

LDB Multiplier 
LDA Constant 
CALL XMUL 
PZE Address of multiplicand 
Normal return. 

On entry, A 
3 0 

constant to be added 
to product at 2 , 

8 m1iltinliAr-... ~ ... ,.., .. '"' .. 

On exit, 
product, 

A, B = double-precision 

X is unchanged. 

44 1 0 words 

Two words 

OV is set (1) if the product is greater 
than 2':":' (NBIT-1)-1. 

Exact 

OV is reset if there is not an error. 

Recursive addition of multiplicand with shifting. 

98 A 9902 044 2-5 





varian data machines ~l 

SECTION 2 1 

PROGRAMMED ARITHMETIC 

IDENTIFICATION 

XOIV Fixed-point single-precision divide. 

PURPOSE 
•"" 

XOIV provides the software version of one (optional) hardware divide instruction. The true 
remainder and quotient are delivered to the A register and B register, respectively. XDIV 
gives the true result for negative numbers. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns 
or codes 

Accuracy 

Cautions to users 

METHOD 

LOA (.tl.igh dividend) 
LOB (low dividend) 
CALL XDIV 
PZE (address of divisor) 
Normal return. 

On entry, A, B 
dividend. 

On exit, 

72 words 

Five words 

double-precision 

A = remainder, 
B = quotient, 
X is unchanged. 

OV is set (1) if the dividend is not less 
than the divisor. 

Exact 

This routine produces the true quotient and 
remainder, i.e., 211 = quotient of 2 and 
remainder of zero. 

Unsigned, non-restoring divide algorithm. 

98 A 9902 044 2-7 



SECTION 2 
PROGRAMMED ARITHMETIC 

I DENTI FICA TION 

XDCO Fixe-d-point double-precision 2's complement. 

PURPOSE 

XDCO takes the 2's complement of the double-precision number in the A and B register. 
The X register is unchanged. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Input and output 
formats 

Accuracy 

Cautions to users 

METHOD 

CALL XDCO 

The A register and the ·s register contain 
the double-precision argument before, and 
the 2's complement after execution. 

13 words 

Double-precision numbers are 
stored as two successive data words. 
The first contains the sign and 
high-order 15 bits; the second contains 
the low-order 15 bits and 1s always 
unsigned. 

Exact 

XDCO may set the overflow register. 

The argument is complemented and the low-order bits are tested for a carry condition. 

2-8 98 A 9902 044 



IDENTIFICATION 

varian data machines •

1 SECTION 2 
PROGRAMMED ARITHMETIC 

1 

XDAD Fixed-point double-precision _l_I 

acc. 

PURPOSE 

XDAD adds a double-precision number whose high-order address is in the calling 
sequence to the double-precision numbers in the A and B registers. The X register is 
unchanged. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
error codes 

Input and output 
formats 

98 A 9902 044 

CALL XDAD 
PZE is the address of the double­
preci~on augend. Normal return. 

The A and B register contain 
the double-precision added before. 
and the double-precision sum 
after execution. 

21 words 

Two words 

The overflow is set if a double­
precision overflow occurs. 

Double-precision numbers are stored 
as two successive data words. The first 

2-9 



SECTION 2 
PROGRAMMED ARITHMETIC 

Accuracy 

Cautions to users 

METHOD 

contains the sign and high-order 15 
bits; the second contains the low-order 
15 bits and is always unsigned. 

Exact 

The sign of the low-order words of each 
double-precision argument must be zero 
to generate the proper carry. Overflow 
flip-flop is set on an overflow. 

Low-order words are added first and any carry generated is added to the high-order sum. 

2-10 98 A 9902 044 



varian data machines •

1 
SECTION 2 I 

PROGRAMMED ARITHMETIC I 

IDENTIFICATION 

XDSU Fixed-point double-precision subtract 

PURPOSE 

XDSU subtracts a double-precision number (subtrahend) whose high-order address is in 
the calling sequence from the double-precision number (minuend) in the A and B 
registers. The X register is unchanged. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
error codes 

Input and output 
formats 

Accuracy 

98 A 9902 044 

CALL XDSU 
PZE is the address of high-order bits 
of the double-precision minuend. 
Normal return. 

The A and B registers contain the 
double-precision subtrahend before, and 
the double-precision difference after 
execution. 

23 words 

Two words 

The overflow is set if a double-precision 
overflow occurs. 

Double-precision numbers are stored as 
two successive data words. The first 
contains the sign and high-order 15 bits; 
the second contains the low-order 15 bits 
and is always unsigned. 

Exact 

2-11 



SECTION 2 
PROGRAMMED ARITHMETIC 

Cautions to users The sign of the low-order words of each 
double-precision argument must be zero 
to generate the proper carry. Overflow 
flip-flop is set on an overflow. 

2-12 98 A 9902 044 



IDENTIFICATION 

varian data machines ~

1 SECTION 2 
PROGRAMMED ARITHMETIC 

XDMU Fixed-point double-precision multiply. 

PURPOSE 

XDMU multiplies the double-precision number whose high-order address is in the calling 
sequence times the double-precision number in the A and B register. The X register is 
unchanged. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required' 

Temporary storage 
required 

Input and output 
formats 

Accuracy 

Cautions to users 

98 A 9902 044 

CALL XDMU 
PZE is the address of the high-order bits 
of the multiplier. 
Normal return. 

The A and B registers contain the 
double-precision multiplicand before 
and the double-precision product after 
execution. 

55 words (without hardware multiply/divide 
option). 49 words (with hardware multiply/ 
divide option). 

Four words 

Double-precision numbers are stored as 
two successive data words. The first 
contains the sign and high-order 15 bits; 
the second con ta iris the low-order 15 bits 
and is always unsigned. 

2- 3 0 taken as a fraction. 

Operands should be normalized to retain 
precision. Overflow is reset by XDMU. 

2-13 



SECTION 2 
PROG~AMMED ARITHMETIC 

Equipment 

configuration 

METHOD 

The hardware multiply/divide option may 

be used; or instead of using the hardware 
option, the XDMU routine can be assembled 
to use the software multiply routine 
XMUL. 

Double-precision addition of partial products. 

0 -I ' -1 ' (A + a)':' (B + b) .::::As:::2 + Ab*2 - + aB*2 -

2-14 98 A 9902 044 



IDENTIFICATION 

varian data machines ~l 

SECTION 2 
PROGRAMMED ARITHMETIC I 

XDDI Fixed-point double-precision divide. 

PURPOSE 

XDDI divides the double-precision number in the A and B registers by the double­
precision number whose high-order address is in the calling sequence. The X register is 
unchanged. 

USE 

Calling sequence 

Arguments or 
~~-~~~~~--
j..JQI QI I lt:LCI :::I 

Space required 

Temporary storage 
required 

Error returns or 
error codes 

Input and output 
formats 

Accuracy 

98 A 9902 044 

CALL XDDI 
PZE is the address of high-order bits 
of division. 
Normal return. 

The A and B registers contain the 
,..a_, 1hl- - .... -,...;,...;"t""'\ ,..&;";,..l.""",...I k--i- ... n 
UVUUIC"j..JI C\..l;:)IVI I UIVIUCI IU UCIVI c, 

and the double-precision quotient after 
execution. 

83 words (without multiply/divide option). 
77 words (with multiply/divide option). 

Six words 

Overflow is true if a divide fault occurs. 

Double-precision numbers are stored as 
two successive data words. The first 
contains the sign and high-order 15 bits; 
the second contains the low-order 15 bits 
and is always unsigned. 

-2 9 
Accuracy is ±2 taken as a 
fraction. 

2-15 



SECTION 2 
PROGRAMMED ARITHMETIC 

Cautions to ·users 

Equipment 
configuration 

References 

METHOD 

A + a A + a 

B + b B 

Overflow is reset by XDDI. The dividend 
must be less than the divisor. 

The hardware multiply/divide option may 
be used; or instead of using the hardware 
option, the XDDI routine· can be assembled 
to use the software divide routine XDIV. 

XDDI uses XDSU and XDCO. 

A•b 

2-16 98 A 9902 044 



IDENTIFICATION 

SECTION 2 
PROGRAMMED ARITHMETIC 

~A.BS Absoiute value~ floating point (type reai). 

PURPOSE 

This routine takes the absolute value of the floating-point (real) quantity in the A and Et 
registers, returning the result to the A and B registers. The absolute value of a is defined 
as -a if a is negative, and as a if a is not negative. 

USE 

Cai Ii ng sequence 

Arguments or 
parameters 

Space required 

Accuracy 

METHOD 

CALL ABS 

Argument is in the A and B registers. 

Six words 

No loss of information. 

The method is explained by the coding itself: 

labei Op Code Variabie Comments 

ABS ENTRY Return immediately if not negative. 
JAP':,,:, ABS 

CPA One's complement high order word 
JMP':' ABS negative and return. 

98 A 9902 044 2-17 

if 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

IABS Absolute value, fixed-point (type integer). 

PURPOSE 

This routine takes the absolute value of the signed integer in the A register and returns 
the result to the A register. The absolute value of a is defined as -a if the a is negative and 
a if a is not negative. 

USE 

Calling sequence 

.Arguments or 
parameters 

Space required 

Accuracy 

METHOD 

CALL IABS 

The quantity in the A register is the 
argument. There are no other parameters. 

Seven words 

No loss of information. 

The method is explained by the subroutine code itself: 

Label Op Code 

IABS ENTRY 
JAP':' 

CPA 
!AR 

Variable 

IABS 

IABS 

Comments 

Return if argument is positive or 
zero. 

If argument is negative, one's 
complement and correct to two's 
complement. 

Return. 

2-18 98 A 9902 044 



varian data machines IE 
SECTION 2 l 

PROGRAMMED ARITHMETIC I 

IDENTIFICATION (FORTRAN Version) 

ABS Absolute value. floating point (type real). 

PURPOSE 

This routine takes the absolute value of the floating-point (real) quantity whose address 
follows the CALL instruction, returning the result to the A and B registers. The absolute 
value of a is defined as -a if a is negative, and as a if a is not negative. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Accuracy 

METHOD 

CALL ABS, ARG 

ARG is the address of the argument. 
The result is returned in the A and B 
registers. 

15 WOidS 

No loss of information. 

The coding is the same as the non-FORTRAN ABS except for loading the argument. 

98 A 9902 044 2-19 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION (FORTRAN Version) 

IABS Absolute value, fixed-point (type integer). 

PURPOSE 

This routine takes the absolute value of the signed integer whose address follows the 
CALL instr.uction, returning the result to the A register. The absolute value of a is defined 
as -a if the a is negative, and a if a is not negative. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required, 

Accuracy 

METHOD 

CALL IABS, ARG 

ARG is the address of the argument. 
The result is returned in the A register. 

15 words 

No loss of information. 

The cod).ng is the same as the non-FORTRAN IABS except for loading the argument. 

2-20 98 A 9902 044 



IDENTIFICATION 

SECTION 2 
PROGRAMMED ARITHMETIC 

ISIG Transfer of sign, fixed-point (type integer). 

PURPOSE 

This routine applies the sign of the called (second) parameter to the quantity in the 
accumulator (first parameter). The parameters and result are fixed-point quantities. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Accuracy 

METHOD 

Uses $SE. 

98 A 9902 044 

CALL ISIG, REF 

The first parameter is located in the 
A register. The second parameter is 
located in core, whose address is in REF. 

24 words, including two working cells 
(temporary storage)~ 

No loss of information. 

2-21 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

SIGN Copy sign (floating point). 

PURPOSE 

To set sign of floating point number equal to that of argument. 

USE 

Calling sequence CALL SIGN, REF 

Arguments or 
parameters 

Floating point number in A and B registers. 
REF is address of argument. 

Space required 

Temporary storage 
required 

Input and output 
formats or tables 

Accuracy 

METHOD 

18 words 

Two words 

Floating point format. 

Exact. 

Sets sign equal to that of argument. Output in A and B registers. Uses $SE. 

2-22 98 A 9902 044 



IDENTIFICATION 

$FMS 

varian data machines ~

1 SECTION 2 
PROGRAMMED ARITHMETIC I 

$FSM Separate mantissa (floating point). 

Note: 

$FMS and $FSM are two names for the same entry point; use one or 
the other. 

PURPOSE 

To separate a positive floating point number into characteristic and mantissa. 

USE 

Calling sequence 

Arguments or 
parameters 

Space -required 

Temporary storage 
required 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL $FMS or $FSM 

A and B registers contain fioating 
point number. 

14 words 

One word 

Floating point, input A, B contain fixed 
point mantissa. The characteristic is in 
bits 15 through 8 of the X register for 
16-bit machines and bits 17 through 10 of 
the X register for 18-bit machines. 

Exact. 

Output in A, B (mantissa) and X (characteristic) registers. See listing supplied with the 
paper tape of the program. 

98 A 9902 044 2-23 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

$HS Floating point number to fixed-point, single-precision 
integer. 

PURPOSE 

To convert a floating point numb~r to a fixed-point, single-precision integer. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
codes 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL $HS, STORE 

Number in A and B registers. STORE is 
addres~ of memory where the result is to 
be saved. 

62 words 

One word 

If number greater than 2 ':":' 15 or less 
than 1, it exits with A and B registers set 
to zero. 

Floating point input. Fixed point 
integer output. 

15 bits 

Uses $SE. See listing supplied with the paper tape of the program. 

2-24 98 A 9902 044 



IDENTIFICATION 

er 1\111111 
..,P!'!!V!L 

PURPOSE 

~~orrna; ize . 

varian data machines ~l 

SECTION 2 I 
PROGRAMMED ARITHMETIC 

To normalize a double-precision number. 

USE 

Calling Sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and output 
formatis or tables 

Acct:Jracy 

METHOD 

CALL $NML 

Number in A and B registers. 

29 words 

Two words 

Fixed-point format 

22 bits 

Shifts to sign and tests for sign set. Uses XDCO. Output in A and B registers. Flag for sign 
in X register. 

98 A 9902 044 2-25 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

$QK Floating-point add. 

PURPOSE 

To add two floating-point numbers. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Input and output 
formats or tables 

Accuracy 

METHOD 

Algebraically adds two numbers. 

CALL $QK, REF 

A and B registers contain first argument. 
REF is address of second argument. Result 
is in A and B registers. 

Four words 

Floating-point format 

22 bits 

$QK and $QL use common logic $FAS. $FAS determines if it is an arithmetic addition or 
subtraction and proceeds accordingly. $FAS has a special entry linkage and is used solely 
by $QK and $QL. 

2-26 98 A 9902 044 



IDENTIFICATION 

varian data machines •

1 SECTION 2 
PROGRAMMED ARITHMETIC 

$QL Floating-point subtract. 

PURPOSE 

To compute difference of two floating-point numbers. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Input and output 
formats or tables 

Accuracy 

METHOD 

Uses $QK. 

98 A 9902 044 

CALL $QL, REF 

Minuend in A and B registers. REF is address 
of first word of subtrahend. 

Four words 

See floating-point format. 

22 bits 

2-27 



SECTION 2 
PROGRAMMED ARITHMETIC 

IDENTIFICATION 

$FAS Floating-point add or subtract. 

PURPOSE 

To provide common logic for $QK, $QL. It has a special linkage for use by $QK for $QL. 

USE 

Calling sequence Not for general use. 

Space required 147 words 

Accuracy Exact. 

Cautions for user Not for general use. 

Reference $QK, $QL 

METHOD 

See listing supplied with the paper tape of the program. 

2-28 98 A 9902 044 



varian data machines ~

1 SECTION 2 I 
PROGRAMMED ARITHMETIC I 

IDENTIFICATION 

$QM, $QN Floating-point multiply or divide. 

PURPOSE 

To multiply two floating-point numbers. To divide one number by another. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
codes 

Input and output 
formats or tables 

Accuracy 

98 A 9902 044 

CALL $QM, REF for multiply. CALL $QN, 
REF for divide. 

REF is address of multiplier or divisor. 

133 words 

Seven words 

If divisor = 0, A and B registers set to 
zero and overflow on. 

If result is less than 2':":' (-200 8 ) or 
greater than 2':":' ( + 177 s ), it returns 
with 0 in A and B registers and overflow 
on. 

Floating-point format. Output in A and B 
registers. 

22 bits multiply 
21 bits divide 

2-29 



SECTION 2 
PROGRAMMED ARITHMETIC 

Equipment 
configuration 

METHOD 

This routine does not require the hardware 
multiply/divide option; it uses XDMU and 
XDDI which can be assembled to use either 
hardware or software multiply and divide. 

Separate the mantissa and use XDMU for multiply or XDDI for divide. Uses $FMS, $SE. 

2-30 98 A 9902 044 



IDENTIFICATION 

varian data machines ~

1 SECTION 2 
PROGRAMMED ARITHMETIC 

C'iv.ari _ nA in+ 
I 11\.~U-t-JVll I l~ single-precision to floating-point conversion. 

PURPOSE 

To convert a fixed-point integer to a floating-point. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and cutput 
formats or tables 

Accuracy 

METHOD 

CALL $QS, STORE 

Argument-in A register. STORE is address 
of memory where result is to be saved. 

43 words 

Five words 

Floating-point format output. Fixed-point 
integer input. 

Exact. 

Formats the absolute number to floating point and adjusts sign according to input. Uses 
$SE. 

98 A 9902 044 2-31 





varian data machines ~l 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

3.1 GENERAL 

This section contains elementary function routines, separated into distinct packages. 
Each routine is described according to the format presented in section 1. Items which are 
not applicable to the routine have been omitted. 

3.2 INDEX 

The routines included in this section are listed below, alphabetically by symbolic title, 
along with the page number where they appear. 

Symbolic Title Description Page 

ALOG Natural log of floating-point number 3-13 
ATAN Arctangent of floating-point number 3-19 
cos Cosine 3-18 
EXP Exponential 3-16 
POLY Single-precision polynomial 3-11 
SIN Sine 3-15 
SQRT Square root 3-17 
XATN Fixed single-precision arctangent 3-10 
xcos Fixed single-precision cosine 3-9 
XEXN Fixed single exponential, negative argument 3-5 
XEXP Fixed single exponential, positive argument 3-4 
XLOG Fixed single-precision logarithm 3-3 
XSIN Fixed single-precision sine 3-6 
XSQT Fixed single-precision square root (short) 3-7 
$HE Exponentiation of two integers 3-22 
$PE Exponentiation 3-23 
$QE Exponentiation 3-24 

98 A 9902 044 3-1 





varian data machines • 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

XLOG Fixed-point single-precision logarithm. 

PURPOSE 

XLOG computes the natural logarithm of 1 + X, where the single-precision quantity X is in 
the A register. If CKX<1, the result is returned to the A register, otherwise 

II 

an error exit is taken without further action. Input and output are scaled by 2 • 

Calling sequence 

Arguments or 
parameters 

Space required 

Error returns or 
error code$ 

Accuracy 

Cautions to users 

METHOD 

JMPM XLOG 
JMP (error procedure) 
Normal return. 

The argument X is placed in A before 
calling XLOG. 

20 words 

Error return if X is negative. 

Error is less than 2-
1 4 

machine scale. 

Routine XLOG calls subroutine POLY. 

XLOG uses a Chebychev polynomial of the fifth degree. 

':'To compute the natural log of any fixed-point fraction, the following method is used. 
based on the relations LOG (x/y) = LOG (x) - LOG (y), and LOG (x)N = N · LOG (x). 

1. Normalize the number by left shifting until the sign bit is set (N shifts) 
effectively multiplying the number by 2N. 

2. Remove the sign bit and call XLOG. 

3. Subtract N • (LOGe
2

) from the result. 

98 A 9902 044 3-3 



SECTION 3 
ELEMENT ARY FUNCTION ROUTINES 

IDENTIFICATION 

XEXP Fixed-point single exponential, positive argument. 

PURPOSE 

XEXP computes the exponential of X, located in the A register: 

ex, O~X<l. ex is scaled 22
• The result is placed in the A register. 

(Also see PURPOSE in subroutine XEXN.) 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Error returns or 
error codes 

Accuracy 

Cautions to users 

METHOD 

JMPM XEXP 
JMP (error return) 
Normal return. 

The argument X is located in the 
A register prior to the call. 

20 words 

An error return is taken without the 
other action if the argument is 
negative. 

Error is less than 'i.1 4 
of machine 

scale. 

Note relative scale between input ~nd 
output, and that they differ from scales 
relative to the routine XEXN. Syst~m 
subroutine XEXN is called by XEXP. 

The exponential is computed by means of a Chebychev polynomial of the fifth degree. 

3-4 98 A 9902 044 



I DENTI FICA TION 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

XEXN Fixed-point single exponential, negative argument. 

PURPOSE 

XEXN computes the exponential of X, located in the A register: eX, -l<X~O eX is scaled 
x 2° The result is placed in the A register. (Also see PURPOSE in subroutine XEXP.) The 
exponential is split into two subroutines, XEXP and XEXN, to increase scaling flexibility. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Error returns or 
error codes 

Accuracy 

Cautions to users 

METHOD 

JMPM XEXN 
JMP (error procedure) 
Normal return. 

The argument X is located in the A register 
prior to the call. 

18 words 

An error return is taken without other 
action if the argument is negative. 

Error is less than 21 4 
of machine scale. 

Note that scaling conventions. differ be­
tween subroutines XEXN and XEXP. 

The exponential is computed by means of a Chebychev polynomial of the fifth degree. 

98 A 9902 044 3-5 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

XSIN Fixed-point single-precision sine. 

PURPOSE 

XSIN takes the sine of the quantity X in the A register for range-rr$X$11. The input is" 
-2 -I 

scaled by 2 . The output is returned to the A register, scaled 2 . 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Accuracy 

Cautions to users 

METHOD 

CALL XSIN 

The argument X is in the A register. 

30 words 

Error is less than 2
1 4 

machine scale. 

XSIN requires subroutine POLY. No test 
is made for 11 <IX I ~ 4 • 

Uses a change of variable toy to reduce range from (- 71, 77) to (-1712, rr12). The change of 
var.iable is sin x = sin y. 

y=f X- ; f- ; if ~O 

y = I x - ; I+ ; if X< 0 

The Taylor sine series, truncated to five items, is used for sin y. 

3-6 98 A 9902 044 



IDENTIFICATION 

varian data machines _

1 SECTION 3 
ELEMENTARY FUNCTION ROUTINES I 

XSQT Fixed single-precision square root (short). 

PURPOSE 

XSQT takes the unrounded square root of the quantity in the A register if it is non­
negative. The result is returned to the A register. The A register is unchanged if the input 
is negative. XSQN is recommended instead, unless there is a hardware divide option. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
error codes 

Accuracy 

METHOD 

Uses Newton-Ralphson formula 

98 A 9902 044 

JMPM XSQT 
JMP (error procedure) 
Normal return. 

The argument is located in the A register 
before execution. 

61 words 

Six words 

Error return if argument is negative. 

-1 
Error is less than 1.5 x 2 machine 
scale. 

xi + 1 

in the form 

112xi + ~ lim xi 
2X· I, 

X· + 1 = X· + AX1· I I 

3.7 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

where 

lfXo = 1-2
15 

(themaximumpositivenurnericvalueof a number ina 
16-bit binary representation) then A Xi~ O for a 11 steps 

1fj AXi I <: i
7 

- 21 5 
at a given step, there is no need to take another 

step, as would be required if testing differences of successive x-estimates. A maximum of 
four divide operations makes XSQT less attractive than XSQN (only one divide and one 
short-word multiply) unless automatic divide-hardware is present. 

3-8 98 A 9902 044 



varian data machines ~l 

SECTION 3 I 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

xcos Fixed-point single-precision cosine. 

PURPOSE 

XCOS takes the cosine of the quantity X in the A register from range-TT ~X~ rr. The 
input is scaled by i 2 

and the output is scaled by i 1 
• The output is 

returned to the A register. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Accuracy 

Cautions to users 

METHOD 

CALL XCOS 

The argument X is in the A fegister. 

18 words 

Error is less than ;t 4 
machine scale. 

XCOS requires subroutine POLY, no test 

is made forrr >IX I ~4. 

Uses a change of variable toy in order to reduce the range of the variable from (-TT, +tr) 
to -TT/2, + rr 12. Then cos x = sin y, where y = r. 12 - IX I. The Taylor sine series, 

truncated to five terms, is used for sin y. 

98 A 9902 044 3-9 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

XATN Fixed-point single-precision arctangent. 

PURPOSE 

XATN takes the arctangent of the quantity X in the A register, where -l<X< 1 • Th~ 
input and the output is scaled times 2°. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Accuracy 

Cautions to users 

METHOD 

JMPM, XATN 

The argument X is in the A. register. 

14 words 

-1 4 
Error is less than 2 machine scale. 

XATN requires system subroutine POLY. 

XATN uses a Chebychev polynomial of seven terms. This polynomial is adequate for an 
18-bit configuration. 

3-10 98 A 9902 044 

•"" 



varian data machines •

1 SECTION 3 I 
ELEMENTARY FUNCTION ROUTINES I 

IDENTIFICATION 

POLY Single-precision polynomial. 

PURPOSE 

POLY is a resident utility routine intended primarily to support the fixed-point single­
precision mathematical subroutines requiring the evaluation of a. polynomial in one 
variable of any finite degree. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Accuracy 

98 A 9902 044 

CALL POLY (list of coefficients, format 
as below): 

a. 
b. 

c. 
d. 
e. 
f. 

Type code 
List of nonzero coefficients of 

degree greater than l 
7t: .. 'J"\ 
iL.\.orlV 

Coefficient of degree 1 
Coefficient of degree 0 
Normal return 

The type code is either 0 or 1. Zero 
denotes a polynomial in all powers; one 
denotes a poiynomiai in either odd or 
even powers. 

The list of coefficients of degree 
greater than one is written highest 
power first, and may be of any number. 
d) and e) coefficients must be present. 
Use zero to represent an absent term. 

47 words 

Three words 

The accuracy attainable is close to 
unrounded full single-word precision. 

3-11 



SECTION 3 
ELEMENT ARY FUNCTION ROUTINES 

Cautions to users 

METHOD 

However, accuracy obtained depends upon 
correct techniques of scaling and may 
depend on mathematical characteristics 
of the polynomial being evaluated. 

No action is taken if an additive 
overflow occurs during computation of 
the polynomial. Certain arbitrary 
combinations of coefficients may sharply 
reduce the accuracy attained. Missing 
interior coefficients of degrees higher 
than 1 must be approximated by small 
nonzero numbers, unless their absence 
is implied by type code = 1. 

The polynomial is evaluated in Horner form. For example: 

4 3 2 
c4 x + c 3 x + c 2 x + c 1 x + c 0 

is evaluated as: 

(((G 4 x + C3 ) x +C2 ) x + c I ) x + c 0 

the parameter list taking the forms 0, C4, C3 , C 2 , 0 , C 1 , Co • The polynomial 

is evaluated as: 

2 2 2 
(((C 7 x + c 5 ) x + c 3 ) x + c I ) x + 0 

the parameter list taking the form: 1, C 7 , C 5, C3 , 0, C 1 , 0. 

3-12 98 A 9902 044 



IDENTIFICATION 

ALOG Natural log of floating-point number. 

PURPOSE 

To compute natural log of a floating-point number. 

USE 

Calling sequence CALL ALOG, REF 

SECTION 3 
ELEMENT ARY FUNCTION ROUTINES 

Arguments or 
parameters 

REF is address of argument. 

Space required 

Temporary storage 
---· ·=--..J r~4u1r~u 

Error returns or 
codes 

132 words 

Eight words 

Exits to $ER if argument 0. 

Input and output 
formats or tables 

Floating-point format. Output in A and B 
registers. 

Accuracy 21 bits 

METHOD 

Log A Log 2 A * Log e2 

i = 4 

Log 2 A = - 1 I 2 + ~ C 2 i + 1 z 2 
i + 

1 

i = 0 

z 

98 A 9902 044 

F' -.../2 
F' +,/2 

3-13 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

A = F' ':' 2b where l~F ' < 2 

C~i _ 1 are coefficients of series expansion. Uses $ER, $QS, 
$QK, $QM, XDMU, XDAD, $FMS, $NML, XDDI, XDSU, $SE routines. 

3-14 98 A 9902 044 



IDENTIFICATION 

SIN Sine. 
PURPOSE 

varian data machines ~

1 SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

Compute sine of radians in floating point. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and output 
formats or tables 

Accuracy 

l\nC"Tunn 
llllL. I I IVL# 

Call SIN, REF 

REF is address (direct or indirect) 
of first word of a floating-point 
number. 

151 words 

Six words 

Floating-point format 

21 bits 

First five terms of Taylor series expansion output in A and B registers. Uses $NML, $QM, 
XDMU, XDAD, $SE, $FMS. 

98 A 9902 044 3-15 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

EXP Exponential. 

PURPOSE 

To compute e':":'A. A is floating-point number. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL EXP, REF 

REF is address of argument A. 

224 words 

Nine words 

Floating-point format 

21 bits 

Chebychev approximation uses XDMU, $QK, $QL, $QM, $QN, $SE. 

3-16 98 A 9902 044 



varian data machines •

1 SECTION 3 
1 

ELEMENTARY F'UNCTION ROUTINES 

IDENTIFICATION 

SQRT Square root. 

PURPOSE 

To compute square root of a floating-point number. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Error returns or 
codes 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL SQRT, REF 

REF is address of the argument. 

86 words 

Six words 

Exits with zero in A, B if argument 
negative and sets overflow flip-flop. 

Floating-point format 

21 bits 

Newton iteration three times. Uses $SE, XDDI, $FMS. 

98 A 9902 044 3-17 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

COS Cosine. 

PURPOSE 

To compute cosine of angle in floating-point radians. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Accuracy 

METHOD 

CALL COS, REF. 

REF is address of first word of 
floating-point number. 

19 words 

Two words 

21 bits 

Computes Sirle of ( rr 12-A). Uses SIN, $QL, $SE. Output in A and B registers. 

3·18 98 A 9902 044 



IDENTIFICATION 

varian data machines •

1 SECTION 3 
ELEMENTARY FUNCTION ROUTINES 1 

ATAN Arctangent of a floating-point number. 

PURPOSE 

Computes arctangent of radians in floating point. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
ron11iron 
IV"1 ..... ll'WU 

Input and output 
formats 

Accuracy 

METHOD 

CALL ATAN, REF. 

REF is address of the floating-point 
argument. 

184 worc:m--

Eight words 

Floating-point format 

21 bits 

Let N = I X I or N = I X/Y I. The arctangent of N is evaluated by dividing the total range 
7 5 -3 

CKN<10 into three intervals: ( 10 { tan "/24), (tan "/24, 1), (1, 
10

8
). If N <10-3

, arctan N = N. If N >10 , arctan N = "12. 

The polynomial approximation in the interval (1C>3 , tan rt 12 4) is: 

Continued fraction approximations are used in the remaining intervals. 

98 A 9902 044 3-19 



~ varian data machines 

SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

1 

(W + B 2)----

1 

W + B 3 

interval (tan 11124, l) 

and 

D2 
TAN

1
N :: (sign of N) ( 11/2) - N1 

D 1- --------

interval (1, 108) 

where 

C1 = 

C2 = 

C3 = 

A1 = 

A1 = 

A3 = 

82 = 

83 = 

D1 = 

0.99999 

0.33329 

0.19574 

0.23882 

2.4452 

1.3247 

3.9435 

1. 7982 

0.99999 

99207 

66338 

08066 

29612 

05396 

47223 

29798 

49626 

92083 

3-20 

03 
(N2 + E1) -----­

(N2 + E 3 ) 

98 A 9902 044 



D2 = 0. 3'3 32 8 

03 = 0.06355 

Ez ;:: 0.59859 

E3 = Oa39535 

Uses $QM, $QL, $QN, $QK, $SE routines. 

98 A 9902 044 

70775 

00089 

98078 

44718 

3-21 

varian data machines ~

1 SECTION 3 
ELEMENTARY FUNCTION ROUTINES 



SECTION 3 
ELEMENT ARY FUNCTION ROUTINES 

IDENTIFICATION 

$HE Exponentiation of two integers. 

PURPOSE 

To compute 1.:•>:•J. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL $HE, REF. 

I in A register. REF is address of J. 

29 words 

Two words 

Fixed-point integers 

15 bits 

Floats I and uses $PE. Uses $SE, $QS, $HS, $PE. 

3-22 98 A 9902 044 



IDENTIFICATION 

$PE Exponentiation. 

PURPOSE 

To compute A':'':~ I. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
-~~· ,;-~,.i 
IC~Ull CU 

Input and output 
formats or tables 

Accuracy 

METHOD 

CALL $PE, REF. 

varian data machines IEl 
SECTION 3 

ELEMENTARY FUNCTION ROUTINES I 

Argument in A and B registers. REF is 
address of index I. 

34 words 

Five words 

Floating-point format 

20 bits 

Uses $QS, $QE, and $SE. Floats I and goes to N":'B ($QE). 

98 A 9902 044 3-23 



SECTION 3 
ELEMENTARY FUNCTION ROUTINES 

IDENTIFICATION 

$QE Exponentiation. 

PURPOSE 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Input and-·output 
formats or tables 

Accuracy 

METHOD 

Uses ALOG, EXP, $SE. 

CALL $QE, REF. 

Argument A in A and B registers. REF is 
address of argument B. 

35 words 

Three words 

Floating-point format 

20 bits 

3-24 98 A 9902 044 



varian data machines IEl 
SECTION 4 I 

CODE CONVERSION ROUTINES i 

SECTION 4 
CODE CONVERSION ROUTINES 

4.1 GENERAL 

This section contains code conversion routines which allow the user to convert from one 
character code, usually associated with a particular peripheral device, to the character 
code of a different device. The three conversion routines described in this section are: 

a. EBCDIC to Hollerith conversion 

b. Hollerith to EBCDIC conversion 

c. EBCDIC to ASCII conversion 

The EBCDIC to Hollerith conversion subroutine (SA01) converts an 8-bit EBCDIC 
character in the A register to its equivalent 12-bit Hollerith code in the A register. 

The Hollerith to EBCDIC conversion subroutine (SBOl) converts a 12-bit 029 Hollerith 
character in the A register to its equivalent 8-bit EBCDIC character in the A register. 

The EBCDIC to ASCII conversion subroutine (SCOl) converts an 8-bit EBCDIC character 
in the A register to its equivalent 8-bit ASCII code in the A register. If other than 8-bit 
ASCII code is desired, this routine may be easily modified (see' SCOl subroutine 
description). 

The user should note the following characteristics of these subroutines: 

a. Requires a VDM 620 series computer with a 16-bit word. 

b. Source statements must be assembled with DAS 8A assembler. 

c. The multiply/divide and extended addressing option is not required. 

This subroutine package 1s referenced by the following VDM Software part numbers: 

98 A 9902 044 4-1 



SECTION 4 
CODE CONVERSION ROUTINES 

Source Material 

Object Materiat 
Assembly Listing 

4.2 INDEX 

92H0206-001 

92U0206-001 
92L0206-001 

The routines included in this section are listed below, alphabetically by symbolic title, 
along with the page number where they appear. 

Symbolic Title 

SAOl 
SBOl 
SCOl 

Description 

Convert EBCDIC to Hollerith 
Convert Hollerith to EBCDIC 
Convert EBCDIC to ASCII 

4-2 

Page 

4-3 
4-5 
4-6 

98 A 9902 044 



varian data machines ~l 

SECTl9N 4 j 
CODE CONVERSION ROUTINES I 

I DENTI FICA TION 

SAOl Convert EBCDIC to Hollerith 

PURPOSE 

To convert an EBCDIC character in bits 0 through 7 of the A register to IBM 029 Hollerith 
code in bits O through 11 of the A register. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

98 A 9902 044 

p - 1 LDA value to be converted 

p JMPM SAOl 

p + 1 

p + 2 Any instruction 

On entry, EBCDIC character in bits 0 
through 7 of A register. 

On exit, X Register unchanged 
B Register unchanged 
A Register converted value in bits 

0 through 11, as follows: 

CPUbit ll1sl 14l 13 12 11 l10l9lsl7 6lsl4J3 2 l io 
Card column 

1 
- - - - 12 11 0 l , 2 3 4 5 6 7, 8 9 

Only one exit exists for this subroutine. 
Return is to P + 2 of the calling program. 

166 words 

Two words 

4-3 



SECTION 4 
CODE CONVERSION ROUTINES 

Cautions to users This subroutine is not reentrant. Every 
EBCDIC character is convertable. That 
is, there is no error condition asso­

ciated with this subroutine. 

4-4 98 A 9902 044 



varian data machines IEl 
SECTION 4 i 

CODE CONVERSION ROUTINES I 

IDENTIFICATION 

SBOl Convert Hollerith to EBCD!C 

PURPOSE 

To convert an 029 Hollerith character in bits 0 through 11 of the A register to its 
corresponding EBCDIC code in bits 0 through 7 of the A register. 

USE. 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Cautions to user 

98 A 9902 044 

p - 1 LOA value to be converted 

p JMPM 

p + 1 SBOl 

p + 2 Any instruction 

On entry, 029 Hollerith character in bits 
O through 11 of A register. 

On exit, X Register unchanged 
B Register unchanged 
A Register converted value in 

bits O through 7. 

Only one exit exists for this subroutine. 
Return is to P + 2 of the calling program. 

182 words 

Four words 

This subroutine is not reentrant. 

4-5-



SECTION 4 
CODE CONVERSION ROUTINES 

IDENTIFICATION 

SCOl Convert EBC[)IC to ASCII 

PURPOSE 

To convert an 8-bit EBCDIC character in the A register to its equivalent 8-bit ASCII code 
in the A register. 

USE 

Calling sequence 

Arguments or 
parameters 

Space required 

Temporary storage 
required 

Cautions to users 

p - 1 LDA value 

p JMPM SCOl 

p + 2 Any Instruction 

On entry, EBCDIC character in bits 0 
through 7 of A register. 

On exit, B register unchanged. ASCII code 
in bits 0 through 7 of the A register. 

Only one exit for this subroutine. Return 
is to P + 2 of the calling program. 

84 words 

Two words 

This subroutine is not reentrant. Some 
output devices allow only 7-bit ASCII. 
If other than 8-bit ASCII is desired, 
this subroutine should be modified as 
follows: 

4-6 98 A 9902 044 



t.nner a. 

or b. 

98 A 9902 044 4-7 

varian data machines ~

1 SECTION 4 
1 

CODE CONVERSION ROUTINES I 

Modify table SCT2 to include 
desired codes 

Insert an appropriate mask 
instruction at location 
SC30 + 1. 





EVALUATION QUESTIONNAIRE 

TITLE ____________ _ 

MANUAL NUMBER~~~~~~~--

The purpose of this questionnaire is to provide suggestions about how the manual can be improved when it is revised. 
It is the goal of the Technicai Publications Department to make each manual as useful as possible and at the same 
time eliminate material that is of no practical value to the user or Customer Service Representative in acquiring 
initial knowledge of, and in maintaining, the equipment in the field. You, as the person working most closely with 
the manual and the equipment, can best provide the input needed by the writer to make the best possible manual for 
your use. 

l. Please complete the following chart. 

CHAPTER/SECTIO~-.IS NEEDS MORE 

2. Please list any errors, omissions, or difficult areas noticed in the manual.---------------

3. Pl ease Ii st any improvements you recommend for this manual. ---------------------

4. In an overal I evaluation of this manual, how do you rate it in the fol lowing? 

D Above Average D Average 

5. Personal Information 

96A0424-000A 

a. Company 

b. Years with Varian ---------

c. EDP experience (years) 
Years coi i ege 
Years technical training ______ _ 

d. NAME 

D Below Average 



BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

varian data machines /a varian subsidiary 
........ 2722 michelson drive I irvine I california I 92664 

ATTN: TECHNICAL PUBLICATIONS 

Staple 

Fold 

FIRST CLASS 

PERMIT NO. 323 

NEWPORT BEACH, 
CALIFORNIA 

1:i:::]:]:r1::::::r:r::?I:?:I:::::I::m 

U:I:::::::::::::I::::II:::::::::::11::I:::::t::::t::::::I 

F:::::I:::::::::::i::::::::::::::::::::::::::::::::rl:i:!I:i:im 

i::I:IItII::tIIIIIiliit::t:rn 

1:::1::::::::::::::::;:::::r::::~::::::::::::::::::::::::::::::::::::::::m 

l:::Il:::::::::I:I:::::::I:t::::::::::II:t:]:tl 

m::::::i :::~:iji::::::::::r-:·:·:·::;:;::-: ::::::::::1 

Fold 




	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	replyA
	replyB
	xBack

