varian
software
handbook

Volume 1

Specifications Subject to Change Without Notice

varian data machines/a varian subsidiary
printedin USA © 1973

98 A 9952 201

June 1973

Contents

Introduction

DAS Assemblers

Binary Loader Programs

Debugging Program (AID I1)

Source Program Editor (EDIT)

Mathematical Subroutines

FORTRAN IV

BASIC Language

Report Program Generator 1V (RPG 1V)

Master Operating System (MOS)

Introduction

Introduction i

TABLE OF CONTENTS

Introduction

Language Processors

Assemblerscceenuen.

Compilerscooevvvrenen

Operating Systems

Organization of this HandbOoOKcccoiiciiriiiinicinncre e 3
Related Documentationc.cceciviieriiiicsicne e e s e re e e rae e aas 3
System Configurationscciiiciiiiiiiii e 3

Introduction iii

INTRODUCTION

Varian offers the computer user a wide range of systems configurations, processors, and
peripherals to perform a great variety of tasks.

For full use of this extensive hardware capability Varian also offers a choice of efficient
field-proven software packages for simplified programming and operations. These Varian
software packages provide language processors, operating systems and utility programs.
With these software packages a user can concentrate on his own particular applications
rather than managing the system’s resources.

Language Processors

Languages developed for programming applications include those processed by
assemblers and compilers. The usual distinction between an assembler and a compiler is
generally made upon the closeness of the relation of the source-language statements to
the code they generate. An assembly language is closer to the executable code.

Assemblers

An assembler produces executable machine-language binary code from a symbolic form of
statements, but the ratio of assembly-language statements to machine is frequently one to
one instructions. This allows programming many of the machine's basic activities. A
predominant reason for using the assembly languages is to control the system at that
fundamental level.

The Varian 73/620 system assemblers (called DAS for " Data Assembler System") are
available in three varieties. DAS 4A is designed for systems with only 4K words of central
memory. DAS 8A is a more extensive and efficient assembler to run on system with 8K or
more of main memory. DAS MR is a "macro" assembler which provides further
extensions to the capabililties of the assembly language. All three handle the complete
instruction set of the system but differ in the amount of programming convenience
provided. For example, the DAS MR " macro" feature allows concise coding of elements
within a program.

Introduction 1

introduction

Compilers

In higher-level languages additional programming conveniences are available. In this
category the Varian computer user has a choice of the widely-used versions of FORTRAN
IV, BASIC or RPG IV. These languages are more removed from the machine instruction set
than assembly languages. Translation of the higher-level languages is done by a compiler.
The compilers produce many machine instructions for one statement so the programmers
have an extremely concise mode of expression for their problem solutions.

One simple, easy-to-learn programming language is BASIC. With only a few hours of
instruction, a person can program a Varian 73 or 620 computer and solve some simple
problems. With continued use and greater understanding, the BASIC language can be
applied to solve relatively sophisticated problems using its matrix operations.

FORTRAN |V is a widely-used problem-oriented language especially useful for scientific
and mathematical applications. Varian's FORTRAN |V is compatible with the American
National Standard Institute (ANSI) FORTRAN. Many routines and programs have been
developed in FORTRAN IV and will save the user duplicating the time and effort.

For business applications the Report Program Generator (RPG) IV programming language
provides several concise methods for handlirig alphameric data, and convenient means to
do accounting and inventory programs.

All of Varian's higher-level languages provide interfaces with assembly-language routines.
Through use of a combination of assembly language and a higher-level language the user
retains the conveniences of the higher-level languages while gaining the particular control
of the system at the level available only in assembly languages. (For example, a FORTRAN
program could give a concise framework to DAS MR routines doing bit-level manipulation
not available in FORTRAN).

Operating Systems

Two comprehensive software operating systems, MOS and VORTEX, are available for use
with VARIAN 73 and 620 computers. Both systems incorporate a full repertoire of utility
programs, as well as DAS MR, FORTRAN 1V, and RPG IV.

MOS (Master Operating System) is specifically designed for batch-processing applications.
The system provides input and output interfaces, operator communication, debugging
aids, file maintenance and editing programs, and extensive reporting of systems errors
and status.

VORTEX (Varian Omnitask Real-Time Executive) is a multi-programming system with
special features for real-time applications. A number of different tasks may be stored in
the main memory or on roiating-memory devices such as disc or drum. The tasks are
scheduled by a resident executive program, which gives high priority to real-time

Introduction 2

introduction

" foreground" tasks and lower priority to " background" tasks to be executed when there
is time available. The scheduler uses the idle-time intervals embedded in most real-time
applications to optimize use of the processor.

VORTEX increases the efficiency of any installation in which a computer is required to run
a number of different programs in sequence. The user establishes the priority of the jobs

to be executed, and then VORTEX automatically schedules and runs the programs without
further operator intervention.

Organization of this handbook

This handbook is a compendium of manuals previously published as free-standing
documents and provides additional information about the assembler.

Related Documentation

Varian's system handbooks provide a definition of the machines’ instruction set and
useful system information. The various handbooks and the document numbers are:

Handbook Document number
Varian 73 System Handbook 98 A 9906 010
Varian 620-100 Computer Handbook 98 A 9905 003
Varian 620/f Computer Handbook 98 A 9908 002
Varian 620/L Computer Handbook . 98 A 9905 000

Additional and more specific manuals can be located with the Publication Stock Number
Catalog (98 A 9949 005) which lists document numbers of all publications.

System Configurations

The following diagrams indicate the types of hardware that can be used with the various
software systems described in this volume.

Introduction 3

introduction

UP TO 24K
I/0 BUS
620 OR V73] ADDITION .
rax | 4k
1TY
620-06,
07, 08
PAPER TAPE
EQUIPMENT
620-51, 51A,
54,55, 55A

LINE PRINTER
620-77

CARD READER
620-25

CARD PUNCH
620-27

—

WY

MAG . TAPE
620-30, 300,
32, 32A

*4K MEMORY REQUIRED FOR DAS 4A,
8K MEMORY REQUIRED FOR DAS 8A,
DASMR WILL RUN IN 8K MEMORY WITH

LIMITED CAPABILITIES.

MENDED FOR MOST APPLICATIONS.

DAS-4A — This is a basic absolute assembler which will run in any VDM 620-
series computer with 4K or more of memory. It includes a set of 1/0 drivers that
are selected at load time. Therefore, one version will run with many different
combinations of peripherals, as shown above.

DAS-8A — This assembler requires 8K or more of memory to run, and offers the
user greater control over the assembly processes. Like DAS-4A, it includes a set

12K 1S RECOM~

of 1/0 drivers that are selected at load time.

DASMR — This is a free-standing version of the macro assembler used in MOS

REQUIRED
OPTIONS

and VORTEX systems. It produces object code compatible with MOS.

VIii-1892

Introduction 4

DAS 4A, 8A, DAS MR Assemblers (Stand-alone)

UP TO 20K
ADDITION | /O BUS

620 OR V73

12K**

CARD READER

620-25

PAPER TAPE
EQUIPMENT

CARD PUNCH
620-27

620-51, 51A,
54, 55, 55A

* NOTE - CARD PUNCH IS
AVAILABLE TO USER PRO-
GRAMS, BUT IS NOT USED
BY THE COMPILER,

** THE FORTRAN COMPILER
WILL RUN IN 8K OF MEMORY
WITH LIMITED CAPABILITIES,
12K 1S THE RECOMMENDED
MINIMUM FOR MOST APPLI-
CATIONS,

MAG ., TAPE
620-30, 300,
32, 32A

LINE PRINTER
620-77

introduction

REQUIRED

OPTIONS

FORTRAN |V — This is an integrated software package consisting of a single-pass
compiler, a relocating loader, and a set of runtime math and 1/0 routines. The
compiler is fully compatible with ANSI Standard Fortran, and produces object

code which is compatible with MOS.
VTI1-1893

FORTRAN |V Compiler (Stand-alone)

Introduction 5

introduction

|
UP TO 24K i
620 OR V73| & 2 & | /o8us kS
HM/D 8K :
' PAPER TAPE
Y REQUIRED | OPTION SYSTEM
06, 07, 08 —-_— 620-55, 55A

BASIC — This version of the popular Dartmouth self-teaching language will run
in any VDM 620-series computer with the hardware shown, It is applicable to a
variety of business and scientific applications.
VTI-18%4

BASIC (Stand-alone)

Introduction 6

introduction

DISC
. 620-36, 37, 43A-D
UPTO 20K
620 OR V73| \porTion | /O BUS BIC 620-20
/D T 12K REQUIRED
L Y (OPTIONS
62T0TY06 7 PAPER TAPE
-06, | 1| equipmeNT
07,08 |, ©620-51, 51A,
~ 54, 55, 55A
/
/
/ DIGITAL QUT. OSCILLOSCOPE
v/ 620-830A,8, | | DISPLAY
-831A,B 620-738,C
GRAPHIC CASSETTE TAPE
CRT/KYBD — A-970, =971
A-930
ANALOG IN,
620-85A, 850, | | | | X-YPLOTTER
851, 860, 860A, A-935
861, 861A
ANALOG OUT, MAG. TAPE
620-770A,8, | _ 1 |1 ¢20-30, 300
871,A,8, 872,A,8, 32, A
873, 874, 875 !
W BIC 620-20

EXTENDED BASIC expands on the BASIC language with special commands to
control an external data acquisition and process control system, as shown in the
diagram. In addition, directives have been included to allow the creation and
control of files stored on a rotating memory device, and to facilitate chaining of

program overlay segments.

VTII-1895
Extended BASIC

Introduction 7

introduction

UP TO 28K
620 ADDITION /0 BUS

4K

CARD READER
620-25

CARD PUNCH
620-27

LINE PRINTER
620-77

MA

RPG-IV — This is an integrated software package consisting of a compiler, loader,
and a set of runtime routines which provides a business language capability to
the mini-computer user. RPG-1V is available both as a unit-record-oriented free-

standing system and as a language processor under MOS.

VTII-189
RPG-IV System

Introduction 8

NOTE - ONE BIC MAY HANDLE UP TO

10 DEVICES, BUT FOR BEST SYSTEM PER-
FORMANCE, HIGH-TRANSFER RATE
DEVICES SUCH AS DISCS SHOULD HAVE

THEIR OWN BICs.

620-35 DISC REQUIRES BTC (E-2026H)
INSTEAD OF BIC, AND MAY BE USED
ON PMA CHANNELS OF V73, 620/%,

AND 620/f-100 ONLY.

|
UP TO 20K t
ADDITION [170 BUS OPTIONS
620 OR V73— I PAPER TAPE
4K || EQUIPMENT
oK | 620-51, 51A,
54, 55, 55A
[" REQUIRED |
TTY :
620-06, DISCS l i
07, 08 620-35,36, — — CAESORE?DER
37, 43A-D | -
[I
wpic ||
620-20 | [CA'Z‘;OP‘;;‘CH
OR |
AND/OR
MA . | * kK
TASE || [LINE PRINTER
620-30, 32 | 620-74, =77
' | MOS CAN USE
**pic L] | ANY COMBINA-
620-20 AR TIONS OF
k ABOVE DEVICES

introduction

*8K REQUIRED FOR DASMR
12K REQUIRED FOR FOR=-

**BIC OPTIONAL

TRAN IV, RPG IV

16K REQUIRED FOR PERT

**% 620-74 SUPPORTED AS

LINE PRINTER ONLY

MOS — MOS is a disc-, drum-, or magnetic tape-based batch operating system,
which can be used with any VDM 620-series computer. It supports FORTRAN
1V, DASMR, and RPG-1V; and it provides the user with RMD file management

as well as automatic scheduling from the job stream.

VTII-1897

M.O.S.

Introduction 9

DAS Assemblers

DAS i

TABLE OF CONTENTS

DAS ASSEMBLERS

Computer INSIFUCTIONScouiiiiiiiiii e e 6
Assembler DiIreCiVES........oouuiiiciiiie e 12
Symbol and Expression Modes... ...30
Relocatability Rules........c.ccooouneees .32
Assembler Input Media..... ..33
Assembler QUIPUL LISTING. ...ttt st e s e s 34
Error MESSAZEScccieviiiiiiiiiiiiiiiiiii s e 34
Operating the ASSEMDIEIS ...ttt e e 36

DAS iii

DAS ASSEMBLERS

The Varian 73/620 assembler language (DAS) translates symbolically coded instructions,
directives, and data (source program) into their binary machine-language equivalents
(object program). DAS allows the programmer to specify instructions, addresses, address
modifications, and constants in a manner that is straightforward and meaningful to the
computer.

Using DAS, the programmer generates a source program by coding instruction and
directive mnemonics rather than numerical values. Memory addresses can be referenced
symbolically, thus providing flexibility not attainable with absolute addressing. Constants
can be used without prior conversion to binary or octal values. For ease in checkout and
program documentation, comments can be added between symbolic source statements, or
appended to the statements themselves.

DAS coding reduces machine-language bookkeeping to fully utilize computer capabilities
without a corresponding compromise of an increase in the time required for programming.

Three versions of DAS are available:

a. DAS 4A operates in a minimum-configuration Varian 73 system comprising the
computer, 4K of memory, and an on-line Teletype.

b. DAS 8A requires a minimum of 8K of memory and has extended capabilities compared
to DAS 4A. Both DAS 4A and DAS 8A can operate with additional system
peripherals.

c. DAS MR is a macro assembler, which produces relocatable object code, that can be
loaded into any area of memory. DAS MR is available either as a free-standing
program or as an integral part of the MOS or VORTEX operating system.

DAS processes source programs in two passes. The first pass defines user-designated
symbols. The second pass produces an assembly listing and the object program.

DAS 1

DAS assemblers

Character Set

The DAS character set comprises:
Alphabetical characters

ABCDEFGHIJKLMNOPQ
RSTUVWXYZ

Numerical characters
0123456789
Teletype characters

CR (Carriage return)
LF (line feed)

Special characters

(plus sign)
(minus sign)
(asterisk)

(slash)

(period)

(blank)

(at sign)

(left bracket)
(right bracket)
(less than)
(greater than)
(up arrow)

(left arrow)
(equal sign)
(comma)

(prime)

(left parenthesis)
(right parenthesis)
(backslash)
(exclamation point)
(quotation mark)
(pound sign)

% (percent sign)
(ampersand)
(colon)
(semicolon)

? (question mark)
$ (dollar sign)

n'"V/\‘—"“‘@ ~ &1 4

T = NN

Re

DAS 2

DAS assemblers

Format

DAS source programs are sequences of source statements (records). Each source
statement comprises a combination of label, operation, variable, and comment fields,
depending on the requirements of the computer instruction or assembler directive, and
except in certain cases (described later in this section) generates one computer word.

Label Field

Symbols in the label field identify program points for reference by other parts of the
program. They make a program point or particular numeric value more easily identifiable.
The first appearance of a symbol in the label field establishes its identity throughout the
remainder of the program. A previously established symbol is referenced by placing it in
the variable field of the source statement, where DAS substitutes the previously assigned
value from its symbol table.

For DAS 4A and DAS 8A, symbols in the label field comprise one to four alphanumeric
characters for DAS MR there are from one to six such characters. The first character of a
symbol is an alphabetic character, pound sign (#), or dollar sign. The following characters,
if any, are chosen from the alphabetic, numeric subset, pound sign, and dollar sign. (The
dollar sign and pound sign are used in the Varian software and should not be used in
normal users programs). While only the given number of characters are recognized by
DAS, additional characters can be added for programming convenience and/or
documentation.

Symbols are usually attached only to those source statements referenced elsewhere in the
program, but this is not mandatory.

Operation Field

This source statement field contains mnemonics for computer instructions (section 16)
and assembler directives (defined later in this section). An asterisk following the
mnemonic specifies indirect addressing (section 15). The mnemonics can be redefined
with OPSY assembler directives (see below).

Variable Field

The purpose of this field varies according to the requirements of the operation defined by
the source statement. The variable field can contain a symbol, a constant, or an
expression combining symbols and constants.

DAS Expressions are similar to arithmetic expressions except that parentheses are not
used. The variable field can contain the following operators.

+ (addition)
(subtraction)
(multiplication)
(division)

~ # |

DAS 3

DAS assemblers

Arithmetic operations always invclve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and
subtraction. Thus, A + B/C * D in DAS is equivalent to A + (B/C) *D in conventional
notation.

Coding an asterisk in the first position of the variable field gives access to the then current
value of the program location counter. Such an asterisk immediately precedes another
operator, and this is the only case in which two adjacent operators are permitted in DAS.
The asterisk is translated as the current program location (i.e., * + 1 means the current
program location plus one).

In the following descriptions of DAS constants, unsigned numbers are considered positive
DAS recognizes decimal and octal integers; floating-point numbers; alpha, address, and
indirect address constants; and literals.

A decimal integer is a signed or unsigned string of from one to five decimal digits. the first
of which cannot be zero (so as not to be confused with octal integers).

Example:

1 29 -3 -9000

An octal integer is a signed or unsigned string of from one to seven octal digits, the first
of which is zero.

Example:
07 =044 +022745

A floating-point number has the form:) % integer.fraction * exponent, where the right
parenthesis, at least one digit, and the decimal point are always present. Other items in
the format are optional.

Examples:

)0375.64E +7 9.E-2,)1E+12
r4.+20

Floating point numbers are not available under DAS 4A.

An alpha constant is a string of characters within primes ('), where, within DAS
each character is represented in eight-bit ASCII code. Thus, each 16-bit memory
address can hold two characters. Note that blanks are also recognized as
characters.

DAS 4

DAS assemblers

In DAS 4A and DAS 8A, an alpha constant can be a term in an arithmetic expression.
However, if more than one word is generated by the constant, only the last word is subject
to arithmetic manipulation.

Examples:

'A’*0400 'AB'+1 'ABCD'+011
where, in the last example, two words are generated and 011 added to the second word.

An address constant is a symbol, number, or expression enclosed in parentheses. It
generates a 15-bit direct address (bit 15 = 0).

Examples:
(aaaa+2) (31) (aaaa)
where aaaa is an address symbol whose value is taken from the symbol table by DAS.

An indirect address constant is an address contant followed by an asterisk. it generates a
15-bit indirect address (bit 15 = 1).

Examples:
(aaaa+2)* (3)* (aaaa)*

Literals provide a method for creating and referencing data by expressing the value of the
information instead of its address. DAS determines the address and inserts it in the
referencing statement and generates a literal table, discarding duplicate values in the
table.

A literal is any format of a one-word constant preceded by an equal sign. In a statement
requiring more than one literal, they are separated by commas.

Examples:
=29 =-044 =(aaaa+2)*
= IGOV - 'A'

Comments Field

This field is used for programming notes. An entire source statement can be commentary
if an asterisk is coded in the first position. The assembler ignores all comments in the
assembly process, but lists them with the program listing output.

DAS 5

DAS assemblers

Computer Instructions

DAS assemblers recognize the complete instruction sets of all Varian 73/620 computers,
even when the system on which they operate lacks the hardware for executing a particular
instruction. The programmer, therefore, must have a thorough knowledge of the
instructions applicable to his system before attempting to assemble a program.

Computer instructions are described in detail in the system handbook for each particular
system.

In this section, all Varian 73/620 instructions are divided into five types, according to
assembler format requirements.

All Varian 73/620 instructions in DAS have the general field format

Label Operation Variable Comments

where the label field is optional and contains a symbol when used; the operation field
contains the instruction mnemonic; the variable field contains one, two, or three
expressions (separated by commas when there is more than one), and the comments field
is optional.

Addressing

If an assembler source statement specifies an address in the first 2,048 words of memory
without indirect addressing, the assembler generates an instruction with direct
addressing.

If indexing is specified, the assembler generates an indexed instruction.

Specifying indirect addressing with a data address lower than 512 generates an
instruction with indirect addressing and the specified effective memory address.

In all other cases, including indirect addressing with an address higher than 511, the
assembler generates an instruction with indirect addressing and the specified effective
memory address, stores the address in a table, and inserts the storage address in the
referencing instruction. Duplicate values in the table are discarded.

In the Varian 73/620, indirect addressing is limited to five levels with one-word
instructions and to four levels with two-word instructions.

Instruction Types

Table 1 summarizes the characteristics of the five types of computer instructions for DAS
use. Instruction mnemonics are given in the applicable type description below and
summarized in table 2.

DAS 6

Table 1. Assembler Instruction Type Characteristics

Parameter

Words generated

Memory addressed

Indirect addressing

Indexing

Variable field
expressions

Microcoding

* Except for immediate instructions.

Type 1

1

Yes
Yes
Yes

lor2
No

Type 2

2
Yes*
Yes*
No

1
No

Type 3

2
Yes
Yes
No

2
Yes

DAS assemblers

Type 4 Type 5
1 2

No Yes
No Yes
No Yes

1 1to3
Yes No

Table 2. Summary of Assembler Instruction Types

Type 1 Type 2
ADD ADDI
ANA ANAI
DIV DIVI
ERA ERAL.
INR INRI
LDA JAN
LDB JANM
LDX JANZ
MUL JANZM
ORA JAP
STA JAPM
STB JAZ
STX JAZM
SUB JBZ

JBZM
JMP
JMPM
JOF
JOFM
JOFN
JOFNM
JSS1
JSSs2
JSS3
JSIM
JSINM
JS2M
JS2NM
JS3M

JS3NM
JXZ
JXZM
LDAI
LDBI
LDXI
MuULI
ORAI
STAI
STBI
STXI
SuBlI
XAN
XANZ
XAP
XAZ
XBNZ
XBZ
XEC
XOF
XOFN
XS1
XS1N
XS2
XS2N
XS3
XS3N
XXNZ
XXZ

Type 3

BT
IME
JIF
JIFM
JMIF
OME
SEN
XIF

Type 4

AOFA LASR
AOFB LLRL
AOFX LLSR
ASLA LRLA
ASLB LRLB
ASRA LSRA
ASRB LSRB
CIA MERG
CIAB NOP
CiB OAB
COMP OAR
CPA OBR
CPB ROF
CPX SEL
DAR SEL2
DBR SOF
DECR SOFA
DXR SOFB
EXC SOFX
EXC2 TAB
HLT TAX
IAR TBA
IBR TBX
INA TXA
INAB TXB
INB TZA
INCR TZB
LASL ZERO

Type 5

ADDE
ANAE
DIVE
ERAE
1JMP
INRE
JSR
LDAE
LDBE
LDXE
MULE
ORAE
SRE
STAE
STBE
STXE
SUBE

DAS 7

DAS assemblers

Assembler type 1 instructions are:

ADD LDA STA
ANA LDB STB
DIV LDX STX
ERA MUL SuB
INR ORA

An assembler type 1 instruction occupies one computer word and is memory-addressing.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expressed in parentheses.
Examples:

LDA* expression

LDA (expression)*

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 0512. The second specifies the indexing register: X register
= 1, and B register =2. These instructions cannot be postindexed.
Example:

LDA 0300,1
loads the A register with the contents of the memory address specified by the sum of the X

register contents and 0300. Thus, if the X register contains 0200, the operand for this
instruction is in memory address 0500.

Assembler type 2 instructions are:

ADDI JOFN STXI
ANA| JOFNM SuBI
DivI J§S1 XAN
ERAI JSS2 XANZ
INRI J8S3 XAP
JAN JSIM XAZ
JANM JSINM XBNZ
JANZ JS2Mm XBZ
JANZM J52NM ~ XEC
JAP JS3M XOF
JAPM JS3NM XOFN
JAZ IXZ XSl
JAZM JXZM XS1N
JBZ LDAI X82
JBZM LDBI XS2N
JMP LDXI XS3
JMPM MULI XS3N
JOF ORAI XXNZ
JOFM STAIl XXZ
STBI

DAS 8

DAS assemblers

An assembler type 2 instruction occupies two consecutive computer words and is memory-
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction or the operand specified by an immediate instruction.

Indirect addressing is specified as with an assembler type 1 instruction. These instructions
cannot be indexed.

Assembler type 3 instructions are:

BT JIFM SEN
IME JMIF XIF
JIF OME

An assembler type 3 instruction occupies two consecutive computer words and is memory-
addressing. It differs from an assembler type 2 instruction in that the variable field
contains two expressions to implement instruction microcoding as described below.

For the JIF, JIFM, JMIF, and XIF instructions, the first expression specifies the conditions
required for the jump, jump-and-mark, or execution. The conditions(s) are specified
according to the rules given in section 16 and summarized below. As indicated, multiple
conditions can be specified by setting additional bits.

Variable Field Jump/Execute if:
0001 Overflow indicator is
set
0002 A register contents
are positive
0004 A register contents
are negative
0010 A register contents
are zero
- 0020 B register contents
are zero
0040 X register contents
are zero
0100 SENSE switch 1 is set
0200 SENSE switch 2 is set
0400 SENSE switch 3 is set
Example:

JIF 0222,ALFA
Takes the next instruction from symbolic address ALFA if the A register contains a positive

number (0002), the B register contains zero (0020), and SENSE switch is set (0200); i.e.,
0002 + 0020 + 0200 = 0222.

DAS 9

DAS assemblers

For the SEN instru-tion, the first expression specifies the device address and the 1/0
function; for IME and OME, the device address.

For the BT instruction, the first expression specifies the register and bit to be tested.

Example:

BT 056,ADDR

takes the next instruction from s; wibolic address ADDR if bit 14 of the A register contents
is zero.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field

expression in parentheses as described for the type 1 instructions. Note: IME and OME
cannot specify indirect addressing.

Assembler type 4 instructions are:

AOFA EXC2 OAR

AOFB HLT OBR
AOFX IAR ROF
ASLA IBR SEL
ASLB INA SEL2
ASRA INAB SOF
ASRB INB SOFA
ClA INCR SOFB
CiAB IXR SOFX
CiB LASL TAB
COMP . 1LASR TAX
CPA LLRL TBA
CPB LLSR TBX
CPX LRLA TXA
DAR LRLB TXB
DBR LSRA TZA
DECR LSRB TZB
DXR MERG TZX
EXC NOP ZERO
OAB

An assembler type 4 instruction occupies one computer word and does not address
memory.

For COMP, DECR, INCR, MERG, and ZERO and the register transfer/modification
instructions, the assembler generates an instruction as specified by the value in the

DAS 10

DAS assemblers

variable field. This value is determined by coding the summed octal value of the possible
binary configurations described for these instructions in the systems handbook.

Example:

COMP 035
unconditionally takes the inclusive-OR and complements the contents of the A (0010) and
B (0020) registers, and places the result in the A (0001) and X (0004) registers. Note that
if bit 8 were one in the above example the instruction is executed only if the overflow
indicator is set.
For EXC, SEL, EXC2, and SEL2, the expression specifies the |/0 function and the device

address; for the remainder of the 170 instructions in this group, the device address only
(the 1/0 function being specified by the mnemonic).

Example:
CiB 030

clears the B register and loads it from peripheral specified by the device address 030
(standard device addresses are given in the systems handbooks).

Note: SEL/SEL2 are identical to EXC/EXC2 instructions.

Assembler type 5 instructions are:

ADDE INRE SRE
ANAE LDAE STAE
DIVE LDBE STBE
1JMP LDXE STXE
ERAE MULE SUBE
JSR ORAE

An assembler type 5 instruction occupies two consecutive computer words and is memory-
addressing.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions.

Preindexing the V73 and 620 instructions is specified as described for the type 1
instructions. Note that IJMP and SRE cannot be preindexed.

Postindexing the V73 and 620 instructions is specified by three expressions in the variable

field. The first expression is the data address, the second specifies the indexing register (X
register = 1, and B register = 2), and the third is logically ORed with the instruction

DAS 11

DAS assemblers

word to set bit 7 (which specifies postindexing). The assembler does not check the validity
of the third expression, thus one should always use the value 0200.

Example:
LDAE ADDR,2,0200
loads the A register extended and postindexed with the B register.

JSR can be neither preindexed nor postindexed.

For SRE, the first expression in the variable field is the data address, the second specifies
the type of addressing (1 = indexed with X, 2 = indexed with B, and 7 = direct
/indirect), and the third is logically ORed with the instruction word to control bits 3-5 to
specify the register to be compared (010 = A register, 020 = B register, and 040 =
register). Note that indirect addressing is specified by an asterisk following the instruction
mnemonic.

Examples:
SRE ADDR,7,020

compares the contents of the B register with the directly addressed word at ADDR, and, if
equal, skips the next two locations.

SRE* ADDR,1,010

compares the contents of the A register with the word at ADDR, using indirect addressing
and postindexing with the X register.

Assembler Directives

Directives are instructions to the assembler. They are divided into the following functional
groups:

Symbol definition
Instruction definition
Location counter control
Data definition

Memory reservation
Conditional assembly
Assembler control
Subroutine control

List and punch control
DAS 8A interface to stand-alone FORTRAN
Program linkage

MOS 1/0 control

Macro definition

DAS 12

DAS assemblers

Assembler directives have the same general format as the éomputer instructions. In the
following descriptions of the individual directives, the field format

label operation variable
is used, with the optional comment field being understood to follow the variable field when
used. in cases where the variable field contains more than one item or expression, these
are always separated by commas. Mandatory elements of the directive are in bold type,
and optional items, in italic type.

Table 3 summarizes the assembler directives (arranged by function) and indicates those
recognized by each DAS assembler.

Table 3. Directives Recognized by DAS Assemblers

Function Directive - DAS 4A DAS 8A DAS MR
Symbol definition EQU Yes Yes Yes
SET Yes Yes Yes
MAX No . Yes No
MIN No Yes No
Instruction definition OPSY No Yes Yes
Location counter control ORG Yes Yes Yes
LOC Yes Yes Yes
BEGI Yes Yes Yes
USE No Yes No
Data definition DATA Yes Yes Yes
PZE Yes Yes Yes
MZE Yes Yes Yes
FORM No Yes Yes
Memory reservation BSS - Yes Yes Yes
BES Yes Yes Yes
DUP No Yes Yes
Conditional assembly IFT No Yes Yes
IFF No Yes Yes
GOTO No Yes Yes
CONT No Yes Yes
NULL No Yes Yes
Assembler control MORE ~ Yes Yes No
END Yes Yes Yes

DAS 13

DAS assemblers

Table 3. Directives Recognized by DAS Assemblers (continued)

Function Directive DAS 4A DAS 8A DAS MR
Subroutine control ENTR Yes Yes Yes
RETU* Yes Yes Yes
CALL . Yes Yes Yes
List and punch control LIST No Yes No
NLIS No Yes No
SMRY No Yes Yes
DETL No Yes Yes
PUNC No Yes No
NPUN No Yes No
SPAC No Yes No
EJEC No Yes Yes
READ No Yes No
Program linkage NAME No No Yes
EXT No No Yes
COMM No No Yes
MOS 1/0 control See " MOS 1/0 Control" in MOS section
Macro definition MAC No” No Yes
EMAC No No Yes

Symbol Definition Directives

These directives assign arbitrary values to symbols in the symbol table. This table is a list
of symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. symbol table capacities are
summarized in table 4.

Table 4. DAS Symbol Table Capacities

Assembler 4K Memory 8K Memory >8K Memory

DAS 4A 150 1,450 1,450 + n (1,300)
DAS 8 440 440 + n (800)
DASMR e 20 20 + n (800)

where n = number of 4K memory increments above 8K.

DAS 14

DAS assemblers

EQU (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol EQU expression
It places the symbol in the assembler’s symbol table and assigns it the value of the
expression. If the symbol has already been entered in the symbol table, DAS outputs error
message *DD (described later in this section), and the expression replaces the vaiue in the

symbol table. If a symbol is used as the variable field expression, it must have been
previously defined. The label field symbol is mandatory.

SET (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol SET expression

It is the same as EQU, except that there is no error message output if the symbol has
already been entered in the symbol table,

MAX (DAS 8A)
This directive has the format
symbol MAX expression, expression(s)
It assigns the largest algebraic value found among the expressions to the symbol. If a

symbol is used as a variable field expression, it must have been previously defined. The
label field symbol is mandatory. Use SET to redefine the symbol.

MIN (DAS 8A)
This directive has the format
symbol MIN expression,expression(s)

It is the same as MAX, except that the symbol is assigned the smallest algebraic value
found among the expressions.

DAS 15

DAS assemblers

Instruction Definition Directive

This directive redefines a standard instruction mnemonic.
OPSY (DAS 8A, DAS MR)
This directive has the format
symbol OPSY mnemonic
It makes the symbol a mnemonic with the same definition as the variable field mnemonic.
Example: /

CLA OPSY LDA
CLA BETA

Location Counter Control Directives

These directives control the program location counter(s), which control memory area
assignments and always point to the next available word.

DAS 8A has several location counters and directives to modify or preset their values. Table
5 lists the five standard DAS 8A location counter symbols and their uses. They need not
be created by the user. However, up to eight other location counters can be created, thus
providing complex relocatable and overlay programs within a single assembly.
Relocatability rules are given later in this section.

There are no user-created location counters at the beginning of an assembly. The
assembler uses three location counters for program location assignment. Thus, IAOR
(indirect pointer assignments) and LTOR (literal assignments) are always in use, as is a
third counter used to assign locations to generated instructions and data. The blank
location counter performs this task until the USE directive specifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

ORG (DAS 4A, DAS 8A, DAS MR)

This directive has the format
symbol ORG expression

It sets the location counter currently in use to the value of the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as the variable field expression must have been previously defined.

DAS 16

DAS assemblers

Table 5. Standard DAS ﬁA Location Counters
Counter Initial Value Description
COMN 002000 Controls assignment of memory within

an interface area common to two or
more programs

IAOR 000200 I Controls assignment of memory to in-
direct pointers

LTOR 001000 Controls assignment of memory to
literals

SYOR 000000) Controls assignment of memory to all
system parameters

blank 004000 Used initally and normally by the as-

000000 for 4A unless overridden by the USE or ORG

directive

LOC (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol LOC expression
It is used if the data and instructions following this LOC address are to be moved to the
LOC address by the object program before execution i.e., to keep a block of data or
instructions undisturbed by assembly. Data or instructions following LOC are generated as

if an ORG directive had changed the current location counter value. However, this value is
not actually changed.

Any symbol used as a variable field expression must have‘been previously defined. LOC
cannot be used in a relocatable program.
BEGI (DAS 4A, DAS 8A)
This directive has the format
symbol BEGI expression
It creates a new location counter, or redefines the value of any location counter before the

counter has been used. BEG! gives the new or redefined location counter the value of the
expression, but has no effect on the current location counter.

DAS 17

DAS assemblers

BEGI cannot redefine the value of any location counter that has been used for location
assignment.

Any symbol used as a variable field expression must have been previously defined.

USE (DAS 8A)

This directive has the format
blank USE xxxx
where xxxx is a blank, COMN, SYOR, or a user-created location counter label.

The USE directive uses location counter xxxx to assign locations to data and instructions
(except literals and indirect pointers).

If xxxx is PREV, the previously used location counter is recalled with the restriction that

only the last-used counter can be so recalled.

Data Definition Directives
These directives control the sign and assignment of data words. In the descriptions, item

refers to a data item, which can be an expression or a direct or indirect address.

DATA (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol DATA item,item(s)
It generates data words with the values specified by the items in the variable field. DATA
assigns the symbol, if used, to the memory address of the first generated word. In the
absence of a symbol, an unlabeled block of data is generated.
When a single alpha constant is used in the variable, DAS 4A and DAS MR left-justify it in

the field and fill the remaining positions with blanks, and DAS 8A right-justifies it, filling
the remaining positions with zeros.

PZE (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol PZE item,item(s)
It is similar to DATA except that the sign bit of the generated data word is always zero

(positive).

DAS 18

MZE (DAS 4A, DAS 8A, DAS MR)

This directive has the format

symbol MZE item,item(s)

DAS assemblers

It is similar to DATA except that the sign bit of the generated data word is always one

(negative).

FORM (DAS 8A, DAS MR)

This directive has the format

symbol FORM term,term(s)

where the terms are absolute terms or expressions.

FORM specifies the format of a bit configuration of a data word. The symbol, if used, is the
name of the format. The terms specify the length in bits of each field in the generated
data word, where the sum of their values is from one to the number of bits in the

computer word.

FORM is ignored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied
(by placing its name in the operation field of a symbolic source statement) to another

statment. FORM can be redefined.

Example:
BYTE FORM 8,8
BCD FORM 4,444
PTAB FORM 1,234

would, given the FORM definition

ABC FORM 6,2,8
and the FORM reference

ABC FORM 2*3,1,'A
generate the binary data word

0 001 100 111 000 001

DAS 19

DAS assemblers

Memory Reservation Directives

These directives control the reservation of memory addresses and areas.

BSS (DAS 4A, DAS 8A, DAS MR)
This directive has the format

symbol BSS expression

It reserves a block of memory addresses by increasing the value of the current location
counter the amount indicated by the expression. The symbol, if used, is assigned the
value of the counter prior to such an increase, thus referencing the starting address of the
reserved block.

The location counter always points to the next available word.

If the variable field expression value is zero, the symbol is assigned the next available
address.
BES (DAS 4A, DAS 8A, DAS MR)
This directive has the format
symbol BES expression
it is similar to BSS, except that if there is a symbol it is assigned to the address one less

than the incremented location counter. If the variable field expression is zero, the symbol
is assigned the last available address.

DUP (DAS 8A, DAS MR)
This directive has the formats

blank DUP n
blank DUP nm

It duplicates source statements foillowing its use. The first format duplicates the next
source statement the number of times specified by n. The second format duplicates the
next source statement (the number of which is specified by m) the number of times
specified by n, where m, < 3 and n < 32,767. If n or m is zero, it is treated as if it were a
one.

DAS 20

DAS assemblers

Conditional Assembly Directives

These directives assemble portions of the program according to the conditions specified in
the variable fields.

IFT (DAS 8A, DAS MR)
This directive has the format '

blank IFT expression,expression(s)

It assembles the next symbolic source statement only if the first expression is less than
the second, and the second is less than or equal to the third.

Examples:

IFT a
for a = 0.

IFT a,b
for a= b.

IFT a,b,b
for a< b.

IFT 0,a,b
for0< a < b.

IFF (DAS 8A, DAS MR)
This directive has the format

blank IFF expression,expression(s)

It is similar to IFT (IFT = true), except that IFF (IFF = false) is the logical complement of
\FT. ’

Examples:

IFF a
fora = 0.

IFF a,b
fora = b.

IFF a,b,b
fora = b

IFF 0,a,b
for0=a>b.

DAS 21

DAS assemblers

GOTO (DAS 8A, DAS MR)

This directive has the formats

blank GOTO symbol

blank GOTO symbol,

blank GOTO integer

blank GOTO integer,
It skips more than one instruction and usually follows an IFF or IFT directive. All source
statements between the GOTO and the statement containing the symbol in its lable field
are skipped, and the instruction so labled executed next. GOTO cannot return to an earlier
point in the program.
I1f the first and third GOTO formats are used, the skipped instructions are listed. If the

second and fourth formats (containing a comma after the variable field element) are used,
they are not listed. This listing can also be suppressed by a SMRY directive.

CONT (DAS 8A, DAS MR)
This directive has the format

symbol CONT blank
It provides a target for a previous GOTO directive. The symbol is not entered in the

assembler's symbol table.

NULL (DAS 8A, DAS MR)

This directive has the format
symbol NULL blank
It provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.
Assembler Control Directives

These directives signal the end or continuance of an assembly.

MORE (DAS 4A, DAS 8A)

This directive has the format

blank MORE blank

DAS 22

DAS assemblers

It halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel
is pressed. MORE is never listed.

END (‘DAS 4A, DAS 8A, DAS MR)
This directive has the format

blank END expression

It is the last source statement in the program. The expression is the execution address of
the program after it has been loaded into the computer. A blank in the variable field yields
an execution address of 000000.

Subroutine Control Directives

These directives create closed subroutines and control their use.

ENTER (DAS 4A, DAS 8A, DAS MR)
This directive has the format

symbol ENTRblank

where the symbol is the name of the subroutine called. ENTR generates a linkage word of
zero in the object program.

RETU* (DAS 4A, DAS 8A, DAS MR)
This directive has the format

symbol RETU* expression

It returns from a closed subroutine, generating an unconditional jump to the address
indicated by the value of the expression.

DAS 23

DAS assemblers

CALL (DAS 4A, DAS 8A, DAS MR)
This directive has the format

symbol CALL name,parameter,error

where

name is the symbolic name
of a subroutine

parameter is an optional list
of parameters com-
prising valid data
items

error is an optional list

of error returns
comprising valid
data itemns

CALL causes the program to jump to the closed subroutine specified by name. Where a
symbol is used in the label field, it is entered in the symbol table and assigned the value
of the current location counter.

Example:
CALL FUNC,X,Y + 1,(ERR),(GOOF)*
produces a machine code identical to that obtained with
JMPM FUNC
DATA X,Y + 1,(ERR),(GOOF)*

List and Punch Control Directives

These directives, which are operative only during the second pass of the assembler (that
producing the object program and listings), control listing and punching during program
assembly.

List (DAS 8A)
This directive has the format

blank LIST blank
It causes the assembler to produce a program listing. The assembler normally outputs a

lost of the source statements. The LIST directive is used to bring the assembler back to
this condition when any of the following directives change the listing status.

DAS 24

DAS assemblers

NLIS (DAS 8A)
This directive has the format
blank NLIS blank

It suppresses further listing of the program.

SMRY (DAS 8A, DAS MR)
This directive has the format
blank SMRY blank
It suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.
DETL (DAS 8A, DAS MR)
This directive has the format
blank DETL blank
It removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.
PUNC (DAS 8A)
This directive has the format
blank PUNC blank
It causes the assembler to produce a paper tape punched with the object program. The
assembler normally outputs such a tape. PUNC returns the assembler to this condition
when the following directive changes the punching status:
NPUN (DAS 8A)
This directive has the format
blank . NPUN blank

It suppresses further production of paper tape punched with the object program.

DAS 25

DAS assemblers

SPAC (DAS 8A, DAS MR)
This directive has the format
blank SPAC blank

It causes the listing device to skip a line. SPAC is not listed.

EJEC (DAS 8A, DAS MR)
This directive has the format
blank EJEC blank

It causes the listing device to move to the next top of form. EJEC is not listed.

READ (DAS 8A)
This directive has the format
bland READ number

where
number is the number of char-
acters (20 to 80)
from each source
statement to be pro-
cessed by the as-
sembler

Normally, the assembler processes 80 characters per statement with 026 keypunch codes.
If number is outside the range 20 to 80, the assembler resets the number of characters to
80 and outputs error message *SZ.

Unless there is an *SZ error message, the SMRY directive suppresses the listing of READ
during the second pass of the assembly process.

Program Linkage Directives

These directives establish and control links among programs that have been assembled
separately but are to be loaded and executed together.

This directive has the format

blank NAME symbol,...,symhol

DAS 26

DAS assemblers

It establishes linkage definition points among separately assembled programs. Each
symbol(s) can then be referenced by other programs. Each symbol also appears in the
label field of a symbolic source statement in the body of the program. Undefined NAME
symbols cause error messages to be output.

Examples:
NAME A
NAME A.B
NAME EX,WHY,ZEE

This directive has the format
symbol EXT symbol,...,symbol

In linking separately assembled programs, it declares each symbol not defined within the
current program. Each symbol, in both the label and variable field, is output to the
relocatable loader with the address of the last reference to the symbol.

If a symbol is not defined within the current program and not declared in an EXT
directive, it is considered undefined and causes an error message output. If a symbol is
declared in EXT but not referenced within the current program, it is output to the loader
for loading, but no linkage to this program is established. If a symbol is both defined in
the program and declared to be external, the EXT declaration is ignored.

Examples:
EXT AY
BEG EXT BE,SEE
EXT DEE,EE,FF,GEE

This directive has the format
symbol COMN item
where item is an absolute item or expression.

COMN defines an area in blank common for use at execution time. This allows an
assembler program to reference the same blank common area as a FORTRAN program.
The common area is cumulative for each use of COMN, i.e, the first COMN defines the
base area of the blank common, the second COMN defines an area to be added to the
already established base, etc.

Examples:

AAA COMN 3
COMN 6%2

BBB COMN 9

DAS 27

DAS assemblers

MOS 1/0 Control Directives

As a free-standing program or under MOS, DAS MR accepts the MOS control directives
listed below and explained in the Master Operating System section of this handbook.

Directive Description
RBIN Read binary record
RALF Read alphanumeric re-

cord
RBCD Read binary-coded dec-
imal (BCD) record
WBIN Write binary record
WALF Write alphanumeric re-
cord
WBCD Write BCD record
WEOF Write end of file
REW Rewind
SKFF Skip files forward
SKFR Skip files reverse
SKRF Skip records forward
SKRR Skip records reverse
FUNC Function
STAT Status
ION 170 driver reference
number

VORTEX 1/0 Control Directives

DAS MR accepts the VORTEX control directives that are listed below and explained in the
VORTEX Reference Manual (document number 98 A 9952 101).

Directive Description
OPEN Open file

CLOSE Close file

READ Read one record

WRITE Write one record

REW Rewind

WEOF Write end of file

SREC Skip one record

FUNC Function

STAT Status

DCB Generate data control block
FCB Generate file control block

DAS 28

DAS assemblers

Macro Definition Directives

These directives begin and end macro definitions. The macro is the assembly equivalent of
the execution subroutine. It is defined once and can then be called from the program. The
macro is an algorithmic statement of a process that can vary according to the arguments
supplied. It is assembled with the resultant data inserted into the program at each point
of reference, whereas the subroutine executed during execution time appears but once in
a program. Its definition comprises the statements between MAC and EMAC.

MAC (DAS MR)
This directive has the format

symbol MAC blank

It introduces a macro definition. The symbol is the name of the macro.

EMAC (DAS MR)
This directive has the format
blank EMAC blank
It terminates the definition of a macro.
A macro is called by the appearance of its name in the operation field of a symbolic source
statement. The variable field of this statement contains expression(s) P(1), P(2),...P(n),
then processed with the values in the table being substituted for the respective values of

the expressions in the source statement variable field. For example, if the variable field of
the symbolic source statement contains

2B9+8,=63

then within the generated macro P(1) = 2, P(2) is the value of B, P(3) = 021, and P(4) is
the address of the value 63. All terms and expressions within the macro-referencing
symbolic source statement parameter list are evaluated prior to calling the macro.

I1f the label field of such a source statement contains a symbol, the symbol is assigned the
value and relocatability of the location counter at the time the macro is called but before
data generation.

DAS 29

DAS assemblers

A macro definition can contain references to machine instruction mnemonics or to
assembler directives other than DUP. Macros can be nested within macros to a depth
limited only by the available memory at assembly time.

Example: Define the macro.

SBR MAC .
SEN 0200 P(1),*-+3
JMP *#-2
EMAC

Call the macro.
SBR 031
Expand the macro.

SEN 0231,*+3
JMP *-2

P(0) can also be accessed by a normal call. P(0) is the first entry in the table formed by
the assembler and contains the number of entries in that table. The following example
shows the output listing obtained by calling P(0):

1 A MAC

2 DATA P(0)

3. EMAC
000001 000000A 4 A
000002 000001A 5 A 1
000003 000002A 6 A 1,2
000004 000003A 7 A 1,2,3
000005 000004A 8 A 1,2,3,4
000006 000005A 9 A 1,2,3,4,5

10 END

Symbol And Expression Modes
Each symbol or expression has one of the following modes assigned by the assembler:
a. External (E)

b. Common (C)

c. Relative (R)

d. Absolute (A)
The mode of an expression is determined by the mode of the symbois in the expression.
The mode of a symbol is determined by the following rules:

a. If the symbolis in an EXT directive, the modeiisE. -

b. If the symbol is defined by a COMN directive, the mode is C. .
(continued)

DAS 30

DAS assemblers

c. If the symbol is a symbol in a program, or if * is the current location counter value, the
mode is R.

d. If the symbol is a number (numerical constant), the mode is A.

e. If the symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is
that of the variable field expression in the directive.

The mode of an expression is determined by the following rules:
a. Ifthe expression contains any mode E or C symbol, the expression is mode E.
b. If the expression contains only mode A symbols, the expression is mode A.

c. |f the expression contains mode and R symbols, the mode of the expression is R if there
is an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The following restrictions apply only to DAS MR and to FORTRAN-compatible output
assembly with DAS 8A.

a. No expression can contain symbols of both modes E and C.
b. A mode E expression comprises a single mode E symbol.
¢. NomodeE, C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or subtract a mode C and a mode R symbol, or a mode E and a
mode R symbol.

e. No expression can add two or more mode E, C,orR symbols.

f. A mode A symbol can be added to or subtracted from a mode C or R symbol.

Figure 1 illustrates the above rules.

EEEE EXT Defines mode E
ccce COMN 6 Defines mode C
RTN ENTR Defines a symbol (RTN) as a mode R
TBL BSS 50 TBL is mode R
ABL BSS 'A'+5 ABL is mode R
LENG EQU *~ TBL LENG is mode A (defines area length)
CALL EEEE, TBL,LENG
LDA *4+6 Legal, one-word relative forward
LDA CCCC +6 Ilegal, one-word not R or A
LDXI CCCC+6 Legal, two-word instruction
LDA 0,1 Legal, loads CCCC +6 in A register
DATA EEEE +4 lllegal, value not zero
DATA CCCC+4 Legal
DATA CCCC + LENG Legal
DATA TBL+LENG 5 Legal, mode is R

Figure 1. Manipulation of Expression and Symbol Modes

DAS 31

DAS assemblers

Relocatability Rules

A relocatable program (DAS 8A, DAS MR) is one that has been assembled with its
instruction and directive locations assigned in such a manner that it can be loaded and
executed anywhere in memory. When such a program is loaded, the beginning memory
address is specified, and a value (known as the relocation bias) is added to the addresses
of subsequent relocatable instructions. The programs are usually assembled with a zero
relocation bias on the first instruction.

The location counter contains the (relative) address of the instruction or directive
currently being executed. The location counter is absolute when it contains the actual
address of the instruction, and relocatable when it contains the relative address (the
current address of the start of the program).

Symbols can be absolute or relocatable. Expressions, since they contain symbols, can be
absolute or relocatable. Constants are always absolute.

The following shows, for each arithmetic operation, whether the result is absolute (abso),
relocatable (relo), or illegal.

A= abso A= abso A= relo A= relo

B= abso B= relo B= abso B= relo
A+B abso relo relo illegal
A-B abso illegal relo abso
A®B abso illegal illegal illegal
A/B abso illegal illegal illegal

The relocatable loader can load a program in any area of memory and modify the
addresses as it loads so that the resulting program executes correctly. Programs can
contain absolute addresses, relocatable addresses, or both. At the beginning of each
instruction or data'word generated by the assembler, it can be set by the ORG directive.
On encountering an ORG directive, the assembler makes the location counter absolute if
the corresponding expression is absolute, or relocatable if the corresponding expressions
is relocatable.

If a symbol is equated to the location counter, it is relocatable if the location counter is
relocatable. Otherwise, the symbol is absolute.

DAS 32

DAS assemblers

Assembler Input Media
Punched Card Format

Punched cards used as input to the DAS assemblers contain four fields corresponding to
the instruction and directive fields:

a. The label field is in columns 1 through 6. Its use is governed by the requirements of the
instruction or directive.

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

c. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more
subfields are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17. .

An asterisk in column 1 indicates that the entire card contains a comment.
Note that columns 7 and 15 are always unpunched (blank).

Paper Tape Format

Paper tape used as input to the DAS assemblers contains source statements of up to 80
characters each (not including the carriage return and line feed characters). Each
punched statement contains four fields corresponding to the instruction and directive
fields. The label, operation, and variable fields are separated by commas, and the
comment field starts after the first variable field blank that is not part of a character
string. Each statement is terminated by a carriage return (CR) followed by a line feed (LF).

a. Label field use is governed by the requirements of the instruction or directive. It is
terminated with a comma. If this field is not used, a comma appears as the first
character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk
following the mnemonic specifies indirect addressing. This field begins immediately
following the label field terminator and is terminated by a comma.

c. The variable field can be blank, or contain one or more subfields separated by commas.
It must immediately follow the instruction field terminator (,). Subfields can be
voided by using adjacent commas. This field is terminated by a blank that is not
part of a character string, or with a CR or LF.

d. The comment field fills the remainder of the statement (from the terminating blank of
the variable field to the next CR or LF).

I1f the first nonblank character of a source statement‘ is an asterisk, the entire statement
is a comment.

DAS 33

DAS assemblers

Assembler Output Listing

DAS produces a source/object listing of the assembled program, as well as a paper tape
containing the object program in reloadable format.

The listing can be obtained in whole or in part as the program is being assembled. The
source (symbolic) program and the object (absolute) program are listed side by side on the
listing device. This device is either a Teletype or a line printer.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS 8A, DAS MR). !

Error analysis during assembly causes the error messages described below to be output on
the line following the point of detection.

The following example illustrates the format of the output listing. A line count appears only
on DAS MR listings. The addressing modes are: FORTRAN common reference = C,

externally defined = E, indirect pointer = |, and absolute or relative = R.
Address Code Mode Line Count Symbolic Source Statement
014000 ORG 014000
014000 000000 ABS ENTR
014001 001002 JAP* ABS
014002 114000 R
014003 005211 CPA
014004 001000 JMP* ABS
014005 114000 R
000000 END

Error Messages

The assembler checks source statement syntax during both pass 1 and 2. Detectable
errors are listed during pass 1. During pass 2, the following information is listed:

a. Errorcode
b. Location counter value
c. Object code when the instruction is assembled

This information is suppressed by NLIS directives and list-suppression commas in GOTO
directives.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

DAS 34

DAS assemblers

Table 6 lists the DAS error codes and their meanings.

Code
*AD
*DC
*“DD
*E
*EX
*FA

*IL
*NR

*NS

*OP

“QQ
“R

*SE

*SY

*sz

*TF

Table 6. DAS Error Codes
Meaning

Error in an address expression
Decimal character in an octal constant
lllegal redefinition of a symbol or the location counter
Incorrectly formed statement
lllegally constructed expression
Floating-point number contains a format error

First nonblank character of a source statement is invalid
(the statement is not processed)

No memory space available for additional entries in as-
sembler tables

No symbol in the label field of a SET, EQU, MAC, or FORM
directive or no symbol in the label or variable field of

an OPSY directive, or no symbol in the variable field of

a NAME directive

Undefined operation field (two No Operation (NOP) instruc-
tions are generated in the object program; the remainder
of the statement is not processed), or illegal nesting of
DUP or MAC directives

Illegal use of prime (')

Relocatable item where an absolute item should be defined

Synchronization error: symbol value in pass 2 is
different from that found in pass 1

Undefined symbol in an expression

Expression value too large for a subfield, or a DUP directive
specifies that more than three statements are to be assembled

Undefined or illegal indexing specification (continued)

DAS 35

DAS assemblers

Table 6. DAS Error Codes (continued)

Code Meaning
*“Uc Undefined character in an arithmetic expression
“UD Undefined symbol in the variable field of a USE directive
“XR Address out of a range for an indexing specification
= Illegal use of a literal

Operating The Assemblers

DAS 4A and 8A Operations

Load the assembler program supplied by Varian into memory using the binary load/dump
program (BLD 11). Execute it by entering a positive, nonzero value in the A register during
loading, or by clearing all registers, pressing (SYSTEM RESET and entering the RUN state.
(Set RUN indicator on and press START).

During execution, the program first determines the amount of memory required. It then
stores in address 000003 a value one less than the lower limit of BLD Il. This is the
highest address that the assembler can use without destroying part of BLD II.

DAS 4A and 8A each contain two sections: The I/0 section allows the specification of |/0
devices for assembler input and output. The second section is the assembler itself.

1/0 Section Definitions

The 1/0 section of DAS 4A and 8A using the Teletype printer, makes three requests for
definitions of 1/0 devices:

ENTER DEVICE NAME FOR xx

where xx is one of the 170 function names: $SI (source input,) LO (list output), or BO
(binary output), respectively.

Respond to each request in turn by typing, on the Teletype keyboard, the name of the
desired device, followed by a carriage return (CR). Table 7 lists the acceptable device
names in response to each request. If the default assignment is desired, merely press CR.

DAS 36

DAS assemblers

Table7. Acceptable 1/0 Devices
Assembly Function Device Default Assignment

S! (source input) Teletype paper tape reader: TR TR
Teletype keyboard: TY
High-speed paper tape reader: PR
Card reader (model 620-22,
-23, or -25): CR
Magnetic tape: MT nn

LO (list output) Teletype printer: TY TY
Line printer (model 620-76): LP
Line printer (model 620-75): LP1
Line printer (model 620-77): LP2

BO (binary output) Teletype paper tape punch: TP TP

High-speed paper tape punch: PP
Card punch (model 620-27): CP1

If an incorrect device name is typed, the message
DEVICE NAME NOT VALID
is output and the request repeated.

To terminate the output of any line to the Teletype, press RUBOUT. This error correction
feature can be used any time during |/0 device specification.

When 1/0 assignments are complete, the 1/0 section uses BLD |l to load the assembler
section into memory.

To restart the 1/0 section before the assembler section is loaded, set STEP indicator on,
clear all registers, press (SYSTEM) RESET, set RUN indicator on and press START.

Assembler Section Definitions

When BLD 1l relinquishes control to the assembler section, the computer halts with
000001 in the program counter (P register). For an assembler pass 1, set SENSE switch 1;
for pass 2, reset SENSE switch 1 and set SENSE switches 2 and 3.

If pass 1 is selected, ready the Si device with the source input media and set RUN
indicator on and press START.

For pass 2, ready the Sl device with the source input media, ready the BO and LO devices,
set RUN indicator on and press START.

DAS 37

DAS assemblers

The END directive terminates both passes 1 and 2. Pass 1 terminates with 000001 in the
P register and 0177777 in the A register. Pass 2 produces the binary object loader text
and program listing and terminates when END is encountered with the same register
values as pass 1. A MORE directive causes the computer to stop and wait until the St unit
is prepared with the additional source input media, and the RUN state is entered. MORE
is indicated by 0170017 in the A register.

The program listing can be suppressed during pass 2 by resetting SENSE switch 2, and
the binary output, resetting SENSE switch 3. Error messages cannot be suppressed and
are output on the LO device as the error is detected during pass 2.

Synchronization errors (table 6) halt the assembly with 000777 in the A register. To
continue the assembly, set RUN indicator and press START. The assembler resets the
location counter value to that assigned on pass 1, prints error message *SE, and
continues the assembly.

Pass 2 can be restarted or repeated for extra copies of the assembled program without
repeating pass 1.

At the completion of pass 2, the assembler can accept another assembly using the same
1/0 devices. For other 170 devices, reload the assembler program, starting with the 170
section.

To restart the assembler, set STEP indicator on, clear all registers, press (SYSTEM)
RESET, set RUN indicator on and press START. The assembler halts with 000001 in the P
register and is ready to accept another assembly.

The DAS 4A and BA assemblers can communicate with any one of the magnetic tape
transports on a controller. Up to four transports may be connected to each of the
magnetic tape controllers. A configuration may have one to four magnetic tape controllers.

The magnetic tape transport number and controller device address is specified in the
device name specification of the 1/0 Control Section based upon the following table:

Device Address Transport
Name (in octal) Number
MTOO 010 1
MTO01 010 2
MT02 010 3
MTO3 010 4
MT10 011 1
MT11 011 2
MT12 011 3
MT13 011 4

DAS 38

DAS assemblers

Device Address Transport
Name (in octal) Number
MT20 012 1
MT21 012 2
MT22 012 3
MT23 012 4
MT30 013 1
MT31 013 2
MT32 013 3
MT33 013 4

DAS MR Operations

Since DAS MR operates under MOS and uses the MOS 1/0 control system, the 1/0 devices
can be defined as required (refer to MOS section of this handbook).

DAS MR inputs the symbolic source statements from the processor input (P!) logical unit
in alphanumeric mode, and outputs them in the same mode on the processor output (PO)
logical unit. When DAS MR detects the END directive, it terminates pass 1, returns to the
beginning of the source program, and begins pass 2. During pass 2, the source statements
are the input from the system scratch (SS) logical unit, a listing is output on the LO unit,
and the binary object program is output on the BO unit. Note that PO and SS must be the
same magnetic tape, drum, or disc unit.

For an assembly without a program listing, input the following directive to the MOS
executives when requesting the assembly:

/ASSEMBLE N

For a binary object program, input

/ASSEMBLE B

If the memory map portion (symbol table, external names, and entry names) is not
wanted, input

/ASSEMBLE M
To read the same physical symbolic source statements for both assembly passes, input

/ASSIGN PO=DUM, SS=PI
/ASSEMBLE

DAS 39

DAS assemblers

The processor output listing serves as a copy of the program; it can be input for another
assembly.

With an operating system the DAS MR user gains the facilities provided in either MOS or
VORTEX. The features of MOS are described in detail in a later section in this handbook.

The standalone system is operated with procedures also used for the standalone
FORTRAN system (described in a later section).

DAS 40

Binary Loader Programs

Loader i

TABLE OF CONTENTS

SECTION 1

BINARY LOAD/DUMP PROGRAM- (BLD iI)

LOADING THE BOOTSTRAP ROUTINE.. et b e e e e e e e e renes 1-2
LOADING THE BLD Il PROGRAM srereeree e 1-4
LOADING AN OBJECT PROGRAMcocovierrrererericseicnenns ...1-8
Verification ... 1-8
Load Program and Halt ..o s saeseasssesseseessesssssees 1-10
Load Program and EXECULEccceiviirt certeiireeseecee e eesesssssae s sessassssseesseesessseensees 1-10
PUNCHING PROGRAM TAPES ..oiitiecricieriiiieniieiesesreseriesseisesseestessesanessssssonsessessensossesans 1-10
PUNCHING MEMORY CONTENTS ..eiivceeririrrenisessrenreesenesseeseessressessstessssesssnessrsssssseesseans 1-11
SECTION 2

BINARY CARD LOADER (BCL I)

BOOTSTRAP ROUTINEovreeeiriiteeeteeneeie et er et ensas e besasssss st sssss st bbb sesssosenemsacne 2-2
RELOCATING PRE-LOADERcocvitiniteriiresiienirtissesinssssssisesserees soseeresssonsessssessssssensensessens 2-2
BINARY CARD LOADERooiirirciertnretiesereeneseeseessssee e s e sasssensaeste s e ssnsssessensssssnassessenans 2-2
OPERATING PROCEDURE FOR BCL | .ccocvivrienriieivenieinnssesiesssssiessesseseesesseressensesesssseenes 2-6
RE-USING BCL | ettt sce st ssbe e s s e sas e senenessee s s se e st esssemesnesnenaesreanen 26
ERROR INDICATIONScocitiieitierteerieseesireesanessessnesresonessrensesssessssssssesssesssasssssssssnsenses 2.7

Loader iii

BINARY LOADER PROGRAMS

Two stand-alone loader programs are available for the Varian 73 and 620
computer systems: Binary Load/Dump (BLD Il) and Binary Card Loader
(BCL 1). The BLD 1I program prepares the computer for the loading of non-
relocatable object programs from a high-speed or Teletype paper tape reader. It
also allows a program stored in memory to be punched on paper tape in re-
loadable format. For computer systems using card 1/0 devices, the BCL | program
loads binary information from either a model 620-22 or 620-25 card reader. No
memory dump feature is included in the BCL | program.

Loader 1-1

SECTION 1
BINARY LOAD/DUMP PROGRAM (BLD II)

BLD Il is loaded using the bootstrap loader routine, which specifies the input reader. Once
loaded, BLD |l automatically relocates itself into the upper part of the highest 4K memory
increment, unless the operator specifies another 4K increment. BLD Il also dynamicaliy
adapts itself to load object program tapes from the input device specified in the bootstrap
loader routine, and performs a check-sum of object program records.

After BLD Il has been loaded into memory, it need not be reloaded for the entering of
subsequent object programs.

Initially, BLD Il occupies addresses 007000 through 007755 of the first 4K memory
increment, where it does. not interfere with the bootstrap loader routine occupying
addresses 007756 through 007776. Immediately after loading, BLD Il relocates to occupy
addresses 0x7400 through 0x7755, where x denotes the highest, or operator specified, 4K
of memory.

Memory Increment

>
]

4K

8K
12K
16K
20K
24K
28K
32K

NOOGO AL WN=O

Entry to BLD Il to load object program tapes is always 0x7600, and entry to punch binary
object tapes of memory contents is 0x7404.

LOADING THE BOOTSTRAP ROUTINE

Under normal conditions the bootstrap loader routine would be loaded automatically as
follows:

a. With the POWER switch in the ON position, place the computer in the run mode by
pressing the STEP/RUN switch (RUN indicator is blinking).

Loader 1-2

BLD Il

b. Insert the BLD Il tape in the reader with the first binary frame at the read station.
c. Press the boot switch (RUN indicator is now on). This transfers the bootstrap program
from the processor’'s control store to computer memory and executes loading of the
BLD Il program.
For maintenance purposes it may be desirable to load the bootstrap routine manually.
Table 1-1 lists the manual bootstrap loader routines. If the high-speed paper tape reader
is to be used for subsequent program loading, select the column headed High-Speed
Reader Code; for the Teletype paper tape reader, select the column headed Teletype
Reader Code.
To load the bootstrap loader routine:

a. Ensure that computer power is turned on and that the system is initialized.

b. Load the starting memory address of the bootstrap loader (007756) into the P register.
c. Press MEM switch momentarily.
d. Clear the console display (Press DISPL CLR).

e. Select the first bootstrap loader instruction from the appropriate column in table 1-1,
and load it into the console display.

f. Press ENTER to load the display contents into the address specified by the P register,
which is incremented by one after the instruction is loaded.

g. Clear the display (Press DISPL CLR).

h. Repeat steps d, e, f, and g for each bootstrap loader instruction.

Table 1-1. Bootstrap Loader Routines

High-Speed Teletype
Address Reader Code Reader Code Symbolic Coding
007756 102637 102601 READ CciB RDR
007757 004011 004011 ASLB NBIT -7
007760 004041 004041 LRLB 1
007761 004446 004446 LLRL 6
007762 001020 001020 JBZ SEL
007763 007772 007772 (Memory address)
007764 055000 055000 STA 0,1

(continued)

Loader 1-3

BLD I

Table '1-1. Bootstrap Loader Routines (continued)

High-Speed Teletype
Address Reader Code Reader Code Symbolic Coding
007765 001010 001010 JAZ LHLT +1
007766 007000* 007000* (Memory address)
007767 005144 005144 . IXR
007770 005101 005101 ENTR INCR 1
007771 100537 102601 EXC** RDON
007772 101537 101201 SEL SEN IBFR,READ
007773 007756 007756 (Memory address)
007774 001000 001000 JMP * =2
007775 007772 007772 . (Memory address)

NOTE

The bootstrap loader routine is always loaded into the specified ad-
dresses of the first 4K memory increment, regardless of available
memory.

* Replace this code with 007600 if the test executive of MAINTAIN 11
(refer to document number 98 A 9952 06R) is to be loaded and executed.

** CIB instruction if TTY bootstrap.

To verify bootstrap loading:

a. Initialize the system by pressing (SYSTEM) RESET.

b. Load 007756 into the P register.

c. Select the memory for display by pressing MEM and press DISPL.
The contents of the memory addresses are displayed sequentially each time the DISPL
switch is pressed. If an error is found, load the correct instruction code into memory. Note

that the P register error address is always the error address plus one.

BLD Hl, and subsequent object programs, can now be loaded into memory.

LOADING THE BLD Il PROGRAM
CAUTION
To adapt to the input device, BLD Il examines address 000200 to determine if

the system includes the automatic bootstrap loader (ABL) option, then the

Loader 1-4

BLD 1l

contents of the first address of the manual bootstrap loader routine, both of
which can indicate the input device. If address 000200 inadvertently contains
one of the two input device codes, and the device used is different, BLD II
malfunctions. '

After the bootstrap loader routine has been successfully loaded into memory:

a.

b.

Clear the instruction register.

Load 007770 into the P register.

Load 007000 into the X register.

Set the SENSE switch(es) for the desired program option (table 1-2).

Turn on the paper tape reader specified by the bootstrap loader routine.

Position the BLD Il program tape in the reader with the first data frame after the
position-8-only punches (figure 1-1) under the high-speed reader head or under the

reading station of the Teletype reader.

To load tape, press RUN, then START. Loading is complete when the computer changes
to step mode.

Table 1-2. BLD 1l SENSE Switch Options

SENSE Switch When Set =

1 Allows selection of any 4K memory increment in which
BLD Il is to operate, or specification of a nonstand-
ard device address for the high-speed paper tape
punch.

After BLD Il is loaded, the computer halts with
07014 in the P register.

To specify a 4K memory increment, load one of the
following in the A register:

A Register Memory Increment
000000 First 4K
000001 Second 4K
000002 Third 4K
000003 Fourth 4K
000004 Fifth 4K
000005 Sixth 4K

(continued)

Loader 1-5

BLD I

Table 1-2. BLD Il SENSE Switch Options (continued)

A Register Memory Increment
000006 Seventh 4K
000007 Eighth 4K

The standard high-speed paper tape punch device
address is 037. To specify a nonstandard device
address, load it into the B register.

Result: Pressing START initiates the re-

location of BLD Il from the first 4K memory incre-
ment and implements the punch address. The computer
halts with zeros in the A, B, and X registers and
0x7600 in the P register, where x = the specified
increment as described above. Object program tapes
can then be loaded.

SENSE Switch When Set =
2 Adjusts the program for Teletype paper tape punch
output. (For use when input is from high-speed
reader, but a high-speed punch is not available.)
Result: BLD Il and the object program can be
loaded and executed without further operator inter-
vention.

3 Allows splicing an object program to the BLD II
program tape.

NOTE
If no SENSE switches are set, the BLD Il program is loaded and
relocates automatically to the highest 4K memory increment. The
computer then halts with the entry address for reading object

program tapes in the P register (0x7600) and zeros in the A,
B, and X registers.

I1f SENSE switch 1 was set:
a. Reset SENSE switch 1.

b. Clear the A régister.

Loader 1-6

VTII-1889

)

00000000000000000000000

|
o o0 o
1
|
1

o |
Py
ocl;

i

oo.o:o

. .‘:

of
A

{

|

[
o

|

...:..
ooie"
o |
*,

100437
006010
000223
" 002000
007320
001100
7007012
005001
001000
007014
000007
005111
054310
" 006010

)

87654 321

BLD 1l

FIRST BINARY FRAME

Figure 1-1. BLD 1l Tape Format (Bootstrap-Loadable)

Loader 1-7

BLD I

c. Load the appropriate values, as defined in table 2-2, in the A and/or B registers.

d. Press START.
When BLD |l loading is complete, the computer halts with 0x7600 in the P register unless
SENSE switch 3 was set (table 1-2), in which case the computer implements loading and

execution of the spliced object program.

Remove the BLD Il program tape from the reader after loading, and reset SENSE switch 2,
if applicable.

LOADING AN OBJECT PROGRAM

Object programs can be loaded from the bootstrap-routine-specified device immediately
after BLD Il. For all subsequent loadings, make sure that the P register is set to 0x7600.

Verification

To ensure that an object program tape contains no errors before it is loaded into memory,
BLD Il has a check-sum error-checking option. To use this option:

a. Turn on the bootstrap-routine-specified reader.

b. Position the object program tape in the reader with leader at the reading head (figure
1-2).

c. Load minus value (0100000) into the A régister.
d. Clear the instruction register.
e. Set RUN indicator on and press START.
No errors are indicated by the computer halting with:
P register = 0x7600
A register 0100000

B register 000000
X register = execution address

If a check-sum error occurs, the computer halts with:

P register = 0x7600

A register = 0100000
B register = 0177777
X Register = Address of last record

Loader 1-8

VISUAL AID
RECORD MARK —== =
RECORD SIZE

ORIGIN ADDRESS

DATA

DATA

CHECKSUM

VISUAL AID
RECORD MARK —= =
RECORD SIZE

EXECUTION ADDRESS
CHECKSUM

;

000000
sesecee

VTI1-1888

000011

027400
007400

002000

027434

000007
007401

002000
027434

001000

001014

000000

027400

027400

!

87654 32)

Figure 1-2. Object Program Tape Format

BLD I

Loader 1-9

BLD Il

To retry a check-sum error record, reposition the object program tape at the previous
visual aid and press START. If a check-sum.error is again read, visually check each
character in the record for an error in punching or damaged tape.

Load Program and Halt
To load the object program and halt before execution:
a. Turn on the reader and position the tape in the reading station.
b. Clear the A, B, X, and instruction registers.'
c. Load 0x7600 into the P register.
d. Set RUN indicator on and press START.

Correct loading is indicated when the computer halts with:

P register = 0x7600
A register = 000000
B register = 000000

X register = execution address
A check-sum error is indicated by the conditions described for object program tape
verification described above.
Load Program and Execute
Programs can be loaded and immediately executed using the steps described above for

the load-and-halt option, except in step b load 000001 (or any positive number) in the A
register.

PUNCHING PROGRAM TAPES

The BLD Il program adapts to the input reader and the output punch devices by
interrogating the bootstrap loader routine. Setting SENSE switch 2 (table 1-2) prior to
loading BLD Il program adjusts the program for Teletype punch output regardless of the
bootstrap-routine-specified devices.

To punch reloadable object program tapes after the programs have been loaded into
memory, turn on the punch and:

a. Load the beginning addiess of the area to be punched into the A register.

Loader 1-10

BLD 1l

b. Load the final address to be punched into the B register.
c. Load the first instruction to be executed at load time into the X register,

OR

if noncontiguous memory areas are to be punched, load minus one (177777) into the X
register.

d. Load 0x7404 (entry address to BLD Il to punch object tapes) into the P register.
e. Clear the instruction register.
f. Press (system) RESET, set RUN indicator on and press START.
The program punches the object tape and the computer halts with all registers unaltered.

If noncontiguous areas are to be punched, perform steps a through f. Prior to punching
the last area, load the first instruction to be executed at load time into the X register.

PUNCHING MEMORY CONTENTS

To punch a tape of the binary memory contents on the high-speed paper tape punch,
SENSE switch 2 must not be set when BLD |l is loaded. To punch a tape from memory on
the Teletype punch, SENSE switch 2 must be set (if the input reader is a high-speed paper
tape device).

The operator can specify that tapes be punched in binary format for reloading using the
BLD I, or that the BLD 1l program be punched in bootstrap-loadable format.

To punch a tape in binary format, use the procedures described above for punching
program tapes.

To punch a bootstrap-loadable tape of BLD Il itself:
a. Load 0x7400 into the P register.
b. Clear the A and B registers.
c. Load anonzerovalue into the X register.

d. Press (system) RESET, set RUN indicator on and press START.

Loader 1-11

SECTION 2
BINARY CARD LOADER (BCL 1)

The BCL | program loads and executes card object programs with a minimum of operator
involvement. The program automatically allocates and positions the card loader routine in
an area at the top of ap-operafor-specified. memory module (16-bit word only). A job
stream containing the BCL | cards is shown in figure 2-1.

A bootstrap routine (table 2-1) performs the initial loading of the BCL | into main memory,
and then passes control to the relocating pre-loader portion of the BCL | program. The
relocating pre-loader loads the binary card loader into main memory and relocates it in an
area of memory for permanent residency. The relocating pre-loader then passes control to
the binary card loader, which in turn reads binary information from 16-bit data words on
cards and transfers it to memory.

BINARY END /
RECORD —_—

BINARY
OBJECT

PROGRAM (

BCL I .
PRO- BINARY CARD LOADER 2 OF 2
GRAM

rBlNARY CARD LOADER 1 OF 2 —

 RELOCATING PRE-LOADER

VTII-1898
Figure 2-1. Job Stream Containing BCL | Card

Loader 2-1

BCL |

BOOTSTRAP ROUTINE

A BCL | bootstrap routine (table 2-1) loads the BCL | program from punched cards into
memory and automatically initiates execution of the relocating pre-loader.

RELOCATING PRE-LOADER

The relocating pre-loader determines the highest address of physical memory and
computes a relocation address based on the upper-boundary address. If the highest
memory address is specified by the operator, the pre-loader will compute the relocation
address based on that value. After relocating the BCL to the memory area, the pre-loader
automatically transfers control to the BCL routine.

BINARY CARD LOADER

The binary card loader loads object data from cards produced by DAS 4A or DAS 8A
assemblers. The data formats for the BCL | and object program cards are shown in figures
2-2 and 2-3, respectively. In the BCL | format, each 16-bit word is contained in two
columns of rows 2 through 9. In the object program format, the 16-bit words are arranged
serially beginning with row 12 of column 1. The first 16 bits on an object-program card
contain a count of the object words on the card; the second 16 bits contain the load
address. Object words begin in the third 16 bits. As each object word is loaded the word
count is decremented. A 16-bit checksum, the last entry on the card, is compared with the
checksum computed by the loacler. Any discrepancy causes the computer to stop
indicating a checksum error. An end record has its first 16 bits all ones. The loader
assembles the second 16 bit on the end-record card as an execution address. The end-
record checksum is disregarded and control passes to the loaded object program at the
point specified by the execution address.

Table 2-1. BCL | Bootstrap Routine

Symbolic Instruction

Address Octal Label Operation Variable Comment

Code
000114 102530 BOOR CIA 030 Input card column
000115 004250 LRLA 8 Position to high order
000116 101130 SEN 0130,BOOS Character ready

000117 000122

000120 001000 JMP =2 Wait until ready
(continued)

Loader 2-2

Address

000121

000122

000123

000124

000125

000126

000127

000130

000131

000132

000133

000134

000135

000136

000137

Octal
Code

0001;6
102130
055000
005144
001000
000131
000000
100230
101130
000114

101630

100127
001000
000131

000000

BCL |

Table 2-1. BCL | Bootstrap Routine (continued)

Label

BOOS

BOOT

BOOU

RLOD

Symbolic Instruction

Operation

INA
STA
IXR

JMP

DATA

EXC

SEN

SEN*

JMP

DATA

Variable

030

01
BOOU
PLD
0230

0130,BOOR

0630,B00T

Comment

Low order 8 bits
Store word
Increment store pointer

Do again

Read a card

Character ready

End of card, reader
now ready

Loader start address

Loader 2-3

BCL |

COLUMNS= 1 2 3 4 5 6

cow 12/

ROW 11

ROW 0

ROW 1

oW 2 15 57 5 L7, L7

ROW 3 AL PLEPLE PLLPL

ROW 4 PN PLIPEE PLEIPL

ROW 5 212 24 2" 24|12 4

ROW 6 IS PLEFEN PLUPS

ROW 7 210 22 | 210 52 [,10 L2

ROW 8 YT UL P

ROW 9 2 20 |28 20,8 L0

1 1 vI WORD 3

WORD 2
WORD 1

VTII-189
Figure 2-2. Format of BCL | Card

Loader 2-4

BCL |

row 12 /|29 2% |27 [2|2 23

ROW 11 14 22 [26 | R10(14 52

ROW 0 213 21 |25 [27 [213 2!

ROW 1 212 20 [24 [28 212 50

ROW 2 211|215 23 [27 | o1

ROW 3 210] 214 2 | 56 | 510

ROW 4 27 | 218 21 [23 [5?

ROW 5 28 [212 20 | 24 | 58

ROW 6 27 | 211215 23 127

ROW 7 26 | 210|214 22 |56

ROW 8 25 [29 [213 21} 25

ROW 9 2% [28 | 212 20 54

——

WORD 4
WORD 3
WORD 2
WORD 1

WORD 1 COUNT OF OBJECT WORDS, OR ALL ONES IF AN END RECORD
WORD 2 LOAD ADDRESS, OR TRANSFER ADDRESS IF AN END RECORD
WORD 3 FIRST OBJECT WORDS

WORD 4 SECOND OBJECT WORD

THE LAST WORD IS A CHECKSUM (EXCLUSIVE OR)

VTII-1891
Figure 2-3. Format of Object Program Cards

Loader 2-5

BCL 1

OPERATING PROCEDURE FOR BCL |

B

Using the computer control panel, load the bootstrap routine (table 2-1) into memory.
Load 000130 into the P register

Load zero into the X register

Load the B register with

1. zeroif BCL1is toreside at the top of main memory, or

2. the octal value for the upper boundary of the memory module in which the loader is
to reside. The accepted values are

B-Register Desired 4K Memory
Value (octal Memory Module Boundary (decimal)
010000 1 4,096
020000 2 8,192
030000 3 12,288
040000 4 16,384
050000 5 20,480
060000 6 24,576
070000 7 28,672

. Place the 3-card BCL | object program in the card reader followed by the binary object

deck to be loaded (figure 2-1).
Ready the card reader

Start the computer

Note: the contents of the A register are not significant.

RE-USING BCL |

When the procedure outlined above is followed, BCL | resides in the upper 80 words of the
4K memory module in which it is relocated. The procedure for operation of the stored BCL
| routine is:

a.

Load 0x7660 into the P register, where x is 0 through 6 designating the 4K memory
module in which the loader resides.

Place the binary object deck in the card reader
Ready the card reader

Start the computer

Loader 2-6

BCL |

ERROR INDICATION

The only error condition indicated by BCL | is a checksum error. This error causes the
computer to halt with the P register set to 0x7767 and the instruction register set to
000525. For retry, re-feed the last card read. A repetition of the error suggests a faulty
assembly of the DAS 4A or DAS 8A.

Loader 2-7

Debugging Program (AID Il)

AlID i

TABLE OF CONTENTS

AID Il DEBUGGING PROGRAM

Loading AlID ..ot it n s e 2
Register and Memory Modification ... 2
Paper Tape HaNAliNGcccoviiiiiriimiiriirccciitiiier e reserseressresse s ssabensas st b te e e seesrasasesannntns 5
Magnetic Tape HanNdliNG........ccocoiiiiiiiiiiiiii i s e s e s snen s s snen 6
Error Message and Correction........cccvininiinineiiiiin s sasesevens 7

AID iii

AID Il DEBUGGING PROGRAM

The Varian 73/620 AID 1 Debugging Program is available with Varian 73 and 620
systems to provide on-line program checkout and correction. By entering AID || commands
on the Teletype keyboard, the operator can:’

a. Display and alter the contents of registers and any memory address or group (block) of
addresses.

b. Transfer (trap) into or out of selected blocks of memory and search for specific
conditions.

c. Load, monitor, and alter any program.

As an added feature, data can also be transferred (dumped) from memory to magnetic
tape, punched out on paper tape, or printed on the Teletype printer. Object programs can
thus be converted from one media to another, simply and directly.

AID 1l is loaded into computer memory using the binary load/dump program (BLD Il).
Once loaded, AID |l resides in memory addresses O0x6000 through 0x7377, where x
denotes the highest available 4K memory increment, as follows:

X = Memory Increment

4K

8K
12K
16K
20K
24K
28K
32K

NOODWN=O

The programmer is responsible for ensuring that a program to be debugged does not
interfere with those areas of memory containing BLD |l and AID II.

AID 1

AID I

Loading AID il
To toad AID Hl into memory:
a. Ensure that the bootstrap loader routine and BLD |l are correctly loaded.

b. Turn on the reader used to load BLD Il and position the AID Il program tape with leader
at the reading station.

c. Clear the B, X, and instruction registers, and load 000001 into the A register.

d. Load 0x7600 into the P register (i.e., the BLD |l entry address for loading program
tapes; refer to BLD Il section for the definition of x).

e. Place the computer in the run mode.

Loading is complete when the program outputs a carriage return (CR) and line feed (LF)
and rings the Teletype bell.

Programs to be debugged can be loaded either before or after AID Il loading.

Register and Memory Modification

With AID Il and the program to be debugged entered, the computer in run mode, and the
Teletype operating on-line, the Teletype keyboard entries summarized in table 1 produce
the indicated results.

The pseudoregisters referred to in the following descriptions denote software buffers that
duplicate the actual contents of the computers's operation registers. A command to
change register contents, in effect, changes the specified pseudoregister contents, which
are then transferred to the corresponding operation register.

Table 1. AID Il Register/Memory Modification Commands

Command Operation

A Displays (prints) the contents of the indicated pseudo-
B register on the Teletype printer. To change the contents,
X type the desired octal number and a period; otherwise,

type only a period.

Cx Displays (prints) the contents of memory address x on
the Teletype printer. To change the contents, type
the desired octal number, followed by a period to execute
the command or by a comma to request display of the next
sequential address contents. Otherwise, type only a
period. (continued)

AID 2

Command

Gx.

Ix,y,z,.

Sx,y,z,m.

Ty,x.

Ty,.

Vx.

Table 1. AID Il Register/Memory Modification Commands (continued)

‘ Operation

Loads the contents of the pseudoregisters into the re-
spective A, B, and X registers and starts program execu-
tion at address x.

Stores the value of z in all memory addresses starting
at address x and ending at address y.

Searches through memory starting at address x and end-
ing at address y for the value of z masked by the value
of m. A masked-search compares the value of z with
each bit corresponding to a one in the m value. Each
time the values compare, the address and value are
printed on the Teletype printer. If an N is typed

instead of a mask value, the program searches for the
negative value of z. Omission of m assumes an all-ones
mask.

Transfers execution of an operaiional program to address
y when the program reaches the instruction in address x.
This trapping feature permits interrupting a program se-
quence without internal patching. The program also dis-
plays the transfer address and the contents of the A,

B, and X pseudoregisters, respectively.

Continues trap from last break point.

Displays the contents of memory on the Teletype printer
beginning at address x, continuing until a RUBOUT char-
acter is typed. The display (dump) is printed in col-
umns: the left column is the octal base address, and
the contents of eight memory addresses, in ascending
order, appear in the next eight columns. The first
number in succeeding lines indicates the base address
for the next eight memory address contents.

AID 1l

AID 3

AID Il

Usage Examples

NOTE

In the following examples, cperator inputs are represented in bold type. Other
entries are program responses output to the Teletype printer.

Display the contents of a pseudoregister:

A 142340
B 001000
X 006003

Display and change the contents of a pseudoregister:
A 010454 10406.

B 006016 10406.
X 007413 10406.

Display the contents of memory address 002050:

C2050 = 102401

Display and change the contents of memory address 002050, then display the next two
addresses:

C€2050 = 102401 103402,
(002051) = 000067
(002052) = 177777

Display memory contents starting at address 006000:

V6000.

(006000) 010454 002000
(006010) 005145 004543
(006020) 005041 001000
(006030) 006217 001000

NOTE
When displaying memory contents, eight columns of data actually follow the
base address in the first column. Space limitations prohibit an actual

representation herein.

(Display terminated by entering RUBOUT.)

AID 4

AID NIl

Execute the program beginning at address 000500:
G500.
Store 0177777 in memory addresses 000200 through 000210:

1200,210,177777,.
1200,210,-1

Search memory addresses 000200 through 000240 for a content of 0106213 masked by
0177777 and display addresses that compare:

$200,240,106213,177777.

(000220) = 106213

(000235) = 106213
Trap to memory address 000204; start execution from address 000100; and display the
trap address and the A, B, and X register contents if the trap is reached. If not, reload the
original contents into both trap locations.

T204,100.
(000204) 142340 002000 010405

Paper Tape Handling

The Teletype paper-tape reader and punch can be controlied through AID II to read object
program tapes into, and punch program tapes from, computer memory.

With AID H entered, the computer in run mode, and the Teletype and its paper tape

system operational, the Teletype keyboard entries: summarized in table 2 produce the
indicated results.

Table 2. AID Il Paper Tape Commands
Command Operation

Dx,y,z,. Punches a program tape from the contents of address x
through address y, specifying execution address z.

Lm. Reads an object program paper tape into memory;
If the value of m is 1 and no check-sum errors are en-

countered, the program is executed.
(continued)

AID 5

AID 1l

Command

Table 2. AID Il Paper Tape Commands (continued)

Operation

If the value of m is O and no check-sum errors are en-
countered, the contents of the A, B, and X registers,
respectively, are output on the Teletype printer: A
register = 000000, B register = 000000, and X reg-
ister = execution address.

If m is = 1, the operation is the same as zero
except the object tape is verified but not loaded into
core.

If the program detects a check-sum error, the printout
is the same as m = 0 except B register is = to A
0177777 and X register is = to the address of last
record read correctly.

Note

AID 11 utilizes BLD Il to effect loading and punching.
For proper operation, BLD |l must reside in the same 4K
increment of memory as AID Il

Magnetic Tape Handling

Data can be manipulated from and to magnetic tape through AID Il commands.

With AID Il entered, the computer in run mode, the Teletype keyboard on-line, and the
selected magnetic tape unit operational, the Teletype keyboard entries summarized in

table 3 produce the indicated results.

In the following descriptions, x specifies the magnetic tape controller device address coded
as 0, 1, 2, and 3, where 0 = first system magnetic tape controller, 1 = second system
controller, etc. Note that each magnetic tape controller monitors up to four magnetic tape

units and that AID Il communicates only with the first unit on each controlier.

AID 6

AID 1

Table 3. AID Il Magnetic Tape Commands

Command Operation

Ex. Writes a file mark»'on the specified unit tape.

Fn,x. Skips to file n on the specified unit tape.

N. Skips to the next file on the previously designated unit
tape.

Px. Backspaces one record on the specified unit tape.

Rx Reads an object magnetic tape ir-mto memory from the spec-

ified magnetic tape unit. Terminating the command with
a period causes the program to be loaded and control re-
turned to AID Il. If the command is terminated with a
comma, the program is loaded and executed.

If AID Il outputs an uparrow (t) on the Teletype printer,
a file mark was read on the tape.

The output of an octal number indicates the address of a
parity error.

Wa,b,c,x. Writes an object magnetic tape from memory, starting at

address a and ending at address b with an execution ad-
dress of ¢, on the specified magnetic tape unit.

Error Message and Correction

If an AID 1f command is input incorrectly, AID Il terminates further input by outputting a
CR and LF and ringing the Teletype bell. An example of incorrect input is an attempt to
type a nonoctal number (i.e., a decimal 8 or 9). Note that octal numbers need not be
preceded by a zero. To recover, correctly retype the entry.

An input command can be aborted before termination by the backslash (\) character.

Magnetic and paper tape error discriptions are included in tables 2 and 3.

AID 7

Source Program Editor (EDIT)

EDIT i

TABLE OF CONTENTS

SOURCE PROGRAM EDITOR

Usage Example..
Error Messages

EDIT iii

SOURCE .PROGRAM EDITOR

Varian's 73/620 source program editor (EDIT) allows the computer programmer 1o create
and modify symbolic source programs on paper tape. Source programs can be loaded
directly into computer memory from an on-line Teletype keyboard, listed with identifying
line numbers on the Teletype printer, and modified using EDIT commands input from the
Teletype keyboard.

Source programs already formatted on paper tape can be loaded into memory, listed,
modified with EDIT generating a paper tape of the modified program ready for assembly
or compilation.

An added feature of EDIT is its ability to search through the source program and point to
a specific character or group of characters, as well as entire lines and groups of lines.

EDIT has two modes of operation: command and text. In command mode, EDIT accepts
inputs from the Teletype keyboard specifying the EDIT function and, optionally, line
numbers and searching parameters. In text mode, characters typed on the Teletype
keyboard or read from paper tape are stored in a text buffer for subsequent manipulation
and/or output. The text buffer represents available memory, i.e., those memory addresses
not occupied by the bootstrap loader routine, the binary load/dump program (BLD 1l), and
the EDIT program routines.

In text mode, EDIT runs without an operating system. Both MOS and VORTEX include
editing functions which are an alternative in their environments.

EDIT operates in the minimum configuration of a computer system (4K to 32K of memory)
and 33/35 ASR Teletype. However, EDIT determines the size of memory and uses of all
available memory for the editing buffer; only the binary loader at the top of memory is
served. Use of the high-speed paper tape reader and/or punch for input/output is
optional.

Loading EDIT

To load the EDIT program into memory:
a. Ensure that the bootstrap loader routine and BLD |l are correctly loaded.
b. Turn on the reader used to load BLD |1 and position the EDIT program tape with leader

at the reading station. (continued)

EDIT 1

source program editor

c. Clear the B, X, and instruction registers.
d. Load 000001 into the A register.

e. Load 0x7600 into the P register (i.e., the BLD 1l entry address for loading object
program tapes).

f. Place computer in the run mode.

Loading is complete when the EDIT program outputs, on the Teletype printer, the
message:

SOURCE PAPER TAPE PROGRAM

INPUT DEVICE (H OR T)
If the high-speed paper tape system is to be used for text input to EDIT, type H on the
Teletype keyboard, and type T if the Teletype is the input device. The program then
outputs

OUTPUT DEVICE (H OR T)
Respond as described above for defining the input device. EDIT dynamically adapts to use
the specified equipment and enters the command mode, outputting a carriage return (CR)
and line feed (LF), followed by an asterisk (*), to the Teletype printer.

Once entered, EDIT can be restarted at any time by clearing all registers and pressing
RUN or START.

NOTE

To change input and output devices from those initially specified, EDIT must be
reloaded using the procedures described above.

EDIT Commands

With EDIT loaded, the computer in run mode, and the Teletype operating on-line, the
Teletype keyboard entries summarized in table 1 produce the indicated results. Pressing
the RETURN key terminates and executes all EDIT commands.

EDIT 2

Command

nC

m,nC
nD

m,nD

XXXX

nF

XXXX

nG

nL

m,nL

source program editor

Table 1. EDIT COEnmands

Operation

~

Enter text mode a_nd add the following text input from
the Teletype keyboard to»the contents of the text buffer.

Delete the line specified by n, and replace it with new
text.

Delete and replace lines m through n.

Delete line n.

Delete lines m through n.

Search the entire contents of the text buffer for char-
acter string xxxx (maximum number of characters, 72).
Output sequential text lines until the string is detected
and the line on which it appears is output. If the

string is not found, return to command mode, and output
CR, LF, and *. ’

Go to line n and search it and succeeding lines for char-
acter string xxxx (see above).

List (output on the Teletype printer) the next sequential
line whose first character is alphabetic.

Go to line n and list the next line whose first char-
acter is alphabetic:

Insert the following text before the first line in the
text buffer.

Insert the following text before line n.
Delete the entire contents of the text buffer.

List the entire contents of the text buffer, assigning
sequential line numbers (decimal), on the Teletype printer.

List line n.

List lines m through n.
(continued)

EDIT 3

source program editor

Table 1. EDIT Commands (continued)

Command Operation

P

nP

m,nP

nS

m,nS

Punch the contents of the text buffer on paper tape using
the output device specified at edit loading time.

Punch line n.
Punch lines m through n.

Read (append) the following text input from the device
specified EDIT loading time to the contents of the text
buffer.

Search the contents of the text buffer for the character
input after RETURN. Output sequential text lines on the
Teletype printer until the line in which the character
appears is printed. If the character is not found, re-
turn to command mode, and output CR, LF, and *.

Go to line n and search for the character input after
RETURN (sce above).

Search lines m through n for the character input after
RETURN (see above).

Punch approximately 20 inches of leader/trailer on paper
tape using the output device specified at EDIT loading time.

NOTES

Line numbers when specified in EDIT commands are decimal integers
derived from the output of a listing command. The value of n must
be greater than that of m.

Execution of all EDIT commands begins when the RETURN key is
pressed.

Table 2 lists EDIT functions that are controlled by the use of Teletype special-purpose
keys. Note that their use differs in the two modes of operation.

EDIT 4

Teletype Key

RETURN

RUBOUT

CTRL and C
(simultaneously)

. (period)

/ (slash)

ESCAPE (ESC)*

CTRL and TAB
(simultaneously)

source program editor

Table 2. Teletype Key EDIT Functions

Command Mode

Execute the instruction

lllegal

Cancel the instructioL

Remain in instruction
mode and output an as-
terisk (*)

Current line number
(used alone or with

the minus sign and num-

ber, e.g.,, 1. -8

refers to the eighth
line preceding the cur-
rent line)

Number of the last line
in the text buffer

Used with . and /
to obtain their values

List the next line

illegal

Text Mode

Load the input line into
the text buffer

Delete one character to
the left and output

Delete all the line to the
left and output \

Return to instruction
mode and output an as-
terisk (*)

Legal text character

Legal text character

Legal text character

Ignored

Interpreted as seven
spaces on the Teletype
printer output

* On the Model 35 Teletype, simultaneously press SHIFT, CTRL, and K.

Usage Example

To illustrate the use of EDIT commands and Teletype key functions, assume we wish to
search line 20 for the character A and replace it with the character X. Note that the

EDIT 5

source program editor ‘ T

1

Teletype keys are shown enclosed in parentheses where they are applicable and that the
simultaneous pressing of two or more keys is illustrated as follows: (SHIFT)(CTRL)(K).

a. Toensure that EDIT is in command mode, type
(CTRL) (C)

b. EDIT responds with a CR, LF; and *. Type
20S(RETURN)

c. EDIT enters a delay loop and waits for input of the character for which it is to search.
Type

A(RETURN)

d. EDIT goes to line 20 and types it until an A is found:

XYZ LDA

then waits for input. Type

~X(RETURN)

Other editing options available for use in step d are:

a. Todelete the line to the left, type RUBOUT.
b. Todelete the line to the right, type RETURN.

c. Todelete the entire line, type the appropriate deletion command (table 1).

d. Todelete characters from right to ieft, type — once for each character.

Error Messages

EDIT checks all commands input to it for valid parameters and correct formatting. When
an error is detected, EDIT:

a. Types a question mark on the Teletype printer.
b. IssuesaCRand LF.
c. Types an asterisk.

d. Waits for a valid command.

EDIT 6

source program editor

The following conditions are recognized as errors:
a. Incorrect response to the I/0 device queries at Ioading'.time.
b. Anonexistent command code.
c. Commands terminated with any charact;r other than RETURN.
d. Astartingline number that is greater thanhan en‘ding line number.
e. Transposition of command parameters.
f. Specifying a line number whose value is greater than thelast line in the buffer.

g. Adeletion command that does not specify a line number.

h. Pressing the ESCAPE (ESC) key to list the next line in the buffer when the buffer is
empty. ’

When text being loaded into the text buffer exceeds the capacity of the buffer, EDIT
outputs the message

BUF FULL
and returns to command mode. To save the buffer contents and continue processing:
a. Typea punch (P) command (table 1) and RETURN.
b. After punching is complete, restart EDIT by cleari;\g all registers and pressing START.
The following options are also available:
a. List, modify, and punch the buffer contents before restarting EDIT.

b. Abort the current source program edit and continue processing with a new program.

EDIT 7

Mathematical Subroutines

Math i

TABLE OF CONTENTS

MATHEMATICAL SUBROUTINES

Fixed-Point Arithmetic ..o et e 1
Floating-Point Arithmeticc..cccviinniininnecnn, e e e e bt 2
Arithmetic Functions
Conversions
Execution Times

Math i

MATHEMATICAL SUBROUTINES

Iin support of Varian 73/620 computer applications programs that require mathematical
computations, Varian provides a comprehensive Mathematical Subroutine Library with
complete, easily accessible subroutines.

The mathematical subroutines are grouped into four major categories: fixed-point
arithmetic, floating-point arithmetic, arithmetic functions (both real and complex), and
number and character conversions. The subroutines are called by other programs and fill
the mathematical requirements of virtually all computer applications.

The mathematical subroutine library is described in detail in the Varian 620 Subroutine
Descriptions Manual (document number 98 A 9902 044).

Fixed-Point Arithmetic

The fixed-point arithmetic subroutines are for applications that demand a high-speed
arithmetic package. They include:

a. Addition, subtraction, multiplication, and aivision (single- and double-precision)

b. Two's complement (double-precision)

c. Absolute value

d. Transfer of sign
Fixed-point, single-precision multiplication (XMUL)‘ provides a software version of the
multiplication hardware. XMUL uses successive addition of the multiplicand with

appropriate left-shifts.

Fixed-point, single-precision division (XDIV) provides a software version of the division
hardware. XDIV uses an unsigned, nonrestoring division algorithm.

Math 1

mathematical subroutines

Fixed-point, double-precision addition (XDAD) adds the double-precision number whose
address is in the calling sequence to the double-precision number in the A and B registers.
The low-order halves of the numbers are added first, and, if there is a carry, it is added to
the high-order sum.

Fixed-point, double-precision subtraction (XDSU) subtracts the double-precision number
whose address is in the calling sequence from the double-precision number in the A and B
registers.

Fixed-point, double-precision multiplication (XDMU) multiplies the double-precision
number whose address is in the calling sequence by the double-precision number in the A
and B registers. XDMU uses double-precision addition of partial products.

Fixed-point, double-precision division (XDDI) divides the double-precision number in the A
and B registers by the double-precision number whose address is in the calling sequence.
XDDI returns the difference to the A and B registers.

Fixed-point, double-precision two's complement (XDCO) takes the two’s complement of
the double-precision number in the A and B registers. XDCO complements the number,
then tests the low-order bits for a carry.

Fixed-point, integer absolute value (IABS) takes the absolute value of the signed integer in
the A register. If the number is negative, IABS one's complements it, then corrects it to
two’s complement form.

Fixed-point, integer sign transfer (ISIG) applies the sign of the integer whose address is in
the calling sequence to the quantity in the A and B registers.

Floating-Point Arithmetic

The floating-point subroutines provide higher accuracy, more flexibility, and wider number
ranges than fixed-point arithmetic. Floating-point subroutines include:

a. Addition, subtraction, multiplication, and division
b. Absolute value

c. Sign copy

d. Mantissa separation

e. Normalization

Floating-point addition ($QK) algebraically adds the floating-point number in the A and B
registers to the floating-point number whose address is in the calling sequence.

Math 2

mathematical subroutines

Floating-point subtraction ($QL) computes the difference of the floating-point minuend in
the A and B registers and the floating-point subtrahend whose address is in the calling
sequence.

Floating-point multiplication ($QM) multiplies the floating-point number in the A and B
registers by the number whose address is in the calling sequence. $QM separates the
mantissa and calls XDMU to implement the arithmetic operation.

Floating-point division ($QN) divides the floating-point number in the A and B registers by
the number whose address is in the calling sequence. $QN separates the mantissa and
calls XDDI to implement the arithmetic operation.

Floating-point, real-number absolute value (ABS) takes the absolute value of the floating-
point, real quantity in the A and B registers. |f the number is negative, ABS one’s
complements it and returns the result in the A and B registers.

Sign copy (SIGN) sets the sign of the floating-point number in the A and B registers equal
to the sign of the quantity whose address is in the calling sequence.

The mantissa separation subroutines ($FMS, $FSM) separate the floating-point number in
the A and B registers and return the mantissa in the A and B registers and the
characteristic in the X register.

Normalization ($NML) normalizes the floating-point, double-precision number in the A and

B registers. $NML tests the sign, two’s complements the number using XDCO, and returns
the fixed-point result in the A and B registers and the sign flag in the X register.

Arithmetic Functions
Subroutines are provided for the following arithmetic functions:
a. Logarithm
b. Exponential function
c. Squareroot
d. Sine
e. Cosine
f. Arctangent
g. Polynomial

h. Exponentiation

Math 3

mathematical subroutines

-~

Fixed-point, single-precision logarithm (XLOG) computes the natural logarithm of the
quantity in the A register. XLOG uses a Chebychev polynomial of the fifth degree.

Floating-point, double-precision logarithm (ALOG) computes the natural logarithm of the

quantity whose address is in the calling sequence, returning the result in the A and B
registers.

Fixed-point, single-precision exponential function, positive argument (XEXP) computes
the exponential of the absolute value in the A register. It computes eX divided by 4, where
X is a positive fraction (between 0 and 1).

Fixed-point, single-precision exponential function, negative argument (XEXN) computes
the exponential of the absolute value in the A register. It computes €™ ,where x is greater
than zero and less than or equal to one.

“loating-point exponential function (EXP) computes the exponential of the floating-point
juantity whose address is in the calling sequence.

‘ixed-point, single-precision square root (XSQT) takes the unrounded square root of the
juantity in the A register (if it is nonnegative) and returns the result in the A register.

‘loating-point square root (SQRT) takes the square root of the floating-point number
vhose address is in the calling sequence.

‘ixed-point, single-precision sine (XSIN) computes the sine of the quantity in the A
egister, returning the result in the A register.

loating-point sine (SIN) computes the sine of the floating-point quantity whose address is
) the calling sequence.

ixed-point, single-precision cosine (XCOS) takes the cosine of the quantity in the A
agister and returns the result in the A register.

loating-point cosine (COS) takes the cosine of the floating-point quantity whose address
in the calling sequence.

xed-point, single-precision arctangent (XATN) computes the arctangent of the quantity
| the A register, returning the result in the A register.

oating-point arctangent (ATAN) computes the arctangent of the floating-point quantity
hose address is in the calling sequence.

xed-point, single-precision polynomial (POLY) supports the fixed-point, single-precision
athematical subroutines that require the evaluation of a polynomial in one variable of
1y finite degree. The polynomial is evaluated in Horner form.

xed-point, integer exponentiation ($HE).

ath 4

mathematical subroutines

Integer/floating-point exponentiation ($PE).
Floating-point exponentiation ($QE).
Conversions

The number and character conversion subroutines include:

a. Fixed-point/floating-point
b. Binary/decimal

¢. EBCDIC/Hollerith

d. EBCDIC/ASCII

e. Packed BCD/ASCII

Fixed-point, single-precision integer to floating-point conversion ($QS) converts the
signed integer in the A register to floating-point format.

Floating-pdint to fixed-point, single-precision integer conversion ($HS) converts the
floating-point number in the A and B registers to integer format.

Fixed-point, single-precision binary-to-decimal conversion (XBTD) converts the absolute
value of the integer in the A register to a four-digit decimal-coded integer in the B register.

Fixed-point, single-precision decimal-to-binary conversion (XDTB) converts the four-digit,
binary-coded-decimal integer in the A register to a pure binary integer in the B register.

EBCDIC-to-Hollerith conversion (SA01) converts and eight-bit EBCDIC character in the A
register to its equivalent 12-bit Hollerith code, returning the result in the A register.

Holierith-to-EBCDIC conversion (SB01) converts a 12-bit Hollerith code in the A register to
its equivalent eight-bit EBCDIC character, returning the result in the A register.

EBCDIC-to-ASCIl conversion (SCO1) converts an eight-bit EBCDIC character in the A
register to its equivalent eight-bit ASCIl code, returning the result in the A register. This
subroutine can be modified to produce seven-bit ASCII codes.

BCD-to-ASCll conversion (MT2A, n, s, e) converts a packed BCD character string of
length n and beginning in location s, into a packed ASCIl character string of length n
beginning in location e.

ASCli-to-BCD conversion (A2MT, n, s, e) converts a packed‘ ASCIl character string of

length n and beginning in location s into a packed BCD character string of length n
beginning in location e.

Math 5

mathematical subroutines

Execution Times

Execution times for various mathematical subroutines are contained in the following three
tables.

Double Precision Floating Point (45-bit mantissa, 8-bit exponent)

Operation Execution Time (in milliseconds)

620/£-100 620/L-100 620/L
ADD 0.615 0.768 1.477
SUB 0.618 0.762 1.486
MUL 20.8 26.0 50
DIV 22.5 28.2 54
SQRT 295 369 644
SIN 109 136 261
Ccos 109 136 261
LOG 461 564 1130
EXP 334 417 802
ATAN 371 463 888

*Double precision math library does not utilize hardware multiply/divide.

Hardware Multiply/Divide

Operation Execution Time (in microseconds)
620/£-100 620/L-100 620/L
ADD 15 2.0 3.6
SuUB 1.5 2.0 3.6
MUL 6.38 10.0 18.0
Div 6.38 10.0 to 14.0 18.0 to 25.0

Math 6

Operation

ADD
SUB
MUL
DIV
SQRT
SIN
COs
LOG
EXP
ATAN

mathematical subroutines

Single Precision Floating Point (22-bit mantisa, 8-bit exponent)

Execution Time (in millisgconds)

620/1-100

0.140
0.171
0.236
0.362
2.17

1.6

1.6

1.76

1.36

0.58 (min.)
3.25 (max.)

620/L-100

0.175
0.214
0.295

0.452

271

2.0

2.0

2.2

1.7

0.72 (min.)
4.06 (max.)

620/L

0.337
0.410
0.566
0.869

5.2

3.85

3.85

4.23

3.3

1.4 (min.)
7.8 (max.)

Math 7

FORTRAN IV

FORTRAN i

FORTRAN |V
TABLE OF CONTENTS

SECTION 1

INTRODUCTION

CHARACTER SET etiiiciiiiimeecieee s seteessssesrassessesesasesassessasssesssas snenssass sntsesseraessnsesasesesaassssane 1-2
LINE FORMAT .oieceieiiercere s ccesmree e rneeseessessssesssnessessesenneesansnsesasessssesssasnsesnsasssansnanans 1-3
Initial Lineccooueees e tereeetreereeeeresreiaeaaeteearaereras e ennrnnn—aa it re vt e raterearaeranernearan 1-5
Statement Number .. v 15
(07T o} 4T TV 1o o T 1T o - O UROPOR 1-6
COMMENT LINE .etiiiitiiirienner it rrensne e cner e setr s sssen e s s s e e e e s sese s sane s saneesasensaasenesenneesssnneren 1-6
[0 Yo T T o T SO UPPR 1-6
SECTION 2

BASIC ELEMENTS

DATA TYPES et reemr e te s s e rem e s smcaae e rekesae s e s aesneesnasenasernessannsnse sneesnnsrssessnrerassnensnn 2-1
DATA INAMES ittt trtsriese sttt e s st e s st rsne s resme e s e e en e s sn e e sann s aesnsansassbnessasnesesnsensans 2-1
CONSTANTS o cccereecer ettt ireet e e e e s e e rne e e srnaees saaes e sanesesanesessseesranaenasnseeaesbseensarenannssessnnres
INTEEEI CONSTANTS 1eucviereriitisiereseinstnnesseeresebsessibessssssssnsstasssessassnssrassnssensssssssnssssmnssssnmnsnes
L= LI 6T 113 € T N
Hollerith Constants ..
Logical CONSTaNtS ..cciveeiiiiiiiicii e s
VARIABLES ..eeeiisiieirtterecmin s srte s s st s eatesssn e s sease e s s smeasassnas s s steanmns saes den s eressnnsntenannseesannnn 2-7
IMPLCIE TYPES tvrveerirnnerrcnriiansneeissts i srerreste sttt s s e s s s e s r e s s s as e e abae s sanessennbneneennn 2-7
Y - 3O PRSP 2-8
SECTION 3

SPECIFICATION STATEMENTS

DIMENSION STATEMENT ceeiieeinrerisrrrcressssssasseessssessssssessssassrassessansnssssessessasesssnnsscssssnsnnee 31
COMMON STATEMENT ...oiiiicirrecimtraiacrisiseeiessneessnns sessassesssassssnessessessnssansssessessssassnasssnenns 3.2
EQUIVALENCE STATEMENT aeriuiiiiienciinrrineltortnnressanessesnsasssnnesssnmsss ensses snns s esssssanssensases 35
TYPE STATEMENT .cciteiiieeeiiorisine e cerest s enesseanssssnsecsnnaessssnnsessssasen sesnasassssnsssassanasasassnens 35

FORTRAN iii

SECTION 4
EXPRESSIONS AND ASSIGNMENTS

EXPRESSIONS |.....tiiviereeriiinseeraressesrasrastsensesseesaseesssssssessssssasssssssasensesssssessassusasssssneesnsares 4-1
ARITHMETIC ASSIGNMENT STATEMENT ...t rcre e s s e cs s e een e snans 4-4
LOGICAL ASSIGNMENT STATEMENTcccovvrerreereerrrnecssensnsesmecseessesssasssssmssessassssesnnesanen 4-6
LOGICAL EXPRESSIONScoececirrerreissserersessnsssnsssssmsaerssensssssnsssnssssass sesvassnsssssnsssseassasensen -
Relational Expressions....
LOGICAl OPEratorsccceveerienseeieessineesesseensessmsasesessnserssesssnessssasessesse seassasssnnsssssnnssessnsasasess 4-9

SECTION 5 :

CONTROL STATEMENTS

GO TO STATEMENTS c.eoiicrniritiiietrinser i scens s s s s ss e snne s smenasese e smnes sse e s sncmesssbbnesassnnnasenssan 5-1
Unconditional GO TO ...ueciccriiimnnit ettt st st et 5-1
Computed GO TO
ASSIGN and AssigNed GO TO ...iicciisrcrmmmeiemmanimssrssemsssneesemsn e asssssssessssassassenssenesses 5-2
ARITHMETIC [F STATEMENT ireiieverreieecesssnvsesensnressresssassasseesseessnsssseennssssnssessssanesanans 5-4
Logical IF Statementccccicereciiereiiicerrrssnnesereenraesssssessessnssssessssrssssssssrestssssesssessssansan 5.4
CALL STATEMENT otiiciimisiinnietimntiiisiniisscnsasesnssnsseesneassassnsnsessrsssssssssnnsssessssssessassss sanannens 5-6
RETURN STATEMENT ...oottmieieniuiienssnssnsssassesssissesassssneresssinessssssonsastassaasesssessesrssssassassasssnas 5-6
CONTINUE STATEMENT siuutvcrtnsiensssssemsseresesstnssanssstessnsssarssensassssarssessensessansassssenssnessssssns 5.7
PAUSE STATEMENT ooceiivtunsentinistissesasnsonsmssiesanssssssnsssaneessassesesessnssssanessssansesnenessesarsesanes 5.7
STOP STATEMENT eituctimmmiiiiruncinisctcirrnssisrrmessranassscnessssomnsseemnmserremssessansssssenssssnnasessensnessan 5-8
DO STATEMENT cevereeeresseasseenssarsnssssssessessssesncssseseassessesssssssssssssasssessonsesssssesosesstonmessssossesssmns 58
SECTION 6

INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT LISTS ciiciirsenssensceissennertsssenssmmsssnseseessssssssssssssmsssssssssssssessssassssesssssssssssssanes 6-1
SIMPLE LISTS ooeeieiiiiieticcneetrirscessesasas anssee s ae s sas s e s s ane s s aeaa s s s aeannnassassaassasssn sasenansessensennsns 6-1
DO-IMPLIED LISTSocciciininnmrniiniensssnressessessesesessmssnsssnsns rereseee e sen st e anaas 6-2

FORTRAN v

READ STATEMENTS ..ottt ssan s b sn s snes s st s s sansssnnasnns 6-2

WRITE STATEMENTS ..ociiiinininitiininneniisennnsssssssnnssnes isensssssnsisssesossesisns ansssanessesasians 6-3
REWIND STATEMENT ..., ... 6-4
BACKSPACE STATEMENT ...cconiriimiiiminmis it sssssssssn s snssssssss s ssansnssssnansnes 6-4
ENDFILE STATEMENT .ot ssiisasssesisnsssensssens nasassssessnnens 6-4
FORMAT STATEMENT ..ot senssnesssn s s s s sn s sas s s s s e s s s snssnnsnns 6-4
FIELD SPECIFICATIONSccoiivrimmmnssnssnnnnnsnnsnnsanssans et bbbt an 6-5
F CONVERSION ..ooeieieerinnsninisesisneinscniaaes sssssst s ssss s s sss s asnsasesssas sennesssassnsasans snssessnesne 6-6
L 1T 4o U 6-6
1T o1 6-7

L FORMAT CODE cererrrerrmimmmmmsmsisisinisisssssssssssassassssssssrssesissssnssnssasassnsssenasssnsssssssssesssnsnessiones 6-11
3 FORMAT CODE ...covvmerismmrerimseesisimermssseissresssssasssssnsassesass assesssssnsnsssssssasssnsesssnsssssesassnns 6-11
T SPECIFICATION (VORTEX ONIY) weortrcrirrisnccnasrmssrmsnisssseisisinsssssssssssesissesssessssssssnssssesses 6-13
SCALE FACTOR Pccrerverremremneresesesiammnnisse s ssasssssssesssssssnsssossnessssssanssosnsssnassasnassannasses 6-14

FORTRAN v

REPEAT SPECIFICATIONS ettt cnssr s senn st a s b 6-17

FORMAT CONTROL AND LINE INTERACTION .ottt 6-19
COMMA AS INPUT DELIMETER oottt e e s amsesaenas 6-20
SECTION 7

PROGRAMS AND SUBPROGRAMS

MAIN PROGRAMS ...ttt smitsssestssse e st sase st s s sr et s e sss e aesns g s e sassmsssssansansnnns 7-1
SUBPROGRAMS ... ittt st s s e s s e pa e sms sas s e st abe 72
LS 1 Tt (T OSSP PN 7-2
Subroutine SUDProgram ... e e ne 7-4
Block Data Subprogram ... e e 7-5

Data Initiatization Statementcocviinrn 7-6
STATEMENT FUNCTIONSoviiiimnecininiinsisnnes st ssnasss e sasassms sessstnes e sasaesssarsssessenessasenen 7-7
INTRINSIC FUNCTIONSiiiiinercciiieiir e srncin s tsensssse s sesn s as e essn s s aeas e sensssacansanas 7-8
BASIC EXTERNAL FUNCTIONSooiiiiireiiencreeinee oo sssnesesesanasse e s s e seseaasenssassnne 7-8
DUMMY ARGUMENTS ...c.oiviiiiniinrieiiesininse st sess s snsae e ss st snessssasssssmosonsanssssnss anavas 7-8
ADJUSTABLE DIMENSIONSoeiiiiiiinicrir et sreste e ese st sn e s een e s sesneseesenaes 79
EXTERNAL STATEMENT ..ottt s ssssn s s sssssassssnssssanans 7-11
COMBINING FORTRAN AND DAS MRcociiiicciiinrs s senc s s e 7-15
SECTION 8

STAND-ALONE OPERATING PROCEDURE

CONFIGURATION ...ttt sttt s s s e sttt snens s s stsme st nesonss shssanenans 81
MOS FUNCTIONS ..ottt s s srot s s et enese st sensnsenssessansssensassnsn 83

COMPILING A PROGRAM
170 Device Specifications
Compiler Input Records
Compiler Output Records .
NOLITICAION EFTOTS ettt te e e eme s e rana s e n e s e s s e ssnn e s bansanns -

FORTRAN vi

Terminating (Fatal) Errorsciiiircene e ccrccremre s s mnes s s snnsmnesnee s s enena s s mmmeresean e 8-7
Optional Listing
Maps .ccoicnninnnninnn

ASSEMBLING A PROGRAM ...t tvarerierscnenesnns nsssssassssessensesss s s scnsnescssesssnsasansssnssnnceners 8-8
LOADING A PROGRAM ...cvtiiiintimiininnitiinsnssestssssees s cssansssssnas e sesssassessssessnnessasssssenesan 8-12
Loading the Loader813
Error Messages «.woveivnee e e s 8-15
Loading the Support LiDraries «ieeeriicininnies s iesncse s sess e st ssassesaenes 8-16
PROGRAM EXECUTION AND ERROR MESSAGES icormrciiimmnrinrrmnecrenimnsiensaremsasnnnes 8-16
SECTION 9

MOS AND VORTEX OPERATING PROCEDURES

COMPILING WITH MOSoiiccriierniessiecsscsnremmsnesensessnnessssssesssssonsesssesssssssatssassssssassassinanne 9-1
COMPILING WITH VORTEX ..ovecesriciessanniseeeriessssesissessssssesessssssesssrassstassssssssessanasessanasssssssse 9-2
LOADING WITH MOSoiieriirctnnressrcsassesinasesssnnessssaassasne s sssscesssamssassnnsessssneessnssenssnes sannen 9-2

LOADING WITH VORTEX
Non-Resident Programs

ReSIAENt Programs ...c.cociiisenieisnimeeniiimmesssiiissasmsessiissmmmaisssesmmmmnessssseiismesansasnesa -

170 DEVICE CONTROL ..oisvminsnresnmrissniecinnisseessnssssesmssscisssssstensasssansesssssssssstassssssas snsnssesessans 93
COMPILER INPUT RECORDS WITH MOS.....coiivniirmnieniniinniscsinninsssssnssssssssnines 9-4
COMPILER INPUT RECORDS WITH VORTEXccoimminiiiscmniesessmnnssiinnnsisesiessessssnssssnnnns 9-4
COMPILER OUTPUT RECORDS WITH MOSccceviminmessnnnssninassnsasansnns 9-4
COMPILER OUTPUT RECORDS WITH VORTEX ...cccervunmreruinmimisnsnienssmsarssssssnsessisessessansons 94
ERROR MESSAGES.cocciieiiir it tisnnas st csss s sn s ssesans st sasnsesasanasssasssssassessanas 9-5
MAPS WITH MOS. ...ttt it sscs s ssse e st e sae s ssesess e anassssssanesnesans 95
MAPS WITH VORTEX ..oiiceivriniresicinsitnicsensssimssssssasiesiessssssesissssssmsessssssssssnssessassesssessssassens 9-5

FORTRAN vii

SECTION1 INTRODUCTION

Varian FORTRAN 1V is a programming system for the Varian 73 and 620 computers and is
comprised of a language, a library of subprograms, a compiler, and a run-time package
(program). FORTRAN IV can be compiled and run as a stand-alone program, under the
Master Operating System (MOS), or under the Varian Omnitask Real-Time Executive
(VORTEX).

The FORTRAN IV language is especially useful in writing programs for scientific an
engineering applications that involve mathematical computations. In fact, the name of the
language FORTRAN is derived from its primary use: FORmula TRANslating. Source
programs written in the FORTRAN language consist of a set of statements constructed
from the elements described in this publication. The FORTRAN compiler analyzes the
source program statements and transforms them into an object program that is suitable
for execution. In addition, when the FORTRAN compiler detects errors in the source
program, appropriate error messages are produced. The Varian FORTRAN IV language is
compatible with and encompasses the American National Standards Institute (ANSI)
FORTRAN (X3.9, 1966) including its mathematical subroutine provisions (except for the
vertical spacing character + which is not implemented and is described in section 7.1.3.4
of the ANSI specification). Any valid programs compiled and executed using basic
FORTRAN subset may also be compiled and executed by the FORTRAN IV compiler.
Equivalent results are ensured by:

a. Common data formats.
b. Common format code routines.
¢. Common mathematical subroutines.
d. Common libraries.
The following are salient features of the Varian 73/620 FORTRAN IV:

a. Scale Factor: The scale factor allows modification of data during conversion between
internal and external representation.

b. Variable Attribute Control: The attributes of variables and arrays can be explicitly
specified by statements or directives that:
1. Specify the number of words assigned to an item. _
2. Explicitly type a variable as integer, real, double precision, complex, or logical.
3. Specify the dimension of arrays.
4. Specify data initialization values for variables.

FORTRAN 1-1

introduction

e.

f.

8.

Implied DO loops on DATA statements. An array can be easily preset to specific values.
Adjustable Array Dimensions: The dimensions of an array in procedure subprograms
can be specified as variables. When the subprogram is called, the absolute array
dimensions are substituted.

Three Dimension Arrays: An array has one, two, or three dimensions.

Six Character Variable Names: The name of a variable contains up to six characters.

Function subprograms return results via the argument list.

The first and largest part of this manual is devoted to the constructs of the FORTRAN
language as implemented on Varian systems. This discussion logically proceeds from the
most basic language elements to the general FORTRAN program structures.

The first subject presented is the characters, literals (constants and strings), and
variables, the most basic units in FORTRAN. From these the programmer forms
expressions and statements directing computation, storage and program control and the
constructed related to input and output.

CHARACTER SET

A FORTRAN program unit is written using the following letters, digits, and special

characters:
Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZS$
Digits: 0123456789

Special Characters:

blank or space
= equals
+ plus
minus
asterisk
slash
left parenthesis
right parenthesis
, comma

decimal point

~ o~ N s]

With the exception of the specific uses indicated in the following sections of this manual, a
blank character has no meaning, and can be used freely by the programmer to improve
the readability of the FORTRAN program.

FORTRAN 1-2

introduction

The following special characters are classified as arithmetic operators and are significant
in the unambiguous statement of arithmetic expressions:

addition or positive value
subtraction or negative value
multiplication
division

* exponentiation

#~ # | +

The special characters equals (=), open parenthesis ((), close parenthesis ()), comma
(,), and decimal point (.), have specific application in the syntactical expression of the
FORTRAN statement. The following sections of this manual qualify their use in particular
statements and expressions.

In addition to the FORTRAN character set, the Varian 73/620 FORTRAN IV system
accepts the following characters in Hollerith fields:

guotation mark \ back slash
1 uparrow [left bracket
| exclamation 1 . right bracket
number sign < less than
% percent > greater than
& ampersand ? question mark
! apostrophe : colon
H semicolon

Any other characters selected from the ASCII character set can also be accepted by the
Varian 73/620 FORTRAN IV.

LINE FORMAT

A FORTRAN program consists of a series of statements divided into physical sections
called lines that must be coded to a precise grammatical format. FORTRAN statements
fall into two broad classes, executable and nonexecutable. Executable statements specify
program action; nonexecutable statements describe the use of the program, the
characteristics of the .operands, editing information, statement functions, or data
arrangement. The statements of a FORTRAN source program are normally written on a
standard FORTRAN coding form.

Figure 1-1 is a sample FORTRAN coding form. The coding form includes 80 columns of
information. Columns 73 through 80 are reserved for sequencing information, and have no
effect upon the generated object program. Columns 1 through 72 contain program
information in the format described below.

FORTRAN 1-3

T NVHLHO4

uuo4 BuIpo) NVYLNO4 djdwes °I-1 2.n314

FORTRAN Coding Form

[+ e Jour [rowm MATRIX MULTIPLICATION
: FORTRAN STATEMENT
< l1H1s] PROGRAM RlEADS |IN_THE ’ugg—eai;;,lpa TWd MATRIcES
cl FORMS THELR PRPDUCT| AND PRINTIS| THEN RESUILTS .. | |.
DIMENSION ACs,po), lB(20,li0), l(s, /al____.
L |READ] (2,13) ((JA(I J,L;_L/ Syl T=2,120),
R e (16 yID,. I=l, 20 ,-_Jjj, 22) | .
! DO 2 I=1,15 B R R
‘ o D¢ 2 ‘Tg",) 4 . b L — ~ P
. i C(I)J>=.O.-0 . I —
o ibe 2 k=/,ho B P SR
i CeI,py=c(1,T) A1, k)?f_B_(k,T) T R
L IMRITE (5,0) ((e(TyaD,. 147,800 T2 le)
{3 | |FORMAT (T7EI2.80) RS A S .
L L LFPRMAT (23H THESE ARE THE ANSWERS.|/ (£8/2.6))
i LiISTAPI 22 i
L L END ! ! !
HER} T H | H
P ol : ; :
ST ;
| L | 2 ; ; i
I : \ o
j J N . i

uononposut

introduction

Initial Line

The first line of each statement is called an initial line. A statement line consists of three
fields: statement number field, continuation flag, and statement field. A statement can
include an initial line and continuation lines. Statements can have any number of
continuation lines as required subject to the foHowing restrictions: DO statements must
have the first comma contained on an initial line; and the equals character (=) of a
replacement statement or a statement function definition must appear on the initial line.
An initial line can contain a statement label in columns 1 through 5. In this case, column
6 must contain a zero digit, blank, or space character; and columns 7 through 72 may
contain all or part of a statement except for the restrictions noted.

Example

Statement Number

Number permit statements to be referenced by other portions of a program. A statement
number is an integer value in the range 1 to 99999 (leading zeros or blanks are not
significant). The initial line of each statement may be given a unique number in columns
1 through 5. The same number cannot be given to more than one statement in a program
unit.

Example

1 “16{7 10 15 20 25 30 35

L. 50| A= S|"C+ D, |

€0, , | A= 5"C*D |
879 | |A=.5"C+D |

NN R BN B

AP SR SV B S

A d 14 I i Ao b L | 1 14 4 l i T l Jo 1L

FORTRAN 1-5

introduction

Continuation Line

Continuation lines are used when additional lines of coding are required to complete a
statement originating on an initial line. There can be any number of continuation lines
per statement with the exceptions previously noted for initial lines. In a continuation line,
columns 1 through 5 are blank. Column 6 contains any character other than a zero, blank,
or space. The continuation of the statement is in columns 7 through 72.

Example
1 5|6|7 10 15 20 25 30 36
b . | AA:AAIAAllllnlnllllllllltlllllL
L]
11 1 3 "1511 lnllln;l:l;nnnlinj;lnnlnlg;
e Bt o e b b L L
S L A IR BN B IR BN B

Comment Line

Any line with the character C or an asterisk (*) in column 1 is identified as a comment
line. Comments can appear anywhere in a program. All comment lines are ignored by a
FORTRAN compiler, except for display purposes. Comments are in columns 2 through 72.

Example
1 5|6]7 10 15 20 25 30 35
C . ||THIS 15 A COMMENTS LINE | = |

End Line

Any line containing the character blank in columns 1 through 6 and having only the
character string END in columns 7 through 72, preceded by, interspersed with, or followed
by blank characters, is recognized by the processor as an end line to inform the processor
that it has reached the physical end of the program.

Example

FORTRAN 1-6

SECTION 2 — BASIC ELEMENTS

Constants and variables are distinguished in FORTRAN to identify the nature and
characteristics of the values encountered in program execution. A constant is a quantity
whose value is explicitly stated. A variable is a numeric quantity referenced by name,
rather than by its explicit appearance in a program statement. During the execution of a
program, a variable can assume many different values.

DATA TYPES

The Varian 73/620 FORTRAN IV compiler recognizes the following types of data: integer,
real, double-precision, complex, logical, and Hollerith. Integer data are precise
representations of integral values. Real data are approximations of real numbers. Both
integer and real data may assume positive, negative, or zero values as follows (zero is
considered neither positive nor negative):

Range in Range in

16-Bit Computers 18-Bit Computers
Integer + 32,767 +131,071
Real Approx.10%38 Approx.10%38

DATA NAMES

FORTRAN data (variables, arrays, and array elements) are identified by names made up
of letter or digit strings of one to six characters, the first character of which is a letter.
(The character $ is processed exactly like a letter, but it is reserved for Varian system
names. To avoid conflict, therefore, it is advisable not to use the $ character in names.)
Data so identified are implicitly specified as being of type integer or real by the first
character, although this can be changed by an explicit specification using a TYPE
statement. In the absence of such an explicit specification, names beginning with the
letters |, J, K, L, M, and N denote integers and other names denote real values.

Example of implicit integer names are:
| 12A MZXF N5
Examples of implicit real-number names are:

A B2 F5M79 AAA

FORTRAN 2-1

basic elements

CONSTANTS

Constant data are identified explicitly by giving their actual values. Constants do not
change in value during program execution. They are specified as integer, real, double
precision, complex, Hollerith, or logical constants.

Integer Constants

An integer constant is from one to five decimal digits without a decimal point. it can be
preceded by a plus (+) or minus (-) sign. If the constant has no sign, it is interpreted as
a positive value.

Example
-217 -32767 + 00327 512

In memory, an integer is stored in the format (two’s complement):

16-Bit Computers

15 14 0
|s | Integer 1

18-Bit Computers

17 16 0
[s] Integer]

Real Constants

A real constant may consist of from one to seven digits, a decimal point character, and an
optional sign, plus or minus, or it may consist of a representation written in scientific
notation. If a real constant is written in the latter form it must be formed from of one to
seven decimal digits, an optional decimal point character, an optional sign character,
followed by the letter E followed by cne or two digits designating an exponent which may
have an optional sign. In all case when a leading sign character is omitted, it is assumed
to be positive. In FORTRAN notation the E portion of a real constant denotes that the
value being represented is the number preceding the E multiplied by 10 raised to the
power denoted by the integer constant following the E. The format of a real constant is:

£m.n
where, + denotes an optional sign character, and m and n represent strings of decimal

digits with a total combined characters not exceeding nine. Either m or n (but not both)
may be omitted. An alternative form for a real constant, similar to scientific notation is:

+ mpnEt d

FORTRAN 2-2

basic elements

where ¢ denotes an optional sign character, m and n represent strings of decimal digits, p
is an optional decimal point which may be omitted only if n is omitted, and d is a one- or
two-digit integer constant.

The following are equivalent real constants:

Examples
2E3 17. -25.620E- 1 0.0
2.E3 51E1 +.42 -479

+2E+03 -479E-3 .35E02
The following are invalid real constants:
-1234 No decimal point or E part; interpreted

as an integer literal

6.2E+99 Exceeds maximum size limit
6.2E- 99 Smaller than minimum
9.8E072 Three-digit exponent part
E5 Exponent part alone not allow; taken

as a variable name

1.2E3.4 Exponent part must be an integer
3E4ES5 More than one exponent part
5,432.1 No commas or other punctuation allowed

in real constant

In memory, a real number is stored in the format:

16-Bit Computers

15 14 7 6 0
S Characteristic | s’{Mantissa (high)
0 Mantissa (low)

18-Bit Computers

17 16 9 8 0
s Characteristic | s[Mantissa (high)
0 Mantissa (low)

FORTRAN 2-3

basic elements

The characteristic is eight bits long with a bias of 0200. If the mantissa is negative, the
entire first word is one's complemented. To represent zero, both words are set to zero. The
bit S’ indicates that the mantissa is normalized.

If a real constant is specified with more significant digits than the precision real data
allow, truncation occurs, and only the most significant digits within the range will be
represented. For a 16-bit computer, 6 + significant decimal digits are represented for a
single-precision real constant and 13+ significant decimal digits for a double-precision
real constant. For an 18-bit computer, the corresponding precisions are 7+ and 15+
significant decimal digits.

Double-Precision Constants

A double-precision constant in a source statement is specified exactly as an E-format real
constant except that the letter E is replaced by D.

Example
-3476.2D~ 4 28.D0 578D + 3

In memory, a double-precision number is stored in the format:

16-Bit Computers

15. 14 8 7 0
0 Zeros] Characteristic

s 18] Mantissa (high)

0 Mantissa (mid)

0 Mantissa (low)

18-Bit Computers

17 16 8 7 0
0 Zeros [Characteristic

s |s'] Mantissa (high)

0 Mantissa (mid)

0 - Mantissa (low)

The characteristic is eight bits long with a bias of 0200. If the mantissa is negative, the
high-order word of the mantissa is in one's complement form. All four words are zero for
the number zero. The bit §’ indicates that the mantissa is normalized.

Complex Constants

A complex constant is formed by an ordered pair of signed or unsigned real single-
precision constants separated by a comma and enclosed in parentheses.

FORTRAN 24

basic elements

The real constants in a complex constant can be positive, zero, or negative (if unsigned,
they are assumed to be positive). The first real constant in a complex constant represents
the real part of the complex number; the second represents the imaginary part of the
complex number.

Examples

Valid Complex Constants

(-5.0E + 03,.16E + 02) has the value -5000. + 16.01
(4.0E + 03,16E + 02) has the value 4000. + 16.01

(4.0E + 03,.16E + 02) has the value 4000. + 16.0i

(2.1,0.0) has the value 2.1 + 0.0i

where i equals the square root of — 1.

Invalid Complex Constants

(292704,1.697) the real part does not contain a
decimal point

(1.2E113.279.3) the real part contains an invalid
decimal exponent

(.003D4,.005D6) double-precision constants are
invalid

In memory, a complex number is stored in the format:

Real
Part
Imaginary
Part

Real
Part
Imaginary
Part

16-Bit Computers

15 14 7 6 0
S Characteristic [s'[Mantissa (high)
0 Mantissa (low)

s Characteristic _[s'{Mantissa (high)
0 Mantissa (low)

18-Bit Computers

17 16 9 8 0
S Characteristic |s'| Mantissa (high)

0 Mantissa (low)

S Characteristic |s'] Mantissa (high)

0 Mantissa (low)

Hollerith Constants

The general format of a Hollerith constant is:

n Hs

FORTRAN 2.5

basic elements

Where n is a positive non-zero constant denoting the number of characters in the string s
which contains legal characters (see input formats) including blank.

Any blank characters within the string will be considered part of the string, and should be
counted. This is the only case in which embedded blanks.are not ignored.

Examples

4HABCD
9HTEST CASE

In memory, a Hollerith constant is stored in the format:

16-Bit Computers
15 8 7 0

Character 1 Character 2

Character 3 Character 4

18-Bit Computers

17 16 15 8 7 0
[V) Character 1 Character 2
of 0 Character 3 Character 4

For Hollerith constants containing an odd number of characters, the last word contains
the last character of the constant in the left byte and a blank in the right byte as
character 2.

Logical Constants

A logical constant specifies the logical value of a variable. There are two logical values:
.TRUE. and .FALSE.. Each must be preceded and followed by a period as shown. The
logical constants .TRUE. and .FALSE. specify that the value of the logical variable with
which they are associated is true or faise, respectively.

In memory, a logical constant is stored in the format:

16-Bit Computers

15 0
l Logical Constant

18-Bit Computers
17 0
L Logical Constant I

where .FALSE. is stored as zero and .TRUE. is stored as minus one.

FORTRAN 2-6

basic elements

VARIABLES

A FORTRAN variable name is an identifier that consists of a string of one to six
alphanumeric characters (letters and digits) with the leading character being a letter
(including $). If the variable name is more than six characters long, then only the first six
characters are retained internally. Embedded blanks are permitted within variable names
but will be removed by the system.

Variables are classified into five basic types:
integer, real, double precision, complex, and logical.

A value represented by each of these types may be expressed by a literal of the same type.
For instance, the value represented by an integer variable may be expressed by an integer
constant. The value represented by each variable type must therefore comform to the
same standards governing that type of constant.

Implicit Types

Unless declared otherwise in an explicit type statement, the variable name is assigned one
of two types according to its initial letter. If the initial letter is |, J, K, L, M or N, the
variable is an implicit integer type. If the first character is any other letter (or a dollar
sign), the variable is an implicit real type.

The following are valid names of variables with their type implicitly assigned, (not
overridden by an explicit assignment is a TYPE statement):

Name Type

ABC123 Real

A$1 Real

INTEGER Integer truncated to INTEGE
6 characters

1$A23 Integer

NO SUM Integer, interpreted as NOSUM

The following are examples of invalid names of variables.

- 34SUM Cannot begin with a numberic
character
DATA-5 Cannot contain a character

other that letters, numbers
or a dollar sign.

; $6.98 Period cannot be embedded in
name

Note that double precision, complex and logical types are not assigned implicitly.

FORTRAN 2-7

basic elements

Arrays

FORTRAN variables can be grouped into two classes: simple variables that are identified
by a single name formed by the definition above, and array elements that are designated
by an array name followed by a subscript list enclosed in parentheses. An array is a
convenient way to reference variables.

An array is an ordered set such that each member or element can be referenced by the
array and subscripts can be used to denote the location in the dimensions.

The array name is formed by the same definition as a simple variable name.
The proper format of an array element is:
v (s)

Where v is a variable name and s is a subscript list which is a series of integer constants,
variables, and arithmetic expressions.

A variable names is an array name only if it appears in an appropriate specification
statement, such as a DIMENSION, TYPE or COMMON statement as a declarator. The
declarator is used to set the maximum number and size of the dimensions allowed and
must precede the first appearance of the array name in an executable or DATA statement.
In a program, an identifier can be used as a simple variable name or an array name, but
not both.

Whenever an array name appears in a FORTRAN program, the name must be immediately
followed by a subscript list, except when it appears in:

a. ACOMMON, DATA or type statement

b. Thelistofan |/0 statement

¢. The dummy argument list of a subprogram

d. Theactual argument list of a subprogram reference
Each element of an array may be referenced by means of appropriate subscripts. Each
entry in a subscript list is evaluated to obtain an integer value. Normally, the minimum

value that the subscript of an array element can have is one. The maximum is the value
specified in the array declarator.

FORTRAN 2-8

SECTION 3 — SPECIFICATION STATEMENTS

Every executable FORTRAN program consists of a sequence of specification statements.
These statements may be classified into executable and non-executable statements.

An executable statement causes an action at that point in the program when the program
is executed.

A non-executable statement supplies information to the compiler when it is processing the
FORTRAN statements. In general, these statements specify variable types, initial values,
storage allocation, and allow subprograms to be used as actual arguments.

Specification statements organize and classify data that will be referred to by other
statements in the FORTRAN program. Specification statements include:

DIMENSION Names and declares the size of an array.

COMMON Assigns variable and/or named arrays to common
storage areas.

EQUIVALENCE Assigns variables and named array to shared
storage areas.

TYPE Declares entities to be of type integer, real,
double precision, complex, or logical.

Specification statements must precede all other statements except TITLE, BLOCK DATA,
FUNCTION, SUBROUTINE, EXTERNAL and NAME.

DIMENSION STATEMENT

Form: DIMENSION V1(il), V2(i2),..., Vn(in), where each V(i), (called an array declarator),
is composed of a declarator name V (the name of the array), and a declarator subscript
(i). Each (i) is an unsigned integer constant, two unsigned integer constants separated by
a comma, or three unsigned integer constants separated by commas. Each constant must
have a value greater than zero.

A DIMENSION statement specifies that the declarator names listed are arrays in the
program unit. The number of dimensions and the maximum size of each dimension is
specified by the declarator subscript associated with each declarator name.

More than one DIMENSION statement can appear in a program.

FORTRAN 3-1

specification statements

An array element is referred to by the array name qualified by a subscript to identify the
desired element. If the value of this subscript is out of the range specified by the array
declarator, the derived computational results will be unpredictable.

Array elements are stored column-wise in computer memory from low to high address
storage. Therefore, one-dimension arrays are stored sequentially in the order A(1),
A(2),......, A(n), while two-dimension arrays are stored with the first (leftmost) dimension
varying most rapidly, i.e, A(1,1), A(2,1),......, A(m,1), A(1,2), A(2,2),......, A(m,n).
Example
DIMENSION A(5), 11(3,6), C(5,10), BIG(10,10,10)
This specification statement indicates that A is a real vector with five elements; 11 is an

integer matrix of size 3 X 6 = 18 elements; C is a real matrix of size 5 X 10 = 50
elements; and BIG is a real matrix of size 10 X 10 X 10 = 1000 elements.

COMMON STATEMENT
General Form

COMMON /x/a,b,.../r/¢.d,...
where:

a,b,....c,d,... are variable or array names or array
declarators.

/x/.../r/ represents optional common block names consisting
of one through six alphanumberic characters, the first of
which is alphabetic. These names must always be embedded
in slashes.

Although the COMMON statement may be used to provide dimension information,
adjustable dimensions may never be used. In the stand-alone and MOS systems, though
not in VORTEX, the minimum size of any common memory block is 4095 words.
Variables or arrays that appear in a calling program or subprogram may be made to share
the same storage locations with variables or arrays in other subprograms by use of the
COMMON statements. For example, if one program contains the statement:

COMMON TABLE

as its first COMMON statement, and a second program contains the statement:

COMMON TREE

FORTRAN 3-2

specification statements

as its first COMMON statement and the two programs are loaded together, the variable
names TABLE and TREE refer to the same storage location.

I1f the main program contains the statement:
COMMON A, B, C
and a subprogram contains the statement:
COMMON X, Y, Z

then A shares the same storage location as X, B shares the same storage location as Y,
and C shares the same storage location as Z.

Common entries appearing in COMMON statements are cumulative in the given order
throughout the program; that is, they are cumulative in the sequence in which they appear
in all COMMON statements. For example, consider the following two COMMON
statements:

COMMON A, B, C
COMMON G, H

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H
Redundant entries are not allowed. For example, the following statement is invalid:

COMMON A, B, C, A

Consider the following example:

Example
CALLING PROGRAM SUBPROGRAM SUBROUTINE
. MAPMY(...)
COMMON A, B, C, R(100) .
INTEGER R COMMON X, Y, Z, S(100)
. INTEGER S
CALL MAPMY (...) .

FORTRAN 3-3

specification statements

Explanation:

In the calling program, the statement COMMON A, B, C, R(100) would cause 206 storage
locations (two locations per variable) to be reserved in the COMMON area.

The statement COMMON X, Y, Z, S(100) would then cause the variables X, Y, Z, and
S(1)...S(100) to share the same storage spaces as A, B, C, and R(1)...R(100), respectively.

From the above example, it can be seen that COMMON statements serve an important
function: namely, as a medium to implicitly transmit data between the calling program
and the subprogram. That is, values for X, Y, Z, and S(1)...(100), because they occupy the
same storage locations as A, B, C, and R(1)...R(100), do not have to be transmitted in the
argument list of a CALL statement. Arguments passed through COMMON must follow the
same rules of presentation with regard to type, etc., as arguments passed in a list. (See
the section entitled SUBPROGRAMS.)

In the preceding example, the common storage area (common block) established is called
a blank common area. That is, no name was explicitly given to that area of storage (the
name COMMON is assigned internally to the blank common block and will appear on
maps). The variables that appeared in the COMMON statements were assigned locations
relative to the beginning of the blank common area. However, variables and arrays may be
placed in separate common areas. Each of these separate areas (or blocks) is given a
name consisting of one through six alphanumeric characters (the first of which is
alphabetic); those blocks which have the same name occupy the same storage space.

Those variables that are to be placed in Iabéled (or named) common are preceded by a
common block name enclosed in slashes. For example, the variables A, B, and C will be
placed in the labeled common area, HOLD, by the following statement:

COMMON/HOLD/A, B, C

In a COMMON statement, blank common can be distinguished from labeled common by
preceding the variables in blank common by two consecutive slashes or, if the variables
appear at the beginning of the common statement, by omitting any block name. For
example, in the following statement:

COMMON A, B, C/ITEMS/X, Y, Z//D, E, F

the variables A, B, C, D, E, and F will be placed in blank common in that order; the
variables X, Y, and Z will be placed in the COMMON area labeled ITEMS.

Blank and labeled common entries appearing in COMMON statements are cumulative
throughout the program. For example, consider the following two COMMON statements:

COMMON A, B, C/R/D, E/S/F
COMMON G, H/S/I, J/R/P//W

FORTRAN 3-4

specification statements

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W/R/D, E, P/S/F, |, J

COMMON is allocated from low to high memory addresses within a common block.

EQUIVALENCE STATEMENT

Form: EQUIVALENCE (kl), (k2),..., (kn), where each (ki) is a list of two or more
nondummy variables and/or array element names, separated by commas. Subscript
expressions of array element names must be nonzero, unsigned integer constants. An
element of a two or three dimension array can be referred to by using a single subscript,
giving the element position within the array (section 2.6.3).

The effect of the EQUIVALENCE statement is to cause the same area of memory to be
shared by two or more entities. Each element of the ki list is assigned the same (or a part
of the same) storage area.
More than one EQUIVALENCE statement is permitted in a program.
Example

DIMENSION A(5), 11(3,3), B1(3)

COMMON B, B1, B2

EQUIVALENCE (X, A(2), Y), (B, C2, F5), (11(5), B2)
The effect of an EQUIVALENCE statement upon COMMON assignments may be the
lengthening of COMMON. This lengthening is permitted only if it increases COMMON in
the same direction as additional COMMON elements would. Thus, in this example, the
equivalence (B1(1), A(3)) would have been invalid. it is also invalid to equate two elements

of the same array to each other. Within a given list (Ki), no more than one element can be
defined in a COMMON statement.

TYPE STATEMENT
General Form:
TYPE a, b,...., z
where:
TYPE is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL

a, b, ..., z represent variable or array names, array declarators, or function names

FORTRAN 3-5

specification statements

The TYPE statements declare the type INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
LOGICAL of a particular variable or array by its name, rather than by its initial character.
This differs from the other way of specifying the type of a variable or array (i.e., implicit
type specification). LOGICAL and INTEGER types are internally indistinguishable.

Example 1
INTEGER ITEM, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type INTEGER.

Example 2

. REAL ARRAY, HOLD, VALUE, ITEM (5, 5)
Explanation:

This statement declares that the variables ARRAY, HOLD, VALUE, and the array hamed
ITEM are of type REAL. In addition, it declares the size of the array ITEM. The variables
ARRAY, HOLD, and VALUE have two storage locations reserved for each; and the array
nramed ITEM has 50 storage locations reserved (two for each variable in the array).

Example 3:

DOUBLE PRECISION C, D, E
‘xplanation:

“his statement declares that the variables C, D, and E are of type DOUBLE PRECISION.
‘hus, C, D, and E each have four storage locations reserved, one for the exponent and
hree for the mantissa (section 2.5.2.1).

Example 4
COMPLEX C, D, E

xplanation:

his statement declares that the variables C, D, and E are of type COMPLEX. Thus C, D,
nd E each have four storage locations reserved (two for the real part, two for the
naginary part).

DRTRAN 3-6

SECTION 4 — EXPRESSIONS AND ASSIGNMENTS

EXPRESSIONS

Expressions specify the procedure by which a data value is obtained. An expression is any
valid constant, variable, function reference, or a combination of these separated by
appropriate operators and parentheses.

Expressions can be divided into two types: arithmetic and logical. If the type of literal
which can represent the resulting value is true or false, then the expression is logical. An
expression which yields a numeric quantity is an arithmetic expression.

The operators that can be used by a FORTRAN expression are listed in the table below
with a relative precedence assigned to each operator by the compiler (the lowest number
has the highest precedence).

RELATIVE
OPERATOR PRECEDENCE FUNCTION
o 1 exponentiation
unary — 2 change of sign
/ 3 division
* 3 multiplication
- 4 subtraction
+ 4 addition
.NE. 5 not equal to
.GE. 5 greater than or equal to
.GT. 5 greater than
.EQ. 5 equal to
.LE. 5 less than or equal to
LT, 5 less than
.NOT. 6 logical negation
.AND. 7 logical conjunction
.OR. 8 logical disjunction

The occurrence of these operators indicates that an arithmetic, logical, or, relational
action is to be performed.

FORTRAN 4-1

expressions and assignments

The arithmetic elements are described by the following statements:

PRIMARY An ARITHMETIC EXPRESSION enclosed in
parentheses, a constant, a variable
reference, an array element reference,
or function reference.

FACTOR A FACTOR is a PRIMARY or a construct of
the form: PRIMARY**PRIMARY
TERM A TERM is a FACTOR or one of the
forms:
TERM/FACTOR
TERM*TERM
SIGNED TERM A TERM immediately preceded by a + or
~sign.
SIMPLE A TERM or two SIMPLE ARITHMETIC
ARITHMETIC EXPRESSIONS separated by a + or - sign.
EXPRESSION
ARITHMETIC A SIMPLE ARITHMETIC EXPRESSION or a
EXPRESSION signed TERM or either of the preceding

immediately followed by a + or— sign and
a SIMPLE ARITHMETIC EXPRESSION.

A PRIMARY of any type may be exponentiated by an INTEGER PRIMARY and the resulting
factor is of the same type as that of the element being exponentiated. A REAL or DOUBLE-
PRECISION PRIMARY may be exponentiated by a REAL or DOUBLE-PRECISION PRIMARY.
The resultant FACTOR is of type REAL if both PRIMARIES are REAL, and otherwise of type
DOUBLE PRECISION. These are the only cases for which use of the exponentiation operator
is defined. Valid combinations for exponentiation are:

Base Expcnent
REAL REAL, INTEGER or DOUBLE PRECISION
INTEGER INTEGER (REAL and DOUBLE PRECISION

exponents are invalid)
DOUBLE PRECISION REAL, INTEGER or DOUBLE PRECISION
3y use of the arithmetic operators other than exponentiation, any admissible element may

e combined with another admissible element of the same type, and the resultant
slement is of the same type.

‘ORTRAN 4-2

expressions and assignments

Further, an admissible real element may be combined with an admissible double-precision
or complex element; the resultant element is of type DOUBLE PRECISION or COMPLEX,
respectively.

A part of an expression is evaluated only if it is necessary to establish the value of the
expression. The rules for formation of expressions imply the binding strength of operators.
The range of the subrtraction operator is the term that immediately succeeds it. The
evaluation may proceed according to any valid formation sequence. Use of an array
element name requires the evaluation of its subscript. The type of the expression in which
a function reference or subscript appears does not affect, nor is it affected by, the
evaluation of the actual arguments or subscript. An element whose value is not
mathematically defined cannot be evaluated.

The following rules represent the derivation of all permissible expressions:

A variable, constant, or function standing alone is an expression.

A(1)

JOBNO

217

17.26
SQRT(A + B)

If E is an expression whose first character is not an operator, then +E and—E are
expressions.

-AC1)
+JOBNO
-217

+17.26
-SQRT(A + B)

If E is an expression, then (E) is an expression meaning the quantity E taken as a unit.

“A)

~(+ JOBNO)
—(X+Y)
(A-SQRT(A +BY))

If E is an expression whose first character is not an operator, and F is an expression, then:
F +E, F-E, F*E, F/E and F**E are all expressions.

—(B(l,J) + SQRT(A + B(K,L)))

—(B(I+E,3*J +K)+A)
1.7E-2%*(X +5.0)

FORTRAN 4-3

expressions and assignments

The mode of expression is determined by the modes of its elements, which must be the
same with the following exceptions:

a. A REAL quantity can appear in an INTEGER expression only as an argument of a
function.
I + LFUNC(B)

b. An INTEGER quantity can appear in a REAL expression only as an argument of a
function, or as a subscript or an exponent.
AFUNC(1 +2)
A(lLJ+1)
B**N

The order of evaluation of expressions is established by the use of parentheses in the
statement. If parentheses are not indicated, the following conventions of mathematics
apply.

The hierarchy of operations, in order of precedence is: exponentiation, followed by
multiplication and division, followed by addition and subtraction.

Within the same hierarchy of operations, evaluation proceeds from left to right.

Examples
X+Y*Z is interpreted as X+(Y*Z)
WH*X/Y*Z is interpreted as ((W*X)/Y)*Z
B**2-4*A*C is interpreted as (B**2)- ((4.*A)*C)
X-Y-Z is interpreted as X=Y)y»Z
X/Y/Z is interpreted as (X/Y)/Z

ARITHMETIC ASSIGNMENT STATEMENT
General Form
a=b
where:
a is any subscripted or nonsubscripted variable.
b is any arithmetic expression.
This FORTRAN statement closely resembles a conventional algebraic equation; however,
‘he equal sign specifies replacement rather than equivalence. That is, the expression to

‘he right of the equal sign is evaluated, and the resulting value replaces the current value
»f the variable to the left of the equal sign.

‘ORTRAN 4-4

If ais TYPE

INTEGER
INTEGER
INTEGER
INTEGER

REAL
REAL
REAL
REAL

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

COMPLEX
COMPLEX
COMPLEX
COMPLEX
*Notes

P =

Assign =
Real assigh =
DP evaluate =

Fix =

Float =
DP float =

expressions and assignments

Rules for Assignment of b to a

and b is TYPE

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

prohibited combination

the assignment rule is*

Assign

Fix and Assign
Fix and Assign
P

Float and Assign

Assign

DP Evaluate and Real Assign
P

DP Float and Assign
DP Evaluate and Assign
Assign

P

P
P
P
Assign

transmit the resulting value without change
transmit as much precision of the most
significant part of the resulting value

as a REAL datum can contain

evaluate according to the most precise

rules, then DP float

truncate any fractional part and transform

to INTEGER
transform to REAL

transform to DOUBLE PRECISION retaining as
much precision as a DOUBLE PRECISION datum

can contain

Assume that the type of the following variables has been specified as:

Variable Names

,J, W
A B C D

E

Type

INTEGER variables
REAL variables
COMPLEX variable

FORTRAN 4-5

expressions and assignments

Then the following examples illustrate valid arithmetic statements using constants,
variables, and subscripted variables of different types:

Statement Description

A=B The value of A is replaced by the current
value of B.

W=B The value of B is truncated to an integer
value, and this value replaces the value
of W.

A=I The value of | is converted to a real value,

and this result replaces the value of A.

I=1+1 The value of | is replaced by the value of
I +1.
A=C*D The most significant part of the product

of C and D replaces the value of A.
E=(1.0,2.0) The value of the complex variable E is re-
placed by the complex constant (1.0, 2.0).

Note that the statement E =(A,B) where A and
B are real variables, is invalid.

LOGICAL ASSIGNMENT STATEMENT

General Form
a=b
where:
a is a subscripted or nonsubscripted variable.
b is any logical expression.
Variable Names Type

G, H LOGICAL variables

FORTRAN 4-6

expressions and assignments

Examples of logical assignment statements are:
Statement Description

G =.TRUE. The value of G is replaced by the logical
constant .TRUE..

H=_NOT.G If G is .TRUE., 'the value of H is replaced
by the logical constant .FALSE.. If G is
.FALSE., the value of H is replaced by the
logical constant .TRUE..

G=3..GTI The value of | is converted to a real value;
if the real constant 3. is greater than this
result, the logical constant .TRUE. replaces
value of G. If 3. is not greater than i, the
logical constant .FALSE. replaces the value
of G.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical constant, logical
variable, logical subscripted variable, or logical function reference, the value of which is
always a truth value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical and relational
operators. These expressions may be in one of the three following forms:

a. Relational operators combined with arithmetic expressions whose mode is INTEGER,
REAL, or DOUBLE PRECISION.

b. Logical operators combined with logical constants (TRUE. and .FALSE.), logical
variables, subscripted logical variables, or togical function references.

c. Logical operators. combined with either or both forms of the logical expressions
described in items a and b.

Item a is discussed in the following section, Relational Operators; items b and ¢ are
discussed in the section entitled Logical Operators.

Relational Expressions
A relational expression consists of two arithmetic expressions separated by a relational

operator and has the value .TRUE. or .FALSE. as the relation is true or false. Both
arithemtic expressions can be type INTEGER (or LOGICAL) or one may be type REAL or

FORTRAN 4.7

expressions and assignments

DOUBLE PRECISION and the other type REAL or DOUBLE PRECISION. If a real and a
double precision expression appear in a relational expression, the effect is the same as a
similar relational expression. This similar expression contains a double precision zero as
the right-hand arithmetic expression and the difference of the two original expressions (in
their original order) as the left. The relational operator is unchanged.

The six relational operators, each of which must be preceded and followed by a period, are
as follows:

Relational

Operator Definition

.GT. Greater than ¢)

.GE. Greater than or equal to &)
LT, Less than K)

LE. Less than or equal to (<)
.EQ. Equal to (=)

.NE. Not equal to =)

The relational operators express an arithmetic condition which can be either true or false.
Only arithmetic expressions whose mode is INTEGER, REAL, or DOUBLE PRECISION can be
combined by relational operators. For example, assuming the type of variable has been
specified as follows:

Variable Names Type

ROOT, E, Q REAL variables
Al F INTEGER variables
L LOGICAL variable
Cc COMPLEX variable

then, the following illustrates valid and invalid logical expressions using the relational
operators.

Example

Valid Logical Expressions Using Relational Operators:
(ROOT*Q).GT.E
ALT.
E%*2.7.EQ.(5.*ROOT +4.)
57.9.LE(4.7 +E)
.5.GE.9.*ROOT

E.EQ.27.3E + 05 (continued)

FORTRAN 4-8

expressions and assignments

Invalid Logical Expressions Using Relational Operators:

>.LT.ROOT

>.GE.(2.7,5.9E3)

LEQ.(A+F)

E**2.EQ97.1E9

.GT.9

Logical Operators

Complex quantities can never appear in logi-
cal expressions.

Complex quantities can never appear in logi-
cal expressions.

Logical quantities can never be compared to
real quantities by relational operators.

Missing period immediately after the rela-
tional operator.

Missing arithmetic expression before the re-
lational operator.

The three logical operators, each of which must be preceded and followed by a period, are
as follows: (A and B represent logical constants or variables, or expressions containing

relational operators).

Logical
Operator

.NOT.

.AND.

.OR.

Definition

NOT.A - if A is .TRUE., then
.NOT.A has the value .FALSE.;
if A is .FALSE., then .NOT.A
has the value .TRUE.

A.AND.B - if A and B are both
.TRUE., then A.AND.B has the
value .TRUE.; if either A or B
or both are .FALSE., then
A.AND.B has the value .FALSE.

A.OR.B - if either Aor B - or
both are .TRUE., then A.OR.B

has the value .TRUE.; if both

A and B are .FALSE., then A.OR.B
has the value .FALSE.

Two logical operators may appear in sequence only if the second one is the logical operator

.NOT..

FORTRAN 4-9

expressions and assignments

Only those expressions which, when evaluated, have the value .TRUE. or .FALSE. may be
combined with the logical operators to form logical expressions. For example, assume that
the type of variable has been specified as follows:

Variable Names Type

ROOT, E, Q REAL variables
Al F INTEGER variables
L, W LOGICAL variables
C COMPLEX variable

Then the following examples illustrate valid and invalid logical expressions using both
logical and relational operators.

Examples
Valid Logical Expressions:

(ROOT*Q.GT.E).AND.W

L.AND..NOT.(.GT.F)

(E+5.9E2.GT.2.*E).OR.L

.NOT.W.AND..NOT.L

L.AND..NOT.W.OR.I.GT.F
(E**F.GT.ROOT).AND..NOT.(I.EQ.A)

Invalid Logical Expressions

E.AND.L E is not a logical expression.

.OR.W .OR. must be preceded by a logical expression.

NOT.(A.GT.F) missing period before the logical operator
.NOT.

(C.EQ.I).AND.L a complex variable may never appear in a

logical expression.

L.AND..OR.W the logical operators .AND. and .OR. must
always be separated by a logical expression.

AND.L .AND. must be preceded by a logical expres-
sion.

FORTRAN 4-10

expressions and assignments

Order of Computations in Logical Expressions

Where parentheses are omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are performed is as follows:

Operation Hierarchy
Evaluation of Functions 1st (highest)
Exponentiation (**) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE. 5th
.NOT. 6th
.AND. 7th
.OR. 8th

For example, the expression:
(A.GT.D**B.AND..NOT.L.OR.N)

is effectively evaluated in the following order.

1. D**B Call the result W (exponentiation)

2. AGT.W Call the result X (relational operator)

3. .NOT.L Call the result Y (highest logical operator)

4. X.AND.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Use of Parentheses in Logical Expressions

Parentheses may be used in logical expressions to specify the order in which the
operations are to be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair of parentheses) is
effectively evaluated first. For example, the logical expression:

((1.GT.(B +C)).AND.L)

is effectively evaluated in the following order.

1. B+C Call the result X
2. .GT.X Call the result Y
3. Y.AND.L Final operation

The logical expression to which the logical operator .NOT. applies must be enclosed in
parentheses if it contains two or more quantities. For example, assume that the values of

FORTRAN 4-11

expressions and assignments

the logical variables, A and B, are .FALSE. and .TRUE., respectively. Then the following two
expressions are not equivalent:

.NOT.(A.OR.B)
.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is .TRUE., but .NOT. (.TRUE.)
implies .FALSE.. Therefore, the value of the first expression is .FALSE..

In the second expression, .NOT.A is evaluated first. The result is .TRUE.; but .TRUE.OR.B
implies .TRUE.. Therefore, the value of the second expression is .TRUE..

FORTRAN 4-12

SECTION5 — CONTROL STATEMENTS

Each statement in a FORTRAN program is executed in the order of its appearance in the
source program, unless this sequence is interrupted or modified by a control statement.
The control statements are: GO TO, IF, CALL, RETURN, CONTINUE, PAUSE, STOP, and DO.

GO TO STATEMENTS
GO TO statements transfer logical control from one section of a program to another.

FORTRAN includes three forms of the GO TO statement: unconditional, computed, and
assigned GO TO.

Unconditional GO TO
An unconditional GO TO is of the form: GO TO k, where k is a statement label reference.

Execution of this statement causes the statement identified by the label k to be executed
next in sequence.

Example
GO TO 72

.

71 V7 =HQ(5) + Y**L
72 N7 =HQ(4) + X**J
In this example, execution of the GO TO 72 statement causes statement number 71 and

any succeeding statements to be bypassed. Execution is resumed with statement number
72.

Computed GO TO

The computed GO TO statement is of the form: GO TO (k1, k2, ...,kn), i, where the k’s are
statement label references, and i is an integer variable reference.

Execution of this statement causes the statement identified by the statement label kj to
be executed next in sequence, where j is the value of i at execution time. Valid execution of

CADTHRAM £ 1

control statements

this statement is dependent upon the value of the integer variable such that 1 is less than
or equal to j, and j is less than or equal to n.

Example
GO TO (98, 405, 3), n
Execution of the statement in the example will cause control to be transferred to the

statement labeled 98, 405, or 3 if the value of the variable integer n is 1, 2, or 3,
respectively.

ASSIGN and Assigned GO TO
General Form

ASSIGN i TO m

GO TO. m, (X1, X2, X3,...,Xn)

where:
i is an executable statement number.
X1,X2,X3,....Xn are executable statement numbers.

m is a nonsubscripted integer variable that is assigned
one of the following statement numbers: X1, X2, X3,...Xn.

The assigned GO TO statement causes control to be transferred to the statement
numbered X1, X2, X3,..., or Xn, depending on whether the current assignment of m is X1,
X2, X3,..., or Xn, respectively. For example, in the following statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number 8, then the
statement numbered 8 is executed next. If the current assignment of N is statement
number 10, the statement numbered 10 is executed next. If N is assigned statement
number 25, statement 25 is executed next.

The current assignment of the integer variable m is determined by the last executed
ASSIGN statement. Only an ASSIGN statement may be used to initialize or change the
value of m. The value of m is not the integer statement number; ASSIGN 10 TO | is not the
same as | = 10.

FORTRAN 5.2

control statements

Example 1

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)
50 A=B+C

.

In the above example, statement 50 is executed immediately after statement 10.

Example 2

.

ASSIGN 10 TO ITEM

.

.

13 GO TO ITEM, (8, 12, 25, 50, 10)

10 B=C+D -

ASSIGN 25 TO ITEM
GO TO 13

25 C=E**2

.

In the above example, the first time statement 13 is executed, control is transferred to
statement 10. On the second execution of statement 13, control is transferred to
statement 25.

FORTRAN 5-3

control statements

ARITHMETIC IF STATEMENT

It is often necessary to alter the logical flow of a program on the basis of the resuits of an
arithmetic test. The IF statement is a conditional transfer that will execute this level of
control, and is of the form:

IF (e) ki1, k2, k3
The arithmetic IF is a three-way transfer. Execution of this statement causes the
expression (e) to be evaluated, following which the statement identified by the label k1,
k2, k3 is executed next in sequence, as the value of (e) is less than zero, equal to zero, or
greater than zero, respectively.

Example

IF (1) 10, 11, 12
10 V7 =HQ(5) + Y**L

GO TO 13
11 V7 =HQ(4) + X**J

GO 70 13
12 V7 =HQ(3) + X**L
13 NEXT STATEMENT
In this example, execution of IF (I) 10, 11, 12 causes one of the following actions: for a
negative value of |, statement number 10 is executed in sequence; for a zero value of |,
statement number 10 and any succeeding statements are bypassed and statement
number 11 is executed; for a positive nonzero value of |, statements 10 through 11 and

any statement following statement 11 are bypassed, and statement number 12 is
executed.

Logical IF Statement
General Form

IF (a)s
where:

a is any logical expression.

s is any executable statement except a DO statement
or another logical IF statement

FORTRAN 5-4

control statements

The logical IF statement is used to evaluate the logical expression (a) and to execute or
skip statement s depending on whether the value of the expression is .TRUE. or .FALSE.,
respectively.

Example

5 IF (A.LE.0.0) GO TO 25

10 C=D+E

15 IF (A.EQ.B) ANSWER = 2.0*A/C
20 F=G/H -

25 W=X**Z

In statement 5, if the value of the expression is .TRUE. (i.e., A is less than or equal to 0.0),
the statement GO TO 25 is executed next and control is passed to the statement
numbered 25. If the value of the expression is .FALSE. (i.e., A is greater than 0.0), the
statement GO TO 25 is ignored and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A is equal to B), the value of
ANSWER is replaced by the value of the expression (2.0*A/C), and statement 20 is
executed. If the value of the expression is .FALSE. (i.e., A is not equal to B), the value of
ANSWER remains unchanged and statement 20 is executed next.

Example

5 IF (P.OR.NOT.Q) A=B
10 C=B**2

Assume that P and Q are logical variables. In statement 5, if the value of the expression is
.TRUE., the value of A is replaced by the value of B and statement 10 is executed next. If
the value of the expression is .FALSE., statement A=B is skipped and statement 10 is
executed.

FORTRAN R R

control statements

CALL STATEMENT

The CALL statement causes a transfer of execution control to a subroutine-type
subprogram, and is of one of the forms: CALL s(al, a2,..., an) and CALL s, where s is the
name of a subroutine and the a's are actual arguments that will replace the dummy
arguments in the called subroutine. Arguments can be Hollerith constants, variable
names, array element names, array names, any other expression, or the name of an
external procedure. They must, however (except for Hollerith constants), be indicated in
order, number, and type with the corresponding dummy arguments of the subroutine.
External procedure names must be declared by an EXTERNAL statement.

Execution of the CALL statement transfers control to the designated subroutine. The
arguments declared in the statement line are associated with the dummy arguments that
are parameters of the executable statements of the subroutine. Control is then passed to
the first executable statement of the called subroutine. Control will be returned to the first
executable statement following the CALL statement upon execution of the RETURN
statement in the subroutine. Examples of calling sequences to subroutines are shown
below.

CALL TEST (Al)
CALL EXIT

The first example will transfer execution control to the subroutine labelled TEST and
include the parameters or arguments A and | in the subroutine. The second example will
cause execution control to be transferred to the subroutine labelled EXIT. Any arguments
required for execution of exit are self-contained in the logic of the subroutine.

RETURN STATEMENT

The execution of a RETURN statement results in the exit from a subprogram, and is
expressed in the form: RETURN. A RETURN statement defines the logical end of a
procedure subprogram and, therefore, may appear only in a subprogram. Execution of the
statement returns logical control to the current calling program unit. Each subprogram
must contain at least one RETURN statement.

In the case of a subroutine subprogram, control is returned to the first statement
immediately following the CALL statement that released control to the subroutine. In the
case of a function subprogram, control is returned (with the value of the function
available) to the statement that called the function subprogram.

FORTRAN 5-6

CONTINUE STATEMENT

Form: CONTINUE.

control statements

The CONTINUE statement results in no action in an execution sequence; therefore, the
statement has no effect upon the program. This statement serves as a program unit

reference point and is frequently used at the end of a DO loop.

PAUSE STATEMENT

10

11

12

13

Form: PAUSE n or PAUSE, where

designating the particular PAUSE.

Example

IF (1) 10, 11, 12
V7 =HQ(5) + Y**L

GO TO 13
V7 = HQ(4) + X**J

GO TO 13
V7 =HQ(3) + X**L

.

CONTINUE

n is octal digit string of from one to five digits

A PAUSE statement causes a temporary cessation of program execution and displays
PAUSE n on the console device (logical unit SO for MOS and VORTEX). The statement
permits operator intervention for setup or control functions, such as changing data tapes.
For stand-alone and MOS systems, the computer executes a halt instruction, delaying
further execution until the computer is placed in the run mode. For VORTEX, a SUSPND
call is executed that suspends program execution until a RESUME call is made (see
VORTEX Reference Manual, 98 A 9952 101) for descriptions of SUSPEND and RESUME
calls. Execution will resume at the first executable statement following the PAUSE

statement.

Example

PAUSE 01

When executed under VORTEX, the task name precedes the PAUSE statement.

FORTRAN 5.7

control statements

STOP STATEMENT

Form: STOP n or STOP, where n is an octal digit string of from one to five digits‘
designating the particular STOP.

A STOP statement causes termination of program execution and displays STOP n (see’
section 8 for display format). The program then terminates.

MOS and VORTEX terminations occurs with exit calls. In the stand-alone system,
terminations occur with the execution of a hardware halt.

Example
STOP 0721

When executed under VORTEX, the task name precedes the STOP statement.

DO STATEMENT

The DO statement controls repetitive execution of a group of statements. The number of
repetitions depends on the value of a control variable. The statement assumes one of the
forms: DOni = ml, m2, m3 and DO ni = ml, m2, where n is the statement label of an
executable statement. This statement, called the terminal statement of the associated DO
must physically follow and be in the same program unit as the DO statement. The
terminal statement may not be a GO TO of any form, arithmetic IF, RETURN, STOP,
PAUSE, or another DO statement, nor a logical IF statement containing one of these
forms.

Symbol i is an integer variable name, identified as the control variable.

Symbol m1, identified as the initial parameter, m2, as the terminal parameter, and m3, as
the incrementation parameter are each either an integer constant or integer variable
reference. If the second form of the DO statement is used, a value of 1 is implied for the
incrementation parameter. When the DO statement is executed, the values of ml, m2,
and m3 must be greater than zero.

Associated with each DO statement is a range that is defined to be those executable
statements from and including the first executable statement following the DO, to and
including the terminal statement defined by the DO. A special situation, called nesting,
occurs when the range of a DO contains another DO statement. In this case, the range of
the contained DO must be a subset of the range of the containing DO. There is no limit to
the nesting of DO statements.

FORTRAN 5-8

control statements

The control variable is assigned the value represented by the initial parameter. This value
must be less than or equal to the value represented by the terminal parameter.

The range of the DO is executed.

If control reaches the terminal statement after execution of the terminal statement, the
control variable of the most recently executed DO statement associated with the terminal
statement is incremented by the value represented by the associated incrementation
parameter.

If the value of the control variable is greater than the value represented by its associated
terminal parameter, the DO is said to be satisfied, and the control variable becomes
undefined.

If there were one or more other DO statements referring to the terminal statements in
question, the control variable of the next most recently executed DO statement is
incremented by the value represented by the associated incrementation parameter until
all DO statements referring to the particular termination statement are satisfied, at which
time the first executable statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an arithmetic
IF statement, that is other than by satisfying the DO, the control variable of the DO is
defined and is equal to the most recent attained value.

A GO TO or arithmetic IF statement may not cause control to pass into the range of a DO
from outside its range. When a procedure reference occurs in the range of a DO, the
actions of that procedure are considered to be temporarily within that range, i.e., during
the execution of that reference.

The control variable, initial, terminal, and incrementation parameters of a DO may not be
redefined during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO statement, the label of that
terminal statement may not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with that terminal statement.

Example
DO 607 K1 =2, ID, 3

The foregoing statement would cause K1, the control variable, to be set to the value of the
initial parameter, 2. Execution would proceed at the statement immediately following,
down to and including the statement identified by the label 607. After each execution of
the loop, K1 is incremented by the incrementation parameter, 3, and evaluated in relation
to the current value of the terminal parameter, ID. If the current value of K1=1ID,
execution control is transferred to the statement following that identified by the label 607;
otherwise, the DO cycle is repeated.

FORTRAN 5-9

control statements

Example illustrating DO nesting:

WRITE (MX.8)

L=0
DO 150 J=1K
DO 140 1=1M
L=L+1

140 D(l)=V(L)
150 WRITE (MX,9)J,(D(I),! = 1,M)
CALL LOAD (M,K,R,V)
C PRINT FACTOR MATRIX
WRITE (MX,10)K
DO 180 I=1,M
DO 170 J=1K
L=M*J-1)+1
170 D) =V(L)
180 WRITE (MX,11)1,(D(J),J =1,K)
IF (K-1) 185, 185, 188
185 WRITE (MX,19)K
GO TO 100
188 CALL VARMX (M,K,V,NC,TV,B,T,D)

FORTRAN 5-10

SECTION6 INPUT/OUTPUT STATEMENTS

Input statements provide a program with the means of receiving information from external
sources. Output statements allow the transmission of program data to external sources.
These external sources may be devices such as magnetic tape and paper tape handlers,
typewriters, and punch card processors.

There are two types of input/output statements.

READ and WRITE statements
AUXILIARY Input/Output statements

The first statement type causes the transfer of records of sequential files to and from the
program. These data may be formatted information consisting of strings of characters or
unformatted information consisting of binary word values in the form in which they
normally appear in storage. The second statement type consists of the BACKSPACE and
REWIND statements, which provide for positioning of devices and the ENDFILE statement,
which provides for writing an end of file indicator.

Input/output statements reference input/output units, formatted information, and format
specifications. An input/output unit is identified by a FORTRAN unit number u that can
be an integer constant or a variable name (or array element) referencing an integer
constant. All input/output statements for stand-alone and MOS FORTRAN programs must
contain explicit references to unit numbers at compiling time (e.g., REWIND 7, READ (2,
6)). Under VORTEX, input/output statements may contain implied references to unit
numbers at compiling time (e.g., WRITE (J, 15), or REWIND M5).

The format specification f is defined by either a FORMAT statement having the statement
label f, or an array name. If f is a FORMAT statement label, the statement must appear in
the same program as the input/output statement.

INPUT/OUTPUT LISTS

The input list specifies the names of variables and array elements to which input values
are assigned. The output list specifies the names of variables and array elements whose
values are to be transmitted. Input and output lists are of the same form.

SIMPLE LISTS

Simple lists have the form: ml, m2, m3...., mn, where mi is the name of a variable or
array element. Commas separate each name in the list. The period signifies possible
additional list items. List elements can be enclosed in parentheses.

FORTRAN 6-1

input/output statements

Example
Input Lists Output Lists
A B
C(26,L) 1(10,10)
R, K, D, (I, J) S, (R, K), F(1,25)

An array variable in a list that is not subscripted is considered equivalent to the listing of
each successive element of the array. If B is an array, list B is equivalent to B (1, 1), B (2,
1), B(3, 1),...., B (1, 2), B (2, 2),...., B (j, k), where j and k are the subscript limits of B.

DO-IMPLIED LISTS

A DO-implied list is a simple list followed by a comma character and an expression of the
form:i = ml,m2, m3ori = ml, m2.

The elements i, m1, m2, and m3 have the same meaning as defined for the DO statement.
The DO implication applies to all simple list items enclosed in parentheses with the
implication. For input lists, i, ml, m2, and m3 may appear within this range only as
subscripts.

Examples
DO-Implied Lists:
XM 1 =1,4)
QWU RW J =12
GK),K =173
(A D1 =35),)=12)
XK,K=12),LRU),J =305

Equivalent Simple Lists:
X (1) X (2), X@3), X4
Q1) R (1) Q)R (®2
G(@1)G@, G@
A@G 1),A@4 1),AB 1
A3 2),A @4 2),A(G5 2
X (1), X (@), 1, R(@3),R@4),R(5)

READ STATEMENTS

These statements are used to obtain data values from an external source. The data values
are input in either formatted or unformatted mode. The form of a formatted READ
statement is:

READ (u,f) k.

FORTRAN 6-2

input/output statements

The verb READ and the parentheses must appear in this form.

Execution of this statement causes information to be transmitted from the external source
whose FORTRAN unit number is defined by u. These data are scanned and converted as
specified by the format specification, f, and the resulting values are assigned to the
variable names defined in the list, k.

The form of an unformatted READ statement is: READ (u) k.

The verb READ and the parentheses must appear in this form.

This statement causes data to be input in binary form from the unit defined by u. The
values are assigned to the variable names defined in the list, k.

Examples

READ (1,44) A, B, C

READ (2) R, S

READ (N, 12) A, R (D, | = 1, 10)

READ (L) S, (T (J),J =1, N)
All information appearing on external sources is divided into records. Each time a READ
statement is executed, a new record is processed. The number of records input by a single
READ statement is determined by the list and format specification. If only part of a record
is input the remainder of the record is lost as the next READ processes the next record.
Records are read sequentially until the list is exhausted. Only enough values are read to
fill the list.
The list, k, in an unformatted READ statement may be left blank to skip a record.

Formatted and unformatted records are described in sections 8 and 9.

WRITE STATEMENTS

WRITE statements are used to transfer program data to external devices. These data may
be formatted or unformatted. The form of a formatted WRITE statement is: WRITE (u, f) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes records to be written on the device referenced by u.
The contents of the records are the values taken sequentially from the list, k, converted
according to the format specification, f.

The form of an unformatted WRITE statement is:

WRITE (u) k.

FORTRAN 6-3

input/output statements

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes binary information from the list, k, to be written in
records on the unit defined by u.

Examples

WRITE (1, 4) A, B, C
WRITE (7) R, S, T

WRITE (K, 12) X, (Y (J), J
WRITE (N) W, Z, (F (K), K

1, M), |
1, 5)

Several records may be written with a single WRITE statement. The number of records is
determined by the list and format specifications. Successive records are written until the
data are exhausted. If the data do not fill a record, the record is filled with blanks.

REWIND STATEMENT
This statement is of the form:
REWIND u.

Execution of this statement causes the physical unit defined by u to be rewound.

BACKSPACE‘, STATEMENT
This statement has the form:
BACKSPACE u.

The BACKSPACE statement causes the physical unit defined by u to be backspaced one
record.

ENDFILE STATEMENT
This statement has the form:
ENDFILE u.

When this statement is executed, an end of file indicator is written on the physical unit
defined by u.

FORMAT STATEMENTS

FORMAT statements, with input/output operations, specify conversion and editing of
information between program storage and external representation. FORMAT statements

FORTRAN 6-4

input/output statements

are nonexecutable and must have a statement label to be referenced by input/output
statements. Conversion performed according to a FORMAT statement during output is in
general the reverse of conversion performed during an input operation.
A FORMAT statement is expressed as:

n FORMAT (f1, 12, 13, ..., fn)
where

n is the statement label and the fn are field specifications

The noun FORMAT and the parentheses must appear in this form.

When formatted records are output to a printer, the first character of the record is not
printed but is processed as a printer vertical spacing control character as follows:

Character Vertical Spacing

blank One line

0 Two lines

1 To first line of next page

The ANSI no-advance character + is not implemented for the MOS and stand-alone
systems. Refer to the VORTEX Reference Manual for the devices that process the +
character.

FIELD SPECIFICATIONS
FIELD specifications describe the type of conversion and editing to be performed on each
variable appearing in the input/output list. FIELD specifications can be in any of the
following forms:

rAw rfwd rEwd rDwd riw nHs 's’ nX rlw rGwd

where:

a. Thecharacters A, D, E, F, G, L, and | indicate the manner of conversion for variables in
the list.

b. The characters H, 's’, and X represent characters to be input/output directly from the
format ('s’ is used with VORTEX only).

c. Thecharacter / represents the end of a record.
d. wand n are nonzero integer constants defining the width of the field (including digits,

decimal points, and algebraic signs) in the external character string.
(continued)

FORTRAN 6-5

input/output statements

e. d is an integer specifying the number of fractional digits appearing in the external
string.

f. ris an optional, nonzero integer indicating that the specification is to be repeated r
times.

g. sisastring of acceptable FORTRAN characters.
h. The T specification relocates the current position in the external record (VORTEX only).

i. Yisanon-zero integer constant specifying the character position in the external record.

F CONVERSION

General form:
rFw.d

Only real data may be processed by this form of conversion.

Output
The field is right-justified with as many leading blanks as necessary to fill w. Negative

values are preceded by a minus sign. Internal values are converted to fixed-point decimal
numbers and rounded to d decimal places.

For a field specification of F10.4:

368.4 is converted to 368.4000

12.0 is converted to 12.0000
-17.90767 is converted to -17.9077
-37.5E-2 is converted to .3750

If a value requires more positions than allowed by w, the most significant digits, including
sign if negative, are output. The error indication is designated by an asterisk in the least
significant character position.

For a field specification of F6.4:

4739.76 is converted to 4740%
-12.463 is converted to -12.5*

FORTRAN 6-6

input/output statements

Input

Input strings are decimal numbers of length w with d characters in the fractional portion.
Blanks are treated as zeros. If a decimal point is present in a value, the fractional portion
of the value is explicitly defined by that decimal point character.

For a field specification F8.3:

35 is converted to 0.035
964372 is converted to 964.372
0.53821 is converted to 0.53821
-16.402 is converted to - -16.402
-12 is converted to -0.012
47-4 is converted to 0.0047

E CONVERSION
General form:
rEw.d

Only real data may be processed by this form of conversion.

Output

Internal values are converted to decimal values of the forms:
.ddd...dE + ee and .ddd...E-ee

where:
ddd...d represents d digits, and

ee is a decimal exponent.

The leading decimal point and E characters are present exactly as shown. Internal values
are rounded to d digits, and negative values are preceded by a minus sign. The external
field is right-justified and preceded by blanks to fill the width, w. This field width includes
the exponent digits, the sign of the exponent (minus or space), the letter E, the magnitude
digits, the decimal point, and the sign of the value (minus or space). This means that the
field width should correspond to the relation: w= d + 6.

If wis less than (d + 6), the format is in error.

FORTRAN 6-7

input/output statements

For a field specification of E12.5:

76.573 is converted to .76573E 02
58796.341 is converted to .58796E 05
-369.7583 is converted to -.36976E 03
0.006873 is converted to .68730E- 02
0.2 is converted to) .20000E 00

- 0.0000054 is converted to - .5400E-05

Input

Each external value is of field width w with d characters in the fractional part of the value.
The value is right-justified with all blanks counting as zeros. A minus sign may precede the
value of the exponent. A decimal point placed in the fractional part takes precedence over
the d specification. The character E may be present to separate the value and the
exponent.

For a field specification of E10.3:

123E3 is converted to 123.0
12874E2 is converted to 1287.4
-563E- 02 is converted to -0.00563
398E00 is converted to 0.398
5387601 is converted to 538.76
5455~ 01 is converted to 0.5455
-6.7563E05 is converted to ~675630.0

D CONVERSION

The D conversion is used for the input/output of double-precision numbers. It is used
exactly as the E conversion except the letter E is replaced by D.

| CONVERSION
General form:
riw

Only integer data may be processed by this form of conversion.

Output

Internal values are converted to integer constants. Negative values are preceded by a
minus sign. Each field is right-justified and filled with leading blanks.

FORTRAN 6-8

input/output statements

For a field specification of 16:

281 is converted to 281
- 3567 is converted to - 3567

If the data require more character positions than allowed by the width, w, only the most
significant w positions are output.

For a field specification of 13:

281 is converted to 3*
-6374 is converted to -6*

Input

External input values are right-justified with the width, w. Blanks are counted as zeros.
Input values must be integer values. A preceding minus sign may be placed on a value.

For a field specification of 14:

120 is ‘converted to 120
-144 is converted to -144

12 is converted to 102

-3 is converted to -3

A CONVERSION

An A format conversion is used in conjunction with a READ or WRITE statement for the
input/output of alphanumeric information to or from a REAL, INTEGER, or LOGICAL list
element. The general form is rAw, where r and w are unsigned integer constants. If r is
one, it can be omitted.

On input, rAw will be interpreted to mean that the next r successive fields of w characters
are each to be stored in the asscoiated REAL list elements. If w is greater than 9, where 9
is the number of characters a single list element can contain, only the 9 right-most
characters will be significant. If w is 9 or less, the characters will be left-justified, and the
word(s) filled with blanks, if necessary.

On output, rAw will be interpreted to mean that the next r successive fields of w
characters are each to be the result of alphanumeric transmission from the specified list
elements. If w exceeds g, only g characters of output will be transmitted, preceded by w -
g blanks. If wis g or less, the w left-most characters of the specified storage element will
be transmitted.

FORTRAN 6-9

input/output statements

H CONVERSION

In FORTRAN, Hollerith information consists of the legal FORTRAN character set plus the
additional characters

o#® o 0 % & 1 LN 1 < >

Information input from the typewriter or paper tape is converted to an internal code used
by FORTRAN. When this information is output, the internal codes are converted to the
appropriate typewriter or paper tape codes.

General form:
nHs

Or:
's’ (VORTEX only)

Output

The number of characters, n; in the string, s; should contain exactly the number of
characters specified so that characters from other fields are not taken as part of the
string.

Blanks are counted as characters in the string. The quote character (°) can be output
using a pair of quotes in the 's’ format description.

Examples
Specification External Output
1HR R
8HbSTRINGb bSTRINGb
11HX(1,3)=12.0 X(1,3)=12.0
'bA ="' bA =
'bs=" A" bs ="'A’

b indicates a blank space

Input

The w characters in the string, s, are replaced by the next w characters from the input
record. The result is a new string in the field specification. Each quote in a pair is
overlayed by an input character in the 's’ format.

Example
Specification Input String Resultant Specification
5H12345 ABCDE SHABCDE
7HbTRUEDbb FALSEbb 7HFALSEbDb
8Hbbbbbbbb MATRIXbb 8HMATRIXbb
'AB’ 12 12
X' ABC 'ABC’

b indicates a blank space

This feature can be used to change titles, dates, headings, etc., that are output with the
program data.

FORTRAN 6-10

input/output statements

X SPECIFICATION
General form: nX.

This specification causes no conversion. On output, n blanks are inserted in the external
record. On input, n spaces are skipped from the input record.

Output Example

Specification Output

1HA, 4X, 2HBC AbbbbBC
4X, 3HABC bbbbABC
1X, 3HABC, 3X bABCbbb

Input Example
Specification Input String Resuitant Input
F4.1, 3X, F3.0 12.5RRR120 12.5,120.

The RRR characters are ignored by the 3X specification.

L FORMAT CODE

General form:
rbw

where:
r is optional and is an unsigned integer constant used to
denote the number of times the same format code is repeti-

tively referenced.

w is an unsigned integer constant that specifies the number
of characters of data.

Logical variables may be read or written by means of the format code Lw.

On input, the first T or F encountered in the next w characters of the input record causes
a value of .TRUE. or .FALSE., respectively, to be assigned to the corresponding logical
variable. If field w consists entirely of blanks, a value of .FALSE. is assumed.

On output, a T or F is inserted in the output record as the value of the logical variable in

the 1/0 list. T is a non-zero value and F is zero. The single character is preceded by w - 1
blanks.)

FORTRAN 6-11

input/output statements

G FORMAT CODE

General form:
rGw.d

where:
r is optional and is an unsigned integer constant used to
denote the number of times the same format code is repeti-

tively referenced.

w is an unsigned integer constant specifying the total field
length.

d is an unsigned integer constant specifying the number of
significant digits.

The G format code is a generalized code in that it automatically selects an output format
appropriate to the magnitude of the real data.

Input processing is the same as for the F conversion.

The w portion of the G format code reserves the four right-most positions for a decimal
exponent field.

If the real data, n, are in the range 0.1 < n < 10**d, where d is the d portion of the
format code Gw.d, then this exponent field is blank. Otherwise, the real data are
transferred with an E or D decimal exponent depending on the type of the real data.

For the purpose of simplification, the following examples deal with the printed line.
However, the concepts apply to all input/output media.

Example 1

Assume that the variables A, B, C, and D are of type real whose values are 292.7041,
82.43441, 136.7632, 0.8081945, respectively.

1 FORMAT (G12.4,G12.5,G12.4,G12.7)

2 FORMAT (G13.4,G13.5,G13.4)
3 FORMAT (G13.4)

.

WRITE (0, n)A B C D

FORTRAN 6-12

input/output statements

Explanation:

a. |f n has been specified as 1, the printed output would be as follows (b represents a
blank):

Print Position 1 Print Position 48
t 1
bbb292.7bbbbbb82.434bbbbbbb136.8bbbb.8081945bbbh

b. 1fn has been specified as 2, the printed output would be:

Print Position 1 Print Position 39

1 1
bbbb292.7bbbbbbb82.434bbbbbbbb136.8bbbb Line 1
bbbb.8082bbbb Line 2

From the above example, it can be seen that by increasing the field width reserved (w),
blanks are inserted.

c. Ifn has been specified as 3, the printed output would be:

Print Position 1
t

bbbb292.7bbbb Line 1
bbbb82.43bbbb Line 2
bbbb136.8bbbb Line 3
bbbb.8082bbbb Line 4

From the above example, it can be seen that the same format code is used for each
variable in the list. Each repetition of the same format code causes a new line to be
printed.

T SPECIFICATION (VORTEX ONLY)
General form:

Ty
where:

T is a specification that relocates the current position
in the external record.

y is a non-zero integer constant that specifies the
character position in the external record.

FORTRAN 6-13

input/output statements

On output, a T specification can be used to position column headers as follows (b
indicates a blank space):

1

FORMAT(T10,5HCOLb1 , T22 , 5HCOLb2)

This example causes

COLDb1

to be printed starting in column 10, and causes

COLb2

to be printed starting in column 22.

On input, a T specification can be used to skip or re-read fields.

SCALE FACTOR P

The representation of the data, internally or externally, can be modified by the use of a
scale factor followed by the letter P preceding the F, E, G, and D format codes.

The scale factor affects the appropriate conversions in the following manner:

a.

For F, E, G, and D input conversions (provided no exponent exists in the external field)
and F output conversions, the scale factor effect is as follows:

externally represented number equals internally represented number times the
quantity ten raised to the nth power.

For F, E, G, and D input, the scale factor has no effect if there is an exponent in the
external field.

For E and D output, the basic real constant part of the quantity is multiplied by ten to
the nth power and the exponent is reduced by the scale factor.

For G output, the effect of the scale factor is suspended unless the magnitude of the
datum to be converted is outside the range that permits the effective use of F
conversion. [f the effective use of E conversion is required, the scale factor has the
same effect as with E output.

For example, if input data are in the form xx.xxxx and it is desired to use this internally in
the form .xxxxxx, the format code used to effect this change is 2PF7.4.

FORTRAN 6-14

input/output statements

Input
As another example, consider the following input data:

27bbb~ 93.2094bb- 175.8041bbbb55.3647

where b represents a blank.

The following statements:
5 FORMAT (12,3F11.4)
READ (0,5) K,AB,C
cause the variables in the list to assume the following values:

K:27 B : -175.8041
A : -93.2094 C : 55.3647

The following statements:

5 FORMAT (12,1P3F11.4)

.

»

READ (0,5) K,A,B,C
cause the variables in the list to assume the following values:
K:27 B : -17.58041
A : -9.32094 C : 5.53647

The following statements:
5 FORMAT (12,-1P3F11.4)
READ (0,5) K,AB,C
causes the variables in the list to assume the following values:

K: 27 B : -1758.041
A : -932.094 C : 553.647

FORTRAN 6-15

input/output statements

Output
Assume the variables K,A,B, and C have the following values:

K:27 B : -175.8041
A : -93.2094 C : 55.3647

then the following statements:

5 FORMAT (12,1P3F11.4)

WRITE (0,5) K,A,B,C
cause the variables in the list to output the following values:

K : 27 B : -1758.041
A : -932.094 C : 553.647

The following statements:
5 FORMAT (12,-1P3F11.4)
WRITE (0,5) K,A,B,C
cause the variables in the list to output the following values:

K:27 B : -17.5804
A . -9.3209 C : 5.5365

For output, when scale factors are used, they have effect only on real data. However, this
real data may contain an E or D decimal exponent. A positive scale factor used with real
data that contains an E or D decimal exponent increases the number and decreases the
exponent. Thus, if the real data were in a form using an E decimal exponent and the
statement FORMAT (1X,12,3E13.3) used with an appropriate WRITE statement resulted in

the following printed line:

b27bbbb~ .932Eb02bbbb- .175Eb03bbbbb.553Eb02

the statement FORMAT (1X,12,1P3E13.3) used with the same WRITE statement results in

the following printed output:

b27bbb~-9.321Eb01bbb- 1.758Eb02bbbb5.536EbO1

FORTRAN 6-16

input/output statements

The statement FORMAT (1X,12,-1P3E13.3) used with the same WRITE statement results
in the following printed output:

27bbbb- .093Eb03bbbb-.018Eb04bbbbb.055EB0O5
The scale factor is assumed to be zero if no other value has been given. However, once a
value has been given, it will hold for all foriat codes following the scale factor within the
same FORMAT statement. This also applies to format codes enclosed within an additional
pair of parentheses.

/ SPECIFICATION

Form

Each slash (/) specified in the format causes the termination of a record and processing of
the next record. Successive slashes (///...//) cause subsequent records to be ignored on
input, and successive blank records to be written on output. A slash separating two field
specifications removes the need for a comma separator. For example,

F5.4/4F10.3.

Output Example
For a specification (1HA/1HB/1HC/1HD) the resultant output records are:

oo w>»

Input Example

Using the four records output from the previous example, an input specification (1H1/
1H2//1H3) produces the resultant specification (1HA/1HB//1HD).

REPEAT SPECIFICATIONS

The A, D, F, E, |, L, and G field specifications can be repeated by using the repeat count r
in the forms rAw, rDw, rFw.d, rEw.d, riw, rLw, and rGw.d.

Examples

4F10.5,F3.6 is equivalent to F10.5,F10.5,F10.5,F10.5,F3.6
2F4.1,2E7.1 is equivalent to F4.1,F4.1,E7.1,E7.1

2F5.2,316,2E8.2 is equivalent to F5.2,F5.2,16,16,16,E8.2,E8.2

FORTRAN 6-17

input/output statements

Repetition of a group of field specifications is accomplished by enclosing the group in
parentheses preceded by an integer repeat count. If no repeat count is specified, the
count is taken as one.

Examples
2(F10.5,16) is equivalent to F10.5,16,F10.5,i6
2(E9.3,F7.1/i4) is equivalent to E9.3,F7.1/14,E9.3,F7.1/14

3(4F5.0,2E8.2) is equivalent to 4F5.0,2E8.2,4F5.0,2E8.2,
4F5.0,2E8.2

Example
50 FORMAT (4X,2(15,6F8.2)//)

The use of additional parentheses (up to two levels) within a FORMAT statement is

permitted to enable the user to repeat the same format code when transmitting data. For
example, the statement: .

10 FORMAT (2(G10.6,G7.1),G4)
is equivalent to
10 FORMAT (G10.6,G7.1,G10.6,G7.1,G4)

If the data exists with a D decimal exponent, it is transferred with this D decimal
exponent.

If a multiline listing is desired such that the first two lines are to be printed according to a
special format and all remaining lines according to another format, the last format code in
the statement should be enclosed in a second pair of parentheses. For example, in the
statement:

FORMAT(G2,2G3.1/G10.8/(3G5.1))

If more data items are to be transmitted after the format codes have been completely
used, the format repeats from the last left parenthesis. Thus, the printed output would
take the following form:

G2,G3.1,G3.1
G10.8
G5.1,G5.1,G5.1
G5.1,G5.1,G5.1

FORTRAN 6-18

input/output statements

As another example, consider the following statement:
FORMAT(G2/2(G3,G6.1),G9.7)

If 13 data items are to be transmitted, the -printed output on a WRITE statement takes the
following form:

G2
G3,G6.1,G3,G6.1,G9.7
G3,G6.1,G3,G6.1,G9.7

G3,G6.1

FORMAT CONTROL AND LINE INTERACTION

Execution of a formatted READ or WRITE statement initiates format control. The
conversion performed on data depends on information jointly provided by the next
element of the input-output list and the next field specification of the FORMAT statement.
If there is a list, at least one field specification of type D, E, F, G, L, A, or | should be
present in the FORMAT statement.

Execution of a formatted READ statement causes one record to be input. Each D, E, F, G,
L, A, or | specification has a corresponding element in the list. Each H or X specification
has no corresponding element in the list and the format control communicates
information directly to the record. When a slash is encountered or the entire input record
is processed, the record is terminated. If more input is necessary, the next record is input.
Any unprocessed characters of a record are skipped when a slash is encountered.

A READ statement is terminated upon ending the list if:

a. The next specificationis A, D, E, F, G, |, or L.

b. The format control has reached the last outer right parenthesis of the FORMAT
statement.

If the list ends and the next specification is an H or X, data are processed (with the
possibility of additional records being input) until one of the two above conditions is met.

If the format control reaches the right-most parenthesis of the FORMAT statement and
more list remains to be processed, the following steps are taken:

a. Anewrecord is input and remaining data in the previous record ignored.

b. Format control reverts to the point immediately following the last left parenthesis.

FORTRAN 6-19

input/output statements

If group repeat specifications exist in the format, this point is at the right-most group of
the format. The repeat count is not taken into consideration. If no groups are present, the
format is started from the beginning.

When a formatted WRITE statement is executed, records are written each time 120
characters have been processed, a slash is encountered, or the format control terminates.

The format control terminates by one of the two methods described for READ termination.
Incomplete records are filled with blanks to maintain standard record lengths.

COMMA AS DELIMITER ON INPUT .

Varian 73/620 FORTRAN allows a comma to be used as a delimiter between inputs. As an
example with the following format statement:

FORMAT (13, 14, F6.2)

Using the above format, the following values can be input with a READ statement: 13, 2,
12.60

The run-time 1/0 accepts this input and handles these values correctly, however you
cannot input more than the number of characters specified in the FORMAT statement.

FORTRAN 6-20

SECTION 7— PROGRAMS AND SUBPROGRAMS

An executable FORTRAN program consists of a main program and any required
subprograms. Subprograms may be defined by the programmer or contained in the
system library. Each program or procedure subprogram must contain at least one
executable statement.

Each VORTEX program or subprogram can contain as its first statement (except for
comment lines) a TITLE statement with the following format:

TITLE n
where:
n is the program module name that is included in the heading of the source listing, as well

as in the object program used by system maintenance and generation programs in
VORTEX.

MAIN PROGRAMS)

A main program is a program unit consisting of a set of FORTRAN statements, comment
lines, and an END line. The program may be preceded by specification statements.

A main program cannot contain a subprogram definition statement, namely:
a FUNCTION statement
a SUBROUTINE statement
a BLOCK DATA statement

A main program may contain calls to other subprograms or may contain statement
function subprograms.

A main program can accept a main program entry name definition of the following format:
NAME N1, N2, ..., Nn

where:

N1, N2, ..., Nn are entry names by which the main program
can be referenced

A VORTEX main program must include specifications for all common blocks that are
referenced by the subprograms.

FORTRAN 7-1

programs and subprograms

SUBPROGRAMS

Subprograms are program units which may be called by other programs or subprograms.
Subprograms are categorized as one of the following:

PROCEDURE SUBPROGRAMS
FUNCTION subprogram
SUBROUTINE subprogram

SPECIFICATION subprogram
BLOCK DATA subprogram

Functions are programmed procedures that are often used to provide solutions to
mathematical functions. Function references may be used in the same manner as
references to variables in an expression. For example: X = AB*SIN (Y) - C*COS (Y*2),
where SIN is the name of the sine function, COS is the name of the cosine function, and
(Y) and (Y*Z) are their respective argument lists. The value returned for a function
reference is of the same mode as the function name, corresponding to the rules for real
and integer symbolic names.

Function Subprograms

A function subprogram is defined external to the program unit by which it is referenced. A
function subprogram is defined by having as its first statement, other than comment
lines, a statement of the form:

FUNCTION f{(al, a2, a3, ..., an)

where
f is the symbolic name of the function and

ai represent dummy arguments.

Each ai is either a variable name, array name, or an external procedure name. The ai
defines the type, number, and order of the FUNCTION arguments. A function subprogram
must have at least one argument.

A function subprogram is executed at the first executable statement following the
FUNCTION statement. Specification statements (DIMENSION, COMMON, and EQUIVA-
LENCE) may immediately follow the FUNCTION statement. If present, these must precede
any other statement, excluding comments. The symbolic names of the dummy arguments,
ai, may not appear in an EQUIVALENCE or COMMON statement.

A function subprogram must contain at least one RETURN statement, and the last

statement executed in a FUNCTION must be a RETURN statement. The function
subprogram is ended by an END line.

FORTRAN 7-2

programs and subprograms

The symbolic name, f, of the FUNCTION must appear as a variable name within the
subprogram. The value returned for a FUNCTION is the last value assigned to this name
prior to execution of a RETURN statement. The type of the FUNCTION value is as for a
variable (section 2.3.1).

The symbolic name of the function must not appear in any nonexecutable statement
within the subprogram.

Example

FUNCTION XP(A,B,I)
DIMENSION B(10)
XP=0.
DO 1 J=1,10

1 XP = (A*B(J))**I + XP
RETURN
END

A FUNCTION is executed with a function reference by a main program or another
subprogram. The actual arguments in the call must correspond in type, number, and
order with the FUNCTION dummy arguments. |f a dummy argument of a FUNCTION is an
array name, the corresponding actual argument must be an array name.

Example:

A call for the example FUNCTION shown above would be: W = XP(R,S,K), where
S is an array.

Type Specification of FUNCTION Subprogram
In addition to declaring the type of a FUNCTION name by the predefined convention, there
exists the option of explicitly specifying the type of a FUNCTION name within the function

statement.

General Form

Type FUNCTION name (al, a2, a3, ..., an)

where:

Type is integer, real, double precision, complex, or
logical.

name is the name of the FUNCTION subprogram.
al, a2, a3,...,an are nonsubscripted variables, or dummy

names of subroutine or other FUNCTION subprograms. (There
must be at least one argument in the argument list.)

FORTRAN 7-3

programs and subprograms

Example 1
REAL FUNCTION SOMEF (A,B)

SOMEF = A**2 + B**2
RETURN
END

Example 2
INTEGER FUNCTION CALC (X,Y,2)

CALC ==X +Y+Z%*2

RETURN
END

Explanation:

The FUNCTION subprograms SOMEF and CALC in Examples 1 and 2 are declared as type
REAL and INTEGER, respectively.

Subroutine Subprograms

A subroutine subprogram is defined external to the program unit that references it.
Subroutines, unlike functions, do not have values associated with them and cannot be
referenced in an expression. Subroutines are accessed by CALL statements.

A subroutine subprogram is defined by having as its first statement, other than comment
lines, a statement of the form: SUBROUTINE S (al, a2, a3, ..., an) or SUBROUTINE S,
where S is the symbolic name of the subroutine and ai represents dummy arguments of
the subroutine. Each ai is either a variable or an array name, or the name of an external
procedure. If no arguments are passed to the subroutine, the second form is used.

The symbolic name of the subroutine must not appear in any statement in the
subprogram. The symbolic names of the dummy arguments may not appear in COMMON
or EQUIVALENCE statements.

A subroutine is executed at the first executable statement. Specification statements must
immediately follow the SUBROUTINE statement and precede any executable statement. A

FORTRAN 7-4

programs and subprograms

subroutine must have at least one RETURN statement. The last statement executed by a
subroutine must be a RETURN statement.

Example

SUBROUTINE R(A,1,Z)
DIMENSION A(10)
Z=0
DO 1J=1,10

1 Z=Z+AJ)**
RETURN
END

A subroutine is referenced with a CALL statement. The argument list in the reference
must agree in type, number, and order with the dummy arguments of the subroutine. If a
dummy argument is an array name, the corresponding actual argument must be an array
name.

Example:

A call for the example SUBROUTINE above would be: CALL R (T,K,D) where T
is an array.

Block Data Subprogram

To intialize variables in a COMMON block, a separate subprogram must be written. This
separate subprogram contains only the DATA, COMMON, DIMENSION, EQUIVALENCE, and
TYPE statements associated with the data being defined. In the MOS and stand-alone
systems, COMMON blocks are assigned downward from the top of available memory, with
the blank block first and the others in the order they appear in the source text. The loader
is overlaid by these block; therefore, when using the BLOCK DATA statement, the
programmer must be aware of the block location to prevent data from being stored in
loader tables.

General Form

BLOCK DATA

.
.

END
a. The BLOCK DATA subprogram may not contain any executable statements.
b. The BLOCK DATA statement must be the first statement in the subprogram.
¢. All elements of a COMMON block must be listed in the COMMON statement, even

though they are not all initialized; for examnle, the variable A in the COMMON

FORTRAN 7-5

programs and subprograms

statement in the following example does not appear in the data initialization
statement.

BLOCK DATA

COMPLEX C
COMMON/ELN/C,A,B/RMG/Z,Y
DATA C/(2.4.3.769)/

d. Data may be entered into more than one COMMON block in a single BLOCK DATA
subprogram.

e. An optional entry name n can follow the BLOCK DATA statement:
BLOCK DATA n

This causes output of n as an entry name so that the subprogram can be stored in a
library enabling it to be loaded with any module containing an EXTERNAL n statement.

Data Initialization Statement
General Form
DATA kl,...,kn/j1*dl,....jn*dn/,kn + 1,...k/jn + 1*dn + 1,...,j*d/,...
where:
kl,...,k are variables and/or subscripted variables (in
which case the subscripts must be integer constants), or

array names, or implied DO lists

dl,...,d are values representing integer, real, double-
precision, complex, logical or Hollerith data constants.

j1*,...,j* represent unsigned integer constants indicating

the number of consecutive variables that are to be assigned

the value of dl,...,dn.
A data initialization statement defines initial values of variables and array elements.
There must be a one-to-one correspondence between these variables (i.e., kl,..., k) and
the data constants (i.e., d1,..., d).
Example 1

DIMENSION D(10)

DATA A,B,C/5.0,6.1,7.3/,D(1),D(2),D(3),D(4),D(5)/5%1.0/

FORTRAN 7-6

programs and subprograms

Explanation:

The DATA statement indicates that the variables A, B, and C are to be initialized to the
values 5.0, 6.1, and 7.3, respectively. In addition, the statement specifies that the first five
variables in array D are to be initialized to' 1.0.

Example 2
DIMENSION A(5),B(3),L(2)

DATA A(1),A(2),A(3),A(4),A(5)/5%1.0/,B(1),B(2)/2*5.0/,L(1),L(2)/.TRUE.,.FALSE./
Explanation:

The DATA statement specifies that all the variables in array A are to be initialized to 1.0
and the first two elements of array B are to be initialized to 5.0. The logical variables,
(L(1) and L(2)), in array L are initialized to .TRUE. and .FALSE., respectively.

An initially defined variable, or any element, may not be in blank common. However, in a
labeled COMMON block, they may be initially defined only in a block data subprogram.
(See the Subprograms section.)

Example 3

DIMENSION A(3), B(3,2)
DATA A/1.0,2.0,3.0/,((B(1,J),d =1,2),1 =1,3)/6*5./

Explanation:

The DATA statement loads real numbers 1.0, 2.0, and 3.0 into array A. It also loads real
number 5. into every element of array B. DATA statements must precede the first
executable statement or statement fupction, and must follow any specification
statements.

STATEMENT FUNCTIONS

A statement function is defined internal td the program unit in which it is referenced. All
statement functions must precede the first executable statement and must follow any
specification statements of the program unit.

A statement function is defined in a single'expression of the form: f(al, a2, a3, ..., an) =
e, where f is the function name, ai represents arguments, and e is an expression. The
resultant value of ‘the function is either a real or integer value corresponding to the
function name. The ai are distinct variable names and are called dummy arguments. They
serve to indicate the type, number, and order of the function arguments. The expression e
is an arithmetic expression and may conta'in references to previously defined statement

functions.

FORTRAN 7-7

programs and subprograms

A statement function is referenced by a function call, f(al, a2, a3, ..., an), appearing in an
arithmetic expression. A statement function may be referenced only within the program
unit in which it is defined. The arguments used in the reference must agree in type,
number, and order with the corresponding dummy arguments.
Example
The statement function:
SF(X) = A*X**2+B*X+C

can be referenced in the program by:

W = SF(Y)

INTRINSIC FUNCTIONS

Intrinsic functions are commonly used subprograms contained in the FORTRAN library.
The symbolic names and meanings of the intrinsic functions are shown in table 7-1.

An intrinsic function is referenced by a function call in an arithmetic expression. The
arguments in the argument list must agree in type, number, and order with those shown
in table 7-1.

Example

IF (SIGN(W,X)) 1,2,2

1 W = ABS(X)- ABS(Y)
2 S = W*FLOAT(I*J)
K = IFIX(X)+J

BASIC EXTERNAL FUNCTIONS

Basic external FUNCTIONS are standard subprograms contained in the FORTRAN library.
These are referenced in the same manner as normal FUNCTIONS. The symbolic names
and meanings of the basic external FUNCTIONS are shown in table 7-2.

DUMMY ARGUMENTS

Dummy arguments provide a means of passing information between a subprogram and
the program or subprogram that called it. Both function and subroutine subprograms may
have dummy arguments. A subroutine need not have any, while a function must have at
least one. Dummies provide definitions of the data type, number, and sequence of
subprogram parameters.

FORTRAN 7-8

programs and subprograms

1

A dummy can be classified within a subprogram as a variable, an array, or an external
procedure name. The actual arguments defined by a calling program or subprogram to
which a dummy can correspond are: Hollerith constants, variables, array elements, arrays,
expressions, and external procedure names.

Within a subprogram, a dummy can be used in much the same way as any other variable
or array. A dummy can not appear in a COMMON or EQUIVALENCE statement.

The actual arguments (except for Hollerith constants) used in a calling statement agree in
data type with the corresponding dummy arguments, that is, real to real, integer to
integer, and array to array. If an actual argument is an expression, the result of the
expression should correspond in data type to the dummy.

A dummy array is defined as an argument which appears in a DIMENSION statement in
the subprogram. A dummy array does not occupy any storage but tells the subprogram
that the argument supplied in the calling statement defines the first element of an actual
array. The calling argument need not have the same dimensions as the dummy array.
Useful operations can sometimes be performed by defining different dimensions for the
dummy and calling arguments.

Example
DIMENSION A(10,10)
CALL FM(A(6,1))
SUBROUTINE FM(B)
DIMENSION B(50)

For this case, one-dimensional dummy array B corresponds to the last half of two-
dimensional array A. If the calling statement were CALL FM (A), dummy array B would
correspond to the first half of array A.

ADJUSTABLE DIMENSIONS

As shown in the previous examples, the maximum value of each subscript in an array is
specified by a numeric value. These numeric values (maximum value of each subscript)
are known as the absolute dimensions of an array and may never be changed. However, if
an array is used in a subprogram (section 7.3) and is not in COMMON, the size of this
array does not have to be explicitly declared in the subprogram by a numeric value. That
is, the specification statement, appearing in a subprogram, may contain integer variables
that specify the size of the array. These integer variables must be either actual or implicit
subprogram arguments. When the subprogram is called, these integer variables receive
their values from the calling program. Thus, the dimensions (size) of a dummy array
appearing in a subprogram are adjustable and may change each time the subprogram is
called. Integer variables that provide dimension information may not be redefined within
the subprogram.

FORTRAN 7-9

programs and subprograms

The absolute dimensions of an array must be declared in a calling program. The
adjustable dimensions of an array, appearing in a subprogram, should be less than or
equal to the absolute dimensions of that array as declared in the calling program.

The following example illustrates the use of adjustable dimensions.

Example
CALLING PROGRAM SUBPROGRAM
DIMENSION A(5,5) SUBROUTINE MAPMY
(...R,LM,...)
CALL MAPMY(...,A,2,3,...) DIMENSION...,R(L,M),...
DO 1001 = 1,L

Explanation:

The statement DIMENSION A(5,5) appearing in the calling program declares the absolute
dimensions of array A. When subroutine MAPMY is called, dummy argument R assumes
array name A and dummy arguments L and M assume the values 2 and 3, respectively.
The correspondence between the subscripted variables of arrays A and R is shown in the
following example.

R(1,DR(2,1)R(1,2)R(2,2)R(1,3)R(2,3)
A(1,1A(2,1)A(3,1)A(4,1)A(5,1)A(1,2)A(2,2)...

Thus, in the calling program the subscripted variable A(1,2) refers to the sixth subscripted
variable in array A. However, in subprogram MAPMY, the subscripted variable R(1,2)
refers to the third subscripted variable in array A, namely, A(3,1). This is so because the
dimensions of array R as declared in the subprogram are not the same as those in the
calling program.

If the absolute dimensions in the calling program were the same as the adjusted
dimensions in the subprogram, the subscripted variables R(1,1) through R(5,5) in the
subprogram would always refer to the same storage locations as specified by the
subscripted variables A(1,1) through A(5,5) in the calling program, respectively.

FORTRAN 7-10

programs and subprograms

The numbers 2 and 3, which became the adiusted dimension of dummy array R, could
also have been variables in the argument list or implicit arguments in a COMMON block.
For example, assume that the following statement appeared in the calling program.

CALL MAPMY (..., Al,J,...)

Then as long as the values of | and J are previously defined, the arguments may be
variables. In addition, the variable dimension size may be passed through more than one
subprogram level. For example, the subprogram MAPMY could have contained a call
statement to another subprogram in which dimension information about A could have
been passed.

Dummy variables (e.g., L and M) may be used as dimensions of an array only in a
FUNCTION or SUBROUTINE subprogram.

EXTERNAL STATEMENT
When an actual parameter list of a function reference or a subroutine call contains a
function or subroutine name, that name must appear in an EXTERNAL statement in the
program in which the reference or call appears.
The form of the EXTERNAL statement is

EXTERNAL s, s, s,... s

where s is a function or subroutine name

The EXTERNAL statement must appear before the function or subroutine reference. A
statement function may not appear in an EXTERNAL statement.

The following are examples of valid EXTERNAL statements

EXTERNAL SUBI, SINF
EXTERNAL FRAIL

FORTRAN 7-11

CT-£ NVY1H0d

Intrinsic Function

Absolute Value

Truncation

Remaindering*

Choosing Largest
Value ’

Choosing Smallest
Value

Float

Fix

Table 7-1. Intrinsic Functions

Definition

K]

Sign of a times largest
integer <| a |

a, (mod a,)

Max (a;, a;, ...)

Min (a,, a,, ...)

Conversion from integer
to real

Conversion from real to
integer

Arguments

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAX0
AMAX1
MAX0
MAX1
DMAX1

AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

IFIX

Type of
Argument

Real
Integer
Double

Real
Real
Double

Real
Integer

Integer
Real
Integer
Real
Doubie

Integer
Real
Integer
Real
Double

Integer

Real

Type of
Function

Real
Integer
Double

Real
Integer
Integer

Real
Integer

Real
Real
Integer
Integer
Double

Real
Real
Integer
Integer
Double

Real

Integer

swesboadqgns pue swesboid

€1-£ NVY1404

Transfer of Sign Sign of a, times |a, | 2 SIGN Real Real

ISIGN Integer Integer
DSIGN Double Double

Positive Difference a, - min (a;, a,) 2 DIM Real Real
IDIM Integer Integer

Obtain Most Significant 1 SNGL Double Real

Part of Double-

Precision Argument

Obtain Real Part 1 REAL Complex Real

of Complex Argument

Obtain Imaginary 1. AIMAG Complex Real

Part of Complex !

Argument

Express Single- 1 DBLE Real Double

Precision Argument

in Double-Precision

Form

Express Two Real a, +a)/-1 2 CMPLX Real Complex

Arguments in Complex

Form

Obtain Conjugate of a 1 Conijg Complex Complex

Complex Argument

*The function MOD or AMOD (a,, a,) is defined as a, - [a, /a,] a,, where [x] is the integer whose magnitude does not
exceed the magnitude of x and whose sign is the same as x.

sweiboidqgns pue sweiboid

V1-L NVYLY04

Table 7-2. Basic External Functions

Type of Type. of
External Functions Definition Arguments Name Argument Function
Exponential ed 1 EXP Real Real
DEXP Double Double
CEXP Complex Complex
Natural Logarithm loge (a) 1 ALOG Real Real
DLOG Double Double
CLOG Complex Complex
Common Logarithm log (a) 1 ALOG10 Real Real
10 DLOG10 Double Double
Trigonometric Sine sin(a) 1 SIN Real Real
DSIN Double Double
CSIN Complex Complex
Trigonometric Cosine cos(a) 1 cos Real Real
DCOS Double Double
CCOos Complex Complex
Hyperbolic Tangent tanh(a) 1 TANH Real Real
Square Root (a)”2 1 SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex
Arctangent arctan(a) 1 ATAN Real Real
DATAN Double Double
arctan(a, /a,) 2 ATAN2 Real Real
DATAN2 Double Double
Remaindering*® a, (mod a,) 2 DMOD Double Double
Modulus 1 CABS Complex Real

*The function DMOD (a,, a,) is defined as a, - [a, /a,] a,, where [x] is the integer whose magnitude does not exceed
the magnitude of x and whose sign is the same as the sign of x.

swelboudgns pue swesboid

programs and subprograms

COMBINING FORTRAN AND DAS MR

FORTRAN generates the following calling sequence for all implicit and explicit calls to
subprograms:

JUMP S

DATA P1
DATA P2
DATA Pn

where

s is the subprogram name

n is the number of arguments

P1, P2, and Pn are the addresses (not the value)
of the arguments; these addresses can be direct
or indirect.

If the above calling sequence is used, DAS MR programs can reference any program in the
system library or any FORTRAN coded subprogram.

DAS MR subprograms to be used with FORTRAN must process the above calling
sequence. The library program $SE can be used to transfer parameters by coding the DAS
MR subprogram entry as follows:

] ENTER
CALL $SE
DATA n
BSS n

where
s is the subprogram name

n is the parameter count

$SE transfers the n parameter addresses, resolving indirect addresses sequentially into
the block defined by BSS n. In addition, $SE increments the address in s so that the
program returns to the address following the calling sequence.

The above calling sequence does not define a parameter count so it is difficult to use with
subprograms that process a variable-length parameter list. The only library programs of
this type are the intrinsic functions that list maximum and minimum values. The
FORTRAN compiler detects calls to these values and outputs an absolute zero to mark the
end of the parameter list. DAS MR programs can reference these functions by terminating
the calling sequence with an absolute zero (not a pointer to zero).

FORTRAN 7-15

SECTION 8 -~ STAND-ALONE OPERATING PROCEDURES

The Stand-Alone FORTRAN/DAS MR system is a FORTRAN IV compiler and macro
assembler (DAS MR) with loader and math support routines. Using a minimum system
configuration containing 8K of memory and a 33/35 ASR Teletype,* the stand-alone
system can generate relocatable binary output, and can load, link, and execute this
output. In addition, the generalized 1/0_structure defines peripherals at loading time.

CONFIGURATION

The stand-alone system is contained on 12 separate paper tapes. Table 1 lists the tapes in
numerical order along with their format and function. The various subroutines contained in
each of the support libraries on tape 5 through 12 are listed below in order as they appear on
each tape.

Tape 5. Run-time 1/0

FORTIO CRIE MT$3 TCK$
$00 $0Q ($OR) MTAE $TCO1
$04 $0Q KNT$ $HC37
$08 $0P RDC$ HCK$
$0C $0S WRT$ DIM$
$0G CPAE STR$ LASS
$OH/$01 MT$0 SWR$ |0A$
$00 MT$1 BL$P 100K
$OM MT$2 FCH$ * $BICD

Tape 6. Run-time utility

$DO $SE RSCB3
$CG FORTUTIL RSCBIMTB
$38 $EE $BUF

Tape 7. Run-time math, software M/D, single precision

$HE SINCOS XDADD ISIGN
$PE FMULDIV XDSuUB SIGN
$QE FADDSUB XDCOMP $HN-S
ALOG SEPMANTI $FLOAT $HM-S
EXP FNORMAL $IFIX XMUL
ATAN XDDIV-8 IABS XDIv
SQRT-S XDMULT-S ABS I$FA

* A preferable basic system is 12K of memory and a high-speed paper tape reader in addition
to the Teletype.

FORTRAN 8-1

stand alone

Tape 8. Run-time math, hardware M/D, single precision

$HE
$PE
$QE
ALOG
EXP
ATAN
SQRT-H

SINCOS
FMULDIV
FADDSUB
SEPMANTI
FNORMAL
XDDIV-H
XDMULT-H

XDADD
xpsus
XECOMP
$FLOAT
$IFIX
IABS
ABS

ISIGN
SIGN
$HN-H
$HM-H
XMUL
XDIV
I$FA

Tape 9. Run-time math, double precision

DSINCOS
DATAN
DEXP
DLOG

IF

POLY

CHEB

DSQRT
$DFR
IDINT
DMULT
DDIVIDE

DADDSUB DOUBLE

DNORMAL

DLOADAC

DSTOREAC

RLOADAC
SINGLE

Tape 10. Complex math functions

$9E
cCcos
CSIN
CLOG
CEXP
CSQRT

Tape 11. Math functions,

TANH
ATAN2
ALOG10
AMOD
AINT
AMAXO0

Tape 12. Math functions,

$XE
$YE
$ZE
DATAN2
DLOGIO

CABS
CONJG
$AK
$AL
$AM
$AN

AMAX1
AMINO

AMIN1

DIM
FLOAT
SNGL

DMOD
DINT
DABS
DMAXI
DMIN!

FORTRAN 8-2

$AC
CMPLX
$8K
$8L
$8M
$8N

DEBLECOMP
AC

$ZD
AIMAG
$0C
REAL
$8F
$8S

single precision

MAXO0
MAX1
MINO
MIN1
MOD
INT

IDIM
IFIX
$JC

double precision

DSIGN
$YK
$YL
$YM
$YN

DBLE
$XC

stand alone

Table 1. Stand-Alone Tapes

Tape .
Number Format Function
1 BLD object FORTRAN |V compiler, is listed on Teletype
2 BLD object FORTRAN IV compiler, is listed on 620-77 line
printer
3 MOS object DAS MR assembler
(see MOS :
section)
4 BLD object Relocatable loader, loads tapes in MOS object
format
5 MOS object Run-time 1/0
6 MOS object Run-time utility
7 MOS object Run-time math, software multiply/divide, single
precision
8 MOS obiject Run-time math, hardware multiply/divide, single
precision
9 MOS object Run-time math, double precision
10 MOS obiject Complex math functions
11 MOS obiject Math functions, single precision
12 MOS obiject Math functions, double precision

MOS FUNCTIONS

Since the stand-alone system is a subset of MOS, various MOS functions also apply to this
system. The following MOS items are applicable for the stand-alone system:

170 Calls

Support Library
User-Coded 1/0 Drivers
Object Module Format

Data Format

FORTRAN 8-3

stand alone

COMPILING A PROGRAM

The stand-alone FORTRAN 1V compiler is supplied as an BLD object tape (tape 1 or 2). The
compiler is loaded into memory by the BLD |1 and occupies approximately 017400 words of
memory. Before loading the compiler, the SENSE switches on the computer control panel
should be set according to the following options:

a. With no SENSE switches set, both BLD Il and AID Il programs are preserved.
b. With SENSE switch 1 set, only the BL.D 11 program is preserved.

c. With SENSE switch 2 set, the last 17 words of memory are preserved (the last 17 memory
locations normally contains the bootstrap loader).

The compiler is entered at location 0. It initializes itself, outputs the string ‘DATE =’ and
inputs an 8-character date string in the form DD/MM/YY, which will appear on the source
listing. It then inputs a 2-character compiler 1/0 specificaton (defined in a later paragraph)
and halts with P = 3 and B = largest address used by the compiler. B can be manually modified
at this time. The A register contents will be stored in the Processor Control Word ($PCW), so
bits may be manually set in it according to the format listed in table 2.

Upon pressing RUN, the compiler will input source records. If character 1 of the first
source record is a '/’, this will be processed as a compiler control record: characters 7-14
will be stored as an 8-character program name, which will be output on the source listing;
characters from 16 to the first blank will be decoded as Processor Control Word flags
(table 2).)

EXAMPLE:
The statement
/JOB PROGRAM1 B9

causes the name PROGRAM1 to be output to the source listing device, and causes the
compiler to suppress binary output and read the input as 029 (EBCDIC code).

Table 2. Processor Control Word Bits

Character $PCW Bit Function

B 1 Suppress bfnary output.

D 8 Allocate 2 words for integer and logical
items.

E 14 Suppress End-of-File on binary output device
after compilation.

L 0 Suppress list output.

S 2 Suppress post-compilation map.

X 6 Compile statements with first character 'X'.

9 15 Flag card input as in 029 (EBCDIC) code.

FORTRAN 8-4

stand alone

I/0 Device Specifications

For each program to be compiled an = will be typed on the Teletype printer requesting
input/output selection.- The operator must respond by typing one of the following
characters to indicate the input device:

Cc Card reader

K Teletype keyboard

P High-speed paper-tape reader

T Teletype paper-tape read

0-3 Magnetic tape unit # (device addresses 010 through 013)

followed by one of the following characters to indicate the output device:

P-T Paper tape
0-3 Magnetic tape unit # (device addresses 010 through 013)

Following initialization, source statements are read and object records are output through
the selected devices. Error diagnostics and selected list options are printed on the
Teletype or printer (if available). Upon detection of an END statement, the compiler
produces a program map listing all variables, constants (in octal), and required
subprograms.

Compiler Input Records

Input to the compiler is a series of FORTRAN statements, each of which appears in one or
more input records. Records can be fixed or variable length depending on the device;
however, only the first 72 characters of each record are used by the compiler.

Keyboard and paper tape records are variable length and are terminated by a carriage return
and line feed in that order. The character > can be used to TAB to column 7, and the
character < can be used to clear the input buffer and reset to column 1. For keyboard input
the Teletype bell is used to notify the operator that source input is required. Paper tape leader
must be less than 72 characters and terminate in <— Source records input on the Teletype
paper tape must be separated by << <

Card records are a fixed length of 80 characters. Magnetic tape records must be card
images.

e

Compiler Output Records

Object records are output as they are created. Paper-tape object programs are punched
with leader and trailer records.

FORTRAN 8-5

stand alone

Notification Errors

Errors are logged during both compilation and execution.

All compilation error diagnostics are of the form

ERR xx a...a

where

xx is @ number from O to 18 (notification error), or TO to T9
(termination error)

a...a represents the last (up to 12) characters encountered in the
statement being processed.

The rightmost character indicates the point where the error was discovered (the character <
indicates end of the statement). If a termination error is discovered, object output is
terminated, but source code is continued to detect any further errors.

The compilation error messages are:

1 Construction

2 Usage

3 Mode

4 lllegal DO termination

5 Improper statement number

6 COMMON base lowered

7 lllegal equivalence group

8 Reference to nonexecutable statement
9 No path to this statement

10 Multiply defined statement number
11 Invalid format construction

12 Spelling error

13 Format with no statement number
14 Function not used as variable

15 Truncated value

16 Statement out of order

17 More than 29 COMMON regions
18 Non-COMMON data

FORTRAN 8-6

stand alone

Terminating (Fatal) Errors

Terminating errors stop output of the object program. These errors are listed below.

TO 170 error on compilation device T5 Improper use of name

T1 Construction T6 Improper statement number
T2 Usage 7 Mode

T3 Data pool full T8 Constant too large

T4 Illegal statement - T9 Improper DO nesting

Optional Listing

Source and object records can be listed. Source records are listed as they are input. Object
records are listed as they are created. Each ob|ect record consists of a varying number of
one to four-word object entries.

Both the MOS section of this handbook and VORTEX reference manuals contain further
details of the object language. Object listings display each object word delimited by a blank as
six octal digits. Each object entry occupies one record (line) on the LO unit.

Maps

The run-time memory map is shown in figure 1. In the following sample printout of a pro-
gram map, the leftmost six-digit column is the value of the relative location counter of the
item to the right. The letter and name, value or variable identifies the item as a relocatable
(R), fixed-, or floating-point value or variable, or a subroutine entry name, the name of an
External (E) subprogram or the name of a region in COMMON (C). COMMON is the name for
blank or unlabeled COMMON under MOS.

Sample Program Map
ENTRY/COMMON BLOCK NAMES
000043 R TEST1
000004 C COMMON

oooo004 C XX
EXTERNAL NAMES
000020 E $sI

SYMBOL TABLE
000023 R 000001
000027 R 000002

000000 C A
000002 C B
000000 C c
000002 C D
000025 R I
000005 R 5
000031 R J
000035 R K
000033 R 000003
000012 R 10

FORTRAN 8-7

stand alone

0x7777 -\

Binary Load/Dump

0x7600 » optional

AID I

0x6000 J

Logical Unit/Physical Unit Table

Common Area

Runtime A
Math

Runtime
Utility

Runtime
Input/Output ¢

Subprograms

Main Program
00500

Program and Data Pointers

00000

VTI-1909
Figure 1. Run-Time Memory Map

ASSEMBLING A PROGRAM
The DAS MR assembler (tape 3) is loaded and executed as follows:
a. Load the loader (tape 4) using the binary load/dump program (BLD |l). Before loading,

set the A register to zero to prevent execution of the loader. At completion of loading,
the execution address (013260) of the loader will be in the X register.

(continued)

FORTRAN 8-8

stand alone

b. Make the following modifications to memdry:

Location New Contents
5 0210
6 0210
7 0210
To modify:
In STEP mode load 054000 into the instruction register.
Set REPEAT switch.

Load 000005 into P register.

Load 000210 into A register.

Press STEP or START three times (loads A into address specified by P register,
whnch is automatically incremented by one after the instruction is executed).

""Pf*".\’!"

c. Execute the loader by setting the P register to the execution address (013260) and
pressing RUN.

d. When executed, the loader will print LN on the teletype. At this time, peripheral device
assignments may be altered by entering the one-digit number of the old logical unit
followed by the two-digit number of the substitute unit. DAS MR uses the following

logical units:

Logical Unit Logical Unit Default Device
Number Name Assignment

2 BO Paper Tape Punch

3 P Card Reader

4 LO Line Printer (620-77)

6 GO Dummy

8 SS Magnetic Tape* 00

9 PO Magnetic Tape** 10

“Device address 010
*#*Device address 011

As an example of device reassignment:

LN
300400201800906

would reassign:

Pl = Teletype keyboard

LO Teletype printer

BO = Teletype paper tape punch

SS Teletype keyboard

PO Dummy (continued)

FORTRAN 8-9

stand alone

Table 3 is a complete list of peripheral assignments for logical units.

Table 3. Logical Unit Assignments

Logical
Unit Number Assignment
0 Teletype keyboard and printer
1 Teletype paper tape reader and punch
2 High-speed paper tape reader/punch
3 Card reader
4 Line printer
5 Dummy
6 Dummy
7 Card punch
8 Magnetic tape unit 0
9 Magnetic tape unit 1
10 Magnetic tape unit 2
11 Magnetic tape unit 3
12 Unformatted paper tape 170 (HSPT)

e. Following device reassignments, the loader will print IN on the Teletype. At this time,
the operator should ready the DAS MR object program on the input device and
respond by typing the proper designation on the Teletype:

P paper tape reader
T Teletype paper tape reader
0,1,2,3 = magnetic tape controller 0,1,2 or 3, respectively.

To enable printing out of a load map, the operator must type M immediately following
the device designator. Following the typed characters, the operator must press the
carriage return key to initiate loading of the DAS MR.

(continued)

FORTRAN 8-10

stand alone

f. After DAS MR is loaded, peripheral devices for logical units 3,4,2, 6,8 and 9 must be
loaded from the run-time 1/0 tape. This. is accomplished by placing the tun-time 170
tape on the input device and repeating step e.

g After the run-time |/0 is loaded, the 1/0 control program must be loaded from the run-
time utility tape. This is accomplished by placing the run-time utility tape on the
input device and repeating step e.

h. When all externals have been satisfied, the loader will halt with the P register equal to
000003. To execute DAS MR, place the computer in the run mode.

Upon execution, DAS MR will input source statements from logical unit 3 (PI), output
source for pass 2 to logical unit 9 (PO), input pass 2 source from logical unit 8 (SS),
output binary object to logical unit 2 (BO), and output listing to logical unit 4 (LO).

Source input to DAS MR terminates upon input of either an EOF or a source record
containing a slash (/) as the first character. A slash record will cause an end-of-file
to be output to the BO device.

During a DAS MR assembly operation, if logical unit SS is not a magnetic tape unit, a flag
bit is set in the peripheral control word PCW. When the end of pass 1 is detected, this bit
is interrogated. If it is set, DAS MR does a status check on logical unit PO, prints the
message RELOAD SOURCE on the Teletype, and halts. When the computer is placed in the
run mode, DAS MR rewinds logical unit SS and begins pass 2 of assembly. If the flag bit is
not set (SS not equal to magnetic tape), no status check is done on PO and DAS MR
immediately rewinds logical unit SS and begins pass 2.

At the end of each assembly, DAS MR jumps to location 0520 to restart itself for another
assembly. Therefore, assemblies may be stacked. lf, at any time, a source record is input
where the first character is a slash (/), DAS MR punches a trailer on logical unit BO and
exits to program RSCB3 in the run-time utility (tape 6). In RSCB3, any pending 1/0 is
executed and the computer halts with the A-register containing a current value of the
error-control word (ECW). Do not place the computer in the run mode at this point. This
halt is followed by a data area. To restart the assembler, go to location 0520.

Assembly Errors. The DAS MR calls EXIT when one of the following four conditions are
detected on the Pl device: end-of-file, beginning- or end-of-device, read error, or the first
character of a record is a slash (/). When EXIT is called, the computer halts at a high
memory location with the A-register indicating the following conditions:

A-Register Value Indicated Condition

0100200 First character is a slash (/)
0100240 End-of-file detected

0100300 Read error detected

0100340 End or beginning of device detected

FORTRAN 8-11

stand alone

When the halt occurs, the error-control word (ECW) may contain more information about the
problem. The address of the ECW is stored in memory location 0476. The ECW format is
listed as follows:

Bit Meaning

0-3 Loader error value:

= No error

Checksum error
Sequence error

lllegal record type error
Read error

lllegal loader text error
Data initialization error
Common error

10 = Missing program(s) error
11 = Literal pool overflow error
12 = Program size error

NOODWN=O
]

4 0 = No loader initialization error
1 = Loader initialization error

5-7 Processor error value:

= No error

(Not used)

(Not used) .

Pass 2 record count not equal to pass 1 record count

A system executive control directive input at an
incorrect time

AP WN—O
[|

5 = An end of file received from 1/0 control
6 = An error received from 1/0 control
7 = An end of device or. beginning of device received
for 1/0 control
No 1/0 control error program execution
14 0 = 1/0 control error program execution
1 = 1/0 control error program execution
15 0 = No errors in the assembled or compiled program
1 = Error in the assembled or compiled program

LOADING A PROGRAM

This section describes loading the ioader (tape 4), error messages, and loading the
"support libraries (tapes 5 through 12).

FORTRAN 8-12

stand alone

Loading the Loader

The loader (tape 4) loads object programs in MOS format. Object-program input is from
either paper or magnetic tape selected at the Teletype keyboard. Maps and error
diagnostics are listed by the Teletype.

The loader is on BLD object tape and is loaded into memory by BLD |l.

The loader is read initially into an area extending downward from location 015777 of
memory. Upon execution, the loader performs the following operations:

a. Automatically adapts to the word size (16 or 18 bits) of the computer.

b. Relocates to upper memory of the computer in accordance with the following sense
switch options:
1. fnosense switches are set, relocates downward from location 0x5777; (x = 1, 2, 3,
4, 5, 6, 7 corresponding to memory sizes 8, 12, 16, 20, 24, 28, and 32K words,
respectively).
2. If sense switch 1 is set, relocates downward from location 0x7377.
3. Ifsense switch 2 is set, relocates to occupy downward from location 0x7755.

Before loader execution begins, the following loader parameters can be either modified
manually or with AID II:

Name Location Default value Function

$IAP 2 010 Start of indirect address pointer table.
$LIT 5 0500 Top address -+ 1 of literal table

$PED 7 0500 Initial loading location.

When loaded and executed, the loader types the message
LN

The operator may redefine any one or more of the first nine standard logical units (table
3) at this time by typing a string of sets of three digits for each redefinition, where:

a. firstdigit = the standard unit number to be changed

b. second and third digits = the substitute logical unit assigned in the range from 0
through 12 (decimal).

Only logical units 0 through 9 may be redefined. Their redefinition, however, may be any
value from 0 through 12. If an error is made in any transaction, the message

LN

FORTRAN 8-13

stand alone

is retyped and the operator may repeat the entry correctly. The carriage-return key may be
pressed at any time after the LN message to terminate further redefinition of logical units.
Following a carriage return, the loader types the message

IN
on the Teletype. The operator should ready the object program in the proper input device

and respond by typing one of the following designators depending on the desired input
device:

P High-speed paper-tape reader
T Teletype paper-tape reader
01,2 3 Magnetic-tape controller 0, 1, 2, or

3, respectively.

To enable printout of the loader map, the operator must type
M

immediately following the device desighator or, if the loader map is to be suppressed, the
operator presses the carriage-return key.

The M or carriage return following the device specification causes the loader to begin
loading the binary object data from the specified input device.

If an error is detected, the loader types a 2-character error message and halts.

To continue, the operator should remove the cause of the error, ready the input device to
read from the beginning of the object material, reload the loader program, and repeat the
above procedure from the beginning.

A loading operation is complete when all external references are satisfied. After each
normal EOF from the input device, a map of all external names is printed on the Teletype
(unless suppressed as an option by the operator). If the program that corresponds to the
external name has not been loaded, a

/

appears following the name in the printed map. Providing no error conditions have been
detected, the loader will again type

IN

on the Teletype. The operator should follow the same procedure described above.

FORTRAN 8-14

stand alone

When the loading operation is successful, the loader prints a map of all external names
(unless suppressed) and halts with

‘P = 3,
To execute the loaded program, the operator should press RUN.
The loader jumps to location 02 at the end of normal loading. Location 02 contains the
value for loader-parameter $IAP and is always less than 01000. Therefore, the computer

halts at location 03. When the computer is placed in the run mode, the computer performs
a indi:rect jump to location 06, which contains the execution address of the program.

Error Messages

The following 2-character error messages are output to the Teletype whenever the
corresponding error condition is detected:

Messages Meaning

PS Program Size Error. Program memory requirements exceed
available program/common storage.

Ls Literal Size Error. Program literal requirements exceed
: available literal storage.

CM Common Error. The program contains conflicting size
‘ definitions for a common block.

DA Data Error. The program attempted to overlay the loader,
loader tables, or resident programs.

TX Text Error. The program object text contains an illegal
or erroneous loader code.

RD Read Error. The loader encountered a read error while
attempting input of object text.

RC Record Error. The loader inputs an invalid record type.

SQ Sequence Error. The loader inputs an object text record
with an invalid sequence number.

CK Check-Sum Error. The loader inputs an object text record
with an invalid check-sum.

FORTRAN 8-15

stand alone

Loading the Support Libraries
For most efficient use of the loader, load the support libraries in the following order:

a. Run-time 1/0 (tape 5)

b. Complex math functions (tape 10)

c. Double-precision math functions (tape 12)

d. Single-precision math functions (tape 11)

e. Run-time math double-precision (tape 9)

f. Run-time math single-precision (tape 7 or 8)

g. Run-time utility (tape 6)
Prepare and select the input unit for the main programs. The loader loads all required
subroutines until an end-of-tape record or an end-of-file is detected, at which time the list of
required subroutines is generated and input selection is again requested.
If two or more subroutines have the same name, only the first input is loaded. When all
required subroutines are loaded the loader halts with the P register containing 000003, To
execute the main program, place the computer in the run mode. Execution of the main

program can be initiated by running at location 03.

All programs are loaded at location $PED. Required subroutines are loaded as they are input
to successive blocks of memory. Common storage overlays the loader.

As in MOS, there are two 4-word buffers in the RSCB1 program of the run-time utility
(tape 6). These buffers are labeled $TTL and $DAT and are used by the assembler and
compiler to hold the current job name and date. They may be externally referenced by any
user program.

All support libraries can be copied onto magnetic tape for loading if desired. In this case,

they should all be contained in one magnetic tape file. An end-of-file mark must be written
at the end of the last library copied.

PROGRAM EXECUTION AND ERROR MESSAGES

To execute a program, initialize the selected 1/0 devices, clear the registers, set the
program counter to 000003, reset the computer and place it in the run mode.

There are three types of programmed halts: STOP, PAUSE, and CALL EXIT. STOP causes
STOP to be output with the stop number, after which the computer performs a CALL EXIT.

FORTRAN 8-16

stand alone

STOP implies an end of job. PAUSE causes PAUSE to be output with the pause number,
and the computer going into the step mode. The program can be continued by placing the
computer in the run mode. CALL EXIT causes a HALT 07 with -1 in the X and B registers,
and signifies the end of job.

The following error halts are generated by the support libraries. These errors give a
message on the Teletype. Execution will continue if the error is non-fatal; otherwise a CALL
EXIT is executed. '

Message Definition Type
FORMAT Format error
MODE Data mode error (floating
point versus integer)
DATA Input data field error FATAL
170 . 170 error
GO TO RANGE Computed GO TO out of range
ARITH OVFL Arithmetic overflow
FUNC ARG Invalid function argument } NON-FATAL

The paper-tape reader driver returns reading errors to a calling program (like DAS MR) if
characters not in the range 0240 to 0337 are in an ASC II record; for example, if they
come after the first character in that range but before a carriage return (0215) character.
Characters not in this range are allowed preceeding the record or following the carriage
return.

External record formats are identical to MOS. The model-33 Teletype paper-tape punch

must; be turned on and off by the operator. Line printer records are 120 characters.
Printing is left-justified with unused positions set to blanks.

FORTRAN 8-17

SECTION9 — MOS AND VORTEX
OPERATING PROCEDURES

This section contains operating procedures-for FORTRAN |V programming systems that
are used with MOS and VORTEX.

i
i
I

COMPILING WITH MOS

The iinitiation of the MOS FORTRAN |V compiler is accomplished by entering the control
directive:

/FORTRAN (or /F) P1,P2,...,Pn.

This control directive directs the executive program to call the system loader to load the
FORTRAN |V compiler and commence compilation. The parameter string specifies optional
tasks that are to be performed. These options are:

B No binary object program output desired.

D ' Integer and logical items are assigned two words.

L : Load and go operation desired.

M: No memory map desired.

N No source listing desired.

O Octal listing of object program desired.

X: Conditional compilation desired. (Source records with an X in column 1 will be
compiled.)

Input/output assighments during compilation are made through the /ASSIGN control
directive (see MOS section of this handbook). The FORTRAN IV compiler uses the following
logical units:

Source input Pl
Object output BO
Listing LO
Load and go GO (optional)

FORTRAN 9-1

operating procedures

COMPILING WITH VORTEX

The VORTEX FORTRAN IV compiler is scheduled by the job-control processor (JCP) on
entry of the directive /FORT,P1,P2,...Pn, where the acceptable parameters are the same
as described above for the MOS directive. The logical units used are the same as those for
MOS, and assignments are made using the JCP directives /ASSIGN and /PFILE.

LOADING WITH MOS

To run a program compiled under MOS FORTRAN 1V, initialize the MOS, and load the
compiled object program with the MOS directive:

/LOAD (or /L)

The error messages are the same as in the stand-alone version (section 8) and are listed

as follows:

Message

PS

LS

C™M

DA

™

RD

RC

SQ

CK

FORTRAN 9-2

Meaning

Program Size Error. Program memory requirements
exceed available program/common storage.

Literal Size Error. Program literal requirements
exceed available literal storage.

Common Error. The program contains conflicting
size definitions for a common block.

Data Error. The program attempted to overlay the
loader, loader tables, or resident programs.

Text Error. The program object text contains an
illegal or erroneous loader code.

Read Error. The loader encountered a read error
while attempting input of object text.

Record Error. The loader inputs an invalid record
type.

Sequence Error. The loader inputs an object text
record with an invalid sequence number.

Check-Sum Error. The loader inputs an object text
record with an invalid check-sum.

LOADING WITH VORTEX

operating procedures

Run-time error messages are the same as those listed above for MOS loading.

Non-Resident Programs

The object program output by the VORTEX compiler is input to the load module generator
(LMGEN). The job-control processor schedules LMGEN upon inputting the directive:
/LMGEN. LMGEN creates a load module on the system-workfile SW device on inputting

the following four directives:

‘TIDB,name, bf,s,DEBUG

LD,obj

LIB,lib

END,save

bf = 1 for background;
2 for foreground

s = Overlay count

DEBUG is optional and loads
the DEBUG routine when present

obj = specifier giving
object module logical unit
number and key, lun/key

lib = specifier giving
library lun/key

save is optional for speci-
fying the load module save
lun/key

The program can then be loaded and executed from SW by entering /EXEC on the System
Input (S1) device; or, if bf = 1 and save = BL,E, it can be executed by the JCP directive
/LOA[?, name; or if bf = 2, it can be scheduled by entering the OPCOM directive
;SCHED,name, level,save, or by another task, using the SCHED macro.

Resident Programs

The o!biect program output by the VORTEX compiler is input to the SGkN program and
made ;part of the VORTEX nucleus (see VORTEX reference manual 98 A 9952 101). All

required subroutines must be added at this time.

1/0 DEVICE CONTROL

The 170 :control components of MOS and VORTEX permit access to 1/0 devices through
the use of logical units. A logical unit is an 1/0 device or partition of a rotating-memory

FORTRAN 9-3

operating procedures

device (RMD). A program references an assigned number. The logical unit numbers
permit 1/0 operations independent of the phsyical-device configuration. For further
information on logical units, refer to the input/output control description in the MOS
section of this handbook or the VORTEX reference manual.

The FORTRAN IV compiler inputs source text from logical unit Pl, outputs listings and
maps on logical unit LO, and produces an object module (code and loading information)
on logical units BO and GO. For further information, refer to the FORTRAN IV compiler
description in the MOS section of the handbook or the VORTEX reference manual.

COMPILER INPUT RECORDS WITH MOS

The compiler requests 40-word (8C-character) input records from the Input/Output Control
System (10CS). For further information on I0CS, refer to the MOS section of this
handbook.

COMPILER INPUT RECORDS WITH VORTEX

The compiler requests 40-word (80-character) input records from |0CS, if Pl is not a
rotating memory device (RMD) or if Pl = Sl. Otherwise, the compiler inputs 120-word
records (three FORTRAN source records) from the RMD, and does its own deblocking.
FORTRAN RMD source modules must start on a record boundary.

COMPILER OUTPUT RECORDS WITH MOS

The compiler outputs 60-word (120-character) records to logical unit LO. An object module
produced on logical units BO and GO is in 60-word records for Varian 16-bit computers
and 53-word records for the 18-bit computers. The MOS section of this handbook
describes the object module format.

COMPILER OUTPUT RECCRDS WITH VORTEX

Output records are 60 words long. An object module produced on an RMD is blocked two
records for each RMD record. FORTRAN object modules start on the RMD-record
boundary. The VORTEX reference manual (appendix A) describes the object module
format.

FORTRAN 9-4

operating procedures

ERROR MESSAGES
Error messages (notification and terminating) occurring under MOS and VORTEX are the
same as for the stand-alone version (section 8). For further information on error

messages, refer to the FORTRAN 1V cgmpiler descriptions in the MOS section of this
handbook or the VORTEX reference manual.

MAPS WITH MOS

\Ilustraftions of a run-time memory map are provided in the description of the system
loader control directives in the MOS section of this handbook.

Prograim maps are the same as in the stand-alone version (section 8).

MAPS WITH VORTEX

The F'ORTRAN IV compiler is a level 1 background program in the VORTEX system.
Memory maps are generated by LMGEN and SYSGEN directives, and are the same as in the
stand-alone version. Program maps are generated in the same manner as in the stand-alone
version (section 8).

FORTRAN 9-5

BASIC Language

BASIC i

TABLE OF CONTENTS

i

SECTION 1
A PRIMER IN BASIC

Loops

Arrays....bveeceecreeneerisinennens ...1-13
Errors and DeDUEBEBINGccoccveiiiiriniiiiiiiierineisneecrtsiieness sesvreeeesteesenesessssaesssssesssaesassnsssnnes 1-16
SECTION 2

ADVANCED BASIC

Logical O;perators
Special Functions
IMAEEICES fuenererecriereertieccrireee st re st s st e seseeseeaasse s e tesesesesses seseesaeseessaessesesnsessannsesssnsenssaesaraanas -

SECTION 3
STATEMENTS IN BASIC

READ and DATA Statementsccccvviiiereeiieriinienninnierneestesenesseessensessssssessssessessssssressonanns 32
DIM (Dimension) Statement.........ocooo i s 3-3
MAT (Matrix) Statement... ... e rre s cre s s e ens e ssesassr s asannes 33
LET SEAEBMENT ...oeceiceceeecieceececeer vttt b b st s ses st s sssss b mast e seessesssassnsbasansasen 33
FOR and NEXT Statements......ccccvreeciiniieieriirieeiereeeiesseessseseseesssecssesssessenssssssenensessnesas 34

JF/THEN Statementottt sssene s st s se st e s a s e e e s see s ane s s sanen s 34
GO TO STALEMENTS.....oovvecveerecreneeees st ssese s ss st s s s s s s ses e st sesaneassssssbanssanes 35
GOSUB, "RETURN, and SUB Statements...... ..o e s 3-6
PRINT Statements.......cccocovevemvienrvercnnn, ..3-10
INPUT Statement3-15
RESTORE StatemMent..........coocvuumvuinreeirsisssrsississsssssssss s ssssssssssssssssssss st ssssssssssnsoss 3-16
. REM (Remark) Statement........cccoiniiin e 3-17
" CALL Statement................. ...3-18

. WAIT Statement....
STOP Statement ...
END SEAateMeNnt ..ottt b s s 319

BASIC iii

SECTION 4
USING THE BASIC SYSTEM
Operating INStrUCHIONSocicciiiiiiicicc e -

Control Commands........c...cuevenns
Program and Calculator Modes.

SECTION 5
ERROR MESSAGES

SECTION 6
CALL STATEMENT DESIGN CONSIDERATIONS

SECTION 7
EXTENDED BASIC

GETTING STARTEDooeiiiiiericerir ettt ser e st s st s s re e bt s b sanesnaeeeras 7-1
Keyboard Input
Error Messages

ELEMENTARY BASIC ...ttt et e rev e sr et s b e e sb s e e b 7-4
Assignment Statements ... 75

Data POOIS ...ttt e s ee e as et bt e s s s e e s s e e e anannaae s et 7-13
Miscellaneous Statements 7-15
Branching Statements ... s 7-16
Input/Output Statements ..o e 7-18
WIHING LOOPS .oeuviiieiiiiieiiiitisieetestieetesresaesstessse s sanesbeasbe e s e seneb e sabeeenesenanesanesreeaseenraeanee 7-22
SUDIOUBINES vvirei ittt e e st e st e e s s sebb e e e s st e e ebeesabsaeeseessabaeesensaeaessbasesasssansssaeeans 7-24
ARRAYS oot r et s re et e e e bt r e e ae e eat et e reteebe e teeraenreenneeaas 7-29
Array SUDSCEIDE ..o e e e 7-30
DIM ettt ettt n e et e be R e e bt e Rt e RS R et e b e e s e rena bt s rene b e e reesatesnreean 7-30
MATRIX STATEMENTS ..ottt b et saesba s ans 7-31
Use of Matrix. OPerationsccccveeeiiriiiieese et ste s erre st e e sresas s e sbesbsseesreas 7-33
Restrictions

MATREAD

MATPRINT

VECTORS

BASIC iv

BULK SW*ORAGE FILE HANDLING ...ccoviriiiiiicitismiiisisn e enees cavsessasesssssesesersessenes -
Loading [EBASIC from the System File (RESTART) ..

File Directory Listing (FLIST, FLIST A, FLIST B) iiiececverreriicremeireneesieeensteaeccerceesenes -
Initialization of Removable File Media (CLEAR A, CLEAR B)cccccovrirrnerecrrencieinnnnne 7-42
Storage and Recovery of Program Files .

Creation| and Use of Data Files ... -
COPY e bR -

PROGRAMMING THE INTERFACE CONSOLE ..ottt scnnan emeneens -
Analog and Digital Channels: DATAI, DATIF, and DATO...
Control and Status Line Operation (PULSE, STATUS)cooonmiivmniinniniiicniiininmsnnnnnn -
INFORMEATION DISPLAY ON OSCILLOSCOPEcccccvmnmimumaiinincnnisrcsnensesessesesesinenens 7-62
INFORM:ATION DISPLAY ON KEYBOARD OSCILLOSCOPE DISPLAYcccecvvrevercrinnes 7-68
INFORMATION QUTPUT ON DIGITAL X-Y PLOTTER ..ccoeercurererrencnrennasessnasseesecsassens 7-69
UTILITY; SUBROUTINESooiiiiiiiiieiccercee sttt s s e e ases st nnen 7-71
NOTES

In the examples given in this manual, boldface type indicates obligatory items, and italics
indicate:optional items. Capital letters indicate precisely the ietters used, and small letters
indicate:that other letters and or numbers are to be substituted.

BASIC v

a primer in basic

SECTION 1 - A PRIMER IN BASIC

A program is simply a set of directions that telis a computer how to solve a problem. The
computer takes the raw-data input, manipulates it according to the directions in the
program, and, if there are no errors in the data or program. gives the answer required.

For proper performance, any program must fulfill two requirements:

a. The program must be in a language that is understood by the computer, just as
problems presented to people must be in languages they understand.

b. The program must be complete and precise because the computer, unlike
human problem-solvers, cannot make inferences. The computer does what you
order, not what you meant to order.

A program in English would pose insurmountable difficulties for the computer. English
and other human languages are rich in ambiguities and redundancies. qualities that
make poetry possible and computing impossible. Thus, you must present your program in
a language that has many of the characteristics of ordinary mathematical
notation: simple vocabulary and grammar, but with the ability to specify problem-
solving steps completely and precisely. One such language is the Beginner's All-purpose
§ymbolic Instruction Code (BASIC), originally developed at Dartmouth College.

In this manual, the rest of section 1 introduces you to the BASIC language and shows you
how to write simple programs that can solve a wide variety of useful and interesting
problems. Section 2 shows you how to apply the BASIC language to more advanced
computer techniques. Section 3 shows you how to use and operate the BASIC system. and
includes a variety of reference material.

AN EXAMPLE

Let us begin by seeing how the BASIC language is applied to the solving of a system of
two simultaneous liner equations in two variables, and then to the solving of two different
systems, each differing from the first only in the constants ¢ and f. Given:

ax + by = ¢

dx + ey = f
Then
X

(ce = Dbf)/(ae - bd)

(af = cd)/(ae = bd)

<
[

BASIC 1-1

a primer in basic

Note that, if ae = bd = 0, there is either no solution or an infinite number of solutions.
but no solution that is unique. In any other case., there will be a unique solution.

Whether or not you understand the manual solution of such systems is not important. For
now, study the following example and explanation to learn how a BASIC program for
solving the problem is developed.

EXAMPLE

10 READ A, B, D. E

15 LETG = A*E-B*D
20 IF G =-0 THEN 65
30 READ C, F

37 LET X = (C* E -
42 LETY = (A * F -
55 PRINT X, Y

60 GO TO 30

65 PRINT " NO UNIQUE SOLUTION"
70 DATA 1, 2, 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, =7

90 END

Several things about the program can be noted:

B * F)/G
C * D)/G

a. It uses only capital letters since the Teletype has only capital letters. A
handwritten program separates confusing pairs of characters by adhering to
the following conventions:

Numbers: 0 1 2

Letters: ¢ Iz

Since these characters are on different Teletype keys, there is no confusion
during typing.

b. Each line of the program begins with a number called a line number that
identifies the fine, called a statement. and specifies the order in which the
statement is to be processed by the computer. The program can be written In
any order since the computer will sort it and edit it as specified by the line
numbers.

c. Each statement has a word following the line number. This word specifies the
type of statement.

d. Each statement is free form. This is not obvious from the program printed above.

but spaces have no effect on statements n BASIC. Thus. line 10 could have
been typed as

BASIC 1-2

a primer in basic

10READA,B,D,E
and line 15 as
15LETG=A*E-B*D

The exception to this is the spacing in statements to be printed (e.g.. line 65) since they
print just as written, including spacing.

Now let us go through the example, statement by statement.

The first statement, line 10, is a READ statement. READ statements must be
accompanied by one or more DATA statements, which do not, as the example shows. have
to be adjacent to the READ statement.in the program. Whenever the computer
encounters a READ statement while executing a program, it assigns the next available
values in the DATA statement(s) to the variables in the READ statement. Thus, the
variable A in line 10 is assigned the value 1 from line 70, the first DATA statement.’
Similarly, B is assigned the value 2, D the value 4, and E the value next available in the
DATA statements, i.e., the value 2 from line 80. The next READ statement will pick up
DATA values from where this statement leaves off. This is further discussed below.

The second statement, line 15, is a LET statement. LET statements contain formulas to
be evaluated using mathematical notation slightiy modified to meet the requirements of
the computer, e.g., use of the asterisk (*), which cannot be omitted. to denote
multiplication. In line 15, we order the computation of AE - BD and call the result G. In
general, a LET statement directs the computer to set a single variable equal to a
mathematical expression, where the variable is to the left of an equal sign and the

mathematical expression to the right. Note that in a LET statement the equal sign does not
denote equality but replacement, and line 15 might best be read as " replace the quantity
AE - BD with G" ; thus, formulas such as X = X+ 1 are perfectly valid in LET statements.

The next statement, line 20, is an IF/THEN statement. IF/THEN statements contain
conditions that, if met, cause the execution of the program to go next to the statement
designated after the THEN. In this example, we know that there can be no unique
solution if G = 0, so we order the program to jump to line 65 if, and only if. G=0.

The statement in line 65 is a PRINT statement. PRINT statements
cause the output of the material between quotation marks and-or of
computed values. Thus, if G=0 (line 20), the program prints the
text

NO UNIQUE SOLUTION

and. since lines 70, 80. and 85 contain nonexecutable DATA
statements, passes to line 90. an END statement. This terminates
the execution of the program for the case where G =0.

BASIC 1-3

a primer in basic

However. in our example, G =0. Since the condition in line 20 is not met. the program
continues to execute statements in the order of their appearance. rather than jumping to
line 65. Thus. an IF, THEN statement teills the computer where to go for its next
instruction when the IF condition is met. but. if the condition is not met. the computer
passes to the next statement in sequence.

The next statement. hine 30. is another READ statement that assigns the next two
avallable DATA values. =7 and 5 (both from line 80). to the variables C and F,
respectively. This supplies the rest of the required constants to the original pair of
equations to yield the system

X + 2y = =7

4x + 2y = 5
The next statements. hnes 37 and 42. are LET statements that direct the computer to
find the values of X and Y according to the formulas provided. Note the use of
parentheses to indicate that CE - BF is to be divided by G. Had the parentheses been
onntted. the computer would have divided only BF by G. solving

x = ce —-(bf/g)
rather than the required

x = (ce —bf)/g
that is equivalent to the original

x = (ce —bf)/(ae —bd)

The next statement. line 55. is a PRINT statement that causes the output of the
computed values of X and Y. The values 4 and 5.5 are printed and the computer goes to
the next statement. ’

The next statement. line 60. is a GO TO statement. A GO TO statement causes the
execution of the program to go next to the statement designated. There is no condition.
When the computer encounters a GO TO statement. it always goes to the statement
designated.

The computer thus returns to line 30. which contains a READ statement. The next two
available DATA values. 1 and 3 (from line 85). are assigned to the variables C and F.
respectively. The old values of C and F are lost and replaced with the new values. This
yrelds the system

x + 2y =1

4x + 2y = 3

BASIC 1-4

a primer in basic

As before. the computer finds the values according to lines 37 and 42, prints the results
as directed in line 55, and returns to line 30 as specified by line 60.

Here the next two values of C and F. 4 and - 7. respectively (from line 85), are assigned
and the computer solves the system

x + 2y = 4
ax + 2y = -7 ’ -

It prints the solutions and returns to line 30. However, there are no more DATA values for
assignment to C and F. The computer informs us that it is out of data by printing on the
Teletype

ERROR 56 IN LINE 30

(Error 56 does not indicate a mistake in the program, but merely conveys information
from the computer concerning the lack of data. We will examine such error messages in
detail later.)

This terminates the execution of the program. Note that it is not necessary to reach an
END statement to terminate.

The program and the results are shown below just as they would appear on the Teletype.
After typing in the program, type the word RUN and press the RETURN key. This directs
the computer to execute the program.

Program

10 READ A, B, D, E

15 LET G = A*E - B*D

20 IF G = 0 THEN 65

30 READ C, F

37 LET X = (C*E - Bx*F)/G
42 LET Y (A*F - C*D)/G
55 PRINT X, Y

60 GO TO 30

65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1, 2, U

80 DATA 2, -7, S

85 DATA 1, 3, .4, -7

90 END

RUN Result

4 -5.5
0.666666 0.166666
-3.66666 3.83333

ERROR 56 IN

LINE 30

BASIC 1-5

a primer in basic

Now that we have solved the problem, let us examine more closely certain characteristics of
the program.

For example, omission of line 20 would not have affected the solution just presented.
However, in the case where ae —bd = 0, omission of line 20 would have required the
computer to perform the impossible calculation of dividing by zero in lines 37 and 42. The
computer would then merely print

ERROR 69 IN LINE 37
ERROR 69 IN LINE 42
where ERROR 69 indicates an attempt to divide by zero.

Omission of line 55 would have been catastrophic. The computer would have made the
required calculations, but could not print them since it was not ordered to do so. The
solutions would have remained the computer's secret. Furthermore. there would have
been no error message to signal that something was amiss. since there was no error In
the format of the program, the data. or the computations. The Teletype would have simply
remained blank.

Omission of line 60 would not have affected the first set of solutions. but after the initial
values of X and Y were printed. the computer would have gone to line 65. printed

NO UNIQUE SOLUTION

and stopped. At least the curious juxtaposition of a set of solutions followed by this
message would have brought the error to our attention.

I'he choice of individual line numbers 1s arbitrary, but the lines must be numbered in the
order to be followed during the execution of the program (disregarding jumps caused by
GO TO and IF THEN statements). We could have numbered the lines 1. 2. 3. 13,
although this 1s not recommended. Spacing between the numbers allows for insertions
made necessary by omissions or by modifications. Thus. if we discover that we have left
out two statements between lines 40 and 50. we can assign them numbers such as 44
and 46 so that the computer will place them in the proper order during the editing and
sorting of the program.

The division of data items among the DATA statements is arbitrary. but the items must
appear n the order in which they are to be read during the execution of the program. Thus,
in our example. the first data item 1s assigned to the variable A. the second to B. the third
to D. the fourth to E. the fifth to C. the sixth to F. the seventh to C (replacing the fifth),
etc. Rather than the three lines 70. 80. and 85 given in the example. we might have
written

75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, =7

BASIC 1-6

a primer in basic

or perhaps more naturally

70 DATA 1, 2, 4, 2
75 DATA -7, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first DATA statement and the various pairs
of values for C and F in the subsequent DATA statements.

FORMULAS

The computer computes by evaluating the formulas in a program. These formulas are
similar to those used in standard mathematical notation, with slight modifications
required by the nature of the computer.

One general limitation in BASIC is that a formula must be written on a single line of the
coding sheet or punched in a single card. However, long formulas can be broken down
into two or more short formulas that meet this requirement. The limitation is thus one of
writing and not one of computation.

Operations

BASIC uses the following five arithmetic operations in formulas, each indicated by the
corresponding symbol. Note that the asterisk (*) used to indicate multiplication cannot
be omitted. i.e.. in ordinary mathematical notation AB is equivalent to A x B or A - B, but
in BASIC this can be expressed only by A * B.

Operation Symbol Example
Addition + A+ B (Add B to A)
Subtraction - A- B (Subtract B
from A)
Multiplication B A*B (Multiply
A by B)
Division / A/ B (Divide A
by B)
Exponentiation [At B (Raise A to the
power of B)

BASIC also provides for evaluation of the following six arithmetic relationships in {F/THEN
statements where such comparisons define the [F condition.

RASIC 1.7

a primer in basic

Relationship Symbol Example

Is equal to = A =18 (A 15 equal to
B)

Is not equal # A #B (A 1s not equal

to to B)

Is less than < A< B (A 1s less than
B)

Is greater > A> B (A 15 greater

than than B)

Is not less > = A>= B (A 15 equal to

than or greater than
B)

Is not greater < = A<= B (A 15 equal to

than or less than B)

The introductory example contained an instance of the use of an arithmetic relationship in
the statement

20 IF G = 0 THEN 65

In addition to the arithmetic operations and relationships. the computer can evaluate
several mathematical functions in BASIC:

Function Coding
Find the sine of x SIN (X)
Where x is a number
Find the cosine of x or is an angle COS (X)
measured in radians
Find the tangent of x TAN (X)
Find the arctangent of x ATN (X)
Find e to the power of x EXP (X)
Find the natural logarithm of x (In x) LOG (X)
Find the absolute value of x (| x |) ABS (X)
Find the square root of x (y %) SQR (X)
Truncate x* INT (X)

RASIC 1-8

a primer in basic

Function) Coding
Randomize x* RND (X)
Assign a sign to x* ’ SGN (X)

“ These functions. which are not self-explanatory, are discussed in section 2.

In coding the above functions, we can’substitute any number or mathematical expression
for X. For example. to find the square root of (4 + x), we would write

SOR (4+X13)

Parentheses

To ensure that items in formulas are properly grouped together for correct execution of a
program, BASIC requires careful use of parentheses. Such use gives attention to the order
in which the computer performs the calculations.

An expression inside parentheses is computed before the quantity is used in further
computation. For example, in the expression A ~(B + C), the quantity B + C is first
computed, and then the result subtracted from A. In the case of nested parentheses, the
nests are computed from the inside out, e.g., in A —=(B —(C + D)), the quantityC + D is
computed first.

In the absence of parentheses in an expression or part of an expression. the computer
performs jts calculations according to the following three levels of priority:

a. First, all exponentiation
b. Next, multiplication and division
c. Finally, addition and subtraction

Within a level of priority, computations are performed from left to right. For example, if we
type A + B * C1 D, the computer first raises C to the power D, multiplies the result by
B, and then adds A to the product. If this is not the order intended. we specify the
desired order by the use of parentheses: to raise the product of B and C to the power
D before addition to A, we write A + (B * C) t D; to multiply A + B by C and raise the
product to the power D, we write ((A + B) *C)t D.

If there is any question in your mind about these priorities, add more parentheses to
eliminate possible ambiguities. Thus, the computer, faced with A - B - C. first subtracts
B from A and then subtracts C from their difference. Faced with A / B 7/ C. it first divides
A by B, then divides that quotient by C. Given A1+ Bt C, the computer raises A to the
power B, then raises that result to the power C. Changing or clarifying this order of
computation requires the use of parentheses.

BASIC 1-9

a primer in basic

Parentheses permit easy formulation of complicated mathematical expressions. Thus. to
find the arctangent of the quantity

3x -2eN + 8
we write
ATN (3 * x - 2 * EXP (N) + 8)
Or, to find the value of (5/8)'", simply write the two-line BASIC program

10 PRINT (5/8) 1 17
20 END

and the computer calculates the decimal form of the answer and prints it in less time
than it took to type the program.

Numbers

In BASIC, a number is a positive or negative decimal value of up to (approximately) seven
significant digits. The following are thus valid numbers in BASIC: 2, -3.675,
1234567, - .7654321, and 483.4156.

The following are not valid numbers in BASIC: 14/3 and /7. These are expressions,
not numbers, and must be converted by the computer to valid BASIC numbers before
further manipulation or inclusion in a list of data. In the first case, the expression
contains two numbers, 14 and 3. whose quotient in decimal form can be manipulated or
included in a list of data. The second expression contains one number, 7, whose square
root can be computed in BASIC by applying the appropriate mathematical function, SQR
(7). to yield a valid decimal number that can be used in further computations or in a list
of data.

Additional range and flexibility in the BASIC number system is attained by using the
letter E (exponent), which is read " times ten to the power," e.g., 73E7 indicates 73 times
10 to the power 7. Thus, we can write 0.001234567 in several forms acceptable in BASIC,
e.g., .1234567E -2, 1234567E -9, 1234.567E - 6. We can write ten million as 1E7 or
1E +7, but we cannot write just E7 (this is a variable, section 1.2.4) since we must
indicate 1 as the quantity that is to be multiplied by 10

Variables

In BASIC, a variable is denoted by a single letter or by a single letter followed by a single
digit. The following are thus valid variables in BASIC: E7, A, X, X9, and Q2.

A variable in BASIC stands for a number, usually one whose value is not known when the

BASIC 1-10

a primer in basic

program is being written. Variables are assigned numerical values by LET, READ, and
INPUT statements. Values thus assigned do not change until the next such statement
containing a new value for that variable is encountered. Then, the new value replaces the
former value and is used in subsequent manipulations.

A numerical value must be assigned to a variable before it can be used in a computation
since all variables are undefined before each run. Failure to make such assignments
results in the error message

ERROR 50 IN LINE nn

LOOPS

Often programs contain portions to be performed repeatedly, sometimes with slight
changes on each pass. Iterations and_incrementations are examples of such cases. In
BASIC, the loop simplifies the writing of such programs because the portion to be
repeated is written only once.

For example, a BASIC program to print a table of the first 100 positive integers and their
square roots would be 101 lines long without the use of loops:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

.
.

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

However, the use of a loop reduces the 101-line program to five lines giving the same
results:

10 LET X = 1
20 PRINT X, SQR (X)
30 LET X = X + 1

40 IF X <= 100 THEN 20
50 END

Line 10 assigns X the value of 1. Line 20 prints this value of X and its square root. Line 30
increases the value of X to 2 (the statement is read " let the new value of X be the old
value of X plus one"). Line 40 asks if the new value of X is less than or equal to 100. and.
since this is true, directs the computer back to line 20. Line 20 prints 2 and the decimal
form of /2. Line 30 then increases the value of X to 3, line 40 returns the computer to
line 20, etc., repeating the loop in this manner 100 times. On the 101st pass. however,
the relationship in line 40 is false since X is now 101. Therefore, the computer does not
return to line 20, but goes to line 50 and ends the program. This example shows the four

BASIC 1-11

a primer in basic

characteristics of a loop: initialization (line 10), body (line 20), modification (line 30),
and exit test (line 40).

Because the necessity for the use of loops of the type just illustrated arises so often,
BASIC provides FOR and NEXT statements to specify such a loop even more simply. Our
sample program then reduces to

10 FOR X = 1 TO 100
20 PRINT X, SQR (X)
30 NEXT X

50 END

Line 10 specifies a range of values, and line 30 increments X and returns the computer to
line 20. When the range specified in line 20 is exhausted, there is no " next X" and the
computer goes to line 50 to terminate the program.

The above illustration shows the simplest form of the FOR statement where the variable is
incremented by one on each pass. However, other increments can be specified by a STEP
clause in the FOR statement. Thus, the above example can be modified to increment in
steps of 5 by writing

10 FOR X = 1 TO 100 STEP 5

where the computer would assign 1 to X on the first pass, 6 on the second, 11 on the
third, etc., up to 96. Since the next increment would be 101, which is out of the specified
range, the program tarminates after printing 96 and its square root.

STEP can be negative. The above example can be modified to print the table of square
roots in reverse order by writing

10 FOR X = 100 TO 1 STEP -1

FOR statements can contain initial values, final values, and step sizes that are
expressions of any required complexity. Thus, provided N and Z have been specified
earlier in the program, we can write such statements as

99 FOR A = N + 7 * Z Tn (Z - N)/3 STEP (N - 4 * 2)/10

The loop continues as long as the value of the control variable (i.e., the variable to the left
of the equal sign) is within the specified range. This range can be specified by the
conditions of an IF statement or by a FOR statement. if the initial value specified is
already outside the range given in the IF statement, the body of the loop is not
performed. The computer goes immediately to the line following the NEXT statement.
Thus, in the following program for adding up the first n integers will give the correct
result of zero when N is zero.

BASIC 1-12

10 READ N
20 LET § =
30 FOR K =
40 LET § =
50 NEXT K
60 PRINT S

0
1 TON
S + K

70 GO TO 10

90 DATA 3,
99 END

10, ©

a primer in basic

Loops within loops are called nested loops and can be programmed with FOR and NEXT
statements. However, nested loops must actually nest since loops that cross are invalid,

as shown below.

Allowed

FOR X
E FOR Y

NEXT Y

NEXT X

ARRAYS

Allowed Not Allowed
—— FOR X FOR X

FOR Y FOR Y

E FOR Z NEXT X

NEXT Z NEXT Y

FOR W

NEXT W

NEXT Y

FOR Z

NEXT Z

NEXT X

BASIC can generate arrays by the use of array variables that consist of a single letter and
are followed by subscripts in parentheses. The subscripts can be single, for example, to

specify the coefficients of a polynomial (a,, a,, a,,
dimensional matrix (bp,m)-

second B(1,1), B(1,2), ...

In BASIC, the first is written A(1), A(2), A3), ...

...), or double, as in a two-

and the

The letter used for an array variable can also be used as an ordinary BASIC variable
(section 1.2.4) without confusion. However, within the same program, a letter cannot be
used for both singly and doubly subscripted array variables.

The form of the subscript is flexible, and can be a number, variable, array variable, or

mathematical expression.

Q(A@3,7).B -C).

Thus, BASIC permits array elements

such as B(l,K) and

We can enter the one-dimensional array A(1), A(2), ..., A(10) into a program very simply:

10 FOR I =

1 TO 10

20 READ A(I)

30 NEXT I

BASIC 1-13

a primer in basic

40 DATA 2, 3, -5, 5, 2.2, 4, -9, 123, 4, -4

This simple form of array specitfication is all that is required for singly subscripted arrays
in which no subscript is greater than ten. To specify larger arrays, use a DIM (dimension)
statement of the form

DIM x(n)

where x is the array variable and n is the highest subscript in the array x. The DIM
statement tells the computer to save sufficient space for the array. It is therefore
advisable to allow for the maximum possible number of entries when the size of the array
is not precisely known. For example, to enter a list of 15 numbers, we might write

10 DIM A(25)

20 READ N

30 FOR I = 1 TO N

40 READ A(I)

50 NEXT I

60 DATA 15

70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
80 DATA 37, 41, 43, 47

Note that lines 20 and 60 could have been eliminated by writing FOR | = 1 TO 15, but
the longer form given allows for lengthening the array up to 25 elements by changing only
line 60. Of course, to extend the array beyond 25 elements requires, in addition, changing
line 10.

Similarly, we can write the two-dimensional array B(1,1), B(1,2), ..., B(3.5) into a
program as:

10 FOR I = 1 TO 3

20 FOR J = 1 TO &

30 READ B (I,J)

40 NEXT J

50 NEXT I

60 DATA 2, 3, -5, -9, 2
70 DATA 4, -7, 3, 4, -2
80 DATA 3, -3, 5, 7, 8

No DIM statement is required as long as no subscript is greater than 10, i.e.. the above
entry could be expanded to include all entries up to B(10,10) without a DIM statement
An attempt to write an array with a subscript product greater than 100 without using a
DIM statement yields the error message

ERROR 49 IN LINE xx

The error can be corrected by entering the mjssing DIM statement. To specify -a 20-by-30

BASIC 1-14

a primer in basic

table in the above program, write
5 DIM B(20,30)

Since a DIM statement is merely a specification and is not executed during the program,
it can be entered on any line before the END statement. However, it is convenient to
place DIM statements near the beginning of the program.

The DIM statement is usually used to save more space than the ten subscripts
automatically allowed by the computer, but in the special case of a long program
containing many short arrays, DIM can be used to allot less space to arrays in order to
leave more for the program.

Below is a program using both a singly and a doubly subscripted array. It computes the
total sales of each of five salesmen, all of whom sell the same three products. Array P,
specified in lines 10 through 30, gives the price-per-unit of each product. Array S, specified
in lines 40 through 80, tells how many units of each product were sold by each salesman.
The program reads the price data from line 900 into the elements of array P, and the

sales data from lines 910 through 930 into the elements of array S. Thus, product 1 sells
for $1.25 per unit, product 2 for $4.30, and product 3 for $2.50; salesman 1 sold 40 units
of the first product, 10 of the second, etc. To enter the sales for the next month and reuse
the program for those data requires changing only lines 910 through 930. A price change

requires a change to line 900. ’

Program

READY

10 FOR I = 1 TO 3

20 READ P(1)

30 NEXT I

40 FOR I = 1 TO 3

50 FOR J = 1 TO 5

60 READ S(I,J)

70 NEXT J

80 NEXT I

90 FOR J = 1 TO 5

100 LET S = 0

110 FOR I = 1 TO 3

120 LET S = S+P(I)*S(I,J)
130 NEXT I

140 PRINT "TOTAL SALES FOR SALESMAN" J; "$" s
150 NEXT J

900 DATA 1.25, 4.30, 2.5
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16, 3, 21, 8
930 DATA 35, 47, 29, 16, 33
999 END

RUN

BASIC 1-15

a primer in basic

Result
TOTAL SALES FOR SALESMAN 1 $180.5
TOTAL SALES FOR SALESMAN 2 $211.3
TOTAL SALES FOR SALESMAN 3 $131.65
TOTAL SALES FOR SALESMAN 4 $166.55
TOTAL SALES FOR SALESMAN 5 $169.4

ERRORS AND DEBUGGING

More often than not, the first running of a program will reveal errors. Program errors are
of two types:

a. A format (grammatical) error produces an error message (section 5) that informs
you of the type and location of the mistake so that you can correct it easily.

b. A logical error does not produce an error message since it does not have any
characteristics that appear to the computer as mistakes. A logical error can,
however, result in incorrect results, or no results at all. The logical error is thus
more difficult to detect and correct than the format error, particularly when the
results seem somewhat reasonable.

In either case, the error is first isolated and then it is corrected by inserting, deleting, or
changing lines in the program.

a. Toinsert a line in a program, type the new line using a line number between the
line numbers of the lines that are to precede and follow the new line; e.g., to
insert a line between lines 70 and 80, type the new line with a line number of
75.

b. To delete a line from a program, type only the line number and then press
RETURN.

c. To change a line, retype the line correctly using the same line number.

Such corrections can be made at any time because the computer sorts the line numbers
automatically.

The rest of this section is an illustration of the process of debugging (correcting) a
program based on the problem of finding that value of x between 0 and 3 for which the
sine of x is a maximum, and ask the machine to print out this value of x and the value of
its sine. If you have studied trigonometry, you know that 7 /2 is the correct value, but we
shall use the computer to test successive values of x from 0 to 3, first using intervalis of
0.1. then of 0.01, and finally of 0.001. Thus, we ask the computer to find the sine of 0, of
0.1 of 0.2, 0f 0.3, ..., of 2.8, of 2.9, and of 3, and to determine which of these 31 values is
the largest. The computer does this by testing SIN(0) and SIN(0.1) to determine which is

BASIC 1-16

a primer in basic

larger, and calls the larger of these two numbers M. It then picks the larger of M and
SIN(0.2) and this value is called M. This number 1s checked against SIN(0.3), etc. Each
time a larger value of M is found, the value of x is remembered in X0. When the computer
completes this process, M will_have been assigned to the largest value. The search is
repeated; this time the computer checks the 31 numbers (0, 0.01, 0.02, 0.03, ..., 2.98,
2.99, and 3), finding the sine of each and determining which is the largest. After this, the
computer makes a third run using increments of 0.001. At the end of these three runs,
the computer is to print three values: (1) the value of X0 that has the largest sine, (2)
the sine of that value, and (3) the interval used on the run that found the value. To solve
this problem, we begin by writing the program:

=[SOS [[N R [o]
NEEHEERREREE
RIEINICIEN]

Now we are ready to enter the program on the Teletype. The sequence shown below is the
entire sequence that appears on the Teletype, followed by explanatory comments.

READY

10 READ D

20 LWR X0 = 0
ERROR 11 IN LINE 20

20 LET X0 = 0

30 FOR X = 0 TO 3 STEP D

40 IF SINE - (X) <= M THEN 100
50 LET X0 = X

60 LET M = SIN (X)

70 PRINT XO, X, D

ERROR 36 IN LINE 70

70 PRINT X0, X, D

80 NEXT Z-X0
90 GO TO 20

BASIC 1-17

a primer in basic

100 DATA .1, .01, .001
110 END

RUN

ERROR 40 IN LINE 30

Comments: Line 20: The error message indicates that LET is mistyped. The correction is
made by retyping the line correctly.

Line 40: The letter E is incorrectly entered after SIN. Typing a backarrow deletes the
character immediately preceding. When an error is caught early enough to use this simple
corrective technique, it is employed. The incorrect character is then replaced by the
correct one (in this case, a blank) by typing it after the backarrow.

Line 70: The second error message indicates that XO is used for a variable rather
than the correct form X0. The correction is made by retyping the line correctly.

Line 80: Another use of the backarrow replaces the incorrect character Z with the
correct character X.

Last line: After typing the END statement, we try to run the program by typing RUN.
However, this causes another error message, this time to advise us that the program
contains a FOR statement without a corresponding NEXT. Upon checking, we see that this
is caused by having the variables in lines 40 and 80 different. This is corrected by
retyping line 80 using the same variable as that found in line 40. Furthermore, the IF/
THEN statement in line 40 directs the computer to a DATA statement instead of to line
80. Line 40 is thus also retyped and another attempt made to run the program.

80 NEXT X

40 IF SIN (X) <= M THEN 80
RUN

ERROR 50 IN LINE 40

The new error message indicates that M has never been assigned an initial value. (This
error came to the attention of the computer only after line 40 had been corrected.) We

assign M an initial value of — 1 and make another attempt to run the program.

20 LET M = -1

RUN
Resuilt

0 0 .1
.1 1 A
.2 .2 1
.3 .3 1
) .4 .1
READY

BASIC 1-18

a primer in basic

We are now getting results, but they are incorrect. We are receiving every value of X, X0,
and interval size. Therefore, the printout is stopped by typing any character on the
Teletype while it is running. This error is corrected by typing:

70
85 PRINT X0, M, D
RUN

to move the PRINT statement outside the loop. Typing line number 70 followed by a
carriage return deletes that line. It is retyped using line number 85 and with the incorrect
variable X replaced by the correct variable M.

This attempt to run the program yields the following results:

1.59999 .999573 .1
1.59999 .999573 .1
1.59999 .999573 .1
1.59999 .999573 -1
READY

because line 90 returns the computer to line 20, merely repeating the operation using the
same values, rather than to line 10 to pick up a new value for D. At the same time that
we make this correction, we decide to add headings for the columns of figures of the
results. Thus, we type:

90 GO TO 10
5 PRINT "X VALUE", "SIN", RESOLUTION"
ERROR 21 IN LINE 5

The new error message indicates the format error in line 5, in which there is no left
quotation mark for the third item. We retype line 5 correctly and run the program.

5 PRINT "X VALUE", "SIN", "RESOLUTION"
RUN
Result
X VALUE SIN RESOLUTION
1.59999 .999573 1
1.56998 .999999 1.00000E-02
1.5709 .999999 1.00000E-03

ERROR 56 IN LINE 10

Thus, we now obtain the correct results as specified in the original problem. (Remember
that ERROR 56 does not indicate a mistake, but merely that there are no more data.)
Having changed so many parts of the program, we request a list of the corrected program.
Periodic listing of the present state of the program is an important debugging aid. The
listing is requested merely by typing LIST. Typing PLIST at the end of the listing causes

BASIC 1-19

a primer in basic

the program to be punched on paper tape for later use. The correct listing appears on the
Teletype as:

LIST

5 PRINT "X VALUE", "SIN", "RESOLUTION"
10 READ D

20 LET M = -1

30 FOR X = 0 TO 3 STEP D

40 IF SIN (X) <= M THEN 80

50 LET X0 = X

60 LET M = SIN (X)

80 NEXT X

85 PRINT X0, M, D

90 GO TO 10

100 DATA .1, 1.00000E-02, 1.00000E-03
110 END

PLIST

One common debugging aid that we have not used is the insertion of a PRINT statement
to check that the computer is doing what we think we asked it to do. For example, if we
wondered about the computation of M in the above example, we could have inserted 65
PRINT M to have the values of M printed.

BASIC 1-20

advanced basic

SECTION 2 — ADVANCED BASIC

This section explains the following specialized aspects of the BASIC language:
* Logical Operators
« Special Functions

+ Matrices

LOGICAL OPERATORS

In addition to the arithmetic operations and relationships, and mathematical functions
already discussed (section 1.2.1), BASIC uses the Boolean logical operators AND, OR, and
NOT. With the exception of NOT, which takes the following operand as its single
argument, all of these are binary operators. In a formula, the binary operators have a
lower priority than any of the arithmetic operators (t, *, /, +, and -). Among the binary
operators, the priority in ascending order is OR, AND, and the relational operators (all of
equal priority). NOT has the same priority as unary + and unary —. Thus,

NOT A + B = C OR SGN(K) AND SGN(J)
1S equivalent to
(((NOT A) + B) = C) OR (SGN(K) AND SGN(J))
The relational operators take algebraic numbers as arguments and return 0 (false) or 1
(true) according to the relationship existing between their arguments. Thus, 3 < 2

evaluates to 0 and A *= 0 evaluates to 1 if A has a nonzero value. The Boolean operators
consider their arguments as zero (false) or nonzero (true) and return 0 and 1 as follows:

AND
Argument 1 Argument 2 Result
nonzero nonzero 1
nonzero zero 0
zero nonzero 0
Zero zero 0

BASIC 2-1

advanced basic

OR
Argument 1 Argument 2 Result
nonzero nonzero 1
nonzero zero 1
zero nonzero 1
zero zero 0
NOT
Argument Result
nonzero 0
zero 1

Thus, 3 AND 1 evaluates to 1 while NOT -3 AND 0 evaluates to 0. It is important to
realize the A < B < Cis not equivalent to AKX BANDB<<C. IfA = -3,B = -2, and
C = 1/2, the former evaluates as (-3 < -2) < 1/2 or 0 (false), whereas the latter
evaluates as (-3 < ~2) AND (-2 < 1/2) or 1 (true).

SPECIAL FUNCTIONS

This section explains the special functions INT, RND, and SGN (listed in section 1.2.1),
and the use of DEF to define other functions.

INT (Integer) Function

The INT function computes the value of x expressed by the algebraic notation as [x]. It
gives the greatest integer not greater than x for -32768 < x < 32768. Thus, INT(2.35)
= 2, INT{-2.35) = -3, and INT(12) = 12. Note that INT(X) = 32768 for x = 32768
and INT(X} = -32768 for x <-32768.

One use of the INT function is to truncate numbers. Use it to truncate to the nearest integer
by writing INT(X + .5). This will truncate 2.9, for example, to 3 by finding INT{(2.9 + .5) =
INT(3.4) = 3. Thus, this function will truncate a number midway between two integers, up
to the larger of the integers.

It can also be used to round to any specific number of decimal places. For example,
INT(10 * X + .6)/10 rounds to one decimal place, and INT(10 1 D * X + 5)/10 1 D rounds to
D decimal places.

RND (Randomize) Function

The RND function produces a normal distribution of random numbers between 0 and 1.
The form of RND, RND(X) or RND(0), requires an argument, although the argument has
no significance. The argument can be a constant or a previously defined variable. The
example below produces 20 random six-digit decimals.

BASIC 2-2

advanced basic

Program
READY
10 FOR L = 1 TO 20
20 PRINT RND(O0);
30 NEXT L
40 END
RUN
Result

RUN

6.80170E-02 .240643 .417191 .192204 .701485 .705105
1.80673E-02 .460499 .87426 .34657 .812546 .146031
.723061 ,473629 .2u49848 .182393 .697106 1.98793E-02
.122941 ,221928 READY

RUN
6.80170E-02 .240643. .417191 .192204 .701485 .705105
1.80673E-02 .460499 .87426 .34657 .812546 .146031

.723061 .473629 .249848 .182393 .697106 1.98793E-02
.122941 ,221928 READY

Note that the second RUN gives exactly the same random numbers as the first. This
greatly facilitates the debugging of programs that use the random-number generator.

To produce 20 random one-digit integers, change line 20 to
20 PRINT INT(10*RND(O)),
Resuilt

0 2 4 1 7 7 0 4 8 3 8 1
7 4 2 1 6 0 1 2 READY

To vary the type of random numbers (for example, to obtain 20 random numbers ranging
from 1 to 9 inclusive), change line 20 to

20 PRINT INT(9*RND(O0) + 1);

Result
1 3 4 2 7 1 4 8 4 8 2
5 3 2 7 1 2 2 READY

To obtain random numbers that are integers between 5 and 24 inclusive, change line 20
to

BASIC 2-3

advanced basic

20 PRINT INT(20*RND(O) + 5);

Result
13 8 19 19 5 14 22 11 21 7
19 14 9 8 18 5 7 9 READY

SGN (Sign) Function

The SGN function assigns the value 1 to any positive number, O to zero, and -1 to any
negative number. Thus, SGN(7.23) = 1, SGN(0) = 0, and SGN(-.2337) = - 1.

DEF (Define) Function

In addition to standard functions, any other function can be defined with DEF. The name
of the defined function comprises three letters, the first two of which are FN. A total of 26
functions can be defined, e.g., FNA, FNB, etc.

For. example, DEF can be used in a program where the function exp(- T 5) is needed
frequently:

30 DEFFN E(X) = EXP (-Xt2+5)

Various values of the function can be called by writing FNE(.1), FNE(3.45), FNE(A +2),
etc. Such a definition can be a great time-saver to produce values of some function for a
number of different values of the variable.

DEF can occur anywhere in the program, and the expression to the right of the equal sign
can be any legal expression. It can contain a combination of other functions, including
those defined by other DEF statements. It can involve variables other than the one
denoting the argument of the function.

For example, assume FNR is defined. by

70 DEFFN R(X) = SQR (2+LOG (X)-EXP (Y*Z) * (X+SIN(2*Z)}))

If values have been previously assigned to Y and Z, FNR(2.7) can be requested. New
values can be assigned to Y and Z before the next use of FN.

The use of DEF is generally limited to those functions whose values can be comput'ed
within a single BASIC statement.. More complicated functions or parts of a program are.
coded as subroutines accessible to GOSUB statements (section 3.8).

MATRICES

It is often convenient to interpret doubly subscripted arrays as matrices. Although matrix
computations can be worked out using conventional BASIC statements, the language
provides the following 12 matrix (MAT) statements to simplify program writing and

BASIC 2-4

advanced basic

increase the power ot the language.

MAT ¢ = ZER _ Fill matrix ¢ with zeros

MAT ¢ = CON Fill matrix ¢ with ones

MAT ¢ = IDN Define ¢ as an identity matrix

MAT PRINT a, b; ¢ Print three matrices, in this example
with a and ¢ in the regular format
and b closely packed (section 3.9.2)

MAT b = a Set matrix b equal to matrix a

MATc = a + b Add the two matrices a and b and place
the result in matrix ¢

MAT ¢ = a-b Subtract matrix b from matrix a and
place the result in matrix ¢

MATc = a*b Multiply matrix a by matrix b and place
the result in ‘matrix ¢

MAT ¢ = TRN(a) Transpose matrix a and place the result
in matrix ¢

MAT ¢c = (k) * a Multiply matrix a by the number or
expression k (which must be in paren-
theses) ‘and place the result in matrix c

MAT ¢ = INV(a) Invert matrix a and place the result in

matrix ¢

BASIC matrices adhere to the following convention: if a MAT statement specifies a matrix
having the dimensions m-by-n, the rows are numbered 1, 2, ..., M and the columns 1, 2,
. N.

MAT statements are used in conjunction with dimension (DIM) statements that indicate
the maximum dimensions of the matrices and cause the computer to save sufficient
space. (The assumed dimensions of 10 rows by 10 columns for matrices without DIM
statements do not apply for matrices involved in matrix computations. These must always
be described by a DIM statement.) For example, to save space for any matrix up to and
including 20 rows and 35 columns, we write

DIM M(20,35)

BASIC 25

advanced basic

The actual dimensions of a matrix can be defined either when first established (by using a
DIM statement), or by one of the four matrix statements MAT READ, MAT ZER, MAT
CON, or MAT IDN. Thus, to read a 20-by-7 matrix for x, write

10 DIM x(20,7)

50 MAT READ X

To read a 17-by-30 matrix for y within maximum dimensions of 20-by-35, write

10 DIM Y(20,35)

.
.

50 MAT READ Y(17,30)

The elements of a matrix are stored by column in ascending locations in memory, using
two computer words for each element. Thus, the matrix dimensioned as DIM A(3.3) is
structured and stored as follows:

Columns
A(l1,1) A(1,2) A(1,3)
Rows A(2,1) A(2,2) A(2,3)
A(3,1) A(3,2) A(3,3)

The elements would be stored in the following order:

Element Position Memory Location Element
1 m A(1.1)
2 m+2 A(2,1)
3 m+4 A(3.1)
4 m+6 A(l.2)
5 m+38 A(2,2)
6 m+ 10 A(3,2)
7 m+12 A(1,3)
8 m+14 A(2,3)
9 m+16 A(3.3)

Given the statement DIM A(M.N), the location m of any element A(i,j) of the matrix, with
respect to the first element A(1,1), is given by:

m = [location of A(1,1)] + 2[M(i -1) + (j - 1))

BASIC 2-6

advanced basic

The three statements:

MAT M = ZER
MAT M CON
MAT M IDN

set up the matrix M filled with zeros, filled with ones, or as an identity matrix,
respectively. Each acts as MAT READ as far as the dimensioning of the matrix is
concerned, For example,

MAT M = CON(7,3)

sets up a 7-by-3 matrix full of ones, but

MAT M = CON

sets up a matrix, also full of ones, according to dimensions previously specified by a DIM
statement. Thus,

10 DIM M(20,7)
20 MAT READ M(7,3)

35 MAT M = CON

70 MAT M = ZER(15,7)

will first read in a 7-by-3 matrix for M and then set up a 7-by-3 matrix of ones for M as
specified in line 20. This results in an error message because line 70 calls for 105
components in a matrix limited to 21 components by line 20. The original dimensions can
be exceeded, however, provided the total number of components is within the set limit,
e.g.,

90 MAT M = ZER(25,5)

The MAT PRINT statement (see also section 3) prints matrix components row by row
across the page. Spacing between elements is controlled by typing commas or semicolons
after each component, where commas space the printing and semicolons close-pack it.
Each row starts on a new line. Rows containing more components than can be printed on
one line are continued on the next line. Thus, the statement

BASIC 2-7

advanced basic

MAT PRINT A, B; C

prints the matrices A and C in the normal format of five components per line, and matrix
B closely packed with up to 12 components per line.

Vectors

A singly subscripted array can be interpreted as a column vector. Vectors can be used in
place of matrices as long as the above rules are followed. Since a vector like V(J) is
treated as a column vector by BASIC, a row vector must be specified as a matrix with one
row, e.g.,

DIM X(7), Y(1,5)
introduces a seven-component column vector and a five-component row vector. A column
vector is printed one element per line with double spacing between lines. A row vector is
printed as specified by the statement, e.g., where V is a row vector,

MAT PRINT V,
prints V as a row vector, five compcnents to the line, while

MAT PRINT V;

prints V as a row vector, twelve components to the line.

Manipulating Matrices

To set up a matrix B identical to the matrix A, provided that the dimensions previously
assigned to B are the same as those of A, write

MAT B = A
If matrices A, B, and C have the sarne dimensions, operations such as

MAT C =

+
MAT C -

A B
A B
are legal. The indicated operation is performed and stored in C. Only one operation per
statement is allowed, e.g., to perform MAT D = A + B - C two statements are required.
In the multiplication operation

MAT C = A * B
the number of columns in A is equdl to the number of rows in B, the number of rows in C

is equal to the number of rows in A, and the number of columns in C is equal to the
number of columns in B. For example, if A is I-by-m, and B is m-by-n, then C is |-by-n.

BASIC 2-8

advanced basic

(Note that even when MAT A = A + B is legal, MAT A = A * B results in nonsense
because, in multiplying matrices, components required to complete the computation are
destroyed before they can be used, whereas, in addition, the results are stored
immediately. However, MAT B = A * A'is legal provided A is a square matrix.)

Matrices can also be multiplied by constants. In the operation
MAT C = (k) * A

each component of the matrix A is multiplied by k to form the components of the matrix
C. The constant k, which is enclosed in parentheses, can be a number or an expression.
The statement MAT A = (k) * A is legal.

To transpose the matrix A, write
MAT C = TRN(A)

where matrix C is matrix A transposed. Thus, if A is m-by-n, C is n-by-m. Since a matrix is
destroyed by transposition, it cannot be transposed into itself, i.e., dimensions cannot be
reversed by writing MAT A = TRN(A).

To invert the square matrix A, write
MAT C = INV(A)

where matrix C is the inversion of the square matrix A. Like transposition, a matrix
cannot be inverted into itself.

Sample Matrix Programs

EXAMPLE 1: This program reads in Asand B in line 30 and in so doing sets up the
correct dimensions. Dimensions for C are set up in line 35. Then, in line 40, A + Ais
computed and the answer is called'C. Note that the data in line 90 result in A being 2-by-
3 and B being 3-by-3. Both MAT PRINT formats are illustrated and one method of
labeling a matrix print is shown.

Program

READY

10 DIM A(15,15),B(15,15),C(15,15)
20 READ M, N

30 MAT READ A(M,N),B(N,N)

35 MAT C = ZER(M,N)

40 MAT C = A + A

50 MAT PRINT C;

60 MAT C = A%*B

70 PRINT

BASIC 29

advanced basic

75 PRINT "A*B="
80 MAT PRINT C,
90 DATA 2, 3

91 DATA 1, 2, 3
92 DATA 4, 5, 6
93 DATA 1, 0, -1
94 DATA 0, -1, -1
95 DATA -1, 0, 0
99 END
Result

RUN

2 4

8 10 12
A*B =

-2 -2 -3

-2 -5 -9

EXAMPLE 2: This program inverts an n-by-n Hilbert matrix:

1 172 1/3 . .. 1/n

172 1/3 1/4 . .. 1/n+1
1/3 174 1/5 - . .. 1/n+2
1/n 1/n+1 1/n+2 1/n -1

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this
occurs after correct dimensions have been declared. Then a single instruction results in
the computation of the inverse matrix, and one more instruction prints it. In this
example, we have supplied 4 for n in the DATA statement and have made a run for this
case.

Program

READY
5 REM THIS PROGRAM INVERTS AN N-BY-
N HILBERT MATRIX
10 DIM A(20,20), B(20,20)
20 READ N

30 MAT A = CON(N,N)
40 MAT B = CON(N,N)
50 FOR I = 1 TO N
60 FOR J = 1 TO N

70 LET A(I,J) = 1/(1+J-1)

BASIC 2-10

Note:
n=7.

80 NEXT J
90 NEXT I
100 MAT B = INV(A)
110 PRINT
115 PRINT "INV(A) ="
120 PRINT
125 MAT PRINT B;
190 DATA 4
199 END
RUN
Result
INV(A) =
15.9885 -119.877 239.713 -139.816
-119.877 1198.69 -1696..94 1678.04
239.713 -2696.94 6472.84 -4195.42
-139.816 1678.04 -4195.42 2797.07

advanced basic

Because of severe rounding -errors, Hilbert matrices are not inverted beyond

BASIC 2-11

SECTION 3 — STATEMENTS IN BASIC

This section explains each type of BASIC statement and illustrates its use:

* READ statement

+ DATA statement

« DIM (dimension) statement

< MAT (matrix) statements

» LET statement

+ FOR statement

. NEXT statement

« |F/THEN statement (conditional GO TO statement)

« GO TO statements
Unconditional GO TO statement
Computed GO TO statement

» GOSUB (go to subroutine) statements
Unconditional GOSUB statement
Computed GOSUB statement
GOSUB statement with parameters

e RETURN statement

* SUB (subroutine) statement

. PRINT statement
« INPUT statement
. RESTORE statement

*+ REM (remark) statement

BASIC 3-1

statements in basic

» CALL statement
* WAIT statement
« STOP statement

+ END statement

READ and DATA Statements
The READ statement has the format

number READ var,var,...

and the DATA statement has the format

number DATA num,num,...
where
var is a variable
num is a number

The sequences of variables and numbers in these statements can contain any number of
items as long as the statement itself does not exceed 72 characters.

A READ statement assigns values obtained from a DATA statement to the listed
variables. Neither statement is used without one of the other type. A READ statement
causes the variables listed in it to be given, in order, the next available numbers in the
collection of DATA statements. Before the program is run, the computer takes all of the
DATA statements in the order in which ' they are numbered and creates a large data
block. Each time a READ statement is encountered anywhere in the program, the data
block supplies the next available number or numbers. If the data block runs out of data
with a READ statement still asking for more, the program is assumed to be done and we
get an OUT OF DATA error message:

ERROR 56 IN LINE nn
Since we have to read in data before working with it, READ statements normally occur
near the beginning of a program. The location of DATA statements is arbitrary, as long as

they are numbered in the correct order. A common practice is to collect all DATA
statements and place them just before the END statement.

Examples:
150 READ X, Y, 2, X1, Y2, Q9

330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

BASIC 3-2

statements in basic

234 READ B(K) v

263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R(I,J)

440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and /3 are
expressions, not numbers.

DIM (Dimension) Statement

The DIM statement has the format

number DIM array
where
number is the line number of the statement
array is the name of the array being dimensioned

followed by its subscript(s) in parentheses

The DIM statement is required for defining an array having any subscript greater than
10. The maximum subscript allowed is 255.

Examples:

20 DIM H (35)
35 DIM Q (5,25)

MAT (Matrix) Statement
The MAT statement is explained in the section on matrices.

LET Statement

This statement has the format

number LET var = exp
or the format
number LET var = voa = ... = exp
where
number i1s the line number of the statement
var is a variable
exp IS @ number or an expression
voa is a variable or an array

This statemeént assigns the value of the number or expression to one or more variables or
arrays.

BASIC 3-3

statements in basic

Examples:
100 LET X = X + 1
200 LET W7 = (W-X413)*(2-A/(A-B))-17
333 LET X = Y3 = A(3,1) =1
900 LET W = Z = 3%X-4*X12

FOR and NEXT Statements
The FOR statement has the format

number FOR var = expi TO expf STEP exps

and the NEXT statement has the format

number NEXT var
where

number is the line number of the statement

var is a simple (nonsubscripted) variable, identical in both
the FOR and NEXT statements of the couplet

expi is a number or expression whose value is the initial
value of var

expf is a number or expression whose vaiue is the final
value of var

exps is a number or expression .whose value is the increment

between successive values of var between
expi and expf (if omitted from the statement,
exps is assumed to be +1)

The FOR statement enters a loop and the NEXT statement exits from the loop. directing
the computer back to the FOR statement until expf is reached. At this point the NEXT
statement allows the computer to exit from the loop and pass to the next statement in the
program.

Specifications and restrictions in the use of loops, as well as examples of FOR and NEXT
statements, are given in the discussion of loops.

IF/THEN Statement

This statement has the format

number IF exp rel exp THEN next
where
number is the line number of the IF/THEN statement
exp is a mathematical expression or number
rel is an arithmetic operation or relationship

BASIC 3-4

statements in basic

exp is a mathematical expression or number used if and only
if rel is present
next is the line number of the statement to be executed

next if the preceding conditions are met
The conditions of an IF/THEN statement are met when the logical argument exp rel exp
is true or if the single mathematical expression exp is nonzero. Any expression can be

considered a logical argument by evaluating the numbers represented in it by the logical
constants false = 0 and true = not 0.

Examples:
40 IF SIN (X) < = M THEN 80

where the computer jumps to line 80 if the sine of x is less than or equal to m, but
otherwise goes to the next line after 40.

20 IF G = 0 THEN 65

where the computer jumps to line 65 if G is zero, but otherwise goes to the next line after
20.

35 IF A THEN 83

where the computer jumps to line 83 if A is nonzero, but otherwise goes to the next line
atter 35. ’

85 IF A + B - 5 THEN 302

where the computer jumps to line 302 if the value of the expression is nonzero, but
otherwise goes to the next line after 85.

90 IF -2 THEN 200

where the computer always jumps to line 200 since the value of the expression is always
nonzero, i.e., such a statement is equivalent to an unconditional GO TO statement.

GO TO Statements

There are two types of GO TO statements. The unconditional GO TO statement causes the
program execution to jump to the specified line every time the statement is encountered.
This statement has the format

number GO TO next

BASIC 3-b

statements in basic

where
number is the line number of the GO TO statement
next i1s the line number of the statement to be executed next

The computed GO TO statement specifies several lines for the jump. The one selected
depends on the value n of an expression in the statement, where the line number chosen
is the nth line number in the statement. This statement has the format

number GO TO exp OF next,next,next,...
where
number 1s the line number of the GO TO statement
exp IS an expression
next 1s a line number of one of the statements that,

depending on the value of exp, is to be
executed next

Thus. exp is evaluated and the answer truncated to the integer value n that determines
the next to be used, e.g.. if n =2, the second next is the valid line number.

The IF/THEN statement (section 3.6) is also called the conditional GO TO statement
because the program jumps to the specified line only if a certain relationship exists.

Examples: Unconditional GO TO Statement:

150 GO TO 75
where the next statement to be executed in the one in line 75.
Computed GO TO Statement:

160 GO TO I-3 OF 10,30,100

where the next statement to be executed is the one in line 30 when | =5. since I-3=2,
selecting the second line number In the series.

Conditional GO TO Statement: See IF/THEN statement (section 3.6).

GOSUB, RETURN, and SUB Statements
There are three types of SOSUB (Go To Subroutine) statements. All of them direct the
computer to a subroutine according to the specifications of the statement. and all of
them are used with the RETURN statement, which has the format

number RETURN

where number is the line number of the RETURN statement. The RETURN statement is

BASIC 3-6

statements in basic

the exit from the subroutine and returns the computer to the first line number greater
than that of the calling GOSUB statement. RETURN is the only exit from a subroutine, i.e.,
GO TO or IF/THEN statements cannot be used to exit from a subroutine. There can be
more than one RETURN statement in a subroutine, but only one of them can be used on
any given pass through the subroutine.

Subroutines can be nested, i.e., GOSUB statements can be used inside subroutines to call
sub-subroutines.

The unconditional GOSUB statement causes the program execution to jump to the
specified line every time the statement is encountered. This statement has the format

number GOSUB subr
where
number is the line number of the GOSUB statement
subr is the line number of the first statement in the

subroutine to be executed next

The computed GOSUB statement specifies several lines for the subroutine jump. The one
selected depends on the value n of an expression in the statement, where the line
number chosen is the nth line number in the statement. This statement has the format

number GOSUB exp OF subr,subr,subr,...
where
number is the line number of the GOSUB statement
exp IS an expression
subr is the line number of one of the statements that,

depending on the value of exp, is the first
statement of the subroutine to be executed next

Thus, exp is evaluated and the answer truncated to the integer value n that determines
the subr that will be used, e.g., if n =2, the second subr is the valid line number of the
first statement in the subroutine selected.

The GOSUB statement with parameters enters parameter values in the subroutine
specified. The statement has the format

number GOSUB subr,param,param,...
where
number is the line number of the GOSUB statement
subr is the line number of the first statement in the

subroutine to be executed next, i.e., that of
the SUB statement

param is a parameter value to be entered into the
subroutine by the SUB statement

BASIC 3-7

statements in basic

The GOSUB statement with parameters is always used with a SUB statement that has the
format

subr SUB var,var,...
where
subr is the line number of the SUB statement and is
identical with the subr in the corresponding
GOSUB statement
var is a variable

The parameter values in the GOSUB statement are assigned to the corresponding
variables in the SUB statement; i.e., the first parameter value is assigned to the first
variable, etc. The effect of a SUB statement or the definition of variables is removed upon
execution of the corresponding RETURN statement. A subroutine defined by a SUB
statement can be entered retrogressively (see example below).

Examples: Unconditional GOSUB Statement: This program for finding the greatest
common denominator (GCD) of three integers using the Euclidean algorithm illustrates
the use of the unconditional GOSUB statement. The first two numbers are selected in
lines 30 and 40 and their GCD is determined in the subroutine, lines 200 through 310.
This GCD is called X in line 60, the third number is called Y in line 70, and the subroutine
is entered from line 80 to find the GCD of these two numbers. The resulting GCD is the
greatest common divisor of the three given numbers and is printed with them in line 90.

Program

READY
10 PRINT "A", "B", "Cc", "GCD"
20 READ A, B, C

30 LET X = A

40 LET Y = B

50 GOSUB 200

60 LET X = G

70 LET Y = C

80 GOSUB 200

90 PRINT A, B, C, G

100 GO TO 20

110 DATA 60, 90, 120

120 DATA 38456, 64872, 98765
130 DATA 32, 384, 72

200 LET Q = INTI(X/Y)

210 LET R = X - Q*Y

220 IF R = 0 THEN 300

230 LET X = Y

240 LET Y = R

250 GO TO 200

300 LET G = Y

310 RETURN

320 END

RUN

BASIC 3-8

statements in basic

Result
A B C GCD
60 90 120 30
38456 6u872 98764 4
32 384 : 72 8

ERROR 56 IN LINE 20

Computed GOSUB Statement: The expression in the statement is evaluated and
truncated to the integer n, and program execution jumps to the nth line number in the

line number list. If, when z = 1.68, we want the program execution to jump to line 55, we
can write

20 GOSUB Z+1 OF 30,55,70

where the expression is computed to be equal to 2.68 and is truncated to the integer 2.
thus selecting the second line number. In this case, the computed GOSUB results in a
jump like that obtained with the unconditional GOSUB

20 GOSUB 55

GOSUB Statement with Parameters: To pass the two parameter values 5 and 10 into a
subroutine defined by a SUB statement in line 100, we can write

20 GOsuB 100, 5, 10
or, the same transfer results when we use a variable j when its value is 6 and we write

20 GOSUB 100, 5, J+4

GOSUB Statement with Parameters and SUB Statement for Retrogressive Subroutine
Entry: This program shows the use of these statements for a simple incrementation.

Program
LIST
10 REM SHOW USE OF GOSUB WITH PARAMETER TRANSFER
20 LET N = 5
30 GOsuB 100, N
40 PRINT "MAIN PROGRAM"; N
50 END
100 SUB N
105 REM THIS EXAMPLE USES A RETROGRESSIVE SUBR. ENTRY
110 PRINT "SUBROUTINE GOT"; N
120 IF N = 0 THEN 140
130 GOSUB 100, N-1
140 RETURN
9999 END
RUN

BASIC 39

statements in basic

Result

SUBROUTINE GOT
SUBROUTINE GOT
SUBROUTINE GOT
SUBROUTINE GOT
SUBROUTINE GOT
SUBROUTINE GOT
MAIN PROGRAM 5
READY

O =2DNwEsEWUV

PRINT Statements

The PRINT statements control the output and format of the results of BASIC programs.

General Types

There are four common uses of PRINT statement:
* To print the results of computations
* To print comments
« To print a combination of the above
= To skip a line
Each of these uses requires a particular format of PRINT statement.

To print the results of computations, use the format

number PRINT exp.exp,...
where
number is the line number of the statement
exp is a variable or expression whose computed value

is to be printed (up to 5 values per line)
The variables used must already have been given values.
Examples: To print the value of x and the value of its square root, we can write
100 PRINT X, SQR{X)

To print the values of the five expressions x, y, z, b’ —4ac, and e to the power a - b, we
can write

135 PRINT X, Y, %, B*B-U4*A*C, EXP(A-B)

BASIC 3-10

statements in basic

To print comments, use the format

number PRINT "comment"
where
number is the line number of the statement
comment is the material to be printed

Within comment blanks will be observed by the computer. If several comments are to be
printed on one line, e.g., for column headings, use the format

number PRINT "comment", "comment"
where each comment is enclosed within quotation marks. In no case are the quotation
marks printed When used for column headings, the printout automatically aligns the

headings and the columns because the commas specify that the next heading be printed
in the next zone (section 3.9.2).

Examples:

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SIN", "RESOLUTION"

To print a combination of results and comments, use the PRINT statement with the

comments in quotation marks, and with the variables or expressions whose values are to
be printed given as above.

Examples: Where x = 625, we can write

15 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF" X; "IS" SQR(X)

and obtain the printout

THE VALUE OF X IS 625
THE SQUARE ROOT OF 625 IS 25

Note that no terminator (semicolon or comma) is required after quotation marks, but
they are required after variables or expressions (except as the final item in the
statement). The comma causes the item that follows to be printed in the next zone, while
a semicolon causes it to be printed closed-up (section 3.9.2).

To skip a line, use the format

number PRINT

where number is the line number of the statement.

BASIC 3-11

statements in basic

This statement simply requests that the computer print nothing and then activate the
carriage return, i.e., skip a line.

Manipulating the Printing Format

The Teletype line is divided into five printing zones, starting at positions 0. 15, 30, 45,
and 60, respectively. A terminator (comma or semicolon) controls the use of these zones.
A comma (,) moves printing to the next printing zone, or, if the fifth printing zone has
been filled, to the first printing zone of the next line. A semicolon (;) produces more
compact output since it inhibits spacing between printing zones, acting only to separate
quantities to be printed (e.g., A + B;C/D), or to suppress a carriage return at the end of a
print statement.

Spacing within a printing zone depends on the value and type of the number being
printed. A number is always printed in a zone larger than it needs, and is left-justified in
that zone. The zone size is determined as follows:

Value of Number Type of Number Format of Zone
-999 <n < +999 Integer VV XXXy
-999999 <n <-1000 Integer Axxxxxx AAA
+ 1000 <n < +999999 499999 < n <-1000 INT
+1000 < n << 99999
0.1 <n <999999.5 Real (normal VVVV XXXXXXX\/
range) 999999 < n <-10000 INT

+10000 < n <-999999
(decimal point

printed as one of

x's; trailing zeros

suppressed)
n <0.1 Large integer = x.xxxxx E tee AAA
999999.5 < n or real (extreme
range)

The carat (A) represents a space typed on the Teletype.

For example, for the program

10 FOR I = 1 TO 15
20 PRINT I

30 NEXT I

40 END

RUN

BASIC 3-12

statements in basic

the Teletype prints 1 at the beginning of a Iine,' 2 at the beginning of the next line, etc.,
up to 15 on the 15th line.

By changing line 20 to read

20 PRINT I,
RUN

the numbers are printed in zones, reading

1 2 3 4 5

6 7 8 9 10
11 12 13 14 15

To print the numbers in more tightly packed zones, replace the comma in line 20 with a
semicolon

20 PRINT I;
RUN

and the result is

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15

A character string in quotation marks is printed just as it appears. The end of a PRINT
line always signals a new line unless a comma or a semicolon is the last symbol. Thus, the
statement

50 PRINT X, Y
prints the two numbers and returns to the next line, while the statement

50 PRINT X,Y,

prints these two values but does not return. The next number is printed in the third zone,
following the values of X and Y in the first two zones.

Since the end of a PRINT statement signals a new line,
250 PRINT

skips one line. This can be used to put a blank line in the program to allow vertical
spacing of the results. It can also be used to complete a partially filled line:

50 FOR M

= 1 TO N
110 FOR J = 1

TO M+1

BASIC 3-13

statements in basic

120 PRINT B(M,J);
130 NEXT J
140 PRINT
150 NEXT M

This program prints B(1,1) followed by B(1,2). Without line 140, the Teletype would
continue to print B(2,1), B(2,2), and B(2,3) on the same line, and then B(3,1), B(3,2), etc.
Line 140 directs the Teletype to start a new line after printing the B(l,2) value
corresponding to M = 1, and again after printing the value of B(2,3) corresponding to M
= 2, etc.

The instructions

50 PRINT "VARIAN BASIC ";
51 PRINT "LANGUAGE COMPILER"

print

VARIAN BASIC LANGUAGE COMPILER
Output formatting can be controlled even further by use of the function TAB. Insertion of
TAB(17) causes the Teletype to move to column 17 as if a tab had been set there. For this
purpose, line positions are numbered O through 71.
TAB can contain any expression as its argument. The value of the expression Is
computed. truncated. and its integer part taken. The Teletype then moves forward to this
position. {f the position has already been passed, the TAB s ignored. If the result is
greater than 71, the Teletype moves to position 0 of the next line.
For example, to insert the following line in a loop, we write

PRINT X; TAB(12); Y; TAB(27); 2

This prints the X value in column O, the Y value in column 12, and the Z value in column
27

A comma following a TAB clause has no effect on Teletype positioning. The statement
PRINT TAB(7), A+B

prints the value of A + B starting at position 7. The statement
PRINT Z, A+B

prints the value of A + B at positign 15 (second printing zone).

BASIC 3-14

statements in basic

The following rules for the printing of numbers will aid in interpreting printed results:

a. |f the number is an integer with a value from —939999 to + 999999. inclusive.
the decimal point is not printed.

b. If the number is real and has an absolute value between 0.1 and 999999.5. it is
rounded to six digits and printed with a decimal point. Trailing zeros after the
decimal point are suppressed.

¢. A number either greater than 999999.5 or less than 0.1 is rounded to six places.
The Teletype then prints a space (if positive) or a minus sign (if negative), the
first digit, the decimal point, the next five digits, the letter E (exponent), the
sign of the exponent, and the value of the exponent. For example, 3.243.756 is
printed as 3.243756E + 6.

The following program to print the powers-of-two shows how numbers are printed.

Program
READY
10 FOR N = -5 TO 30
20 PRINT 2!N;
30 NEXT N
40 END
RUN
Result
3.12501E-02 6.25002E-02 .125 .25 .5 1

1.99999 3.99999 7.99997 15.9999 31.9998 63.9995
127.999 255.998 511.994 1023.99 2047.98 4095.94
8191.88 16383.7 32767 .4 65535 131069 262138

524277 1.04855E+06 2.09790E+06 4.19422E+06 8.38839E+06
1.67768E+07 3.35536E+07 6.71068E+07 1.34213E+08 2.68427E+08
5.36854E+08 1.07370E+09 READY

INPUT Statement
The INPUT statement has the format

number INPUT var,var,...
where
number is the line number of the statement
var is a variable

The INPUT statement acts as a READ statement but does not draw data from DATA

BASIC 3-15

statements in basic

statements. Instead, it asks the user to supply the required data by outputting a question
mark. The user types the data, separating each number from the next with a comma, and
presses the RETURN key on the Teletype.

INPUT should be used only when small amounts of data are to be entered, or when it is
necessary to enter data during the running of the program, since data entry via INPUT is

slow. Furthermore, data entered via INPUT statements are not saved with the program.
Numbers used with INPUT must not exceed nine digits.

To retake control from the INPUT processor, type a plus (+).
Examples: If the user is to supply values for x and y, type
40 INPUT X, Y
before the first statement that uses either variable. When the computer encounters this
statement, it types a question mark. Type two numbers, separated by a comma and press

the RETURN key. The computer then goes on with the rest of the program.

Frequently, an INPUT statement is combined with a PRINT statement to ensure that the
user knows what the question mark is asking for. You might type, for example,

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, 2

and the computer will type
YOUR VALUES OF X, Y, AND Z ARE?

(Without the semicolon at the end of line 20, the question mark would have been printed
on the next line.)

RESTORE Statement
The RESTORE statement has the format

number RESTORE
where number is the line number of the statement.
The RESTORE statement permits the reuse of data within a program. When RESTORE s
encountered in a program, the computer restores the data-block pointer to the first data
number. A subsequent READ statement then starts the reading of the data again from
the first data item.
If the desired data items are preceded by unwanted data, use extra READ statements to

pass over these numbers.

BASIC 3-16

statements in basic

Example: This program reads the data, restores the data-block pointer.. and rereads the
data. Note the use of line 570 to pass over the already-known value of n.

100 READ N
170 FOR I = 1 TO N
120 READ X

200 NEXT I

560 RESTORE
570 READ X
580 FOR I = 1 TO N
590 READ X

REM (Remark) Statement
The REM statement has the format

number REM comment
where
number is the line number of the statement
comment is any comment desired in the listing

The comment in the statement is printed in the listing just as written, including blanks. It
1s. however, otherwise ignored by the processor.

The line number of a REM statement can be used in a GO TO or IF/THEN statement.
Examples:

100 REM INSERT DATA IN LINE 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

300 RETURN

BASIC 3-17

statements in basic .

520 GOSUB 200

CALL Statement
The CALL statement has the format

number CALL asubr,parameter,parameter,...
where
number is the line number of the statement
asubr is the name of an assembly-language subroutine

(1-6 alphanumeric characters)
parameter is a variable, number, or expression

The CALL statement links absolute assembly-language subroutines to BASIC. Execution of
the CALL statement passes control to an assembly-language program appended to the
BASIC system. For internal design considerations of CALLed subroutines, see section 6.

Results can be returned to the BASIC program through the parameters. Care is necessary
to prevent an constant from being placed in a position in the CALL statement where the
subroutine attempts to return a value. This results in the value of the constant being
changed throughout the BASIC interpreter.

Examples:
100 CALL SUBA, AaA/D, X, 3
200 CALL RESET
883 CALL POLY, A+3, B+4, C*Di15, E

WAIT Statement
The WAIT statement has the format

number WAIT delay
where
number is the line number of the statement
delay i1s a number. variable, or expression whose value

gives the number of milliseconds delay introduced
into the program at this point (maximum value
32,767)

STOP Statement
The STOP statement has the format

number STOP

BASIC 3-18

statements in basic

where number is the line number of the STOP statement.

The STOP statement stops the computer execution of the program. Execution resumes
with the next BASIC statement when the RUN or START key on the computer is pressed.

END Statement

The END statement has the format
number END
where number is the line number of the END statement.
The END statement returns control to the operator. A program can have more than one

END statement, but it is possible for a program to terminate without reaching an END
statement, e.g., when there is no more data to process.

BASIC 3-19

SECTION 4 — USING THE BASIC SYSTEM

This section provides:
» The operating instructions for the BASIC system
« The control commands that the user inputs from the Teletype keyboard

An explanation of the two BASIC operating modes: program mode and
calculator mode

OPERATING INSTRUCTIONS

The minimum hardware configuration for using BASIC is a Varian 73 or 620-series com-
puter with 8K of memory and a model 33/35 ASR Teletype.

Memory requirements for the various configurations are:

Basic BASIC 6224 words
BASIC with trig 6585 words
functions

BASIC with matrix 7421 words
functions

Binary Load/Dump 256 words
Program (BLD I1)

Debugging Program 1024 words
(AID 1)

in an 8K system, AID I cannot be loaded in addition to a complete BASIC program.
To operate the BASIC system:

a. Manually enter the bootstrap loader program (refer to the apphicable system
reference handbook).

b. Load the BASIC system tape with the Binary Load/Dump program provided.

c. Start the prdgram at location 02. The program types:

PAPER TAPE: TYPE 1 FOR HI SPEED, ELSE TTY .
{continued)

BASIC 4-1

using the basic system

d. If the high-speed paper tape reader/punch is desired, enter a 1. Any other entry
assigns paper tape input/output to the Teletype. The program types:

MAT, TRIG: 1 TO SAVE BOTH, 2 TO SAVE TRIG, ELSE
DELETE BOTH

e. The lower boundary of the BASIC table space is selected here. The program
space used by the matrix or trig function can be deleted and used by BASIC for
working storage. If there is more than 8K or memory, the program types:

AID: 1 TO SAVE, ELSE WIPEQUT

The core space occupied by the utility program AID will be used by BASIC unless
there i1s a request that i1t be saved. In an 8K system, AID is always lost. The
program types:

READY

and waits for input from the Teletype.

f. Start the input, which can be -either a BASIC statement or a control command.

If, in the process of typing a statement, you make a typing error and notice it immediately,
you can correct it by pressing the backward arrow (shift key above the letter O). This
deletes the character in the preceding space, and you can then type in the correct
character. Pressing this key a number of times will erase from a line the characters in that
number of preceding spaces. To delete all of the present line, press RUBOUT. Programs or
data can be annotated by typing the remark and then deleting the line (as far as the
system is concerned) with a RUBOUT. BASIC types a backslash to show that a line has
been deleted.

After typing your complete program. type RUN, press the RETURN key. If the program is
free of errors, the computer will run it and type out any resuits that you requested in your
PRINT statements. This does not mean that your program is entirely correct, but that it
has no errors of the type known as grammatical errors.

If there are grammatical errors, the computer types an error code as soon as each error I1s
detected while the program is being typed. Errors detected after RUN are structural (loop-
nesting, matching GOSUB and return) or arithmetic errors. A list of error codes with an
interpretation of each is in appendix A.

If you receive an error message, correct the error by typing a new line with the correct
statement. For example, to eliminate the statement on line 110 from a program. type 110
and then press the carriage return. To insert a stitement between those on lines 60 and
70, give it a line number between €0 and 70.

If it is obvious while the computer i1s running that the answers are wrong, press any
Teletype key and computation ceases. The system types:

READY
and you can make your corrections.

BASIC 4-2

using the basic system

Example:

Program

READY

10 FOR N = 1 TO 7
20 PRINT N, SQR(N)
30 NEXT N

40 PRINT "DONE"

50 END
RUN

Result
1 1
2 1.41421
3 1.73205
[} 2
5 2.23607
6 2.44948
7 2.64575
DONE

At all times, there is only one device from which the BASIC interpreter will accept
information and only one device on which it will output data. These devices are fixed at
program initialization time.

CONTROL COMMANDS

The following are BASIC control commands:

Any key Stops program execution when the program is running.
Returns control to the Teletype.

RUN nnn Begins execution of the program starting at line
nnn. If no digits (nnn) are entered, 1 is assumed.

LIST nnn Outputs an up-to-date listing of the program on
the currently active listing device starting at
line nnn. Listing can be terminated by pressing

any key.
PLIST nnn Same as LIST, but the output device is the high-
speed paper tape punch or Teletype, whichever was
|

BASIC 4-3

using the basic system

PTAPE Moves control to the high-speed paper tape reader
or Teletype, whichever was selected.

SCRATCH Deletes the current BASIC program from memory.

PROGRAM AND CALCULATOR MODES

The description of the BASIC system to this point has assumed that the definition and
execution of programs has occurred at different times, i.e., that one entered a set of
numbered BASIC statements that were checked for validity and stored, then entered the
control command RUN to start execution of the program defined by this set of
statements. This mode of operation is called the program mode.

Varian BASIC can also run in the calculator mode, which causes the computer to respond
immediately to a BASIC statement, just like a desk calculator. In this mode. one does not

enter a statement number, but only a statement, and the BASIC system executes it
immediately. Example:

PRINT 5%*4-3
17

BASIC 4-4

error messages

SECTION 5 — ERROR MESSAGES

An error message is printed as soon as the error condition is detected. The format is as
follows:

ERROR xx IN LINE nn
Error Code xx _ Meaning

0 Hardware M/D option missing

1 Statement ends unexpectedly

2 Input exceeds 72 characters

3 System command not recognized (can be missing
statement number)

4 Missing or incorrect statement type

5 Exponent of number is missing power

6 Symbol! following MAT not recognized

7 LET statement has no store

9 Missing or incorrect function identifier in DEF

10 Missing parameter in DEF statement

11 Missing assignment operator

12 Missing THEN

13 Missing or incorrect FOR variable

14 Missing TO

15 Incorrect STEP in FOR statement

16 Called routine does not exist

17 Wrong number of parameters in CALL statement

18 Missing or incorrect constant in DATA statement

19 Missing or incorrect variable in READ statement

20 No closing quotation mark for PRINT string

21 Missing print delimiter or bad PRINT quantity

22 Illegal word follows MAT

23 Missing delimiter

24 Improper matrix function

25 No subscript where expected

26 Cannot invert or transpose matrix into itself

27 Missing multiplication operator

28 Improper matrix operator

29 Matrix cannot be both operand and result of matrix
multiplication

30 Missing left parenthesis

BASIC 5-1

error messages

Error Code xx

BASIC 5-2

31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
53
55
56
57
58
59
60
61
62
63
64

The following
continues:

65
66
67
68
69
70

Meaning

Missing right parenthesis

Operand not recognized

Defined array missing subscript part

Missing array identifier

Missing or bad integer

Nonblank characters foilowing statement's logical
end

Out of storage during syntax phase

Paper tape reader not ready or EOF on paper tape

Doubly defined function

FOR statement has no matching NEXT statement

NEXT statement has no matching FOR statement

Formal parameter finds no actual parameter

Array appears with inconsistent dimensions

Missing END statement or attempted execution of a
nonexecutable statement

Array doubly dimensioned

Number of dimensions not obvious

Array too large

Out of storage during array allocation

Subscript too large

Accessed operand has undefined value

Noninteger power of negative number

Missing statement

RETURN finds no address

Qut of data

Out of storage during execution

Dynamic array exceeds allocated storage

Dimensions not compatible

Matrix operand contains undefined element

Singular or nearly singular matrix

Trigonometric function argument too large

Attempted square root of negative argument

Attempted log of negative argument

errors are warnings only; program execution

Numerical overflow; result taken to be % infinity

Numerical underflow; result taken to be zero

Log of zero taken to be - infinity

EXP overflow; result taken to be + infinity

Division by zero; result taken to be # infinity

Zero raised to negative power; result taken to
be + infinity

SECTION 6 — CALL DESIGN CONSIDERATIONS

There are certain internal design considerations for CALL subroutines. Parameters are
passed to the called routine in the convention adopted by Varian: ie.. a hst of the
addresses of the actual parameters immediately following the JMPM instruction to the
subroutine. All actual parameters are real (Varian floating-point format) numbers.

Subroutine linkage to the BASIC interpreter is through a list containing the name of the
subroutine, the number of parameters it expects, and its entry address. The hnkage hst
contains five words per subroutine, construction as follows:

DATA 'NAME', (ADR)

Tv Entry address

Number of parameters. — 1 1f vanable
Six-character subroutine name, rightjustified

The setting of the first word of the name field to zero signals the end of the hst. A pointer
to the linkage list must be placed in location 010. Location 022 points to the highest
address used by BASIC, so this cell must be decremented to allow space for the linkage
list and the user subroutines to be loaded above the BASIC tables.

A set of address bounds are available if the programmer wishes to know what type of
parameter has been passed to him. By checking the parameters against these bounds. he
can ensure, for example, that he does not store into constants. These address bounds are
stored in the following location pairs (the first cell holds the first address of the block: the
second holds the last address + 1)

Simple variable (011) < X < (012)
Expression (015) < X < (0117)
Constant (017) < X < (020)

The following program shows a setup to make the two assembly language subroutines
SUBI1 and SUB2 available to a basic program.

To operate this program:
a. Load and initialize BASIC. selecting options as requested. until READY 1s typed.

b. Load the subroutine package containing SUB1 and SUB2 using the Binary
Load/Dump program and overlaying locations 010 and 022.

c. Restart BASIC at location 02 to access the two subroutines

BASIC 6-1

¢-9 0isvd

SYMBOLS

—_ a o

%

015006 R
015003 R
015000 R
015000

TABL
SUB2
SUB1
LOC

*DEMONSTRATION OF TYPICAL SUBROUTINE ADDIT

*

015000
015000

015001
015002
015003

015004
015005

015006
015007
015010

015000

000000

001000
115000
000000

001000
115003
015006
120240
151725
141261

LGC
SUB1
*
*
*

R
SUB2
*
*
*

R

R TABLE

, EQU ,0150
. ORG , LOC
, ENTR ,

BODY OF SUB1
, JMP* ,SUB1

, ENTR .

BODY OF SUB2

, JMP* ,SUB2
+EQU ¥
,DATA .

ION TO BASIC
00

LOC OF SUBROUTINES
ENTRY TO SUB1

RETURN FROM SUB1

ENTRY TO SUB2

RETURN FROM SUB2

LOC OF LINKAGE TABLE
SuB1',0,(SUB1) SUB1 ENTRY,

ZERO PARA

suoijelapisuod ubisap ||eo

€-9 Olsva

015011
015012
015013
015014
015015
015016
015017
015020

000010
000010
000022
000022
LITERALS
POINTERS

SYMBOLS

- a2

000000
015000 R
120322
142723
142724
000002
015003 R
000000

015006 R

014777
000002

015006 R TABL
015003 R SUB2
015000 R SUB1
015000 LoC

,DATA , RESET',2,(SUB2) SUB2 ENTRY, TWO PARA

,DATA , 0 **END FLAG FOR LINK TABLE**
*

*NOW SET POINTERS FOR INTERPRETER
*

,ORG ,010 LOC OF INTERPRETER POINTERS
,PZE , (TABL) POINTER TO LINKAGE TABLE

, ORG ,022

,PZE ,(LOC-1) POINTER TO LAST CELL

,END ,2

suonesapisuos ubisap |jeo

SECTION 7 - EXTENDED BASIC

Extended BASIC (EBASIC) extends the BASIC language to provide a powerful tool for real-
time systems using rotating memory devices. A complete data-acquisition and process-
control system called ADAPTS is built around EBASIC, and is available from Varian Data
Machines.

This section describes how to write programs using the EBASIC language. The ADAPTS
User's Guide (publication number 03-996 700B) contains additional programming
information for the advanced user who wishes to add his own assembly-language
subroutines to the system.

The two features of EBASIC which distinguish it from more common versions of BASIC are:

* A CALL statement which permits subroutines to be written in assembly language.
Assembly language subroutines execute faster than subroutines written in EBASIC,
and they also permit access to special purpose hardware.

« A set of statements which provide file handling and file maintenance capability.
Programs and data files are resident on bulk storage devices such as fixed-head
disc, moving-head disc, 9-track IBM compatible magnetic tape, or cassette magnetic
tape.

GETTING STARTED

The best way to learn to program this system is to skim through this section very quickly
and then to begin practice at the Teletype keyboard.

Assuming that EBASIC is running in the computer and the Teletype power switch is
positioned to LINE, the computer will type READY each time the ESC key is used (CTRL,
SHIFT and K for the ASR-35). In the ready state, the system is waiting for the user to type
a control command or a numbered program statement.

Under normal operating conditions, EBASIC is always in either a ready state or a run
state. If a program is in the computer, the system will enter the run state after the
operator hits the control command RUN (followed by the carriage return key). This action
will cause the program to be executed.

BASIC 7-1

EBASIC

Keyboard Input

The Teletype keyboard is used to give control commands and to write program
statements. From the standpoint of construction, the difference between a command and
a program statement is that a program statement has a line number, for example,

10 PRINT X

and a command has no line number (or line number 0), for example,
PRINT X.

All lines of input must be terminated by the carriage RETURN key.

Control Commands

Several inputs are used specifically to operate on the entire EBASIC program in the
computer. Therefore, these are designated as control commands. In fact, they may also be
given line numbers and made part of a program. These commands, which are listed in
table 7-1, must be terminated with the carriage RETURN key.

Table 7-1. EBASIC Control Commands

Command Description

RUN nnnn Runs or executes the program in the computer from line
nnnn. If nnnn omitted, run begins at lowest numbered
statement.

ESC key Aborts program execution. Use CTRL, SHIFT, and K on

ASR-35 Teletype.

LIST nnnn Lists program from line nnnn to the end. If nnnn omitted,
entire program is listed.

PLIST nnnn Punches program from line nnnn to the end. If nnnn
omitted, entire program is punched (paper tape output).

PTAPE Reads in a program from paper tape. Each line is accepted
or rejected exactly as if it were typed on keyboard.

SCRATCH Deletes the entire program.
RESTART Brings in a fresh copy of EBASIC from the system file (disc).

REMOVE mmmm Removes program statements from line mmmm to nnnn. If nnnn<
TO nnnn mmmm, then only one line will be removed.

BASIC 7-2

EBASIC

The paper tape reader and punch may be either the Teletype devices or the optional high
speed devices. The reader and punch are selected as Teletype or high-speed during the
system dialogue with the user which follows the RESTART command. The RESTART
command has a number of other functions as weli:

* It enables the user to delete the matrix and/or trigonometric functions from EBASIC,
thus conserving core space.

+ It enables the user to load assembly language subroutines from paper tape onto the
disc.

* It allows the user who has a system with more than 12K of core memory to make the
upper core unavailable to EBASIC. That is, the upper core may be reserved, in 1K
increments, for non-EBASIC use or for assembly language subroutines.

« Italiows assembly language subroutines to be loaded from disc into core.

Program Statements

A description of each program statement is given in a later section. Each statement is
preceded by a line number which must be an integer in the range from 1 to 9999. For
example,

10 PRINT X

is a program statement. Statement numbers are assigned in the sequence in which the
statements are to be interpreted at run time. However, they do not have to be typed in the
order in which they are run. For example,

20 PRINT A
10 PRINT B

Even though statement 10 is typed after statement 20, it will precede 20 in the actual
program. The LIST command types all program statements in their true numerical order -
not the order in which they are entered.

Statements need not be executed in numerical order, however, because the program may
contain branching statements which transfer control to another point in the program.

It is advisable to assign line numbers which follow in increments of 10 (or some other

convenient number). This permits the insertion of statements between those previously
entered.

BASIC 7-3

EBASIC

Editing Features

Two keys on the Teletype have special meaning during input of a line.

- (black arrow) . Deletes previous character on the line.
Retype character or backspace again.

RUBOUT . Abort current line. Must be given
before RETURN to have effect.
Retype line.

The back arrow may be used as many times as necessary on a single line to backspace over
typographical errors. RUBOUT, in addition to aborting the entire line, will cause a backward
slash (\) to be printed and the printer will advance to the left margin of the next line.

To change a program statement already entered, simply retype the line using the same
line number. The new entry will overlay the old entry. To delete a single statement already
entered, retype the line number and follow with the RETURN key. This " erases" the
previous statement with that line number.

Error Messages

During the entry of a line, EBASIC checks for construction errors and reports certain
errors. Errors may also be reported during running of a program. All errors are reported
through the following message output to the user:

ERROR XX IN LINE nnnn

where nnnn is equal to line zero for control commands. The error codes (XX) and their
meanings are given in table 7-2. Notice that errors 65 through 70 do not abort the
program but serve only as warnings to the user.

ELEMENTARY BASIC

All subjects not included in this section may be ignored by the beginner, if he so desires.
The omissions are those topics dealing with:

« arrays, matrices, and vectors

* bulk storage files

BASIC 7-4

EBASIC

Assignment Statements

The topics covered in this section are:
« LET
¢ Variables and numbers
« Arithmetic and boolean operators
« EBASIC functions

« DEF

LET
The LET statement assigns a value to a variable. A simple example is:

10 LET A = 1
which assigns the value 1 to variable A. The symbol = is sometimes called a
" replacement operator for" ; in this context, it means replace the value of the variable A
with the constant 1.
The quantity to the right of the = symbol may be a formula involving previously defined
variables and functions as well as constants. A simple formula is indicated by the
example,

10 LET A = A + 1
in which the current value of A is replaced by A + 1, thatis, A is incremented by one.
The word LET is optional and need not be typed by the user. Thus, the statement,

10 A = A + 1
has the same meaning as the previous example. LET is implied and understood by
EBASIC. On a listing of the program, LET will be inserted before the variable to the left of
the = symbol by the EBASIC language processor.
The LET statement may be used to assign one value to several constants. For example:

10 LET A =S =T = X =0

The whole string of variables (A, S, T, X) will be assigned the value to the right of the last
= symbol, which is zero in this case.

BASIC 7-5

EBASIC

Variables

A variable may be either a simple variable or an array variable. The following variables are
examples of each:

SIMPLE VARIABLES

AB ...,V Z
AO, A1, BO, Bl Z8 29

ARRAY VARIABLES

A1), A2),BQ1), B(2), Z(255)
A(L, 1), A1, 2),. ... BQ1, 1), B, (1, 2),

A, B(l, J), C(, J2)

. ..., Z(255, 255)

A simple variable may be either a single letter (A to Z) or a single letter foliowed by a
single digit (0-9). An array variable is a single letter followed by one or two subscripts
enclosed in parentheses. Subscripts may be previously defined variables but no subscript
may exceed 255. Subscripts may also be integers.

Code

[FVI

ONOO N

10

12
13
14
15
16
17

BASIC 7-6

Table 7-2. EBASIC Error Codes

Meaning

Statement ends unexpectedly.

Input exceeds 72 characters.

System command not recognized.
(May be missing statement

number.)

Missing or incorrect statement type.
Exponent of number is missing power.
Symbol following MAT not recognized.
LET statement has no store.

Missing or incorrect function identifier
in DEF.

Missing parameter in DEF statement.
Missing assignment operator.

Missing THEN.

Missing or incorrect FOR variable.
Missing TO.

Incorrect STEP in FOR statement.
Called routine does not exist.

Wrong number of parameters in CALL
statement.

{continued)

Code
18

19

20
21
22
23
24
25
26
27
28
29

30
31
32

34
35
36

37
38

39
40

41
42
43
a4
45
46
a7
48
49
50
51
53
55
56
57

Table 7-2. EBASIC Error Codes (continued)

Meaning

Missing or incorrect constant in DATA
statement.

Missing or incorrect variable in READ or
OPEN statement.

No closing quote for PRINT string.

Missing print delimiter or bad PRINT quantity.
lllegal word follows MAT.

Missing delimiter.

Improper matrix function.

No subscript where expected.

May not invert or transpose matrix into self.
Missing multiplication operator.

Improper matrix operator.

Matrix may not be both operand and result of
matrix multiplication.

Missing left parenthesis.

Missing right parenthesis.

Operand not recognized.

Defined array missing subscript part.
Missing array identifier.

Missing or bad integer.

Nonblank characters following statement’s
logical end.

Out of storage during syntax phase.

Tape reader not ready or EOF on

mag tape.

Doubly-defined function.

FOR statement has no matching NEXT
statement.

NEXT statement has no matching FOR statement.
Formal parameter finds no actual parameter.
Array appears with inconsistent dimensions.
Missing END statement.

Array doubly dimensioned.

Number of dimensions not obvious.

Array too large.

Out of storage during array allocation.
Subscript exceeds bound.

Accessed operand has undefined value.
Noninteger power of negative number.
Missing statement.

RETURN finds no address.

Out of data.

Out of storage during execution.

EBASIC

BASIC 7-7

EBASIC

Table 7-2. EBASIC Error Codes (continued)

Code Meaning

58 Dynamic array exceeds allocated storage.

59 Dimensions not compatible.

60 Matrix operand contains undefined element.

61 Singular or nearly singular matrix.

62 Trigonometric function argument is too large.

63 Attempted square root of negative argument.

64 Attempted log of negative argument.

65 Numerical overflow, result taken to be t infinity.

66 Numerical underflow, result taken to be zero.

67 Log of zero taken to be — infinity.

68 EXP overflows, result taken to be + infinity.

69 Division by zero, result taken to be t infinity.

70 Zero raised to negative power, result taken to
be + infinity.

71 lllegal file name.

72 lllegal file type.

73 lliegal logical file humber.

74 File number not ASSIGNed.

75 Illegal file access mode.

76 File not OPENed

77 File cannot be found.

78 Mass storage full.

79 Attempt to read past end of file.

80 1/0 unit not ready.

81 Data transfer 170 error.

82 Peripheral not in configuration.

83 Removable media peripheral busy.

‘84 No BASIC program in core to SAVE.

85 lllegal argument(s).

86 Incorrect number of arguments.

87 Data file too large.

88 System power on or run from

location zero.

Note: Errors 65 through 70 are warnings only. Program will continue to execute.

Numbers

Numbers in EBASIC are positive or negative expressed in decimal form, and may contain
up to seven significant digits. Numbers may be in the range 10" to 101

BASIC 7-8

EBASIC

Example:

-35

5

-7E-5
1234567
6E+10
1.543217E6

where — 7E- 5 means — 7 times 10 raised to the — 5 power. The plus sign is optional for a
positive power of 10. -

Numbers may be entered in one of three ways:

a. Asan integer (no decimal point)
b. Asa real number (with a decimal point)

c. Aslarge number (integer or real) with an exponent to the base 10 (scientific notation).
Maximum exponent is + 38.

When printing numbers during a program run or following a LIST command, EBASIC uses
a format which depends on the size and type (real or integer) of the number. This function
is explained later under the PRINT statement. For now, assume that an integer of more
than six digits will be printed in exponential notation as will very large or very small real
numbers.

All numbers are stored in computer memory in a floating-point format that utilizes two 16-
bit computer words per value. This is true whether the numbers are referenced as
contants, simple variables, or array variables.

Arithmetic and Boolean Operators

The arithmetic and boolean operators enable the user to perform computations in
EBASIC. Functions (described in following section) may also be used to perform
computations. The operators and the operations they perform are shown in table 7-3. The
order in which they are listed indicates their priority or the order in which the operations
will be performed in a formula. Exponentiation is of the highest priority and the boolean
OR of the lowest. Operations on the same line in the table are of equal priority.

BASIC 7-9

EBASIC

Table 7-3. Arithmetic and Boolean Operators in

Descending Order of Priority
Operation Operator

Exponentiation t

Muitiplication, division 0/
Addition, subtraction, NOT +, =, NOT
AND AND

OR OR

The following are examples, shown both in EBASIC notation (using the operators) and in
notation perhaps more familiar.

EBASIC Notation Algebraic Notation
X1 2 + 2 X'+ 2

A
(A/(B+4)) *X B+4)X
EBASIC Notation Boolean Notation
A AND B OR NOT C AB + C

Boolean operators are defined by " truth tables" , which show the effects of the operations.
The truth tables for AND, OR, and NOT are given in tables 7-4.

Table 7-4. Truth Tables for Boolean Functions AND, OR, NOT

AND OR NOT
Al B | aapB| Al B | AORB | A | NOTA
F | F 0 F | or 0 F T
FloT 0 FloT 1 T F
T|F 0 T F 1
T T 1 T T 1

Note: F = 0; T= 0

A value (B for example) is false (F) if B is equal to zero and true (T) if B is not equal to
Z€ro.

BASIC 7-10

EBASIC

The rules of priority may be summarized as follows:

a. In the absence of parentheses, all arithmetic and boolean operations in a formula are
computed in the priority indicated by table 7-3. Exponentiation has the highest
priority and muitiplication and division are next (equal priority).

b. A quantity in parentheses is computed before that quantity is used in further

computation.

c. In the absence of parentheses in a formula involving operations of equal priority, they
are performed as they are read from left to right.

Functions

In addition to the five arithmetic operations (+, *, /, +, =) and the three boolean
operations (AND, OR NOT), EBASIC has twelve defined functions. These functions are

listed in table 7-5.

Function

SINCX)
COS(X)
TAN(X)
ATN(X)
EXP(X)
LOG(X)
SQR(X)
ABS(X)
INT(X)

RND(X)

SGN(X)
TAB(X)

TRIG FUNCTIONS

Find
Find
Find
Find
Find
Find
Find
Find
Find

the
the
the
the
eX

the
the
the
the

Table 7-5. EBASIC Functions

Interpretation

sine of X
cosine of X
tangent of X .
arctangent of X

natural logarithm of X (InX)
square root of X (y"X)
absolute value of X

largest integer contained in X

Find a random number (uniform distribution)

X is dummy

SGN(X) = 1ifX>0, -1ifX<0, 0 ifX=0
Space to column X, where X = 0 through 71

The trigonometric functions (SIN, COS, TAN and ATN) may be deleted from the system by
the user during the Teletype dialogue following the use of the RESTART command. The
user may wish to delete these functions, since this will provide an extra 400, locations in
computer memory for use by EBASIC.

BASIC 7-11

EBASIC

INT

The INT (integer) function may be used to round off to the next highest integer by adding
0.5 to the number before applying the function. For example:

10 LET A = 3.7
20 LET B = INT (A)
30 LET C = INT (A + 0.5)

In this example B would be assigned to the value 3 while C would be assigned the value 4.

RND

The RND (random) function is used to generate a random number from a uniform
distribution of numbers between O and 1. The argument for RND has no meaning,
although it must be included. That is,

RND (X)
RND (12)
RND (0)

are all equivalent. For example, to generate a random integer between 0 and 100, the INT
function could be used as follows:

10 LET X = INT (100 * RND (0))

It is important to remember that when RND is used in a program, the same sequence of
random numbers will be generated each time the program is run. If the user desires a
different sequence he may discard some numbers from the sequence.

The following example generates random numbers from 0 to 100 and prints them until a
number greater than 50 is generated. Upon finding a number greater than 50, the
program ends and EBASIC returns to a ready state.

10 LET X = 100 * RND (0)
20 IF X > 50 THEN 100

30 PRINT X
40 GOTO 10
100 END

SGN

The SGN (sign)function returns the value-1, 0, or + 1 according to whether the argument
is negative, zero, or positive, respectively.

TAB

The TAB function is used in conjunction with the PRINT statement to format output. It
may cause the printer to advance to the column (0-71) specified by the argument before
printing. The TAB function should be followed by the item to be printed.

BASIC 7-12

EBASIC

DEF

In addition to the standard functions, any other function which will be used in the
program a number of times can be defined by the use of the DEF statement. The name of
the defined function must be three letters, the first two of which must be FN. Thus, a total
of 26 functions can be defined FNA, FNB, etc.).

For example, if the function,

SIN (X)
X

is needed frequently, it might be defined by the line
30 DEF FNR (X) = SIN (X)/X

The expression to the right of the equal sign may be any formula which fits onto one line.
It may include standard functions and even functions defined by other DEF statements.
The DEF statement may appear after the line number in which the function it defines is
used, but not after and END statement.

The following sequence of statements illustrates the use of a function to compute the third
side of a triangle when two sides and the included angle are given. Note that, in the
definition, the two known sides (B1, Cl)are given as variables. These variables must be
assigned values before the function may be used. The variable A (the included angle) is
used to define the function. Function. EN§ converts the angle given in degrees to its radian
equivalent. In the example FNR computes the side of the triangle and assigns it equal to
the variable S.

10 LET B1 = 10
20 LET C1 = 20
30 LET A = 30
40 LET S = FNR(A)

CRRERY

100 DEF FNR(A) = B1 t 2 + C1 t 2 - 2 * Bl * Cl * FNS(A)
110 DEF FNS(A) = (A * 3, 14159) / 180

Data Pools

This section describes the method of establishing and using data pools. A data pool is a
collection of values to be used by the program during run time. The section shows how to
establish a one-to-one correspondence between variables and constants. This permits a
program to run according to input which the user may enter prior to execution.

BASIC 7-13

EBASIC

READ DATA

The READ statement is always used in conjunction with one or more DATA statements. A
DATA statement establishes a pool of numerical constants which may be assigned to
variables in a READ statement. In the following example, X, Y, and Z are assigned values
1, 2 and 3 respectively.

10 READ X, Y, 2
20 DATA 1, 2, 3

The items following READ are called a-READ list and the items following DATA are called
a DATA list. The DATA list may contain constants only; it may not contain functions,
expressions, or operators. DATA statements may appear anywhere in the program since
they are not executed.

Access to the data pool by READ statements is always sequential in the order in which
items appear. Constants placed in the data pool need not be used, but enough values
must be supplied to satisfy all READ statements. Continuing the example already
introduced,

10 READ X, Y, 2
20 DATA 1, 2, 3
30 DATA 4, 5, 6, 7, 8
40 READ A, B, C

in which A, B, and C are assigned the values 4, 5 and 6 respectively and the values 7 and
8 are not read at all.

RESTORE

The RESTORE statement permits the data pool to be re-used by initializing the READ
pointer to the first value in the lowest numbered DATA statement. In the following
example, X and Y are initially assigned the values 1 and 2, respectively. X and Y are then
used in a LET statement which alters the value of X. After executing tht RESTORE
statement, the READ statement in line 50 re-uses the data pool, only this time the values
are assigned in reverse order.

10 READ X, Y
20 DATA 1, 2
30 LET X = X
40 RESTORE
50 READ Y,

.o

+ Y

"

BASIC 7-14

EBASIC

Miscellaneous Statements

This miscellaneous statements are presented here under the assumption that the
beginner may be reading this chapter in the order of the section numbers. At least two of
these statements discussed will be used frequently in examples in later sections.

END

Every program must have an END statement. Its form is simple, a line number followed by
END, for example,

1000 END

Any number of END statements are permitted. Execution of an END statement causes
EBASIC to return to the ready state, in which the system awaits commands from the
keyboard.

Example:

10 READ X
200 DATA 1000
300 END

Note that the END statement need not be the highest numbered statement in the
program. However, the END statement must be placed somewhere in the program
following all DEF statements and DATA statements.

STOP

The STOP statement may be used interchangeably with the END statement to return the
system to a ready state. STOP and END have identical meaning in EBASIC.

REM

REM provides a means for inserting explanatory remarks in a program by instructing the
computer to ignore the remainder of the line. This allows the user to follow REM with
directions for the use of the program, identification of parts of a long program, or anything
else he wants. Although the remarks following REM are ignored, the line number of a REM
statement may be used in a GOTO or |IF THEN statement. A line number of a REM
statement may also be used in a GOSUB statement. Sample REM statements are:

10 REM THIS IS A REMARK.

20 REM ALTHOUGH THE COMMENTS FOLLOWING REM
30 REM ARE IGNORED BY BASIC, IT

40 REM TAKES TIME TO DETECT THE PRESENCE
50 REM OF A REM IN THE PROGRAM. THEREFORE,
60 REM AVOID USING REM IN A LOOP.

BASIC 7-15

EBASIC

WAIT

The WAIT statement introduces a delay into the program. Execution of the WAIT
statement causes the program to wait for a specmed number of milliseconds. An example
of a WAIT statement in a program is

30 WAIT 100

Because a software timer is used by WAIT, the program delay depends upon the speed by
which the instructions are processed. Program delays are listed below for the Varian
computers:

COMPUTER DELAY (in milliseconds)
620/L 100
620/L-100 50
620/f 42
620/1-100 40
V73 30

In the 620/L-100, 620/-100, and V73 computers, precision timing can be programmed
using the hardware real-time clock (see ADAPTS User’s Guide).

The argument following WAIT may be a constant, a variable, or a formula. The argument
is truncated to an integer and converted to a 16-bit computer word before it is used.
Therefore, the argument must evaluate to a value not greater than 32767 and not less
than zero. Negative values will result in an error message being issued to the user.
Positive values greater than 32767 will be treated as 32767 and will not generate an error
message.

If in range, the value is decremented every millisecond on the 620/L and once every 0.40
millisecond on the 620/f-100. When the value reaches zero, the delay period is over.

The following use of a function, FNT, enables the WAIT statement on a 620/1-100 simulate
the timing on a 620/L.

10 DEF FNT (T) = T/.40
20 READ T

30 DATA 1000

40 WAIT FNT (T)

Branching Statements

A branching statement alters the sequence in which program statements are encountered
during the running of a program. Twe types of branching statements are presented here:

a. Theunconditional branch, represented by GOTO and GOTO OF
b. Theconditional branch, represented by IF THEN

BASIC 7-16

EBASIC

The GOTO OF and IF THEN statements permit a program to make decisions based upon
input or computations.

A third type of branch, a subroutine branch, is considered as a separate topic in a later
section.

GOTO

The statement form is GOTO line number. it is possible to go to a non-executable
statement; in this case control passes to the next executable statement in sequence.

An example of the GOTO statement is:

150 GOTO 75

GOTO may be typed as one word or two separate words. Imbedded spaces are ignored. In
a listing printed by BASIC, GOTO will be a single word.

GOTO OF

The GOTO OF statement is of the form

GOTO formula OF list of line numbers
The formula is evaluated and truncated to an integer N, which selects the Nth line
number in the list as the target for the GOTO. Error messages are reported if:

a. The formula evaluates to less than one or to a number greater than the number of lines
in the list; or

b. The selected line number for the GOTO is nonexistent.
Example:

10 LET I = 3.3
20 GOTO I-1 OF 200, 300, 400

200 REM TARGET IF INT (I-1) = 1

400 REM TARGET IF INT (I-1) = 3

BASIC 7-17

EBASIC

IF THEN

The IF THEN statement is of the form
IF formula relation THEN line number
For example:

10 IF A = 1 THEN 200
20 REM TARGET IN A # 1

e e e

200 REM TARGET IF A = 1

If the relation following IF is satisfied, control will be directed to the line number following
THEN; if the relation is not satisfied, control is passed to the next statement in sequence.
A full list of the relational operators follows:

Relational Operator Definition
= Equal To
< Lass Than
> Greater Than
<m Less than or equal to
= Greater than or equal to
Not equal to

Input/Output Statements

This section describes the INPUT statement, the PRINT statement, and the use of the
TAB function with PRINT. The INPUT statement allows the operator to enter data from
the keyboard during the running of a program. Print allows the program to print and
format alphanumeric output from the program. The use of the TAB function gives PRINT
additional format flexibility.

INPUT

There are times when it is desirable to enter data during the running of a program. A data
entry request during run may be accomplished by an INPUT statement, which acts as a
READ statement but does not draw data from a DATA statement. For example, if the
EBASIC program requires the user to supply a value for X during the program run. The
following statement may be coded

40 INPUT X

before the first statement to use the value of X. When the computer encounters this
statement at run time, it prints a question mark and waits for the user to enter a number;

BASIC 7-18

EBASIC

it will not accept letters, functions, or expressions. After the user types a number and
presses the carriage RETURN key, control passes to the next statement in sequence.

Frequently a PRINT statement is employed to tell the user what response to make when
he sees the question mark:

10 PRINT 'ENTER DESIRED VALUE FOR X'
20 INPUT X : :

At run time, the program will print

ENTER DESIRED VALUE FOR X
?

and wait until it receives a number followed by a carriage RETURN.

Multiple values may be requested by a single INPUT statement (as many as fit on a line).
For example:

100 INPUT X, Y, % .

In this case, when the question mark is printed by the program, the user may enter the
three values in two ways:

a. He may type all values on the same line, separated by commas and followed by carriage
RETURN.

b. He may strike carriage RETURN after typing each value. The program will continue to
print a question mark on each line until all values have been entered.

PRINT

The PRINT statement may be used to print and format alphanumeric output. The
following examples illustrate PRINT statement usage:

10 PRINT 'MESSAGE' The message in quotation marks is printed
exactly as typed.

20 PRINT X Print the value of X

30 PRINT 3.5 Print the number 3.5

40 PRINT 2*SIN(X) + 5 Print the value computed by the formula

50 PRINT Print a blank line. Used to space text

In all of the above examples, except in line 50, PRINT is followed by a single item which is
a message, a variable, a constant, or a formula. Each item will be typed on a single line. A
PRINT list may contain as many items as can be typed on a line; items are separated
either by commas or semicolons. The list itself may be terminated by a comma or a

BASIC 7-19

EBASIC

semicolons. The list itself may be terminated by a comma or a semicolon. Commas and
semicolons provide output formatting capability as described in the following paragraphs.

A line of output is divided into 72 columns labeled 0 through 71. The first item in a PRINT
list will normally be printed starting in column 0. The line is arbitrarily divided into five
zones which start in columns 0, 15, 30, 45, and 60. A comma following an item in the list
is a signal to advance to the next zone. If a semicolon follows an item in the list, no extra
spaces are inserted before printing the next item.

If a comma terminates a list in a single PRINT statement, it effectively links the list in the
next PRINT statement. For example,

10 PRINT X, Y,
20 PRINT 2

is equivalent to
10 PRINT X, Y, 2

When past the beginning of zone 5 (column 60) the comma is the signal to begin in
column 0 on the next line.

A semicolon at the end of a list suppresses the carriage return. Therefore, it may be used
to link an output message to an INPUT request as follows:

10 PRINT 'ENTER VALUE FOR X';
20 INPUT X '

When the program is run, the computer will print
ENTER VALUE FOR X?

whereupon the user types in a number following the question mark. |f the semicolon after
the print message were removed, then the question mark would have been printed on the
next line.

The PRINT statement may be used without a line number to give immediate results of a
computation. For example,

PRINT 2%*3
6

where 6 is printed by the computer on the next line after operator input of the PRINT
statement.

PRINT may be used to debug programs when an error causes a program to abort. All
variables after a normal or aborted run will contain the last values used in the program.
For example, if the program has ended or aborted and the user types

PRINT N

the value last assigned to N will be printed on the next line.

BASIC 7-20

EBASIC

FIELD DEFINITIONS FOR NUMBERS

When a number is output from a PRINT statement, it is printed in a format which
depends on the size of the number and whether it is an integer. This format is called a
field definition. The number of spaces (Teletype columns) is called the field. The field
definitions for EBASIC numbers are given in table 7-6. Notice that all fields include
trailing blanks (spaces) so that numbers printed in adjacent fields are easily readable.

A simple PRINT statement like

10 PRINT 37; 9998

will normally cause the field on which the number 37 is printed to begin at column zero.
According to table 7-6, the next number (9998) will begin in column 6, because a
semicolon has been used after the 37. If a comma had been used to separate 37 and
9998, then 9998 would have begun its field in column 15.

Table 7-6. Field Definitions for Values Printed by EBASIC

Value of Number Type of Number Field Definition

1 < /n/ < 999 Integer . SXX Xbb

1000 < /n/ <X 999999 Integer SXXXXXXbbbb

0.1 < n < 99999 Real {normal range) SXXXXXXbbb

n <01 Small or real integer SX.XXXXXE * eebb
n > 9999.9 Large real SX.XXXXXE * eebb
n > 999999 Large integer SX.XXXXXE % eebb
Notes:

1. Each X represents a decimal digit (0-9) except that trailing zeros are replaced by blank
spaces for integers and real numbers in the normal range. Numbers are left justified
in the field.

2. Sis equal to the minus sign (-) for negative numbers and is a blank space for positive
numbers.

3. bindicates a blank space.

4. Forreal numbers in the normal range, one of the X's is replaced by a decimal point.
(continued)

BASIC 7-21

EBASIC

5. Numbers in the extreme range are printed in scientific notation, where ee represents
the exponent to base 10. The value of ee cannot exceed 38.

6. Internal representation of numbers is always in a floating point format, which requires
two 16-bit computer words for each number.

USE OF TAB WITH PRINT

The TAB function may be used to advance the printer to the specified column before
printing. TAB will have no effect if that column has already been passed or if the TAB
argument exceeds 71 (the last column). The TAB function is given immediately before the
item to be output. For example

10 PRINT TAB (32) X, TAB (65) Y

will print the value of X beginning at column 32 and Y beginning at column 65. If,
however, the following statement is used:

10 PRINT TAB (32), X, TAB (65) Y

we find that X now begins in column 45. Tab (32) advances to column 32 but the comma
before X advances printing to the next zone, which begins at column 45. A semicolon
between TAB (32) and Xwould have no effect, however.

Writing Loops

Frequently, it is necessary to write a program in which one or more portions are performed
not just once but a number of times, perhaps with slight changes each time. The
programming device known as a loop is used to perform this iterative processing.

One type of loop is illustrated by the following example:

10 LET A = 1
20 GOTO 10

This is not a very useful loop, nor is there any way to terminate it except through the use
of the ESC key. In order to execute a loop a finite number of times, the program must be
provided with decision making capability. One way to do this is through the use of the IF
THEN statement, which has already been introduced.

For example:

10 LET A = 0

20 A=A + 1

30 IF A > 10 THEN 50
40 GOTO 20

50 END

BASIC 7-22

EBASIC

This loop consists of lines 20, 30 and 40 and is executed 10 times before the program
ends. Another way of writing the program to perform the same function is:

10 LET A = 0

20 A = A + 1

30 IF A < 10 THEN 20
40 END

This loop uses one line less than the previous example and may, therefore, be termed
more efficient. ’

Another way of writing loops is to use the FOR and NEXT statements. FOR and NEXT are
always used together. They mark the boundaries for a FOR-NEXT loop. For example:

LIST
10 FOR I = 1 TO 10 STEP 5
20 PRINT I, SQR (I)

30 NEXT I
40 END

RUN

1 1

6 2.44948
READY

The first time through the loop, | (a running variable) is set equal to the initial value (in
this case, 1) and a test is made to see if | exceeds the final value (in this case, 10). Since
in this example, the initial value does not exceed the final value, control passes to the
PRINT statement. If the initial value were greater than the final value (less than, for
negative step size) control would pass immediately to the line number following NEXT,
which is line 40 in this example.

The main body of the loop is included between FOR and NEXT. When the program gets to
the NEXT statement, it increments the running variable (1) by the step size and tests it. If
the running variable has not passed the boundary set by the final value, control passes to
the first statement after FOR. Otherwise, control passes to the statement following NEXT.

The initial value, the final value, and the step size may all be formulae of any complexity
which can be typed on a single line. Initial value, final value, and step size may also
evaluate to negative or positive numbers or zero.

The NEXT statement must include the running variable (in this case, |). NEXT increments
the running variable by the step size but this does not prevent statements within the loop
from also operating on the running variable to change its value. For a positive step size
the loop continues as long as the running variable is less than or equal to the final value.
For a negative step size, the loop continues as long as the running variable is greater than
or equal to the final value.

BASIC 7-23

EBASIC

The step size may be omitted from the FOR statement if a step size of plus one is to be
used. For example:

LIST
10 FOR I = 1 TO 10
20 PRINT I, SQR (I)

30 NEXT I
40 END

RUN

1 1

2 1.41421
3 1.73205
4 2

5 2.23606
6 2.44948
7 2.64575
8 2.82842
9 3

10 3.16227
READY

The main body of a FOR-NEXT loop may contain an IF THEN statement which causes the
program to exit from the loop before the running variable reaches its final value. The body
may also contain GOSUB, GOSUB OF, or GOTO statements which cause the program to
exit from the loop either temporarily or permanently. The body may even contain other
FOR-NEXT loops. These are called nested FOR-NEXT loops. However, they must actually be
nested and must not cross, as illustrated below.

Allowed Not Allowed Allowed

FOR X FOR X ——FOR X
FOR Y —T—FOR Y ——FOR Y
NEXT Y NEXT X FOR 2
NEXT X NEXT Y NEXT 2

NEXT W
——NEXT Y

EFOR Z
NEXT 2

NEXT X

Subroutines
There are two types of subroutines which may be used in EBASIC. These are (1)

subrautines written in the EBASIC language; and (2) subroutines written in assembly
language. They are usually written for different purposes. EBASIC subroutines are written

BASIC 7-24

EBASIC

to perform operations which may be useful several times in a program or at different parts
of a program. Assembly language routines are usually written to gain access to special
purpose hardware. For example, assembly language subroutines are used in this system to
access the Interface Console. .

Assembly language routines add a degree of flexibility and control to the system, but they
may be run only on the specific computer for which they are written. Subroutines written
in EBASIC are in a high-level language which has been implemented on a number of
different computers.
The EBASIC statements used in writing and accessing EBASIC subroutines are:

« GOSUB

* RETURN

« SuUB

- GOSUBOF

A single EBASIC statement, the CALL statement, is used to access any and all assembly-
language routines which have been written in the proper format.

GOSUB-RETURN

The GOSUB statement is of the form:
GOSUB line number
For example,

75 GOSUB 210

When the GOSUB is executed, control passes unconditionally to the line number
referenced. The last statement executed in a subroutine must be RETURN, which
transfers control to the next statement after the GOSUB.

The following example shows the use of a subroutine to calculate the sine of an angle A
given in degrees. The routine uses a Taylor series expansion. Compare the value produced
by the subroutine to the true value (1/2) and the value given by the SIN function in
EBASIC (.499999). The computed value of .499999 is close enough for most purposes. The
RETURN statement is executed when the last term used in the series approximation is
less than or equal to 10 . From the mathematical properties of the series we know that this
last term is also less than the error introduced by terminating the series at this point.
However, the calculated value shows that roundoff errors have reduced the accuracy.

BASIC 7-25

EBASIC

A subroutine must be terminated by the use of a RETURN statement. Statements such as
IF THEN and GOTO are illegal. More than one RETURN statement is permitted inside a
subroutine but one is sufficient.

A GOSUB or GOSUB OF (see next section) may appear inside a subroutine. This procedure
is known as " nested GOSUB's" .

Notice that all variables used inside the subroutine are " global" . This means that they
have the same definition (or value) inside the subroutine as they do outside the
subroutine. " Local" variables may be introduced by the use of a SUB statement
(described in a later section) in the subroutine.

LIST
10 LET A = 30

20 GOSUB 50

30 PRINT 'SINE OF'; A; 'IS'; 8
40 END

50 REM SUBROUTINE TO CALCULATE SINE OF A
60 LET X = 3.14159%A/ 180

70 LET S = 0

80 LET N = N2 = Z = 1

90 LET X2 = X

100 GOTO 150

110 LET N2 = N + 2

120 LET N2 = N* (N - 1) *N2

130 LET X2 = X2#%Xt2

140 LET % = -7

150 LET I = 2Z*X2/N2

160 LET S = S + I

170 LET I = I*SGN (I)

180 IF I >1.00000E-06 THEN 110
190 RETURN

RUN

SINE OF 30 IS .499999

READY

PRINT SIN (3.14159%A/180)
.499999

iOSuUB OF

The GOSUB OF statement has the form
GOSUB formula OF list of line numbers

vhere the value of the formula is truncated in an integer, N, which selects the Nth line
wmber in the list. If N is less than one or greater than the number of line numbers in the
ist or if the target line number is non-existent, then an error is reported.

ASIC 7-26

EBASIC

Note that GOSUB OF may not pass parameters to a subroutine. A subroutine entered by
GOSUB OF must be terminated by execution of a RETURN statement.

SUB

The SUB statement is used to define parameters which are passed to a subroutine. A SUB
statement may look like the following

300 SUB N, A, B (2), C
and the corresponding GOSUB may be something like
80 GOSUB 300, X, 5, Y, (1)
The SUB statement picks up the argument list following the line numbers in the GOSUB

statement and assigns their values to the list following SUB. Let us suppose that the
following values are assigned to the GOSUB arguments:

X = 3.5
Y = 2
(1) = 11

then the SUB list will make the assignment
.5

(2)

=NV Ww

N
A
B
Cc 1

All arguments in a SUB list are "local", that is, defined only within the body of the
subroutine. If variables of the same name have been defined in the main program, they
will not be affected by any operation which changes their values in the subroutine.

However, variable names used in the subroutine which are not in the SUB list are
" global" . They are defined identically in the subroutine and in the main program.

The following exarnple illustrates the method of parameter transfer between a GOSUB
argument list and a SUB argument list. Line 60 was written as a deliberate error to show
that Z, used in subroutine, is undefined in the main program. Z is a local variable. A, on
the other hand, is a " global" variable, since it is not used in the SUB list.

Note the caution in lines 120 and 130. Z is equivalent to 10 and vice versa. Changing Z
would change 10 and after the change every place the constant 10 is used in the program
(except in quotation marks and in REM statements) the new value for Z would appear. If
this happens inadvertently, simply retype the subroutine so that Z is reassigned to its
initial value before running the subroutine. In most cases, the program may then be re-

BASIC 7-27

EBASIC

run and the constant will be changed back to its original value. In some cases, however, it
may be necessary to reload the program into the computer.

LIST

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

READ I,K
DATA 3, 6
GOSUB 80, I
PRINT 'I=';
PRINT 'A=';
PRINT 'Z=';
END

REM SUBROUTINE BEGINS HERE

SUB X, Y, 2

LET X=X+Y

LET Y=Y+2

REM CAUTION: DO NOT CHANGE Z IN SUBROUTINE. IF YOU DO SO,
REM THEN THE NEW VALUE FOR Z WILL BE STORED IN THE CONSTANT 10.
LET A=1

RETURN

RUN

I=9
A=1
Z=

K=16

ERROR 50 IN LINE 60

READY

A subroutine which has a SUB staternent may be entered by a GOSUB statement within
the subroutine, passing new values to the SUB list. This is known as recursive entry and is
itlustrated by the following example. The subroutine is actually executed twice because
after the first time through X is equal to 9, but on the second time through X is equal to
25. Therefore, the IF THEN statement (line 120) transfers control back to the main

program.
LIST

10 READ I,K

20 DATA 3, 6

30 GOSUB 60, I,K, 10

40 PRINT 'I=';'K=';K

50 END

60 REM SUBROUTINE BEGINS HERE

70 SUB X, Y, 2

80 LET X=X+Y

90 LET Y=Y+2Z

100 REM RECURSIVE ENTRY INTO SUBROUTINE PERMITTED
110 IF X > 10 THEN 130

120 GOSUB 60, X, Y, 2

130 RETURN

RUN

I=25 K=26

READY

BASIC 7-28

EBASIC

ARRAYS

An array is an orderly presentation of numbers. The two primary ways of displaying
numbers are by row and by column. An array which has one column only or one row only
is said to be one-dimensional; if it has multiple rows and columns, it is a two dimensional
array.

Array variables in EBASIC are identified by a single letter of the alphabet followed by one
or two values enclosed in parentheses, for example,

A(l), B(2,3), C(l, J + K)

The value in parentheses indicates the subscripts that would be used in ordinary algebraic
notation, for example,

A, B , c
1 2,3 I, J+K

where the first subscript identifies the row and the second subscript identifies the column
of the array element. Table 7-7 illustrates the positions of the various elements in an array
of four rows by three columns. By convention in Varian's EBASIC, a singly-subscripted
array is designated as a column vector (as opposed to a row vector).

Table 7-7. Array Element Positioning and Method of

Storing in Computer Memory

Column
Row 1 2 3
1 AL, 1) A(l, 2) A1, 3)
. '2 A2, 1) A2, 2) A2, 3)
3 A@B, 1) A, 2) A3, 3)
4 A4, 1) A4, 2) A4, 3)

Note: Array elements are stored by column in computer memory. A(2, 1)
follows A(1, 1). . . A(1, 2) follows A(4, 1), and so on. DATAI and DATAO
(assembly language subroutines) access array elements according to this
storage scheme.

BASIC 7-29

EBASIC

Array Subscripts

Array subscripts may be constants, simple variables, array variables, or formulae. All
subscripts are truncated to an integer befoxe they are used. Subscripts must evaluate to a
number from 1 to 255. An error will be reported at run time if sufficient storage area is
not available in the computer for the array element referenced (see next section). The
following example shows the use of a simple variable and an array variable as subscripts.

LIST

10 DIM A (10), B (10)

20 FOR I=1 TO 10

30 LET A (I) =I+ .2

40 LET B(A(I)+ .1) =SQR (I)
50 PRINT A (I),B(I)

60 NEXT I

70 END
RUN

1.2 1

2.2 1.41421
3.19999 1.73205
4.2 2

5.19999 2.23606
6.19999 2.44948
7.19999 2.64575
8.19999 2.82842

9.2 3
10.1999 3.16227
READY

DIM Statement

The dimensions of arrays in EBASIC should be declared in the program. This is done
through the use of a DIM statement.

Example:

25 DIM A (5), B(20,30), Cc(20), D(1,10)
In this example A is declared to be one-dimensional array with 5 elements. B has 20 rows
and 30 columns, C has 20 elements (in a column, like A) and D has 1 row and 10
columns. Array D is a degenerate case of a doubly-dimensioned array since one of the
dimensions is 1. However, this is the only way we have of producing an array of one row or
a row vector in BASIC (arrays A and C are columns).

RULES FOR DIM STATEMENT:

a. A DIM statement reserves storage in computer memory for the arrays in the list
following DIM. Arrays follow one another in memory in the reverse order in which
they appear in DIM statements. {continued)

BASIC 7-30

EBASIC

b. The values for the dimensions enclosed in parentheses in a DIM statement must be
constants in the range 1 to 255. If any dimension exceeds 255, no storage space will
be reserved and no error will be reported on statement entry. An error will be
reported, however, on any attempt to use the incorrectly dimensioned array in the
program.

¢. Array dimensions do not have to be declared in 'a DIM statement if no array variable in
the program uses a subscript greater than 10. Although this is a convenient feature,
the use of array variables without DIM statements is to be discouraged because, if
dimensions are not declared, BASIC will automatically reserve storage for 10
elements in the case of an array variable with single subscript and will reserve
storage for 100 elements for an array variable with two subscripts. This is very
wasteful if all the space reserved is not really needed.

d. DIM statements may appear anywhere in the program, since they are not executed. It is
good practice, however, to group them at the beginning of the program where they
are easily identified. ’

Matrix Statements

A matrix is a two-dimensional array which is subject to certain rules of operation or
manipulation. The explanation of the matrix statements in EBASIC assumes that the user
understands these rules, which are readily found in any elementary textbook on matrix
algebra.

The matrix statements, which are listed in table 7-8, may be deleted from EBASIC during
the Teletype dialogue which follows the use of the RESTART command. Deleting the matrix
statements frees approximately 800 words of computer memory for use by the program.

Normally, the dimensions of all matrices used must be dimensioned with DIM statements.
If the array is to contain a number of elements not to exceed 100, EBASIC offers the
convenience of using the MATREAD, ZER, CON, and IDN commands to specify the
number of elements, as in the following examples. '

10 MATREAD A(3,7)

20 MAT B = ZER (2, 10)
30 MAT C = CON (20,5)
40 MAT D = IDN (10,10)

CAUTION
Although it is possible to use the MATREAD, ZER, CON, and IDN commands
to assign the elements in a matrix, the use of dimensions in these
commands is discouraged for the following reasons:
a. If no DIM statement appears in the program to allocate core space for the array,

EBASIC will reserve storage for 100 elements, even if fewer elements are required.
{continued)

BASIC 7-31

EBASIC

b. ZER, CON, and IDN will have the effect of decreasing the core memory allocation in a
non-reversible manner if the dimensions given are less than those in a DIM
statement which refers to the same array. However, if one of these commands
attempts to use more core than is alloted, an error will be reported.

For the reasons listed above, it is hoped that the programmer will use dimension
specifications only in DIM statements. There is one case, however, in which he may wish
to go against this advice; this is the case in which the number of elements to be assigned
is unknown but certain to be less than 100. In such cases, the dimensions in a MATREAD,
ZER, CON, or IDN may be given as variables or formula. This is not true for the DIM
statement which uses only constants to specify dimensions.

Table 7-8. EBASIC Matrix Commands

Command Meaning

MATREAD A, B, C Read the three matrices. Data is stored
row by row (not column by column).

MAT C = ZER Fill out matrix C with zeros.

MAT C = CON Fill out matrix C with ones.

MAT C = IDN Set up C as an identity matrix.

MATPRINT A, B;C Print the three matrices with A and C in
regular format and B in closely packed
format.

MAT B = A Set matrix B equal to matrix A.

MAT C = A+B Add the two matrices A and B.

MAT C = A-B Subtract matrix B from matrix A.

MAT C = A*B Multiply matrix A by matrix B.

MAT C = TRN(A) Transpose matrix A.

MAT C = INV (A) Invert the matrix A.

MAT C = (K) * A Multiply the matrix A by the number K. This

is multiplication of a matrix by a scalar.

BASIC 7-32

EBASIC

Use of Matrix Operations
Certain operations are legal or illegal according to the standard rules which govern matrix
algebra. For example, if matrix A has dimensions L by M (L rows and M columns) and
matrix B has dimensions M by N, then

A * B is legal (resulting dimension: L by N)

whereas

B * A is illegal

Restrictions

There are several restrictions on the use of matrix commands on the Varian system which
are imposed because of the necessity to use computer memory efficiently. Note that some
of the legal examples below may be illegal in the sense that they violate principals of
dimensioning.
a. Only one operation may be performed in a single statement.
Legal "~ Hiegal
MAT C = A+B MAT C = A+B-D
b. The results of multiplying one matrix by another matrix may not be stored in either, the
multiplicand or the multiplier. In the second legal example K is a number rather
than a matrix.
Legal lllegal
MAT C = A*B MAT A = A * B

MAT C = (K) * A
MAT A = (K)*A

c. The transpose of a matrix or the inverse of a matrix may not be stored in itself. A
violation of either of these rules is reported as error 26.
Legal Ilegal

MAT B = TRN (A) MAT A = TRN (A)
MAT B = INV (A) MAT A = INV (A)

RARIM~ 7.22

EBASIC

MATREAD Statement

The MATREAD statement assigns constants from one or more DATA statements to the
array variables. The array elements are assigned sequential values row by row.

For example:

LIST

10 DIM A(3, 4)
20 MATREAD A
30 DATA 1, 2,
40 MATPRINT A
50 END

RUN

1 2
5 6
9 10
READY

MATPRINT Statement

The MATPRINT statements pri

3, 4, 5,6, 7, 8, 9, 10, 11, 12
3 L}
7 8
11 12

nt one or more matrices as a result of a single statement.

Elements are printed, row by row, either in the five zones across the page (beginning at

columns 0, 15, 30, 45 and 60)

or in closely packed format. As with the PRINT statement,

the format is selected by following the array name with either a comma (or blank in the

case of last array in the list) or

Examples:
MATPRINT A
MATPRINT A,
MATPRINT AB

MATPRINT A, B;

MATPRINT A;B;

BASIC 7-34

a semicolon.

Zone format in all three cases

Zone format for A and close packed
format for B

Close packed format for A and B

EBASIC

All rows are double spaced. If a row overruns one line, it is continued on the next line
(single spaced) until it is completely printed. An example of MATPRINT usage is:

LIST

10 DIM A(2, 3), B(2, 2) c(2, &)
20 MATREAD A
30 DATA 1, 2, 3, 4, 5, 6
40 MAT B=IDN
50 MAT C=CON
60 MATPRINT A,B;C;
70 END

RUN

1 2 : 3

4 5 6

READY

VECTORS

A vector is defined as an array of one column or an array of one row. Thus a vector is
either a column vector or a row vector. The matrix statements may be used on vectors as
well as on arrays of two dimensions. In fact, the row vector is a degenerate case of a
doubly-dimensioned array. For example,

10 DIM A(4), B(1,4)

defines B as a row vector whereas A is column vector. The following examples illustrate the
use of the matrix statements with vectors. Note that in these examples, double spaced
printing is not shown to conserve space.

LIST
10 DIM A(4), B(1,4)

20 MATREAD A,B

30 DATA 1, 2, 3, 4, 11, 12, 13, 14

40 PRINT 'COLUMN VECTOR'

50 MATPRINT A

60 PRINT 'ROW VECTOR'

70 MATPRINT B; (continued)

BASIC 7-35

EBASIC

80 END
RUN
COLUMN VECTOR
1
2
3
4
ROW VECTOR
11 12 13 14
READY

LIST .
10 DIM A(4), B(1,4), C(4,4)
20 MATREAD A,B
30 DATA 1, 2, 3, 4, 11, 12, 13, 14
40 PRINT 'COLUMN VECTOR'
50 MATPRINT A
60 PRINT 'ROW VECTOR'
70 MATPRINT B;
80 MAT C=A*B
85 PRINT 'PRODUCT OF COLUMN VECTOR TIMES ROW VECTOR'
90 MATPRINT C;

100 END

RUN
COLUMN VECTOR

1

2

3

i
ROW VECTOR

1 12 13 14
PRODUCT OF COLUMN VECTOR TIMES ROW VECTOR
11 12 13 14
22 24 26 28
33 36 39 42
44 48 52 56
READY

BULK STORAGE FILE HANDLING

All systems have at least one bulk storage file device, which is fixed- or moving-head disc.
This is designated as the system file unit. The system file unit contains a copy of EBASIC
and may also store program files, data files, and assembly language subroutines.

The system may be optionally equipped with one or two bulk storage devices which have
removable file media. These are designated as file units A and B. Both A and B devices

BASIC 7-36

EBASIC

may be gither 9-track magnetic tape units (25 ips or 37.5 ips, 800 bpi), cassette tape units
with Phillips cartridges, or a moving-head disc (File A only). The magnetic tape units can

read and write in IBM compatible format.

Table 7-9 summarizes the file handling commands and the types of files on which they

may be used. The file types are defined as follows:

EBASIC Program Files - These files, type P, are stored as ASCI|

characters; each item consists of four characters. They represent the

statements of a complete EBASIC program.

Assembler Subroutine Files - These files, type S, are stored as re-

locatable object code of DASfMAR assemblies. Each item is stored as

a 16-bit word.

Floating Point Data Files - These files, type D, are stored as floating

point data. Each item is a two-word floating point number.

Integer Data Files - These files, type |, are stored as integer data
files, one integer data word per item. Type | files may be created
only by use of the DATIF subroutine (described in a later section).

Loading EBASIC From the System File (RESTART)

The RESTART control command loads a fresh copy of EBASIC into the computer memory
from the system file unit. After EBASIC is in memory following the use of RESTART, it
enters into Teletype dialogue with the user, allowing him to select certain options. In
addition to giving the RESTART command on the Teletype, the restart phase of EBASIC
may also be entered (1) by manually entering and executing the restart bootstrap and (2)

automatically, following the system generation phase.

Table 7-9. File Command Summary
Command File Type
FLIST (nuil,A,B) S D 1
SAVE name (null,A,B)
LOAD name (null,A,B)
COPY (name) TO (name)
DELETE name (null,A,B)
CLEAR (A,B)
ASSIGN name = file no.
OPEN file no., r/w,

variable

CLOSE file no., variable
PUT file no., variable
GET file no., variable

VUV TUVTUTD
wunwn
O0O0OO0Oo

oo

BASIC 7-37

EBASIC

The following example shows a sample of the Teletype dialogue which occurs during the
restart phase. User responses are underlined. Each response is followed by the carriage
RETURN.

TTY = 0, HSPT = 1

INPUT? 1 Select high-speed paper tape reader

OUTPUT? O Select Teletype punch

TRIG+MAT=2, TRIG=1,

NEITHER =071 Select trig functions, omit matrix
statementsx*

CORE (K)? 15 Use lowest 15K of memory

APPEND LIBRARY? Y Add Assembly language subroutines

APPEND LIBRARY? N Done with additions

LOAD SUBROUTINES? Y Load assembly language subroutines
into memory

NAME? 'IOssS' Get I0SS from disc

NAME? 'CRT' Get CRT from disc

NAME? 'RENUMB-A' Get RENUMB from A device

NAME? N Done with RESTART configuration ‘
READY Proceed with BASIC language operations

* The matrix statements are not available in a system that uses the 10SS package with
only 12K of core memory. If the user tries to reply with 2. the question will be
repeated but no error message will be given.

The core size entered by the user may be less than or equal to the actual size of the
computer memory (12K, 16K, 20K, 24K, 28K, or 32K). By specifying a value less than the
true size, the upper postion of memory is made inaccessible to EBASIC. The memory thus
saved for other purposes must be a multiple of 1K. There are two primary reasons for
saving upper memory:

a. The user may wish to keep BLD Il in memory, anticipating that the system will use a
language other than EBASIC. He can therefore avoid the inconvenience of using the
bootstrap program to load BLD H.

b. The users of the system may wish to write special purpose assembly language
subroutines to make use of the reserved memory. For example, it may be used as a
common data pool accessible by many subroutines which pass data and/or
parameters back and forth (that is, a " blank common" area, familiar to FORTRAN
users). This is the fastest way of linking assembly subroutines not included in the
same module. That is, the RESTART loader is not a linking loader. (Another way to
link subroutines is to pass data and/or parameters through EBASIC CALL
statements.)

If the APPEND Library ? query is answered by" Y", an assembly language subroutine
module must be available in the paper tape reader (either Teletype or high-speed reader,
as previously selected). Several standard modules are supplied with the system and these
are commonly appended to the disc files immediately following a system generation.
Modules may also be developed by the user for special purposes. The method of creatmg
assembly language modules is described in the ADAPTS User’s Guide.

BASIC 7-38

EBASIC

The standard software modules supplied with each ADAPTS system match the particular
system configuration. For example, if the system contains the rack-mounted CRT, the
matching " CRT" software module is supplied. A complete list of the standard software
modules is given in table 7-10.

During the process of appending relocatable object modules to the library, two possible
error messages may be printed on the Teletype.

READ ERROR
This may be caused by either a bad paper tape or a reader malfunction.
SYNTAX ERROR

This error is caused by attempting to read an illegally constructed module. See the
ADAPTS User’s Guide for construction of modules.

In either case, the entire module is ignored and any partial files created on the system file
unit are automatically deleted. The question

APPEND LIBRARY?
is retyped on the Teletype. This process continues until an N is entered.
All assembly language modules are in relocatable format and may be loaded in any order.
They are stored on the system file unit as type S files (see the FLIST command). The name
of the subroutine is part of the module itself. It is this name which must be used when the
query

NAME ?

appears on Teletype. The names of some of the Varian supplied subroutines are shown in
the preceeding sample dialogue.

Table 7-10. ADAPTS Standard Software Modules
File Name Description

CRT CRT Display Subroutines for performing alphagraphic
operations on the rack-mounted CRT unit.

KBCRT CRT Display Subroutines for performing alphagraphic
operations on the free-standing keyboard CRT unit.

PLOTTR Incremental X-Y Plotter Subroutines for alphagraphic

operations on the hard-copy plotter.
(continued)

BASIC 7-39

EBASIC

File Name
10SS

RENUMB

DEBUGR

FFT

MAGTAB

CASSAB

MAGB

CASSB

DISKA

Assembly language modules are loaded into computer memory from the disc (system file)
or the A or B device. Since modules are appended only to the disc, if they are to be loaded
from a cassette (for example), the COPY command must be previously used to transfer the

Table 7-10. ADAPTS Standard Software Modules (continued)

Description

Input/Output Subsystem Subroutines for analog and digital
input/output operations.

Renumber EBASIC Statements to help edit EBASIC programs.

Debugger to help troubleshoot relocatable assembly
language routines for use with EBASIC.

Fast Fourier Transform Subroutines, transform and reverse
transform, callable from EBASIC.

Magnetic Tape Unit Filing Subroutines for systems with two
magnetic tape units as File A and File B.

Magnetic Cassette Unit Filing Subroutines for systems with
two cassette units as File A and File B.

Magnetic Tape Unit Filing Subroutines for systems with one
magnetic tape unit as File B.

Magnetic Cassette Unit Filing Subroutines for systems with
one cassette unit as File B.

Moving-Head Disc Subroutines for systems with one disc
(removable or non-removable) as File A.

module to the cassette (after a complete system generation).

File Directory Listing (FLIST, FLIST A, FLIST B)

The FLIST command enables the operator to examine the file directories of the system file
(FLIST) or the removable files (FLIST A and FLIST B). The directory will be printed by

EBASIC in the following format:
UNUSED STORAGE = aaaaa

NAME

fiftf

BASIC 7-40

TYPE # BLOCKS #ITEMS
t bbbb iiii
t bbbb iiii

EBASIC

where

aaaaa = number of blocks .remaining
fiffff = alphanumeric file name

t = file type (P = EBASIC program, S = assembly language
subroutine, D = floating point data, | = integer data)

bbbb = number of blocks used by file

iiii = number of values in a standard data file or the (number of
characters) / 4 in an EBASIC source program.

If the removable file unit (A or B) is in a 9-track magnetic tape device, the first line of
output (UNUSED STORAGE = aaaaa) will not be typed. In this case, the unused storage
cannot be determined since reels of magnetic tape may vary in length.

Each program or data file is stored in an integer number of blocks, each of which contains
one hundred and seventy-eight (178) 16-bit computer words. The number of items is the
actual number of 16-bit words in the file divided by two. Each item represents four
characters in an EBASIC program (including all spaces shown in a LIST), one floating
point number as stored by a PUT statement, or two data values stored by the 0SS Driver
DATIF.

The following example shows an FLIST directory listing.

FLISTB

UNUSED STORAGE=3056

NAME TYPE #BLOCKS #ITEMS
ANUITY P 8 670
BELOOP P 12 1026
AMAZIN P 20 1729
JAKCUS P 14 1193
CLNDAR P 11 910
DECIDE P 10 863
FSMMIN P 15 1334
GRADFR P 6 483
HISTO P 8 688
HOOK P 12 . 1064
TRUINT P 7 543

BASIC 7-41

EBASIC

Initialization of Removable File Media (CLEAR A, CLEAR B)

The CLEAR command initializes the selected removable storage medium (A or B) so that it
may be used by the system. When using a cassette cartridge or a magnetic tape for the
first time, the user must type either

CLEAR A or CLEAR B

before any programs or data can be stored on the medium. When the CLEAR command is
used, the following warning message will be printed by EBASIC:

FILES ON MEDIA WILI. BE DESTROYED

If the user wishes to go ahead with the CLEAR operation, he depresses the carriage
RETURN key; if he wishes to abort the CLEAR command, he hits the ESC key. If the
medium has been previously unused, the message will not have meaning. However, as
indicated, the CLEAR command may also be used to delete all old files on the medium
and make medium available for re-use.

A CLEAR command not followed by either A or B will not be recognized. Thus, CLEAR can

never be used to destroy the system files. Because imbedded spaces are ignored in the
command it may be typed as CLEARA or CLEARB.

Storage and Recovery of Program Files

The SAVE and LOAD commands are used to transfer program files (only) back and forth
between computer memory and any of the bulk storage units (system file, unit A, or unit
B). Data files are handled by PUT and GET commands.

SAVE

The SAVE command has three forms:

SAVE " ffffff" Save on system file
SAVE " ftffff-A" Save on unit A
SAVE " fffff-B" Save on unit B

The file name (ffffff) may have from one to six characters, the first of which must be a
letter (A to Z). The last five characters (optional) may be letters or digits (O to 9). The file
name is separated from the unit identifier by a dash. The entire identifier is enclosed in
quotation marks. Blank spaces are not allowed within the quotation marks.

If the file name specified is identical to one which is already present on the designated
bulk storage device, the following message will be printed:

OLD FILE?

BASIC 7-42

EBASIC

This gives the user an opportunity to abort the SAVE command, which he may do by
striking the ESC key. If he wishes to replace the old file, he may do so by using carriage
RETURN. When the program has been " saved" , the Teletype bell will ring once.

A program may be saved under the same name on each of the three bulk storage devices
in the system. Only EBASIC programs can be saved; assembly language subroutines, for
example, may not be stored on any of the bulk storage devices with the SAVE command.

LOAD

The LOAD command has three forms

LOAD " fffff" Loads program from system file
LOAD " ffffff-A" Loads program from unit A
LOAD " fiftff-B" Loads program from unit B

A data file cannot be loaded with the LOAD command. Data files are recovered through
the GET command.

The file name (ffftff) followed by the unit identifier A or B (removable media only) must be
enclosed in quotation marks. Spacés are not permitted between quotation marks. Only
program files listed in the directory may be loaded.

When programs are LOADed, each line is brought in the file unit in the same manner as
lines are accepted from the Teletype keyboard. |f a statement in the program file being
loaded has the same line number as the program in the computer, it will overlay the old
statement. Otherwise, it will insert the new statement in the program. As each line is
brought in it is checked for construction and rejected if in error. For example, if a program
being loaded has a CALL statement to a subroutine not loaded during the restart phase,
then that statement will not be loaded. An error message will be printed and the load
process will terminate. Control returns to the READY state.

Since a program being loaded may mix statements inconveniently with the program
already in the computer, it is customary to precede the LOAD command with a SCRATCH.

The LOAD command may be used as a program statement to perform overlays. This
" dynamic use” of LOAD is explained in a later section.

Creation and Use of Data Files
Five commands are available to handle data files:

ASSIGN Associates one, two, or three file names with corresponding
file numbers (1, 2, or 3)

OPEN Initializes a data file for read or write access
(continued)

BASIC 7-43

EBASIC

PUT Places a list of values into a numbered data file
(1, 2 or 3); sequential access

GET Assigns sequential values from a numbered data file (1, 2

or 3) to a variable list

CLOSE Terminates input or output to a specified data file (1, 2 or 3)

Data is transferred to and from the bulk storage devices through file buffers, which are
sections of computer memory assigned for that purpose. Three file buffers are
implemented and they are referenced by a number (1, 2, or 3) in the program. The
numbers are assigned alphanumeric names just prior to the running of the program. In
this way a more general program can be written. For example, the program might use file

1 for input, file 2 for output, and file 3 for a scratch file.

The following example is presented without comment. The use of ASSIGN, OPEN, CLOSE,

PUT and GET will become clear in the next four sections.

LIST
10 OPEN 1, 0

20 FOR I= 1 TO 7

30 PUT 1, I, I, * I

40 NEXT I

50 CLOSE 1,R

60 PRINT 'ITEMS ON CLOSE=';R
70 OPEN 1, ‘1,N

80 PRINT 'ITEMS ON OPEN=';N
85 PRINT 'X', 'X12'

90 FOR I= 1 TO N/ 2

100 GET 1, X,Y

110 PRINT X,Y

120 NEXT I

130 CLOSE 1

140 END

ASSIGN 'DATA-A'=]1

1=NEW

RUN

ITEMS ON CLOSE= 14

ITEMS ON OPEN= 14

X X1t2
1 1
2 4
3 9
4 16
5 25
6 36
7 49

BASIC 7-44

(continued)

EBASIC

READY

FLISTA

UNUSED STORAGE =592

NAME Type #BLOCKS #ITEMS

ANOVER P 29 2561
DATA D 1 ‘ 14
ASSIGN 'DATA-A' =1

1=0LD

ASSIGN

The ASSIGN command assigns or associates alphanumeric file names with the file
numbers 1, 2, and 3. Examples:

ASSIGN 'DATA' = 1
ASSIGN 'DATA-A' = 2, 'JUNK-B' = 3
ASSIGN 'SCRAP' = 1, 'TEST' = 2, 'MICE-A' = 3

The command is normally given just prior to running the program. The OPEN, CLOSE,
PUT, and GET statements make use of the logical connection between the file numbers
and the file names. The ASSIGN statement may be made a numbered statement in the
program but this usage destroys the generality of the scheme. For example, a program
may use files 1 and 2 for data, and 3 for scratch. By deferring the naming of the files until
execution time, many data files may be used by one program.

The ASSIGN command is used for data files only; programs are never assigned file
numbers. Up to three files may be assigned on a single line and, in fact, file numbers not
referenced in an ASSIGN statement are assumed to be not assigned.

For example, if the following statement is typed,
ASSIGN 'ONE' = 1

and then
ASSIGN 'TWO' = 2

the effect of the second assignment is to assign the name TWO to file 2 and to cancel the
previous assignment of name ONE to file 1. If we wish to assign names to both 1 and 2
then we must do it in a single statement, for example,

ASSIGN 'ONE' = 1, 'TWO' = 2

When the ASSIGN command is given, the file directory is searched to determine if the
names have been previously used. Suppose that in the last example ONE had been used
before but TWO had not been used, then the computer would print the the following
message:

1 = OLD, 2 = NEW

BASIC 7-45

EBASIC

Of course, if the ASSIGN command is given a line number in the program, the message is
only an indication that the program is operating. But if the ASSIGN command is given
prior to run, it gives the user a second chance to decide on a new assignment, since no
action will be taken until he types RUN. An " old" file name is perfectly acceptable, but it
means that the file may be altered by running the program.

OPEN

The OPEN statement is used to initialize a file number for either write or read access.
After an OPEN statement the GET or PUT pointer is set to the first item in the file.

To PUT items into a file (write access) we must use a statement of the form:
OPEN file number, O

To GET items from a file (read access) we must use a statement of the form:
OPEN file number, 1, optional variable

The file number may be any variable or formula which when evaluated and truncated to
an integer, is equal to 1, 2, or 3. When a file is opened for read access, the optional
variable is set equal to the current number of items in the file.

Examples:

10 REM OPEN FILE 1 FOR GET

20 OPEN 1, 1, N

30 REM N IS NOW EQUAL TO NO. ITEMS IN FILE 1
40 REM OPEN FILE 2 FOR PUT

50 OPEN 2, 0

Each time a file is OPENed for either GET or PUT operations, the data pointer is set to the
first item in the file.

Only one file at a time may be OPENed on a magnetic tape unit. If a file is OPENed on a
magnetic tape unit, the following statements cannot be issued specifying a file on the
same unit: COPY, LOAD, SAVE, or DELETE. Also, the FLIST command (FLISTA or FLISTB)
will not display the contents of that bulk storage unit.

A given file may be OPENed for read access on more than one file number. A file OPENed
for write access, however, may be ASSIGNed to only one file number at a time.

PUT

The PUT statement is used to place values in a data file previously opened for write
access. lts form is

PUT file number, list

BASIC 7-46

EBASIC

where the file number may be any variable or formula which, when truncated to an integer
value, is equal to 1, 2, or 3. The list of items, which are placed sequentially in the file, may
also be variables or formulae. For example:

10 REM OPEN FILE 2 FOR WRITE
20 OPEN 2,0

30 FOR I = 1 TO 10

40 PUT2, I, I + 2, SQR(I)

50 NEXT I

60 CLOSE 2,N

This example places 30 values into file 2. The values are PUT sequentially in the order in
which they appear in the list following the file number. Here 1, 1, and 1 are the first items
in the file and 2, 4, and /Z_are the fourth, fifth, and sixth items. The OPEN statement
initializes the pointer to the first item in the file and each value PUT into the file
increments the pointer by one.

GET

The GET statement is used to recover items from a data file previously opened for read
access. lts form is

GET file number, list
where the file number may be any variable or formula which, when truncated to an integer
value, is equal to 1, 2, or 3. The list contains one or more variables which receive the items
" gotten" from the file in sequential manner. For example:

10 REM OPEN FILE 3 FOR READ

20 OPEN 3, 1, N

30 GET 3, X, Y, Z
The first three items in the file are assigned to X, Y, and Z. The data pointer is initialized
to the first item in the file by the OPEN statement. Each time an item is obtained from the

file the pointer is incremented by one. Note: Items retrieved from an integer data file
(type |) are converted to floating point automatically by the GET.

CLOSE
The CLOSE statement terminates GET or PUT operations on a file. Its form is
CLOSE file number, optional variable
where the file number may be any variable or formula which when truncated to an integer

evaluates to 1, 2, or 3. The optional variable is set equal to the number of items in the file

BASIC 7-47

EBASIC

at time of CLOSE; the optional variable may be used only when terminating access to a file
OPENed for write.

EXAMPLE:
300 CLOSE 1, N
An implicit CLOSE is performed on every open file when a program is #borted through use

of the ESC key or through a program error. CLOSE is also performed on all open files when
a normal run is completed.

COPY Statement

The COPY statement permits the user to transfer any file from one bulk storage device to
another bulk storage device. It is also possible to copy the file on the same bulk storage
device unless that device is a magnetic tape unit.

The form of the COPY statement is

COPY file name TO file name

where the first file name is the source and the second file is the sink. If the sink file name
is found to already exist in the file directory of the designated unit, the message

OLD FILE?

is printed. This gives the user a chance 16 abort the COPY command by striking the ESC
key. Otherwise, the user may give the go-ahead signal by striking carriage RETURN.

Examples:

COPY 'DATA' TO 'DATA-A'
COPY 'PROG1' TO 'PROGZ'
COPY 'SAMP-A' TO 'SAMP-B'
COPY 'TEST' TO 'TEST'

Notice that all file names are constructed according to the rules specified under SAVE.
The last example is legal but of no use since it will result in EBASIC reading the file into a
core memory buffer and writing it out again on the disc in the same place. Only one file
named TEST will appear in the file directory.

The source file may be on any of the bulk storage devices: system file, unit A, or unit B.

The sink file may also be any of the bulk storage devices except that a source file on
magnetic tape may not be copied orito the magnetic tape in a single operation; it must

BASIC 7-48

EBASIC

first be transferred to another unit (for example, the system file) and then may be
transfered back to the tape.

Note: The COPY statement may be used as a numbered statement in the program if and
only if the files have been previously CLOSEd. Otherwise an error will be reported.

DELETE Statement

The DELETE statement may be used to erase a specified program file, subroutine file, or
data file from any of the bulk storage devices on the system. For example:

DELETE 'SAMPLE'

The file name must be enclosed in quotation marks and is constructed according to the
rules given under the SAVE command. Only one file may be deleted at a time. If the name
specified is on the file unit, then the system will respond to the DELETE statement by
printing

OLD FILE?

If the user wishes to go ahead with the command, he depresses carriage RETURN; if he
wishes to abort the command, he uses the ESC key.

When a file is deleted, the space previously used by it is released for re-use, unless the file
was on a reel of magnetic tape.

Program Overlays--Dynamic Use of LOAD

The LOAD command may be used as a numbered statement in the program. This facility
permits the programmer to write EBASIC programs in segments which may be SAVEd on
bulk storage units and LOADed into the computer only as they are needed. A program
written in this manner usually includes one or more REMOVE commands to release
computer memory for the incoming segment and to avoid an " inconvenient” mixing of
current statements with incoming statements. Statements in the current segment which
are not overlaid by statements in the incoming segment or REMOVEd before the LOAD is
executed will remain after the LOAD has been completed.

The conditions and restrictions which govern the use of the LOAD statement in a program
are as follows:

a. A LOAD statement should not be written inside a FOR-NEXT loop or a subroutine.

b. Simple variables and array variables retain their values from one segment to the next,

unless changed by the program.
(continued)

BASIC 7-49

EBASIC

c. A DIM statement must be overlaid by the incoming segment or REMOVEd prior to the
LOAD statement.

d. A user-defined function (DEF statement) remains defined from segment to segment
only if it is not overlaid or REMOVEd.

e. An implicit RESTORE is performed when a LOAD statement is executed. This initializes
the pointer to the first number in the data pool after the LOAD has been completed.

After a successful LOAD, control will pass to the next numbered statement in the program.

The procedure for incorporating LOAD statement into the program is illustrated in the
following example. In this example, the segments of the program are called " pages" for
convenient reference. Note that statement 40 in PAGEOL had to be either REMOVEd (as
was done) or overlaid by PAGEO2 or else error message 45 would have been reported.

SCRATCH
READY

LOAD 'PAGE02'
LIST

1 REM PAGEO2

190 DIM B (5)

200 READ B (1),B{ 2),B(3),B(4),B(5)

210 PRINT 'A(I)', 'B(I)','FNX(A(I))', 'FNX(B(I))
220 FOR I= 1 TO 5

230 PRINT A(I),B(X),FNS(A(I)),FNX(B(I))

240 NEXT I

400 END

SCRATCH

READY

LOAD 'PAGEO1'

LIST

1 REM PAGEO1

10 DEFFN X(X)=X t 2

20 DATA 1, 2, 3, 4, 5

30 READ A(1),A(2),A(3),A(4),A(5)

40 DIM A(5)

50 REMOVE 25 TO 50

60 LOAD 'PAGEO2'

70 REMOVE 60 TO 70

80 REM WILL NOT BE OVERLAID TO ILLUSTRATE PROCESS.
400 END

(continued)

BASIC 7-50

EBASIC

RUN

A(I) B(I) FNX(A(I)) qu(B(I))
1 1 1 1
2 2 3.99999 3.99999
3 3 8.99997 8.99997
4y y 15.9999 15.9999
5 5 24.9999 : 24,9999

READY
LIST

1 REM PAGE02

10 DEFFN X(X)=X t 2

20 DATA 1, 2, 3, 4, 5

80 REM WILL NOT BE OVERLAID TO ILLUSTRATE PROCESS.
190 DIM B(5)

200 READ B(1),B(2),B(3),B(4),B(5)

210 PRINT 'A(I)','B(I)','FNX(A(I))', 'FNX(B(I))'
220 FOR I= 1 TO 5

230 PRINT A(I),B(I),FNX(AI)),FNX(B(I))

240 NEXT I ;

400 END .

PROGRAMMING THE INTERFACE CONSOLE

The Interface Console (IFC) is programmed via CALL statements to the Input/Output
SubSystem (I0SS) drivers, which are assembly language subroutines. The 10SS drivers
and their functions are:

DATAI Inputs data to an array
DATIF Inputs data to a file

DATAO Outputs data from an array
PULSE Operates a control line output
STATUS Senses a status line input

Analog and Digital Channels

The 10SS drivers (assembly language subroutines) DATAI, DATIF, and DATAO allow input
or output over one or more channels in a single CALL statement. The channel may be
handling analog or digital data as determined by the factory wiring. Each channel is
assigned a number, to which the subroutines may refer, but only the programmer knows
whether the channel number is assigned to analog data or digital data.

The analog inputs are multiplexed to a 13-bit (binary) analog-to-digital converter, which
accepts signals of + 10 volts full scale. Thus the full scale values (numbers) which are read
on these channels are +4095 (+ 10 volts) and = 4096 (- 10 volts). The negative limit is
slightly larger than the positive limit because a two’'s complement format is used to
represent raw input data. Data is then transformed to floating point format so that it may
be used by the EBASIC program.

BASIC 7-51

EBASIC

The analog outputs are multiplexed to 12-bit (binary) digital-to analog converters. Again,
two’'s complement format is used by the converter circuitry so that full scale is +2047
(+ 10 volts) and —2048 (- 10 volts). If a positive value greater than 2047 is output or a
negative value less — 2048 is output, then the higher bits are ignored. This causes 2048 to
be equivalent to + 1 and —2049 to be equivalent to — 1 (for example). A number N outside
the range

-32768< N <32767

cannot be contained in the 16-bit computer word used. DATAO will report the attempt to
output numbers outside this range as an error.

The digital inputs or outputs are 16-bits in binary two's complement format. Again, the
maximum values which can be contained in 16 parallel bits are + 32767 and - 32768. In
two’s complement format, negative numbers are represented as the one’s complement
form plus one. A negative number in one’'s complement form is obtained by taking the
number in binary form and replacing every " 1" with a" 0" and vice versa.

Thus we have, for example,
+1 = 0 000 000 000 000 001
-1 = 1111111 111 111 110 (one’s complement)
-1 =1 111111 111 111 111 (two's complement)

The CALL statements for DATAI, DATIF, and DATAO are very similar. DATAl may be used
as an example:

10 CALL DATAI, M(1), A(1), N, 8, C
where

M(1) = first element of a channel selector array
A(l) = first element of the data storage array

N = number of data points
S = scan time, which is the time (in microseconds) to
' scan all channels in the channel selector array
C = capture delay, which is the time delay (in microseconds)

between channels in the scan
Notice that the CALL statements for DATAO and DATIF are very similar, for example,

20 CALL DATAO, M(1), aA(1), N,
30 CALL DATIF, M(1), 1, N, S,

where all the above definitions of the CALL arguments apply except that a file number has

replaced A(1) in the CALL to DATIF. For DATAO, A(l) is the first element of an output
array instead of an input array as used with DATAI.

BASIC 7-52

EBASIC

The simple variables and array variables used above are illustrations only. Any variable
names may be used except that the first two arguments must be array variables.
Furthermore, the dimensions of these arrays must have been previously declared in a DIM
statement.

Note: When using DATAI or DATIF, the programmer must consider the SCAN SYNC line on
the IFC. For a description of its use, see the section on scan time.

Channel Selector Array

The first argument in the CALL statement to DATAI, DATAO, or DATIF is an array variable
which is the first element in a channel selector array, for example,

10 CALL DATAI, M(1), A(1), N, 8, C

For convenience, this element will be referred to as M(1) and array M is then the channel
selector array. The channel selector array specifies the channel numbers over which data
is to be transferred and whether the specified channels are to be accessed in every scan,
every other scan, every third scan, etc.

In setting up the channel selector array the user must decide whether to use sequential
addressing of channels or random addressing. Sequential scans are easier to set up but
require data rates to be the same on every channel specified. Channels may not be
skipped in a sequential scan; the scan occurs from channel 1 to the last channel given.
Random addressing allows different data rates on various channels and permits use of
only those channels absolutely specified.

The channels are, for the most part, the numbers given on the IFC. For DATAI channels
1-16 are assigned to analog inputs 1-16. The digital input will be channel 17, unless more
than sixteen analog inputs are installed on the system. Of course, more than sixteen
analog inputs are not available on a single IFC. But if the analog channels are expanded
then the digital channels will be numbered following the highest numbered analog
channel. A similar situation exists for'the output channels. Output channels 1-8 are
assigned to analog outputs (as marked on the IFC) and the digital output channel is
assigned number 9, unless the analog outputs are expanded beyond 8.

SEQUENTIAL SCAN
The sequential scan of input or output channels is set up in the following manner:

1
last channel in scan

M(1)
M(2)

When this type of channel selector array is specified, all channels from channel 1 to the
last channel will be accessed in every scan time. The scan time is given as the fourth
argument in the CALL statement.

BASIC 7-53

EBASIC

The programmer must take the number of channels to be scanned into account when
assigning values to the scan time and capture delay.

RANDOM SCAN
The random scan of input or output channels is set in the following manner:

M(1) = number of items to follow
M(2) = -1 (access every scan)

channels to be accessed in every scan; channel numbers
in ascending order

M(1) = -2 (access every second scan)

channels to be accessed every second scan; channel numbers
in ascending order

M(J) = -3 (access every third scan)

channels to be accessed every third scan; channel numbers
in ascending order

etc.

Note that a negative integer is used to specify the random scan. For a random scan, M(2)
is a — 1 and succeeding positive entries up to the next negative number are accessed on
every scan. Similarly, succeeding negative entries specify how often other channels are to
be accessed.

Example:
M(l) = 5
M2) = -1
M@3) =1
M@4) = 3
MG5) = -2
M) = 2

In this example channels 1 and 3 will be accessed every scan and channel 2 will be
accessed on the even scans. A detailed example of a random scan is illustrated in figure
7-1.

The specifications for the channel selector will affect the specifications for scan time and
capture delay, as described in the appropriate sections of this manual.

BASIC 7-54

6G6-£ JIsvg

ajdwexsy apoly uedsg wopuey ‘-7 34nSiy

LIGI-IILA

120's] 120U s 120 i

DATA
CAPTURE
ANV b bt vt

8 18 1 8 13 1 8 3
ApC TIME Ty 1 4= = ——
INPUT TO 6) B(7 B(9) B(10) B(11
NPT B(1) B(2) B(3) B(6) B(7) B(8) ‘ _() (10) B(1T)

10 DIM A(8), B(13)

300 CALL DATAL A1), B(1), 13, 120

WHERE

AY= 7
AQ) = -1
AQ = 1
A4 = 8
AB) = -2
A= 3
AQ) =-3
A@®) =13

[N

NOTE: WHEN INTERMEDIATE CHANNELS
ARE SKIPPED, COLLECTED CHANNELS ARE
ACQUIRED AT THE SAME RELATIVE TIME
FROM THE START OF THE DATA ACQUISITION
CYCLE,

NUMBER OF ENTRIES TO FOLLOW

CHANNELS AT BASIC RATE
CHANNEL AT 1/2 BASIC RATE

CHANNEL AT 1/3 BASIC RATE

alsva3

EBASIC

Data Storage Array (DATAI! and DATAO)

The data storage array is identified by the second argument in the CALL statement. This
array variable, which will be referred to as A(}), is the first location to be used for input
(DATAI) or the first location to be used for output (DATAOQ). There is no reason why the
first element cannot be A(2) or B(10) or C(1,20). A double-subscripted array variable must
be used if the program is to output more than 255 values in a single CALL statement,
however. In any case the array dimensions must be declared in the program by a DIM
statement.

If using a double-subscripted array variable, the programmer should be aware that input
or output is by columns, not by rows. For example, an array A with 3 rows and 2 columns
(DIM A (3,2)) contains array elements which are used in the following order:

A (1,1)
A (2,1)
A (3.1)
A (1,2)
A (2.2)
A (3.2)

File Number (DATIF)

When using DATIF, the second argument in the CALL statement may be a constant, a
variable or a fomula which has a truncated value equal to one of the three file numbers (1,
2 or 3).

OPEN and CLOSE statements for the file used should not be given when DATIF is called.
DATIF performs its own OPEN and CLOSE operations. However, an alphanumeric file
name must be assigned to the file number via the ASSIGN command. This is commonly
done prior to running the program. If the file to be used is OPEN for read or write when a
CALL for DATIF is encountered, the file is deleted and reOPENed in the write mode.

The DATIF command can be used with all bulk file units except cassettes.

Number of Data Points

The third argument in the CALL statement to DATAI, DATAO, or DATIF is the number of
data points to be transferred. A variable, formula, or constant may be used; the value is-
truncated to an integer. The number of data points, N, may be as large as 32767 for
DATIF; for DATAI and DATAO, N is limited to the available computer memory.

The number of data points specified must not exceed the number of elements in the array
which are given in a DIM statement. If the number of data points exceeds the number of

BASIC 7-56

EBASIC

elements in the array, there are three possible destructive consequences when using
DATAI:

a. Theinput may overflow into the next array(s).

b. Theinput may overflow all the arrays and destroy the EBASIC program, thus putting the
computer into step mode. This will necessitate the manual restart of the computer.

c. The input may overflow into the assembly language subroutines and possibly into

memory locations used by EBASIC itself. In either case the restart bootstrap will
have to be used to recover.

Scan Time

The fourth argument in the CALL statement specifies the number of microseconds in a
data cycle. For convenience, this argument will be referred to as S. The scan time is
truncated to an integer, which must be in the range

32767 =z =T * N

number of channels in the data cycle
minimum time to transfer a data point over one channel

where N
T

Refer to figure 7-2 for a detailed illustration of scan time and capture delay.

The scan time may also be set equal to zero, which permits the external data source to
give a " data present" signal for every single data point to be input. SCAN SYNC is raised
to +5 volts each time the computer is ready to accept another data point. SCAN SYNC is
externally grounded to synchronize each scan. SCAN SYNC is also used when the scan
time is not zero except that this line need be grounded only once to cause the computer to
input data to the entire array at the rate indicated. SCAN SYNC is used only with DATAI
and DATIF (not DATAO).

The number of channels, N, in the data cycle is determined from the channel selector
array. When using sequential scan, the number of channels is simply the last channel
number specified. When using random channel selection, the number of channels is the
maximum number of channels which will be used in any one scan time.

The minimum time (T) required to transfer data over a channel depends on the
subroutine used and storage media. A summary of values assigned to T is given in table
7-11.

If the value given for the scan time falls within the bounds given earlier, then all channels
specified in the channel selector array may be accessed in the time allotted for the scan.
But if the scan time is not sufficient, then the computer will take as much time as is
required and no error message is returned. The following example shows how a value for
the scan time is computed.

BASIC 7-57

EBASIC

The channel selector array is

M@1) = 5
M@2) = -1
M@3) =1
M@4) = 3
M) = -2
M@6) = 7

DATIF is used to input to a magnetic tape unit. (25 ips)

Smin = N*T
where T 333
N 3
therefore, S min = 3*333 = 1000 microseconds

[l

Il

i

A large value for scan time may be specified, if desired.

|«t———— DATA ACQUISITION FRAME ———m=i
|-——— DATA ACQUISITION FRAME

f Tt T Ty Ty Tyt
e bt

POSSIBLE ADC ' ADC ' ADC ' ADC
DATA
CAPTURE
TIMES
MEANING OF SYMBOLS
T DATA ACQUISITION CYCLE TIME INTERVAL (SCAN TIME)
Ty TIME INTERVAL BETWEEN EACH DATA INPUT OPERATION (CAPTURE DELAY)
TADC TIME TO COMPLETE ONE ANALOG-TO-DIGITAL CONVERSION
N MAXIMUM NUMBER OF CHANNELS TO BE COLLECTED IN ONE T TIME
IMPORTANT RELATIONSHIPS
IF T, NOT SUPPLIED (EQUIVALENT TO SETTING T, = T,)
Ty 2N*Tapc
14‘2 SUPPLIED
T]/T2 2N (MUST BE INTEGER RESULT)
T, 2T
VIII1-1918 2 = 'ADC

Figure 7-2. Time Specification Arguments

BASIC 7-58

Table 7-11. Minimum Times to Transfer Data Over a Channel

for 620/L-100 or 620/f-100.

EBASIC

Equivalent

Input/Output Minimum Transfer Throughput in
10SS Driver Data Storage Time (T) in usec kHz
Core memory
DATAI 50 20
array
Core memory
DATAO 150 15
array
Moving-head
disc 667 1.5
Fixed-head
DATIF disc 225 4.5
25 ips tape
deck (9 track) 333 3.0
37.5 ips tape
deck (9 track) 225 4.5

Capture Delay

The fifth argument in the CALL statement specifies the time in microseconds between
adjacent channels in the scan. The capture delay must be an integer sub-multiple of the

scan time.

The capture delay is optional for DATAI and DATAGO. If it is not specified then data will be
input or output as fast as possible. However, when using DATAI and selecting more than
one channel, the failure to specify the capture delay will result in data points unevenly
spaced in time. This is because the minimum time to switch channels is a variable (if not
controlled) although it will always be less than the value given in table 7-11. However,
when using DATAO, even though capture delay is not specified, the data points will aiways
be equally spaced in time.

To continue the example chosen in the section on scan time, the channel selector array is

M(1)
M(2)
M(3)
M(4)
M(5)
M(6)

5
-1
1
3
-2
7

BASIC 7-59

EBASIC

DATIF will be used for input to a tape unit (25 ips). The minimum scan time we can
choose is (from table 7-11) 1000 microseconds. For illustration 2000 is chosen, which gives
a throughput of 500 Hz for each channel included in every scan. For capture delay some
value is required which when multiplied by an integer is equal to 2000. Our choices are
somewhat limited:

2000/6 = 333.3 (Not an integer)

2000/5 = 400 (0.K. Minimum time to transfer)
2000/4 = 500 (0.K)

2000/3 = 666.7 (Not an integer)

2000/2 = 1000 (Cannot fit 3 channels in scan)
2000/1 = 2000 (Cannot fit 3 channels in scan).

Thus, the only valid choices for the capture delay with 3 channels and a scan time of 2000
are 400 and 500. If, however, input to the system file is performed, we could choose a
capture delay of 250 (250 x 8 = 2000). The graphic representation of this solution is
shown in figure 7-3.

Control and Status Line Operation (PULSE, STATUS)

The 10SS drivers (assembly language subroutines) PULSE and STATUS allow the
programmer to operate the digital output CONTROL lines and the digital input STATUS
lines. Each deals with a single bit of information (0 or 1), whereas DATAI, DATAO, and
DATIF deal with many bits in parallel (up to 16).

The statement

10 CALL PULSE, N

turns on the NPN transistor switch (to ground) which is control line N. Each transistor
switch is reset by an external input to ground on the appropriate connector.

Control lines 1 through 8 are available on the IFC. Lines 9 through 56 are available as
options but they must be accessed on the printed circuit boards.

The STATUS inputs permit the user to examine a single bit at a time by calling the 10SS
Driver STATUS. For example

100 CALL STATUS, 2, N
This CALL examines the input to status input number 2 and sets the variable N equal to 1
if the input is at ground (true). If the input is high (false), the variable N will be set equal
to O (zero). The program may then make a decision based on this value.
The status inputs may also be used in an interrupt mode. However, the user must

generate his own assembly language subroutines for this purpose (see the ADAPTS User’s
Guide).

BASIC 7-60

19-£ JISvg

d11v@ Buisn juswaieig 11yo ojdwes e ioy wesSeiq Sunuyy “g-7 84ndiy

6I6I-11LA

T =0 (SCAN SYNC HAS BEEN GROUNDED)

CHANNEL 13 13 7 13 13 7
++—+—r—t s+ttt r+—+—+—+—+—t—t—1——
| N
A1) AM) A7) A(9)
ELEMENT A(2) AB) A A(6) A@B) A(10)
—_— ‘«—500 10 DIM A(10), M(6)
20 READ M(1), M(2), M(3), M(4), M(6)
30 DATA5, -1, 1,3, -2,7
4000 * & o 2 e+ s e .

300 CALL DATIF, M(1), A(1),10, 4000, 500

CHANNEL SELECTOR ARRAY
M(1) = 5
M2)
M(3) CHANNEL SELECTOR ARRAY
M(4)
M) DATA
M(6)
NUMBER OF VALUES

SCAN TIME CAPTURE DELAY

[T T T
1
N W o —

Jisva3

EBASIC

INFORMATION DISPLAY ON OSCILLOSCOPE

A summary of the commands for operating the oscilloscope is given in table 7-12. The
oscilloscope controls are operated by assembly language subroutines. The oscilloscope,
Model A-620/73, is modified to match the signal levels at the hardware controller. The
controller is similar to an analog output module and, therefore, the PULSE and STATUS
subroutines may be used to operate some of the features of the A-620/73 such as the
STORE/NON-STORE choice of modes. These will be explained later.

Both alphanumeric characters and graphical figures (dots and lines) may be output to the
oscilloscope. Characters are generated by a software character generator. The size of the
characters is independently controlled by the SIZE subroutine.

All alphanumeric output, whether typed from the keyboard or printed with a PRINT
statement, is directed either to the Teletype or to the oscilloscope by the routines TTY and
CRT. Alphanumerics cannot be printed simultaneously on the screen and on the Teletype

page.

The screen is initialized for a fresh page of alphanumeric output by CTRL L (which may be
included in a PRINT statement between quotation marks). If outputting alphanumeric
information only, each line will be automatically positioned on the page. Character size 2
permits 72 columns on the screen - the same as a Teletype page. When any attempt is
made to print below the page, the software character generator rings the Teletype bell and
waits for a go-ahead signal from the operator. The go-head signal, which is any key on the
Teletype, causes the screen to be erased, the beam to be re-positioned to the upper left
corner, and the information display to be resumed.

The POS subroutine may be used to position the beam before printing characters or
drawing a straight line. In order to use ORG, POS, POINT, and VECT the user needs to
understand the coordinate system of the screen. With the origin set to (0,0), the screen is
organized so that

-512<X=<511
-400=< Y=< 399

where X has a larger range because the screen is rectangular. Equal increments in X and
Y cause the beam to be moved at a 45 degree angle.

The actual X and Y coordinates may be used and thus the values are modulo 511 (- 512
for negative values) up to the limit which can be contained in a 16-bit word length; the
high order bits (except sign) are simply not used by the converter. Thus, for example, X =
512 is equivalent to X = 0, and X = 513 is equivalent to X = 1. This modulus feature
could be used to expand a graphic display by using variables as outer bounds, which
might be assigned values as large as + 32767. However, this technique might cause the
routine to " waste" time by writing off-screen.

BASIC 7-62

Command
CALL CRT
CALL TTY

CALL INIT

CALL ERASE

CALL SIZE,S

CALL SCALE,SF

CALL ZOOM,ZF

EBASIC

Table 7-12. EBASIC Oscilloscope Commands
Function

Switches alphanumeric output stream to the CRT

Switches alphanumeric output stream to the Teletype

Initializes the CRT by erasing the screen; positioning
the beam to (0,0); and resetting the origin to (0,0), the
character size to (2), the scale factor to (100), and the
zoom factor to (100).

Erases the screen, leaves the current X, Y position un-
changed, and places the CRT in the ready-to-write mode

Sets the size of alphanumeric characters according to (S)
which may be a formula, but must evaluate to a positive
integer between 1 and 80. Once set, SIZE remains unchanged
until altered by another SIZE or ZOOM command. Initially,

S = 2 which allows 44 lines of 72 characters each to be
written on the screen. The ZOOM command effects SIZE as
follows:

(S * ZOOM factor)

new size = greatest integer
(100)

Sets the scale factor (SF) to enlarge or reduce graphic
output only while alphanumerics simply change absolute
position. Once set, SCALE remains unchanged until
altered by another SCALE or ZOOM command. Initially,
SF = 100; thus 50 reduces the graphic output by a
factor of 2 and 200 enlarges it by a factor of 2. The
ZOOM command affects SCALE as follows:

(SF * ZOOM factor)

new scale = greatest integer
(100)

SF can be a formula, but must evaluate within the range
- 32768 to 32767

Sets the zoom factor (ZF) to enlarge or reduce the entire
alpha-graphic presentation. Once set, ZOOM remains unchanged
until altered by another ZOOM command. Initially, ZF = 100;
thus if ZF = 50 and SF = 300, the new scale will be 150
(continued)

BASIC 7-63

EBASIC

Table 7-12. EBASIC Oscilloscope Commands (continued)

Command

CALL ORG,X,Y,M

CALL POS,X,Y,M
CALL POINT, X
Y.M

CALL VECT, X,
Y.M

RETURN key

CTRL,FORM key

LINE FEED key

BASIC 7-64

Function

and the alpha-graphic output will be enlarged by a factor of
1.5. (ZF) can be a formula, but must evaluate within the

range — 32768 to 32767.

Stores bias values for X and Y coordinates permitting transiation
of the origin of the coordinate system to any desired point.

Once set, the bias values remain unchanged until altered by
another ORG command. !Initial bias values are both zero. (X) and
(Y) can be formulas, but must evaluate within the range

- 32768 to 32767. (M) must evaluate to zero (specifying
absolute) or one (relative)

POS positions the beam; POINT positions the beam and writes a
point on the screen. Positioning to the new X- and Y-
coordinates can be absolute (if M = 0) or relative (if M = 1)

Draws a straight line from the present beam position to the new
X= and Y- coordinates absolute (if M = 0) or
relative (if M = 1)

Pressing the RETURN key on the Teletype keyboard (anytime after
the CALL CRT command) positions the beam to:

X
Y

-512
- unchanged

Pressing and holding the CTRL key, then pressing the FORM key
erases the CRT and positions the beam to:

X
Y

-512
399

Pressing the LINE FEED key positions the beam to:

X = unchanged
Y = current Y - 10 * §

if the new Y < -400 the Teletype bell rings and
pressing any key executes a CTRL,FORM
(continued)

EBASIC

Table 7-12. EBASIC Oscilloscope Commands (continued)
Command Function
Auxillary Commands for Oscilloscope
CALL PULSE,59 Pulse the Z-axis, i.e., write a dot

CALL PULSE,GO Erase the screen. Does not change the beam position; does
not check for read-to-write condition

CALL STATUS, Sense the erase interval. If complete, set (TF) = 1; else
57, (TF) set (TF) = 0

CALL PULSE, 61 Select non-store mode
CALL PULSE, 62 Select store mode
CALL PULSE, 63 Select write-thru mode. Effective only if store mode

CALL PULSE, 64 Select non-write-thru mode

Alphanumeric characters are printed in a 5 x 7 dot matrix which is expanded by the
argument given in the CALL to the subroutine SIZE.

In order to lengthen the life of the oscilloscope tube, the display unit has a view/hold
feature which causes the stored display to decrease in intensity approximately 60 seconds
after either of the following:

a. the VIEW button on the front panel has been pressed; or

b. output to the screen has ceased.

The unit may be returned to the view mode by pressing the VIEW button or by writing-any
information on or off screen. |f the user wishes to override the normal return to hold mode
after 60 seconds, then he may position the beam near the edge of the screen and
repetitively operate line 59 with the command

CALL PULSE, 59

Several other auxiliary commands may be useful in programming. The NON-STORE and
WRITE-THRU modes are of particular interest. While in NON-STORE mode, the
oscilloscope screen will not store information; however, previous information written in
STORE mode is retained, although not visible. Therefore, the user may write on the screen
in STORE mode and then switch back and forth between NON-STORE and STORE modes.
This will cause the stored display to blink on and off in an attention-getting manner.

The WRITE-THRU mode may be used while the unit is in STORE mode to display the beam
position without storing the information on the screen. The following example shows how
to position the beam at the center of the screen and display an " x" without storing it on
the screen. The " x" will be very fuzzy, however, because the electron beam is very

BASIC 7-65

EBASIC

diffused in WRITE-THRU mode to decrease its intensity below that required for storage.
This decreased intensity makes the beam difficult to see, especially if it is not properly
adjusted (see the ADAPTS User's Guide).

10 REM PROGRAM TO DISPLAY X IN WRITE-THRU MODE
20 CALL PULSE, 63

30 CALL CRT

40 CALL SIZE, 2

50 CALL POS, 0, 0, O
60 PRINT 'X'

70 CALL STATUS, 1, A
75 IF A=0 THEN 50

80 CALL PULSE, 64

90 CALL TTY

100 END

In the example above, the program will terminate normally when STATUS line 1 is
grounded. Otherwise the " x" will be repetitively written in the center of the screen in
WRITE-THRU mode.

The programmer may wish to erase the screen without changing the beam position. He
may do this by using the command

CALL PULSE, 60
However, the screen will not be checked for ERASE INTERVAL true after erase, as it would
be if the CALL ERASE command were used. STATUS line 57 may be checked to determine
when the ERASE INTERVAL is over (true condition) so that the program may not write
until the screen is in a ready-to-write state. For example:

10 CALL PULSE, 60

20 CALL STATUS, 57, A

25 IF A=0 THEN 20

30 REM CONTINUE WITH PROG IF STATUS TRUE

The example on the following page summarizes many of the principles of operating the
oscilloscope display. When RUN is typed, the program will type

GIVE FREQUENCY IN kHz?

Typical values might be in range 1-10. The program will display a sine wave of this
frequency on the oscilloscope screen. Then it will ask the user for scale factors in X and Y.
A scale factor larger than 100 percent will decrease the number of actual units per inch;
this will seemingly decrease frequency (X scale factor) and increase the amplitude (Y scale
factor).

Note from line 290 that the display will always extend from the extreme left of the screen
to the extreme right no matter what scale factor is selected. The amplitude in the Y

BASIC 7-66

EBASIC

direction is £+ 200 for a scale factor of 100 percent and will vary according to the input
accepted by line 140.

Function FNA(X) is used to convert the X axis to a time scale which, for a scale factor of
100, runs from — 0.5 millisecond to + 0.5 millisecond. Therefore, the frequency in kHz will
be the number of actual cycles displayed on the screen (before scale factors are
introduced). Line 230 defines a function FNB(X) which is the scale factor times the
amplitude at 100 percent times sine (2 pi ft.). The data points are printed as small x's.
Note that if the Y scale factor is made larger than 200 percent any data point which the
program trys to print below the page will cause the display to halt, waiting for the go-
ahead signal (any key) to be given before erasing the page and continuing the display.

LIST
10 CALL TTY

20 PRINT

30 PRINT 'GIVE FREQUENCY IN KHZ';
40 INPUT F

50 READ X1,X2,Y1,Y2,P

60 READ S1,82

70 DATA -512, 511, 200,-200

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
330
340
350

DATA 200, 100, 100

GOSUB 250

PRINT 'GIVE SCALE FACTORS IN % '
PRINT 'X SCALE FACTOR =';

INPUT S1 _ .

PRINT 'Y SCALE FACTOR =';

INPUT S2

GOSUB 250

PRINT 'TYPE 1 TO REPEAT, 0 TO END PROGRAM';
INPUT R

IF R= 0 THEN 240

RESTORE

IF R= 1 THEN 10

IF R# 1 THEN 160

DEFFN A(X)=(100*X/51)/((X2-X1)* 1000)
DEFFN B(X)=(S2%Y1/ 100)*SIN(6.27999* 1000*%F*FNA(X))
END

REM SUBROUTINE

CALL ERASE

CALL SIZE, 1

CALL CRT

FOR X=X1 TO X2 STEP (X2-X1)/P

CALL POS,X,FNB(X), 0
PRINT 'X'

CALL SIZE, 2

CALL TTY

RETURN

BASIC 7-67

EBASIC

INFORMATION DISPLAY ON KEYBOARD OSCILLOSCOPE DISPLAY

This unit, Model A-930, is used in lieu of the A-620/73. It is a free-standing, pedestal
mounted, keyboard-CRT unit. In an ADAPTS system its function is almost identical to
that of the A-620/73-Teletype keyboard combination (see preceding section).

The commands given in table 7-12 apply identically to keyboard CRT with the following
exceptions:

a. With the ORIGIN set to (0,0) the screen is organized so that:

0<X=<1023
0<Y< 780

b. The following command puts the A-930 on-line:

CALL KBCRT -« Switches alphanumeric output stream to
the keyboard-CRT

c. Just one character size is available on the A-930. The SIZE command controls the
" interline" spacing:

CALL SIZE,S -« Sets the interline spacing to (11 points)
* (S), where (S) may be a formula, but must
evaluate to a positive integer between 1 and 80.
Once set, SIZE remains unchanged until altered
by another SIZE or ZOOM command. Initially,
S = 2, which allows 36 lines of 74 characters
each to be written on the screen. The ZOOM
command affects SIZE as follows:

new size = greatest integer (S * ZOOM factor)
(100)

d. RETURN KEY » Pressing the RETURN key on the CRT keyboard
(anytime after the CALL KBCRT command) positions
the beam to:

X =0
Y = unchanged

e. CTRL,FORM keys * Pressing the holding the CTRL key, then
pressing the FORM key erases the CRT and
positions the beam to:

X =0
Y = 780 (continued)

BASIC 7-68

EBASIC

f. LINE FEED key « Pressing the LINE FEED key positions the
beam to:

X = unchanged
Y = current Y - 11 * §

If the new Y< 0 the speaker tone sounds
continuously until any key is pressed which
executes a CTRL,FORM

g. The auxiliary commands listed in table 7-12 do not apply to the A-930.

INFORMATION OUTPUT ON DIGITAL X-Y PLOTTER

A summary of the commands for operating the plotter is given in table 7-13. Note the
similarity between these commands and those for the oscilloscope display units. This
similarity allows the same EBASIC program to output alphagraphic information to the CRT
or the plotter. Plotter commands use paramenters which may or may not be used by the
CRT. Some parameters are also optional for the plotter. Nevertheless the plotter and CRT
software packages each recognize their own valid parameters and function accordingly.

Table 7-13. EBASIC Digital X-Y Plotter Commands

Command Function

CALL PLOTTR Switches alphanumeric output stream to the plotter
CALL TTY Switches alphanumeric output stream to the Teletype
CALL INIT Initializes the plotter by raising the pen and returning

it to the load point (lower left corner); the origin is

reset to (0,0), the character size to (2), the scale

factors to (100), and the zoom factor to (100). This
establishes an X and Y reference zero point and locates
the pen point so that a new chart may be loaded without
interference.

CALL ERASE Raises the pen and returns it to the load point (lower
left corner of the page).

CALL SIZE,S,OR Sets the size (S) and orientation (OR) of alphanumeric
characters. (S) may be a formula, but must evaluate to
a positive integer between 1 and 16. Initially, (S) = 2
which produces characters about 1/8 inch high. (OR) is
optional; if not used it is set to zero; (OR) may be a
(continued)

BASIC 7-69

EBASIC

Table 7-13. EBASIC Digital X-Y Plotter Commands (continued)

Command

CALL SCALE,
SF1,SF2

CALL ZOOM, ZF

CALL ORG,X,Y,M

CALL POS,X,Y,M

BASIC 7-70

Function

formula, but must evaluate to a positive integer between
0 and 3 as follows:

if 0, upright
1, turned right
2, upside down
3, turned left

The ZOOM command affects SIZE as follows:

new size = greatest integer (S * ZOOM factor)
(100)

Sets the scale factors (SF1 for X) and (SF2 for Y) to enlarge
or reduce graphic output only while alphanumerics simply
change absolute position. Once set, SCALE remains unchanged
until altered by another SCALE or ZOOM command. Initially,
both (SF1) and (SF2) equal 100; (SF2) is optional and if
omitted, is set to SF1. The ZOOM command effects SCALE as
follows:

new scale = greatest

integer (SF1,SF2 * ZOOM factor)
(100)

(SF1) and (SF2) can be formulas, but must evaluate within
the range — 32768 to 32767.

Sets the zoom factor (ZF) to enlarge or reduce the entire alpha-
graphic presentation. Once set, ZOOM remains unchanged until
altered by another ZOOM command. Initially, ZF = 100; it can

be a formula, but must evaluate within the range — 32768 to
32767. :

Stores bias values for X and Y coordinates permitting trans-
lation of the origin of the coordinate system to any desired
point. Once set, the bias values remain unchanged until
altered by another ORG command. Initial bias values are both
zero. (X) and (Y) can be formulas, but must evaluate within
the range — 32768 to 32767. (M) must evaluate to zero
(specifying absolute) or one (relative).

POS raises the pen and repositions it to X,Y;
(continued)

EBASIC

Table 7-13. EBASIC Digital X-Y Plotter Commands (continued)

Command Function
CALL POINT,X, POINT raises the pen, repositions it to X,Y, and then lowers
Y.M it momentarily to make a small dot on the page. Repositioning

is to the new X- and Y- coordinates absolute (if
M = 0) or relative (if M = 1).

CALL VECT,X, Draws a straight line from the present pen position to the
Y.M new X- and Y- coordinates absolute (if M = 0)
or relative (if M = 1).

CTRL,FORM keys Pressing and holding the CTRL key on the Teletype, then
pressing the FORM key raises the pen and returns it to
the load point (lower left corner).

RETURN and Pressing these keys on the Teletype affects the beam position
LINE FEED of CRTs, but are ignored for the plotter.
keys

UTILITY SUBROUTINES

The RENUMB subroutine permits the user to renumber EBASIC program statements. The
command format is:

CALL RENUMB, line number, increment

which renumbers the entire current, in-core EBASIC program. The first statement of the
renumbered program is labeled (line number) and each succeeding statement is labeled
(previous line number) + (increment). In addition, line numbers referenced in all EBASIC
statements (except CALL arguments, and REM statements) are automatically adjusted to
match the new numbers. Line numbers must be in the range zero to 9999. Note the use of
the RENUMB command in the following example:

LIST

1 LET A = 2

11 GOTO 100
12 PRINT 'ERROR IF MESSAGE TYPED'
50 IF A = 1 THEN 124
60 STOP
100 CALL STATUS, 1, R
110 IF R = 0 THEN 100
122 GOTO 50
124 END

(continued)

BASIC 7-71

EBASIC

CALL RENUMB, 10,5

LIST
10 LET A = 2
15 GOTO 35
20 PRINT 'ERROR IF MESSAGE TYPED'
25 IF A = 1 THEN 50
30 STOP
35 CALL STATUS,1,R
40 IF R = 0 THEN 35
45 GOTO 25
50 END

BASIC 7-72

Report Program Genérator IV (RPG V)

RPG i

RPG ii

TABLE OF CONTENTS

SECTION 1

INTRODUCTION

STRUCTURE OF RPG IV PROGRAMSoooiiiiiicrireieeitee s e seeneenesineesiesaneesanesnnenee 1.2
ST AT EMEN T S ittt cci et rrrrecr e rrer e e e s e e e res s s aa b sraea e et e et a e s e s baeseebneeaneneanaeaeaasensnaean 1-3
Data-Defining Statementscooiiiiiii i 1-3
Procedural Statementscccccviiiiiiiiiii 1-4

Names......cccccounnvriennns

Conditions

1Yo [ToT=] o RPN -

(000 013 721 0 1 S OO O OO PPEOPEPPPPPRROTRTRUIOY -

Literals...........

EXPTESSIONS 1evvveeiureeetierneerieeeree s rer et e ser et eee e e e e e s et e esbaesmbeen e e ee s e ares et s e erbbessateenbeeaaeeeateennnenenen E

COMMENT LINES ..eieiiiiieiiieicer st serree e s str e e s sare e s e s e e seresssemeneaeeaaessasnenenessnnnnsanessernns 1-10
SAMPLE PROGRAMS ...t cccier e rcte s e e e s s e s s r e s e seaaear e s sennmt s e e s enseesnnnenanessnssnnnne 1-11
SECTION 2

SYSTEM CONCEPTS

HARDWIOARE ..ottt ettt st e s e e e st e s esbe e sts et e sae e e e smsaa e e atneesranaeasennaeeannens 2-1
SOFTWARE ittt ettt e et e et e e e e e s aatesbeteasse e e et e e ssbaaesennseeennsbeesasnneeaantens 2-1
SECTION 3

RPG IV STATEMENTS

DATA-DEFINING STATEMENTS ..ottt sttt erere e s et eaaeeeeeareeasneeeens 31
RECORD Statement......................

Record Field Statement... .
TABLE STatement......coiiiiiiieii ettt e s s ertre s setb et e s e s e e s ntbe e e e e ve s s areaaaeesenne 5

Table Field Statement ... aee e -

RPG iii

PROCEDURAL STATEMENTS ...ttt s s ssasanses 3-11

PROCEDURE Statementcccociiiiiiiiniiiciecnnecrccie e srnn e s eann s snessesenes 3-12
MOVE Statement ..ot es s s sae s s s sea e s e s s nana e s aneen 3-12
MOVEZ Statement ..ot 3:13
POST STatemMeEntco et rres et e ree st e e et es s s e e s v e s se e sane et e esanssnsnenranans 3-13
COLLECT Statementc.oiiiiriiciiiiirieiiiencveesiies st esseeesssessenesssessessessssssasssebaessssnesssssasenes 3-14
ADD Statement.........ciiiiiiiiiiir e s re e s e s e e e e se s aanesanan 3-14
COMPUTE SEAateMENTocceieiercceet et sere et e et e st e et s sase e saesbsaesbaesnssensaensnesnsens 3-15
GO TO StAteMENt ..ottt e e ree s s e b e e e e s e e s s rra e e e e rerrerareeanny 3-16
Indexed GO TO StatemMeNt....c..cccoiiiiiiiiiiiirr e ree e e s cate e e s s e esbenasessessaranes 3-16

PERFORM Statement......... .o scitienciersscrr e st eessate e s sas s naan e s e s e sarmnsesesennsnsnnens 3-16
RETURN Satement . .coe ettt eeesee e e e te s eee b s e tasetbenseeseseeessnnesssssessssnnens 3-17
SET STatemMENt.....ccciiiiireric ettt r e e s et bee ssesbe e st e e esaessaesseeseneeebeesaneessaneteeraresseas 3-18
ENTER Statement.....c.cccoviiiiiiie ettt cineeeeste e e traeebvnssseseabasesanesessasaesensbaesenssesnssesannnnn 3-18
DELETE Statement ...t ere e tee e e s s s sres e e e s e s e are e e eeenanes 3-19
LOOKUP Statementc.cocviiiiniiiiiicircicnin st snes e cree s ssne s s sna e s enre e s saa s e sbaessbnes 3-20
CALL Statementcciiiiiiiiiiiiiic et s e cene s ste s s sre s sre s e sssba s s e e e e b an s sebensennanens 3-20

READ CARD Statement..........ooociiiiiiiiie ettt es st e s e sre e s s ssaa e seneassnsneenns 321

PRINT Statementcooooiiiiiiiiciiiiic i et es e e e s ress s s e s e e s e ae e e s e n e e e aeanaeaaaeenan 3-22
PUNCH Statementccooiiiiiiiiiiiiicienien et sre st as e s s be e s e ae e s s saanaenes 3.23
STOP Statement ...ttt s se e e s ere e s st e s e s s ne s sannen s 324
END Statement ...ttt ettt e s een s s nae e e e s s e anen e e s ee s rannes 324
MOS 170 CallS ..oiciiiiieiiiiin st s see e st e e s sbe s aas s sesaba s s saba e s raaesnasaeasarans 3-25
EXIT to MOS

VORTEX RPG V...ooiiiiiiiecctie s et st nie e stes e es s r s s s sae s aaa s bae s s tne e sensnneesabbensantesassnnesan 3-29
SECTION 4

OPERATING PROCEDURES

COMPILING AN RPG IV PROGRAMccoiiiintinin e nsenncn s ase s nsnsssb e as s sbaenas 4.1
Deck Preparation.......
Hardware Operation... .-
ComPilation EFTOrS......c.oociiiiiiiiiiincice et ab e s e ab e s s e e s sba e 4-6
LOADING AND EXECUTING AN RPG IV PROGRAMccccoommretirmecriiniiminenrinenicceninees 4.9
Stand-Alone Version DECK..........cii ittt et 4.9

MOS VEISION DECK....cciiiitireiieicirieecesiiirrereitn e rene e ceseseeressesreeeserersasresanas erneneesassesssnnasessane 4-10
VORTEX VErSiON DECK....cuiiciiirerieeiitieciieiciieeeitescieeseaeeessessssesessaeseansessssseaessaasessnssessansessane 4-11
LOAAING EITOTS... oottt ettt a e b s e s e ae e s bbe s s bba s e bbene 4-12

Execution (RUNtimMe) Errors.......cc.cooiiiiiiiiiiciin it cne e 4-13

SECTION 5
SAMPLE RPG IV PROGRAM

RPG iv

APPENDIX A
INDICATOR CHART

APPENDIX B
COLLATING SEQUENCE AND CHARACTER REPRESENTATION

APPENDIX C
COMPILATION ERROR MESSAGES

APPENDIX D
CARD BOOTSTRAP LOADER

APPENDIX E
CALL STATEMENT SUBROUTINE USAGE

RPG v

SECTION 1-INTRODUCTION

The RPG (Report Program Generator) IV language is an advanced version of the widely
used RPG commercial and general data-processing systems. RPG IV permits the concise
coding of powerful programs in a simple and efficient manner. Thus, users with
backgrounds other than data processing can use RPG IV problem-solving techniques
without extensive training or practice.

RPG IV improves on basic RPG in that it incorporates many automatic features and
powerful procedural statements. RPG |V is particularly adapted to processing data for the
output of reports, but has many other applications as well.

This manual is divided into five sections.

Section 1 introduces RPG IV by explaining its basic features and illustrating them with a
simple example.

Section 2 gives system concepts on hardware and software.

Section 3 details the RPG IV language. It explains the types of statements and their
coding, and gives the format and use of each type of statement in the language.

Section 4 explains the use of the hardware in running RPG IV programs.

Section 5 gives an advanced sample program. This program illustrates uses of the
instructional material given in previous chapters.

This manual is written for the user, who may or may not have programming experience,
and explains the use of RPG IV so that nonprogrammers can apply the language to
problem-solving. No special training or experience is required, except for section 4, which
is written for the computer operator. However, this chapter is an explanation of how to run
completed programs on the computer and does not impair the ability of the
nonprogrammer or nonoperator to write the programs according to the rules given in the
other chapters.

RPG 1-1

introduction

STRUCTURE OF RPG IV PROGRAMS

RPG IV programs comprise two sequences of statements. First, there is a sequence of
data-defining statements that defines the structures and formats of the data to be
processed. This is followed by a sequence of procedural statements that processes the
data through the structures defined in the first sequence. This processing yields the
output in the desired form. Figure 1-1 shows the general layout of a typical program in

RPG IV.

RECORD Statement
Record Field Statement
Record Field Statement
Record Field Statement
RECORD Statement
Record Field Statement
RECORD Statement
Record Field Statement

Record Field Statement
TABLE Statement

Table Field Statement
TABLE Statement

Table Field Statement

Table Field Statement
PROCEDURE

Procedural Statement

Procedural Statement

Procedural Statement

.

Procedural Statement
END

VTrI-10094

RPG 1-2

T

-

—

DATA-DEFINING STATEMENTS

PROCEDURAL STATEMENTS

NOTE: Comment lines
can be placed anywhere
in the program

Figure 1-1. Layout of a Typical RPG IV Program

introduction

These two sequences of statements handle ta‘bles and records, update files, produce
reports, and can deal with any other business-oriented applications. Section 3 details the
data-defining and procedural statements, and gives their individual formats and uses.

In addition to the program itself, there is the data to be processed. This is a separate
sequence of input that has the format(s) specified by the data-defining statements of the
program.

Simple RPG IV programs with explanations are provided later in this section.

STATEMENTS

A statement, whether it is a data-defining or a procedural statement, is one line of
information written in the RPG IV language. It consists of 80 characters corresponding to
the 80 columns of a standard punched card.

RPG IV ignores columns 70 through 80. Use these columns for statement identification,
comments, or programming aids as desired.

NOTE

The data used with the program can be in any column, following the
specifications of the data-defining statements.

The statement itself is in columns 1 through 69. 1t comprises elements defined in the
following section arranged in a format that depends on the individual statement (section
3). Regardless of the elements contained in a statement or the format requirements
within a statement, each statement is freeform, i.e., there are no requirements for
spacing, indentation, or column use within columns 1 through 69. You need no special
coding forms.

DATA-DEFINING STATEMENTS

As indicated in figure 1-1, there are four types of data-defining statements that provide a
definition of the data structures to be used by the program. These data structures are
records and tables. Records hold intermediate results and data being input from or
output to files. Tables contain related, repetitive data items.

Both records and tables are divided into fields. Fields are the elementary variables of any

RPG IV program. The computations performed by the program, its logic, and its final
output are based on the manipulation of fields and their contents.

RPG 1-3

introduction

A record statement identifies a record and specifies the conditions under which this
record is manipulated.

A record field statement identifies and defines all of the fields in the record. All record
field statements pertaining to a given record immediately follow the record statement for
that record.

A table statement identifies a table and specifies its size.

A table field statement identifies and defines all of the fields in the entries in a table. All
table field statements pertaining to a given table immediately follow the table statement
for that table. Each entry in a given table has the same field structure as any other entry
in that table.

The formats, elements, and uses of data-defining statements are explained in section 3.

PROCEDURAL STATEMENTS

As indicated in figure 1-1, procedural statements follow the data-defining statements.
They direct the execution of the program as it processes the data previously defined by the
data-defining statements.

The PROCEDURE statement is the first procedural statement. It is not executable, but
merely serves as the divider between the data-defining statements and the procedural
statements. It terminates the processing of data definitions and begins the processing of
procedural manipulations. This statement has only one form: the single word
PROCEDURE.

Subsequent procedural statements manipulate the data to obtain the desired output.
Their formats, elements, and uses are explained in section 3.

Procedural statements are executed in the order of their appearance in the program
unless the specified condition is not met, or unless the program is directed to another
statement by a GO TO or PERFORM statement (section 3).

The END statement is the last procedural statement. It is not executed, but merely serves
as a signal that the program is finished. This statement has only one form: the single
word END. It is the last statement in the program.

RPG 1-4

introduction

ELEMENTS OF RPG IV STATEMENTS

RPG IV statements contain combinations of the following elements arranged in formats
given in section 3:

a. Statementnumbers
b. Names
c. Conditions
d. Indicators
e. Constants
f. Literals
g. Expressions
h. Comments
The elements are defined in this section and their uses illustrated in the sample program

(section 3) in giving the format of each RPG IV statement, exhaustively explains the
application of these elements in the statements.

STATEMENT NUMBERS

A statement number from 1 to 9999 can begin any procedural statement. It identifies the
statement so that the program has access to it as required (e.g., in program loops, jumps,
and conditional processing). Statements that do not require other than sequential access
need not be numbered.

NAMES

A name identifies data or a subroutine referenced by the program. It comprises one to six
alphanumeric characters (numbers and letters), the first of which is alphabetic. No blanks
are allowed.

Examples:
A
X15

FIELD3
J7U5

RPG 1-5

introduction

A record name identifies an area of memory that provides space for the characters
comprising the record. A record name is assigned by a RECORD statement (section 3).

A table name identifies an area of memory that provides space for a series of data entries,
i.e., a table. All entries in a given table have identical field assignments. A table name is
assigned by a TABLE statement (section 3).

A field name identifies a contiguous set of character positions in a table entry or record. It
is assigned by a FIELD statement (section 3).

An implied field name identifies a field not named in a FIELD statement. The appearance
of an implied field name in a procedural statement causes assignment of a memory area
to it. This area is large enough to hold any character string or number entered.

A subroutine name identifies a special procedure outside the program. This procedure
(subroutine) performs one of many special functions.

The above types of names conform to the format given at the beginning of this subsection.
In addition, there are qualified and subscripted names that take modified formats.

A qualified name identifies a field and its record or table so that it is not confused with a
like-named field in another record or table. A qualified name consists of a record or table
name, a period, and a field name. No blanks are allowed.

Examples:

UPDATE.HOURS
OUTPUT.HOURS
C45Y.Y7
J289RR.Y7

A subscripted name identifies a table entry. It consists of a table name followed by a
computational expression (see EXPRESSIONS) in parentheses. No blanks are allowed. The
integral portion of the result of the computation is the number of the table entry
referenced.

Examples:
ACCNT(INDEX)
OUTPUT.NAME(3)

VALUE7 (X+3)
NORTH.Y3(X*2.53)

Note: Up to 1023 names (explicit and implied) are allowed.

RPG 1-6

introduction

CONDITIONS

-

A condition can be imposed ‘'on any procedural statement by placing the condition in
parentheses in front of the statement. Such a statement is executed only if the condition
is met when the statement comes up for execution.

Example:
(TIME=10) MOVE INPUT.JOB,OUTPUT.JOB

is a MOVE statement (section 3) that moves the contents of the field JOB in record INPUT
to the same field in record OUTPUT only if TIME has the value 10 when the program is
ready to execute this instruction. Time is defined in the program prior to this statement.

If the statement is numbered, the condition follows the number.

Example:

100 (TIME=10) MOVE INPUT.JOB,OUTPUT.JOB

INDICATORS

An indicator is a program switch that can be on or off. By program switch we mean that
the program itself, not part of the computer hardware, turns the switch on or off. You can
thus use these switches to control the operations performed by your program, and specify
the conditions under which these controls are activated. For instance, you can specify that
certain statements be executed if, and only if, certain indicators are on or off.

RPG 1V has three types of indicator: general, control break, and special. The indicators
and their uses are given in appendix A for later referencing convenience. Refer to this
appendix as you study this section.

A general indicator is turned on or off by a general procedural statement (section 3).
There are 99 general indicators, specified in coding by the symbols # 1 through #99.
Used in procedural statements, they specify conditions to be met for the execution of any
part of the program. For example:

(#2) ENTER INPUT, TABLEA
enters INPUT in TABLEA only if general indicator # 2 is on; and
(#1 AND NOT #65) ENTER INPUT, TABLEA

enters INPUT in TABLEA only if general indicator #1 is on and general indicator #65 is
off (the conditions under which these indicators are on or off will have previously been
specified by your general procedural statements). All general indicators are off until you
write a general procedural statement that turns them on. Of course, you can turn them off
again with other procedural statements.

RPG 1.7

introduction

A control break indicator is used in the direct updating of a record control field and as a
condition for statement execution. There are ten levels of control break: #C1 through
C10. the uses of these indicators are explained in section 3.

A special indicator is used like a general indicator except that the conditions are implicit
in the indicator itself and are not otherwise specified. A special indicator is turned on or
off by a general procedural statement, or by one of the explicit procedural statements SET
ON, SET OFF, or SET conditional (section 3). For example:

(#") ENTER INPUT,TABLEA

enters INPUT in TABLEA only if the previous statement was executed. One frequent use of
#" is to repeat long or complicated conditions for successive statements.
NOTE

All special indicators except # OV are off until a statement that turns them on
is executed. However, because # OV is normally used to begin a new report
page, it is initially on.

CONSTANTS

A constant is a positive or negative number used by the program. It can contain up to 14
significant decimal digits before, and nine after, the decimal point. For integer constants,
no decimal point is required. No blanks are allowed.

Examples:

375.125

100

.0333333
12345678901234.123456789
-123

LITERALS

A literal is a string of alphanumeric characters (on one line) used by the program. A literal
is enclosed within apostrophes. Blanks are allowed in literals.

NOTE
If an apostrophe is to be part of a literal, use two consecutive apostrophes.
Examples:
'THIS IS A LITERAL'
1 DON T T]
'$350.00'

RPG 1-8

introduction

EXPRESSIONS
An expression in RPG IV is one of three types: computational, relational, or conditional.

A computational expression is a combination of constants and/or numeric fields with the
arithmetic operators + (addition), - (subtraction), * (multiplication), and / (division). In
a computational expression, operations within parentheses are performed first, and
multiplication and division are performed before addition and subtraction. Within these
levels, operations are performed from left to right. After nine digits to the right of the
decimal place in the result of the computation, there is rounding for multiplication and
division, and truncation for addition and subtraction.

Examples:
A+B*C

multiplies B by C and adds A;
(X*Y)+(U*V)

mulitiplies X by Y and U by V, and adds {he results;
-VAL1(J)/37.5

divides VAL1(J) by 37.5 and negates the result; and
-(A*(B+C+D+E))

multiplies A by the sum of B, C, D, and E, and negates the result. Numeric fields in a
computational expression can contain editing characters and embedded blanks without
affecting the arithmetic interpretation since only the digits, sign, and decimal point are
significant. Thus, a field with two implied decimal places could contain either 00002575 or
$**25.75 and be interpreted as 25.75 in the computation.

A relational expression compares two computational expressions, or two alphanumeric
fields or literals, for a specific relational condition. The two expressions, fields, or literals
are separated by one or two of the relational operators<, =, and>>, as follows:

< Less than

> Greater than

= Equal to

< = or =< Not greater than (less than
or equal to)

> = or => Not less then (greater than
or equal to)

<> or >< Not equal to (less than
or greater than)

RPG 19

introduction

If the relation is true, the condition is met. If not, the condition is not met.
Examples:

FIELDA<=FIELDB
states that the condition is met when FIELDA is less than or equal to FIELDB;

A*B>10
states that the condition is met when A*B is greater than 10; and

A1(INDEX) >< LIMIT
states that the condition is met when A1(INDEX) is not equal to LIMIT. Note that a
constant or implied numeric field cannot be compared with an alphanumeric field or
literal.
A conditional expression combines indicators and/or relational expressions with the
logical operators AND, OR, and NOT to form a logical condition. In conditional
expressions, operations within parentheses are performed first, and NOTing is performed
before ANDing, which is performed before ORing. Within these levels, operations are

performed from left to right. NOT can follow another logical operator. At least one blank
follows each logical operator if the next character of the statement is a letter or digit.

Examples:
#1 AND NOT #2

states that the condition is met only if indicator # 1 is on and indicator # 2 is off;
NOT A>B OR #0V

states that the condition is met only if A is not greater than B or if the page overflow
indicator # OV is on.

COMMENT LINES

A comment line improves the format of the listing or documents the program. |t appears
in the listing but neither acts nor is acted upon. A comment line is either entirely blank or
has an asterisk as the first nonblank character. Blanks are allowed.

Examples:

*REMARKS CAN OFTEN CLARIFY A PROGRAM
*THIS IS A COMMENT $85+N

RPG 1-10

introduction

SAMPLE PROGRAMS

This section shows a flowchart (figure 1-2), an RPG 1V program (figure 1-3), the data to be
processed by the sample program (figure 1-4), and the resulting report (figure 1-5). It
would serve little purpose here to give a detailed description of the total operational
sequence involved in this data processing, since this sample is intended to serve as a
reference guide while reading the material in sections 2 and 3, and to show how the
program, data, and results are related.

Notice that the first data-defining statements are a group of literals under the record
named HEAD. The first procedural statement reads a card. If it is the first control break
(# F on), the output control fields are initialized by the move statement. If this card would
cause page overflow on printing, the printer goes to the top of the next page, increments
the page NO, and prints the heading HEAD (the overflow indicator # OV is also on at the
beginning of a program since it is assumed that the first line of output will be at the top of
the page). Thus, the first printer action, PRINT if # OV is on, skips to the top of the next
page ($C1), prints HEAD, and skips a line ($Al). Note that the record named HEAD is
printed as is, with DEPARTMENT in character positions 16 through 25. ACCOUNT
NUMBER in 29 through 42, EMPLOYEE in 47 through 54, HOURS in 59 through 63, PAGE
in 72 through 75, and the page number (i.e., the value of NO) in 77 and 78 as specified in
the data-defining statements under the RECORD HEAD card.

Now that the heading is printed, the program considers the card already read. Since the
READ CARD procedural statement specifies the record named INPUT, the data on the
card are placed into the record INPUT according to the format given by the data-defining
statements of that record. Thus, the record field DEPT comprises character positions 1
through .3 of the record, EMPNO 4 through 9, ACCT 10 through 24, and HOURS 75
through 80. The designation 80.1 specifies that the record field HOURS has one place to
the right of an implied decimal point. Examination of the first data card shows that the
data are in compliance with the specifications of the record named INPUT. Thus, 10A in
card columns 1 through 3 is the department number DEPT, 210356 in card columns 4
through 9 is the employee number EMPNO, etc. Upon printing, the positions of these
fields shift to those in the record named OUTPUT so that the department number is
printed in character positions 20 through 22, etc. The symbols #C1, #C2, and #C3 are
control break indicators that in this case specify that an employee number be printed for
every entry, but that account and department numbers be printed only for the first
applicable entry.

Further details of the procedure will become apparent on further study and the reading of
sections 2 and 3.

RPG 1-11

introduction

' START #10 ’

INITIALIZE
PRINTING
FIELDS

EMPLOYEE
CHANGE

INCREMENT PRINT
PAGE HEADING
NUMBER
PRINT
ADD EMPLOYEE EMPLOYEE UPDATE
HOURS TO AC- SUBTOTAL »> PRINTING
COUNT SUBTOT \/_. FIELDS

]

YES

ADD ACCOUNT
SUBTOTAL TO
DEPARTMENT
TOTAL

PRINT
ACCOUNT

SUBTOTAL

DEPARTMENT
CHANGE

PRINT
DEPARTMENT
TOTAL

ACCUMULATE
L— empLOVEE
HOURS

VTI2-0359

PRINT 'END
OF REPORT"

_,/—

Figure 1-2. Flowchart for the Sample RPG IV Program

RPG 1-12

VARIAN RPG IV SOURCE LISTING

SAMPLE RPG IV PROGRAM

RECORD HEAD

(16,25) ' DEPARTMENT '
(29,42) 'ACCOUNT NUMBER'
(47,54) 'EMPLOYEE'
(59,63) 'HOURS '

(72,75) 'PAGE'

NO(77, 78.0) 2

RECORD INPUT
DEPT(1,3) #cC3
EMPNO(4,9) #C1
ACCT(10,24) #C2
HOURS(75,80.1)

RECORD OUTPUT
DEPT(20,22) B,P#C3
ACCT(29,41) B,P#C2
EMPNO(48,53) P#C1
EHOURS(58,63.1) B,Z,D

RECORD SUBTOT
AHOURS{(66,71.1) B,2,D

RECORD TOTAL
DHOURS{73,78.1) B,2,D

PROCEDURE

10 READ CARD INPUT
(#F) MOVE INPUT.DEPT,OUTPUT.DEPT
(") " INPUT.ACCT,OUTPUT.ACCT
(#") " INPUT.EMPNO, OUTPUT.EMPNO
(#ov) COMPUTE NO=NO+1
(4" PRINT $C1,HEAD, $A1
(#c1) ADD EHOURS ,AHOURS
#") PRINT OUTPUT
") POST INPUT,OUTPUT
(#c2) ADD AHOURS,DHOURS
&™) PRINT SUBTOT
(#C3) PRINT TOTAL
(#LC) STOP 'END OF REPORT'
ADD HOURS,EHOURS
GO TO 10
END
VTII-1013B
Figure 1-3. Sample RPG IV Program
10A210356ALPHA-29107 1200
10A210356ALPHA-29107 800
10A350017ALPHA-29107 392
10A350017ALPHA-29107 1500
10A151179BETA-35 800
10A161711BETA-35 800
10A290238BETA-35 800
10A750192BETA-35 800
25B019372HOUSE-1997 505
25B019372HOUSE-1997 405
25B019372HOUSE-1997 50
25B317911HOUSE-1997 1500
25B607712HOUSE-1997 1200
VTII-10144

Figure 1-4. Data for the Sample RPG IV Program

introduction

RPG 1-13

introduction

DEPARTMENT ACCOUNT NUMBER EMPLOYEE HOURS PAGE
10A ALPHA-29107 210356 200.0
350017 189.2
389.2
BETA-35 151179 80.0
161711 80.0
290238 80.0
750192 80.0
320.0
709.2
25B HOUSE-1997 019372 96.0
317911 150.0
607712 120.0
366.0
366.0

END OF REPORT
VTII-1015

Figure 1-5. Final Report from Sample RPG IV Program

Four types of RPG IV coding forms provide convenient documentation and organization for

programs.

RPG 1-14 -

SECTION 2-SYSTEM CONCEPTS

HARDWARE

The Varian 73/620 RPG IV System can operate in one of three environments: as a

stand-alone system, under the master operating system (MOS), or under the VORTEX
system.

The stand-alone version is a card-oriented system designed for a minimum hardware
configuration consisting of a Varian computer-with 4,096 words (4K) or more of memory, a
card reader (620-25), a card punch (620-27), and a line printer (620-77).

The MOS version of RPG IV operates on any standard MOS configuration with 12K or more
of memory and utilizes the 1/0-device-independence inherent in MOS. The minimum MOS

to operate RPG IV would be a 12K computer, a magnetic tape unit, and a Teletype.
Expanded configurations are supported and include multiple magnetic tape units, card
devices, line printers, and rotating memory devices.

The VORTEX version of RPG IV operates on any standard VORTEX configuration with a
background partition size of at least 6K. It is also device-independent.

For additional information on the hardware system, refer to the Varian documentation on
the 620 and 73 computers and the individual peripherals. Section 4 explains how RPG IV
programs are complied and run in the different environments.

SOFTWARE

You provide two pieces of software to produce reports on the Varian RPG IV system:

a. You write a program according to the directions in section 3. This program comprises
two parts: data-defining statements to specify the forms that the data to be
processed will take, and procedure statements to specify how the data in the defined
forms will be processed.

b. You supply data according to the specifications given in the data-defining portion of
your RPG |V program.

The software supplied with the Varian RPG IV System processes the data you have supplied
according to the specifications of the program you have written.

The basic software component of the system is the RPG IV two-part compiler. This
component compiles your program and yields an object deck. The object deck, the RPG
loader, and the RPG runtime support program process your data. The use of these
software components is explained in section 4. All except the object deck are supplied with
the Varian RPG IV System. (The object deck, of course, is the output of the compilation of
your program by the supplied RPG IV two-part compiler.)

RPG 2-1

SECTION 3-RPG IVSTATEMENTS

As explained in section 1, there are two general tybes of statement in RPG IV. This section
gives the specifications for data-defining statements and procedural statements.

In the descriptions of the statement formats, boldface type designates required items and
italic type designates optional items. ltems in capital letters are coded just as written.
Items in lower-case letters represent variables, constants, values, etc.

DATA-DEFINING STATEMENTS

Data-defining staiements are the first statements in an RPG IV program. They provide a
definition of the data structures (records and ta|bles) to be used by the program and
processed according to the procedural statements.

The data-defining statements are divided into record statements, record field statements,
table statements, and table field statements.

A record statement identifies a record and specifies the condition under which this record
is manipulated. It is followed by the record field statements pertaining to the fields of this
record, identifying and defining the fields. A table statement identifies a table and
specifies its size. It is followed by the table field statements pertaining to the fields of the
entries in this table, identifying and defining them.

RECORD STATEMENT

A record statement identifies a program record and its area in memory. It contains
identifiers that specify the selection criteria for data to be input to the record by a READ
CARD procedural statement and an indicator that is turned on when data are input to the
record and turned off when it is not. The format of a record statement is

RECORD name (identifier,identifier,...)indicator
where name identifies the record and its area in memory, identifier is a record selection

code, and indicator is a symbol for an indicator that is turned on when data are accepted
and input into the record or off when the data are rejected.

RPG 3-1

statements

For example, the record statement

RECORD GAIN (80C1)#17

identifies the record named GAIN, specifies that a READ CARD statement can enter data
in this record only when column 80 of the data card contains a one, and turns indicator
17 on if data are accepted or off if data are rejected.

If the record statement contains no selection criterion (identifier), any READ CARD
statement that references this record will input data to the record.

Identifier

The identifier in a record statement is a record selection code that specifies the criteria for
the input of data to this record by a read card statement. If the criteria specified by the
identifier are met, the data from the card are input to the specified record and the
indicator designated in the RECORD statement is turned on. Identifiers are enclosed in
parentheses.

An identifier has one of the following formats:
pCx pDx pZx pNCx DPNDx pNZx

where C, D, and Z specify that the selection is based on the entire character (C), the digit
(0-9 punches) portion (D), or the zone (11-12 punches) portion (Z); p is a number from
one to 80 specifying the card column used for comparison; x is a character punched in
that column; and N (NOT) specifies that the comparison must fail for data to be accepted
into the record.

For example, the identifier 1C3 specifies that the character in column 1 of the data card
must be a three for data to be accepted into the record. Identifier BONZA specifies that for
data to be accepted into the record, the character in column 80 of the data card cannot
have the zone bits of the character A (i.e., since A has a 12-punch as a zone bit, the
character in column 80 must have a different zone bit configuration than a 12-punch).

Multiple ldentifiers

Record statements can contain multiple identifiers to specify ANDed or ORed conditions
for the acceptance of data into the record.

A sequence of identifiers separated by commas and included within one set of
parentheses ANDs the selection criteria of the individual identifiers. For example, the
sequence

(15CX,20Nz-)#79

specifies that for acceptance of data into the record, there is an X in column 15 and there
cannot be the zone bits of the minus sign in column 20. The indicator is given at the
conclusion of the identifier sequence.

RPG 3-2

statements

A sequence of identifiers in separate subsequences, separated by commas and indicator
symbols, ORs the selection criteria of the individual identifiers. For example, the sequence

(80C1)#17,(80C2)#27

specifies that for acceptance of data into the record, column 80 contains a one or a two.
The sequence

(22D$) #40, (S4CE) #40
Specifies that for acceptance of data into the record, column 22 contains the numeric bits
of the $ (i.e., a 3-8 punch) or column 54 contains an E. An indicator is given after each
identifier.
These specifications can be combined. For example, the sequence

(1z-)#1, (1N2Z-,2C)#2
specifies that for acceptance of data into the record, column 1 contains the zone bits of

the minus sign, or if column 1 does not contain the zone bits of the minus sign and
column 2 is blank.

RECORD FIELD STATEMENTS

All record field statements for a given record directly follow the record statement. They
define all fields in the record. The fields can appear in any order and can overlap.

The record field statement for an alphanumeric field has the format

field (first,last), parameter,parameter...
where field is the name (if any) of the field, first is the number of the first character
position in the field, last is the number of the last character position in the field, and
parameter is one of the parameters discussed in a later subsection.

Statement-identifying names and logical operators (e.g., RECORD, MOVE, NOT) cannot be
used as record field names.

If more than one parameter is required, enter additional parameters, separated by
commas, following the first parameter. Parameters can appear in any order.

The record field statement for a numeric field has the format

field (first,last.decimal),parameter,parameter,...

where the definitions are as above except that last is followed by a decimal point and
decimal, which specifies the number of digits to the right of the implied decimal point in

RPG 3-3

statements

the field. It is present for every numeric field, even if the value is zero. If the field contains
an actual decimal point, its position overrides the specification in the record field
statement.

An example of a record field statement for an alphanumeric field is
(16,25), 'DEPARTMENT'

which places the literal DEPARTMENT in character positions 16 through 25 of the record
to which the record field statement applies.

An example of a record field statement for a numeric field is
EHOURS (59,64.1)

which places data having one place to the right of the decimal point in the field EHOURS.
This field occupies character positions 59 through 64 of the record to which the record
field statement applies.

Negative Numbers

Three methods of expressing negative numbers are recognized by RPG: minus sign, credit
symbol, and minus overpunch.

MINUS SIGN (=)

A number may have an appended minus sign to express a negative value. Space in the
field definition statement must be made for the minus sign. The sign may appear
anywhere within the field, but must be the last character excluding blanks.

CREDIT SYMBOL

A number may have an appended credit symbol to express a negative value. Space in the
field definition statement must be made for the credit symbol. This symbol may appear
anywhere within the field, but must be the last non-blank character.

MINUS OVERPUNCH

A number may have a minus overpunch to express a negative value. The numeral which is
overpunched with a minus must be the last number in the field and be right-justified.
NOTE

Since a zero with a negative overpunch is undefined (11-0), the character uparrow 1 (12-
7-8) is used to denote a negative number ending in zero. This is applicable to the MOS
and VORTEX versions only.

RPG 3-4

statements

The following table lists the graphic representation for overpunched digits.

digit graphic -

CONOG BWN ~O
VOTVOZZTr=xe -~

Parameters

The following parameters can be used with record field statements to define more closely
the format of the data. Parameters can appear in any order. Each parameter is preceded
by a blank or comma.

BLANK (B PARAMETER)

The B parameter consists of the letter B. It indicafes that the field is to be cleared
(blanked) after the record is output with a PRINT or PUNCH statement. An example of a
record field statement containing this parameter is

ACCNT (10,19),B

CONDITIONAL POSTING (P PARAMETER)

The P parameter consists of the letter P followed by an indicator that is on for conditional
posting. If the indicator is off when a POST or COLLECT operation would normally modify
this field, no modification occurs. An example of a record field statement containing this
parameter is

ACCNT (10,19),P#C1

EDITING PARAMETERS

An editing parameter consists of one of the letters or symbols listed below. It edits a
numeric field according to the corresponding explanation. More than one editing

~

RPG 3-5

statements

parameter can be used in a record field statement, but each must be separated by blanks
or commas.

H Half-round the low-order digit.
Suppress leading zeros.
Insert actual decimal point.

Insert commas.

O O N

Insert $ before first digit.

*

Replace leading zeros with asterisks.
- Allow one position to the right for a minus sign.

CR Allow two positions to the right for the credit sign (CR).

Editing parameters do not apply to alphanumeric fields. Examples of record field
statements containing editing parameters are

EHOURS (59,64.1),D
EHOURS (59,64.1),B,2,D
BAL (35,44.2),%,*,C,D,CR

AUDITING PARAMETER

The auditing parameter consists of any combination of the letters A, N, and S followed
(optionally) by any combination of the letters R, L, and J; followed (obligatory) by an
indicator symbol. The auditing parameter checks the validity and positioning of characters
in a field.

The first set of letters indicates the characters permitted by the audit:

A permits alphabetic characters

N permits numerals
S permits special characters

These can be combined. For instance, AN permits alphabetic characters and digits, but no
special characters. The presence of a nonpermitted character causes the audit to fail.

The second set of letters, if used, indicates the allowed positions of the permitted
characters:

R right-justified (rightmost character nonblank)
L left-justified (leftmost character nonblank)

J all characters juxtaposed (no embedded blanks)

RPG 3-6

statements

If none of these letters appears in the auditing parameter, all positions are permitted for
characters and blanks.

The indicator following the letters is turned on if the audit passes and off if the audit fails.
For example, the auditing parameter NRJ#20 turns indicator #20 on only if the
rightmost characters are digits and there are no nonnumeric characters or embedded
blanks (leading blanks are allowed).

Special case: The letter J alone with an indicator symbol causes an audit for an all-
blank field.

Examples of record field statements containing auditing parameters are:

NAME (21,30),AL, #40
ZAP (1,69),J4#1

NUMBER (1,10),N#99
CLOSED (11,27),ANSLJ#3

CONTROL PARAMETER

The control parameter consists of one of the control break indicators #C1 through
#C10. A record field statement containing a control parameter defines a control field.

Whenever there is a direct updating (next subsection) of a control field, there is a check
for a control break. A control break occurs when there is a direct updating of a control
field that changes the contents of that field. When such a change takes place, the
corresponding control break indicator and all lower-numbered control break indicators are
turned on.

However, if the contents of the control field are unchanged by the direct updating, the
corresponding control break indicator only is turned off. The lower-numbered control
break indicators remain unchanged from their previous states.

The first time that there is a direct updating of a control field, the indicator #F, rather
than a control break indicator, is turned on. Any subsequent updating turns indicator #F
off and the corresponding control break indicator(s) on.
when a READ CARD statement that references a record with a control field encounters the
last data card (which has /* in columns 1 and 2), a control break for that field occurs.
NOTE
Data placed in one of a set of overlapping fields does not constitute a direct

updating of the other fields. Such other fields are thus not checked for a
control break even though their contents can be changed by the new data.

RPG 3-7

statements

SEQUENCE PARAMETER

The sequence parameter consists of one of the characters >, =, or < followed by an
indicator symbol. It specifies that the field is to be checked for sequence during a direct
updating (next subsection). The specified indicator is turned on if the new contents of the
field are greater than, equal to, or less than, respectively, its previous contents. All fields
are initialized to blank (lowest value of the collating sequence) unless explicitly set as a
literal field.

For example, the sequence parameter > # 50 specifies that indicator # 50 is turned on
when a direct updating of the field increases the value of its contents. If the direct
updating does not change the contents of the field, or decreases them, indicator #50 is
turned off.

NOTE

Data placed in one of a set of overlapping fields does not constitute a direct
updating of the other fields. Such other fields are thus not checked for
sequence even though their contents can be changed by the new data.

LITERAL PARAMETER

The literal parameter consists of a literal used to initialize a field. Positions not initialized
by the literal are cleared (i.e., contain blanks).

Examples:
(5,17), 'TOTAL HOURS='
(30,40), 'TOTAL COST='

Direct Updating of Record Fields

A direct updating of a record field occurs whenever:

a. AREAD CARD procedural statement (see procedural statement section) causes data to
be input to any part of a record containing the field.

b. Data are placed directly in the field by a MOVE, MOVEZ, POST, COLLECT, or ADD
procedural statement.

When a direct updating of a field has occurred, the auditing, editing, control-break-
checking, and/or sequence-checking specified in the record field statement is performed.

The direct updating is numeric when a numeric field or computation is placed directly in a
numeric field. Editing, when specified, occurs only in numeric direct updating.

RPG 3-8

statements

All other types of direct updating, including reading a record, are alphanumeric. Auditing,
when specified, occurs only in alphanumeric direct updating.

Checking for control breaks and sequencing, when specified, occur in both types of direct
updating. Comparisons are algebraic for numeric direct updating and for changes to
numeric fields caused by a READ CARD statement being executed. Other comparisons are
alphanumeric, following the collating sequence given in appendix B.

NOTE

Data placed in one of a set of overlapping fields does not constitute a direct
updating of the other fields. Such other fields are thus not checked even
though their contents can be changed by the new data.

TABLE STATEMENT

A table statement identifies a table and specifies its size, i.e., the maximum number of
entries it will accommodate. The entries in a table all have the same field format as
defined by the table field statements (next subsection) that follow the table statement.
The format of a table statement is

TABLE name (size) overflow

where name is the name of the table, size is that maximum number of entries in the table,
and overflow is a general table overflow indicator (# 1 through # 99).

The length of each entry in the table is equal to the minimum space required for all of the
table fields as specified by the table field statements.

When overflow is used, the general table overflow indicator is turned on when the table is
referenced using an index value of less than one or greater than size.

Reference to a table entry is made by subscripting the table name. The subscript is a
computational expression (section 1) enclosed in parentheses following the table name.
The integer portion of the result of the computation specifies the entry referenced, e.g.,
one for the first entry, four for the fourth entry, etc. When a table name is used without a
subscript, the implied subscript is used as a reference. The implied subscript references
the last entry in that table found by a LOOKUP statement or input by an ENTER
statement (see procedural statement section). For example, TABX(J/2) references the (J/
2)th entry in the table TABX, but TABX alone references the last entry looked up or
entered.

RPG 39

statements

The effect that the procedural statements ENTER, DELETE, and LOOKUP have on tables is
explained under the referenced sections, and depends on the type of table involved. Here
are two types of table:

a. A sequential table is specified by designating, in a table field statement, one of the
fields in each entry of the table as the key field. The entries in the table are placed
in order according to the ascending values of the key field. Any entry is liable to
manipulation.

b. A last-in-first-out (LIFO) table is specified by not designating a key field. The entries in
the table are placed in order of their manipulation, i.e., the last entry determines the
next so that the changes to the table are at the upper end of the entry sequence.
(The current highest entry address is normally set by the last ENTER or DELETE
statement affecting this table, but any reference to the table changes the current
highest entry address to the value of the subscript in the reference when it is higher
than the then-current highest entry address in the table.)

For example, the table statement
TABLE TABLEA (100.#17

specifies a table of 100 entries of the format indicated by the following table field
statements and that indicator # 17 is the table overflow indicator. The table statement
itself does not specify the type of table. This is done by the presence or absence of a key
field in one of the table field statements. If a key field is present in one of the table field
statements, it is a sequential table. If no table field statement contains a key field, it is a
LIFO (last-in-first-out) table.

TABLE FIELD STATEMENT

All table field statements for a given table directly follow the table statement. They define
the fields for the entries in the table. The fields can appear in any order and can overlap.
However, all entries in a table have the same field format.

The table field statement for an alphanumeric field has the format

field (first,last) post,KEY
where field is the name of the field, first is the number of the first character position in
the field, last is the number of the last character position in the field, post is the letter P
plus a general indicator used for conditional posting like the P parameter of a record field
statement and KEY specifies that the table is sequential and that this is the key field in
the table.

KEY in a table field statement indicates the key field of a sequential table. The table field
statement containing KEY is the field used for searching by procedural statements. KEY

RPG 3-10

statements

can be used for only one field per table. I1f KEY is not present in any table field statement
for a given table, it is a LIFO (last-in-first-out) table.

The table field statement for a numeric field has the format

field (first,last.decimal),post,KEY
where the definitions are as above except that last is followed by a decimal point and
decimal, which specifies the number of digits to the right of the implied decimal point in
the field. It is present for every numeric field, even if the value is zero. If the field contains

an actual decimal point, its position overrides the specification in the table field
statement.

An example of a table field statement for an alphanumeric field is
ACCNT (1,10),KEY

which specifies that the field ACCNT occupies character positions one through ten in each
entry in the table, and that ACCNT is the key field for this table.

An example of a table field statement for a numeric field is
AMOUNT (11,17.2),P#32
which specifies that the field AMOUNT occupies character positions 11 through 17 in each

entry in the table, and that there are two digits to the right of the implied decimal point in
the field. Indicator # 32 is the conditional posting indicator. This field is not a key field.

PROCEDURAL STATEMENTS

Procedural statements follow the data-defining statements. They direct the execution of
the program as it processes the data previously defined by the data-defining statements.

The PROCEDURE statement is the first procedural statement and comprises the single
word PROCEDURE. It serves as the divider between the data-defining statements and the
procedural statements.

Subsequent procedural statements manipulate the data to obtain the desired output. They
have the general form

statement number (condition) VERB direction
where the optional condition specifies the condition(s) under which the statement is to be
executed, VERB specifies the action to be taken, and direction specifies the object(s) of

the verb. If no condition is specified, the statement is executed unconditionally. The
formats, elements, and uses of individual procedural statements are explained in the

RPG 3-11

statements

following subsections. Any procedural statement can begin with an optional statement
number.

The END statement is the last procedural statement. It indicates the last input to the RPG
IV language processor.

If the verb of a procedural statement is to be repeated in subsequent statements, it can
be replaced by the ditto mark ().

Example:

(#3 OR #44) MOVE C,D
(#3 OR #44) ' A, B

The ditto mark cannot be used for repetition of directions.

The #" indicator can be used for repetition of a condition.
Example:

(#3 OR #44) MOVE C,D

(#')' A, B

(#') COMPUTE X = J+TOTAL

PROCEDURE STATEMENT

This statement is always the first procedural statement. Thus it directly follows the last
data-defining statement and serves as a divider between the two types of statement.
PROCEDURE terminates the processing of data definitions and begins the processing of
procedural manipulations. This statement has only one form:

PROCEDURE

MOVE STATEMENT

This statement moves a literal, a constant, or the contents of one field to another field or
fields. It has the format

(condition) MOVE from,to,to,...
where from is the literal or constant to be moved, or the name of a field whose contents
are to be moved; and to is the name of the field to receive the moved item. The movement

can be made to additional fields by entering the names of all such fields, separated by
commas, in the MOVE statement after the first to.

RPG 3-12

statements

A numeric movement occurs when the from-field contains a constant or the name of a
numeric field, and the to-field is a numeric or implied field. A numeric movement moves
only numeric information, re-editing and rescaling it to the format of the to-field.

An alphanumeric movement occurs in all other cases. However, constants or implied
numeric fields cannot be moved to explicit alphanumeric fields. An alphanumeric
movement moves the characters one by one, left to right. Movement stops when the to-
field is full. If the from-field is shorter than the to-field, the to-field is filled out with blanks
after all characters have been moved from the from-fieid.

Examples:

MOVE 'TITLE',FIELD1,FIELD2
(TIME=10) MOVE IN.JOB,OUT.JOB
MOVE INVAL,OUTVAL

MOVEZ STATEMENT

This statement moves only the zone bits of the characters in a literal or field to the zone
bits of corresponding characters in another field or fields. It has the format

(condition) MOVEZ from,to,to,...

where from is the literal or field whose zone bits are to be moved, and to is the name of
the field to receive the moved zone bits on corresponding characters. The movement can
be made to additional fields by entering the names of all such fields, separated by
commas, in the MOVEZ statement after the first to.

The MOVEZ statement does not apply to numeric movements. It operates as an
alphanumeric movement under a MOVE statement except that only the zone bits of the
characters are moved. (Zone bits are those corresponding to the 11- and 12-punches on
punched card input.)

Examples:

(#1 OR X=5) MOVEZ 'A',XYZ
MOVEZ NEWSUM,CODE1,CODE4

POST STATEMENT

This statement posts the contents of fields in one record or table entry to like-named fields
in other records or entries. It has the format

(condition) POST from,to,to,...

where from is the name of the record or entry from which the posting is made, and to is
the name of a record or entry to which the posting is made. The posting can be made to

RPG 3-13

statements

additional records or entries by entering the names of all such records or entries,
separated by commas, in the POST statement after the first to. Posting obliterates the
original contents of the to-fields, and replaces them with the contents of the from-field.

The field moves as under a MOVE statement except when the field in the to-record or to-
entry has a P parameter that is off.

Examples:
(#c3) POST INPUT, OUTPUT
(4") POST INPUT, OUTPUT, TOTAL

POST BOOKS(2*X),CURRENT

COLLECT STATEMENT

This statement adds the contents of fields in one record or table entry to the contents of
like-named fields in other records or entries. It has the format

(condition) COLLECT from,to,to...

where from is the name of the record or entry whose contents are to be added, and to is
the name of a record or entry whose contents are to be augmented by the amount
contained in from. The addition can be made to additional records or entries by entering
the names of all such records or entries, separated by commas, in the COLLECT statement
after the first to. The COLLECT statement functions like the POST statement except that
the to-fields after execution contain the sum of their former contents and the contents of
the from-field.

The field moves as under a MOVE statement except when the field in the to-record or to-
entry has a P parameter that is off. If any significant digits of the result are lost because

the to-field is not large enough to hold them, computational overflow indicator # X1 comes
on. If either field is a nonnumeric implied field, mode error indicator # X2 comes on.

Examples:

(#17) COLLECT DETAIL, MASTER
COLLECT ACCT,DEPT,TOTAL

ADD STATEMENT

This statement adds a constant or the contents of one field to the contents of other fields.
It has the format

(condition) ADD from,to,to,...

where from is the constant or the name of the field whose contents are to be added, and
to is the name of the field containing the value to which the addition is made. The

RPG 3-14

statements

addition of from can be made to the contents of several fields by entering the names of all
such fields, separated by commas, in the ADD statement after the first to.

The accuracy of the result depends on the size of the to-field and the position of the
decimal point in it. If any significant digits of the result are lost because the to-field is not
large enough to hold them, computational overflow indicator # X1 comes on. If either field
is a nonnumeric implied field, mode error indicator # X2 comes on.

The ADD statement can be coded as a COMPUTE statement for updating a field as
follows:

COMPUTE to = to+from
Examples:
ADD MONTH, YTD

(#c1) ADD ACCT.AMT,DEPT.AMT
COMPUTE ZAP =ZAP+1.

COMPUTE STATEMENT

This statement computes the value of an expression and places the result in the specified
field. It has the format

(condition) COMPUTE field = expression
where field is the name of the numeric or implied field receiving the result of the

computation, and expression is the computational expression, constant, or numeric field
being evaluated.

The result is moved as for a numeric move under a MOVE statement. Editing occurs if it
has been specified for the specified field.

When the result is plus, zero, or minus, the corresponding indicator (# P, #Z, or #M) is
turned on and the other two turned off.

Computational overflow turns the # X1 indicator on.
Examples:

(#c3) COMPUTE AH = AH+EH

(#2 OR #5) COMPUTE A(I) = 10%B+(2%C)

COMPUTE DETAIL.COST = RATE*HOURS
COMPUTE TOTAL = X(1)+X(2)

RPG 3-15

statements

GO TO STATEMENT

This statement alters the flow of the program by specifying the next statement to be
executed. It has the format

(condition) GO TO number

where number is the number of the next statement to be executed.

Examples:
(NOT #E) GO TO 1000
(A=B) ‘777

GO TOQ 255

INDEXED GO TO STATEMENT

This statement, like the GO TO statement, alters the flow of the program by specifying the
next statement to be executed. It has the format

(condition) GO TO (number,number,...)index

where number is the number of a statement that can be the statement selected by the
value of the index, which is the name of a numeric field. More than one statement can be
included by entering additional statement numbers, separated by commas, after the first
statement, but within the parentheses.

The integer portion of the contents of index selects the number of the statement to be
executed next. Thus, if this value is one, two, three, etc., the first, second, third, etc.,
statement number, respectively, is the number of the statement to be executed next. For
instance, in the first example below, the next statement executed is statement number 20
if the value of the integer portion of the contents of X is two. If the index is out of range,
the program continues in sequence and next executes the statement following the indexed
GO TO statement.

Examples:

Go 1O (10,20,30)X
(#3 OR NOT #7) " (101,35,972, 15) INPUT .KEY
(#') " (11,22,33,500)UU78

PERFORM STATEMENT

This statement, like the GO TO statement, alters the flow of the program by specifying the
next statement to be executed. In addition, however, PERFORM stores the present address
of the program so that when a RETURN statement (next subsection) is found in the

RPG 3-16

statements

sequence following the specified statement, the program flow returns to the main
sequence at the statement following the PERFORM statement. The format of the
PERFORM statement is

(condition) PERFORM number
where number is the number of the next statement to be executed. Note that this

statement is always used in conjunction with a RETURN statement. If the RETURN
statement is missing, the effect of the perform statement is that of a GO TO statement.

Examples:

(A >< B) PERFORM 95
PERFORM 7250

RETURN STATEMENT

This statement returns the flow of the program to the statement following the
corresponding PERFORM statement. The RETURN statement has the format

(condition) RETURN

There is at least one RETURN statement for each PERFORM statement, but only one of
these RETURN statements is executed on each pass. The PERFORM statement places the
return location value in a LIFO (last-in-first-out) queue. The following RETURN statement
uses the last such location placed in the queue. Thus, subroutines can be nested using
these two statements.

Example (arrows show the flow of the program when the condition of the statement is
met):

(#3) PERFORM 95
ENTER..... <
95 (#0V) COMPUTE..... Pra—
(S=TOTAL) PERFORM 777
ADD..... <
7717 DELETE..... <+—
(#0V) RETURN
PRINT..... T
(#CS) RETURN
(HOURS<8) COMPUTE.....
RETURN

RPG 3-17

statements

SET STATEMENT
This statement turns indicators on or off under specified conditions. It has the format
(condition) SET value indicator,indicator,...

where value is the word ON, the word OFF, or a conditional expression within parentheses;
and indicator is the symbol for an indicator. More than one indicator can be specified by
entering their symbols, separated by commas, after the first indicator.

If value is ON and the statement condition is met, the specified indicators are turned on.
If value is OFF and the statement condition is met, the specified indicators are turned off.
If value is a conditional expression that is true and the statement condition is met, the
specified indicators are turned ON, but if the condition expression is not true, the
specified indicators are turned OFF. In any case, if the statement condition is not met, the
indicators are unchanged because this statement will not be executed.

If a control break indicator is turned on or off by a SET statement, there is no change in
the status of any other control break indicators, i.e., the lower-level control break
indicators are unaffected by a SET statement unless they are explicitly specified therein.

Examples:

(#C1) SET ON #1, #2, #58
SET (HR<8.0 AND T>500) #26
(#C6) SET OFF #LC

ENTER STATEMENT

This statement assigns space for a new entry to a table and posts data into the new entry.
It has the format

(condition) ENTER record,table,index

where record is the name of the table entry or record from which the posting is made,
table is the name of the table into which the new entry is being posted, and index is the
name of a numeric or implied field that is set equal to the number (subscript) of the new
entry.

The address of the new entry depends on the type of table (see table statement
description):

a. In a LIFO (last-in-first-out) table, the address is one greater than that of the current
highest entry or subscript reference value.

{continued)

RPG 3-18

statements

b. In a sequential table, the record contains a field having the same name as that of the
table’s key field. The value of this field determines where the new entry is assigned.
When this value matches an, existing key in the table, the new entry overlays that
position. Otherwise, all entries having higher key.values move up one position to
make room for the new entry.

After the address of the new entry is established, the ENTER statement posts the contents
of record to that entry just as under a POST statement. Data can also be entered in a
table by subscript referencing without the use of ENTER statements.

If the new entry would cause the_table to overflow, no posting occurs and the table
overflow indicator (a general indicator you will have defined) is turned on. This indicator
can be turned off only by a SET OFF statement.

After a successful entry, the implied subscript for the table references the new entry.

Examples:

ENTER INPUT, TABLEA
(#22) ENTER DATA,CTROL, IX55

DELETE STATEMENT

This statement deletes an entry from a table. It has the format

(condition) DELETE table(subscript), key
where table is the name of the table from which the deletion is to be made; subscript
(enclosed in parentheses) is the number of the entry to be deleted; and key is a field
name, constant, or literal used to find the entry to be deleted. A key is used only for

sequential tables in the absence of a subscript.

When there is neither subscript nor key, the entry to be deleted is specified by the implied
subscript, and depends on the type of table:

a. In a LIFO table, the entry deleted is the current highest entry. Deletion reduces the
current highest entry by one.

b. In asequential table, the entry deleted is the last entry entered or looked up.

In any case, all entries above the deleted entry move down one position in the table after
the entry is deleted.

Examples:

DELETE TABLEA
(#42 AND #43) DELETE CTROL,MONTH

RPG 3-19

statements

LOOKUP STATEMENT

This statement determines, in a sequential table, if there is an entry having a key field
(section 1.4) equal to or greater than the key specified in the LOOKUP statement, and sets
indicators according to the findings. The format of the LOOKUP statement is

(condition) LOOKUP table, key,index

where table is the name of the sequential table to be searched; key is a field name,
constant, or literal compared with the values in the table entry key fields; and index is the
name of an implied or numeric field that is set equal to the implied subscript found (see
below).

The implied subscript for the table and the (optional) index are set to reference the first
entry having a key equal to or greater than that of the one specified in the LOOKUP
statement. If there is no such entry in the table, the implied subscript and index are set to
reference the last entry address.

The LOOKUP statement sets the #E, #G, and #L indicators as follows:

a. If a match is found between the specified key and that of a table entry, the # E (equal)
indicator is turned on and the other two are turned off.

b. If no match is found but there is a table entry having a key field greater than the
specified key, the # G (greater than) indicator is turned on and the other two turned
off.

c. Inother cases, the #L (less than) indicator is turned on and the other two turned off.
This is always the case for empty tables. For full tables, the implied subscript is set
to the maximum table entry plus one.

The LOOKUP statement is not applicable to LIFO tables.

Examples:

LOOKUP TABLEA, INPUT.DEPT
(#E) LOOKUP CTROL,MONTH.IND

CALL STATEMENT

This statement calls a DAS-coded subroutine (appendix E). It has the format
(condition) CALL subroutine,argument,...

Nhere subroutine is the name of the DAS-coded subroutine being called, and argument is
3 constant, name of a record or table, or a nonsubscripted field. More than one argument
:an be included by entering additional arguments, separated by commas, after the first.

PG 3-20

statements

The subroutine must be written in DAS assembler language and provides a method of
augmenting the RPG language with special functions

Subroutines referenced by the RPG IV CALL statement must be manually included with
the runtime package prior to loading. Appendix E describes the detailed procedures.

Examples:

(#3) CALL FACTOR,PARM,10.3
(#') CALL PACK

CALL EXIT
(#0V) CALL SQRT, INPVAL,OUTVAL
(#') CALL CLOCK,TIME

' SQRT, XXX

READ CARD STATEMENT

This statement reads a card and inputs the data on the card to each of the specified
records whose acceptance criteria are met. It has the format

(condition) READ CARD name,name,...

where name is the name of the record to receive the data provided its acceptance criteria
are satisfied. The data can be read into more than one record by entering additional
record names, separated by commas, after the first name.

After the card is read, each record specified accepts or rejects the data on the basis of its
own selection criteria. If the data are accepted by a record, it enters the record without
editing and truncates the right end of the card image if the record is too small to hold all
the data.

Control break checks, sequence checks, and auditing checks are performed as required by
the record field statements.

If the card read is the last data card (columns 1 and 2 contain /*), the card image is not
read into the records. The # LC indicator and all control break indicators associated with
the specified records turn on.

Examples:
(#25) READ CARD EMPLYE
(#") READ CARD MAN,WOMAN,CHILD

Under MOS, the READ CARD statement causes an alphanumeric read operation from
logical unit 16. If unit 16 is assigned to a card reader, up to 80 characters can be input. If
unit 16 is not assigned to a card reader, the record length is limited by the device or the

RPG 3-21

statements

length defined by the RECORD (plus field) statements, whichever is less. In the stand-
alone version, the limit is 80 characters.

RPG IV data read by stand-alone and MOS versions are input and converted as EBCDIC
(029 card) codes.

Under MOS, if a record is read with a (0-1) punch in column one, the program is aborted
and control returned to MOS. The only exception is if the record contains a /* in columns
1 and 2, then the # LC indicator is set.

Under VORTEX, the READ CARD statement causes an ASCII read operation from logical
unit 13. If unit 13 is assigned to a card reader, up to 80 characters can be input. If unit 13
is not assigned to a card reader, the record length is limited by the device or the length
defined by the RECORD (plus field) statements, whichever is less. For READ CARD logical
unit 13 cannot be a rotating memory device.

RPG IV data read by the VORTEX version will be converted as BCD or EBCDIC (026 or
029) card codes depending upon the mode selected by the /KPMODE directive.

PRINT STATEMENT

This statement performs page control functions or prints data or messages on the line
printer. It has the format

(condition) PRINT parameter,parameter,...

where parameter is one of the following and the line printer performs the function
indicated for the parameter:

Record Name The record is printed, the paper advanced one line, and record
fields having a B(blank after print) parameter are cleared.If, by advanc-
ing the paper, a line count of 44 is reached, the # OV indicator is
set on. Under MOS, and VORTEX the line count can be altered by
the /FORM directive allowing the # OV indicator to be set on any line
count.

$An (n=1.7) The paper advances n lines. |f the bottom of the page is reached
by the advancement of the paper, the # OV indicator comes on. If
n is omitted or is zero, the paper advances one line. Value greater
than 7 will cause a compilation error.

$Cn The paper advances to the designated line position on the page as
(n=1-7) determined by the vertical-format tape in the line printer. f N=1,

the paper advances to the top of the next page and the # OV indicator

(continued)

RPG 3-22

statements

goes off. If N = 7, the paper advances to the position determined by
channel 7 of the tape and the # OV indicator comes on. Under
VORTEX, the vertical format tapechannel used to control the slew is one
less than N, i.e., if N = 1, the paper is advanced to a point determined
by channel 0 on the tape.

Additional parameters can be specified in the sanmve PRINT statement by entering the
parameters, separated by commas, after the first parameter.

Examples:

(#ov) PRINT $C1,HEADER, $A1
PRINT DETAIL

Under MOS, the PRINT statement causes an alphanumeric write operation on logical 18.
The record length is limited by the device or the length defined by the RECORD (plus field)
statements, whichever is less. In the stand-alone version, the record limit is 132
characters.

Under VORTEX, the PRINT statement causes an ASCI} write operation to logical unit 15.
The record length is limited by the device or the length defined by the record (and field)
statements, whichever is less. A leading space character is appended to the print line
since the system uses the first characters as a format control, thus the output to the
printer is shifted one column to the right. Output with PRINT statement is limited to 132
characters, and cannot have logical unit 15 assigned to a rotating memory device.

PUNCH STATEMENT
This statement punches one or more cards. It has the format

(condition) PUNCH name,name,...
Where name is the name of the record to be punched. More than one card can be
punched with a single PUNCH statement by entering additional record names, separated
by commas, after the first name.

Examples:

(KEY=3) PUNCH SUMMARY
PUNCH DATA, SUMMRY, HA4l

Under MOS, the PUNCH statement causes an alphanumeric write operation on logical
unit 17. The record length is limited by the device or the length defined by the RECORD
(plus field) statements, whichever is less. In the stand-alone versions, the record limit is
80 characters.

RPG 3-23

statements

RPG IV data punched by stand-alone and MOS versions are converted and output as
EBCDIC (029) card codes.

Under VORTEX, the PUNCH statement causes an ASCIl write operation to logical unit 14.
The record length is limited by the device or the length defined by the record (plus field)
statements, whichever is less. For RPG PUNCH cannot have logical unit 14 as a rotating
memory device.

RPG IV data punched by the VORTEX version will be converted as BCD or EBCDIC (026 or
029 keypunch) card codes depending upon the mode selected by the /KPMODE directive.

STOP STATEMENT

This statement stops the execution of the program and outputs a message to the
computer operator. If the operator presses RUN after a STOP, the program continues
execution with the statement following the STOP. The STOP statement has the format

(condition) STOP message

where message is the alphanumeric field or literal output to the computer operator.

Examples:
STOP 'END OF RUN'
(#C1) STOP 'OUT OF DATA'
(#LC) STOP

In the stand-alone version, messages are output to the line printer. Under MOS, they are
directed to the list output (LO) device.

Under VORTEX, the runtime execution of the STOP statement causes the program to

execute a SUSPND call. The program may be continued by use of the RESUME command
in OPCOM, i.e., ;RESUME, RPGRT. The STOP message is output to the LO device.

END STATEMENT
This statement is always the last procedural statement, and, therefore, the last statement
in the RPG IV program. It is not executable and serves only to indicate the end of the

program. This statement has only one form:

END

RPG 3-24

statements

MOS 1/0 CALLS

The stand-alone version of RPG IV provides 1/0 statements for reading, punching, and
printing. Used under MOS, these statements allow one input file and two output files.

The MOS version of RPG IV expands this 1/0 capability by providing six CALL statements
for performing additional 1/0 operations. Through the use of these calls and proper device
assignments (see MOS Manaual, /ASSIGN directive), the user can manipulate up to ten
files at one time, any of which can be on such devices as magnetic tape units and disc.

The following subsections provide detailed descriptions of each CALL statement. All
parameters must be supplied and must be the proper type. Errors in CALL statements are

indicated by the message:
INVALID RPG CALL TO XXXXXX

where xxxxxx specifies the name of the called subroutine as it appears in the CALL
statement. The error message is logged on LO and the job is aborted. Figure 3-1 is a
sample RPG IV program that utilizes MOS 1/0 calls.

Read Alphanumeric Record

CALL READ,lu,record,size,exception

where:

lu = logical unit number (16-25)

record = name of record as it appears in a
RECORD statement

size = number of characters in record (must
be in even number, if not, the last
character is truncated).

exception = name of implied field set after read
operation:
0 = reading successful
1 = irrecoverable reading error

I

2 = end of file detected
" 3 = end of device detected

Note: If the first character read is a (/), 0-1 punch and it is not followed by an *, the
program is aborted and control returned to MOS.

RPG 3-25

statements

Write Alphanumeric Record

CALL WRITE,lu,record,size,exception

where:

lu

record

size

exception

Write End of File

logical unit number (16-25)

name of record as it appears in a
RECORD statement

number of characters in record (must be
in even number, if not, the last char-
acter is truncated).

name of impled field set after write
operation:

0 = writing successful

1 = irrecoverable writing error

3 = end of device detected

CALL WEOF,lu,exception

where:

lu

exception

Rewind Unit

logical unit number (16-25)
name of implied field set after end of file
is written:

1 = irrecoverable writing error
3 = successful execution of WEOF

CALL REWIND, lu,exception

Where:

lu

exception

RPG 3-26

logical unit number (16-25)

name of implied field set after rewind:

—
]

irrecoverable error

w
]

successful rewind

Skip Record

statements

CALL SKIPR,lu,count,direction,exception

Where:

lu
count
direction

exception

logical unit number (16-25)
number of records to be skipped
0 for forward, not 0 for backward

name of implied field set after record(s)
skip:

0 = successful execution

1 = irrecoverable error

2 = end of file detected

3 = end/beginning of device detected

CALL SKIPF,lu,count,direction,exception

Skip File
Where:
lu
count
direction
exception
EXIT TO MOS

logical unit number (16-25)
number of files to be skipped
0 for forward, not O for backward

name of implied field after file(s) skip:

0 = successful execution
1 = irrecoverable error
3 = end/ begin‘ning of device detected

An RPG IV program run under MOS is terminated by a special call. It has the format:

CALL EXIT

and returns control to the MOS executive.

RPG 3-27

statements

* RPG IV PROGRAM FOR COMPARING TWO FILES ON LOGICAL UNITS
* 20 AND 21, AND PRINTING MISMATCHES ON 18. ERRORS ARE LOGGED
* ON LOGICAL UNIT (LO) AND INPUT IS TERMINATED BY AN EOF.
* RECORDS ARE 100 BYTES LONG.
*
RECORD FILE1
FIELD1 (1,100)
RECORD FILE2
FIELD2 (1,100)
RECORD HEAD
(1,16) 'MISMATCHES ON 21’
RECORD MSG1
(1,19) 'EOF ON 20 BEFORE 21'
RECORD MSG2
(1,19) 'EOF ON 21 BEFORE 20'
RECORD MSG3
(1,10) 'END-OF-JOB'
*
PROCEDURE
»
* REWIND INPUT FILES
*
1 CALL REWIND,20,EX
(EX=1) STOP 'REW ER-20'
(#') GO TO 1
2 CALL REWIND,21,EX
(EX=1) STOP 'REW ER-21'
(#") GO TO 2
*
* READ INPUT RECORDS
-
3 CALL READ,20,FILE1,100,EX
(EX=1 OR EX=3) STOP 'READ ER-20'
(#") GO TO 3
(EX=2) SET ON #1
[CALL READ,21,FILE2,100,EX
(EX=1 OR EX=3) STOP 'READ ER-21'
(%) GO TO 4
*
* TEST FOR EOF CONDITIONS

*

(#1 AND EX > < 2)
#")

(NOT #1 AND EX=2)
(#')

(#1 AND EX=2)
4")

")

PRINT $C1,MSG1,$C1
CALL EXIT
PRINT $C1,MSG2,$C1
CALL EXIT
PRINT $C1,MSG3,$C1
CALL REWIND,20,EX
CALL REWIND,21,EX

(#') CALL EXIT

*

* COMPARE RECORDS AND PRINT MISMATCHES
*

(FIELD1 = PIELD2) GO TO 3

(#0V)

PRINT $C1,HEAD,S$A1

PRINT FILE2

GO TO 3

END

Figure 3-1. RPG IV Program Utilizing MOS 1/0 Calls

RPG 3-28

VORTEX RPG IV

statements

In addition to the READ CARD, PUNCH and PRINT statements, the VORTEX version of
RPG expands this 1/0 capability by providing seven CALL statements for performing

additional 1/0 operations.

These additional 1/0 operations are performed on logical units 16 through 22. The
following paragraphs provide a detailed description of the CALL statements. All
parameters must be supplied and must be of the proper type. An error in the use of a
CALL statement will result in an error message (see below) being posted on logical unit
number 15 and the job being terminated.

The seven 1/0 CALL statements are:

CALL OPEN, u, lun, filename, key, record size, access method, mode, exception

where:

u

lun

filename

key

record size

access method

mode

RPG unit number (16-22)

VORTEX logical unit number

a name of a field containing a six-
character literal string which is the
filename.

a name of a field containing a one-
character literal string which is the
protection key for the file.

the number of characters in the record
(must be an even number, if not, the last
character is truncated).

the manner in which the file is to be
accessed; O if direct access by logical
record, 1 if sequential access by logical
record.

the mode in which the OPEN operation is
to be performed; O if open and rewind, 1
if open and leave.

(continued)

RPG 3-29

statements

exception

CALL CLOSE, u, mode, exception

where:

u

mode

exception

name of an implied field set to the
following values at the completion of the
open request 0 = open successful, 1 =
irrecoverable error.

RPG unit number (16-22)

the mode in which the CLOSE operation
is to be performed O if close and leave, 1
if close and update.

name.of an implied field set to the
following values at the completion of the
close request 0 = close successful, 1 =
irrecoverable error.

CALL READ/WRITE, u, record name, record size, record number, exception

RPG 3-30

where:

u

record name

record size

record number

RPG unit number (16-22)

name of record as it appears in RECORD
statement.

number of characters in record (must be
an even number, if not, the last
character is truncated).

the name of an implied field which
contains the record number to be read
or written in the direct access mode; if
the file is being accessed in the
sequential mode, the record number
should be zero.

(continued)

statements

exception = name of an implied field set to the
following values at the completion of the
READ or WRITE request;
0 = READ/WRITE successful
1 = irrecoverable error
2 = End of file detected
3 = End of device detected

CALL WEOF, u, exception

where:
u= RPG unit number (16-22)
exception = name of an implied field set to the

following values at the completion of the
WEOF request; 0 = WEOF successful, 1
= irrecoverable error.

CALL REWIND, u, exception

where:

u= RPG unit number (16-22)

exception = name of an implied field set to the
following values at the completion of the
REWIND request; 0 = rewind

successful, 1 = irrecoverable error.

CALL SKIPR, u, record count, direction, exception

where:

u= RPG unit number (16-22)

record count = number of records to be skipped
direction = 0 if forward; non-zero if backward
exception = name of an implied field set to the

following values at the completion of the
SKIP RECORD request;
0 = SKIP RECORD successful
= irrecoverable error
End of file detected

1
2 =
3 = End of device detected

RPG 3-31

statements

The OPEN call links the RPG unit number with the VORTEX logical unit number (so that
multiple files within an RMD partition may be accessed).

The CLOSE call unlinks the RPG unit number and the VORTEX logical unit number.

If a prior OPEN does not bind the RPG unit with a VORTEX logical unit number, it is
assumed on subsequent READ, WRITE, etc. that the RPG unit number equals the VORTEX
logical unit number.

Input/output initiated by calls do not invoke any of the automatic record checking
features of RPG, i.e., control break, audit, etc.

The VORTEX versions of RPG also has the CALL EXIT subroutine to return control to the
executive. RPG programs, upon completion, must return control to the executive through
the CALL EXIT statement.

Figure 3-2 is a sample RPG IV program that utilizes VORTEX 10C calls.

*
* RPG IV PROGRAM FOR COMPARING TWO FILES ON RPG UNITS
* 20 AND 21, AND PRINTING MISMATCHES ON UNIT 15. ERRORS ARE
* LOGGED ON (LO) AND INPUT IS TERMINATED BY AN EOF.
* RECORDS ARE 100 BYTES LONG.
*
RECORD FILEN1
NAME1 (1,6) 'FILE1'
KEY1 (7,7) ' '
RECORD FILEN2
NAME2 (1,6) 'FILE2'
KEY2 (7,7) ' '
RECORD FILE1
FIELD1 (1,100)
RECORD FILE2
FIELD2 (1,100)
RECORD HEAD
(1,16) 'MISMATCHES ON 21'
RECORD MSG1
(1,19) 'EOF ON 20 BEFORE 21’
RECORD MSG2
(1,19) 'EOF ON 21 BEFORE 20'
RECORD MSG3
(1,10) 'END OF JOB'
*®

PROCEDURE
MOVE 0, REC

Figure 3-2. RPG IV Program Using VORTEX 1/0 Calls

RPG 3-32

* ¥ ¥ * w % * * - % * *

*

o * * *

OPEN/REWIND FILES

CALL OPEN, 20, 180,NAME1,KEY1, 100, 1,0, EXCP
(EXCP=1) STOP 'OPEN ERROR ON 20'

(#') GO TO 5

CALL OPEN,21,180,NAME2,KEY2,100,1,0,EXCP
(EXCP=1) STOP 'OPEN ERROR ON 21°

(#') GO TO 5

READ INPUT RECORD

CALL READ,20,FILE1, 100,REC, EXCP

(EXCP=1 OR EXCP=3) STOP 'READ ERROR ON 20'
(#') GO TO 5

(EXCP=2) SET ON #1

CALL READ,21,FILE2, 100,REC,EXCP

(EXCP=1 OR EXCP=3) STOP 'READ ERROR ON 21’
(#') Go TO 5

TEST FOR EOF CONDITIONS

(#1 AND NOT EXCEP=2) PRINT $C1,MSG1,$C1
(#') CALL EXIT

(NOT #1 AND EXCP=2) PRINT $C1,MSG2, sc1
(#') CALL EXIT

(1 AND EXCP=2) PRINT $C1,MSG3,$C1

(#') GO TO 6

COMPARE RECORDS AND PRINT MISMATCHES

(FIELD1=FIELD2) GO TO 3
(#0V) PRINT $C1,HEAD,$A1
PRINT FILE2

GO TO 3

CLOSE/UPDATE FILE

CALL CLOSE, 20, 1,EXCP

(EXCP=1) STOP 'CLOSE ERROR ON 20'
CALL CLOSE,21, 1,EXCP

(EXCP=1) STOP 'CLOSE ERROR ON 21'
CALL EXIT

END

Figure 3-2. RPG IV Program Using VORTEX 1/0 Calls (continued)

statements

RPG - 3-33

SECTION 4 - OPERATING PROCEDURES

This section explains how to run the RPG IV programs written according to the
instructions in section 3. The program is first compiled and the resulting object
deck then used to process the data.

NOTE

In this section, numbers beginning with a zero are octal and numbers
beginning with any other digit are decimal. References to START and RESET
refer to the V73, 620/f, and 620/1-100 computers. References to RUN and
SYSTEM RESET refer to the 620/L and 620/L-100 computers. Refer to the
applicable system reference manual for descriptions of the control panel
switches and indicators.

COMPILING AN RPG IV PROGRAM

The RPG IV compiler is available in three versions: stand-alone, MOS and VORTEX. The
stand-alone version is supplied on cards as a two-part compiler; part | is for data-defining
statements and part 1l is for procedure statements. The MOS version is an integral part of
the standard MOS Installation System Library. The VORTEX RPG compiler may be added
to the background library (BL) after the system is generated.

The RPG IV compiler is a one-pass compiler that reads a source module (program),

produces an object module (executable code), and generates a source listing. The listing
includes diagnostic and error messages.

DECK PREPARATION

Deck Preparation for Compilation (Stand-Alone)

The card deck for compilation is shown in figure 4-1 and comprises, in order:
a. Binarycard loader (three cards, supplied)
b. RPGIVCOMPILER PART |

c. Thedata-defining statements of the RPG IV program (continued)

RPG 4-1

operating procedures

d. The PROCEDURE statement of the RPG IV program

e. RPGIVCOMPILER PART Il

f. The procedural statements of the RPG IV program

g. The END statement of the RPG IV program
The binary card loader is loaded by the card bootstrap loader (appendix D). The binary
card loader then loads the RPG IV COMPILER PART |, which then processes the data-
defining statements of the program. When this is completed, the binary card loader loads
the RPG IV COMPILER PART II, which then processes the procedural statements of the

program.

These processes yield a printed listing of the program and an object deck of the compiled

program.
/ END

PROCEDURAL STATEMENTS
OF THE RPG IV PROGRAM

/ RPG IV COMPILER PART 2
/ PROCEDURE

DATA-DEFINING STATEMENTS
OF THE RPG IV PROGRAM

/

/ RPG IV COMPILER PART 1
yd
/ BINARY CARD LOADER

VTI1-1010
Figure 4-1. Deck for Compiling an RPG IV Program (Stand-Alone Version)

RPG 4-2

operating procedures

Deck Preparation for Compilation (MOS Version)

The MOS RPG 1V compiler reads source records from the Processor Input file (Pl), writes
object records on the Binary Output file (BO), and lists the source program on the List
Output file (LO). These logical units can be assigned to any valid MOS peripheral. By
assigning it to dummy, a logical unit can be disabled. For example, /ASSIGN,BO = DUM
would result in compilation with the BO suppressed.

The compiler input is terminated by an END statement and control returns to MOS.
Therefore, it is necessary to reload the compiler with another /ULOAD,RPGC directive if
multiple compilations are desired.

A sample job stream for an MOS compilation is shown in figure 4-2 and comprises, in
order:

a. An optional job card to identify jobs in the input stream.

b. An optional date card (the date is printed at the top of the source program listing if one
is supplied).

c. An optional forms card if other than the default value for number of lines per page is
desired.

d. An optional assignment card if assignments other than the default peripheral
assignments are required, or if assurance of additional assignments is desired.

e. Anunconditional load card to direct the loading of the RPG IV compiler from the system
file.

f. The RPG IV source program.

g. An optional end-of-job card to separate jobs in the input stream.

Deck Preparation for Compilation (VORTEX Version)

The VORTEX RPG 1V compiler and the VORTEX RPG IV runtime/loader execute as level O
background programs in unprotected memory. Both the compiler and runtime/loader will
operate in 6K of memory with limited work stack space. The stack space may be expanded
and consequently larger RPG programs compiled and executed, by use of the VORTEX
/MEM directive.

The VORTEX RPG IV compiler reads source records from the Processor Input device (Pl),
writes object records on the Binary Output device (BO), and lists the source program, and
any diagnostic.or error messages, on the list output device (LO). If Pl is assigned to a
Rotating Memory Device (RMD) partition, the compiler assumes the source records are
blocked three 40-word records per RMD 120-word physical record. However, if Pl is the

RPG 4-3

operating procedures

same logical unit as the system input device (Sl), and is assigned to a Rotating Memory
Device (RMD) partition, the compiler assumes the source records are not blocked but
consist of one source record per RMD 120-word physical record. If BO and/or LO is
assigned to a RMD partition, the output is blocked two 60-word records per RMD 120-
word physical record.

If Pl is assigned to a card reader during compilation, the /KPMODE directive maybe used
to indicate whether 026 or 029 keypunched cards are to be read.

The compiler is scheduled from the background library at level by the /LOAD, RPGC
directive. The compiler terminates when an END statement is encountered, and exits to
the executive. Only one RPG IV program can be compiled for each load of the compiler.

The Pl, BO and LO devices are opened and rewound at the start of compilation, and are
closed and updated at the end of compilation.

/ ENDJOB

RPG [V SOURCE
(PROCEDURE STATEMENTS)

(PROC[:DURE —

(RPG IV SOURC:

ONLY CRITICAL SEQUENCE

(DATA-DEFINING STATEMENTS)

/ULOAD, RPGC
!
(/ ASSIGN PI=CROC, BO=CP00, LO-LPOO

(/ FORM, 56

(DATE, 12/01/71

/ JOB, SAMPLE

VTII-1539
Figure 4-2. MOS Job Stream for Compiling an RPG IV Program

RPG 4-4

operating procedures

A sample job stream for a VORTEX RPG compilation is shown in figure 4-3.

(/ ENDJOB

(o
/

RPG IV SOURCE
(PROCEDURE STATEMENTS)

{ PROCEDURE)

/
RPG 1V SOURCE
(DATA-DEFINING STATEMENTS)

(/LOAD, RPGC i

(/ ASSIGN PI=CR00, BO=CP00, LO:LPOO

r/ FORM, 44

/ JOB, SAMPLE

VTIL-1540
Figure 4-3. VORTEX RPG IV Compilation

HARDWARE OPERATION

Stand-Alone Hardware Operation for RPG IV Compilation
To compile a program in RPG 1V:

a. Place the compilation deck (figure 4-1) in the input hopper of the card reader with the
binary card loader at the front of the deck.

b. Turnon and ready the card reader.

c. Turnon and ready the line printer. (continued)

RPG 4-5

operating procedures

d. Turn on and ready the card punch. Ensure that there are blank cards in the hopper. If
the visual punch station is empty, insert a card into it as follows:

(1) Placeacard in the auxiliary feed slot.

(2) Clear all registers.

(3) Set the instruction register to 0100131.

(4) SetRESET (not on V73 computer).

(5) Press STEP (for V73, 620/f, and 620/1-100 computers, ensure computer is in
. the step mode and press START).

(6) Reset REPEAT (not on V73 computer).

e. Ifit has not already been done, key in the 19-word card bootstrap loader (appendix D).
Once done, this step can be omitted.

f. Clear theA, B, X, and instruction registers.
g. Set the Pregister to 000130.
h. Press RESET or SYSTEM RESET.

i. Press RUN (for V73, 620/f, and 620/f-100 computers, ensure computer is in the run
mode and press START). The cards should start to move through the card reader.

If the compilation is successful, no further manual operation is required. When the END

statement is reached, the computer stops in STEP mode with the A, B, and X registers
cleared and the P register set to 000130.

Remove the object deck from the output hopper of the card punch and the program listing
from the line printer.

Hardware Operation for RPG IV Compilation (MOS Version)

For procedures on operating the hardware for RPG IV compilation (MOS version), refer to
the Varian 620 Master Operating System Reference Manual (98 A 9952 09x).

Hardware Operation for RPG IV Compilation (VORTEX Version)

FFor procedures on operating the system for RPG IV compilation (VORTEX version), refer to
the VORTEX Reference Manual (98 A 9952 10x).

COMPILATION ERRORS

Serious compilation errors and irrecoverable 170 errors detected by the stand-alone
version of RPG |V halt the computer. The following subsection describes such errors as

RPG 4-6

operating procedures

well as the recommended corrective action. The MOS version of RPG IV does not halt the
computer but, instead, logs the errors and returns to the MOS executive (refer to the MOS
reference manual for additional errors relating to 1/0, loading, etc.). Similarly, the
VORTEX version, upon detecting a serious error, logs and error message and returns
control to the executive.

Language errors introduced through programming do not abort the compiler but, instead,
produce diagnostic and error messages (see Language Errors).

Compilation Error Halts

Any of the following conditions stops compilation. To correct the error, use the recovery
procedure indicated.

Card reader malfunction: This is indicated by an instruction register value of 000007.
To recover: :

a. Press the START button on the card reader.
b. Press RESET or SYSTEM RESET on the computer.

c. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 620/{-100
computers, ensure computer is in the run mode and press START).

Card punch malfunction: This is indicated by an instruction register value of 000031.
To recover:

a. Add cards to the card hopper if it is empty.

b. If the visual punch station is empty, put a blank card in the auxiliary feed slot and set
SENSE switch 1 on the computer.

c. Press RESET or SYSTEM RESET on the computer.

d. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 620/f-100
computers, ensure computer is in the run mode and press START).

END card found before the PROCEDURE card: This is indicated by an instruction
register value of 0131 and 01 in each of the A, B, and X registers. To recover, remove the
compilation deck, reassemble it correctly, and restart.

Program requires more memory than available: This is indicated by an instruction
register value of 000131 and 0177777 (i.e., - 1) in each of the A, B, and X registers. There
is no recovery. Run the program on a system having more memory, or restructure the
program into smaller segments.

Excessive table size 0 This error is indicated by instruction register value of 00144. There
is no recovery. The user should investigate alternatives for reducing his tables to an
acceptable size for his computer memory.

RPG 4.7

perating procedures

Compilation Error Messages (MOS Version)

Error messages are listed followed by the cause.

Message Cause
NO PROCEDURE An END card detected
CARD prior to a procedure
card.

MEMORY FULL a. Program requires
more memory than
is available.

b. Table declaration
is too large.

Compilation Error Messages (VORTEX Version)

The diagnostic messages produced during compilation are the same as those described in
the following subsection. Fatal compilation errors or irrecoverable 1/0 errors during
compilation cause and error message (see below) to be posted to the LO device, and the
compilation terminated. These error messages are as follows:

RPO1, NNN 1/0 error

RP02, NNN End of file error
RP03, NNN End of device error
RPO4 End card error (End

card encountered
before procedure card)
RPO5 Available memory exceeded

Where NNN is the logical unit number on which the error occurred.

Language Errors

Any of the conditions tabulated in appendix C causes an error message to be printed on
the program listing. In addition, there is an arrow pointing to the location of the error as a
diagnostic aid. An error message and arrow are shown as follows:
(1,4 ' PAGE)
SYNTAX

Compilation continues so that the program listing is complete. Thus, all listed errors can
be detected and corrected on one pass.

To recover from these errors, correct the program statements containing the errors and

recompile the program. Discard any object deck produced from a compilation containing
errors.

RPG 4-8

operating procedures

LOADING AND EXECUTING AN RPG IV PROGRAM
STAND-ALONE VERSION DECK

The card deck preparation for loading and executing an RPG IV program is shown in
figure 4-4 and comprises, in order:

a. Binary card loader (the same as for compilation)

b. RPG IV loader

c. The compiled object module (deck~) resulting from the compilation
d. RPG IV runtime support

e. Data cards as required by the program

f. Lastcard (/*incolumns 1 and 2) as required by the program

C

/ DATA CARDS
RPG IV RUNTIME
SUPPORT PROGRAM
(COMPILED OBJECT DECK

(RPG IV LOADER

BINARY CARD LOADER

yd

VTI-1012
Figure 4-4. Runtime Deck for Proceeding RPG IV Data (Stand-Alone Version)

RPG 49

operating procedures

MOS VERSION DECK

The MOS RPG IV runtime/loader reads object records from the Binary Input file (Bl) and
logs any errors on the List Output file (LO). A sample job stream for an MOS load and
axecution is shown in figure 4-5 and comprises, in order:

a. An optional job card to identify jobs in the input stream.
b. An optional forms card if other than the default value for number of lines per page is
desired.

c. An optional assignment card if assignments other than the default peripheral
assignments are required, or if assurance of additional assignments is desired.

d. An unconditional load card to direct the loading of the RPG 1V runtime/loader from the
system file.

e. The RPG IV object program.
Optional data cards as required by the program.

An optional last card (/* in columns 1 and 2) indicated as required by the program.

-

g
h. An optional end-of-job card to separate jobs in the input stream.
[, ENDJOB
(DATA CARDS
ONLY CRITICAL SEQUENCE /
COMPILED OBJECT PROGRAM
+ULOAD, RPGRT
]
(,ASSIGN, BI=CROO, LO=LP00, 16-CROQ, 17-CPQO, 18-LPOO
[, FORM, 20

/ JOB, SAMPLE

VTII-1541

Figure 4-5. MOS Job Stream for Loading and Executing an RPG IV Program

RPG 4-10

operating procedures

VORTEX VERSION DECK

The VORTEX RPG IV runtime/loader is scheduled from the background library at level 0
by the /LOAD,RPGRT directive. The runtime/loader will assume the RPG object program is
on the Binary Input device (Bl) and will read and execute it. If the load directive contains
the name of a program to be loaded, as in /LOAD, RPGRT, NAME the runtime/loader will
assume the program " NAME" is in the background library and will load and execute it. A
RPG object program may be " catalogued™ in the background library by creating a
directory entry and allocating file space with FMAIN, and copying the object program into
this file with IOUTIL.

A sample job stream for a VORTEX RPG load and execution is shown in figure 4-6.

I /ENDJOB

[’
/

(DATA CARDS

/

(COMPILED OBJECT PROGRAM

l//LOAD, RPGRT

(/ASSIGN, Bl: CROO, LO: LPOO, 13- CROO, 14: CPO0O, 15 LPOO

{ / FORM, 20

//JOB, SAMPLE

VTII-1542
Figure 4-6. VORTEX Job Stream for Loading and Executing an RPG IV Program

RPG 4-11

operating procedures

LOADING ERRORS

Stand-Alone

To operate the hardware for the stand-alone RPG IV program, follow the directions given
for compilation, replacing the compiler card deck with the runtime deck.

Any of the following error messages can appear on the line printer output upon detection
of the corresponding loading error. Except for the missing subroutines error, any of these
errors causes a halt in the loading after the message is printed.

PROG TOO BIG: This message indicates that the object deck requires more memory
than is available in the system. There is no recovery. Run the program on a system having
more memory, or restructure the program into smaller segments.

INVALID OBJECT DECK: This message indicates that the loader encountered a
directive or format not conforming to those of a normal compiler output. There is no
recovery. Recompile the program. If the error persists, check the card punch and
recompile. '

CHECKSUM ERROR: This message indicates that the last card read produced a
checksum error. Back up the erraneous card and press READ to reread it. If the error
persists, check the card punch and recompile.

CARD SEQUENCE ERROR: This message indicates that the cards in the object deck are
out of sequence. Correct the sequence and reload. (The eight-bit sequence field on the
object deck cards is in rows 6 through 9 of column 1 and rows 12 through 1 of column 2,
where row 1 of column 2 is the least significant bit.)

PROG NOT EXECUTABLE: This message indicates that the program contains an error
that would prevent output of the correct results. There is no recovery. Correct the program
and recompile.

MISSING SUBROUTINE: This message, followed by the names of the programs that are
missing, indicates that there is a CALL statement reference to a subprogram not included
in the runtime deck. Loading continues and the object program is executed up to the call
to the missing program. At this point execution halts. There is no recovery. Insert the
missing program in the program (appendix E) and recompile.

MOS Version

The only loading error message directly output by the RPG IV loader is MISSING
SUBROUTINE. Its definition is identical to the stand-alone version. Additional loading
error messages are logged by the MOS Executive as a result of faults detected by the RPG
IV loader (see MOS Reference Manual for status and error messages of the system loader).

RPG 4-12

operating procedures

oading Errors (VORTEX Version)

he VORTEX RPG IV runtime/loader, upon detecting an error while loading an object
rogram, will post an error message on logical unit 15 and terminate further activity,
aturning control to the executive. These error messages are as follows:

RTO1, NNN 1/0 error

RT02, NNN End of file error

RTO3, NNN End of device error
RTO4 Program too big

RTO5 Invalid object record
RTO06 Checksum error

RTO7 Sequence error

RTO8 Program not executable

vhere NNN is the logical unit number on which the error occurred.
An additional error message which may occur at load time is:
RT10, xxxxxx

where xxxxxx is a missing subroutine name. After this message is posted, loading will
continue. If an attempt is made to execute one of the missing subroutines control will be
returned to the executive.

EXECUTION (RUNTIME) ERRORS

Stand-Alone

Any of the following conditions stops execution of the object program. To correct the error,
use the recovery procedure indicated, if one is possible.

STOP statement encountered: This is indicated by an instruction register value of
000001 and an operator message on the line printer. To continue execution, press START
or RUN on the computer.

Missing CALL subroutine: This is indicated by an instruction register value of 000002.
There is no recovery. Insert the missing subroutine in the program deck and recompile.

Worklist overflow: This is indicated by an instruction register value of 000003. This
results from an overflow on an internal worklist stack during complicated arithmetical
manipulations, etc. There is no recovery from this rare condition. Run the program on a
system having more memory, or recode the lengthy expression into smaller
subexpressions.

RPG 4-13

operating procedures

Card reader malfunction: This is indicated by an instruction register value of 000007.

To recover:

a. Press the START button on the card reader.
b. Press RESET or SYSTEM RESET on the computer.

c. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 620/f-100
computers, ensure computer is in the run mode and press START).

Card punch malfunction: This is indicated by an instruction register value of 000031.

To recover:

a. Add cards to the card hopper if it is empty.

b. If the visual punch station is empty, put a blank card in the auxiliary feed slot and set
SENSE switch 1 on the computer.

c. Press RESET or SYSTEM RESET on the computer.

d. Press RUN on 620/L and 620/L-100 computers (for V73, 620/f, and 620/f-100
computers, ensure computer is in the run mode and press START).

MOS Version

The RPG IV runtime program under MOS detects and outputs the two error messages
described below. Additional faults dealing with 1/0 are detected by I0CS and logged
accordingly (see MOS Reference Manual for status and error messages of 1/0 control). All
runtime error messages are followed by the program being aborted and control returned
to MOS.

INVALID RPG CALL TO: This message is printed when a CALL statement contains
invalid arguments (i.e., too few, too many, or the wrong type).

RPG WORKLIST OVERFLOW: This message is printed when the internal worklist stack
space is exceeded during arithmetic manipulation, etc. To correct this condition, run the
program on a system having more memory, or recode the lengthy expression into smaller
subexpressions.

RPG 4-14

operating procedures

VORTEX Version

The VORTEX RPG IV runtime/loader, upon detecting an error while executing an object
program, will post an error message on logical unit 15 and terminate further activity,
returning control to the executive. The error messages are as follows:

RTO1, NNN 1/0 error

RT02, NNN End of file error

RT03, NNN End of device error
RTO8 Program not executable
RT09 Work list overflow

RT10, xxxxxx Invalid call to subroutine

where NNN is the logical unit number on which the error occurred.
xxxxxx is the subroutine name.
RT10 errors may be caused by invalid parameters in the CALL, such as invalid RPG unit,

invalid VORTEX logical unit, access method or mode } 1, or by an attempt to open an
already opened file.

RPG 4-15

SECTION 5- SAMPLE RPG IV PROGRAM

CALENDAR PROGRAM

This program will print a calendar for any year between 1582 (when the Gregorian
calendar was adopted) and 4901. The year 4901 is a terminal date for the Gregorian
calendar because by that year the astronomical year will be out of step by one day (this
occurs approximately every 3,000 years).
Note
A year is a leap year if:

a. ltisevenlydivisible by 4, but not by 100
1900is not; 1904 is.

or

b. Itis evenly divisible by 400
1900 is not; 2000 is.

The day of the week can be calculated by use of the formula:

DW = ([2.6*M]+ DM +B +[B/4]+[C/4]-2C)MOD7
where
DW = Day of the week (0 = Sun., ..., 6 = Sat.)
M = Month (Jan. = 11, Feb. = 12 of previousyear and Mar. = 1,
..., Dec. = 10 of current year
DM = Day of the month (1, ..., 31)
B = Last two digits of the year
C = First two digits of the year
(YMOD7 = Remainder after dividing by 7 until () isless than7

The months are printed in four rows of three columns. The program initialization (lines 10
through 30) inputs the heading cards. Loop 1 (lines 40 through STOP) reads in a year,
prints the calendar for that year, and, on reading the last card (/*), prints " end of JOB'
and then stops.

RPG 5-1

sample program

Loop 2 (lines 80 through 190) is inside loop 1, and prints four rows of three months each
(rows numbered 0 through 3). Inside loop 2 is loop 3 (lines 110 through 190) which prints
six lines (one for each week, see Jan. 1971). Loop 4 (lines 130 through 190), inside loop 3,
creates the line of the week for each column (numbered 1, 2, 3). The last loop is 5 (lines
150 through 190) which calculates the day of the week for each day of the month and
inserts it into the line. if the day is not a Saturday, the line is shifted left one position, and
the next day is tried.

This method has a very slow execution rate, but it demonstrates the use of loops within
loops, and of overlapping fields (SO, SP). The figures that follow illustrate this program.
Figure 5-1 is the program, 5-2 is the flowchact, 5-3 is the input data, and figure 5-4 is the

printed output.

VARIAN RAPG IV SOURCE LISTING

TABLE

RECORD

RECORD

PRDCEDU
10
20

30
40

30

60

70
a0

vrir-1179

RPG 5-2

HD
HONG
IN
YIN
YEAR
c

8

M

oW
s0
spP
8$aQ
LINE
Your
coLt
coLe
coLy
coL4

RE

(1«8)

(wlC)
(un)

3)
(1,72)

(1,4)
(1,440)
(1,2,0)
(3,4,0)
(3,6.0)
(7,8.,0)
(10,12,0)
(10,13.1)
(14,15,0)

(35,38),8
€ 1,71),8
(26,71),8
(51,71),8
(54,71),8
(70,71,0),8,2

(3,4,0)

MOVE 1,1

REAQ CARD LINE

MOVE COLY,HONG(I)

COMPUTE TmI«+g

GO TO0 20

MOVE ' ',COLY

MOVE 34,LMCL),LMC3),LMES),LMCT7),LM(8),LMC10),LM(12)
MOVE 30,LM(4),LM(6),LM(O),LM(11)
READ CARD IN

PRINT $Ct)

STOP 'END OF JOB'

MOVE YIN, YOUT

PRINT SCi{,LINE

COMPUTE $PsB/4

" 8QsC/4

MOVE 28,LM(2)

((BuawsSp) AND ((B»«0) QR (Cw4w8Q))IMDVE 20,LM(2)

COMPUTE ROWSw{
COMPUTE ROWSROW+1

(ROW»3) GO TO 40 {continued)

Figure 5-1. Calendar Program

sample program

VARIAN RPG IV SODURCE LISTING

VTI1-1180

90

100
110

120
130
140
138

150
160
170

180
190

(Wk»6)

(Mu1)
(Muy)

(Ney)

COMPUTE. ROWIWROWS]

MOVE HONG(ROW1),COLY
PRINT 8AY,LINE

MOVE HDNG(3),COL1

PRINT LINE

MOVE O,DM(1),0M(2),DM(3),wWK
COMPUTE WKEWKei

G0 TO RO

MOVE 1,C0L

COMPUTE Ms (3wROW)+COL
MOVE COL2,COL1

COMPUTE YEARSYEARw{

" YEARSYEAR®{

MOVE COL4,COLY

COMPUTE DM(COL)eDM(COL) +4
COMPUTE NsMw?2

" NeN+{2

" SP82,6aN=0,2+0M(COL) +B=2#C+103
v SPs80+B/4

" NPWeSO+C/4

" SPsDW/7

L} NwsDWaZ7w80

COMPUTE SQe M(M)=DM(COL) <+t

(SQ»0) MOVE DM(COL),D

(Dweb)

GO TQ 150
COMPUTE COL®COL+Y

(COL«s3YG0 TN 130

END

PRINT LINE
GO TO 110

Figure 5-1. Calendar Program (continued)

RPG 5-3

sample program

VTI2-0367

RPG 54

e
20
READ A CARD
START INTO IN
10
INIT INDEX LAST CARD
PTR I
20
READ A CARD MOVE YEAR
oo LINE T0 OUTAUT
AREA
3 2 N
MOVE PRINT THE
CARD IMAGE YEAR stoP
T0 HDNG (1) _
\ 4 had
MOVE 28
te el TO FEB., AND
COMPUTE YEAR
IS YEAR
EAP YEAR
N N
y 7 Y
MOVE BLANKS INST ROW MOVE 29
TO LINE PTR TO FEB.
30
MOVE 31
INTO MONTHS
OF 31 DAYS
MOVE 30
INTO MONTHS
OF 30 DAYS

[

Figure 5-2. Flowchart for Calendar Program

80
ROW =
ROW +1
N
90

PRINT
HDNG (ROW +1)
HDNG (5)

-

INIT DM,
AND WK

e.___‘

NOTE
INIT = Inalize
PTR = Pointer
HDNG = Heading
DM = DayMonth
WK = Week

VTI2-0368

110

WK = WK+1
v
N
120
Y
INIT COLUMN o1
PTR COL A4
. 130
COMPUTE

MONTH
M = 3°ROW+COL

SHIFT THE
MONTHS LEFT

13

ADJ. THE YEAR
FOR ZELLER'S
FORMULA

L

]

SHIFT THE
DAYS OF THE
WEEK LEFT

DM(COL) =
DM(COL) +1

1 170

COMPUTE THE
DAY OF THE WEEK
(ZELLER'S
CONGRUENCE)

oM<
LENGTH OF
MONTH

COL = COL+1

sample program

MOVE
DM INTO
LINE

Figure 5-2. Flowchart for Calendar Program (continued)

RPG 55

sample program

JANUARY FEBRUARY MARCH 1
APRIL MAY JUNE 2
JULY ALIGUSY SEPTEMBER 3
OCTOBER NOVEMBER DECEMBER 4
8 M T w T F 8 $ M T W T P S § M Y W YT F 88
107¢
VTII-1181 Co
Figure 5-3. Input Data
~
197
JANUARY FEBRUARY MARCH
$ M T W T F 8§ § M T W Y FP 8 $ M T W T F 8
1 2 1 2 3 4 5 06 1 2 3 4 85 ¢
3 4 5 6 7 8 9 7 8 9 10 11 12 13 7 8 9 10 11 12 33
10 31 12 §3 {4 15 16 14 19 16 17 18 (9 20 14 45 16 17 18 19 20
17 18 19 20 21 22 23 21 22 23 24 285 26 27 21 22 23 24 25 26 27
24 25 26 27 28 29 J0 F) 28 29 30 3
3
APRIL } MAY JUNE
$ M T ¥ T F 8 S M T W Y F 8 S M T N T F 8
1 2 3 i 1 1 2 3 4 8
4 5 6 7 8 9 %0 2 3 4 85 6 7 @ 6 7 8 9 10 11 2
11 12 13 14 18 18 7 9 10 11 12 13 14 18 13 14 15 16 17 18 19
18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 28 26
25 26 27 28 29 J0 23 24 25 26 27 28 29 27 28 29 30
30 3
JuLy AUGUST SEPTEMBER
$ M T W T F 8 s ¥ T W YT F 8 8§ M T W T F 8
1 2 3 1 2 3 4 8 6 7 1 2 3 4
4 5 6 7 8 9 10 8 9 10 11 12 13 14 S 6 72 8 9 10 1t
11 12 13 (4 15 16 17 15 16 17 318 19 20 21 12 13 14 15 16 17 18
18 19 20 231 22 23 24 22 23 24 25 26 27 28 10 20 21 22 23 24 25
25 26 27 28 2v 30 3} 29 39 31 26 27 28 29 YO
OCTORER NOVEMRER DECEMBER
$ M T W T F 8 S 4 T W T F 8 $§ M T W T F 8
12 1 2 3 4 8 8 1 2 3 4
3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 310 1t
10 11 12 13 14 15 16 14 19 16 17 16 19 20 12 13 14 18 16 17 18
17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 23
24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 3%
31
END OF JO8
VTI-1182

Figure 5-4. Printed Output

RPG 5-6

APPENDICES

Page
= INAICAtOr Chart... ... s A-2
- Collating Sequence and Character Representation...........cccccoviiiniiiicniinnicncnenen, B-1
- Compilation Error MeSSagESccccciiririviiniiueriiirecie ettt s e C1
- Card BootStrap LOAENcccooiiiiiiiiiieiciicitireee ettt e etts et e er e D-1
- Call Statement Subroutine USageccccooiiiiiiiiiiiiiiiiicci et E-1

RPG A-1

appendix A

Where Used

GENERAL INDICATORS #1 THROUGH #99

General purpose
Sequence-checking
Auditing

Record selection

Table overfiow

INDICATOR CHART

Turned on by:

SET statement

Fields out c;f éequence
Successful audit
Meetinlg ‘crivteria

Out-of-range table
reference

Turned off by:

SET statement
Fields in sequence
Unsuccessful audit
Not meeting criteria

SET statement

CONTROL BREAK INDICATORS #C1 THROUGH #C10

Control breaks

Repeat verb or con-
dition of previous
statement

#ll

Table-searching
#G, #L, #E

Result of computation
#P, #Z, #M

First control break
#F

RPG A:2

Direct updating that
changes this or any
higher-level control
field (except when
#F is on)

SPECIAL INDICATORS

Execution of previous
statement

LOOKUP statement

COMPUTE statement

First direct updating
of any control field

Direct updating that
does not change this
control field or
direct updating that
changes this or any
higher-level control
field when #F is on

Nonexecution of pre-
vious statement

LOOKUP statement

COMPUTE. statement

Subsequent direct up-
dating of any control
field

(continued)

appendix A

INDICATOR CHART (continued)

Where Used Turned on by: Turned off by:
Computational Overflow Numeric value placed SET statement
#X1 in a field that cannot

hold it or any com-
putation (including
subscript and rela-
tional expressions)
whose value exceeds

99,999,999,999
Mode error Attempted use of a SET statement
X2 field of wrong mode
(numeric/alphanumeric)
Last card READ CARD statement SET statement
#LC after /* card
Page overflow PRINT statement in PRINT statement that
#0OV which the line count causes a skip to
= 44 or one that channel 1

causes a skip to
channel 7 or /FORM

NOTE

The initial state of # OV is on; that of all other indicators is off.

RPG A-3

COLLATING SEQUENCE AND CHARACTER REPRESENTATION

Collating Standard
Sequence Graphic 029 Keypunch 026 Keypunch

1 (Blank) (no punch) (no punch)
2 [12-2-8 12-5-8
3 . 12-3-8 12-3-8
4 < 12-4-8 12-6-8
5 (12-5-8 0-4-8
6 + 12-6-8 12

7 t 12.7-8 7-8
8 & 12 12-7-8
9 ! 11-2-8 11-2-8
10 $ 11-3-8 11-3-8
11 * 11-4-8 11-4-8
12) 11-5-8 12-4-8
13 ; 11-6-8 11-6-8
14 \ 11-7-8 0-6-8
15 - 11 11

16 / 0-1 0-1
17 , 0-3-8 0-3-8
18 % 0-4-8 11-2-8
19 - 0-5-8 2-8
20 > 0-6-8 6-8
21 ? } 0-7-8 12-2-8
22 : 2-8 5-8
23 # 3-8 0-7-8
24 @ 4-8 0-2-8
25 ! 5-8 4-8
26 = 6-8 3-8
27 " 7-8 0-5-8
28 A 12-1 12-1
29 B 12-2 12.2
30 Cc 12-3 12-3
31 D 124 12-4
32 E 12-5 125
33 F 12-6 12-6
34 G 12-7 12.7
35 H 12-8 12-8
36 | 129 129
37 J 11-1 11-1
38 K 11-2 11-2
39 L 11-3 11-3
40 M 11-4 114
41 N 11-5 11-5

(continued)

RPG B-1

appendix B

COLLATING SEQUENCE AND CHARACTER REPRESENTATION (continued)

Collating Standard
Sequence Graphic 029 Keypunch 026 Keypunch

42 o} 11-6 11-6
43 P 11-7 117
44 Q 11-8 118
45 R 11-9 119
46] 0-2-8 11-5-8
47 S 0-2 0-2
48 T 0-3 0-3
49 u 0-4 0-4
50 v 0-5 0-5
51 w 0-6 0-6
52 X 0-7 0-7
53 Y 0-8 0-8
54 z 09 09
55 0 0 0
56 1 1 1
57 2 2 2
58 3 3 3
59 4 4 4
60 5 5 5
61 6 6 6
62 7 7 7
63 8 8 8
64 9 9 9

RPG B-2

Message

INDICATOR

INVALID

LABEL

LITERAL

NAME

COMPILATION ERROR MESSAGES

Location of Arrow

Invalid character

Invalid character

End of section table
field statement con-
taining KEY

Last character of table
name

Last digit of statement
number

None -- message after
END

Closing quotation mark

Last nonblank character

Last character of name
Seventh character of name

Period

Last character of field
name

Error

Character other than #
at beginning of assumed
indicator symbol

Invalid indicator char-
acter

More than one key field
for a table

DELETE references a LIFO
table

Duplication of statement
numbers

Undefined statement number

No character between opening
and closing single quotation
marks

End of line found before
closing single quotation
mark

Duplication of table or
record names

More than six characters
in a name

Field name followed by

period or qualified name
where nonfield name is

required

Field name of a qualified
name not defined in a record
or table

RPG C-1

appendix C

COMPILATION ERROR MESSAGES

Message

NAME (continued)

RELATIONAL

SIZE

RPG C-2

Location of Arrow

Left parenthesis of
subscript

Last character of name

Last character of table
name

Right parenthesis of
subscript

Right parenthesis of
subscript

Last character of relational
expression

Last digit of boundary
Last digit of ficld-end spec

Last digit of number

Digit causing overflow

Last digit of selection
column

Last digit of statement
number

Fifteenth digit

Tenth digit

{continued)
Error

Subscripted record or record
field name

Invalid reference to name
(e.g., a field name where a
record name is required)

LOOKUP references LIFP table
LOOKUP contains a subscript
Subscripted name in CALL
argument list

Relational expression contains
two literals, or attempts to
compare an alphanumeric field
to a constant or expression
Zero field boundary

Field width not positive

Numeric portion of indicator
quantity zero or too large

Accumulation of integer quantity
causes arithmetic overflow

Record selection column zero or
> 255

Statement number zero or >
9999

> 14 digits before decimal
point

> 9 digits after decimal point

COMPILATION ERROR MESSAGES

Message

SIZE (continued)

SYNTAX

Location of Arrow

Last digit of number

Invalid character

Character following name
Character following last
digit of field-end spec-
ification or fractional

length

Character following subscript

Invalid character

First character of statement

Invalid character

Invalid character

Invalid character

Invalid character

Nonblank character following
number of entries

Invalid character

Nonblank character following
conditional expression

appendix C

(continued)
Error

Numeric portion of PRINT zero
or> 7

First character of name not
alphabetic

Missing (in field definition

Missing) in field definition

Missing) on subscript

First character of assumed
integer not numeric

Field statement found before
record or table statement

Invalid selection identification
Nonblank character in statement
after meaningful specifications

complete

Editing character in definition
of a nonnumeric field

First nonblank character after
TABLE in a table statement not (

Missing) after number of
entries in table statement

Nonblank character after
PROCEDURE

Missing) in conditional
expression

RPG C-3

appendix C

COMPILATION ERROR MESSAGES (continued)

Message

SYNTAX (continued)

RPG C-4

Location of Arrow

Nonblank character following
field name

Column 69 of SET statement
Nonblank character following
position meant for missing item

Nonblank character following
last statement number in list

Column 69 of statement
Column 69 of LOOKUP
statement

Nonblank character following
expression

Nonblank character foliowing

first operand

Invalid character

Column 69 of PRINT
statement

First character not matching
the sequence C AR D

Nonblank character following
CARD

Error

Missing = in COMPLETE
statement

Missing indicator list in
SET statement

No condition, ON, or OFF
in SET statement

Missing) in indexed GO
TO statement

Missing to-field in state-
ment that requires one

Missing index field in
LOOKUP statement

Missing) on expression
that began with (

Missing relational operator
after first operand of rel-
ational expression

First character of assumed

decimal constant neither
digit nor period

Missing argument list in
PRINT statement

Keyword CARD missing in
READ CARD statement

Missing delimiter after
READ CARD statement
character string

CARD BOOTSTRAP LOADER

Using the data entry switches on the computer front panel, enter the card bootstrap
loader as follows:

Memory Octal

Address Contents DAS Code
000114 102630 BOOR CIA 030
000115 004250 LRLA 8
000116 101130 SEN 0130,B00S
000117 000122
000120 001000 JMP * =2
000121 000116
000122 102130 BOOS INA 030
000123 055000 STA 0,1
000124 005144 IXR
000125 001000 JMP BOOU
000126 000131
000127 000000 BOOT DATA PLD
000130 100230 EXC 0230
000131 101130 BOOU SEN* 0130,BO0R
000132 000114
000133 101630 SEN 0630,B00T
000134 100127
000135 001000 JMP * -4

000136 000131

Clear the registers.

Load the B register with the upper boundary of a 4K memory module, thus delimiting the
virtual memory for a given run; e.g., set the B register to 010000, 020000, etc., to indicate
a virtual memory of 4K, 8K, etc., words. If the B register contains zero, the loader locates
itself at the top of the memory starting with address 0x7660 (x = O for a 4K memory, 1
for an 8K memory, etc.).)

Set the P register to 000130.

Put the RPG IV ioader, followed by the compiler or runtime deck in the card reader.

Press SYSTEM RESET or RESET.

Press RUN or START. The bootstrap loader loads the binary card loader and transfers

control to it for further loading.

RPG D-1

CALL STATEMENT SUBROUTINE USAGE

STAND-ALONE VERSION

The stand-alone version of RPG |V provides for linking up to two user-written, DAS-coded
subroutines. Once loaded, these subroutines can then be executed through the RPG IV
CALL statement.

Linkage

The RPG IV loader and runtime programs both contain an empty table, labeled STAB,
which is used to establish linkage to called subroutines. The table is initialized to blanks
and zeros and can be overlayed at load time by the user to establish subroutine names
and entry points. Figures E-1 and E-2 depict the actual code as it appears in the loader
and runtime programs. The table format is:

Word 1 Number of subroutine names in the
table (0, 1,0r2)

Words 2-4 Subroutine name in ASCIil (preset to
blanks)

Word 5 Pointer to subroutine entry address
(preset to zero)

Words 6-8 Subroutine name in ASCIl (preset to
blanks)

Word 9 Pointer to subroutine entry address
(preset to zero)

When the loader encounters an external reference in the object deck, it searches STAB for
the name. If the name is in the table, a runtime CALL instruction is stored with the
operand equal to the entry number of the subroutine name in STAB. The runtime
interpreter uses this value to locate the beginning of any specified subroutine. If the name
is not in the table, the error message MISSING SUBROUTINE is printed on the line printer
(chapter V).

RPG E-1

000770
000771
000772
000773
000774
000775
000776
000777
001000

000721
000722
000723
000728
000725
000726
000727
000730
000731

RPG E-2

000002
120240
120240
120240
000000
120240
120240
120240
000000

000002
120240
120240
120240
000000
1202430
120240
120240
000000

SUBROUTINE CALL TABLE (STAB)

THE FOLLOWING TABLE CONTAINS THE REQUIRED INFORMATION

2

-GS

TO ENABLE THE RPG IV LOADER TO LINK TO AN EXTERNAL

SUBROUTINE WHICH IS REFERENCED BY A 'CALL'
~ STATEMENT. THE TABLE PROVIDES ROOM FOR
TWO ENTRIES. EACH ENTRY CONTAINS TH
FOLLOWING DATA:

1. NAME OF SUBROUTINE
- 2. SUBROUTINE ENTRY ADDRESS

NUMBER OF ENTRIES
' SUBROUTINE NAME- 1ST ENTRY

- SUBROUTINE ENTRY ADDRESS

v SUBROUTINE NAME- 2ND ENTRY

SUBROUTINE ENTRY ADDRESS

(DATA IN THE SUBROUTINE CALL TABLE MUST
CORRESPOND IDENTICALLY TO THE DATA
CONTAINED IN THE SUBROUTINE CALL
TABLE (STAB) OF THE RPG IV
RUNTIME SUPPORT PROGRAM)

Figure E-1. STAB Table In Loader

*

*

*

*

*

*

*

.

-

ORG 0770

STAB DATA
DATA
DATA
DATA
DATA

*

-

.

»

-

-

-

»

»

*

-

-

-

*

*

*

-

ORG 0721

STAB DATA
DATA
DATA
DATA
DATA

*

»

*

*

-

.

SUBROUTINE CALL TABLE (STAB)

THE FOLLOWING TABLE CONTAINS THE REQUIRED INFORMATION

TO ENABLE THE RPG IV RUNTIME SUPPORT PROGRAM TO LINK

-N

-0

TO AN EXTERNAL SUBROUTINE WHICH IS REPERENCED BY
A 'CALL' STATEMENT. THE TABLE PROVIDES
ROOM FOR TWO ENTRIES. EACH ENTRY HAS
THE FOLLOWING DATA:

1. NAME OF SUBROUTINE
2. SUBROUTINE ENTRY ADDRESS
NUMBER OF ENTRIES
' SUBROUTINE NAME- 1ST ENTRY

SUBROUTINE ENTRY ADDRESS
' SUBROUTINE NAME- 2ND ENTRY

SUBROUTINE ENTRY ADDRESS

DATA CONTAINED IN THIS TABLE MUST
CORRESPOND IDENTICALLY TO THE DATA
CONTAINED IN THE SUBROUTINE CALL
TABLE (STAB) OF THE RPG IV
LOADER PROGRAM

Figure E-2. STAB Table in Runtime

appendix E

Arguments

To retrieve arguments from the CALL statement calling sequence, the called subroutine
requires the service of runtime support routine GETR. GETR is called for each argument in
the cailing sequence. After each return from GETR, the A register contains a pointer to the
first (next) argument in the cailing sequence. The interpreter location counter is stepped
past the argument on each call to GETR so that, after all of the arguments have been
retrieved, the location counter is positioned for the interpreter to continue with the next
interpretive instruction. The contents of location REND in the runtime program are
negative after the last argument is fetched with GETR. Linkage to GETR can be made by a
JMPM* 000177 instruction, and REND is at location 000017.

Arguments passed to called subroutines. are one of two types: a numeric constant or a
record, table, or field name. Numeric constants occupy six consecutive words of memory
and have the form shown in figure E-3.

Record, table, and field names as arguments are accessed by a call to GETR also. Upon
return, the A register indicates one less than the memory location that contains the byte
address of the argument. To form a word address, the user is required to right-shift this
value one position (e.g., LSRA 1).

After all arguments are processed and the subroutine has completed its function, control
can be returned to the runtime interpreter by a JMP* 000220 instruction.

15 12 11 8 7 4 3 0
Word 1 [Sign [D1 [D2 | D3 |

word2 [Da [ps | b6 | b7 |
word3 | D8 | b9 | pio] pi1]
Word 4 [D12 | D13 | D14 | DI5 |

3

decimal point

word 5 [D16 [D17] D18 | p19]

word 6 | D20 | D21 | D22 | D23 |

NOTES

a. Acall to GETR returns the A register contents to word 1.

b. For a plus sign, bits 12 through 15 of word 1 equal a value of six. For a negative sign,
they equal a value of seven.

c. Thedata fields (D1 through D23) are in 4-bit binary-coded decimal (BCD) each field can
have a value of zero through nine.

Figure E-3. Word Formats of Numeric Constants

RPG E-3

appendix E

Coding

Subroutines to be used in CALL statements must be first coded in DAS assembly language
and assembled with either the DAS 4A or DAS 8A assembler. The object output must be
on punched cards. The assembly language-source deck contains the following as the last
seven statements of the program:

Card Operation Operand

1 ORG Octal address of the first word for this
entry in the subroutine call table
(STAB) in the RPG IV runtime support
program (value = 000721).

2 DATA Subroutine name enclosed between
apostrophes. The subroutine name
(exclusive of apostrophes) must
correspond exactly to the name used in
the CALL statement of the RPGIV
program.

3 DATA Octal address of the subroutine entry
location.

4 ORG Octal address of the first word of the
corresponding entry inthe subroutine
call table (STAB) of the RPG IV
loader program (value = 000770).

5 DATA Subroutine name enclosed between
apostrophes. The subroutine name must
correspond exactly to the name used in
the CALL statement of the RPG IV
program.

6 DATA Octal address of the subroutine entry
location.

7 END

RPG E-4

appendix E

Card 7 is the END statement of the source deck itself; there is no operand after assembly.
The three final object cards contain the following data:

a. Objectdata from cards 1, 2, and 3 above

b. Object data from cards 4, 5, and 6 above

c. Normal card object end card
Remove the next-to-last card and place it in the front of the last card of the RPG IV loader
object deck. Place the remaining object cards of the assembled routine at the end of the
RPG 1V runtime support deck with the last card of that deck removed.
Subroutines such as these, which are called at runtime by an RPG v program, reside in
that part of upper memory not otherwise used by RPG IV. This area can be determined

empirically by the following procedure:

a. Initialize each word of memory to some specific value using the 620 AID || program and
the command:

1. la,b,c, (initialize locations a through b to ¢)
b. Load and run the RPG IV program with the subroutine(s) omitted.

c. When RPG IV attempts to execute a missing subroutine, the computer halts with
000002 in the instruction register. Using AID 1l and the command:

2. Sa,b,c, (search locations a through b toc)

scan the computer memory for the value to which memory was previously initialized. That
block of memory below the resident card binary loader (which is filled with the value to
which memory was previously initialized) is then available for containing the subroutine(s)
whose name(s) appear in CALL statements in the RPG IV program.

Figure E-4 shows sample coding for a DAS subroutine and illustrates many of the details
described in the preceding pages.

MOS VERSION

The MOS version of RPG 1V allows for inclusion of DAS-coded subroutines to augment an
RPG IV program. Such subroutines must be assembled into the runtime/loader program;
hence, linkages are handled through the assembly process. Subroutines can be included
after the end of the runtime/loader code; they require an entry into the STAB table
(figures E-1 and E-2).

RPG E-5

appendix E

Since the loader and the runtime programs are combined under MOS, there is only one
STAB table. Its size is variable and the user can add as many special-purpose subroutines
to his system as needed. Refer to RPG IV runtime/loader source listing MOS version
(Varian Software Parts Catalog, document number 98 A 9949 060).

© Argument-processing is the same as in the stand-alone version except that GETR must be
called directly (i.e., JMPM GETR) and control must be returned directly to the interpreter
(i.e., JMP INT). ‘
VORTEX VERSION

The method of inclusion and use of DAS-coded subroutines in the RPG runtime/loader
program is the same as that described for the MOS version.

RPG E-6

000177

000017

000220
016000
016000 002000
016001 100177
016002 005014
016003 015001
016004 004341
016005 054032
016006 010017
016007 001004
016010 016035
016011 002000
016012 100177
016013 005014
016014 015000
016015 006150
016016 010000
016017 054021
016020 010017
016021 001004
016022 016035
016023 002000
016024 100177
016025 005014
016026 015003
016027 006150
016030 000360
016031 004344
016032 054007
016033 001000
015034 100220
016035 000007
016036 001000
016037 100220
016040 000000
016041 000000
016042 000000
000721
000721 151710
000722 144706
000723 152240
000724 016000
000770
000770 151710
000771 144706
000772 152240
000773 01600Q

000000

appendix E

L
. PARTIAL SAMPLE OF AN RPG IV SUBROUTINE
* DAS CODED FOR STAND-ALONE VERSION
. SUBROUTINE SHIFTS AN RPG NUMERIC FIELD RIGHT OR LEPT 'N' PLAC
. ENTER: CALL SHIFT,F,D,N
* WHERE F = FIELD NAME
. D = DIRECTION {+ FOR RIGHT, - FOR LEFT
. N = NUMBER OF PLACES IN DECIMAL (9 MAXIMUM)
* EXIT: FIELD SHIFTED
*
GETR EQU 0177
REND EQU 0017
INT EQU 0220
»
ORG 016000
SHIFT IMPM* GETR GET FIELD ADDRESS(-1)
TAX
LDA 1,1 PICKUP BYTE ADDRESS
LSRA 1 MAKE WORD ADDRESS
STA TMP 1 SAVE
LDA REND
JAN ERROR MORE ARGUMENTS
JIMPM* GETR YES, GET DIRECTION INDICATOR
TAX
LDA 0,1 GET SIGN
ANAT 010000 ISOLATE +/- BIT (RIGHT/LEFT)
STA THP2 SAVE
LDA REND
JAN ERROR MORE ARGUMENTS
IMPM* GETR YES, GET NUMBER OF PLACES
TAX
LDA 3.1 PICKUP D12-D15 OF BCD WORD
ANAI 0360 ISOLATE D14
LSRA 4 RIGHT JUSTIFY
STA TMP3 SAVE
. .
» .
* .
* ETC.
- .
= .
. .
JMP* INT EXIT TO RPG INTERPRETER
ERROR HLT 07 ERROR HALT
IJMp* INT
L
TMP1 DATA [
TMP2 DATA 0
TMP3 DATA [}
»
ORG 0721
DATA 'SHIFT' RUNTIME 'STAB' OVERLAY
DATA SHIFT
L]
ORG 0770
DATA 'SHIFT ' LOADER 'STAB' OVERLAY
DATA SHIFT
*
END

Figure E-4. Sample Coding for

DAS Subroutine

RPG E-7

Master Operating System (MOS)

MOS i

TABLE OF CONTENTS

SECTION 1
- INTRODUCTION
SYSTEM CONFIGURATION ...ttt ettt st s s stee s ettt e et e setaaa s eeabbeessnsessneesasneesssaeanns 1-1
MOS COMPONENTS ...t rrr e s e et r e e se e sttt e e e e aaeassnssaeeessannseeeasssssnsanenn 1.2
Resident Partition
NONFresident Partitionc.ooiiiiiiiiiiii s s b ae bbb e raeaeecese s sansannn 1.2
SECTION 2

CONTROL DIRECTIVES

TYPES AND FORMATSmtiiniimiriiie st sess sttt son s sesscsans 21

EXECUTIVE CONTROL DIRECTIVES ...o..oouiriiinicniiiiiessisitssnssseseesesssesesesesessssessescsesensens 22

170 CONTROL DIRECTIVES.......ooimiimiiieniinec it enissesss e ssssense s snsessanssss st sesssessens 25

SYSTEM LOADER CONTROL DIRECTIVEScooiimumimniininenneeneciesseessessssessressscssaessees 2.7

DECK PREPARATIONoooitiiimiiieiiemiinsesinssssenesenes s seseesessisessssss s seesssnsesessinsessaceesnes 214
SECTION 3

INPUT/OUTPUT CONTROL PROGRAM

LOGICAL AND PHYSICAL UNITS....ciiiiiiiiiii it st n s seasae s 3-1

170 CALLS ..ot st b
Read Binary Record
Read Alphanumeric Record..
REAA BCD RECOIM ... uiiiiiiiiiiiiii i ettt et et e st e st e e e st e e e ssae s s sbeesmneessseaaeneean -
Write Binary RECOIdcoioiiiiiiiiiiiiiii e sttt et s e nen e sbae e -
Write Alphanumeric Record
Write BCD Record
Write ENd of Fil....ciiiiiiiiiiiti e st

MOS-iii

Skip Records Forward
Skip Records Reverse

Skip Files FOrward.........coviiiiiiiciii e

Skip Files Reverse

Perform Function......

ReQUEST StatUS......ciie it e e .

PROGRAMMING EXAMPLESc.ovvivimsieiteeeseeestsetsesssssssesssssssssssssssssssssssssssssssasssssensassonen 3-16
SECTION 4

DEBUGGING PROGRAM

INTRODUCTIONoctiitieitiirentreen oottt sre s e sts s e srasbassb s sseebssnbes e e sbasasonbesaessesenssnens 4-1
TELETYPE DIALOG.cuiceiirreeitinmstiiece e ssee st asres e saae et ses s b e s sre st s esesnneneenessnesarens 4-1
PSEUDOREGISTERSccceitiirtitieiereirrrei st nan e sesae st sse e e e ssesaes et ensesessssmsesnssnssusan 4.2
INSTRUCTION LANGUAGEc.oouermmiierrecereeteret sttt et sb ettt 4-3
Display and Alter INSTruCtioNS.......c.ccovciviiiviiiinir e 4-3
170 Instructionscccecvvrienenns

Control Instructions

EXAMPLES OF DEBUGGINGcococeeviiitiicniini ettt ene e 4-6

SECTION 5
CONCORDANCE PROGRAM

SECTION 6
FILE EDITING PROGRAM

PROGRAM AND DIRECTIVES ...oooivieieririieertesceesteseesessreeerteseseeeseesseesnsasseesanessnsansesnsessnness 6-1
SOURGCE FILE ...eoeeiierreritieiiesieeeeivrestesssseseesseseseassasssesaessssesessssesasessanasssessssenssesnsenssensanennes 6-6
[2T Yo LT g =TT ¢ o IO OO 6-6
Data Record

(021 Lo Y= LT ol o PN 6-7

MOS-iv

SECTION 7
SYSTEM MAINTENANCE PROGRAM

SECTION 8
SYSTEM PREPARATION PROGRAM

INTRODUGTION ...ttt ettt ettt e ettt et e et ee e e et b e e e b e s nnte e s emsneeesnntesaneesenaneenes 8-1
CONTROL DIRECTIVES.....ccoteiiiiiiiiireiieie et sre s sstene st sse s saba e s bassse s enessbeennessnnenenes 8-2
INSTALLATION SYSTEM LIBRARY ORGANIZATION....c.coiviirirrirrirrinieineceneranrereseennecsinene 8-13
System Preparation Section
System Processor Section
System LiDrary SeCHION.... ...t rrerr e e e s e e r s ran e e s nene e senee -
OPERATING PROCEDUREScoiiiciciiimriieriiscieresnnereeenen e e e snnesnanesenaesnenesenassesssnssseessnes 8-15
Loadingccociviiiiiiiiiirc e
Assignment
Disc Formatting
System Verification and Completioncvcviieiiieiniie e 8-19
EXAMPLES ...ttt ar e b stae s e a e e ste e s e ae e bt e enee s enneeenseeneanaeenesanean 8-24
SECTION 9
LANGUAGE PROCESSORS
DAS MR ASSEMBLER ..ottt e st ae e nee 9-1
FORTRAN IV COMPILERcooiiiiiiiiii ettt et e s saen e r e s nees 9-2
RPG IV ettt ettt ae e e n et er et aaeeaneenenan 9-3
SECTION 10
SUPPORT LIBRARY
CALLING SEQUENCEoircoiinieieniirerieirenneees e ser e e esineses seesseessessnensssnesssesesseansressasnrensnns 10-1

MOS-v

NUMBER TYPES AND FORMATS ...ttt 10-2

SUBROUTINE DESCRIPTIONS ..ottt 10-4

SECTION 11
MOS OPERATING PROCEDURES

DEVICE INITIALIZATION Lottt ettt e et 111
Card REAGEI ... et L1101
Card PUnch ..o, L1141
33/35 ASR Teletype c.ocooveeiiiiiii e 11-1

High-Speed Paper Tape Reader...........cccccciiiiiiiiiiiiii et 112
Magnetic Tape UNit........ccoriiiiiiiii et ..11-2
Magnetic Drum Unit...... . 11:2

Fixed-Head Disc Unit........ccccoeeennn . 11-2

Moving-Head Disc Unit (620-39)......cccccccovieivvivinnncnnn. 112

Moving-Head Disc Unit (620-40,-41) ...c..oiiiiiiiiiiiiiiies it et aa e e i 11-2

BOOTSTRAP ...ttt a e 11-3

SYSTEM (REMINITIALIZATION L.ocoiiiiiiees et ettt 115
SECTION 12

USER-CODED 1/0 DRIVERS

DEVICE SPECIFICATION TABLE ..ot 12-2
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word

MOS-vi

170 SUPPORT SUBROUTINESccoiiiiiiiiiiicrr e 12-16

170 STATUS MESSAGESouvviiciriiiireiiiriesiar e sieessiteessrabesessstnessnsessesssasssennsesssenessnessssens 12-17
BIC CONTROL ..ottt sttt s
BIC Control Table
BIRS...ooiiireeiiieeiieen
BIAS . ettt cctr et r et este e et s e bbbt e e R e e asRee e aree e e R e eaR bt e Rae e tae e beenereeeabeataeerrerare
SECTION 13
STATUS AND ERROR MESSAGES
{4 0L Y O ORISR 13-1
SYSTEM LOADER ... ettt st e e et e e s e e e e ane e e e nae e sessbaaaaenseesnnaeraeennrens 133
170 CONTROL coeiiitititeie et cctitesita e sree e e v e e s sb e s s e e e s bbb e s saabaessabbessssnnnseeebbessannesanseensen 135
LANGUAGE PROCESSORS ...ttt rtrer e rtrie e e e sttt e e e s e esenbaeeeee s e s sss s nntaaaasssnsnaresennsnens 135
DAS MR ASSEMBLERccoveiii ettt rae e rr e e s ee e e e sase e s beesareesnanaresnaesnsesenes 136
FORTRAN IV COMPILERccovvviriiriereiceee i, e 13-8
FILE EDITING PROGRAMootttiiiiiiiiii ittt eeeeee s evtereaveeresessressesressestarsssnnsssreenseseareans 13-10
SYSTEM MAINTENANCE PROGRAMooiiiiiiei ettt evtes st s essbte s annes 13-12
SECTION 14
MOS FORMATS
ABSOLUTE MODULE FORMAT ...coiittiiiiiieie i et cee e e e etvntasese s s ensataen e s s eeeeesanansnsessesasannenes 14-1
OBJECT MODULE FORMAT ...ttt ee et rrccteas ceee i se s s s s sesenssnasnssnssresnes 14-3
DATA FORMAT ..ottt st ee s s rres e s e s s s e s e st e n et re s s e e e st s st arenansasssssanssaernans 14-11
APPENDIX
TTY CHARACTER CODES......ccootiiiiticiiesite it siier s eersessstne e s sate e s sabnnesssnnaessennsasanesensananans A-1

MOS-vii

SECTION 1 - INTRODUCTION

The Master Operating System (MOS) is a batch processing operating system for Varian
computer systems. MOS operates on a wide range of hardware configurations. It is
modular, thus facilitating expansion (e.g., new language processors, special user 1/0
drivers, etc.). MOS makes optimum use of memory by loading only those portions of the
system (including 170) required during execution. Features of MOS include:

Minimum operator intervention required

Single tape, drum, or disc as secondary storage device
Extensive job control language (22 directives)
Multisource input during loading

Debugging aids

File maintenance and editing programs

Extensive status- and error-reporting

SYSTEM CONFIGURATION

The minimum MOS configuration requires the following hardware:
a. Varian computer
b. 4K memory
c. 33/35 ASR Teletype
d. One of the following:
(1) Magnetic tape unit
(2) Rotating memory unit on a buffer interlace controller (BIC)

MOS supports and is enhanced by the following hardware:

MOS 1-1

introduction

Card reader and/or punch

Line printer

High-speed paper tape reader and/or punch
Memory increment(s)

Hardware multiply/divide and extended addressing

MOS COMPONENTS

MOS is divided into resident and nonresident partitions. Figure |-1 shows

relationship.

RESIDENT PARTITION

This partition comprises the:

a.

b.

C.

d.

e.

Resident monitor

Absolute loader

170 assignment tables
System flags and parameters

Dump

NONRESIDENT PARTITIONS

This partition comprises the:

a.

b.

C.

Control programs
Support programs

Language processors

Control Programs

The control programs are the:

a.
b.
c.

MOS 1-2

Executive - job control processor and system control

System loader - linking and relocating loading of system and user programs

1/0 control - dispatching of 1/0 requests and device driving

their

Support Programs

The support programs are:

a. Math and support library
b. Concordance program

¢. Debugging program

d. File editing program

e. File maintenance program

f. System preparation program (operates in stand-alone mode)
Language Processors

The language processors are:

a. DAS MR assembler

b. FORTRAN IV compiler (requires an additional memory increment)

RESIDENT
MONITOR

RESIDENT
PARTITION
NONRESIDENT
PARTITION

EXECUTIVE

SYSTEM
LOADER

USER OR
SYSTEM
SUPPORT

PROGRAM

YO CONTROL

Figure 1-1. System Partitions and Flow

introduction

MOS 1-3

SECTION 2 - CONTROL DIRECTIVES

TYPES AND FORMAT

The MOS recognizes three types of control directives:
a. Executive control directives
b. 170 control directives
c. System loader directives
Executive and 1/0 control directives are executed while the executive is in memory.

System loader directives cause the executive to be overlayed with the system program
that is implemented by the directive. MOS has the following directives:

Executive 170 System Loader

JOB COPYA LOAD

ENDJOB COPYB ULOAD

ASSIGN REW ASSEMBLE

IOLIST WEOF FORTRAN

FORM SREC - SMAIN

STACK BREC

EOF SFILE

DATE FUNCTION

COMMENT .

The general form of a directive is an alphanumeric record of up to 72 characters in the
following format:

/name,p(1),p(2),p(3),...,p(n)
where

in the first character position of the record
specifies that the record contains a controf
directive.

name is the name of the control directive comprising
one to eight alphanumeric characters,
and is terminated by a comma or blank.

p(1),... is a parameter string with individual parameters
separated by commas.

MOS 2-1

control directives

The form and number of parameters varies with the
directive. However. parameter strings cannot be
longer than one record (72 characters). If it is.

the directive is truncated.

The parameter string is terminated either by one
period or by blanks from the last parameter to
character position 72. Blanks within the param-
eter string are ignored.

Some control directives have an abbreviated form that is equivalent to the full form:

/C
/COMMENT

These forms can be used interchangeably.

EXECUTIVE CONTROL DIRECTIVES

JOB,title

This control directive starts a job. (A job is all tasks requested between a /JOB and an
/ENDJOB directive.) The system is initialized by setting certain resident constants and
logical unit assignments to their default values; a top-of-form function is sent to the list
output.

One parameter (optional) is allowed. It is an alphanumeric siring of up to eight characters
that is stored in the resident monitor. It is an identification printed on every page of list
output generated by the assembler or compiler. The identification is also incorporated
into the actual object module. If the parameter has fewer than eight characters. the
identification is left-justified and filled out with blanks. In the case of a /JOB parameter.
the first blank terminates it, i.e., embedded blanks cause truncation.

The parameter can be accessed during execution by referencing the four-word area $TTL
in the resident monitor. This can be done by making $TTL an external reference. The
parameter is stored in ASCII, two characters per word.

ENDJOB
This control directive ends a job. The system is initialized by setting certain resident
constants and logical unit assignments to their default values; a top-of-form function is

sent to the list output. There are no parameters. Any text in the parameter field
is ighored.

MOS 2-2

control directives

/ASSIGN,1(1)=r(1),1(2)=r(2),...,1(n)=r(n)

This control directive equates and assigns particular logical units to specific physical 170
devices. Execution of this directive decodes the parameter string and alters the logical
unit table as specified by the parameter.

The parameters can be logical unit numbers, logical unit names, or physical unit names
(figure 3-1). In each parameter pair (i.e., each I{n) = r{n)), the left parameter, l{n), is a
logical unit number or name, and the right parameter, r(n), is a logical unit number or
name or a physical device name.

In ény case, the logical unit to the left of the equal sign is assigned to the unit/device to
the right.

If r is a physical device, the | entry in the logical unit table is altered so that it points to
the physical device driver specified by r. Thereafter, all 1/0 operations referencing | are
directed to the physical device specified by r.

If r is a logical unit number or name, | is made equivalent to r and is assigned to the
same physical device as r. However, if r is reassigned later to a new physical device, | no
longer has an equivalent assignment.

As many parameter pairs as will fit in the control directive record can be specified on one
/ASSIGN. Once a logical unit assignment is made, it remains in effect until changed by a
new /ASSIGN, until the system is initialized by /JOB, /ENDJOB, or a bootstrap loading.

/10LIST,p(1),p(2),...,p(n)

This control directive requests a listing of the current assignments of the individual logical
units. The parameter string consists of logical unit n_umbers or names. As many logical
units as will fit in the parameter field are allowed. The list is printed on LO and system
output (SO, figure 3-1).
Example:

If the system file is currently assigned to drum unit

0 and the binary output -to the high-speed paper

tape punch, the directive

/I0LIST,SF,BO
prints the following on LO and SO:

SF = DROO
BO = PTO0O

If the parameter field is blank, all logical units and their assignments are printed, but
only on LO.

MOS 2-3

control directives

/FORM, X
This control directive sets the value of the line-count word in the resident monitor to the
value of parameter x. This word specifies, to operating system programs, the number of
lines on the LO file before a top-of-form request is sent to the device. The parameter is a
positive decimal integer from 5 to 9999. If the parameter is blank or less than 5, the value
is set to the default value of 44.

/STACK

This control directive stacks binary object programs on the BO. Normally, the system
rewinds the BO before each assembly or compilation. However, with /STACK in effect, the
binary output of all tasks within a job are written on the BO file sequentially.

/STACK remains in effect until a /JOB or /ENDJOB is encountered. It is not set when the
MOS is initialized after a bootstrap loading.

There are no parameters. The parameter field is ignored.

/EOF

This control directive instructs the executive to write an end-of-file record on the BO and
GO (figure 3-1) files.

There are no parameters. The parameter field is ignored.

/DATE , XXXXXXXX

This control directive inputs the parameter into the operating system. The one parameter
is an alphanumeric character string of up to eight characters (for example, month, day,
and year). The first blank terminates it, i.e., embedded blanks cause truncation. The
parameter is output on any list output generated by the assembler or compiler and other
system support programs.

If the parameter field has fewer than eight characters, it is left-justified and filled out
with blanks. Once entered, the parameter remains unchanged until another /DATE is
encountered.

Access to the parameter during execution is by referencing the four-word area $DAT in the

resident monitor. This can be done by making $DAT an external reference. The
parameter is stored in ASCII, two characters per word.

/C
/COMMENT

This control directive annotates the list output. The MOS prints all 72 characters of this
directive record, including /C cr /COMMENT, on SO and LO. No other action is taken.

MOS 2-4

control directives

1/0 CONTROL DIRECTIVES

/COPYA,1(1)=r(1),1(2)=xr(2),...,1(n)=r(n)

This control directive copies ASCII-coded data files from one logical unit on another. The
parameter string comprises logical unit pairs. Copying is record by record from the left (I)
unit to the right (r) unit. Copying begins at the position of the | unit when the /COPYA is
requested and continues until an end of file is encountered on the | unit. The r unit is not
positioned before copying to it begins. After the copy is completed, neither unit is
positioned 'nor is an end of file written on the r unit. Unit | is a logical unit number or
name; unit r is a logical unit number or name.

/COPYB,1(1)=r(1),1(2)=r(2),...,1(n)=r(n)

This control directive is identical to /COPYA, except that copying is binary.

/REW,p(1),p(2),...,p(n)

This control directive rewinds the specified logical units. If a specified unit cannot be
rewound, no action is taken for that unit.

/WEOF,p(1),p(2),...,p(n)

This control directive writes end-of-file records on the specified logical units. The format of
the end-of-file record depends on the physical device to which the logical unit is currently
assigned. If a physical device cannot accept an end of file, no action is taken for that
logical unit.

/SREC,1(1),r(1),1(2),r(2),...,1(n),r(n)

This control directive skips physical records on the specified logical units. The parameter
string consists of parameter pairs, each pair specifying a logical unit and a record count.
/SREC spaces the logical unit forward the number of records designated.

The record count is a positive decimal integer from 0 to 9999. If the count is blank, or if
the specified unit cannot skip records, no action is taken for that unit. If the count
exceeds 9999, the left four digits are used.

MOS 2-5

control directives

/BREC,1(1),r(1),1(2),r(2),...,1(n),r(n)

This control directive is identical to /SREC, except that the records on the specified logical
unit are skipped in reverse order (backspace).

/SFILE,1(1),r{(1),1(2),r(2),...,1(n),r(n)

This control directive skips physical files on specified logical units. File-skipping occurs
only in the forward direction. The parameter string consists of parameter pairs, each pair
specifying a logical unit and a file count. /SFILE spaces the logical unit forward the
number of physical files designated.

The file count is a positive decimal integer from 0 to 9999. If the count is blank, or if the
specified unit cannot skip files, no action is taken for that unit. If the count exceeds 9999,
the left four digits are used.

/FUNCTION
/FUNC,1(1),r(1),1(2),r(2),...,1(n),xr(n)

This control directive performs special functions on specified logical units. The parameter
string consists of parameter pairs, each pair specifying a logical unit and a special
function code.

The special function code is a positive decimal integer from 0 to 9999. If the code is
blank, no action is taken for that unit. If the code exceeds 9999, the left four digits are

used.

The function performed depends on the physical device to which the logical unit is
currently assigned. Definitions of the [/0 functions of MOS are given in Section 3.

Note: Discs and drums must be positioned in the same manner as magnetic tapes with
respect to the 170 control directives REW, SREC, BREC, and SFILE.

MOS 2-6

control directives

SYSTEM LOADER CONTROL DIRECTIVES

The system loader can load unconditionally from binary input (Bl. figure 3-1) and/or
selectively by program name from SF. It accepts only relocatable object text. including
literal addressing and external program-linking. Upon successful completion, the system
loader returns control to the resident monitor for program execution. When errors occur
during loading, the process is aborted and control returned to the resident monitor, the
executive is loaded and the error message posted on the LO and SO. Figures 2-1 and 2-2

show a map of memory during and after the loading process.

/LOAD
/L,p(1),p(2),...,p(n)

This control directive directs the executive to call the system loader and load one or more
object modules from the Bl file. The parameter string can specify the following tasks for
the loader during loading. or for the resident monitor after the loaded program has been
run:

PAUSE The loader pauses before each program is loaded
from BI, allowing the loading of programs from more
than one tape by stopping the computer during the
changing of tapes.

HALT The resident monitor stops after all programs are
loaded but before execution begins.

MAP When loading is complete, the loader outputs a
map of all entry points, external names, and labeled
data blocks ({figure 2-3)

DUMP After the loaded program has been executed, the
resident monitor dumps core on LO (figure 2-3).

The dump routine uses memory locations 0400 through
0477 and thus destroys the original contents of these
locations.

DEBUG The loader loads the debugging program as part of
the loading task.

MOS 2-7

control directives

Top of memory

Resident partition

System loader

Map routine and list output (LO) driver
(if requested)

——— e e ——— ——

Overlayed by
¢ blank COMMON
when possible

Binary input (BI) criver
(if requested)

List output (LO) driver
(if requested)

7

727

Loader tables e

V- —

;Ja R
ﬁ’* Main program and subprograms ;Te
Ta Direct reference literals Ja
r Indirect reference literals £

Figure 2-1. Loader Memory Map

MOS 2-8

control directives

THE FOLLOWING IS OUTPUT ON THE LO DEVICE WHEN A MAP
REQUEST IS MADE WITH AN ASSEMBLY, COMPILATION, OR

LOADI

WHERE

NG:

SSSSsSsS aaaaa

ssssss/ rrrrr

($1IAP) VVVVV
($LIT) VVVVV
($PED) VVVVV

SSSSSs

aaaaa

rrrrr

\AAAA

IS A SYMBOLIC NAME, RIGHT-JUSTIFIED.
THE CHARACTER / (SLASH) FOLLOWING Ssssss

INDICATES THAT THE ROUTINE WAS NOT LOADED.

IS AN OCTAL ENTRY ADDRESS, RIGHT-
JUSTIFIED, OF A LOADED PROGRAM OR COMMON
BLOCK NAME.

IS AN ADDRESS-REFERENCING OF AN UNLOADED
PROGRAM OR COMMON BLOCK NAME.

IS THE OCTAL VALUE OF:

($1AP) HIGHEST INDIRECT ADDRESS POOL
LOCATION
($LIT) LOWEST DIRECT REFERENCE

LITERAL POOL LOCATION

($PED) HIGHEST PROGRAM LOCATION STORED

Figure 2-2. Memory Map Format

MOS 2-9

control directives

[Jalae coran: 035111 061000 034715 001000 N3E715 000ASH 1n3121
anrey . rha76s 0n3712 165717 105720 105721 1057726 0nQc1? C35AS6
oeerg ANENLY 001770 0N177)y 001772 001773 002n14 00201% 004741
Qe 4o f0Y775 0 0NY17768 062003 002004 002037 001375 001777 001300
oncran CR2A00 001766 0G2005% QR200h 001374 0ONCH2N 00127t 061277
[JJJEERY Gey7an 081757 O(17R0 gr17H)] NC17682 01763 120246 120240
[IR 120244 120240 120240 120240 120240 120240 120240 120240
00Gr7A 126240 120240 120240 120240 120240 000610 010307 0103A0AK
anaLa” C1GR74 0 010278 N1027k 1PRJA Q0O2674 000522 00N%23 G0NS24
orGt) HOLN2% Q0N0RER OCINZE 000ONLEe 0R050R 000507 00NE2) nnase20
NeGY L GAAN1IA L NANFLS 0LOFIA ACE1T7S 001176 ONI177 AN1290 (ONTST
[Jule8 I Dh1163 000K25 00003 Qr05S04 0Na511 000505 0N0OS12 010305
contdn 1102 001166 0C11Sh QOC0624 0NO762 00106N 0NAK2A 0NNAL]
[l Al Grnsn14 QC06LT7 00NAR2A QNOK2Y1 0N0622 ONL1LE% 091031z 0NN74a4
000~ un11h4a 005R4R 001157 GL0OS71 010302 010304 010272 10311
[AN 200517 0 0NNH6Y Ar0SK2 AfORE4 010002 000513 001209 €N7345
[Jaltal 147777 0O072453R 0r7350 QC7335 007318 0ON735%3 ANNARKZ4 Cagghe
[e fN275% 0 Q06%63 177777 120200 Q002480 00K175 00m200 03727
(Il arsmed On5542 0r030C 0NNC2D 0NOC4AN 0055AA 140711 154240
00Ny 8 1402480 147640 15%1%4F {A1R40 12345 12345R 1234h¢ 12345A
[J 178807 123896 173450 12345A 12345k 12345A 12345¢ 123458
*

Qenen 120> 130264 J20260 120240 120240 130063 133207 133260
006 i« 120248 {30K63 1A3G26A 1332K3 120240 130%63 130262 13306h
06n0c?2 120249 1306KR3 1310n2 133263 120240 13CHhE2 13020 132260
(I 170240 1340A63 13026k 133262 120240 13ICKE 130262 1340K2
onte 1 126740 130R63 1X1AB2 13JIVE2 120240 120240 120240 120240
00045+ 12ADE0 120240 {L024G 0 120240 120240 120240 120240 y20vac
-

[JaJaRAR 1262472 120240 120240 120240 003758 077777 0003A-C 00004
onnhnn CA1eNN ONO767 012760 023277 026404 000500 0000LC NON205
00nC=].- T12760 000222 016304 000DNA 0NOOLO 0NG205 140A4C 120240
00052 126249 120240 004732 140723 15170% 146702 14030% 004732
00ns 4~ 14A0/22 1817911 1£371R 120240 ONJ3Y170 141322 142703 120240
ornsan 190240 0ASKLD ya1edn 120240 120240 {2024n 0N2KAT7 141717
onetnn 140710 1£271& 162240 0G2AR47 143717 150331 14nkar 120240
000%o d037A0 101717 150341 141740 120240 003765 142301 182205
QOONT7 121240 1206240 002791F 142715 142312 147702 000600 0N0AOD
006E YN 6ANGEYI0 000000 oqgnﬁu acan0n anpeon 000NN annenc nranon
*

00C&2N annnnn nannoe Neonnn On0NdA 0NO00N 0NONNN 120240 120240
000K <.y D03A45 143325 147303 1h2311 14771Ff 003K45 144717 146311
000k An 151721 120240 00360~ 1635317 141240 120240 120240 002730
oneEsn 1AR240 120240 120240 1207240 004254 14317 140704 120240
00Gh~A 120240 004254 151305 153640 120240 120240 003622 {51706
ocne/ 1447114 142640 120240 ONJALE 151715 140711 147240 (20240
00G7 30 ANKSRY 151722 142703 120240 120240 003653 151724 140703
orerr 14540 120240 002744 122640 120240 {20247 12024C (QCa2at

Note: An asterisk indicates that the succeeding line (or lines) has the same contents
as the last printed line.

Figure 2-3. Dump Format

MOS 2-10

control directives

In addition to these task options, the parameter string can also specify relocation values
to instruct the system loader where to relocate the program and data. Relocation value
parameters are of the form:

xx=n
where
XX is the relocation bias name
n is the octal relocation value in the range O to

077777 entered as an octal number up to five
digits (no leading zero is required).

The relocation bias names are:

RP Specifies the program relocation base
0 < RP < core size

Ri Specifies the indirect pointer relocation base
0< Rl < 0777
RL Specifies the literal relocation base

0=< RL< 03777

RC Specifies the COMMON relocation base
0 < RC < core size

If these relocation biases are not specified, /LOAD sets them to the default values
defined at system preparation time.

/ULOAD
/U,name,p(1),p(2),...,p(n)

This control directive directs the executive to call the system loader and load one or more
programs from the SF file. Except for the name parameter, the parameters are identical
to those of /LOAD.

The name parameter specifies the name of the program to be loaded from SF, and is the
first parameter in the string. Object module names are generated by DAS MR or
FORTRAN IV. Program names are alphanumeric character strings of one to eight
characters. Six blanks is an illegal name. Parameters other than the name can appear in
any order.

MOS 2-11

control directives

All error and bounds-checking of parameters is identical to that in /LOAD.

/ASSEMBLE
/A,p(1),p(2),...,p(n)

This control directive directs the executive to load the assembler. The parameter string
specifies optional tasks for the assembler or executive to perform after the assembly is
completed. These tasks are:

Parameter Definition Default Assignment
N No source listing Source listing
B No binary object Binary object pro-

program output gram listing

MAP Memory map on load- No memory map on
and-go load-and-go

L Load-and-go after No load-and-go after
assembly assembly

M No symbol table Symbol table listing
listing

If L (load-and-go) is specified, all the options and relocation parameters of /LOAD can be
used in /ASSEMBLE. These loading parameters do not apply to the assembly, but to the
load-and-go initiated after the assembly is completed.

/FORTRAN
/F,p(1),p(2),...p(n)

This control directive directs the executive to load the FORTRAN compiler. The parameter
string specifies optional tasks that the compiler or executive is to perform. These tasks

are.

Parameter Definition Default Assignment

N No source listing Source listing

B No binary object Binary object pro-
program output gram listing

MAP Memory map on load- No memory map on
and-go load-and-go

L Load-and-go after No load-and-go after
compilation compilation

0 Octal listing of No octal listing of
generated code generated code

X Conditional compilation No conditional com-

pilation
M No symbol table listing Symbol table listing

MOS 2-12

control directives

Parameter Definition ' Default Assignment

D Generate two-word Generate one-word
integer and logical integer and logical
numbers numbers

/SMAIN,p(1),p(2)

This control directive directs the executive to call the system loader and load the system
maintenance program.

p(l), if present, is a physical unit name to wh'ich_ Pl is assigned. p(2), if present, is a
physical unit name to which . PO is assigned. Neither the Pl nor the PO can be assigned to

dummy (DUM).

MOS 2-13

control directives

DECK PREPARATION

The batch processing facilities of MOS are envoked by control directives in combination

with programs and data. These elements form the input job stream to MOS. The input job
stream can come from various peripherals and be on various media. The following

examples illustrate common job streams and deck preparation.

Example 1 - Card Input

Request a listing of all logical 170 assignments, enter the current date, set the LO line
count to 50, and log a comment to the operator that reads: MOUNT TAPE DM72.

/JOB, EXAMPLE 1
/IOLIST

/DATE, 10/15/70
/FORM, 50

/C,MOUNT TAPE DM72
/ENDJOB

Example 2 - Card Input

Compile a FORTRAN |V program with source listing, octal object listing, and load-and-go
binary output.

/JOB, EXAMPLE2
/REW, GO
/FORTRAN,L,0O

(Source Deck)

/EOF
/ENDJOB

Example 3 - Teletype Input

Assign the BI file to magnetic tape unit 2, load a program from Bl and produce a map.
After loading, halt before execution and produce a dump at program completion.

/JOB, EXAMPLE3
/ASSIGN,BI=MTO01
/LOAD,MAP , HALT , DUMP
/ENDJOB

Example 4 - Card Input
Copy a card file from Pl (processor input, figure 3-1) to scratch 1 {S1), write an end of

file, rewind, and copy to the LO file. Then, copy scratch 1 (S1) to the second file of scratch
3 (83), rewind both scratch tapes. and exit.

MOS 2-14

control directives

/JOB,EXAMPLEY
/COPYA,PI=S1

(Card File)
(End-of-File)

/WEOF, S1
/REW, S1
/COPYA, S1=LO
/REW,S1,83
/SFILE,S3,1
/COPYA,S1=853
/WEOF, S3
/REW,S1,83
/ENDJOB

MOS 2-15

control directives

SECTION 3 - INPUT/OUTPUT CONTROL PROGRAM

I O control is the generalized 170 subsystem under MOS for all users and requires only
minimal understanding of the 620 computer hardware 1/0 operations. All 170 operations,
both MOS and user-written, utilize 170 control. During program execution, only the
required modules of 1/0 are loaded into memory.

Because of the standardized interfaces between 1/0 control and the user’s program, and
between 1/0 control and |/0 subroutines, /O peripherals can be changed without
program reassembly. As new peripheral devices are added to a system, it is only necessary
o program the required 1/0 driver (section 14).

Status and error messages are given in section 13.

LOGICAL AND PHYSICAL UNITS

MOS. through 170 control. allows access to-1/0 devices and files in terms of logical units
with names and/or numbers rather than by actual physical references. The
correspondence of a logical unit to a physical unit is made by /ASSIGN prior to program
loading and execution.

MOS allows up to 64 logical units, with the first 14 being defined and used by MOS. Table

3-1 lists logical units defined by MOS; table 3-2, physical devices; and table 3-3, valid
assignments.

MOS 3-1

input/output control program

Unit No. Description
1 System file
2 System input
3 System output
4 Processor
input
5 List output

MOS 3-2

Table 3-1. MOS 1/0 Units

Unit Name

SF

Sl

SO

Pl

LO

Function

The system file input logical unit.
All processing, utility, and

library programs are stored here.
SF is a magnetic tape unit or
drum or disc memory unit.

The system directive input logical
unit. The operating system inputs
all of its control directives from
Sl

The system output logical unit.
The operating system outputs all
input control directives and out-
puts system operation

messages on SO.

The language processor in
put logical unit. All
operating system proces-
sors (assembler, compiler,
etc.) input source state-
ments from PI.

The system listing output
logical unit. The oper-
ating system outputs all
input control directives
and any system operations
messages on LO. All oper-
ating system processors
(assembler, compiler, etc.)
output listings on LO.

input/output control program

Table 3-1. MOS 1/0 Units (continued)

Unit No. Description Unit Name Function

6 Binary input Bl The system binary input logical
unit. All operating system pro-
grams that input binary records
input from Bl (e.g., loaders).

7 Binary output BO The system binary output logical
unit. All operating system proces-
sors (assembler, compiler, etc.)
that output binary text records
output on BO.

8 System scratch SS The system intermediate scratch
logical unit. All operating system
processors (assemblers, etc.)
that use an intermediate scratch
unit input from SS.

9 Load and Go GO The system assemble/compile and
GO (load-and-go) logical unit.
The assembler and compiler out-
put on GO the same information
as output on BO. When assemble/
compile and GO is requested, GO
references the system resident
unit. Otherwise, it references
a dummy /0 driver.

10 Processor PO The system processor output
logical unit. All operating
system processors (assembler,
etc.) that use an intermediate
scratch unit output on PO.

MOS 3-3

input/output control program

Unit No.
11

12

13

14

15-25%

b4

MOS 3-4

Table 3-1. MOS 1/0 Units (continued)

Description

Scratch 1

Scratch 2

Scratch 3

Scratch 4

User-assigned

Unit Name

Sl

S2

S3

S4

Logical unit
number

Function

System scratch logical unit. For
assignment as scratch records.

System scratch logical unit. For
assignment as scratch records.

System scratch logical unit. For
assignment as scratch records.

System scratch logical unit. For
assignment as scratch records.

Can be assigned to any function.

Sl

CR
DR
MT
PT
TR
TY

input/output control program

Table 3-2. MOS Physical 1/0 Devices

System Name Physical Device
——CPcu Card punch
CRcu Card reader
DKcu Disc memory unit
DRcu Drum memory unit
LPcu Line printer
MTcu Magnetic tape unit
PTcu High-speed paper tape reader/punch
TPcu Teletype paper tape punch
TRcu Teletype paper tape reader
TYcu Teletype printer
DUM Dummy /0
NOTES

1. cu represents controller/unit.
2.——DUM/appears to the 170 control program to be a legitimate

device, but in reality does nothing. DUM is used when an |/0 output
is not desired and for other special system purposes.

Table 3-3. Valid Logical Unit Assignments

SO Pl LO BI BO GO PO $1,52,S354 s$S

TY CR CP CR CP DR DR ——DR CR
DR DR DR DR MT MT ———MT DR
MT P MT MT ———DUM MT
PT MT PT PT —__CR PT
TR PT TR TP ———PT TR
TY TR DUM DUM —__TR TY
DUM TY —TY DUM

DUM —— P

* For disc versions of MOS, every DRxx unit name is replaced by DKxx.

MOS 3-5

input/output control program

170 CALLS

During program execution, 1/O control facilities are accessed through calls specifically
defined by the DAS MR assembler. When called, 170 control normally transfers one
record at a time between the computer memory and the {/0 device. An 170 request to 170
control specifies:

a. The logical unit number

b. The type of 170 function to be performed

¢. The number of memory words to be transmitted, or a count for skip operations

d. The data location

These parameters are combined into 14 1/0 calls recognized by the DAS MR assembler
(table 3-4).

The following abbreviations are used to describe the calls:

Abbreviation Definition

DST Device specification table

fc Function code

10CS 1/0 control entry point

loc Data address

lun Logical unit number

n Number of words, records, or files to
be skipped

we Word count

NOTE

The A, B, and X registers and the overflow indicator are assumed
volatile and are destroyed during all |70 calls.

MOS 3-6

Mnemonic

FUNC
RALF
RBCD
RBIN
REW
SKFF
SKFR
SKRF
SKRR
STAT
WALF
WBCD
WBIN
WEOF

Table 3-4 Summary of 1/0 Calls

Definition

Perform function

Read alphanumeric record
Read BCD record

Read binary record
Rewind

Skip files forward

Skip files reverse

Skip records forward

Skip records reverse
Request status

Write alphanumeric record
Write BCD record

Write binary record

Write end of file

input/output control program

Function Code

016
001
041
101
004
005
205
006
206
000
002
042
102
003

MOS 3-7

input/output contro! program

The general format of all 170 calls is:

Label Field
Symbol (optional)

The general format of the expansion of all 170 calls is:

Operation Field

Mnemonic

Variable Field

1.2. 3. or b
parameters or ex-
pressions separated
by commas

Label Field Operation Field Variable Field
Symbol (optional) JMPM 10CS
DATA fc + parameter 1
. parameter 2
DATA parameter n

where (fc + parameter 1) is:
Bit Position

17* 16 15 14 13 12 11 10 9 8 7 6 54 3 2 10

Function Code + lun (p1)
where n is the octal value of the indicated bit groups.
For 18-bit computers (622).

In addition to the expansion of each call, the assembler generates two other directives at
the beginning of every program that uses (/0 calls:

EXT I0CSs
ION lun 1,...,1lun n

The EXT declares I0CS an external reference, while ION does the same for the necessary
drivers. Both allow the loader to link the user and 170 control at load time.

The following sections give a detailed discussion of each 170 call defined within MOS.

MOS 3-8

-jnput/output control program

READ BINARY RECORD

Call:
RBIN lun,wc, loc
Expansion:
JMPM I0Cs
DATA 040400+1un
DATA wcC
DATA loc

This call inputs wc words from the 1/0 device to consecutive memory addresses
beginning at loc. The function is performed in the mode requested. if possible. Otherwise.
the mode of the device is used. If the input record contains more than wc words. only wc
wards are stored in memory, and the remainder, ignored. If the input record contains less
than wc words, they are input. The number of words is placed in word O of the DST. The
I O request is ignored if wc is not greater than zero.

READ ALPHANUMERIC RECORD

Call:
RALF lun,wc, loc
Expansion:
JMPM I0CS
DATA 000400+1lun
DATA we
DATA loc

This call inputs we words from the 1/0 device to consecutive memory addresses beginning
at loc. The function is performed in the mode requested, if possible. Otherwise. the mode
of the device is used. If the input record contains more than wc words. only wc words are
stored in memory, and the remainder, ignored. |f the input record contains less than wc
words, they are input. The number of words is placed in word O of the DST. The 1/0
request is ignored if wc is not greater than zero.

READ BCD RECORD

Call:

RBCD lun,wc, loc
Expansion:

JMPM I0CSs

DATA 020400+1un

MOS 3-9

input/output control program

DATA wc
DATA loc

This function inputs we words from the 1/0 device to consecutive memory addresses
beginning at loc. The function is performed in the mode requested, if possible. Otherwise,
the mode of the device is used. If the input record contains more than wc words, only wc
words are stored in memory, and the remainder, ignored. If the input record contains less
than wc words, they are input. The number of words input is placed in word O of the DST.
The 1/0 request is ignored if we is not greater than zero.

WRITE BINARY RECORD

Call:
WBIN lun,wc,loc
Expansion:
JMPM IOCs
DATA 041000+1un
DATA wce
DATA loc

This function outputs wc words to the 170 device from consecutive memory addresses
beginning at loc. The function is performed in the mode requested, if possible. Otherwise,
the mode of the device is used. If output is specified with less than wc words, they are
output. if the configuration permits wc or more words, wc words are output. The number
of words output is placed in word 0 of the DST. The (/0 request is ignored if wc is not
greater than zero.

WRITE ALPHANUMERIC RECORD

Call:
WALF lun,wc, loc
Expansion:
JMPM IOCS
DATA 001000+1un
DATA weC
DATA loc

This function outputs wc words to the /0 device from consecutive memory addresses
beginning at loc. The function is perfoermed in the mode requested, if possible. Otherwise,
the mode of the device is used. If output is specified with less than wc words, they are
output. If the configuration permits wc or more words, wc words are output. The number

v0sS 3-10

input/output control program

of words output is placed in word 0 of the DST. The 1/0 request is ignored if we is not

greater than zero.

Efficient choice of a record length depends upon the peripheral device: for example, the
more efficient use of a disc file would be with record lengths in a multiple of sixty words.

WRITE BCD RECORD

Call:
WBCD
Expansion:
JMFM
DATA
DATA
DATA

lun,wc,loc

I0CSs
021000+1un
wc

loc

This function outputs wc words to the |/0 device from consecutive memory addresses

beginning at loc. The function is performed in the mode requested, if possible. Otherwise,
the mode of the device is used. If output is specified with less than wc words, they are
output. If the configuration permits wc or more words, we words are output. The number
of words output is placed in word 0 of the DST. The request is ignored if wc is not greater

than zero.

Note

For high-speed paper-tape reading and writing there is a driver for unformatted
tapes as well as for formatted tapes. The high-speed paper-tape driver for
unformatted tape makes no distinction between WBIN and WALF. On input
this driver will read one record which is defined by the wc parameter in the
program if wc is less than 60, or otherwise 60 words will be read. Each record
read is checked for leading blank characters. If the first half record contains ail
blank characters, the blanks are interpreted as an end-of-file. On output, the
driver for unformatted tapes will write two frames per word to paper tape for wc
words. The DST and paper-tape driver for unformatted tapes are combined as
one routine labeled $OP, which corresponds to the peripheral mnemonic PT10.

WRITE END OF FILE

Call:
WEOF
Expansion:
JMPM
DATA

lun

I0Cs
001400+1un

MOS 3-11

input/output control program

This function outputs an end-of-file character to the peripheral device. No data are
transmitted. Subsequent 1/0 status requests produce an end-of-file return.

REWIND
Call:

REW lun
Expansion:

JMPM I0CS

DATA 002000+1un

This function issues a rewind command to the [/0 device. No data are transmitted.
Subsequent |/0 status requests produce a beginning-of-device return.

SKIP RECORDS FORWARD

Call:
SKRF lun,n
Expansion:
JMPM I0CS
DATA 003000+1un
DATA n

This function skips n records in the forward direction on the 170 device. No data are
transmitted. If an end of device or end of file is detected before the requested number of
records are skipped, skipping terminates and the count of records remaining to be
skipped is placed in word O of the DST. Subsequent 1/0 status requests produce an end-
of-device or end-of-file return, respectively. The request is ignored if n is not greater than
zero.

SKIP RECORDS REVERSE

Calk
SKRR lun,n
Expansion:
JMPM I0CS
DATA 0103000+1un
DATA n

MOS 3-12

input/output control program

This function skips n records in the reverse direction on the |/0 device. No data are
transmitted. If a beginning of device or an end of file is detected before the requested
number of records are skipped, skipping terminates and the count of records remaining
to be skipped is placed in word O of the DST. Subsequent 1/0 status requests produce a
beginning-of-device or end-of-file return, respectively. The request is ignored if n is not
greater than zero.

SKIP FILES FORWARD

Call:
SKFF lun,n
Expansion:
JMPM I0CS
DATA 002400+1un
DATA n

This function skips n file marks in the forward direction on the |/O device. No data are
transmitted. Subsequent I/0 status requests produce an end-of-file return. If an end of
device is detected before the requested number of files are skipped, skipping terminates
and the count of any remaining files to be skipped is placed in word 0 of the DST.
Subsequent I/0 status requests produce an end-of-device return. The request is ignored if
n is not greater than zero.

SKIP FILES REVERSE

Call:
SKFR lun,n
Expansion:
JMPM TIO0CS
DATA 0102400+1un
DATA n

This function skips n file marks in the reverse direction on the 1/O device. No data are
transmitted. Subsequent /0 status requests produce an end-of-file return. If an end of
device is detected before the requested number of files are skipped, skipping terminates
and the count of any remaining files to be skipped is placed in word O of the DST.
Subsequent /0 status requests produce a beginning-of-device return. The request is
ignored if n is not greater than zero.

MOS 3-13

input/output control program

PERFORM FUNCTION

Call
FUNC lun,n
Expansion:
JMPM I0CS
DATA 003400+1un
DATA n

This function commands one of the following special functions peculiar to the specified
t/0 device:

Peripheral Function

Teletype keyboard (TYcu) Spaces paper five lines (n ignored)
Teletype paper tape punch Punches about 24 inches of blank
(TPcu) leader (n ignored)

High-speed paper tape punch Punches about 24 inches of blank
(PTcu) leader (n ignored)

Card punch (CPcu) Ejects one blank card (n ignhored)
Line printer (LPcu) Slews paper at a rate other than one

line per print line (n is the slew
character). The page position for each of
the eight possible counts in a function
call is listed below:

Value of n Channel on Format Tape Position on Page
0 0 Top of form
1 1 Reserved for user
2 2 Reserved for user
3 3 Reserved for user
4 4 Reserved for user
5 5 Reserved for user
6 6 Reserved for user
7 7 Reserved for user

MOS 3-14

REQUEST STATUS
Call:

STAT
Expansion:

JMPM
DATA
DATA
DATA
DATA
DATA

input/output control program

lun,err,eof ,beod,busy

I0CS
0O+lun
ERR
EOF
BEOD
BUSY

This function examines the 1/0 driver of a logical unit to determine its status and then
specifies return addresses to be used depending on this status. Return addresses can
specify indirect addressing. On return, the X register points to word 0 of the DST of the
170 driver for this lun. If this lun has no /0 driver, the X register is cleared.

The various exit terms are:

ERR
EOF
BEOD
BUSY

170 error on last transfer

End of file on last transfer
Beginning/end of device on last transfer
Device busy

MOS 3-15

input/output control program

170 PROGRAMMING EXAMPLES

Example 1

Rewind tape unit 3 (lun =15) and read one file consisting of 100 records of 60 binary
words each. After each record is read. print it on the line printer (lun =5). Go to the top
of the next form upon completion and rewind tape unit 3. Halt on an end of file or 10
error. Exit to the resident monitor an normal completion.

Label Field Operation Field Variable Field
A REW 15
LDA| -100
B RALF 15.60.BUF
C STAT 15.X.X.X.C
WALF 5.60.BUF
D STAT 5X.X.X.D
IAR
JAN B
FUNC 5.1
3 STAT 5 XX X.E
REW 15
F STAT 15.X.X.G.F
BUF BSS 60
X HLT 0
EXT EXIT
G CALL EXIT
END A
Example 2

Read a card from the card reader (lur =6) until an end of file is detected and write it on
a drum file (lun=20). List all IO errors on the Teletype. but do not terminate the
operation.

Label Field Operation Field Variable Field

A RBIN 6.60.BUF

B STAT 6.F.D.FB
WBIN 20.60.BUF

E STAT 20.F.F.F.E
JMP A

F WALF 3.3.H

J STAT 3.AAA
JMP A
EXT EXIT

D CALL EXIT

BUF BSS 60

H DATA ‘10 ERR
END A

MOS 3-16

input/output control program

Example 3

Read a disc file (lun = 17) consisting of 40-word records until and end of file is detected.
Search each record for a zero word and keep a count of them. At end of file. punch a
binary card on lun =7 with the count of zero words in the first card word. ignore 1O
errors.

Label Field Operation Field Variable Field
A TZA
STA H
B RBIN 17.40.BUF
D STAT 17.C.G.C.D
C LDXI BUF
E LDA 0.X
XAZ F
INCR 045
SUBI BUF + 40
JAP B
JMP E
G WBIN 7.1.H
| STAT 7.J.J.J.1
EXT EXIT
J CALL EXIT
F INR H
H DATA 0
BUF BSS 40
END A

MOS 3-17

debugging program

SECTION 4 - DEBUGGING PROGRAM

The MOS debugging program aids the programmer in finding and correcting program
errors. Its commands examine and/or change the program, in addition to running part or
all of a program.

Whenever the DEBUG option is specified on /LOAD or /ULOAD (section 2), the
debugging program is loaded with the user’'s program. When loading is complete, control
is transferred to the debugging program.

Status and error messages are given in section 13.

DIALOG

The debugging program is an interactive component within MOS used via Sl. Upon entry,
if SI=TYOO, it types:

C/R*x*

To communicate with the debugging program, use the command language with the
following syntax:

a. General form:
instruction parameter(1),parameter(2),...,parameter(n)

b. Instructions can have up to 72 characters. Characters beyond the 72nd are
ignored.

c. Continuation lines begin with a comma (,).
d. Invalid instructions cause the reply WHAT?? followed by ** if Sl = TYOO.

e. All numbers are octal. \

-~

Negative (two’s complement) numbers are preceded by a minus (-) sign.

MOS 4-1

debugging program

g. Parameters are separated by commas.

h. Blanks between parameters are ignored, but other blanks may cause errors.

PSEUDOREGISTERS

Because the debugging program uses the A, B, and X registers and the overflow indicator,
pseudoregisters are defined to guarantee the integrity of the physical registers during the
debugging process. The debugging program loads the pseudoregisters into the physical
registers prior to transferring control to the user's program. With a breakpoint (trap) set,
the contents of physical registers are saved in the pseudoregisters when the breakpoint is
reached. When the program starts from the breakpoint, the physical registers are restored
to the saved values. The pseudo-overflow indicator contains zero or nonzero,
corresponding to overflow reset or set, respectively.

MOS 4-2

debugging program

INSTRUCTION LANGUAGE

The following is a list of instructions accepted by the debugging program, where aaaaaa

denotes any signed or unsigned 16-bit (18-bit for 622 computers) octal

number. The

debugging program makes no check of addresses against the actual memory size. Use

care in specifying addresses.

DISPLAY AND ALTER INSTRUCTIONS

Instruction

aaaaaa

aaaaa(l),aaaaaa(2)

Aaaaaaa

Baaaaaa

Xaaaaaa

Description

Display the contents of memory at the given memory

address on LO.

Display the contents of memory at aaaaaO(l)
through aaaaa7(2) inclusive on LO. An
asterisk indicates that the succeeding line
(or lines) has the same contents as the last
printed line.

Display the contents of the pseudo-A register
on LO.

Change the contents of the pseudo-A register
to aaaaaa.

Display the contents of the pseudo-B register
on LO.

Change the contents of the pseudo-B register
to aaaaaa.

Display the contents of the pseudo-X register
on LO.

Change the contents of the pseudo-X register
to aaaaaa.

MOS 4-3

debugging program

Instruction

0

Qaaaaaa
Caaaaaa,v(1),v(2)....,
v{x)
laaaaaa(l),aaaaaa(2).v

Saaaaaa(l),aaaaaa(2),v

Saaaaaa(l),aaaaaa(2),v,m

1/0 INSTRUCTIONS

Instruction
ASSIGN,I(1)=r(1),

1(2) =r(2),...,
I(x) = r(x)

IOLIST.I(1),1(2),...,
()

MOS 4-4

Description

Display the contents of the pseudo-overflow
indicator on LO.

Change the contents of the pseudo-overflow
indicator.

Change the contents of memory addresses aaaaaa
and following to- the values v(1) to v(x), where

x = 1 through 16 and v has the same range as
aaaaaa.

Initialize the contents of memory addresses
aaaaaa(l) through aaaaaa(2) to the value v, where
v has the same range as aaaaaa.

Search through memory addresses aaaaaa(l) to
aaaaaa(2) for value v and log all addresses
containing that value on LO.

Search through memory addresses aaaaaa(l) to
aaaaaa(2) for the value v. The contents of each
memory address are ANDed with the mask specified
by m prior to comparison with v and log all
addresses containing that value on LO.

Description

Assign logical units I(1) through I(x) to physical
devices r(1) through r(x), respectively, (1)

through I(x) are decimal numbers. Re-
assignments can be made only to physical devices
whose drivers were loaded with DEBUG.

List current logical unit assignments (section 2).

Read a program in binary record format (see
appendix C) from logical unit assigned to Bl
into memory. When reading is complete, print
the starting address, ending address, execution
address, and program name on the LO.

Caution: Only programs that have been punched by
DEBUG can be read by DEBUG.

Instruction

T

Waaaaaa(l),aaaaaa(2)

Waaaaaa(l), aaaaaa(2)
aaaaaa(3)

Waaaaaa(l),aaaaaa(2),
aaaaaa(3),name

debugging program

Description

Terminate the current printout after the next
octal number. This can be used for discontinuing
search, memory display, or 170 list output.

Write memory in binary record format (see
appendix C) on the physical unit assigned to
BO from addresses aaaaaa(l) through aaaaaa(2).

Write memory in binary record on the physical unit
assigned to BO from addresses aaaaaa(l) through
aaaaaa(2) and set. the execution address to aaaaaa(3).

Write memory in binary record on the physical

unit assigned to BO from addresses aaaaaa(l)

through aaaaaa(2). Set the execution address to
aaaaaa(3) and name the program, where name
represents any legal MOS label.

CONTROL INSTRUCTIONS

Instruction

Gaaaaaa

Taaaaaa(l),aaaaaa(2)

Description

Load the registers from the pseudoregisters and
transfer control to address aaaaaa.

Set a trap to the debugging program in memory
address aaaaaa(l) and transfer control to address
aaaaaa(2). Load the registers from the pseudo-
registers prior to transferring. Upon reaching

the breakpoint (trap), save and type the contents
of the registers on LO.

MOS 4-5

debugging program

EXAMPLES OF DEBUGGING

In the following examples. symbols in bold type indicate user-entered information. Other
symbols represent the output of the debugging program.

Display and Alter Instructions

“A Display the contents of the pseudo-A register.
(077553) Contents of the pseudo-A register.
“=A005572 Change the contents of A to 005572.
B -] Display the contents of the pseudo-B register.
{177750) Contents of the pseudo-B register.
“+B-1 Change the contents of B to minus one (0177777)
(0777777 on 622 computers)
X Display the contents of the pseudo-X register.
(000021) Contents of the pseudo-X register.
“+X12 Change the contents of X to 000012.
w50 Display the contents of the pseudo-overflow
indicator.
(000000) Contents of the pseudo-overflow indicator.
0-1 Set the pseudo-overflow indicator.
26001 Display the contents of memory address 026001.
(170522) Contents of memory address 026001.
#%1002,1045 Display the contents of memory addresses 001002

through 001045.

001000 177776 100001 010101 151501 025252 000000 000101 015432
001010 144456 052345 177777 101010 111101 063063 033333 177777

001040 177776 177776 177775 020205 123456 000000 035353 077756

**(26000,1000,2500 Change the contents of addresses 026000 through

** 77777.375 026003 to 001000. 002500. 077777. and
000375, respectively.

“%11000,1100,125252 Imtiahze addresses 001000 through 001100 to

0125252 (each word from 001000 through

MOS 4-6

005100
005302
005701

#*$6300,10000,136000,
177000

006320
006700
006701

(136111)
(136111)
(136000)

**ASSIGN,12 = MTO1

“+{OLIST

01 Biank

02 CROO

03 TYOO

04 Blank

15 MTO3

*+W17000,17556,17000,
TEST

**W14000,14100,TEST
**W14700,15334

debugging program

001100 contains 0125252).

Search addresses 005000 through 006000 for 0100000
and print -each address where this value is
found.

in this example, 0100000 was found in addresses
005100, 005302, and 005701

Search addresses 006300 through 010000 for the
value 0136 in bits 9 through 15 of each word
and print each such address and its full
contents. The last parameter, 017700,
is used as a mask.

In this example, three locations met the com-
parison criteria.

1/0 Instructions

Assign logical unit 12 to device MTO1 (magnetic
tape unit 01). The unit number is decimal.

List the assignment of logical units to physical
devices.

In this example, LUN 2 is the card reader, LUN 3,
is the Teletype, and LUN 15 is magnetic tape
unit 03.. LUN 1 and LUN 4 were not loaded with
DEBUG.

Write the program named TEST on the BO in
absolute format (TEST resides in addresses
017000 through 017556)and set execution
starting at 017000.

Write the program named TEST on the BO in
absolute format (TEST resides in addresses

MOS 4-7

debugging program

**W15734,16040,14740

=R

017000 017556 017777
TEST

*%*G5013

*%T26000,21000

026000 (001004) 001111
150000 000025 000001

**T15000

015000 (054002) 000001
111000 010101 000000

MOS 4-8

014000 through 014100, 014700 through
015334, and 015734 through 016040).
Set execution starting at 014740.

Read an absolute format program from the Bl into
memory.

When reading is completed, print the starting
address, ending address, execution address,
and program name.

Control Instructions

Transfer the contents of the pseudo-A, -B, and -X
registers and the pseudo-overflow indicator
and execute at address 005013.

Load the physical registers from the pseudoregis-
ters and transfer to address 021000. If and
when breakpoint (trap) address 026000 is
reached, save and type.

The breakpoint (trap) address 026000, its contents
001004, and the contents of the A, B, and X
registers and the overflow indicator.

Load the registers from the pseudoregisters and
continue program execution from the prior
breakpoint (in the above example, execution
would continue from 026000) and use 015000
as the new breakpoint. If address 015000 is
reached, save and type.

The breakpoint (trap) address 015000, its contents
054002, and the contents of the A, B, and X
registers and the overflow indicator.

SECTION 5 - CONCORDANCE PROGRAM

The concordance program is an MOS support program that analyzes the symbols of a
DAS assembler program. The analysis consists of a printout showing where symbols are
defined and referenced. The analysis can be performed on any source program in DAS
assembler languages.

Upon being loaded by /ULOAD,CONC (Section 2), the concordance program inputs
source programs from the system scratch (SS) logical unit (lun =8). Any of the following
terminates the input:

a. END card

b. MOS control directive

¢. End-of-file or end-of-device status received

d. Available memory is full
When any one of these conditions arises, a concordance list is output on the list output
(LO) logical unit. If the list was output for one of the first three reasons, the concordance
program exits to the resident monitor. If the list was output because no more memory
space is available, the concordance program clears the concordance table and continues

with another concordance. This continues until one of the other terminating conditions is
met.

The concordance program does not position SS except when it is MT0O. in this case, one
file is skipped and the concordance starts with the second file.

Figure 5-1 is a concordance listing output. A title line at the top of each page consists of

the page number, program name (blank if none) and the date (blank if not input with
/DATE). Following the title line is the concordance.

MOS 5-1

concordance program

144

18¢
t6n
173
163

1£
16R

15¢
172
182
108
81
63
sQ

MOS 6-2

1

SRIT
$JICwW
SLAX
SLBF
SFOC
SYXEN
ASRF
HASF
BLk

BUF A
CHAR
D106
DRO

nDMP

NHPG
nPR

nscw
DsDC
DSDE
DSoL
DSFB
DWHK
OWlIT
Jvp

LPY

NNGMP
[N

0200
PAGE

RSCR2
SFMS

TEMP
iy
VvV
Wi
(33"
Yyy
271

RSCH2LPC 1y/06/70
52 Re 129
17 1P

18R 180Q

157 15R 159
11¢ 117

19?2

43 46 68
15

40 143

39 49 72
87

17¢

44

13 14

112

146

142

109

118

26 13A 138
73 99

134

111 13 144
124

47 161

12 21

26

25 165 16A
194

79 R?2 8R
182 183

3€ 7R 107
1672

171

Ao

4%

$8

53

73

74

14R

155

17K

115

12%

96

1014

1769
102

1560

127 138 137

1858
164 189 170 175

153

Figura 5-1. Sample Concordance Listing

177

concordance program

Beginning with the first character position, the format for a concordance line is:

a. Four positions to display the decimal line number where the symbol is defined.
The line number is right-justified and left-blank-filled.

b. Two blanks.

c. Six positions to display the symbol, in sort sequence, left-justified and right-
blank-filled.

d. Up to ten reference line numbers. Each reference line number is in sort
sequence, preceded by two blanks and four character positions to display the
decimal line number, right-justified and left-blank-filled.

The maximum line is 72 characters. Continuation lines contain only the reference line
numbers. '

Status and error messages are given in Section 13.

MOS 5-3

SECTION 6 - FILE EDITING PROGRAM

The file editing program is a support program operating under MOS that is a simple and
powerful tool for editing files generated under MOS (e.g., source programs, text, etc.).

PROGRAM AND DIRECTIVES

The user supplies the file editing program with control directives and files, and the
program produces new and/or modified files and an audit trail of all transactions.

Status and error messages are given in Section 13.

The file editing program accepts single-reel files and multifile reels of input. It processes
input in control directive and source file format, and outputs source file format and a
printed audit listing.

Control directives are input through the Si.

On being loaded by /ULOAD,EDITOR,RP = 0500,RI = 0377 (Section 2), the file editing
program types

BEGIN EDITOR

on the LO and inputs control directives to obtain its instructions from the user. The
following conventions are used in describing and coding file editing directives:

a. General form:

n,p(1),p(2),....p(x)

where n is the directive name, and p(1),p(2),...,p(x) is a parameter string with
individual parameters separated by commas.

b. Directives begin in the first character position of the record and can consist of
up to 72 characters.

c. All fields are interpreted as fixed-format data and must be the exact size as
indicated below.

d. Parameters shown in upper-case letters appear on the control records exactly as
shown.

MOS 6-1

concordance program

e. Parameters in italics are optional.

f. Parameters in lower-case letters are to be replaced by user-defined character
strings according to the following:

filename Name of file: any eight characters
author Author of file: any 12 characters
aaa Alphabetic portion of sequence number: any

three alphabetic characters

nnnnhn Numeric portion of sequence number: any
five numeric digits ending in zero

location Either the internal sequence number (in the
form aaannnnn) or the external line number
(in the form nnnnn) identifying a record

nnn Number of records: any three numeric digits

| The letter | at the end of a parameter string

indicates that location is an internal sequence
number.

DIRECTIVES

LIST,xxx

LIST specifies list output during editing. If omitted, no list output is provided. Its
presence, with or without a parameter, causes a file audit and outputs catalog to be
printed (figure 6-1). The parameter xxx, if used, is:

a. CHG - list changes only

b. ALL - list complete file(s)

LIST can be repeated for different options on different files. It immediately precedes a
FILE, COPY, or EDIT.

When an audit listing is output, it is produced on the LO. Three levels of reporting are

provided. All include a heading identifying the report as an output and giving the run
date (Figure 6-2).

MOS 6-2

concordance program

FILE EDIT RUN OQUTPUT CATALOG 10/14/70 PAGEQ003
FILE NAME # OF RECORDS CHANGED
NUM!1 0008 0287
NUM2 0013 0287

ok

Figure 6-1. Output Catalog Format

MOS 6-3

file editing program

FILE EDIT RUN FILE AUDIT 10/14/70 PAGE0002
FILENAME IS NUM2 AUTHOR IS JONES CREATION DATE 1S 10/14/70
CONTROL RECORD OR DATA RECORD IMAGE LINEf DATE CODE
C WBIN BO, 10,D VDMO00000 00001 0287 ADD
STAT BO, ERR, EOF,BEOD, *-6 VDMO00010 00002 0287 ADD
EXT E VDM00020 00003 0287 ADD
JMP E VDMO00030 00004 0287 ADD
D BSS 10 VDMO00040 00005 0287 ADD
BO EQU 7 VDMO00050 00006 0287 ADD
ERR INCR 01 VDMO0O0060 00007 0287 ADD
EOF INCR 02 VDMO00070 00008 0287 ADD
BEOD INCR 04 VDMO00080 00009 0287 ADD
EXT F VDMO000%0 00010 0287 ADD
JMP F VDMO00100 00011 0287 ADD
END C VDMOO110 00012 0287 ADD
/ENDJOB VDMO00120 00013 0287 ADD
NOTES

1. CONTROL RECORDS ARE PRECEDED AND
FOLLOWED BY TWO BLANK LINES.

2. GROUPS OF ADDITIONS OR DELETIONS
ARE PRECEDED AND FOLLOWED BY ONE
BLANK LINE.

3. EACH NEW FILE BEGINS ON A NEW PAGE.

4. LITING OUTPUT SETUP USING TELETYPE
AS LO.

Figure 6-2. Audit Listing Format

MOS 6-4

file editing program

The output catalog report is a summary of the contents of the source library showing the
file names and the number of records each contains. The date of the latest change to
each file (excluding resequencing only) is shown.

The file audit report is available in two levels for each file on the source library. Al
records in the file can be shown, or the report can be limited to those records having
changes. Each record listed is accompanied by a program-generated line number and an
action code (ADD) if the record has been added. All control records are also listed, and
have four asterisks in the action code field.

FILE filename,author,SEQ,aaannnnn

FILE creates a file from the data records following it. The file is formatted as a standard
MOS source file (section 3). The optional SEQ parameter assigns internal sequence
numbers in positions 73 through 80 of each record, beginning with the value specified in
aaannnnn and incrementing by ten for each record.

FILE is followed immediately by the data records comprising the file.

An end of file following the data records indicates the end of the data to be processed
with FILE. This can be a 2-7-8-9 punch on cards; a BELL character on the Teletype; or an
EOF mark on paper tape, magnetic tape, drum, or disc.

COPY filename,filename,SEQ,aaannnnn

COPY copies a file or files from the input device to the output device. If a second filename
is specified, all files from the one specified in the first filename through that of the second
filename are copied. If SEQ and aaannnnn are present, they apply only to the first file
being copied and cause the program to assign internal sequence numbers in positions 73
through 80 of each record being copied. Sequence numbers start with aaannnnn and
increment by ten for each record.

EDIT,filename,SEQ,aaannnnn

EDIT copies a file from the input device to the output device with the modifications
specified by the ADD, DEL, and RPL that immediately follow EDIT. If SEQ and aaannnnn
are present, they apply only to the first file being copied and cause the program to assign
internal sequence number in positions 73 through 80 of each record being copied.
Sequence numbers start with aaannnnn and increment by ten for each record.

ADD,nnn,location,/
ADD adds the following nnn data records to the file being processed immediately after
the record specified by location. If location represents an internal sequence number

rather than the line number of the previous audit list, add 1.

This control record is valid only after an EDIT and before an ENDCOR.

MOS 6-5

Fite editing program

DEL,location,/ocation,!

DEL deletes a record or records from the file being processed. If a second location is
present, all records from the one specified in the first location through that of the second
are deleted. If location represents an internal sequence number rather than the line
number of the previous audit list, add |.

This control record is valid only after an EDIT and before an ENDCOR.

RPL,nnn,location,location,!

RPL deletes a record or records from the file being processed and replaces them with the
following nnn data records. If a second location is present, all records from the one
specified in the first through that of the second are deleted and replaced with the
following nnn data records. If location represents an internal sequence number rather
than the line number of the previous audit list, add |.

This control record is valid only after an EDIT and before an ENDCOR.

ENDCOR

ENDCOR indicates the end of modifications to the file in process. It copies the remainder
of the file to be copied to the output device without modification.

SOURCE FILE

When a source file is to be copied or edited, it is input through the Pl. The new or
modified file is output by the PO.

A file in a source-language library consists of a header record, an EOF, the data records
comprising the file, another EOF, and a catalog of all preceding files including the current
one.

If a file follows another file, its header record immediately follows the catalog at the end
of the preceding file. The last file on the source library is followed by two EOF records.
Figure 6-3 shows the structure of a typical MOS source file. .

HEADER RECORD

The header record is the first record of each file. It is generated with the file by FILE and
is used as the identifier for the file. It is 14 words (28 characters) long in the following
format:

FILENAME AUTHOR DATE

MOS 6-6

file editing program

where the filename and author are taken from FILE parameters and date is the creation
date as input on the /DATE card to the executive (Section 2).

DATA RECORD

A data record is a fixed-length record of 46 words in the foliowing format:

CHARACTER DATA BLANK yddd

where yddd is the date (units position of year followed by the day) of the last change to
the record (excluding resequencing).

CATALOG RECORD
The catalog record is a fixed-length record of eight words per entry, and up to 20 entries.
Each catalog record contains an entry for each preceding file. Catalog records have the
following format:

FILENAME

COUNT File 1

yddd

FILENAME

COUNT File 2

' yddd

File n
where the filename is taken from FILE, count is a two-word binary integer representing

the number of records in the file, and yddd is the date (units position of the year followed
by the day) of the last change to the record (excluding resequencing).

MOS 6-7

file editing program

HR HEADER RECORD FOR FILE 1
E EOF
DR
DATA RECORDS FOR FILE 1
DR
E EOF
CR CATALOG RECORD (FILE 1)
HR HEADER RECORD FOR FILE 2
E EQOF
DR
'——. — DATA RECORDS FOR FILE 2
|
E EOF
CR CATALOG RECORD (FILE 1 AND 2)
r=t=q
1 | ADDITIONAL FILES
L‘T""
E EOF
E EOF

Figure 6-3. MOS Source File Structure

MOS 6-8

SECTION 7 - SYSTEM MAINTENANCE PROGRAM

The system maintenance program (SMP) is an MOS support program for use in updating
an MOS installation system library (ISL) prior to the use of the ISL in system preparation.
As input, the user supplies the SMP with control directives and an ISL. The program
outputs a new library and optional directive listings of both old and new libraries.

Status and error messages are given in Section 13.

The SMP is loaded with /SMAIN (Section 2), which also specifies the logical input and
output units. On loading, the program types the message:

BEGIN SYSTEM MAINTENANCE

on the Teletype (and LO, if different). All control directives are then input through Si
before processing of the ISL is begun.

SMP directives have the following specifications:
a. General form:
name,p(1),p(2),...,p(n)

where name is the directive name and p(1),p(2),...p(n) is a parameter string
with individual parameters separated by commas.

b. Directives have up to 72 characters and begin in the first character position of
the record (card).

c. Embedded blanks are allowed within a field.

d. Fields smaller than the maximum are left-justified and blank-filled.

DIRECTIVES

ADD,name(1),name(2),...,name(n)

MOS 7-1

I
system maintenance pyogram

ADD adds a program or group of programs to the new ISL. The programs contained on
the Bl logical unit are added selectively to the new ISL after each program specified by
ADD. Each name is the name of a program in the old ISL.

In processing ADD, the SMP copies from the old ISL to the new ISL until it has copied the
program specified by a name in ADD. Then the SMP types the message:

ADD name

on the Teletype (and LO, if different). The program then waits for one of the following
control directives from the Teletype:

Y Add the program contained on the BI, copy it into the
new ISL, and return for another control directive.

N The additions are complete. Resume copying to the next
name. N also types the message:

END ADDITIONS
DELETE,name(1),name(2),....,name(n)

DELETE deletes the specified program or programs from the old ISL when the new ISL is
produced. Each name is the name of a program in the old ISL.

In processing DELETE, the SMP copies from the old ISL to the new ISL all programs
except those named in DELETE.

REPLACE name(1),name(2),....name(n)
REPLACE replaces a program or programs from the old ISL. The program(s) specified in
REPLACE are deleted and selectively replaced by the new program(s) contained on the BI.
Each name is the name of a program in the old ISL.
In processing REPLACE, the SMP copies from the old ISL to the new ISL until it has
copied the program preceding the program specified by a name in REPLACE. The SMP
skips the specified program(s) on the old ISL and types the message:

REPLACE name

on the Teletype (and LO, if different). The program then waits for one of the following
control directives from the Teletype:

Y Add the program contained on the Bl, copy it into the
new ISL, and return for another control directive.

MOS 7-2

N The replacements are complete. Resume copying to the
next name. N also types the message:

END REPLACEMENTS
END,p
END initiates the ISL copying process. All necessary ADD, DELETE, and REPLACE
directives are input before END. END rewinds the old and new ISL media, starts the

copying process, and continues until it reaches the end of the old ISL.

END control directive parameter p is either:

L List the old ISL on the LO
blank Omit the listing (in this case, no comma follows END)
LIST

L or LIST lists on LO the ISL on the P! {Figure 7-1). A single letter (A or R), to the left of a
program name under the ID header, identifies the program as an absolute or relocatable
module.

DATE, xXXXXXXX

DATE sets up to eight alphanumeric characters (e.g., a date) in the page title of the list
output. If DATE is not used, the date is used from the last/DATE input to the executive
(section 2).

MOS 7-3

system maintenance program

PAGE 1 01/19/71

BEGIN SYSTEM MAINTENANCF

END, L
PAGE 2 01/19/7)
n DATE S1ZFE ENTRY NAMFS FXTERNAL NAMES
A PREPY 01/714/71 17435

A PREP2 01/12/71 25377
ABS,RSCRIDK,05/12/70,=1,01000,010
R RSCALRMC 01/12/71 00721 CYLNO4 CYLNNY
CYLNOD $XEN
SUCB4 sUCBY
sUCBO STTL
SROC $RFW
SPED $RCW
AMPR SLCR
SLBF SLAX
SLAB s JCw
SFRM SECW
$DAT SAUF

ENDARS
ARS8 ,RSCBIMT,01/11/70,=1,01070,010
R RSCBIMTC 00RE? CYLNQO4 CYLNNY
cYLnoo SXED
tuycnsa SHCRY
SUCBN $TTL
SROC SREW
SPED SPCYW
SMPR $.CH
$LAF SLAX
SLAB $JCwW
$FRM SECW
SDAT SBUF
ENDARS
ARS,RSCR2TY,01/11/70,=1,01000,010
R RSCR2TY 03/19/70 NNLEA SXER SRNC SLAX SJCw SFRM
ENDABS
ABS,RSCR2LP,01/11/70,-1,010M0,010
R RSCR2LPB 1N0/29/70 00215 SXEQ SROC SLBF SLAX SJCW
ENDABS '
ARS8 ,R8CRI,01/714/70,=1,01000,010
R RSCBY 00435 IoCcs EXIT $XEQ SREW $PUR sLuB

EEXIY $RST tLAX tJCw $ECW SRyF
SPUN $PGM

M08 SLUN

sLIT $I10W

Figure 7-1. System Maintenance List Output

MOS 7-4

SECTION 8 - SYSTEM PREPARATION PROGRAM

The system preparation program (SPP) is a stand-alone support program of MOS. It
creates a system file on a magnetic tape or rotating memory unit, tailored to the hardware
and software requirements of the installation.

System preparation is controlled by SPP control directives. These directives include a
description of the devices to be used for the system preparation, the devices to be
included in the generated MOS system file, the system preparation functions to be
executed, and the parameters for the system preparation functions.

Status and error messages are given in Section 13.

MOS 8-1

system preparation program

CONTROL DIRECTIVES

Control directives can be presented to the SPP from the S| in any order, except that the
END directive must always be last. END signals the end of the SPP control directives and
causes the program to begin generating the MOS system file on the PO.
SPP directives have the following specifications:

a. General form:

name,p(1),p(2),...,p(n}

where name is the directive name and p(1),p(2),....p(n) is a parameter string
separated by commas.

b. Directives have up to 72 characters and begin in the first character position of
the record (card).

c. Blank records are ignored.
d. Embedded blanks are allowed within a field.

e. Numeric fields can be signed or unsigned octal or decimal integers. Octal
numbers begin with a zero and decimal numbers do not.

f. Fields smaller than the maximum are left-justified and blank-filled.

DIRECTIVES:
ADD,name(1),name(2),...,.name(n)

ADD adds a program or group of programs to the system file. The programs contained on
the Bl are added selectively to the system file after each program specified by ADD. Each
name is the name of a program in the installation system library (ISL).

In processing ADD, the SPP copies from the ISL to the system file until it has copied the
program specified by a name in ADD. Then, the SPP types the message:

ADD name

on the Teletype (and LO, if different). The program then waits for one of the following
control directives from the Teletype:

MOS 8-2

system maintenance program

Y Add the program contained on the BI, copy it to the
system file, and return for another directive.

N The additions are complete. Resume copying to the next
name. N also types the message:

END ADDITIONS

Note: The ADD control directive
cannot be used to add a new program
within an ABS-ENDABS program module.

DELETE,name(1),name(2),....name(n)

DELETE deletes the specified program or programs from the ISL when the system file is
produced. Each name is the name of a program in the ISL.

In processing DELETE, the SPP copies from the ISL to the system file all programs except
those named in DELETE.
REPLACﬁ,name(1),name(2),...,name(n)

REPLACE replaces the specified program or programs from the ISL with new programs
contained on the Bl. Each name is the name of a program in the ISL.

In processing REPLACE, the SPP copies from the ISL to the system file until it has copied

the program preceding the program specified by name in REPLACE. The SPP skips the
specified program on the ISL and types the message:

REPLACE name

on the Teletype (and LO, if different). The program then waits for one of the following
control directives from the Teletype:

Y Add the program contained on the Bl, copy it to
the system file, and return for another directive.

N The replacements are complete. Resume copying to
the next name. N also types the message:

END REPLACEMENTS

MOS 8-3

system preparation program

END,p(1),p(2)

END indicates to the SPP that there are no more system preparation control directives to
process. Its parameters are:

L List the ISL on the LO.

N Do not list the I1SL nor verify and list the new system
file.

v Verify the new system file.

blank Do not list the ISL, but verify and list the new

system file (in this case, no comma follows END).
DATE, xxxxxxxx

DATE sets up to eight alphanumeric characters (e.g., a date) in the page title of the list
output. If DATE is not used, no date is printed.

COMP ,p(1),p(2),p(3),9(4),p(5),p(6),p(7)

COMP defines the MOS computer system configuration as follows:

p(1) Specifies the computer. If it is a 620/a or 622/a, p(1)
is A. For all other Varian computers, P(1) is | or unspecified.

p(2) Specifies the highest available memory address to be used
for system preparation and the MOS system being prepared.
On a system with 12K or larger memory, 025777 is assumed
if the value is unspecified or less than 025777. On a sys-
tem with 8K of memory, 017777 is assumed if the value is
unspecified or less than 017777.

p(3) Specifies the number (0, 1, 2, 3, or 4) of buffer inter-
lace controllers (BICs) available in the system. If
the value is unspecified or larger than four, zero is
assumed. The SPP uses this parameter to supply the
proper set of BIC library subroutines. If no BIC is
available, dummy BIC library subroutines are entered
in the system file. Otherwise, the program enters the
actual BIC library subroutines.

MOS 8-4

p(4)

p(5)

p(6)

p(7)

system preparation program

Specifies the relocation bias set by the executive for
the first program to be loaded by the loader if not
specified in /LOAD (Section 2). A value of P(4)-1 is
specified or less than the value of p(5), 04000 is
assumed.

Specifies the base address set by the executive to be
used by the loader for the direct literal pool if not
specified in /LOAD (Section 2). Ifthe value is'Th- & VA\M{ 3?'. ol

~assumed..if.p(5). is-either not: specified;-larger than Less 'E&.M P(‘“l)

,Oslmox.vsmallerut'han- P6).1s AfSumseeh T
wet ;qﬁax‘;‘% r; I,g;; s an
Specifies the base address set by the executive to0 be
used by the loader for the indirect address pool if not
specified in /LOAD (Section 2). A value'of 010 is
assumed if p(6) is either not specified, smaller than
010, larger than 0777, or larger than p(5).

£

Specifies the number of logical units in MOS. If it is un-
specified or less than 14, a value of 14 is assumed. MOS handles
up to 64 logical units.

Commas must be present for unspecified parameters unless all parameters are
unspecified. Thus, to define p(2) and p(7) only, input

comp, ,027777,,,,,25

and to set all parameters to their default values, input

COMP

I0DEV,p(1),p(2),p(3)

|ODEV adds or modifies entries in the MOS logical and physical unit tables as follows:

p(1)

 P(2)

Specifies a four-character alphanumeric 1/0 device name.
If /ASSIGN (Section 2) references this name, the SPP
modifies the logical unit table to point to the physical
unit.

Specifies the second and third characters of the three-
character subroutine entry name of the 1/0 driver. The
SPP stores these characters as the second two characters
of the 1/0 driver in the physical unit table (the first
character is always the dollar sign).

MOS 8-5

system preparation program

P@3)

Specifies the relative position the [/0 driver occupies
in the physical unit table. The SPP enters the name of
the 170 driver in the physical unit table in the order
specified by p(3). If p(3) is omitted, the 1/0 driver

is added to the physical unit table at the bottom.

Commas must be present for unspecified parameters unless all parameters are
unspecified. Thus, to define p(1) and p(2) only, input

IODEV ,MTU3,VW,

EQUIP,p(1),p(2),p(3),-.-,p(n)

EQUIP specifies the 170 devices to be included in the preparation of the system file. The
SPP uses the parameters to construct the MOS logical and physical unit tables, and to
select the proper drivers from the I1SL when building the system file.

EQUIP parameters p(1) through p(n) are:

TYcu
TRcu
TPcu
CRcu
CPcu
LPcu
PTcu
PTcu(R)
PTcu(P)

MTcu(x)

MTcu

DRcu(x,y)

DKcu(x,y)

MOS 8-6

Teletype keyboard/page printer

Teletype paper tape reader

Teletype paper tape punch

Card reader

Card punch

Line printer

High-speed paper tape reader and punch
High-speed paper tape reader only
High-speed paper tape punch only

Magnetic tape unit to be connected to
BIC number x

Magnetic tape unit

Drum memory unit to be connected to
BIC number x; with y sectors allocated

Disc memory unit to be connected to
BIC number x; with y sectors allocated

system preparation program

where
cu specifies controller and unit number; if omitted,
assume 00
PR are entered as key words (symbols)
X, Y are numeric variables

Drum Partioning. Because of the low access time of the drum memory unit, MOS can
partition the drum into from one to ten virtual units. Each virtual unit can function as a
separate logical unit (except that the drum can perform only one operation at a time).
Beginning- and end-of-device sector addresses and a current address pointer for each
unit are kept by MOS in the resident constant area. End-of-file marks are recorded on the
first ten sectors of the drum.

The ten possible drum units are designated DROO through DR09. EQUIP partitions the
drum into the desired number of virtual units. A particular virtual unit is incorporated
into the system if it is designated in an EQUIP parameter of the form DRcu (x,y). Since x

specifies the BIC, all drum units have the same x value. The number of sectors allocated

to that virtual unit is given by y. If DROO is designated as logical unit SF, y is the number
of sectors assigned to DROO in addition to those used by MOS. The value of x and y can

be octal or decimal, but, if the former, it has a leading zero.

a. |f DROO is specified, it occupies sectors 012 to 012 +y if it is not the SF. If DR0OO
is SF, it occupies sectors 012 to 012 +y + k, where k is the number of sectors in
the system file.

b. Other specified virtual units begin at the end of the previous unit and occupy the
next y sectors or the rest of the drum, whichever is smaller.

Since the size of the system file differs for each configuration, the number of sectors it
occupies on DROO is not known at the beginning of system preparation. The SPP,
therefore, lists the sector allocation for each virtual unit on LO at the end of system
preparation in the form:

DRUM ALLOCATION

DROO 000012 XXXXXX
DRO1 YYYYYY XXXXXX
DRO9 YYYYYY XXXXXX
where
XXXXXX is the last sector address
yyyyyy is the first sector address

MOS 8-7

system preparation program

All addresses are octal. Typical system files occupy about 05500 sectors.

If DROO contains the MOS system file, the drum should be partitioned into at least two
virtual units. The second unit is for intermediate storage of the source statements during
assemblies and for other utility tasks. DR0OO cannot contain both the MOS system file and
assembly source statements.

Disc Partitioning. A disc MOS system can have one or two disc units. MOS can partition
each disc unit into from one to ten virtual units. Each virtual unit can function as a
separate logical unit (with the obvious exception that two virtual units on the same
physical unit cannot function simultaneously). Beginning- and end-of-device sector
addresses and a current address pointer for each virtual unit are maintained by the
system in the resident monitor.

The designations of the 30 possible virtual units, and the physical unit and controller
corresponding to each, are shcwn below. EQUIP partitions the disc into the desired
number of virtual units.

Controller Disc Unit Virtual Unit
0 0 DKO00-DK09
0 1 DK10-DK19
1 0 DK40-DK49

A particular disc unit is incorporated into MOS if (and only if) one or more corresponding
virtual unit designations appear in an EQUIP parameter of the form:

DKcu(x,y)

Since x specifies the BIC, DKOO through DK19 have the same n value. Similarly, DK40
through DK49 have the same n value.

The number of sectors to be allocated to that virtual unit is given by y. The value of y can
be octal or decimal, but, if the former, it has a leading zero.

a. If DKOO is specified, it begins in sector O of the corresponding disc unit and
occupies the next y sectors.

b. Each additional virtual unit specified for the same disc unit begins at the end of
the previous virtual unit and occupies the number of sectors specified.

c. |f the total number of sectors specified for all the virtual units is less than the
total number on the disc, the last virtual unit is expanded to fill the rest of the
disc. If the total number of sectors exceeds the total number on the disc, the
first virtual unit to exceed the disc size is truncated to the capacity of the disc
and all additional virtual units are zero sectors long.

MOS 8-8

system preparation program

d. If DKOO is SF, it begins in sector 0 and occupies the next y + k sectors, where k
is the number of sectors required by the MOS system file.

Since the size of the system file differs for each configuration, the number of sectors it
occupies on DKOO is unknown at the beginning of system preparation. The SPP,
therefore, lists the sector allocation for each virtual unit on LO at the end of system

preparation in the form:

DISC 0 ALLOCATION

DKO0O 000000 XXXXXX
DKO 1 YYYYYY XXXXXX
DKO9 YYYYYY XXXXXX
DISC 1 ALLOCATION
DK10 000000 XXXXXX
DK11 YYYYYY XXXXXX
DK 19 YYYYYY XXXXXX
where
XXXXXX is the last sector address
yYyyyy is the first sector address

All address are octal. Typical system files occupy about 03500 sectors.

I1f DKOO contains the MOS system file, the first disc unit is partitioned into at least two
virtual units. The second unit is for intermediate storage of the source statements during
assemblies, and for other utility tasks. DKOO cannot contain both the MOS system file

and assembly source statements.

ASSIGN,I(1) = r(1),[(2) = (2),..Kn) = r(n)

Assign equates and assigns particular logical units to specific physical 170 devices.
Execution of this directive decodes the parameter string and alters the logical unit table as

specified by the parameter.

The parameters can be logical unit numbers, logical unit names, or physical unit names
(Figure 3-1). In each parameter pair (i.e., each I{n) = r(n)}, the left parameter, I{n), is a

MOS 8-9

system preparation program

logical unit number or name, and the right parameter, r(n), is a logical unit number or
name or a physical device name.

In any case, the logical unit to the left of the equal sign is assigned to the unit/device to
the right.

“If r is a physical device, the | entry in the logical unit table is altered so that it points to
the physical device driver specified by r. Thereafter, all I/0 operations referencing | are
directed to the physical device specified by r.

If r is a logical unit number or name, | is made equivalent to r and is assigned to the same
physical device as r. However, if r is reassigned later to a new physical device, | no longer
has an equivalent assignment.

The SPP makes default assignments for logical units not assigned to physical units. These
assignments are a function of the physical devices included in the system. The SPP
nominally assigns each logical unit the number of the highest peripheral device listed in
table 8-1.

SF is always assigned to the same peripheral device that was used as PO in system
preparation. SS is always assigned to the same logical unit.as PO.

The first scratch unit is assigned to the first available device, the second scratch unit to
the next available device, etc. If the end of the table is encountered, the table is
rescanned from the top rather than assigning the logical unit to DUM. If no device is
available, scratch units are assigned to DUM.

ABS,p(1),p(2),p(3),p(4),p(5)

ABS generates an absolute module on the system file. The input is an object module
generated by assembly or compilation, preceded by the ABS. When the SPP encounters
the ABS, the first object module that follows is converted into an absolute module and
put on the MOS system file. Any following subprograms are only converted into the
absolute module if referenced by the first (or a previous) program. No program or
subprogram can contain an instruction reference to an externally defined literal.

The ABS parameters are:

p(1) An eight-character ASCII program identification name.
The SPP stores this name in the identification block
of the beginning absolute loader text record. If p(l)
is omitted, the program generates a unique program
identification name of the form XXnnnn for the program
(where nnnn is a decimal number beginning at 0001 for
the first program).

p(2) An eight-character creation date. The SPP stores p(2)

in the date block of the beginning absolute loader
text record.

MOS 8-10

system preparation program

Table 8-1. Valid SPP Logical Unit Assignments

SI SO Pl LO Bl BO GO PO S1,52,S3,54
TYOO TYOO CROO LPOO CROO CPOO MT02 MTO1 MTOL
TY10 TY10 CR10 LP10 CR10 CP10 DRO2 DRO1 DRO1
CROO DUM PTOO TYOO PTOO PTOO MTO3 MTO02 MTO2

CR10 PT10 TY10 PT10 PT10 DR0O3 DR0O2 DRO2
DUM TROO DUM TROO TPOO MT10 MTO3 MTO3
TR10 TR10 TP10 DRO4 DRO3 DRO3
DUM DUM DUM MT11 MTI10 MTIO

DR05 DR0O4 DRO4
MT12 MT11 MT11
DR06 DRO5 DRO05
MT13 MT12 MTI12
DR07 DR0O6 DRO6
MT20 MT13 MT13
DRO8 DRO7 DRO7
MT21 MT20 MT20
DR09 DR0O8 DRO08
MT22 MT21 MT21
MT23 DR0O9 DRO0O9
MT30 MT22 MT22
MT31 MT23 MT23
MT32 MT30 MT30
MT33 MT31 MT31
DUM MT32 MT32

MT33 MT33

MTO00

DUM

Figure 8-1. Valid SPP. Logical Unit Assignments

MOS 8-11

system preparation program

p(3) A program relocation bias. The SPP uses this value to
define the start of the first of the generated programs.
If p(3) is omitted, the SPP uses the value of p(4) in
COMP. If the p(3) is a -1, the SPP uses the current
value of p(2) in COMP minus the size of this program as
the relocation bias.

p(4) The base address of the direct literal pool. If the
p(4) parameter is omitted, larger than 03777, larger
than p(3), or smaller than p(5), the SPP uses the value
of p(5) in COMP.

p(5) Specifies the base address of the indirect address
pointers. |f p(5) is omitted, smaller than 010, larger
than 0777, or larger than p(4), SPP uses the value
specified by COMP.

ENDABS

ENDABS terminates ABS processing. It follows the object modules input with the ABS.

MQOS 8-12

system preparation program

INSTALLATION SYSTEM LIBRARY ORGANIZATION

The installation system library (ISL) is the primary input to the SPP. The order of the
sections in the ISL and the programs within the sections must be maintained for proper
MOS system file preparation and operation. The ISL sections are:

a. System preparation

b. System processor

c. System library

Comment records are alphameric records with a blank in the first character position.
They are between, but not within, programs.

SYSTEM PREPARATION SECTION

This section contains:
a. Loader for the system preparation program
b. System preparation program part 1

c. System preparatioh program part 2

SYSTEM PROCESSOR SECTION

This section contains:
a. Resident system configuration block part 1 (resident monitor)
b. Resident system configuration block part 2 (dump)
. Resident system configuration block part 3 (1/0 control)

d. Resident system configuration block part 4 (executive)

e. Loader
f. Loader system file I/0 drivers

g. Loader map subroutine

MOS 8-13

system preparation program

h. Loader list output 170 drivers

i. Loader binary input 1/0 drivers
j- DAS MR assembler

k. FORTRAN IV compiler

. Debugging program

m. Concordance program

n. System maintenance program
o. File editing program

p. Input/output drivers

SYSTEM LIBRARY SECTION

This section comprises the FORTRAN IV run-time library and programs that perform
utility functions. Utility or often-used object programs can be added and executed with
/ULOAD (section 2}. The final programs in this section are the 1/O drivers. All user

programs precede the /0 drivers.

MOS 8-14

system preparation program

OPERATING PROCEDURES |

To prepare a MOS system:

Load the system preparation program (SPP) by entering the proper bootstrap
program into the computer memory.

Assign the peripheral devices for use by the SPP.

Supply the control directives to define a MOS system file.

LOADING

Depending on the peripheral device used to read the SPP, one of the following
initialization procedures applies:

a.

Card reader

1
@
(3)
()

Turn on the card reader.

Place two blank cards after the last control-directive card of the ISL deck.
Place the ISL deck in the card hopper.

Press clear and start.

33/35 ASR Teletype

1
@

3)
)

Turn on the Teletype

Place Teletype in off-line mode and simultaneously press the CONTROL
and D, then CONTROL and T, and finally the CONTROL and Q keys.
Position the system preparation loader program paper tape in the reader
with the first binary frame at the reading station. Close the reading gate.
Set the reader control level to STOP, and the Teletype on-line.

High-speed paper tape reader

(1
@

3)

Turn on the paper tape reader.

Position the system preparation loader program paper tape in the reader
with the first binary frame at the reading station. Close the reading gate.
Set the LOAD/RUN switch to RUN.

Magnetic tape unit

)
(2)
3
4)

Turn on the magnetic tape unit.

Mount the ISL magnetic tape.
Position the magnetic tape to the load point.
Ready the magnetic tape unit so it can be used by the computer.

MOS 8-15

system preparation program

Enter the appropriate bootstrap lcading routine (tables 8-2 and 8-3). Depending on the
Varian computer used, one of the following procedures apply:

a. V73 Computer

‘1. Load the starting memory address of the bootstrap loader (007756) into the P
register.

2. Press MEM switch momerttarily.

3. Clear the console display (Press DISPL CLR).

4. Select the first bootstrap loader instruction and load it into the control-panel
display register. .

5. Press ENTER to load the display-register contents into the address specified by the
P register, which is incremented by one after the instruction is loaded.

6. Clear the display register (Press DISPL CLR).

7. Repeat steps 3, 4, 5, and 6 for each bootstrap loader instruction.

b. 620/fand 620/f-100 Computers
1. In step mode, load a store A register relative to P instruction (054000) into the
instruction register.
2. Set the REPEAT switch.
3. Load the starting memory address of the bootstrap loader into the P register.
4. Select the first bootstrap loader instruction and load it into the A register.
5. Press STEP or START to load the A register contents into the address specified by
the P register, which is incremented by one after the instruction is loaded.
6. Clear the Aregister.
7. Repeat steps 4, 5, and 6 for each bootstrap loader instruction.

c. 620/Land 620/L-100 Computers
1. In step mode load a store A register relative to P instruction (054000) into the
instruction register.
2. Press the REPEAT switch.
3. Load the starting memory address of the bootstrap loader into the P register.
4. Select the first bootstrap loader instruction and load it into the A register.
5. Press STEP to load the A register contents into the address specified by the P
register, which is incremented by one after the instruction is loaded.
6. Clear the A register by pressing BIT RESET.
7. Repeat steps 4, 5, and 6 for each bootstrap loader instruction.

initiate the bootstrap from the peripheral device as follows:

a. To initiate loading from the card reader, high-speed paper tape reader, or magnetic
device, reset the A, B, X, P, and instruction registers; then, press SYSTEM RESET
and RUN (for V73 and 620/f press RESET, position STEP/RUN to RUN, and press
START).

The system preparation loader and ISL are separate paper tapes. The ISL must
be mounted when the computer goes to STEP after reading the loader.

MOS 8-16

system preparation program

b. To initiate loading from the Teletype, follow step a; then, set the reader control
level to RUN. (Start position on ASR 33.)
NOTE
If an error occurs while loading the system preparation modules, the computer
goes to the STEP mode with the instruction register = 0777 and A = B = X
= —1. Recovery is made by repositioning the last record read at the read
station and press RUN (START for V73 and 620/f). For magnetic tape, the
repositioning is automatic.

ASSIGNMENT

At the end of a successful loading, the Teletype makes five requests for peripheral device
assignments to be used by the SPP. The form of these requests is:

Table 8-2. 620 Bootstrap Loading Routines (16-Bit Computer)

Magnetic Magnetic Magnetic High-Speed
Tape Tape Tape 33/35 Paper
Controller 0 Controller 0 Controller 1 ASR Tape Card
Address Unit 0 Unit 1 Unit 0 Teletype Reader Reader
00000 104110 104210 104111 102601 100537 100230
00001 101210 101210 101211 030011 030011 101130
00002 000005 000005 000005 005101 005101 000007
00003 001000 001000 001000 101201 101537 101630
00004 000001 000001 000001 000007 000007 0xx400
00005 030020 030020 030020 001000 001000 001000
00006 100010 100010 100011 000003 000003 000001
00007 102510 102510 102511 102601 102637 102230
00010 055000 055000 055000 001020 001020 030024
00011 005144 005144 005144 0xx400 0xx400 004244
00012 101110 101110 101111 004050 004050 004344
00013 000007 000007 000007 004002 004002 004444
00014 101210 101210 101211 004446 004446 060030
00015 0xx401 0xx401 Oxx401 001020 001020 020027
00016 001000 001000 001000 000003 000003 004142
00017 000012 000012 000012 055000 055000 056000
00020 0xx400 0xx400 0xx400 005144 005144 005344
00021 001000 001000 040027
00022 000002 000002 020030
00023 001040
00024 000003
00025 001000
00026 000011
00027 yy5777

xx = 17 for 8K systems; xx = 25 for 12K or larger systems
yy = 07 for 8K systems; yy = 12 for 12K or larger systems

MOS 8-17

system preparation program

Address

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025
00026
00027
00030

Table 8-3. Bootstrap Loading Routine (18-Bit Computer)

Magnetic Magnetic Magnetic
Tape Tape Tape
Controller 0 Controller 0 Controller 1
Unit O Unit 1 unit 0
104110 104210 104111
101210 101210 101211
000005 000005 000005
001000 001000 001000
000001 000001 000001
030020 030020 030020
100010 100010 100011
102510 102510 102511
055000 055000 055000
005144 005144 005144
101110 101110 101111
000007 000C07 000007
101210 101210 101211
0xx401 0Oxx401 Oxx401
001000 001000 001000
000012 000012 000012
0xx400 0xx400 0xx400

33/35
ASR

Teletype

102601
030011
005101
101201
000007
001000
000003
102601
001020
0xx400
004052
004002
004446
001020
000003
055000
005144
001000
000002

xx = 17 for 8K systems; xx = 25 for 12K or larger systems

MOS 8-18

High-Speed

Paper
Tape
Reader

100537
030011
005101
101537
000007
001000
000003
102637
001020
0xx400
004052
004002
004446
001020
000003
055000
005144
001000
000002

Card
Reader

100230
001000
000006
0xx377

040003
067003
040003
006010
001036
050022
005007
101630
0xx400

101130
000021
001000
000013
102230
001036
000004
004454
057003
040022
001000
000013

e T

system preparation program

ENTER DEVICE NAME FOR xx

where xx denotes Pl, PO, LO, BI, and SI, respectively, in the five requests. In response to
each request, type the name of a peripheral device followed by a carriage return. The
specified peripheral device is assigned the corresponding logical function during the
system preparation process.

Table 8-4 gives the function of each logical unit during system preparation and lists
acceptable peripheral device assignments for each logical unit name. To assign the
peripheral device a default assignment, type a carriage return.

After completing peripheral device assignments for system preparation, the message:
BEGIN SYSTEM PREPARATION

is output. The SPP can then accept system preparation control directives defining the
MOS system file to be generated.

DISC FORMATTING

When preparing an MOS system for a 620-40 disc, a disc-formatting routine is loaded by
the SPP loader. This routine is loaded prior to the SPP.

At the end of a successful loading, the Teletype makes four requests for disc formatting
information. These requests are for the BIC hardware address, controller hardware

address, disc unit number, and the disc size (in cylinders). Each input can be either a
decimal or octal number, but, if the latter, it has a leading zero. Each request is

terminated by a carriage return.

After the fourth request, the routine formats the disc. When formatting is complete,
formatting information for another disc is requested. When all discs have been formatted,
answer the request for the BIC hardware address by pressing the CONTROL and BELL
keys on the Teletype. The loader then loads the next segment of the SPP and proceeds as

described in section 4.

SYSTEM VERIFICATION AND COMPLETION

Upon completion of the system preparation, the system file is read and verified to ensure
that no errors occurred. Verification consists of reading the new system file and checking
such items as checksums, sequence numbers, and record formats. A listing is also
generated on the LO (figure 8-1). If verification is not desired, supply the parameter N on
the END control directive. After the system preparation is complete, the program outputs
the message:

MOS SYSTEM READY

It then loads the resident monitor into memory by executing the appropriate bootstrap of
the MOS system file and types ** on the Teletype.

MOS 8-19

system preparation program

Table 8-4. Logical Unit Functions

Unit Function Assignments Default
PI Contains the ISL . TROO* TROO
PTOO
PO Contains the MOS systerﬁ MT0O
LO Lists all SPP control TYOO TYOO
directives and the ISL LPOO
or MOS system file, if
requested
Bi Inputs any additional pro- TROO TROO
grams not contained on PTOO
the ISL CROO*
Sl Inputs ail SPP control TY0O TYOO
directives TROO
PT00
CROO*

*Only on systems with 12K or larger memory.
**DRO0 is acceptable only on the drum and magnetic tape MOS.
***DKO0O is acceptable only on the disc MOS.
****MTOO is acceptable on systems with 12K or larger memory or any drum and magnetic
tape MOS.
#axixWhen TROO is specified, TPOO must also be specified within the EQUIP directive
parameter.

MOS 8-20

system preparation program

PAGE s

BEGIN SYSTE™M PREPARATION
DATE,01/20/74)
COMP,1,025777,1,0300,0477,010,14
EQUIP,MTO0,MT10,TY,TR,TP,PT,CR,LP

EQUIP,DK0N(022,0),DK01(022,02000),DK02(Nn22,01000),0K03(022,01000)
END,L .

Figure 8-1. System Preparation List Output (1 of 3)

MOS 8-21

system preparation program

PAGE 2 01/20/71
10 NATE SIZE ENTRY NAMES EXTERNAL NAMES

A RQNTSTRP 01/20/73 00442
ABS,K8CA1D%x,n5/12/470,~1,01000,010
$PLA 25006
sLLuR 25¢cNy
CYLMDa 28766
CYLNDY 25764
CvyLnvOnN 25740
SXEQ R250K6
suUCB4a 2374y
suca1 25744
sJCbo 25713
ITTL 25¢C72
$ROC 25776
$REw 255053
$PEN 25070
$FCw 25096
gMPR 25146
LB <5097
$LBE 01400
SLAX 252%5%
SLA3 25270
$JC~ 25087
sFRM 25102
SECw 25071
$NAT 2%076
$8LUF 25617
[8I4R) 00010
[SLITY 01000
[SPEDY 25G%4
ABS,RSCRI~T,05/711/70,=1,01070,010
ENDABS
ABS,RSCR2TY,01/41/70,«1,01000,010
ENDABS
ABS,RSCR2_ P,01/11/70,-1,01000,010
$PUR 23006
SLLUB 23037
CYLNO4 25766
CYLMOL 25748
CYL~NOO 25740
SYEZ 285066

Note: If a slash appears to the left of a number field, the designated program is required
by the system preparation program but omitted from the ISL.

Figure 8-1. System Preparation List Output (2 of 3)

MOS 8-22

system preparation program

PAGE 9 01/20/7%

4] DATE S8IZE ENTRY NAmES EXTERNAL NAMES

SLBF LAX

SLAB SJCw

$I10W SI1AP

SFRM BECW

SDAT SCOR

scam RBUF

SALG
R MAPS 00123 MAPS LCBS 10C8 $BUF

R %00 00022 300 MRS mT30 MSRY MSFR
*RV ¢ MROD ¥ MEF S MEKE
#R 201 00022 204 MRS MT30 MSRY MAFS
MR¥§ MRN% MEF$ MK
wR $02 00022 302 MARS MT30 MSRY MSF$
MRWE MRDS MEF S “CK¥
wR 303 ovo22 %03 MWRS MT80 MSR 3 MSF %
MR § MRO% VEFS MEK&
R 304 00022 %04 MWRS MY &Y M3RY MSFS
MRS R0 MEF % MCKS
%R 805 oon22 808 MWRS MTS1 MSRS MSF&
YR § MROS rEFy MEKS
*R %0€ none? 108 MaRS MTS1 MERS M3FY
MRW§ MRD % MEFY MCKS
«R 307 00022 807 MWRS MT§L MSRY LET A
MRw3 MROA MEFS MECK S
*R %08 00022 so8 MWRS MTS2 MSR§ MSF YN
MRS MRD3 MEFY MCKS
wR 809 00022 209 “4RS MT82 MSRY MSFS
MRWS MRNY MEF $ MEKS
#R 30A oonz22 30A *uRS MT82 MRS MFS
. MRWS MRDS MEFy MEKS
*R 308 oona2 s08 MWRS MT32 MSRS L1148)
MRWS MRDS MEFS L Lol St
*R 30C 00022 30C MWRS MTSI “8R3 MSFA
MRUS MRDY MEFS MCKS
wR AOD 00022 sob HWRS MTS3 MSRS MSFS%
MR Y MRDS MEFS MCK$
*R §0F oone2 $0E ¥4RS MTSY MBRY MSF &
MRWY MRO® MEFS MCKS
R $0OF 00022 sOF MWRS MTS$3 MSRy MSF$

MRWS MRO® MEFS MEKS

Note: An asterisk preceeding a line indicates that the designated program is contained
in the ISL but omitted from the created System File.

Figure 8-1. System Preparation List Output (3 of 3)

MOS 8-23

system preparation program

If the system file is on a rotating memory unit, the virtual unit allocation table is listed on
SO followed by the message:

DISC MOS SYSTEM READY

EXAMPLES

Problem 1

Prepare an MOS system file for a 620/622 computer system having one magnetic tape
unit, one Teletype unit, and 8K of core memory. Make the following logical unit

assignments: SF = MTO00, Pl = TR0O, SS = MT00, Bl = TR00, SO = TY00 LO = TYO00,
and BO = TPOO. Set the default values of $PGM to 03000, $LIT to 02777, and $IAP to
010. During system preparation, do not list the ISL, but verify and list the MOS system

file.

Procedure:

1. Key in the Teletype bootstrap loader and enter the SPP through the Teletype

paper tape reader.

2. Assign logical units for use by the SPP as follows:

Pl = TROO
PO = MTO00
LO = TY0O
Bl = TROO
SI = TY00
3. Mount the ISL on the Teletype reader (Pl) and mount a scratch magnetic tape
with a write-ring on the magnetic tape transport (PO).
4. Respond to the BEGIN SYSTEM PREPARATION message with the following

control directives on the Teletype keyboard (SI):

COMP,I,017777,0,03000,02777,010, 14

DATE, 11/07/69 (optional)
EQUIP,TY,MT, TR, TF
END

MOS 8-24

system preparation program

Problem 2

Prepare an MOS system file for a 620/622 computer system having four standard
magnetic tape units connected to one controller, one special magnetic tape unit
connected to a different controller for which the user supplies the 1/0 driver, one Teletype
unit, one line printer, one card reader, one high-speed paper tape reader/punch unit, and
16K of core memory. The special magnetic tape unit is designated MM10 and its 1/0
driver has the entry name $0U. Make the following logical unit assignments: SF =
MTO00, PO = MTO01, SS = MTO01, GO = MT02, S! = TY00, Pl = CROO, LO = LPOO, B!
= PT00, BO = PT00, S1 = MTO03, and LUN 15 = MM10 (special magnetic tape unit).
Set the default values of $PGM to 04000, $LIT to 03777, and $IAP to 030. During the
system preparation process, replace the FORTRAN compiler with a new version and verify
and list both the ISL and the MOS system file.

Procedure:

1. Key in the magnetic tape unit 2 bootstrap and enter the SPP through MTO1.

2. Assign logical units for use by the SPP as follows:

Pl = MTO1
PO = MTO00
LO = LPOO
Bl = PTO00
SI = TYOO

3. Mount the ISL on MTO1 (Pl) and mount a magnetic tape on MTOO (PO)

4. Respond to the BEGIN SYSTEM PREPARATION message by typlng the
following control directives on the Teletype (Sh:

CcOMP,1,037777,0,04000,03777,030,15
DATE, 11/07/69 (optional)
IODEV,MM10,0U,5
EQUIP,TY,CR,LP,PT,TR,TP
EQUIP,MTO00,MTO01,MT02,MT03,MM10
ADD, $03

REPLACE FORTRAN
ASSIGN,BI=PT00,BO=BI

assign, S1 = MT03, 15 = MMI10

END, L
5. When the SPP types the message:

ADD $03

MOS 8-25

system preparation program

place the special magnetic tape 1/0 driver object program ($0U) in the high-
speed paper tape reader. Type Y to copy $0U on the MOS system file. After the
program has been copied, type N to continue system preparation.

6. When the SPP types the message:
REPLACE FORTRAN

place the new FORTRAN compiler program on the high-speed paper tape reader.
Type Y to copy the FORTRAN compiler to the MOS system file. After the
FORTRAN compiler has been copied, type N to continue system preparation.

Problem 3:

Prepare an MOS system file for a 620/622 computer system having one 256-track drum
memory unit (connected to BIC 020), two standard magnetic tape units with separate
controllers, one Teletype unit, one line printer, one high-speed paper tape reader/punch
unit, and a 32K core memory. Prepare the system so that only the first 31K of core is
used. Make the following logical unit assignments: SF = DRO0O, PI = PT00, SS = DROI,
PO = DRO1, BI = PT00, SI = TY00, SO = TY00, LO = LP0O, and BO = PTO00. Set the
default values of $PGM to 0500, $LIT to 0377, and $IAP to 010. Partition the drum
memory into six virtual units. Make the first unit 050 sectors longer than the system file,
and the next five units 05000, 03000, 01500, 01500, and 01500 sectors long, respectively.
Do not list the ISL and do not verify or list the MOS system file.

Procedure:
1. Mount the ISL on MTOC (PI).

2. Key in the magnetic tape unit 1 bootstrap and enter the SPP through MTQO.

3. Assign logical units for use by the SPP as follows:

Pl = MT00
PO = DROO
LO = LP0O
Bl = PTOO
Sl = TY0O

4. Respond to the BEGIN SYSTEM PREPARATION message by typing the
following control directives on the Teletype (Sl):

COMP,I,075000,1,0500,0377,010, 14
DATE, 05/26/70 (optional)
EQUIP,MTO00,MT10,TY,TR,TP,PT,LP
EQUIP,DR00(020,050),DR01(020,05000)
EQUIP,DR02(020,03000),D0R03(020,01500)
EQUIP,DROL4(020,01500),DR05(020,01500)
END,N

MOS 8-26

system preparation program

5. A drum allocation listing of the following form is printed on LO after system
preparation is complete:

DRUM ALLOCATION

DROO 000012 003477

DRO 1 003500 010477

DRO2 010500 013477

DRO3 013500 015177

DROY 015200 - 016677

DRO5 016700 017777
Problem 4:

Prepare an MOS system file for a 620/622 computer system having one disc unit

connected to BIC 020, one disc unit connected to BIC 022, two 9-track magnetic tape
units connected to BIC 024, one Teletype unit, one card reader, one line printer, and 32K
core memory. Prepare the system so that only the first 28K of core is used. Make the
following logical unit assignments: SF = DKO0O, Pl = CR00, PO = DKO1, SS = DKOl, Bl
= MTO01, SI = TY00, SO = TYO00, LO = LP0O, BO = MTO00, S1 = DKO02, S2 = DKO03,
S3 = DK40, and S4 = DK41. Partition the first disc unit into four virtual units. with the
first virtual unit equal in length to the system file (SF) plus 0100 sectors and the other
three virtual units 01500, 01000, and 01000 sectors long, respectively. Partition the
second disc unit into five virtual units,-each 01200 sectors long. Set the default values of
$PGM to 02000, $LIT to 01777, and $IAP to 0500. During system preparation, do not list
the ISL, but verify and list the MOS system file.

Procedure:
1. Mount the ISL on MTOO (PY).
2. Key in the magnetic tape unit 0 'bootstrap and enter the SPP through MTO0O.

3. Assign logical units for use by the SPP as follows:

Pl = MT0O
PO = DKOO
LO = LPOO
Bl = MTO1
Sl = TY0O

4. Respond to the BEGIN SYSTEM PREPARATION message by typing the
following control directives on the Teletype (SI):

comp,I,067777,3,02000,01777,0500,14

DATE,06/11/70 (optional)
EQUIP,MTO00(024),MT01(024),TY,CR,LP

MOS 8-27

system preparation program

EQUIP,DK00(020,0100),DK01(020,01500),DK02(020,01000)
DK03 (020,01000)

EQUIP,DK40(022,01200) ,DK41(022,01200),DK42(022,01200)

EQUIP,DK43(022,01200),DK44(022,01200)

ASSIGN,PO=DK01,S5=DK01,BI=MT01,BO=MTO00

ASSIGN,S1=DK02,S2=DK03,S3=DK40,S4=DK41

END

A disc allocation listing of the following form is printed on LO
after system preparation is complete:

DISC 0 ALLOCATION

DKO 1 000000 003577
DKO 1 003600 005277
DKO02 005300 006257

DISC 4 ALLOCATION

DK40 000000 001177
DK41 001200 002377
DK42 002400 003577
DK43 003600 004777
DK4 4 005000 006257
PROBLEM 5:

Prepare a MOS system file for a 620/622 computer system having one standard magnetic
tape unit connected to BIC device address 022, one Teletype unit, one card reader, one
high-speed paper tape reader/punch unit, one movable-head disc unit with 9,744 sectors
connected to BIC device address 020, one STATOS 21 (620-74) printer/plotter to be used
as the system line printer, and 32K core memory. The STATOS 21 printer/plotter
programs are not resident on the Installation System Library (ISL) and it is desired to
replace the standard line printer routines " RSCB2LPB" (core dump), " $0Q" (DST), and
" LPDP24" (line printer driver) with the STATOS 21 routines " RSCB2LPB", " $0Q", and
" LPST21" . Set the default values of $PGM to 0500, $LIT to 0377, $IAP to 010, and
number of logical units to twenty. Partition the disc unit into ten virtual units, with the
first virtual unit equal in length to the system file (SF), the second virtual unit through
the tenth virtual unit into 3000, 800, 500, 900, 700, 100, 300, 200, and 100 sectors long,
respectively. Do not list the ISL, but verify the MOS system file.

Procedure:
NOTE:
LO cannot be assigned to LPOO unless SPP contains the appropriate

line printer driver.

MOS 8-28

system preparation program

Mount the 1SL on MTOO (PI).

Key in the magnetic tape unit O bootstrap and enter the SPP through MT00.

Prepare the system preparation control directives on punched cards and p]ace
into the input hopper. Make the card reader ready.

Assign logical units for use by‘ the SPP as follows:

Pl = MT0O
PO = DKOO
LO = TY00
Bl = CROO
S| = CROO

Be prepared to place the appropriate binary-object program replacements into
the card reader when the SPP requests the replacements for " RSCB2LPB",
" $0Q", and " LPDP24"

Respond to the Begin System Maintenance message by making the card reader
ready. The following directives, previously prepared, will be read and printed on
the Teletype (LO)
DATE,07-27-71 (optional)
COMP,I1,075777,2,0377,010,20
EQUIP,TY,PT,LP,CR,MOT00(022),DK00(020,0),DK01
(020,3000)
EQUIP,DK02(020,800),DK03(020,500),DK04(020,900),
DK05(020,700)
EQUIP,DKO06(020,100),DK07(020,300),KD08(020,200),
DK09(020,100)
REPLACE, $0Q,LPDP24 ,RSCB2LPB
END,V

When the SPP types the message:

REPLACE RSCB2LPB
place the STATOS 21 core dump routine object program (RSCB2LPB) in the card
reader and make ready. Type Y to copy RSCB2LPB onto the MOS system file.
After the program has been copied, type N to continue system preparation.

When the SPP types the message:

REPLACE $0Q

place the STATOS 21 170 driver DST object program ($0Q) in the card reader
and make ready. Type Y to copy $0Q onto the MOS system file. After the
program has been copied, type N to continue system preparation.

MOS 8-29

system preparation program

9. When the SPP types the message:

REPLACE LPDP24

place the STATOS 21 /0 driver object program (LPST21) in the card reader and
make ready. Type Y to copy LPST21 onto the MOS system file. After the
program has been copied, type N to continue system preparation.

10. Repeat steps 8 and 9 until all required replacements are completed.

11. A disc allocation listing of the following form is printed on LO (TYOQO) after
system preparation is complete:

DISC 0 ALLOCATION

DKOO
DKO 1
DKO02
DKO3
DKO4
DKO5
DKO6
DKO7
DKO08
DKO09

000000
004545
012435
014075
015061
016665
020161
020325
021001
021311

oous4y
012434
014074
015060
016664
020160
020324
021000
021310
023017

12. After the system has been verified by SPP the following is printed on the LO:

MOS SYSTEM READY

13. The system file is then bootstrapped into the computer via the memory resident,
MOS and the following is printed on the Teletype (SO):

MOS 8-30

SECTION 9 - LANGUAGE PROCESSORS

The basic MOS supports the DAS MR assembler as its language processor. By increasing
memory, the FORTRAN |V (ANSI standard) compiler can also be used. The modular
design of the MOS allows the inclusion of additional Varian or user language processors
through the system preparation procedure.

Both the assembler and compiler exist in stand-alone and MOS configurations. This
chapter describes the features of the MOS versions of these language processors.

Status and error messages are given in Section 13.
DAS MR ASSEMBLER

DAS MR is a two-pass macro assembler that uses the secondary storage device of MOS
for the Pass 1 output. It reads a source module from the Pl and outputs it on the PO. The
Pass 2 source input is input from the SS.

When an END statement is encountered, the SS is repositioned and reread. During Pass
2, the output can be directed to the BO for the object module and the LO for the assembly
listing. The SS or PO file, which contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the first of which must be alphabetic,
with the rest alphabetic or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form an extended symbol up to the
limit imposed by a single line of code. However, only the first six characters are
recognized by the assembler.

Assembler language programs (and subroutines) are referred to within MOS by name

during system maintenance and system preparation. To name a DAS MR module in MOS,
specify from one to eight characters in the title parameter of the /JOB preceding the
/ASSEMBLE control directive.

The DAS MR assembler provides for relocatable and absolute object modules. Absolute

modules must be explicitly specified with an ORG directive. Otherwise, the modules will be
relocatable.

MOS 9-1

language processors

The directives recognized by the DAS MR assembler are:

BES DATA END GOTO MZE PZE
BSS DETL ENTR |FF NAME RETU*
CALL DUP ECU IFT NULL SET
COMN EJEC EXT LoC OPSY SPAC
CONT EMAC FORM MAC ORG SMRY

FORTRAN IV COMPILER

The FORTRAN 1V compiler is a one-pass compiler. It inputs a source module from the Pl
and produces an object module on the BO and an object listing on the LO. No secondary
storage is required for a compilation.

When a fatal error is detected (T type, section 13), the compiler automatically terminates
the BO. LO output continues. The compiler reads from the Pl file until an END statement
is encountered or a control directive is read. Compilation also terminates on detection of
an 1/0 error or an end-of-device, beginning-of-device, or end-of-file indication from 1/0
control.

FORTRAN |V programs (subroutines, functions, block data, etc.) are referred to within
MOS by name during system maintenance and system preparation. To name a FORTRAN
IV module in MOS, specify from one to eight characters in the title parameter of the /JOB
preceding the /FORTRAN control directive.

The FORTRAN IV compiler output comprises relocatable object modules under all
circumstances (e.g., main programs, subprograms, functions, etc.).

The FORTRAN |V compiler has conditional compilation facilities implemented by an X in
column 1 of a source statement. When the X appears in the /FORTRAN directive, all
source statements with an X in column 1 are compited with all other statements (viz., the
X is treated as a blank). When the X is not present, all conditional statements are
ignored by the compiler. X lines are given numbers on the list output in either case, but
the source statement is printed only when the X is present.

When performing 170 in FORTRAN, the READ and WRITE statements are used. In these
statements, 1/0 devices are referenced by logical unit numbers. The MOS FORTRAN |V
supports logical units 1 through 255 (table 3-1). These logical unit numbers are assigned
to physical devices (table 3-2).

A0S 9-2

RPG IV

The MOS RPG IV system is a software package for general data processing applications. It
combines versatile file and record defining capabilities with powerful processing
statements to solve a wide range of applications. It is particularly useful in the processing
of data for reports. The MOS RPG IV system consists of an RPG IV compiler and a
runtime/loader program.

The RPG, Report Program Generator, its compilation and execution under MOS are

described in the Varian RPG IV User's Manual (98 A 9947 03R, where R is the revision
number).

MOS 9-3

SECTION 10 - SUPPORT LIBRARY

The MOS system has a comprehensive subroutine library directly available to the user.
The library contains mathematical subroutines to support the execution of a FORTRAN 1V
program, plus many commonly used utility subroutines. To use the library, merely code
the proper call in the program, or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A=SQRT(B) generates a CALL SQRT(B)). All calis
generate a reference to the required routine, and the loader brings the subroutine into
memory and links it to the calling program.

CALLING SEQUENCE -

The subroutines in the support library can be called through a DAS MR or FORTRAN IV
program as follows:

DAS MR
General form:
label CALL S,p(1),p(2),...,p(n)
Expansion:
label JMPM S
DATA p(1)
DATA p(2)
DA';‘A p(n)
FORTRAN 1V

General form:

statement number CALL S(p(1),p(2),...,p(n))

MOS 10-1

support library .

Generated code:

JMPM s
DATA p(1)
DATA p(2)
DATA p(n)

SIXTEEN-BIT NUMBERS

Single-precision integers use one 16-bit word. A negative number is in two's complement
form. An integer in the range -32,768 to +32,767 can be stored as a single-precision
integer.

Single-precision floating-point numbers use two consecutive 16-bit words. The exponent
(in excess 0200 form) is in bits 14 to 7 of the first word. The mantissa is in bits 6 to O of
the first word and bits 14 to 0 of the second word. The sign bit of the second word is
always zero. A negative number is repiesented by the one's complement of the first word.
Any real number in the range 10t can be stored as a single-precision floating-point
number having a precision of six digits.

Single-Precision Floating-Point Number (16-Bit)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 210
n) s —--—--=- Exponent—-—-—--—-=---= ~--High Mantissa-
n+1}) 0 ——-=-—-—————--- Low Mantissa------=-===-----

Double-precision floating-point numbers use four consecutive 16-bit words. The exponent
(in excess 0200 form) is in bits 7 to O of the first word. The mantissa is in the second,
third, and fourth words. Bit 17 of the third and fourth words and bits 17 to 8 of the first
word are zero. A negative number is represented by the one's complement of the second
word. Any real number in the range 10t can be stored as a double-precision floating-
point number having a precision of 13 decimal digits.

Double-Precision Floating-Point Numbers (16-bit)

Bit 15 14 13 12 11 10 9 8 7 6 54 3 210

n) 0 0 0 O© 0 0 0 0 ---=--- Exponent-----
N+1) 8§ = ———-=--=———--- High Mantissa---------------
n+2) 0 —-—-----———---- Mid Mantissa----=-—--—-------
n+3) 0 -—--------—---- Low Mantissa----------------

MOS 10-2

support library

EIGHTEEN-BIT NUMBERS

Single-precision integers use one 18-bit word. A negative number is in two's complement
form. Any integer in the range -131,072 to + 131,071 can be stored as a single-precision
integer.

Single-precision floating-point numbers use two consecutive 18-bit words. The exponent
(in excess 0200 form) is in bits 16 to 9 of the first word. The mantissa is in bits 8 to 0 of
the first word, and bits 16 to O of the second word. The sign bit of the second word is
always zero. A negative number is represented by the one’s complement of the first word.
Any real number in the range -76,000,000,000 to + 76,000,000,000 can be stored as a
single-precision floating-point number having a precision of seven digits.

Single-Precision Floating-Point Number (18-Bit)

Bit 17 16 15 14 13 12 11 10 9 8 76 S5 4 3 210
n) § mmmme———- Exponent------- ----- High Mantissa-
n+1) 0 -—=-————-------—-—= Low Mantissa----------------

Double-precision floating-point numbers use four consecutive 18-bit words. The exponent
(in excess 0200 form) is in bits 7 to O of the first word. The mantissa is in the second,
third, and fourth words. Bit 17 of the third and fourth words and bits 17 to 8 of the first
word are zero. A negative number is represented by the one's complement of the second
word. Any real number in the range -76,000,000,000 to + 76,000,000,000 can be stored
as a double-precision floating-point number having a precision of 15 decimal digits.

Double-Precision Floating-Point Number (18-Bit)

Bit 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

n) 0 0 0 0 0 0 0 0 0 0 —-=~=—= Exponent----
n+1) s ———----———--=- High Mantissa-----------------—-
n+2) 0 -—------------- Mid Mantissa----------------——-
n+3) 0 ------—----——- Low Mantissa-------------—-—-———

MOS 10-3

support library

SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the subroutine descriptions given in this
section:

Notation Meaning
AB Hardware ‘A "and B registers
AC Four-word software accumulator for

double-precision and real numbers.

ACCZ Four-word software accumulator for
complex numbers (defined as labelled
COMMON block $IMAG and where the results
of all complex functions are placed)

d A double-precision number

f Two-word fixed-point nﬁmber
i An integer

i A double-precision integer

r A real number

X Hardware X register

z A complex number

Exponentiation
/ Division
$ A character commonly used as the first character
of a subroutine name
The external references in table 10-1 refer to items in both tables 10-1 and 10-2. Similarly,
the subroutines called in table 10-2 refer to items in both tables 10-1 and 10-2. When a

subroutine has more than one name, it is indicated by multiple calls under Calling
Sequence.

MOS 10-4

G0l SON

Name

$HE

$PE

$QE

ALOG

EXP

ATAN

COSINE
SINE

$SE

Table 10-1. DAS Coded Subroutines

Function

In A, compute il**i2

In AB, compute r**i

In AB, compute r1%%r2

In AB, compute 1n r. If
negative, error exit with
A=B=0 and overflow =1.
If zero, set result to maxi-

mum negative number.

In AB, compute e**r

In AB, compute arctan r

In AB, compute cos r
In AB, compute sin r

To transfer a list of N para-

meters from a calling program

to a called subprogram

Calling Sequence

CALL $HE,i2

CALL $PE,i

CALL $QE,r2

CALL ALOGr

CALL EXP,r
CALL ATAN,r

CALL COS,r
CALL SIN,r

CALL $SE, N, LIST

External References

$QS, $SE, $PE,
$HS, $0K

$SE, $QS, $QE

ALOG, $QM, EXP,
$SE

$ER, $0QS, $QK,
$QM, XDMU, XDAD,
$FMS, $NML, $XDDI,
$XDSU, $SE

XDMU, $QK, $QL,
$QM, $QN, $SE

$QM, $QL, $QN,
$QK, $SE

SIN, $QL, $SE
$OM, XDMU, XDAD,

$NML, $FMS, $SE
None

Aieiq yaoddns

90l SON

Name

SQRT

FMULDIV

FADDSUB

SEPMAN

FNORMAL

XDDIV

XDMULT
XDADD
XDSuB

XDCOMP

Table 10-1. DAS Coded Subroutines (continued)

Function

In AB, compute square root
of r

In AB, compute r1#r2 with
$QM, or r1/r2 with $QN. If
result overflows, error

exit with A = B = 0 and
overflow = 1.

In AB, compute r1 + r2 with
$QK, or rl - r2 with $QL

Separate mantissa and
characteristic of r into
AB and X respectively

In AB, normatize r

In AB, compute f1/f2

In AB, compute f1¥2
In AB, compute f1 + f2
In AB, compute f1 - 2

In AB, compute negative of f

Calling Sequence

CALL SQRT,r

CALL $QM,r2
CALL $QN,r2

CALL $QK,r2
CALL $QL,r2

CALL $FMS
CALL $FSM
CALL $NML

CALL XDDI,f2

CALL XDMU, 2
CALL XDAD,f2
CALL XDSU,f2

CALL XDCO

External References

XDDI, $FSM, $SE,
XDIV

XDMU, $FMS, XCClI,
$SE

$SE, $FSM, $NML,
$ER

None

XDCO

XDSU, XDCO, XDIV,
XMUL

XDAD, XDCO, XMUL
None
None

None

Aserqiy 1oddns

L-0L SON

Name

$FLOAT

$IFEX

IABS

ABS

ISIGN

SIGN

$HN

$HM

XMUL

XDV

Table 10-1. DAS Coded Subroutines (continued)

Function

In AB, convert the i in A
to floating-point and, for
$QS, store result in r

In A, convert the r in AB
to i and, for $HS, store
result in i

In A, compute absolute i

In AB, compute absolute r

Set the sign of il, in A,
equal to that of i2

Set the sign of rl, in AB,
equal to that of r2

In A, compute i1/i2
In A, compute i1*i2

Software emulation of
hardware multiplication

Software emulation of
hardware division

Calling Sequence

CALL $PC
CALL $QS,r

CALL $IC
CALL $HS,i

CALL IABS;i
CALL ABS,r

CALL ISIGN,i2

CALL SIGN,r2

CALL $HN,i2
CALL $HM,i2

CALL XMUL,i

CALL XDIV,i

External References

$SE

$SE

$SE

$SE

$SE

$SE

$SE, XDIV
$SE, XMUL

None

None

Aseaq) yioddns

8-0L SOW

Name

DSINCOS

DATAN

DEXP

DLOG

POLY

CHEB

Table

Function

In AC, compute
cos d

In AC, compute

35
>
o
o
©
3
o
<
5
®

In AC, compute

In AC, compute

10-1. DAS Coded Subroutines (continued)

Calling Sequence External References

sin d or CALL $DSl,a $STO, $DMP, SDIT,
CALL $DSIN,d $DFR, CHEB, $SE,
CALL $DCO.d $DLO

CALL $DCOS,d

arctan d CALL $DAT,d $DLO, $STO, $DAD,
CALL $DATAN,d $DSU, IF, $SE,
AC, $DMP, $DDI,
POLY
exponential d CALL $DEX.d $DLO, $STO, $DMP,
CALL DEXPd $DDI, $SE, AC,
CALL TWOX,d $DIT, CHEB, IF,
$DFR
ind CALL DLOGd $DLO, $STO, $DAD,
CALL $DLN,d POLY, IF, $SE,
AC, $DSU, $DMP,
$DDI-
double- CALL POLY,t,.cy $DLO, $DAD, $DMP

precision polynomial with
t terms, coefficient list
starting at address c, and
argument at address y

In AC, compute

shifted CALL CHEB,t,c $DLO, $STO, $DAD,

Chebyshev polynomial series $DSU, $DMP
with t + 1 terms and coef-
ficient list starting at

address ¢

Aseaqij 1s0ddns

601 SOW

Name

DSQRT

$DFR

IDINT

DMULT

DIVIDE

DADDSUB

DNORMAL

DLOADAC

DSTOREAC

RLOADAC

Table 10-1. DAS Coded Subroutines (continued)

Function

In AC, compute square root
of d

In AC, compute fractional
part of d

In AC, compute integral
part of d

In AC, compute d1#d2

In AC, compute d1/d2

In AC, compute d1 + d2 with
$DAD, or dl - d2 with $DSU

In AC, normalize d

Load AC with d

Store AC in d

Load A with double-precision
mantissa sign word from AC

Calling Sequence

CALL $DSQ.d
CALL DSQR,d

CALL $DFR.d

CALL $DITd
CALL IDIN,d

CALL $DMP,d2

CALL $ZM,d2

CALL $DDI.d2
CALL $ZN,d2

CALL $DAD,d2
CALL $DSU,d2
CALL $ZK,d2
CALL $ZL,d2

CALL $DNO

CALL $DLO,d
CALL $ZF.d

CALL $STO,d
CALL $zS.d

CALL $ZI

External References

$DLO, $STO, $DNO,
$DAD, $DMP, $DDI,
$SE, AC

$DLO, $DNO, $DSU,
$DIT, AC, $SE

$DNO, $SE
$DLO, $STO, $DNO,
$DAD, AC, $SE

$DLO,"$STO, $DNO,
$DSU, AC, $SE

$STO, $DLO, $DNO,
AC

$SE

AC, $SE

AC, $SE

AC

Aseaqu) yaoddns

0L-0L SOW

Name

SINGLE

DOUBLE

DBLECOMP

$3S

'SNAP

A2MT
620 only

MT2A
620 only

DEBUG

Table 10-1. DAS Coded Subroutines (continued)

Function

In AB, convert the d in AC
tor

In AC, convert the r in AB
to d

In AC, compute negative of
the d in AC

Store AB in memory address m

Print the contents of core
on logical unit (LO)

(A) = starting address
(B) = ending address

Translate in memory a char-
acter string of length n
starting at s and ending at
e from eight-bit ASCII to
six-bit magnetic tape BCD
code

Translate in memory a char-
acter string of length n
starting at s and ending

at e from six-bit magnetic
tape BCD code to eight-bit
ASCH!

Provide an execution address
for the DEBUG package

Calling Sequence

CALL $RC

CALL $YC

CALL $zC

CALL $3Sm

CALL SNAP

CALL A2MT,n,s,e

CALL MT2A,n,s,e

CALL DEBUG

External References

AC

AC

AC

R
2]
m

I0CS

None

None

DBG$

Aseiqi yaoddns

Name

$9E

CCOSs

CSIN

CLOG

CEXP

support library

Table 10-2. FORTRAN IV Coded Subroutines

Function

Compute ACCZ**i

In ACCZ, compute cos z

In ACCZ, compute sin z

In ACCZ, compute 1n z

In ACCZ, compute exponen-

tial z

Calling Sequence External References

CALL $9E(i) $SE, |ABS, $8F,
$8M, $8N

CALL CCOS(z) $SE, CSIN, $8F,
$8K, $8S

CALL CSIN(z) $SE, EXP, $QON,
SIN, $QK, $QM,
COs, $QL, $8F

CALL CLOG(z) $SE, ALOG, $QM,
' $OK, $QN, ATAN2Z,
$8F

CALL CEXP(z) $SE, EXP, COS,
SQM, SIN, $8F

MOS 10-11

support library

Table 10-2. FORTRAN |V Coded Subroutines (continued)

Name Function Calling Sequence External References
CSQRT In ACCZ, compute square CALL CSQRT(z) $SE, SQRT, CABS,
root of z $QK, $QN, $8F
CABS In AB, compute absolute z CALL CABS(z) $SE, SQRT, $QM,
$0OK
CONJG In ACCZ, compute conjugate CALL CONJG(2) $SE, $8F
of z
$AK Add r to real part of ACCZ CALL $AK(r) $SE, $8S, $QK,
$8F
$AL Subtract r from the real CALL $AL(r) $SE, $8S, $QL,
part of ACCZ $8F
$AM Multiply ACCZ by r CALL $AM(r) $SE, $8S, $QM,
$8F
$AN Divide ACCZ by r CALL $AN(r) $SE, $8S, $QM,
$8F
$AC Convert AC to z and store CALL $AC $3S, CMPLX
in ACCZ

CMPLX Load ACCZ with a value having CALL CMPLX(r1,r2) $SE, $8F
a real part rl and an imagi-
nary part r2

$8K Add z to ACCZ CALL $8K(z) $SE, $8S, $QK,
$8F

$8L Subtract z from ACCZ CALL $8L(2) $SE, $8S, $QL,
$8F

$8M Multiply ACCZ by z CALL $8M(z) $SE, $8S, $QM,
$QL, $OK, $8F

$8N Divide ACCZ by z CALL $8N(z) $SE, $8S, $QM,

$QK, $QN, $QL,
$8F

MOS 10-12

Name

$ZD

AIMAG

$0C

REAL

$8F

$8S

$XE

$YE

$ZE

DATAN2

DLOG10

DMOD

DINT

DABS

support library

Table 10-2. FORTRAN IV Coded Subroutines (continued)

Function

Compute negative of z

Load AB with the imaginary

part of z

Load AB with the real part

of ACCZ

Load AB with the real part

of z

Load ACCZ with z

Store ACCZ in z

Compute d**i where d is in

AC

Compute d**r where d is in

AC

Compute d1%#d2 where dl

is in AC

In AC, compute arctan

(d1/d2)

In AC, compute log d

In AC, compute d1 modulo d2

In AC, compute integer

portion of d

In AC, compute absolute d

Calling Sequence

CALL $ZD

CALL AIMAG(z)

CALL $0C

CALL REAL(2)

CALL $8F(2)
CALL $8S(2)

CALL $XE(i)

CALL $YE(r)

CALL $ZE(d2)

CALL DATAN2(d1,d2)

CALL DLOG10(d)

CALL DMOD(d1,d2)

CALL DINT(d)

CALL DABS(d)

External References

$8S, $8F

$SE

$8S

$SE

$SE
$SE, $3S

$SE, $ZF, MOD,
$ZM, $HN, $ZN

$SE, $ZS, DBLE,
$ZE, $ZF

$SE, $ZS, DEXP,
DLOG, $ZM

$SE, $ZF, $ZS,
$Z1, $ER, $ZN,
$ZL, $ZK, DATAN
$SE, DLOG, $ZM
$SE, DINT, $ZF,
$ZN, $ZS, $ZM,
$ZL, $2C

$SE, $ZF, $JC,
$XC

$SE, $ZF, $ZI,

MOS 10-13

support library

Name

DMAX1

DMIN1

DSIGN

$YK

$YL

$YM

$YN

DBLE

$XC

TANH

ATAN2

ALOG10

AMOD

MOS 10-14

Table 10-2. FORTRAN IV Coded Subroutines (continued)

Function

In AC, select the maximum
value in the set dl,
d2,....dn

In AC, select the minimum
value in the set dl, d2,
..., dn

Set the sign of d1 equal
to that of d2

Add r to AC

Subtract r from AC

Multiply AC by r

Divide AC by r

In AC, convert r to d

In AC, convert i to d where
iisin A

In AB, compute tanh r

In AB, compute arctan (rl/r2)

In AB, compute log r

Calling Sequence

CALL DMAX1(d1,d2,

. ...,dn,0)

CALL DMIN1(d1,d2,
..dn,0)

CALL DSIGN (d1,d2)

CALL $YK(r)

CALL $YL(r)

CALL $YM(r)

CALL $YN(r)

CALL DBLE(r)

CALL $XC

CALL TANH(r)

CALL ATAN2(rl.r2)

CALL ALOG10(r)

In AB, compute r1 modulo r2 CALL AMOD(r1.r2)

External References
$ZN

$SE, $ZF, $ZS,
I$FA, $ZL, $ZI

$SE, $ZF, $ZS,
ISFA, $ZL, $ZI

$SE, $ZF, $ZI,
$ZN

$SE, $ZS, DBLE,
$ZK

$SE, $ZS, DBLE,
$ZL, $zC

$SE, $ZS, DBLE,
$ZM

$SE, $ZS, DBLE,
$ZF, $ZN

$SE, $YC
$PC, $YC
$SE, $OK, EXP,
$QL, $ON

$SE. $ER, ATAN,
$QK. $QL, $QN

$SE, ALOG, $QM

$SE, AINT, $QN,

Name

AINT

AMAX1

AMIN1

AMAXO

AMINO

DIM

FLOAT

SNGL

MAXO

MINO

MAX1

MIN1

support library

Table 10-2. FORTRAN [V Coded Subroutines (continued)

Function

In AB, truncate r

In AB, select the maximum
value in the set rl1,r2,..,
rn

In AB, select the minimum
value in the set rl1,r2,...,
rn

In AB, select the maximum
value in the set .il,i2,...,
in and convert to r

In AB, select the minimum
value in the set il,i2,...,
in and convert to r

In AB, compute the positive

difference between rl and r2

In AB, convert i to r
In AB, convert d to r

In A, select the maximum
value in the set il,i2,
il

In A, select the minimum
value in the set il,i2
..in

In A, select the maximum
value in the set r1,r2,
....,rn and convert to i

~In A, select the minimum

Calling Sequence

CALL AINT(r)
CALL AMAX1(rl1,r2
..,,rn,0)

CALL AMIN1(r1,r2
...,rn,0)

CALL AMAXO(il1,i2,
...,in,0)

CALL AMINO(i1,i2,
i, 0)

CALL DIM(r1,r2)

CALL FLOAT(i)
CALL SNGL(d)
CALL MAXO(il1,i2,
..,in,0)

CALL MINO(i1,i2,
..,in,0)

CALL MAX1(r1,r2,
...,rn,0)

CALL MINI1(rl,r2,

External References

SQM, $QL

$SE, $IC, $PC

SE, IFA, $QL

SE, IFA, $QL

$SE, ISFA,
FLOAT

SE, IFA,
FLOAT

$SE, $QL

$SE, $PC
$SE, $ZF, $RC

$SE, 1$FA

SE, IFA

SE, IFA, $QL,

IFIX

SE, IFA, $QL,

MOS 10-15

support library

Table 10-2. FORTRAN 1V Coded Subroutines (continued)

Name Function : Calling Sequence External References
value in the set r1,r2, ...,n,0) IFIX
....,rn and convert to i
MOD In A, compute il modulo i2 CALL MOD(il,i2) $SE, $HN, $HM
INT In A, truncate r and CALL INT(r) $SE, $IC
convert to i
IDIM In A, compute the positive CALL IDIM(i1,i2) $SE
difference between il and
i2
IFIX In A, convert r to i CALL IFIX(r) $SE, $IC
$JC In AC, convert d to i and CALL $JC $RC, $IC

store result in A

MOS 10-16

MOS operating procedures

SECTION 11 - MOS OPERATING PROCEDURES

The installation system library (ISL) of the MOS is available on punched paper tape, or,
for systems having 12K of memory, on magnetic tape or punched cards. From the ISL, the
user performs a system preparation to obtain a 'system file (Section 8). The following
procedures assume the presence of a system file and deal only with bootstrapping and
initialization of MOS.

DEVICE INITIALIZATION

CARD READER

a. Turn on the card reader.

b. Place two blank cards after the last control-directive card of the input deck.
c. Place the input deck in the card hopper.

d. Press CLEAR and START.

CARD PUNCH

a. Turn on the card punch.
b. Place blank cards in the card hopper.

c. Press START.

33/35 ASR TELETYPE

a. Turn on the Teletype.

b. Set the Teletype in off-line mode and simultaneously press the CONTROL and D,
then the CONTROL and T, and finally CONTROL and Q keys.

c. Set the Teletype on-line.

MOS 11-1

MOS operating procedures

HIGH-SPEED PAPER TAPE READER

a. Turn on the paper tape reader.

b. Position the input paper tape in the reader with blank leader at the reading
station and close the reading gate.

c. Set the LOAD/RUN switch to RUN.
MAGNETIC TAPE UNIT

a. Turn on the magnetic tape unit.
b. Mount the input magnetic tape. -
c. Position the magnetic tape to the loading point.

d. Ready the magnetic tape unit so it can be used by the computer.
FIXED-HEAD DISC UNIT (Model 620-38C and 620-43B, C, D)
a. Press the AC POWER switch.

b. Wait for the AC POWER indicator to light.

c. Press the DC POWER switch.
MOVING-HEAD DISC UNIT (Model 620-36, -37)

a. Turn on the disc unit.
b. Set the START/STOP switch to START.
c. Wait for the disc unit to reach operating speed (READY indicator lights).

d. Turn off WRITE PROTECT.

MOVING-HEAD DISC UNIT (Models 620-35)

a. Turn on the disc unit.

b. Wait for the disc unit to reach operating speed (DISC READY indicator lights).

MOS 11-2

MOS operating procedures

BOOTSTRAP

To enter the bootstrap loading routine (table 11-1) into computer memory, follow the
bootstrap loading procedures given in section 8.

To initiate the bootstrap, reset the A, B, X, P, and instruction registers. Then, press

SYSTEM RESET and RUN (for V73 and 620/f press RESET, position STEP/RUN, and
press START).

MOS 11-3

MOS operating procedures

Address

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011

00012
00013
00014
00015
00016
00017

00020
00021

00022
00023
00024
00025
00026
00027
00030
00031
00032
00033
00034
00035
00036

Table 11-1. MOS System File Bootstrap Routines

Magnetic
Tape
Unit

104110
101210
000005
001000
000001
030016
100010
102510
055000
005144
101110
000007
101210
001001

001000
000012

620-46
to -49
Drum

1000yy
006020
000012
010014
1031xx
006120
000350
1031lyy
1000xx
100014
103214
1010xx
001001
001000
000013

620-38C
Fixed-
Head
Disc

1000yy
006020
000012
010014
1031xx
006120
000350
1031yy
1000xx

100014
103214
1010xx

001001
001000
000013

620-35

Moving-

Head
Disc

005006
010024
140034
001002
001001
120034
100015
1000yy

1031xx

006120
000121
1031yy

1000xx

103215
001040
000026
100415
005122
101415
000002
001000
000022
100515
101015
000001
005144
001000
000027
001520

620-39
Moving-
Head
Disc

005003
101316
000013
100716
100216
103016
000035
101516
000025
001000
000007
010033
100716
100416
103216
1000yy
1031xx
120036
1031yy
1000xx
100016
101216
000025
101016
000027
001010
000000
001000
001001
000312
000550

Where xx = even BIC address and yy = odd BIC address.

MOS 11-4

620-40, -41
Moving-
Head

Disc

005006
010024
140034
001002
001001
120034
100015
1000yy

1031xx

006120
000121
1031lyy

1000xx

103215
001040
000026
100415
005122
101415
000002
001000
000022
100115
101015
000001
005144
001000
000027
001520

620-37
Moving-
Head
Disc

005003
100416
100216
103116
101016
000010
001000
000004
100416
100316
103116
100021
014011
103120
124011
103121
100020
100016
101416
000022
101516
000000
001000
001001
000550
000000

MOS operating procedures ,

SYSTEM (RE)INITIALIZATION

The executive component of MOS (re)initializes the system:
a. At bootstrap time
b. When /JOB is read
c. When /ENDJOB is read
d. When the operator resets the A, B, X, P, and instruction registers, presses the

SYSTEM RESET, and presses RUN (for the V73 and 620/f, the operator
presses RESET, positions STEP/RUN to RUN, and presses START).

Upon (re)initialization:

a. All logical unit assignments are set to their default values.

b. System flags denoting errors, processor options, and loader options are reset.
To (re)execute the user's program in memory:

a. Set the P register to 000002 and the instruction register to zero.
b. Press SYSTEM RESET (RESET for the V73 and 620/f).
c. Press RUN (for the V73 and 620/, position STEP/RUN to RUN and press START).

To enter the dump program prior to (re)initialization through the executive:
a. Set the P register to 000004 and the instruction register to zero.
b. Press SYSTEMRESET (RESET for the V73 and 620/1).

c. Press RUN (for the V73 and 620/f, position STEP/RUN to RUN and press START).

MOS 11-5

SECTION 12 - USER-CODED 1/0 DRIVERS

MOS permits augmenting the system with [/0 drivers coded by the user. To develop an
[/0 routine and place it in MOS:

a. Code the driver according to the applicable 170 device specification.
b. Assemble the driver using the DAS MR assembiler.

c. Add the driver to the system file using the system preparation program.

d. Use the driver through 1/0 control calls.

MOS 12-1

user-coded 1/0 drivers

DEVICE SPECIFICATION TABLE

When a driver controls a single logical unit, the first 16 or more words comprise the
device specification table (DST). When multiple units are controlled, such as magnetic
tape units, a DST is required for each. Each DST is a separate assembly linked to its
driver through externals. The DST:

a. Transfers parameters of the user |/0 request to the driver
b. Determines if an 170 driver can accommodate an 170 request

c. Obtains the results of |/0 function requests

Table 12-1 lists 170 driver entry names and their corresponding device names and device
addresses as recognized by MOS Input/Output Control. The device addresses are omitted
for those peripheral devices which are presently not supported by VDM. If a user replaces
an existing driver or incorporates a driver for one of the devices which is not supported, it
is suggested that the listed entry names, device names, and device addresses be retained.

DST words have the following significance:

Word Meaning
Actual number of transfers

1 1/0 status

2-3 1/0 driver name

4 170 request flag and operation
code

5 Count parameter

6 Address parameter

7 Address of 1/0 checking routine

8 Address of |/0 checking routine

9 Address of reading routine

10 Address of writing routine

11 Address of write-end-of-file
routine

12 Address of rewind routine

13 Address of skip-files routine

14 Address of skip-records routine

15 Address of function routine

16-n Defined by driver

MOS 12-2

user-coded 1/0 drivers

WORD 0

Modified by: 170 driver
Used by: User programs when information on the number
of transfers is required

Word 0 is associated with the entry name of the 1/0 driver since all remaining DST words
are referenced relative to word 0. I/O driver entry names comprise three characters, the
first of which is the dollar sign ($); the second, a number {0 through 9); and the third,
a letter or number.

Word 0 contains the number of words transferred for an 1/0 reading or writing request, or
the number of files or records remaining to be skipped for a skip request. The 1/0 driver
puts this information into word 0O of the DST.

WORD 1

Modified by: 1/0 driver
Used by: 170 control and user programs

Bits O through 2 of word 1 are examined by 1/0 control during a status request call to
determine the appropriate return as follows:

Value Meaning

0 Normal return

1 Error

2 End of file

3 End or beginning of device

4 Last operation not complete (busy)

Bits 3 through 15 (17 on 18-bit computers) are not examined by 1/0 control. However, for
uniformity.in the 170 driver, the following meanings are ascribed to the bit positions:

Bit Meaning

3-5 Temporary storage for 1/0 driver
6 Last operation was rewind

7 Odd-length record detected

8 Error detected

MOS 12-3

user-coded 1/0 drivers

Bit ‘Meaning

9 Unit ready

10 Unit rewinding

11 End of file detected

12 End of device detected

13 Beginning of device detected

14 Last operation ignored

15 Status not valid

16 Not used (18-bit computers only)

17 Status not valid (18-bit computers
only)

WORDS 2 and 3

Modified by: Not modified
Used by: 170 control and user programs

Words 2 and 3 contain the four-character ASCII name of the peripheral device for the 1/0
driver .

WORD 4

Modified by: 170 control and 1/0 driver
Used by: 1/0 control and 170 driver

When word 4 is positive, 170 control is advised that an 1/0 request is in process or
pending and a new 1/0 request must wait. When word 4 is negative, 170 control is
notified that the 1/0 driver is available. When an /0 request is made for an available 170
driver, 170 control puts the function code from the user’s 170 request in bits 7 through 0
of word 4, making it positive.

WORD 5
Modified by: 170 control and 170 driver
Used by: 170 driver

When an 170 request is made for an |1/0 driver and no other request is pending (word 4
negative), 170 control puts the count (if greater than zero) from the user's 1/0 cail in
word 5.

WORD 6

Modified by: 170 control and {/0 driver
Used by: 170 driver

When an 1/0 request is made for an 1/0 driver and no other request is pending (word 4
negative), 1/0 control puts the data address from the user's 170 call in word 6. The most
significant bit is always zero.

MOS 12.4

user-coded 1/O drivers

WORDS 7 AND 8

Modified by: Not modified
Used by: 170 control

Words 7 and 8, which contain the same address, are used as follows:

a. Before 170 control passes to the |/0 driver to perform the requested 1/0
function, it transfers to the 1/0 driver by a Jump and Mark Indirect (JMPM*)
instruction to the address of word 7. Then, the /0 driver determines if the
peripheral device is available. If so,.it sets a positive condition code in the A
register, permitting 1/0 control to enter the 1/0 driver a second time to process
the request. If the device is unavailable, the A register is set to zero, signaling
1/0 control not to make an 1/0 request at this time.

b. Every time a call requesting status is made to I/0 control, it checks the 1/0
driver request flag (most significant bit of word 4). If no request is in process,
control passes to the 1/0 driver with a JMPM* to the address given in word 7.
The 170 driver sets the condition code in the A register before returning control
to 170 control. y

WORD 9

Modified by: Not modified
Used by: 170 control

If the 170 driver can read, word 9 contains the address used by /0 control when reading
is requested of this |/0 driver. If the 170 driver cannot read, word 9 is zero.

To read, 170 control passes to the 170 driver with the X register pointing to word 0 of the
170 driver DST. When the reading is complete, the 1/0 driver returns control to |1/0
control with a Jump Indirect (JMP*) instruction to the address in word 7.

The 1/0 driver sets a condition code in the A register before returning to 1/0 control. A
negative A register indicates that more than 500 microseconds were spent in the 1/0
driver, and the physical unit table ($PUT, section 2) is scanned again because another 1/0
operation may have finished in the interim. A zero in the A register indicates that the 1/0
driver is busy. A positive A register (nonzero) indicates that the 1/0 driver is free.

WORD 10

Modified by: Not modified
Used by: 170 control

If the 1/0 driver can write, word 10 contains the address used by 1/0 control when writing
is requested of this [/0 driver. If the 1/0 driver cannot write, word 10 is zero.

MOS 126

user-coded 1/0 drivers

To write, 1/0 control passes to the 1/0 driver with the X register pointing to word 0 of the
170 driver DST. When writing is complete, the [/0 driver returns control to 170 control
with a JMP* to the address in word 7.

The |70 driver sets a condition code in the A register before returning to 1/0 control. A
negative A register indicates that more than 500 microseconds were spent in the 1/0
driver, and the PUT is scanned again because another 170 operation may have finished
in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A
register (nonzero) indicates that the /0 driver is free.

WORD 11

Modified by: Not modified
Used by: 1/0 control

If the 170 driver can write an end of file, word 11 contains the address used by 1/0
control when a write-end-of-file is requested of this 170 driver. If the /0 driver cannot
write an end of file, word 11 is zero.

To write an end of file, 1/0 control passes to the 170 driver with the X register pointing to
word O of the 170 driver DST. When the writing is complete, the 170 driver returns control
to 170 control with a JMP* to the address in word 7.

The 1/0 driver sets a condition code in the A register before returning to 170 control. A
negative A register indicates that more than 500 microseconds were spent in the /0
driver, and the PUT is scanned again because another 1/0 operation may have finished
in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A
register (nonzero) indicates that the 1/0 driver is free.

WORD 12

Modified by: Not modified
Used by: 170 control

If the |/0 driver can rewind, word 12 contains the address used by 1/0 control when
rewinding is requested of this 170 driver. |f the 170 driver cannot rewind, word 12 is zero.

To rewind, 1/0 control passes to the |/0 driver with the X register pointing to word 0 of
the 170 driver DST. When rewinding is complete, the 1/0 driver returns control to 170
control with a JMP* to the address in word 7.

The 1/0 driver sets a condition code in the A register before returning to 1/0 control. A
negative A register indicates that more than 500 microseconds were spent in the 170
driver, and the PUT is scanned again because another I/0 operation may have finished
in the interim. A zero in the A register indicates that the 170 driver is busy. A positive A
register (nonzero) indicates that the 1/0 driver is free.

MOS 12-6

user-coded 1/0 drivers

WORD 13

Modified by: Not modified
Used by: 170 control

If the /0 driver can skip files, word 13 contains the address used by 1/0 control when
file-skipping is requested of this 1/0 driver. If the 1/0 driver cannot skip files, word 13 is
zero.

To skip files, 170 control passes to the 1/0 driver with the X register pointing to word 0O of
the 1/0 driver DST. When the file-skipping is complete, the 1/0 driver returns control to
170 control with a JMP* to the address in word 7.

The 1/0 driver sets a condition code in the A register before returning to 1/0 control. A
negative A register indicates that more than 500 microseconds were spent in the 1/0
driver, and the PUT is scanned again because another |/0 operation may have finished
in the interim. A zero in the A register indicates that the |/0 driver is busy. A positive A
register (nonzero) indicates that the 1/0 driver is free.

WORD 14

Modified by: Not modified
Used by: 1/0 control -

If the 170 driver can skip records, word 14 contains the address used by the 170 control
when record-skipping is requested of this 1/0 driver. If the 1/0 driver cannot perform a
skip record function, word 14 is zero.

To skip records, 1/0 control passes to the 170 driver with the X register pointing to word 0
of the 1/0 driver DST. When the record-skipping is complete, the 1/0 driver returns
control to 1/0 control with a JMP* to the address in word 7.

The /0 driver sets a condition code in the A register before returning to 1/0 control. A
negative A register indicates that more than 500 microseconds were spent in the |/0
driver, and the PUT is scanned again because another 1/0 operation may have finished
in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A
register (nonzero) indicates that the |/0 driver is free.

WORD 15

Modified by: Not modified
Used by: 170 control

If the 170 driver can perform a function not otherwise covered, word 15 contains the
address used by |/0 control when a function is requested of this 170 driver. If the 1/0
driver cannot perform such a function, word 15 is zero.

MOS 12-7

user-coded 1/0 drivers

To perform the function, 1/0 control passes to the 1/0 driver with the X register pointing
to word O of the 170 driver DST. When the function is complete, the |70 driver returns
control to 1/0 control with a JMP* to the address in word 7.

The 170 driver sets a condition code in the A register before returning to 170 control. A
negative A register indicates that more than 500 microseconds were spent in the 1/0
driver, and the PUT is scanned again becauge aqqther |1/0 operation may have finished
‘in the interim. A zero in the A register indicates that the 1/0 driver is busy. A positive A
register (nonzero) indicates that the 170 driver is free.

v0S 12-8

6-CL SOW

Peripheral Device

Magnetic tape
(controller 0, unit 0)
Magnetic tape
(controller 0, unit 1)
Magnetic tape

(controller 0, unit 2) -

Magnetic tape
(controller O, unit 3)
Magnetic tape
(controller 1, unit 0)
Magnetic tape
(controller 1, unit 1)
Magnetic tape
(controlier 1, unit 2)
Magnetic tape
(controller 1, unit 3)
Magnetic tape
(controller 2, unit 0)
Magnetic tape
(controller 2, unit 1)
Magnetic tape
(controller 2, unit 2)
Magnetic tape
(controller 2, unit 3)

Table 12-1. 1/0 Drivers and Peripheral Devices

Device Name

MTO0O

MTO1

MT02

MTO3

MT10

MT11

MT12

MT13

MT20

MT21

MT22

MT23

Entry Name
$00

$01

$02

$03

$04 :
$05

$06

$07

$08

$09

$0A

$0B

Device Address

010

010

010

010

011

011

011

011

012

012

012

012

si8Aup O/| papoa-iesn

0L-ZL SOW

Table 12-1. 1/0 Drivers and Peripheral Devices (continued)

Peripheral Device

Magnetic tape
(controller 3, unit 0)
Magnetic tape
(controller 3, unit 1)
Magnetic tape
(controller 3, unit 2)
Magnetic tape
(controller 3, unit 3)
Teletype keyboard/
printer 1

(controller 0, unit 0)
Teletype paper tape
punch 1

(controller 0, unit 0)
Teletype paper tape
reader 1

(controller 0, unit 0)
Teletype keyboard/
printer 2

(controller 1, unit 0)
Teletype paper tape
punch 2

(controller 1, unit 0)
Teletype paper tape
reader 2

(controller 1, unit 0)

Device Name

MT30

MT31

MT32

MT33

TY0O

TPOO

TROO

TY10

TP10

TR10

Entry Name
$0C

$0D
$0E
$OF

$0G

$0H

$0l

$0J

$0K

$OL

Device Address

013
013
013
013

001
001

001

siaALp O/] Papos-1asn

L1-Z¢lL SON

Table 12-1. 1/0 Drivers and Peripheral Devices (continued)

Peripheral Device Device Name Entry Name Device Address
Card reader 1 CROO $OM 030
Card reader 2 CR10 $ON
High-speed paper tape PTOO $00 037
reader/punch 1

High-speed paper tape PT10 $oP 037
reader/punch 2 (unformatted)

Line printer 1 LPOO $0Q 035
Line printer 2 LP10 $0R
Card punch 1 CPOO $0S 031
Card punch 2 CP10 $0T
Drum DR00O $10 014
(controller O, unit 0) . . .
Drum DR0O9 $19 014
(controller 0, unit 0)

Disc DK00 $10 015
(controller O, unit 0) . . (620-40/41)
. . . 016

. . . (620-39)
Disc DK09 $19
(controller O, unit 0)

Disc DK10 $20 015
(controller O, unit 1) . . (620-40/41)
. . 016

. . . (620-39)
Disc DK19 $29
(controller O, unit 1)

SI0ALIP O/| PAPO-iasn

ZL¢l SONW

Table 12-1.

Peripheral Device

Disc
(controller 1, unit 0)

Disc

(controller 1, unit 0)
First buffer interlace
controller

Second buffer interlace
controller

Third buffer interlace
controller

Fourth buffer interlace
controller

1/0 Drivers and Peripheral Devices (continued)

Device Name

DK40

DK49

Entry Name
$50

$59

Device Address

016
(620-40/41)
017
(620-39)

020-021
022-023
024-025

026-027

SIOALP O/] PEPO-188N

user-coded /O drivers

170 DRIVER PROGRAMMING EXAMPLES

Example 1

Output an alphanumeric character string to the Teletype:

$TY

$TCK

$TWR

$TWR1

NAME
DST

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

INCR
JMP*

LDA
STA
LDB
EXC
LDAI
JMPM
LDA
DAR
JAN

$TY

0

0
'TY99'
-1

0

0
$TCK
$TCK

$TWR

o

[= = ool

$TCK

-

aowm
-~ ~
- -

0401
0201
$TOAR
5.1

$TWR2

WORDS TRANSFERRED
I/0 STATUS

I/0 DRIVER NAME

I/0 FLAG AND OP CODE
COUNT PARAMETER
LOCATION PARAMETER
CHECK I/0O ADDRESS
CHECK I/O ADDRESS
UNUSED

ADDRESS OF WRITE I/0
UNUSED

UNUSED

UNUSED

UNUSED

UNUSED

TTY AVAILABILITY UNDE-
TERMINED,ASSUME READY

GET COUNT PARAMETER
STORE IT IN WORD 0
GET DATA LOCATION
INITIALIZE TTY

OUTPUT PRINT ENABLE
GET COUNT

JMP IF END OF WORD

MOS 12-13

user-coded 1/O drivers

STA 5,1
LDA 0,2 . GET DATA WORD
LRLA 3
JMPM $TOAR OUTPUT LEFT CHARACTER
LRLA 3
JMPM $TOAR OUTPUT RIGHT CHARACTER
IBR
JIMP $TWRT .
$TWR2 LDAI 0215 :
JMPM $TOAR OUTPUT CARRIAGE RETURN
LDAI 0212
JMPM $TOAR OUTPUT LINE FEED
LDAI 0204 .
JMPM $TOAR OUTPUT PRINT OFF CHAR
DECR 1 A REGISTER NEGATIVE
STA 4,1 TURN OFF REQUEST FLAG
* JMP* $TCK
$TOAR DATA 0
SEN 0101,*+4 WRITE REGISTER READY
JMP *=2 NOT READY, WAIT
OAR 1 OUTPUT A CHARACTER
JIMP * $TOAR RETURN
END

Example 2

Read binary records from magnetic tape unit O on controller 0, device address 010.

NAME $MT
* DST
$MT DATA 0
DATA 0
DATA 'MT99'
DATA -1
DATA 0
DATA 0 :
DATA $MTS CHECK I/0 ADDRESS
DATA $MTS CHECK I/O ADDRESS
DATA $MRD ADDRESS OF READ 1/0
DATA 0
DATA 0
DATA o]
DATA 0
DATA 0
* STATUS ROUTINE
$MTS DATA 0
SEN 0210,A IF MTU READY

MOS 12-14

BOT
EQOT
EOF
ERROR
NORM

$MRD

TZA

JMP * $MTS
LDA 1,1

JAN B

INCR 01

JMP* $MTS
DECR 01

STA 4,1

SEN 010, ERR
SEN 0310, EOF
SEN 0510, EOT
SEN 0610, BOT
JMP NORM
BSS 0

IAR

IAR

IAR

IAR

STA 1,1
JMP* $MTS
READ ROUTINE

LDB 6,1

EXC 010

SEN 0110,D
SEN 0210,E
JMP c

cIA 010

STA 0,2

IBR

INR 0,1

LDA 5,1

DAR

STA 5,1

JAZ E

JIMP c

LDAI 0100004
STA 1,1

TZA

JMP* $MTS
END

user-coded 1/0 drivers

SET (AR) = 0

RETURN (MTU BUSY)
GET WORD 1 OF DST
IF STATUS INVALID

SET A = 1

RETURN (MTU READY)
SET A = -1

SET WORD 4 OF DST TO
'NOT BUSY'

IF ERROR OCCURRED

IF END OF FILE READ

IF END OF TAPE FOUND
IF BEGINNING OF TAPE
INDICATE NORMAL STATUS

SET WORD 1 OF DST TO 3
SET WORD 1 OF DST TO 2
SET WORD 1 OF DST TO 1
SET WORD 1 OF DST TO O

RETURN, STATUS SET

GET START MEMORY ADDR
START MTU

IF WORD READY

IF MTU STOPPED

WAIT

INPUT WORD

STORE WORD

BUMP MEMORY POINTER
INCREMENT NO OF XFERS

DECREMENT COUNT
IF FINISHED
CONTINUE

STATUS INVALID, MTU BUSY

(AR) = 0 FOR MTU BUSY
RETURN

MOS 12-15

user-coded 1/O drivers

1/0 SUPPORT SUBROUTINES

To prevent possible data loss when several 1/0 transfers are operating concurrently, MOS
has a subroutine, 00K, for determining if enough processor time is available before
initiating an 170 operation. This subroutine is used by the 1/0 driver prior to data
transfer. The subroutine calling sequence is:

JMPM IOOK.
Upon 100K entry, the A register contains the 1/0 algorithm factor for that 1/0 device. The
170 algorithm factor depends on whether the device is operating in BIC or programmed
data transfer mode. The equations for the two types of transfers are:

Fb = (Tb/Tt) + 0.1(Tb/Tt)

Fp = (N *TC)/Tt + 0.1((N * C)/Tt)
where

Fb = 1/0 algorithm factor for BIC transfers

Fp = 170 algorithm factor for programmed transfers

C = CPU memory cycle time (microseconds)

Tt = maximum transfer rate of |/0O device (microseconds/word)
Tb = maximum transfer rate of BIC (microseconds/word)

N = number of CPU memory cycles required by data transfer

On returning from I00K, the 1/0 driver examines the A register. If the A register is
positive, the 1/0 operation can be performed. If the A register is negative, more time is
needed for the |/0 operation than is available. In the latter case, the new |/Q operation
cannot start and the driver exits to I/0 control indicating a busy device (A = 0).

Upon completion of a successful 170 operation, the 1/0 driver removes the algorithm
factor from the system timing variable by again calling I0OOK with the two's complement
of the 1/0 algorithm factor in the A register.

Example

If device A is operating with a BIC and has a data transfer rate of one word every 9.9
microseconds, and device B is operating with another BIC and has a data transfer rate of
one word every 19.8 microseconds, can device C be operated over the 170 bus if it
requires the following programmed transfers:

$1 SEN DEVC, $2 DEVICE READY
JMP *-2 NO, WAIT
$2 CIA DEVC YES, GET DATA
STA 0,1 STORE DATA IN ADDRI(X)

MOS 12-16

user-coded 1/0O drivers

INCR ous INCREMENT DATA ADDRESS
SUB EADD
JAN $1 JMP IF NOT END ADDRESS

The 1/0 algorithm factor for device A is: (4.9579.9) + 0.1(4.95/9.9) = 0.55. The I/0
algorithm factor for device B is: (4.95/19.8) + 0.1(4.95/19.8) = 0.275. The 1/0
algorithm factor for device Cis: (11.25 * 1.8)/81 + 0.1 ((11.25 * 1.8)/81) = 0.275.

The sum of the |/0 algorithm factors for devices A and B is 0.825, which is less than one.
Thus, A and B use only about 82.5 percent of the available memory cycles. However, if C
were added, the sum would be 1.1, requiring more memory cycles than available (110
percent). Therefore, C cannot be activated at this time and must wait for either A or B to
complete its operation.

I/0 STATUS MESSAGES

The operator alert subroutine is called by the 1/0 driver to advise the operator that a
peripheral device is not available. The calling sequence is:

JMPM IOAS
DATA DELY

The X register points to word 0 of the 1/0 driver. DELY is the address of a two-memory-
word data block in the 170 driver.

I0A$ examines and increments the first word of the DELY data block and returns to the
calling routine if this word is negative. If the first word is positive, I0OA$ copies the
contents of the second word into the first word and moves the name of the peripheral
device from words 2 and 3 of the |/0 driver DST into the message:

XXXx - NOT READY
This message is output at intervals of approximately 10 seconds to the Teletype printer by

the resident message-printing subroutine. 10A$ does not save any register contents when
returning to the calling routine.

MOS 12-17

user-coded 1/0O drivers

BIC CONTROL

When an 1/0 driver is controlling a device that can operate on a BIC, subroutines BIR$
and BIA$ are used. In addition, a BIC control table is defined by the driver for each 170
'device controller. A pointer to the table can be appended to the end of the DST for
reference purposes. The BIC control subroutines used by the 1/0 driver have the same
calling sequence:

CALL BIRS$ With the B register pointing
BIAS to word O of the control table

BIC CONTROL TABLE

The words in the BIC control table are defined as follows:
Word Definition

0 Contains the BIC address associated with this device (figure
12-1). Set to -01 if none.

1 Contains the BIC initial address set and used by BIRS$.

2 Contains the abnormal BIC stop flag set by BIRS. It is set
after a BIC operation in which an abnormal BIC stop occurs.

3 Contains the word count (i.e., the number of words to be
input or output through the BIC).

4 Contains the starting memory address for the BIC transfer.
5-n Contains controller commands and flag information specific to
each device.

MOS 12-18

user-coded 1/0 drivers

The controller commands are built at assembly time with the ap-
propriate device address (i.e., each controller has its own de-
vice address, hardwired).

The flag information is used by the driver to determine and
monitor such things as the direction of a skip, the type of

skip (records or files), ete.

NOTE

Both words 3 and 4 are used by the BIC routines to initiate an
operation. These words should be initialized by the driver before
BIAS$ is called.

BIR$

BIR$ determines if there is a BIC associated with the control table by testing word 0 of
the BIC control table. A negative value indicates that there is no BIC. BIR$ returns and
sets the A register negative. If word O is positive, BIR$ uses the number to build the BIC
instructions.

BIR$ determines if the BIC is busy. If the BIC is busy, BIR$ returns and sets the A
register negative. If the BIC is not busy, BIR$ continues.

BIR$ determines if an abnormal BIC stop has occurred. If it has, BIR$ returns and sets
the A register negative. If not, BIR$ returns and sets the A register positive.

NOTE
The contents of the X register are destroyed.

BIA$

BIA$ determines if there is a BIC associated with the control table by testing word 0 of
the BIC control table. A negative value indicates that there is no BIC. BIA$ returns and

sets the A register negative. If word O is positive, BIA$ uses the number to build the BIC
instructions.

BIA$ initializes the BIC and outputs the initial address from word 4 of the BIC control
table.

BIA$ adds one less than the count from word 3 of the BIC control table to the initial
address to obtain the final address, and then outputs it. BIA$ activates the BIC and
returns to the caller.

NOTE

The eontents of the X register are destroyed.

MOS 12-19

SECTION 13 - STATUS AND ERROR MESSAGES

EXECUTIVE

During operation of the executive, the following status and error messages can be posted
on the system output device:

Message

ILL DIR

READ ERR ON Si
INPUT
/ASSIGN SI=TY

/ASSIGN SI=TY

ASSIGN DIR
PARAM ERR

L=R INCOM-
PATIBLE

Cause

Invalid directive read
by executive

170 error while reading
directive

An end of file or end
of device detected
during reading on Si
file .

Either L or R parameter
missing from an /ASSIGN

R unit cannot perform
the function required
by the L unit on /ASSIGN

Action

Directive ignored. If Si

= TYO0O0, waits for input
of next directive. If SI

TYO0O, reads but ignores
St until next /JOB or
/ENDJOB.

Using the TTY, manually
input the directive that
caused the error.

System waits for operation
action. The next direc-
tive should be entered
through the TTY.

Directive ignored. If Si

= TYO0O0, waits for input
of next directive. If Si

TY00, reads but ignores
S| until next /JOB or
/ENDJOB.

Directive ignored. If SI

= TYO0O0, waits for input
of next directive. If Si

TY0O, reads but ignores
S| until next /JOB or
/ENDJOB.

MOS 13-1

status and error messages

Message

CANNOT ASSIGN
St=DUM

L.U.xxxx MAY NOT
BE REASSIGN

ILL LUN/NAME
USED IN DIR

LUN.xx END/BEG
OF DEV ERR

CPY INPT UNIT
UNABL TO READ

CPY OUTPT UNIT
UNABL TO WRTE

CPY READ ERR

MOS 13-2

Cause

Attempt to assign system
input file to a dummy
physical device

Attempt to reassign SO
or SF logical ,unit

Invalid parameter on
/10LIST

Physical end or be-
ginning of device en-
countered on unit xx
prior to completion of
certain executive
functions

Invalid /COPYA or
/COPYB (L unit cannot
be read)

Invalid /COPYA or
/COPYB (R unit cannot
be written on)

170 reading error during
copying

Action

Directive ignored. If SI

= TYO0O, waits for input
of next directive. If S|

TYO00, reads but ignores
S| until next /JOB or
/ENDJOB.

Directive ignored. If SI

= TY0O0, waits for input
of next directive. If SI

TY00, reads but ignores
SI until next /JOB or
/ENDJOB.

List terminated. If Sl

= TYO00, waits for input
of next directive. If Sl

TY0O, reads but ignores
S| until next /JOB or
/ENDJOB.

Directive ignored. If SI

= TY00, waits for input
of next directive. If SI

TYO0O, reads but ignores
S| until next /JOB or
/ENDJOB.

Directive ignored. 1f Sl

= TY0O, waits for input
of next directive. If SI

TYO00, reads but ignores
SI until next /JOB or
/ENDJOB.

Directive ignored. If S|

= TY0O0, waits for input
of next directive. if Sl

TYO00, reads but ignores
SI until next /JOB or
/ENDJOB.

Copying terminated. Read
next directive from Sl

CPY WRTE ERR

END OF CPY
OUTPT DEV

ILL LOAD/ULOAD
DIR PARAM xx

xx =N INVALID

ILL F/A DIR
PARAM

NO/EOF, NO LOAD
ATTMPTD

SYSTEM LOADER

170 writing error during
copying -

Physical end of device
encountered during
copying

Undefined parameters én-
countered during proc-
essing of /LOAD or
/ULOAD, where xx = .
first two characters of
invalid parameter

One or more of the
following parameters
out of range on /LOAD
or /ULOAD:

0 < RP < core size

0 < RC < core size
0< RI< 0777

0< RL< 03777

Invalid parameter on
assembler or FORTRAN
control directive

No /EOF after an
assembly or compila-
tion, therefore, no
end of file on GO
file.

status and error messages

Copying terminated. Read
next directive from SI.

Copying terminated. Read
next directive from SI.

Directive ignored. If Si

= TY00, waits for input
of next directive. If SI

TYO00, reads but ignores
S| until next /JOB or
/ENDJOB.

No loading attempted.

Directive ignored. If S|

= TYOQO, waits for input
of next directive. If SI

TY0O0, reads but ignores
S| until next /JOB or
/ENDJOB.

No loading attempted

During loading, the events listed abort the loading procedure. in this case, if SI = TY0O,
MOS waits for the next directive. If Sl TYOQO, Sl is read but ignored until the next /JOB
or /ENDJOB. When a map is requested, it is output prior to the termination message. For
size and missing program errors, the names of all programs causing the error are also

listed.

MOS 13-3

status and error messages

Message

LDR READ ERR

L.DR RECORD ERR

LDR CKSM ERR

LDR SEQ ERR

LDR TEXT ERR

LDR DATA ERR

LDR SIZE ERR

LIT POOL OVRFLW ERR

LDR COMMON ERR

MISSG PGRMS ERR

LDR INITZTN ERR

NO EXCTN ADDR

MOS 13-4

Cause

The loader encountered a reading error while
attempting input of the object tape.

The loader input an invalid type of record.

The loader input an object text record with
an invalid check-sum.

The loader input an object text record with
an invalid sequence number.

The program object text contains an illegal
or erroneous loader code.

The program attempted to overlay the loader,
loader tables, or resident program; or

the assembler attempted to overlay its

170 drivers.

Program memory requirements exceed available
program/common storage.

Program literal requirements exceed available
literal storage.

The programs contain conflicting size
definitions for a common block.

Loading requested named programs not
found on either the binary or system
file input devices.

Errors during loading of system loader.
Address to begin execution of the loaded

program is missing from the object pro-
gram.

1/0 CONTROL

status and error messages

During program execution, calls to 170 control for input/output functions containing one
of the following errors cause posting of a run-time error. In this case, if SI = TY00, MOS
waits for the next directive. f SI= TY0O0, Sl is read but ignored until' the next /JOB or

/ENDJOB.
Message

ILL LUN/NAME USED
IN DIR

10CS CALL TO
UNASSGND LUNxx

Cause

An undefined logical unit specified as a
parameter in an 1/0 control directive.

An attempt to call an 170 driver not in
memory (i.e., an unassigned logical unit
specified by xx).

LANGUAGE PROCESSORS

During assembly and compilation, the following errors associated with language
processors cause posting of an error message.- In this case, if S| = TY00, MOS waits for
the next directive. If SI= TY0O, Sl is read but ignored until the next /JOB or /ENDJOB.

Message

PROCSSR ERR JOB
ABORTD

PROCSSR RCRD COUNT
ERR

LUN.xx SYS CNTRL DIR
INPT ERR

LUN.xx EOF ERR

LUN.xx END/BEG OF

LUN.xx 1/0 ERR

Cause
Language violation.
The number of source statements read during
pass 2 is not equal to that of pass 1.
A control directive (i.e., a slash in
column 1) was read from unit xx prior

to an END statement.

An end of file was read from unit xx prior
to an END statement.

The physical end or beginning device was
encountered on unit xx prior to an END

statement.

An unrecoverable 1/0 error occurred on unit
xx during assembly or compilation.

MOS 13-5

status and error messages

DAS MR

ASSEMBLER

During assembly, the source statements are checked for syntax errors and usage. In
addition, errors can occur where the program cannot determine the correct meaning of
the source statement.

When an error is detected, the assembler outputs an error code following the source
statement containing the error, on the LO, and continhues to the next statement.

The assembler error messages (codes) are:

Code

*AD

*DC

DD

“FA

#IL

*NR

MOS 13-6

Definition
An address expression is in error.
A decimal character appears in an octal constant.

There is an invalid redefinition of a symbol or the
location counter.

The symbolic source statement is incorrectly formed.
An expression contains an illegal construction.
A floating point number contains a format error.

The first non-blank character of the source statement
is invalid; the statement is not processed.

No memory space available for the addition of an entry
to the assembler's tables.

No symbol in the label field of a SET, EQU, MAC or FORM
directive statement. No symbol in the label or variable
field of an OPSY directive statement. No symbol in the
variable field of a NAME directive statement.

STALUD Al TIHT U 111T3%uygws

*QP The instruction field is undefined; two No Operation

(NOP) instructions are generated in the object program.
The remainder of the statement is not processed. lllegal
nesting of DUP or MAC directive statements also causes

this error.
*QQ lllegal use of prime ().
*R A relocatable item was encountered in the place where

an absolute item was expected.

“SE The symbol in the location field has a value during
pass 2 that is different than the value used in pass 1.

*SY An expression contains an undefined symbol.
*SZ The expression value is too large for the size of the

subfield or a DUP statement specifies that more than
three symbolic source statements are to be assembled.

*TF Undefined or illegal index register specification.
*UC An undefined character in an arithmetic expression.
*UD Undefined symbol in variable field of USE directive.
*XR Address out of range'for indexing spécification.

= Ilegal use of a literal.

-

MOS 13-7

SLdLUS 4na error message

FORTRAN IV COMPILER AND RUNTIME
COMPILER

During compilation, source statements are checked for such items as validity, syntax, and
usage. When an error is detected, it is posted on the LO beneath the source statement.
The errors marked T terminate binary output.

All error messages are of the form
ERR xx c(1)-c(16)

where xx is a number from 0 to 18 (notification error), or T followed by a number from 0
to 9 (terminating error); and c(1)-c(16) is the last character string (up to 16) encountered
in the statement being processed.. The right-most character indicates the point of error
and the @ indicates the end of the statement. The possible error messages are:

Notification Error Definition

lllegal character input -
Construction error

Usage error

Mode error

lllegal DO termination
Improper statement number
Common base lowered
lllegal equivalence group
Reference to nonexecutable
statement

RN DWN=O

9 No path to this statement

10 Multiply defined statement
number

11 Invalid format construction

12 Spelling error

13 Format statement with no
statement number

14 Function not used as variable

15 Truncated valtue

16 Statement out of order

17 More than 29 named common
regions

18 Noncommon data

.MOS 13-8

status and error messages

Terminating Error Definition
T1 Construction error
T2 Usage error
T3 Data pool overflow
T4 lllegal statement
T5 . Improper use
T6 Improper statement number
T7 Mode error
T8 Constant too large
T9 Improper DO nesting

RUNTIME

When an error is detected during runtime, a message is posted on the SO device and the
job is aborted. The messages and their definitions are:

Message Cause

ARITH OVFL Arithmetic overflow

GO TO RANGE Computer GO TO out of range

FUNC ARG Invalid function argument (e.g., square root of

negative number)

FORMAT Error in FORMAT statement

MODE Mode error (e.g., outputting real array with |
format)

DATA Invalid input data (e.g., inputting a real number

from external medium with | format)

170 170 error (e.g., parity, EQF)

MOS 13-9

status and error messages

FILE EDITING PROGRAM

During the file editing program, the foliowing errors can occur:

Message

INPUT FMT ERR n

CATL OFLO

OUTPUT EOM

END INPUT-FILE
filename NOT
FOUND

FILE filename
NOT FOUND

CTRL REC
ERROR n

END INPUT

MOS 13-10

Cause

An unrecognizable record
read from Sl (n = 1)
or from the source file,
Pl, (n = 2)

More than 20 entries in
the catalog

The end of media de-
tected on PO

The second filename
specified in a COPY con-
trol record not on the
old source library (Pl)

The filename is an EDIT
control record, or the
first filename in a COPY
control record is not on
PI.

A control record is mis-
placed (n = 1), a re-
quired parameter is
missing (n = 2), con-
tains too many param-
eters (n = 3), or con-
tains a parameter format
error (n = 4)

An EOF or MOS control

Action

No action taken on PO.

The PO backspaces to the
previous file, two EOFs
are written and the job
terminated.

Same as above.

Two EOFs are written on
PO and the job termin-
ated.

The control directive is
ignored and the job con-
tinues.

If n = 1, action is de
scribed under INPUT FMT
ERRn. If n = 2. 3. pr
4, the control record is
ignored and the program
continues.

Same as for INPUT FMT

Message

SEQ. OFLO

aaannnn NOT
FOUND

SEQ. ERROR
aaannnn-
aaannnn

CTRL. SEQ.
ERROR

Cause

directive (/card) is

read when a file editing
control directive was
expected.

While resequenciﬁg a
file, more than 9,999
data records are read.

While searching a file

by internal sequence
number, a sequence num-
ber higher than the one
being searched for is
encountered.

While searching a file
by internal sequence
number, an out-of-
sequence condition is
found.

An internal sequence
number or external line
number lower than the
previous one is in an
ADD, DEL, or CHG control
record.

status and error messages

Action

ERR n.

Sequencing restarts at
zero and the program con-
tinues.

NOTE: The records in
this file can no longer be
accessed by internal se-
quence numbers.

If the desired sequence
number is the first number
of a DEL or RPL group, or or
is the sequence number
specified in an ADD control
record, the higher number

is used in its place.

If the desired sequence
number is the second num-
ber of a DEL or RPL group,
the record preceding the
record containing the
higher number is taken to
be the last record of the
group.

Same as for INPUT FMT
ERR n.

Same as for INPUT FMT
ERR n.

MOS-13-11

status and error messages

SYSTEM MAINTENANCE PROGRAM

During the system maintenance operation, the following errors can occur:

Message

CHECKSUM ERROR name

READ ERROR name

WRITE ERROR name

NO NAME name

RECORD SIZE name

LOADER CODE ERROR
name

SEQUENCE ERROR name

STRUCTURE ERROR name

MOS 13-12

Cause

There is a checksum error in a record of
the named program.

An error indication is received from /0
control after reading a record of the
named program.

An error indication is received from 1/0
control after writing a record of the
named program.

The named program contains no entry name
in the binary object module.

The size of a binary record as determined
by 170 control for the named program is
not 60 words (53 for the 622).

The binary loader text for the named pro-
gram contains a code or subcode not recog-
nized by the loader.

A sequence number in the binary object
module for the named program is incorrect.

There is a nonbinary record in the named
object module.

status and error messages

After an error message is logged, enter one of the following statements:

Statement Definition

RCRD Reread the last-record. If the error occurred on a
magnetic tape, drum, or disc unit, the system main-
tenance program backspaces the record. Otherwise,
manually position the record so it can be reread.

PGRM Restart the program. If the error occurred on a
magnetic tape, drum, or disc unit, the program
backspaces to the beginning of the program. Other-
wise, manually position the program so it can be
reread.

SMAIN Restart the system maintenance program.

Key-in errors result in a repeat of the error message:

The system then waits for a correct entry.

MOS 13-13

status and error messages

SYSTEM PREPARATION

During system preparation, the following errors can occur. The first two can be corrected
by reentering the information ncted.

Message

ILLEGAL PREP
DIRECTIVE

There is a syntax error
in the control directive

Cause Action

Reenter the directive
through the TTY.

just read.

DEVICE NAME NOT
VALID ENTER DE-
VICE NAME FOR xx

There is a syntax error
in a peripheral device
name.

Reenter the name through
the TTY.

The errors listed below are corrected by the procedure given at the end of the list.

Message

SEQUENCE ERROR name

STRUCTURE ERROR name

LITERAL POOL OVERFLOW
name

COMMON ERROR name

PROGRAM SIZE ERROR
name

MEMORY SIZE ERROR
name

MISSING PROGRAMS
ERROR name

MOS 13-14

Cause

A sequence ‘number in_the object module for
the named program is incorrect.

There is a nonbinary record in the named
object module.

The size allocated to the literal pools is
exceeded during the generation of the
named absolute module.

The size of a common block is illegally
redefined during the generation of the
named absolute program.

~

The size of the named absolute program
exceeds the available memory.

The tables internal to the system prepara-
tion program during the generation of the
absolute program named exceed the available
memory.

During the generation of the absolute pro-
gram named, there is an external reference
that cannot be satisfied before encountering
ENDABS.

NO EXECUTE ADDRESS
name

CHECKSUM ERROR name

READ ERROR name

WRITE ERROR name

NO NAME name

LOADER CODE ERROR
name

status and error messages

No prdgram execution address is found for
any program during the generation of the
absolute program named.

There is a check-sum error in a record of
the named program.

An error, end, or beginning of device is
received from 1/0 control after a reading
operation for the named program.

An error, end or beginning of device, or
end of file is received from 1/0 control
after a writing operation for the named
program.

The named program contains no name in the
object module.

The object module for the named program
contains a code or subcode not recognized
by the loader.

After an error message is logged, enter one of the following statements:

Statement

RCRD

PGRM

Definition

Reread the last record. If the error occurred on

a magnetic tape, drum, or disc unit, the system
preparation program backspaces the record. Other-
wise, manually position the record so it can be
reread. This procedure does not apply to errors
during ABS processing.

Restart at the beginning of the current binary
loader text program. If the error occurred on a
magnetic tape, drum or disc unit, the system prepa-
ration program backspaces to the beginning of the
program. Otherwise, manually position the program
so it can be reread.

Key-in errors result in a repeat of the error message:

The system then waits for a correct entry.

SECTION 14 - MOS FORMATS

ABSOLUTE MODULE FORMAT

Absolute modules are created by the systém preparation program to construct the system
file. The modules are made up of text and string records.

Word 1 of each record is a control word, as follows:

Bit Binary Value . _Definition
16-17 - 622-series computers only: unused
15 0 Verify the record check-sum

1 Suppress check-sum verification
13-14 11 Binary record

00-10 Nonbinary record
12 0 First record of a module

1 Not the first record of a module
11 0 Last record of a module -- execu-

tion address in the word
following the last word of

. text

1 Not the fast record of a module
10 0 Text record

1 String record
9 - Unused
8 0 Absolute module

1 Not an absolute module (e.g., relo-

catable object module)

0-7 Any Sequence number

Word 2 contains the exclusive-OR check-sum of words 1 and 3 through 60.

Word 3 contains zeros when the first record of a module. When not the first record, it
contains text. '

Words 4 through 7 in the first record of a module contain the module (program) name as
left-justified, blank-filled ASCIH characters. When not in the first record, these words
contain text.

Words 8 through 11 in the first record contain the creation date of the module (program)
in ASCIt characters. When not in the first record, these words contain text.

Words 12 through 60 contain text.

Text data on text records (word 1, bit 10 = 0) is organized into a variable number of
variable length blocks as follows:

MOS 14-1

absolute module format

Word Contents

3 Number of words of text that follow (n-1) in block 1

4 Starting load location for the text that follows in
block 1

5 Text word 1 in block 1

44n Text word n in block 1

5+n Number of words of text that follow (n-1) in block 2

6-n Starting foad location for text that foliows in block 2

7-n Text word 1 in block 2

6+n+n’ Text word n in block 2

.

.

A text record can contain a number of text words equal to or less than the capacity of one
card, i.e., up to 57 words. However, it will never contain a partial block. When a record is
not full, the last number of words of the text minus one value is negative to indicate the
logical end of the record.

String data on string records (word 1, bit 10 = 1) is organized into a variable number of
variable length blocks of information, as follows:

Word Contents

3 Number of words of string entry points minus
one (n-1) on this record.

4 String entry point 1

5 String reference 1, 1

4-m One’s complement of string reference 1,m

5-m String entry point 2

6-m String reference 2,1

6-m-m’ One's complement of string reference 2,m

MOS 14-2

OBJECT MODULE FORMAT

Object modules generated by the MOS. language processors result from assembly or
compilation. The modules are input by the MOS loader and are bound together into an
executable program.

The first record of the module contains the size of the program, an eight-character
identification, and an eight-character date. Entry name addresses, if any, appear as the
first data field items of the object module. .

RECORD STRUCTURE
Sixteen-Bit Computers

Object module records have a fixed length of sixty 16-bit words. Word 1 is the record

control word. Word 2 contains the exclusive-OR check-sum of word 1 and words 3 to 60.

Words 3 to 11 can contain a program identification block (optional). Words 12 to 60 (or 3
to 60 if there is no program identification block) contain data fields.

Eighteen-Bit Computers

Object module records have a fixed length of fifty-three 18-bit words. Word 1 is the record
control word. Word 2 contains the exclusive-OR check-sum of word 1 and words 3 through
53. Words 3 through 11 can contain a program identification block (optional). Words 12
through 53 (or 3 through 53 if there is no program identification block) contain data
fields.

Table 14-1 illustrates record-control word formats.

PROGRAM IDENTIFICATION BLOCK

The program identification (ID) block appears in words 3 to 11 of the starting record of
each module. Word 3 contains the program size, words 4 to 7 contain an ASCIl eight-
character program identification, and words 8 to 11 contain an ASCIl eight-character
date. The program 1D is the job name at the time that the object module is assembled.

DATA FIELD FORMATS

Data fields contain one-, two-, three-, or four-word entries. One-word entries consist of a
control word; two-word entries consist of a control word and a data word; three-word
entries consist of a control word and two data words; and four-word entries consist of a
control word, two name words, and a data word. Data words can contain instructions,
constants, chain addresses, entry addresses, and address offset values.

MOS 14-3

object module format

Table 14-1. Record Control Word Format

Bit Binary Value Meaning
16-17 00 Undefined (18-bit computers only)
15 0 Verify check-sum
1 Suppress check-sum
13-14 11 Binary record
00-10 Nonbinary record
12 0 First record of module
1 Not the first record
11 0 Last record of module
1 Not the !ast record
10 0
9 0
8 0 Not a relocatable module (i.e., absolute)
1 Relocatable module
0-7 Sequence number (modulo 255)

MOS 14-4

object module format

LOADER CODES

Loader codes, which have the following format, are among the data in an object module.

17 16 15 4 13 12 1 .10 9 8 7 6 543 210

622/1i Code Subcode " Pointer Name
Code Values Meaning

00 Refer to subcode for specific action.

01 Undefined.

02 Add the value of the selected pointer to the data word

before loading.

03 Add the value of the selected pointer to the first data
word (literal value) and enter the sum in the direct
literal pool if bit 11 of the second data word is zero.
Otherwise, enter it in the indirect literal pool. Add
the address of the literal to the second data word be-

fore loading.
04 Load the data word(s) absolute. Bits 12 through O indi-
cate the number of words minus one (n-1) to load.
05-07 M Undefined.
Subcode Values Meaning
00 Ignore this entry (one word only).
01 Set the loading address counter to the sum of the

specified pointer plus the data word.

02 Chain the current loading address counter value to
the chain whose last address is given by the sum of
the selected pointer plus the data word. Stop chaining
when an absolute zero address is encountered.

03 Complete the postprogram references by adding to each
address the sum of the-selected pointer plus the data
word. ’

04 Undefined.

MOS 14-5

object module format

05

06

07

010

011

012

013

014017
Pointer Values
00

01

02

03-036

037

Name Format

Names are one to six (six-bit) characters, starting in bit 3 of the control word and ending
with bit O of the second name word. Only the right 16 bits of the two name words are

used.

EXAMPLE

The following is a sample program with description of the object module format after

Load the 1/0 driver currently associated with the
logical device number specified by the sum of the
selected pointer plus the data word.

Undefined.

Set the program execution address to the sum of the
values of the selected pointer plus the data word.

Define the entry name with entry location as equal to
the value of the selected pointer plus the data word.

Define a region for the pointer whose size is given
in the data word. If the entry name is not blank, de-
fine the entry point as the base of the region.

Enter a load request for the external name. The

chain address is given by the sum of the selected
pointer plus the data word.

Enter the loading address of the external name in the
indirect literal pool. Add the address of the lit-

eral plus the value of the selected pointer to the

data word (command) before loading.

Undefined.

Meaning
Program region.
Postprogram region.
Blank common region.

Labelled COMMON regions.

Absolute (no relocation).

assembly and the core image after loading.

10S 14-6

object module format

Source Module

NAME '~ SUBR
EXT BBEN
SUBR ENTR ’
LDA* SUBR
CALL BBEN
STA TIME
JAN DONG
LDA =
CALL BBEN
DONG INR SUBR
JMP * SUBR
TIME BSS I
END

Object Module

060400 Record control word (first and last record, verify check-sum se-
quence number 0)

157631 Check-sum word.
(Begin program tD block)

000016 Program size (exclusive of FORTRAN COMMON, literals, and indi-

rect address pointers).
142730 Identification in ASCIl (assume this program was labeled
140715 EXAMPLE).
150314
142640
131263 Date of creation in ASCIl (assume assembled 03-10-69)
126661
130255
133271

(End program 1D block)

010000 Define entry name SUBR at relative 0 (code 0, subcode 010,
000647 pointer 0, name SUBR, and data word 0).

054262

000000

100000 Enter absolute data word 0 in memory at relative 0.

000000

MOS 14.7

uRject moaule rormat

060000
100000
017000

100000
002000

100000
000000

100000
054010

100000
001004

040000
000012

060760
000002
010000

100000
002000

040000
000003

060000
000000
047000

100000
001000

040000
100000

001000

012003
000212
024556

A0S 14-8

Enter literal (indirectly addressed relative 0) in indirect
pointer pool, add address of pointer to load 017000 and enter
memory at relative 1.

Enter absolute data word 02000 in memory at relative 2.
Enter absolute data word. 000000 in memory at relative 3.
Enter absolute data word 0540i0 in memory at relative 4.
Enter absolute data word 01004 in memory at relative 5.
Enter relative data word 012 in memory at relative 6.

Enter literal (absolute 2) into literal pool, add address
of literal to load command 010000, and enter in memory at
relative 7.

Enter absolute data word 02000 in memory at relative 010.
Enter relative data word 03 in memory at relative 011.

Enter literal (relative Q) into indirect pointer pool, add
address of literal to increment command 047000, and enter
in memory at relative 012.

Enter absolute data word 01000 in memory at relative 013.
Enter relative data word 0100000 in memory at relative 014.
Set loading location for next command, if any, to relative
016.

Enter load request for external name BBEN and chain entry

address to relative O11.
000011

(The remaining words of this record contain zero.)

Core Image

object module format

Assume the program originates at 0500, the literal pool limits are 0200-0400, and BBEN

is loaded at 0516.

0200
0201

.

0377

0500
0501
0502
0503
0504
0505
0506
0507

0510
0511
0512
0513
0514
0515
0516

100500
000500

000002

000000
017200
002000
000516
054010
oo1004
000512
010377

002000
000516
047201
001000
100500

DATA
DATA

DATA

ENTR
LDA*
JMPM

STA
JAN

LDA
JMPM

INR*
JMP

BSS
BSS

0500
0500

0200

516
0515

0512
0377

0516
0201

0500

MOS 14-9

object module format

The following six-bit codes are used by the loader in building object modules. The codes
define names created by NAME, EXT, and /JOB directives.

Character Octal Character Octal Character Octal
@ 40 \' 66 + 13
A 41 w 67 , 14
B 42 X 70 - 15
C 43 Y 71 . 16
D 44 4 72 / 17
E 45 [73 0 20
F 46 \ 74 1 21
G a7 1 75 2 22
H 50 t 76 3 23
| 51 - 77 4 24
J 52 (blank) 00 5 25
K 53 01 6 26
L 54 - 02 7 27
M 55 03 8 30
N 56 $ 04 9 31
0 57 05 : 32
P 60 & 06 ; 33
Q 61 ' 07 < 34
R 62 (10 = 35
S 63) 11 > 36
T 64 # 12 ? 37
U 65

10S 14-10

DATA FORMAT

This appendix explains the formats and symbols used by MOS for storing information on
cards and paper tape. .

PAPER TAPE

Information stored on paper tape is either binary or alphanumeric. It is separated into
records (blocks of words) by three blank frames. The last frame of each record contains
an end-of-record mark (1-3-4-8 punch).

Binary Mode

Binary information is stored with three frames per computer word (figure 14-2). Note that
channels 6 and 7 are always punched.

Alphanumeric Mode

Alphanumeric and unformatted binary information is stored with one frame per character
or one frame per 8 bits of unformatted binary data (figure 14-3). Standard ASCII-8 punch
levels are used.

Special Characters
An end of file is represented by the ASCII-8 BELL character (1-2-3-8 punch).
When paper tape is punched on a teletypewriter, the ASC!I-8 ERROR character flags
erroneous frames punched by the teletypewriter when it is turned on or off. This notifies
the TTY and paper tape reader drivers to ignore the next frame.
When alphanumeric input tapes are punched off-line on a teletypewriter, there is no
means of spacing the three blank frames after every record. The following procedure gives
a tape that can be read by the TTY reader and paper tape reader drivers:

a. Punch the alphanumeric statement.

b. Punch an end of record (RETURN on the TTY keyboard).

c. Punch three or more frames of the line-feed character.

d. Punch the next alphanumeric statement. Return to step b.

MOS 14-11

data format

CARDS

Information stored on cards is either binary or alphanumeric. Each card holds one record
of information. Hence, there is no end-of-record character for cards.

Binary Mode

Binary information is stored with sixty 16-bit words or fifty-three 18-bit words per card.
The information is serial with bit 15 of the first word in row 12 of column 1, bit 14 in row
11, etc. (figure 14-4). Note that 18-bit records occupy only the first 954 bits on the card
(i.e., the last six bits in column 80 are not used).

Alphanumeric Mode

Alphanumeric information is stored one character per card column (figure 14-5) using the
standard punch patterns.

Special Character

An end of file is represented on cards by a 2-7-8-9 punch in column 1 of an otherwise
blank card.

MOS 14-12

CHANNEL:

8 QX XQAXXQXX QXX*BBBQXX
7 k 0k kX Kk Kk Kk kK Kk K k**BBBB***
6 * X kX * kK Xk K * % ***BBBB***
5 QAXXQxxaxx QX XBBBBQXNX
4 X XXX XXX XX XXX*BBBXXX
TIMING * e ® & & » s s s *» e & & s 8
3 XX XX XXX X X X XX*BB BX XX
2 XX XXXXXXX X XXBBBBXXNX
1 XX XX XXX X X X X X*BB BX XX
worp 1— Lworp 2 WORD N —J Lworp 1,

EOR RECORD

N\ BINARY RECORD s’ GAP

* = HOLE
B = BLANK
X = DATA BIT
EOR = END - OF - RECORD
Q= BLANK FOR 16-BIT WORD; DATA BITS #17
AND #16 FOR 18-BIT WORD,

Figure 14-2. Paper Tape Binary Record Format

MOS 14-13

vi-¥T SOW

jewnoy pJoday odudwnueydly ade) sadey "g-p1 34ndi4

CHANNEL:

X X X X X X X *BBB XX
X X X X X X X BB BB XX
X X X X X X X BBBB XX
X X X X X X X BBBB XX
X X X X X XX +BBB XX
XX X X X XX BBBXX
XX X X X XX BBBB XX
* * k Kk * ***BBB**
B e e
T LCascu CHARACTERS—] l_ L ASC 11 CHARACTERS OR UNFORMATTED
EOR RECORD BINARY WORD
N ALPHANUMERIC RECORD mmmee/ GAP

* = HOLE FOR ASC II CHARACTER OR DATA BIT FOR UNFORMATTED
BINARY INFORMATION
B = BLANK
X = DATA BIT
EOR = END-OF-RECORD

jeunio] eyep

data format

L b b ol o R

BN O o e e kb A biebe b bie bk

0100fo ofofola ojoio{o 00 0000000000000
23lafs sfsfafo robuafis s s e nnnunn D
AN RN A R R R R R AR
2220202 2212222222222222122

313 3131313

Gojojoojejo ojpjo 00N 0BO00C000008090
Cabofe el clsbo hebyi s 0w mon srn iz
IR RIRI AR R AR R R
2l 2fofp 2o 2l 222222222222222
3R IPPEIPPIPPIIZIIIIIIIIIIIGY
440K 4N 1
51515 515|555 E9p555556555555558
6l6{6 616|6 6EH 6BSE6CE66565666666
prppp g InITIIIINIIIIIIIG
8B 61 BIEIERIBIRABCO8888888888886 ¢

e

33333333333353333
414 414(4]4 4|4)414

N

44 4444484444044444 ARAAAA444 94528454

55 5[5(5(5 S[5(5[< 515|556 5555555555555

51616 5{6/616 6/6)6)6)R 66666CES6666666
H i 1

=

nr1rr111117111 1117

818)8 8[8{2[8 3(8(8

=

5(68888¢8688888888

9[9(9 5{919(9 9/5(99 9 999999 919 99la 93l 2jsP 3P 399999999989899
[B ER 6 L R B O 11,67 B0 V]e 3o a{r (o spoprzfse s s v e 324 2526 27 19§
c.ohE[ND A 5081 e Jnp o STaNGAkp FOR' 5081
WORD: IH 3 45| 6 (7(8) 9 WORD:]’2 3[4 15| ¢ 7'3
A, 16-BIT WORD FORMAT B. 18-BIT WORD FORMAT

Figure 14-4. Card Binary Record Format

MOS 14-15

9I-¥T SOW

(920 WEI) Yew.oq pioday ouadwnueydly pied G-l andiy

E000000Dﬂﬂﬂ['ﬂﬁuf(’DDﬂﬂﬂﬂUDﬂﬂﬂﬂﬂﬂOEﬂfUODOOOMUU

Illllll!‘lllllll] THIHIIHHHHIIHIIIIHIIHIHIIHIII]

2242%22222222222222222%222222222222222222222222222222225272222222222222222222122

$33323333333333333523323332333332%233:3332323532
404446455 0040880¢25
55555535555.550%
HEC6666BC606CE566FCo00sEF0ABBERESD §B6666E565 EL0C 6665E5666666665
IRRRRRRERRRRDRRE

8838838RIRBETEEIER

PITITIIIIIITITEINITINEINIIANINIINETINNINIINNNNNN G0 2711171910777

BRRBAELCELB 88888 88RBRABAERB 8R858:88569838882.3888

jew.o} e3Ep

Character

><§<C-—|(n:0:0ﬂ02§"XL—IQ'ﬂmOOm>®m\lo\mbwr\>'~o

APPENDIX

Internal Code

260
261
262
263
264
265
266
267
270
271
301
302
303
304
305
206
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330

Character

Y
z
(blank)

’

#*

&+

PR e

RUBOUT
NUL
SOM
EOA

TTY CHARACTER CODES

331
332
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
272
273
274
275
276
277
300
333
334
335
336
337
377
200
201
202

appendix

Internal Code

MOS Al

appendix

Character Internal Code Character Internal Code
EOM 203 X-OFF 223
EOT 204 TAPE OFF

WRU 205 AUX 224
RU 206 ERROR 225
BEL 207 SYNC 226
FE 210 LEM 227
H TAB 211 S0 230
LINE FEED 212 S1 231
V TAB 213 S2 232
FORM 214 S3 233
RETURN 215 sS4 234
SO 216 S5 235
Si 217 S6 236
DCO 220 . S7 237
X-ON 221

TAPE AUX

ON 222

MOS A-2

	00_01
	00_02
	00_03
	01_001_Introduction
	01_003
	01_01
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	02_001_DAS_Assemblers
	02_003
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	02_21
	02_22
	02_23
	02_24
	02_25
	02_26
	02_27
	02_28
	02_29
	02_30
	02_31
	02_32
	02_33
	02_34
	02_35
	02_36
	02_37
	02_38
	02_39
	02_40
	03_001_Loader
	03_003
	03_1-01_BLD_II
	03_1-02
	03_1-03
	03_1-04
	03_1-05
	03_1-06
	03_1-07
	03_1-08
	03_1-09
	03_1-10
	03_1-11
	03_2-01_BCL_I
	03_2-02
	03_2-03
	03_2-04
	03_2-05
	03_2-06
	03_2-07
	04_001_AID_II
	04_003
	04_1-01
	04_1-02
	04_1-03
	04_1-04
	04_1-05
	04_1-06
	04_1-07
	05_001_EDIT
	05_003
	05_1-01
	05_1-02
	05_1-03
	05_1-04
	05_1-05
	05_1-06
	05_1-07
	06_001_Math_Subr
	06_002
	06_1-01
	06_1-02
	06_1-03
	06_1-04
	06_1-05
	06_1-06
	06_1-07
	07_001_FORTRAN_IV
	07_003
	07_004
	07_005
	07_006
	07_007
	07_1-01
	07_1-02
	07_1-03
	07_1-04
	07_1-05
	07_1-06
	07_2-01
	07_2-02
	07_2-03
	07_2-04
	07_2-05
	07_2-06
	07_2-07
	07_2-08
	07_3-01
	07_3-02
	07_3-03
	07_3-04
	07_3-05
	07_3-06
	07_4-01
	07_4-02
	07_4-03
	07_4-04
	07_4-05
	07_4-06
	07_4-07
	07_4-08
	07_4-09
	07_4-10
	07_4-11
	07_4-12
	07_5-01
	07_5-02
	07_5-03
	07_5-04
	07_5-05
	07_5-06
	07_5-07
	07_5-08
	07_5-09
	07_5-10
	07_6-01
	07_6-02
	07_6-03
	07_6-04
	07_6-05
	07_6-06
	07_6-07
	07_6-08
	07_6-09
	07_6-10
	07_6-11
	07_6-12
	07_6-13
	07_6-14
	07_6-15
	07_6-16
	07_6-17
	07_6-18
	07_6-19
	07_6-20
	07_7-01
	07_7-02
	07_7-03
	07_7-04
	07_7-05
	07_7-06
	07_7-07
	07_7-08
	07_7-09
	07_7-10
	07_7-11
	07_7-12
	07_7-13
	07_7-14
	07_7-15
	07_8-01
	07_8-02
	07_8-03
	07_8-04
	07_8-05
	07_8-06
	07_8-07
	07_8-08
	07_8-09
	07_8-10
	07_8-11
	07_8-12
	07_8-13
	07_8-14
	07_8-15
	07_8-16
	07_8-17
	07_9-01
	07_9-02
	07_9-03
	07_9-04
	07_9-05
	08_001_BASIC
	08_003
	08_004
	08_005
	08_1-01
	08_1-02
	08_1-03
	08_1-04
	08_1-05
	08_1-06
	08_1-07
	08_1-08
	08_1-09
	08_1-10
	08_1-11
	08_1-12
	08_1-13
	08_1-14
	08_1-15
	08_1-16
	08_1-17
	08_1-18
	08_1-19
	08_1-20
	08_2-01
	08_2-02
	08_2-03
	08_2-04
	08_2-05
	08_2-06
	08_2-07
	08_2-08
	08_2-09
	08_2-10
	08_2-11
	08_3-01
	08_3-02
	08_3-03
	08_3-04
	08_3-05
	08_3-06
	08_3-07
	08_3-08
	08_3-09
	08_3-10
	08_3-11
	08_3-12
	08_3-13
	08_3-14
	08_3-15
	08_3-16
	08_3-17
	08_3-18
	08_3-19
	08_4-01
	08_4-02
	08_4-03
	08_4-04
	08_5-01
	08_5-02
	08_6-01
	08_6-02
	08_6-03
	08_7-01
	08_7-02
	08_7-03
	08_7-04
	08_7-05
	08_7-06
	08_7-07
	08_7-08
	08_7-09
	08_7-10
	08_7-11
	08_7-12
	08_7-13
	08_7-14
	08_7-15
	08_7-16
	08_7-17
	08_7-18
	08_7-19
	08_7-20
	08_7-21
	08_7-22
	08_7-23
	08_7-24
	08_7-25
	08_7-26
	08_7-27
	08_7-28
	08_7-29
	08_7-30
	08_7-31
	08_7-32
	08_7-33
	08_7-34
	08_7-35
	08_7-36
	08_7-37
	08_7-38
	08_7-39
	08_7-40
	08_7-41
	08_7-42
	08_7-43
	08_7-44
	08_7-45
	08_7-46
	08_7-47
	08_7-48
	08_7-49
	08_7-50
	08_7-51
	08_7-52
	08_7-53
	08_7-54
	08_7-55
	08_7-56
	08_7-57
	08_7-58
	08_7-59
	08_7-60
	08_7-61
	08_7-62
	08_7-63
	08_7-64
	08_7-65
	08_7-66
	08_7-67
	08_7-68
	08_7-69
	08_7-70
	08_7-71
	08_7-72
	09_001_RPG_IV
	09_002
	09_003
	09_004
	09_005
	09_1-01
	09_1-02
	09_1-03
	09_1-04
	09_1-05
	09_1-06
	09_1-07
	09_1-08
	09_1-09
	09_1-10
	09_1-11
	09_1-12
	09_1-13
	09_1-14
	09_2-01
	09_3-01
	09_3-02
	09_3-03
	09_3-04
	09_3-05
	09_3-06
	09_3-07
	09_3-08
	09_3-09
	09_3-10
	09_3-11
	09_3-12
	09_3-13
	09_3-14
	09_3-15
	09_3-16
	09_3-17
	09_3-18
	09_3-19
	09_3-20
	09_3-21
	09_3-22
	09_3-23
	09_3-24
	09_3-25
	09_3-26
	09_3-27
	09_3-28
	09_3-29
	09_3-30
	09_3-31
	09_3-32
	09_3-33
	09_4-01
	09_4-02
	09_4-03
	09_4-04
	09_4-05
	09_4-06
	09_4-07
	09_4-08
	09_4-09
	09_4-10
	09_4-11
	09_4-12
	09_4-13
	09_4-14
	09_4-15
	09_5-01
	09_5-02
	09_5-03
	09_5-04
	09_5-05
	09_5-06
	09_A-01
	09_A-02
	09_A-03
	09_B-01
	09_B-02
	09_C-01
	09_C-02
	09_C-03
	09_C-04
	09_D-01
	09_E-01
	09_E-02
	09_E-03
	09_E-04
	09_E-05
	09_E-06
	09_E-07
	10_001_MOS
	10_003
	10_004
	10_005
	10_006
	10_007
	10_01-01
	10_01-02
	10_01-03
	10_02-01
	10_02-02
	10_02-03
	10_02-04
	10_02-05
	10_02-06
	10_02-07
	10_02-08
	10_02-09
	10_02-10
	10_02-11
	10_02-12
	10_02-13
	10_02-14
	10_02-15
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_03-07
	10_03-08
	10_03-09
	10_03-10
	10_03-11
	10_03-12
	10_03-13
	10_03-14
	10_03-15
	10_03-16
	10_03-17
	10_04-01
	10_04-02
	10_04-03
	10_04-04
	10_04-05
	10_04-06
	10_04-07
	10_04-08
	10_05-01
	10_05-02
	10_05-03
	10_06-01
	10_06-02
	10_06-03
	10_06-04
	10_06-05
	10_06-06
	10_06-07
	10_06-08
	10_07-01
	10_07-02
	10_07-03
	10_07-04
	10_08-01
	10_08-02
	10_08-03
	10_08-04
	10_08-05
	10_08-06
	10_08-07
	10_08-08
	10_08-09
	10_08-10
	10_08-11
	10_08-12
	10_08-13
	10_08-14
	10_08-15
	10_08-16
	10_08-17
	10_08-18
	10_08-19
	10_08-20
	10_08-21
	10_08-22
	10_08-23
	10_08-24
	10_08-25
	10_08-26
	10_08-27
	10_08-28
	10_08-29
	10_08-30
	10_09-01
	10_09-02
	10_09-03
	10_10-01
	10_10-02
	10_10-03
	10_10-04
	10_10-05
	10_10-06
	10_10-07
	10_10-08
	10_10-09
	10_10-10
	10_10-11
	10_10-12
	10_10-13
	10_10-14
	10_10-15
	10_10-16
	10_11-01
	10_11-02
	10_11-03
	10_11-04
	10_11-05
	10_12-01
	10_12-02
	10_12-03
	10_12-04
	10_12-05
	10_12-06
	10_12-07
	10_12-08
	10_12-09
	10_12-10
	10_12-11
	10_12-12
	10_12-13
	10_12-14
	10_12-15
	10_12-16
	10_12-17
	10_12-18
	10_12-19
	10_13-01
	10_13-02
	10_13-03
	10_13-04
	10_13-05
	10_13-06
	10_13-07
	10_13-08
	10_13-09
	10_13-10
	10_13-11
	10_13-12
	10_13-13
	10_13-14
	10_13-15
	10_14-01
	10_14-02
	10_14-03
	10_14-04
	10_14-05
	10_14-06
	10_14-07
	10_14-08
	10_14-09
	10_14-10
	10_14-11
	10_14-12
	10_14-13
	10_14-14
	10_14-15
	10_14-16
	10_A-01
	10_A-02

