SPER?V LJNIVAC

Assembly Language
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
W P.O. Box C-19504

Irvine, California 92713
UP-8682 Rev. 1

SPERRY<=UNIVAC”

ASSEMBLY LANGUAGE
PROGRAMMER REFERENCE MANUAL

UP-8682 Rev. 1
98A 9952 453
JANUARY 1980

The statements in this publication are not intended to create any warranty, express or implied.
Equipment specifications and performance characteristics stated herein may be changed atany time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California,

92713.

COPYRIGHT ©1980 by
SPERRY CORPORATION
ALL RIGHTS RESERVED

Sperry Univac is a division of Sperry Corporation Printed in U S.A.

PAGE STATUS SUMMARY

ISSUE: UP-8682 Rev. 1 (98A 9952 453)
Part/Section NS:\g:er U&(:;t'e Part/Section N:::'lg:er U.: ?/:tle Part/Section NZ?r?:er U&‘i‘ze
Cover
Title Page
PSS
CR
Contents thru 5
1 thru 3
2 thru 20
3 thru 23
4 thru 33
5 thru 30
6 thru 4
A thru 10
B thru 4
*New pages

All the technical changes are denated by an arrow (—»-) in the margin. A downward pointing arrow (‘) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

P&G1

) is found. A horizontal arrow (—s-) pointing to

CHANGE RECORD

Change Issue h e
D
Designation Date Change Description
All 10-76 Original issue
Misc. 5-77 Minor revisions/corrections
Misc. 2-78 Deleted references to Varian
Update A 10-79 ; Added V77-800 Standard Extension Instructions
;. The following for users with DAS MR and
VORTEX I and II are also added: NOTE directive,
binary and hexadecimal constants, right and left
shift expressions, logic expressions, FLOW directive
Revision 1 1-80 Incorporated Update A and changes related to out-

standing SURs, (1-80).

Change Procedure:

When changes are made to this manual, updated pages are issued. These updated pages
are either added to this manual or used to replace obsolete pages. The specific
pages affected by each change are identified on the PAGE STATUS SUMMARY page.

Printed nUS A

CR1

TABLE OF CONTENTS

SECTION 1
INTRODUCTION
1.1 SPERRY UNIVAC V70 SERIES ASSEMBLY LANGUAGE........... 11
1.2 DAS ASSEMBLERS ... e 1.2
1.2.1 DAS 8BA AsSemMDbIErocooiiiiiiiiiie e 1.3
1.2.2 DAS MR Assemblerccccvciiiiiiiiniiiiinieien e 1-3
1.3 BIBLIOGRAPHY oottt e e e e e e e e ne e ae e 1-3
SECTION 2
STATEMENTS

2.1 CHARACTER SET .ot evnns e nne e e 2-1
2.2 STATEMENT FORMAT .. eecrrrcrecvre e s re s ere s ere e ee e 2-2
2.2.1 Label Field....... i e s e s 2.3
2.2.2 Operation Field.....ccoo e e 2-4
2.2.3 Variable Field ..o 2-4
2.2.4 Comment Field.......ccccccci it 25
2.3 CONSTANTS Lo cer e c s s e s s nraanenn 25
2.3.1 Decimal INtegerS...oeiiiiiii et e 25
2.3.2 Octal INtegers. ..ot 26
2.3.3 Floating Point NUMbDErsooieeieeieiceee e 2-6
2.3.4 Character Constants........cccccevviieiieieeiiiiicrer e 2-8
2.3.5 AdAress CONSANTSccuiieeieiie ettt eera s e aeennanas 2-8
2.3.6 Indirect Address Constantsccoveoieroreeerrerivtnmmrii e e eenaas 2-8
2.3.7 Binary and Hexadecimal Constants (DAS MR with VORTEX |

and VORTEX 1) cooeeiiiiin et ereree s esan e e e s e as e e 2-8
2.3.8 LILEIAIS .oevueiieeiiiii ettt ice s ee et st s s rre e e e e re e aa s 2-9
2.4 EXPRESSIONS ..ooiiiiiiiiiiiiiiteee s e recseancecencceeenasenasnnrseansnnrennansrenans 29
2.4.1 Right and Left Shift Expressions (DAS MR with VORTEX | and

VORTEX) cuuurrnruririreeerirsiinere ersnensrnssianessnsssnssssssaresseresssssessenaas 2-10
2.4.2 OPEIAtOrS .oiiiciieiiereeiiiiesieiiisieesieaeeseeseriars s s eersarreaeeessresranannnnes 2-10
2.4.3 Expression EVAlUationccooiiiiiiiionii e eeieeeetsaeseeetaeessrneseenes 2-11
2.4.4 Address EXPressions cciiiiiiiiinnnneirneesrersn——nn———- 2-11
2.4.4.1 Absolute EXPresSSiONSceciiviiiiiiiionierieiseerenreerniesersrneesessnneeeens 2-12
2.4.4.2 Relocatable Expressions (DAS MR Only) . .ooooiiiviciiiiiinncicinns 2-13
2.4.5 Logic Expressions (DAS MR with VORTEX | and VORTEX ll) 2-13
2.4.6 Mode Determinationcooiviieieiiiiiicienienreecenniiee e eeeerananeseseneseens 2-13
25 SYMBOLS ..ot e e er et e e s raa e e e e s e neae e 2-14
251 User SYMDBOIS ..o e 2-15.
252 Assembler-Defined Symbolsc.coooiviiiiiiiiiiii 2-15
2.5.2.1 Operation Field Symbolscccccceveiiiiiiiiiiincrenn e, 2-15
2.5.2.2 Location Counter Symbols.........c.oceiiiiiiiiiiiiiiiii e 2-16
253 SymDBol ValUeS....coviiviee et enr e 217
2.5.4 Address Symbols and Relocatabilityccccooevrriieiciinii 2-17
2.5.4.1 Relocatability (DAS MR Only)........ccoivviiiiiii, 2-17
2.5.4.2 Absolute Symbols.......cccceeiiiiiiiri 2-18
2.5.4.3 Relocatabie Symbols (DAS MR Only)....ccooviviieiimiiinieeciniienennes 2-19
255 Symbol MoeS......ooiiii i e 219

Contents 1

-

SECTION 3
INSTRUCTION SUMMARY

3.1 TYPE 1 INSTRUCTIONS. ..o ittt cirreerveescce s er e s neseerrereannnans 32
3.2 TYPE 2 INSTRUCTIONS. ..ottt ieeeircevvereeeeeeerereer e e e eeaneseannsnes 35
3.3 TYPE 3 INSTRUCTIONS ...t eerreeceser e sr e snee s s ees 3-6
3.4 TYPE 4 INSTRUCTIONS ...ttt veccetvteeeeeresessnse e nnrnnnneanes 39
3.5 TYPE 5 INSTRUCTIONS ...t iccreerrrrenrert s rnecen e ree e enrarerran s 3-13
3.6 MULTIPLE REGISTER INSTRUCTIONS ..cccceviiniiiiiniiiiiis 3-16
3.6.1 Register-To-Memory Instructions..........ccccvveviiiiinncinnin, 3-17
3.6.2 Byte Instructions......ccccvimiiiiiiiii e, 3-17
3.6.3 Jump-If INStructions ...t 3-18
3.6.4 Double-Precision INnStructions.......c.ccooviireiviiiiiiiicvciineeierrccvennns 3-18
3.6.5 Immediate InStructionscccceiviviiiiiirc e 3-18
3.6.6 Register-To-Register Instructions..........cccc.ooviiiiiiiiiiniiiieninennn. 3-19
3.6.7 Single Register INStructionscccccvviiinniinninicen 3-19
3.7 V77-800 STANDARD EXTENSIONS oo oeviiiiiiiiiiiiiincniiinicccnns 3-19
3.7.1 Double Word Move INStrucCtion «c.ocovveiiiiiiiiiiiiniiiic s 3-20
3.7.2 Register Load and Register Store INStructions «.ccoovvveeniiinninns 3-21
3.7.3 Decrement Register and Jump if the Initial Register Value is

Not Negative (DJP)ccoooiiiiii 3-22
3.7.4 Block Move, Store Words, and Store Bytes Instructions 3-22

SECTION 4
ASSEMBLER DIRECTIVES

4.1 SYMBOL DEFINITION DIRECTIVESccoociiieieeieee i v 4-3
4.1.1 EQU Directive.....oiciiiiiiiiiii it s 4.3
4.1.2 SET DiraCtiVE.ceeee i iiei e eee et se e e e ere s en s e e e s e e ananeas 4.4
4.1.3 MAX Directive (DAS 8A OnlY) oo e errve e 4-4
4.1.4 MIN Directive (DAS 8A ONlIy).uiiiiceee e eerrrciee e eeeeeeennes 4-5
4.2 INSTRUCTION DEFINITION DIRECTIVE .ovvreeeeie i 4-6
4.2.1 OPSY DireCtiVe ..covviieiieiiiiiee e eees e si e ecrssssee e s e s s e e e e e eeereeeraeennans 4-6
4.3 LOCATION COUNTER CONTROL DIRECTIVES....coveveirriecreerenenn. 4.6
4.3.1 ORG Dir@CHIVE .ovuiie e iiiiiicicireier e v eerrt e er e ene e r e e rr e e e aes b ees 4.7
4.3.2 LOC DireCHVE ...cceiieiieee et r e e e e ee e asee e e eeesvvanaes 4.8
4.3.3 BEGI Directive (DAS 8A ONIY)...coiiiiiiiiier e ereeeceieen s ceeeeeeeieenns 4.9
4.3.4 USE Directive (DAS 8A ONIY) .o, 4-10
4.4 DATA DEFINITION DIRECTIVES....cooiiiicicieee e e, 4-10
4.4.1 DATA DIreChiVe ..ot et e s ren s 4-11
4.4.2 PZE DIireCtive.....ccooiiiiiiiie e ceieecee e sceretie it ae e e s verva e aa e e 4-12
4.4.3 MZE DireCHIVE ...ccoeiiiieiieiic et e st 4-13
4.4.4 FORM Dir€CHVE ..covnniiiiiieeeiiier et 4-14
4.5 MEMORY RESERVATION DIRECTIVES ...ouvvviiiiveiieeeeeeerieeeeee, 4-14
4.5.1 BSS DIreCliVe..ocviiiicciiciicciieecree et s 4-15
4.52 BES DIireCtive .ovcceviiiiiiiriiii ettt 4-15
4.5.3 DUP Dir€CHiVE...ccoiiiiiiiicciiee ettt 4-16
4.6 CONDITIONAL ASSEMBLY DIRECTIVES......cccovieiiiiice e, 4-17

Contents 2

SECTION 4 (continued)

4.6.1 |iFT Directive............... E et tatseereeterettarrtab——eaetetearearnrrn s 4-17
T A | o B 1T =T o {1 TN 4-18
4.6.3 GOTO DIreCHIVE....uuutieecieii ittt e e eer e e e e e e neaens 4-18
4.6.4 CONT DIr€CtiVe ..uueuiireiieeiiiiie et e e e e ee s e e ee e 4-19
4.6.5 NULL Dir€CtiVe..ccoooceieiicc ettt e e vttt 4-19
4.7 ASSEMBLER CONTROL DIRECTIVES......ccoorvirrevireieeeieeees 4-20
4.7.1 MORE Directive (DAS 8A ONly)...cccovniimniinniiieiie e 4.20
4.7.2 END DirBCHIVE cooiiciiiiiiiiiiieei e e en e 4.21
4.8 SUBROUTINE CONTROL DIRECTIVES ...ooccvirtrieeeveierieee e 4.21
4.8.1 ENTR Dir€CtiVe. ..o ociiiiieiieicvicen ettt 4-21
4.8.2 RETU™ DireCtiVe...ccuiuiiiiiiiieee et re e e 4.22
4.8.3 CALL DIreCliVe.......ouviiiiieeiii s rereeeerrerr e eene e e e e ne e 4.22
4.9 LIST AND PUNCH CONTROL DIRECTIVES....cccvvieeeieeieeeeee, 4.24
4.9.1 LIST DIreCIVe ...oiiieccieieee et e e 4-24
4.9.2 NLIS DIreChiVe ccuvveri ittt 4.24
4.9.3 SMRY Dir€CtiVE....ueuuiiiriieei it 4-24
4.9.4 DETL DiIrECHIVE cccceeiiieeiieitetcetriees ettt eeeceesee e e e s eeaeevaeennns 4.-24
4.9.5 PUNC Directive (DAS 8A ONlY)...couiievirreereiee e cscireees e 4-25
4.9.6 NPUN Directive (DAS 8A ONlY) ..oooveeiiiieieeeiiciiiee e 4.25
4.9.7 SPAC DiIr€CHIVE .cuveirieeiieeeeee e ceceeie e e e e e s en e s eenaraaas 4-25
4.9.8 EJEC DireCtiVe.....uvivimrieeiieiviiieiceiinnsierereescee e enees s eevssesssessnasaereens 425
4.10 PROGRAM LINKAGE DIRECTIVES....ccciiiiiieee et 4-26
4.10.1 NAME Dir€CtiVe..c.uvueiieeiii i ee e e v e snnavane s 4-26
4.10.2 EXT DIreCliVe covieeereieiiciicciee e ceeeeerneveeevenee e e e er e eer e e vaa s 4-26
4.10.3 COMN DireCtiVe....ccuviieeeciicieii et s eeer e ee e e 4-27
4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)......coueeeeee 4.28
4.11.1 MAC Directive (DAS MR OnlY) ...cuviiiieiiireerevccniiei e 4.28
4.11.2 EMAC Directive (DAS MR Only)...cccccviiiiciiniieercereeee e, 4.29
4.11.3 Macro Calls......cocveviuiiiiieeeiece et 4.29
4.12 NOTE DIRECTIVE (DAS MR with VORTEX | and VORTEX Hi)....... 4-30
413 FLOWCHART DIRECTIVE (DAS MR ONlY) coeeivireriierieeieeeeeecencee 4-31
4.13.1 FLOW Directive (DAS MR ONly) «ooovoeiieieiiireiee e 4.31
SECTION 5
OPERATING THE ASSEMBLER
5.1 ASSEMBLER PROCESSINGccccoeeiiiiiniiirereeeeire e 51
5.1.1 Assembler Input Media......cccoooviiiiiiiiii 5-1
5.1.2 Pass 1 - SYmbol Table...c e eeceviriee e e v eeveeenas 53
5.1.3 Pass 2 - Assembler Output........ccoccniinniciiininiiiiic, 54
B5.1.4 Error MeSSAZes...ccccveriiiiiriirecieinrercenice s reire s ssnsann s s 55
5.2 ASSEMBLER OPERATING PROCEDURES ..., 5-8
5.2.1 DAS MR Operation (VORTEX I/VORTEX H) eoiviennciiiinninens 5-8
5.2.2 DAS MR Operation (MOS)coooiiimimiiiee e e e 515
5.2.3 DAS MR Operation (Stand-AlONE) .ccoccvvvciiviieinniiiecciie e 518
5.2.4 DAS 8A Operation .ceeiiii it 521

Contents 3

SECTION 6
STAND-ALONE FORTRAN/DAS MR LIBRARIES

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED).....ccceeiuuenee... 6-1
6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED)...6-1
6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED)..... 6-1
6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED) ..cccocevvieriienneee 6-2
6.5 SINGLE PRECISION ARITHMETIC (DAS CODED)...ccoocevivevrerracnnns 6-2
6.5.1 Hardware Multiply/Divide......cccioiericeiiiniiiiec e 6-2
6.5.2 SOFTWARE MULTIPLY/DIVIDE ..cocvoiiviieievereeetimeeevvmneieeees e 6-3
6.6 RUN-TIME 1/0 (DAS CODED) ... eereccrreerer e enrens s 6-3
6.7 RUN-TIME UTILITIES (DAS CODED).cccoirieeereeeerieiinreeneevesiveeneen 6-4
APPENDIX A

INDEX OF INSTRUCTIONS

APPENDIX B
V70 SERIES ASCII CHARACTER CODES

LIST OF TABLES

Table 2-1. Arithmetic Operation Results (DAS MR only)covoveveeiiiil, 2-12
Table 2-2. Standard DAS 8A Location COUNErS «vcvvvveevriieieiiieiineinneenns 2-17
Table 3-1. Assembler Instruction Type Characteristics........covevvvvreennnn. 3-1
Table 3-2. Summary of Assembler Instruction Types.......cccccccevrrvvrennns 32
Table 3-3. JIF/JIFM/XIF Code ConditionS.......cccceeeeiiveieerveeiciiecnineneennn. 37
Table 3-4. Standard Device AdAresSes.........cccviciivrrvenrciiireeniinienienenenns 3-13
Table 4-1. Directives Recognized by DAS Assemblers........cccccevvvevneenes 4.2
Table 5-1. DAS Symbo! Table Capacities.......cccoeviveeeciiirineiiiieeneeeee, 5-3
Table 5-2. DAS Error Codes...uuiiiiiiiiccriiciieei ettt nessana e e 5-5
Table 5-3. DAS MR Options for Background Operation....................... 5-8
Table 5-4. List of Peripheral Assignments for Stand-Alone DAS MR 5-19
Table 5-5. Acceptable 1/0 DeVICES.....ccoivreeiiiiiiiiisiicccireree e, 522
Table 5-6. Device Names for Magnetic Tape Transports................... 523

Contents 4

LIST OF ILLUSTRATIONS

Figure 2-1. Format for Source Statement Recordscc...ccvvurrerrreennnnns 2-3
Figure 4-1. Sample DATA Directive Usage......cccccerverieviiiiiiccciiinnnnnnn. 4-12
Figure 4-2. Sample PZE Directive Usagecccceoreerreiiiiininiccinnnnen, 4-13
Figure 4-3. Sample MZE Directive USage......ccccceveverrvirmreriernccinenneennnn. 4-13
Figure 4-4. Sample FORM Directive Usage.............. e rnaens 4-14
Figure 4-5. Sample DUP Directive Usagecccccccveveeviivcirrirmmreenienrienes 4-17
Figure 4-6. Sample Conditional Assembly Directives Usage............... 4.20
Figure 4-7. Sample CALL Directive Usage......c..cceeerveveirceeiriinrenennnen, 4.23
Figure 4-8. Sample Macro USage.....c.ccocvverrcrrernieirrenenianieriaresoreneeesaenns 4-30
Figure 4-9. Output Listing Obtained by Calling P(0)....cccoeevveerennneen. 4-30
Figure 4-10. Sample FLOW Directive Usage (DAS MR Only).........ccee. 4-33
Figure 5-1. Field Placement Summary.......cccoccieriiiiiniiiiicncreeeeie e, 52
Figure 5-2. Output Listing Format.......ccccoviuriimiiiii 5-5
Figure 5-3. Example of Assembled and Executed DAS MR Program

Under VORTEX Control ... et e 5-10
Figure 5-4. Example of Assembled and Executed DAS MR Program

Under MOS COontrol........coceiiiiceiiiiniiieiiee e ceeeres e encrea e 5-15
Figure 5-5. Coding EXamplecccccceeiviiiiiriiiiiriineccrece e 5-24
Figure 5-6. Example of an Assembled DAS 8A Program................... 5-.27

Figure 5-7. Example of an Assembled DAS 8A Program with Errors 5-30

Contents 5

SECTION 1
INTRODUCTION

This manual describes the assembly language and assembler processing used to write,
assemble, and execute programs for the SPERRY UNIVAC 'V70 series computers. '

1.1 V70 SERIES ASSEMBLY LANGUAGE

The assembly language is a symbolic representation of the programmable capabilities of the
V70 series computers. Using assembly language, the programmer is able to specify the
machine instruction codes symbolically and to address memory locations by alphanumeric
symbols of his own choosing, providing a flexibility not attainable with absolute addressing.

internally, the computer obeys instructions kept in its memory in 16-bit binary format. For
example, the instruction:

0001000000001111

when executed causes the A register to be loaded with the contents of location 15 (decimal).
In octal the same instruction is written:

010017

However, it is not necessary to learn the octal or binary representation of the computer’s
instruction repertoire. Instead, a user can write his program using a symbolic language and
then use another computer program, the DAS (Data Assembly System) assembler, to convert
the instructions to binary upon input. The instruction given previously is then written:

LDA 017
or, if decilmal working is preferred:
LDA 15
which is read as ''Load the A register with the contents of location 15 (decimal).”

The DAS assembler translates the statement "LDA 15" into its binary machine language
equivalent, i.e.:

LDA 15 -——— DAS ASSEMBLER 0001000000001111

Similarly:
STX 0177

is translated by the DAS program to form the instruction ""Store the X register contents in
location 0177.”

The DAS assembler has many other capabilities than translating source instructions one-for-

1-1

INTRODUCTION

one into their binary equivalents. A primary feature is allowing the programmer to represent
memory locations with symbolic labels instead of requiring absolute addresses. Another
feature allows the programmer to define data constants and character constants without
prior conversion to binary or octal values. For example, suppose the user wishes to load the A
register with the value 64 at some point in his program. He could do this with the following
statements:

VALU DATA 64

LDA VALU

The first statement defines a word of data having the value 64; "VALU" is a symbolic label
that can be used to address that data word. The second statement is an instruction to load
the A register with the contents of memory location "VALU”. The programmer need not be
concerned with the absolute location of the data word.

An even simpler version--requiring only one statement--can be written using a "literal”
constant:

LDA =64

In this version, the assembler itself will designate a location in which the value 64 is tq be
placed.

DAS assembly language allows the user to give directions to the assembler, calied assembler
directives, to perform such functions as defining program loading addresses, data locations
(such as the DATA directive above), subroutine linkage, and input/output functions; further
control features include conditional assembly directives and a macro capability. Comments
can be added between symbolic source statements or appended to the statements themselves
to enable easier checkout and program documentation.

By using the DAS assembly language, the programmer is able to write functional application
programs and control the operation of the assembler. Symbolic coding reduces machine
language bookkeeping and fully utilizes the computer capabilities without a corresponding
increase in the time required for programming.

1.2 DAS ASSEMBLERS

The principal objective of any assembler is to translate source programs written in a
symbolic machine language into the more precise numeric language of the computer. The
assembler (DAS) achieves this objective by converting programmer-prepared symbolically
coded instructions, directives, and data (the source program) into their binary machine
language equivalents (the object program).

DAS processes source programs in two passes. The first pass defines user-designated
symbols. The second pass produces an assembly listing and the object program.

.
Two versions of DAS are available: DAS 8A and DAS MR, described in the following
subsections.

1.2

INTRODUCTION

1.2.1 DAS 8A Assembler

DAS 8A is a stand-alone program that can operate on a minimum system (8K of memory). It
produces absolute object code that can be loaded by the stand-alone binary load/dump
program (BLD II).

Because DAS 8A was designed to operate in a restricted environment, it does not provide
some of the features described in this book, principally the macro directives (section 4.11).
Appropriate error messages are generated if a source program contains statements notrec-
ognized by the DAS 8A assembler.

1.2.2 DAS MR Assembler

DAS MR is a macro assembler which produces relocatable object code that can be loaded
into any area of memory. Itis available either as a free-standing program or as an integral part
of the MOS or VORTEX I/VORTEX Il operating system. DAS MR includes all of the features
described in this book.

1.3 BIBLIOGRAPHY

The following manuals contain information on Sperry Univac hardware and software that
would be helpful to the 70 series computer user (the x at the end of each document number is
the revision number and can be any digit 0 through 9):

Title Manual Number
V70 Architecture Reference Manual 98 A 9906 00x
VORTEX | Reference Manual 98 A 9952 10x
VORTEX |l Reference Manual 98 A 9952 24x
MOS Manual 98 A 9952 09x

1.3

SECTION 2
STATEMENTS

Input to the assembler is supplied by the user in the form of source statements. A statement
constitutes one input record and may be in either a position-dependent fixed format or free

format.

Each statement can be classified, accerding to its operation field entry, into one of the
following three groups:

a. Computer instruction statement
b. Assembler directive statement

c. Macro call statement

Computer instructions are instructions which are translated into machine-executable code on
a one-to-one basis.

Assembler directives are requests to the assembler to perform certain operations during the
assembly. These directives may define symbols, reserve and/or initialize data areas, control
the listing, and alter the normal processing of statements. The FORM directive allows the user
to symbolically define a bit-placement pattern whose name may subsequently appear in the
operation field.

A macro call statement represents a predefined block of statements (usually a block of
instructions). The macro allows the entire block to be included, with varying parameters, each
time the macro name appears in the operation field of a source statement.

This section describes the syntax of composing source statements. A summary of instructions
is given in section 3. Assembler directives and macros are described in section 4.

2.1 CHARACTER SET

Source statements are written with the following DAS character set:

Alphabetical characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Numerical Characters 0123456789
Teletype characters CR (carriage return)
ILF (line feed)

Special characters + (plus sign)

(minus sign)

(asterisk)

(slash)

(period)

21

STATEMENTS

(blank)
@ (at sign)
[(left bracket)
1 (right bracket)
< (less than)
> (greater than)
1 (up arrow)
- (left arrow)
= (equal sign)
, (comma)
’ (prime)
((left parenthesis)
) (right parenthesis)
/ (backslash)
! (exclamation point)
v (quotation mark)

(pound sign)

% (percent sign)
& (ampersand)

: (colon)

; (semicolon)

? (question mark)
$ (dollar sign)

In addition, any of the 128 ASCII characters (see appendix B) may be used anywhere that
characters appear between paired apostrophes or brackets, in comments, literals, and in
instruction operands.

2.2 STATEMENT FORMAT

A DAS source program consists of a sequence of source statements. Each source statement is
input as one record. A punched card is one record, as is one line punched to paper tape and
terminated by a carriage return and line feed.

A source statement may contain a maximum of 80 characters. If a source record contains
more than 80 characters, then the record is truncated to 80 characters. If a record contains
less than 80 characters, the assembler supplies blank characters to fill out 80 character
positions. If an assembler source record is completely blank, the source record is ighored by
the assembler.

Each source statement comprises a combination of label, operation, variable, and comment
fields, depending on the requirements of the computer instruction or assembler directive. One
computer instruction is generated by each instruction source statement. None, one, or more
words of object code may be generated by each assembler directive, depending on the
operation and variable field entries. A standard format for DAS source statements, where
each field is separated by one or more blanks and begins in a standard line position, is shown
in figure 2-1. Alternative formats may be used, prime among them being the use of commas
as field separators. A detailed treatment of statement item placement for various input media
is given in section 5.

22

STATEMENTS

LABEL OPERATION VARIABLE
1 678 15 16 29
LOOP STAE TEN, COUNT
COMMENT IDENTIFICATION
30 \ O\ 72 73 80
INITIALIZE WORD COUNT (L i 001
\ \

Figure 2-1. Format for Source Statement Records

The fields are described further in the following subsections.

2.2.1 Label Field

The Label Field is the leftmost field on each source statement. It is either blank (no label), or
it is used to contain a symbol (section 2.4) created by the programmer. If a label is present, it
must begin in character position 1.

For DAS 8A, symbols in the label field comprise one to four alphanumeric characters; for
DAS MR there may be from one to six such characters. The first character of a symbol is an
alphabetic character, pound sign (#), or dollar sign (the dollar sign and pound sign are used
in the Sperry Univac software and should not be used in normal user programs).

16 30

valid label (DAS MR)

valid label (DAS 8A)

valid label

valid label

valid label

valid label

invalid--must begin in position 1
invalid--cannot begin with a number
invalid characters

An entry in the label field is always optional for instruction statements. It is optional for most
assembler directives; however, certain assembler directives (EQU, SET, etc.) require a label
field entry.

The programmer generally labels a statement to identify the statement. Symbols in the label
field identify program points for reference by other parts of the program. They make a
program point or particular numeric value more easily identifiable. The first appearance of a
symbol in the label field establishes its identity (most commonly a relative or absolute

2-3

STATEMENTS

address) throughout the remainder of the program. A previously established symbol is
referenced by placing it in the variable field of the source statement. When the symbol is
used, the DAS assembler substitutes the previously assigned value from its symbol table.

Example

START JMPM FETCH Call Fetch routine.
DAR Decrement counter in A.
JANZ START Loop back if A not zero.

In this example, the label field is used in the first statement to establish a user symbol for the
location of the first statement in a loop. This label, START, is later referenced in the third

statement as the return point for another loop iteration.

Label field entries are alsc used to establish the name of a user-written macro definition
(section 4.11).

2.2.2 Operation Field

The Operation Field is to the immediate right of the label field. The entry in this field
describes to the assembler the specific type of statement that has been entered, thus
determining how it should be processed. Entries in this field are composed of from one to six
alphanumeric characters that may describe a machine instruction, assembler directive, or a
macro call. An asterisk may follow certain instruction mnemonics to specify indirect
addressing (see section 3). It is possible to redefine mnemonics with OPSY assembler

directives (section 4.2.1).

An entry in the operation field is always required, and if not supplied by the programmer, will
cause an "undefined operation’ error code to be generated.

Examples

30

2.2.3 Variable Field

The Variable Field is to the immediate right of the operation field. The purpose of this field
varies according to the requirements of the operation defined by the source statement. The
variable field can contain none, one or more symbols, constants or expressions combining
symbols and constants. Multiple entries are separated by commas.

The types of entries that may appear in the variable field are described in section 2.3
(constants), section 2.4 (symbols), and section 2.5 (expressions).

24

STATEMENTS

Examples

1 8 30
LDA Load A register with contents of TAB.
ADDI Add 16 to the A register.
JIMP Jump to program location PILL.
STXE* Store X register indirect, indexed by B.
LSRA Logical shift right A register 7 bits.
IAR Increment A register (has no variable).

2.2.4 Comment Field

An optional comment field follows the variable field in all source statements. This field is used
for programming notes. An entire line of comment may be entered if an asterisk is coded in
the first position. The assembler ignores all comments in the object code production process,
but lists comments and comment lines with the program listing output.

On punched cards, the comment field generally extends from position 30 to position 72.
Positions 73 through 80 can be used to sequence cards, simplifying collation ifacard deck is
accidentally dropped.

Examples

Note: The assembler scans for data in columns 1-72 and if the record is not a comment, there must
be a valid operand defined prior to column 72.

2.3 CONSTANTS
A constant is a number, or character string, whose value is specified directly by the

programmer in the variable field of a source statement. DAS recognizes decimal integers,
octal integers, floating point numbers, and character constants.

In the following descriptions of DAS constants, unsigned numbers are considered positive.

2.3.1 Decimal Integers

A decimal integer is a signed (+, -) or unsigned string of from one to five decimal digits (0
through 9). The first digit must not be a zero, since a leading zero signifies an octal humber.

2-5

STATEMENTS

Decimal integers are converted to a right-justified 15-bit value, in the range - 32,768 through
+ 32,767, with the high order bit representing the sign (0 = positive, 1 = negative). Negative
numbers are stored in twos complement representation.

Examples
1 Decimal integer +1
20 Decimal integer +20
-3 Decimal integer -3
-9000 Decimal integer - 9000
6,099 Invalid--no commas may appear
144000 invalid--out of range

2.3.2 Octal Integers

An octal integer is a string of from one to six octal digits (O through 7), preceded by a leading
zero. The conversion from octal to binary is straightforward. The number is right-justified in
the 16-bit word and may have a range of O through 0177777. Octal numbers may optionally
be signed (although they normally are not) and will be represented in twos complement form.

Examples
07 Octal constant 7
023 Octal constant 23
0123 Octal constant 123
0677 Octal constant 677
0177777 Octal constant 177777
5612 Invalid octal--no leading zero
07581 Invalid digit

2.3.3 Floating Point Numbers

Floating point numbers may be specified in the following formats:
) Xinteger.fraction * exponent
)+*integer.fractionE = exponent
} Xinteger.fractionD * exponent

where:
) the right parenthesis indicates a floating
point number.
£ iS a minus sign (negative number) or an
optional plus sign (positive number).
integer is the integer portion of the number (if

any).

is the decimal point and must appear.

26

fraction

Ex exponent

D+exponent

STATEMENTS

is the fractional portion of the number
(if any).

is the signed (optional if positive)
exponent (if any). The letter "E" may
be omitted in the exponent if desired.

generates a double precision constant.
A real constant is generated in all
other cases.

At least one digit must appear in the number.

The number is stored in one of the following formats:

Single Precision (Real)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Exponent Fraction (high)
Fraction (low)
Double Precision
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]
oo o o o o o of Exponent
S Fraction (high)
0 Fraction (mid)
0 Fraction (low)

The exponent is represented in an excess 128 format so that the smallest exponent
representable contains all zeros. An exponent field containing 128 (0200) corresponds to an
exponent value of 0. The largest exponent representable contains all ones.

The fraction is expressed in a modified sign-magnitude format. Rather than inverting the sign
bit for negative numbers, the complete word in which the sign appears is inverted. In single
precision, this inverts the exponent, the sign, and the high 7 bits of the fraction. In double
precision, the sign and the high 15 bits of the fraction are inverted.

The number is zero represented by all zeros. All other numbers are normalized.

Examples

)5.5
)60.00079
)6. + 10
)09.D-2
J09.E-2
).1E-12
)-4.+20
16.E2
)16E2

JE2

The real number 5.5 (five and a half)

The real number 60.00079

The real number 60000000000.

The double precision number .09

The real number .09

The real number .0000000000001

The real number - 400000000000000000000.
Invalid--no right parenthesis.

Invalid--no decimal point.

Invalid--no digit.

27

STATEMENTS

2.3.4 Character Constants

A character constant consists of one, two, or more ASCII characters enclosed by primes (').
Any of the 128 ASCII characters may appear in a character term. To code a prime character
in DAS MR, use two primes in succession; this cannot be done in DAS 8A, however. Note that

blanks are also recognized as characters.

When a single alpha constant is defined by the DATA directive (section 4.4.1), DAS MR left-
justifies it in the field and tills the remaining positions with blanks. In other DAS MR and all
DAS 8A statements, a single alpha constant is right justified with leading zeros.

Examples

'STRING' Valid character constant.

'THIS' Valid character constant.

‘IS’ Valid character constant.

‘A’ 1-character constant: = 'A ' in DAS MR,
= 'OA' in DAS 8A.

'I CAN'"'T' (DAS MR only)--coded as | CAN'T,

MMM Invalid--surrounding primes missing.

2.3.5 Address Constants

An address constant is a symbol, number, or expression which may be enclosed in parentheses. It
generates a 15-bit direct address (bit 15 = 0).

Examples:

A Address constant
(31)

where A is an address syrmbol whose value is taken from the symbol table by DAS.

2.3.6 Indirect Address Constant

An indirect address constant is an address constant enclosed in parentheses followed by an
asterisk. It generates a 15-bit indirect address (bit 15 = 1),

Examples:

(A+2)" (3) (A)*

2.3.7 Binary and Hexadecimal Constants (DAS MR with VORTEX | and

VORTEX 1)
Binary and hexadecimal constants occupy one word of main memory and are right justified.
Examples:
B'101101° Positive binary constant
~-B101101° Negative binary constant
X'ABOF’ Positive hexadecimal constant
X'ABOF’ Negative hexadecimal constant

2-8

STATEMENTS

2.3.8 Literals

A literal term or simply, literal, is a constant or expression preceded by an equal sign (=). A
literal represents data, rather than an address of data. The appearance of a literal directs the
assembler to assemble the data specified in the literal, store this data in an assembler-
maintained literal pool, and assemble the address of the data into the current instruction.
The literal pool is assigned addresses starting with the value of the literal's location counter
when the END directive is processed. Duplicate values are discarded in the literal pool. In
general, literals can be used whenever an address is permitted in the variable field.

NOTE

The literal pool may not be assembled into COMMON areas. Any attempt to place
literals into COMMON areas is flagged as an error and the mode of the location
counter is changed to program relocatable.

Literals may contain undefined symbols, although use of undefined symbols in literals may
cause extraneous words to be allocated within the literal pool.

The use of literal terms allows the programmer to both define and reference a constant word
in the same machine instruction statement.

Examples

LDA =5 Load A register with the constant
5. The value 5 is placed in
the literal pool, and its address
(in the pool) coded in the LDA
instruction.

ADD =255 Add the value 255 to the A register.
The value 255 is placed in the
literal pool, and its address
coded in the ADD instruction.

ORA =07077 Inclusive OR with the A register.
. The indicated value is placed
in the literal pool. For the
. ERA (Exclusive OR instruction)
ERA =07077 the same literal pool location
is addressed, thus minimizing
storage required for the mask
word.

2.4 EXPRESSIONS

An expression is a single constant, a single symbol, or any combination of constants and
symbols connected by operators. Operators are described in section 2.4.1.

A discussion of multi-term expression evaluation is given in section 2.4.2 (expression

evaluation), section 2.4.3 (address expressions), and section 2.4.4 (mode determination).
Section 2.4.5 describes literals.

2-9

STATEMENTS

2.4.1 Right and Left Shift Expressions (DAS MR with VORTEX | and
VORTEX II)

The Right and Left Shift Expressions are used to right or left shift the bits in a word by the nurnber of
bits specified in the command (X).

The expression for a Left Shift is .«—X where X is an integer from 1to 15. The. Xis placed to the
immediate right of the word which has its bits shifted first in the expression evaluation.

The expression for a Right Shift is .«—(-X) where X is an integer from 1to 15. The .«—(-X)is placed to
the immediate right of the word which has its bits shifted first in the expression evaluation.

The bit shifted out of the Qor 15 bit position is not rotated into the 15 or O bit position. The vacated bit
positions are filled with zeroes.

Example:

ALPHA EQU B'1001°
LDAI ALPHA «9

The events which occur are:

® The bits in position O through 8 of ALPHA are left shifted nine bits.

& Bits 7 through 15 are lost.

Bits O through 8 are zero.

The A Register is loaded with the results of the left shift of the ALPHA field.

B After the shift, the A Register contains 0001001000000000.

2.4.2 Operators

The following operators are allowed in expressions:

Operator Meaning
+ Addition

- Subtraction
Multiplication
/ Division
Arithmetic operations always involve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and subtraction.

Thus, A + B/C * D in DAS is equivalent to A + (B/C) * D in conventional notation.

The rules for coding expressions are:

2-10

STATEMENTS

a. An expression cannot contain two terms or two operators in succession.

b. An expression with a leading minus sign (-) is evaluated as though a zero preceded the
minus sign.

c. Anexpression with a leading pius sign (+) is evaluated as though a zero preceded the plus
sign.

d. A multi-term expression cannot contain an external symbol. If it does, an “invalid
relocation’’ error message is printed.

e. Character constants used in mulit-term expressions may contain only one or two

characters.
Exampies
A+1 Valid expression
A4 Valid expression
'‘A'-'B' Valid expression
6u43/2 Valid expression (evaluates to 3221)
-1%2 Valid expression (evaluates to -2)
10/5%2 Valid expression (evaluates to 4)
6+6+6-0MS Valid expression (evaluates to 18 minus
the value of OMS)
"A'++'B' Invalid--adjacent operators
‘ASM'+2 Invalid--contains a long character string.

2.4.3 Expression Evaluation
A single-term expression takes on the value of the term involved.
A multi-term expression is reduced to a single value, as follows:
a. Eachtermis evaluated.
b. Arithmetic operations are performed from left to right.
c. Division always yields an integer result; any fractional portion of the result is dropped.
d. Division by zero is permitted and yields a zero result.

Negative values are carried in twos complement form. The value of the expression must be in
the range - 32,768 to 32,767 or the results may be meaningless.

2.4.4 Address Expressions

In addition to its evaluated numerical value, the relocatability of an expression is determined.
The relocatability of an expression depends upon the term(s) in the expression. The
expression is absolute if it contains a single absolute value. The expression is relocatable if it
contains a single relocatable value. A multi-term expression may be absolute or relocatable.

2-11

STATEMENTS

Absolute and relocatable expressions are derived from the term or combination of terms
composing them, and the way in which these terms are combined. Table 2-1 shows, for each
arithmetic operation, whether the result is absolute (abso), relocatable (relo), or illegal.

Table 2-1. Arithmetic Operation Results (DAS MR only)

A = abso A = abso A = relo A = relo

B = abso B = relo B = abso B = relo
A+B abso relo relo illegal
A-B abso illegal relo abso
A*B abso illegal illegal illegal
A/B abso illegal illegal illegal

2.4.4.1 Absolute Expressions

An absolute expression is a constant, an absolute symbol, or any arithmetic combination of
absolute terms. An expression may be absolute even though it contains relocatable terms,
alone or in combination with absolute terms, under the following conditions:

a. There must be an even number of relocatable terms in the expression and the terms must
be paired. Otherwise, an "invalid relocation’’ error message will result.

b. Each pair of terms must have opposite signs and the same relocatability. (Program, blank
COMMON or the same named COMMON). The paired terms do not have to be
contiguous.

c. Relocatable terms entering into multiply or divide operations are considered absolute
terms, with the same value.

The pairing of relocatable terms with the same relocatability and opposite signs cancels the
effect of the relocation, since both symbols would be relocated by the same amount. Thus, the
value represented by the paired terms remains constant, regardless of program relocation.

An absolute expression reduces to a single absolute value.

Examples

If A and B are relocatable symbols and X and Y are absolute symbols or terms, the following
are absolute expressions:

X abs = abs

A-B rel.rel = abs

A-B+X rel.rel + abs = abs

X+Y abs +abs = abs

X*Y abs*abs = abs

X/Y abs/abs = abs

A*B rel*rel is interpreted as abs*abs = abs

(see discussion below under Relocatable
Expressions).

2-12

STATEMENTS

— 2.4.4.2 Relocatable Expressions (DAS MR Only)

A relocatable expression is a relocatable term or a combination of relocatable and absolute
terms under the following conditions:

a. There must be an odd number of relocatable terms with the same relocatability.

b. All the relocatable terms but one must be paired (see the description of pairing under
ABSOLUTE EXPRESSIONS).

c. Theunpaired term must not be directly preceded by a minus sign ().
If the above conditions are not met, an "invalid relocation' error message will resuit.
Relocatable terms entering multiply or divide operations are considered absolute terms with

the same value. A relocatable expression reduces to a single relocatable value. This value is
the value of the expression, with the relocatability attributes of the unpaired relocatable term.

Examples

If A and B are relocatable symbols and X and Y are absolute symbols, the following are
relocatable expressions:

A rel = rel

A+X rel 4+ abs = rel

X+B abs+rel = rel

A-B+A rel-rel +rel = rel

A+2 rel+abs = rel

X+B+Y abs +rel +abs = rel

A%B+A rel*rel +rel is interpreted as
abs*abs +rel = rel

2.4.5 Logic Expressions (DAS MR with VORTEX | and VORTEX Il)

There is a set of logic expressions that can be interfaced with the arithmetic expressions. The logic
expressions operate on 16-bit values in the same rmanner as the arithmetic operators.

The logic expressions and their corresponding symbols are:

AND &
Inciusive OR A
Exclusive OR Tor.
NOT \

2.4.6 Mode Determination

The mode of an expression is determined by the mode of the symbols in the expression. The
mode is determined by the following rules:

a. lfthe expression contains any mode £ or C symbol, the expression is mode E.
b. If the expression contains only mode A symbols, the expression is mode A.

2-13

STATEMENTS
c. If the expression contains mode A and R symbols, the mode of the expression is R if there is
an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The following restrictions apply only to DAS MR and to FORTRAN-compatible output assembly
with DAS 8A.: :

a. No expression can contain symbols of both modes E and C.
b. Amode E expression comprises a single mode E symbol.

c. NomodeE, C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or substract a mode C and a mode R symbol, or a mode E and a
mode R symbol.

e. Noexpression can add two or more mode E, C, or R symbols.
f. A mode A symbol can be added to or subtracted from a mode C or R symbol.

Examples

The following program code illustrates expression mode determination rules.

EEEE EXT Defines mode E.

ccee COMN 6 Defines mode C

RTN ENTR Defines a symbol (RTN) as mode R.

TBL BSS 50 TBL is mode R.

ABL BSS "A'+5 ABL is mode R.

LENG EQU *-TBL LENG is mode A (defines area length).
CALL EEZE,TBL,LENG
LDA x45 Legal, one-word relative forward.
LDA CCCC+6 lllegal, one-word not R or A.
LDXI CCCC+6 Legal, two-word instruction.
LDA 0,1 Legal, loads CCCC+6 in A register.
DATA EEGE+U4 lllegal, value not zero.
DATA CCCC+4 Legal.
DATA CCCC+LENG Legal.
DATA TBL+LENG Legal, mode is R.

2.5 SYMBOLS

A symbol! is a character or combination of characters used by the programmer to symbolically
define instruction addresses, data addresses, general purpose registers, and arbitrary values.
Through their use in label fields and in operand fields they provide the programmer with an
efficient method to name and reference program elements. The assembler creates a symbol
table and assigns to each of the symbols written in the source program a value and a
relocation bias (DAS MR orly); it also provides indicator flags when required by the program.
This relieves the programmer of having to know the absolute address locations of code and

data areas.

2.14

STATEMENTS

Symbols are formed from the following three classes of characters:
a. Alphabetic characters: A through Z
b. Numeric characters: 0 through 9
c. Special character: pound sign (#)

A symbol is formed from one to six characters (DAS MR) or one to four characters (DAS 8A)
in length, chosen from the preceding classes. The first character must not be numeric.
Symbols cannot contain imbedded blanks.

Symbols may be classified as user symbols (section 2.5.1) and assembler-defined symbols
(section 2.5.2).

2.5.1 User Symbols

User symbols are defined and used by the programmer to symbolically reference instruction
and data area addresses, the general purpose registers, and arbitrary values.

Although it is possible for the user to define user symbols that begin with the pound sign, this
should not be done because conflicts can arise with V70 series system software, which uses
the pound sign.

Examples
A User symbol.
MAIN User symbol.
BETA 11 User symbol (DAS MR).
BUFFER User symbol (DAS MR).
READ1 User symbol (DAS MR).
CON90 User symbol (DAS MR).
128B Invalid--first character is numeric.
CODE 1 Invalid--more than 4 characters (DAS 8A).
RECORD1 Invalid--more than 6 characters (DAS MR).
RCD+A Invalid character in symbol.
IN AREA invalid--contains an imbedded blank character.

2.5.2 Assembler-Defined Symbols
Assembler-defined symbols are of a specialized nature and are used primarily to control the
assembly process. They are unique in that they are not defined by the programmer, but by

the assembler itself. All symbols that are not assembler-defined symbols must be properly
defined by the user in his source program.

2.5.2.1 Operation Field Symbols

All instruction mnemonics and assembler directives appearing in the operation field are
predefined by the assembler and control the processing of the source statement.

2-15

STATEMENTS

CAUTION

DAS assemblers reccgnize the complete instruction sets of all SPERRY UNIVAC 70
series computers, even when the system on which they operate lacks the hardware for
executing a particular instruction. The programmer, therefore, must have a thorough
knowledge of the instructions applicable to his system before attempting to assemble a
program.

Any other operation symbols are user symbols; these are comprised of OPSY-defined
instruction mnemonics (section 4.2.1), FORM-defined symbols (section 4.4.4), and macro call

names (section 4.13).

2.5.2.2 Location Counter Symbols

Current Location Counter (). The assembler maintains a location counter to assign storage
addresses to program statements. It is the assembler's equivalent of the computer’'s program
counter. As machine instructions and data areas are assembled, the location counter is
incremented to reflect the length of the assembled code or data. Thus, it always contains the
address of the next available word.

The location counter also has an associated relocatability mode, either absolute, program
relocatable, or named FORTRAN COMMON relocatable. Modification of the current value and
mode of the location counter is accomplished with the ORG directive. The location counter is
never negative and is always less than 2'¢.

The programmer can reference the current value of the location counter by using the asterisk
(*) character as a term in an operand. The asterisk term represents the word address of the
beginning of the current instruction or data area. Use of the asterisk term in a literal
address constant results in the assembler using the word address of the instruction
containing the literal.

The relocatability mode cof the asterisk term--absolute, program relocatable, or named
FORTRAN COMMON relocatable--is dependent on the current mode of the location counter.

Examples
JMP *ply Jump to the location 4 words down.
LDA * Load A with the word at the

current location counter (i.e.,
the "LDA' instruction itself).

DAS 8A Location Counters. DAS 8A has five standard location counters that have predefined
names, as described in Table 2-2. These location counter names may be used in location
counter control directives (section 4.3) for controlling the location counter values used during
the DAS 8A assembly process. These names have special significance only in the location
counter control directives; if used in instruction statements or other directives, they are
considered user symbols.

These five location counters are not applicable in DAS MR programs.

2-16

STATEMENTS

Table 2-2. Standard DAS 8A Location Counters

Counter Initial Value Description

COMN 002000 Controls assignment of memory
within an interface area common
to two or more programs.

IAOR 000200 Control assignment of memory
to indirect pointers.

LTOR 001000 Controls assignment of memory
to literals.

SYOR 000000 Controls assignment of memory

to all system parameters.

(blank) 004000 Used initially and normally
by the assembler for memory
assignments until/unless over-
ridden by the use of the ORG
directive

2.5.3 Symbol Values

Associated with every symbol is a value. The value is in the range - 32,768 through + 32,767.
This value is substituted in place of the symbol whenever the symbol appears in the variable
field of other source statements.

A symbol's value is defined when it appears in the label field of a statement. The value

assigned is one of two types:

B For all instruction mnemonics and most assembler directives, the symbol is assigned the
value of the current location counter.

@ In certain assembler directives, the symbol is assigned the value of the variable field entry;
these directives are: EQU, SET, MAX, MIN, OPSY, ORG, LOC, and BEGI. In addition,
special purpose symbols are used in the label field for FORM and MAC directives. (All of
these directives are described in detail in section 4.)

2.5.4 Address Symbols and Relocatability

2.5.4.1 Relocatability (DAS MR Only)

In addition to having names and values, all symbols are associated with a set of attributes.
These attributes describe how the symbol is handied by the assembler.

STATEMENTS

The most important attribute is that of relocatability. A relocatable program (DAS MR only) is
one that has been assembled with its instruction and directive locations assigned in such a
manner that it can be loaded and executed anywhere in memory. When such a program is
loaded, the beginning memory address is specified, and a value (known as the relocation
bias) is added to the addresses of subsequent relocatable instructions. The relocatable
loader is used to load a program in any area of memory and modify the addresses as it loads
so that the resulting program executes correctly.

Programs can contain absolute addresses, relocatable addresses, or both. Symbols which
refer to addresses that will change during program loading are relocatable. Other symbols,
such as register numbers or buffer lengths, do not change with program loading and are
called absolute symbols. Programs are usually assembled with a zero relocation bias on the
first instruction.

The assembler’s location counter contains the (relative) address of the instruction or directive
currently being executed. The location counter is absolute when it contains the actual address
of the instructions, and relocatable when it contains an address relative to the start of the
program.

Symbols can be absolute or relocatable. If a symbol is equated to the location counter, it is
relocatable if the location counter is relocatable. Otherwise, the symbol is absolute.
Expressions (section 2.5), since they contain symbols, can be absolute or relocatable.
Constants are always absolute.

At the beginning of each instruction or data word generated by the assembler, the
relocatability can be set by the ORG directive. On encountering an ORG directive, the

assembler makes the location counter absolute if the corresponding expression is absolute, or
relocatable if the corresponding expression is relocatable.

2.5.4.2 Absolute Symbols
Absolute symbols are those whose values are independent of the execution address. These

symbols are used to represent such things as register numbers, fixed memory locations,
buffer lengths, or bit masks.

These symbols can be defined in the following two ways:
a. Byappearingin alabel fieild when the location counter is in the absolute mode.

b. By being defined as equivalent to some absolute value in directives (EQU, ORG, etc.).

Examples
ORG 0500 (Specifies absolute address origin.)
START LDA VsYS The label START is assigned an
absolute value of 0500.
TEN EQU 10 The label TEN is assigned an

absolute value of 10.

2-18

STATEMENTS

2.5.4.3 Relocatable Symbols (DAS MR Only)
Values of relocatable symbols are dependent upon the execution address of the program.
They can represent such things as instruction addresses, data addresses, and addresses of
other programs.
Relocatable symbols may be defined in the following ways:

a. By appearingin a label field while the location counter is in the relocatable mode.

b. By being defined as equivalent to some relocatable value in directives (EQU, ORG, etc.)
There are four major types of relocatable symbols:

a. Program relocatable symbols, whose values depend on the program location.

b. Blank COMMON relocatable symbols, whose values depend on the location of FORTRAN
blank COMMON.

c. Named COMMON relocatable symbols, whose values depend on FORTRAN named
COMMON.

d. External symbols, whose values depend on the location of separately assembled programs.

Exampies

*NO ORG DIRECTIVE IN DAS MR ASSEMBLES AS RELOCATABLE.
START LDA MERF The label START is assigned
a value of relocatable zero.

HERE EQU * Where the program counter is
relocatable, assigns the
relocatable value to the label
HERE.

2.5.5 Symbol Modes
Each symbol has one of the following modes assigned by the assembler:

a. External (E)
b. Comimon (C)

c. Relative(R)
d. Absolute (A)

The mode of a symbol is determined by the following rules:
a. Ifthe symbolisin an EXT directive, the mode is E.

b. if the symbolis defined by a COMN directive, the modeis C.

2-19

STATEMENTS -

Exam

2-20

If the symbol is a symbol in a program, or if * is the current location counter value, the

mode is R.

If the symbol is a number (numerical constant), the mode is A.

If the symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is that
of the variable field expression in the directive.

ples

EXT
UNIV COMN
START ENTR
CONS DATA
TIME EQU

EDAT

41

24

Symbol EDAT has mode E.

Symbol UNIV has mode C.

Symbol START has mode R (location
counter relocatable) or mode

A (location counter absolute).
Symbol CONS has mode R (location
counter relocatable) or mode

A (location counter absolute).

Symbol TIME has mode A.

SECTION 3
INSTRUCTION SUMMARY

For use with DAS, SPERRY UNIVAC 70 series instructions are divided into six categories:
types 1 through 5 and multiple register. Tables 3-1 and 3-2 list the characteristics and
mnemonics of the instruction types.

A complete list of V70 series instructions, arranged alphabetically by mnemonic, is given in
appendix A. The details of the 16-bit configuration of each individual instruction word are
given in the applicable system handbook. Also refer to the handbook for a complete
description of addressing modes.

Computer instructions have the general format for source statements described in section 2.
A label is always optional in instruction statements. In the following descriptions of the
individual instruction groups, the field format:

Operation Variable
is used, with the optional label being understood to precede the operation field when used,
and the optional comment field to follow the variable fieid when used. In cases where the
variable field contains more than one item or expression, these are always separated by

commas. Mandatory elements of the field are in bold type, and optional items, in italic type.

Table 3-1. Assembler Instruction Type Characteristics

Parameter Type 1 | Type 2 | Type 3 | Type 4 | Type 5 | Multiple
Register

Words generated 1 2 2 1 2 (Varies
with

Memory addressed Yes Yes* Yes No Yes instruc-
tion

Indirect addressing | Yes Yes* Yes No Yes group)

indexing Yes No No No Yes

Variable field lor2 |1 2 Oorl |1to3

expressions

Microcoding No No Yes Yes No

* Except for immediate instructions.

31

INSTRUCTION SUMMARY

Table 3-2. Summary of Assembler Instruction Types*

Type 1 | Type 2 Type 3 Type 4 Type 5 | Multiple
Register

ADD ADDI JS3N BT AOFA LLRL ADDE AD
ANA ANAI JS3NM IME AOFB LLSR ANAE ADI
DIV DIvI JXNZ JOF AOFX LRLA DIVE ADR
ERA ERAI JXNZM | JIFM ASLA LRLB ERAE COM
INR INRI IXZ OME ASLB LSRA IJMP DADD
LDA JAN JXZM SEN ASRA LSRB INRE DAN
LDB JANM LDAI XIF ASRB MERG JSR DEC
LDX JANZ LDBI CIA NOP LDAE DER
MUL JANZM LDXI CIAB OAB LDBE DLD
ORA JAP MULI CiB OAR LDXE INC
STA JAPM ORAI COMP OBR MULE JDNZ
STB JAZ STAl CPA ROF ORAE JDZ
STX JAZM STBI CPB SEL SRE JN
sus JBNZ STXI CPX SEL2 STAE LBT

JBNZM SUBI DAR SOF STBE LD

JBZ XAN DBR SOFA STXE LDI

JBZM XANZ DECR SOFB SUBE SB

JMP XAP DXR SOFX SBR

JMPM XAZ EXC TAB SBT

JOF XBNZ EXC2 TAX ST

JOFM XBzZ HLT TBA T

JOFN XEC IAR TBX

JOFNM XOF IBR TSA

JSS1 XOFN INA TXA

JSS2 XS1 INAB TXB

JSS3 XSIN INB TZA

JS1IM XS2 INCR TZB

JSIN XS2N IXR TZX

JSINM XS3 LASL ZERO

JS2Mm XS3N LASR

JS2N XXNZ

JS2NM XXZ

JS3M

— ¥ Instructions used only with the V77-800 computer are described in section 3.7

3.1 TYPE 1 INSTRUCTIONS

An assembler type 1 instruction occupies one computer word and is memory-addressing. It
may optionally specify indirect or preindexed addressing.

3-2

INSTRUCTION SUMMARY

Assembler type 1 instructions are:

Normal Load/Store LDA Load A register
LDB Load B register
LDX Load X register
STA Store A register
STB Store B register
STX Store X register
Arithmetic ADD Add memory to A register
SUB Subtract memory from A register
MUL Multiply
DIV Divide
INR Increment memory
Logic ANA AND memory and A register
ORA Inclusive OR memory and A register
ERA Exclusive OR memory and A register

The format of type 1 instructions varies according to the type of addressing, as follows:

Operation Variable

XXX address Direct addressing
xxx* address Indirect addressing
or
XXX (address)*
XXX incr,i Indexed addressing
where:
XXX is a type 1 instruction mnemonic
address is an address expression
incr is an indexing increment, < 0512

i specifies an index register: 1=X, 2=B

If the direct form of instruction is used, DAS selects the addressing mode of the generated
computer instruction according to the following rules:

a. Direct Addressing: If the specified address is 2047 or below, direct addressing is used.

b. Relative Addressing: If the specified address is above 2047 but not more than 512 and not
less tharn one word beyond the current instruction, the mode of addressing is relative to
the program counter.

c. Indirect Addressing: If neither of the preceding conditions for direct or relative addressing

is true, an address within the range 0 through 511 (called indirect pointer) is generated
and the indirect pointer address will be used in the instruction in the indirect mode.

3-3

INSTRUCTION SUMMARY

Indirect addressing is specified by an asterisk after the mnemonic or after-a variable field
expressed in parentheses, e.g.:

LDA* address

LDA (address)* NOTE CAUTION BELOW.

The instruction will be coded to address a location in lower core containing the address of the
word to be accessed. Indirect addressing to five levels is permitted and is accomplished by
setting the high-order bit at the indirect address location(s).

CAUTION

Only the first form should be used in DAS 8A (i.e., LDA*). In the second form (i.e.,
address)* DAS 8A will force bit 15 to a 1, changing the instruction.

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 512. The second specifies the indexing register: X register = 1,
and B register = 2. Preindexing is used. (Type 1 instructions cannot be postindexed.)

Examples

LDA 0500 Load A register with the contents
of memory location 0500. Addressing
is direct.

LDA *+12 Load A register with the contents
of the word 12 locations down
from the L.DA instruction.
Addressing is program counter
relative.

LDA 070000 Load A register with the contents
of memory location 070000. An
indirect address is generated
pointing to a location in lower
core containing the address
(070000).

LDA* TIN Load A register with the contents
. of the location whose address
. is contained at TIN, i.e., load
. A register with the contents of
TIN DATA 05100 location 05100. Addressing is
indirect.

LDA* IND1 This shows an example of multiple
. indirect addressing to 3 levels.
The A register is loaded with
. . . the contents of memory location
IND1 DATA (IND2)* 050.
IND2 DATA (IND3)*
IND3 DATA 0590

34

LDA

0300, 1

INSTRUCTION SUMMARY

Load A register with the contents
of the memory address specified
by the sum of the X register
contents and 0300. Thus, if

the X register contains 0200,

the operand for this instruction
is in memory address 0500.

3.2 TYPE 2 INSTRUCTIONS

An assembler type 2 instruction occupies two consecutive computer words and is memory-
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction; or the operand specified by an immediate instruction.

Assembler type 2 instructions are:

Immediate
Load/Store

Arithmetic

Logic

Jump
JMP
JOF
JOFN
JAP
JAN
JAZ
iBZ
JXZ
JANZ
JBNZ
JXNZ
JSS1
JSS2
JSS3
JSIN
JS2ZN
JS3N

Jump-
and-Mark
JMPM
JOFM
JOFNM
JAPM
JANM
JAZM
JBZM
JXZM
JANZM
JBNZM
JXNZM
JSIM
JSZM
JS3M
JSINM
JSZNM
JS3NM

LDAI
LDBI
LDXI
STAI
STBI
STXI
ADDI
SUBI
MULI
Divi
INRI
ANAI|
ORA|
ERAI

Execute
XEC
XOF
XOFN
XAP
XAN
XAZ
XBZ
XXZ
XANZ
XBNZ
XXNZ
XS1
XSs2
XS3
XS1N
XS2N
XS3N

Load A register immediate
Load B register immediate
Load X register immediate
Store A register immediate
Store B register immediate
Store X register immediate
Add to A register immediate
Subtract from A register immediate
Multiply immediate

Divide immediate

Increment immediate

AND immediate

Inclusive OR immediate
Exclusive OR immediate

Unconditionally

If overflow set

If overflow not set

If A register positive

If A register negative

i A register zero

If B register zero

If X register zero

If A register not zero

If B register not zero

If X register not zero

If SENSE switch 1 set

If SENSE switch 2 set

If SENSE switch 3 set

If SENSE switch 1 not set
If SENSE switch 2 not set
If SENSE switch 3 not set

3-5

INSTRUCTION SUMMARY

The immediate instructions have the following format:

Operation Variable

xxx|i value
where:
xxxi is an immediate instruction mnemonic
value is any expression value

The format of type 2 program control transfer instructions is the same as for type 1 direct or
indirect addressing. Since a full word is allocated to the address, the assembler will never
need to code an indirect address pointer for the purpose of reaching a specified location
otherwise out-of-range. The programmer may code an indirect address. With two-word
instructions, indirect addressing is limited to four levels. Type 2 instructions cannot be

indexed.
Examples

LDAI 19 Load A register with the value
19. The value is coded in
the second word of the instruction.

JMP THERE Unconditionally jump to the
instruction with the label
THERE.

JXNZ* SM If the X register is not zero,
jump to the instruction whose
address is contained in location
SM (may be multi-leveled).

XAZ IMP If the A register is zero,

execute the instruction at

location IMP. In either case,
control passes to the instruction
following XAZ.

3.3 TYPE 3 INSTRUCTIONS

An assembler type 3 instruction occupies two consecutive computer words and is memory-
addressing. It differs from an assembler type 2 instruction in that the variable field contains

two expressions instead of one.

Assembler type 3 instructicns are:

Jump JIF Jump if condition(s) met
BT Jump if bit condition met
Jump-and-Mark JIFM Jump and mark if condition(s) met
Execution XIF Execute if condition(s) met
170 SEN Program sense and jump if true
IME input to memory
OME Output from memory

3-6

INSTRUCTION SUMMARY

The format of type 3 instructions is as follows:

Operation Variable

XXXX code,address Direct addressing
yyyy* code, address Indirect addressing
yyyy . code,(address)*
where:
XXXX is any type 3 instruction mnemonic
yyyy is any type 3 instruction mnemonic except
IME or OME
code is a condition code (see bhelow)
address is an address expression

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions. Note that IME and OME
cannot specify indirect addressing.

The code parameter entries are described in detail below.

JIF, JIFM, and XIF Instructions

For the JIF, JIFM, and XIF instructions, the expression code specifies the conditions required
for the jump, jump-and-mark, or execution. The conditions are summarized in table 3-3; they
are described in detail in the system handbook. Multiple conditions can be specified by
setting additional bits.

Table 3-3. JIF/JIFM/XIF Code Conditions

Variable Field Jump/Execute if:

0001 Overflow indicator is set.

0002 A register contents are positive.
0004 A register contents are negative.
0006 NOT test of specified conditions.
0010 A register contents are zero.
0020 B register contents are zero.
0040 X register contents are zero.
0100 SENSE switch 1 is set.

0200 SENSE switch 2 is set.

0400 SENSE switch 3 is set.

3-7

INSTRUCTION SUMMARY

BT Instruction

For the BT instruction, the expression code is a 6-bit value that specifies the register and bit

to be tested, in the form:
4 3 21 0O

5
FTZ‘b'b'b'b

where:

z = 00 Specified bit in A register is 1
= 01 Specified bit in B register is 1
= 10 Specified bit in A register is 0
= 11 Specified bit in B register is 0

bbbb specifies the bit to be tested, from bit
0 (low-order bit) to bit 15 (high-order
bit)

SEN Instruction

For the SEN instruction, the expression code is a 9-bit value that specifies the device address
and |/0 function, in the form:

8 7 6 5 4 3 2 1 0

[o | d = "]

where:
q is a line number (0 to 7)
da is the device address

Standard device addresses are listed in section 3.4.

IME and OME Instructions

For IME and OME instructions, the expression code is the device address.

Examples

JIF 0222,ALFA In this example, the next
instruction is taken from
symbolic address ALFA if the
A register contains a positive
number (0002), the B register
contains zero (0020), and
SENSE switch 2 is set (0200);
i.,e., 0002 + 0020 + 0200 =
0222.

3-8

BT

SEN
JMP

ADDR OME

056 , ADDR

0101,ADDR
*-2

01,L0C

3.4 TYPE 4 INSTRUCTIONS

INSTRUCTION SUMMARY

in this example the next instruction
from symbolic address ADDR is fetched
if bit 14 of the A register contents

is zero.

In this example, the next instruction

is fetched from symbolic address ADDR
if the write register of the Teletype

is ready; OME is executed, which outputs
the data in symbolic address LOC to

the Teletype. Otherwise, the next
instruction in sequence (JMP) is executed,
which returns the program io the SEN
command. -

An assembler type 4 instruction occupies one computer word and does not address memory.
These instructions take none or a single variable operand.

Assembler type 4 instructions are:

Register Transfer

Register Modification

no
Control operand

TAB Transfer
TAX Transfer
TBA Transfer
TBX Transfer
TXA Transfer
TXB Transfer
TZA Transfer

A

A
B
B
X
X

register to B register
register to X register
register to A register
register to X register
register to A register
register to B register

zeros to A register (clear A)

TZB Transfer zeros to B register (clear B)
TZX Transfer zeros to X register (clear X)
TSA Transter switches to A register

IAR Increment A register

IBR Increment B register

IXR Increment X register

DAR Decrement A register

DBR Decrement B register

DXR Decrement X register

CPA Complement A register

CPB Complement B register

CPX Complement X register

AOFA Increment A register if overflow set

AOFB Increment B register if overflow set

AOFX increment X register if overflow set

SOFA Decrement A register if overflow set
SOFB Decrement B register if overflow set
SOFX Decrement X register if overflow set
NOP No operation

ROF Reset overflow indicator

SOF Set overflow indicator

HLT Halt

3-9

INSTRUCTION SUMMARY

Shift/Rotation ASRA Arithmetic shift right A register
ASRB Arithmetic shift right B register
ASLA Arithmetic shift left A register
operand ASLB Arithmetic shift left B register
LASR Long arithmetic shift right
LASL Long arithmetic shift left
LSRA Logical shift right A register
LSRB Logical shift right B register
LRLA Logical rotation left A register
LRLB Logical rotation left B register
LLSR Long logical shift right
LLRL Long logical rotation left
Combined Register

Transfer/Modification MERG Merge source to destination registers
INCR Increment source to destination registers
DECR Decrement source to destination registers
COMP Complement source to destination registers
ZERO Zero (clear) registers.

170 EXC External control
SEL External control
EXC2 Auxiliary external control
SEL2 Auxiliary external control
CIA Clear and input to A register
CiB Clear and input to B register
CIAB Clear and input to A and B registers
INA Input to A register
INB Input to B register
INAB Input to A and B registers
OAR Output from A register
OBR Output from B register
OAB Output from A and B registers

The format of type 4 instructions appears as follows:

Operation Variable

XXXX No variable field
yyyy expression
where:

XXXX is any of the register transfer, register
mod:fication, or control instructions
(except HLT) listed above. These instruc-
tions take no operand.

yyyy is any of the remaining instructions
listed above. Theses instructions take
one operand.

expression is an expression value

The expression value is described below for each group that uses it.

3-10

INSTRUCTION SUMMARY

HLT Instruction

The HLT variable field expression is optional; if present, it becomes the coded value of the
instruction (otherwise zero). The HLT number can be displayed from the | register whenever a
halt occurs to determine which halt was reached.

Shift instructions

For the shift instructions, the variable field expression is the shift count (31 maximum).

Combined Register Transfer/Modification Instructions

For the combined register transfer/modification instructions, the variable field expression is a
number of the form:

Oxsd

composed as shown below:

X
8 7 6 5 4 3 2 1 0
0 0 s d
A A t
0 = execute 1 = A reg
unconditionally 1 = B reg
1 = execute if OF is set 1 = X reg
1 = A reg
1 = B reg
1 = X reg

For the ZERO instruction, the code must be of the form ""0x0d"’.

i/0 Instructions

For EXC, SEL, EXC2, and SEL2, the expression specifies the 1/0 function and the device

address in the form:

8 7 6 5 4 3 2 1 0
f da

where:

f is the control function

da is the device address

3-11

INSTRUCTION SUMMARY

For the remainder of the 1/0 instructions in this group, the expression is the device address
only (the 1/0 function being specified by the mnemonic).

Examples

HLT 066 Codes an instruction of the
operand value that may be displayed
when a halt at this location

occurs.
ASLA 1 Arithmetic left shift A register
1 bit (equivalent to multiplying
by 2).
coMp 035 Unconditionally takes the

inclusive OR and complements
the contents of the A (0010)
and B (0020) registers, and
places the result in the A
(0001) and X (0004) registers.
Note that if bit 8 were one
in the operand, the instruction
would execute only if the
overflow indicator is set.

CIB 030 Clears the B register and loads
it from the peripheral specified
by device address 030.

Standard device addresses are given in table 3-4.
NOTE

SEL/SEL2 are identical to EXC/EXC2 instructions.

3-12

INSTRUCTION SUMMARY

Table 3-4. Standard Device Addresses

Class Code Addresses Option or Peripheral
00-07 01-07 Teletype or CRT device
010-017 010-013 Magnetic tape unit
014 Fixed-head rotating memory
015 Movable-head rotating memory
016-017 Movable-head rotating memory
020-027 020,021 First BIC
022,023 Second BIC
024,025 Third BIC
026,027 Fourth BIC
030-037 030 Card reader
031 Card punch
032 Digital plotter
033 Electrostatic plotter
034 Second paper tape system
035,036 Line printer
037 First paper tape system
040-047 040-043 PIM
044 All PIM enable/disable
045 MP/PARITY
047 RTC
050-057 050-053 Special applications, and
Digital-to-analog converter
through
054-057 Analog system
060-067 060-067 Digital 170 controller, or
Buffered 1/0 controlier
070-077 070-073 Data communications system
074-076 Relay |/0 controller, or
Special applications
077 Computer control panel

3.5 TYPE 5 INSTRUCTIONS

An assembler type 5 instruction occupies two consecutive computer words and is memory-
addressing. All of these instructions have indirect addressing as an option. Most can be
preindexed or postindexed.

3-13

INSTRUCTION SUMMARY

Assembler type 5 instructions are:

Extended Load/Store

Arithmetic

Logical

Jump

LDAE Load A register extended

|.DBE Load B register extended

I.LDXE Load X register extended

STAE Store A register extended

STBE Store B register extended

STXE Store X register extended

ADDE Add memory to A register extended

SUBE Subtract memory from A register extended
MULE Multiply extended

DIVE Divide extended

INRE Increment memory extended

ANAE AND memory and A register extended

ORAE Inclusive OR memory and A register extended
ERAE Exclusive OR memory and A register extended
[JMP Indexed jump

JSR Jump and set return in index register

SRE Skip if register equals memory

These instructions have the following formats:

where:

address

post

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field

Operation Variable

XXXX address,i,post Optional indexed
addressing
xXxx* address, i, post Indirect addressing
or
XXXX (address)*,i,post

is an address expression

if present, is an index specification,
described further below

if present, is a postindex specification
for all extended addressing instructions.

expression in parentheses as described for the type 1 instructions.

Preindexing is specified as described for the type 1 instructions. Note that IJMP and SRE
cannot be preindexed.

Postindexing is specified by three expressions in the variable field. The first expression is the
data address, the second specifies the indexing register (X register = 1, and B register = 2),
and the third is logically ORed with the instruction word to set bit 7 (which specifies
postindexing). The assembler does not check the validity of the third expression; thus, the
value 0200 should always be used. There is no purpose to postindexing unless indirect

addressing is involved.

3-14

INSTRUCTION SUMMARY

Variations in the interpretation of the variable field entries are discussed below.

Extended Instructions

For extended instructions, the variable field may contain one operand (direct addressing), two
operands (preindexing), or three operands (postindexing). The instructions may also include
indirect addressing.

address Direct addressing
or

address,i Preindexed addressing
or

address,i, 0200 Postindexed addressing

IJMP Instruction

The 1JMP instruction may have direct, indirect, and postindexed addressing, i.e., variables of:

address Direct addressing
or
address,i Postindexed addressing

IJMP cannot be preindexed.

JSR Instruction

The JSR instruction, like IJMP, is not preindexed, nor is it postindexed. A variable field of the
form:

address,i

is used to specify the jump address and the index register into which the return address is to
be placed.

SRE Instruction

For the SRE instruction, the first expression in the variable field is the data address, the
second specifies the type of addressing, and the third is logically ORed with the instruction
word to control bits 3-5 to specify the register to be compared. The format may be illustrated
as:

address treg
where:

address is the memory location to be compared
to the specified register

INSTRUCTION SUMMARY

t
reg
Examples:
LDAE#*
IJMP
JSR
SRE

specifies the type of addressing and may
be any of the following:

= 1 index with X register
= 2 index with B register
= 7 not indexed

is a register code of the register to be
compared, as follows:

= 010 A register
= 020 B register
= 040 X register

ADDR, 2,0200 Loads the A register extended,
indirect and postindexed with
the B register.

GO, 1 Indirect jump through location
GO, postindexed by the X
register.

MOM, 2 Jump to location MOM and set

return in B register.

ADDR, 7,020 Compares the contents of the
B register with the directly
addressed word at ADDR, and,
if equal, skips the next two
locations

3.6 MULTIPLE REGISTER INSTRUCTIONS

It should be noted that from the earliest Sperry Univac 620 software, the assembler syntax
uses the convention that the Xregisterisindex register 1 and the B registerisindex register 2.
However, the V70 emulation microprograms use hardware register R1 for the B register and
hardware register R2 for the X register. The VORTEX DAS Assemblers resolve this by
mapping references to register R1 into references to hardware register R2 and vice versa.
Thus, for V70 series instructions, references to the X register generate instructions
referencing hardware register R2 (X register). Since the programmer is usually indifferent to
the hardware register number assigned the X and B registers (except possibly a diagnostic
programmer), this should cause no programming problems. If a diagnostic programmer
does want to reference a particular hardware register, the register designation in his

assembly statements should be written as follows:

a. Toreference register RO (A), write 0.

3-16

INSTRUCTION SUMMARY

b. Toreference register R1(B), write 2.

c. Toreference register R2 (X), write 1.

d. Toreference registers R3 through R7, write 3 through 7, respectively.
NOTE

The multiple register instructions generally require more time for execution;
therefore, the standard instruction should be used whenever possible.

3.6.1 Register-To-Memory Instructions

Assembler mnemonics for the register-to-memory instructions are:

AD Add
LD Load
SB Subtract
ST Store
Example
1D, 0 0300,3 Register RO is loaded with

the contents of the memory
address specified by the sum
of 0300 and the contents of
register R3. Thus, if R3
contains 0200, the operand
for this instruction is in
memory address 0500.

3.6.2 Byte Instructions
Assembler mnemonics for the byte instructions are:

LBT Load Byte
SBT Store Byte

Example

SBT 0200,3 The contents of the right byte
of register RO are stored at
the address specified by the
'sum of 0200 and the contents
of register R3 (shifted right
one bit). Thus, if R3 contains
041, the operand is stored in
the right byte at address 0220.

INSTRUCTION SUMMARY

3.6.3 Jump-If Instructions

Assembler mnemonics for the jump-if instructions are:

Example

JDNZ Jump If Double-Precision Register Not Zero

JDZ Jump |f Double-Precision Register Zero

JN Jump If Register Negative

JNZ Jump If Register Not Zero

JP Jump If Register Positive

Jz Jump If Register Zero

Jz,3 ADDR The program jumps to the symbolic

address ADDR if register R3
contains zero. If register R3
does not contain zero, the next
instruction in sequence is
executed.

3.6.4 Double-Precision Instructions

Assembler mnemonics for the double-precision instructions are:

DADD Double Add

DAN
DER
DLD
DOR
DST

Double AND

Double Exclusive OR
Double Load

Double OR

Double Store

DSUB Double Subtract

Examples

DST, 4 0200 The contents of double-precision
register R4-R5 are stored at
the two consecutive memory
locations starting at address
0200.

DST, 0 0200 Same as above except register
RO-R1 contents are stored.

3.6.5 Immediate Instructions

Assembler mnemonics for the immediate instructions are:

ADI
LDI

3-18

Add Immediate
Load Immediate

INSTRUCTION SUMMARY

Example
ADI,5 0642 The immediate operand value

of 0642 is added to the contents
of register R5.

3.6.6 Register-To-Register Instructions

Assembler mnemonics for the register-to-register instructions are:

ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.

3.6.7 Single Register Instructions

Assembler mnemonics for the single register instructions are:

COM Complement
DEC Decrement
INC Increment
Example
INC, 3 The contents of register R3

are incremented by 1.

3.7 V77-800 STANDARD EXTENSIONS

The V77-800 standard extensions include instructions for moving and storing blocks of data. These

extensions consist of the following seven instructions:

Double Word Move (DMOVSD,DMOVXD,DMOVSX,DMOVXX).
Registers Load (RGLD)

Registers Store (RGST)

Decrerment register and Jump (DJP)

Block Move (BMOVW)

Store Words (STWRDS)

Store Bytes (STBYTS)

3-19

!

INSTRUCTION SUMMARY

3.7.1 Double Word Move Instruction

This instruction can be used with or without indexed addressing as shown by the following:

[] Double Word Move (DMOVSD). - Neither the source nor the destination addresses are
indexed.

L] Double Word Move (DMOVXD). - The source address is indexed by Register R2(X).
] Double Word Move (DMOVSX). - The destination address is indexed by Register R2(X).

| Double Word Move (DMOVXX). - The source and destination address are indexed by
Register R2(X).

Each of the double word move instructions moves up to seven double words.
The format for the double word move instructions is

name,words, source,destination

where

name is one of the V77-800 standard extension assembler mnemonics
words is the number of double word(s) to be moved

source is the address the double word(s) is/are located at

destination is the address that the double word(s) will be moved to.

Assermbler mnemonics and the corresponding functions associated with the double word move
instruction are:

DMOVSD Address indexing is not used. Moves double word (s) from the source
address to the destination address.

DMOVXD The source address is indexed by the R2(X) Register and the destination
address is direct.

DMOVSX The source address is direct and the destination address is indexed by the

R2(X) Register.
DMOVXX Both the source and destination address are indexed by the R2(X) Register.

Example 1:

DMOVSD 1, LAB1, LAB2

This example rnoves one double word from the source address (LAB1) to the destination address
(LAB2).

3-20

INSTRUCTION SUMMARY

Example 2: !
DMOVXD 3, LAB1, LAB2
This example moves three double words with the source address (LAB1) indexed by the R2(X)

Register. The destination address (LAB2) is not indexed by the R2(X) Register.

3.7.2 Register Load and Register Store Instructions

Assembler mnemonics for the Register Load and Register Store instructions are:

B RGLD Registers Load; Direct or Indexed Addressing
m RGST Registers Store; Direct or Indexed Addressing

The format for the Register Load and Register Store instruction is:

name,address,.index register

where

name is one of the assembler mnemonics

address is the address to be indexed by the index register

index register is the register whose contents are used to index the address
Example 1:

RGLD LAB1,R7

Indexed; The address of LAB1 is indexed by R7. Registers O through 7 are loaded with the eight
sequential words starting with the word at the augmented LAB1 address.

Example 2:
RGLD LAB1

Direct; Registers O through 7 are loaded with the eight sequential words starting with the word at
the address of LAB1.

Example 3:
RGST LAB1,R5

Indexed; The contents of registers O through 7 are sequentially loaded into eight mernory locations
starting with the destination address indexed by R5.

Example 4:

RGST LAB1

3-21

INSTRUCTION SUMMARY

Direct; The contents of registers O through 7 are stored into a block of eight sequential memory
locations starting with the address specified by LAB1.

3.7.3 Decrement Register and Jump if the Initial Register Value is Not Negative
(DJP)

The assembler mnemonic for this instruction is:
DJP Decrement Register and Jump
The format for the Decrement Register and Jump is:

name,index register,address

where
name is the rmnemonic DJP
index register is the index register from which one will be subtracted. If the value in
the register is non negdative, the jump will occur.
address is the address to which the jump may occur.

If the jurmp does not occur the next instruction is executed.
Example:
DJP R7, LAB1
This example subtracts one frorm the contents of R7 and, if the initial register value was not

negative, jumps to the address of LAB1.

3.7.4 Block Move, Store Words, and Store Bytes Instructions

Assernbler mnemonics for these instructions are:
BMOVW Block Move
STWRDS Store Words
STBYTS Store Bytes
The format for the Block Move, Store Words, and Store Bytes instructions is:
name

where

name 1s the mnernonic used

3-22

INSTRUCTION SUMMARY

Example 1:
BMOVW

This example moves up to 32K words, from the address stored in RO to the destination address
stored in R1. The block length is stored in R6 and must be a value greater than zero.

Example 2:

STBYTS
This exarnple stores the right byte of RO into a block of up to 32K bytes. The starting byte address of
the mermory block is stored in R1. The block length, in bytes, is in R6. The block length stored in R6
rmust be greater than zero.
Example 3:

STWRDS
This exarnple stores the word from RO into a block of up to 32K words. The initial address of the

block is stored in R1. The block length of the block is stored in R6. The length of the block stored in R6
must be greater than zero.

323

SECTION 4
ASSEMBLER DIRECTIVES

Assembler directives are requests to the assembler to perform certain operations during
program assembly, just as machine instructions are used to request the computer to perform
operations during program execution.

Assembiler directives are divided into the following functional groups:

* Symbol definition
» Instruction definition
+ Location counter control
» Data definition
+ Memory reservation
« Conditional assembly
e Assembler control
e Subroutine control
e Listand punch control
* Program linkage
*+ MOS1/0 control
« VORTEX /0 control
"« Macro definition

Table 4-1 lists the assembler directives by function and shows which directives are recognized
by each assembiler (DAS 8A and DAS MR).

Assembler directives have the same general format as the computer instructions. In the
following descriptions of the individual directives, the field format:

Label Operation Variable
is used, with the optional comment field being understood to follow the variable field when
used. In cases where the variable field contains more than one item or expression, these are

always separated by commas. Mandatory elements of the directive are in bold type, and
optional items, in italic type.

4-1

ASSEMBLER

DIRECTIVES

Table 4-1. Directives Recognized by DAS Assemblers

Function Directive DAS 8A DAS MR
Symbol definition EQU Yes Yes
SET Yes Yes
MAX Yes No
MIN Yes No
Instruction definition OPSY Yes Yes
Location counter control ORG Yes Yes
LOC Yes Yes
BEGI Yes No
USE Yes No
Data definition DATA Yes Yes
PZE Yes Yes
MZE Yes Yes
FORM Yes Yes
Memory reservation BSS Yes Yes
BES Yes Yes
DUP Yes Yes
Conditional assembly IFT Yes Yes
IFF Yes Yes
GOTO Yes Yes
CONT Yes Yes
NULL Yes Yes
Assembler control MORE Yes No
END Yes Yes
Subroutine control ENTR Yes Yes
RETU* Yes Yes
CALL Yes Yes
List and punch control LIST Yes No
NLIS Yes No
SMRY Yes Yes
DETL Yes Yes
PUNC Yes No
NPUN Yes No
SPAC Yes Yes
EJEC Yes Yes
Program linkage NAME Yes Yes
EXT Yes Yes
COMN Yes Yes

4-2

ASSEMBLER DIRECTIVES

Table 4-1. Directives Recognized by DAS Assemblers (continued)

MOS 1/0 control

VORTEX 1/0 control

VORTEX EXEC requests

Applicable to DAS MR only; refer
to the MOS Reference Manual.

Applicable to DAS MR only; refer
to the VORTEX | or VORTEX Ii

Function Directive DAS 8A DAS MR
Macro definition MAC No Yes
EMAC No Yes

Reference Manual.

Applicable to DAS MR only; refer
to the VORTEX | or VORTEX 1l

Reference Manual.

4.1 SYMBOL DEFINITION DIRECTIVES

Symbol definition directives are used to assign values, specified in the variable field, to

symbols specified in the label field.

4.1.1 EQU Directive

The EQU directive assigns a value to a symbol. Once assigned by an EQU directive, the value
cannot be changed eisewhere in the program.

This directive has the following format:

Label Operation Variable
symbol EQU expression
where:
symbol is a symbol which must be present.
expression is any valid expression.

The assembler places the symbol in the symbol table and assigns it the value of the
expression. |f the symbol has already been entered in the symbol table, DAS outputs an error
message, and the expression replaces the value in the symbol table. If a symbol is used as the
variable field expression, it must have been previously defined.

Examples
AID EQU 076000
X EQU 1

AID is assigned the value 076000.

X is assigned the value 1.

ASSEMBLER DIRECTIVES

B EQU 2+10/5 B is assigned the value 4.

ADDR EQU 0500 ADDR is assigned the (absolute)
value 0500.

ADRS EQU * ADRS is assigned the value

of the current location counter
(absolute or relocatable).

BAM EQU SAD-*+1 BAM is assigned the expression
evaluation (absolute or relocatable).

NUM EQU 22 Double definition (*DD)--two
. equate statements with the same
label - should not appear in the
. same program. If they do, the
NUM EQU 14 symbol table will contain the
last value used.

4.1.2 SET Directive

The SET directive operates the same as EQU except that a symbol may be redefined without error.

This directive has the following format:

Label Operation Variable
symbol SET expression
where:
symbol is a symbol which must be present.
expression is any valid expression.
Examples
MOND SET 400 Assign value of 400 to MOND:;
. for subsequent statements,
MOND has a value of 400.
MOND SET 500 Assign value of 500 to MOND;
. for subsequent statements,

MOND has a value of 500.

Since symbols defined by the SET directive do not becorne part of the set of program entry points
even if they are declared in a NAME directive (Section 4.10.1), the SET directive should not be used
to assign a value to a variable which also appears in a NAME directive.

For exarmple, the staternent

MOND SET 400

and the staterment
NAME MOND

should not be used in the same program.

4-4

ASSEMBLER DIRECTIVES

4.1.3 MAX Directive (DAS 8A Only)

The MAX directive assigns the largest (maximum) algebraic value among a string of values to
a symbol.

This directive has the following format:

Label Operation Variable
symbol MAX expression,expression(s)
where
symbol is a symbol which must be present
expression is any valid expression. The field may
contain multiple expressions, separated
by commas. :

The assembler assigns the largest algebraic value found among the expressions to the symbol.
If a symbol is used as a variable field expression, it must have been previously defined. The
value of the symbol may be redefined, if desired, via the SET directive.

Examples
MOST - MAX 1,2,3,4,5 Assigns the value 5 to MOST.
SYM MAX HARRY, JOE, 3 Assigns to SYM the value of

the symbol HARRY, the value
of the symbol JOE, or 3,
depending on which has the
highest value. Both symbols
must have been previously
defined.

4.1.4 MIN Directive (DAS 8A Only)

The MIN directive assigns the smallest (minimum) algebraic value among a string of values to
a symbol.

This directive has the following format:

Label Operation Variable
symbol MIN expression,expression(s)
where:
symbol is a symbol which must be present.
expression is any valid expression. The field may
contain multiple expressions, separated
by commas.

MIN is the same as MAX, except that the symbol is assigned the smallest aigebraic value
found among the expressions.

4.5

ASSEMBLER DIRECTIVES

Examples
TRV MIN 50000 Assigns the value 50000 to TRV.
IN EQU 10
IOB EQU 2+10/2%6
MAPN MIN IN,10,10B Assigns the value 10 to MAPN

(note that both label IN and
constant 10 have this value).

4.2 INSTRUCTION DEFINITION DIRECTIVE

4.2.1 OPSY Directive

The OPSY directive allows the user to optionally define his own mnemonic names for
instructions.

This directive has the following format:

Label Operation Variable
symbol OPSY mnemonic
where:
symbol is a symbol which must be present.
mnemonic is any standard instruction mnemonic.

The assembler makes the symbol a mnemonic name with the same definition as the variable
field mnemonic.

Examples

CLA OPSY LDA Define CLA as equivalent to
LDA 0300 LDA mnemonic; in subsequent
CLA 0300 program statements, CLA and
LDA may be used interchangeably
as the "Load A register”
instruction mnemonic.

J123 oPSY JIF,0700 Invalid--variable field must
contain only a standard instruction
mnemonic.

4.3 LOCATION COUNTER CONTROL DIRECTIVES

Location counter control directives control the program location counter(s), which control
memory area assignments and always point to the next available word.

DAS 8A Location Counter Control. DAS 8A recognizes directives to modify or preset the values
of any of its location counters (refer to table 2-1). In addition, up to eight other location

4-6

ASSEMBLER DIRECTIVES

counters can be created, thus providing the possibility of constructing complex relocation and
overlay programs within a single assembly.

There are no user-created location counters at the beginning of an assembly. The assembler
uses three location counters for program location assignment. Thus, 1AOR (indirect pointer
assignments) and LTOR (literal assignments) are always in used, as is a third counter used to
assign locations to generated instructions and data. The blank location counter performs this
task until the USE directive specifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

DAS MR Location Counter Control. DAS MR utilizes only one location counter. This location
counter normally has a relocation bias of zero. DAS MR is most commonly used with an
operating system and a relocating ioader. Normally DAS MR programs are relocatable, and
therefore location counter control should not be used.

The ORG directive may be used in DAS MR to change the current location counter value
(relocatable or absolute). The LOC directive may be used in DAS MR for assembly of programs
that are to be moved under program control. Attempts to use ORG or LOC with DAS MR

programs to be run under the operating system should be done with care so as not to overlay
any system tasks.

4.3.1 ORG Directive
The ORG directive is used to specify the beginning location counter value.

This directive has the following format:

Label Operation Variabie
symbol ORG expression
where:
symbol is an optional user symbol.
expression is an address expression.

The assembler sets the location counter currently in use to the value of the expression. If a
symbol is present in the label field, it is also set to the value of the expression (note that this
is the current location counter value also).

Any symbol used as the variable field expression must have been previously defined.

For DAS MR, the address origin defaults to relocatable zero if no ORG directive is given. For
DAS 8A, it defaults to absolute 04000 if na ORG directive is given.

4-7

ASSEMBLER DIRECTIVES

Example

The left-hand column below shows the value of the location counter at each program
statement when origined as shown.

Location
Counter
05000 ORG 05000 Origin at 05000.
05000 STRT LDA A
05001 ADD c
05002 SUB D
05003 JIMP AID
05004
05005 A DATA 5
05006 c DATA 4
05007 D DATA 3

AID EQU 076000

END

4.3.2 LOC Directive

The LOC directive is used to assemble a block of program code that is to be relocated during
program execution.

This directive has the following format:

Label Operation Variable
symbol LOC expression
where:
symbol is an optional user symbol.
expression is an address expression.

LOC is used if the data and instructions following this LOC address are to be moved to the
LOC address by the object program before executing the moved block, i.e., to keep a block of
data or instructions undisturbed by assembly. Data or instructions following LOC are
generated as if an ORG directive had changed the current location counter value. However,
this value is not actually changed.

The location counter used for coding the block is specified by the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as a variable field expression must have been previously defined. LOC
cannot be used in a relocatable program.

Example

The following program code illustrates the use of the LOC directive on the program counter
values, as shown in the left-hand column.

4-8

ASSEMBLER DIRECTIVES

Location
Counter Contents

0Us00V0 UKL U300u Origin at 03000.

003000 0100uU) A LLA 1 Instructions assembled
005001 12vvoe ADD 2 from 03000.

VUs00e 1404003 Sus 3

VU3UUSs UULUOU JMP C Last address must jump.
V05004 wLAluly -

yusuon ENVA L pgy * ENDA = 03005.

0UGSuY o LUC 0500 Set assemble-origin at 0500.
U0USDu uvluuul DATA 1 These data or instructions
Guuddl vouube VATA Z will be assem{)led for run-
Uuus0e vluuusS wAalaA 3 n?ng at 1ocatlor.1 0500. They
UUUS04 UuU0uG DATA 4 will).::e loaded into core at
00USU4 QUU0US UATA 5 locations ENDA plus. Yt?u
00305 00U0Vo DATA 6 must move them tq location
v V3 0500 before running.
uoous5u6 0ouuo/ . DATA 7

VO30 14 L URG LNUA+x=1

UU301d uuuulv VAL A) This is the next available
00301l viduoll LATA g location after program B.

EnND

4.3.3 BEGI Directive (DAS 8A Only)

The BEGI directive may be used in DAS 8A programs to define an initial value for any of the
location counters.

This directive has the following format:

Label Operation Variable
symbol BEGI expression
where: ‘
symbol is COMN, IAOR, LTOR, or SYOR (see table 2-1);
or a user symbol to create a new location
counter.
expression is an address expression.

BEGI creates a new location counter, or redefines the value of any location counter before the
counter has been used. Up to eight user location counters may be created. BEGI gives the new
or redefined location counter the value of the expression, but has no effect on the current
location counter.

BEGI is used to define initial values only. It cannot redefine the value of any location counter
that has already been used for location assignment.

Any symbol used as a variable field expression must have been previously defined.

Examples

TAOR BEGI 050 Redefine standard counter IAOR
to begin at location 050.

4-9

ASSEMBLER DIRECTIVES

LTOR BEGI 075 Redefine standard counter
LTOR to begin at location
075.

UCNT BEGI 06500 Create a user location counter
called UCNT.

4.3.4 USE Directive (DAS 8A Only)

The USE directive activates a specified location counter.

This directive has the following format:

Label Operation Variable
(none) USE counter
where:
counter is a blank, COMN, or SYOR (see table 2-1);
PREV; or a user-created location counter
label.

The USE directive causes the assembler to switch to the current value of the indicated
location counter for assembly of subsequent source statements. If PREV is given, the
previously used location counter is recalled, with the restriction that onily the last-used

counter can be so recalled.

Examples
USE COMN Switch to COMMON location counter.
USE Switch to standard location counter.
USE SYOR Switch to system location counter.
LDA* * (Loads a system parameter.)
USE COMN
USE SYOR
USE PREV Switch back to COMN location

counter.

4.4 DATA DEFINITION DIRECTIVES

Data definition directives allow the user to create words of data as part of his source program.

4-10

4.4.1 DATA Directive

ASSEMBLER DIRECTIVES

The DATA directive generates one or more words of data that are output with the object

program code.

This directive has the following format:

Label
symbol

where:

symbol

expression

Operation
DATA

Variable
expression,expression(s)

if present, is assigned the value of
the current location counter.

is any valid expression.

DATA generates data words with the values specified by the expression(s) in the variable field.
DATA assigns the symbol, if used, to the memory address of the first generated word. In the
- absence of a symbol, an unlabeled block of data is generated.

Examples

D DATA

DATA

DATA

DATA

DATA

DATA

FF

' COMMENT '

1+2

1

Creates data word of value 5
and assigns the current location
counter value to the symbol D.

Creates data word of the value
of symbol FF (absolute or
relocatable).

Creates 4 data words of 2 ASCII
character bytes per word.

Creates data word of the value
of the expression (absolute or
relocatable).

Creates data word of value 3.

Creates data word of value 1.

Figure 4-1 shows a source listing to illustrate the object code generated by the above data
expressions. The first column shows the location counter (beginning at relocatable zero), and
the second column shows the object code generated. Refer to section 5 for a detailed
description of the source listing.

ASSEMBLER DIRECTIVES

005000
Qo&gno
0050014
005002
005003
005004
005005
005006
005007
003040
005011

000008
005011
144717
146715
1427186
152240
n0A4A7?7y
nonQO03
000001
017000

1 ORG 05000
A 2 D DATA 5,FF, "COMMENT!,D=5,142,1
A
A
A
A
A
A
A
A
1 3 PP LDA 0
A END

Figure 4-1. Sample DATA Directive Usage

4.4.2 PZE Directive

The PZE directive can be used to generate positive-only data words.

This directive has the following format:

where:

Label
symbol

symbol

expression

Operation Variable
PZE expression,expression(s)

if present, is assigned the value of the
current location counter.

is any valid expression.

PZE is similar to DATA except that the sign bit of the generated data word is always forced to
zero (positive).

Examples

Figure 4-2 shows a source listing illustrating data words (in the second column) generated by
the PZE directive. Note that the sign bit (high-order bit) is always zero, contrasted to the

DATA directive generations.

4-12

ASSEMBLER DIRECTIVES

006000 1 ORG 06000

006000 177777 2 DATA w{,=2,7,"AB',0108617
006001 177776
006002 000007
006003 140702
006ooa 106612
006005 077777
006008 077776
008007 000007
006010 040702
006ny1 NORGYL2

3 P2E wl,22,7,'AB",0106612

20 g B 2B 2 JB J 2 JF o

4 TEND

Figure 4-2. Sample PZE Directive Usage

4.4.3 MZE Directive
The MZE directive can be used to generate negative-only data words.

This directive has the following format:

Label Operation Variable
symbol MZE expression,expression(s)
where:
symbol if present, is assigned the current location
counter value.
expression is any valid expression.

MZE is similar to DATA except that the sign bit of the generated data word is always forced to
one (negative).

Examples

Figure 4-3 shows a source listing illustrating the use of MZE.

0070600 | ORG 07000
007000 100001 A 2 MZE 1092,06612
007001 100000 A
007002 100002 A
007003 106612 A

3 END

Figure 4-3. Sample MZE Directive Usage

413

ASSEMBLER DIRECTIVES

4.4.4 FORM Directive

The FORM directive specifies the format of a bit configuration of a data word.

This directive has the following format:

Label Operation Variable
symbol FORM term,term(s)
where:
symbol is a user symbol.
term is an absolute expression.

The symbol is the name of the format. The terms specify the length in bits of each field in the
generated data word, where the sum of their values is from one to the number of bits in the

computer word.

FORM is igniored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied (by
placing its name in the operation field of a symbolic source statement) to another statement.

A FORM symbol can be redefined.
Examples

Figure 4-4 shows sample usage of the FORM directive.

a. Without error: Label
1 RYTE
2 8ach
3 PYAB
4 ARC
OOQOOO Nn14704 A 5
00000t 106612 A 6
b. With error: Label
000002 000005 A b4
LY A
%82
8

Operation Variable

FORM
FORM
FORM
FORM
ABC

BYTE

Operation
PTAR

END

8,8
4,4,4,4
6,2,8
2%x3,1,'A
0215,0212

Variable
2 '] 4 '] 5

Figure 4-4. Sample FORM Directive Usage

4.5 MEMORY RESERVATION DIRECTIVES

Memory reservation directives control the reservation of memory addresses and areas.

ASSEMBLER DIRECTIVES

4.5.1 BSS Directive

The BSS directive is used to reserve a block of memory locations for use by the program
during its execution.

This directive has the following format:

Label Operation Variable
symbol BSS expression
where:
symbol if present, is assigned the current locaticn
counter value.
expression is an absolute expression.

BSS reserves a block of memory addresses by increasing the value of the current location counter by
the amount indicated by the expression. The symbol, if used, is assigned the value of the counter
prior to such an increase, thus referencing the starting address of the reserved block.

If the variable field expression value is zero, the symbol is assigned the next available address
(i.e., BSS0 = BSS 1).

Examples

B BSS 050 Reserve a block of 050 words
and assign the beginning loca-
tion address to B. On completion,
the location counter will
be at B+ 050. The locations
can be accessed as B, B+1,
B+2,.., B+047.

MO BSS 1 These three statements reserve

MP BSS 1 3 words of storage, each

MQ BSS 1 separately labeled.

4.5.2 BES Directive
The BES directive, like BSS, is used to reserve a block of memory locations.

This directive has the following format:

Label Operation Variable
symbol BES expression

where:

4-15

ASSEMBLER DIRECTIVES

symbol if present, is assigned the current location
counter value.

expression is an absolute expression.

The BES directive is similar to BSS, except that if there is a symbol it is assigned to the
address one less than the incremented location counter.

If the variable field expression is zero, the symbol is assigned the last address used (i.e., BES
0 has no effect).

Example

B BES 050 Same as BSS above, except that
the label B is assigned a
value of the end of the
block. Thus, the locations
can be accessed as B-1, B-2,
B-3,..., B-047.

4.5.3 DUP Directive
The DUP directive can be used to duplicate source statements input only once.

This directive has the following format:

Label Operation Variable
symbol Dup nm
where:
symbol if present, is assigned the current location
counter value.
n is a constant that specifies the duplication
count.
m if present, is a constant that specifies

the source statement count for duplication.
If omitted, it defaults to one.

DUP duplicates source statements that folliow the DUP directive. An n-only format duplicates
the next source statement the number of times specified by n. An n,m format duplicates the
next 1, 2, or 3 source statements (the number of which is specified by m) the number of times
specified by n, which m< 3 and n< 32,767. |f n or m is zero, it is treated as if it were a one.

A DUP statement may not appear within the range of another DUP statement. The

statement(s) being duplicated should not contain any labels, as the labels will be duplicated
also and a "double definition’ (*DD) diagnostic will result.

4-16

Examples
B DUP
ADD
c EQU
B DUP
ADD
ADD
c EQU

* W W

* & WN

Duplicate the next statement
(the ADD instruction) three

times.

ASSEMBLER DIRECTIVES

Duplicate the next 2 statements

(the ADD instructions) two

times.

Complete source listings for these two examples are shown in figure 4-5. Note the

duplications.
Example 1
004000 1 ORG 04000
004000 A 2 A EQU *
a8 pup 3
004000 120003 A 4 ADD 3
004001 120003 A A4 ADD K]
004002 120003 A 4 ADD 3
604003 A 8C EQU »
6 END
Example 2
n00000 R 1 A EQU *
2 B DUP 2,2
000000 120003 A 3 ADD 3
000061 120004 A 4 ADD 4
Q00002 120003 A 3 ADD 3
000003 120004 A 4 ADD 4
000004 R 5 C EQu w
[END

Figure 4-5. Sample DUP Directive Usage

4.6 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives assemble portions of the program according to the conditions
specified in the variable fields.

4.6.1 IFT Directive

The IFT directive assembles the next source statement if the specified relationships are true.

This directive has the following format:

Label
(none)

Operation

IFT

Variable

expression,expression(s)

4-17

ASSEMBLER DIRECTIVES

where:
expression is an absolute expression

IFT assembles the next source statement only if the first expression is less than the second,
and the second is less than or equal to the third, i.e.:

IFT a fora= 0
IFT a,b for a= b
IFT a,b,b fora< b
IFT 0,a,b for0< a<b

IFT examples are given in section 4.6.5.

4.6.2 IFF Directive
The IFF directive assembles the next source statement if the specified relationships are false.

This directive has the following format:

Label Operation Variable
(none) IFF expression,expression(s)
where:
expression is an absolute expression

IFF is similar to iFT (IFT = true) except that IFF (IFF = false) is the logical complement of
IFT, i.e.:

IFF a fora = 0
IFF a,b fora = b
IFF a,b,b foraz=zb
IFF 0,a,b for 0= a> b

IFF examples are given in section 4.6.5.

4.6.3 GOTO Directive
The GOTO directive can be used to skip assembly of a block of source statements.

This directive has the following format:

4-18

ASSEMBLER DIRECTIVES

Label Operation Variabie
symbol
symbol,
integer
(none) GOTO integer,
absolute expression —
absolute expression, —
where:
symbol is a user symbol
integer is any integer
absolute expression is an expression (e.g. of the form A = B+C-3) —

a comma following the variable field
entry is used to control output listing.

"~ GOTO usually follows an IFF or IFT directive. All source statements between the GOTO and the
statement containing the symbol/integer in its label field are skipped, and the instruction so
labeled is assembled next. GOTO cannot return to an earlier point in the program.

if the symbol, integer, or arithmetic expression are not followed by a comma, the skipped
instructions are listed. If the symbol, integer, or arithmetic instructions (containing a comma after
the variable field element) are used, the skipped instructions are not listed. This listing can also be
suppressed by a SMRY directive (paragraph 4.9.3).

The GOTO with the absolute expression applies only to DAS MR used with the VORTEX | and
VORTEX Il operating system.

GOTO examples are given in section 4.6.5.
4.6.4 CONT Directive
The CONT directive may be used in conjunction with GOTO as the destination statement.

This directive has the following format:

Label Operation Variable
§ymbol} CONT (none)
integer
wheré:
symbol is a user symbol
integer is any integer

CONT provides a target for a previous GOTO directive. The symbol/constant is not entered in
the assembler’s symbol table.

CONT examples are given in section 4.6.5.

4.6.5 NULL Directive

The NULL directive may be used in conjunction with GOTO as the destination statement.

4-19

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
symbol NULL (none)

NULL provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.

Examples

The sample program in figure 4-6 illustrates use of the conditional assembly directives.

000n22 A 1 NBIT EQU 18
2 irY NRIT=16
3 Jak gl Yvyy 18 BIYS
4 »
5 « 46 BIT INSTRUCTIODNS
8 IFF NBIT»16
7 GaT0n 123 16 BITS
000000 005000 A 8 VYVYY NOP
Q=
10 » (8 BIT INSTRUCTIOMS
14 «
000001 12 123 NULL ENTER INTD SYMBOL TABLE
13 345 CONY IGNARE SYMBOL
14 END

Figure 4-6. Sample Conditional Assembly Directives Usage

4.7 ASSEMBLER CONTROL DIRECTIVES

Assembler control directives signal the end or continuance of an assembly.

4.7.1 MORE Directive (DAS 8A Only)

The MORE directive is used in DAS 8A assembly when the input medium does not hold all of
the source statements at one time.

This directive has the following format:
Label Operation Variable
(none) MORE (none)

MORE halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel is
pressed. MORE is never listed.

4-20

ASSEMBLER DIRECTIVES

4.7.2 END Directive
The END directive signais the end of the source program.

This directive has the following format:

Label Operation Variable
(none) END expression
where:
expression is an address expression

END is the last source statement in the program. The expression is the execution address of
the program after it has been loaded into the computer. A blank in the variable field yields an
execution address of zero.

4.8 SUBROUTINE CONTROL DIRECTIVES

Subroutine control directives create closed subroutines (i.e., internal to the main program)
and control their use.

4.8.1 ENTR Directive
The ENTR directive is the first statement in a closed subroutine.

This directive has the following format:

Label Operation Variable
symbol ENTR (none)
where:
symbol is a user symbol which must be present.

The symbol is used as the name of the subroutine when called. ENTR generates a linkage
word of zero in the object program.

Example

The following program listing illustrates use of the ENTR directive as the first statement of a
closed subrotutine.

000n02 0600000 2 TYVH ENTR

&
000060y 101101 & 3 SEN 0101,%¢4
000nnd 600007 R
000anY 601000 A 4 JMP kw2
060068 600003 R

4-21

ASSEMBLER DIRECTIVES

4.8.2 RETU* Directive

The RETU* directive can be used to return from a closed subroutine.

This directive has the following format:

Label Operation Variable
symbol RETU* expression
where:
symbol if present, is assigned the current location
counter value.
expression is an address expression

RETU* returns from a closed subroutine, generating an unconditional indirect jump to the
address indicated by the value of the expression.

Example

The following program listing illustrates use of the RETU* directive to return from a closed
subroutine.

NOP

000007 005000 A
RETU® TTYW

000010 001000 A
Q00n1y 100002 R

N 3

END

4.8.3 CALL Directive
The CALL directive is used to call closed subroutines.

This directive has the following format:

Labe! Operation Variable
symbol CALL name,parameter(s),error(s)
where:
symbol if present, is assigned the current location
counter value.
name is the symbolic name of the subroutine

being called.
parameters(s) if present, are one or more data parameters

being passed to the subroutine, separated
by commas.

4.22

ASSEMBLER DIRECTIVES

error(s) if present, are one or more address
expressions, separated by commas, that
are to be used by the closed subroutine.

CALL causes the program to jump and mark to the closed subroutine specified by name. The
parameter list, if present, is available to the subroutine. The error return list, if present,
provides the possibility of returning to locations other than the statement following the CALL

statement.
Examples

The sample program calls in figure 4-7 illustrate use of the CALL directive.

Example 1

000060 002600 A | caLL TTYW
00000% 000002 R

Example 2
004060 ORG 04000
004000 000000 A FUNC ENTR

» FUNC WILL WAVE ADDRESS OF PARAMETER X
% WHEN CALLING THIS SUBROUTINE,

004001 001000 A REYUw FUNE
004002 104000 A

v DO N B NS
»

»
*
10 »
004003 602000 A i CALL FUNC,X,Y*1, (ERR), (GDOF)
004604 004000 A
004005 004014 A
004008 04033 A
GO4007 004043 A
004010 104014 A
12 «# '
i3 » MAIN BODY OF PROGRAM
14 o
004511 000005 A 18 ¥ DATA S
0040352 000006 A 16 ¢ DATA 6
004013 600747 A 17 ERR DATA 0747
004014 000727 A 18 GOOF DATA o727z

i¢ END

Figure 4-7. Sample CALL Directive Usage

4.23

ASSEMBLER DIRECTIVES

4.9 LIST AND PUNCH CONTROL DIRECTIVES

List and punch control directives control listing and punching during program assembly. They
are operative only during the second pass of the assembler, when the object program and

listings are produced.

4.9.1 LIST Directive

The LIST directive is used to resume generating a source listing after a list-inhibiting directive
has been given.

This directive has the following format:

Label Operation Variable

(none) LIST (none)
LIST causes the assembler to start or resume output of a source program listing. The
assembler normally outputs a list of the source statements. The LIST directive is used to bring

~ the assembler back to this condition when the NLIS directive (section 4.9.2) has been issued
to change the listing status.

4.9.2 NLIS Directive
The NLIS directive is used to inhibit the program listing.

This directive has the following format:

Label Operation Variable
(none) NLIS (none)

NLIS suppresses further listing of the program.

4.9.3 SMRY Directive
The SMRY directive may be used to inhibit listing of conditionally-skipped source statements.

This directive has the following format:

Label Operation = Variable
(none) SMRY (none)

SMRY suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.

4.9.4 DETL Directive
The DETL directive is used to cancel the effect of the SMRY directive.

4-24

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
(none) DETL (none)

DETL removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.

4.9.5 PUNC Directive (DAS 8A Only)
The PUNC directive is used in DAS 8A programs to cancel the effect of the NPUN directive.

This directive has the following format:

Label Operation Variable
(none) PUNC (none)

PUNC causes the assembler to produce a paper tape punched with the object program. The

assembler normally outputs such a tape. PUNC returns the assembler to this condition when
the NPUN directive (section 4.9.6) changes the punching status.

4.9.6 NPUN Directive (DAS 8A Only)

The NPUN directive may be used to inhibit further punching of the object program to paper
tape.

This directive has the following format:

l.abel Operation Variable
(none) NPUN (none)

NPUN suppresses further production of paper tape punched with the object program.

4.9.7 SPAC Directive
The SPAC directive can be used to insert blank lines in the source listing.

This directive has the following format:

Label Operation Variable
(none) SPAC (none)

SPAC causes the listing device to skip a line. The SPAC directive itself is not listed.

4.9.8 EJEC Directive

The EJEC directive causes a page eject.

4.25

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
(none) EJEC (none)

EJEC causes the listing device to move to the next top of form. The EJEC directive itself is not
listed.

4.10 PROGRAM LINKAGE DIRECTIVES

Program linkage directives establish and control links among programs that have been
assembled separately but are to be loaded and executed together.

4.10.1 NAME Directive

The NAME directive establishes linkage definition points among separately assembled
programs.

This directive has the following format:

Label Operation Variable
(none) NAME symbol,symbol(s)
where:
symbol is any symbolic expression

With the NAME directive, each symbol can then be referenced by other programs. Each
symbol also appears in the label field of a symbolic source statement in the body of the
program to give it a value. Undefined NAME symbols cause error messages to be output.

Examples

NAME A Provide value of symbol A to
other programs.

NAME A,B Provide values of symbols A
and B to other programs.

NAME EX,WHY, ZEE Provide values of symbols
EX, WHY, and ZEE to other
programs,

4.10.2 EXT Directive

The EXT directive allows separately assembled programs to obtain the values of symbols
defined in other program NAME directives.

This directive has the following format:

4.26

ASSEMBLER DIRECTIVES

Label Operation Variable
label EXT symbol(s)
where:
symbol is a value to be obtained from other
programs.

In linking separately assembled programs, EXT declares each symbol not defined within the
current program. Each symbol, in both the label and variable fields, is output to the
relocatable loader with the address of the last reference to the symbol for the loader to supply
the value to the program when the value is known.

If a symbol is not defined within the current program and is not declared in an EXT directive,
it is considered undefined and causes an error message output. If a symbol is declared in EXT
but not referenced within the current program, it is output to the loader for loading, but no
linkage to this program is established. If a symbol is both defined in the program and
declared to be external, the EXT declaration is ignored.

Examples
EXT AY Declare AY to be external.

BEG EXT BE, SEE Declare BE and SEE to be external;
the value of BEG is passed
to the loader.

EXT DEE,EE,FF,GEE Declare the indicated symbols
to be external.

4.10.3 COMN Directive
The COMN directive defines an area in blank common for use at execution time.

This directive has the following format:

Label Operation Variable
symbol COMN expression
where:
symbol if present, is assigned the current location
counter value
expression is an absolute expression

CCMN allows an assembler program to reference the same blank common area as a
FORTRAN program. The common area is cumulative for each use of COMN, i.e., the first
COMN defines the base area of the blank common, the second COMN defines an area to be
added to the already established base, etc.

4.27

ASSEMBLER DIRECTIVES

Examples
AAA COMN 3 Allocate 3 words of common, the
first word addressable by AAA.
COMN 6%2 Allocate 12 words of common; if
following the above statement,
this would be the fourth through
sixteenth common locations.
BBB COMN 9 Allocate 9 words of common, the

first word addressable by BBB;
if following the above 2 state-
ments, this would be the
seventeenth through twenty-fifth
locations of common.

4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)

The V70 series macro tanguage is an extension of the V70 assembler language. It provides a
convenient way to generate a desired sequence of assembly language statements many
times in one or more programs. The macro definition is written only once, and a single macro
call statement used each time a programmer wants to generate the desired sequence of
statements. This method simplifies the coding of programs, reduces the chance of
programming errors, and ensures that standard sequences of statements are used to

accomplish desired functions.

Every defined macro is associated with a four- or six-character symbolic name. The defined
macro is called when this name appears in the operation field of an assembler source
statement.

A Macro Definition is a set of statements that provides the assembler with the symbolic name
of the macro and the sequence of statements that is to be generated when the macro is
called. Macro definitions start with the MAC directive and are ended with the EMAC directive.

The macro is the assembly equivalent of the execution subroutine. It is defined once and can
then be "called” from the program. The macro is an algorithmic statement of a process that
can vary according to the arguments supplied. It is assembled with the resultant data
inserted into the program at each point of reference, whereas the subroutine executed during
execution time appears but once in a program.

4.11.1 MAC Directive (DAS MR Only)

The MAC directive is used to mark the beginning of a macro definition and specify the name
of the macro.

This directive has the following format:

Label Operation Variable
symbol MAC (none)

4.28

ASSEMBLER DIRECTIVES

MAC introduces a macro definition. The symbol is the name of the macro.

The use of the MAC directive is shown in the program example given in section 4.11.3.

4.11.2 EMAC Directive (DAS MR Only)
The EMAC directive is used to signal the end of a macro.

This directive has the following format:

Label Operation Variable
(none) EMAC (none)

EMAC terminates the definition of a macro.

The use of the EMAC directive is shown in the program example given in section 4.11.3.

4.11.3 Macro Calls

A Macro Call statement is a source program statement with the symbolic name of a defined
macro written in the operation field. The assembler generates a sequence of assembly
language statements for each occurrence of the same macro call statement. The generated
statements are then processed like any other assembly langauge statement.

A macro is called by the appearance of its name in the operation field of a source statement.
The variable field of this statement contains expression(s) P(1), P(2).,,,P(n), which are then
processed with the values in the table being substituted for the respective values of the
expressions in the source statement variable field. For example, if the variable field of the
symbolic source statement contains:

2,B9+8,=63
then within the generated macro P(1) =2, P(2) =the value of B, P(3)=17, and P(4) is the
address of the value 63. All terms and expressions within the macro-referencing symbolic
source statement parameter list are evaluated prior to calling the macro.
If the label field of such a source statement contains a symbol, the symbol is assigned the
value and relocatability of the location counter at the time the macro is called but before data

generation.

A macro definition can contain references to machine instruction mnemonics or to assembler
directives other than DUP. Macros can be nested within macros to a depth limited only by the
available memory at assembly time.

Figure 4-8 illustrates the use of macros.

4-29

ASSEMBLER DIRECTIVES

{ SENSE MAC
2 SEN P{1Y,n+4 \ Macro
3 JMP e Definition
4 EMAC
] SENSE 0201 — Macro Call
000000 101204 A
000001 n0ONOO4A R Macro
000002 001000 A Expansion
000003 000000 R .
000004 102501 A 6 CIA 09
7 SENSE 0101
000008 101101 A
000006 000013 R
000007 001000 A
000010 000005 R
000011 103101 A 8 DAR 01
9 END

Figure 4-8. Sample Macro Usage

P(0) can also be accessed by a normal call. P(0) is the first entry in the table formed by the
assembler and contains the number of entries in that table. Figure 4-9 shows the output
listing obtained by calling P(0).

1 A MAC
2 DATA P(0)
3 EMAC
000001 000000A 4 A
000002 000001A 5 A 1
000003 000002A 6 A 1,2
000004 000003A 7 A 1,2,3
000005 000004A 8 A 1,2,3,4
000006 000005A 9 A 1,2,3,4,5
10 END

Figure 4-9. Output Listing Obtained by Calling P(0)

4.12 NOTE DIRECTIVE (DAS MR WITH VORTEX | AND VORTEX 1)

The NOTE directive generates a listing when it is encountered in a macro expansion, unlike all
other instructions or pseudo operations.

This directive has the following format:

Label Operation Variable
Symbol NOTE comment
Integer

The label is entered in the assermnbler’s symbol table.

4-30

ASSEMBLER DIRECTIVES

4.13 FLOWCHART DIRECTIVE (DAS MR ONLY)

4.13.1 FLOW Directive (DAS MR Only)

FLOW is used to generate flowchart boxes.

The sequence of lines printed by this directive are:

m A blank line
B A row of asterisks
B The FLOW directive line

m A bottom row of asterisks

@ A blank line

Box type, label and branches are placed in the appropriate places in the flowchart box borders

All labels and symbols used with the FLOW directive are not considered as part of the prograr
symbol table and can not be used either for any program label functions or as operands in other
parts of the program. The 2 blank lines and asterisk lines generated are not counted as assermbly

lines by the assernbler.

Figure 4-10 contains a sample of FLOW directive usage.

PROGRAM OUTPUT FLOWCHART FORMATS

Print Position
Top Box 1-29
30
31-32
33-40
41-45
46-69
Bottom Box 1-29
30

31-36

37-40

41-46

47-69

Contents

blank

asterisk

flow type

asterisks

optional flow label

asterisks

blank

asterisk

optional non-contiguous flow or
decision right symbol (based on decision
response, yes or no)

asterisks

optional decision non-contiguous
symbol

asterisks

4-31

ASSEMBLER DIRECTIVES

PROGRAM INPUT FORMAT

Columns Contents
1-6 optional flowchart box label
7 blank
8-12 FLOW,
13-14 flowchart type:
EN = entry
EX = exit

PR = procedure

SU = subroutine

DY = decision, yes branch to right
DN = decision, no branch to right
10 =1/0 process

CO = continuation flow

15 blank
16-28 optional branch labels of the form:
LABEL1,LABEL2
where:

LABEL1 = for DY or DN the branch on specified
condition; else for non-contiguous flow.

LABEL2 = for DY or DN to specify non-contiguous

flow
29 blank
30 asterisk
31 blank
32-67 comment line for flowchart box. If current flow is

a subroutine, the subroutine name begins in
column 32 and continues for up to 6 characters.
The name delimiter is a comma.

68 comma if comments continue into next line
otherwise blank

69 asterisk

4.32

000000
000001

000002
000003

000004
000005

000006
000007

000010
000011

000012
000013

000000
000000

000000
000000

000000
000000

000000
000000

000000
000000

000000
000000

ENTRY NAMES

EXTERNAL NAMES
SYMBOLS

1

*

ASSEMBLER DIRECTIVES

2 * DEMONSTRATION OF THE DAS MR 'FLOW' FLOWCHART DIRECTIVE

3

*

4 SYMBl1 FLOW,EN

10

11
12

13
14

15
16

17

18
19

20

21
22

23

24

LAB2

LAB3

DATA 0
DATA 0
FLOW, SU

DATA 0
DATA 0

FLOW,DY LAB2

DATA 0
DATA 0

FLOW,DN LAB2,LAB3
FLOW, CO

DATA 0
DATA 0
FLOW, PR
DATA 0
DATA 0
FLOW,I1I0,LABl1
DATA 0
DATA 0
FLOW,EX

END

ZERO ERRORS ASSEMBLY COMPLETE

KEN***hkkkkkGyMBl A A hhkhkhkhhhhhhhhhhhhkhhh

* ENTRY BOX *
Kkkkkhhkhhhhkhk ke kkkkhhhhkkhkk kA khhhkk kK &

*su**************************i**********

* SUBR, SUBROUTINE BOX *
Kkkkhkk kR kk kR ARk kR Ak h ok hkkhhhkkhh &k k k&

* hkhkkkhhhkhhhkhhkhkhkhhkhhkhhkhkhkkkhkhkkhhhhkhkhk
DY

* DECISION WITH BRANCH ON YES RESPONSE *
K ABRAKR AN KAk hkh kA kAR Kk Rk Rk Rk hkkhhkhkk kK

*DN***********************k*************

* DECISION WITH BRANCH ON NO RESPONSE *

* AND NONCONTIGUOUS FLOW ON YES *
K ABQR* KKK K] AR kAR khhhkkhhhkhkkkhkhkkhk

*PR********LABZ*******k*****************

* PROCESS TYPE BOX *
Ihkkk Kk Rk kkkkhkhkh kR khkkhkhRhkkhkhhkkkhhhx

*Io********LABB*************************

* NONCONTIGUOUS FLOW *
KLABL*K* Ak khkkkhhkhkkhhkkhhkkkk kK h kK * & k X

*Ex*************************************

* EXIT BOX *
AhkAARAAKRARRX ARk hhkhkhkhkkhhkhhhokkhhhhkhkhkhkkhak

Figure 4-10. Sample FLOW Directive Usage (DAS MR Only)

4-33

SECTION 5
OPERATING THE ASSEMBLER

DAS MR and DAS 8A are two-pass assemblers that may be scheduted by job central
directives. Assembler processing during the two passes is described in section 5.1.
Operation of DAS MR under VORTEX I/VORTEX Il is described in section 5.2, followed by
operation descriptions of DAS MR under MOS, as stand-alone, and of DAS 8A (also stand-

alone).

5.1 ASSEMBLER PROCESSING

This section describes the general features of DAS assembler processing. Specific operating
procedures and output listing examples for various DAS/operating system combinations are
given in section 5.2.

5.1.1 Assembler Input Media

The source program may be input to the assembler on punched cards, paper tape, or any
other source input medium. Details regarding source statement field placement are given

below.

Fixed Format. Fixed format, normally used with punched cards, used as input to the DAS
assemblers contains four fields corresponding to the instruction and directive fields:

a. The label field is in columns 1 through 6. Its use is governed by the requirements of the
instruction or directive.

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

c. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more subfields
are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17.

An asterisk in column 1 indicates that the entire card contains a comment.

The fixed format is shown in figure 5-1. Note that columns 7 and 15 are always unpunched
(blank).

Free Format. Free format can be used with any media but is normally used with paper tape. Free
format used as input to the DAS assemblers contains source statements of up to 80 characters
each (not including the carriage return and line feed characters). Each punched staterment contains
four fields corresponding to the instruction and directive fields. The label, operation and variable
fields are separated by commas or blanks, and the comment field starts after the first variable field
blank that is not part of a character string. Each statement is terminated by a carriage return (CR)

followed by a line feed (LF). 61

(AR

fiewwng juawaoe|d pPRI4 "1-G 2indiy4

A. FIXED FORMAT (STANDARD COLUMNS)

LABEL OPERATION VARIABLE COMMENT*

IDENTIFICATION

1 6 8 14 16 28 30

B. FIXED FORMAT (MINIMUM SPACING)

LABEL OPERATION VARIABLE COMMENT
LABEL OPERATION COMMENT

(8 spaces or more)

C. FREE FORMAT (COMMAS FOR SEPARATORS)

LABEL ,OPERATION ,VARIABLE COMMENT*

,OPERATION ,COMMENT

* The comment can start anywhere after a blank following the
variable field.

7273

FORMAT FOR NO LABEL OR VARIABLE FIELD.

80

HITEINISSY JHL DNILVYYIdO

OPERATING THE ASSEMBLER

a character string. Each statement is terminated by a carriage return (CR) followed by a line
feed (LF).

The four fields used when free format input to the DAS assembier is selected are:

a. Label field use is governed by the requirements of the instruction or directive. it is
terminated with a comma or blank. If this field is not used, a comma appears as the first
character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk
following the mnemonic specifies indirect addressing. This field begins immediately
following the label field terminator and is terminated by a cornma or blank.

c. Thevariable field can be blank, or contain one or more subfields separated by commas or
blanks. It must immediately follow the instruction field terminator (comma or blank).
Subfields can be voided by using adjacent commas or blanks. This field is terminated by
a blank that is not part of a character string, or with a CR or LF.

d. The comment field fills the remainder of the staterment (from the terminating biank of
the variable field to the next CR or LF).

If the first nonblank character of a source statement is an asterisk, the entire statement is a
commentr

The free format where commas are used as separators is shown in figure 5-1. Note that any
source input may use either free or fixed format.

5.1.2 Pass 1 - Symbol Table

During pass 1, the DAS assembler reads the source program and constructs a symbol table of
all symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. Symbol table capacities are summarized
in table 5-1.

Table 5-1. DAS Symbol Table Capacities

Assembler 8K Memory Greater than 8K Memory
DAS 8A 440 440 + n (800)
DAS MR 20 20 + n (800)
where n = number of 4K memory increments
above 8K.

53

T

OPERATING THE ASSEMBLER

5.1.3 Pass 2 - Assembler Output

DAS produces a source/object listing of the assembled program, as well as an object program
in reloadable format. The object program may be output to any BO device supported by the

operating system.

The listing can be obtained in whole or in part as the program is being assembled. The source
(symbolic) program and the object (absolute) program are listed side by side on the listing
device. This device can be any LO device supported by the operating system.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS 8A, DAS MR).

Error analysis during assembly causes error messages (section 5.1.4) to be output on the line
following the point of detection.

Figure 5-2 illustrates the format of the output listing. The columns are further described
below:

Address This column shows the current location
counter vaiue in octal. It is incre-
mented for each word of object code.

Code Most entries in this column are words
of object code (in octal). The values
of symbols assigned via symbol definition
directives (EQU, SET, etc.) are also
shown in this column but are not part
of the object code.

Mode An indication of the addressing mode,
as follows:

A Absolute value

C Common

E Externally defined

| Indirect Pointer

L Literal Pointer

R Relative address value
Line Count The assembler assigns a unique ascending
(DAS MR only) integer number to each non-blank input

statement in order of sequence in the
input source deck, starting with 1. This
statement number is listed in the fourth
column, and is used to cross reference
error messages to the statements which
caused the errors. Statements generated
by macro expansions are not assighed

a statement number. All statements
generated by a DUP directive have the
same |:ne number.

5-4

OPERATING THE ASSEMBLER

Symbolic Source Reproduces the source statements as

Statement input, with additional lines showing
directive-duplicated statements and
macro expansion space.

Address

014000
014000
014001
014002
014003
o14004
014005

5.1.4 Error Messages

Line Symbolic

Code Mode Count Source Statement
1 ORG 014000

000000 ABS ENTR
001002 3 JAP* ABS
114000 R
005211 4 CPA
001000 5 JMP* ABS
114000 R
000000 6 END

Figure 5-2. Output Listing Format

The assembler checks source statement syntax during both pass 1 and 2. Detectable errors

are listed during pass 2.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

The DAS error codes and their meanings are listed in table 5-2.

Table 5-2. DAS Error Codes

Code

Meaning

*AD

*DC

*DD

*E

*EX

“FA

Error in an address expression
Decimal character in an octal constant

lllegal redefinition of a symbol or the
location counter

Incorrectly formed statement
llegally constructed expression

Floating-point number contains a format
error

First nonblank character of a source
statement is invalid (the statement
is not processed)

5.5

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

*MA inconsistent use of indexing and
indirect addressing

*MQ - Missing right quotation mark in
character string

*NR No memory space available for additional
entries in assembler tables

*NS No symbol in the label field of a SET,
EQU, MAC, or FORM directive or no
symbol in the label or variable field of
an OPSY directive, or no symbol in the
variable field of a NAME directive.

*OP Undefined operation field (two No
Operation (NOP) instructions are
generated in the object program; the
remainder of the statement is not
processed), or illegal nesting of

DUP or MAC directives or DUP of a

macro call
*QQ lllegal use of prime (')
*R Relocatable item where an absolute

item should be defined

*SE Synchronization error: symbol value
in pass 2 is different from that
found in pass 1

*SY Undefined symbol in an expression

*SZ Expression value too large for a
subfield, or a DUP directive specifies
that more than three statements are to
be assembled (m parameter)

*TF Undefined or illegal indexing specification

*UcC Undefined character in an arithmetic
expression

*UD Undefined symbol in the variable

field of a USE directive

5-6

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

*VF Instruction contains variable subfields
either missing or inconsistent with
the instruction type

*XR Address out of range for an indexing
specification

* o= invalid use of literal

| Implicit indirect reference when |
parameter is present on the /DASMR
directive.

l

$E Missing “END" card error (DAS MR with
VORTEX | and VORTEX 1)

$M Missing “MEND" card error (DAS MR with
VORTEX | and VORTEX i)

$G Missing “"GOTO" target error (DAS MR
with VORTEX | and VORTEX 1)
Note: The resulting output listing may not
reflect the source code syntax correctly.
There rmay be erroneous missing symbol
errors, etc., since only a partial assembly
is performed on detection of a missing
target error. The listing is meant to be
used as an aid to locating the missing
target.

$l 170 Error (DAS MR with VORTEX | and
VORTEX 1)

$S Symbol overflow error (DAS MR with
VORTEX | and VORTEX Il) '

5-7

OPERATING THE ASSEMBLER

5.2 ASSEMBLER OPERATING PROCEDURES

Since DAS MR operates under MOS or VORTEX and uses the MOS or VORTEX 170 control
system, the 1/0 devices can be defined as required.

DAS MR uses the secondary storage device unit for pass 1 output. It inputs the symbolic
source statements from the processor input (Pl) logical unit in alphanumeric mode, and
outputs them in the same mode on the processor output (PO) logical unit. When DAS MR

detects the END directive, it terminates pass 1, returns to the beginning of the source
program, and begins pass 2. During pass 2, the source statements are the input from the
system scratch (SS) logical unit, a listing is output on the LO unit, and the binary object
program is output on the BO unit.

Sections 5.2.1, 5.2.2, and 5.2.3 describe DAS MR operations in different environments. DAS
8A operation is described in section 5.2.4.

5.2.1 DAS MR Operation (VORTEX I/VORTEX II)

The /DASMR directive schedules the DAS MR assembler with the specified options for
background operation on priority level 1. It has the general form:

/DASMR,p(1),p(2)...,p(n)

where:
each p(n) if any, is a single character
specifying one of the options
shown in table 5-3. The /DASMR
directive can contain up to six
such parameters in any order.
Table 5-3. DAS MR Options for Background Operation
Parameter Presence Absence
B Suppresses binary object Output binary object
L QOutputs binary object on GO Suppresses output of binary
file object on GO file
M Suppresses symbol-table listing Output symbol-table listing
N Suppresses source listing Outputs source listing
I Flags implicit indirect Assembles implicit indirect
instructions with "*Il error’. instructions.
X (DAS MR with VORTEX | and VORTEX)| (DAS MR with VORTEX | and VORTEX I})
Addressing and generated code lists are| Addressing and generated code lists are
printed in hexadecirnal. printed in octal.

5.8

OPERATING THE ASSEMBLER

The DAS MR assembler reads source records from the VORTEX P Iogical unit on the first
pass. The Pl unit must be set to the beginning of the source file before the /DASMR directive
is executed. This can be done with an /ASSIGN, /SFILE, /REW, or /PFILE directives. Aload-
and-go operation requires, in addition, an /EXEC directive. Details of the preceding
directives are given in the V70 VORTEX | or VORTEX |l Operating System Reference Manual.

Shown below is an example for scheduling the DAS MR with no source listing but with the
binary object output on the VORTEX logical unit GO file:

/JOB, EXAMPLE
/DASMR,N,L,B

/JOB (as well as /ENDJOB or /FINI) initializes the GO file to start of file. If BO is assigned to
a rotating memory partition, a /PFILE,BO,,BO must precede the /DASMR directive to initial-
ize the file (unless the assembly is part of a stacked job).

DAS MR uses the secondary storage device unit for pass 1 output. It reads a source module
from the Pl logical unit and outputs it on the PO unit. The source input for pass 2 is entered
from the SS logical unit.

When an END statement is encountered, the SS unit is repositioned and reread. During pass
2, the output can be directed to the BO and/or GO units for the object module and the LO
unit for the assembly listing. The SS or PO file, which contains a copy of the source module,
can be used as input to a subsequent assembly.

DAS MR has a symbol-table area for 175 symbols at five words per symbol. To increase this
area, input before the /DASMR directive a /MEM directive where each 512-word block
enlarges the capacity of the table by 100 symbols.

A VORTEX Il physical record on an RMD is 120 words. Source records on RMD are biocked
three 40-word records per VORTEX |l physical record, and object modules on RMD are
blocked two 60-word modules per record. However, in the case where SI = Pl = RMD,
records are not blocked but assumed to be one per VORTEX Il physical record. When an input
file contains more than one source module each new source module must start at a physical
record boundary. Unused portions of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may be ensured by following the END
statement of the previous source module with two blank records.

Figure 5-3 shows the listing output resulting from assembling and executing a sample DAS
MR program under VORTEX Il.

13526843 /JOB,SWITCH
13326:49 /KPMODE,O
133526152 /DASMR,|,B

Figure 5-3. Example of Assembled and Executed DAS MR Program
Under VORTEX Control

59

01-s

(panunuod) jo1uo) XIALHOA J8pun

weiS04d YW SYQ powndexy pue pajquassy jo djdwex3 "g-G aindi4

PAGE

000Qano0
000004
000002
000003
000004

000008
000006
000007
000010
000011

000012
000013
000014
000015
000018
000047
000020

{ 0Beyb6a276

0000090

600001
000002
000024
000050
000004
000005
600009
000004
000001
000000

006503
000000
001404
000075
000050

006505
0000014
001408
000074
000051

006505
000000
100000
010004
000000
000000
000000

>0 »mMp > X » M LD P> A3

P 0 R I R

- e e e

15

16

17

SWITCH VORTEX DASHMR

NAME
SWITCH EQU
EXT
X EQU
R EQy
COUNT EQU
RECL gny
P EQU
Lo EQu
WAIT £ay
NOWATIY EQY
ASCIY EOQU
STARY EQU
I0LINK
I0LINK
READ READ

READCR STAT

1326 MOURS
SKITCH
*
PIFCB,LOFCR
)}
2
20 SWITCKH COUNT
COUNT+COUNT RECORD LENGTH (IN WORDS)
4 PROCESSOR INPUT
] LISTING QUTPUY
0 WAIT FOR IO
{ IMMEDTIAYE RETURN
1
»
PY,BUFF,RECL
LOCNTRL ,RECL+1
PIFCB,PI,WAYT,ASCI]

READ)END,END,END,READCR

YIT4INISSY JHL DNILYYIdO

1S

(panunuod) oaued XILUOA epun

weiSoid HIN SYQ pendaxy pue pajquassy jo aidwex3 "g-¢ aindig

0000621
000022
000623
000024
000025
000026
000027
anen3o

PAGE
000031

000032
000033
000034
000035
0000386
000037
000040
000n41
000042
000043
000044
000045
000046
000047
000050

000054
00Q052
000053
000054
000055
000056

806505
000600
600642
000071
000074
0060714
000021
008030

T AN DM

18

2 08.16e76 SWITCH

000024
000032
006015
000074
004250
005244
006025
000146
006055
000146
004050
005244
008068
600074
005344
001046
000032

0