)
software

VORTEX I

VORTEX I
REFERENCE MANUAL

The statements in this publication are not intended to create any warranty, express or im-
plied. Equipment specifications and performance characteristics stated herein may be
changed at any time without notice. Address comments regarding this document to Varian

Data Machines, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine,
California, 92713.

varian data machines / a varian subsidiary
2722 michelson drive / p.o. box c-19504 / irvine / california / 92713
® 1976 printed in USA

98A 9949 130
August 1976

(Equivalent to 98A 9952 243)

This manual explains the Varian Omnitask Real-Time
Executive (VORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some Varian Data Machines 620
series or V70 series computer system is desirable.

NOTATION IN THIS MANUAL

In the directive formats given in this manual:

. type indicates an obligatory parameter.

» ltalic type indicates an optional parameter.

= Upper case type indicates that the parameter is to be

entered exactly as written.

« Lower case type indicates a variable and shows where
the user is to enter a legal value for that variable.

a(1),8(2),.a(n).

Indicates a series of elements separated by commas

repeated and terminated with a period.

If at least one element is required the first element is given
in bold. The parentheses are only part of the format

description.
For example
a(1),a(2),...a(n).

where

each a(i) is a single alphabetic character
allows

AB.CF,GH.
or

ZY X
or

V.
or

blank

as valid in this position.

A number with a leading zero is octal, one without a
teading zero is decimal, and a number in binary is

specifically indicated as such.

FOREWORD

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 SYSTEM REQUIREMENTS

1-1

1.2 SYSTEM FLOW AND ORGANIZATION

1-2

1.2.1 Computer Memory

1-2

1.2.2 Rotating Memory Device.
1.2.3 Secondary Storage.

1-4

1.3 MEMORY MAP CONCEPT

1.4 BIBLIOGRAPHY

1-4
1-6

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROS

2.1.1 SCHED (Scheduie) Macro
2.1.2 SUSPND (Suspend) Macro

2.1.3 RESUME Macro.......
2.1.4 DELAY Macro.

2.1.5 LDELAY Macro

2.1.6 PMSK (PIM Mask) Macro

2.1.7 TIME Macro

2.1.8 OVLAY (Overlay) Macro

2.1.9 ALOC (Allocate) Macro
2.1.10 DEALOC (Deallocate) Macro

2.1.11 EXIT Macro

2.1.12 ABORT Macro

2.1.13 IOLINK (170 Linkage) Macro
2.1.14 PASS Macro

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro...

2.1.16 ALOCPG (Allocate Memory Pages) Macro

2.1.17 DEALPG (Deallocate Memory
Pages) Macro

2.1.18 MAPIN (Map-In Specified Physical
Pages of Memory) Macro

2.1.19 PAGNUM (ldentify Physical Page
Number) Macro......

2.2 RTE SYSTEM FLOW......

2.3 TASK LIMITATIONS AND DIFFERENCES

2.4 ABORT PROCEDURE

2.5 CHECKPOINTING OF TASKS

2.6 PAGE ALLOCATION SCHEME

2-1
2-2
2-3

. 2-3

2-3
2-4
2-5
2-5
2-5
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-9

2-10

2-11
2-12
2-12
2-14
2-14
2-14

SECTION 3
INPUT/OUTPUT CONTROL

3.1 LOGICAL UNITS 3-1
3.2 RMD FILE STRUCTURE 3-4
3.3 170 INTERRUPTS.......corirtcnnicenns ettt ess et ssssens 3-5
3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL) 3-5
3.4.1 SPOOL Operation. 3-6
3.4.2 SPOOL Files 3-6
3.5 1/0-CONTROL MACROS 3-7
3.5.1 OPEN Macro 3-10
3.5.2 CLOSE Macro 3-10
3.5.3 READ Macro 3-11
3.5.4 WRITE Macro. 3-11
3.5.5 REW (Rewind) Macro 3-12
3.5.6 WEOF (Write End of File) Macro. 3-12
3.5.7 SREC (Skip Record) Macro 3-12
3.5.8 FUNC (Function) Macro. 3-13
3.5.9 STAT (Status) Macro 3-14
3.5.10 DCB (Data Control Block) Macro 3-14
3.56.11 FCB (File Control Block) Macro 3-14
SECTION 4
JOB-CONTROL PROCESSOR
4.1 ORGANIZATION 41
4.2 JOB-CONTROL PROGESSOR DIRECTIVES 4-1
4.2.1 /JOB Directive 4-2
4.2.2 /ENDJOB Directive 4-2
4.2.3 /FINI (Finish) Directive. 4-2
4.2.4 /C (Comment) Directive 4-2
4.25 /MEM (Memory) Directive 4-3
4.2.6 /ASSIGN Directive 4-3
4.2.7 /SFILE (Skip File) Directive 4-3
4.28 /SREC (Skip Record) Directive 4-3
4.29 /WEOF (Write End of File)
Directive 4-4
4.2.10 /REW (Rewind) Directive 4-4
4.2.11 /PFILE (Position File) Directive. 4-4
4.2.12 /FORM Directive. 4-4
4213 /KPMODE (Keypunch mode)
Directive 4-4
4.2.14 /DASMR (DAS MR Assembler)
Directive 4-5
4.2.15 /FORT (FORTRAN Compiler)
Directive 4-5
4.2.16 /CONC (System Concordance)
Directive 4-6

CONTENTS

CONTENTS

SECTION 4
JOB-CONTROL PROCESSOR (continued)

4.2.17 /SEDIT (Source Editor)

Directive 4-6
4.2.18 /FMAIN (File Maintenance)

Directive 4-6
4.2.19 /LMGEN (Load-Module Generator)

Directive 4-6
4.2.20 /I0UTIL (1/0 Utility) Directive 4-7
4.2.21 /SMAIN (System Maintenance)

Directive 4-7
4.2.22 /EXEC (Execute) Directive 4-7
4.2.23 /LOAD Directive 4-8
4.2.24 /ALTLIB (Alternate

Library) Directivi 4-8
4.2.25 /DUMP Directive 4-8
4.2.26 /CFILE Directive 4-8
4.2.27 /DBGEN (Data Base Generator) Directive. 4-8
4.2.28 /PLOAD Directive 4-9
4.2.29 /FMUTIL Directive.... 4-9
4.2.30 /RPG (RPG |l Compiler) Directive 4-9
4.2.31 /P (Pause) Directive . 4-9
4.3 SAMPLE DECK SETUPS 4-10

SECTION 5
LANGUAGE PROCESSORS

5.1 DAS MR A bl 5-1
5.1.1 TITLE Directive 5-1
5.1.2 VORTEX Macros 5-2
5.1.3 Assembly Listing Format 5-10
5.2 CONCORDANCE PROGRAM 5-11
5.2.1 Input 5-12
5.2.2 Output 5-12
5.3 FORTRAN IV COMPILER 5-13
5.3.1 FORTRAN IV Enhancements 5-13
5.3.2 Execution-Time 170 Units 5-18
5.3.3 Runtime I/0 Exceptions 5.22
5.3.4 Reentrant Runtime 170 5-22
5.4 RPG IV COMPILER 5-22
5.4.1 Introduction 5-22
5.4.2 RPG IV 1/0 Units 5-23
5.4.3 Compiler and Runtime Execution 5-23
5.5 RPG li COMPILER......... 5-23
5.5.1 Introduction 5-23
5.5.2 RPG Il {/0 Units 5-23
5.5.3 Compiler and Runtime Execution 5.23

vi

. SECTION 6
LOAD-MODULE GENERATOR (continued)
6.1 ORGANIZATION 6-1
6.1.1 Overlays...... 6-3
6.1.2 Common..... . 6-3
6.2 LOAD-MODULE GENERATOR DIRECTIVES... 6-3
6.2.1 TIDB (Task-ldentification Block)
Directive . . 6-4
6.22 LD (Load) Directive . 6-4
6.2.3 OV (Overlay) Directive 6-4
6.2.4 LIB (Library) Directive 65
6.2.5 END Directive . 65
6.26 CLD Directive 6-5
6.2.7 MEM (Memory) Directive 6-6
6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS JRUTTRTRRR - 1 -
SECTION 7
DEBUGGING AIDS
7.1 DEBUGGING PROGRAM.......cccccoviiiviciiniiiiiiienrssnsssssensenessssnsnenssvensssessesereons 01
7.2 SNAPSHOT DUMP PROGRAM 7-3
SECTION 8
SOURCE EDITOR
8.1 ORGANIZATION o IRUTUPOTPRRPO - =% |
8.2 SOURCE-EDITOR DIRECTIVES. 8-2
8.2.1 AS (Assign Logical Units) Directive 8-2
8.2.2 AD (Add Records) DireCtive.........corieiccriicniiici it 8-3
8.2.3 SA (Add String) Directive. 8-3
8.2.4 REPL (Replace Records) Directive e 8-4
8.2.5 SR (Replace String) Directive 8-4
8.2.6 DE (Delete Records) Directive . B8-4
8.2.7 SD (Detete String) Directive ... e 8-5
8.2.8 MO (Move Records) Directive 8-5
829 FC (Copy File) Directive. v B-5
8.2.10 SE (Sequence Records) Directive.........coceceiieeniieniciierccnniinnnns 8-6
8.2.11 LI (List Records) Directive 8-6
8.2.12 GA (Gang-Load All Records) Directive 8-6
8.2.13 WE (Write End of File)
Directive.
8.2.14 REWI! (Rewind) Directive
8.2.15 CO (Compare Inputs) Directive..

8.3 EXAMPLE OF EDITING A FILE......

il

CONTENTS

CONTENTS

SECTION 9
FILE MAINTENANCE (continued)

9.1 ORGANIZATION 9-1
9.1.1 Partition Specification Table........... . 941
9.1.2 File-Name Directory. 9-1
9.1.3 Relocatable Object Modules e 92
9.1.4 Output Listings 9-2
9.2 FILE-MAINTENANCE DIRECTIVES......... 9-2
9.2.1 CREATE Directive 9-3
9.2.2 DELETE Directive. 9-3
9.2.3 RENAME Directive........ccovveriniiiicivicinncssnncsninns e 9-4
9.2.4 ENTER Directive . 9-4
9.2.5 LIST Directive 9-4
9.2.6 INIT (Initialize) Directive e 94
9.2.7 INPUT Directive, 9-5
9.2.8 ADD Directive 9-5
9.3 VORTEX FOREGROUND FILE MAINTENANCE (VSFGFM)cccoeevnnenane. 9-5

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

10.1 ORGANIZATIONcooviirieniniinicnins
10.2 170 UTILITY DIRECTIVES
10.2.1 COPYF (Copy File) Directive
10.2.2 COPYR (Copy Record) Directive......ccveieniiinnnininniennniiinniinns 10-2

10.2.3 SFILE (Skip File) Directive....... 10-3
10.2.4 SREC (Skip Record) Directive ..o e 10-3
10.2.5 DUMP (Format and Dump)

Directive . 10-3
10.2.6 PRNTF (Print File) Directive.. e 10-4
10.2.7 WEOF (Write End of File)

Directive . 10-4
10.2.8 REW (Rewind) Directive......cccoueuuue. e 10-4
10.2.9 PFILE (Position File)

Directive
10.2.10 CFILE (Close File) Directive
10.2.11 PACKB (Pack Binary) Directive 10-5
10.3 MULTI-VOLUME TAPE HANDLING (VERSW)....ccoovviiiiniieicienii et 10-5

SECTION 11
VSORT (SORT/MERGE)

111 ORGANIZATION oottt s ns s 11-1
11.2 VSORT DIRECTIVES. 111
11.2.1 SORT Directive w1122
11.2.2 INPUT Directive 11-2
11.2.3 QUTPUT DIFeCHIVE c.cevveeiieiiiiiiicnisris st oraene s nsnn st ene o 11-2
11.2.4 WORKI1,WORK2,WORK3, Directive: 11-2
11.2.5 SORTKEY Directive.. e 1122
11.2.6 INEXIT Directive................ 11-3

viii

11.2.7
11.2.8

11.3 USER EXITS.

1131
11.3.2

11.4 VSORT MESSAGES

12.1 SYSTEM FLOW OUTLINE
12.2 HARDWARE REQUIREMENTS
12.3 GENERAL DESCRIPTION

12.3.1
12.3.2
1233

SECTION 11
VSORT (SORT/MERGE) (continueq)

OUTEXIT Directive.

ENDSORT Directive

Calling Sequence

p! 1tation

SECTION 12
DATAPLOT 1l

DATAPLOT it Organization

System Considerations.....

VORTEX Considerations

12.4 DATAPLOT i SUBROUTINES

1241
1242
1243
1244
12.4.5
12.4.6
12.4.7
1248
1249
12.4.10
124.11
12.4.12
12.4.13
12.4.14
12.4.15
12.4.16
12.4.17
12.4.18
12.4.19

12.4.20
12.4.21

125 PLOT FILE DATA FORMAT

12.5.1
12.5.2
12.5.3

12.6 EXAMPLE OF APPLICATION OF DATAPLOT ll...cooiiriinrinnnicnrsiieniiniinies

12.6.1

12.6.2 Program to Generate Communication Network

DPINIT (System File Initialization)

PLOTS (Work Buffer Initialization)
PLOT (Generate Plot)

SCALE (Generates Scale Factor)

AXIS (Generate Segmental Axis).

SYMBOL (Generate Symbols)

NUMBER (Generate Number)

LINE (Generate Graph Line)....

MLTPLE (Multiple Plot)

FACTOR (Alter Piot Size)

WHERE (Locate Coordinates)

APPEND (Append File)

TOPFRM (Top-of-Form).

CUT (Cut Paper)

ENDCUT (Eject and Cut Paper)

DPSORT (Sort Plot File)

DPPLOT (Output File)

DPCLOS (Close Plot File)

ORIG -- Offsetting the Origin
Entry Point

VECT -- Vector Entry Point

Special SYMBOL Subroutine

Vectors
Character:

End-of-Plot Indicator

Program to Generate Sine Wave

11-3
11-3
11-3
11-3
11-4
11-4

CONTENTS

CONTENTS

SECTION 12
DATAPLOT Il (continued)

12.7 OPERATING PROCEDURES AND ERROR MESSAGES............ccoovvsivvuninsneininn

12.7.1 VORTEX Operating Procedures

1217
12-17

12.7.2 Unsorted Plot Files

12-17

12.7.3 Presorted Plot Files

1217

12.7.4 VORTEX Special Procedures

12417

SECTION 13
SUPPORT LIBRARY

13.1 CALLING SEQUENCE

13.2 NUMBER TYPES AND FORMATS

13.3 SUBROUTINE DESCRIPTIONS.

13.4 DECIMAL SUBROUTINE.........ccovsmemrcrmriesiisii s

SECTION 14
REAL-TIME PROGRAMMING

14.1 INTERRUPTS

14-1

14.1.1 External Interrupts

14-1

14.1.2 Internal Interrupts.

14-3

14.1.3 Interrupt-Processing Task

14-4

14.1.4 Interrupt State.

14-4

14.2 SCHEDULING

14-4

14.2.1 System Flow

14-4

14.2.2 Prioritie:
14.2.3 Timing Considerations (Approximate)

14-5
14-22

14.3 REENTRANT SUBROUTINES

14-23

14.4 CODING AN 1/0 DRIVER

14-24

14-24

14.4.1 1/0 Tables.
14.4.2 1/0 Driver System Functions

14-24

14-25

14.43 Adding an 170 Driver to the System File.
14.44 Enabling and Disabling PIM

14-26

interrupts
14.4.5 Directly Connected Interrupt Handler

14-28

14.4.6 VORTEX Use of BiCs and BTCs

14-28

14.4.7 VORTEX Il and VORTEX Compatibility

14-29

14.4.8 Resident Tasks

14-30

SECTION 15
SYSTEM GENERATION

15.1 ORGANIZATION 15-1
15.2 SYSTEM-GENERATION LIBRARY 15-2
15.3 KEY-IN LOADER ...coiiiccctc sttt n s snss s i e s 15-5
15.4 SGEN 1/0 INTERROGATION 15-6
15.4.1 DIR (Directive-Input Unit)

Directive 15-7
15.4.2 LIB (Library-Input Unit) Directives . 15-7
15.4.3 ALT (Library-Modification

input Unit) Directive 15-7
15.4.4 SYS (System-Generation

Cutput Unit) Directive 15-7
15.4.5 LIS DIr€CHIVE ..cvueviieieiteiecretcte e s s 15-8
15.5 SGEN Directive Processing.... 15-8
15.5.1 MRY (Memory) Directive. 15-8
15.5.2 EQP (Equipment) Directive........cccoovvniviniinniiiiiiivnniiiiineresnnisnsinnns 15-9
15.5.3 PRT (Partition) Directive 15-12
15.5.4 ASN (Assign) Directive . 15-12
15.5.5 ADD (SGL Addition) Directive 15-14
15.5.6 REP (SGL Replacement) Directive 15-14
15.5.7 DEL (SGL Deletion) Directive 15-15
15.5.8 LAD (Library Addition) Directive. 15-15
15.5.9 LRE (Library Replacement) Directive.......c.ocovvvrimmnniineniivenines 15-16
15.5.10 LDE (Library Deletion) Directive......., 15-16
15.5.11 PIM (Priority Interrupt) Directive...........cocoecimirininiicieiiccinninesnineiens. 15-16
15.5.12 CLK (Clock) Directive.. . 1517
15.5.13 TSK (Foreground Task) Directive....... . 15-17
15.5.14 DEF (Define External) Directive.. 15-17
15.56.15 EDR (End Redefinition)

Directive..... rrrirre e, 1917
15.5.16 Required Directives 15-18
15.6 BUILDING THE VORTEX NUCLEUS 15-18
15.6.1 SLM (Start Load Module)

Directive............ 15-19
15.6.2 TDF (Build Task-ldentification Block)

Directive .. 15-19
15.6.3 END Directive 15-20

15.6.4 MEM Directive...... .. 15-20

15.6.5 Memory Parity Considerations .. . 15-21
15.7 BUILDING THE SYSTEM LIBRARIES AND RESIDENT

TASK CONFIGURATION 15-21
15.7.1 SLM (Start LMP) Directive 15-22
15.7.2 TID (TIDB Specification).

DiIreCHIVE ...t e e 15-22

15.7.3 OVL (Overlay) Directive 15-22
15.7.4 ESB (End Segment) Directive.... 15-23
15.7.5 END (End Library) Directive 15-23
15.8 SYSTEM INITIALIZATION AND

OUTPUT LISTINGS....oooriiieinrieenisin e e 15-23

15.9 SYSTEM GENERATION EXAMPLES...................... 15-24

CONTENTS

SECTION 16
SYSTEM MAINTENANCE
16.1 ORGANIZATION 16-1
16.1.1 Control Records 16-2
16.1.2 Object Modul 16-3
16.1.3 System-Generation Library 16-3
16.2 SYSTEM-MAINTENANCE DIRECTIVES 16-3
16.2.1 IN (Input Logical Unit) Directive v 16-3
16.2.2 OUT (Output Logical Unit) Directive 16-4
16.2.3 ALT (Alternate Logical Unit)
Directive 16-4
16.2.4 ADD Directive 16-4
16.2.5 REP (Replace) Directive 16-5
16.2.6 DEL (Delete) Directive 16-5
16.2.7 LIST Directive 16-6
16.2.8 END Directive 16-7
16.3 SYSTEM-MAINTENANCE OPERATION 16-7
16.4 PROGRAMMING EXAMPLES . 16-7
SECTION 17
OPERATOR COMMUNICATION
17.1 DEFINITIONS......cccivrerrcnccriiinns . 17-1
17.2 OPERATOR KEY-IN REQUESTS 17-1
17.2.1 ;SCHED (Schedule Foreground Task)
Key-in Request 17-2
17.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In REQUESL.........c.cccvieriicrniereiee i csreas s sssssensseen s s veaes 17-2
17.2.3 ATTACH Key-In Request reverreerrenneenen 178
17.2.4 ;RESUME Key-In Request . 17-3
17.2.5 ;TIME Key-In Request 17-3
17.2.6 ;DATE Key-In Request. e 17-3
17.2.7 ;ABORT Key-In Request 17-4
17.2.8 ;TSTAT (Task Status) Key-in Request 17-4
17.2.9 ;ASSIGN Key-In Request 17-5
17.2.10 ;DEVDN (Device Down) Key-In.
Request
17.2.11 ;DEVUP (Device Up) Key-In
Request 17-5
17.2.12 ;IOLIST (List 1/0 Key-In'
REQUEST ... 17-5
SECTION 18

OPERATION OF THE VORTEX SYSTEM

18.1 DEVICE INITIALIZATION.......... . 18-1
18.1.1 Card REAEr ..ottt oo st er s serenes 18-1
18.1.2 Card Punch 18-1

CONTENTS

CONTENTS

SECTION 18
OPERAT'ON OF THE VORTEX SYSTEM (continued)

18.1.3 Line Printer. 18-1
18.1.4 Statos-31 (Model 70-6602 and -6603) 18-1
18.1.5 33/35 ASR Teletyp 18-1
18.1.6 High-Speed Paper-TApe Reader. 18-1
18.1.7. Magnetic-Tape Unit 18-1
18.1.8 Magnetic-Drum and Fixed-Head.

Disc Units 18-1
18.1.9 Moving-Head Disc Units 18-1
18.1.10 Moving-Head Disc Units 18-2
18.1.11 Moving-Head Disc Units 18-2
18.1.12 Moving-Head Disc Units 18-2
18.2 SYSTEM BOOTSTRAP LOADER 18-2
18.2.1 Automatic Bootstrap Loader 18-2
18.2.2 Control Panel Loading 18-3
18.3 DISC PACK HANDLING 18-3
18.3.1 PRT (Partition) Directive 18-4
18.3.2 FRM (Format Rotating Memory)

Directi 18-4

18.3.3 INL (Initialize) Directive 18-4
18.3.4 EXIT Directi 185
18.4 70-7500 (620-35) DISC PACK

FORMATTING PROGRAM 18-5
185 70-7510 (620-34) DISC PACK

FORMATTING PROGRAM 18-5
18.6 70-7603/7613 DISC PACK FORMATTING PROGRAMcoocervivinnirersirinnnen 186
18.7 WRITABLE CONTROL STORE (WCS) 187

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION 19-1
19.2 PROCESS OUTPUT 191
19.2.1 Hardwar 191
19.2.2 SGEN Operatior 19-1
19.2.3 Output Calls. 19-2
19.3 PROCESS INPUT 19-3
19.3.1 Hardy 19-3
19.3.2 SGEN Operati 19-3
19.3.3 Input Calls 19-4
19.3.4 Low-Level Multi Gain Control 19-56
19.4 iSA FORTRAN PROCESS CONTROL

SUBROUTINES. 19-6
19.4.1 Input/Output Calls 19-6
19.4.2 Bit String Oper: 19-8
19.5 . ERRORS 19-8

19.6 EXTENSIONS

xiii

19-8

CONTENTS

SECTION 20
WRITABLE CONTROL STORE AND FLOATING-POINT
PROCESSOR

20.1 MICROPROGRAMMING SOFTWARE 20-1
20.1.1 Microprogram A bl 201
20.1.2 Microprogram Simul 2041
20.1.3 Microprogram Utility 20-1
20.1.4 WCS Reload Task, WCSRLD. 20-2
20.2 STANDARD FIRMWARE 20-2
20.2.1 Fixed-Point Arithmetic

Firmware 20-2
20.2.2 Floating-Point Arithmetic

Firmware 203
20.2.3 Data Transfer Firmware 20-3
20.2.4 FORTRAN-Oriented Firmware 20-3
20.2.5 Byte Manipulation Firmware 20-4
20.2.6 Stack Firmware, 205
20.2.7 Firmware Macros 208
20.2.8 Commercial Firmware 20-13

SECTION 21 FILE MAINTENANCE UTILITY

21.1 ORGANIZATION 21-1
21.2 PARTITION SPECIFICATION TABLE 211
21.3 OUTPUT LISTINGS 21-1
21.4 FILE MAINTENANCE UTILITY DIRECTIVES 211
21.5 D DIRECTIVE 21-2
21.5.1 Dump File 212
21.5.2 Dump Partition 213
21.5.3 Dump File-Name Directory 214
21.6 L DIRECTIVE 216
21.6.1 Load File 216
21.6.2 Load Partition 216
21.6.3 Load Directory 217
21.7 R DIRECTIVE 21.7
21.8 E. DIRECTIVE 217
21.9 S DIRECTIVE 217
21.10 P DIRECTIVE 218
21.11 U DIRECTIVE 218
21.12 EXIT DIRECTIVE, 218

SECTION 22 COMPRESSION/EDIT SYSTEM (COMSY)

22.1 ORGANIZATION

22-1

22.1.1 COMSY Compression

22-1

222

22.1.2 Sequential Files
22.1.3 Random Files

22-2

22.1.4 Common Files

222

22.1.5 Sequence and Edition Numbers

222

Xiv

22.2 INPUT/OUTPUT 222
22.3 COMSY DIRECTIVES 222
22.3.1 ASSIGN Directive 22-3
22.3.2 UNIT Directive
22.3.3 SET Directive
22.3.4 GANG Directive
22.3.5 DECK Directive
22.3.6 COMDECK Directive...
22.3.7 COPY Directive
22.3.8 RANDOM Directive ..
22.3.9 APPEND Directive ..
22.3.10 EDIT Directive
22.3.11 LIST Directive
22.3.12 CHECK Directive. .
22.3.13 INSERT (ADD) Directive22-8
22.3.14 REPLACE (DELETE) Directive. .22-9
22.3.15 COMMON Directive . .22-9
22.3.16 COMSY Directive 22-10
22.3.17 FILE Directive .
22.3.18 END Directive .
22.4 COMSY LOAD MODULE GENERATION 2211
225 COMSY EXECUTION 22-11
22.6 ERROR PROCESSING 22-11
APPENDIX A
ERROR MESSAGES

A.1 ERROR MESSAGE INDEX A-1
A.2 REAL-TIME EXECUTIVE A-1
A3 1/0 CONTROL A-4
A.4 JOB-CONTROL PROCESSOR A7
A.5 LANGUAGE PROCESSORS A-8
A.5.1 DAS MR A bl A-8
A.5.2 FORTRAN IV Compiler and Runtime

Compil A-9
A.5.3 RPG IV Compiler and Runtime

Compi A-10
A.6 LOAD-MODULE GENERATOR A-12
A.7 DEBUGGING PROGRAM. A-13
A.8 SOURCE EDITOR. A-13
A.9 FILE MAINTEANCE A-14
A.10 170 UTILITY A-15
A.11 SORT ERROR MESSAGES A-15
A.12 DATAPLOT A-16
A.13 SUPPORT LIBRARY A-16
A.14 REAL-TIME PROGRAMMING A-17

CONTENTS

CONTENTS

APPENDIX A
ERROR MESSAGES (continued)

A.15 SYSTEM GENERATION A17
A.16 SYSTEM MAINTENANCE A-21
A.17 OPERATOR COMMUNICATION A-22
A.18 RMD ANALYSIS AND INITIALIZATION A-22
A.12 PROCESS INPUT/OQUTPUT A-23
A.20 WRITABLE CONTROL STORE A-23
A.20.1 Microprogram A bl A-23
A.20.2 Microprogram Simulator A-24
A.20.3 Microprogram Utility A-25
A.21 VTAM NETWORK CONTROL MODULE A-26
A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS.......cccccovovircniinrcrnircnniens A-27
A.23 COMSY ERROR MESSAGES. A-28
A.24 ERROR CODES . A-29
A.24.1 Errors Related to Directives . A-29
A.24.2 Errors Related to Programs A-29
A.24.3 Errors Related to Memory Size A-30
A.24.4 Errors Related t0 HArdware...........consmssissssssssssssssssssssn: A-30
APPENDIX B
1/0 DEVICE RELATIONSHIPS
APPENDIX C
DATA FORMATS
C.1 PAPER TAPE C-1
C.1.1 Binary Mode C-t
C.1.2 Alph ic Mode C-1
C.1.3 Unformatted Mode. C-1
C.1.4 Special Characters C-1
C.2 CARDS C-2
C.2.1 Binary Mode Cc-2
C.2.2 Alpt ic Mode c-2
C.2.3 Unformatted Mode. C-4
C.2.4 Special Character C-4
C.3 MAGNETIC TAPE C-4
C.3.1 Seven-Track C-4
C.3.2 Nine-Track C-4
C.4 STATOS PRINTER/PLOTTER C-4
C.4.1 Alphanumeric Mode. C-4

C4.2

Unformatted Mode.

c-4

STANDARD CHARACTER CODES

ASCIl CHARACTER CODES

VORTEX HARDWARE CONFIGURATIONS

OBJECT MODULE FORMAT

G.1 RECORD STRUCTURE

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

G.2 PROGRAM IDENTIFICATION BLOCK

G.3 DATA FIELD FORMATS
G.4 LOADER CODES

G.5 EXAMPLE

G.5.1 Source Modul

G.5.2 Object Modul

G.5.3 Core Image

G.6 END LOAD RECORD

INDEX

xvii

G-1
G-1
G-1
G-1
G-3

. G-3

G-3

G-6

CONTENTS

CONTENTS

Figure 2-1. Matrix of Nucleus Module Access Mode..

LIST OF ILLUSTRATIONS

Figure 1-1. VORTEX System Flow
Figure 1-2. VORTEX Nucleus, Map 0
Figure 1-3. VORTEX RMD Storage Map

Figure 2-2. V$PAGE, Page Allocation Table
Figure 3-1. Spooling Subsystem Flow

Figure 5-1. VORTEX Macro Definitions for DAS MR
Figure 5-2. Sample Assembly Listing ...
Figure 5-3. Sample Concordance Listing ...
Figure 5-4. FORTRAN I/0 Execution Sequences

Figure 6-1. Load-Module Overlay Structure (virtual memory] 6-2
Figure 12-1. DATAPLOT Il Graphics System Data FIowccvurcceerinisercisniinennee 12-1
Figure 12-2. DATAPLOT Il Organizati 12-2
Figure 12-3. Minimum and Maximum Plot Values 12-4
Figure 12-4. +x Axis and +y Axis Relative to Paper Direction.........ccoeovuennnnns 12-14

Figure 12.5. Vector-Data Format
Figure 12-6. Character Data Format
Figure 12-7. Character Orientation Data Format
Figure 12-8. End-of-Plot Indicat

Figure 12-9. Sine Wave Plot Generated by DATAPLOT |l
Figure 12-10. Communication Network Plot Generated by DATAPLOT |l .
Figure 14-1. Interrupt Line Handlers...............c.cccooiniviiniin e
Figure 14-2. VORTEX Memory Map
Figure 14-3. VORTEX Priority Structure
Figure 14-4. TIDB Description
Figure 14-5. Driver Interface
Figure 15-1. SGEN Data Flow
Figure 15-2. System-Generation Library
Figure 15-3. VORTEX Nucleus

Figure 15-4. Load-Module Library

Figure 15-5. Load Module Package for Module Wi Overl
Figure 15-6. Load Module Package for Module With Overlays..........cccouivernicnnnne
Figure 15-7. VORTEX Nucl Load Map

Figure 15-8. Library Processor Load Map
Figure 15-9. RMD Partition Listing
Figure 15-10. Resident-Task Load Map
Figure 15-11. Physical Memory All
Figure 16-1. SMAIN Block Diagram
Figure 16-2. SMAIN LIST Directive Listing
Figure 20-1. Base and Limit of Stack
Figure 20-2. Stack Control Block

Figure 20-3. Stack Multiply
Figure 20-4. Stack Divide
Figure 20-5. Stack Push
Figure 20-6. Stack Pop
Figure 20-7. Stack Double Push
Figure 20-8. Stack Double Pop
Figure 22-1. COMSY Data FIOW ...
Figure C-1. Paper Tape Binary Record Format
Figure C-2. Paper Tape Alphanumeric Record Format........coconiiinecnicnninnin
Figure C-3. Card Binary Record Format
Figure C-4. Card Alphanumeric Records Format (IBM 026)...........cccrvinvnnrrnann

Xvin

LIST OF TABLES

Table 1-1. Executive Mode States ... 1-6
Table 2-1. RTE Service Req Macros 2-1
Table 3-1. VORTEX Logical-Unit Assignments 3-1
Table 3-2. Valid Logical-Unit Assignment 3-3
Table 3-3. FCB Words Under 1/0 Macro Control 3-15
Table 5-1. Directives Recognized by the DAS MR Assemblerccccoccmevrceens 5-1
Table 5-2. RTE Macros Available Through FORTRAN IV

Table 7-1. DEBUG Directives

Table 13-1. DAS Coded Subroutines

Table 13-2. OM Library SUDrOUtiNesc..cccecvivieninrnirinciinnnescne s

Table 13-3. FORTRAN Coded Subro...............ccomnnnne
Table 14-1. Memory Protection Interrupt Address
14-2. TIDB Description
14-3. Map of Lowest Memory Sector
Table 15-1. SGEN Key-In Loaders
Table 15-2. Model Codes for VORTEX Peripherals .
15-3. Preset Logical-Unit Assignment
Table 15-4. Permissible Logical-Unit Assignments
15-5. TIDB Status-Word Bits
17-1. Physical 1/0 Devices

Table 17-2. Task Status (TIDB Words 1 and 2)
18-1. Key-In Loader Program:

Table 20-1. Firmware Availability ..
Table 22-1. Default VORTEXccccccrvenenneee.
Table G-1. Record Control Word Format

Table

Table

Table

Table
Table

Table

CONTENTS ~

SECTION 1
INTRODUCTION

The Varian Omnitask Real-Time EXecutive (VORTEX Il) is
a modular software operating system for controlling,
scheduling, and monitoring tasks in real-time multipro-
gramming environment. VORTEX 1l supports memory map
operation to a maximum of 256K of central memory.
VORTEX |l also provides for background operations such as
compilation, assembly, debugging, or execution of tasks not
associated with the real-time functions of the system. In
addition, VORTEX || supports user tasks using the V75
extended instruction set. Thus, the basic features of
VORTEX Il comprise:

. Memory map management

. Real-time 170 processing

. Provision for directly connected interrupts

. Interrupt processing

. Multiprogramming of real-time and background
tasks

. Overlapping output to peripherals with spooling

. Priority task scheduling (clock time or
interrupt)

. Load and go (automatic)

. Centralized and device-independent 1/0 system

using logical unit and file names

. Operator communications
. Batch-processing job-control language
. Program overlays

. Background programming aids: FORTRAN and

RPG IV compilers, DAS MR assembler, load-module

generator, library updating, debugging, and
source editor.

. Use of background area when required by
foreground tasks

. Disc/drum directories and references
. System generator
. Individual task protection
NOTE: Throughout this manual, all references to

VORTEX imply VORTEX II.
1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian V70 series computers with 32K memory

b. 33/35 ASR Teletype or compatible CRT on a priority
interrupt module

c. Priority Interrupt Module (PIM)

d. Rotating memory device (RMD) on a PIM with either a
buffer interlace controller (BIC) or block transfer
controller (BTC)

e. One of the following on a PIM:

(1) - Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape unit with a BIC

f. Memory map hardware

The system supports and is enhanced by the following
optional hardware items:

a. Additional main memory (up to a total of 256K)
b. Additional rotating memory devices

c. Automatic bootstrap loader with VORTEX i (device
dependent) system boot

d. Card reader, if one is not included in the minimum
system with BIC and PIM

e. Card punch with BIC and PIM
f. Lineprinter with BiC and PIM

g. Paper-tape punch, if one is not included in the
minimum system

h. Process input and output

i. Datacommunications multiplexor
j. Electrostatic printer/plotter

k. Writable control store

I. Floating-point processor

m. V75 extended instruction set.

All BICs, BTCs, and DCMs must have memory mapping
capability.

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real-
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for

INTRODUCTION

execution by operator requests, other tasks, device inter-
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assembfies, are under
control of the job-control processor (section 4), itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus-
pended, either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
Al tasks are scheduled, activated, and ted by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real-
time executive service (section 2.1).

Figure 1.1 is an overview of the flow in the VORTEX
operating system. Section numbers refer to further discus-
sion of this manual.

1.2.1 Computer Memory

VORTEX requires a minimum of 32K words of main
memory and supports up to a maximum of 256K words.

The system generation (SGEN, section 15) programs
execute in a non-memory map environment and conse-
quently utilize only the first physical 32K words of main

VORTEX OPERATING SYSTEM
FOREGROUND | BACKGROUND
|
I
USER REAL-TIME LOAD- FORTRAN
NON- R CATION EXECUTIVE i | mooute v
RESIDENT INTERRUPT SERVICES ' GENERATOR COMPILER
TASKS (SECTION 2)| (SECTION 6) (SECTION 5.3)
I
I
|
|
1
1
I Jos-
RESIDENT Rl T Ll conmeor | USER'S
TASKS EXECUTIVE T PROCESSOR [TASKS
: (SECTION 4)
1
I
I
i
I
OPERATOR | DAS MR
by YO koL COMMUNI- 1 |vo ASSEMBLER
CATION UTILITY
TRiSS'ESENT (SECTION 3) PACKAGE : (SECTION 10) (SECTION 5. 1)
GECTION)|
|
i RPG IV
! [COMPILER
I (SECTION 5.4)
|
|
USER VDM ! DE-
SUPPLIED gRCI)VERS SUPPLIED | BUGGING blgkggwe
DEVICES V) SECTION iy
DEVICES : (7 (SECTIONS
| 7,8, 89
i
1
VIii-i3r4

Figure 1-1. VORTEX System Flow

256K

VSTFC
32K
(a)

V$BFC

(b)

VS$GFCB

©)
V$BTBM
(@)

V$BVN
V$CRDR

(e)

02000

01000
O}

T e
r_/-'\/_/-—\/\

Foreground Blank Common
(Full Access)

Possible unassigned space to keep
global FCBs on the same page (80
words maximum)

PR T R R R R R PR TS

Global FCBs

JCP/OPCOM Buffers
DST/LUN/PST/COTAD
Controller Tables

TIDBs

User Data (except reentrant
subroutines called with ALOC)

VS$EXEC Real-Time Executive
V$10C Input/Qutput Control
Drivers

Reentrant Subroutines
Reentrant Subroutine Stack

Resident Task Directory

Unallocated Memory
Dynamically allocated for
TIDB, 1/0 requests, map
images, etc.

Page 1 reserved for OPCOM

Page 0 System Constants

INTRODUCTION

Mapped in with all
foreground tasks
referencing blank
common

Mapped in with all
background tasks
referencing global
FCBs

Mapped in with programs
referencing CL labels

Bottom of table region

Accessible only to Map 0

Bottom of fixed nucleus

Bottom of nucleus (may
be redefined by EDR.R
SGEN directive, which
does not change V$BVN)

into all tasks

NOTE: TSK defined resident tasks are loaded upward from
physical address 02000 in the first physical 32K of memory
by SGEN. However, the resident tasks are not mapped in
Map 0 but in a user map (1-15) as the resident tasks are
scheduled. The physical page numbers defining the
resident tasks are contained in the resident directory

(V$CRDR).

NOTE: VTFC, VBFC, etc. are system pointers in page 0

described in section 14, table 14-1.

NOTE: V$TFC, top of nucleus, is specified on SGEN MRY

directive (described in section 15.5.1).

Figure 1-2. VORTEX Nucleus, Map O

INTRODUCTION

memory. All resident tasks and data reside in the first 32K
of memory. Except for those resident tasks defined by the
SGEN TSK directive, all other resident tasks and data are
considered as part of the VORTEX nucleus. The nucleus is
assigned to be in the executive mode, map 0, virtual
memory (see section 1.3).

Figure 1-2 illustrates the map O nucleus memory layout.
The 32K words memory space is grouped into several
modules:

a. Foreground Blank Common Module: This module is
mapped with all foreground tasks referencing blank
common.

b. Globai FCB Module: This module is mapped with all
background tasks referencing the global FCBs. It is
read only access mode for priority O tasks and read/
write for priority 1 tasks. This module is of approxi-
mately 90 words.

c. Nucleus Table Module: This module is mapped with all
tasks with an external name defined in the CL fibrary.
Read-only access mode for priority O tasks and read/
write access for all other tasks. The bottom of this
module is defined in V$BTBM and is determined by
SGEN during the nucleus module building. Control
record CTL,21 specifies the end of the nucleus table
module. All user data and programs which are to be
included in this module must precede the CTL,21
control record. The approximate size of this module is
1000 words (RMD, line printer, card reader, Teletype,
CRT).

d. Nucleus Programs Module: This module consists of
V$EXEC, V$IOC, (/0 drivers, reentrant subroutines,
stacks, and any user programs inserted between the
CTL,21 and CTL,PARTO003 SGEN tasks. The bottom
of this module is defined by VSCRDR. The approxi-
mate size of this module is 6800 words (RMD, line
printer, card reader, Teletype, CRT drivers).

e. Map O Allocable Memory Space: The virtual memory
space between page two and V$CRDR is available for
dynamic allocation. 1/0 request block, TIDB block,
and map image memory space are allocated in this
region. Page one is reserved for the OPCOM task. The
actual physical memory assigned to the virtual
memory space is memory management performed by
the RTE component.

f. Page 0: Always reserved for system constants, interrupt
traps, and background literal pool (a description is
found in section 14, table 14-3).

The unused physical memory in the first 32K and all
physical memory above 32K are designated as allocable
memory. This is the physical memory which is dynamically
allocated for map O memory space as described in e, and
which is allocated to a user mode task's logical memory.

1-4

1.2.2 Rotating Memory Device

At least one RMD (disc or drum) is required for storage of
VORTEX operating system components. The RMD is divided
into a fixed number of variable-length areas called
partitions. These are defined at system-generation time
{section 15).

The following reside on the RMD (figure 1-3):

a. System initializer, loader, and VORTEX nucleus in
absolute format

b. Checkpoint file

c. GOfile

d. User library

e. Transient files

f. Relocatable object-module library

g. Relocatable load-module fibrary

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary
storage devices that have been specified at system-
generation time.

System Initializer and
Loader

VORTEX Nucleus in
Absolute Format

CL Directory

Relocatable Object-Module
Library

Relocatable Load-Module
Libraries

Checkpoint File

GO File

User Library

Transient Files

Figure 1-3. VORTEX RMD Storage Map
1.3 MEMORY MAP CONCEPT

VORTEX logical (virtual) memory is defined to be 32K
words. This is the maximum memory space that any single
task can address, even though the physical memory space
may be as great as 256K words. Where in actual or physicat

memory that task resides is transparent to the task and is
a memory management function performed by the RTE
component of VORTEX.

Each logical memory space (32K) is organized into fixed-
size blocks of 512 words (01000 in octal), called logical
(virtual) pages. Hence, there are 64 logical pages within a
32K logical memory space. The size of the logical memory
available to a task is reduced by:

a. Page.0: The first page of 512 words is reserved for
system constants, interrupt trap locations, background
literal pool and communication link- for 10C and
VS$EXEC calls. This page is mapped in all logical
memories.

o

. Nucleus Modules: A task referencing an external name
which is defined in the CL library will have the
corresponding VORTEX nucleus module mapped in
logical memory for a task. (Section 1.2.1 describes in
greater detail the nucleus modules.) These are:

(1) Foreground blank common moduie.
(2) Global FCB module, and/or
(3) Nucleus table module

c. Any FORTRAN program performing input/output
operation will have the nucleus table module mapped
into its virtual memory. FORTRAN runtime package
requires access to the device specification table
(DST), logical unit tables (LUT), and controllers tables
for linking information. The maximum available
logical memory space available is V$BTBM (bottom of
nucleus table module, location 0331) minus 01000
(program start logical address). V$BTBM is defined
on the SGEN listing.

d. For background priority 1 tasks, page O is set to read/
write access mode to permit tasks, e.g., JCP, to modify
low memory pointers V$JCFG, VSCRDM, etc. Hence,
the method of transferring control from user mode to
executive mode for 1/0 and RTE calls is to map in the
pages containing the entry to V$IOC (1/0 calis).
VSEXEC (RTE calls), and V$IOST (STAT calls).
Therefore a priority 1 task making an 1/0 call (or RTE
call, or STAT call), executes a JSR,X to location 0404.
Because page O is set to read/write access mode, the
instruction at 0404 (JMP V$I0C) is executed. The first
instruction in V$I0C (likewise, VSEXEC and V$10ST)
is a disable PIM (EXC 0444) instruction. Execution of
an 1/0 type instruction in the user map generates a
memory-protection interrupt, which forces the system
to the executive mode and hence the means of
transferring control to the map 0 tasks. Therefore, the
available memory space for a background task is
from location 01000 to the page where V$10C (which
is lower in memory than V$EXEC) resides. V$I0C
address is defined on the SGEN output listing.

All user mode tasks are loaded from logical address 01000.
A task not referencing external names defined in the CL
library has ail of the logical memory available to it except
page 0.

Physical memory is also organized into fixed-size blocks of
512 words, referred to as physical pages. A system with

INTRODUCTION

physical memory size of 256K words contains 512 physical
pages (64 physical pages for each 32K words of memory).

Allocation of logical memory to physical memory is
accomplished by pages. A task of 010000 (4096 in decimal)
words will reside in eight physical pages of physical
memory. These physical pages need not be contiguous.
However, that fact is transparent to the task. During
execution, the task assumes that its eight pages are
contiguous. The linking of physical pages is performed by
the memory map hardware. All user program object
modules are assembled relative to location 0. Load modules
are generated by SGEN and LMGEN to be relative to logical
address 01000.

A map defines the 64 logical pages within a logical memory.
Each logical page can be set to one of four possible access
modes:

Unassigned The logical addresses within that
virtual page are unassigned.
Read/Write All accesses including write operation

permitted to/from the logical page.

Read Operand Only operand fetches permitted from
Only the logical page.

Read Only Only instruction or operand fetches
permitted within the logical page.

Each logical page, except for the pages with unassigned
status, must be assigned to a physical page. The RTE task
sets the status for each page, allocates a physical page to
each logical page, and loads the corresponding mapping
registers.

The memory map hardware provides a 4-bit map register
for the 16 possible maps. This 4-bit map register is set by
the RTE component to select the proper map (0-15). Map 0
is defined as the executive mode. All other map selections
(1-15) are designated as being in the user mode. However,
when the system is forced to the executive mode, state 0,
by an 1/0, real-time, or memory map interrupt, the map
register will continue to contain the currently executing
user map selection number.

Executive Mode

All instructions except HALT are permitted in this mode.
Any interrupt will force the hardware to enter this mode in
executive mode state 0. The interrupt will not disable the
map. VORTEX Real-Time Executive (RTE), Input/Output
Control (I0C), 1/0 drivers, and other resident tasks and
constants are mapped into the executive mode. The
instructions and data which comprise the VORTEX nucleus
are mapped in the executive mode. Any task executing 1/0
instructions (EXC, OAR, SEN, etc.) must execute in map 0.

A HALT instruction executed in the executive mode with the
map enabled will generate an interrupt. The HALT is
permitted only in the disabled map state.

1-5

INTRODUCTION

There are four executive modes states as shown in table
1-1. A map 0 task 'will normally execute in state 0. In state
0, all instruction fetches and operand fetches and stores
are performed in map O logical memory. If a map 0 task
must fetch and store data to or from a user map (1-15), the
map 0 task must switch to the proper executive mode state
(1, 2 or 3), then upon completion of the fetch or store,
restore the executive mode to state 0. A convenient way of
switching executive or mode states is to output one of the
control words established by the RTE component in the
page O system data region, locations 0334-0337: V$STO,
V$ST1, V$ST2, and V$ST3 for executive mode states O
through 3 respectively. An example of switching to
executive mode 3 is OME 046, V$ST3, where 046 is the
memory-map device address.

User Mode

All operands and instructions are mapped in accordance
with the map register contents. Error conditions will cause
interrupts, which force the system to the executive mode.
User mode is entered from the executive mode under
control of RTE.

Privileged instructions (e.g., EXC, HALT) are not permitted
in this mode. An interrupt is generated if a task attempts
to execute a privileged instruction. Foreground tasks may
execute disable and/or enable PIMS and RT clock
instructions (EXC 0444, EXC 0244, EXC 0147, EXC 0747).
Section 14.4.4 describes this subject further.

Section 2.2, RTE System Flow, describes the user mede and
executive mode tasks.

Table 1-1. Executive Mode States

Instruction Operand
State Fetch Fetch Store
[MAP 0 MAP 0 MAP 0
1 MAP 0 MAP 0 *MAP N
2 MAP 0 MAP N MAP O
3 MAP 0 MAP N MAP N

+MAP 0 refers to the executive task map.
*MAP N refers to the task map specified by
the map register. (n = 1-15)

1.4 BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the V70/620
computers:

Document

Title Number

V72 Handbook 98 A 9906 20x
V73 Handbook 98 A 9906 0lx
V70 Series Memory Map Manual 98 A 9906 10x
620-100 Computer Handbook 98 A 9905 00x
FORTRAN IV Reference Manual 98 A 9902 03x
RPG IV User's Manual 98 A 9947 03x
VTAM Reference Manual 98 A 9952 22x
HASP/RJE Operator's Manual 98 A 9952 21x
Microprogramming Guide 98 A 9952 21x
VORTEX Installation Manual 98 A 9906 07x

Where x is a revision level number subject to change.

Maintenance information is in the following VORTEX and
VORTEX |l Software Performance Specifications:

Document
Title Number
VORTEX |l System Overview 89A0259
VORTEX il External 89A0273
Specification
VORTEX 1l Internal 89A0289
Specification
VORTEX External 89A0203
VORTEX Internal Volume 1 89A0231
VORTEX Internal Volume 2 89A0232
VORTEX Internal Volume 3 89A0233
VORTEX Internal Volume 4 89A0304
DAS MR Assembler Internal 89A0225
FORTRAN IV Compiler Internal 89A0214
FORTRAN 1V Library Internal 89A0211
RPG IV Runtime/Loader 89A0234
Internal
RPG IV Compiler internal 89A0184
FORTRAN Accelerator and 89A0285
VORTEX Spooler Overview/
External

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-ti i (RTE) p
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.
If the task uses the V75 registers 3 through 7, the contents
of R3 through R7 are also saved.

There are 32 priority levels in the VORTEX system,
numbered O through 31. Levels 0 and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. if a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority. |f more than one task has the same
priority level, they are selected for execution on a first-in,
first-out basis. Background and foreground RTE service
requests are similar.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN
SCHED Schedule a task Yes Yes
SUSPND Suspend a task Yes Yes
RESUME Resume a task No Yes
DELAY Delay a task No Yes
LDELAY Delay and reload from No Yes
specified logical unit
PMSK Store PIM mask register No Yes
TIME Obtain time of day Yes Yes
OVLAY Load and/or execute an Yes Yes

overlay segment

ALOC Allocate a reentrant No Yes
stack

DEALOC Deallocate the current No No
reentrant stack

EXIT Exit from a task (upon Yes Yes
completion)

ABORT Abort a task No Yes

IOLINK Link background 170 Yes No
PASS Pass map 0 data Yes Yes
TBEVNT Set/fetch task's TBEVNT Yes No

ALOCPG Allocate memory page(s) Yes No
(Priority 0 in map 0)

DEALPG Deallocate memory Yes No
page(s) (Priority 0 in
map 0)

MAPIN Map in specified memory No No
page(s)

PAGNUM Identify physical page Yes No
number

Whenever a task is aborted, all currently active 1/0
requests are completed. Pending 1/0 requests are de-
queued. Only-then is the aborted task released.

There are 18: RTE service request macros. Certain of them
are illegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are legal
in level O tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric

characters (including $), left-justified and filled out with
blanks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS
This Qection describes the RTE macros given in table 2-1.
The general form of an RTE macro is
label mnemonic,p(1),p(2),....p(n)
where

label permits access to the macro from
elsewhere in the program

mnemonic is one of those given in table 2-1

each p(n) is a parameter defined under the
descriptions of the individual macros

The omission of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string. Thus,
in the macro (section 2.1.1)

2-1

REAL-TIME EXECUTIVE SERVICES

SCHED 8,,106,, "TA", 'SK','A"

the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are given in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macro the specified task to on its
designated priority level. The scheduling task can pass two
values in the A and B registers to the scheduled task (a
task using the V75 registers 3 through 7 can aiso pass
parameters in R3 through R7). A TIDB is created for each
scheduled task, (see section 14 for a description of TIDB).
The macro has the general form. .

label SCHED level,wait,lun,key, xx',"yy','zz'

where
tevel is the value from O (lowest) to 31
(highest) of the priority level of the
scheduled task
wait is 0 (default value) if the scheduling and

scheduled task obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended until
completion of the scheduled task

tlun is the name or number of the logical unit
whose library contains the scheduled
task, zero to schedule a resident
foreground task, or 106 to schedule a
nonresident task from the foreground
library. If a zero is specified and the task
is not found in the resident directory, the
RTE p 1t (SAL) will aL icall
search for the task on the foreground
library (FL)

key is the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at system-generation time

xxyyzz is the name of the scheduled task in six
ASCHl characters, coded in pairs
between single quotation marks and
separated by commas; e.g., the task
named BIGJOB is coded 'Bl','GJ’,'0OB’
and the task named ZAP is coded
ZAP

The FORTRAN calling sequence for this macro is
CALL SCHED(level,wait,lib,key,name)
where lib is the number of the library logical unit

containing the task, and name is the three-word Hollerith

2-2

array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point focations, with
the A and B registers (and the V75 registers if available)
containing the value to be passed. The scheduled task
executes when it becomes the active task with the highest
priority.

The specified logical unit (which can be a background
library, a foreground library, or any user-defined library on
an RMD) must be defined in the schedule-calling sequence.

Expansion: The task name is loaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Word 0 JSRX

Ward 1 0406

Word 2 w[o ° ooo|1 level
Word 3 key I lun

Word 4 Task name

Word 5 Task name

Word 6 Task name

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor-
Unit (CPU) time based on priority levels and /0 activity.

FL EQU 106 (LUN assigned to
foreground library FL)
KEY EQU 0306 (Protection code

for FL)

SCHED 5,0,FL,KEY,'TS’', 'KO','NE'
. (Control return to
. highest priority)

Note: the KEY line can be coded with the equivalent ASCII
character enclosed in single quotation marks.

KEY EQU P

The same request in FORTRAN is
DIMENSION N1,N2(3)
DATA N1/2H F/

DATA N2(1),N2(2),N2(3)/2HTS, 2HKO, 2HNE/
CALL SCHED(5,0,106,N1,N2)

or

CALL SCHED(5,0,106,2H F,6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an external
interrupt, a simulated interrupt caused by 10C,or 1/0
completion events for the task, or a RESUME (section
2.1.3) macro. The macro has the general form

lable SUSPND susp

where susp is 0 if the task is to be resumed by RESUME or
1 if the task is to be resumed by external interrupt, or 2 if
the task is to be resumed by external interrupt or by 10C or
170 completion events via a simulated interrupt (i.e.,
TBEVNT word in task’s TIDB is set to 1).

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)
Expansion: The susp flag is bit 0 of word 2 (s).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 J S RX
Word 1

0406
Word 2 >—<|ononl|]><ln

Example: Suspend a task from execution. Provide for
resumption of the task by interrupt, which reactivates the
task at the location following SUSPND.

SUSPND 1
The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macro resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

label RESUME ‘xx','yy','zz'
where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task before the r ing task and
immediately if it has the highest priority.

The FORTRAN calling sequence for this macro is
CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task.

REAL-TIME EXECUTIVE SERVICES

Expansion: The task name is loaded two characters per
word.

ait 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX

Word 1 0406

Word 2 o 6 0100

Word 3 Task name

Word 4 Task name

Word 5 Task name

Example: Resume (reactivate) the task TSKTWO, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS', 'KT', 'WO'
(Control return)

Control returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.
The same request in FORTRAN is
DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS, 2HKT , 2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the general form

label DELAY milli, min, type
where
milli is the number of 5-millisecond
increments delay
min is the number of minutes delay
type is 0 (default value when the task is to be

suspended for the specified delay,
remain in memory, and automatically
resume following the DELAY macro

1 when the task is to exit from the
system, relinquishing memory, and

2-3

REAL-TIME EXECUTIVE SERVICES

after the specified delay, be auto-
tically rescheduled and reloaded
in a elapsed time mode, or

2 when the task is to resume auto-
matically after the specified delay
or upon receipt of an external
interrupt whichever comes first,
and aut tically resume following
the DELAY macro; or

3 when the task is to resume auto-
matically after the specified delay,

or upon receipt of an external inter-
rupt, or completion of an 1/0 request
initiated previously, whichever comes
first, and automatically resume following
the DELAY macro.

10C resumes execution of the task by
setting the TBEVNT word in the task's
TIDB to 1.

The FORTRAN calling sequence for this macro is
CALL DELAY(mili,min,type)

where the integer-mode parameters have the definitions
given above.

The maximum value for either milli or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and 1, respectively, or 18000 and 0. After the
specified delay, the task becomes active. When it becomes
the highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 milliseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolution of the clock. The delay interval
is stored in minute increments and real-time clock
resolution increments.

time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
Delay the execution of a task for 90 seconds, or until
receipt of an external interrupt, or the completion of a
previously initiated 1/0 request, whichever comes first.

DELAY 18000,0,3

2.1.5 LDELAY Macro

This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is
to be reloaded after the delay. The macro has the general
form:

label LDELAY milli,min,lun key
where
milii is the number of 5-millisecond
increments defay
min is the number of minutes delay
lun is the number of the logical unit from

which the task is to be loaded after the
delay (DELAY tape 1 reloads from FL
fibrary)
key is the protection code for the logical unit
The FORTRAN calling sequence for this macro is
CALL LDELAY (milli,min,lun,key)

where the integer-mode parameters have the definitions
given above.

Time is the same as specified for DELAY.

Expansion: The type flag is bits 0 and 1 of word 2. Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 1S RX Word 0 . JSRX
Word 1 0406 Word 1 0406
Word 2 [1ool|><ltyp. Word 2 o o 1ooll><|111
Word 3 milli Word 3 mitt
Word 4 min Word 4 min

Examples: Assuming a 5-millisecond clock increment, delay Werd 3 hid | n

the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000, 1

Delay the execution of a task for 90 seconds or until receipt
of an external interrupt, whichever comes first, at which

2-4

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest priority task, it is loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,0301

2.1.6 PMSK (PIM Mask) Macro

This macro redefines the PIM (priority interrupt module)
interrupt structure, i.e., enables and/or disables PIM
interrupts. The macro has the general form

label PMSK pim,mask,opt
where
pim is the number (1 through 8) of the PIM
being modified
mask indicates the changes to the mask, with

the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other lines unchanged

opt is 0 (default value) if the set bits in mask
indicate newly enabled interrupt lines,
or 1 if the set bits in mask indicate newly

disabled interrupt lines

The FORTRAN calling sequence for this macro is
CALL PMSK(pim,mask,opt)

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit 0 corresponding to the highest:
priority line.

VORTEX operates with all PIM lines enabled unless attered
by a PMSK macro. Normal interrupt-processing allows alt
interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nullify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit O of word 2 (o).

[15 14 1312 11 10 9 87 6 543 210
Word 0 JSRX

Word 1 0406

Word 2) ,u 0 1000} 0
Word 3 pim ' mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.

PMSK 2,070

REAL-TIME EXECUTIVE SERVICES.

The same request in FORTRAN is
CALL PMSK(2,56,0)
Disable the same lines.

PMSK 2,070,1

2.1.7 TIME Macro
This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label TIME
The FORTRAN calling sequence for this macro is

CALL TIME(min,milli)

where min is the integer minutes to the 24 hour total, and
milli is the seconds in 5-millisecond integer increments.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word O JSRX

Word 1 0406

‘Word 2 0 o 1010

Example: Load the current time of day in the A (5-
millisecond increments) and B (1-minute increments)
registers,

TIME
(Return with time in A
and B registers)

2.1.8 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. It has the general form

label OVLAY type,'xx",'yy','2z'

where

type is O (default value) for load and
execute, or 1 for load and return
following the request. If only
load is specified, the load address
is returned in the X register.

xxyyzz is the name of the overlay segment,

coded as in the SCHED macro (section
21.1)

2-5

REAL-TIME EXECUTIVE SERVICES

The FORTRAN calting sequence for this macro is
CALL OVLAY(type,reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only it not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines if called by a
FORTRAN call.

Expansion: The overlay segment name is loaded two
characters per word. The type flag is bit 0 of word 2 (1).

Bit 15 14 13 12 11 10 9 8 7 6 8 4 3 2 10
Word 0 1S RX

Word 1 0406

Word 2 o 0 101 1|>-<L|
Word 3 Overlay segment name

Word 4 Overlay segment name

Word 5 Overlay segment name

When the load and execute mode is selected in the OVLAY
macro RTE executes an equivalent of a root segment JSR
instruction to enter the overlay segment. Therefore, the
return address of the root segment is available to the
overlay segment in the X register.

Example: Find, load, and execute overlay segment
OVSGO1 without return.

OVLAY 0,'0v,'sG','01’
(No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HOV,2HSG,2H01/
CALL OVLAY(0,0,N1)

or
CALL OVLAY(0,0,6HOVSGO1)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overlays containing 1/0 statements
for RMD files defined by CALL VSOPEN or CALL V$OPNB
statements (described in section 5.3.2), the main segment
must contain an 1/0 statement so that the runtime 170
program (VEFORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2-6

2.1.9 ALOC (Allocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is
EXTERNAL subr

CALL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The first location of the LIFO stack is V$FLRS, and that of
the current position in the stack is V$CRS. The first word of
the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be
allocated. If fewer than five words are specified, five words
are allocated.

Control returns to the location following ALOC when a
DEALOC macro (section 2.1.10) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no 10C calis (section 3) can be
made, and (3) no RTE service calls can be made.

Reentrant subroutines are normally included in the
resident library at system-generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is also defined at
system-generation time.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 . JSRX

Word 1 0406

Word 2 0 0 0110

Word 3 . Reentrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the cailing task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
calted. The location V$CRS contains a pointer to word 0 of
the current allocation in the stack. By loading the value of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M field of
5,1 for the first cell; 6,1 for the second; etc.

A stack allocation generated by the ALOC macro has the
format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 Contents of the A register
Word 1 Contents of the B register
Word 2 Contents of the X register
Word 3 ovil Contents of the P register
Word 4 Stack-control pointer (for RTE use only)
Word 5 For reentrant subroutine use (temporary storage)
Word n
‘Words n+1
to V75 registers 3.7
n+s

where ovfl is the overflow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overflow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

EXT SUB1
ALOC SUB1
(Return Control)

NAME SuB1
SUB1 DATA 6

DEALOC

END

Each time SUBI is called, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request (section 2.1.10), six words are dealio-
cated from the reentrant stack. If the calling task uses the
V75 registers, 11 words are allocated/deallocated.

2.1.10 DEALOC (Deallocate) Macro

This macro deallocates the current reentrant stack,
restores the contents of the A and B (and V75) registers
and the setting of the overflow indicator to the requesting

REAL-TIME EXECUTIVE SERVICES

task, and returns control to the location specified in word 3
(P register value) of the reentrant stack (section 2.1.9). The
macro has the form

label DEALOC
Expansion:
8it 15 14 13 12 11 10 9 87 6 5 4 3 210
Word 0 JSRX
Word 1 0406
Word 2 o0 0111

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

. (Reentrant subroutine)
DEALOC
END

2.1.11 EXIT Macro
This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its 170. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT
If the task making the EXIT is in unprotected background

memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 J S RX
Word 1 0406
Word 2 o 0 0010

Example: Exit from a task. The task making the EXIT call
is terminated upon letion of its 1/0 r

EXIT (No return)

REAL-TIME EXECUTIVE SERVICES

2.1.12 ABORT Macro

This macro aborts a task. Active 1/0 requests are
completed, but pending /0 requests are dequeued. The
macro has the general form

label ABORT xx','yy', "2z

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characlers per
word.

Bit 15 14 13 12 11 10 9 8 7 6 § 4 3 2 10
Word 0 JSRX

Word 1 0406

Word 2 0 0 0101

Word 3 Task name

Word 4 Task name

Word 5 Tagk name

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT ‘T8, 'K,
. (Control return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT(N1)

or

CALL ABORT(6HTSK)

2-8

2.1.13 IOLINK (170 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back-
ground global FCBs. It has the general form

label IOLINK lungsd,butloc, bufsiz
where
lungsd is the logical unit number of the global
system device
bufloc is the address of the input/output buffer
bufsiz is the size of the buffer (maximum and

default vaiue: 120

ABORT ‘s, ', '

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(section 4.2.11) stores the_protection code and file name in
the corresponding FCB before opening/rewinding the
logical unit. The IOLINK service request passes the buffer
address and the size of the record to the corresponding
logical-unit FCB. The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Bit 15 14 13 12 11 10 9 87 6543210
Word 0 JSRX

Word 1 0406

Word 2 0 0 1100 lungsd
Word 3 bufioc

Word 4 bufsiz

Example: Pass the address and size specifications of a
40-word buffer at address BUF to the PI global FCB.

PI EQU [
BXT PIFCB
. (Pl logical-unit number 4)

IOLINK PI,BUF,40

READ PIFCB,P1,0,1
. (Read 40 ASCIl words
from PI)
BUF BSS 40
END

If the PI file is on an RMD, reassign the Pl to the proper
RMD partition, and then position the Pl file using JCP
directive /PFILE.

2.1.14 PASS Macro

This macro fetches map 0 data into the user map. It has
the general form

label PASS count,from,to
where
count is the number of words to be passed
. from is the map 0 fetch address
to is the user map store address

The FORTRAN calling sequence for this macro is:

CALL PASS(count,from,to)

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX

Word 1 0406

Word 2 o 011 10

Word 3 count

Word 4 from

Word 5 to

If a negative or zero word count is specified, an EX16 error
message is posted and the task aborted. Any memory
protection violation will result in an EX20-EX25 error
message.

Example: Pass the TIDB information into PBUF

V$CTL EQU 0300

LDA VSCTL (Get TIDB address)
STA P1+4 ’
P1 PASS 29,*,PBUF

PBUF BSS 29
END

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro
This macro fetches or sets the requesting task’s event

word, TBEVNT, as well as alters other TIDB entries. It
should be noted here that most changes to TIDB entries

REAL-TIME EXECUTIVE SERVICES

could cause irrecoverable errors, so TBEVNT should be
used with caution.

The macro has the general form:

label TBEVNT value, disp, ¢/s
where:
value is 0177777 (mask)
disp is the TIDB word ordinal number
(displacement) to be altered
c/s is the clear/set indication
Explanation:

if disp = 0, the following is done according to the value
parameter. If value is 0-0177776 it is set into the
requesting task’s TIDB event word, TBEVNT. If the value is
0-017777, the request will fetch TBEVNT from the request-
er's TIDB and return with the A register set to the TBEVNT
content. (See section 14 for information on use of the event
word.)

If disp # 0, the action depends on the ¢/s indication.
When c/s = 1 (i.e., set), the corresponding TIDB (word
number displacement) bits are set according to the ones in
the mask value.

When c¢/s = 0 (i.e, reset), the corresponding TIDB (word
number displacement) are reset according to the zero bits
in the mask value.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX

Word 1 0406

Word 2 0o 01 1 1 1t

Word 3 Value

Word 4 disp

Word 5 ers

Default values: disp = 0 c/s = 0

Example: Reset TBPL (word 2 of TIDB) bit 8 and then

set it again.
TBEVNT 0177377, 2, 0 (reset)
TBEVNT 0400, 2, 1 (set)

2.1.16 ALOCPG (Ailocate Memory
Pages) Macro

This macro allocates in physical pages from the pool of
available pages to logical pages starting at the specified
logical address, modulo 01000. The logical pages to be
mapped must not have been previously assigned. The
logical pages:are assigned as read/write access mode. If an

2-9

REAL-TIME EXECUTIVE SERVICES

error condition occurs, an EX27 error message is output
and the task resumes operation at the specified reject
address. The general form is

label

where

ALOCPG n,logical addr,reject addr

is the number of pages to be allocated

EX30 error message to be posted and the task's operation
resumed at the reject address. The general form is’

logical addr is the logical address, modulo 01000,
where the n pages are allocated. If the
logical address is negative (1’'s comple-
ment) the address is assumed to be in
map 0. If the logical address is positive,
the address is assumed to be the
requestor's map (priority tasks cannot
allocate memory in map 0)

reject addr is the error return address when a task
exits or is aborted all ALOEPG pages are
automatically deallocated.

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Word 0 J S RX
Word 1 0406
Word 2 0 1 00O0C
Word 3 n
Word 4 logical addr
Word 5 reject addr

Example: Allocate 4 pages of memory to the requesting
task's virtual memory starting at logical address 06000. If
error, go to ERRO1.

ALOCPG

4,06000,ERRO1

ERRO1 STA (Error routine)

2.1.17 DEALPG (Deallocate Memory
Pages) Macro

This macro deallocates n pages of memory starting at the
specified logical address, duto 01000. The deall d
logical pages are set to unassigned access mode. Deallo-
cated physical pages, which were not assigned by MAPIN
requests, are returned to the pool of available pages.
Specifying logical page 0 or non-read/write page results in

2-10

label DEALPG n,logical addrreject addr
where

n is the number of pages to be deallocated

logical addr is the logical address, modulo 01000,

where the n pages are deallocated if
negative, 1's complement of map 0O
logical address (illegal for priority O
tasks)

reject addr s the error return address

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX
Word 1 0406
Word 2 0 1 0001
Word 3 n
Word 4 logical addr
Word 5 reject addr

Example: Deallocate 4 pages of memory in the requesting
task’s virtual memory starting at logical address 06000. If
error, go to ERRO2.

DEALPG 4,06000,ERRO02

ERRO2 LDA (Error routine)

2.1.18 MAPIN (Map-In Specified Physical
Pages of Memory) Macro

This macro allows the requestor to specify physical pages of
memory to be assigned to the requestor's logical memory
starting at the specified logical address, modulo 01000.
Priority O tasks are not permitted to execute the MAPIN
request. The specified logical pages to be mapped must not
have been previously assigned except by a previous MAPIN
request. All logical pages are set to the read/write access
mode. Pages mapped in by this request do not effect the
pool of available pages. The requested physical pages
cannot include page 0 nor any of the pages assigned to the
nucleus program module. Any error condition causes EX31

to be output and the task resumed at the reject address.
The general form is

label MAPIN n,logical addr,
buffer or page,
reject addr
where
n is the number of pages of memory to be
allocated

logical addr is the requestor's logical address,
modulo 01000, where the specified
physical pages are to be mapped

buffer address is the actual physical page number to

or physical be mapped or the address of the buffer

page number containing the physical page numbers.
If the value is positive and less than 512,
it is assumed to be a physical page
number. If n is greater than 1, all physi-
el pages assigned will be consecutive.
if the value is positive and greater than
‘511, it is assumed to be a map 0 buffer
address, e.g., TIDB map image address.
If the value is negative, it is assumed
to be the one's complement of the buffer
address within the requestor’s logical
space, which contalns the physical page
.numbers

reject addr is the error return address
Expansion:
Bit 15 14 13 12 11 10 9 . 7 6 5 4 3 210
Word ¢ JSRX
Word 1 0406
Word 2 . 0 1 0010
Word 3 n
Word 4 togical addr
Word S butfer addr of physical page
Word 6 reject addr

Example: Copy the same 2 physical pages as used by task
A, logical address ABUF, into task B's logical memory at
logical address BBUF. Task A scheduted task B, passing
task A's TIDB address to task B.

REAL-TIME EXECUTIVE SERVICES

TASK A
NAME TASKA
TITLE TASKA
PL EQU 106
KEY EQU 0306
V$CTL EQU 0306
LDBI ABUF (B = Buffer Address)
LDA VS$CTL (A = Task A's TIDB)
SCHED 2,0,FL,KEY, TA','SKB
. (Schedule task B. pass
. parameters in A, B)
ABUF BSS 02000
END ,
TASK B
NAME TASKB
TITLE ‘TASKB
TBMING EQU 27
TASKB STA Pl+4 (Set task A's TIDB addr)
Pt PASS 29,%,PBUF (Pass task A's TIDB
into PBUF)
- .
TBA (B = ABUF addr)
TZB
LLSR 9 (A = Page number, B =
offset in page)
ADDE TBMING+PBUF
BTA M1+5 (Add task A's map image
addr
M1 MAPIN 2,BBUF, * (MAPIN same 2 physical
pages at BBUF shared by
TBA task A at ABUF)
LSRA 7 (B = Offset into page)
ADDI BBUF (Add BBUF addr)
TAB (B = Start of ABUF)
PBUF BSS 29 (TIDB butfer)
BSS TASKB-%+512 (Set to page boundary)
BBUF EQU * (Assume task B < 512
words)
END

2.1.19 PAGNUM (ldentify Physical Page
Number) Macro

This macro allows the requestor to identify the physical
page number assigned to a specified logical address. If an
unassigned logical address is specified, return is to the
requestor with the A register = 0. Otherwise, return is
made with the A register set to the physical page number
and the B register set to the task’s map image address for
the specified logical address. The general form is

label PAGNUM logical addr

where logical addr is the address where the identity of the
assigned physical page is requested.

2-1

REAL-TIME EXECUTIVE SERVICES

Expansion:
Bit 15 14 13 12 11 10 9 8¢ 7 6 5 4 3 2 1 0
Word 0 JSRX
Word 1 0406
Word 2 0o 1 0011
Word 3 logical addr

Example: Identify the physical page assigned to PBUF.

LDAI PBUF (Get RBUF addr)

STA P1+3
P1 PAGNUM * (Identify physical page)
PBUF BSS 100

2.2 RTE SYSTEM FLOW

The RTE component loads and executes a task depending
on the category of that task:

Executive Mode Tasks

These are the VORTEX system and user tasks designated
during system generation (SGEN) to be resident (excludes
tasks specified on SGEN TSK directives). The RTE, I0C, I/0
drivers, and common interrupt processors are examples of
system executive mode tasks (map 0). OPCOM is loaded
into and executed from page 1 of map 0. All other non-
resident tasks are defined to be user mode tasks.

User Mode Tasks

a. Background tasks with a priority of zero: Tasks that are
executed via a DASMR or FORTRAN load-and-go
operation and those that are loaded and executed
from the BL library with a JCP/LOAD directive are in
this group.

These tasks are loaded with the first page of physical
memory (0-0777) designated as read operand only. The
literal and indirect pointer pool is loaded in the first
page at locations 0500-0777. The remainder of the
background task is loaded in whatever physical pages
are available at the time the task is loaded. These
pages are designated as read/write access. |f a
nucleus module is referenced, that module is mapped
as read operand only. All other pages in the logical
memory are designated as unassigned. The RTE

2-12

4 d "

it an ilable map key (1-15) to
the backgraund task and sets the appropriate
mapping registers to reflect the task’s logical memory.

b. Background priority 1 tasks: System tasks such as the
Job-Control Processor (JCP), Input/Qutput Utility
(IOUTIL), System Maintenance (SMAIN), Source
Editor (SEDIT), DAS MR, FORTRAN, RPG 1V, MIDAS,
MICSIM, and File Maintenance (FMAIN) require full
access to the nucleus (to modify tables or utilize the
global FCBs). These !asks are loaded with the
required ! gnated as read/write
access mode permitting fetches and stores into these
areas. The literal and indirect pointer pool is loaded
in the first page at locations 0500-0777. The task is
loaded starting at logical address 01000.

c. Foreground tasks: Page 0 is mapped read operand only
for a foreground task. Nucleus modules (including
blank common) referenced by foreground tasks, are
mapped in the read/write access mode (see figure
2-1). The maximum logical memory space available to
a foreground task is thus dependent on the number
and type of nucleus module referenced by the task.
The pages within the logical memory not utilized are
mapped as unassigned. All foreground tasks are
loaded at logical memory address 01000.

d. Read-only pages: During the creation of a load module
by LMGEN, the user has the capability to specify pages
within the load module as read-only pages. The
designated read-only pages are indicated in the
pseudo TIDB block. When the task is loaded, the RTE
component will designate those pages in the task’s
logical memory as read-only pages.

2.3 TASK LIMITATIONS AND DIFFERENCES

In VORTEX the following differences and features are
apparent between a background task and a foreground
task:

a. A background task has a priority level of O or 1. A
foreground task can have a priority of 2 through 31.

b. Only one background task can be executed at a time.
Excluding the RTE, 10C, and 1/0 driver tasks, a
maximum of 15 (user mode of 1 through 15) user
foreground tasks can be in operation concurrently,
provided physical memory size is adequate. See
section 2.5 for a description of checkpointing of tasks.

¢. A background task can be checkpointed and its
operation pre-empted by a foreground task. A
foreground program memory space is not check-
pointed (see section 2.5).

d. A background task can have literals and indirect

pointers, a foreground task cannot.

. All tasks whether background or foreground have
individual task protection.

If allocable memory is not available to load a
background task, the RTE component will output an
error message (EX05) and abort the operation. If a
foreground task is to be loaded and allocatable
memory is not available, the RTE component will
reattempt the load when memory becomes available.

Background

Priority
Nucleus Modules 0
Foreground
Blank COMMON UN
Nucleus Module
Global FCT ROP
Nucleus Module
System Table ROP
Nucleus Module
System Resident
Tasks Nucleus UN
Module
Page 0 ROP
System Constants

Key: RW

REAL-TIME EXECUTIVE SERVICES

. Background level O or 1 task can schedule a task from

the background library only. Foreground tasks cannot
schedule a task from the background library.

. Foreground tasks can utilize foreground blank

common. Background tasks cannot.

Background level 0 tasks have restricted RTE requests
(see table 2-1). Foreground tasks have no restriction on
RTE service requests.

Priority of Task

Background Foreground
Priority Priorities

1 231

UN RW

RW UN

RW RW

UN UN

RW ROP

Read-Write Access Mode

ROP Read Operand Only Access Mode
RO Read-Only Access Mode
UN Unassigned Access Mode

Note: Since the upper three modules are defined contigu-
ously, without regard to page boundaries, and since maps
are full pages, a map for any of these modules may include
a partial page of an adjoining module, with the same

access mode.

Figure 2-1. Matrix of Nucleus Module Access Mode

2-13

REAL-TIME EXECUTIVE SERVICES

2.4 ABORT PROCEDURE

Whenever a task is aborted, all currently active 1/0
operations are allowed to complete. All 170 requests that
are threaded (queued, or waiting to be activated) are not
activated. Upon completion of all active 1/0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2.5 CHECKPOINTING OF TASKS

A background task’s memory space and/or assigned map
may be checkpointed for use by a foreground task. The
background task is restarted when memory space and/or a
map key becomes available.

A foreground task may be checkpointed by a higher priority
foreground task. It may also be checkpointed by a lower
priority task depending on the value of TBST bit 8. The
default value of this bit is on (=1) ie, "may be
checkpointed by a lower priority task'. In order to turn this
bit off, a usage of TBEVNT (2.1.15) is recommended. The
foreground task's memory space is never checkpointed.
More than one foreground task's map may be
checkpointed.

2.6 PAGE ALLOCATION SCHEME

The page allocation routine scans the page bit mask table,
V$PAGE (figure 2-2) to determine the allocable physical
pages. To expedite the process, the allocation routine first
checks the page O system word VSNPAG to find the total
number of allocable pages in V$PAGE. If the required
number of pages exceeds V$NPAG, scanning of VSPAGE is
not attempted. The allocation routine scans V$PAGE
starting with the word number specified in VSLPP (page 0
system pointer). The system generation program initially
sets VSLPP to 0. The allocation routine updates V$LPP
during the scanning while the page deatlocation routine
sets VSLPP to the deallocated pages.

2-14

Bit Position

15 14 210
Word
[Size of V$PAGE
1]o 1 Increasing Page 15
Numbers
First
2 |16 31 Physical
3 |32 47 | 32K Words
3 |48 63
5 |64 79
29 |448 463 | Last
Physical
35 |464 479 | 32K Words
(Maximum
31 [480 — == 495 | 256K)
32 |496 —————————»5]1

Corresponding Page Bit Positions:
1 = Page is allocatable
0 = Page is unallocatable

VS$PGT Address of V$PAGE

V$LPP 0, Pointer to last word tested
V$NPAG Number of available pages

Figure 2-2. VSPAGE, Page Allocation Table

The size of V$PAGE is determined by SGEN based on the
physical memory size specified on the MRY directive.

SECTION 3
INPUT/OUTPUT CONTROL

The VORTEX input/output-control component (10C)
processes all requests for 1/0 to be performed on
peripheral devices. The 10C comprises an |/0-request
processor, a find-next-request processor, an |/0-error
processor, and 1/0 drivers. The 10C thus provides a
common |/0O system for the overall VORTEX operating
system and eliminates the programmer's need to under-
stand the computer hardware.

All 170 with remote devices connected through the Data
Communications Multiplexor (DCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter-
faces with 10C. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any I0C macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 170 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the I/0 driver stores the
error status in the user 1/0-request block, and the I/0-error
processor posts the error on the OC logical unit. The user
can then try an..her physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating-
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
1/0 operations that are independent of the physical-device
configurations by making possible references to the logical-

unit number. The standard interfaces between the program
and the I0C, and between the I0C and the 1/0 driver,
permit substitution of peripheral devices in 1/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the wunits are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassighed through the operator communications
component (OPCOM, section 17) or the job-control
processor (JCP, section 4).

o

. Logical-unit numbers 101-179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number 0 indicates a dummy device. The
10C immediately returns control from a dummy device
to the user as if a real I/O operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 17-1 shows the scheme of system names for physical
devices. Table 3-2 shows the possible logical-unit
assignments.

Table 3-1. VORTEX Logical-Unit Assignments

Number Name Description
0 DUM Dummy
1 oC Operator
communication
2 Sl System input
3 SO System output
4 PI Processor input

Function
For 170 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For display of all input
control directives and output
system messages; Teletype or
CRT only

For input of source statements
from all operating system

language processors (continued)

31

INPUT/OUTPUT CONTROL

Number

10

11
12

101

102

103

Table 3-1. VORTEX Logical-Unit Assignments

Lo

BO

SS

GO

PO

DI

DO

cu

SW

CL

(continued)

Description

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Checkpoint unit

System work

""Core'" -resident
library

Function

For output of operating system
input control directives,

system operations messages,
and operating system language
processors’ autput listings

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

For output of the same infor-
mation as the BO unit by the
system assembler and compiler;
RMD partition or MT.

For processor output; all
operating system language
processors that use an inter-
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

For ali debugging inputs
For all debugging outputs

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or

execution by other system
components; partition protec-
tion key B; RMD partition only

For all “"core” -resident system
entry points; partition protec-
tion key C; RMD partition only
(12 names per 2 sectors)

INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments
(continued)

Number Name Description Function
104 oM Object-module For the VORTEX system object-
library module library; partition

protection key D; RMD partition
only

105 BL Background library* For the VORTEX system background
library; partition protection
key E; RMD partition only

106 FL Foreground library* For the VORTEX system fore-

ground library; partition
protection key F. RMD
partition only

* Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Table 3-2. Valid Logical-Unit Assignments

Logical Unit oc SlI SO Pl Lo BI BO SS GO
Unit No. 1 2 3 4 5 6 7 8 9
Device
Dummy DUM DUM DUM DUM DUM
Card punch cpP CcP
Card reader CR CR CR
CRT device cT CT CcT CcT CT
RMD (disc/drum) D D D D D)} D
partition
Line printer LP
Magnetic-tape unit MT MT MT MT MT MT MT
Paper-tape reader/ PT PT PT PT PT
punch
Teletype Ty TY TI¥Y TY TY
Remote Teletype ¢ TC TC TC
Logical Unit PO DI DO CU sw cCL OM BL FL
Unit No. 10 11 12 101 102 103 104 105 106
Device
Dummy DUM DUM
Card punch CP
Card reader CR
CRT device cT CT CT
RMD (disc/drum) D D D D D D D
partition
Line printer LP LP
Magnetic-tape unit MT
Paper-tape reader/ PT
punch
Teletype TY TY TY
Remote Teletype TC TC

33

INPUT/OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda-
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 1514131211 109876543210

Word 0| Beginning partition address (track number)

Word 1 ppbl>< Protection key

Word 2 Number of bad tracks in the
partition
Word 3 Ending partition address + 1

Section 9.1 describes the full PST format.

The partition protection bit, designated ppb in the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word O of the following entry. The length of the
PST is 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
‘time and thereafter constant. The bits are read from right
to left within each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

Each RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati-
cally created when the partitions are defined at system-
generation time. It is possible to use a partition with no

34

directory, e.g.. by a foreground program that is collecting
data in real time.) Each directory entry is in the format:

Bit 151413 1211109876543210
Word 0 File name

Word 1 File name

Word 2 File name

Word- 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
is created, and which remain constant.

At system-generation time, the first sector of each partition
is assigned to the file-name directory and a zero written
into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector is a one-word entry containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
10C use. User access to the directories is via the [0C, which
references the directories in response to the [/0 macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by |0C operations. The
10C can modify only the current position-of-file parameter.

In the case of a file containing a directory, an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,

the file boundary addresses and the current position-of-file
value from the directory entry are stored in the FCB. |f the
OPEN macro

a. Specifies the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The I0C references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the 10C and user access to the file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option to update, the current position-of-
file value in the directory entry is set to the value of the
FCB current position, allowing reference by a later
OPEN.

b. Specifies the option not to update, the file-directory
entry remains unmodified.,

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is ******
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multinaime file is
deleted, in which case the deleted name is converted to a
blank entry and all other names of the multiname file are
set to zero.

3.3 I/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven 170 system, thus
optimizing the allocation of CPU cycles in the multipro-
gramming environment,

INPUT/OUTPUT CONTROL

3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task's output to intermediate RMD
files. This avoids the user task waiting for the device
transfer completion. Total system throughput will be
increased because waiting for transfers to be completed,
both in the use of 1/0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also, non-resident tasks may transfer to a spooled device
and immediately exit, instead of remaining resident until
completion of the transfer.

At system generation, the user may have the output of
some logical units, such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
10C driver to which data output may be assigned and which
transfers output for its associated logical unit to a circular
RMD file or directly to the output listing task, and (2) and
output listing task which accepts messages from this
circular RMD file or directly from the 10C driver and
transfers them to the appropriate output device.

Communication between these two tasks is accomplished
through parameters within the listing rask which are
established by the IOC driver. When these and other
system parameters indicate that the listing task has caught
up with the spoolout task, output messages will be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMD transfers).

All data records transferred to the circular RMD file will
contain record length and a key signifying whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL file overflow messages will be output when appropri-
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3-1 shows a simplified flow of output data through
the SPOOL subsystem.

INPUT/OUTPUT CONTROL

USER
TRANSFER TO
LOGICAL UNIT

A 4

SPOOLER 10C
DRIVER
(VZSPOA)

CONTROLLER
TABLE CTSPnA

DATA DIRECTLY
TO SPOOLOUT

TRANSFER IF
SPOOL STREAM

BUFFER n* IS BUSY
A \
RESIDENT RMD FILE
LISTER TASK SPOOL n*

A

TRANSFER TO
LOGICAL UNIT lg—
180 +n*

* WHERE n 1S AN INTEGER' FROM ZERO TO SEVEN

VTIL-2123
Figure 3-1. Spooling Subsystem Flow

3.4.1 SPOOL Operation

During the system generation, up to eight spool pseudo
devices may be defined. These pseudo-devices, SPOX
through SP7A are dummies which can be assigned to any
logical unit used only for output. Such assignments can be
made permanently at SGEN time, or dynamically through
JCP or OPCOM.

Each pseudo-device, SPiA, has a corresponding RMD file
name, SPOOLi. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
{named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing a WRITE request to an LUN assigned to device
SPiA, will have data transferred to file SPOOLi on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow.

3-6

If the output device is not busy when a user request is
made, and if the RMD stream is inactive, the user data is
moved directly to the output device via a SPOOL buffer. In
this case, the user request is set complete as soon as the
buffer is queued for the device.

If a user's 1/0 requests are made and a spool pseudo-
device number for the appropriate SPOOLI file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user's data to be queued directly to
the output device, up to a maximum of two buffers per
strearn. If the user should issue a request that would
require a third buffer for that stream, then the SPOOL
driver enters a delay loop until the two buffer limit can be
satisfied. During this wait time, the user's {/0 is active.

If the output device to which a user is spooling output
should go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user’s requests will be delayed after two buffers are
allocated to the stream.

Should the user fill the RMD file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Without these, the SPOOL subsystem will
function at a reduced rate. Files SPOOLO through SPOOL7,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

Files must be created after SGEN but before the first user
of the SPOOL program. To establish files in a manner
consistent with SPOOL, an exact procedure must be
followed. If LO is assigned to SPOOL, it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

;ASSIGN,LO=LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following
manner:

/FMAIN

INIT, 107,8

CREATE, 107,5,SPOOL0,120,n
CREATE, 107,S,SPOOL1, 120,n

CREATE, 107,8,SPOOL7,120,n
/FPINI

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data streams
are required.

The number of 120-word records to be established within
the file is given as the last parameter of the CREATE
directive. SPOOL files are circular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full,
i.e., that another entry cannot be placed on the file without
destroying one which has not been removed, transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file size is increased, the
liketihood of a full file is decreased. File size should be a
function of expected stream utilization and device output
speed, which determines how quickly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is full. If this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.
'

This procedure for creation of SPOOL files needs to be
done only once. It is performed immediately after comple-
tion of SGEN when the “VORTEX SYSTEM READY'' mes-
sage is output. If these file sizes are found to be unsatisfac-
tory, the system may be rebooted and file sizes modified
by executing the procedure again.

As part of the SGEN for systems using the SPOOL program,
controller table O (stream 0) must be included since the
initialization routine is included in its buffers. Additional
controller tables may be included as desired. However,
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-word
buffers, and odd streams contain only two 74-word buffers.
For systems with a large amount of SPOOL throughput, it is
recommended that four buffers be specified for controller
tables, otherwise two-buffer tables should be sufficient.

3.5 170-CONTROL MACROS

170 requests are written in assembly language programs as
i/0 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform 1/0 operations, thus
simplifying coding:

INPUT/QUTPUT CONTROL

. OPEN Open file

. CLOSE Close file

. READ Read one record

. WRITE Write one record

. REW Rewind

. WEOF Write end of file

. SREC Skip one record

. FUNC Function

D STAT Status

. OCB Generate data control block
. FCB Generate file control block

The |OC performs a validity check on all 1/0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the 10C schedules the
appropriate 1/0 driver to service the queued request.

The assembler processes the 1/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain 170 operations require parameters in addition to
those in the 1/0 macro. These parameters are contained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default values) must be indicated
by the normal number of commas.

Error messages applicable to these macros are given in
Appendix A.3.

1/0 Macros: The general form of 1/0 macros is:

label name cb,lun,wait,mode

where the symbols have the definitions given in section
3.5.1.

if the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optional.

37

INPUT/OUTPUT CONTROL

The expansion of an 1/0 macro is:

it 15 14 13 12 11 10 9 8 7 6 5 43 210
Word 0 J S RX
Word 1 0404
Word 2 < Status. l . < I Priority®
Word 3 w Mods T Op-code Logical-unit number
Word 4 FCB or DCB address
Word 3 User task identification block address*
Word 6 10C thread address*®
where
c set indicates completion of 1/0 tasks
Status " is the status of the 1/0 request
e set indicates an irrecoverable 1/0
error
cc is the completion code
Priority is the priority level of the task
making the request
w is the wait/immediate-return option
Mode is the mode of operation
Op-code specifies the 1/0 operation to be
performed
. indicates an item whose initial

value is zero

The wait.option causes the task to be suspended until its
170 is complete. The immediate option causes control to be
returned immediately to the task after the 1/0 request is
queued. Therefore, to multiprogram effectively within
VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15indicates whether the 1/0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in Appendix B.2.

c. Bit8indicates an irrecoverable 170 error.
d. Bits 7 through 5 contain a completion code: 000
indicates a normal return; 101, an error; 110, an end of

file, beginning of device, or beginning of tape; and
111, end of device, or end of tape.

3-8

e. Bits 4 through 0 indicate the priority level of the task
making the request.

Word 3 contains the following information:

Bits 0-7 Logical Unit (LUN)

When an |/0 request is made to V$I0C, V$IOC uses the
LUN as an index into the logical unit table (LUT). V$I0C
then uses the current assignment pointer of that entry in
the LUT to determine the address of the DST on which the
170 is to be performed. To determine the DST address, the
current assignment value less one is multiplied by the
length of a DST (3 words) and added to the base address
of the DST block. V$IOC verifies the validity of the specified
LUN.

If the LUN is invalid, a parameter error has occurred (refer
to sections 3.1 and 3.3).

Bits 8-11 Op-Code

Op-codes can range in value from 0 to 15; however, not all
op-codes are applicable for every device. V$10C, using the
op-code as an index gets an entry from a bit table. This
word contains a 1 in the bit position associated with the op-
code and is compared with the controller table item
CTOPM. If the corresponding bit in CTOPM is set to 1, it
means that the device connected to the controller can
perform the requested operation. If the corresponding bit
in CTOPM is zero, the 170 request is not performed, and
the 170 complete indicator (bit 15) set.

Bit 8-11 Meaning
0000 Read

0001 Write
0010 Write EOF
0011 Rewind
0100 Skip record
0101 Function
0110 Open

0111 Close

1000-1111 Not used

Bits 12-14 Mode

The mode bits are not used by V$IOC nor V$FNR. The 1/0
driver use this information whenever applicable to the op-
code.

Bit 15 Wait Option

V$I0C uses this bit to determine whether the requesting
task is to be suspended untit 170 is completed or whether
an immediate return is required.

Bit 15 = 0 Suspend until [/0 completed. V$10C
sets bit 14 in TBST in the requesting
task's TIDB.

Bit 15 = 1 Immediate return required (via V$DISP).

V$10C clears bit 14 in TBST in the
requesting task's TIDB.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the I0C sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:
label STAT req,err,aaa,bbb,busy

where the symbols have the definitions given in section
3.5.9.

The normal return is to the first word following the macro
expansion.

The expansion of the STAT macro is:

Bt 15 14 13 12 11 10 9 8 7 6 8 4 3 2 1 ¢
Word 0 JSRX

Word 1 0373

Word 2 Address of the 170 macro

Word 3 Address of the 1/0 error routine

Word 4 asa

Word 5 bbb

Word 6 Address of the busy or 1/0-not-complete routine

where aaa is the address of the end of file, beginning of
device or beginning of the tape routine and bbb is the
address of the end of the tape or end of the device routine.

Control block macro: The general form of the DCB macro
is:

label pecB rl,buff,fun

where the symbols have the definitions given in section
3.5.10.

The expansion of the DCB macro is:

Bit 15 14 13 12 11 10 9 87 6 543 210
Word 0 Record length

Word 1 Direct Address of user data area

Word 2 Function code

INPUT/OUTPUT CONTROL

The function code applies only to 170 drivers that allow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The paper-tape punch to punch leader.

c. Thecard punch to eject a blank card as a separator.

The general form of the FCB macro is:
label FCB

rl,buff,acc, key,'xx','yy','zz'

where the symbols have the definitions given in section
3.5.11.

The expansion of the FCB macro is:

Bit 1514 13 12 11 10 9 8 7 6 56 4 3 2 1 0
Word 0 Record length

Word 1 Address of user data area

Word 2 Access method Protection key
Word 3 Current record number

Word 4 Current end-of-file. address

Word § Beginning file address

Word 6 Ending file address

Word 7 File name

Word 8 File name

Word 9 File name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses

the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

i=2

. Sequential access by logical record: The 170 driver
uses the contents of word 3 as the number of the logical
record within a file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

39

INPUT/OUTPUT CONTROL

c. Direct access by physical record: The |/0 driver uses

the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word {ength), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

d. Sequential access by physical record: The 1/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

This macro, which applies only to RMDs or magnetic-tape
units, enables 170 operations on the devices by initializing
the file information in the specified FCB. The macro has
the general form

label OPEN fcb, lun,wait,mode
where

fcb is the address of the file control block

lun is the number of the logical unit being
opened

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the [/Q is complete

mode is O (default value) for rewinding or 1 for

not rewinding. In the former case, word
3 (current record number) of the FCB is
set to 1, word 4 (current position-of-file
address) is set to the current position-of-
file address given by the RMD file
directory, and rewinds the magnetic-
tape unit. In the latter case, the current
position-of-file address given by the
RMD file directory is copied into word 4,
converted to a record number and
stored in word 3 of the FCB, thus
initializating the user FCB, enabling
reading or writing from a previously
specified location, and the magnetic-
tape position is left unchanged (not
rewound).

OPEN must precede any other /0 request (except REW)
because the FCB file information must be complete before
any file-oriented 1/0 is possible. If a file has already been
opened, an OPEN will be accepted.

310

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

If an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the 170
request is processed internally by the 10C but not by an
170 driver. The 10C indicates the status as |/0 complete.

Example: Read a 120-word record from the FI10 on logical
unit 18, an RMD partition with sequential, record-oriented
access. BUFF is the address of the user's buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)
RL EQU 120 (Record length 120)

WAIT EQU 0 (Wait option)

REW EQU 0 (Rewind option)

KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential, record-oriented

access)
OPEN OPEN FCB,X1,WAIT,REW
READ READ FCB,X1,WAIT

FCB FCB RL,BUFF,SEQR,KEY,
"FI', 100,

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
previously defined position in the file. The macro has the
general form

fcb,lun,wait, mode

label CLOSE
where
fcb is the address of the FCB
lun is the number of the logical unit being
closed
wait is 1 for an immediate return, or 0

(default value) for a return suspended
until the 170 is complete

mode is 0 (default value) for not updating, or 1
for updating In the former case, there is
no change to the current position-of-file
address in the RMD file directory, words
3, 4,5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). In the latter
case, the contents of FCB word 3
(current record number) are converted
1o an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

If an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 170
request is processed internally by the 10C, but not by an
170 driver. The 10C indicates the status as 170 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

SEQR EQU 1 (Sequential, record-
oriented access)

UPDATE EQU 1 (Update option)

WAIT EQU 0 (Wait option)

CLOSE CLOSE

FCB, 180, WAIT, UPDATE

FCB FCB .+SEQR,, 'MA','TR', "IX'

3.5.3 READ Macro

This macro retrieves a record of specified length from the
specified logical unit, and places it in the specified area of
main memory. The macro has the general form

label READ cb,lun,wait,mode

where

cb is the address of the data control block,
or of the file control block

lun is the number of the logical unit from
which the record is read

wait is 1 for an immediate return, or O
(default value) for a return suspended
until the 170 is complete

mode specifies the |70 mode: 0 (default value)
for system binary, 1 for ASCII, 2 for BCD,
or 3 for unformatted 170 (see appendix
C for format)

INPUT/QUTPUT CONTROL

The number of words read is stored in word 5 of the 170
macro.

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to
magnetic-tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE ,MT,IM,BIN

TAPE DCB RECL,BUFF (Data control block)

BUFF BSS 60 (User data area)
Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE,MT,IM

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE ¢b,lun,wait, mode
where the parameters have the same definitions and take
the same values as in the READ macro (section 3.5.3).

The number of words written is stored in word 5 of the 170
macro. The first byte of each print line is treated as a print
control character and not echoed when outputting to a
listing device.

Example: Obtain a system binary record 60 words in
length from the user’s data area BUFF, and transmit it to
logical unit 16, a magnetic-tape unit. Use the immediate-
return option.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 16 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTWT WRITE TAPE ,MT, IM,BIN

TAPE DCB RECL,BUFF (Data control block)

BUFF BSS 60 (User data area)

311

INPUT/OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

label REW cb,lun,wait
where
cb is the address of the FCB or DCB, which
is optional
lun is the number of the logical unit being
rewound
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the [/0 is complete

Note that the DCB address is an optional parameter, but
that the FCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and, upon successful completion of the task, returns a
beginning-of-device (BOD) status.

Rotating-memory devices: REW places the start-RMD-
partition and end-RMD-partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11).

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default.

MT EQU 23 (LUN assigned to magnetic-
tape unit)

REWT

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.5.11).

DISC EQU 10 (LUN assigned to RMD
partition)
RECL EQU 120
REWD REW FCB,DISC
FCB FCB RECL,BUFF,,, 'sY', 'sT', 'EM’
(section 3.5.11)
BUFF BSS 120

312

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

label WEOF cb,lun,wait
where
cb is the address of the control block
lun is the number of the affected logical unit
wait is 1 for an immediate return, or O
(default value) for a return suspended
until the 1/0is complete
Example: Write an end of file on logical unit 10. Use the

wait option, here specified by default.

TAPE EQU 10

EOF CB, TAPE

3.5.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape, card
reader, or rotating-memory devices, skips one record in
either direction on the specified logical unit. It has the
general form

label SREC cb,lun,wait, mode
where

cb is the address of the control block

lun is the number of the logical unit being
manipulated

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the 170 is complete

mode specifies the direction of the skip: 0

(default value) for a forward skip, or 1 for
a reverse skip. Reverse skip does not
apply to the card reader.

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt is made to apply this macro to a device other
than a magnetic-tape or rotating-memory unit, the 1/0
request is processed internally by the IOC but not by an
170 driver. The |OC indicates the status as [/0 complete.

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT EQU 57 (LUN assigned to magnetic-
tape unit)

REV EQU 1 (Reverse)

M EQU 1 {Immediate return)

SKIP SREC

CB,MT, IM,REV

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when present) cannot
be defined by any of the preceding 170 control functions.
The macro has the general form

label FUNC dcb, lun,wait
where
dcb is the address of the data contral block
lun is the number of the logical unit being
manipulated
wait is 1 for an immediate return, or 0

(default value) for a return suspended
until the 170 is complete

FUNC causes certain 1/0 drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.5.10);

Function
1/0 Driver Code Function
Card punch 0 Eject blank card
Paper-tape punch 0 Punch 256 blank frames
for leader
Line printer and 0 Advance paper to top of
Teletype printer next form, or on Tele-
type 3 lines
1 Advance paper one line
2 Advance paper two lines
Statos 31 7 Advance paper to bottom
of form
8 Normal print size*
9 Large print size*

“Only for software character generator.

INPUT/OUTPUT CONTROL

Function
1/0 Driver Code Function
Statos 31/42 00 Advance paper to top

of form

01 Advance paper one line

02 Advance paper two lines

07 Advance paper to bottom
of form

08 Step plotter one raster
line

10 Select small/upright

11 Small/ +90 degrees

12 Small/ 180 degrees

13 Small/—90 degrees

14 Large/upright

15 Large/ +90 degrees

16 Large/ 180 degrees

17 Large/—90 degrees

20 Cut paper

21 End cut

Plot data may be transmitted to the Statos 31 by specifying
unformatted mode, 3, in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the left-most dot position.

The WRITE macro enables the transfer
of one data buffer to the printer/
plotter and allows for five different
medes of operation:

Statos 31/42

Mode 1 -- Compatible line printer
(70-6701) mode

Mode 3 - Plot (raster) mode (binary
raster data transfer)

Mode 4 -- Print mode selectable size
and orientation

Mode 5 .- Simuitaneous print/plot
mode (ASCH data transfer)

Mode 6 -- Simultaneous print/plot
mode (binary raster data)

All other modes defauit to mode 1.

If an attempt is made to apply the FUNC macro to any
other device, the 1/0 request is processed internally by the
10C but not by an 1/0 driver. The 10C indicates the status
as /0 complete.

INPUT/OUTPUT CONTROL

Example: Skip two lines on the printer, which is logical
unit 5. Use the wait option, here specified by default.

LP EQU S (LUN assigned to line

CNT EQU 2 printer) (Paper-tape
channel 2)

UPSP FUNC DCB, LP

DCB DCB » CNT

3.5.9 STAT (Status) Macro

This macro examines the status word in an 170 macro to
determine the result of an 1/0 function request. The STAT
macro has the general form

label STAT req,err,aaa,bbb busy
where
req is the address of the 170 macro (e.g.,
READ)
err is the address of the |/0-error routine
aaa is the address of the end of file,

beginning of device, or beginning of
tape routine

bbb is the address of the end of device or
end of tape routine

busy is the address of the 170-not-complete
routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

CAUTION
Foreground tasks should not loop to check for

completion of 170 tasks because this inhibits all
lower-level tasks.

314

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option.

MT EQU 12 (LUN assigned to magnetic-
tape unit)

IM EQU 1 (Immediate return)

REW REW ,MT,IM (DCB can be omitted

for REW)

BUSY STAT REW, ERR,BOT,EQT, BUSY

BOT

ERR

3.5.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by 1/0 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

label DcB rl,buff, fun
where
rl is the length, in words, of the record to
be transmitted
buff is the address of the user's data area
fun is the function code for a FUNC request
and is unused for other requests (section

35.8)

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate-
return option. The record iength is 60 words, and the
address of the user's data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU [(System binary mode)

MT EQU 4 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL,BUFF (Data control block)

3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any 170 macro
request to an RMD. The macro has the general form

where

label

buff

acc

key

xXXyyzz

Word

FCB ri,buff,acc,key, 'xx','yy','zz'

is the length, in words, of the record to
be transmitted

is the address of the user's data block

specifies the access method and is 0
(default value) for the direct access by
logical record, 1 for sequential access
by logical record, 2 for direct access
using the relative sector number
(beginning with 1) within the file, or 3 for
sequential access using the relative
sector number within the file

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCII character coded
between single quotation marks (e.g.,
the protection code H would be coded
'H')or as the eight-bit octal equivalent,
in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default value is binary zero (not
the character 0).

is the name of the file being referenced.
The file name is one to six ASCI
characters, coded in pairs between
single quotation marks and separated

INPUT/OUTPUT CONTROL

by commas, e.g., the file named ARRIBA
iscoded 'AR' ,'RI' , 'BA' . Embedded
blanks are illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
170 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU 1 {Sequential, record-
oriented access)
RECL EQU 120 (Record length 120
. words)

DISC FCB RECL,BUFF,SEQR, '2"',
. 'FI','LE', 'XX'

BUFF BSS 120

Note that the protection code character Z is coded between

single quotation marks, i.e., 'Z', but it can also be coded as

the octal value of the ASCII character, in which case no

quotation marks are used, i.e., 0332. Thus, the statement

given in the example above is equivalent to

DIsC FCB RECL ,BUFF, SEQR,
0322, 'FI','LE', 'XX'

Table 3-3. FCB Words Under 1/0 Macro Control

CLOSE REW

Sequential-Access Method

OPEN READ WRITE
Set to Incre- Incre-
position ments ments
of cur- record record
rent rec- number number
ord by by one by one
mode

chosen

Set to Checks No
current end of action
position file

of file

as noted

on direc-

tory

Adds or
subtracts

Checks
end of

Put into Current
position record set
of file (directory
on direc- partition)
tory by to one or
mode beginning
chosen address of
logical
unit (non-
directory
partition)
Cleared Set to
ending
address
of logi-
cal unit

315

INPUT/QUTPUT CONTROL

Table 3-3. FCB Words Under 1/0 Macro Control (continued)

Word OPEN

5 Set to
beginning
of file
address
put in
this word

6 Set to
end of
file ad-
dress

3 Set to
position
of cur-
rent rec-
ord by
mode
chosen

4 Set to
current
position
of file
as noted
on direc-
tory

5 Set to
beginning
of file
address

6 Set to
end of
file ad-
dress

3-16

READ

No
action

No
action

No
action

No
action

No
action

No
action

WRITE

No
action

No
action

Direct-Access Method

No
action

No
action

No
action

No
action

SREC

No
action

No
action

No
action

No
action

No
action

No
action

CLOSE

Cleared

Cleared

Put into
position
of file

on direc-

tory by
mode
chosen

Cleared

Cleared

Cleared

Set to
beginning
address
of logi-
cal unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Current
record set
(directory
partition)
to one or
beginning
address of
logical
unit {non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Set to
beginning
address
of logi-
cal unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

REW

Skip first
directory
sector

(directory
partition)

Skip first
directory
sector
(directory
partition)

SECTION 4
JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and |/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request to the OC logical unit has a siash
(/) as the first character.

Once initiated, the JCP processes all further JCP directives
from the S| logical unit.

If the SI logical unit is a Teletype or a CRT device, the
message JC** is output to indicate the Sl unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the SI logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

All JCP directives are echoed to the SO logical unit if St >
SO. All directives, except /C and /P have the time of day
append onto the front of the directive when echoed to SO.
The format is

HH:MM:SS /JCP directive

4.2 JOB-CONTROL PROCESSOR DIRECTIVES
This section describes the JCP directives:

a. Job-initiation/termination directives:

/J0B Start new job

/ENDJOB Terminate job in progress
/FINY Terminate JCP operation
/C Comment

/P Pause

/MEM Allocate extra memory for

background task

b. 170-device assighment and control directives:

/ASSIGN Make logical-unit assignment(s)
/SFILE Skip file(s) on magnetic-tape unit

/SREC Skip record(s) on magnetic-tape unit
or RMD partition
/WEOF Write end-of-file mark

/REW Rewind magnetic-tape unit or RMD
partition
/PFILE Position rotating memory-unit file

/FORM Set line count on LO logical unit
/KPMODE Set keypunch mode

/0OPEN Open VTAM line or terminal.
/CLOSE Close VTAM line or terminal
/CFILE Close file on global logical unit

o

. Language-Processor directives:

/DASMR Schedule DAS MR assembler

/FORT Schedule FORTRAN compiler
d. Utility directives:
/CONC Schedule system-concordance program

/SEDIT Schedute symbolic source-editor task
/FMAIN Schedule file-maintenance task
/LMGEN Schedule load-module generator
/I0UTIL Schedule 1/0-utility processor
/SMAIN Schedule system-maintenance task

e. Program-loading directives:

/EXEC Schedule loading and execution of a
load-module from the SW unit file
/LOAD Schedule loading and execution of a

user background task

/ALTLIB Schedule the next background task
from the specified logical unit
rather than from the background
library

/DUMP Dump background at completion of
task execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after-a period.

Each JCP directive begins with a slash (/).

The general form of a job-control statement is

/name,p(1),p(2),....p(n)

4-1

JOB-CONTROL PROCESSOR

where
name is one of the directive names given (any
other character string produces an
error)
each p(n) is a parameter required by the JCP or by

the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of some directives,
optional periods, optional blank separators between

character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP directives are given
Appendix A.4.

4.2.1 /JOB Directive*
This directive initializes all background system pointers

and flags, and stores the job name if one is specified. It
has the general form

/30B,name
where name is the name of the job and comprises up to
eight ASCII characters (additional characters are permitted
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs.

The occurrence of the /JOB directive causes the scheduling
of the background task VSACT1. V$ACT1 is a dummy task
on BL which only performs an EXIT. However, V$ACT1 may

be replaced by a user task to perform any desired
accounting function.

Example: Initialize the job TASKONE,

/JOB, TASKONE

4.2.2 /ENDJOB Directive®
This directive initializes all background system pointers
and flags, and clears the job name. It has the form

/ENDJOB

42

The occurrence of the /ENDJOB directive causes the
scheduling of the background task V$ACT2. V$ACT2 is a
dummy task on BL which only performs an EXIT. However,
V$ACT2 may be replaced by a user task to perform any
desired accounting function.

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive*

This directive terminates all JCP background operations
and makes an EXIT request to the real-time executive RTE
component (section 2.1.11). It has the form

/FINI

To reschedule JCP after a FINI, input any JCP directive
from the OC unit

The occurrence of the /FINI directive causes the scheduling
of the background task VSACT3. V$ACT3 is a dummy task
on BL which only performs an EXIT. However, V$ACT3 may
be replaced by a user task to perform any desired
accounting function.

Example: Terminate JCP operations.

/FINI

* The JCP directives JOB, ENDJOB, and FINI reset all
logical units and table 1 units to their default (system)
values. JOB and ENDJOB do not set the Sl logical unit.

4.2.4 /C (Comment) Directive

This directive outputs the specified comment to the SO and

LO logical units, thus permitting annotation of the listing. It

is not otherwise processed. It has the general form
/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of main
memory to the next scheduled background task. It has the
general form

/MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

/MEM permits larger symbol tables for FORTRAN compila-
tions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area available for background and nonresident foreground
tasks. An attempt to exceed this limit causes the scheduled
task to be aborted.

Example: Allocate an additional 1,024 words of main
memory to the next scheduled task.

i

/MEM, 2

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units
to specific 170 devices. it has the general form

/ASSIGN,I(1) = r(1),[(2) = r(2),...}(n) = K(n)

where

each Kn) is a logical-unit number (e.g., 102)
or name (e.g., SI)

each r(n) is a logical-unit number or name, or

a physical-device system name (e.g.,
TY00, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

If the controller and unit numbers are omitted from the
name of a physical device, controller 0 and unit O are
assumed.

An inoperable device, i.e., one declared down by the
;DEVDN operator key-in request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the PI logical unit to card reader CR0OO
and the LO logical unit to Teletype TYO0O.

/ASSIGN,PI=CR,LO=TY

JOB-CONTROL PROCESSOR

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

/SFILE, lun,neof

where

{un is the number or name of the
affected logical unit

neof is the number of end-of-file

marks to be skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, the JCP outputs to the
SO and LO logical units the error message JCO5,nn, where
nn is the number of files remaining to be skipped.

Example: Skip three files on the Bl logical unit.

/SFILE,BI,3

4.2.8 /SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers, and RMDs, causes the specified logical unit
to move the tape the designated number of records in the
required direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

/SREC, lun,nrec,direc

where

lun is the number or name of the
affected logical unit

nrec is the number of records to be
skipped

direc indicates the direction to be

skipped; F (default value) for
forward, or R for reverse.
Reverse skip does not apply to
the card reader.

If a file mark, end of tape, or beginning of tape is
encountered before the required number of records has
been skipped, the JCP outputs to the SO and LO logical
units the error message JCO5,nn, where nn is the number
of records remaining to be skipped.

4.3

JOB-CONTROL PROCESSOR

Example: Skip nine records forward on the BO logical
unit.

/SREC,BO, 9

4.2.9 /WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specified
logical unit. It has the general form

/WEOF lun

where lun is the number or name of the affected logical
unit. (Not accepted for RMD.)

Example: Write an end-of-file mark on the BO logical unit.

/WEOF , BO

4.2.10 /REW (Rewind) Directive
This directive, which applies only to magnetic-tape units
and RMDs, causes the specified logical unit(s) to rewind to
the beginning of tape. It has the general form

/REW lun,lun,... lun
where lun is the number or name of a logical unit to be
rewound.

Example: Rewind the BO and Pl logical units.

/REW,BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs and MT
assigned to global logical units causes the specified logical
unit to move to the beginning of the designated file. It has
the general form

/PFILE lun,key,name
where
lun is the number or name of the
affected logical unit. The
logical unit must be one of

the system defined logical
units which has a global FCB

44

key is the protection code required
to address lun

name is the name of the file to which
the logical unit is to be
positioned

Global file control blocks: There are eight global file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Position the Pl logical unit to beginning of file
FILEXY, whose protection key is $.

/PFILE,PI,$,FILEXY

4.2.12 /FORM Directive

This directive sets the specified line count on the LO logical
unit. This is the number of lines printed by DAS MR
assembler or FORTRAN compiler before a top of form is
issued. The directive has the general form

/FORMlines

where lines is the number (from 5 to 9999, inclusive) of
lines to be printed before a top of form is issued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORM, 100

4.2.13 /KPMODE (Keypunch mode)
Directive

This directive specifies the mode, 026 or 029, (BCD or
EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

KPMODE,m

where m is 0 for 026 mode, or 1 for 029 mode.

Example: Specify that cards be read and punched in 029
keypunch mode.

/KPMODE, 1

4.2.14 /DASMR (DAS MR Assembler)
Directive

This directive schedules the DAS MR assembler (section
5.1) with the specified options for background operation on
priority level 1. It has the general form

/DASMR,p(1),p(2),....p(n)

where each p(n), if any, is a single character specifying one
of the following options:

JOB-CONTROL PROCESSOR

(section 4.2.7), /REW (section 4.2.10), or /PFILE (section
4.2.11) directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the DAS MR assembler with no source
listing, but with binary-object output on the GO file.

/JOB, EXAMPLE
/PFILE,BO, ,BO
/DASMR,N,L

/JOB initializes the GO file to start of file. If BO is assigned
to a rotating memory partition, a /PFILE,BO,,BO must pre-
cede the /DASMR directive to initialize the file (unless the
assembly is part of a stacked job - see section 4.3 for sample
deck setup).

4.2.15 /FORT (FORTRAN Compiler)
Directive

This directive schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT,p(1).p(2).....p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Parameter Presence Absence

B Suppresses binary Output binary object
object

L Outputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Output symbol-table
table listing listing

N Suppresses source Outputs source
listing listing

E Assembles V75 Flags V75 extended

extended instru-
ctions.

Flags implicit
indirect instru-
uctions with
**l error’.

instructions with
"*OP error'.

Assembles implicit

indirect instructions.

The /DASMR directive can contain up to four such
parameters in any order.

The DAS MR assembler reads source records from the Pl
logical unit on the first pass. The Pl unit must have been
set to the beginning of device before the /DASMR directive.
This can be done with an /ASSIGN (section 4.2.6), /SFILE

Parameter

B

Presence

Suppresses binary
object

Absence

Output binary object

Assigns one word to

D Assigns two words
to integer array integer array items
items and to inte- and to integer and
ger and logical logical variables
variables (ANSI
standard)

H Generate code Generate no FPP
using Floating- instructions
Point Processor
(FPP)

L Outputs binary Suppresses output of
object on GO file binary object on GO

file
M Suppresses symbol- Outputs symbol-table

table listing

listing

4-5

JOB-CONTROL PROCESSOR

N Suppresses source Outputs source
listing listing
o] Outputs object- Suppresses object-

module listing module listing

X Compiles condi- Compiles normally
tionally

F Generates code Generates subroutine
with calls to calls

faster firmware
routines (see
section 20.2)

The /FORT directive can contain any or all such parame-
ters in any order.

Sample deck formats are illustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pl unit must have been set to the
beginning of device before the /FORT directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary-
object, source, symbol-table, and object-module
listings; normal compilation; and no binary-object output
on the GO file.

/FORT, 0

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. It has the form

/CONC,L

where L is an optional parameter to request that all
symbols in a source program be listed. Normally, CONC
only lists those symbols which were referenced.

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the

46

DAS MR assembler. It outputs to the LO logical unit a
listing of all symbols and their referenced locations in the
same input program.

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.
/ASSIGN,PI=NTO00

/REW,P1

/DASMR

/PPILE,SS,,8S
/CONC, L

4.2.17 /SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section
8) for background operation on priority level 1. It has the
form

/SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (section
9) for background operation on priority level 1. It has the
form

/FMAIN

Example: Schedule the file maintenance task.

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section
6) for background operation on priority level 1. A memory
map is output uniess suppressed. The directive has the
general form

/LMGEN.M

where M, if present, suppresses the output of a memory
map.

Example: Schedule the load-module generator task with-
out a memory map.

/LMGEN M

4.2.20 /IOUTIL (1/0 Utility) Directive
|
This directive schedules the 1/0 utility processor (section
10) for background operation on priority level 0. The
directive has the form
/I0UTIL
Example: Schedule the 1/0 utility processor.

/IOUTIL

4.2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operation on priority level 1.
The directive has the form

/SMAIN
Example: Schedule the system maintenance task.

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logtcal unit file. Since
this is not & VORTEX system task, execution is on priority
level 0. The directive has the general form

/EXEC,D

Where D, if present, dumps all of the background upon
completion of execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen-
tation appear in the dump. During ASCIl dump non-ASCII
characters appear as blanks. ASCII dump is suppressed if
dump is to a TY or CT device.

The dump format consists of eight memory locations per
line as follows:

JOB-CONTROL PROCESSOR

XXXXXX AAAAAA BBBBBB... HHHHHH

where XXXXXX is the starting memory address location of
the eight foliowing data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same value as
the previous line.

/EXEC can be used to create a load module (named SW)
on the SW logical unit and then schedule it, or to execute
an existing load module on the SW logical unit. The action
taken depends on the setting of bit 2 of the low core flag
V$JCPF. If the bit is set, LMGEN is scheduled to read
binary from the GO logical unit and catalog the task on SW.
If the bit is not set, the current load module on SW is
executed. This bit is set by performing a "load-and-go"
assembly or compulation using the ''L" option flag. This bit
is cleared by the loading of any background program.
(Note: JCP directives which do not load tasks, for
example, /ASSIGN, /PFILE, do not clear this bit.). The load
module on SW may be executed at anytime until SW is
modified (i.e., another load-and-go, LMGEN, COMSY, or any
other task that writes to SW).

Example: Schedule the loading of a user load module
from the SW unit file without a background dump.

/EXEC
Schedule a FORTRAN load-and-go operation.

/FORT,L
/EXEC

When a dump has been specified the dump will be output
to the List Qutput unit after the task exits or is aborted.
Once the dump. has started, it may be terminated by use of
the Operator Communication :ABORT. When the dump is
aborted in this manner, it is required that the executing
task be aborted by a previous action.

Example:

/EXEC,D Executes a load module
from SW unit file re-
questing background
dump on exit

$ ABORT, SW Causes the task to abort
and dump the background

3 ABORT , JPDUMP Causes the background
dump to be aborted

;ABORT, SW Causes the task to be

released and JCP to be
reloaded

47

JOB-CONTROL PROCESSOR

4.2.23 /LOAD Directive

This directive schedules a user task, which must be_present
in the background library or alternate library, for back-
ground execution on priority level 0. The directive has the
general form

/LOAD,name,p(1),p(2),....p(3)

where
name is the name of the user task being
scheduled
each p(n) is a parameter required by the user

(if any) task

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame-
ters ALPHA1 and ALPHA2,

/LOAD, TSKONE , ALPHA1, ALPHA2

4.2.24 /ALTLIB (Alternate
Library) Directive

This directive replaces the background library with the
specified alternate library unit as the unit from which a
background task is to be loaded. The directive has the
general form:

/ALTLIB, lun key

where

lun is the number or name of the
alternate library logical unit

key is the protection code required

to address lun

This directive affects the loading of the next task which
would normally be loaded from the background library. It
affects the loading of VORTEX language processors and
utility tasks in addition to user tasks loaded with the /LOAD
directive.

It has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from which background tasks are to be loaded.

48

Example: Schedule the user task TSKONE from logical unit
25, protection key N.

/ALTLIB,25,N
/LOAD, TSKONE

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background library or an alternate library. The dump
format is the same as the format for /EXEC,D (see section
4.2.22).

Example: Schedule the execution of user task TSKONE with
a dump at completion of execution.

/DUMP
/LOAD, TSKONE

4.2.26 /CFILE Directive

This directive, which applies only to RMDs and MTs
assigned to global logical units, causes the designated file
on the logical unit to be closed with update. It has the
general form

/CFILE,lun,key,name

where
lun is the name or number of the affected
logical unit. The logical unit must be
one of the global logical units.
key is the protection code required to
address lun.
name is the name of the file on lun to

be closed with update.

Example: Close the file FILEA on logical unit PO with no
protection code.

/CFILE,PO, FILEA

4.2.27 /DBGEN (Data Base Generator) Directive

This directive schedules the Data Set Generator Program

(see TOTAL Manual for more detailed information) for

background operation on priority leve! 1. It has the form
/DBGEN

Example: Schedule the Data Base Generator for TOTAL.

/DBGEN

4.2.28 /PLOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back-
ground execution on priority level 1. The directive has the
general form

/PLOAD, xxxxxx,p(1),p(2),...p(n)
where

XXXXXX is the name of the user task being
scheduled. The name must not con-
tain numeric characters.

p(n) is a parameter required by the user
task.

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can be extended to the end of the 80-
character buffer, will appear in the buffer exactly as it does
in the input directive. The address of the first word of the
parameter string is in location V$JCB.

4.2.29 /FMUTIL Directive

This directive causes files, directories, and/or partitions to
be dumped or loaded from RMD’s or magnetic tapes, and
schedules the file maintenance utility (section 21) for
background operation on priority level 1. The directive has
the form

/FMUTIL
Examples: Schedule File Maintenance Utility.

/FMUTIL

4.2.30 /RPG (RPG Il Compiler) Directive

This directive schedules the RPG Il compiler (section 5.5)
with the specified options for background operations on
priority level 1. It has the general form

/RPG,p(1),p(2),....p(N)
where

p(n) is a single character specifying one
of the following options:

JOB-CONTROL PROCESSOR

Parameter Presence Absence

B Suppresses binary Output binary object.
object.

(¢ Include RPG debug Suppress debug features.
features in object
module.

L Outputs binary Suppresses output of
object on GO file. binary object on GO file.

M Suppresses symbol Outputs symbol table
table listing. listing.

N Suppresses source Outputs source listing.
listing.

The /RPG directive can contain up to five such parameters
in any order.

Sample deck formats are illustrated in section 4.3.
The RPG Il compiler reads source records from the Pl
logical unit. The PI unit must have been set to the
beginning of device before the /RPG directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.
Example: Schedule the RPG |l compiler with binary object,
source, and symbol-table listings; normal compilation; and
no binary object output on the GO file.

/RPG

Example: Schedule RPG Il for normal compilation but with
binary object output on the GO file instead of the BO file.

/RPG,L,B

4.2.31 /P (Pause) Directive
This directive outputs the specified cdmment to the SO and
LO logical units and then causes JCP to be suspended. In
addition to the specified comment, instructions are output
to SO on how to resume JCP. it has the general form

/P comment

where

comment is any desired free-form
comment.

Example: Request that the current job requires MT # 800
on MTOO before it continues.

/P, Mount MT #800 on MTOO

49

JOB-CONTROL PROCESSOR

in addition, JCP will output:

Pause---WHEN READY, TYPE --;RESUME, JCP

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck-prepara-
tion techniques.

Example 1 - Card Input: Compile a FORTRAN IV main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program.

/3JOB, EXAMPLE 1
/FORT,L,0

(Source Deck)
/DASMR, L

(Source Deck)

/EXEC
/ENDJOB

Example 2 - Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER1 with protec-
tion key U. Assign the Pl logical unit to RMD partition
DOOK, open file name USERL for the assembler, assemble
the program, and execute the program with a dump.

/JOB, EXAMPLE2
/ASSIGN,PI=D0OOK
/PFILE,PI,U,USER1
/DASMR, L
/PFILE,SS, ,SS
/CONC

/EXEC,D

/ENDJOB

Example 3 - Card Input: Assemble a DAS MR program
(with source listing and object-module output on the BO
logical unit). Assign the Pi logical unit to magnetic-tape
unit MTOO, the PO logical unit to dummy device, the SS
logical unit to the Pi logical unit, the BO logical unit to
RMD partition D00J, and output the object module to file
name USER2 with no protection key. Before assembly,

4.10

position the Pl logical unit to the third file. Allocate four
additional 512-word blocks for the DAS MR symbol-table
area.

/JOB, EXAMPLE3
/ASSIGN,PI=MT00,PO=DUM,SS=PI,BO=D00J
/REW,PI

/SFILE,PI,2

/PFILE,BO, ,USER2

/MEM, 4

/DASMR

/ENDJOB

Example 4 - Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bl fogical unit to CR0O.

/JOB,EXAMPLEY
/ASSIGN,BI=CRO0
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

(Object Modules)
(2-7-8-9 EOF Card)

/ENDJOB

Example 5 - Card Input: Load and go operation. Compile a
FORTRAN {V main program, a subprogram and assemble a
DASMR subprogram. Save output on BO. Execute the
linked programs.

/JOB,EXAMPLES
/PFILE,BO,,BO
/FORT,L

(Source deck FORTRAN main program)

(Source deck FORTRAN subprogram)

/DASMR, L

(Ssource deck DASMR subprogram)

/EXEC
/FINE

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two-pass assembler scheduled by job-control
directive /DASMR (section 4.2.14). DAS MR uses the
secondary storage device unit for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on
the PO unit. The source input for pass 2 is entered from
the SS logical unit.

When an END statement is encountered, the SS unit is
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units for the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit impoesed by a single line
of code. However, only the first six characters are
recognized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exclamation mark or dollar sign, in initial and other
positions.

Since the DAS MR assembler is used within the VORTEX
system under VORTEX 1/0 control, the VORTEX user can
specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition. Except when Pl is equal to SS as shown in section
4.3 (example 3).

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60-
word modules per record. However, in the case where SI =
Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may

be ensured by following the END statement of the previous
source module with two blank records.

Detailed references to the DAS MR assembly language are
given in the appropriate Varian reference manuais (see
section 1.3). These references include descriptions of the
directives recognized by the assembler (table 5-1), except
for the title directive which is discussed below. DAS MR will
assemble the entire V75 extended instruction set if the E
parameter is specified in the /DASMR directive.

Table 5-1. Directives Recognized by the DAS MR

Assembler
BES IFF
BSS IFT
CALL LIST
COMN LoC
CONT MAC
DATA MZE
DETL NAME
DuUp NLIS
EJEC NULL
END OPSY
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SMRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1.

5.1.1 TITLE Directive

This directive changes the title of the assembly listing and
the identification of the object program. It has the general
form

TITLE symbol

where symbol is the new title of the assembly listing; the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1, the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
is encountered, title and identification assume the symbol
given in the directive.

Examples: Entitle the assembly listing and object pro-
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and identification, obliterating the old
title.

TITLE

51

LANGUAGE PROCESSORS

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and 1/0 control (10C,
section 3.5) macros. Figure 5-1 illustrates these definitions.

FoAE 2 O I B

EW

R REEERS

MAC
EXT vsIoC

JSR 0404 ,1

DATA 0100000

FORM 1,3,4,8

4 P(1),P(2),P(3),P(4)
DATA P(5),0,0

EMAC

VORTEX READ MACRO DEFINITION

READ DCB,LUN,W,M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE
MAC
M1 P(3),P(4),0,P(2),P(1)
EMAC

VORTEX WRITE MACRO DEFINITION

WRITE DCB,LUN,W,M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),p(84),1,P(2),P(1)
EMAC

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 p(3),0,2,P(2),P(1)
EMAC

VORTEX REWIND MACRO DEFINITION
REW DCB,LUN,W

WHERE DCB = FCB OR DCB ADDRESS

LUN = LOGICAL UNIT NO.
W = WAIT OPTION

MAC
M1 P(3),0,3,P(2),P(1)
EMAC

VORTEX SKIP RECORD MACRO DEFINITION
SREC DCB,LUN,W M
WHERE DCB FCB OR DCB ADDRESS
LUN LOGICAL UNIT NO.
W = WAIT OPTION
M = I/O MODE

Figure 5-1. VORTEX Macro Definitions for DAS MR

S*li****ilv**i
>
=]

L3R 3B 3 N IR]

DCB

LANGUAGE PROCESSORS

MAC
M1 P(3),P(4),4,P(2),P(1)
EMAC

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 p(3),0,5,P(2),P(1)
EMAC

VORTEX OPEN MACRO DEFINITION
OPEN FCB,LUN,W,M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),P(4),6,P(2),P(1)
EMAC

VORTEX CLOSE MACRO DEFINITION
CLOSE FCB,LUN,W,M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),P(4),7,pP(2),P(1)
EMAC

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR, EOF , EOD, BUSY
WHERE FCB = FCB OR DCB ADDRESS
ERR = ERROR RETURN ADDRESS
EOF = END OF FILE, BEGINNING
OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS
EOD = END OF DEVICE OR END OF TAPE
RETURN ADDRESS
BUSY = BUSY RETURN ADDRESS

MAC

EXT V$IOST

JSR 0373,1

DATA P(1),p(2),P(3),P(4),P(5)
EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DncB RL,BUF,CNT
WHERE RL = RECORD LENGTH
BUF = DATA ADDRESS
CNT = COUNT

DATA P(1),p(2),P(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-3

LANGUAGE PROCESSORS

* VORTEX FILE CONTROL BLOCK MACRO DEFINITION
* FCB RL, BUF,AC,KEY, 'N1','N2', 'N3'
L WHERE RL = RECORD LENGTH
* BUF = DATA ADDRESS
* AC = ACCESS METHOD
* KEY = PROTECTION KEY
* N1 = FIRST 2 ASCII FILE NAME
* N2 = SECOND 2 ASCII FILE NAME
* N3 = THIRD 2 ASCII FILE NAME
FCB MAC
DATA P(1),p(2)
F FORM 6,2,8
F 0,P(3),P(4)
DATA 0,0,0,0,P(5),P(6),P(7)
EMAC
»
M2 MAC
EXT VS$EXEC
JSR 0406, 1
EMAC
L
* VORTEX SCHEDULE MACRO DEFINITION
* SCHED PL,W,LUN,KEY, 'N1','N2"', 'N3'
* WHERE PL = PRIORITY LEVEL
* W = WAIT OPTION
- LUN = LOGICAL UNIT NO.
* KEY = PROTECTION KEY
* N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
SCHED MAC
M2
F FORM 3,1,6,1,5
F o,p(2),1,0,pP(1)
F FORM 8,8
F P(4),P(3)
DATA P(5),P(6),P(7)
EMAC
*
* VORTEX EXIT MACRO DEFINITION
* EXIT
*
EXIT MAC
M2
DATA 0200
EMAC
-
* VORTEX SUSPEND MACRO DEFINITION
" SUSPND T
* WHERE T = TYPE OF SUSPENSION
SUSPND MAC
M2
F FORM 4,6,5,1
F 0,3,0,P(1)
EMAC
»
* VORTEX RESUME MACRO DEFINITION
* RESUME 'N1','N2','N3'
* WHERE N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME

Figure 5-1, VORTEX Macro Definitions for DAS MR (continued)

RESUME

* % * * K *

ABORT

* R % X ¥

ALOC

* ¥ ® *

DEALOC

R R R KRR R

DELAY

LANGUAGE PROCESSORS

MAC

M2

DATA 0400,pP(1),P(2),P(3)
EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1','N2','N3"'
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA 0500,P(1),pP(2),P(3)

EMAC

VORTEX ALLOCATE MACRO DEFINITION

ALOC ADDR
R WHERE ADDR = ADDRESS OF REENTRANT
SUBROUTINE
MAC
M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

MAC

M2

DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM, MSK, TYP
WHERE NUM = PIM NUMBER
MSK = PIM LINE MASK
TYP = ENABLE OR DISABLE TYPE

VORTEX DELAY MACRO DEFINITION
DELAY T5,TM,DT
WHERE T5 = DELAY TIME IN 5 MILLI-
SECOND INCREMENTS
TM = DELAY TIME IN 1 MINUTE
INCREMENTS
DT = DELAY TYPE

MAC
M2

FORM 4,6,4,2

F 0,011,0,P(3)
DATA p(1),P(2)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-5

LANGUAGE PROCESSORS

*
* VORTEX LDELAY MACRO DEFINITION
* LDELAY T5, TM, LUN,KEY
* WHERE TS5 = DELAY TIME IN 5-MILLISECOND
* INCREMENTS
* TM = DELAY TIME IN 1-MINUTE
* INCREMENTS
* LUN = LOGICAL UNIT NUMBER FOR TASK LOAD
* KEY = PROTECTION KEY
LDELAY MAC
M2
DATA 01107,P(1),P(2)
FORM 8,8
F P(4),P(3)
EMAC
*
* VORTEX TIME REQUEST MACRO DEFINITION
* TIME
*
TIME MAC
M2 -
DATA 01200
EMAC
*
* VORTEX OVERLAY MACRO DEFINITION
* OVLAY TF, 'N1','N2','N3"'
* WHERE TF = TYPE FLAG
* N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
*
OVLAY MAC
M2
F FORM 4,6,5,1
F 0,013,0,P(1)
DATA P(2),P(3),P(4)
EMAC
*
* VORTEX IOLINK MACRO DEFINITION
* IOLINK LUN. BUF,NUM
* WHERE LUN = LOGICAL UNIT NO.
* BUF = USER'S BUFFER LOCATION
* NUM = BUFFER SIZE
IOLINK MAC
M2
F FORM 4,6,6
F 0,014,P(1)
DATA P(2),P(3)
EMAC
*
*
* VORTEX PASS MACRO DEFINITION
* PASS COUNT, FROM, TO
* WHERE COUNT = WORD COUNT
* FROM = FROM ADDRESS
* TO = TO ADDRESS
*

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

PASS

%* * % ¥ ¥

TBEVNT

LANGUAGE PROCESSORS

MAC

M2

FROM 4,6,6

F 0,016,0

DATA P(1),P(2),P(3)
EMAC

VORTEX TBEVNT MACRO DEFINITION

TBEVNT VALUE,

WHERE

DISP, ,C/s

VALUE = IS A BIT MASK

DIsP

c/s

OPTIONS:

IMPLEMENTATION:

MAC
M2

= IS THE TIDB WORD TO BE ALTERED.

IT IS EXPRESSED BY WAY OF A NUMBER,
THE DISPLACEMENT (OR POSITION) OF THIS
WORD IN THE TIDB.

IS THE CLEAR/SET INDICATION (0 = CLEAR,
1 = SET)

BOTH DISP AND C/S ARE OPTIONAL AND
THE DEFAULT FOR BOTH IS 0.

WHEN DISP = 0 THE ACTION DEPENDS ON
THE VALUE OF VALUE:

VALUE, IF 0-177776, IS SET INTO
THE REQUESTING TASK'S TIDB TBEVNT
WORD. IF VALUE IS 0177777, RETURN
IS WITH THE REQUESTOR'S TBEVNT IN
THE A REGISTER

WHEN DISP = 0, DISP WILL BE ALTERED
ACCORDING TO VALUE AND C/S.

C/Ss = 0, ALL THE BITS IN DISP CORRESPONDING
TO THE ZERO (0) BITS IN VALUE
WILL BE RESET TO 0.

¢/s = 1,. ALL THE BITS IN DISP CORRESPONDING
TO THE ONE (1) BITS IN VALUE
WILL BE SET TO 1.

DATA 01700
DATA P(1),pP(2),P(3)

EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

LANGUAGE PROCESSORS

5-8

LR IR BE BN IR BE N J

ALOCPG

LA B R BE K 3R BE R BE 3N J

DEALPG

L IR BE IR BN BE BE R NE K N BE B

2
g

VORTEX ALLOCATE PAGE MACRO DEFINITION
ALOCPG N,LOGICA ADDR,REJECT ADDR
WHERE N = NUMBER OF PAGES TO ALLOCATE
LOGICAL ADDR = LOGICAL ADDRESS
MODULO 01000, WHERE
PAGES ARE ALLOCATED
REJECT ADDR = ERROR RETURN ADDRESS

MAC

M2

DATA 02000
DATA P(1)
DATA P(2)
DATA P(3)
EMAC

VORTEX DEALLOCATE PAGE MACRO DEFINITION
DEALPG N,LOGICAL ADDR,REJECT ADDR
WHERE N = NUMBER OF PAGES TO DEALLOCATE
LOGICAL ADDR = LOGICAL ADDRESS,
MODULO 01000, WHERE
PAGES ARE TO BE
DEALLOCATED
REJECT ADDR = ERROR RETURN ADDRESS

MAC

M2

DATA 02100
DATA P(1)
DATA p(2)
DATA P(3)
EMAC

VORTEX MAPIN MACRO DEFINITION
MAPIN N,LOBICAL ADDR,BUFFER ADDR,REJECT ADDR
WHERE N = NUMBER OF PAGES TO BE MAPPD
LOGICAL ADDR = LOGICAL ADDRESS, MODULO
01000, WHERE PAGES ARE TO
BE ALLOCATED
BUFFER ADDR = PHYSICAL PAGE NUMBER
OR BUFFER ADDRESS CON-
TAINING PHYSICAL PAGES
TO BE MAPPED
REJECT ADDR = ERROR RETURN ADDRESS

MAC

M2

DATA 02200
DATA r(1)
DATA p(2)
DATA P(3)
DATA P(4)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

LR K AR BN BE BE R N J

PAGNUM

VORTEX PAGE NUMBER MACRO DEFINITION
PAGNUM LOGICAL ADDR
WHERE LOGICAL ADDR

MAC

M2

DATA 02300
DATA P(1)
EMAC

LANGUAGE PROCESSORS

= ADDRESS WITHIN THE
REQUESTING TASK'S VIRTUAL
MEMORY WHERE IDENTIFICATION
OF THE ASSIGNED PHYSICAL
PAGE IS REQUIRED

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-9

LANGUAGE PROCESSORS

5.1.3 Assembly Listing Format

Figure 5-2 is a sample listing following the format described

in this section.

Page format: The assembly listing is limited to the
number of lines per page specified by the VORTEX resident

PAGE 23 01/22/72

000660 074056
000661 064056
000662 010412
000663 005311
000664 054003

000665 006505
000666 000604
000667 001405
000670 000665
000671 000051
000672 030400
000673 015003
000674 150463
000675 054274
000676 015002
000677 150463
000700 144271
000701 001010
000702 000714
000703 017000
000704 054004

000705 006505
000706 000630
000707 100000
000710 010403
000711 000633
000712 000000
000713 000000
000714 030400
000715 015005
000716 150463
000717 144252
000720 001010
000721 000733
000722 017000
000723 054004

P>

PHOIPPIPPIPIPPPIIPEY

PPOPPIIPIPIPIPEPIEDP

588
589
590
591
592
593
594
595
596
597

598
599
600
601
602
603
604
605

606
607
608

609
610
611
612
613

614
615
616

PROG 1

JCPRT

JCPR1

VORTEX

EJEC

constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
line followed by one blank line, and then the program
listing containing two lines less than the number specified
by V$PLCT. (This specification can be changed through the
job-control processor (JCP).)

DASMR vsJce

SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE

STX
STB
LDA
DAR
STA
IOLINK

LDX
LDA
ANA
STA
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

LDX
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

JSPRX

JCPRB

V$JCB GET BUFFER ADDRESS
il SETUP LOFCB

LO,*, 41

VSLUT1 ADRS OF LOG UNIT TBL
50,X

BM377 SO CUR ASSIGNMT

JCTA

SI,X

BM377 SO CUR ASSIGNMT

JCTA S0, SI SAME LUN
JCPR1

JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
*+5

LOFCB,S0,0,1 NO - WRITE TO SO

VSLUT1

LO,X

BM377 LO CUR ASSIGNMT

JCTA LO, SO SAME LUN

JCPRE YES

JCFCBS+3 STORE 'LOPCB' ADRS IN CALL
*4+5

LOFCB,LO,0,1 NO - WRITE TO LO

Figure 5-2, Sample Assembly Listing

At the end of the assembly, the following information is
printed after the END statement:

a. Aline containing the subheading ENTRY NAMES

b. All entry names (in four columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

c. Aline containing the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a flag to denote that the symbol is external
(E)

e. Aline containing the subheading SYMBOL TABLE

f. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E)

g A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position,
the format for a title line is:
a. Oneblank

4

The word PAGE
c. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

f. Eight character positions that contain the current date
obtained from the VORTEX resident constant V$DATE

g Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Twoblanks

j- Theword VORTEX

k. Two blanks

. Theword DASMR

m. Two blanks

n. Eight character positions that contain the program title
from the TITLE directive

o. Blanks through the 120th character position

LANGUAGE PROCESSORS

Beginning with the first character position, the format for
an assembly line is:

a. Oneblank

b. Six character positions to display the location counter
(octal) of the generated data word

c. Oneblank

d. Six character positions to display the generated data
word (octal)

e. Oneblank

f. One character position to denote the type of generated
dataword: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembler (1)

g Oneblank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

i. Oneblank

j- Eighty character positions that contain the image of the
symbolic source it. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are replaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

Error Chaining: If syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not contain a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-control directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system

5-11

LANGUAGE PROCESSORS

global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 Input

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax rules.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output
CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the following events
occurs:

a. CONC processes the source statement END

b. Another job-control directive is input

c. AnSSend of file or end of device is found

d. Areading error is found

e. The symboi-table area is filled
If the output occurred because the symbol-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNO1, and continues until one of
the other terminating conditions is encountered. In all

other cases, CONC terminates by calling EXIT.

The concordance listing is'made in the order of the ASCI|
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

5-12

a. Oneblank
b. The word PAGE
c. Oneblank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the date
obtained from the VORTEX resident constant VSDATE

g. Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Twoblanks

j. Theword VORTEX

k. Two blanks

I. Theword CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Two blanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. Oneblank

d. One character position containing an asterisk (*) if
there are no references to that symbol (otherwise

blank)

e. Six character positions containing the symbol being
listed

f. Twoblanks

g. Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. Items (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symbol do not
repeat items (a) through (e)

i. Blanks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

PAGE 1 09/22/71

509 B 841 859 879
1074 1112 1230

261 B10 *
262 B11 *
263 B12 *

1206 ODATE 1180 1182 1190
1937 ONUM 895 928 936

1406 1418

LANGUAGE PROCESSORS

V$OPCM VORTEX CONC

990 1001 1002 1012 1068 1072
1231

1017 1182 1190 1196 1254 1284

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN IV COMPILER

The FORTRAN IV plier is a S piler sched-
uled by job-control directive /FORT (sectuon 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

it a fatal error is d, the iler at ticall
terminates output to the BO and GO unns LO unit output
continues. The compiler reads from the Pl unit until an
END statement is encountered or a control directive is
read. Compilation also terminates on di ion of an 170
error or an end-of-device, beginning-of-device, or end-of-file
indication from 1/0 control,

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func-
tion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compiler are
given in Appendix A.5.2.

FORTRAN |V has conditional compilation facilities imple-
mented by an X in column 1 of a source statement. When
the X appears in the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN IV has a symbol-table area for approximately 70
symbols (i.e., names), if none of the logical units used is
assigned to an RMD device. Each RMD assignment
requires buffer space of 120 words (except when BO = GO
= RMD, in which case BO and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
buffer. To increase the symbol-table area, input before the
/FORT directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. If a larger symbol-table is used, greater
ub ession optimization is possibl.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where Sl = P| =

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 52 lists the VORTEX real-time executive (RTE)

service ‘request macros available through FORTRAN (V.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT EXIT SCHED
ALOC OVLAY SUSPND
DELAY PMSK TIME
LDELAY RESUME PASS

5.3.1 FORTRAN IV Enhancements

The VORTEX FORTRAN [V language additions and en-
hancements make the VORTEX FORTRAN compiler more
consistent with IBM FORTRAN (level G). Except for these
additions and enhancements, FORTRAN compilation and
execution with the VORTEX operating system is the same
as with the Master Operating System (MOS) described in
the FORTRAN IV Reference Manual (98 A 9902 03x).

FORTRAN-complied programs can execute in either fore-
ground or background.

Detailed information on the VORTEX FORTRAN IV lan-
guage additions and enhancements are given in the
VORTEX FORTRAN [V Reference Manual (98 A 9902 04x).

5.3.1.1 Variables

VORTEX FORTRAN |V variables are identifiers which
consist of a string of one to six alphanumeric characters
and correspond to the type of data the variable represents.
Variables are classified into the following five fundamental
types: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and LOGICAL.

The following list shows each variable type with its
associated standard and optional length (in bytes):

5-13

LANGUAGE PROCESSORS

Variable Type Standard Optional

INTEGER

REAL

COMPLEX

LOGICAL

DOUBLE PRECISION

4
8

0N AN

5.3.1.2 Constants

There are four categories of VORTEX FORTRAN (V con-
stants: NUMERICAL, LOGICAL LITERAL, and HEXADECI-
MAL. These four constant data constructions are discussed
below.

NUMERICAL constants are integer, real, or complex
numbers. Integer constants may be positive, zero, or
negative. If the constant has so sign, it is interpreted as
representing a positive value. If a zero is specified, with or
without a preceding sign, the sign will have no effect on the
value zero. The constant has the general form

sn
where
s is the optional signed character
(+ or).
n is a decimal character string

(maximum magnitude is 1073741823).

LOGICAL constants allow for the use of logical operations
through the medium of the logical expression. Thus, two
logical constants are provided to represent the “true" and
false” logical values. The constant has the general form

.TRUE. or .FALSE.
LITERAL constants are a string of alphanumeric and/or
special characters. If apsostrophes delimit the literal, a
single apostrophe within the literal is represented by two
apostrophes. The number of characters in a string,
including blanks, may not be less than 1 or greater than
255. Blanks within the character string will be considered
part of the string. The constant has the general form

wHs or 's’

where

w is a positive non-zero constant denoting
the width of the character string.

s denotes the character string.
HEXADECIMAL .constant consists of the letter Z followed by
1 to 16 hexadecimal digits. The constant has the general

form

In

5-14

where
n is a 1 to 16 hexadecimal digit string.

The maximum number of digits allowed in a hexadecimal
constant depends on the length specification of the
variable being initialized. If the number of digits is greater
than the maximum, the left-most digits are truncated. If
the number is less than the maximum, the left-most
positions are filled with zeros.

5.3.1.3 IMPLICIT Statement

The IMPLICIT statement must be the first statement in a
main program or the second statement in a subprogram.
The statement enables the user to specify the type,
including length of all variables, arrays, and function
names. The statement has the general form

IMPLICIT type *s(al,..,)

where

type is a type name.

*s is optional; and, represents one of the
permissible length specifications (see
variable).

a is an initial character string

(A, B,...,Z,$)) in that order.

5.3.1.4 Explicit Type Statements

The Explicit Type Specification statement declares the type
of variable, function name, statement function name, or
array by its name rather than by its initial character.
Optionally, it may also initialize the variable. The statement
overrides the IMPLICIT statement, which in turn overrides
the predefined convention. The statement has the general
form

type*s al*sl(ki)/x1/,...
where
type is a type name.

*s is optional; and, represents one of
the permissible length specifications.

a is a variable, array, or function
name.
(k) is optional; and, gives dimension

information for arrays. When the
TYPE statement in which it appears
is in a subprogram, k may contain

integer variables of length 2
(section 5.3.1.1), provided that
the array is a dummy argument.

/x/ is optional; and, represents
initial data values (see DATA
statement).

5.3.1.5 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement overrides any specifi-
cation of a variable made by either the -predefined
convention or the IMPLICIT statement. The statement has
the general form

DOUBLE PRECISION a(k)....,
where

a represents a variable, array, or
function name.

(k) is optional; and, is composed of
one to seven unsigned integer con-
stants that represent the maximum
value of each subscript in the
array. k may contain integer
variables of length 2, provided

that the array is a dummy argument.

5.3.1.6 PAUSE Statement

The execution of the PAUSE statement causes the uncondi-
tional suspension (SUSPND) of the object program being
executed pending operator action. To resume the sus-
pended task, input the operator-communication key-in
request RESUME. The statement has the general form

PAUSE
or
PAUSE n or PAUSE m

where
n is a string of one to five
decimal digits.
m is a literal constant enclosed

in apostrophes.

5.3.1.7 STOP Statement

The execution of the STOP statement causes the uncondi-
tional termination of the execution of the object program
beging executed. The statement has the general form

STOP
or
STOP n or STOP m

LANGUAGE PROCESSORS

where
n is a string of one to five decimal
digits.
m is a literal constant enclosed in
apostrophes.

5.3.1.8 CALL Statement

The execution of the CALL statement causes the specified
subroutine to be executed. The CALL statement arguments
must agree in number and order of appearance with the
dummy arguments in the SUBROUTINE statement. The
statement has the general form

CALL name (al,a2),...,

where
name is the name of a SUBROUTINE
subprogram.
a is an actual argument that is

being supplied to the SUBROUTINE
subprogram. The argument may be
a variable array element, array
name, literal, or arithmetic or
logical expression. Each a may
also be of the form n, where n
is a statement number.

5.3.1.9 RETURN Statement

The RETURN statement provides the method by which the
calling program is reentered following the execution of a
subprogram. The normal sequence of execution following
the RETURN statement of a SUBROUTINE subprogram is
to the next statement following the CALL statement in the
calling program. The statement has the general form

RETURN or RETURN
where

i is an integer constant or variable
whose value, for example n, denotes
the n-th asterisk in the argument
list of a SUBROUTINE statement.
RETURN i may be specified only in
a SUBROUTINE subprogram.

5.3.1.10 READ/WRITE Statements

VORTEX FORTRAN |V allows two optional parameters to
the READ/WRITE statements. These optional parameters
allow for conditional exits on an end-of-data or transmis-
sion error.

5-15

LANGUAGE PROCESSORS

Example: READ(4,10,ERR = 105,END =200)A,B

In the above example, control will be transferred to
statement 105 if an 1/0 error occurs, or to statement 200 if
an end-of-data occurs on unit 4.

5.3.1.11 ENCODE/DECODE Statement

ENCODE/DECODE statements perform data conversion
according to a FORMAT statement without performing
external 170 operations. ENCODE statement takes an 1/0
list, converts each element and places it in a specified
buffer. DECODE statement words from the buffer into the
170 list. For example:

DIMENSION I(40)
READ(CDR, 10) I
10 FORMAT(40A2)
DECODE(10,20,I)K,L
20 FORMAT(2I5)

These statements read an ASCH card image into array |.
The first two fields of five ASCIl characters are then
decoded into their integer equivalent and placed into the
variables K and L.

5.3.1.12 Direct-Access INPUT/OUTPUT
Statements

The direct-access INPUT/QUTPUT statements allows a
programmer to go directly to any point in a file which
resides on an RMD, and process a record without having to
process all the records within the file. To use direct-access
INPUT/OUTPUT statements (READ, WRITE, and FIND),
the file(s) to be operated on must be described with a
DEFINE FILE statement. The statement has the general
form

DEFINE FILE al(ml,rl,fl,vl),..
where
a specifies the unit number.

m represents the relative position
of a record within the file.

r specifies the maximum size of
each record in the file.

f specifies whether the file is
to be read or written with or
without format control.

v specifies an integer variable
(not an array element) called
an associated variable, which

points to the record immediately
following the last record
transmitted.

5.3.1.13 Direct-Access READ Statement

The READ statement causes data to be transferred from a
direct-access device into internal storage. The statement
has the general form

READ(a'r,b,ERR = Ec)list
where

a specifies the unit number
and must be followed by an
apostrophe.

r represents the relative
position of a record within
the file.

b is optional;, and, if given,
is either the statement
number of the FORMAT state-
ment, or the name of an array
that contains an object-time
format.

ERR=EC is optional; and, specifies
the number of a statement to
which control is given when
an error condition is
encountered

list is optional; and, is an /0
list. The 1/0 list must not
contain the associated
variable.

5.3.1.14 Direct-Access WRITE Statement

The WRITE statement causes data to be transferred from
internal storage to a direct-access device. The statement
has the general form

WRITE (a'r,b)list

where
a specifies the unit number and
must be followed by an apostrophe.
r represents the relative position

of a record within the file.

b is optional, and, if given, is
either the statement number of
the FORMAT statement, or the

name of an array that contains
an object-time format.

list is optional; and, is an 1/0
list. The list must not
contain the associated vari-
able.

5.3.1.15 FIND Statement

The FIND statement causes the next input record to be
found while the present record is being processed. The
statement has the general form

FIND (a'r)
where

a specifies the unit number and must
be followed by an apostrophe.

r represents the relative position of
a record within the file.

At the conclustion of a FIND operation, the associated
variable points to the record found.

5.3.1.16 DATA Statement

The DATA statement is used to define initial values of
variables, array elements, and arrays. This statement
cannot precede any specification statement that refers to
the same variables, array elements, or arrays. The DATA
statement may not precede an IMPLICIT statement. It has
the general form

DATA k/d/,...
where

k is a list containing variables,
array elements, or array names.

d is a list of constants (integer,
real, complex, hexadecimal, logical,
or literal), any of which may be
preceded by i*, where i*
indicates that the constant is to
be specified i times.

5.3.1.17 TITLE Statement

The TITLE statement declares a module name which is
output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

LANGUAGE PROCESSORS

where

name is the title to be output.
The title contains up to
eight characters, and is
output in the object text
as the name by which the
program is to be referenced
by SMAIN.

If a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.1.18 Subprogram Muitiple Entry

VORTEX FORTRAN IV facilitiates multiple entry into
SUBROUTINE and FUNCTION subprograms by specifying a
CALL statement or a FUNCTION reference that refers to an
ENTRY statement in the subprogram. Entry is made at the
first executable statement following the ENTRY statement.
The statement has the general form

ENTRY name(al,a2,a3),...
where
name is the name of an entry point.
a is a dummy argument corresponding

to an actual argument in a CALL
statement or FUNCTION reference.

5.3.1.19 SUBROUTINE Subprogram

The SUBROUTINE subprogram may contain any FORTRAN
IV statement except a FUNCTION statement, another
SUBROUTINE statement, or an BLOCK DATA statement. If
an IMPLICIT statement is specified, it must immediately
follow the SUBROUTINE statement. SUBROUTINE has the
general form

SUBROUTINE name(al,a2,a3),...
where
name is the SUBRQUTINE name.
a is a distinct dummy argument.

Each argument used must be a
variable or array name, the dummy

name of another SUBROUTINE, FUNCTION

subprogram, or an asterisk '"*'

which denotes a return point specified
by a statement number in the calling
program.

The actual arguments can be:

LANGUAGE PROCESSORS

« Aliteral, arithmetic, or logical constant

« Any type of variable or array element

» Any type of array name

» Any type of arithmetic or logical expression

» The name of a FUNCTION or SUBROUTINE
subprogram

* Astatement number

5.3.1.20 FUNCTION Subprogram

The FUNCTION subprogram is an independent subprogram
consisting of a FUNCTION statement and at least one
RETURN statement. It has the general form

type FUNCTION name*s(al,a2,a3),...,
where

type is INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or
LOGICAL. Its inclusion
is optional.

name is the name of the
FUNCTION.

*s represents one of the
permissible length
specifications.

a is a dummy argument or
dummay SUBROUTINE name or
other FUNCTION subprogram.

5.3.1.21 Subscripts

A subscript is a set of integer subscript quantities that are
associated with an array name to identify a particular
element of the array. A maximum of seven subscript
quantities, separated by commas, can appear in a
subscript. The following rules apply to the construction of
subscript quantities:

« Subscript quantities may contain arithmetic
expressions that use any of the arithmetic operators:
+on K ke

e Subscript quantities may contain FUNCTION
references

« Subscript quantities may contain array elements

+ Integer and real mixed-mode expressions within
subscript quantities are evaluated according to normal

518

FORTRAN rules. If the evaluated expression is real, it
is converted to integer

« The evaluated result of a subscript quantity should
always be greater than zero

5.3.1.22 Z Format Code

The hexadecimal Z format code causes a string of
hexadecimal digits to be interpreted as a hexadecimal
value and to be associated with the corresponding 1/0 list
element for purposes of data transmitting. It has the
general form

Iw
where

w denotes a string of hexadecimal
digits. The maximum value that
can be read is FFFFFFFFFFFFFFFF

On input, if an input field contains an odd number of
digits, the number will be padded on the left with a
hexadecimal zero when it is stored.

On output, it the number of characters in the storage
location is less than w, the left-most print positions are
filled with blanks. If the number of characters in the
storage location is greater than w, the left-most digits are
truncated and the rest of the number is printed.

5.3.2 Execution-Time 1/0 Units

All FORTRAN 1/0 statements (FORTRAN IV manual)
include a FORTRAN unit number (FUN) or name, which
may or may not be identica! with the logical unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to
rewind the PO logical unit (unit 10, magnetic-tape unit 0),
the job stack can be:

/ASSIGN, PO=MT00
/FORT

.
REWIND 10

LANGUAGE PROCESSORS

/FORT,L,B
Case 2, RMD file executing in background only: The JCP .
/PFILE directive (section 4.2.11) positions the Pl unit to a .
background reassignable logical unit, and loads a global READ (4,...
FCB. As in case 1, the FORTRAN unit number is identical .
with that of the file unit. Thus, to read the file FILE1 on .
logical unit 50 (protection code X) where Pl is logical unit 4, END
the job stack can be:
(START)
CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN
ASSOCIATED NO FUN NO
> IS AN RMD
FC8 FOUND PARTITION
YES
CASE
BACKGROUND
PROGRAM
ACTIVE
GLOBAL FCB FOR
FUN
CONSTRUCT AND CONSTRUCT DCB AND
gﬁza’;‘g‘-’% fov LOG /O ERROR EXECUTE 10C CALL EXECUTE 10C CALL
(FUN = LUN) (FUN = LUN)

ABORT
FINISH FINISH FINISH

NOTE: THE FORTRAN LOGICAL UNIT FUN IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED.
VSOPEN OVERRIDES A /PFILE ASSIGNMENT.

VTII-1445

Figure 5-4. FORTRAN 1/0 Execution Sequences

LANGUAGE PROCESSORS

/ASSIGN,PI=50
/PFILE,Y4,X,FILE1
/EXECC

Case 3, normal RMD file executing in foreground or
background: the CALL V$OPEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL V$OPEN statement overrides any /PFILE assignment
(case 2). The format of the statement is:

CALL VS$OPEN(fun,lun,name,mode)

where

fun is the name or number of the
FORTRAN unit which may be num-
eric value, defined by a DATA
statement, or an assignment
statement

lun is the name or number of the
logical unit which may be
numeric value, defined by a
DATA statement, or an assignment
statement

name is the name of the 13-word array
containing the file name and the
protection code

mode is the mode of the |/0-control
open macro (section 3.5.1)

V$OPEN constructs an FCB in the first ten words of the
specified 13-word array, performs an 10C OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FCB-chain link, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

DIMENSION IFCB(13)
DATA IFCB(3)/2H Q/
DATA IFCB(8),IFCB(9),IFCB(10}/2HFI,2HL ,2H /

CALL V$OPEN(2,20,IFCB,0)

File FIL can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

5-20

READ (2,...

executes an 10C READ call, reading from FIL using IFCB as
the FCB.

Note: V$OPEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
170 package has reserved only a 120 word buffer.

Any record in a file opened by V$OPEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL is
read by inputting

IFCB(4)=61
READ(2,...

To dissolve an existing association between an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

CALL V$CLOS(fun,mode)

where
fun is the name or number of the FORTRAN
logical unit
mode is the mode of the 1/0-control CLOSE

macro (section 3.5.2)

Thus, when the processing of file FIL in the previous
example is complete, to close/update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
= 2 no longer reference FIL, the job stack can be:

CALL vs$cLos(2,1)

Note: the auxiliary FORTRAN 1/0 statements REWIND,
BACKSPACE, and ENDFILE cannot be used with RMD files.
Use instead (where IFCB is the ECB array):

IFCB(4) = 1 For rewind
IFCB(4) = IFCB(4) -1 For backspace
CALL V$CLOS(fun, 1) For endfile

Case 4, blocked RMD file executing in foreground or
background: the CALL V$SOPNB statement associates any
specified RMD file with a FORTRAN unit number. This
statement overrides any /PFILE statement. The format is:

CALL VSOPNB (fun, lun, name, mode, recsz, buff, rbwfl)

where

fun is the name or number of the
FORTRAN unit which may be
numeric value, defined in a
DATA statement, or an assign-
ment statement

lun is the name or number of the
file logical unit which may be
numeric value, defined in a DATA
statement, or an assignment

statement

name is the name of a 14-word FCB
array

mode is the mode of the 170 control
OPEN macro

recsz is the logical record size in
words

buft is the address of a blocking

buffer array

rbwfl is the read-before-write flag

The first parameters are identical in function to those of
the CALL V$OPEN statement. The other three specify
blocking information.

An RMD file opened by a CALL V$OPNB statement is
processed as though it were a consecutive series of logical
records, each one recsz words in length. These logical
records continue across physical record boundaries with no
space wasted (except possibly at the end of file). Input and
output is buffered through the user-supplied buffer array
buff as specified above.

Since actual physical 1/0 is performed on buff, the file must
be large enough to do /0 on the end of the last logical
record. It is sufficient to allocate RMD space for one more
logical record than will ever be used.

It is the user’s responsibility to declare the size of the
buffer array buff sufficiently large, remembering that it is a
function of the logical record size recsz, that it must be a
muiltiple of the basic record size of 120, and that it must be
large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical
record may overlap the physical record boundaries. The
following tables specify all conditions, where:

LANGUAGE PROCESSORS

Q(x/y) means the quotient of x/y
R(x/y) means the remainder of x/y

recsz < 120
R(120/recsz) Size of Array Buff
=0 120 words
* 0 240 words
recsz = 120
R(recsz/120) Size of Array Buff
=0 recsz
=1 120 * (1 + Q(recsz/120))
>1 120 * (2 + Q{recsz/120))

If recsz is not a multiple or factor of 120 words, the
blocking buffer buff must allow room for an extra 120-word
physical record at the start or end of a logical record.

On a WRITE operation where recsz is not a multiple of 120
words, data on the RMD can be overwritten unless a read-
before-write is performed. In some situations, such as
initial file creation in a strictly sequential fashion, this is
unnecessary and slow.

The parameter rbwfl allows the user to select this feature.
If rbwft is zero, read-before-write is disabled. Any non-zero
value enables read-before-write.

Example: An RMD file opened by CALL V$OPNB can be
accessed randomly, as with CALL V$OPEN, by a replace-
ment statement using the logical record number.

/FORT

DIMENSION IFCB(14),IBUFF(120)

DATA IFCB(3),IFCB(8),IFCB(9),IFCB(10)
/0,2HBL, 2HFI, 2HLE/

CALL V$OPNB(2, 10, IFCB, 0, 10, IBUFF, 1)

IFCB(4) = 5

READ (2) I

READ (2) J

This sequence causes the unkeyed file name BLFILE on
logical unit 10 to be opened and assigned FORTRAN unit
number 2. The first READ statement causes the entire first
120-word physical record (first 12 logical records) to be
input into blocking buffer IBUFF, and the first word of the
fifth logical record to be transferred to | . The second READ
would not require another physical input for record 6 in
{BUFF. This READ statement would simply transfer the first
word of logical record 6 to J.

To flush the blocking buffer, close the file and disassociate
the FORTRAN and logical unit numbers the CALL V$CLSB
statement is provided. Its format is:

CALL VS$CLSB (fun,mode)

521

LANGUAGE PROCESSORS

where
fun is the FORTRAN unit number

mode is the mode of the 170 control CLOSE
macro

The end-of-file information in a FILE NAME DIRECTORY
refers to a physical 120-word record number. Therefore, if
logical record size is not a multiple of 120 words, the user
may need to define his own end-of-file mark. Close and
Update, Open and Leave, and I0CHK (section 5.3.4) EOF
features all operate on this File Name Directory parameter
referring strictly to 120-word physical record numbers.

5.3.3 Runtime 1/0 Exceptions

The FORTRAN runtime /0 program allows a program to
detect 1/0 errors and end-of-file or end-of-device condi-
tions. Status of a READ or WRITE operation is available
immediately after the operation is complete and before
another 1/0 operation is executed. This status can be
checked by executing a subroutine or function call in the
form.

CALL I0CHK(status)

where status is the name of an integer variable which is to
receive the result of the status check.

If the last /0 operation had been completed normally, the
value of zero will be returned. If an error had occurred, the
value minus one is returned. If either an end-of-file or an
end-of-device had occurred, the value positive one will be
returned.

The status may be checked and the result tested in a single
statement by use of the form:

IF (I0CHK(status)) label(1), labeK2), labek(3)

where

status is the name of an integer
variable which receives the
result of the status check.
A value of zero indicates
normal completion. A neg-
ative non-zero value indi-
cates an error. A positive
non-zero value indicates
EOF or EQD.

label(1) is a statement label
to which control is
transferred, if an 170
error occurred.

5-22

label(2) is a statement label to
which control is to be
transferred if the op-
eration was completed
normally.

labe!(3) is a statement label to
which control is trans-
ferred, if an end-of-file
or end-of-device was en-
countered.

If the program does not check the status of a READ or
WRITE operation in which an error occurs, FORTRAN will
abort execution. of the task upon the next entry to the
runtime 1/0 routine. At that time the diagnostic message
will be output to the System Output device. Any data which
is input to a read in which an error occurred will be invalid.
After a call to IOCHK is executed, any error status is reset
and the program may proceed with additional input and/or
output.

5.3.4 Reentrant Runtime 1/0

The VORTEX runtime 1/0 program processes all FORTRAN
READ, WRITE, auxiliary /0, and open and close state-
ments at execution time. It is composed of two modules,
V$FORTIO and the reentrant task VSRERR. Both are in the
OM library. VS$RERR is also in the nucleus portion of the
SGL. SGEN then automatically loads VSRERR in the
VORTEX nucleus, and all FORTRAN programs automati-
cally link to it. If VSRERR is not desired in the VORTEX
nucleus, the SGEN directive DEL, VSRERR must be entered
during system generation. Each FORTRAN program will
then get its own copy of V$RERR from the OM library.
V$RERR is approximately 3K words long.

5.4 RPG IV COMPILER

5.4.1 Introduction

The VORTEX RPG [V System is a software package for
general data processing applications. |t combines verstile
file and record defining capabilities with powerful process-
ing statements to solve a wide range of applications. It is
particularly effective in processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG [V runtime/loader program.

The VORTEX RPG IV compiler and the runtime/loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the /MEM
directive.

The RPG language, and its compilation and execution
under VORTEX is described in the Varian 620 RPG IV
User's Manual (98 A 9947 03x).

Error messages applicable to the RPG IV compiler are given
in Appendix A.

5.4.2 RPG IV 1/0 Units

The RPG IV compiler reads source records from the
Processor Input (Pl) file, write object records on the Binary
Output (BO) file, and lists the source program on the List
Output (LO) file.

The RPG IV runtime/loader will normally load the RPG
object program from the Binary Input (Bl) file. When the
program executes, the READ CARD, PUNCH and PRINT
statements are performed on logical units 13, 14, and 15
respectively, statements for performing input and output to
logical units 16 through 22.

5.4.3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiler is scheduled from the background library by
the directive

/LOAD, RPGC

The compiler terminates when the required END statement
in the RPG program is encountered. The compiler exits to
the executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the Pl, BO, and LO files at the
beginning of the compilation.

The runtime/loader is scheduled from the background
library by the directive

/LOAD, RPGRT

The loader expects the RPG object program is on the Binary
Input (BI), and loads and executes it. If the load directive
contains the name of an RPG program to be loaded in the
form,

/LOAD, RPGRT, name

the runtime/loader will assume the program mentioned is
in the background library and will load it from there. An
RPG object program may be ’cataloged’ into the back-
ground library by creating a directory entry and allocating
file space with FMAIN and copying the RPG object program
into the file with IOUTIL.

LANGUAGE PROCESSORS

5.5 RPG Il COMPILER

5.5.1 Introduction

The VORTEX RPG Il System is an industry compatible
software package for general data processing applications.
It combines versatile file and record defining capabilities
with powerful processing statements to solve a wide range
of applications. It is particulary effective in processing data
for reports. The VORTEX RPG Il system consists of the RPG
1l compiler and RPG Il runtime interpreter.

The VORTEX RPG H compiler executes as a level one
background program in unprotected memory. The compiler
will operate in 4K of memory with limited work space. The
work space may be expanded and consequently larger RPG
programs may be compiled by use of the /MEM directive.

The RPG Il language, and its compilation and execution
under VORTEX is described in the RPG Il User's Manual.

5.5.2 RPG Il 170 Units

The RPG I compiler reads source records from the
Processor Input (PI) file, writes object records on the
Binary Output (BO) file, and lists the source program on
the List Output (LO) file. Optionally, object records may be
written on the GO file.

5.5.3 Compiler and Runtime Execution

The RPG Il compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as a
background unprotected task, with the name RPG.

The compiler is scheduled from the background library by
the directive:

/RPG

The compiler terminates when the required /* statement in
the RPG program is encountered. The compiler exits to the
executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds P!, BO, and LO files at the beginning
of the compilation.

An RPG object program may be 'cataloged’ into the
background library by creating a directory entry and
allocating file space with FMAIN and copying the RPG
object program into the file with IOUTIL.

523

SECTION 6
LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are in a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job-
control processor (JCP) directive /LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

« Load-module generator directives (section 6.2) input
through the S logical unit.

« Relocatable object modules from which the load module
is generated.

« Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog-
ing of files, i.e., for storage of the files and the generation
of file-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the Si logical unit and listed on the LO
logical unit. If the SI logical unit is a Teletype or a CRT
device, the message LM** is output on it to indicate that
the Sl unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the ioad modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modiiles
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or
overlay, section 6.1.1) becomes the execution address for
that segment. (Note: If the load module being generated is

a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory, other than the base page (page 0). No
assembler generated indirects or literals are allowed.

A VORTEX physical record on an RMD is 120 words. Object-
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Si logical unit, object modules are not
blocked but assumed to be one object module record per
physical record.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in Appendix A.6.

Recovery from the type of error represented by invalid
directives or parameters is by either of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the Si unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next LMGEN directive is then input
from the Sl unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and scheduie
the JCP for execution. (Note: An irrecoverable error, e.g.,
170 device failure, causes LMGEN to abort. Examine the
170 error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:
« Load modules generated by the LMGEN
* Error messages

« Load-module maps output upon completion of a load-
module generation

Load modules are LMGEN-generated absolute or relocat-
able tasks with or without overlays. They contain all
information required for execution under the VORTEX
operating system. During their generation, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

61

LOAD-MODULE GENERATOR

Foreground
Blank Common

Nucleus Table
Module

Unused

Programs

Named
Common

Overlay
Information

01000
Page 0
Data

Foreground

Global
FCBs

Nucleus Table
Module

Unused

Programs

Named
Common

Overlay
Information
01000

Page 0
Data

Background

All foreground tasks share the foreground blank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure (virtual memory)

Note: LMGEN locks out the partition while it is modifying
the directory.

Error messages applicable to the load-module generator
are output on the SO and LO logical units. The individual
messages, errors, and possible recovery actions are given in
appendix A.6.

Load-module maps are output on the LO logical unit upon
completion of the load-module generation, unless sup-
pressed. The maps show all entry and external names and
labeled data blocks. They also describe the items given as
defined or undefined, and as absolute or relocatable, and
indicate the relative location of the items. The load-module
map hsts the items in the format, four entries per fine:

Print position 2345678 9 10 11 12 13 14 15 16
item b " x b location
where
item is a left-justified entry or external name or

{abeled data block

b is a blank
x is A for .an absolute or R for a relocatable item
location is the left-justified relative location of the item

6-2

The following appear at the end of the LMGEN map.

[$1AP] Top of indirect address pool, which
begins at 0500

[$LIT] Bottom of literal péol, which begins at
0777

[$PED] Last loaded location. Foreground, word

size of load module. Background, last
location loaded (loading begins at
01000).

LMGEN performs special handling for an external of the
form 'V$PED'. LMGEN satisfies this external with the last
loaded location plus one of the load modules for both
overlayed and non-overlayed tasks. This external can be
used for specifying table areas behind tasks that link with
external routines.

6.1.1 Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requirements exceed core allocation. {n this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive (section 6.2.3) and comprise a root
segment and two or more overlay segments (figure 6-1),
but only the root segment and one overlay segment can be
in memory at any given time. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it, if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1.8.

LOAD-MODULE GENERATOR

6.1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and blank common. (Refer to the FORTRAN IV Reference

Manual, document number 98 A 9902 03x, or the DAS MR
COMN directive description in the computer handbook, for
the system being used.

Named common is contained within a task and is used for
communication among the subprograms within that task.

Biank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated within the load module. The size of the back-
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond-
ing tasks, i.e., foreground tasks use only foreground blank
common, and background tasks use only background
blank common.

All definitions of named and blank common areas for a

given load module must be in the first object moduie
loaded to generate that load module.

6.2 LOAD-MODULE GENERATOR DIRECTIVES

. TIDB Create task-identification block

. LD Load relocatable object modules

. OV Overlay

. LIB Library search

. CLD Load relocatable object modules
without re-opening or repositioning

. MEM Default extra memory pages

. END

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed-
ded blanks. The character strings are separated by
commas (,) or by equal signs (=). The directives are free-
form and blanks are permitted between the individual
character strings of the directives, i.e., before or after
commas (or equal signs). Although not required, a period
(.) is a line terminator. Comments can be inserted after the
period.

6-3

LOAD-MODULE GENERATOR

The general form of a load-module generator directive is

name,p(1),p(2),...p(n)
where

name is one of the directive names given above

each p(n) is a parameter required by the

(if any) directive and defined below
under the descriptions of the
individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional rep! t of

(,) by equal signs (=) are omitted.

Error to load-module generator direc-
tives are given in Appendix A.6.

6.2.1 TIDB (Task-ldentification Block)
Directive

This directive must be input before any other LMGEN
directives can be accepted. It permits task scheduling and
execution, and-specifies the overlay and debugging charac-
teristics of the task. The directive has the general form

TIDB,name, type,segments, DEBUG, ropages

where
name is the name (1 to 6 ASCII characters) of
the task
type is 1 for an unprotected background task

on BL, or 2 for a protected foreground
task or 3 for a background task on an
alternate library

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or O for
a task without overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

ropages is an optional ready-only page specifier

(1-77). It can be a single number or a
range of consecutive numbers (e.g., 3,5).

The DEBUG parameter includes the DEBUG object module
as part of the task. If the task is a load module without
overlays, DEBUG is the last object module loaded. If the
task is a load module with overlays, DEBUG is the last
object module loaded in the root segment (section 6.1.1).

The ropage parameter allows specification of a range of
virtual pages as read-only.

6-4

Examples: Specify an unprotected background task
named DUMP as having no overlays but with debugging
capability.

TIDB,DUMP, 1,0,DEBUG

Specify a protected foreground task named PROC as
having a root segment and four overlay segments.

TIDB,PROC,2,4

6.2.2 LD (Load) Directive
This directive specifies the logical unit from which relocat-

able object modules are to be loaded. It has the general
form

LD, kun, key, file
for loading from RMD logical units, and
LD,lun

for loading from any other logical unit, where

tun is the name or number of the logical unit

where the object module resides

key is the protection code required to
address lun
file is the name of the RMD file

From the object modules, LMGEN generates load modules
(with or without overlays) on the SW logical unit. Loading of
object modules from the specified logical unit continues
until an end-of-file mark or an end-of-load module record
(appendix G.6) is encountered.

Successive LD directives permit the loading of object
modules that reside on different logical units. The execu-
tion address for the load module is the last encounter
execution address.

Examples: Load the relocatable object modules from
fogical unit 6 (Bl) until an end-of-file mark is encountered.

LD, 6
Open a file named DUMP on logical unit 9 (GO) with no
protection code. (LMGEN loads the relocatable object

modules and closes the file.)

LD,9,,DUMP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment is an
overlay segment. It has the general form

OV,segname

where segname is the name (1 to 6 ASCIl characters) of
the overlay segment.

Example: Specify SINE as an overlay segment.

OV, SINE

6.2.4 LIB (Library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched
(and the order in which the search is made) to satisfy all
undefined externals. The directive has the general form

LIB,iun(1),key(1),lun(2),key(2),....lun(n),key(n)
where

each lun(n) is the name or number of a resident-
library RMD logical unit to be searched

each key(n) is the protection code required to
address the preceding logical unit

The search is conducted in the order in which the logical
units are given in the LIB directive. When not specified by
LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in LIB.

If the generation of the load module involves overlays, a LIB

directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externals. Use logical
unit 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C; and the OM library, having protection code D. (Because
the last two libraries are searched in any case, note that
the two inputs following are equivalent.) Input
LIB,115,M,103,C,104,D

or, more briefly,

LIB,115,M

To change the order of search to logical units 104, 115, and
103, input

LIB,104,D,115,M,103,C
or, more briefly,

LIB,104,D, 115 M

LOAD-MODULE GENERATOR

To search only the CL and OM tibraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive

This directive terminates the generation of the load module
and, if specified, causes the creation of a file and a
directory entry (section 9) for the load-module contents on
the indicated logical unit. The indicated logical unit, if any,
is an RMD, and thus may require a protection code. The
directive has the general form

END,jun, key

where

lun is the name or number of the logical unit
on which the file containing the load
module will reside

key is the protection code, if any, required to
address lun

If TIDB (section 6.2.1) specified an unprotected back-
ground task (TIDB directive type = 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type = 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition. If TIDB specified an alternate library background
task (TIDB directive type = 3), the logical unit, if any,
specified by the END directive, may be that of any available
assigned RMD partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
cataloged even if END specifies a legal logical unit. In this
case, the load module resides on the SW unit only.

Examples: Specify that the load module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will aiso
reside on the SW unit.)

END, 105,E

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

END

6.2.6 CLD Directive

This directive specifies the logical unit from which relocat-
able object modules are to be loaded. It has the general
forms

6-5

LOAD-MODULE GENERATOR

CLD,lun,key.file
or
CLD,lun

Where use of the two forms and the meaning of lun, key,
and file is as for the LD directive (section 6.2.2). This
directive specifies the same action as for the LD directive
except that successive CLD directives do not cause re-
opening or repositioning of the specified logical unit.

6.2.7 MEM (Memory) Directive

This optional directive is used to specify the default
number of extra memory blocks to be attached to a
background task in a similar manner to the /MEM
directive of JCP. This value is in addition to a /MEM
request and is stored in word 12 of the task’s pseudo TIDB.
The directive has the general form

MEM,n
where

n is the number of 512 word blocks
(pages)

This directive, if used, must appear after the last LIB
directive and before the END directive.

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN

with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card

reader unit CR0O. Assign the task name EXC4 and catalog -

to the BL logical unit, and load DEBUG as part of the task
from the OM library.

/JOB , EXAMPLE#Y
/ASSIGN,BI=CR00
/LMGEN
TIDB,EXC4,1,0,DEBUG
LD,BI

LIB

END,BL,E

/ENDJOB

(Teletype input)

Note: The object module deck must be followed by an
end of file (2-7-8-9 in card column 1).

66

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and S| logical units to card
reader unit CR00. Assign the task name EXC5, overlay
names SGM1, SGM2, and SGM3, and catalog to the FL
logical unit.

/JOB, EXAMPLES
/ASSIGN,BI=CRO0,SI=CRO0

(Deck)

/LMGEN

TIDB,EXC5,2,3

LD,BI

(Object Module(s) - root segment)
(End of File)

LIB

oV, SGM1

LD,BI

(Object Module(s))
(End of File)

LIB

oV, SGM2

LD,BI

(Object Module(s))
(End of File)

LIB

OV, SGM3

LD,BI

(Object Module(s))
(End of Fite)

LIB

END,FL,F

/ENDJOB

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN
with control records input from the Teletype and object
module(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undefined
externals, and catalog on RMD 120.

/JOB, EXAMPLEG
/LMGEN
TIDB,EXC6,2,0
LD, 107,2%,PGEX
LIB,OM,D

END, 120,X
/ENDJOB

SECTION 7
DEBUGGING AIDS

The VORTEX |l system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

7.1 DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
is specified by a load dule generator TIDB directive
(section 6.2.1). The DEBUG object moduie is the last object
module loaded of the root segment if the task is an overlay
load module. The load-module generator sets the load-
module execution address equal to that of DEBUG.

During the execution of DEBUG, the A, B, and X
pseudoregisters save the contents of the real A, B, and X
registers, and restore the contents of these registers before
terminating DEBUG. If the task uses V75 registers, the
contents of R3 through R7 are also saved and restored.

When debugging is complete, the input of any job-control
directive (section 4.2) returns control to the VORTEX
system.

INPUTS to DEBUG comprise the directives summarized in
table 7-1 input through the DI logical unit. When DEBUG is
first entered, it outputs on the Teletype or CRT device the

If the load module has been cataloged, DEBUG t
when the module is scheduled. Otherwise, JCP directive
/EXEC (section 4.2.22) is used to schedule the moduie and
DEBUG (level zerg only).

ge DG** foliowed by the TIDB task name and the
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the DI unit.

Table 7-1. DEBUG Directives

Directive Description
A Display and change the contents of the A pseudoregister
Ax Change, but do not display, the contents of the A pseudoregister
: Display and change the contents of the B pseudoregister
Bx Change, but do not display, the contents of the B pseudoregister
*Rn Display and change the contents of the V75 register
n(n = 07)
*Rnx Change, but do not display, the contents of the V75
register n.
Cx Display and change the contents of memory address x
Gx Load the contents of the pseudoregisters into the
respective A, B, and X registers, and transfer to
memory address x
Iny,2 Initialize memory addresses x through y with the value of z
1] Display and change the overflow indicator
P Read DEBUG directives from Bl unit untii EOF
Sx,y,z,m Search memory addresses x through y for the z value,
using mask m
Ty, x Place a trap at memory address y, starting execution

at address x

7-1

DEBUGGING AIDS

Table 7-1. DEBUG Directives (continued)

Directive Description
Ty Place a trap at memory address y, starting execution
at the last trap location
X Display and change the contents of the X pseudoregister
Xy Change, but do not display, the contents of the X
pseudoregister
XXXXXX Display the contents of memory address xxxxxx
XXXXXX,YYYYYY Display the contents of memory addresses xoxxx through

Y

* = V75 systems only

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats commas, periods,
and equal signs as delimiters.

Numerical data are always interpreted as octal by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

An error message, EX20-EX25, is output and the task is
aborted, if a memory-map protection violation occurs.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit, and
error messages. Numerical data are always to be inter-
preted as octal.

Error messages applicable to the debugging program are
given in Appendix A.7.

Examples of DEBUG directive usage: Note that, in the
following examples, operator inputs are in bold type.
Entries in italics, are program responses to the directives.
Display the contents of a pseudoregister A:

A
(001200)

Display and change the contents of a pseudoregister B:

B
(001200) 010406

Change, but do not display, the contents of a pseudoregis-
ter X:

X02050

7-2

Display, but do not change, the status of the overflow
indicator:

o
(000001)

Display and change the status of the overflow indicator:

]
(000000) 000001

Display, but do not change, the contents of fnemory
address 002050:

€002050
(102401)

Display and change the contents of memory address
002050:

002050
(102401)
001234

Display and change the contents of memory address
002050, then display the contents of the next sequential
location:

€002050
001234. (102401)
(000067)

Display, but do not change, the contents of memory
address 002050, then display the contents of the next
location:

€002050
(102401),
(000067)

DEBUGGING AIDS

dule if the task a SNAP request and calis the

Load the contents of the pseudoregisters into the resp
A, B, and X registers, and start execution at memory
address 001001:

6001001

Initialize memory addresses 000200 through 000210 to the
value 077777:

1000200,000210,077777

Search memory addresses 000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

$000200,000240,000110,000770
000220 (017110)
000234 (000110)
000237 (001110)

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, B, and X
registers and the setting of the overflow indicator when the
trap address is encountered:

T001236,001234
001236 (142340) 002000 010405 012345 000001

Execute the same trap if the task uses V75 instructions
(assuming Rn = n):

T001236,001234
001236 (142340) 002000 010405 012345 000001
000003 000004 000005 000006 000007

Display the contents of memory address 001234:

001234
(001200)

Display the contents of memory addresses 001234 through
001237:

001234,001237
001230 005090 ------ 095000

Total of 8 values

7.2 SNAPSHOT DUMP PROGRAM

The 294-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load

SNAP external routine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is

EXT SNAP
CALL SNAP
DATA start
DATA end
DATA tidb

where

start is the first address whose contents are
to be displayed

end is the last address whose contents are to
be displayed

tidb is less than zero if dump of task TIDB is
desired, is positive if TIDB dump is to be
suppressed

If start is a negative number, there is no memory dump. if
more than one location is specified to be displayed, the
output dump will be in complete fines of eight addresses,
e.g., if start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the
contents of the A, B, and X (and V75 if present) registers
and the setting of the overflow indicator are displayed.

Output examples: with the snap request at 01234, display
the contents of the A (017770), B (001244), and X
(037576) registers, and the overflow indicator (on).

SN** TASKO1
001234 017770 001244 037576 000001
*000003 000004 000005 000006 000007

Using the same data, display, in addition, the contents of
memory addresses 001002 through 001025, inclusive and
request-a dump of the active TIDB.

7-3

DEBUGGING AIDS

SN#*» SW 000500

001023 000000
*000003 000004

TIDB LOC 055013

055010 000000
055020 001527
055030 000001
055040 000500
*055050 000006

SNAP DUMP

001000 006505
001010 010002
001020 001101

000000
000005

=CONTENTS=

000000
067001
001541
000000
000007

070275
075334
001101

001023
000006

000000
001326
000002
074627
000000

001402
000000
001014

* These lines appear only if the task uses V75 register

7-4

000000
000007

000000
141146
000000
064604
000000

001031
000000
002000

000001
001000
002000
055075
000000

000050
006505
001107

000000
065604
151727
000003
000000

006505
070137
001000

000000
000007
120240
000004
000000

066270
001005
001027

001527
001302
120240
000005
000000

100000
001101
001000

SECTION 8
SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
background task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of
forward-merging of subfiles and has file-positioning capa-
bility. The output file can be sequenced and/or listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP,
section 4.2.17) upon input of the JCP directive /SEDIT.
Once activated, SEDIT inputs and executes directives from
the S! logical unit until another JCP directive (first
character = /) is input, at which time SEDIT terminates
and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations (section 8.2.8). To increase this, input a /MEM
directive (section 4.2.5), immediately preceding the /SEDIT
directive, where each 512-word block will increase the
capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the
Sl logical unit.

b. Old source records input through the IN logical unit.

c. New or replacement source records input through the
ALT logical unit.

d. Error-recovery inputs entered via the SO logi;:al uhit,

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the S| logical unit and listed as read on the LO
logical unit, with the VORTEX standard heading at the top
of each page. If the S| logical unit is a Teletype or a CRT
device, the message SE** is output to it before directive
input to indicate that the Si unit is waiting for SEDIT input.

There are two groups of source-editor directives: the
copying group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit, merge them with new or replacement source
records input on the ALT unit, and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. If the remainder of
the source records on the IN unit are to be copied after ail
editing is completed, this must be explicitly stated by an FC
directive, (section 8.2.9). Ends of file are output only when
specified by FC or WE directives (sections 8.2.9 and
8.2.13). The processing of string-editing directives is

different from that of record-editing directives. A string-
editing directive affects a specified record, where source
records on the IN unit are copied onto the OUT unit until
the specified record is found and read into memory from
the IN unit. After editing, this record remains in memory
and is not yet copied onto the OUT unit. This makes
possible multiple field-editing operations on a single source
record. The auxillary group directives are those used for
special 170 or controf functions.

All source records, whether old, new, or replacement
records, are arranged in blocks of three 40-word records
per VORTEX RMD physical record. Any unused portion of

. the last physical record of an RMD file on the IN unit

should be padded with blanks. When necessary, SEDIT will
pad the last RMD record on the OUT unit. When the QUT
file will contain more than one source module for input to a
tanguage processor, the user should insert two blank
records after each END statement to insure that each
source module starts on a physical record boundary.
Record numbers start with 1 and have a maximum of 9999.
Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral
increment. These specifications for sequence numbers are
given by the SE directive (section 8.2.10).

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SEDIT operations.
Error messages applicable to this component are given in
Appendix A.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing
SEDIT to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SEDIT directive is then input from
the S) unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SEDIT task and schedute
the JCP for execution. (Note: If there is an 170 control
error on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the QUT
logical unit.

b. Error messages.

o

. The listing of the SEDIT directives on the LO logical unit.

d. Comparison outputs (compare-inputs directive, section
8.2.15).

Listing of source records on the LO logical unit when
specified by the LI directive (section 8.2.11).

81

SOURCE EDITOR

Error messages applicable to SEDIT are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.8.

The listing of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or outpyu*. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEDIT are either fixed or
reassignable units. The three fixed logical units are:

a. The Sl logical unit, which is the normal input unit for
SEDIT directives.

b. The SO logical unit, which is used for error-processing.

c. The LO togical unit, which is the output unit for SEDIT
listings.

The three reassignable logical units are:

a. The SEDIT input (IN) logical unit, which is the normal
input unit for source records. This is assigned to the Pl
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS directive with an IN
parameter (section 8.2.1).

o

. The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which is
the alternate input unit used-for new or replacement
source records. This is assigned to the B! logical unit
when SEDIT is loaded, but the assignment can be
changed by an AS directive with an AL parameter.

8.2 SOURCE-EDITOR DIRECTIVES
This section describes the SEDIT directives:

a. Copying group:
. AS Assign logical units

AD Add record(s)

SA Add string

REPL Replace record(s)

SR Replace string

DE Delete record(s)

SD Delete string

MO Move record(s)

b. Auxiliary group:

FC Copy file

SE Sequence records

L List records

GA Gang-load all records
WE Write end-of-file
REWI Rewind

€O Compare records

82

SEDIT directives begin in column 1 and comprise se-
quences of character strings having no embedded blanks.
The character strings are separated by commas (,) or by
equal signs (=). The directives are free-form and blanks
are permitted between individual character strings ot the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period.

The general form of an SEDIT directive is
name,p(1),p(2)....p(n)

where

name is one of the directive names given above
or a longer string beginning with one of
the directives names (e.g, AS or
ASSIGN)

eachp(n) s a parameter defined below under the
descriptions of the individual directives

Where applicable in the following descriptions, a field
specification of the format (first,last) or (n1,n2,n3) is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
character string string is coded within single quotation
marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.1 AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassignable logical unit (section 8.1). It has the general
form

AS,nn = lun, key,file

where
nn is IN if the directive is making an
assignment of the IN logical unit, OU if
the OUT logical unit, or AL if the ALT
logical unit

lun is the name or number of the logical unit
being assigned as the IN, OUT, or ALT
unit

key is the protection code, if any, required to
) address lun

file is the name of an RMD file, if required

{f the SEDIT reassignable units are to retain the assign-
ments made when SEDIT was loaded (default
assignments: IN = Pi, OUT = PO, ALT =BI), no AS direc-

tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are required).

Any RMD affected by an AS directive is automatically
repositioned to beginning of device.

The AS directive merely fixes parameters in 1/0 control
calls within SEDIT. It does not alter 1/0 control assign-
ments in the logical-unit table (table 3-1).

Note: AS resets the corresponding record counter; how-
ever, no physical rewinding of devices occurs.

Examples: Assign the Pl logical unit as the SEDIT
reassignable IN unit.

AS,IN=PI

or, the unabbreviated form

ASSIGN, INPUT=PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.
AS,0U=8

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protection key.

AS,IN=111,,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the ALT unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from ALT onto OUT from the current position of the
unit up to but not inctuding the next end-of-file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to ALT and copy records from the current
position of that unit up to but not including the next end-
of-file mark.

AD,7

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field. It has the general form

§A,recno (first,last),'string’

where

recno is the number of the source record in
which the character string is to be
inserted

first is the number of the first character
position to be affected

last is the number of the last character
position to be affected

string is the string of characters to be inserted

in the field delimited by character
positions first and last in record number
recno

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the specified field first last, with
characters shifted out of the right end of the field being
lost. There is no check on the length of string and shifting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when an SEDIT directive affecting another
record is input.

The field specification first,last is lost after one manipula-
tion. Subsequent string operations must specify the
character positions based on the new configuration. For
example, for the character string ACDEGbb in positions 1
through 7, addition of the character B in position 2 requires
the field specification (2,7). Then, to add the character F
between E and G, one must specify the field (6,7) rather
than (5,7) because of the shift previously caused by
insertion of the character B.

Example: Change the erroneous DAS MR source-state-
ment operand in character positions 16-21 of the 32nd
record from LOCXbb to LOC,Xb.

SA,32,(19,20),",

83

SOURCE EDITOR

8.2.4 REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the general form

REPL, recnol,recno2

where
recnol is the number of the first record to be
replaced
recno2 is the number-of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be replaced.

The REPL directive copies source records from the IN
logical unit onto the OUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the ALT logical unit from the current
position of the unit up to but not including the next end-of-
file mark.

Example: Copy records from I[N onto OUT from the
current position of IN up to and including record 9. Replace
IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of ALT and the
next end-of-file mark onto OUT. Do not copy the end-of-file
mark.

REPL, 10,20

8.2.5 SR (Replace String) Directive

This directive replaces one character string within a source
record with another character string. It has the general
form

SR,recno,(n1,n2,n3),'string’

where
recno is the number of the source record in
which the character string is to be
reptaced
nl is the number of the first character
position of the string to be replaced
n2 is the number of the last character

position of the string to be replaced

84

n3 is the number of the last character
position of the field in which the string to
be replaced occurs

string is the string of characters to be inserted

in the field delimited by character
positions nl and n3 in record number
recno after shifting out the characters in
positions n1 through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. Field n1,n3 is then shifted to
the left and filled with blanks until the field n1,n2 is shifted
out. Then, the character string string shifts into the left
end of the field n1,n3. There is no check on the length of
string and shifting continues until it is left-justified in the
field n1,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when a SEDIT directive affecting another
record is input.

The field specification n1,n2,n3 is lost after one manipula-

tion. Subsequent string operations must spécify the
character positions based on the new configuration.

i
Example: Copy records from IN onto OUT up to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

8R,50,(10,12,12), "Xy '

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. It has
the general form

DE,recnol,recno2

where
recnol is the number of the first record to be
deleted
recno2 is the number of the last record to be
deleted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be deleted.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE, 50,54

Position IN at record 2, deleting record 1.

DE, 1

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source
record. It has the general form

SD,recno,(n1,n2,n3)

where

recno is the number of the source record from
which the character string is to be
deleted

nl is the number of the first character
position of the string to be deleted

n2 is the number of the last character
position of the string to be deleted

n3 is the number of the last character

position of the field in which the string to
be deleted occurs

The SD directive processing is exactly like that of the SR
directive (section 8.2.5) except that no new character string
is shifted into field n2,n3 after the field n1,n2 is shifted out.

Example: Copy records from IN onto OUT up to and
including record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with blank fill on the
right.

sD,100,(2,4,10)

SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol,recno2,recno3

where
recnol is the number of the first record to be
moved
recno2 is the number of the last record to be
moved
recno3 is the number of the record after which

the block of records delimited by recnol
and recno2 is to be inserted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be moved.

The MO directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but .not
including the record specified by recnol. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2+1.
When OUT reaches (by some succeeding directive)
recno3 + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4, save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on OUT of 1-4, 11-99, 5-10 (FC directive, section
8.2.9.).

M0,5,10,99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. [t has the general form

FC,nfiles

where nfiles (default value = 1) is the number of files to be
copied.

|f the IN logical unit and/or the OUT logical unit is an RMD
partition, nfiles must be 1 or absent. [f OUT is a named file
on an RMD, there will be an automatic close/update.
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

85

SOURCE EDITOR

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto
QUT. This includes the sixth end-of-file mark. (Note: {f IN
and/or OUT is an RMD partition, there will be an error.)

FC,6

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE, (first,last),initial,increment

where
first is the first character position of the
sequence name field
last is the last character position of the
sequence number field, where the de-
fault value of first,last is 76,80
initial is the initial number to be used as a

sequence number (default value = 10)
increment is the increment to be used between

successive sequence numbers (default
value = 10)

There is also a special form of the SE directive to stop
sequencing:

SE,N
where there are no parameters other than the letter N.
Examples: In the next record output to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.
SE
In the next record output to OUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.
sg,(15,17),30,7
Stop sequencing.

SE,N

8-6

8.2.11 LI (List Records) Directive

This directive lists, on the LO logical unit, the records
copied onto the OUT unit. The LI directive has the general
form

Lt list
where list is A (default value) if SII OUT records are to be
listed, C if only changed records are to be listed, or N if
listing is to be suppressed. Source records output to the

QUT file are listed with their QUT record number at the left
of the print list.

Examples: List all records output to OUT.
LI
Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive
This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA, (first,last),’ string'

where
first is the first character position of the field
to be gang-loaded
last is the last character position of the field
to be gang-loaded, where the default value
of first,last is 73,75
string is the string of characters to be gang-

loaded into character positions first
through last, inclusive in all records
copied onto out

There is also a special form of the GA directive to stop
gang-loading:

GA
where there are no parameters in the directive.

In every OUT record, GA clears the specified field, and
loads the string into it. There is no check on the length of
string and shifting continues until it is left-justified in the
specified field with excess characters, if any, being
truncated on the right.

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA,(11,15),'vDM

Stop gang-loading.

GA

8.2.13 WE (Write End of File)
Directive

This directive writes an end-of-file mark on the OUT logical
unit. It has the form

WE
without parameters. If OUT is a named file on an RMD,

there will be an automatic close/update.

Example: Write an end-of-file mark on OUT, a magnetic-
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This 8irective rewinds the specified SEDIT logical unit(s). It
has the general form

REWI,p(1),p(2),p(3)
where each p(n) is a name of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.
Example: Rewind all SEDIT fogical units.

REWI,IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs
from the IN logical unit with those from the ALT logical unit
and lists discrepancies on the LO logical unit. The directive
has the general form

CO, (first,last),limit

where
first is the first character position of the field
to be compared
last is the last character position of the field

to be compared, where the default value
of first,last is 1,80.

SOURCE EDITOR

limit is the maximum number of
discrepancies to be listed before
aborting the comparison and passing to
the next directive.

Any discrepancy between the IN and ALT inputs is listed in
the format ’

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

{f the comparison terminates by reaching the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misptaced or missing on one input. A normal termination
of a comparison (at the next end-of-file mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and ALT units until either an end of
file is found or there have been 5 discrepancies listed on
the LO.

co,,5

8.3 EXAMPLE OF EDITING A FILE

Following is a sample job stream for editing an existing file
on a magnelic tape onto a new file on magnetic tape. The
input file consists of 80-character records followed by an
end-of-file mark. The job stream and the edit cards are
read through the system input device.

/J0B,EDIT
/ASSIGN,PI=MT00,PO=MT10
/REW,PI,PO
/SEDIT
AS, IN=PI
AS,OUT=PO
AS,ALT=SI
DE,5
REPL, 8, 10
LDA TEMP
(EOF card, 2-7-8-9 punch)
ADD, 17
TBL BSS 5
(EOF card, 2-7-8-9 punch)
FC
REWI, IN,OUT
/ENDJOB

87

SOURCE EDITOR

The result of running the preceding source editor example

would be the following:

88

Input Fite

CATALOG

EQU
EQU

DATA
LDA
LDB
JBZM
ADD
ANAI
STA
LRLA
STA
TZB
JMP*

ROUTINE
6
9

0

TMX
™Y
ODER
PARM6
0770
TBL+2
6
TBL+4

CATLOG

Output File
1 %
2 * CATALOG
3 *
4 A$3 EQU
5 *
6 CATLOG DATA
7 LDA
8 ADD
9 ANAI
10 STA
11 LRLA
12 STA
13 TZB
14 JMP*
15 TBL BSS

ROUTINE

6

0
TEMP
PARM6
0770
TBL+2
6
TBL+4

CATLOG
5

SECTION 9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job-
control processor (JCP) upon input of the JCP directive
/FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or
drum) can be referenced by name.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2)
received on the S logical unit and outputs them on the LO
logical unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffér.

If the Sl logical unit is a Teletype or a CRT device, the
message FM** is output on it before input to indicate that
the Sl unit is waiting for FMAIN input.

If there is an error, one of the érror messages given in
Appendix A.9 is output on the SO logical unit, and a record
is input from the SO unit to the JCP buffer. If the first
character of this record is /, FMAIN exits via the EXIT
macro. If the first character is C, FMAIN continues. If the
first character is neither / nor C, the record is processed as
a normal FMAIN directive. FMAIN continues to input and
process records until one whose first character is / is
detected, when FMAIN exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas called partitions. Each partition is

referenced by a specific logical-unit number. The bounda-
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
comprise the four-word partition entries. Each PST is in the
format:

Bit 1514131211109876543210
Word 0 Size of bad track table (120-words)
Word 1 Address of bad track table (0 if none)

relative to word 0

Word 0 Beginning partition track address

Word 1 | PPB JNot used JProtection code

Word 2 Number of bad tracks in partition

Word 3 Ending partition address + 1

‘_\rw

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST
entry is ailso word O of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a file-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in

9-1

FILE MAINTENANCE

the last word of each sector. Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 1514131211 109876543210
Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCIl characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file is
positioned, is initially set to the ending file address, and is
manipulated by 1/0 control macros (section 3). The extent
of the file is defined by the addresses set in words 4 and 5
when the file is created, and remains constant.

The first sector of each partition is assigned to the file-
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each directory sector is a one-word tag containing
sither the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the file:-maintenance component for the use of the 1/0
control component (section 3). User access to the directo-
ries is via the /0 control component.

Special entries: A blank entry is created when a file name is
deleted, in which case the file name is ****** and words 3
through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname file are set to zero.

WARNING

To prevent possible loss of data from the file-
name directory during file-maintenance opera-
tions, FMAIN sets the lock bit (bit 12 of word 2
of the DST) before any directory operation, thus
inhibiting all foreground requests for [/0 with
the partition being modified. Upon completion
of the directory operation, FMAIN clears the lock
bit. Except for the use of protection codes, this
is the only protection for the file-name direc-
tory. Manipulation of foreground files with
FMAIN is at the user's risk. For example,
VORTEX does not prevent deletion of a file
name from a file-name directory that has been
opened and is being written into by a fore-
ground program. Therefore, foreground files
should be reassigned prior to manipulation by
FMAIN.

9-2

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2.7 and 9.2.8), an 170 OPEN with rewinding
(section 3.5.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or load point for that unit. Object
modules can then be loaded until an end-of-file mark is
found.

The system generator (section 15) does not build any
object-module library. FMAIN is the only VORTEX compo-
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object-
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Sl logical unit, object modules are not
blocked but assumed to be one object-module record per
physical record.

9.1.4 Output Listings
FMAIN outputs four types of listing to the LO logical unit:

« Directive listing lists, without modification, all FMAIN
directives entered from the Sl {ogical unit.

« Directory listing lists file names from a logical unit file-
name directory in response to the FMAIN directive LIST
(section 9.2.5).

+ Deletion listing lists file names deleted from a logical
unit file-name directory in response to the FMAIN
directive DELETE (section 9.2.2).

« Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

All FMAIN tistings begin with the standard VORTEX
heading.

The directory listing is further described under the
discussion of FMAIN directive LIST (section 9.2.5), the
deletion listing under DELETE (section 9.2.2), and the
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES
This section describes the file-maintenance directives:
+ CREATE file + DELETE file
« RENAME file * ENTER new filename
« LIST file names « INIT (initialize) directory

* INPUT logical unit for object module
« ADD object module

File-maintenance directives comprise sequences of charac-
ter strings having no embedded blanks. The character
strings are separated by commas (,) or by equal signs (=).
The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can
be inserted after the period.

The general form of a file-mdintenance directive is

directive,lun,p(1),p(2),...p(n)

where
directive is one of the directives listed above in
capital letters
fun is the number or name of the affected
logical unit
each p(n) is a parameter defined under the

descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to file-maintenance directives
are given in Appendix A.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit, allocates RMD space to the file, adds a corresponding
entry to the file-name directory; and sets the current end-
of-file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

CREATE,lun, key,name, words,records

where

fun is the number or name of the fogical
unit where the new file is to be
created

key is the protection code, if any, required
to address lun

name is the name of the file being created

words is the number of words in each record
of the file

records is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not limit file use to the specified record size. To each record
in the created file, FMAIN assigns n records of 120 words
each where n is the smallest integer such that words/120
is less than or equal to n. The file size is n times records
words. This value is converted to a sector count to make
assignments. Neither the file size value nor the sector
count value is saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protection code is K.

CREATE, 112,K,XFILE, 120,10

9.2,2 DELETE Directive

This directive deletes the designated file and alt file-name
directory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field = ****** gection 9.1.2) and all other
directory references to this file to zero entries (all fields =
zero, section 9.1.2), and outputs a listing of deleted file-
names on the LO logical unit. The directive has the general
form

DELETE,lun, key,name

where
lun is the number or name of the logical
unit from which the file is being deleted
key is the protection code, if any, required
to address lun
name is the name of the file being deleted (in

the case of a multiname file, any one of
the names can be used, all hames are
deleted)

The output format has, following the FMAIN heading, a
two-line heading

DELETE LISTING FOR lun

FILE NAME START END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a btank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, (in
octal) in the CURRENT column; word 4, (in octal) in the
START column; and word 5, (in octal) in the END column.
After the last file name, there is an entry describing the
blank fite created by the deletion, where the FILE NAME
column contains ****** the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns. contain the last address
+ 1 (word 3 of the PST entry).

93

FILE MAINTENANCE

Example: Delete the file ZFILE (and all file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE, 112,P,ZFILE

The name ZFILE is replaced in the file-name directory by
##®%x¢ and the space allocation for this blank entry
extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3 RENAME Directive
This directive changes the name of a file, but does not

otherwise modify the file-name directory. The directive has
the general form

RENAME lun, key,old,new

where

lun is the number or name of the logical unit
where the file to be renamed is located

key is the protection code, if any, required to
address lun

old is the old name of the file being renamed

new is the new name of the file being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code is P,
change the name of the file XFILE to YFILE.

RENAME, 112,P,XFILE, YFILE

9.2.4 ENTER Directive

This directive adds a new file name to be used in
referencing an existing file, but does not otherwise modify
the file-name directory. ENTER thus permits multiname
access to a file. The directive has the general form

ENTER, lun, key,old, new

where
lun is the number or name of the logical unit
where the affected file is located
key is the protection code, if any, required to
address lun
old is an old name of the affected file
new is the new name by which the file can

also be referenced

94

Example: On fogical unit 113, whose protection code is K,
make the file X1 accessible by using either the name X1 or
the name Y1.

ENTER, 113,K,X1,Y1

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name
directory of the specified logical unit. The output comprises
the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned
space in the partition. All numbers are in octal. The
directive has the general form

LIST,lun, key

where
lun is-the number or name of the logical unit
whose contents are to be listed

key is the protection code, if any, required to
address lun

The output format has a two-line heading

FILE DIRECTORY FOR LUN lun

FILE NAME START END CURRENT

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column;
word 4, (in octal) in the START column; word 3, (in octal)
in the CURRENT column; and word 5, (in octal) in the END
column. After the last file name, if there is any unassigned
space in the partition, there is an entry describing the
unassigned space in the partition, where the FILE NAME
column contains *UNAS*, the START column contains the
next available address, and both the CURRENT and END
columns contains the last address + 1. All numericai
values are octal sectors.

Example: List the file-name directory of logical unit 114,
which has no protection code.

LIST, 114

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the
specified logical unit, deletes all file names in it, and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

INIT, lun, key
where
fun is the number or name of the logical unit
being initialized
key is the protection code, if any, required to

address lun

Example: Initialize the file:name directory on logical unit
115, which has protection code X.

INIT,115,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Once specified, the input logical-
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

INPUT, lun, key, file

where
lun is the number or name of the logical unit
from which object modules are to be
input
key is the protection code, if any, required to
address lun
file is the name of the RMD file containing

the required object module(s)
(]
Neither key nor file are required unless lun is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive, an error message
will be output.

Examples: Specify logical unit 6 as the device from which

object modules are to be input.

INPUT, 6

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

INPUT, 104,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums,
record sizes, loader codes, sequence numbers, and record
structures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object

FILE MAINTENANCE

modules are copied from the SW logical unit onto the
specified logical unit. The directive has the general form

ADD, lun, key
where
lun is the number or name of the logical unit
onto which object modules are to be
written
key is the protection code, if any, requiréd to
address lun

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation, size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-moduile-processing, reposi-
tion the logical unit to the beginning of the module.

Example: Add object modules to logical unit 104, which
has protection code D.

ADD, 104,D

9.3 VORTEX FOREGROUND FILE
MAINTENANCE (V$FGFM)

The VORTEX Foreground File Maintenance program pro-
vides a subset of the VORTEX FMAIN services. V$FGFM
executes as an independent task from the VORTEX
foreground library at the same priority as the calling task.
The interface to VEFGFM is the subroutines, V$FILE, which
must be in the Object Module Library and V$FMCB which
must be resident in the nucleus table area (this occurs
automatically during system generation unless modules are
specifically deleted).

The calling sequence to request a file service is as follows:

EXT VS$FILE
LDAI code
LDBi fmcb
JSR V$FILE, X

where

code is the operation code for the requested
service

0 = create
1 = delete
2 = rename

95

FILE MAINTENANCE

3 = enter
4 = unused

fmcb is the address of the file maintenance
control block (see table)

The create, delete, rename and enter requests perform the
same operations as in the VORTEX FMAIN program. The
unused request releases the unused portion of the named
file which is that area of the file beyond the current end-of-
file.

Upon exit from a file request the A register contains the
completion status code. The interface program allows only
one file request to be processed at a time. If upon entry a

previous request is being processed (V$FMCB is busy),
VS$FILE executes a 500 millisecond DELAY and tries again.
If ater 15 seconds (30 retries) V§FMCB is still busy V$FILE
will proceed to schedule V$FGFM and process the new
request. The completion status codes are as follows:

busy

request completed without error
invalid request code

name already in directory
name not found

unsufficient space

input/output error occurred
directory structure error

A BWN = O =

The file maintenance contro! blocks for the requests must

be arranged as follows:

Word Create

0 logical unit

1 key

2

3

4 file name

5 number of sectors
6

7

9-6

Delete. Unused

Rename Enter

fogical unit logical unit
key key
file name current file name

new file name

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

The 1/0 utility program (IOUTIL) is a background task for
copying records and files from one device onto another,
changing the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
directive /IOUTIL (section 4.2.20) on the Sl logical unit. If
the SI logical unit is a Teletype or a CRT device, the
message U** is output to indicate that the S| unit is
waiting for 1OUTIL input. Once activated, IOUTIL inputs
and executes directives from the Sl unit until another JCP
directive (first character is a slash) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

"The IOUTIL buffer is usually 1024 words long. The /MEM
directive can be used to increase this size by increments of
512 words.”

IOUTIL has the option of calling VRSW (multi-volume reei-
switch routine), when using a copy file, copy record, skip
file, skip record, format and dump, position file, and pack
binary.

Error Messages applicable to IOUTIL are given in Appendix
A.10. Recovery from an error is by either of the following:

a. Input the character C on the SO unit, thus directing
IOUTIL to go to the St unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next IOUTIL directive is then input
from the S| unit.

If recovery is not desired, input a JCP directive (section

4.2) on the SO unit to abort IOUTIL and schedule the JCP
for execution.

10.2 170 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

. COPYF Copy file

. COPYR Copy record

. SFILE Skip file

. SREC Skip record

. DUMP Format and dump
. PRNTF Print fite

. WEOF Write end of file
. REW Rewind

. PFILE Position file

. CFILE Close file

. PACKB Pack binary

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded

blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period () is a line
terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

name,p(1),p(2),...p(n)

where

name is one of the directive names given
: above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

The IOUTIL buffer is usually 1024 words long. The /MEM

directive can be used to increase this size by increments of
512 words.

10.2.1 COPYF (Copy File) Directive

This directive copies the specified number of files from the
indicated input logical unit to the given output logical
unit(s). The directive has the general form

COPYF.f,iu,im,irl,ou(1),om,orl,0u(2),0u(3),....,ou(n)

where

f is the number of input files to be copied
(must be 1 for RMD)

v is the name or number of the input
logical unit

im is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files

it is the number of words in each record of

the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the

1041

INPUT/OUTPUT UTILITY PROGRAM

read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

own) is the name or number of an output
logical unit
om is O for binary, 1 for ASCI|, 2 for BCD, or

3 for unformatted output files

orl is the number of words in each record of
the output files. if a value of zero is
specified then the output record length
is equal to the input record length.
Any RMD involved with copying files, whether as input or
output medium, must have been previously positioned with
a PFILE directive (section 10.2.9).

if a difference in record lengths irl and orl causes a partial
record to remain when an end of file is encountered, the
part-record is filled with blanks and thus transmitted to the
output unit(s).

The following relation holds for input/output record
lengths:

Input Output

RCL RCL Output Format

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy three files containing 120-word records
from the PI logical unit onto logical units LO, 50, and 51 in
40-word records.

COPYF,3,PI,1,120,L0,1,40,50,51

10.2.2 COPYR (Copy Record) Directive
This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form
COPYR,r,iu,im,irl,ou(1),om,orl,0u(2),0u(3),...,ou(n)
where
r is the number of input records to be

copied, or O if copying is to continue to
the end of file

102

iu is the name or number of the input
logical unit
im is O for binary, 1 for ASCH, 2 for BCD, or

3 for unformatted input records

irl is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
inputrecord length.

each ou(n) is the name or number of an output
logical unit

om is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output records

orl is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.9).

If a difference in record lengths irl and ori causes a part-
record to remain when an end-of-file mark is encountered,
the part-record is filled with blanks and thus transmitted to
the output unit(s).

Example: Copy 25 unformatted records of 200 words each .
from the SS logical unit to the BO and PO units in binary
format with 40 words per record.

COPYR, 25,88,3,200,B0,0,40,P0

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can-be
accomplished by assigning two different logical units to this
RMD partition, and then issuing two PFILE directives
(section 10.2.9), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additional positioning within
the files can be specified by SREC directives (section
10.2.4).

The following relation holds for input/output record
lengths:

input Output Output Format

RCL RCL

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

Input Output

RCL RCL Output Format
fixed random (0) Unblocked only
random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCIt
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy the first ten records from file EDIT1 to
record 11 through 20 of file EDIT2. Both files are on RMD
partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (default vaiue = 0).
Assign the Bl and BO logical units to the disc.

/ASSIGN,BI=DOOK
/ASSIGN,BO=DOOK

/IOUTIL
PFILE,BI,,120,EDIT1
PFILE,BO,, 120 ,EDIT2
SREC,BO, 10

COPYR, 10,BI,1,120,B0, 1,120

10.2.3 SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units,
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. The directive has the general form

SFILE jun,neof

where
lun is the name or number of the affected
logical unit
neof is the number of end-of-file marks to
be skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, IOUTIL outputs to the
S0 and LO logical units the error message 1U05,nn, where
nn is the number of files remaining to be skipped.

Example: Move tape on unit Pl past three end-of-file marks.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers and RMDs, causes the specified logical unit
to skip forward the designated number of records. The
directive has the general form

SREC,lun,nrec

INPUT/OUTPUT UTILITY PROGRAM

where
lun is the name or number of the affected
logical unit
nrec is the number of records to be skipped

Note that, unlike JCP directive /SREC (section 4.2.8), the
IOUTIL directive SREC cannot skip records in reverse.

If lun designates an RMD partition, the device must have
been previously positioned with a PFILE directive (section
10.2.9).

If a file mark, an end-of-tape mark, or an end-of-device
mark is encountered before the required number of records
has been skipped, IOUTIL outputs to the SO and LO logical
units the error message 1U05,nn, where nn is the number of
records remaining to be skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI, 40

10.2.5 DUMP (Format and Dump)
Directive

This directive copies the specified number of records from
the indicated input logical unit, formats them for listing,
and dumps the data onto the output unit in octal format,
ten words per line, with one blank between words. The
directive has the general form

DUMP ¢ iu,im,irl,ou

where

r is the number of input records to be
dumped or is zero if dumping is to
continue to an end-of-file

iu is the name or number of the input
logical unit

im is O for binary, 1 for ASCIi, 2 for BCD, or
3 for unformatted input records

irl is the number of words in each record of
the input

ou is the name or number of the output

unit, which cannot be an RMD partition

The first line of the dump contains the record number
before word 1, but subsequent lines do not have the record
number.

If ASCll mode is specified by im then an ASCIl scan and
dump will be made in addition to the octal dump. Printable

103

INPUT/QUTPUT UTILITY PROGRAM

character bytes will appear to the right of each line of the
octal dump. Non-printable characters will appear as ASCI|
blanks. ASCil scan and dump is suppressed if dump is to a
TY or CT device regardless of the mode.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP, 40,5W,0,50,L0

10.2.6 PRNTF (Print File) Directive

This directive prints the specified number of files from the
indicated input logical unit to the list output logical unit(s)
specified. The directive has the general form

PRNTF,f,iu,0u(1),0u(2),...0u(n)
where

f is the number of files o be printed
u is the name or number of the input
logical unit

each ou(n) is the name or number of a list output
’ logical unit

If an RMD is specified as the input logical unit, it must
have been previously positioned with a PFILE directive
(section 10.2.9) and only one file may be printed at a time
(i.e., if it is greater than 1, it is defaulted to 1), because the
end-of-file terminates printing.

This directive is designed to print list output files directed
to devices other than a line printer (i.e., magnetic tape or
disc). Therefore, the input file is read in ASCII mode (1),
132 characters, and the list output records are written also
in ASCIl mode.

Example: Print two (2) files on magnetic tape unit 18 on
LO.

/10UTIL
REW, 18
PRNTF, 2, 18,L0O
/ENDJOB

Example: Print an RMD file called SYSOUT in fogical unit
25to LO.

/I0UTIL
PFILE,25,,120,5YS0UT
PRNTF, 1,PI,LO
/ENDJOB

10-4

10.2.7 WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on each logical unit
specified. The directive has the general form

WEOF ,lun,lun,....lun
where each lun is the name or number of a logical unit
upon which an end-of-file mark is to be written.
Example: Write an end-of-file: mark on" the BO logical unit

and on the PO logical unit.

WEOF ,BO, PO

10.2.8 REW (Rewind) Directive
This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. The directive has the general form

REW, lun,lun,lun

where each lun is the name or number of a logical unit to
be rewound.

Example: Rewind the Bl and PO logical units.

REW,BI, PO

10.2.9 PFILE (Position File)
Directive

This directive, which applies only to rotating-memory
devices, causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

PFILE lun, key,recl,name
where

un is the name or number of the affected
logical unit

key is the protection code required to
address lun

recl is the number of words in each record of
the file

name is the name of the file to which the

logical unit is to be positioned

Since IOUTIL has only six FCBs, there can be a maximum
of six files open at any given time.

Example: Position the Pl logical unit, using protection
code Z, to the beginning of the file FILEXY, which contains
60-word records.

PFILE,PI,Z%, 60, FILEXY

10.2.10 CFILE (Ciose File) Directive

This directive, which applies only to RMD partitions, closes
the specified file. The directive has the general form

CFILE, lun,key,name,add
where
lun is the name or number of the logical unit
containing the file to be closed
key is the protection code required to

address lun
name is the name of the file to be closed

add is O (default value) if the current end-of-
file address on the RMD file-directory is to
remain unchanged, or 1 if it is to be
replaced by the current record (i.e., actual)
address

A PFILE directive (section 10.2.9) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
IOUTIL has only six FCBs, there can be a maximum of six
files open at any given time.

Example: Close the file WORK on the SW logical unit
(protection code B) and update the file directory.

CFILE, SW,B,WORK, 1

10.2.11 PACKB (Pack Binary) Directive

This directive copies the specified number of files from the

indicated input logical unit to the given output logical

unit(s). It causes each new system binary program to start

on a record boundary. The directive has the general form
PACKB,f,iu,im,irl,ou(1),om,orl,ou(2),...ou(n)

where

f is the number of input files to be copied

iu is the name or number of the input
logical unit.

INPUT/OUTPUT UTILITY PROGRAM

im is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files.

in is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

ou(n) is the name or number of an output
logical unit.
om is O for binary, 1 for ASCII, 2 for BCD, or

3 for unformatted output files.

orl is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

The following relation holds for input/output record
lengths:

Input Output Output

RCL RCL Format

fixed fixed As defined (blocked
or unblocked)

random (0) fixed As defined (blocked
or unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Any RMD used in this directive must have been previously
positioned with a PFILE directive (section 10.2.9).

This directive can be used for any output media and any
record length. It is primarily intended to be used for RMD
output of 120 words. Use with non-RMD output may not
produce the intended effect.

Example: Pack one binary fite from the card reader onto a
RMD file on logical unit 25 in 120 word blocks:

PACKB, 1,CR,0,60,25,0,120

10.3 MULTI-VOLUME TAPE HANDLING. (V$RSW)

IOUTIL provides the operator with interfaces necessary for
handiing multi volume (i.e., multi-reel), magnetic tape files.
The routine directs the operator to unload the current
magnetic tape volume and mount a new one whenever end-
of-tape is encountered.

105

INPUT/QUTPUT UTILITY PROGRAM

The magnetic tape unit to be unloaded is given a rewind
directive and the following message is output to the
operator:

IOUTIL: UNLOAD LUN nn
IOUTIL: MOUNT NEXT VOLUME

where

nn is the logical unit number of the
magnetic tape to unload

10-6

After the message for mounting a new magnetic tape has
been output to the operator, the subroutine issues a
suspend request. When the new volume has been success-
fully mounted, the operator can continue execution by
keying in the following:

;RESUME, IOUTIL

It the mounting of a new magnetic tape volume is not

needed, the operator will key in the message ; ABORT,
IOUTIL on the OC device, which will return control to
JCP.

SECTION 11
VSORT (SORT/MERGE)

The VORTEX Sort/Merge (VSORT) task constructs a sorted
file in the order determined by fields selected by the user.

11.1 ORGANIZATION

VSORT is scheduled as a background task by the Job-
Control Processor (JCP, section 4.2.19) upon input of the
JCP directive

/LOAD, VSORT

Once activated, VSORT inputs the sort parameters from the
S| logical unit. The maximum number of VSORT directives
is five records. The directive ENDSORT terminates the
input of VSORT directives within five records. Upon
completion of the sort/merge, VSORT exits to JCP.

VSORT has a buffer area large enough for most sort/merge
operations. To increase the size of the buffer, input a

/MEM directive (see section 4.2.3) immediately preceding
the /LOAD,VSORT directive.

Inputs to VSORT comprise

a. VSORT directives (section 11.2) input through the SI
logical unit

b. File to be sorted, input through the INPUT logical unit
Outputs from VSORT comprise

a. Sorted file on the OUTPUT logical unit

b. Listiﬁg of VSORT directives on the LO logical unit

c. Listing of VSORT totals for the sort/merge on the LO
logical unit

d. Error messages, if any, on the LO logical unit

Error messages applicable to VSORT are given in Appendix
All.

VSORT performs either a full-record sort or a tag sort. In a
full-record sort the entire records are moved in central
memory in order to accomplish the sort. In a tag sort, only
the concatenated sorting control fields and the record
numbers are manipulated in central memory. VSORT will
perform the more efficient tag sort unless one of the
following conditions occurs:

a. INPUT file is notan RMD

b. The file used for INPUT is also used for another file in
the sort, either as a WORK or QUTPUT file

c. A user input exit routine is specified (by the INEXIT
directive)

Workspace Requirements: Each work file must be large
enough to contain a number of work records equal to the
number of input records. For tag sorts, the length of the
work records is equal to the sum of the length of the control
fields plus one word. On full-record sorts, the sum of the
control fields plus one input record length is needed.

Work records are blocked with a blocksize equal to a fourth
or third of the central memory workspace for the merge
phase.

Work space for the sort phase in central memory is
allocated dynamically to overlay the initialization routine
(about 2K), which occupies the highest memory locations of
VSORT. Work space for the merge phase occupies an
additional 1K in central memory. Additional work space
may be allocated for a background sort by using the /MEM
directive (JCP, 4.2.3).

11.2 VSORT DIRECTIVES
This section describes the VSORT directives.

a. Required Group

. SORT Sort directives follow

. INPUT Define logical unit for input
. QUTPUT Define logical unit for output
. WORK Define work fite(s)

. SORTKEY Define sorting field(s)

. ENDSORT Begin sorting

b. Optional Group

. INEXIT Use input preprocessor
OQUTEXIT Use output preprocessor

The general form of a VSORT directive is

name = p(1),p(2),...,p(n) terminator

where
name is one of the VSORT directives
p(n) is a parameter required by VSORT and

defined betow under the descriptions of
the individual directives

terminator is a blank or right parenthesis

VSORT (SORT/MERGE)

11.2.1 SORT Directive

This directive starts the series of directives. The general
formis

SORT
The word SORT must be followed by at least one blank.

The SORT directive must be the first directive on the first
control record.

11.2.2 INPUT Directive

This directive describes the sort input file which contains
the records to be sorted. it has the general form

INPUT = (lun,filename,key,recordiength)

where
fun is a 1- to 3-character decimal number
specifying the logical unit of the file
filename is a 1- to 6-character name of the file as
it exists on the RMD file directory
(required for all RMD files)
key is the single character file protection

key, as contained in the file directory for

the file (required only if the filename is

present and the RMD is protected
recordlength is a 1- to 4-digit decimal number

specifying the length in words of the
records in the file.

Eiample: Describe a sort input file on magnetic tape on
logical unit 18, which has 200-word records.

INPUT=(18,,,200)

11.2.3 OUTPUT Directive

This directive describes the output file which will ultimately
contain the sorted records. It has the general form

OUTPUT = (lun, filename, key,recordlength)

where lun, filename, key and recordiength are the same as
they are described in the INPUT directive (section 11.2.2).

Example: Describe a sort output file on a line printer logical
unit 5, which has a 60-word (120-character) record.

ouTPUT=(5,,,60)

11-2

11.2.4 WORK1,WORK2,WORK3, Directives

These directives describe the intermediate work files for
the sort. They have the general form

1
WORK 2 p = (lun,filename, key)
3

where lun, filename, and key are the same as described for
the INPUT directive (section 11.2.2).

The work files must be RMD files. Each file must have
sufficient space to contain the intermediate work records
equal to the number of records in the input file for the sort.

Example: Describe intermediate sort files named W1, W2,
and W3 on RMD logical unit 25. These fites do not have
protection keys.

WORK1={25,W1) ,WORK2=(25,W2) ,WORK3=(25,W3)

11.2.5 SORTKEY Directive

This directive describes one to six control fields to be used
to sequence the records of the sort input file. It has the
general form

SORTKEY = (sc(1),ec(1),order(1),...,sc(6),ec(6),order(6))

where each

sc(n) is a one- to four-digit decimal number
specifying the starting character (or
byte) position of the control field as it
exists in the input record, or, if there
positions are modified by an INEXIT
routine, as they exist in the modified
input record.

oc(n) is a one- to four-digit decimal number
specifying the ending character (or byte)
position of the contro! field. It must be
greater than or equal to the preceding
starting character position

order(n) is a single character A or D for
ascending or descending sequence,
respectively, for sorting the control field

At least one control field specification must be given. Each
control field specification must have all three parameters
specified.

Control fields may overlap.
Character positions are numbered starting with one.

The significance.of a control field depends on its placement
in the SORTKEY directive. The first control field defined is
the most important (or major) control field. The next is the
secondary (used in cases of matches in the first) control
field. Similarly, until the last specification given is the least
important.

\

Collating sequence: An algebraic collating sequence is used
to sort the data. Each word (in numeric data) or each byte
(in character data) is interpreted as an octal number
having an algebraic sign. Thus, ASCII characters have the
collating sequence from 0240 (low) to 0337 (high). If
characters are other than ASCII, the sign bit (bit 7) of each
8-bit character must be the same for all the characters.

Word-boundary data are treated as signed octal numbers
and have the collating sequence from 0100000 (low) to
077777 (high). Thus, FORTRAN variables of integer, real,
complex or logical types may be sorted with SORT control
fields. FORTRAN double-precision numbers cannot be
sorted because the sign of the number is not in the first
word.

Example: Describe two control fields, one is bytes 27 and
28 in ascending order, and the other is byte 1 through 4 to
be sorted in descending order.

SORTKEY=(27,28,A,1,4,D))

11.2.6 INEXIT Directive

This optional directive specifies whether a user-written
input-exit routine is to be called at the time the input file is

being read by the sort part of VSORT. The general form of
the directive is

INEXIT = YES
NO

The equal sign may be followed by a string of up to four
alphabetic characters. Unless YES is specified, the default
is NO (a user routine is not called). YES or NO must be
followed by at least one blank.

11.2.7 OUTEXIT Directive

This optional directive specifies whether a user-written
output exit routine is to be called at the time the final file
output file is being created by the merge phase of VSORT.
It has the general form

YES
OUTEXIT {NO }

The meaning of YES and NO is the same as described for
the INEXIT directive (section 11.2.6).

11.2.8 ENDSORT Directive

This directive signals the end of the sort directives. The
word ENDSORT must be followed by at least one blank as
the last directive on the last control record for VSORT.

VSORT (SORT/MERGE)

11.3 USER EXITS
User exits provide for the insertion, deletion, or modifica-
tion of input and output records by user-written routines.
Exits are requested by the VSORT directives, INEXIT =
YES and/or OUTEXIT = YES. The exit routines written by
the user are added to VSORT at load-module generation
time.
The input exit routine, if provided, is called for each input
record before it enters the sort. Possible uses of the input
exit are

+ Add input records

. Deléteinput records

« Create partor all of the input file

« Change input records, such as control fields

The input record length may be changed to the output
record length specified on the OUTPUT directive.

The output exit routine, if provided, is called for each
output record before it is written on the output file.
Possible uses for the output exit are

+ Add output records, effectively merging one or more
files with the sorted file

« Delete sorted output records, such as duplicates

« Change the sorted output records
If output records are added or changed, it's the user's
responsibility to ensure that the control fields of the output
records remain in sequence. '
11.3.1 Calling Sequence

VSORT uses the following calling sequence for user exits:

Word 1 JMPM XITn
Word 2 input buffer-address
Word 3 output buffer address
Word 4 flag
where
n is 1 for input exit and 2 for output exit
input is the address of input record passed to

buffer the user routine (INEXIT) or the address

address to which the user must move a record if
it is to be inserted before the output
record (or EOF) passed to the user
routine (QUTEXIT)

113

VSORT (SORT/MERGE)

output buffer is the address of the output record

address passed to the user routine (OUTEXIT)
or the address to which the user must
move a record if it is to be inserted
before the input record (or EOF) passed
to the user routine (INEXIT)

flag is set by VSORT as 0 for an EOF en-
countered, 1 for INEXIT, or 2 for OUT-
EXIT; otherwise it is set by the user rou-
tine as follows

Bit 0 = 1 accept input record (INEXIT)
or insert record in input buffer
before output record (OUT--
EXIT)

= 0 is ignore the record in the
input buffer

Bit 1 = 1 accept the output record
(OUTEXIT) or insert record in
the output buffer before the
input record (INEXIT)

0 ignore the record in output
buffer

After EOF notification has been given to the user input
{output) exit routine, the user routine may continue to pass
records to VSORT in the buffer, but the contents of the
buffer are ignored.

11.3.2 Implementation

The exit routines written by the user must have the
following external names

11-4

XiT1 User input exit entry point

XIT2 User output exit entry point

To build a load module using user exits, place the user exit
modules in front of the VSORT object module and proceed
to generate a singte load module.

11.4 VSORT MESSAGES

In addition to listing the VSORT directives, VSORT outputs
the following totals:

a. End of sort phase totals

SORT PHASE COMPLETE, TOTAL MERGE
RECORDS=XXXXX

INPUT XXXXX ACCEPTED=XXXXX
INSERTED=XXXXX DELETED=XXXXX

b. End of merge phase totals

SORT COMPLETE,OUTPUT RECORDS
COUNT=XXXXX

MERGE=XXXXX ACCEPTED=XXXXX
INSERTED=XXXXX DELETED=XXXXX

SECTION 12
DATAPLOT Il

DATAPLOT |l is a collection of FORTRAN callable subrou-
tines that provide the user with interface to the Varian
STATOS 31 and STATOS 33 electrostatic printer/plotters.

Using DATAPLOT I, the programmer can specify the
desired graphic output at the functional level. For example,
DATAPLOT il enables the STATOS printer/plotter to

« Draw a vector between two given points
« Produce a scaled set of axes for a given magnitude

« Produce a plot from a set of input data, using specified
plot point markers

12.1 SYSTEM FLOW OUTLINE

DATAPLOT Il consists of FORTRAN and DAS MR subrou-
tines which permit STATOS 31 or STATOS 33 printer/
plotters to draw lines, numbers, letters, symbols, and chart
axes. Provision is also made for plotting lines from existing
X-Y arrays and/or data from an external data base.

Figure 12-1 shows the relationship between the user and
the DATAPLOT II Graphics System.

12.2 HARDWARE REQUIREMENTS

DATAPLOT subroutines can be linked to either foreground
or background tasks under VORTEX (see VORTEX installa-
tion manual for memory requirements). DATAPLOT can be
used with the following considerations:

The STATOS equipmeat that is supported under

VORTEX is
Unit Mode! Width
STATOS 31 70-6602 14-7/8 inches
STATOS 31 70-6608 11 inches
STATOS 33 70-6611/21 8-1/2 inches
STATOS 33 70-6613/23 11 inches
STATOS 33 70-6615/25 14.7/8 inches
STATOS 33 70-6617/27 22 inches

b. The STATOS unit must be operated under BIC control
with PIM assigned interrupts. In addition, the STATOS
31 printer/plotters will support the single-line Input
Buffer Option (Model 31-152); except, those without a
hardware character generator.

c. DATAPLOT Il does not support any of the Hardware
Character Generator options, the Simultaneous Print/
Plot options, or the High Speed option.

12.3 GENERAL DESCRIPTION

12.3.1 DATAPLOT il Organization

DATAPLOT |l is organized into the following five logical
operations:

« Defining the Plot File and Initialization
« Building the Plot File

« Sorting the Plot File

¢ STATOS Paper Control

« Outputting the Plot File in STATOS Raster Format

These are shown schematically in figure 12-2,

Defining the Plot File: Subroutine DPINIT defines which
VORTEX logical unit will contain the Plot File, the logical
size of the plot file records, and the block size of the output
device for the plot data. If DPINIT is not called, the plot file
will default to System Scratch (SS) with 120-word records,
and plot data will be output in blocks of 88 words for the
14-7/8 inch STATOS. Subroutine DPINIT must be called
when Dataplot is operating in a foreground mode to
prevent a possible conflict with background programs
which may use System Scratch.

Building the Plot File: If the plot file is to be built through
calls to Dataplot subroutines ORIG, CHAR, PLOT, VECT,
NUMBER, SCALE, AXIS, DATA, SYMBOL, APPEND, and
LINE, the plot file must be assigned to an RMD device or
the sort subroutine will not work.

STATOS Paper Control: Subroutine CUT, ENDCUT, and
TOPFRM are auxiliary paper control subroutines. These
subroutines issue FUNC commands to the output driver
and will be processed as applicable to the driver.

1241

DATAPLOT 1l

VAI-328

VTIl-3224

122

SYSTEM
DIRECTIVES

USER
FORTRAN
PROGRAM

-
|

|
!
{
l

OPERATING SYSTEM

|
|
si l
»| 08 contROL DATAPLOT 11 |
PROCESSOR LIBRARY
| |
| oM |
[| o~
| y |
é)) FORTRAN BO/8l LOAD :'> GRAPHICS
| COMPILER MODULE I OUTPUT
[|
s [|
DATA FLOW N
COMPILATION CONTROL FLOW ———p
LISTINGS
Figure 12-1. DATAPLOT Il Graphics System Data Flow
PLOT FILE
IDENTIFICATION DATA FLOW _—_:)?
AND
INITIALIZATION CONTROL FLOW ———»
BUILDING
THE
PLOT FILE \
o /
= SORTING
P THE PLOT FILE
USER PLOT FILE
FORTRAN
PROGRAM
OUTPUTTING /
THE
PLOT FILE J>
STATOS
PRINTER
STATOS PLOTTER
PAPER >
CONTROL

Figure 12-2. DATAPLOT Il Organization

Outputting the Plot Flle: Subroutine DPPLOT outputs
STATOS raster format data. DPPLOT is called by subroutine
PLOT when the plot is terminated.

12.3.2 System Considerations

DATAPLOT It is supplied as three groups of object module
routines. The first group is the basic Dataplot Object
Module (BDPOM). It contains the subroutines for initializ-
ing the plot file, drawing lines, sorting and outputting the
piot file, and paper control. The second group is the
VORTEX (pen-plotter compatible) Dataplot Object Module
(VDPOM). It contains higher level routines for building the
plot file. The third group is the MOS (compatible) Dataplot
Object Modute (MPBOM). It contains calls which are
compatible to the MOS Dataplot I1.

DATAPLOT Il is put onto the object module library as a
combination of either the BDPOM and VDPOM, or the
BDPOM and MDPOM, depending on which set of higher
level subroutines the user wishes to call. The VDPOM
routines offer axes, character and number strings at any
angle, while the MDPOM offers only two angles (O degrees
and 90 degrees). The MDPOM subroutines are provided for
users who have aiready written MOS programs calling
DATAPLOT II.

The MDPOM routines may be placed on an alternate object
module library and the VDPOM routines may be placed
on the standard OM library. Programs using the MDPOM
routines may search the alternate library before the stan-
dard OM library, but this also prevents a load-and-go opera-
tion.

When converting programs written for MOS DATAPLOT I,
a call to PLOTS must be substituted for the calls to OPEN,
HOPEN, and DOPEN. The call CALL PLOT (0.0,0.0,999)
must be substituted for calls to CLOSE, HCLOSE, and
DCLOSE. There is a shift in the logical plot origin if the
pseudo-pen encounters a plot boundary in VORTEX
DATAPLOT 11 (incl MDPOM). There is no such shift in the
MOS DATAPLOT Il routines.

DATAPLOT Il subroutines are listed below:
Dataplot Il initialization

DPINIT BDPOM
PLOTS BDPOM

Building the Plot File

PLOT BDPOM
VECT BDPOM

DATAPLOT i

ORIG BDPOM
FACTOR BDPOM
WHERE BDPOM
MLTPLE BDPOM
APPEND BDPOM
NUMBER MDPOM
NUMBER VDPOM
SCALE MDPOM
SCALE VDPOM
AXIS MDPOM
AXIS VDPOM
DATA MDPOM
LINE VDPOM
SYMBOL MDPOM
SYMBOL VDPOM
CHAR MDPOM

Sort and Output

DPSORT BDPOM
DPPLOT BDPOM

Paper Control

TOPFRM BDPOM
cur BDPOM
ENDCUT BDPOM

12.3.3 VORTEX Considerations

Plot File Assignment: The user must supply a secondary
storage file sufficiently large enough to hold the plot file
when the plot file is unsorted or generated by calls to
DATAPLOT Il subroutines ORIG, VECT, CHAR, NUMBER,
SCALE, DATA, AXiS, LINE, PLOT, SYMBOL, or APPEND.
Four 16-bit words are used for each vector or character to
be plotted, and four 16-bit words are used for the end-of-
plot indicator. An error (DP00) wilt be reported if the plot
file is overflowed.

The user may supply a sorted plot file in vector-end-point
format. Sorted data may be plotted directly from the plot
file by assigning the plot file to the logical unit containing
the data during the call to DPINIT.

User-Supplied Central Memory Buffers: DATAPLOT | may
use up to three types of buffers which the user must supply
by a FORTRAN DIMENSION statement. The buffer types
are:

« DATAPLOT tl Working Buffer -- defined in call to PLOTS

» Append FILE |/0 Buffer -- defined in calt to APPEND

« Data Array Buffer(s) - used by DATA and SCALE

subroutines

123

DATAPLOT it

DATAPLOT 1l Working Buffer: The DATAPLOT I Working
Buffer is used in building, sorting, and outputting the plot
file.

The algorithm for determining the size of the DATAPLOT Il
working buffer is:

22+PFI0 + RO + 6(VEC,,,)

where
PFlO is the size of the plot file 1/0 buffer
RO is the size of the raster (STATOS) output
buffer
VEC,,.x is the maximum number of vectors or

characters on any one STATOS scan line

The plot file 170 buffer size is a multiple of the physical
record length of the plot file, and is specified in the call to
DPINIT.

The raster output buffer size is determined by the width of
the STATOS printer/plotter for which the plot is intended,
as shown in the following table, and is specified in the call
to DPINIT.

STATOS Width No. Raster
Model Stylii/Line Buffer Size
70-6608 11 inches 1056 66
70-6602 14-7/8 inches 1408 88
706611 and 8-1/2 inches 800 50
706621

70-6613 and 11 inches 1056 66
70-6623

706615 and 14.7/8 inches 1408 88
70-6625

70-6617 and 22 inches 2048 132
70-6629

The buffer is also used to hold vectors and characters at
the time they are being converted to STATOS raster format.
A six-word entry will be placed in this buffer when the
vector or character is first to appear on a STATOS scan
line. The entry remains until the vector or character
reaches its last STATOS scan line.

An error (DPO1) will be reported if the concurrent vector
buffer is overflowed.

Example: DATAPLOT 11 is going to plot from a plot file
whose record length is 120, to a STATOS printer/plotter
whose width is 14-7/8 inches. The maximum number of
vectors or characters expected on any one raster line is
130. The length of the working buffer should be:

22+120+88+780 = 1010

12-4

Minimum and Maximum Plot Values: The minimum x value
is -30.00 inches. The maximum x value is +297.00 inches.
The maximum y value is determined by the width of the
STATOS for which the plot is intended. These values are
shown in figure 12-3.

|r 327.00" |

WIDTH OF
STATOS

i,

T 0.50"
T

VT \/

‘——30.00" 297.00" i

A = Physical origin (0.0,0.0)
B = Starting logical origin (0.0,0.0) or (0.0,0.5) physical.

VTI1-3088

Figure 12-3. Minimum and Maximum Plot Values

The logical origin may be moved by calling subroutine
PLOT or ORIG. Subroutine PLOT will move the logical origin
referenced to the last logical origin. Subroutine ORIG will
move the logical origin referenced to the physical origin.

If the plot boundaries are encountered while building the
plot file, the fogical origin will be effectively shifted in a
manner similar to a pen plotter. An error (DP04) will be
reported.

12.4 DATAPLOT II SUBROUTINES

The general form of the DATAPLOT Il functions is:
(statement number) CALL S (p(1),p(2),...p(n))

where:

(statement is the optional statement number.
number)

S is the name of the subroutine.

p(1),..p(n) are the parameters, if any.

12.4.1 DPINIT (System File Initialization)

This function enables the user to specify certain initial
conditions relating to the plot file and plot file 170 buffer.
In the absence of this function, the default parameter
values shown in the parameter description will exist.

The function has the general form

CALL DPINIT (lun,key,name,Ipitbf,outsiz)*

*BDPOM
where
Default
lun is the number or variable of the plot 8
file logical unit (integer).
key is the protection key, if any. None
name RMD: is the six-character name of the SS
plot file. It may be given as an array (background
name or a Hollerith constant scratch file)

non-RMD: Not used.

ipltbf is the length, of the plot file 1/0 buffer. 120
(Integer)

outsiz is the block size of the output plot data 88
as given in section 12.3.3 (Integer).

Error Conditions: None

Example: Select logical unit 25, file name PLTFIL, protec-
tion key Z, length 120 as the plot file. The output is to go to
a STATOS, width 14-7/8 inches.

CALL DPINIT (25,2HbZ,6HPLTFIL,120,88)

12.4.2 PLOTS (Work Buffer Initialization)

The PLOTS function is used to initialize the DATAPLOT Il
work buffer. It must be called prior to any calls to the PLOT
subroutine and prior to calls to higher level plot
subroutines.

The function has the general form

CALL PLOTS (ibuf,nloc,lun)*

“BDPOM

DATAPLOT Il

where

ibuf is the name of the user-supplied storage
area to be used as a work buffer by
DATAPLOT . This array should be
dimensioned by the user in his
FORTRAN program.

nioc - is the number which identifies the size
of the work buffer (ibuf). It will normally
be the same number used in the
DIMENSION statement. The size is
determined by the algorithm supplied in
section 12.3.3 (Integer).

lun is the logical unit number of the output
device (Integer).

Error Conditions:

Condition: Work buffer size is too small
Action: Incomplete Plot

Message: DPOL

Conditions: PLOTS not called

Action: Abort Plot

Message: DP05

Example:

DIMENSION IBUF (1500)
CALL PLOTS (IBUF,1500,5)

The above defines logical unit number 5 as the output
device for the data in STATOS raster format. Buffer I1BUF,
of length 1500 words, will be used as a central memory
work area by DATAPLOT Il.

12.4.3 PLOT (Generate Plot)

The PLOT function is basic to the generation of graphic
output. it may be used to draw lines between points, define
new plot origins, sort plot data, cause the transfer of plot
information to the output device and terminate plot
generation.

The function has the general form

CALL PLOT (x,y, *Idraw)*
*BDPOM

1256

DATAPLOT 1l

where

X,y are the x and y coordinates, in inches
from the currently defined origin (Real).

t draw is an integer which determines whether
or not a line is drawn from the ""current”
x,y coordinates to the coordinates
defined in the call. It may also be used to
define a new plot origin or to terminate
the plot generation process and cause
transfer of plot information to the output
device.

If IDRAW = 2, a line is drawn from the current x,y

coordi to the coordi defined in the call. The
new coordinates then b the current xy
coordinates,

If IDRAW = 3, the coordinates in the call become the
current x,y coordinates, but no line is drawn.

If IDRAW = -2 or -3, a new origin is defined at the call
coordinates and the operation is completed as if
IDRAW were positive. The current x and y coordinates
are set to zero with respect to the new origin. if no
call has been made to MLTPLE, or if the last call to
MLTPLE was made with IND = 0, the current plot
will be terminated and subsequent plotting will be
defined with reference to a new origin on the paper. If
the last call to MLTPLE was made with IND = 1, a
redefinition of the origin will occur and subsequent
plot definitions will be treated as belonging to the
current plot.

If IDRAW = 999, the plot generation process will be
termil d and all lated plot information will
be transferred to the output device. Further calls to
PLOT are not processed.

Error Conditions:

The normal pen plotter routines do not keep track of the
actual location of the pen, but instead always assume that
the pen can be moved from the current location to the new
location and that enough commands are output to
accomplish this. if a mechanical stop is encountered during
plotting, the motion in that direction is simply inhibited by
the plotter. Because the mechanical stops are not precise,
errors will be produced if a mechanical stop is encountered
during plotting. However, this is sometimes done before
initiating a plot in order to position the pen in a known
location before beginning the actual plot.

DATAPLOT |l routines have software stops contained
internally and attempt to produce the same effect as a
mechanical stop. If a plot boundary is encountered, an

12-6

error (DP04) will be reported, the line will extend toward
the boundary and follow the boundary to the final position,
and the origin will be effectively shifted in a similar
to the pen plotter.

Examples:
CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,2)

The above calls will draw a line between (1,2) and (2,2).

CALL MLTPLE (1)

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,3.0,-2)
CALL PLOT (1.0,1.0,2)

The above calls will draw a line in absolute coordinates

from (1,2) to (3,4) and redefine the plot origin (0,0) to (2,3)
in absolute coordinates.

12.4.4 SCALE (Generates Scale Factor)

This subroutine scales data by computing a scale factor
and a displacement factor.

The subroutine has the general form

CALL SCALE (arr,npts,pgsz, +int)*

or
CALL SCALE (arr,pgsz,npts, = int)**
*MDPOM
**VDPOM
where
arr is the name of the (real) array to be
scaled.
npts is the number of points to be scaled in
the array. Normally, all points are scaled
(Integer).
PESZ is the size of the page (linear interval in

inches) within which the data must fall.
It must be greater than 1.0 inch (Real).

% Int is the interval at which the array is to be
sampled.

If INT is positive, the selected displacement
approximates a minimum, and the scale factor is
positive.

If INT is negative, the selected displacement
approximates a maximum, and the scaling factor is
negative (VORTEX call only).

The array must be dimensioned at least two elements
larger than the actual number of data values it contains.
The calculated displacement will be stored in
ARR(NPTS +1), and the calculated scale factor will be
stored in ARR(NPTS +2).

The subroutine scales data within the following constraints:
a. Thescalefactorsis 1.,2., 4., 5., or 8, times 10E(n).

b. The displacement is an integral multiple of the scale
factor.

c. The displacement is .LE. the minimum value in the
array.

d. Thedisplacement + the scale factor (units/inch)* axis
length is .GE. the minimum value in the array.

Examples are shown in the sample programs (section 12.6).
Error Conditions: None
Examples:

1. Given an array of 24 data values to be plotted over a
5-inch axis, assume the minimum value in the array is
1.00 and the maximum is 42.00. The statement CALL
SCALE (ARR,5.0,24,+1) wouid give the following
results:

Units/inch = (42.00-1.00)/5.0 = 8.2
SF (scale factor) = 10.0
VLO (first value plotted) = 0.0

VLO value is stored in ARR(25)
SF value is stored in ARR(26)

Using these values, AXIS would draw the following axis line:

,—————(Range of Data)—m——«——

| 1 1 1 1 1
0.00 10.00 20.00 30.00 40.00 50.00

2. Assume that the array of Example 1 is to be plotted on a
4 inch axis, from maximum to minimum. CALL SCALE
(ARR,4.0,24,-1) would give these results:

SF = (1.00-42,00)/4.0 = -10.25, which is
adiusted to -20.

Minimum multiple = 0.00; VLO = Minimum
+ (AXLEN * SF) = 80.00

In this case the following axis'would be drawn:

,—— (Range of Data) ——

[T T T T
80.00 60.00 40.00 20.00 0.00

DATAPLOT Il

3. Assume 100 points are to be plotted on a 4 inch axis
from maximum (+22) to minimum (-9), using every
other data value in the array. The DIMENSION
statement should specify ARR(204), and the calling
sequence is CALL SCALE (ARR, 4.0,100,-2).

Initial SF = (-9 -22)/4 = -7.75, adjusted to -8.

Initial VLO = +16.00; last value on axis = -16.00.

The axis range is inadequate for the data range, so SF
is revised to the next higher interval.

Revised SF = -10., stored in ARR(203).

Revised VLO = 30.00, stored in ARR(201).

The resulting axis would appear as follows:

———— (Range of Data) ————

f T T T U
30.00 20.00 10.00 00.00 -10.00

12.4.5 AXIS (Generate Segmental Axis)

Subroutine AXIS produces entries into the plot file for an
axis with the markers every inch, an axis label and number
labels for each tic mark, using the results of the SCALE
subroutine if desired.

The subroutine is of the general form

CALL AXIS (x,y,axih,idir,bcd,t nch,vio,sf)*
or
CALL AXIS (x,y,bcd,x nchar,axih,angle,vio,sf)**

* MDPOM
**VDPOM

where

X,y is the starting point on the page of the
axis to be drawn (Real).

axih is the length of the axis in inches. The
value given will be truncated to the next
smallest integer value (Real).

idir is the axis direction. Zero for x direction.
Non-zero for y direction (Integer).

bed is the first word address of a character
string to be plotted as a label for the axis.
If there is no label, use ¥dummy space.

12-7

DATAPLOT |

-+nchar NCHAR is the number of leiters con-
tained in the character string to be plot-
ted as a title (Integer).

If NCHAR<O: the title, tic marks
and interval labels
will be plotted on the
clockwise side of the
axis.

If NCHAR>0: the title, tic marks
and interval labels
will be plotted on the
counter-clockwise
side of the axis.

“+nch NCH is the number of letters contained
in the character string to be plotted as
a title (Integer).

I NCH=0, the title, tic marks, and inter-
val labels will be plotted on the clock-
wise side of the axis.

If NCH=>0, the title, tic marks, and inter-
val labels will be plotted on the
counter-clockwise side of the axis.

vio is the number to be plotted at the start-
ing point of the axis (Real).

sf is the scale factor (units/inch) to be
used in labelling the 1-inch intervals. By
making SF = ARR(NPTS +2) (see
SCALE routine), the axis and data will
have the same scale factor (Real).

angle is the angle at which the axis is to make
with the x axis.

The interval labels will be scaled by powers of 10 if they are
too large or too small to fit into two decimal place accuracy.
Thus, assuming a scale factor of 1000./inch, 12000. would
be printed 12.00 on the interval tic mark, but a note would
be added to the axis label: “x10"."

The SCALE routine should be used prior to using AXIS if SF
= ARR(NPTS + 2).

Error Conditions: None
Example:

CALL AXIS (0.0,0.0,5.0,0,4HAXIS,
4,5.0,100.0)=*

CALL AXIS (0.0,0.0,4HAXIS,-4,5.0,
0.0,5.0,100.0)%*

* MDPOM

** VDPOM

12-8

The resulting axis would appear as follows:

xy _ angle, idir
| -7
L\ axh .
)
| [[| ! 1
00.’50 10.50 20.50 30.50 40.50 50.50
vfo

AXIS * 10!

sf
ibcd,nchar

12.4.6 SYMBOL (Generate Symbols)

This function generates plot file entries defining printable
characters. Each entry contains an x and a y coordinate, a
code which specifies that the entry is for a character, a
code identifying the character and codes for size and
orientation. The characters are software generated dot
matrix characters in two sizes (5 x 7 and 10 x 14) and four
orientations.

The function is of the general form
CALL CHAR (x.y,ibcd,isoar,+nchar,ispac)*
CALL SYMBOL (x,y,height,ibcd,angle,=nchar)**
* MDPOM

** VDPOM

where

X,y are the x and y coordinates (in inches) of
the first letter to be plotted. x will be the
minimum x value of the character and y
will be the minimum y value of the
character (Real).

ibcd is the address of the first word contain-
ing the ASCIlI character string to be
plotted. It can be given as an array name
or a Hollerith constant.
isaor is the size and orientation:
0 = small, +90 degrees
rotation from x direction.
1 = small, O degrees rotation
from x direction.

2 = large, +90 degrees
rotation from x direction.

3 = large, O degrees rotation
from x direction.

height selects the character height. If height<
0.10, the characters will be 0.07
inches high. If height > 0.10,
characters will be 0.14 inches high
(Real).

angle is the angle, in degrees from the x-axis,
at which the character string is to be
plotted. The individual characters will be
plotted at 0, 90, 180, or 270 degrees
depending on the value of "‘angle’
(Real).

Ispac is the spacing constant in styli or scans
from the starting coordinate of the pre-
vious character. A negative number
causes default standard spacing (In-
teger).

nchar is the total number of characters to be
plotted in the string (Integer).

if NCHAR = 0, one character will be
plotted from the low order byte of the
word containing the string. (VORTEX
call only)

If NCHAR = -1, one symbol will be
plotted. The symbol must be identified
by setting IBCD to an integer (0 through
5). (VORTEX call only)

If NCHAR = -2 or less, one symbol wil
be plotted along with a vector from the
previous current location to the symbol
starting location. (VORTEX call only)

IBCD (when NCHAR 0) Symbol

1]

2 0

3 @)

4 a

5 o
Character Orientation and Coordinates:
Angle -44 46 136 226
(in to to to to
degrees) 45 135 225 315

wol e § o
MOS B a'a)

The dot references the starting coordinate of the character.

Error Conditions: None

DATAPLOT il

Example:

3 DIMENSION LABEL (3)
DATA LABEL/2HST,2HAT, 2HOS/
17 CALL CHAR (5.0,5.0,6HSTATOS,2,6,-1)
20 CALL CHAR (5.0,5.0,LABEL,2,6,-1)

Statement 17 will place six entries for large letters, 90
rotation from the x axis, standard spacing, into the plot file.
Statement 20 will do likewise. The characters “STATOS"
will be printed starting at 5.0,5.0 from the last origin.

25 CALL SYMBOL (2.0,2.0,0.14,6HSTATOS,45.0,6)

Statement 25 will place six entries for large letters into the
plot file. “STATOS" will be printed as follows:

X

12.4.7 NUMBER (Generate Number)

This function converts single precision real numbers to
character codes and places corresponding entries into the
plot file.

This function has the general form

CALL NUMBER (x,y,fpn,isaor,+ndec)*

or
CALL NUMBER (x,y,helght,fpn,angle,+ ndec)**

* MDPOM

** VDPOM

where

X,y are coordinates (in inches) of the first
number in the string (Real).

fpn is the real number to be plotted. If nega-
tive, will be prefixed with a minus sign.
Leading zeros will be suppressed, ex-
cept the zero to the left of the decimal
point. The real number is rounded by
adding five to the digit to the right of
the last digit to be plotted, then truncat-
ing the result (Real).

isaor is size and orientation:

0 = small, + 90 degrees rotation from
x direction (Default).

129

DATAPLOT (I

1 = small, O degrees rotation from x

direction.

2 = large, +90 degrees rotation from
x direction,

3 = large, O degrees rotation from y
direction.

height selects the character height. If height
= >0.10, the characters will be 0.07
inches high. If height = 0.10, char-

acters will be 0.14 inches high (Real).

angle is the angle, in degrees from the x axis,
at which the character string is to be
plotted. The individual characters will
be plotted at 9, 90, 180, or 270 degrees
depending on the value of “angle™
(Real).

ndec If this parameter is larger than zero, it
defines the number of digits to be plot-
ted to the right of the decimal point.

If NDEC = 0, the integer part will be
plotted followed by a decimal point only.

If NDEC = -1, only the integer part will
be plotted.

IfNDEC isless than -1, (NDEC) -1 digits
are truncated from the integer part (In-
teger).

The following table illustrates the use of the NDEC parame-
ter.

Suppose FPN = 123.4567; how the number actually will
appear is a function of the parameter NDEC.

NDEC Number Plotted Comments

4 123.4567

3 123.457 Note rounding action
2 123.46

1 123.5

[} 123.
-1 123
2 12 Note truncation action
-3 1
-4 Nothing is plotted
Error Conditions: None
Example:

CALL NUMBER (1.0,2.0,12.3,3,1)¢*
CALL NUMBER (1.0,2.0,0.14,12.3,
0.0,1)*
The above will produce the number 12.3 at location x =
1.0,y = 2.0in 10 x 14 character matrix, zero degrees from
the x axis.

* MDPOM ** VDPOM

1210

12.4.8 LINE (Generate Graph Line)

Subroutines DATA and LINE produce a data line with one
call. Prior to the call, the data must be placed in two arrays
which have been dimensioned to provide two extra
locations in each array. These must be placed at the end of
the arrays and contain the displacement and scale factors
in that order. The two arrays must be of equal size,*one
containing x values and the other y values.

The subroutine is of the general form

CALL DATA (xarr,yarr,npts,inc,t Ity,ieq)*
or
CALL LINE (xarr,yarr,npts,inc,t Ity,ieq)**

* MDPOM
** VDPOM
where
xarr is the name of the array from which x
values are to be extracted.
yarr is the name of the array from which the
y values are to be extracted.
npts is the number of data points to be plot-
ted from each array to the end of the
array (Integer).
inc is the increment at which the arrays are
to be sampled. INC = 1 means every
X,y pair is plotted. INC = 2 means every
other pair, etc. (Integer).
Ity indicates the type of line desired (In-

teger).

LTY<0: A symbol will be plotted at each selected point

but no lines will connect the symbols.

LTY=0: A line will be drawn connecting each selected

point. No symbols will be drawn.

LTY>0: A symbol will be plotted at each selected point

and a line will connect all symbols.

leq is the positive integer designating sym-
bol to be produced (1,2,3,4, or 5).

If LTY = 0, IEQ has no meaning.

Plot values will be generated by the following algorithm:

Plot Value = array value-—displacement

scale factor

Error Conditions:

Condition: The scale factor in the data
array = 0.0
Action: Incomplete plot
Message: ARITH OVFL
Examples:

DIMENSION XAR (6), YAR (6)
DATA XAR/1.0,2.0,3.0,4.0,1.0,1.0/
DATA YAR/1.0,1.0,1.0,1.0,1.0,1.0/

CALL DATA (XAR,YAR,4,1,LTY,1)
or
CALL LINE (XAR,YAR,4,1,LTY,1)

The above will produce the following plots:

ty>o [F—=H =]

(L1) 4.1)
LTY = 0

1y @1
ty<o [J O 0O O

an 1)

12.4.9 MLTPLE (Multiple Plot)

The sign of the PLOT parameter IDRAW is used to indicate
whether a new logical origin is to be defined. The MLTPLE
call allows the user to change the origin without terminat-
ing his current plot definition. If no call has been made to
MLTPLE, the. PLOT origin change is treated as the
completion of the current plot and the start of the new plot.

The subroutine is of the general form
CALL MLTPLE (ind)

*BDPOM
where

ind +1 = on future calls to PLOT, a
redefinition of the logical origin will not
be treated as the end of the plot, and
multiple logical plots will be treated as
belonging to the same real plot.

0 = on future calls to PLOT, a redefinition of the
logical origin will also be treated as the end of
the plot.

-1 = Same as +1 except that the accumulated
information from past PLOT calls defines a complete
plot and it should be output. Note that the state-
ment CALL MLTPLE (- 1) is exactly equivalent to:

DATAPLOT Il

CALL WHERE (x,y,fact)
CALL MLTPLE (0)

CALL PLOT (0.0,0.0,-3)
CALL MLTPLE (+1)

CALL PLOT (x,y,+3)

Error Conditions: None
Examples:
CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output two physical plots of one
line each.

CALL MLTPLE (1)

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output one physical plot with two
lines on the plot.

12.4.10 FACTOR (Alter Plot Size)

This function Is used to alter the overall size of the plot by
changing the ratio of the desired plot size to the normal
size.

The function is of the general form

CALL FACTOR (fact)

*BDPOM
where
fact is the ratio of the desired plot size to
normal plot size. | FACTOR is not called,
fact = 1.0(Real).
Error Conditions: None

Example: Make plot one-half normal size.

CALL FACTOR (0.5)

12.4.11 WHERE (Locate Coordinates)

This function returns information to the user. The three
variables designated in the calling sequence are set to the
current x and y coordinates and the current plot sizing
factor.

12-11

DATAPLOT I

The function is of the general form

CALL WHERE (rx,ry,rfact)*

“BDPOM
where
23 is the variable which will be set to the
current x coordinate.
ry is the variable which will be set to the
current y coordinate.
rfact is the variable which will be set to the
current plot sizing factor.
Error Conditions: None
Example:

CALL MLTPLE (1)

CALL FACTOR (2.5)

CALL PLOT (1.0,2.0,3)
CALL WHERE (XA,YA,F)
CALL PLOT (3.0,1.0,-2)
CALL WHERE (XB,YB,F)

The above sequence will set the variables as follows:

XA
YA
F

XB
YB

new origin defined

12.4.12 APPEND (Append File)

Previously generated files in vector-end-point format may
be added to the plot file and merged during the sort. A call
to APPEND must be made after the call to PLOTS. If the
file to be appended is not on an RMD device, it must be
previously positioned.

The function is of the general form

CALL APPEND (lun,key,name,abuff,labuff)*
*BDPOM

where

fun is the variable or number of the logical
unit containing the file to be appended
(Integer).

key is the protection key, if any.

name is the six-character name of the file to
be appended. It may be given as an
array name or a Hollerith constant.

abuft the name of the APPEND file input

buffer.

1212

abutf is the length of abuff (integer).

Error Conditions:

Condition: Wrong protection key
Action Append call is ignored
Message: 1004, xxxxxx

Condition: File name not found
Action: Append call is ignored
Message: 1010, xxxxxx

xxxxxx is the task name.
Examples:

117 CALL APPEND (18,0,0,BUFF, 1024)
136 CALL APPEND (132, 2HDP, 6HMAPDbD,
ABUFF,960)

Statement 117 will cause the file on logical unit 18 to be
appended to the plot file. BUFF will be used as the input
buffer. Statement 136 will cause the file named MAP on
logical unit 132, with protection code P, to be appended to
the plot file. ABUFF will be used as the input buffer. Data
will be input in blocks of 960 words (8 sectors).

12.4.13 TOPFRM (Top-of-Form)

TOPFRM subroutine will advance the paper to the next
TOP-OF-FORM mark or eleven inches, whichever occurs
first (FUNC code = 0). A Top-of-Form command will be
output to the output driver at the time the subroutine is
called.

The subroutine is of the general form

CALL TOPFRM*
*BDPOM

Error Conditions: None
Example:

CALL TOPFRM (Outputs FUNC (0)
to the plot output device)

12.4.14 CUT (Cut Paper)

The CUT subroutine issues a cut command (FUNC code =
20) to the output driver when the subroutine is called.

The subroutine is of the general form

CALL CUT*
“BDPOM

Error Conditions:

Condition: Paper cutter option not connected.
Action: Command ignored
Message: none

Example:
CALL CUT

A cut command (FUNC (20)) is sent to the plot output
device.

12.4,15 ENDCUT (Eject and Cut Paper)

The ENDCUT subroutine issues a FUNC code equal to 21
(cut command) to the output device and moves the paper
approximately 34 inches.

The subroutine is of the general form

CALL ENCUT*
*BDPOM

Error Conditions:

Condition: Qutput device not STATOS.,
Action: Command ignored
Message: None

Example:

CALL ENDCUT

The above issues a cut and move paper command to the
plot output device.

12.4.16 DPSORT (Sort Plot File)

This function sorts an RMD plot file. No sort is attempted if
the plot file is not assigned to an RMD.

DPSORT is also called by subprogram DPPLOT when
IDRAW = 999, or when IDRAW 1, or when MLTPLE is
set 0.

The function is of the general form

CALL DPSORT*
*BDPOM

Parameter Description: None

Error Conditions:

Condition: Data Plot working buffer too small.
Action: Abort program
Message: DPO1
Condition: Plot file not assigned to RMD.
Action: Abort program
Message: DPO7

Example:

CALL DPSORT

DATAPLOT 1l

12.4.17 DPPLOT (Output File)

DPPLOT subroutine converts the plot file to STATOS raster
format and outputs the raster data to the output device
specified in the call to PLOTS. DPPLOT is called by
subroutine PLOT when IDRAW = 999 or when IDRAW <0,
and MLTPLE = 0 or when MLTPLE is set<0, to output
the plot data.

This subroutine is of the general form

CALL DPPLOT*
*BDPOM

Parameter Description: None

Error Conditions:

Condition: Working buffer overflow
Action: Incomplete plot
Message: DPO1
Condition: Attempted to plot from unsorted File.
Action: Abort plot
Message: DPO2
Condition: End-of-plot indicator not detected.
Action: Abort plot
Message: DP03
Condition: Min/Max x/y values exceeded.
Action: Line will follow plot boundary,
plot origin will be shifted.
Message: DPO4
Condition: PLOTS not called.
Action: Abort plot
Message: DP05
Example:

DIMENSION IBUF (1200)

CALL PLOTS (IBUF,1200,5)

CALL DPINIT (107,2HbF,6HPLTFIL,
120,88)

CALL DPSORT | or CALL PLOT

CALL DPPLOT j (0.0,0.0,999)

The above program will output raster plot gata to logical
unit 5, block size 88, from an unsorted plot file residing on
logical unit 107, protection code of F, name PLTFIL, block
size of 120.

if the plot file is sorted, the call to DPSORT may be
eliminated.

If the plot file is on system scratch (SS) and the STATOS is
14-7/8 inches wide, the call to DPINIT may be eliminated.

12-13

DATAPLOT 0l

12.4.18 DPCLOS (Close Plot File)

DPCLOS subroutine closes and updates the plot file and
writes an end-of-file if the plot file is on magnetic tape. The
first three words of DPFCB (data plot file control block) are
set to.zero, and the plot file cannot be referenced until a
call is made to DPINIT to restore DPFCB.

The subroutine is of the general form

CALL DPCLOS*
*BDPOM

Parameter Description: None
Error Conditions:

It the plot file is assigned to a device other than an RMD or
magnetic tape, the close request will be ignored.

Example:
170 CALL DPCLOS

Statement 170 closes the plot file.

12.4.19 ORIG -- Offsetting the Origin
Entry Point

This function offsets the origin entry point of the plot.
The origin of the plot is the lower left hand corner of the

plot area, with the +y axis towards the right and the +x
axis pointing into the plotter.

PAPER MOVEMENT

VTi1-3087

Figure 12-4. +x Axis and +y Axis Relative to
Paper Direction

1214

The absolute y displacement may not go negative. If it is
desired to offset the origin in order to allow (relative)
negative numbers, or to allow large positive values to be
plotted without wasting paper, it is possibie to offset both x
and y coordinates of the (relative) origin by the following
call of the general form:

CALL ORIG (x,y)*

“BDPOM
where
x is the distance (in inches) along
the x axis which the new (relative)
origin will be offset (Real).
y is the distance (in inches) along

the y axis which the new (relative)
origin will be offset (Real).

The coordinates used in locating plot elements are always
relative to the origin location.

Error Conditions: None
Example:

170 CALL ORIG (7.0,3.1)

Statement 170 offsets the origin 7.0 inches in the x
direction and 3.1 inches in the y direction from the physical
origin (0.0,0.0).

12.4.20 VECT -- Vector Entry Point

This subroutine generates plot file entries defining straight
lines between two points. Four parameters define the
points in the following order:

x1, y1, x2, y2. The parameters are single precision, real
numbers representing inches from the origin. Provision is
made for retaining the “current (or last defined) point.
When x1 = 999.0, a file entry is produced to generate
a line between the “current’” point and the point defined
by x2 and y2.

The subroutine is of the general form

CALL VECT (x1,y1,x2,y2)*

“BDPOM

where

x1 is the starting x coordinate of line.
yi is the starting y coordinate of line.
x2 is the ending x coordinate of line.
y2 is the ending y coordinate of line.

Error Conditions: The normal plotter routines do not keep
track of the actual location of the pen, but instead always
assume that the pen can be moved from the current location
to the new location and that enough commands are output
to accomplish this. If a mechanica! stop is encountered
during plotting, the motion in that direction is simply inhib-
ited by the plotter. Because the mechanical stops are not
precise, errors will be produced if a mdchanical stop is
encountered during plotting. However, this is sometimes
done before initiating a plot to position the pen in a known
location before beginning the actual plot.

DATAPLOT Il routines have software stops contained inter-
nally in order to produce the same effect. If a plot boundary
is encountered, an error (DP04) will be reported, the line
will extend toward the boundary and follow the boundary
to the final position, and the origin will be effectively shifted
in a manner similar to the pen plotter.

Example: 5 CALL VECT (3.2,1.0,4.0,1.0)

Statement 5 will place an entry in the plot file for the vector
X =32to4.0andy = 1.0.

12.4.21 Special SYMBOL Subroutine
Subroutine SYMBOL produces special symbols on the plot.
The subroutine is of the general form

CALL SYMBOL (x,y,leq)*

* MDPOM
where
X,y arethexandy coordinates of the center
of the symbol (Real).
ieq is the positive integer designating the
symbol to be produced.
1EQ SYMBOL

[m]

Qs wWwn =
om0

Error Conditions: None
Example:
CALL SYMBOL (1.0,2.0,4)

The above will place a filled in square (w) at location x =
1.0,y = 2.0.

DATAPLOT Il

12.5 PLOT FILE DATA FORMAT

12.5.1 Vectors

X values represent distances from the beginning of the plot
in the opposite direction of paper movement. A unit of x
corresponds to one step of paper movement in the

machine.

Y values represent stylus numbers.

16 bits

X1

Y1

X2

Y2

Figure 12-5. Vector-Data Format
where
X2<X1<32,700

Y1 and Y2 number of STATOS stylii

12.5.2 Characters

15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 ©

Xe Word 0
Ye Word 1
077774 Word 2

Unused IlO 9 I 8 [

Figure 12-6. Character Data Format

ASC!l CODE Word 3

Word 3, Bit 9 = 0 for small character (5x7)
= 1 for large character (10x14)

Word 3, Bit 8 and 10 determine the character orientation.

The x and y coordinates refer to the lower left-hand corner
of the character.

B an oo

Bit 8 1 0 1]
Bit 10 0 0 1 1

Figure 12-7. Character Orientation Data Format

12-15

DATAPLOT I

12.5.3 End-of-Plot Indicator

The end of the plot indicator is shown in figure 12-8.

151413121110 9 8 7 6 5 4 3 2 1 0
077777

077777

077777

077777

Figure 12-8. End-of-Plot Indicator

12.6 EXAMPLE OF APPLICATION OF DATAPLOT Il

12.6.1 Program to Generate Sine Wave

SAMPLE PLOT (BDPOM/VDPOM CALLS)

[eNeNe]

DIMENSION XAR (34),YAR(34),
IBUFF(1000)
XAR (33) = 0.0
XAR (34) = 1.0
YAR (33) = -100.0
YAR (34) = 100.0
CALL PLOTS (IBUFF,1000,5)
CALL MLTPLE (1)
CALL PLOT (1.0,1.0,-3)
XVA = 0.0
DO 200 I = 1,32
XVA = XVA + 0.25
XAR (I) = XVA
200 YAR (I) =100.0 + 200.0 *» SIN(XVA)

PLOT AXES, DATA

nan

CALL AXIS (0.0,0.0,6HY-AXIS,
6,4.0,90.0,YAR(33),YAR(34)
CALL AXIS (0.0,0.0,6HX-AXIS,
-6,8.0,0.0,XAR(33),XAR(34))

CALL LINE (XAR,YAR,32,1,-1,1)
CALL PLOT (0.0,0.0,999)
CALL EXIT
END
(END-OF-FILE)

1216

SAMPLE PLOT (BDPOM/MDPOM CALLS)

DIMENSION XAR (34), YAR (34),
IBUFF (1000)

0.0

1.0

-100.0

100.0
CALL PLOTS (IBUFF, 1000, 5)
CALL ORIG (1.0, 1.0)
XVA = 0.0
DO 200 I = 1, 32
XVA = XVA + 0,25
XAR (I) = XVA
200 YAR (I) = 100.0 + 200.0 * SIN (XVA)

oo

<
>
]
—~
w
“
At

anaa

PLOT AXES, DATA

CALL AXIS (0.0, 0,0, 4.0
6HY-AXIS, -6 YAR (33),
YAR (34))

CALL AXIS (o 0, 0.0, 8.0, 0,

HX-AXIS, 6, XAR (33),

XAR (34))

CALL DATA (XAR, YAR, 32, 1, -1, 1)

CALL PLOT (0.0, 0.0, 999)

CALL EXIT

END

[2X21 2]

3.00
a

[

o
o

2.00
o

1,00
ey X
i a
a
o
a
a
a
a
o
o
= o
a
a

2]

Y-AXIS ®107
1.00

a

S ——]

00 2.00 3.00 4.00 500 600 7.00 800
X-AXIS

VTIL-3095
Figure 12-9. Sine Wave Plot Generated by DATAPLOT I

12.6.2 Program to Generate
Communication Network

SAMPLE COMMUNICATIONS NETWORK

[eNeNe]

DIMENSION IBUFF (1000),

XAR(12),YAR(12)

CALL PLOTS (IBUFF,1000,5)

c BUILD END-POINTS

DO 10 I = 1,12

X = 6.283 * FLOAT (I)/12.0

YAR(I) = 5.0 * SIN (X)+7.0
10 XAR(I) = 5.0 * COS{X)+7.0

c DRAW THE LINES
DO 30 I1 = 1,11
K=1I1+ 1
PO 30 I2 = K, 12
30 CALL VECT (XAR(I1),YAR (I1),
XAR(I2),YAR(I2))
CALL PLOT (0.0,0.0,-3)
CALL EXIT
END
(END-OF-FILE)

VII1-3094

Figure 12.10. Communication Network Plot
Generated by DATAPLOT 11

12.7 OPERATING PROCEDURES AND
ERROR MESSAGES

12.7.1 VORTEX Operating Procedures

Use of the DATAPLOT |l plot generation routines requires
the preparation of FORTRAN programs which make
appropriate calls to the FORTRAN and VDM 70/620
assembly language programs.

The user may execute in a compile-and-go mode by ending
his program with a call to PLOT (x,y,999) or PLOT (x.y,-i)
and the plot output device assigned to the STATOS printer/
plotter (Ref. paras 12.4.2).

DATAPLOT 1l

12.7.2 Unsorted Plot Files

Unsorted plot files may be output by VORTEX DATAPLOT It
by transferring the plot file to an RMD (if not already
there) by IOUTIL or the APPEND subroutine, and calling
the following subroutines:

DIMENSION
CALL DPINIT () if necessary
CALL PLOTS ()

CALL DPSORT
CALL DPPLOT
CALL EXIT
END

12.7.3 Presorted Plot Files

Files which have been presorted may be in physical records
whose length is any multiple of four 16-bit words. There is
no restriction on the number of records which may be
processed, other than the physical capacity of the periph-
eral device. The file must have been sorted on the
numerical value of the X1's, in descending order. Each X1
must be greater than or equal to its associated X2. An end-
of-plot indicator (four words containing 077777) must
appear at the end of the significant data in the last record.

Presorted plot files may be output by VORTEX DATAPLOT
il by assigning the plot file to the physical unit containing
the plot file (DPINIT) and calling the following routines:

DIMENSION

CALL DPINIT () if necessary
CALL PLOTS ()

CALL DPPLOT

CALL EXIT

END

12.7.4 VORTEX Special Procedures

The VORTEX DATAPLOT Ii package may be executed in

" one, two, or three sections. No special modifications are

necessary to build, sort, and output the plot file in one
module.

Sorting and outputting the plot file may be separated from
building the plot file by supplying dummy sorting and
outputting routines. For example, this method may be used
if it is desired to build the plot file in the background and
output the plot file from the foreground. Subroutine PLOTS

12-17

DATAPLOT 1l

must be included in each section or an error (DP05) will be

output.

Example:

/FORT,B,L,M

c

12-18

BUILD THE PLOT FILE

DIMENSION IBUFF (142)

CALL DPINIT (25,2HbK,6HFILEDD,
120,88)

CALL PLOTS (IBUFF,124,27)

CALL AXIS (1.0,1.0,4HAXIS,4,5.0,
0.0,0.0,1.0)

CALL PLOT (0.0,0.0,999)

CALL EXIT

END

DUMMY SUBROUTINES
SUBROUTINE DPSORT
RETURN

END

SUBROUTINE DPPLOT
RETURN

END

/FORT,B,L,H

c SORT AND OUTPUT THE PLOT FILE
DIMENSION IBUFF (1000)
CALL DPINIT (25,2HDbK,6HPILEDD,
120,88)
CALL PLOTS (IBUPF,1000,27)
CALL DPSORT
CALL DPPLOT
CALL EXIT
END

(END-OF-FILE)

The above programs referenced the plot file named FILE on
logical unit number 25, protection code K.

The IBUFF in the first program only needs to be the plot
file record size (120) plus 22. The size of IBUFF in the
second program may be increased to provide faster sorting
when large plot files are generated.

SECTION 13
SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine
library directly available to the user. The library contains
mathematical subroutines to support the execution of a
program, plus many commonly used utility subroutines. To
use the library, merely code the proper call in the program,
or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A = SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
required routine, and the load-module generator brings the
subroutine into memory and links it to the calling program.

The performance of several routines in the support library
is improved through the use of the V70 series Floating
Point Firmware on V70 series systems having Writable
Control Store (WCS). The necessary firmware and library
routines which call the firmware are added to the Object
Module Library (OM) by executing the supplemental WCS
job stream supplied with the System Generation Library.

13.1 CALLING SEQUENCE

The subroutines in the support library are called through
DAS MR or FORTRAN 1V.

DAS MR: General form:
label CALL S,p(1),p(2),...p(n)

Expansion:
label JMPM s
DATA pt1)
DATA pl2)
DATA p{n)

FORTRAN IV: General form:

statement number CALL S(p(1).p(2).....p(n))
Generated code:
JMPM s
DATA ql(1)
DATA q(2)
DATA q(n)

Where q(i) = p(i) if p(i) is a single variable or array name.
Otherwise, g(i) = address containing p(i).

13.2 NUMBER TYPES AND FORMATS

Integers use one 16-bit word. A negative number is in two's
complement form. An integer in the range - 32,767 to
+ 32,767 can be stored as an integer.

Real numbers use two consecutive 16-bit words. For a
positive real number, the exponent (in excess 0200 form) is
in bits 14 to 7 of the first word. The mantissa is in bits 6 to
0 of the first word and bits 14 to 0 of the second word. The
sign bit of the second word is zero. The negative of this
number is created by one's complementmg the first word.
Any real number in the range 10" can be stored as a
single-precision floating-point number having a precision of
more than six decimal digits.

Single-Precision Floating-Point Numbers

Bit 15 14 13 12 11

10 9

8

7 6 5 4 3 2 1 0
- ~----High Mantissa-

Low Mantissa-----===-===c-——---

Double-precision floating-point numbers use four consecu-
tive 16-bit words. The exponent (in excess 0200 form) is in
bits 7 to 0 of the first word. The mantissa of a positive
number is in the second, third, and fourth words. Bit 15 of
the second, third and fourth words.and bits 15 to 8 of the
first word are zero. The negative of this number is created
by one's complementing the second word. Any real number

can be stored as a double-precision

floating-point number having a precision of more than 13

Double-Precision Floating-Point Numbers

n) s -Exponent--

n+1) 0 —-mmmmmmmmemee
in the range 100%™
decimal digits.

Bit 15 14 13 12 11

n) 0 0 0 0 0 0

n+1) 8§ —mmmemmemmmm—mee

n+2) 0 ———mmme——mmemm—--

n+3) 0 0 memmmmmmemeeeee

10 9

0

8
0

High Mantissa
Mid Mantissa-

7 6 5 4 3 2 1 0
--Exponent-

131

SUPPORT LIBRARY

13.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the
subroutine descriptions given in this section:

Notation Meaning
AB Hardware A and B registers
AC Four-word software accumufator for double-

precision numbers

ACCZ Four-word accumulator for complex numbers
(the real part is in AB and the imaginary
part is in a temporary cell in subroutine V$8G)

d Address of a double-precision number
1 Address of a two-word, fixed-point number

i Address of an integer

r Address of a real number

S A six-character ASCIl string

X Hardware X register

2z Address of a complex number
o Exponentiation

An additional name in parentheses indicates a replace-
ment by standard firmware. For example, $SE(FSE)
indicates the firmware routine FSE replaces $SE on 70
series systems using standard firmware. - Section 20.2
describes standard firmware.

The external references in table 13-3 refer to items in
tables 13-1 and 13-2. A subroutine with more than one
name is indicated by multiple calls under Calling Sequence.

Table 13-1. DAS Coded Subroutines

Name Function

$HE Given: A contains il,
in A compute i1%#i2,

$PE Given: AB contains r,
in AB, compute r#*i.

$QE Given: AB contains rl,
in AB, compute rl**r2.

ALOG In AB, compute In r. If r =0,
output message FUNC ARG and
exit with A=B =0 and
overflow = 1.

EXP In AB, compute e*“r. If there
is underflow, AB=0. If
overflow, AB =maximum real
number and the message FUNC
ARG is output. In both
cases, overflow =1.

ATAN In AB, compute arctan r

SINCOS in AB, compute cos r with
COS, or sin r with SIN

SQRT In AB, compute square root of r

FMULDIV Given: AB contains rl, in AB,
compute rl1%r2 with $QM, or
rl/r2 with $QN. If there is
underflow, AB=0. If
overflow, AB =maximum value
and the message ARITH OVFL
output. In both cases,
overflow = 1.

3

13-2

Calling Sequence External References

CALL $HE,i2 $SE(FSE), $HM
CALL $PE,i $SE(FSE), $QM, $QN
CALL $QE,r2 ALOG, $QM, EXP, $SE(FSE)
CALL ALOGr $EE. $QK(FAD). $QM, XDMU,
XDAD, $NML, XDDI,
XDSU, $SE(FSE), $PC, $QL(FSB),
$QN
CALL EXP,r XDMU, $QK(FAD), $NML, SEE,
$QM, $QN, $SE(FSE)
CALL ATAN,r $QM, $QL(FSB), $QN, $QK(FAD)
$SE(FSE)
CALL COS,r $QK(FAD),$QL(FSB), $QM, $QN,
CALL SIN,r $SE(FSE)
CALL SQRT.r XDDI, $FSM, $SE(FSE)
CALL $QM.r2 XDMU, $FMS, XDDI,
CALL $QN,r2 $SE(FSE), $EE, SNML

Name

FADDSUB

SEPMANTI

FNORMAL
XDDIV
XDMULT
XDADD
Xpsus
XDCOMP

$FLOAT

$IFIX

1ABS
ABS

ISIGN

SIGN

$HN

$HM

DSINCOS

DATAN

Table 13-1. DAS Coded Subroutines (continued)

Function

Given: AB contains rl, in AB,
compute rl +r2 with $QK, or
rl —r2 with $QL. [f there

is underflow, AB=0. If
overflow, AB = maximum value

and the message ARITH OVFL is

output. In both cases,
overflow = 1.

Separate mantissa and
characteristic of r into AB
and X, respectively

In AB, normalize r

In AB, compute f1/f2

In AB, compute f1*{2

in AB, compute fl +1{2

In AB, compute fl - {2

in AB, compute negative of {
In AB, convert the i in A
to floating-point and, for
$QS, store result in r

In A, convert the r in AB
to i and, for $HS, store
result in i

in A, compute absolute i

In AB, compute absolute r

Set the sign of i1, in A,
equal to that of i2

Set the sign of rl, in AB,
equal to that of r2

Given: A holds il,
in A, compute il1/i2

Given: A holds il, in A
compute i1*i2

In AC, compute sin d or cos d

In AC, compute arctan d

Calling Sequence

CALL $QK.r2
CALL $QL,r2

CALL $FMS
CALL $FSM
CALL $NML
CALL XDDI,f2
CALL XDMU 2
CALL XDAD,f2
CALL XDSU,f2
CALL XDCO
CALL $PC

CALL $QS.r

CALL $IC

CALL $HS.i
CALL IABS,i
CALL ABS,r

CALL ISIGN,i2
CALL SIGN.r2
CALL $HN.i2
CALL $HM.i2

CALL $DSId

CALL $DSIN,d
CALL $DCOd
CALL $DCOS.d

CALL $DAN
CALL DATAN.d

SUPPORT LIBRARY

External References

$SE(FSE), $FSM, $NML, $EE

None

XDCo
XDSU, XDCO
XDAD, XDCO
None
None
None

$SE(FSE)

$SE(FSE), $EE

$SE(FSE)
$SE(FSE)

$SE(FSE)

$SE(FSE)

$SE(FSE), $EE

$SE(FSE), $EE

$STO,$DNO, $2C, $ZK, $ZL,
$SE(FSE), $ZM, $ZN, AC
$DLO

$DLO, $STO, $DAD,
$DSU, IF, $SE(FSE),
AC, $DMP, $DDI,
POLY

133

SUPPORT LIBRARY

Name

DEXP

DLOG

POLY

CHEB

DSQRT

$DFR

IDINT

DMULT

DDIVIDE

DADDSUB

DNORMAL

DLOADAC

DSTOREAC

RLOADAC

SINGLE
DOUBLE

DBLECOMP

$3s

134

Table 13-1. DAS Coded Subroutines (continued)

Function

In AC, compute exponential d

in AC, compute In d

In AC, compute double-precision
polynomial with t terms,
coefficient list starting at
address ¢, and argument at
address y

tn AC, compute shifted
Chebyshev polynomial series
with t+1 terms and coefficient
list starting at address ¢

In AC, compute square root

of d

In AC, compute fractional
part of d

In AC, compute integral
part of d

In AC, compute d1*d2

In AC, compute d1/d2

In AC, compute d1 +d2 with
$DAD, or dl - d2 with
$DSU

In AC, normalize d

Load AC with d

Store AC in d

Load A with double-precision
mantissa sign word from AC

In AB, convert the d in AC to r
In AC, convert the r in AB to d

In AC, compute negative of the
d in AC

Store AB in memory address m

Calling Sequence
CALL $DEX
CALL DEXPd
CALL DLOG.d
CALL $DLN

CALL POLY.tcy

CALL CHEB.t,c

CALL $DSQ.d
CALL DSQR.d

CALL $DFR.d

CALL $DITd
CALL IDINT d

CALL $DMP,d2
CALL $ZM,d2

CALL $DDI.d2
CALL $ZN.d2

CALL $DAD.d2
CAL $DSU,d2
CALL $ZK.d2
CALL $ZL.d2
CALL $DNO

CALL $DLOd
CALL $ZFd

CALL $STOd
CALL $ZS.d

CALL $21

CALL $RC
CALL $YC

CALL $ZC

CALL $35,m

External References
$DLO, $STO,

$SE(FSE), AC, $DNO, $EE,
$ZC, $ZK, $ZL, $ZM, $ZN

$DLO, $STO, $DNO, $EE
$SE(FSE), $ZK, $ZL, $ZM, $ZN

$DLO, $DAD, $DMP

$DLO, $STO, $DAD,
$DSU, $DMP

$DLO, $STO, $DNO,
-$DAD, $DMP, $DDI,
$SE(FSE), AC

$DLO, $DNO, $DSU,
$DIT, AC, $SE(FSE)

$DNO, $SE(FSE)
$DLO, $STO, $DNO,
$DAD, AC, $SE(FSE)

$DLO, $STO, $DNO,
$DSU, AC, $SE(FSE)

$STO, $DLO, $DNO,
AC, $SE(FSE), $EE

$SE(FSE)

AC, $SE(FSE)

AC, $SE(FSE)

AC

AC
AC

AC

$SE(FSE)

Name

A2MT

MT2A

EXIT

SUSPND

RESUME

ABORT

ALOC

PMSK

DELAY

LDELAY

TIME

Table 13-1. DAS Coded Subroutines (continued)

Function

Translate in memory a character
string of length n starting

at s and ending at e from
eight-bit ASCII to six-bit
magnetic tape BCD code

S is the start of the ASCII block
and e is the start of the BCD block.

Translate in memory a character
string of length n starting at

s and ending at e from six-bit
magnetic tape BCD code to
eight-bit ASCH .

s is the start of the BCD block

and e is the start of the ASCI! block.

Formats and executes an RTE
EXIT macro

Formats and executes an RTE
SUSPND macro with parameter i.

Formats and executes an RTE

RESUME macro to resume task s.

Formats and executes an RTE
ABORT macro to abort task s.

Formats and executes an RTE
ALOC macro to call reentrant
subroutine s.

Formats and executes an RTE
PMSK macro to operate on PIM
il with line mask i2 and
enable/disabie flag i3.

Formats and executes an RTE
DELAY macro with the 5-
millisecond count in i1, the
minute count in i2, and delay
mode in i3.

Formats and executes an RTE DELAY
type 1 with additional parameters to
specify the LUN from which the task
(lun in i4 key in i5) is to be reloaded.

Formats and executes an RTE
TIME macro with the minute
count in il, and 5-millisecond
count in i2.

Calling Sequence

CALL A2MT n;s.e

CALL MT2A,n;s.e

CALL EXIT

CALL SUSPND(i)

CALL RESUME(s)

CALL ABORT(s)

CALL ALOC(s)

CALL PMSK(il,
i2,i3)

CALL DELAY(i1,
2,i3)

CALL LDELAY (i1,i2,i3,
i4, i5)

CALL TIME(i1,i2)

SUPPORT LIBRARY

External References

None

None

V$EXEC

VS$EXEC

VSEXEC, SRTENM

VSEXEC, $RTENM

VS$EXEC

VSEXEC

VS$EXEC

VSEXEC

VSEXEC

135

SUPPORT LIBRARY

136

Name

QOVLAY

SCHED

$RTENM

$EE

$SE

VS$RSW

V$HDR

Table 13-1. DAS Coded Subroutines (continued)

Function

Formats and executes an RTE
OVLAY macro with il = 0 to
execute, i2 = 0 to load, and
s is the overlay name.

Formats and executes an RTE
SCHED macro with il = priority,
i2 = wait flag, i3 =

logical-unit number, s1 = key
and s2 = task name.

Moves the six-character name
from X to B

Outputs error messages on
the SO device.

Fetches n parameters from a
subroutine call

Handles multi-reel volume
files and information.

To format a standard
VORTEX header.

Calling Sequence

CALL OVLAY(i1,
i2,8)

CALL SCHED(il, i2,
i3,51,52)

CALL $RTENM

CALL $EE

CALL $SE, n
BSS n

LDA=LUN to
unload.

LDX<0 for
no mount,

LDX =0 for
mount next
volume.

LDX>0 addr.
of filename
for mount.

B = next
volume num-
ber if X>0

CALL V$RSW

CALL V$HDR
DATA page
number ad-
dress

DATA program
name address
DATA program
title address
(= 0 if not
used)

External References

V$EXEC, $RTENM

V$EXEC, $RTENM

None

V$I10C, V$IOST,
VS$EXEC

None

A = Restored

B = Restored

X = Restored

AB,X restored
Header in 38
word external
buffer V$HBUF

Name

CB2A

CA2B

MOVE

CTIME

Table 13-2. OM
Function

Covert a 16-bit binary value
(positive or negative) to an
ASCI| character string (octal
or decimal) with leading zeros
suppressed and right justi-
fied minus sign on negative
decimal values.

Convert a decimal or octal
ASCIl number (positive

or negative decimal) to

a 16-bit binary value.

Move a block of n werds
from address f to address
t. If an overlap move,
then; move in reverse.

Convert the time of day
to an ASCII string of the
form:

HH:MM:SS:TTT

Library Subroutines
Calling Sequence

LDA = 0 for octal

conversion
= 0 for deci-

mal conver-
sion

JSR CB2A,X

DATA Address of
binary value

JSR CA2B,X
DATA ASCII
string ad-
dress
(compl =
left byte,
pos = right
byte)
Address of
termination
character
block

DATA

The termination block
format is

DATA Legal termination

character (right
justified)

DATA Legal termination

character (right
justified)

DATA O (end of block)

JSR MOVE,X

DATA n (word
count)

DATA f (from ad-
dress)

DATA t (to address)

JSR CTIME,X

SUPPORT LIBRARY

External References

(A) = Address of ASCII
string
(B) = Restored

(A) = Binary value
(B) = Next byte address

OVFL=Set if an illegal
character encountered

(A) = Restored
(B) = Restored

(A) = Address of ASCII
string
(B) = Restored

137

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines

Name Function Calling Sequence External References

$9E Compute ACCZ**i CALL $9E(i) $SE(FSE), IABS, $8F,
$8M, $8N, $8S

CCOS In ACCZ, compute cos z CALL CCOS(z) $SE(FSE), CSIN, $8F,
$8K, $8S

CSIN In ACCZ, compute sin z CALL CSIN(z) $SE(FSE), EXP, $QN,

SIN, $QK(FAD), $QM,
COS, $QL(FSB), $&8F

CLOG In ACCZ, compute In z CALL CLOG(2) $SE(FSE), ALOG, $QM,
$QK(FAD), $QN, ATAN2,
$8F
CEXP In ACCZ, compute exponential z CALL CEXP(z) $SE(FSE), EXP, COS,
$QM, SIN, $8F
CSQRT In ACCZ, compute square root of z CALL CSQRT(2) $SE(FSE), SQRT, CABS
$QK, SQN, $8F
CABS In AB, compute absolute z CALL CABS(2) $SE(FSE), SQRT, $QM,
$QK(FAD)
CONJG In ACCZ, compute conjugate of z CALL CONJG(z) $SE(FSE), $8F
$AK Add r to real part of ACCZ CALL $AK(r) $SE(FSE), $8S. $QK(FAD), $8F
$AL Subtract r from the real CALL $AL(r) $SE(FSE), $8S, $QL(FSB), $8F
part of ACCZ
$AM Multiply ACCZ by r CALL $AM(r) $SE(FSE), $8S, $QM, $8F
$AN Divide ACCZ by r CALL $AN(r) $SE(FSE), $8S, $QM, $8F
$AC Convert AC to z and store in ACCZ CALL $AC $3S, CMPLX
CMPLX Load ACCZ with a value having CALL CMPLX(r1,r2) $SE(FSE), $8F
a real part rl and an imaginary
part 2
$8K Add z to ACCZ CALL $8K(z) $SE(FSE), $8S, $QK(FAD), $8F
$8L Subtract z from ACCZ CALL $8L(z) $SE(FSE), $8S, $QL(FSB), $8F
$8M Multiply ACCZ by z CALL $8M(z) $SE(FSE), $8S, $QM,

$QL(FSB), $QK(FAD), $8F

138

Name

$8N

$2D

AIMAG

$0C

REAL
$8F
$8S

$XE

$YE

$ZE

DATAN2

DLOG10

DMOD

DINT

DABS

DMAX1

DMIN1

DSIGN

$YK

$YL

$YM

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Function

Divide ACCZ by z

Compute negative of z

Load AB with the imaginary
part of z

Load AB with the real part of
ACCZ

Load AB with the real part of z
Load ACCZ with z
Store ACCZ in z

Compute d**i where d is in AC

Compute d**r where d is in AC

Compute d1**d2 where dl is in AC

In AC, compute agctan (d1/d2)

In AC, compute log d

In AC, compute d1 modulo d2

In AC, compute integer
portion of d

In AC, compute absolute d

In AC, select the maximum value
in the set dl, d2,....dn

In AC, select the minimum value
in the set dl, d2,....dn

Set the sign of d1 equal to
that of d2

Add r to AC

Subtract r from AC

Multiply AC by r

Calling Sequence

CALL $8N(z)

CALL $ZD

CALL AIMAG(z)

CALL $0OC

CALL REAL(z)
CALL $8F(z)
CALL $85(z)

CALL $XE(i)

CALL $YE(r)

CALL $ZE(d2)

CALL DATAN2(d1,d2)

CALL DLOG10(d)

CALL DMOD(d1.d2)

CALL DINT(d)

CALL DABS(d)

CALL DMAX1(d1,d2
...,dn,0)

CALL DMIN1(d1,d2
....dn,0)

CALL DSIGN(d1,d2)

CALL $YK(r)

CALL $YL(r)

CALL $YM(r)

External References

$SE(FSE), $8S, $QM,
$QK(FAD), $QN, $QL(FSB), $8F

$8S, $8F

$SE(FSE)

$8S

$SE(FSE)
$SE(FSE)
$SE(FSE), $35

$SE(FSE), $ZF, MOD, $ZM,
$HN, $ZN, $ZS

$SE(FSE), $ZS, DBLE,
$ZE, $ZF

$SE(FSE), $ZS, DEXP,
DLOG, $ZM

$SE(FSE), $ZF, $Z8,
$Z1. $ER, $ZN,

$ZL, $ZK, DATAN
$SE(FSE), DLOG, $ZM
$SE(FSE), DINT, $ZF,
$ZN, $ZS, $ZM,

$ZL, $2C

$SE(FSE), $ZF, $JC, $XC

$SE(FSE), $ZF, $ZI, $2C

$SE(FSE), $ZF, $Z8S,
ISFA, $ZL, $ZI

$SE(FSE), $ZF, $ZS,
I$FA, $ZL, $ZI

$SE(FSE), $ZF, $ZI, $ZN

$SE(FSE), $ZS, DBLE, $ZK

$SE(FSE), $ZS, DBLE,
$2L, $2C

$SE(FSE), $ZS, DBLE, $zM

139

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name Function Calling Sequence External References N
$YN Divide AC by r CALL $YN(r) $SE(FSE), $ZS, DBLE.
$ZF, $ZN
DBLE In AC, convert r to d CALL DBLE(r) $SE(FSE), $YC
$XC In AC, convert i to d where CALL $XC $PC, $YC
iis in A
TANH In AB, compute tanh r CALL TANH(r) $SE(FSE), $QK(FAD), EXP,
$QL(FSB), $QN
ATAN2 In AB, compute arctan (rl/r2) CALL ATAN2(r1,r2) $SE(FSE), $ER, ATAN,
$QK(FAD), $QL(FSB), $QN
ALOG10 In AB, compute log r CALL ALOG10(r) $SE(FSE), ALOG, $QM
AMOD In AB, compute r1 moduio r2 CALL AMOD(r1,r2) $SE(FSE), AINT, $QN,
$QM, $QL(FSBY
AINT In AB, truncate r CALL AINT(r) $SE(FSE), $IC, $PC
AMAX1 In AB, select the maximum value CALL AMAX1(r1,r2) $SE(FSE), 1$FA, $QL(FSB)
in the set rlr2..rmnrn,0)
AMIN1 In AB, select the minimum value CALL AMIN1(r1,r2) $SE(FSE), I$FA, $QL(FSB)
in the set rl, r2,...rn ~..rn,0)
AMAXO In AB, select the maximum value CALL AMAXOQ(il.i2, $SE(FSE), I$FA, FLOAT
in the set i1,i2,...in and ..,In0) =
convert to r B
AMINO In AB. select the minimum value CALL AMINO(i1,i2, $SE(FSE), 1$FA, FLOAT
in the set il,i2,....in and ...An,0)
convert to r
DiM In AB, compute the positive CALL DIM(r1,r2) $SE(FSE), $QL(FSB)
difference between rl and r2
FLOAT In AB, convert i to r CALL FLOAT(i) $SE(FSE), $PC
SNGL In AB, convert d to r CALL SNGL(d) $SE(FSE), $ZF, $RC
MAX0 In A, select the maximum value CALL MAXQ(il,i2, $SE(FSE), ISFA
in the set il,i2,....in ..,in,0)
MINO In A, select the minimum value CALL MINO(i1,i2, $SE(FSE), I$FA
in the set il,i2,...,in .4in,0)
MAX1 In A, select the maximum value CALL MAX1(rl,r2, $SE(FSE), I$FA, $QL(FSB), IFIX
in the set rl,r2,....rn andrn,0)
convert to i
MIN1 In A, select the minimum value CALL MINI(r1,r2, $SE(FSE), I$FA, $QL(FSB), IFIX
in the set rl,r2,...rn andrn,0)
convert to i
MOD In A, compute il modulo i2 CALL MOD(il,i2) $SE(FSE), $HN, $HM

13-10

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name Function

INT In A, truncate r and convert
to i

IDIM In A, compute the positive
difference between il and i2

IFIX In A, convert r to i

$JC In AC, convert d to i and store
result in A

13.4 DECIMAL SUBROUTINE

The decimal subroutine performs requested decimal
operations (add, subtract, multiply, divide, move, or
compare). Besides operand addresses and sizes, the user
may specify pre-shifting of operands and post-shifting and
rounding of result. Note that pre-shifting is decimal
alignment and does not imply physical shifting. Operands
may be signed or unsigned.

Decimal compare sets the user result condition word as
follows:

=0 if operand A< operand B
=1 it operand A = operand B
=2 if operand A > operand B

Parameter Block

15 14 13 12 11

Calling Sequence

External References

CALL INT(r) $SE(FSE), $IC

CALL IDIM(i1,i2) $SE(FSE)

CALL IFIX(r) $SE(FSE), $IC

CALL $JC $RC, $IC

Decimal compare arithmetically compares two decimal
operands.

On entry register RO(A) contains the address of an 85 word
temporary storage block available to firmware, R1(B)
contains the address of the user result condition word, and
R2(X) contains the address of the users descriptive
parameter block. Decimal math may be accessed either via

JMPM V$DECM
or
JMP C$DECM

If C$DECM is used, return will be made to user supplied
location VC$RTN. If VSDECM is used, the user must still
define VC$RTN.

10 9 87 65 43 210

Word 0 CODE ﬁ LATUB r LA L LB
1 BNA displacement 5
2 BNp displacementy
3 Q (DA SA SB
4 R ‘UC Lc SC
5 BN¢ displacementc

1311

SUPPORT LIBRARY

Parameter Description:

CODE represents operation to be performed:
0 = opA + opB
1 = opA - opB
2 = compare opA: opB
3 = move opA to opB
4 = opA * opB
5 = opA/opB
P = 1 for presence of word 3.
= 0 for absence of word.3.
UA -1 if operand A is unsigned.
= 0 if operand A is signed.
uB -1 if operand B is unsigned.
= 0 if operand B is signed.
LA = length of A in digits (1 to 31).
LB = length of B in digits (1 to 31).
BN, = main storage base register number
of operand A.
BNg = main storage register number of
operand B.
Q =1 if returned in third operand
(words 4 and 5 present).
= 0 if third operand not present
(words 4 and 5 absent).
DA =1 pre shift operand A left
= 0 pre shift operand A right
DB = 1 pre shift operand B left
= 0 pre shift operand B right
SA - Operand A shift amount
SB - Operand B shift amount
R = 1 if rounding to be applied to
result (only if result returned
in third operand)
=0 if rounding not applied to
result
uc = 2 if result unsigned
= 0 if result signed
DC = 1 to shift result left
= 0 to shift result right
LC - fength of result field
sC - result shift amount
BNc - main storage base register

number of result
Displacement
A, B, or C

Byte count used to calculate

byte address of decimal operands.

Error Conditions:

{Note that on an error, register R2 will be incremented past
the parameter block, and results will be unreliable.)

a. Result operand overflow - if the result operand has an
inadequate number of digits to contain the result, the
condition result word (CONDIT) will be set to the
value 3.

13-12

b. Invalid digit - if the number portion of a digit (bits 2° -
2°) contains a value other than 0 - 9,4 or the zone
portion (bits 27. 24) contains a value other than 11,
the conditions result word will be set to the value 4.
This is also true of values specified as signed having
signs other than blank (octal 240), minus (octal 255),
or plus (octal 253).

c. if the base word related to respective BN field is zero
then the condition result word CONDIT will be set to 5.

d. Attempted division by zero results in CONDIT being set
to3.

Notes

If operand C is not specified, the result will be returned in
operand A, except for move. Decimal move moves operand
A to operand B. Note that for a decimal move, the
parameter block may be a maximum of 4 words. In this
case, the Q bit is used to specify rounding, rather than a
third operand.

Parameter byte addresses are calculated as follows: (R1 +
1 + BN) *2 + displacement = byte address of least
significant byte of decimal operand.

This represented pictorially as follows:

R1 »{ Condition Word

Base register 0
address

Base register 1
address

Base register 15
address

Optional

Word Address Byte Address Sign

byte decimal
]
displacement operand

When pre-shifting is specified, this does not imply physical
shifting of operands. Only the operand designated for
result is modified by a decimal operation.

When the operation is complete, only the integrity of
register R2 and R1 are maintained. R2 will be incremented
o the address of the next word following the parameter
block.

This is meant to imply all other V75 registers are volatile.
The user must save and restore any registers R3 through
R7 he requires to be maintained when executing the
decimal operation.

Examples:

Note:

The following may be used to create decimal

SUPPORT LIBRARY

parameter blocks:

FOLLOWING ARE FORMS OF DECIMAL

INSTRUCTION.
DWORDO FORM 3,1,11,5,5
DWORD1 FORM 4,12
DWORD2 FORM 4,12
DWORD3 FORM 3,1,1,1,5,5
DWORD4 FORM 3,1,1,1,5,5
DWORDS FORM 4,12
DECIMAL OPERATION MACRO (DECIMAL
PARAMETER BLOCK)
DECOP MAC
IFT P(12)-P(13)-pP(5)-P(6)+P(14) Select appropriate Word 0
GOTO DECWD1 (Note no third, fourth,
DWORDO p(7),0,P(1),P(3),P(4),P(11) or fifth word)
GOTO DECWD2
DECWD1 COUNT
DWORDO p(7),1,P(1),P(8),P(4),P(11) (Parameter block includes
DECWD2 CONT at least word 3)
DWORD1 P(2),P(3)
DWORD2 P(9),p(10)
IFF P(12)+P(13)+P(5)+P{6)+P(14)
GOTO DECWD3 (Terminate if no word 3)
DWORD3 0,P(14)P(5),P(12),P(6),P(13)
IFF P(14)
GOTO DECWD3 (Terminate if no third
DWORDY o,P(15),pP(16),P(20),P(19),P(21) operand words 4 and 5)
DWORDS P(17),P(18)
DECWD3 CONT
EMAC

INTERPRETIVE PARAMETER BLOCK DEFINED AS FOLLOWS:

p(01) oP1 SIGNED (S) OR UNSIGNED (U}

P(02) OoP1 REG

P(03) or1 DISPLACEMENT

r(o4) oP1 LENGTH

P(05) oP1 SHIFT LEFT (L) OR RIGHT (R)

P(06) OoP1 SHIFT AMOUNT

P(07) OPERATION (DADD, DSUB, SMULL, DDV,
DMOV, DCMP)

P(08) oP2 SIGNED (S) OR UNSIGNED (U)

P(09) OP2 REG

P(10) OP2 DISPLACEMENT

P(11) opP2 LENGTH

P(12} OoP2 SHIFT LEFT (L) OR RIGHT (R)

P(13) or2 SHIFT AMOUNT

P(14) =EQ IF RESULT IN THIRD OPERAND

P(15) F FOR ROUNDING

p(16) oP3 SIGNED (S) OR UNSIGNED (U)

P(17) OP3 REG

P(18) OoP3 DISPLACEMENT

P(19) oP3 LENGTH

r(20) or3 SHIFT LEFT (L) OR RIGHT (R)

P(21) OP3 SHIFT AMOUNT

1313

SUPPORT LIBRARY

Following are equates to be used with the above macro:

BNO EQU O BASE NUMBER 0
BN1 EQU 1 BASE NUMBER 1
BN2 EQU 2 BASE NUMBER 2
BN3 EQU 3 BASE NUMBER 3
BN4 EQU 4 BASE NUMBER 4
BN5 EQU 5 BASE NUMBER 5
BN6 EQU 6 BASE NUMBER 6
BN7 EQU 7 BASE NUMBER 7
BN8 EQU 8 BASE NUMBER 8
BN9 EQU 9 BASE NUMBER 9
BNA EQU 10 BASE NUMBER 10
BNB EQU 11 BASE NUMBER 11
BNC EQU 12 BASE NUMBER 12
BND EQU 13 BASE NUMBER 13
BNE EQU 14 BASE NUMBER 14
BNF EQU 15 BASE NUMBER 15
DADD EQU 0 DECIMAL ADD
DSUB EQU 1 DECIMAL SUBTRACT
DCMP EQU 2 DECIMAL COMPARE
DMOV EQU 3 DECIMAL MOVE
DMUL EQU 4 DECIMAL MULTIPLY
DDIV EQU 5 DECIMAL DIVIDE
EQ EQU 1 RESULT RETURNED IN C
F EQU 1 ROUND (ADJUST)
R EQU 0 SHIFT RIGHT

L EQU 1 SHIFT LEFT

s EQU 0 SIGNED

u EQU 1 UNSIGNED

The above macro may be used as follows:
1.DECOP U, BN1,2,4,R,1,DAD,U,BN2,0,4,L1
generates four word parameter block

16208
10002
20000
02041

Explanation: Operand A is an unsigned decimal string
residing in memory accumulator 1. It begins (most
significant digit) two bytes into accumulator 1 with a length
of four bytes. Operand A will be logically reshifted right one
digit. Operand B is an unsigned decimal string beginning
in memory accumulator 2 with a length of four bytes.
Operand B will be logically pre-shifted left one digit. The
result of addition will be returned in operand A. If operand
A = 4310 and operand B = 0129, result of the above
operation would be 1721,

Note following register settings:

1314

Before Operation After Operation

RO(A)} 1016 1016
R1(B) 3100 3100
R2(X) 4102 4106

2. DECOP U,BNS,0,4,,,DMUL,S,BNE,O,3,,,
EQ,F,U,BN1,0,7,R,1

generates six word parameter block

114203
050000
160000
010000
014341
010000

Explanation: An unsigned 4 digit decimal string in memory
accumulator 5 is multiplied by a signed 3 digit decimal
string in memory accumuiator 14. The result will be right
shifted one digit position, rounded, and stored in memory
accumulator 1 (note maximum resulting digit string length
is 7). If operand A = 0321 and operand B = 987 + result
of above operation would be 0003168.

Note following register settings:

Before Operation After Operation

RO(A) 1200 1200
R1(B) 1105 1105
R2(X) 3506 3514
3. DECOP S,BNC,0,3,,,DCMP,S,BN1,0,4

generates three word parameter block

040144
150000
010000

Example 3 compares decimal digit string in memory
accumulator D with decimal digit string in memory
accumulator 1. If operand A = 123 + and operand B =
9871-, condition word pointed to by R1(B) would be set to
20.

Note following register settings:

Before Operation After Operation

RO(A) 13012 13012
R1(B) 6512 6512
R2(X) 1234 1237

SECTION 14
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface
directly with- special devices, develop software that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

. Interrupts
. Task-scheduling
. Coding reentrant subroutines

. Coding 170 drivers

14.1 INTERRUPTS
14.1.1 External Interrupts

Priority interrupt module (PIM) hardware: A PIM com-
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is ‘acknowledged, and, if the PIM is
enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/
first-out basis. If a signal is received on a disabled PIM, it
is stored by the PIM, and causes an interrupt when the
PIM is enabled.

Disabling the external interrupt system prevents any
interrupt from entering the computer. Enabling the entire
system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected
control of the system. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Program setting of PIM registers causes the PIM to ignore
interrupts received on lines that are busy processing an
interrupt or held off because of priority.

All PIMs and interrupt lines to be used in VORTEX are
specified at system-generation time and their status
specified when VORTEX is loaded and initialized. VORTEX
does not disable any line unless so directed by RTE service
request PMSK (section 2.1.6).

When a PIM interrupt signal is acknowledged and the
interrupt taken, the computer executes the instruction in a

selected memory location. Under VORTEX, PIM addresses
are from 0100 to 0277. Linkage to VORTEX interrupt-
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no-operation instructions that
ignore unspecified or spurious interrupts.

Since VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowi-
edgement is delayed until they are complete. These include
the instruction following an external control, halt, execu-
tion, or any instruction manually executed in step mode.

VORTEX interrupt line handlers: At system-generation
time, a user specifies all interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line-
handler for each interrupt in the system (figure 14.1).

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. Section 14.4.5
describes directly connected interrupt handlers in detail.

Common interrupt handler: The common interrupt han-
dler is the interface between PIM interrupts (via the line
handlers) and system or user interrupt-processing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inclusively ORed into the
event word of the specified TIDB. A check then determines
whether to return to the interrupted task or to enter the
interrupt-processing task, depending upon priority. All
interrupts are enabled upon leaving the common interrupt
handier.

Interrupt-processing tasks: A task is activated by an
interrupt when: (1) task's TIDB interrupt-expected status
bit is set, (2) the interrupt event word contains a nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD-resident, In either case, the processing task clears the
event word. The event word distinguishes different interrupt
lines that could activate the same task. The dispatcher
clears the interrupt expected bit and time delay activity for
all tasks except TTY and CRT drivers.

An interrupt-processing task can exit with one of the
following options:

a. Issue a suspend RTE (type 1 or 2) service call that
suspends the task and sets the interrupt-expected
status bit. Upon receiving the external interrupt or
simulated interrupt (TBEVNT word in TIDB is set to
1) caused by 10C or 1/0 compietion events (type 2
only), the task continues execution following the
request.

- 14-1

REAL-TIME PROGRAMMING

Dedicated Interrupt Addresses

Line Handlers

TIDBs

0 Thread Word

Event Word

Return Address ORed .
Jump-and-Mark Instruction 3 Event Word
to Common_Interrupt Handler J

Interrupt Stack:

TIDB Location

A, B, X, OF, P,

and Stack Pointer

Return Address

to C

Jump-and-Mark Instruction
Interrupt Handler ()

Thread Word

Event Word

ORed .

TIDB Location

3 Event Word

Return Address

to User Code

Disable Clock Instruction

Jump-and-Mark Instruction

Interrupt Stack:
A, B, X, OF P,
and Stack Pointer

Event word

User Code for

Return Address

Directly

0
Address 1
2
0100 Jump-and-Mark Instruc- 3
1 tion to Line Handler 1 4

0102 Jump-and-Mark Instruc-
3 tion to Line Handler 2 ——»0
1
(or, if directly con- 2

i t

nected interrup)Op(ion 1 i

0104 Jump-and-Mark Instruc-
0105 tion to Line Handler 3 0
1
(or, if directly con- 2
nected interrupt) 3
4

Option 2

0106 Jump-and-Mark Instruc- 0
0107 tion to Line Handler 1
2
3
4
5

to V$DHD

Disable Clock Instruction |
Jump-and-Mark Instruction

Connected
Interrupt Task

User Code Entry Address

- | V$DHD, system

[Event Word

.routine to save
volatile registers r—-l

T

Note: See section 14.4.5 on directly-connected interrupt

handler.

Figure 14-1. Interrupt Line Handlers

b. Issue a delay RTE (type 2 or 3) service call that

Timing Considerations:

The time necessary to process an

suspends the task and sets the interrupt-expected and
time-delay active status bits. The task is reactivated
when time-delay expires or upon receipt of external
interrupt or a simulated interrupt caused by 10C or
1/0 completions (type 3 only).

Upon entry, the event word non-zero indicates
interrupt activation by external or simulated interrupt
(1). Since 10C set the TIDB event word to a 1, the
event word in line handlers for external interrupts
should be set to something other than 1 if a type 3
delay is to be used. The word also clears the time-
delay status bit upon reactivation.

1t should also be noted that for supspend (type 2) and
delay (type 3) service calls, bit 6 of TBPL word of
task's TIDB is set to cause 10C to set TBEVNT word to ¢
1 on 1/0 completion events. This bit is reset whenever

a suspend or delay service call of a type other than

the ones mentioned above.

interrupt through the common interrupt handler depends
on when the interrupt occurred:

a. If a task is interrupted and the interrupt-processing
task has a lower priority, the interrupt is posted, and
VORTEX returns control to the interrupted task in
approximately 56 cycles.

b. If a task is interrupted and the interrupt-processing
task has a higher priority, the interrupt is posted, and
VORTEX transfers control to the dispatcher (section
14.2.3) to start the higher-priority interrupt-process-
ing task (if all its conditions are met). The posting
time is 66 cycles, approximately.

. 1f an interrupt occurs during a dispatcher scan, the
posting time is about 32 cycles. VORTEX returns to the
dispatcher to restart the scan.

d. If the real-time clock interrupts the interrupt handler,
the RTC interrupt handler posts the interrupt and the
common interrupt handler returns to the clock
processor in approximately 40 cycles.

c. If RMD-resident, set the interrupt-expected status bit
and call EXIT to release space. (TIDB must be
resident.)

14-2

14.1.2 Internal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

Memory protection interrupt: Memory protection interrupts
are generated when a task attempts to execute a privileged
instruction such as external control or halt, or attempts to
violate the access mode. The memory protection routines
process all protection violation interrupts which are the
highest priority interrupts in the system. When the
interrupt occurs, the system is forced to the executive
mode, state O (see table 1-1). Section 1.3 describes the
memory map concept and the access modes which can be
assigned to each virtual page.

VORTEX uses the memory protection interrupt for switch-
ing from the user mode to the executive mode when an 170
(section 3) or RTE (section 2) request is made.

The memory protection interrupt addresses for the various
violations are shown in table 14-1.

Table 14-1. Memory Protection Interrupt Addresses

Interrupt Map Active

Error Address Access Control Status

HALT 020 Attempt was made to execute
HALT instruction.

170 022 A map number other than 0
attempted to execute an 1/0
instruction.

WRITE 024 Attempt was made to write
into read-only or execute-
only location.

JUMP 026 Attempt was made to jump

into read operand only
location.
UNASSIGNED 030 Attempt was made to read
or write into unassigned
location.

INSTRUCTION 032 Attempt was made to fetch
FETCH instruction from read
operand only location.

Power failure/restart interrupt: An interrupt occurs when
the system detects a power failure. The VORTEX power
failure processor saves the contents of volatile registers and
the status of the overflow indicator, sets a power failure
flag, and halts with the | register set to 077.

Following the power-up sequence, the PF/R hardware
generates an interrupt. Upon entry to the VORTEX power-
up procesor, the power-failure flag is checked. A power-

REAL-TIME PROGRAMMING

down sequence must have occurred or else a fatal error
condition is assumed to have occurred and VORTEX halts
with the | register set to 077.

If a power-down sequence had occurred, the power-failure
flag is cleared, the PIM mask registers are set, the real-
time clock's variable interrupt interval is set, the saved
volatile registers are restored, the clock and PiMs are
enabled (if enabled upon interrupt), and control is
returned to the location before the interrupt. Any input or
output data transfers in operation at the time of the power
failure result in the loss of data.

For peripheral devices such as magnetic tapes and RMDs,
the 170 operation is automatically retried.

For other peripheral devices, such as the card reader,
paper-tape system, card punch and lineprinter, a retry is
not attempted.

The error message posted depends upon the error detected
by the respective 1/0 driver, such as abnormal BIC stop,
parity error, interrupt time-out, etc. Data losses on the
RMD due to power failure could cause VORTEX to
malfunction, but other devices which are not system-
resident are recoverable.

The power failure-restart routines operate at the second-
highest priority level in the system, which has memory
protection at the highest priority level.

The power-up routine reloads the volatile memory map
registers by scanning the TIDB thread and outputting the
map image for each task which has an assigned, non-
checkpointed map. Each task’s map key number is
contained in TBKEY and the map image adddress con-
tained in TBMING.

The power-up routine also automatically reloads the
writable control store for systems with WCS. Sections
20.1.3 and 20.1.4 describe the manner in which the
microutility task saves the WCS image in the OM library file
named WCSIMG and how the WCS reload task, WCSRLD,
utilizes the file to restore the WCS content. The power-up
routine checks location 017 to determine if WCS has been
loaded. A zero value indicates no WCS. A non-zero value is
assumed to be the WCSRLD TIDB address. The FL library
logical unit number and protect key are stored in TBRSTS
and the WCSRLD TIDB (resident TIDB, non-resident task)
is set active.

Real-time clock interrupt: The real-time clock interrupt
provides the basis for timekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, a
value greater than 5 milliseconds (i.e., 10-20 milliseconds)
reduces overhead when the system does not have high-
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third-
highest priority interrupt in VORTEX.

14-3

REAL-TIME PROGRAMMING

14.1.3 Interrupt-Processing Task
Installation

To install an interrupt-processing task that is not directly
connected, at system-generation time provide line handlers
and resident TIDBs by using a PIM directive (section
15.5.11) with s(n) zero and a TDF directive (section 15.6.2)
using the same task name in both directives. Additional
dummy TIDBs can be added during system generation.
(Once a TIDB is in the system, OPCOM directive ;ATTACH
can be used to connect different interrupt-processing tasks
to an interrupt line.)

Then, code the interrupt-processing task and add the task
via system generation to the VORTEX nucleus as a resident
task.

Then, use the ;ATTACH directive to link the resident task to
the interrupt line (if PIM directive not used).

14.1.4 Interrupt State

When a memory-protection, real-time (RT) clock or PIM
interrupt occurs, the system is forced to the executive
mode, state 0. The interrupts are enabled or disabled as
follows:

a. Memory-Protection Interrupt

1. RT clock is unaffected and remains in the enabled
state.

2. Memory protection is disabled and is enabled prior
to exiting the memory- protection processing routine
(EXC 0646).

3. PIMs are disabled when the JMPM instruction is
executed and PIMs are enabled prior to exiting (EXC
0244).

b. PIM Interrupt
1. RTclock is unaffected and remains in the enabled
state. The common interrupt line handler routine
disables and enables the RT clock. The clock is not
enabled if the PIM interrupted out of the RT clock
processor (see section 14.4.5 for directly connected
interrupt handlers).
2. Memory protection is unaffected and remains in
the enabled state.
3. PIMs are disabled when the JMPM instruction is
executed. The common interrupt line handler routine
enables the PIMs upon exiting.

c. RTClock Interrupt
1. The RT clock processor disables and reenables the
RT clock.
2. Memory protection is unaffected and remains in
the enabled state.
3. The PIMs are disabled when the JMPM instruction
is executed. The RT clock processor enables the PiMs.

14-4

14.2 SCHEDULING

14.2.1 System Flow

VORTEX is designed around the TIDB (table 14-1). This
block contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to flow through the system. Two
register stacks are saved within the TIDB: a reentrant
(suspend register) stack, and an interrupt stack.

The dispatcher (section 14.3) is the prime mover of tasks
through the system. When any function has reached a
termination point or has to wait for an 1/0 operation, the
task gives control to the dispatcher, which then finds
another task to execute. A task maintains control until it
gives contro! to the dispatcher, or to the interrupt task if
the interrupt-processing task has a higher priority. The
contents of the interrupted task’s volatile registers are
saved in its TIDB interrupt stack and control goes to the
dispatcher, which searches for the highest-priority active
task for execution,

Each TIDB is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack
and threaded onto the busy stack according to priority
level.

The status word of each TIDB, starting with the highest-
priority task, is scanned. Depending upon the setting of
status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the dispatcher
to process functions relating to the execution of a
task: (1) search, allocate, and load (SAL), and (2)
common system errors (ERROR). SAL searches, allocates,
loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not reentered
once they start tion, so the di holds tasks
requiring identical functions until they are ‘completed.
Then, the highest-priority waiting task is given control of
the required function.

In VORTEX, SAL assigns a map (1-15) to each non-resident
task scheduled to be executed. If a map is not available,
SAL: (1) checkpoints any executing background task's map
(memory is checkpointed as required only); (2) checkpoints
a lower priority foreground task’s map; or (3) checkpoints a
higher priority foreground task's map (if TBST bit 8 is set);
or (4) exits and does not execute the task until a map
becomes available.

Each map defines a logical memory space of 32K words
which is segmented into 512-word pages (see section 1.3).
SAL sets each logical page to one of four access modes:
unassigned, read only, read operand only, or read-write.
Each logical page which is assigned an access mode other
than unassigned is linked to a physical page of memory. if

the access mode is violated by the executing task, a
memory protect interrupt occurs. The memory protection
interrupt processing is described in section 14.1.2. Page 0
(logical addresses 0-0777) is always assigned to physical
page 0, which is the system data region as defined in table
14-1.

Each task, foreground or background, executes within its
own logical memory space. The amount of logical memory
space available to a task is reduced by: (1) page 0 for
system data; and (2) the VORTEX nucleus module accessed
by the task and mapped into its logical memory (see
section 2.2). If none of the VORTEX nucleus module is
accessed, the task has available all but one page (page 0)
of the 32K logical memory space. Each task is loaded and
executed from logical address 01000. Section 1.3 describes
in greater detail available logical memory space.

SAL allocates physical memory by pages. SAL maintains a
table designating the allocatability of each physical page
within the system as defined during system generation.

If space is not available and the background is in
operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon release of this space by the foreground tasks, the
background is read in from the RMD and reactivated.

If space is required to load a pfogram and the background
has already been checkpointed, the task waits for a
currently running task to exit and release memory.

A task may dynamically request more memory space via
the ALOCPG and MAPIN RTE requests. Sections 2.1.15 and
2.1.17 further describe these RTE requests.

The background memory allocation depends on the size of
the background task being loaded. Only the amount

REAL-TIME PROGRAMMING

ded is so all d ically, although the JCP/
MEN directive can allocate extra memory for a background
task. Figure 14-2 is a VORTEX memory map of map O,
figure 14-3 shows the priority structure, table 14-2 is a
description of a TIDB, and table 14-3 is a detailed
description of lower memory.

14.2.2 Priorities

Thirty-two priority levels (0 through 31) are provided in the
VORTEX system. Levels 2 to 31 are reserved for protected
foreground usuage. Level 26 is reserved for SAL2. Level 25
is reserved for the two VORTEX system tasks, SAL and
ERROR. Levels 24 and 23 are reserved for 1/0 drivers. All
other foreground levels are available to the user. More than
one task per level can be scheduled.

Levels 1 and O are reserved for tasks running in the
background allocatable memory and residing in the
background library. Level 1 is reserved for VORTEX system
protected tasks, e.g., the job-control processor, the load-
module generator, the FORTRAN compiler, the DAS MR
assembler, etc. These tasks run with memory protection
disabled and can be checkpointed when their space is
needed by a foreground task. Level 0 tasks cannot modify
or destroy the system (figure 14-3).

Only one background task can be active and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an’
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is
scheduled. Otherwise, there is a normal exit.

14-5

REAL-TIME PROGRAMMING

14-6

Address
0 Interrupt Location and System Pointers Protected
Background Literal Pool memory
512 (

Nonresident Background Tasks Unprotected
memory is
allocated

Allocatable starting at 512

Memory

Pool Protected
memory is
allocated
starting from

Nonresident Foreground Tasks high memory

Resident Foreground User Tasks

and Subroutines

M-7K"

+ System Common

- Reentrant Stack

+ System and Unused TIDBs

« Line Handlers

« Common Interrupt Handler Protected

« Dispatchér 4 memory

+ Executive Call Handler

* Real-Time Clock

+ Memory Protection Processing

« Power Failure/Restart

* Real-Time Executive Services

M= « joc

Highest -+ Drivers

Memory |« System Tasks (SAL and ERROR)

Address J

If a configuration increases memory, the allocatable
memory pool would increase and resident routines would
reside in a higher position in memory.

* 7K is enough room for the minimum VORTEX nucleus
components, plus four empty TIDB’s and three 1/0 drivers.
Users with more 1/0 devices or a greater number of TIDB's
will need more than 8K.

Figure 14-2. VORTEX Memory Map

Foreground
Priority
Levels

Background
Priority
Levels

REAL-TIME PROGRAMMING

Priority
Level
-
31
2;5 System Task SAL2
25 | VORTEX System Tasks SAL and ERROR
24 | Driver Tasks (Low-Speed Devices)
23 | Driver Tasks (High-Speed Devices)
22
i
10 { Operator Communication Task
9
2
1 | VORTEX System Protected Tasks
0 | User Unprotected Tasks

Figure 14-3. VORTEX Priorify Structure

14-7

REAL-TIME PROGRAMMING

Symbol

TBTRD
TBST
TBPL
TBEVNT
TBRSA
TBRSB
TBRSX
TBRSP
TBRSTS
TBENTY
TBTMS
TBTMIN
TBISA
TBISB
TBISX
TBISP
TBISRS

TBIO

TBKN1
TBKN2
TBKN3
TBTLC
TBCPTH
TBATSK

TBRSE
TBSIZ
TBNUCL

TBMING

TBIST
*TBRSR3-TBRSR7
*TBISR3.TBISR?

14-8

Word

10

11

12

13

14

15

16

17

20

21

22

23

24

25
26

27
28
2933
34-30

Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

Task Thread

Task Status

Task Status Priority Level

Interrupt Event

A Register (Reentrant and Suspension Stack)

B Register (Reentrant and Suspension Sta::k)

X Register (Reentrant and Suspension Stack)

OF |P Register (Reentrant and Suspension Stack)

Temporary Storage (Reentrant and Suspension Stack)

Task Entry Address

Time Counter - Clock Resolution Increments

Time Counter - Minute Increments

A Register (Interrupt Stack)

B Register (Interrupt Stack)

X Register (Interrupt Stack)

OF P Register (interrupt Stack)

Reentrant Stack Address (Interrupt Stack)

No. of 1/0 No. of 1/0
Requests Threaded Requests Active
Task Name
Task Name
Task Name

First Address in Allocatable Memory

Background Task Queue

Address of Scheduling TIDB

Task Error Code

Task Size Unused

Nucleus Module
tndicators

Unused Map
Key

Map Image Address

Interrupt Status

V75 Registers (reentrant and suspension stack)

V75 Registers (interrupt stack)

*Words 29 through 38 are present only if the V75 flag was
set at SYSGEN and the task had a long TIDB created.

Figure 14-4. TIDB Description

Key:
Symbol

TBTRD

TBST

TBPL

Word

15-0

150

15

14

13

12

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description

Set =

Task thread

Task status

Task opened

Long TIDB

Load overlay

Background
checkpoint
170 wait

Allocation
override flag

Background
being check-
pointed

TIDB not
available

Description

Points to next TIDB in

chain. V$TB points to the
highest-priority active task.

Last TIDB on queue has zero in
TBTRD.

See table 15-5.

Bit set when SAL has
opened task but not
loaded it (memory not
available).

Bit set if V75 SYSGEN and task had
a long TIDB created. Ten words are
allocated at the end of TIDB to save
extra registers.

RTE overlay request

made by task with
overlay name in user
request. 1 = overlay load.

Foreground task wait-
ing for background (/0
to complete so it can

be checkpointed to make
allocatable memory
available. 1 = yes.

Overrides bits 9 and 12
of TBPL and bit 6 of
TBST. When FNIS routine
of SAL releases memory
and/or a TIDB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory;
nor scheduler, a TIDB.

1 = override.

Background task being
written on checkpoint
file. 1 = yes.

Schedute request made

but no TIDBs available

for allocation. The task

is suspended until one becomes
available. 1 = TIDB

not available.

Task waiting for available

map. 1 = map has been
assigned to task.

14-9

REAL-TIME PROGRAMMING

Table 14-2. TiDB Description (continued)

Symbol Word Bits Set = Description
7 Task map checkpoint, 1 =
task's map has been checkpointed.
6 Delay type Set by RTE when a delay, type 3
3 request request is made. Cleared by 10C
upon completion of 1/0 request.
50 Task priority Specifies priority level
level (0-31) of task to be exe-
cuted.
TBEVNT 3 15-0 Interrupt Matches bits in interrupt-
event handler calling sequence.

Interrupt-handler event
inclusively ORed into TIDB
word 3 when processed by line
handler. If a bit sets

while status bits 3 and 14

are set, dispatcher

activates task. Clear

event word before exiting.

TBRSA 4 15-0 A register 10C and RTE calls store
(reentrant volatile register contents
and suspen- in this stack (words 4-8).
sion stack)

TBRSB 5 15-0 B register
(reentrant
and suspen-
sion stack)

TBRSX 6 15-0 X register
(reentrant
and suspen-
sion stack)

TBRSP 7 15 OF (overflow)
register (re-
entrant and
suspension
stack)

140 P register
(reentrant
and suspen-
sion stack)

TBRSTS 8 15-0 Temporary
storage
(reentrant
and suspen-
sion stack)

TBENTY 9 15-0 Task entry Absolute address of first
executable data of a task.

14-10

Symbol

TBTMS

TBTMIN

TBISA

TBISB

TBISX

TBISP

TBISRS

T8I0

TBKN1

Word

10

1

12

13

14

17

18

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Bits

15-0

15.0

15.0

150

15.0

15

15-0

158

7-0

15.0

Set =

Time counter
{clock reso-
lution incre-
ments)

Time counter
(minute in-
crements)

A register
(interrupt
stack)

B register
(interrupt
stack)

X register
(interrupt
stack)

OF (overflow)
register (inter-
rupt stack)

P register
(interrupt
stack)

Reentrant
stack pointer
(interrupt
stack)

Number of
170 requests
threaded

Number of
active 170
requests

Task name

Description

Words 10 and 11 indicate
time left before execution.
(Clock routine increments
both words when bit 6 or
7 is set in status 1.)

Words 12-16 store volatile
register contents during
interrupt by higher-priority
task. (Upon reactivation,
words 12-16, volatile reg-
ister contents, and reen-
trant stack pointer are re-
stored and execution is
continued.)

Incremented by 10C when
170 request is received,

and decremented upon com-
pletion. (A task cannot

exit or abort until counter
is zero.)

Incremented by 10C when
it sets an 1/0 driver ac-
tive, and decremented upon
completion.

First two characters of
six-character task name.

14-11

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Symbol Word Bits Set = Description
TBKN2 19 15-0 Task name Second two characters of
six-character task name.
TBKN3 20 15-0 Task name Final two characters of
six-character task name.
TBTLC 21 15-0 First address Points to first address
in allocatable allocated for use by task.
memory After a task has been loaded,

SAL save the read-only page
number and number of pages
in TBTLC as described for
TBNUCL, bit 12.

TBCPTH 22 15-0 Background Any background task wait-
task queue ing to be loaded in back-
ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,
but cannot load them
until space is available.)

TBATSK 23 15-0 . Address of Stores this address, and
scheduling upon EXIT or ABORT (if
task's TIDB bit 1 of TBST set) reac-

tivates scheduling.

TBRSE 24 15-0 Task error Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints

message.
TBSIZ 25 15-10 Task size Number of pages of memory
to be allocated to task.
9-0 Reserved for
future use
TBNUCL 26 158 Nucleus Bit 8 reserved for future
indicator VORTEX use.

Bit 9 when set indicates
map foreground blank
common in task; read-
write access mode.

Bit 10 when set indicates
map nucleus table module
in task; priority O tasks
are mapped with module
set to read operand only.
All other priority tasks
are mapped with the module
set to read-write access
mode.

14-12

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)
Symbol Word Bits Set = Description

Bit 11 when set indicates
map global FCB in task;
this module is mapped read-
write access mode.

Bit 12 when set indicates
map pages read-only
specified by LMGEN. Read
only pages have been
designated during load
module generation. The
logical page number and
the number of pages are
set in the load module
pseudo TIDB and temporarily
stored in TBTMIN bits 15-8
and bits 7-0 respectively.
After the task is loaded in
memory, the page numbers
are stored in TBTLC, SAL
sets the specified pages

to read-only access mode.

7-4 Reserved for
future VORTEX
use
TBKEY 26 3-0 Key Task map key. This is the
map number (0-15) assigned
to the task by SAL or SGEN.
TBMIMG 27 15-0 Map image Address of task map image.
This is the map 0 logical
address of the task's map
image. Normally it would
be immediately following
the task's TIDB.
TBIST 28 15-0 Interrupt Bit 15 is O if VSKEY to be
status set to zero and is 1 if
VSKEY to be set to TBIST
(bits 3-0).
Bits 14-0 are the map status
as input from hardware.
TBRSR3 29 15.0 V75 register 10C and RTE call store
3 (reentrant volatile register contents
and suspension in this stack (words 29-34).
stack)
TBRSR4 30 15-0 V75 register 4
TBRSR5 31 15-0 V75 register 5
TBRSR6 32 15.0 V75 register 6
TBRSR7 33 15-0 V75 register 7

14-13

REAL-TIME PROGRAMMING

14-14

Symbol

TBISR3

TBISR4
TBISRS
TBISR6

TBISR7

Address
00-01

02-015
016

017

020,021

022,023

024,025

026,027

030,031

032,033

034,037

040,041

Word

35

36

37

Symbolic Name

Table 14-2. TID8 Description (continued)

15-0

15-0

15.0

15-0

Sel = Description

V75 register 3 Words 31-35 store volatile
register contents during
interrupt by higher
priority task (see descrip-
tion of TBISA).

V75 register 4

V75 register 5

V75 register 6

V75 register 7

Table 14-3. Map of Lowest Memory Sector

Description
CPU interrupt code (preset to NOP)

Unassigned: available to the user
Unassigned. Reserved for future VORTEX Il use

TIDB address for WCS reload task

Memory protection interrupt: halt
(jump-and-mark to V$MPER)

Memory protection interrupt: 170
(jump-and-mark to V$MP3)

Memory protection interrupt: write
(jump-and-mark to V$MP2) '

Memory protection interrupt: jump
(jump-and-mark to V§MAP2)

Memory protection interrupt: unassigned
(jump-and-mark to V$MAP1)

Memory protection interrupt: instruction
fetch (jump-and-mark to VSMAPE)

Reserved for future VORTEX Il use.
Jump-and-Mark to V$MPIO to ignore
spurious interrupts

Power-down interrupt (jump-and-mark
to V$PFDN)

Address

042,043

044,045

046

047
050-053

054

055

056-067

070-073

074

075

076-077

REAL-TIME PROGRAMMING

Tabie 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$CRDM

V$JCTM
VSJNAM

VSLCNT

V$JCFG

V$BIC1

V$DATE

V$PLCT

V$BGLB

Description

Power-up interrupt (jump-and-mark
to V$PFUP)

Variable-interval interrupt address
(jump-and-mark to V$CLOK)

Keypunch (0 = 026, 1 = 029):

Bit 0 SGEN nominal keypunch
Bit 1 Set to 1 (if V75 system)
Bit 8 Current keypunch specified by JCP

/KPMODE directive (/JOB, /FINI, or
/ENDJOB resets the current value to
nominal value)

JCP Temporary Storage
Eight-character job name

Line count (set by a JCP /FORM
directive): used by DAS MR assem-
bler and FORTRAN compiler to deter-
mine the number of lines printed
before a top of form is issued.

JCP flags:

Bits 15-10 Number of extra mem-
ory blocks to be
allocated with back-
ground task (cleared
after loading)

Bits 9-5 Unused.

Bit 4 Dump flag if load and go

Bit 3 Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)

Bits 2-0 Load-and-go flags

BIC in sequence (maximum 8). See section
14.4.6 for a description of VORTEX Il use
of BICs and BTCs

Eight-character date set up by
OPCOM directive ;DATE,mm/dd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the BL unit

FPP (Floating-Point Processor)
interrupt (jump and mark to V$FPP)

14-15

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)
Address Symbolic Name Description
0100-0117 PIM 0 jump-and-mark to individual

line handlers. Unassigned lines are set
to JMPM V$MPIO to ignore spurious interrupts

0120-0137 PIM 1* jump-and-mark to individual
line handlers

0140-0157 PIM 2* jump-and-mark to individua!
line handlers

0160-0177 PIM 3* jump-and-mark to individual
line handlers

0200-0217 PIM 4* jump-and-mark to individual
line handlers

0220-0237 PIM 5* jump-and-mark to individual
line handlers

0240-0257 PIM 6* jump-and-mark to individual
line handlers

0260-0277 PIM 7* jump-and-mark to individual
line handlers

‘ 0300 V$CTL Address of currently executing task

TIDB (0177777 = dispatcher, 037, =
real-time clock routine)

0301 V$CPL Priority level of currently executing
task
0302 V$CRS Address of current reentrant stack

(zero if the currently executing
task is not executing a reentrant
subroutine)

0303 v$1B Address of highest-priority TIDB
in the active stack

0304 v$uTB Address of dynamically allocated page.
If zero, no page yet allocated. This
is the top of the thread for pages allocated
for dynamic memory allocation as required
for TIDB space, 1/0 request, etc.

0305 V$PTVB Address of next entry in reentrant

stack
" 0306 VSFLRS Address of first location of re-

entrant stack

0307 VSLRSK Address of last location of re-
entrant stack + 1

0310 VSCKPT Checkpoint flag (set if background
checkpointed)

14-16

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description
: 0311 V$OPCL Address of TIDB for OPCOM task
0312 V$LSAL Address of TIDB for system SAL task
0313 VSLER Address of TIDB for system ERROR
task
0314 V$TJCP Address of TIDB for JCP task
0315 V$BTB Address of current active back-

ground task TIDB (zero if no back-
ground task active)

0316 VENPAG Number of available physical pages
remaining in V$PAGE for allocation

0317 V$LLUP Logical address specifying the end
of the execution background tasks
allocated memory space

0320 V$IM Interrupt mask for PIM 0 (0 = enable,
1 = disable) (bit 0 = line 0)

0321 Interrupt mask for PIM 1

0322 Interrupt mask for PIM 2

0323 Interrupt mask for PIM 3

0324 Interrupt mask for PIM 4

0325 Interrupt mask for PIM 5

0326 Interrupt mask for PIM 6

0327 Interrupt mask for PIM 7

0330 VSMAP Map key availability flag word. Bit

0 = map O, bit 1 = map 1, etc.
A zero indicates that the map is un-
available for assignment, a 1 =
map is available for assignment

0331 V$BTBM Base address of nucleus table module.
Top of nucleus table module defined
by V$GFCB

0332 V$GFCB Base address of global FCBs

0333 V$MIMG Map O image address

14-17

REAL-TIME PROGRAMMING

Table 14-3, Map of Lowest Memory Sector (continued)

Address Symbolic Name Description
0334-0337 VSTO, VST1, FUNCI word for executive mode states
V$ST2, V$ST3 0, 1, 2, 3. Used by map 0 tasks to

switch executive mode states. See
section 1.3 for description on the

use of V$STO-V$ST3. These words are
set up by the dispatcher. Bits 0-3 are
set to the map number in TBKEY. If
the task has been interrupted, the
map number in bits 0-3 of TBIST is

used
0340 VSKEY VORTEX currently executing map key
0341 V$CRDR Address of resident directory. See
section 14.4.8
0342 V$TBGT Top of thread of background tasks

waiting for allocation

0343 V$TMS Time-of-day in 5-millisecond incre-
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments, V$TMS resets). The
range is 0 to 12000.

0344 VSTMN Time-of-day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes). V$TMN resets). The range is

0 to 1440.
0345 VSLUNT Address of logical-unit name table
0346 V$OPCF OPCOM lockout flag (busy)
0347 V$FGLB Protection code and logical-unit
number of the FL unit
0350 V$FREE Reserved for future VORTEX use
0351 V$CTMS Clock resolution in 5-millisecond

increments (user-specified mitii-
second interrupt rate/5) speci-
fied at system-generation time

0352 V$SCV Selected clock count (1 to 4095)
([user-specified millisecond
interrupt rate] x [1000/V$CKB])

0353 V$LPP Pointer to last tested word in V$PAGE

0354 V$CRM Clock resolution increments for frac-
tions of a minute in 5-millisecond
increments

0355 vs$DSTB Address of DST block

14-18

Address

0356

0357

0360

0361

0362

0363-0372

0373-0374

0375

0376

0377
0400

0401

0402

0412

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

v$uT

V$PGT

V$CTAD

V$SCTL
VSNCTR

VS$PIMN

JUMP V$I0ST
VSSLFG
V$ERFG
V$JOP
V$LUT1

VELUT2

VLUT3

VS$1MIN

JUMP V$I0C

JUMP V$EXEC

V$I0A

V$CKIT

V$JCB

Description

Last address in background literal
pool

Address of V$PAGE, physical page
availability mask.

Base address for controller address
table

Current controller in scan
Number of controllers

External device address table for
PIMs

VORTEX Il link for IOC STAT CALL
System SAL task busy flag (1 = busy)
Error task busy flag (1 = busy)
JCP operating flag (1 = busy)
Starting address of logical-unit
table for JCP/OPCOM-assignable
logical units (1 - 100)

Starting address of logical-unit
table for unreassignable logical
units (101-179)

Starting address of logical-unit

table for OPCOM:-assignable logical
units (180-255)

Clock constant set up by SGEN where
V$IMIN = 32767 - (60000/(5*V$CTMS))
+ 1

VORTEX Hl link to 10C

VORTEX I link to RTE

1/0 algorithm

Clock interrupted PIM before it
could be locked out (common inter-
rupt handler and clock-processor
flag)

Address of 41-word JCP buffer (all

system background programs and JCP
input directives into this sytem buffer)

14-19

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)
Address Symbolic Name Description

0413 v$0CB Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re-
quests into this buffer; it JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JCB before scheduling JCP)

0414 V$BVN Bottom of VORTEX nucleus. SGEN sets
to virtual address. Initializer sets to
page number

0415 V$BFC Bottom of foreground blank common

0416 VS$TFC Top of foreground blank commen,
top of VORTEX nucleus core

0417 V$PST Maximum RMD partitions per unit in system

0420 ZERO Zero word

0421 BSO Bit mask contents 0000001

0422 BS1 Bit mask contents 0000002

0423 BS2 Bit mask contents 0000004

0424 BS3 Bit mask contents 0000010

0425 BS4 Bit mask contents 0000020

0426 BSS Bit mask contents 0000040

0427 BS6 Bit mask contents 0000100

0430 BS7 Bit mask contents 0000200

0431 BS8 Bit mask contents 0000400

0432 BS9 Bit mask contents 0001000

0433 BS10 Bit mask contents 0002000

0434 BS11 Bit mask contents 0004000

0435 BS12 Bit mask contents 0010000

0436 BS13 Bit mask contents 0020000

0437 BS14 Bit mask contents 0040000

0440 BS15 Bit mask contents 0100000

0441 BRO Bit mask contents 0177776

0442 BR1 Bit mask contents 0177775

0443 BR2 Bit mask contents 0177773

14-20

Address

0444

0460
0461
0462
0463
0464
0465
0466

0474
0475
0476
0477
0500-0777

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name
BR3
BR4
BR5
BR6
BR7
BR8
BR9
BR10
BR11
BR12
BR13
BR14
BR15
NEG
LHW
RHW
THREE
FIVE
SIX
SEVEN
NINE
TEN
BM17
BM37
BM77
BM177
BM777
BM1777

Description
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents
Bit mask contents

Bit mask contents

@
=

mask contents

@
=

it mask contents

Left-half word mask (0177400)

0177767
0177757
0177737
0177677
0177577
0177377
0176777
0175777
0173777
0167777
0157777
0137777
0077777
0177777

REAL-TIME PROGRAMMING

Right-half word mask (0000377)

Data word (000003)

Data word (000005)

Data word (000006)

Data word (000007)

Data word (000011)

Data word (000012)

Bit mask word (000017)

Bit mask word (000037)

Bit mask word (000077)

Bit mask word (000177)

Bit mask word (000777)

Bit mask word (001777)

Background literals and pointers

1421

REAL-TIME PROGRAMMING

14.2.3 Timing Considerations (Approximate)
Real-time clock interrupt processor: At each incrementa-
tion of the real-time clock, there is a TIDB service scan
requiring
X + 8y + 7z cycles
where
X is 48 when the scan interrupts the
dispatcher, or 63 when it interrupts a
task and must establish a reentrant

stack and store the contents of the
volatile registers

y is the number of TIDBs searched

z is the number of tasks having time- or
schedule-delay status bits set

The clock interrupt is disabled during the ion of the
clock processor, and PIM interrupts are disabled for 26
cycles following the initial entry of the clock processor.

Dispatcher interrupt pi The time required to
begin execution of a task through the dispatcher is a
function of the number of TIDBs searched before execu-
tion. The time required to begin execution of the nth task is

t + 1l4u + 17v + 12w + 18x +25y + z

where

t is 17 or 25, depending on the entry to
the dispatcher

u is the number of tasks with task-
suspended bits (TBST bit 14) set

v is the number of tasks with events
expected but event word reset

w is the number of tasks with error bits
(TBST bit 4) set but error task busy

X . is the number of tasks with either task-
aborted (TBST bit 13) or task-exited
{TBST bit 12) set but 1/0 not completed

y is the number of tasks active but not
loaded

z is one of the following values:

107 to activate the ERROR task

110 to activate the SAL task on aborting
or exiting

114 to activate a loaded task that is not
suspended, or to activate the SAL task to
load the requested task

104 to activate an interrupted,
suspended task

62 to activate a task when the event
word is set and the interrupt suspended

14-22

Search, allocate, and load:
Load processing requires, for a foreground task
852(k) + w(k) + wk) + x + y + ny
where
k is the cycle time

v is the nucleus module required by the
taskandis28 + A + B + Ccycles

where

A is 28 + 8 times the size
of common, in pages
B is 81 cycles as an average
for the nucleus table module
Cis 11 + 11 times the number
of specified read-only pages

X is the time to process an OPEN request

y is the time to read an RMD record
(pseudo TIDB)

ny is the time to read a task from RMD into
memory (variable depending on RMD
device and task size)

w is the page allocation 456 + 35 times the

task size, in pages
For a background task, load processing requires
945(k) + w(k) + w(k) + x + y + ny
where
k is the cycle time

w is the page allocation and is 45 + 35
times the task size, in pages

v nucleus module required by task and is
28+A+B+C

where

A is 53 cycles (global FCB
module)

B is 81 cycles (average,
nucleus table module)

Cis 11 + 11 times the number
of specified read-only pages

X, y and ny are as defined for foreground task.
Resident task load processing requires

(533 + 9) + Yk
where

k is the cycle time

x is the task size, in pages

y is the nucleus module required by task
48+A+B+C+D

where

A is 28 + 8 times the size
of common, in pages

B is 53 cycles for global FCB

C is 81 cycles for nucleus
table module

D is 11 + 11 times the number
of read-only pages

14.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name V$CRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format:

Word
\
V$CRS ——0 A Register
1 B Register
Fined
2 X Register Sive
3 OF L P Register
4 Pointer to Previous Reentrant Stack J
5 Available for Reentrant Subroutines
y Variable
Size
n
n+1
to V78 Registers 37
n+5)

When writing a reentrant subroutine, ensure that the entry
I (tai the ber (25) of words to be
allocated, execution starts at the address (entry address +
1), and that V$CRS contains the reentrant-stack address.
No 10C or RTE calls except DEALOC can be made while in a
reentrant subroutine. The subroutine makes a DEALOC
service request to return control to the calling task.
DEALOC releases the reentrant stack, restores the A, B,
and OF register contents, and returns control to the
address following the ALOC request. No temporary storage
is available for the reentrant subroutine except that
allocated in the reentrant stack.

Parameters or pointers can be passed to the reentrant
subroutine in the A and/or B (and V75 if present) registers,
as well as in-line after the ALOC macro.

REAL-TIME PROGRAMMING

Two tasks make ALOC calls to RSUB. RSUB reserves six
words of allocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a value to the calling task. If task A is on priority level 5
and task B is on level 6, RSUB running on level 5 is
interrupted and the level 6 task B executed. This, in turn,
makes an ALOC request and executes RSUB. RSUB then
executes to completion before RSUB on level 5 can be
completed.

Example:
Task A
ALOC RSUB
JAEL ———-
END
Task B
ALOC RSUB
JAZ ———-
END
Reentrant Subroutine
NAME RSUB
V$CRS EQU 0302
RSUB DATA 6 Allocate six-word
LDX V$CRS Stack (one temporary
location)
STA 5, 1 Save A in temporary

storage

LDA 5, 1 Get temporary storage
value

STA 0,1 Modify return in A
register

DEALOC Return to location
following ALOC call

END

14-23

REAL-TIME PROGRAMMING

14.4 CODING AN 1/0 DRIVER

The 10C (section 3) activates 170 drivers. When a user task
makes an 1/0 request, it executes a JSR 0404,X instruc-
tion. 10C then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. 10C queues RQBLK to the 170
driver controller table (CTBL), and activates the corre-
sponding controller-table TIDB. The TIDB contains the
entry address for the 1/0 driver. To determine the proper
CTBL and corresponding TIDB, 10C obtains the logical-unit
number from RQBLK. By referring to the logical-unit table
(LUT), 10C then finds the device assigned to that logical
unit. Each device has a device specification table (DST)
associated with it, and each DST has a corresponding
controller table.

In VORTEX all RQBLKs are moved to map 0 dynamically
allocable space. Upon completion of the 1/0 request, I0C
moves the RQBLK to the requesting task’s logical memory.

14.4.1 1/0 Tables

Not all the data discussed in this section are required for
coding every special-purpose driver, but it is presented to
provide maximum flexibility in defining driver interfaces.

When an 1/0 driver is entered, it has the data, system
pointers, and table address necessary for the 1/0 driver
processing. At system-generation time, additional working
storage space can be assigned to the |/0 driver as an
extension of the controller table. The data available are:

a. V$CTL (lower-memory system symbol defining the
current TIDB) = address of TIDB associated with the
1/Q driver controller table.

b. TBRSTS (word 8 of controller TIDB) = address of
controller table CTBL.

c. Within CTBL, the following:
(1) CTIDB (word 0) = controller TIDB address
(V$CTL)
(2) CTDST(word 3) = address of DST
(3) CTRQBK (word 4) = address of RQBLK to be
processed
(4) CTDVAT(word 6) = controller device address
(5) CTSTAT (word 8) = temporary storage available
for driver
(6) CTBICB (word 9) = address containing assigned
BIC address (e.g., 020,022)
(7) CTFCB (word 10) = FCB or DCB address for 1/0
request specified in CTRQBK (word 4)
(8) CTWDS (word 11) = contains, upon exit, number
of words transferred
(9) CTSTSZ (word 13) = number of words per RMD
sector
(10) CTTKSZ (word 14) = number of sectors per RMD
track
(11) CTPSTO(word 15) = base address of the RMD for
unit 0 on this controiler
(12) CTPST1, CTPST2, and CTPST3 (words 16, 17, and
18) = PST addresses for units 1,2, and 3

14-24

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) = number (0-
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) = RMD partition
number (1-20) used to access the PST

e. Request block (RQBLK): Contains user task 1/0
request information. The address of RQBLK is
contained in CTRQBK (word 4 of the controller table).
Word 1 of RQBLK contains the operation code in bits
8:11 and the mode specification in bits 12-14. Word 0
bits 5-14 contain the status.

{. File control block (FCB): The FCB is used for RMD
devices. CTFCB contains the address of FCB.
(1) FCRECL(word 0) = record length
(2) FCBUFF (word 1) = user buffer
(3) FCACM (word 2) = bits 8-15, access method, and
bits 0-7, protection code
(4) FCCADR (word 3) = current record number
(relative within file)
(5) FCCEOF (word 4) = current EOF record number
(relative within partition)

(6) FCIFE (word 5) = beginning-of-file record
number (relative within partition)

(7) FCEFE (word 6) = end-of-file record number
(relative within partition)

(8) FCNAM1, FCNAM2, and FCNAMS (words 7, 8,
and 9) = file names in ASCII

g. Data control block (DCB): The DCB is used for non-
RMD devices. CTFCB contains the address of DCB.
(1) DCRECL (word 0) = record length
(2) DCBUFF(word 1) = user buffer
(3) DCCNT(word 2) = function count

h. V$CTL, TIDB, CTBL, DST, and the RQBLK reside in map
0. The FCB and DCB reside in the user’s logical memory
and to access the data, the 1/0 drivers must switch to
the proper executive mode state (see section 1.3).

14.4.2 1/0 Driver System Functions

Each |/O driver under 10C performs certain system pre-
and post- processing functions.

Pre-interrupt processing: The 1/0 driver must switch
executive mode states to fetch or store data from user
mode (see section 1.3). If the 170 driver uses a BIC, the
driver calls V$BIC with the X and A registers set to the
initial and final buffer addresses respectively to build and
execute the initial BIC transfer instruction. If the BIC is
shared, the interrupt line handler is modified to the proper
interrupt event word setting (TBEVNT) and TIDB address.
V$BIC performs this modification if the word immediately
following the call (JSR V$BIC,B) is nonzero, since this is
assumed to be the interrupt event word setting. If it is zero,
no line handler modification is performed. The I/Q driver
clears the interrupt event word (TBEVNT) in the controlier
TIDB immediately preceding a DELAY (type 2) call. To wait

for an interrupt, the 1/0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver, either from a
time-out or interrupt is to the address immediately
following the call. The contents of the X register is not
restored following a DELAY call but the A and B registers
are. Executing a TXA immediately preceding and a TAX
following the DELAY call X restores the value in the X
register.

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the DELAY call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT = 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruction.

Post-interrupt processing (no errors): Upon the completion
of interrupt processing, the driver sets the status bits (5-
14) of RSTPR (word 0) in RQBLK, and enters the number of
words transferred in CTWDS. The driver then relinquishes
control and exits to 10C by executing JMP V$FNR.

Post-interrupt processing (errors): If an error is encoun-
tered during interrupt processing, the driver sets the status
bits (5-14) of RSTPR, according to the type of error. The
driver then sets the A register to zero if the unit is not
ready, negative if there is a parameter error, or positive if
there is a hardware error. Finally, the driver exits to the 10C
error routine by executing JMP V$ERR.

14.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directives
are required for linkages to the controller table, controller
TIDB, 1/0 driver entry location, DST, PST, and the PIM line
handler (section 15):

Directive Description

EQP DSTs are generated by SGEN, one for
each unit specified by the EQP directive.
All DSTs generated for a controller point
indirectly to the controller table
specified by EQP. The pointer is to the
entry name in the controller table
assembly.

PIM A PIM directive is required for each PIM
line where an interrupt is expected. The
PIM directive causes the system
initializer to enable the mask for that
line (except for the TTY or CRT output
line, in which case it is initially disabled).
It the driver processes both input and
output interrupts, it may be
advantageous for processing to set the
interrupt event word for the input fine to
one value (e.g.,, 01) and the interrupt
event word for the output line to another
value (e.g., 02). The PIM directive also
specifies if a directly connected interrupt
handler is to 'be used (see section
14.4.5).

REAL-TIME PROGRAMMING

ASN This directive assigns logical units to
physical units. If a new device is being
added and it is necessary to assign that
device to a logical unit when the system
is initialized, an ASN is input. Otherwise,
the JCP or OPCOM ASSIGN directive can
be used. The logical-unit table is
established by these directives.

PRT This directive for RMDs specifies the
size and the mnemonic name of each
partition. A PST and DST are created for
each partition.

TDF This VORTEX nucleus-generation
control record directive defines and
builds the controller TIDB. It specifies
the name of the driver, status word
(TBST) setting, and priority level.

Adding controller tables: A controiler table is assembled
as a separate entity and added to the system-generation
library (SGL) for loading at system-generation time. The
controlley table name is CT followed by the three- or four-
character ASCH name of the controller, e.g., CTTYOA,
CTMTOA, and CTDOB.

VORTEX Input/Output Control (I0C) assumes the first 13
words of all non-RMD controller tables to be identical, i.e.,
word 0 = CTIDB; word 1 = CTADNC, etc. For RMDs the
first 18 words are assumed to be identical. Additional
words may be added to the controller table by use by the
individual 1/0 driver.

The controller table comprises parameters that are
constant for a controller, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA
statements can be added to the controller table to provide
additional working space for an /0 driver.

The following standard items are required by 10C:

Word Item Description

0 CTIDB = Name of the related controller TIDB (TB
followed by the same three or four-character name used
in the controller table e.g.,. TBDOB (for CTDOB). An
EXT statement must specify the TIDB name as an
external name.

EXT TBDOB
DATA TBDOB

1 CTADNC = This word is used by 10C as temporary
storage.

2 CTOPM = The operation code mask specifying the type

of 170 operation the driver is capable of processing 1 =
driver is capable of processing.

14-25

REAL-TIME PROGRAMMING

Bit Operation

Read

Write

Write EOF

Rewind

Skip record

Function

Open

Close

Reserved for future use

PN A WN O

@
—
(-]

Example: DATA 037
For all operations excluding Function,
Open, and Close.

3 CTDST = Setby |OC to DST address
Example: DATA 0

4 CTRQBK = Set by IOC to 1/0 request block being
processed.
Example: DATA 0

5 CTRTRY = Errorretry count. #T followed by the name
of the controller.
Example: DATA #TTY0A
EXT #TTY0A

6 CTDVAD = Controller device address. # A followed by
the name of the controller
Example: DATA #ATYOA
EXT #ATYOA

7 CTIOA = |/0 algorithm. The ratio of device transfer
rate to DMA transfer rate + 10 percent of the result
times 32767. Zero for all non-BIC devices.

Example: when a disc transfer rate is

100K words per second and DMA rate is
300K words per second, the ratio is about
.33. Set CTIOA to: DATA 030000

If ratio is .25 or 25 percent set

CTIOA (DATA 020000); 50 percent

set CTIOA (DATA 040000), etc.

To make CTIOA a SGEN selectable parameter
(refer to section 15.5.2, EQP directive)
assemble as an external e.g., EXT #D followed
by the name of the controller:

EXT #DCIOA
DATA #DCIOA

for process 1/0

8 CTSTAT = DATA 0, for driver use.

9 CTBICB = Address of BIC flag table. B followed by the
name of the name of controller,
Example: DATA BDOB
EXT BDOB
When the driver is entered the item
points to a call containing the BIC
device address, 020, 022, 024, etc.

10 CTFCB = Set by 10C to the DCB or FCB address. Set to
DATA 0

14-26

11 CTWDS = DATA 0. Driver use for number of
words transferred.

12 CTFRCT = [/0 algorithm frequency count. The
number of retires to be attempted by 10C before
suspending all subsequent 170 operations until the
request in CTRQBK (word 4) is activated. DATA [}
for non-BIC devices.

13 CTSTSZ = RMD only. Number of words in an RMD
sector.
Example: DATA 120

14 CTTKSZ = RMD only. Number of sectors in an RMD
track
Example: DATA 48

15 CTPSTO = RMD only. Base address of the PST for
RMD unit 0 connect to this controller. P followed by the
four character device name.

Example: DATA 1 PDOOB
EXT 1PDOOB

16 CTPST1 = RMD only. Base address of the PST for
RMD unit 1.
Example: DATA 'PDO1B
EXT 1PDO1B

17 CTPST2 = RMD only. Base address of PST for RMD
unit2.
Example: DATA 1PD0O2B
EXT |PD02B

18 CTPST3 = RMD only. Base address of PST for RMD
unit3.
Example: DATA 1PDO3B
EXT \PDO3B

14.4.4 Enabling and Disabling PIM
interrupts

The disable and enable PIMs and RT clock instructions
(EXC 0147, EXC 0747, EXC 0244, EXC 0444) are priv-
itedged instructions and cannot be executed in a user map
(non-map 0) without creating a memory protect interrupt.
The memory protect processor recognizes the interrupts
caused by the disable/enable instructions and returns to
the foreground task in the proper disabled or enabled
state. The following restrictions apply:

a. Only foreground tasks are permitted to execute the
disable/enable PIMs and RT clock instructions. EX21
error message is output of a background task
attempts to execute those instructions.

b. The return to the foreground task is at location n + 2.
In other words, both the disable PIMs and clock
instructions (EXC 0747, EXC 0444 or vice versa) or
enable PIMs and clock instructions (EXC 0147, EXC
0244 or vice versa) must be together. The second EXC
instruction is not executed.

REAL-TIME PROGRAMMING

Example: EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM

Location Instruction directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled

n EXC 0444 Disable RT clock unless the 1/0 driver specifically disables it. If a PIM
instruction creates directive is omitted, the linkage between the trap and the

interrupt. interrupt line handler cannot be established. If a PiM line

mask is enabled or disabled by a driver, the system mask

n+1 EXC 0747 This instruction is is updated to reflect the current status. The system mask
not executed. configuration is given at low memory address V$IM (0320

for PIM1, 0321 for PIM2, etc.).

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

n+2 Return location from
the memory protect
processor with PIMs

and RT clock disabled. Figure 14-5 shows the standard VORTEX driver interface.
Interrupt
Trap
Location
v1
Interrupt Line Common
Handler (Using — Interrupt
Common Handler) Handler

5]

Task TIDB L

Tz

170 Driver

Controller .- Controller
Table Address
(for Drivers) Table

IS

Device
Specification
Tabies
(for Drivers)

PNININTIFN

KEY:

1. The trap address corresponding to the PIM number

(from PIM directive) points to the SGEN-generated line

handler. The line handler points to the TIDB {named

in PIM directive), using the matching TIDB name (on
TDF control record).

2. The TIDB name (on TDF control record) points to the
task, using the entry name in the assembly of the task.

3. For OPCOM device drivers only. The task TIDB points to
the device controller table name (on TDF control
record), using the entry name in the controller table
assembly.

4. The DSTs are generated by SGEN, one for each unit
specified on-the EQP directive. All DSTs generated for a
controller point indirectly to the controller table
(named. in EQP directive), using the entry in the
controller table assembly.

Figure 14.-5. Driver Interface

14-27

REAL-TIME PROGRAMMING

14.4.5 Directly Connected Interrupt Handler -

VORTEX provides a user two options of specifying directly
connected interrupt handlers. The use of a directly
connected interrupt handler, in lieu of the VORTEX
common interrupt handler, is specified on the PIM directive
during system generation (section 15.5.11). The interrupt
handlers must be resident in executive mode, map 0.

Option 1 (specifying 1 as the s(n) parameter on the PIM
directive) requires the user to:

a. Save and restore the overflow indicator and all volatile
registers used by the directly connected interrupt
routine before returning to the interrupted task.

b. Notallow |IOC and RTE calls.
c. Minimize execution time.

d. Continue to lockout interrupts during processing, then
enable the PIMs upon exiting. The RT clock is
enabled in all cases except when the real time clock
processor has been interrupted. Location 0300,
V$CTL, will contain 037 if the RT clock processor had
been interrupted. The interrupt handler must provide
a check for interruption out of the RT clock processor
and enable or disable the RT clock accordingly.

e. Restore the VORTEX system to the proper pre-
interrupted state, executive or user mode. Any
interrupt forces the system to executive mode, state 0
(see table 1-1). The interrupt handler must return to
the proper state. V$KEY, location 0340, contains the
map key number of the interrupted task. If the
interrupt task is the user mode (1< V$KEY < 15) ,
the switch from “executive to user mode enable”
instruction (EXC2 0246) must be executed. The "clear
executive mode state mask’* instruction (EXC2 0546)
must also be executed.

Example:

LDB D5000

LDA 0300 Check location 0300
SUB o473 System constant = 037
JAZ DIH10 Zero = interrupt out of
LDBI 0104546 RT clock
LDAI 0100147 Otherwise enable clock
JIMP DIH10+1

DIH10 LDA D5000 = 5000
STA DIH30 Enable clock instruction
STB DIH30+1 Enable mask instruction

ROF

LDA ROV Restore overflow

JANZ *43

SOF

LDB D5000 NOP instruction

LDA 0340 V$KEY check interrupts

14-28

ANA 0472 Task map key

JAZ DIH20 0 = map 0

LDB 0104246 Switch to user map
DIH20 STB DIH30+2

LDB RB Now restore A, B, X

LDX RX

LDA RA

EXC 0244 Enable PIM

DIH30 EXC 0147 Modified to enable clock

or NOP

EXC2 0546 Modified to clear mask

EXC2 0246 Modified to switch to
user map

EXC2 0646 Enabled memory protect

JMP * Modified to return

address
D5000 DATA 05000

f. Obtain the interrupted task return address. The
directly connected interrupt line handler is entered via
a JMPM instruction from the line handler (see figure
14-1) and as such the first word in the interrupt
handler must be a mark location. The return address
of the interrupted task is found in word 0 of the line
handler, which is obtained by subtracting four from
the contents of the interrupt handler’s mark locatior.

Option 2 (specifying 2 as the s(n) parameter on the PIM
directive) permits the user to use system routines to save
(VSDHD) the volatile registers and overflow indicator and
restore (V$DRTN) the volatile registers, overflow indicator,
and reset the system to the proper pre-interrupted state as
described above. Option 2 relieves the directly connected
interrupt handler of the housekeeping chores. The A, B, X
registers, overflow indicator are saved, PIM and clock
interrupts are disabled prior to entering the user code (via
JMPM), (see figure 14-1). The user code is entered with the
A register set to the TBEVNT value and the X register set to
the user code entry address.

Upon completion of processing, the directly connected
interrupt handler exits to system routine, V§DRTN.

Example:
NAME TASK
TASK ENTR
STA EVNT Save TBEVNT word
. Do processing
EXT VS$DRTN
JMP V$DRTN Exit to common

processor

where task must be specified on SGEN PIM directive, e.g.,
PIM,010,TASK,01,2.

14.4.6 VORTEX Use of BICs and BTCs
VORTEX supports a maximum of 15 BICs or BTCs. The

practical system limit may be considerably less than ten
depending on the availability of device addresses, the type

and number of peripherals, and other configuration
considerations. The BIC or BTC transfer complete inter-
rupts must be assigned by ascending BIC or BTC numbers
(020, 022, 024, 026, 070, 072, etc.) starting with the first
PIM and the first interrupt i.e., PIM 0, iine O assigned to
BIC 020; PIM 0, line 1 assigned to BIC 022, etc. The first
BIC must have a device address of 020; the second, 022;
the third, 024; the fourth, 026; the fifth, 070; the sixth, 072;
etc. Unless the special DEF control directive is used.

170 drivers utilizing BICs or BTC must call the common BIC
routine V$BIC. The X register is set to the initial buffer
address and the A register set to the final buffer address.
The call to V$BIC is:

JSR V$BIC,B

DATA Interrupt event word or O if no
line handler modification to be
performed.

DATA Map number

14.4.7 VORTEX Il and VORTEX Compatibility

User programs written to operate under VORTEX will be
operable under VORTEX |1 under the following conditions:

a. Programs which contain any RTE service requests or
Input/Output Control r ts must be bled by
the VORTEX Il version of DAS MR. Any program
which builds these requests without the DAS MR
macros must be modified so that the requests
conform to the VORTEX 11 calling sequence.

b. Any foreground task which executes hardware 170
instructions except disabling and/or enabling PIMs
and RT clock, see section 14.4.4, must be included as
part of the resident nucleus when the system is
generated. Foreground library tasks which are made
resident during system generation by use of the TSK
directive are not considered nucleus tasks and
therefore must not contain any hardware /0 instruc-
tions (see section 14.4.8 for discussion on resident
tasks).

c. Intertask communications can be accomplished:
through the use of foreground blank common; by
establishing named tables and buffers in the nucleus
table module and referencing the named block by an
external statement; by use of the RTE PASS request
between a user map and map 0; by switching
executive mode states (see section 1.3); by sharing
the same physical pages utilizing the MAPIN and/or
PAGNUM RTE requests.

d. User tasks (except priority 1 system tasks) may not
write into or execute instruction from the first physical
page. This page is the VORTEX Il low memory area. it
is mapped as read-operand only into all user tasks
(see figure 2-2), except priority 1 tasks where page 0
is mapped as read-write access mode.

REAL-TIME PROGRAMMING

. User tasks (non-nucleus) must not communicate with

the nucleus except through the use of standard
executive service and 1/0 requests or by referencing
entry points which are contained in the core-residént
library.

A user task can request a transfer of a block of data
from map O to the user may by executing a RTE PASS
request.

. Direct connect interrupt handlers must restore the

system to the pre-interrupted map state after servicing
the interrupt. An alternative is to utilize the SGEN
PIM directive, option 2, as described in section
14.4.5.

1/0 drivers written for VORTEX operation must
be modified for VORTEX Il as follows:

1. The map number must be passed when call-
ing V$BIC, common B|C/BTC routine (see section
14.4.6).

2. The |/0 drivers must switch executive mode
states (see section 1.3) to fetch/store data from
a user map (DCB, FCB, buffer). RQBLK data are
stored in map 0 by dynamic memory allocation.
3. Rotating memory device (RMD) drivers must
determine if a data transfer (read, write) 170 re-
quest is by SAL (search-allocated-load task). If
it is a SAL request, the map number is obtained
from TBEVNT of the TIDB for SAL. Otherwise,
the requestor’'s map number is obtained from
TBKEY. SAL is the RTE component which loads
non- resident tasks into memory. The check may
be accomplished as follows:

LDA RTIDB,8 RTIDB = word 4 of RQBLK

8UB VSLSAL VSLSAL = location 0312 = SAL TIDB
JANZ XXX Jump if not SAL

LDB VSLSAL Yes SAL. Get map key

LDA TBEVNT, B From TBEVNT

JHP TYY Now common processing

LDB RTIDB,B 170 request not by SAL

LDA TBKEY,B Get map key trom TBKEY

ANA BM17 Mask bits 4.0

4. Following a BIC transfer complete interrupt the |/0
driver sense for a map memory protection 170 data
transfer error:

SEN 0101+da,er

where da is the BIC device address (which is found in
word 011 of the controller table), and er is the
address of the error processing routine which must
set up an 1046 error code prier to calling VS$ERR.

If a user wants to fetch/store from the nucleus tables,
the user must ensure that the nucleus table module is
mapped into the user’s logical memory. He does this
through an external reference to a symbol, TIDB,
controller table, etc., within the nucleus module.
Example -- have an "EXT TBTYOA.”

14-29

REAL-TIME PROGRAMMING

TIDBs for non-resident tasks -- except JCP and OPCOM

- are dynamically allocated in map 0. Hence a
foreground user task cannot load a register (B,X)
from location 0300 (V$CTL or an address from any
other low-core location) and directly fetch the TIDB
data. In VORTEYX, it is possible; in VORTEX II, such an
attempt would result in a memory protect interrupt.
The foreground user can fetch the TIDB data by use
of the PASS macro. Except for clearing the TBEVNT
word, via the RTE TBEVNT request, a foreground user
task cannot modify the TIDB.

14.4.8 Resident Tasks

The VORTEX Il user may specify two types of resident tasks
during system generation; user mode resident tasks; and
executive-mode map O resident tasks.

a. User mode resident tasks. These tasks are foreground

library tasks that are made resident via the SGEN
TSK directive. These tasks execute as user mode
tasks and cannot execute any 1/0 type instructions
except enable/disable PIMs and RT clock. They reside
in memory and may be scheduted via OPCOM or RTE
SCHED requests specifying LUN = 0. As these tasks
do not reside in map 0 virtual memory, the dynami-
cally allocated space (see figure 1.2) is not reduced as
it would be for the executive mode map O resident
tasks. These resident tasks are defined in the
resident directory specified by VSCRDR (0341). Each
entry in the directory is as follows:

14-30

Word/Bit 1% 14 13 12 11 10 ¢ 8 7 6 5 4 3 21 0
o Task Name, first two characters
1 Task Name, second two characters
2 Task Nams, third two characters
3 Entry Point
4 Starting physical page number
s Number of pages
[Nucleus module Resarvad for
indicator future use
b. Executive mode, map O resident tasks. These tasks

reside in the nucleus program module in map 0. No
special SGEN directive is required to include these
tasks as part of the nucleus. The VORTEX Il user
specifies the generation of these resident tasks by
adding the program object modules on the SGL
between the CTL,21 and CTL,PART3 control records
(see figure 15-2). The program name should not start
with the characters "VZ.-' as these are reserved for
170 drivers. SGEN processes 1/0 drivers selectively
and ignores all 1/0 driver object modules unless a
SGEN EQP directive specified the corresponding
peripheral. These executive mode resident tasks: (1)
are permitted to execute 1/0 type instructions; (2)
canndt normally be scheduled via the OPCOM or RTE
SCHED request, but are activated by resetting bit 14
of the TIDB status word TBST (table 15-5) as are the
170 drivers and SAL; (3) must have a resident TIDB
created by -a SGEN TDF directive. An alternate means
of executing these tasks is via an OPCOM RESUME
request. However, caution must be exercised as the
RESUME request activates the highest priority task
with a-matching name.

SECTION 15
SYSTEM GENERATION

The VORTEX system-generation component (SGEN)
tailors the VORTEX operating system to specific user
requirements. SGEN is a collection of program on
magnetic tape, punched cards, or disc pack. It includes
all programs (except the key-in loader, section 15.3)
for generating an operating VORTEX system on an
RMD.

Figure 15-1 is a block diagram of the data flow through
SGEN.

15.1 ORGANIZATION
SGEN is a five-phase component comprising:
< I/0Ointerrogation (section 15.4)

« SGEN directive processing (section 15.5)

.

Building the VORTEX nucleus (section 15.6)
Building the library (section 15.7)
Resident-task configuration

170 interrogation specifies the peripherals to:

b.

Input VORTEX system routines (LIB unit)

Input user routines (ALT unit)

. Input SGEN'directives (DIR unit)
. Output the VORTEX system generation (SYS unit)

. List special information and input user messages (LIS

unit)

DIR INPUT UNIT LIB INPUT UNIT

ALT INPUT UNIT

SGEN DIRECTIVES

+ | System Generation Library Usev‘ Routines

(Object modules and con- {Object modules and
trol records)

control records)

:—\ﬁ SGEN ROUTINES

VORTEX

FOREGROUND
NUCLEUS o

LIBRARY
(And system

initializer)

BACKGROUND USER
LIBRARY LIBRARIES

SYS OUTPUT UNITS

VTH-3222

Figure 15-1. SGEN Data Flow

15-1

SYSTEM GENERATION

170 interrogation also spegifies that the Teletype on
hardware address 01 is the OC unit. After these peripherals
are assigned, appropriate drivers and 1/0 controls are
loaded into memory.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the
VORTEX system based on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Bullding the VORTEX nucleus consists of gathering object
modules and control records from the system-generation
library (SGL, section 15.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the ALT unit according to rules set up by the SGEN
directives.

Building the library and the resident-task configurator
consists of generating load modules from the object
modules and control records input from the SGL and user
data. These load modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated load modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
15.7).

SGEN directive format requires that, unless otherwise
indicated (e.g., section 15.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
separated by commas (,) or by equal signs (=). The
directives are free-form and blanks are permitted between
individual character strings, i.e., before and after commas
(or equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period. For
greater clarity in the descriptions of the directives, optional
periods, optional blank separators between character
strings, and the optional replacement of commas by equal
signs are omitted. Section 14.4.8 describes resident tasks
in greater detail.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in Appendix
A.15.

15-2

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific
error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual
intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCII record) or the letter ¥ C". In the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the "C" is
input. If the input media is magnetic tape or disc pack,
positioning to reread an input statement is also automatic.

15.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

in the case of disc pack, the SGL occupies contiguous
records beginning with the second track. Track O contains
the partition-specification table (PST, section 3.2) that
specifies one partition extending from the second track
(track 1) to the end of device.

The SGL and the VORTEX system cannot be on the same
disc pack during system generation.

The SGL is divided into five functional parts, each
separated by CTL control records (figure 15-2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an [/0 interrogation routine. It aiso comprises the
SGEN relocatable loader, the basic 1/0 control routine, and
library of peripheral drivers for the use of SGEN. Part 1
consists entirely of object modules. It is loaded with device-
sensitive key-in loader (section 15.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader/interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap-
loader/interrogator is itself device-insensitive.

Control record CTL,PART0001 terminates part 1 of the
SGL.

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the DIR and OC input devices. The system generation
directives are to be placed between the directive processor
and the CTL,PART0002 controi record if the CIB and DIR
input units are the same.

Control record CTL,PARTO002 terminates part 2 of the
SGL.

Bootstrap Loader and
1/0 Interrogation

PART 1 Relocatable Loader and
1/0 Control Routine

[SGEN Driver Library
CTL,PART0001

PART 2 { Directive Processor

CTL PART0002

VORTEX Nucleus Processor
SLM,INIT

System Initializer

PART 3 * | END

* | SLM,VORTEX

- VORTEX Nucleus
[Library

* | END
CTL,PART0003
s Library Processor

PART 4 [System Library
(- Routines

-

-

1

3

.

CTL,PART0004
Resident-Task Configurator
CTL ENDOFSGL

PART5 {

b

NOTE:

* = Alphanumeric control record

Figure 15-2. System-Generation Library

Part 3 of the SGL comprises all system routines and
control records required to build the VORTEX nucleus
(figure 15-3):

« VORTEX nucleus processor - the SGEN-processing
portion

« SLM control record - indicates the beginning of the
system initializer portion

« System-initializer routines -- object modules to be
converted into the system initializer

« END control record -- indicates the end of the system-
initializer portion

* SLM control record - indicates the beginning of the
VORTEX nucleus portion

« VORTEX nucleus routines -- control records and object
modules to be converted into the VORTEX nucleus

« END control record - indicates the end of the VORTEX
nucleus portion

SYSTEM GENERATION

* Control Record CTL21 -- specifies the end of the
nucleus table module. All user data and programs to be
included in this module must precede the CTL,21
control record.

« All programs contained on the SGL between the CTL,21
and CTL,PART0003 control records are included in the
nucleus program module

*

SLM,INIT
System Initializer

Low Memory Package

» [END

SLM,VORTEX I

All TDF Control Records
Giobal FCBs

V$OPBF and V$JPBF Buffers
1/0 Controller Table

CTL,21

10C Program

RTE Services

RTE System Tasks

RTE Functions

[1/0 Drivers 7

* | END

-

-

CTL,PARTO003

NOTE:
* = Alphanumeric control record

Figure 15-3. VORTEX Nucleus

Control record CTL,PART0003 terminates part 3 of the
SGL.

Part 4 of the SGL comprises all system routines and
control records required to build load-module libraries on
the RMD. The library processor converts these inputs into
load modules, catalogs them, and enters them into the
foreground, background, and user libraries. The library
processor is followed by groups of control records and
object modules, with each group forming a load-module
package (LMP).

Control record CTLPART0004 terminates part 4 of the
SGL.

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL,ENDOFSGL terminates the SGL.

16-3

SYSTEM GENERATION

REQUIRED
(FOREGROUND)
SYSTEM
TASKS

REQUIRED
(BACKGROUND)
SYSTEM
TASKS

15-4

SLM,FVSOPC

TID,VSOPCM,2,8,106

VS$OPCM Program

ESB

END

SLM,FJCDUM

TID,JCOUMP,2,0,106

JCDUMP Program

ESB

END

SLM,FRAZI

TID,RAZI,2,0,106

RAZI Program

ESB .

END

SLM,BICP

TI1D,JCP,1,0,105

Job-Control Processor

ESB

END

SLM,BLMGEN

TID,LMGEN,1,0,105

Load-Module Generator

ESB

END

'SLM,BFMAIN

TID,FMAIN,1,0,105

File Maintenance

ESB

END

SLM,BSMAIN

TID,SMAIN,1,0,105

System Maintenance

ESB

END

Figure 15-4. Load-Module Library

SLM,BFORT

TID,FORT,1,0,105

FORTRAN Compiler

ESB

END

SLM,BCONC

TID,CONC,1,0,105

Concordance Program

ESB

END

SLM,BIOUTI

TIiD,IOUTIL,1,0,105

1/0 Utility Program

ESB

END

SLM,BSEDIT

TID,SEDIT,1,0,105

Source Editor

ESB

END

SLM,BDASMR

TID,DASMR,1,0,105

DAS MR Assembler

ESB

END

* = Alphanumeric control record

15.3 KEYIN LOADER

SGEN is initiated on a new or initialized system by
inputting the key-in loader through the CPU. The key-in
loader loads the VORTEX bootstrap loader (part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards, or disc pack. The required
key-in loader is input to memory through the CPU console
and then executed to load the VORTEX bootstrap loader.

SYSTEM GENERATION

Automatic bootstrap loader (ABL): In systems equipped
with an ABL, load the key-in loader from the input medium
into memory starting with address 000000. To execute the
key-in loader, clear the A, B, X, I, and P registers; then
press RESET, set STEP/RUN to RUN, and press START.

See hardware handbook for details on manual loading.

Table 15-1. SGEN Key-In Loaders

RMD RMD

Address Magnetic Tape Card Reader 70-76x0 70-76x3
000000 010030 010054 010064 010064
000001 001010 001010 140066 140066
000002 001106 001106 001010 001010
000003 040030 040054 001106 001106
000004 001000 001000 001000 001000
000005 000012 000012 000012 000012
000006 000000 000000 000000 000000
000007 006010 006010 006010 006010
000010 000300 000300 000300 000300
000011 050027 050053 050065 050065
000012 10412z 1002zz 10042z 1004zz
000013 1000zz 002000 10022z 010063
000014 001000 000046 010063 110072
000015 000021 102522 110072 10312z
000016 10252z 002000 1031zz 10022z
000017 057027 000046 101luzz 101dzz
000020 040027 10262z 000023 000023
000021 10112z 004044 001000 001000
000022 000016 004444 000017 000017
000023 10122z 057053 10252z 10252z
000024 100006 005001 150071 150071
000025 001000 040053 001016 001016
000026 000021 004450 000012 000012
000027 000500 002000 1000yy 1000yy
000030 177742 000046 1003zz 5000
000031 10262z 010064 010064
000032 004044 110072 110072
000033 004450 1031zz 1031zz
000034 002000 010065 010065
000035 000046 1031xx 1031xx
000036 10222z 120070 120070
000037 057053 005012 005012
000040 040053 1031yy 103lyy
000041 067053 1000xx 1000xx
000042 040053 1000zz 1000zz
000043 001000 1014zz 10142z
000044 000013 000043 000043
000045 1011zz 10252z 10252z
000046 000000 150071 150071
000047 10162z 001016 001016
000050 100006 000012 000012
000051 001000 060065 060065
000052 000045 040064 040064
000053 000500 010064 010064

SYSTEM GENERATION

Table 15-1. SGEN Key-In Loaders (continued)

RMD RMD
Address Magnetic Tape Card Reader 70-76x0 70-76x3
000054 177742 140067 140067
000055 001016 001016
000056 100006 100006
000057 050064 050064
000060 040063 040063
000061 001000 001000
000062 100006 100006
000063 000001 000001
000064 000001 000001
000065 000500 000500
000065 000037 000037
000067 000060 000069
000070 000074 000074
000071 007760 007760
000072 0v0000 ww0000
where v = RMD unit number in unit Select Instruction

v = 0 for unit 0

xx = even BIC address v = 4 for unit 1

yy = odd BIC address
zz = device address

u = RMD unit number in Sense Instruction d = RMD drive number (0-3)
u = 0 for unit 0 ww = drive (bits 15-14) /platter (bit 13)
u = 1 for unit 1 (i.e., platter 1 drive 0 - 02)
15.4 SGEN 1/0 INTERROGATION where
Upon successful loading of the bootstrap loader and 1/0 tunction is one of the directive names given
interrogation, the OC unit outputs the message above
10 INTERROGATION driver is one of the driver names given below
after which the SGEN peripherals are specified by inputting . .
on the OC unit the five 170 directives: device is the hardware device address
. DIR Specify SGEN directive input unit bic is the BIC address
. LIB Specify SGL input unit
. ALT Specify SGL modification input unit .
. SYS Specify VORTEX system generation Name Type of Device Model Numbers
output unit e MTcuA Magnetic-tape unit 70-7100
coous ﬁfﬁ)‘z ‘ff[j:;’"""““‘°°"°“ and LPcuA Line Printer 70-6701
P LPcuD Al Statos 706602
These directives can be input in any order. SGEN will models*** 70-6603
continue to request 1/0 device assignments until valid ones CRcuA Card reader 70-6200
have been made for all five functions. PTcuA Paper-tape 70-6320
SGEN drivers are loaded from the SGEN driver library Tv read/punch
according to the specifications of the SGEN 1/0 directives. cuAl Teletype or CRT 70-6100,
Errors or problems with reading the drivers will cause the . 70-6104
applicable error messages (Appendix A.15) to be output. DcuAl Rotating memory 707702
DcuA2 Rotating memory 70-7703
The general form of a SGEN 1/0 directive is DcuA5 Rotating memory 620-49
DcuB Rotating memory 70-7600,
function = driver,device,bic 70-7610

15-6

Name* Type of Device Model Numbers
DcuC Rotating memory** 70-7500
DcuD Rotating memory** 70-7510
DcuF**** Rotating memory** 70-7603

* where ¢ stands for the controller number (0, 1, 2, or 3),
and u for the unit number (0, 1, 2, or 3).

**Always specify the first master unit of a particular device
as being on controller 0, the second master unit on
controller 1, etc. Regardless of the controller specifications
in the EQP directives, different controller numbers must be
used for each RMD type. (i.e., if using MT 1 on DA 12,
specify MTOOA). If the system has a 7600 and 7500 RMD,
then specify DOOB and D10C.

« Statos 33 is not supported during system generation.

*#8% Unit number u = 0 through 7.

15.4.1 DIR (Directive-Input Unit)
Directive

This directive specifies the unit from which all SGEN
directives (section 15.5) will be input (DIR unit). The
directive has the general form

DIR = driver,device,bic
where
driver is one of the driver names MTcum,
TYcum, PTcum, or CRcum (m is a modet
code, as giveniin 15.4)
device is the hardware device address
bic is the BIC address (used only, and then

optionally, for magnetic-tape units)

Example: Specify Teletype unit 0 having model code A
and hardware device address 01 as the DIR unit.

DIR=TYOO0A,01

15.4.2 LIB (Library-Input Unit) Directives

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the general form

LIB = driver,device,bic
where

driver is one of the driver names MTcum,
CRcum, or Dcum

device is the hardware device address

SYSTEM GENERATION

bic is the BIC address (used only, and then
optionally, for magnetic-tape units)
mandatory for RMDs

E: I Specify magnetic-tape unit 0 having model code
A and hardware device address 010 (no BIC) as the LIB
unit.

LIB=MTOO0A,010

15.4.3 ALT (Library-Modification
Input Unit) Directive

This directive specifies the unit from which object modules
that modify the SGL will be input (ALT unit). The directive
has the general form

ALT = driver,device,bic

where
driver is one of the driver names MTcum,
PTcum or CRcum
device is the hardware device address
bic is the BIC address (used only, and then

optionally, for magnetic-tape units)

Example: Specify card reader unit 0 having model code A
and hardware device address 030 as the ALT unit.

ALT=CROOA,030

15.4.4 SYS (System-Generation
Output Unit) Directive

This directive specifies the RMD(s) onto which the VORTEX
system will be generated, with the VORTEX nucleus on the
first such device specified. Up to 16 RMDs can be specified.
The directive has the general form

SYS = driverl,devicel,bicl;driver2, device2,
bic2;...,drivern,devicen,bicn

where
driver is an RMD driver name such as Dcum,
where ¢ = controller, u = unit, and m
= model code
device is the hardware device address of the
corresponding driver
bic is the mandatory address of the

applicable BIC or BTC

All RMDs specified in the EQP directives (15.5.2) must be
specified in the SYS directive. Subsequent SYS directives
will overlay the previous directives. If all RMDs cannot be
specified in a single line, then the directive must be

15-7

SYSTEM GENERATION

terminated with a colon. This will cause the next input line
to be treated as a continuation of the previous SYS
directive. The additional input lines begin with the driver
parameter. The directive "SYS=" must not be used on
additional SYS directive input lines.

Examples: Specify RMD 0 having model code B, hardware
device address 016, and BIC address 020 as the SYS unit.

SYs=D00B,016,020

Specify two SYS units: RMD 0 with model code A2,
hardware device address 014, and BIC address 020; and
RMD 0 with model code B, hardware device address 015,
and BIC address 022.

A system with 70-7500 (620-34)or 70-7510 (620-35) disc
requires a special formatting program, described in section
18.4. This program formats disc packs and performs bad-
track analysis.

SYs=DOOA2,014,020;D10B,015,022

15.4.5 LIS Directive

This LIS (User-Communication and List Output Unit)
directive specifies the unit that will be used for- user
communication and list output (LIS unit). The.directive has
the general form

LIS = driver,device

where
driver is one of the driver names TYcum or
LPcum
device is the hardware device address

The following information appears on the LIS unit:

a. Error messages

b. Load map of each load module

c. Directives input through the DIR unit (section 15.4.1)
d. Partition table for each system RMD

To suppress listing during system generation set "map" to
zero in EDR directive.

Example: Specify line printer 0 having model code A and
hardware device address 035 as the LIS unit.

LIS=LPOOA, 035

15.5 SGEN Directive Processing

Upon successful loading of the SGEN directive processor,
the OC and LIS (section 15.4.5) units output the message

15-8

INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 15.4.1).

The SGEN directives described in this section can be input
in any order, except for the EDR directive (section 15.5.14),
which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last informa-
tion input as the correct data.

Errors cause the output of the applicable error messages
(Appendix A.15).

The general form of an SGEN directive is
aaa,p(1)xp(2)x...xp(n)
where

aaa is a three-character SGEN directive
name

each p(n) is a parameter as indicated in the
specifications for the individual

directives

each x is a pt mark as indicated in
the specificati for the individual
directives

In contrast to most VORTEX system directives, the
punctuation in SGEN directives is exactly as defined in the
specifications for the individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

15.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

MRY,memory,common,size EV75]

where

memory is the extent of the memory area
available to VORTEX (minimum 12K =
027777)

common is the extent (0 or positive value) of the
foreground blank-common area

size is the total physical memory available to
VORTEX in units of 1024 words (K
words). The minimum is 32 and the
maximum is 256

V75 specifies V75 system

Examples: Specify a 48K memory for VORTEX with a
foreground blank common area of 0200 words. Save
locations 075777 to 077777 of the first 32K memory for
AlD 1.

MRY,075777,0200,48

Specify an 18,000-word memory for a VORTEX V75 system
with no foreground blank-common area.

MRY, 18000,0,V75

15.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the
system. It has the general form

EOP,name,address,number bic,retry,alg, mul

where
name is the rfnemonic for a peripheral
controtler
address is the controller device address (01

through 077 inclusive)

number is the number (1 through 4, inclusive) of
peripheral units attached to the
controller

bic is the BIC or BTC address (O if no BIC
applies)

retry is the number (0 to 99, inclusive) of

retries to be attempted by the 1/0 driver
when an error is encountered

alg is the 170 algorithm value (0< alg <
1) as a decimal fraction (see section
14.4.3, word 7 for the calculation of
this value). NOTE: this is an optional
parameter and is not needed unless a
change is desired in the algorithm value.
If this parameter is to be used on non-
process 170 controller tables, the subject
controller table must contain CTIOA as
an entry name

mul is the multiplexor address (this
parameter applies only to process /0
drivers)

Acceptable mnemonics for name are:

. MTnm Magnetic-tape unit

. LPnm Line printer

. CRnm Card reader

. PTnm Paper-tape reader/punch

SYSTEM GENERATION

. TYnm Teletype

. CTnm CRT device

. CPnm Card Punch

. Dnm RMD

. Cl Process input

. co Process output

. -WCS Writable control store

. SPnm Spool Unit

. MXnm Communication Multiplexor
. TCnm Psuedo TCM

Where n is the controlier number (0, 1, 2, or 3), and m is
the model code (table 15-2).

Controller tables are arranged according to the priority
levels of their task-identification blocks (TiDBs). On any
given level, the tables are arranged in the input sequence
of the corresponding EQP directives. Device-specification
table (DST) entries are unsorted.

The following order is suggested for peripheral controllers:
a. RMDs
b. Operator-communication (OC) device (section 17)
c. Magnetic-tape units

d. Other units

For the 70-7603/7013 disc, a special DEF directive must be
included for each EQP directive used for this model disc.

DEF,V$DSKx,y
where
b is the controller number (0-3)
y is a bit pattern in bits 0-7. Bit(n)
corresponds to platter(n). The bit is
set if the corresponding platter is

part of a dual platter driver.

Example: A system contains two 70-76x3 controllers with
the following drives attached:

Controller 0 has 1 dual unit and 3 single units
Controller 1 has 2 dual units, and 1 single
unit, and 1 dual unit

the corresponding directives would be:
EQP,DOF,016,5,020,5
DEF, V$DSKO, 3

EQP,D1F,017,7,022,5
DEF,V$DSK1,0157

15-9

SYSTEM GENERATION

Table 15-2. Model Codes for VORTEX Peripherals

Code Model Number Description
TYnA 70-6104 ASR Teletype Model 33
(620-08) ASR Teletype Model 35
CTnA 70-6401 CRT keyboard/display
CRnA 70-6200 Card reader: 300 or 600 cards/minute
(620-22,
620-25)
CPnA 70-6201 Card punch: 35 cards/minute
(620-27) ’
MTnA 70-7100 Magnetic-tape: 9-track, 800 bpi, 25 ips
(620-30)
(620-31A) Magnetic-tape: 7-track, 200-556 bpi
(620-31B) Magnetic-tape: 7-track, 200-800 bpi
(620-31C) Magnetic-tape: 7-track, 556-800 bpi
70-7102 Magnetic tape: 9-track, 800 bpi, 37 ips
(620-32)
70-7103 Slave unit with 620-32
(620-32A)
MXnA 70-520X (520X) Data communications multiplexor
70-521X
DnA 620-47,-48,-49 Rotating memory
70-770X Rotating memory
(620-43C,-43D)
DnB 70-7600 Rotating memory
(620-36)
707610 Rotating memory
(620-37)
DnC 70-7500 Rotating memory
(620-35)
DnD 70-7510 Rotating memory
(620-34)
DnF 70-7603 Rotating Memory
70-7613
PTnA 70-6320 Paper-tape reader/punch
(620-55A)
(620-51A)
LPnA 70-6701 Line Printer
(620-77)
LPnD 70-6602 Statos-31 Printer/plotter

15-10

SYSTEM GENERATION

Table 15-2. Model Codes for VORTEX Peripherals
(continued)

Code
LPnE

LPnG

LPnH
LPnJ

CinA

COnA

WCS

Note:

Model Number

70-6603
(620-76)

70-6603
(42,51,71)

707702
70-66xx

See sec. 19
See sec. 19

70-4002

Description
Statos-31,-41 Printer/plotter

Statos-31/42 Printer/plotter

Statos-31 (41,-51,-52)
Statos-33

Process 170

Process 170

Writable control store

Other peripheral devices can be added to the

system by creating an EQP directive with a unique phsyical-
unit name for the device. A controller table with the same
name is then added to the VORTEX nucleus by an ADD
directive (section 15.5.5).

1511

SYSTEM GENERATION

Example: Define a system containing one model B RMD,
one model A magnetic-tape unit, one mode A card reader,
one model A line printer, one model A Teletype, one mode!
A high-speed paper-tape reader/punch, one model A card
punch, and a writable control store.

EQP,DOB,016,1,020,3
EQP,MTOA,010,1,022,5
EQP,CROA,030,1,024,0
EQP,LPOA,035,1,024,0
EQP, TYOA,01,1,0,0
EQP,PTOA,037,1,0,0
EQP,CPOA,031,1,022,0
EQP,WCS,074,1,0,0

The paper width of each Statos on the system must be
defined through use of the SGEN DEF directive (see section
15.5.14). This directive has the form

DEF,V$SWnm,c

where

n is the controller number (0, 1 or 2)

m is the Statos model code (D,E,G,H, or J)

c is the width code, defined as
0 = 8.1/2-inch 4 = with SLIB
1 = 1l-inch 5 = with SLIB
2 = 14.7/8-inch 6 = with SLIB
3 = 22-inch 7 = with SLIB

Example: Specify a SGEN directive for model G Statos on
controller 1 with 14-7/8-inch width paper

DEF,V$SW1G, 2

15.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each
RMD. It has the general form

PRT,Dcup(1),s(1),k(1);Dcup(2),5(2),k(2);...;
Dcup(n),s(n),k(n)

where

Dcup(n) is the name of the RMD partition with ¢
being the number (0, 1, 2, or 3) of the
controller, u the unit number (0, 1, 2, or
3), and p the partition letter (A through
T, inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on any RMD is 32,768
sectors

k(n) is the protection code (single
alphanumeric character including $) for
the partition, or * if the partition is
unprotected

15-12

At least six paritions are required for the system rotating
memory. PRT directives are required for every partition on
every RMD in the system. While the partition specifications
can appear in any order, the set of partitions specified for
each RMD must comprise a contiguous group, e.g., the
sequence DOOA, DOOC, DOOD, DOOB is valid, but the
sequence DOOA, DOOC, DOOD, DOOE constitutes an error.

NOTE: if the LIB unit is an RMD, the PRT directives for
that RMD are ignored and the existing PST for the RMD is
used. However, even though the PRT directives are ignored
the RMD unit should have at least one PRT directive. RAZI
may be used to partition the RMD unit after system
generation. If the RMD SGL is to be saved, it must be
replaced with a scratch pack prior to executing RAZ| for
that unit.

Logical units 101 through 106 inclusive have preassigned
protection codes. Do not attempt to change these codes.

Preassigned Protection Codes
Unit Number 101 102 103 104 105 106
Code S B [D E F

Total number of tracks of all partitions and the capacity of
VORTEX nucleus must not exceed rotating-memory track
capacity. The nucleus size is equal to the memory size
divided by the product of the number of sectors per track
and 120. Tracks not inciuded by a PRT directive are not
accessable to the system.

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code
0 A 2 (o
0 B 20 F
0 C 25 E
0 D 40 D
0 E 8 S
o F 18 B
0 G 18 None
] H 66 None
1 A 40 None
1 B 60 R
1 C 50 None
1 D 52 X

PRT,DOOA,2,C;DO0B,20,F

PRT,D00C, 25,E;D00D, 40,D;DOOE, 8,S
PRT,DOOF, 18B;D00G, 18,%; DO0H, 66, *
PRT,D01D,52,X;D01C,50, %
PRT,DO1A,40,%;D01B,60,R

15.5.4 ASN (Assign) Directive

This directive assigns logical units to physical devices. It
has the general form

ASN,lun(1) = dev(1),/un(2) = dev(2),...,lun(n) = dev(n)

where each

lun(n) is a logical unit number (1 through 100
or 107 through 255, inclusive) that can
be followed optionally by a two-character
logical unit name e.g., 107:Y7

dev(n) is a four-character physical-device

name, e.g., TY00,D00G (table 17-1)

If a new assignment specifies the same logical unit as a
previous assignment, the old one is replaced and is no
longer valid. All logical units for which physical device
assignments are not explicitly made are considered dummy
units, except preassigned.

SYSTEM GENERATION

Restrictions: Any attempt to change one of the preset
logical unit name:number or name:number:partition rela-
tionships given in table 15-3 will cause an error to be
flagged. Table 15-4 indicates the permissible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS for normal assembler
operation).

Example: Specify physical device assignments for logical
units 1-12, inclusive, 107 and 108, and 180 and 181, where
the last two units have, in addition to their numbers, two-
character names.

ASN, 1=TY00,2=CR00, 3=TY01, 4=CRO0O
ASN,5=LP00, 6=MT00,7=D00I,8=D00G
ASN,9=D0OH, 10=D00G, 1 1=TY00, 12=LP00
ASN, 107=LP00, 108=CROO

ASN, 180:56=MT00, 181:S8=MT01

Table 15-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

oc =1 Lo =5
Sl =2 Bl =6
SO = 3 BO = 7
Pl = 4 SS = 8

GO =9 13 = RPG IV READ
PO = .lO 14 = RPG IV PUNCH
DI = 11 15 = RPG IV PRINT
DO = 12

Preset logical-unit/RMD-partition relationships:

Logical-Unit Logical-Unit Partition

Name Number Name
CL 103 DOOA
FL 106 DooB
BL 105 DoocC
oM 104 DOOD
CcuU 101 DOOE
SwW 102 DOOF

Optional logical-unit/RMD-partition relationships

GO 9 D00G
SS 8 DOOH
PO 10 DOOH
z]] 6 Dool
BO 7 DOOI

1. CU file must be as large as background task's largest
part in central memory at one time (24K assumed
above).

2. SW file must be as large as the largest single task
including overlays (24K assumed above).

3. GO file must be somewhat larger than the largest task
run in load-and-go mode (24K assumed). If system is

Minimum
Protection VORTEX Sector
Key Allocation
C 025 (see note 5)
F 0106
E 01135
D 0417
S 0310 (See note 1)
B 0310 (See note 2)
nohe 0310 (See note 3)
none varies
none 0515 (See note 4)
none varies
none varies

foreground only or all tasks will be entered in libraries
before execution, this partition may be eliminated.

4. PO file must be large enough for source images of the
largest task to be assembled or compiled. Source
images are stored 3 card images per sector (1000
cards assumed above). If this function is assigned to
magnetic tape, this partition may be eliminated.

o

. There are 12 entries per 2 sectors. Number of sectors
equals numbers of entry + 6.

1513

SYSTEM GENERATION

Table 15-4. Permissible Logical-Unit Assignments

Permissible Physical Units

Teletype RMD or

Logical Units or CRT MT
1 (00 X
2 (sh X
3 (S0) X
4 Py X
5 (LO) X
6 (B1)

7 (8O)
8 (SS)
9 (GO)

10 (PO)

11 (D) X

12 (DO) X

15.5.5 ADD (SGL Addition) Directive
This directive specifies the SGL control records and object
modules after which new control records and/or object

modules are to be added during nucleus generation. [t has
the general form

ADD,p(1),p(2).....p(n)

where each p(n) .is the name of a control record or an
object module after which new items are to be added.

When the name of a specified item is read from the SGL,
the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT*

if an item is to be added from the SGEN ALT input unit
(section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the

15-14

Other Other
Line Output Input
Printer (CP.PT) (PT,CR)
X
X
X X
X
X
X

ALT unit and adds it to the SGL, then prints on the OC unit
the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added during

nucleus generation after control records or object modules
named PROG1, PROG2, and PROG3.

ADD,PROG1,PROG2, PROG3

15.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object
modules to be replaced with new control records and/or
object modules during nucleus generation. It has the
general form

REP,p(1),p(2),...p(n)

where each p(n) is the name of a control record or an
object module to be replaced.

When the name of the specified item is read from the SGL,
the item is skipped and the message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT*

if an item is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the
ALT unit and replaces p(n) with it in the SGL, then prints
on the OC unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that control records or object modules
named PROGA and PROGB are to be replaced during
nucleus generation.

REP,PROGA, PROGB

“ALT has a special form which allows searching the ALT
device for a specified program. The form is

ALT ,name
where

name is one to six alphanumeric characters
representing the TITLE name of the
model to be added

name can either specify an object module name or a TDF
record name. When specified, ALT will search the alternate
unit from its current position for the specified module. If an
EQF is encountered prior to finding the module an SG08
diagnostic occurs. To cause the alternate unit to rewind
prior to each search, set Sense Switch 1 prior to entering
the ALT directive. If no module name is specified, ALT will
load from its current position.

For example, to search for and load an object module
named PGRM1, specity

ALT,PGRM1

To search for and load a TDF directive for TBLPOF, specify
ALT, TBLPOF

SYSTEM GENERATION

15.5.7 DEL (SGL Deletion) Directive

This directive specifies the SGL control records and object
modules that are to be deleted during nucleus generation. It
has the general form

DEL,p(1),p(2),....p(n)

where each p(n) is the name of a control record or an
object module to be deleted.

When the name of a specified item is read from the SGL,
the item is skipped and processing continues with the
following control record or object module.

Example: Delete, during nucleus generation, all control
records and object modules named PROG1 and PROG2.
DEL, PROG1, PROG2

15.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after
which new load-module packages are to be added during
library generation. It has the general form

LAD,p(1),p(2),...p(n)

where each p(n) is the name of a load-module package
from an SLM control directive after which new items are to
be added.

When the name of a specified load-module package is read
from the SGL, the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if a load-module package is to be added from the SGEN
ALT input unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and adds it to the library, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added, during
library generation, after load-module packages named
PROG1, PROG2, and PROG3.

LAD,PROG1,PROG2,PROG3

15-15

SYSTEM GENERATION

15.5.9 LRE (Library Replacement) Directive
This directive specifies the SGL load-module package to be

replaced with new load-module packages during library
generation. It has the general form

LRE,p(1).p(2)....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be replaced.

When the name of the specified load-module package is
read from the SGL, the program is skipped and the
message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if module is to be replaced by one on the SGEN ALT input
unit (section 15.4:3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that load-module packages named
PROGA or PROGB are to be replaced during library
generation.

LRE, PROGA, PROGB

15.5.10 LDE (Library Deletion) Directive
This directive specifies the SGL load-module packages that

are to be deleted during library generation. It has the
general form

LDE,p(1),p(2),....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read

from the SGL, the load-module package is skipped and
processing continues with the following load module.

15-16

Example: Delete, during library generation, all load-
module packages named PROG1 and PROG2.

LDE, PROG1,PROG2

15.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modutes (PIMs)
in the system, the interrupt levels to be enabled at system-
initialization time, and the interrupts to be manipulated by
user-coded interrupt handlers. The PIM directive has the
general form

PIM,p(1),q(1),r(1),5(1);p(2).9(2),r(2),
§(2);...;p(n),q(n),r(n),s(n)

where each

p(n) is an interrupt line number comprising
two octal digits with the first being the
PIM number and the second the line
number within the PIM. The two digits
must be preceded by a zero, eg.,
002,011

q(n) is the name (1 to 6 characters) of the
task handling the interrupt. The name
format is TBxxxx, where xxxx is the
hardware code name. For s(n) = 2, q(n)
is the interrupt processor entry name.

r(n) is the content of the interrupt event
word in octal notation (see appendix F
for nonzero values for standard
hardware)

s(n) is 0 for an interrupt using the common
interrupt-handler or 1 for a directly
connected interrupt option 1, or 2 for
directly connected interrupt option 2.
(Described in section 14.4.5)

If an interrupt line is to use the common interrupt handler,
a TIDB is generated for the related interrupt-processing
routine, which can be in the VORTEX nucleus or in the
foreground library.

If an interrupt line is to have a direct connection, the
interrupt-processing routine must be added to the VORTEX
nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the
common interrupt handler, the other directly connected,
option 1.

PIM,002,TBMTOA,00001,0;003,TBLPOB, 01,1

Note: The only interrupt used by the magnetic-tape /0
driver is the motion complete.

Note: The interrupt event word, r(n) for a Teletype or CRT
(Teletype compatible) must be set to 01 for input interrupt
on 02 for output interrupt.

15.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real-time clock. It has the general
form

CLK clock,counter,interrupt

where

clock is the number of microseconds in the
basic clock interval

counter is the number of microseconds in the
free-running counter increment period.
Stored in V$FREE but not used in
VORTEX Il Its nominal value is 100.

interrupt is the number of milliseconds in the user
interrupt interval: This value must be
between 5 and 50.

The value of interrupt, when not a multiple of 5 millisec-
onds, is increased to the next multiple of 5 milliseconds;
e.g., if interrupt is 31, the interrupt interval is 35
milliseconds.

Example: Specify a basic clock interval of 100 microsec-
onds, a free-running counter rate of 100 microseconds, and
a user interrupt interval of 20 milliseconds.

CLK, 100, 100,20

15.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSK, task(1),task(2),....task(n)

where each task(n) is the name of an RMD foreground-
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec-
tion 15.7).

SYSTEM GENERATION

Resident TIDBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified on a SCHED call. A
resident TIDB is created at system generation for each task
specified on a TDF directive (paragraph 15.6.2).

These tasks are treated as user mode tasks and are not
executed in map 0. Hence, 1/0 instructions cannot be
executed by these tasks. Resident map 0 tasks are added
to the nucleus by adding the programs on the SGL between
the CTL,21 and CTL,PART003 control records. Section
14.4.8 describes resident tasks.

Example: Specify that foreground-library tasks RTA, RTB,
and RTC be made resident tasks.

TSK,RTA,RTB,RTC

15.5.14 DEF (Define External) Directive

This directive enters a name with a corresponding absolute

value into the SGEN loader tables and the CL library. It has

the general form

DEF,name(1),value(1);name(2),value(2);....name(n)
value(n)

Modules processed by either SGEN or LMGEN can refer-

ence any names defined by the DEF directive

Example: Use the DEF directive for the VTAM LCB address
in CTMXOA. The entry in CTMXOA for the LCB address
might be

EXT VS$LCWO
DATA VSLCWO

Then, the following DEF directive would define the LCB to
be at location 075000

DEF,V$LCWO0,075000

15.5.15 EDR (End Redefinition)
Directive

This directive, which must be the last SGEN directive,
specifies all special system-parameters, or terminates
SGEN directive input. If only a redefinition of resident tasks
is required, the EDR directive is of the form

EDRR

but if a full SGEN is necessary, the EDR directive has the
general form

EDR,S, tidb,stack,part list,kpun,map,analysis

where

tidb is the number (01 through 0777,
inclusive) of 25-word empty TIDBS
allocated

15-17

SYSTEM GENERATION

stack is the size (0 through 037777, inclusive)
of the storage and reentry stack
allocation, which is equal to the number
of words per reentrant subroutine
muitiplied by the number of levels
calling the subroutine summed overall
subroutines

part is the maximum number (6 through 20,
inclusive) of partitions on an RMD in the
system

list is the number of lines per page for the

list output, with typical values of 44 for
the line printer and 61 for the Teletype

kpun is 26 for 026 keypunch Hollerith code, or
29 for 029 code

map is L if map information is to be listed, or
0 if it is to be suppressed

analysis is 0 or blank if a complete bad track
analysis is desired on all RMD's, or 1 if
the bad track tables from the last SGEN
are to be reused. f this parameter is
omitted, a full analysis is performed. A
value of 1 may be entered only when an
analysis has been made on a previous
SGEN effort. If SGL is on slave disc,
bypass (SET 1) the bad track analysis.

Bad-track or RMD partitioning analysis is performed
following input of the EDR directive. When that process is
complete, the VORTEX nucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinition of resident tasks only.
EDR,R

Specify full system generation with no stack area, a
maximum of five partitions per RMD, 44 lines per page on

the list output, 026 keypunch mode, and a list map, and a
new bad track analysis is wanted.

EDR,S,0,0,5,44,26,L

Specify full system generation with 0500 addresses in the
stack area, a maximum of 20 partitions per RMD, 30 lines
per page on the list output, 029 keypunch mode, and sup-
pression of the list map. Assume bad track tables from
the last SGEN are still good, and reuse them.

EDR,S,0,0500,20,30,29,0,1

15.5.16 Required Directives

VORTEX system including writable control store (WCS)
must include an EQP,WCS.. directive.

15-18

Systems without a WCS must delete certain WCS support
software modules. In particular, the following directives
should be included to delete the MIUTIL and WCSRLD
tasks:

LDE,FMIUTI
LDE, FWCSRL

In addition, the following directives may optionally be used
to delete the remaining microprogramming support mod-
ules. These modules may be used on systems without WCS,
but their deletion will make extra space available in the
background library. The following directives delete the
microprogram assembler and the simulator:

LDE, BMIDAS
LDE, BMICSI

Systems including VTAM require a DEF directive to define
the LcB address. The format is:
DEF, V$LcWn, aaaaaa where n is the DCM number
and aaaaaa is the LcB address for the DCM

Systems including a statos printer/plotter require a DEF
directive to define the bed width. The format is:

DEF, V$SWcm,a
where ¢ = controller number
m = model code

a = 0 for 8-1/2 inches 4 = with SLiB
1 for 11 inches 5 = with SLIB
2 for 14-5/8 inches 6 = with SLIB
3 for 22 inches 7 = with SLIB

15.6 BUILDING THE VORTEX NUCLEUS

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the nucleus
processor is loaded upon completion of directive process-
ing. Once loaded, the nucleus processor reads the SGL
routines and builds the VORTEX nucleus as specified by
the routines and the SGEN control records.

There are three SGEN control records used in building the
nucleus:

. SLM Start load module

. TDF Build task-identification block
. MEM Default extra memory pages
. END End of nucteus library

Normally these control records are used only to replace
existing SGL control records.

VORTEX nucleus processing consists of the automatic
reading of control records and object modules from the
SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases, follow the procedures given in
section 15.5.5 and 15.5.6, respectively.

15.6.1 SLM (Start Load Module)
Directive

This directive specifies the beginning of a load module. its
presence indicates the beginning of the system initializer or
VORTEX nucleus. The directive has the general form

SLM,name

where name is the name of the load module that follows the
directive.

Example: Indicate the beginning of the VORTEX nucleus.

SLM,VORTEX

15.6.2 TDF (Build Task-ldentification Block)
Directive

This directive specifies all parameters necessary to build a
task-identification block in the VORTEX nucleus. It has the
general form

TDF,name,exec,ctrl,stat,level EV75]

SYSTEM GENERATION

where

name is the name (1 to 6 alphanumeric
characters) given to the TIDB for linking
purposes

exec is the name (1 to 6 alphanumeric
characters) associated with the
execution address of the task

ctrl is the name (1 to 6 alphanumeric
* characters) of the controller table
required for Teletype and CRT
processing tasks, or is O for any other
task

stat is the 16-bit TIDB status word where the
settings of the individual bits have the
significance shown in table 15-5

levl is the priority level of the related tasks
V75 specifies long TIDB for V75 system

Example: Define a foreground resident task PROGL
on priority level 10 to execute on boot.

The TDF directive causes a resident TIDB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See
section 15.5.13 for generation of resident tasks without
resident TIDB.

Table 15-5. TIDB Status-Word Bits

Explanation

The task is suspended during the
processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB
words 12-16 (interrupt stack).

Bit When Set indicates
15 Interrupt suspended
14 Task suspended

13 Task aborted

The task is suspended because
of 170 or because it is wait-
ing to be activated by an inter-
rupt, time delay, or another
-task. The task is activated
whenever this bit is zero, or

if TIDB word 3 has an inter-
rupt pending and the task ex-
pects the interrupt.

The task is not activated. All
stacked /0 is aborted, but
currently active 1/0 is com-
pleted.

15-19

SYSTEM GENERATION

Table 15-5. TIDB Status-Word Bits (continued)

Explanation

The task is not activated. All
stacked and currently active
170 is completed.

The TIDB (drivers, task-
interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or
exited.

The task is resident and not
released when aborted or
exited.

The task is in protected fore-
ground.

Bit When Set Indicates
12 Task exited

11 TIDB resident

10 Task resident

9 Foreground task

8 Check-point flag

7 Task scheduled by

time increment

Set: may be check-pointed by a lower
priority task.

Reset: may not be check-pointed by a
lower priority task.

The task becomes nonsuspended
when a specified time interval
is reached.

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check-
pointed and suspended. 170 is
not activated.

The task contains an error that
will cause an error message to
be output.

A task interrupt is expected.

6 Time delay active

5 Task checkpointed

4 Error in task

3 Task interrupt expected
2 Overlay task

1 Task-schedule this task
0 Task searched, allo-

cated and loaded

15.6.3 END Directive

This directive indicates the end of the system initializer or

the VORTEX nucleus. it has the form

END

Example: Indicate the end of the system initializer

15-20

END

The task contains overlays.

The scheduling task is suspended
until the scheduled task exits
or aborts.

The task is loaded in memory and
is ready for execution

15.6.4 MEM Directive

This optional directive performs the same function as the
same directive in LMGEN (see section 6.2.7). The directive
has the general form

MEM,n

where
n is the number of extra pages desired.

This directive, if used, must appear after the last ESB
directive and before the END directive.

15.6.5 Memory Parity Considerations

Memory parity is not a supported feature under VORTEX.
For those systems which require the use of memory parity,
the user may write his own memory-parity service routine
(see section 14) and add it to the system. The following are
considerations when using memory parity:

« The memory parity interrupt trap must be an even
modulo-8 address, e.g., 010, 0100, 0110, 0200, etc. The
exact address depends upon the number of PIMs in
the system. For example, a system with 3 PIMs can
use any of the following addresses: 0160, 0170, 0200,
0230, 0240, 0250, 0260, 0270, or 010. If 4 PIMs are
in the system, then any of the above addresses except
for 0160 and 0170 may be used. In the case where all
8 PIMs are used, the only available address will be
010.

* Fortrap addresses between 0100 and 0277, the SGEN
PIM directive, specifying the direct connect option,
may be used to link up the trap address with the user's
memory-parity routine. If a trap address of 010 is used,
the PIM directive cannot be used. In this case, the
easiest means of linking the trap address and the
service routine would be to modify the “low-core"”
module (VSLMEMBK) to specify an EXT to the user’s
interrupt service routine.

« No enable/disable memory parity instructions are
required and hence no changes are required for the
system initializer.

15,7 BUILDING THE SYSTEM LIBRARIES AND
RESIDENT TASK CONFIGURATION

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the library
generator is loaded upon complietion of nucleus processing.
If only reconfiguration of resident tasks has been requested
(R form of the EDR directive), the resident task configura-
tor is loaded immediately after directive processing.

A load module is a logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. it resides in the foreground or background
library, or in the user library. Load modules are constructed
from sets of binary object modules interspersed with
alphanumeric control records. The control records indicate
the beginning and end of data for incorporation into each

SYSTEM GENERATION

load module, and specify certain parameters to the load
module. The group of object modules and control records
used to construct a load module is called a load-module
package (LMP). Figure 15-5 shows an LMP for a load
module withaut overlays, and figure 15-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record, and includes all
modules and records between the SLM and END.

* | SLM,namel
TID,name2,. . .

Object Moduiles Comprising
the Root Segement

* | ESB
| END
NOTE:
* = Alphanumeric control record

Figure 15-5. Load Module Package for Module Without
Overlays

There are five SGEN control records used in building the
library:

+ SLM Start load module

. TID Task-identification block specification
. ovL Overlay

« ESB End of segment

. END

Library processing consists of the automatic reading of
control records and object modules from the SGL, and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases, follow the procedures given in
sections 15.5.8 and 15.5.9, respectively.

Resident-task configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 15.5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system, input the TSK directives followed by the
R form of the EDR directive (section 15.5.15), thus
bypassing nucleus and library processing and allowing the
resident-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro-
priate message is output.

15.21

SYSTEM GENERATION

15.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the
general form

SLM,name
where name is the name of the LMP that begins with this
directive.
Example: Indicate the start of the LMP named ABC.

SLM,ABC

15.7.2 TID (TIDB Specification)
Directive

This directive contains the parameters necessary for the
generation of the task-identification block required for each
generated load module. The TID directive has the general
form

TID,name, mode,ovly,lun

where

name is the name (one to six alphanumeric
characters) of the task

mode is 1 if the task is a background task, or 2
ifitis a foreground task

ovly is the number of overtay segments, or 0
if the task has no overlay segments,
(note that the value 1 is invalid)

iun is the number of the logical unit onto

which the task is to be cataloged

Once a TID directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 15.7.4) is found.

Examples: Specify a TIDB for a task PROG1 without
overlays for cataloging on the BL unit (105).

TID,PROG1,1,0,105

Specify a TIDB for the task PROG2 with four overlay
segments for cataloging on an FL unit (106).

TID,PROG2,2,4,106

15-22

Note: If a specified program is not found in the foregrohnd
library, configuration continues, but an appropriate mes-
sage is output.

= | SLM,namel

“ | TID,name2,. . .

Object Modules Comprising 1
the Root Segment

* | ESB

* | OVL,name3,. . .

Object Modules Comprising
the First Overlay Segment

* | ESB

* | OVL,named,. . .

Object Modules Comprising

the Second Overlay Segment
Object Modules Comprising

the nth Overlay Segment
» | ESB

* | END

NOTE:

* = Alphanumeric control record

Figure 15-6. Load Module Package for Module With
Overlays

15.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL,segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: Indicate the beginning of the overlay segment
SINE.

OVL, SINE

15.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e., that all
object modules have been loaded and processed. The
directive has the form

ESB
The ESB directive causes the searching of the CL library,
which was generated during nucleus processing, to satisfy
undefined externals.
The ESB directive concludes both root segments (following
TID, section 15.7.2) and overlay segments (following OVL,
section 15.7.3) of a load module.

Example: Indicate the end of a segment.

15.7.5 END (End Library) Directive

This directive indicates the end of load-medule generation.
1t has the form

END
Example: Specify the end of load-module generation.

15.8 SYSTEM INITIALIZATION AND
OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and LIS units the message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. If writable control store is present in the system,
the following messages will appear on the OC device at this
time:

I010,WCSRLD
FILE WCSIMG NOT FOUND
WCS RELOAD ABORTED

These messages are output by the WCS reload task. In
WCS systems, this task is automatically scheduled upon
loading the system in order to restore WCS contents. To do

SYSTEM GENERATION

this, it uses the contents for WCS which were saved on a
disc file the last time WCS was loaded. At this point,
however, WCS has not yet been loaded. Thus, the reload
task cannot restore WCS and exits after outputting the
above messages. At this time, the OM library should be
loaded and build on the RMD using FMAIN.

The OM library is provided as job streams as the second
through thirty-fifth files on the SGL. An EOF separates the
SGL from the OM stream. A system generation leaves
magnetic tape and card SGLs prior to this EOF, thus it
must be skipped over before executing the OM job stream.
For disc SGLs the OM library object modules are on the
second partition of the disc pack (DcuB). Refer to the
VORTEX/VORTEX 11 Installation Manual for details.

The VORTEX system is how operating with the peripherals
in the status specified by TID control records.

If the EDR directive specitied a listing, linking information
is listed on the LIS unit during nucleus processing -and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 15-7 through 15-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME LOCATION
AAA 017285
BBB 021255
222 075777

NONSCHEDULED TASKS

NAME LOCATION
TBABC 072620
TBDEF 074640
TBXYZ 076400

Figure 15-7. VORTEX Nucleus Load Map

15-23

SYSTEM GENERATION

RMD PARTITIONING

NAME

DOOA
DOOB
DOOC
DOOD
DOOE
DOOF
DO0G
DOOH

DO1A
DO1B
DO 1C
DO1D

SLM,BGTSKI

TID,JCP,1,0,105

ESB

MOP
ORS

TUV

SLM,FGTSKI

A 032556
R 000200
A 032501

TID,V$OPCM,2,8,106

ESB

GHI
JKL

MNO

Figure 15-8. Library Processor Load Map

FIRST
TRACK

0007
0009
0029
0054
0094
0102
0120
0138

00601
0040
0100
0150

R 000010
R 000012
R 000077

LAST
TRACK

0008
0028
0053
0093
0101
0119
0137
0203

0039
0099
0149
0203

Figure 15-9. RMD Partition Listing

MEMORY RESIDENT TASKS

NAME

PROG1
PROG2
PROG3
PROG#

LOCATIONS

0148630
014630
NOT FOUND
014500

Figure 15-10. Resident-Task Load Map

15-24

BAD
TRACKS

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000

PAGES (OCTAL)

ALLOCATED TO

0 PAGE 0 SYSTEM DATA
1 - S50 UNALLOCATED
51 - 72 NUCLEUS PROGRAM MODULE
72 - 75 NUCLEUS TABLE MODULE
75 GLOBAL FCB PAGE
75 POREGROUND BLANK COMMON
100 - 177 UNALLOCATED

VORTEX SYSTEM READY

Figure 15-11. Physical Memory Allocation

15.9 SYSTEM GENERATION EXAMPLES

EXAMPLE 1

Problem: Generate a VORTEX system using the following
hardware:

a.

b.

-

L

Computer with 32K main memory

A model 70-7610 (620-37) disc unit with device address
016 on BIC 20

. Teletype keyboard/printer
. Card reader
. Two buffer interlace controllers (BICs) with device

addresses 020 and 022

One priority interrupt module (PIM) with device
address 040

No writable control store

and having the characteristics listed below:

f.

. Foreground common size = 0200
. Storage/reentry stack area size = 0200

. Number of disc partitions = 9

. All eight interrupt lines connected through a common

interrupt handier 0 = BICl,1 = BIC2,2 = CR,3 =
Disc seek, 4 = TY read, 5 = TY write, 6-7
unassigned

. One user-coded task added to the resident module

(PROG1)

JCP replaced with a new version

g One user-coded load module added to the background

h.

library (after LMGEN) (PROG2)

The system file listed after system generation

Procedure:
Step
1

User Action

Load and execute the card
reader loader (table 15-1)

On the OC unit, input

DIR = TY00A,01

LIB = CROOA,030
ALT = CROOA,030
LIS = TY0O0A,01

SYS = D00B,016,020

On the Teletype (DIR unit),
type

CLK,100,100,20
MRY,757777,0200,32
EQP,D0B,016,1,020,3
EQP,TYOA,01,1,0,0
EQP,CROA,030,1,022,0
PRT,D00A, 2,C;D00B, 20,F
PRT,D00C, 25,E;D00D,40,D
PRT,DOOE,8,S;D00F, 18,8
PRT,D00G, 18, *;D00H,52,*
PRT,D001,14,*

SYSTEM GENERATION

SGEN Response

Loads the {/0 interrogation

routine punched cards from

the card reader, and outputs
on the OC unit

1/0 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the disc, loads
the nucleus processor and
builds the nucleus, loads
the library processor and
builds the library until

load module JCP is encoun-
tered, and outputs

REPLACE BJCP
READY

ASN,1 = TY00,2 = TY003 = TY00
ASN4 = CR00,5 = TY00,6 = CROO
ASN,7 = DOO1,8 = DOOH,9 = DOCG
ASN,10 = DOOH, 11 = TY00,12 = TY00
ASN,180 = DOOH, 181 = DOO!

PIM,03, TBDOB,01,0;02, TBCROA,01,0
PIM,03,TBD0B,01,0;04, TBTY0A,01,0

PIM,05,TBTYOA,02,0
TSK,PROG1

LRE,BJCP

LAD,BLMGEN
LDE,FMIUTI

LDE,FMICS!

LDE,FMIDAS
LDE,FNCSRL
EDR,$,20,0200,9,61,26,L
Load revised version of
BJCP load module in the
card reader, and on DIR
type:

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

L8

Load the PROG1 load module
in the card reader, and on
DIR type

Reads and processes the
new load module, and
outputs:

READY

Processes the load mod-

ule library until the
completion of LMGEN,

and outputs

ADD AFTER BLMGEN
READY

Reads and processes PROGI,
and outputs

1525

‘SYSTEM GENERATION

15-26

Procedure: (continued)

Step

User Action

ALT

Load the PROG2 load module
in the card reader, and on
DIR type

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

Lis

None

EXAMPLE 2

SGEN Response
READY

Reads and processes PROG2,
and outputs

READY

Processes the remainder of
the load module library,
copies PROG1 from the FL
unit to the VORTEX nucleus,
lists the resident task in-
formation, and outputs on
0OC and LiS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

Problem: Replace the current resident tasks in the
foreground library with the tasks listed below in an
operational VORTEX system. Assume the SGL is on
magnetic tape unit 0. The system has a line printer and a

620-48 RMD on DAO14. ALT is on the slave MT.

Procedure:
Step
1

PROG1
ABC
TEST
EFG

User Action

Load and execute the magnetic

tape loader (table 15-1)

On the OC unit, input

DIR = TY00A,01

LIB = MTO00A,010

ALT = MTO01A,010

LIS = LPOOA,035

SYS = D00A2,014,020

On the Teletype (DIR unit),
type

TSK,PROG1,ABC
TSK,TEST,EFG
EDRR

None

SGEN Response

Loads the 170 interrogation
routine from magnetic tape
and outputs from the OC unit

10 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROG1, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

SECTION 16
SYSTEM MAINTENANCE

The VORTEX system p t (SMAIN) is a
background task that ins the system-g ation
library (SGL). The SGL (figure 15-2) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating system.

16.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job-
control-processor (JCP) directive /SMAIN (section 4.2.21).

SYSTEM INPUT
(&)
LOGICAL UNIT

SMAIN DIREC-

TIVE INPUT

Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the S| logical unit to maintain
the SGL. No processing of the SGL takes place before all
SMAIN directives are input and processed. Then user-
specified object modules and/or control records are added,
deleted, or replaced to generate a new SGL.

SMAIN ‘has a symbol-table area for 200 symbols at five
words per symbol. To increase this, input a /MEM directive
(section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbols.

SYSTEM OUTPUT

(50)
LOGICAL UNIT

ERROR MESSAGES
AND RECOVERY

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE ALT

NEW OBJECT
MODULES AND
CONTROL

RECORDS

SMAIN

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

VTH-319

SGL AND SMAIN
DIRECTIVE

LISTINGS

LIST OUTPUT

(LO)
LOGICAL UNIT

Figure 16-1. SMAIN Block Diagram

16-1

SYSTEM MAINTENANCE

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 16.2) input
through the Sl logical unit.

b. The old SGL input through the logical unit specified by
the {N directive (section 16.2.1).

c. New or repl 1t object modules and/or control
records input through the logical unit specified by the
ALT directive (section 16.2.3).

d. Error-recovery inputs entered via the SO logical unit.

Sy t dir: specify both the changes to
be made in the SGL, and the logical units to be used in
making these changes. The directives are input through the
S| logical unit.and listed, when specified, on the LO logical
unit. If the St logical unit is a Teletype or a CRT device, the
message SM** is output to indicate that the SI unit is
waiting for SMAIN input.

The old SGL contains three types of records: 1) control
records and comments (ASCIl), 2) the system-generation
relocatable loader and BOOTLODR (the only SGL absolute
core-image records), and 3) relocatable object modules
such as are output by the DAS MR assembler and the
FORTRAN compiler.

New or replacement object modules and/or control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SMAIN operations.
Error messages applicable to this component are given
Appendix A.16. Recovery from the type of error represented
by invalid directives or parameters is by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the S unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the SI unit.

Recovery from errors encountered while processing object
modules and/or control records is by either of the
following:

a. Input the character R on the SO unit, thus directing a
rereading and reprocessing of the last record.

b. Input the character P on the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or controf record.

In the last two cases, repositioning is automatic if the error

involves a magnetic-tape unit or an RMD. Otherwise, such
. repositioning is manual.

16-2

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SMAIN task and schedule
the JCP for execution.

QUTPUTS from the SMAIN comprise:
a. Thenew SGL
b. Error messages
¢. Thelisting of the ofd SGL, if requested

d. Directive images

The new SGL contains object modules and controf records.
It is similar in structure to the old SGL.

Error messages applicable to SMAIN are output on the SO
and on LO logical units. The individual messages, errors,
and possible recovery actions are given in Appendix A.16.

The listing of the old SGL is output, if requested, on the LO
unit. The output consists of a list of all control records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the
identification name of the module, the date the module
was generated, the size (in words) of the module (O for a
FORTRAN object module), and the external names refer-
enced by the module, in the following format.

id-name date size entry-names external-names

Directive images are posted onto the LO unit, thus
providing a hardcopy of the SMAIN directives for perma-
nent reference.

16.1.1 Control Records

In SMAIN there are two types of control record:
a. SGL delimiters
b. Object-module delimiters
SGL delimiters divide the SGL into five parts. Each part is

separated from the following part by a control record of the
form

CTL, PART000n

where n is the number of the following part, and the SGL
itself is terminated by a control record of the form

CTL, ENDOFSGL

Within SMAIN directives, these control records are refer-
enced in the following format

PARTOOOn
ENDOFSGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name -
TID,name

OVL,name

TDF ,name

ESB

END

The control records containing a name can be referenced
by use of the name alone in SMAIN directives. These
control records and their uses are described in the section
on the system-generator component (section 15).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load-
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record, the
entire LMP is deleted. Additions and replacements operate
analogously.

16.1.2 Object Modules

Relocatable object-module outputs from the DAS MR
assembler and the FORTRAN compiler are described in
appendix G.

16.1.3 System-Generation Library

The SGL is a coliection of system programs in binary-object
form, and of control records in alphanumeric form, from
which a VORTEX system is generated. The structure of the
SGL is described in section 15.

16.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

. IN Specify input logical unit
. ouT Specify output logical unit
. ALT Specify input logical
unit for new SGL items
. ADD Add items to the SGL
. REP Replace SGL items
. DEL Delete items from the SGL
. LIST List the old SGL
. END End input of SMAIN directives

SYSTEM. MAINTENANCE

SMAIN directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is
name,p(1),p(2),....p(n)
where
name is one of the directive names given
above (any other character string
produces an error)
each p(n) is a parameter defined below under

the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to SMAIN directives are given in
Appendix A.16.

16.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old
SGL is to be input. It has the general form

IN, lun, key, filename

where

fun is the name or number of the logical unit
to be used for the input of the old SGL

key is the protection code, if any, required to
address lun

filename is the name of the input file only when
tun is an RMD partition with a directory

There is no default value for lun. If it is not specified, any
attempt at SGL processing will cause an error message
output.

Once specified, the value of lun remains constant untit

changed by a subsequent IN directive. Each change of lun
requires a new N directive.

16-3

SYSTEM MAINTENANCE

if lun specifies an RMD partition, the RMD is rewound to
the first sector following the start of the partition before
any processing takes place.

Examples: The old SGL resides on logical unit 4, the Pl
unit. Specify this unit to be the SGL input unit.

IN, U

The old SGL resides on logical unit 107, which requires the
protection code G. Specify this unit to be the SGL input
unit. (This is a non-directoried partition.)

IN,107,G

16.2.2 OUT (Output Logical Unit) Directive

This directive specifies the logical unit on which the new
SGL is to be output. It has the general form

OUT lun, key, filename

where

lun is the name or number of the logical unit
to be used for the output of the new SGL

key is the protection code, if any, required to
address lun

filename is the name of the output file when lun is
an RMD partition

The default value of lun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

if lun specifies an RMD partition, the RMD is rewound to
the first sector following the PST before any processing

takes place. The PST comprises one entry defining the
entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new SGL.

ouT, 10

Specify that there is to be no output logical unit.

ouT, 0

164

16.2.3 ALT (Aiternate Logical Unit)
Directive

This directive specifies the logical unit from which new
object module(s) and/or control record(s) are to be input to
the new SGL. It has the general form

ALT,lun,key,filename

where

lun is the name or number of the logical unit
to be used for the input of new items to
the SGL.

key is the protection code, if any, required to
address lun

filename is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains ‘constant until
changed by a subsequent ALT directive. Each change of lun
requires a new ALT directive.

Examples: Specify that new object modules and control
records are to be input to the SGL from the Bl logical unit
only.

ALT,6

Make the same specification where Bl is an RMD partition
without a protection code. Use file FILEX.

ALT,BI, ,FILEX

Note: SMAIN does not accept packed binary. Use IOUTIL
to unpack binary if necessary.

16.2.4 ADD Directive

This directive permits the addition of object modules and/
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD,p(1),p(2),....p(n)

where each p(n) is the name of an object module or control
record after which additions are to be made.

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and including an item
specified by one of the parameters, p(n), of the ADD
directive. After this item is copied, the message

ADD AFTER p(n)
SM**

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit.

If the control character input is Y, SMAIN adds the next
object module or control record contained on the logical
unit specified by the ALT directive (section 16.2.3), then
repeats the message requesting another control character.
This continues until the control character input is N.

If the control character input is N, SMAIN assumes the
additions at this point are complete. It continues copying
from the old SGL and outputs the message

END REPLACEMENTS

The entire process is repeated when the next item specified
by one of the parameters, p(n), of the ADD directive is
found. The items in the directive need not be in the same
order as they appear on the old SGL.

Example: During generation of a new SGL, add object
module(s) and/or control record(s) after the old SGL
control record PART0001 and after the old SGL object
module LMP, the added items to be input from the logical
unit specified by the ALT directive. Input

ADD, PART0001, LMP

then, when the message

ADD AFTER PARTO0001
SM*x

appears, input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the ALT
directive, and again outputs the message

SM**
and awaits another control character. If more is to be
added here, input Y. If no more additions are required at
this point, input N. After receiving the N, SMAIN outputs
the message
END REPLACEMENTS
and continues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

ADD AFTER LMP
SM% %

at which time the process is repeated.

v

SYSTEM MAINTENANCE

Note that PARTO001 does not have to precede LMP in the
old SGL. If the positions of the items are reversed relative
to their order in the directive, the order of messages will be
reversed. In any case, the items on the logical unit
specified by ALT must be in the order in which they are to
be added to the SGL.

16.2.5 REP (Replace) Directive

This directive permits the replacement of object modules
and/or control records during generation of a new SGL.
The directive has the general form

REP,p(1),p(2),...p(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it
into the new SGL. After this is completed, the message

REPLACE p(n)
SM*

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit. These
control characters operate just as in the ADD directive
(section 16.2.4), allowing the addition (in this case,
replacement, since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

Example: During generation of a new SGL, replace the old
SGL object module IOCTL with obiect modules and/or

control records from the logical unit specified by an ALT
directive (section 16.2.3). Input

REPLACE, IOCTL
then, when the message

REP IOCTL
SM**

appears, continue as for an ADD directive (section 16.2.4).

16.2.6 DEL (Delete) Directive

This directive permits the deletion of abject modules and/
or control records during generation of a new SGL. The
directive has the general form

DEL,p(1),p(2),....p(n)

where each p(n) is the hame of an object module or control
record that is to be deleted.

16-5

SYSTEM MAINTENANCE

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into
the new SGL. The items in the DEL directive need not be in
the same order as they appear on the old SGL.

if a listing of the old SGL is specified either by a LIST
directive (section 16.2.7) or by the L parameter of an END
directive (16.2.8), the deleted items are preceded on the
listing by asterisks (*).

Example: During generation of a new SGL, delete the
following old SGL items: object module 10ST and control
record LMGENCTL.

DEL, I0ST, LMGENCTL
PAGE 1 11713772
AN MY
QuUT,PU
@ Ler
BOOTLODR
1D NAME DATE S1ZE
YS$SGENLD 10/02/72 1551
&=
ED _NAME DATE SIZE
VSDOOAL 02/24/72 36
1D NAME DATE SIZE
VED00A2 02/24/72 36
1D NAME DATE SI2E
VSDOUAS Q2/24/72 36
10 NAME DATE SIZE
VSD10AL 0R/24/72 36
ID NAME DATE SIZE
YS010A2 02/24/72 36
ID NAME DATE S12€
V801045 02/24/72 36
10 NAME LATE S12E
V3D20A1 02/24/72 sh

16.2.7 LIST Directive
This directive lists, on the LO logical unit, the old SGL as
found on the logical unit specified by the SMAIN directive
IN (section 16.2.1). The LIST directive has the form

LisT
Example: List the old SGL.
LIST

Figure 16-2 shows the format of output from this directive.

VORTEX SMAIN

ENTRY NAMES EXTERNAL NAMES

SGLNR TPROG sGIBUr
BATACK SPUN
SPUB SLUN
LuB

ENTRY NAMES EXTERNAL NAMES

DOOAY ORWEQF DRSTAY
DRSKRD DRSFIL
ORRITE DRREND
ORREAD

FNTRY NAMES EXTERNAL NAMES

DOOA2 ORWEQF

DRSTAY
DRSKRD DRSFIL
QRRITE DRREWD
ORREAD

ENTRY NAMES EXTERNAL NAMES

DOOAS ORWEQF DRSTAT
DRSKRD DRAFIL
ORRITE DRREWD
DRREAD

ENTRY NAMES EXTERNAL NAMES

D10A} ORWEQF QRATAT

DRSKRD DRAFIL
DRRITE DRREMWD

DRREAD
ENTRY NAMES EXTERNAL NAMES
D10A2 ORWEQF DRSTAT

ORSKRD DRSFIL
ORRITE DRREWD
DRREAD

ENTRY NAMES FXTERNAL NAMES

D10AS ORMEQDF DRSTAT
DRSKRD DRSPIL
DRRITE DRRENWD
DRREAD

ENTRY NAMES EXTERNAL NAMES

D20AY DRWEQF DRSTAY

Figure 16-2. SMAIN LIST Directive Listing

16-6

16.2.8 END Directive

This directive indicates that all ADD (section 16.2.4), REP
(section 16.2.5), and DEL (section 16.2.6) directives have
been input. END initiates the SGL maintenance process.
The directive has the general form

END,L

where L, if present, specifies that the old SGL is to be
listed.

Examples: After alil ADD, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

Initiate the SGL maintenance processing as above, but list
the old SGL.

END, L

16.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 16.2.1) to the logical unit specified by the
OUT directive (section 16.2.2), making the modifications
specified by the ADD (section 16.2.4), REP (section 16.2.5),
and DEL (section 16.2.6) directives, and thus creating a
new SGL.

Input of the END directive (section 16.2.8) initiates the
copying process. All ADD, REP, and DEL directives, if any,
must precede the END directive.

Modifications to the SGL are made through the logical unit
specified by the ALT directive (section 16.2.3). Such
modifications are in the form of additions and/or replace-
ments of object modules and/or control records. (These
iterns can also be deleted, but this process does not, of
course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there
is no error with respect to check-sum, record size, loader
codes, sequence numbers, or structure.

SYSTEM MAINTENANCE

16.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto fogical unit 9 without listing the old SGL,
and return to the JCP.

/SMAIN
IN,4
out,9
END
/ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9, listing the old SGL and
deleting object modules A, B, C, D, and E; and return to
the JCP.

/SMAIN

IN, 4

ouT, 9

DEL,A)
DEL,B,C,D,E
END, L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL
on logical unit 4, and return to the JCP.

/SMAIN
IN, 4
LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL;
add object modules or control records from logical unit 6
after control record PART0002 and after object module A;
replace load module LMGEN and control record JCPDEF;
delete object modules B, C, D, and E; and return to the
JCP.

/SMAIN

IN, 4

ouT, 9

ALT,6

ADD, PART0002,A
REP , LMGEN
DEL,B,C,D,E
REP, JCPDEF

END

/ENDJOB

167

SECTION 17
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

17.1 DEFINITIONS

An operator key-in request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of 1/0 requests
via the 10C (section 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
17.2.9).

17.2 OPERATOR KEY-IN REQUESTS
This section describes the operator key-in requests:

;SCHED Schedule foreground task

JTSCHED Time-schedule foreground task
JATTACH Attach foreground task to PIM line
JRESUME Resume task

;TIME Enter or display time-of-day
;DATE Enter date

;ABORT Abort task

;TSTAT Test task status

;ASSIGN Assign logical unit(s)
;DEVDN Device down

;DEVUP Device up

;IoLIsT List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (=).
However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

srequest,p(1),p(2),,...p(n)cr

where

request is one of the key-in requests listed above
in capital letters

each p(n) is a parameter defined under the
descriptions of the individual key-in
requests below

cr is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash (\) deletes the entire present key-in
request.

Table 17-1 shows the system names of physical 170 devices
as used in operator key-in requests.

Peripherals for data communication are not used in
OPCOM request, but are controlied with the Network
Control Module (NCM) described in the VTAM Reference
Manual.

For. greater clarity, optional blank separators between
character strings, and the optional replacement of commas
(.) by equal signs (=) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key-in requests are
given in Appendix A.17.

Table 17-1. Physical 1/0 Devices

System Name Physical Device

DUM Dummy

CPcu Card punch

CRcu Card reader

CTcu Cathode ray tube (CRT) device

Dcup Rotating-memory device (RMD)
(disc/drum)

LPcu Line printer or Statos-31/33

MTcu Magnetic tape unit

PTcu High-speed paper tape reader/punch

TYcu Teletype printer/keyboard

CLmA, COmA Process 1/0

17-1

OPERATOR COMMUNICATION

Table 17-1. Physical 1/0 Devices (continued)

System Name Physical Device

MXcu Communication Muitiplexor
TCco Psuedo TCM
SPco Spool Unit

NOTES

¢ = Controller number. For each type of device,
controllers are numbered from C as required.

u = Unit number. For each controller, units are
numbered from 0 as required (within the
capacity of the controller).

cu can be omitted to specify unit 0 controller 0,
e.g., CROO or CR.

p = Partition letter. RMD partitions are lettered
from A to T as required to refer to a partition on
the specified device, e.g., DOOA.

m = Muitiplexor number

17.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key-in request immediately schedules the specified

foreground-library task for execution at the designated

priority level. it has the general form

1SCHED, task, level,lun,key

where

task is the name of the foreground task to be
scheduled

level is the priority level (from 2 to 31) of
the scheduled task

lun is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

key is the protection code, if any, required to

address lun

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

172

Operator key-in examples: Schedule on priority level 3
the foreground task DOTASK residing on the FL logical
unit. Use F as the protection key.

i SCHED, DOTASK, 3,FL,F

Schedule on priority level 9 the resident foreground task
COPYIO.
; SCHED,COPYI10,9,0

17.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground-
library task for execution at the designated time-of-day and
priority level. It has the general form

;TSCHED, task,level, lun, key, time

where

task is the name of the foreground task to be
scheduled

level is the priority level (from 2 to 31) of the
scheduled) task

fun is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

key is the protection code, if any, required to
address lun

time is the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45 p.m.

Operator key-in examples. Schedule for execution at
11:30 p.m. on priority level 3 the foreground task DOTASK
residing on the US logical unit. Use T as the protection key.
; TSCHED ,DOTASK, 3,US,T,2330

Schedule for execution at 8:30 a.m. on priority level 9 the
resident foreground task TESTIO.

; TSCHED, TESTIO,9,0,0830

17.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified foreground task
to the designated PIM (priority interrupt module) line. It
has the general form

;ATTACH, task,line,iew,enable

where
task is the name of the foreground task to be
attached to the PIM line
line is the two-digit number of the PIM line to

which the task is to be attached, with the

tens digit specifying the PIM number (0-

7) and the units digit the line number (0-
7)on that PIM

iew is the value (from 01 to 0177777) of the
interrupt event word (section 14 or
appendix F) and identifies the bit(s)
to be set in the task TIDB when an
interrupt occurs on line

enable is E (default value) to enable the line, or
Dtodisable it

The task can be resident or nonresident. However, its TIDB
must have been defined at system-generation time.
ATTACH provides a flexible way of altering interrupt
assignments without having to regenerate the system.

Operator key-in example: Connect task INTRPT
to PIM 0, line 3. Use 020 as the interrupt event
word value (i.e., set bit 4 of the interrupt event
word in TIDB if INTRPT is scheduled due to an
interrupt on PIM 0, line 3).

; ATTACH, INTRPT, 03,020

A PIM directive with the PIM line to be attached must have
been specified during system generation to set up the link
to the interrupt line handler region.

Note: This directive detaches the PIM from a previous task.

17.2.4 ;RESUME Key-In Request

This key-in request reactivates the specified task for
execution at its specified priority level. It has the general

form
;RESUME task

where task is the name of the task to be resumed

OPERATOR COMMUNICATION

Operator key-in example: Resume the task DOTASK.

$RESUME, DOTASK

17.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as
system time-of-day. If no time is specified in the key-in
request, ;TIME displays the current time-of-day. The key-in
request has the general form

;TIME, time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

The time-of-day output for a ;TIME request without time is
of the form

T hhmm HRS
where hhmm is the time of day in hours and minutes.

Operator key-in example: Set the system time-of-day to
3:00 p.m.

1 TIME, 1500

17.2.6 ;DATE Key-In Request

This key-in request enters the specified date as the system
date. It has the general form

;DATE,mm/dd/yy

where
mm isthemonth (01 to 12)
dd istheday (01 to 31)
yy is the year (00 to 99)

Note that since the entire date is considered one
parameter, there are no commas other than the one
immediately following DATE. The components of the date
are, however, separated by slashes as shown. VORTEX does
not support date roll-over.

Operator key-in example: Set the system date to 25
December 1971.

;DATE, 12/25/71

17-3

OPERATOR COMMUNICATION

17.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the
general form

;ABORT task
where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

; ABORT, DOTASK

17.2.8 ;TSTAT (Task Status) Key-In Request
This key-in request outputs the status of the specified task,
if any. If no task is specified, ;TSTAT outputs the status of
all tasks gueued on the active task identification block
(TIDB) stack. This request is not applicable to tasks having
no established TIDB. The request has the general form

JTSTAT task

where task is the name of the task whose status is to be
output.

The status-output for a ;TSTAT key-in request is of the form

task Plevel Sstatus TMmin TSmilli

where

task is the name of the task whose status is
being output

level is the priority level (from O to 31) of the
task

status is the status of the task as found in

words 1 and 2 of the TIDB (table 17-2)

min is the value of the counter in TIDB word
11

milli is the value of the counter in TIDB word
10

The values of min and milli are printed only if bit 6 and/or
7 of TIDB word 1 (table 17-2) is set.

Table 17-2. Task Status (TIDB Words 1 and 2)

TIDB

Word Bit Meaning of Set Bit
1 15 Suspend interrupt

1 14 Suspend task

1 13 Abort task

17-4

1 12 Exit from task

1 1 TIDB resident

1 10 Resident task

1 9 Foreground task

1 8 Protected task

1 7 Task scheduled by time-delay

1 6 Time-delay active

1 5 Task waiting to be loaded

(check pointed)

1 4 Task error

1 3 Task interrupt expected

1 2 Overlay task

1 1 Scheduled task upon
termination of active
task

1 0 Task search-allocated-loaded

2 15 Task opened, but not loaded

2 14 Task loaded in background
(checkpoint) area

2 13 Load overlay

2 12 Background checkpoint 170 wait

2 11 Allocation override flag

2 10 Background being checkpointed

2 9 TIDB not available

2 8 Unused

2 7 Unused

2 6 Delay type 3 request

2 5-0 Task priority level

Operator key-in examples: Request the output of the
status of the task BIGJOB.

; TSTAT,BIGJOB
The output will be

BIGJOB P02 S000100, 000000 TMO?77777 TS077430

if the status BIGJOB is such that it is on priority level 2,
contains a status of 0100 in TIDB words 1 and 2, with time
counters (TIDB words 1 and 10) of 077777 and 077430,
respectively. The latter two octal complement counters
show zero minutes and 0347 5-millisecond increments.

Request the output of the status of all active tasks.

; TSTAT

and receive as a typical response

VzZDB P24 s047401, 000000
VSTYA P23 so47411, 000000
VS$TYA P23 s047411, 000000
VZLPA P22 s047401, 000000
VZCRA P22 s047401, 000000

VEMTA P22 S047401, 000000
VZMTA P22 s047401, 000000
V$OPCH P10 s005405, 020000
PROG1 POS s041501, 000000
JCP PO1 sO4u4400, 000000

17.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logical
units to specific 170 devices. It has the general form

(ASSIGN,I(1) = 1(1),1(2) = £(2),...,i(n) = r(n)

where
each i(n) is a logical-unit number (e.g., 12) or
name (e.g., SI)
eachr(n) is a logical-unit number or name, or a

physical-device system name (e.g., TYOO
orTY, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

An inoperable device, i.e., one declared down by ;DEVDN
(section 17.2.10), cannot be assigned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CROO
as the Sl logical unit and the Teletype TYO1 as the OC unit.

}ASSIGN,SI=CR00,0C=TY01
Assign a dummy device as the Pl unit.

3ASSIGN,PI=DUM

17.2.10 ;DEVDN (Device Down) Key-In
Request
This key-in request declares the specified physical device
inoperable for system use. It is not applicable to the OC
unit or to devices containing system libraries. The request
has the general form
;DEVDN,device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYO1, (table 17-1)

Operator key-in example; Declare TYQl inoperable for
system use.

; DEVDN, TYO0 1

OPERATOR COMMUNICATION

17.2.11 ;DEVUP (Device Up) Key-In
Request

This key-in request declares the specified physical device
operational for system use. It has the general form

;DEVUP device

where device is the system name of the physical device in
four ASCH characters, e.g., LPOO (or LP), TYO1 (table 17-1)

Operator key-in example: Declare TY02 operational for
system use.

;DEVUP,TYO02

17.2.12 ;IOLIST (List 1/0) Key-In
Request

This key-in request outputs a listing of the specified logical-
unit assignments, if any. If no logical unit is specified,
:IOLIST outputs all logical-unit assignments with names.
The key-in request has the general form

sIOLIST, Jun(l),Iun(é), . dun(n)

where each lun(n) is the name or number of a logical unit,
e.g., SI,5.

Where the ;IOLIST key-in request specifies a logical-unit
name, the output is of the form

name (number) = device D

where
name is the name of the logical unit, e.g., LO
number is the number of that logical unit, e.g.,
005
device is the name of the physical device
assigned, e.g., LPOO
D if present, indicates that the physical

device has been declared down and is
thus inoperable

If the key-in request specifies the number rather than the
name of the logical unit, the output will repeat the number
in both the name and number fields.

In a listing of all assignments, the output uses a name and
number where applicable. Logical units without names
assigned at system-generation time are not listed and must
be individually specified by number.

OPERATOR COMMUNICATION

Operator key-in examples: Request the output of the ;IOLIST
logicat-unit assignments for the Bl and BO units. Input
and receive as a typical response
; IOLIST,BI,BO
oc (001) = TYO0O

and receive as a typical response SI (002) = TYO0O
s0 (003) = TYO0O

BI (006) = CROO PI (004) = CROO D
BO (007) = CPOO D LO (005) = LPOO

BI (006) = CROO D
Request the output of the logical-unit assignment for logical BO (007) = PTOO
unit 180. Input ss (008) = DOOH
PO (009) = DOOH
;IOLIST, 180 cu (100) = DOOE
GO (101) = DOOG
and receive as a typical response §W (102) = DOOF
CL (103) = DOOA
180 (180) = D11H oM (104) = DOOD
BL (105) = DOOC
Request the output of all logical-unit assignments. Input PL (106) = DOOB

176

SECTION 18
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap
loading and initializing of writable control store and
procedures for changing and initializing the disc pack
during VORTEX operation.

18.1 DEVICE INITIALIZATION

18.1.1 Card Reader
(Model 70-6200)

a. Turnon the card reader.
b. Place the input deck in the card hopper.
c. Press READY/ALERT.

18.1.2 Card Punch
(Model 70-6200)

a. Turn on the card punch.
b. Place blank cards in the card hopper.

c. If the visual punch station is empty, insert a card into it
as follows:
. (1) Placeacard in the auxiliary feed slot.
(2) Clear allregisters.
(3) Set the instruction register | to 0100131.
(4) SetREPEAT.

(5) Press STEP. The card should move from the
auxiliary feed slot to the visual punch station.

(6) Reset REPEAT.

18.1.3 Line Printer
(Model 70-6701)

a. Turnon the line printer.
b. Wait for the READY light to come on.
c. Setthe ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

18.1.4 Statos-31 (Model 70-6602 and -6603)
a. Turnon plotter/printer

b. Setthe ON LINE/OFF LINE switch to ON LINE
c. Selectroll or z-fold paper switch for paper type used

d. For manual form feed press FORM FEED

18.1.5 33/35 ASR Teletype
(Models 70-6200 and 6201

a. Turnon the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

¢. Set the Teletype on-line.

18.1.6 High-Speed Paper-Tape Reader
(Model 70-6320)

a. Turn on the paper-tape reader.

b. Position the input paper tape in the reader with blank
leader at the reading station and close the reading
gate.

c. Setthe LOAD/RUN switch to RUN.

18.1.7 Magnetic-Tape Unit
(Models 70-7100,-7102, and 620-31

a. Turn on the magnetic-tape unit.

o

. Mount the input magnetic tape.

¢. Position the magnetic tape to the loading point.

d. Press ON LINE.

18.1.8 Magnetic-Drum and Fixed-Head
Disc Units
(Models 620-47 through 620-49,
70-7702 and 70-7703
a. Turnon the drum unit.
b. Wait for the drum unit to reach operating speed.
18.1.9 Moving-Head Disc Units
(Models 70-7600 and 70-7610
a. Place the START/STOP switch in the STOP position.

b. Press POWER ON button and wait for the SAFE tight to
come on.

¢. Mount the disc pack.

d. Place the START/STOP switch in the START position.

©. Wait for the disc unit to reach operating speed (READY
indicator lights).

18-1

OPERATION OF THE VORTEX SYSTEM

f. Turn off WRITE PROTECT.

18.1.10 Moving-Head Disc Units
(Mode! 70-7500)

a. Mount the disc pack

b. Press POWER-ON button and wait for unit to reach
operating speed and for the heads to emerge

c. Presson-line button.

18.1.11 Moving-Head Disc Units
(Model 70-7510)

a. Mount the disc pack(s).

b. Turn power on and wait for the unit(s) to reach
operating speed (unit-ready light comes on).

18.1.12 Moving-Head Disc Units
(Models 70-7603, 70-7613)

a. Mount disc pack.

b. Press START button and wait for Ready light.

18.2 SYSTEM BOOTSTRAP LOADER

Systern key-in loaders initiate loading of the VORTEX
system from a drum or disc memory. The key-in loader loads
the system initializer from the RMD to main memory
(locations 000000 to 001127). The system initializer then
foads and initializes the system. Table 18-1 contains the
key-in loader programs.

Table 18-1. Key-In Loader Programs

Address Drum Disc Disc Disc
-48,49 707510 707500 70-7600,
-7610,
-7603 or
7613
001130 1000yy 005302 005302 1004zz
001131 006020 006030 006030 10402z
001132 000002 000005 177773 1002zz
001133 005001 005001 005001 005001
001134 1031xx 1000zz 1000zz 1031zz
001135 006120 1031zz 10312z 10102z
001136 001127 10052z 1005zz 001141
001137 1031yy 1010zz 1010zz 001000
001140 1000xx 001143 001143 001135
001141 1000zz 001000 001000 10252z

18-2

Table 18-1. Key-In Loader Programs (continued)

Address Drum Disc Disc Disc
-48,49 70.7510 707500 707600,
7610,
<7603 or
7613
001142 1032zz 001137 001137 151167
001143 1010xx 1025zz2 10252z 001016
001144 000600 001016 001016 001130
001145 001000 001200 001130 1000yy
001146 001143 005123 005122 1003zz
001147 006120 005021 005102
001150 000167 006120 1032zz
001151 004460 000167 1031xx
001152 10002z 004460 006010
001153 1000yy 1000zz 001130
001154 1031xx 1000yy 1031yy
001155 1032yy 1031xx 1000xx
001156 1000xx 1032yy 1000zz
001157 005041 1000xx 10142z
001160 1031zz 005041 001157
001161 10042z 006150 10252z
001162 1014zz 000007 151167
001163 001166 1031zz 001016
001164 001000 10042z 001130
001165 001162 1014zz 001000
001166 102522 001171 000600
001167 001016 001000 007760
001170 000120 001165
001171 005145 102522
001172 006140 001016
001173 000012 001130
001174 001002 005144
001175 000600 001040
001176 001000 000600
001177 001146 001000
001200 000000 001146

where xx = even BIC address, yy = odd BIC address, and
zz = device address.

18.2.1 Automatic Bootstrap Loader

Where the automatic bootstrap loader option is available,
the appropriate key-in loader is loaded from the required
medium (high-speed paper-tape or Teletype reader) into
locations starting with 001130. If the system contains a
V70 RMD ABL the boot program is automatically loaded
and executed.

To initiate the loader: (1) clear the A, B, X, |, and P
registers; (2) with the computer in STEP, press the RESET
switch on the front panel; (3) place the STEP/RUN switch
in the RUN position; and (4) press and release the LOAD
switch.

18.2.2 Control Panel Loading

The appropriate key-in loader is entered through the
computer control panel. Refer to the hardware handbook
for details.

To initiate the bootstrap, clear the A, B, X, and | registers,
and load 001130 into the P register. Then, press RESET,
place the STEP/RUN switch in the RUN position, and press
START. See section 15.8 and 20.1.4 for details as system
initialization messages.

NOTE: To facilitate reloading, the key-in loader may be
dumped out on paper tape and then loaded by the binary
loader (BLD II).
18.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs
during program execution by means of a system utility

OPERATION OF THE VORTEX SYSTEM

OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZI directives on the SO unit

c. Partition description listing
Error messages applicable to RAZI are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.18.
The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
VORTEX system. After the VORTEX standard heading,
there are three blank lines foliowed by the RAZI heading:

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS

program called ing memory lysis and initializati
(RAZI). RAZI handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. A disc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing him to switch packs.

b. The task suspends itself.

c. The operator makes the necessary pack changes.

d. The operator schedules and executes RAZI.

e. Upon completion of RAZI, the operator resumes the
suspended task. The task can now perform 170 on the

new pack.

RAZI is a foreground program residing in the foreground
library (FL). It is scheduled by a request of the form:

;SCHED,RAZI,p,FL,F

where p is the priority level.

If the SI logical unit is a Teletype or a CRT device, the
message RZ** is output to indicate that the Si unit is
waiting for RAZI input.

Each directive is completely processed before the next is
entered. All directives are output on the SO device. In
addition, partitioning information is listed on the LO device
when integration of the requested disc pack is complete.

d by one more blank line. Then the information
concerning each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS
D10A 0002 0019 0000
D10B 0020 0052 0001
D10C 0053 0082 0000
D10D 0083 0118 0000
D10OE 0119 0126 0000
D10F 0127 o141 0000
D10G 0142 0156 0000
D10H 0157 0206 0002
D10I 0207 0242 0000
D10J 0243 0251 0000
D10K 0252 0256 0000

The RAZI directives are:

. PRT Partition

. FRM Format rotating memory
. INL Initialize

. EXIT Exit

RAZ) directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or equal
signs (=). The directives are free-form, and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).

The general format of a RAZI directive is

name,p(1),p(2),...p(n)

18-3

OPERATION OF THE VORTEX SYSTEM

where

name is one of the directive names given
above

each p(n) is a parameter required by the directive
and defined below under descriptions of
the individual directives

Numerical data can be octal or decimal, Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Note: The disc pack containing the VORTEX nucleus
cannot be replaced.

18.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. it has the general form

PRT,p(1),5(1),k(1),p(2),5(2),k(2),.....p(n),s(n).k(n)

where

each p(n) is the RMD partition letter (A through T,
inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. This value must
be greater than zero,

k(n) is the protection code, if any, required to
address p, or * if the partition is
unprotected

While the partition specifications can appear in any order,
the set of partitions specified for each RMD must comprise
a contiguous group, e.g., the sequence A, C, D, B is valid
but, the sequence A, C, D, E constitutes an error.

Consecutive PRT directives redefine partitions, if p(n) has
been specified, or adds partitions if p(n) is new partition
letter.

Example: Define three partitions on an RMD. The first
occupies ten tracks and uses protection code Q, the second
two tracks and code S, and the third 48 tracks without
protection.

PRT,A,10,Q0,B,2,5,C,060,%

18.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZI to run a bad-track analysis on
the specified RMD and build a new PST for it or accepts a

18-4

previously constructed bad-track-table from the RMD and
builds a new PST for it.* The directive has the general form

FRM lu,size flag

where

u is the logicai-unit name or number to
which the subject RMD is assigned. This
must be the assigned to the first
partition.

size is the number (octal or decimal) of
tracks on the RMD

flag is 1 to perform a complete bad-track
analysis, or 0 to accept a bad-track-table
from the RMD

*FRM clears all PSTs and directories. It should not be used
when a unit contains a good BIT and files as these will be
destroyed.

Caution: When performing a bad-track analysis or accept-
ing a bad-track table from an RMD the bad-track table is
positioned adjacent to the resident foreground task area.
Unless there already exists an active bad-track table for the
prior RMD, the bad-track table for the new RMD will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed.

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

FRM,P0,203,0

Run a complete bad-track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition information.

FRM, 25, 128, 1

620-35 and 620-34 discs in a system require the formatting

program (describe in section 18.4) to format disc and
analyze bad tracks.

18.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad-
track table from the named RMD into the VORTEX nucleus.
It has the general form

INL,lu,size

where u and size have the same definition as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track table from the unit
assigned to BO, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,BO, 128

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form
EXIT

Example: Terminate RAZI.

EXIT

18.4 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM

Each 70-7500 (620-35) disc pack requiries formatting
before any input or output operation can be performed on
it. Before VORTEX can be prepared on a 70-7500 disc pack
or any 70-7500 discs can be used under VORTEX, disc
packs must be formatted. The formatting program forms
120-word sectors, which are grouped 24 per track. The
program also examines the disc pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID or BLD.
Execution begins at focation 01354. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The following requests are made. An
inappropriate response causes the request to be repeated.

Request
INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT VARIABLE SECTOR GAP

Type a value and carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans-
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

OPERATION OF THE VORTEX SYSTEM

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

in addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
O reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
170 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. Hf an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program, Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM

Each 620-34 disc pack requires formatting before any input
or output operation can be performed on it. Before VORTEX
can be prepared on a 620-34 disc pack or these disc can be
used under VORTEX, the packs must be formatted. The
formatting program forms 120-word sectors, which are
grouped 24 per track. The program also examines the disc
pack for bad tracks.

The formatting program operates without an operating
system. It may be loaded and executed either with AID i or
BLD {I. Its execution begins at location 01354. Upon
execution the formatting program requests some parame-
ters to be input from the keyboard. An inappropriate
response causes the request to be repeated. The following
requests are made.

INPUT BTC NUMBER

185

OPERATION OF THE VORTEX SYSTEM

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070.

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return.

INPUT VARIABLE SECTOR GAP

Type a value and a carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans-
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are O through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors O
through 4 of the first track. The table is 508 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 4 are filled with zeros. Each disc
170 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message:

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the

186

program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.6 70-7603/7613 DISC PACK
FORMATTING PROGRAM

Each 70-7613/7613 disc pack requires formatting before
any input or output operation can be performed on it. The
formatter forms 120 word sectors which are grouped 48 per
track. The program aisoc performs a bad-track analysis.

The formatter (format F p/n 92A0205-030) operates under
the MAINTAIN (I executive, For instructions on loading
from magnetic tape, cards or paper tape, see the MAIN-
TAIN 1l Manual (98A9952-070). Execution begins at
location 500. Some parameters are requested from the
keyboard. Inappropriate responses cause the request to be
repeated. All inputs are terminated by periods.

INPUT BIC NUMBER

Enter an even value in the range octal 020 through 076.
INPUT DEVICE ADDRESS

Enter a value in the range octal 014 through 017.
INPUT UNIT

Enter a value in the range O through 7. This must be the
physical unit number calculated as follows:

UUPy,
where

UU is unit number 0-3

P is platter 0 fixed
platter 1 removable
(Note: System RMD is always
000 regardless of which
platter.

INPUT KNOWN BAD TRACKS

Enter octal track numbers in the range O through 0625
separated by commas and terminated by a period. If there
are no known bad tracks, input only a period.

In addition, the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sector O of
the first track. The table is 26 words long, starting at word
64 of sector 0. The first 64 words of sector O reserve the
necessary space for the PST. The remaining unused words
of sector 0 are filled with zeros. Each disc 1/0 error will

generate a five event retry sequence which, upon failure,
will set the corresponding bit in the bad-track table. No
alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The for- matting program may be terminated at
this point when no disc packs (except those with bad first
tracks) remain unformatted. Formatting disc packs is not
necessary before every VORTEX system generation. Head
crashes generally indicate formatting should be done
again.

OPERATION OF THE VORTEX SYSTEM

18.7 WRITABLE CONTROL STORE (WCS)

The writable control store must be loaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL is a foreground
program scheduled by a request:

iSCHED,MIUTIL,p,FL F

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

I the optional V70 series Floating Point Firmware is to be
used, it must be loaded into page 1 of WCS. The WCS
microprogram is catalogued into the OM library under the
name WCSFP, and must be transferred to the Bl device for
loading by MIUTIL. The WCS should be initialized through
the use of MIUTIL prior to loading the floating-point
microprograms.

Section 20 gives additional information about writable
control store.

18-7

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION

VORTEX supports a number of VDM devices which are used
in industrial applications for a wide range of monitor and
control purposes. These devices are called 'Process Input/
Output' devices and are listed below:

VDM Model Description

70-8310 and -8311
(620-830A/B)

Digital Output Module
User's Guide (98 A 9968 100)

70-8410 and -8411
(620-831A/B)

Digital Input Module
User's Guide (98 A 9968 110)

70-800x and 70-801x
(620-850/851)

Analog-to-Digital
User's Guide (98 A 9968 060)

70-8020 and -8021 Converter/Multiplexor

(620-860/860/A User’'s Guide (98 A 9968 070)
70-8022 and -8023
(620-861/861A)
70-821x,8220,8221 Digital-to-Anatog Module
(620-870/1/2/ User’s Guide (98 A 9968 050)
3/4/5,
620-870A/8B,
620-871A/B,
620/872A/B)
70-811x,812x Low Level Multiplexor
(620-855xx) User's Guide (98 A 9968 130)

VORTEX configurations which include Process Input/
Output devices differ from others in that each is, to some
degree, 'tailor-made’, even though they are composed of
the standard products listed above. This requires the
VORTEX user to operate with VORTEX /0 features at a
more fundamental level than with most other devices. For
this reason, the operation of Process Input/Output devices
under VORTEX will be presented in considerable detail in
the following sections.

The VORTEX Support Library includes a number of
subroutines (section 19.4) with FORTRAN calling se-
quences defined by the Instrument Society of America
(ISA), which are useful for input, output, and manipulation
of process data.

19.2 PROCESS OUTPUT

19.2.1 Hardware

VORTEX supports combinations of the 70-8310 (620-830A)
Digital Output Module and the 70-8311 (620-830B) Digital
Output Expansion Module. VORTEX also supports combina-
tions of the following DAC (Digital-to-Analog Converter)
modules and expansion modules: 70-8210 through 70-
8221 (620-870, -870A,-8708,-871,-871A, -871B,-872,-872A,-
8728B,-873,-874,-875).

Eight device addresses (050-057) are available for these
meodules. Each address can hold up to four modules, each
module containing two digital output registers or DAC's for
a maximum of 64 registers or DACs.

For VORTEX operation, a device is defined as the collection
of modules at a single device address, and the word
'device’ will have this meaning for the remainder of this
section. The word 'channel’ will be used to mean either a
digital output register or a DAC.

Software capabilities for referencing channels directly by
number are provided. For this purpose, channels are
assigned an (octal) number mn, where:

m = (device address-050)
n = hardware channel number (0-7) within device.

thus, for example, the channel selected by the command
EXC 0352

would be called channel number 023.

Process output is totally under control of software (no BICs,
interrupts, or SENs are used). Therefore, no ready,
complete, or error information is provided by the hardware.

19.2.2 SGEN Operations

The following SGEN operations must be performed to
include Process Output capabilities in a VORTEX system:

a. Add EQPdirectives to SGEN directive input file.

b. Add ASN directives to SGEN directive input file.

19-1

PROCESS INPUT/QOUTPUT

Note: the SGL contains four input controller tables, four
output controller tables, input and output drivers, and TDF
records.

in the examples in the following discussions, the symbols
'm' and 'n’ refer to register number mn,

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,COmA, 050+m, 1,0,0,i0a,ma
[ioa = 1/0 algorithm as decimal fraction]}
L ma = Multiplexor address)

For example, the device at address 053 with 170 algorithm
of .33 and multiplexor address 062 will require the directive

EQP,CO3A,053,1,0,0,.33,062

The ASN Directive

Each device must be assigned to a logical unit number by
any ASN directive of the following format:

ASN, lun=COm0

For example, assigning the device at address 053 to logical
unit 24 will require the directive:

ASN, 24=C030

19.2.3 Output Calls

Output to a Process Output device is by use of the 10C
'WRITE' macro. FORTRAN source programs can request
output by calling one of the ISA process control subroutines
described in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.5.4):

WRITE pcb,lun,wait,mode

where:
pcb = Name of Process Control Block (PCB)
lun = Logical Unit Number
wait = Wait Flag
mode = Data Mode (ignored)

Data is always output directly, without modification, so the
Data Mode is effectively System Binary.

192

PCB format is:

Output Word Count C Word 0
Output Buffer Address Word 1
Address of Channel Number List Word 2
Status Word Address (0 if none) Word 3
Mask Word Address (O if none) Word 4
Pulse Width Word Address (0 it none) Word 5

The Channel Number List is.a sequential list of channel
numbers m(i)n(i) (i = 1,C), where m(i) = m(1) for all i,
and the device address to which the logical unit number is
assigned is 050 + m(i). Thus, a single WRITE call can only
reference those channels assigned to a single device
address.

The Status Word is a word in the calling program in which
status of the 10C call is maintained. This is required by the
ISA subroutines of section 19.4.

The Mask Word is used by the ISA 'Latching’ subroutines
DOL and DOLW. 1-bits in this word flag bits that are to be
updated. The device controller table will contain the
previous setting of all bits in the output word and the
output buffer will contain the new settings.

An error 1003 is reported if the Channel Number List
contains a channel mn where m is not in range 0-7, or if m
does not correspond to the device address defined by the
ASN directive at SGEN time.

The Pulse Width Word is used by the ISA 'Momentary’
subroutines DOM and DOMW. It gives the time in VORTEX
basic cycles (5-millisecond) that output points are to
remain set,

Example 1:

A DASMR source program is to output the first 3 words
from buffer OBUF to channels 023, 027, and 021 in a
group of Digital Output Modules which are assigned to
logical unit number 24.

Note that channels 023, 027, and 021 are all assignhed to
the module at device address 052 by the channel
numbering convention.

WRITE PCB1,24,0,0
PCB1 DATA 3

DATA OBUF

DATA PTLIST

DATA 0,0,0
PTLIST DATA 023,027,021
Example 2:

A FORTRAN program is to output the first 3 words of OBUF
to analog channels 49, 50, and 53, which are assigned to
logical unit 17. The octal equivalents of these channel
numbers are 061, 062, and 065, so the device address of
the output module is 056 (46 in decimal digits).

.

INTEGER STAT, PTLIST, OBUF
DIMENSION OBUF (3), PTLIST (3)
DATA PTLIST/49, 50, 53/

CALL VS$OPIO (46, 17, O, STAT)

CALL AO (3, PTLIST, OBUF, STAT)

19.3 PROCESS INPUT

19.3.1 Hardware

VORTEX supports combinations of the 70-8410 (620-831A)
Digital Input Module and the 70-8411 (620-831B) Digital
Input Expansion Moduie. VORTEX also supports combina-
tions of the 70-8010 (620-850) and the 70-8011 (620-851)
Analog Input System, the 70-8020 (620-860) and 70-8022
(620-861) High-Level Multiplexor Modules and the 70-8021
{620-860A) and the 70-8023 (620-861A) High-Level Multi-
plexor Expansion Modules, and the 70-811x (620-855x)
Low-Level Analog Input System and the 70-812x Low-Level
Multiplexor Expansion Modules. These provide from 1 to
2,048 digital or analog input channels.

Eight device addresses (060 to 067) are available for these
modules. Each address can handle, through multiplexing,
up to 256 digital channels. To each of these device
addresses will correspond a multiplexor attached to a
different device address in the range (040-077). All Process
Input requires a Buffer Interlace Controller (BIC).

PROCESS INPUT/OUTPUT

Software capabilities are provided for referencing channels
directly by number. Each channel is assigned an (octal)
number mn by the following rules:

m = (device address - 060)
n = hardware channel number (0-255) within
device. n is a 3-digit octal number
Thus, for example, channel number 01003 would be
selected by outputting a 3 as the select code to the
multiplexor which is connected to the Analog-to-Digital
converter whose address is 061.

A BIC will be used for all input and all input will end with a
BIC complete interrupt. The BIC will operate with the
programmable timer,

19.3.2 SGEN Operations

The following SGEN operations must be performed to
include Process Input capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.
b. Add ASN directive to SGEN directive input file.

c. Add PIMdirective to SGEN directive input file.

In the example in the following discussions, the symbols
'm’ and 'n’ refer to channel number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,CImA, 060+m, 1,b,0, ioa,ma
b = BIC device address
ioa = I/0 algorithm as decimal
fraction, see example
ma = multiplexor address
For example, the device at address 063 using the BIC at
address 020 with 1/0 algorithm value of .5 and multiplexor
address 072 will require the directive:
EQP,CI3A,063,1,020,0,.5,072

The ASN Directive

Each device must be assigned to a logical unit number by
an ASN directive of the following format:

ASN, lun=CIm0

19-3

PROCESS INPUT/OUTPUT

For example, assigning the device at address 063 to logical
unit number 21 will require the directive:

ASN,21=CI30

The PIM Directive

Linkage must be established between the BIC and its
Priority Interrupt Module (PIM) by a PIM directive of the
format:

PIM,pl,TBCImA, 1,0

where: p = PIM number (single octal digit)
| = line number (single octal digit)

170 Algorithm

The 1/0 algorithm value must be set for the highest
transfer rate (smallest PCB Timer Count) that will be used
in the system.

1.10 x (BIC RATE*/DEVICE RATE)

Rates are in microseconds.

* BIC rate represents the maximum trap-in, trap-out timing
sequence on the E-bus.

19.3.3 Input Calls

Input to a Process Input device is by use of the 10C 'READ'
macro. FORTRAN source programs can request input by
calling one of the ISA process control subroutines de-
scribed in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.5.3)

READ pcb,lun,wait,mode

where:

pcb = Name of Process Control Block (PCB)
fun = Logical Unit Number

wait = Wait Flag

mode = Data Mode (ignored)

19-4

Data is always input directly, without modification, so the
Data Mode is effectively System Binary.

PCB format is:

Input Word Count C Word 0

Input Buffer Address Word 1
Address of Channel Number Word 2
Status Word Address (0 if none) Word 3
Op Code Word 4

Timer Count Word 5

The Status Word is a word in the calling program in which
status of the 10C call is maintained. This is required by the
ISA subroutines of section 19.4.

The Op Code (OP) is defined thus:

OP = 0:

Sequential Mode. Let mOOn be the channel number
specified by word 2. Data is repeatedly input from channels
m001-m00n, till the input word count C (Word 0) is
satisfied.

OP = 1:

Random Mode. Channel mn is repeatedly input the number
of times specified in word 0.

The Timer Count (Word 5) is the desired time, in
microseconds, between inputs. This value is output to the
programmable timer, which will control the BIC input rate.

An error (1003) is reported if m is not in range 0-7, it n (or
C, if in sequential mode) is not in range 0-255, or if m does
not correspond to the device address defined by the ASN
directive at SGEN time.

Example 1:

A DAS MR program is to sample an input channe! 100
times at a rate of 1 input/50 microsecond . The channel is
number 5 on device address 062, which is assigned to
logical unit number 22, and the data is to be input into
buffer IBUF. Do not return till 170 complete.

READ PCBL, 22, 0, 0
PCB1 DATA 100

DATA IBUF

DATA CHNO

DATA 0

DATA 1

DATA 50
CHNO DATA 02005

Example 2: (see section 19.4)

A FORTRAN program is to input sequentially from channels
04001, 04002, and 04003, which are assigned to logical
unit number 35, storing the input values into IBUF. Do not
return till 170 complete. Set the input rate to 1 word/20
microsecond. The device address to which the input module
. is assigned is seen to be 064 (52 in decimal digits, and the
decimal equivalent of 04000 is 2048).

INTEGER STAT, PTLIST
DIMENSION [BUF(3)
DATA PTLIST/2049/

CALL V$OPIO (52, 35, 20, STAT)

CALL AISQW(3, PTLIST, IBUF, STAT)

19.3.4 Low-Level Muitiplexor Gain Control

Control of the low-level muitiplexor amplifier gains is
accomplished through the use of the IOC FUNC macro.
FORTRAN source programs can set amplifier gains by
calling one of the subroutines described in section 19.4.1,
which will construct and execute such a macro.

PROCESS INPUT/OUTPUT

The macro call has the general form (see section 3.5.8).

FUNC dcb, fun, wait
where:
dcb the address of the data control block.
fun the number of the logical unit (ADCM)

being manipulated.

wait unused.

The DCB macro has-the general form
DCB rl,buff,fun

where:

r is the number of channels for which the
gain will be set.

buff address of the channel table.

fun is the function code.

0 = Set gains on sequential channels to a
fixed value, delay 5 milliseconds.

1 = Set gains on random channels through a
table, delay 5 milliseconds.

2 = Set gains on sequential channels to a
fixed value, immediate return.

3 = Set gains on random channels through a
table, immediate return.

The format of the channel table when fun = Oor 2 is:

STARTING CHANNEL ADDRESS Word 0

GAIN OF CHANNELS Word 1

The format of the channel tables when fun = 1 or 3 is:

Word

ADDRESS OF CANNEL a

GAIN CODE FOR CHANNEL a

ADDRESS OF CHANNEL b

GAIN CODE FOR CHANNEL b

ADDRESS OF CHANNEL ¢
etc.

PWN O
LI B |

19-5

PROCESS INPUT/QUTPUT

The gain is internally referenced by the following table
Galn parameter Actual MUX Galn

8

16

32

64

128

256

512

1024

NouUAWN=O

Therefore the gain parameter must be in the range of 0
through 7.

An error (1003) is reported if the gain is not in the
proper range.

Exampie: In a DAS MR program, set the gain to 256 (gain
code 5) on 27 contiguous channel (starting from 04001),
which are assigned to logical unit 36.

Delay 5 milliseconds after the gains have been set to give
the amplifier time to settie.

FUNC LDCB, 36,0

LDCB DCB 27 ,TABLE, 0

TABLE DATA 04001,5

Example 2: A DAS MR program is to set the gain of 3
random channels which are assigned to logical unit 37.
Return after the gains have been set. The gain of channel
04001 will be set to 64 (gain code 3), the gain of channel
04031 will be set to 512, and the gain of 04007 to 8.

FUNC LLDCB, 37,0

LLDCB DCB 3,TABLE, 3

TABLE DATA 04001,3,04031,6,04007,0

19-6

19.4 1SA FORTRAN PROCESS CONTROL
SUBROUTINES

The Instrument Society of America (ISA) has defined as
standards a number of FORTRAN subprogram calls useful
in process input/output applications. VORTEX includes the
following subroutines of this group:

Input/Output Calls

AISQ(W): Analog Input Sequential
AIRD(W): Analog Input Random
AOQ(W): Analog Output

DI(W): Digital Input

DOM(W): , Digital Output-Momentary
DOoL(W): Digital Output-Latching

The (W) option with each of these subroutine names selects
a 'wait’ mode, that is, it specifies that return is not be
made from the subroutine until the 1/0 is finished, either
normally or erroneously.

Bit String Manipulation

|OR: Inclusive OR (logical add)
IAND: AND (logical multiply)

NOT: NOT (logical invert)

IEOR: Exclusive OR (logical subtract)
ISHFT: Logical Shift

VORTEX also provides two FORTRAN subprogram calls to
set the amplifier gains on the Low-Level Multiplexors. The
gain control calls are not ISA standard calls.

Low Level Gain Calls

SGNF(D): Set gain on
sequential channels
SGNT(D): Set gains through

a table

The (D) option of each of these routines cause a 5
millisecond delay after the last gain control has been
issued, to give the amplifiers time to settle.

19.4.1 Input/Output Calls

The parameter 'stat’ appears in all the following 1/0 calls.
Its contents give the status of the call, as follows:

stat = 1: 170 correctly completed
2: 1/0 in execution

3: Invalid channel number
4: BIC timeout error

5

. Invalid parameter value

VORTEX provides a FORTRAN call which establishes
execution-time association between channel numbers and
logical unit numbers, and sets the timer for data input
rate. The format is:

CALL V$OPIO (da, lun, time, stat)

where:
da = device address
lun = logical unit number
time = time, in microseconds, between input.

This is loaded into device programmable
timer, which controls BIC rate. it is
ignored on output. Parameters may be
redefined by successive calls to V$OPIO.

Read Analog Input Sequential

CALL AISQ (count, ptlist, ibuf, stat)
or

CALL AISQW (count, ptlist, ibuf, stat)
This call reads count analog inputs into buffer ibuf, starting
with channel 0X001, where ptlist contains OXYYY, and
reading channels sequentially.

Read Analog Input Random

CALL AIRD (count, ptlist, ibuf, stat)
or

CALL AIRDW (count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf,
inputting from the list of random points ptlist.

Perform Analog Output

CALL AO (count, ptlist, obuf, stat)
or
CALL AOW (count, ptlist, obuf, stat)

This call outputs count analog values from buffer obuf,
outputting to the list of random points ptlist.

Read Digital Input

CALL DI (count, ptlist, ibuf, stat)
or

CALL DIW (count, ptlist, ibuf, stat)

This call reads count words of digital input into buffer ibuf,
inputting from the list of random digital channels ptlist.

PROCESS INPUT/OUTPUT

Perform Digital Output - Momentary

CALL DOM (count, ptlist, obuf,
time, stat)

or

CALL DOMW (count, ptlist, obuf,
time, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. |f time = 0 this completes the operation. Otherwise,
after 5*time in milliseconds a word of zeros will be output
to every channel in ptlist, thus resetting all channels.

Perform Digital Output - Latching

CALL DOL (count, ptlist, obuf,
mask, stat)

or

CALL DOLW (count, ptlist, obuf,
mask, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. The device driver program will save the previous word
output to each channel, and change only those bits
specified by 1-bits in mask, which is an integer array
paraliel to obuf and ptlist.

Perform Gain S on S Ch L

CALL SGNF (chntbl,nochnl)
or

CALL SGNFD (chntbl,nochnl)

This call selects the gain on nochnl sequential low level
input channels. Chntb! is the name of a two word control
table. The first word contains the address of the first low
level channel. The second word contains the gain parame-
ter (0-7).

Perform Gain Selection on Channels through a Table

CALL SGNT (chntbl,nochnl)
or

CALL SGNTD (chntbl,nochnl)

19-7

PROCESS INPUT/OUTPUT

This call selects gains on nochnf low level channels. Chntbi
is the name of a table which contains a pair of words for
control for each low level channel. The- first word of each
pair contains the address of the low level channel. The
second word of each pair contains the gain parameter (0-
7).

19.4.2 Bit String Operations

All these subprograms are defined as Integer Function
Subprograms. In the following descriptions, m and n are
integer mode expressions.

IOR(m, n) = m.OR.n
IAND(m, n) = m.AND.n
NOT(m) = NOT.m
{EOR(m, n) = n.XOR.n

Inclusive OR (logical sum)
AND (logical product)
NOT (logical invert)
Exclusive OR (logical

difference)
ISHFT(m,n) = 0 {f the absolute value of
n=1e
m¥2**n Otherwise

19-8

19.5 ERRORS

Process Output
I003 INVALID CHANNEL NUMBER

Process Input

1003 INVALID CHANNEL NUMBER
102X BIC TIMEOUT ERROR

19.6 EXTENSIONS

Other process control devices besides those in the table of
section 19.1 may be brought into the VORTEX system at
some future time. The procedure for entering a new process
control device is as given for the currently supported
devices: one codes a driver program and controlier tables
and enters them into the VORTEX Nucleus at SGEN time,
remembering to increment the one-character suffix on all
names (all names herein end in 'A’; the next type of DAC,
say, would be tagged with 'B'). The controller table can be
extended by as many words as desired, to store flags and
fixed device parameters. For variable parameters, say a
gain parameter on an analog input device, the PCB table
can be extended to hold the new parameter. In the
FORTRAN /0 calls, the array PTLIST can be made
2-dimensional if gain or other parameter information is to
be transferred with each point or channel number.

SECTION 20

WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

The Writable Control Store (WCS) option extends the
Varian 70 series processor's read-only control store to
permit the addition of new instructions, development of
microdiagnostics, and optimal tailoring of the computer
system to its application. Unlike the read-only control store,
which contains the Varian 70 series standard instruction
set and cannot be altered, the WCS can be loaded from
main memory under control of certain 1/0 instructions. The
capabilities of WCS give the user more complete access to
the resources of the Varian 70 series computer system.

20.1 MICROPROGRAMMING SOFTWARE
Supporting software for the WCS includes the following:
Microprogram assembler MIDAS
Microprogram simulator MiCSIM microprogram
+ Microprogram utility loader and diagnostic MIUTIL
+ WCSreload task

All software for microprogram devetopment operates under
VORTEX. The capabilities and use of WCS and its
supporting software are described in the Varian Micropro-
gramming Guide.

20.1.1 Microprogram Assembler

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms. MICSIM
runs the output from MIDAS within the system’s main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
scheduled from the background library at level 0 by

Under VORTEX, MIDAS is scheduled from the background
library at level O by

. /LOAD,MIDAS

20.1.2 Microprogram Simulator

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
scheduled from the background library at level 0 by

/LOAD,MICSIM

20.1.3 Microprogram Utility

Loading the control store with the assembled and tested
microcode is performed by microprogram utitity, MIUTIL.

In addition, on-line debugging directives are available
through the utility on a special configuration. The MIUTIL
program operates as a foreground program at priority level
set by the user. The program is scheduled by operator
input over the OC device. For example,

: SCHED, MIUTIL, 3,FL,F

The microprogram utility is also responsible for maintain-
ing an up-to-date image of the contents of the WCS on an
RMD file, named WCSIMG on the OM library, see section
15.8. This image is then used by the WCS reload task,
WCSRLD, to restore the WCS following a power failure/
restart and VORTEX reload. The RMD file image is updated
each time the R directive is used to exit from the utitity.

If the update is completed successfully, the message:

WCS SAVED

is output on the OC and LO devices before the utility exits.
If the RMD file for saving the WCS is not present on the
OM library the OM library, the system outputs

I010,MIUTIL

FILE WCSIMG NOT FOUND
WCS SAVE ABORTED

170 errors which may occur during the save operation
result in outputting messages
IOxx,MIUTIL

WCS SAVE ABORTED

If the restoration of WCS is completed successfully, the
message WCS RELOADED will be output to the OC and LO
devices before the reload task exits.

To exit from the microprogram utility without updating the
RMD file, the operator may issue the directive.

;ABORT,MIUTIL

20-1

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.1.4 WCS Reload Task, WCSRLD

This task, WCSRLD, reinitializes the WCS to the contents
specified by the RMD file image of WCS, WCSIMG on the
OM library. it is automatically scheduled on power failure/
restart or upon the reloading of the VORTEX system. In this
way, WCS contents are preserved through any periods
without power.

Though usually scheduled automatically by the system, the
reload task may also be scheduled manually by the
operator. For example, the following directive schedules the
reload task at priority level 15:

; SCHED, WCSRLD, 15,FL,F

20.2 STANDARD FIRMWARE

Standard firmware is available on the 70 series computers
to provide faster and more compact code. The executable
code which uses the firmware, or microprograms, is
automatically generated by the VORTEX FORTRAN IV
compiler when the option F is specified (in the JCP
directive /FORT, see section 4.2.15). The firmware also
extends the capabilities of the user's assembly language
programs and the support library (see section 13).

Standard firmware includes routines which are loaded into
the system's WCS for the following categories of operations:

+ Arithmetic for two-word fixed-point and integer
numbers

« Arithmetic for real (floating-point) numbers

» Transfer of two-word values, such as a memory to
memory move

« FORTRAN oriented routines
« Byte manipulation

» Stack manipulation

Executing a branch-to-control-store (BCS) instruction
causes a transfer of control from the system's read-only
memory to the WCS at the address specified in the BCS
instruction. The MIUTIL program (see section 20.1.3) oads
the standard firmware as well as any extensions to the
instruction set the user may write. To execute firmware, the
program must use a BCS instruction with the appropriate
entry address and calling sequence for passing parameters.

A FORTRAN IV program specifies the option F on its
request for compilation, and then BCS instructions are
generated. The FORTRAN IV programs use this firmware
without any changes to the FORTRAN IV statements.

20-2

Due to size constraints, some firmware is unavailable
under certain hardware configurations. Table 20-1 shows
these restrictions.

Table 20-1. Firmware Availability
Hardware Configurations

Firmware Routine without FPP with FPP
XAD,XSB YES YES
XMU,XDV YES NO
IMU,IDV NO YES
FAD,FSB,FMU,FDV YES NO
FSQ NO YES
FLD,FST,FMV YES YES
FSE,FDO,FDO1 YES YES
FTNE,FTEQ,...,FTGT NO YES
FJNE,FJEQ.... .FJGT NO YES
FAIF,FIOP NO YES
FRSC,FRSR,FJAG NO YES
Byte Firmware YES YES
Stack Firmware YES YES

20.2.1 Fixed-Point Arithmetic
Firmware

Two-word fixed-point and integer numbers use the following
arithmetic firmware:

Mnemonic Function BCS Call
XAD Fixed-point and integer add 0105334
XSB Fixed-point and integer sub- 0105374
tract
XMU Fixed-point multiply 0105274
XDV Fixed-point divide 0105234
IMU Integer multiply 0105027
1DV integer divide 0105067

These operations are performed on the hardware A and B
registers (AB), using the number specified by the second
word of the respective BCS call. If overflow occurs, AB is set
to the maximum number with the proper sign and the
overflow flag (OVFL) is set.

For two-word fixed-point numbers, the decimal point is
assumed to be to the left of bit 15 of the most significant
word. For two-word integer numbers, the decimal point is
assumed to be to the right of bit 0 of the least significant
word. As a result, rounding and overflow conditions are
different for multiply and divide. For example, multiplying
two double-word numbers produces a logical four-word
result. The tixed-point function returns the high order two-
words and drops the lower two. The integer multiply returns
the lower two-words of the logical result and sets overflow if
either of the two higher words are non-zero.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.2 Floating-Point Arithmetic
Firmware
The addition, subtraction, multiplication, and division of

single-precision real, or floating-point, numbers can be
performed with the following firmware.

Mnemonic Function BCS Call
FAD Floating-point add 0105134
FSB Floating-point subtract 0105174
FMU Floating-point multiply 0105074
FDV Floating-point divide 0105034
FSQ Floating-point square root 0105127

A floating-point arithmetic operation is performed on AB
using the floating-point number specified by the second
word of the BCS call. If underflow occurs, AB is set to zero.
If overflow occurs, AB is set to the maximum floating-point
number with a proper .sign. Taking square root of a
negative number results in the overflow being set and AB
set to zero.

20.2.3 Data Transfer Firmware

The data transfer firmware routines load AB from memory,
store AB in memory, and move the contents of two
contiguous memory locations to another place in memory.

Mnemonic Function BCS Call

FLD Load AB with two words 0105032
from memory

FST Store AB into memory 0105033

FMV Memory-to-memory move 0105037

of two words

20.2.4 FORTRAN-Oriented Firmware

These microprograms are oriented toward FORTRAN IV
operations. However, they have a similar utility to assem-
bly-language programs.

Mnemonic Use BCS Call

FINE Test for not equal 0105024

FTEQ Test for equal 0105064

FTLT Test for less than 0105124

FTGE Test for greater than 0105164
or equal

FTLE Test for less than or 0105324
equal

FTGT Test for greater than 0105364

FINE Jump if not equal 0105026

FJEQ Jump if equal 0105066

Mnemonic Use BCS Call

FILT Jump if less than 0105126

FJGE Jump if greater than 0105166
or equal

FJLE Jump if less than or 0105326
equal

FJGT Jump if greater than 0105366

FAIF Arithmetic IF processor 0105226

FlOP Indexed operand proces- 0105167
sor

FRSC Reentrant subroutine 0105025
call

FRSR Reentrant subroutine 0105065
return

FJAG Jump if A register 0105125
greater

FSE Pass parameters between 0105036
subroutines

FDO Terminate DO loop 0105035

FDO1 Terminate DO loop 0105027

(1 increment)

For FSE, the calling routine would use the following
sequence:

CALL SUB

DATA P1 Address of first
. data to be moved
DATA Pn Address of last

data to be moved

In the subroutine being called, the following sequence is
necessary to receive the data or data address:

SUB BSS 1
DATA 0105036 BCS transfer for FSE
DATA n Number of parameters
BSS m Number of parameters

The second instruction, FDO to control a DO loop, uses the
following calling sequence:

DATA 0105035 BCS transfer to FDO

DATA P1 Address of DO
increment

DATA P2 Address of DO loop
counter

DATA P3 Address of DO toop
limit

DATA PY Address for jump if

the counter is not
greater than the
limit

20-3

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The third instruction, FDO1 to control a DO loop with
increment of 1 uses the following calling sequence.

DATA 0105027 BCS transfer to FDO1

DATA P1 Address of DO loop
counter

DATA P2 Address of DO loop
limit

DATA P3 Address for jump

if the counter is
not greater than the
limit

The DO loop is incremented and tested against the DO loop
limit. If the loop counter is less than the limit, execution
continues at the address specified by the BCS call word 5.
If the value of the loop counter is equal to or greater than
the value represented by the limit, execution continues at
the instruction following this calling sequence.

The calling sequence for all the relational test (FT-) and
jump (FJ--) instructions are as follows:

BCS

DATA Address of first number
DATA Address of second number
DATA Jump address

These routines compare the two single precision floating-
point numbers pointed to be the words following the BCS.
The A register is set to minus one or zero, depending on
the specified relation being met or not met, respectively.
For the jump instructions, FJ--, the branch address is taken
only when the condition is met, (i.e., when the A register
equals minus one). Note that the specified relation is that
of the first number to the second. For example, FTGT tests
for the first number greater than the second.

The calling sequence for the arithmetic IF processor (FAIF),
is as follows:

BCS

DATA Address of first number

DATA Address of second number
DATA Branch address if less than
DATA Branch address if equal

DATA Branch address if greater than

This BCS also compares two single precision floating-point
numbers. it determines if the first number is less than,
equal to, or greater than the second number, and then
takes the appropriate branch address.

The indexed operand processor is used to compute the
effective agddress of an element in a FORTRAN real array. It
has the following call sequence:

BCS
DATA Address of index value
DATA Base address

20-4

The effective address is computed by subtracting one from
the index vatue, multiplying the result by two, and then
adding in the base address. This allows for.an array with
two-word entries and induces from one to W. The effective
address is stored in the second word of the following
instruction.

The reentrant subroutine call, FRSC, has the following call
sequence:

BCS
DATA Subroutine address

The B register points to a memory location which is used as
a stack pointer. This memory location is decremented and
the resulting value used as the address where the return
address is stored.

Control is then transferred to the subroutine. Note that the
subroutine address should be that of the first instruction of
the subroutine.

The reentrant subroutine return, FRSR, has a calling
sequence consisting of just the BCS without parameters.
The return address is popped off the stack using the B
register and the memory stack pointer as in the subroutine
call. Note that no limit checks are made on the stack by
either the call or the return. Also, the stack pointer format
is not consistent with that of the general stack firmware.

The BCS calling sequence for FJAG (jump if A register
greater than zero) is as follows:

BCS
DATA Jump address

The jump address is taken only if the A register is strictly
greater than (and not equal to) zero.

20.2.5 Byte Manipulation Firmware

The byte instructions use a byte pointer address where bits
15-1 specify the word number and bit 0 is O for the left byte
and 1 for the right byte. The byte-oriented instructions
imptemented in firmware are:

Mnemonic Function BCS Call
CBS Compare byte strings 0105030
MBS Move byte string 0105070

In the first microprogram sequence, the CBS instruction
requires that the second word contain the address to which
control is returned if the strings are not equal. The B
register contains the byte starting address of the first
string, the X register is the byte starting address of the
second string, and the A register specifies the number of
bytes to be compared.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The second byte-oriented microprogram sequence, the MBS
instruction, moves the number of bytes specified in the A
register from the location specified by the B register to the
location specified by the X register.

Both share a common BCS entry point, and this may be
extended for six more instructions.

20.2.6 Stack Firmware

A stack is kept in memory for use for return addresses,
temporary storage or arithmetic operations. The base and
limit of the stack (see figure 20-1) are defined by the user.
The stack control block is indicated by a pointer in the
second word of the calling sequence. Figure 20-2 is the
format of the stack control block.

The following BCS instructions correspond with each of the
stack operations:

Operation BCS Operation BCS

Add 0105031 Push 0105231
Subtract 0105071 Pop 0105331
Multiply 0105131 Push double 0105271
Divide 0105171 Pop double 0105371

Eight stack instructions transfer to the same initial entry
point in the WCS, where the decoder determines the
specific instruction to be executed.

0
LMt
STACK GROWS
TOWARD LOW
ADDRESS
STACK <
BASE
i
INITIAL
POINTER
32K

Figure 20-1. Base and Limit of Stack

On all stack operations, if the top-of-stack pointer (PTR)
ever exceeds the boundaries of the stack (as the user
defined them in the stack control block), no further
processing takes place and a JMPM is made to the fourth
word in the stack control block.

Single-Precision Integer Stack Arithmetic

Add: adds the top two words of the stack, increments the
pointer and replaces the new topmost word. If the result
exceeds the maximum positive number (077777), the
overflow indicator (OF) and the sign in bit 15 are set to
one. For example, adding 000002 to 077777 sets OF to one
and the result to 100001.

Subtract: subtracts the next stack word from the top of
stack word (by adding the top word to the two's comple-
ment of the next stack word), increments the top-of-stack
pointer, and stores the remainder in the new top-of-stack
word. If the result ds the i negati ber,
it sets the overflow indicator and resets the sign.

Multiply: multiplies the two words at the top of the stack
and replaces them by their 32-bit product (see figure 20-3).
The most significant part of the product is placed in the top
word, and the least significant portion will be placed in the
next word. The sign bit of the top word gives the sign of the

* product, and the sign of the next word is set to zero. The
overflow indicator (OF) is not set.

Word

[} CURRENT STACK POINTER

1 LIMIT OF STACK

2 BASE OF STACK

3 ADDRESS OF INSTRUCTION
WHICH CAUSED STACK
OVERFLOW OR UNDERFLOW

4 ERROR ROUTINE FOR OVERFLOW
OR UNDERFLOW

Figure 20-2. Stack Control Block

20-5

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Divide: divides the top stack word into the following two
words. The top-of-stack pointer (PTR) is incremented and
the single-precision quotient with the sign of the dividend is
stored in the new top-of-stack location. The remainder is
stored in the next stack location (see figure 20.4).

BEFORE AFTER
0 0
PTR PTR
— 5 X —{s | x =y (MS)
s y p| x=y (LS
32K 32K

Figure 20-3. Stack Multiply

If the quotient overflows, the contents are unpredictable,
and control is returned with the overflow indicator set (OF).

BEFORE AFTER
0
PTR
—_ | X X
PTR

y (MS) —_— q
y (MS) r

32K 32K

+y/tx = 1 quotient q with remainder r

Figure 20-4. Stack Divide

20-6

Stack operators: these operators also require a stack
control block as in figure 20-2.

Push (SPUSH): the A register (RO) is placed on the stack at
the location addressed by the decremented top-of-stack
pointer (see figure 20-5.)

BEFORE AFTER
SPUSH SPUSH
0 0
PTR
— -
PTR A-REGISTER
——|
32K 32K

Figure 20-5. Stack Push

Pop (SPOP): the A-register (RO) is loaded from the top
stack word and the stack pointer is incremented (see figure
20-6).

BEFORE SPOP AFTER SPOP

INTO
A REG-
—— ISTER

PTR x -~ x

—
PTR

Figure 20-6. Stack Pop

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Push Double (PUSHD): decrements the stack pointer and
stores the B register (R1), and then decrements the pointer
and stores the A register (RO) (see figure 20-7).

BEFORE AFTER
SPUSHED SPUSHD
0 0
PTR
——=| A REGISTER
B-REGISTER
PTR
———]
32K 32K

Figure 20-7. Stack Double Push

Pop Double (POPD): loads the A register (R0) with the word
addressed by the top-of-stack pointer and then increments
the top-of-stack pointer; loads the B register (R1) with the
word addressed by the new value of the top-of-stack
register and then increments the top-of-stack pointer again
(see figure 20-8).

BEFORE POPD AFTER POPD
0
PTR X x
——]
y y
PTR

INTO A
REGISTER

—

—_—

INTO B
REGISTER

Figure 20-8. Stack Double Pop

207

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.7 Firmware Macros

The mnemonics given are not supported by the DAS MR
assembler. The assembly-language programmer must
supply his own macros in order to use any of these
mnemonics, The following are examples and possible use of
the required macros.

Macro Use
Fixed point add:
XAD MAC XAD address
DATA 0105334,P(1)
EMAC
Fixed point subtract:
XSB MAC XSB address
DATA 0105374,P(1)
EMAC
Fixed point multiply:
XMU MAC XMU address

DATA 0105274,P(1)
EMAC

Fixed point divide:

XDv MAC XDV address
DATA 0105234,P(1)
EMAC

Integer multiply:

IMU MAC IMU address
DATA 0105027,P(1)
EMAC

Integer divide:

IDV MAC iDpv address
DATA 0105067,P(1)
EMAC

and, immediately following. the macros
for floating point divide, add:

Floating square root:

FsQ MAC FSQ address
DATA 0105127,P(1)
EMAC

Floating point add:
FAD MAC FAD address

DATA 0105134,P(1)
EMAC

208

Floating point subtract:

FSB MAC
DATA
EMAC

0105174,P(1)

Floating point multiply:

FMU MAC
DATA
EMAC

Floating point divide:

FDV MAC
DATA
EMAC

Load AB:

FLD MAC
DATA
EMAC

Store AB:

FST MAC
DATA
EMAC

Memory to memory:

FMV MAC
DATA
EMAC

Pass parameters:

FSE MAC
DATA
BSS
EMAC

DO ioop:

FDO MAC
DATA

EMAC

0105074 ,P(1)

0105034 ,P(1)

0105032,P(1)

0105033,P(1)

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

FSB

FMU

FDV

FLD

FST

FMV

0105037,P(1),P(1)

0105036,P(1)
P(1)

FSE

FDO

0105035,P(1),P(2),

P(3),p(4)

DO loop (one increment):

FDO1 MAC

DATA
EMAC

FDO1

0105027,p(1),P(2),pP(3)

address

address

address

address

address

address,address

#params

inc addr, count addr,
lim addr, loop addr

count addr, lim addr,
loop addr

20-9

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-10

Test for not equal:

FTNE MAC
DATA
EMAC

0105024,P(1),P(2)

(Typical relational test form).

Jump if not equal:

FJINE DATA

0105026,P(1),P(2),P(3)

(Typical relational Jump form).

Arithmetic IF processor:

FAIF MAC
DATA
EMAC

FTNE

FJINE

FAIF

OP address, OP address

OP address, OP address
jump address

OP address, OP address,

0105226 ,P(1),P(2),P(3),P(4),P(S)LT address, EQ address,

Index operand processor:

FIOP MAC
DATA
EMAC

0105167,P(1),p(2)

Reentrant subroutine call:

FRSC MAC
DATA
EMAC

0105025,P(1)

Reentrant subroutine return:

FRSR MAC
DATA
EMAC

0105065

Jump if A register greater:

FJAG MAC
DATA
EMAC

Compare string:

CBS MAC
DATA
EMAC

Move string:

MBS MAC
DATA
EMAC

0105125,P(1)

0105030,P(1)

0105070

FIOP

FRSC

FRSR

FJAG

CBS

MBS

GT address

index address, base
address

sub address

Jjump address

non compare addr

Stack add:

SADD MAC
DATA
EMAC

Stack subtract:

SSUB MAC
DATA
EMAC

Stack multiply:

SMUL MAC

DATA
EMAC
Stack divide:
SDIV MAC
DATA
EMAC
Stack push:
SPUSH MAC
DATA
EMAC
Stack pop:
SPOP MAC
DATA
EMAC

Stack push double:

SPUSHD MAC
DATA
EMAC

Stack pop double:
SPOPD MAC

DATA
EMAC

0105031,P(1)

0105071,P(1)

0105131,P(1)

0105171,2(1)

0105231,P(1)

0105331,P(1)

0105271,P(1)

0105371,P(1)

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

SADD

SSUB

SMUL

SDIV

SPUSH

SPOP

SPUSHD

SPOPD

stack

stack

stack

stack

stack

stack

stack

stack

addr

addr

addr

addr

addr

addr

addr

addr

20-11

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-12

The Floating Point Processor has the following OP codes.

Mnemonic

FLD
fFLDD
FAD
FADD
FSB
FSBD
FMU
FMUD
FDV
FDVD
FLT
FIX
FST
FSTD

Opcode

0105420
0105522
0105410
0105503
0105450
0105543
0105416
0105506
0105401
0105535
0105425
0105621
0105600
0105710

Operation

Floating load single
Fioating load double
Floating add single
Floating add double
Floating subtract single
Floating subtract double
Floating multiply single
Floating multiply double
Floating divide single
Floating divide double
Fix to float

Float to fix

Floating store singie
Floating store double

Load or Float interrupts are locked out until a store or fix.

EX34, -- as time out.

An interrupt after a store may change floating-point
registers. User should restore their contents.

Mnemonics for floating-point operations are not supported
by DAS MR. The following are possible macros which must
be included by the user to define the mnemonics:

Macro

FLD

FLDD

FAD

FADD

FSB

FSBD

FMU

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

FLD

0105420,P(1)

FLDD

0105522,pP(1)

FAD

0105410,p(1)

FADD

0105503,p(1)

FSB

0105450 ,P(1)

FSBD

0105543,p(1)

FMU

0105416,P(1)

address

address

address

address

address

address

address

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

FMUD MAC

DATA 0105506,P(1)

EMAC

FDV MAC

DATA 0105401,P(1)

EMAC

FDVD MAC

DATA 0105535,P(1)

EMAC

FLT MAC

DATA 0105425,P(1)

EMAC

FIX MAC

DATA 0105621,P(1)

EMAC

FST MAC

DATA 0105600,P(1)

EMAC

FSTD MAC

DATA 0105710,P(1)

EMAC

20.2.8 Commerclal Firmware

Commercial firmware is available on the 70 series comput-
ers for supporting VORTEX, COBOL, and TOTAL. The
firmware and assembly language routine V$DECM (see
section 13), also extends the capabilities of the user's
assembly language programs.

Commercial firmware includes the following operations:

« COBOL decode

« Load/Store multiple registers
* Main storage move or compare
* 32bitunsigned math

Additionally, an assembly language routine VSDECM is
provided in the support library for interface to the firmware
decimal math routines.

FMUD address
FDV address
FDVD address
FLT address
FIX address
FST address
FSTD address

The Commercial Firmware package is optionally available
with the FORTRAN accelerator package requiring 1024
words of WCS on a V70 series computer.

COBOL Decode

COBOL decode uses the most significant 5 bits of the
specified word of main storage to perform a 32 way branch.
Register R2(X) points to the main storage word to be
decoded. The BCS is followed by the 32 vector addresses.
When the BCS is complete, RO(A) contains 0 and R1(B)
contains the least significant eleven bits (left justified). R2
is not incremented. The calling routine uses the following
sequence:

DATA 0105021 BCS value
DATA vector address zero

DATA vector address one

DATA vector address thirty-one

20-13

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Load/Store Registers

Multiple register loading or storing is performed by the
following BCS instructions:

Registers loaded/stored

DATA 0105020 load RO
0105060 RO,R1
0105120 RO,...,R2
0105160 RO,...,R3
0105220 RO,...,RU
0105260 RO,...,R5
0105320 RO,...,R6
0105360 load RO,...,R7

DATA 0105017 store RO
0105057 RO,R1
0105117 RO,...,R2
0105157 RO,...,R3
0105217 RO,...,R4
0105257 RO,...,R5
0105317 RO,...,R6
0105357 store RO,...,R7

R7 contains the main storage address for loading or storing
registers. Register contents are stored in main storage as
follows:

addr
R7 before storage ——m Rn X
Rn-1 x-1
RO x-n
R7 after storage —— x-n-1

R7 is decremented to the location following the contents of
RO. For load registers, R7 initially points to the word
following RO. After loading is complete, R7 will point to the
last register loaded.

Main Storage Move or Compare

The Move routine moves a byte block of main storage from
one area to another (overlap is allowed). The compare
routine compares two byte blocks of main storage. The
compare is logical and sets a user supplied condition word
as follows:

0 = first block less than second block

1 = first biock equal to second block
2 = first block greater than second block

20-14

At the end of each byte move or compare, byte pointers are
incremented. Optionally, the user may specify non-incre-
menting of the first block byte pointer. This will result in
storing a single byte value throughout a block of main
storage or comparing a single byte value to a block of main
storage.

initially RO(A) points to the user's descriptive parameter
block and R1(B) contains the address of the user's
condition word. The parameter block appears as foliows:

word O byte addr of first main storage block
1 byte addr of second main storage block
2 number of bytes for move or compare

The calling routine will issue one of the following BCS
values:

0105223 Move without increment
0105263 Compare with increment
0105323 Compare without increment
0105363 Compare with increment

When execution is complete, parameter block contents are
as follows:

Move without increment

word 0 = single byte address
word 1 = last byte stored address +1
word 2 = 0

Move with increment

word 0 = last byte fetched address
word 1 = last byte stored address +1
word 2 = 0

Compare without increment

word 0 = single byte address

word 1 = last byte compared address +1
if equal

= last byte compared address

it unequal

word 2 = O if equal. Otherwise
decremented once for each
equal byte.

Compare with increment

word 0 = last byte compared address
word 1 = last byte compared address
+1 if equal.
= last byte compared address if
unequal.

word 2 = O if equal. Otherwise
decremented once for each
equal byte.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

32 Bit Integer Math

These routines perform the operations add, subtract,
multiply, and divide on 32 bit unsigned integer operands.
Register RO(A) contains the four word parameter block
address. The four word parameter block contains the two
operands and received the results as follows:

add Operand two is replaced by the sum of the
two operands.

subtract Operand two is replaced by operand one
minus operand two.

multiply Both operands are replaced by the 4 word
product of the two operands.

divide Operand one receives the quotient of
operand one divided by operand two;
operand two is replaced by the remainder.

The hardware overflow flag is set when any of the following
occur:

« carryout of the most significant bit during an add.
+ subtracting a larger number from a smaller one.
« dividing by zero.

The calling routine uses one of the foliowing
instructions:

Add DATA 0105023

Subtract DATA 0105063

Muitiply DATA 0105123

Divide DATA 0105163

20-15

SECTION 21
FILE MAINTENANCE UTILITY

The File Maintenance Utility program (FMUTIL) is a
background task for copying and/or loading files, file
directories and/or partitions from one device onto another,
for manipuiating files and records, for formatting files and
records which are to be displayed or printed, and for
managing filename directories and space allocations of the
files.

Only files assigned to rotating memory devices (disc or
drum) can be referenced by hame.

File space is allocated contiguously within a partition,
skipping bad tracks.

21.1 ORGANIZATION

FMUTIL is scheduled for execution by inputting the JCP
directive /FMUTIL. If the Sl logical unit is a teletype or a
CRT device, the message FU** is output to indicate that
the S| unit is waiting for FMUTIL input. Once activated,
FMUTIL accepts directives from the Sl unit until:

a. Another JCP directive (first character is a slash) is
input, or

b. The exit directive, E, is input.
In-either case, FMUTIL terminates and JCP is scheduled.

if there is an error, one of the error messages given in
appendix A is output on the SO logical unit, and a record is
input from the SO unit to the JCP buffer. If the first
character of this record is /, FMUTIL exits via the EXIT
request. If the first character is C, FMUTIL continues. If the
first character is neither / or C, the record is processed as
a normal FMUTIL directive.

21.2 PARTITION SPECIFICATION TABLE

For a description of the Partition Specification Table (PST)
and File Name Directory, refer to section 9.1.

21.3 OUTPUT LISTINGS

FMUTIL outputs the following two types of listings to the LO
logical unit:

a. Directive Listing lists, without modification, all FMUTIL
directives entered from Sl logical unit.

b. Directory Listing, lists file names from a logical unit
filename directory in response to the FMUTIL,P,D, and
L directives.

All FMUTIL listings begin with the standard VORTEX
headings.

21.4 FILE MAINTENANCE UTILITY DIRECTIVES

The following file maintenance utility functions are sup-
ported by FMUTIL:

D Dumps RMD fites, partitions, and file name directories
to magnetic tape.

L Loads RMD files, partitions, and file name directories
from magnetic tape.

R Rewinds magnetic tape.
E Writes end-of-file on magnetic tape.

S Searches for RMD files, partitions, and file name
directories on magnetic tape.

P Prints a listing of file names contained on each
directory.

U Releases all unused space in each file.

E Exits from FMUTIL.
File maintenance utility directives comprise sequences of
character strings having no embedded blanks. The charac-
ters strings are separated by commas (,) or key equal signs
(=). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of a file maintenance utility directive is

directive, p(1),1(2),...p(n)

where
directive is one of the directive
hames given above.
p(l) is a parameter

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional blank separators between character strings, and
the optional replacement of commas (,) by equal signs (=)
are omitted.

21-1

FILE MAINTENANCE UTILITY

Error messages applicable to file maintenance utility
directives are given in appendix A.

21.5 D DIRECTIVE

This directive dumps information contained in files,
partitions, and/or directories onto magnetic tape where
this information can be later re-loaded onto the RMD, or
stored for later use. There are three types of D directives;
one for file, one for partitions, and one for directories.

21.5.1 Dump File

The directive for dumping a file has the following general
form

D,lun,key,file,tapelun

where
lun is the number of name of the input
logical unit.
key is the partition protection code.
file is the name of the file being dumped.
tapeiun is the number or name of the output

logical unit. (magnetic tape only)

15 14 13 12 11 10 9 8

When a file is dumped to magnetic tape, it is organized
with a header record, end-of-file, n file records, and
terminates with a double end-of-file. The file, after the
dump with the header record, is formatted as follows:

Each n file record has 5,760 words, except for the last
which has the remaining number of words in the file. in
other words, the last record may have less than 5,760
words.

On a dump file directive a listing is output. The listing
output format is-as follows:

PAGE XXXX XX/XX/XX XX:XX:XX VORTEX FMTLCK FMUTIL

D,22,X,COBINT, 18
COBINT 141 0 141

The top heading line consists of:
a. Oneblank
b. The word PAGE

c. Four character positions that contain the decimal page
number

d. Two blanks

e. Eight character positions that contain the current data
obtained from the VORTEX resident constant VEDATE.

7 6 5 4 3 210

Word 0 '

X

Er

s
S
S
a2
— = VW NO U AW N[

- O

FCB

end-of-file

5760 word data record

5760 word data record

=< 5760 word last data record

end-of-file

end-of-file

f. Twoblanks

g. Eight character positions that contain the current time
HR:MN: SC.

h. Twoblanks

i. Name of run-time operating system.

j. Twoblanks

k. The 7JOB name of which the system is executing
I. Two blanks

m. Eight character positions that contain the job processor
name, FMUTIL

n. Blanks through the 120th character position.

Beginning with the first character position, the next line
(after 2 blank lines) contains the list of the input directives.

Beginning with the first character position the next line
contains: the name of the file, number of sectors used,
number of sectors unused, and the number of total sectors
allocated to the file.

Example: Dump the file COBINT contained on logical unit
22, whose protection code is X, onto magnetic tape unit 18.

D,22,X,COBINT, 18

FILE MAINTENANCE UTILITY

21.5.2 Dump Partition

The directive for dumping a partition has the following
general form

D,lun, key,ALL,tapelun

where

fun is the number or name of the input
logical unit.

key is the protection code required to
address lun.

tapelun is the output logical unit (magnetic
tape only).

ALL keyword specifying partition dump.

All partitions dumped onto magnetic tape are organized
with a header record, n files record, and terminated by an
end-of-file.

The header record is formatted as follows:

Bit 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O
Word 0 P ‘A
Word 1 'R T
Word 2 number of file entries
Word 3 logical unit number
Word 4
Word 5 all zeros
Word 6
Word 7
end-of-file

21-3

FILE MAINTENANCE UTILITY

An alternate name record has the format shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'E' ‘N’

Word 1 T R’

Word 2

Word 3 Entry Name

Word 4

Word 5

Word 6 Original Name

Word 7

Word 8 file size

end-of-file

A partition dump directive produces a listing. This listing Example: Dump the partition contained on logical unit
output format has the following FMUTIL heading, a one line OM, protection code D, onto magnetic tape unit 18.

heading as shown below:
D,0M,D,AL, 18
FILENAME USED UNUSED TOTAL LOGICAL UNIT-XXXX

The heading line consists of:

a. Oneblank 21.5.3 Dump File-Name Directory
b. The word FILENAME that shows an alphabetical list of The directive for dumping a directory has the following
all the file located on a particutar partition. general form
c. Fourblanks D,lun,key,DIR, tapelun
. d. The word USED shows many sectors, of each file, where
contain information. tun is the number or name of the input
logical unit.
e. Fourblanks
ke; is th tecti i
f. The word UNUSED shows how many sectors contain Y Izd e protection code required to
blanks. address |un.
! tapelun is the number or name of the
g. Five blanks output logical unit. (magnetic tape
only.)
h. The word TOTAL shows the total number of sectors
allocated to each file. DIR keyword specifying directory dump.

i. Fortyspaces

j. The words LOGICAL UNIT shows what logical unit the

files are located on.)
A filename directory. dumped to magnetic tape is organized

into a header record, directory record, and double end-of-

k. Four character positions that contain the logical unit r ¢
fite. The header record is formatted as follows:

number.

214

FILE MAINTENANCE UTILITY

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 D "
Word 1 ‘R blank
Word 2 all zeros
Word 3 logical unit number
Word 4
Word 5 all zeros
Word 6
Word 7
end-of-file

The directory record has the following format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Directory Sector Addr

1.120 120 word directory block

121 Directory Sector Addr

122-241 120 word directory block

.

5639 Directory Sector Addr

5640 5759 120 word directory block

end-of-file

end-of-file

21-5

FILE MAINTENANCE UTILITY

Example: Dump directories for partition contained on
logical unit OM, protection code D, onto magnetic tape unit
18.

D,OM,D,DIR, 18

21.6 L DIRECTIVE

This directive loads information into RMD files, partitions,
and/or directives from magnetic tape.

There are three types of L directives, one for files, one for
partitions, and one for directories.

21.6.1 Load File
The directive for loading a file has the following general

form
L,tun,key file,tapelun

where
. lun is the number or name of the output
fogical unit.
key is the partition protection code.
fite is the name of the file being loaded.
tapetun is the number or name of the input

magnetic tape unit.

When a file is being loaded from magnetic tape, a search is
made for that file. After the search, the tape is positioned
in front of the file within the correct partition dump. The
search stops if a double end-of-file is encountered and an
error message is output. After the file is located, an
attempt is made to create the file space. If the file already
exists the existing file is used. If the existing file is too
small, an error message is output.

When creating a file for loading, the file size of the created
file will include all of the original extent of the file,
including the unused portion.

When a file already exits, the only check made is to see if
there is enough space for the used portion of the file as on
the tape, and the original extent of the file is ignored.

On a load file directive a listing is output. The listing output
format is the same as the D directive when files are called.
The only change would be the directive shown on the
listing.

Example: Load the file COBINT contained on magnetic
tape unit 18 onto RMD logical unit 22, protection code is X.

L,22,X,COBINT, 18

216

21.6.2 Load Partition

The directive for loading a partition has the following
general form

L,lun, key,ALL, tapelun
where

lun is the number or name of the
output logical unit.

key is the partition protection code.

tapelun is the number or name of the input
magnetic tape unit.

ALL keyword specifying partition load.

When a partition is loaded, from magnetic tape, a search is
made for it as specified by the logical unit number
parameter. After the search tape is positioned in front of
the required partition dump, the search stops if a triple
end-of-file is encountered and an error message is output.

When the partition is found, the files are loaded as
indicated key file loading in the order in which they appear
on the tape. If any non-previous record names are
encountered, an entry is made in the directory for them.
During the loading of a partition, space for the directory is
allocated at the beginning of the partition. After loading,
however, there is no embedded unused space in the
partition. All unused space is at the end of the partition.

On a partition load directive, a listing is output. The listing
output has the following FMUTIL heading, a one-line
heading as shown below:

FILENAME USED UNUSED TOTAL START END LOGICAL UNIT-XXXX
The heading line consists of:
a. Oneblank

b. The word FILENAME that gives a list of all filenames
now contained in the partition.

c. Fourblanks

d. The word USED shows how many sectors per filename
contain valid information.

e. Fourblanks

f. The word UNUSED shows how many sectors per
filename contain blanks.

g. Fiveblanks

=

. The word TOTAL shows how many sectors have been
allocated to each file.

i. Ten blanks

j- Theword START shows the beginning sector number

=~

. Seven blanks

The word END shows the ending sector numbers.
m. Fifteen blanks

n. The word LOGICAL UNIT shows on which logical unit
(partition) these files are contained.

o. Four character positions that contain the logical unit

number.

Example: Load the partition contained on magnetic tape,
which is on logical unit 18, onto RMD logical unit name
OM, protection code.

L,OM,D,ALL, 18

21.6.3 Load Directory

The directive for loading filename directories has the
following general form

L,lun,key,DIR,tapeiun

where

fun is the number or name of the
output logical unit.

key is the protection code required
to address lun.

tapelun is the number or name of the
input magnetic tape unit.

DIR keyword specifying directory load.

When a directory is being loaded, a search is made for it on
the input magnetic tape, after the search tape is positioned
in front of the required partition directory.

If the directory is found its sectors are loaded onto their
former recorded sectors. No reorganization takes place.

If the directory is not found or if a triple end-of-file is
encountered, an error message is output, and the search
stops.

FILE MAINTENANCE UTILITY

Example: Load directory for partition contained on
magnetic tape, on magnetic tape unit 18, onto RMD logical
unit OM, protection code is D.

L,0M,D,DIR, 18

21.7 R DIRECTIVE

This directive rewinds a magnetic tape to the beginning of
tape. The directive has the general form

R,lun
where
lun is the number or name of the
input or output magnetic tape
unit.

Example: Rewind magnetic tape located on logical unit
18.

R, 18

21.8 E. DIRECTIVE

This directive writes an end-of-file on a magnetic tape. The
directive has the general form

E,lun
where

lun is the number or name of the
output magnetic tape unit.

This directive should be used after writing a series of files
onto magnetic tape instance:

Header Record , EOF | Series of Partition Files , EOF | EOF | EOF *|
jreace u + —+ +——t 1

*The E directive is used to write the third end-of-file.

E,18

21.9 S DIRECTIVE

This directive searches for files, partitions, and directories
located on magnetic tapes. The directive has the general
form

$,lun, key, tapelun

217

FILE MAINTENANCE UTILITY

where
tun is the number or name of the
RMD's logical unit.
key is the protection code required
for addressing lun.
tapefun is the number or name of the

input magnetic tape unit.

After the search, the tape will be positioned after the
partition or file identification record, and is now ready for
the loading of individual files.

Example: Search for the partition, file or directory named
OM, protection code D, located on logical unit 18.

5,04,D,18

21.10 P DIRECTIVE

This directive prints out a listing of the file directory on the
LO for each partition specified. The directive has the
general form

P lun key
where
lun is the number or name of the
input logical unit.
key is the protection code required

for addressing lun.

Files are listed in alphabetical order. The output listing has,
following the FMUTIL heading, a one-line heading as shown
below:

FILENAME USED UNUSED TOTAL START END LOGICAL UNIT-XXXX
The heading line consists of:

a. Oneblank

b. The word FILENAME that gives a list of all filenames
contained in a partition.

c. Fourblanks

d. The word USED shows how many sectors per filename
contain information.

e. Fourblanks
f. The word UNUSED shows how many sectors per

filename contain blanks.

218

g. Five blanks

h. The word TOTAL shows how many sectors have been
allocated for each file.

i. Tenblanks

j. Theword START shows the beginning sector number.

k. Seven blanks

I. Theword END shows the ending sector number.

m. Fifteen blanks

n. The words LOGICAL UNIT, one character, a dash (-),
shows upon which logical unit (partition) these files are

contained.

o. Four character positions that contain the logical unit
number.

Example: Print a listing of OM, protection code D.

P,OM,D

21.11 U DIRECTIVE

This directive releases unused space from files, after they
have been written on the RMD. The directive has the
general form

U,iun, key,file
where

lun is the number or name of the
logical unit where space to be
released is located in the
protection code

key is the protection code required
for addressing lun.

file is the name of the file where

the unused space is located.

Example: Release unused space located in file COBINT,
on partition 22, protection code X.

U,22,X,COBINT

21.12 EXIT DIRECTIVE

This directive exits from FMUTIL. The directive has the
general form

E

FILE MAINTENANCE UTILITY

where

E keyword specifying EXIT from
FMUTIL

Example: Exit from FMUTIL

219

SECTION 22
COMPRESSION/EDIT SYSTEM
(COMSY)

COMSY is a source record COMpression and edit SYstem. It
is a background task that constructs files of programs in a
compressed format for later updating and decompression.
It has provision for maintaining these files as sequential
files on magnetic tape and RMD or as random accessed
files on RMD.

Figure 22-1 is a block diagram of the general data flow
through COMSY.

22,1 ORGANIZATION

COMSY is scheduled by the job-control processor (JCP)
directive/COMSY. Once activated, COMSY inputs and
executes directives from the Sl logical unit. COMSY
directives specify both the action to be taken and the
logical units and files to be used.

SI

DIRECTIVE INPUT

GO

22.1.1 COMSY Compression

COMSY compresses 80 character ASCIlI records into
modules called decks. A COMSY deck consists of an ASCil
deck identification record and any number of 60-word
binary records. The deck identification record is described
in section 22.3.15.

COMSY binary records consist of a sequence count in word
0, a checksum in word 1, and compressed ASCII text in
words 2 through 59. The last record of a deck contains its
sequence humber as a negative number. The checksum is
a value which is obtained by summing the 116 8 bit bytes
contained in words 2 through 59 in an unpacked array with
each byte right justified in a word with the remainder of the
word zeros.

COMSY compresses the ASCII text by reducing two or more
imbedded blanks to a two character sequence the first of

COMMON DECKS

PI
80 CHARACTER SOURCE

COMSY

Lo

EDIT HISTORY
80 CHARACTER SOURCE LISTING

COMSY COMPRESSED SOURCE

Y

L

M SW

COMSY DIRECTIVES
AND EDIT RECORDS

COMMON DECK
STORAGE

SS BO

COMSY COMPRESSED SOURCE
80 CHARACTER SOURCE

80 CHARACTER SOURCE
(PACKED INTO 120 WORDS)

VTII-3537

Figure 22-1. COMSY Data Flow

22-1

COMPRESSION/EDIT SYSTEM (COMSY)

which is an ASCIl NUL character (200) and the second of
which is the count of the number of blanks imbedded
minus two. During compression, characters 73 through 80
are ignored and any trailing blanks are dropped and
replaced by an end of record character represented by an
ASCII rub-out (377). The last compressed record of a deck
is followed by an ASCII EOT character (204).

22.1.2 Sequential Files

A sequential COMSY file is a file of COMSY decks which
contain unpacked records. The last deck is followed by a
.FILE directive and an end-of-file. Sequential files may be
recorded on magnetic tape or RMD. Aithough COMSY will
allow input of decks from a card reader, it is not
programmed to consider the handling of files from cards.

22.1.3 Random Files

A random COMSY file is an RMD file which contains a deck
directory and COMSY decks. COMSY decks are recorded in
120 word blocks of two 60 word records per block. This
provides faster access to specific COMSY decks that can be
obtained on a sequential file.

22.1.4 Common Files

A COMSY common file is a file containing up to nineteen
decks which may be inserted into COMSY decks as
updates. Each common file contains a directory which
allows random accessing of the decks which it contains,
Common decks may be entered into a common file by
transferring an existing COMSY deck or by input of 80
character source records. Common decks are stored on an
RMD in uncompressed form to allow for speedy insertion
into other decks.

When initialized, COMSY assumes that the common file is
assigned to unit CM with the default logical unit as lun 9
(GO File). A different common file may be utilized by
assigning it to unit CM with a UNIT directive.

22.1.5 Sequence and Edition Numbers

During the compression of 80 character source records,
COMSY truncates characters 73 through 80. Any identifi-
cation or sequence numbers contained in these characters
is lost. In order that different versions of the same deck
may be identified, COMSY maintains a deck edition
number. A decks edition number appears in its identifica-
tion records.

Within a deck, COMSY identifies records by their relative
positions in the deck. The first record has a sequence
number of one, the second, two, etc. COMSY updating
directives require the use of these sequence numbers to
specify the location of insertions and deletions.

222

When 80 character source records are output, COMSY
inserts the deck edition number in character positions 73
through 74 and the record sequence number in positions
75 through 80 of each record. When a new COMSY deck is
not being output, the edition number used is the edition
number of the input and the sequence numbers refer to
each records position in the input deck. Inserted records
are denoted by the insertion of asterisks in place of edition
and sequence numbers. If a new COMSY deck is being
output, the edition number used is the edition number of
the new deck and the sequence numbers refer to each
records position in the new deck. in this case, inserted
records will have an edition and sequence number.

22.2 INPUT/OUTPUT

COMSY utilizes seven logical units, some of which are
reassignable by use of the .ASSIGN and .UNIT directives.
Table 22-1 contains the logical unit names, default
assignments and usage.

Table 22-1. Default VORTEX

COMSY Default
Name LUN Unit Usage
St 2 Sl Directive input.
Source record input.
COMSY deck input.
Pl 4 Pl Source record input.
COMSY deck input.
COMSY file input.
BO 7 BO Unblocked decompressed
output.
COMSY deck output.
COMSY file output.
LO 5 LO List output.
ss 8 SS Block decompressed
output.
SW 102 SwW Temporary update
storage.
CcM 9 GO Common deck
- storage.

Note: SS, SW and CM must be on RMD.

22.3 COMSY DIRECTIVES

This section describes the COMSY-directives:
a. 170 assignment and option selection directives
ASSIGN Assign non-RMD Jogical unit

UNIT Assign and open RMD file (with rewind)

SET Set COMSY options

GANG Select and specity out of
identification field

These directives are used to replace the default logical

units assigned by COMSY with user specified logical units
and to select user options.

b. Deck creation, copying and checking directives
DECK Build COMSY deck from source input
COMDECK Build a common deck
COPY Copy decks or files
RANDOM

Build a random file

APPEND Append to a random file

EDIT Edit a random fite
LIST List decknames in a file
CHECK Check sequence and checksums

These directives are used to create, copy and check the
validity of COMSY decks and files.

¢. Updating directives

INSERT
(ADD) Record insertion

REPLACE
(DELETE) Record deletion and replacement

COMMON Common deck insertion
COMSY Deck decompression

These directives are used to update an existing COMSY
deck and to cause decompression when required. The
updating directives INSERT, ADD, REPLACE, DELETE
and COMMON must directly precede as a group the
COMSY directive which specifies the deck to be
processed. All other directives required to produce a
desired result must precede the updating directives.
Sequence humbers must always be in ascending
order (note: Equal is not considered ascending).

d. End-of-file and exit directives
FILE Logical end-of-file
END Exit COMSY

These directives are used to specify a logical end-of-file
and to exit from COMSY.

COMSY directives must begin with a period as the first
character of the record and must contain no imbedded
blanks. Directives are terminated at the first blank with the

COMPRESSION/EDIT SYSTEM (COMSY)

exception of the .COMSY record which is the first record of
a COMSY deck. Comments may appear after the terminat-
ing blank.

The generat form of a COMSY directive is .
.name,p(1),p(2)...p(n)
where

name is one of the directives names
given above

each p(n) is a parameter defined below
under the descriptions of the
individual directives.

22.3.1 ASSIGN Directive

This directive specifies a logical unit assignment for a
COMSY reassignable unit. This directive cannot be used for
an RMD logical unit. It has the form

.ASSIGN,unit,lun,R

where

unit is the name of a COMSY reassignable
unit. Allowable unit may be SI, PI,
BO, LO, and SS.

lun is the two character name or the
logical unit number of the VORTEX
logical unit to be assigned.

R is the character R which along with

its preceding comma is optional.
If present, it indicates the unit
is to be rewound prior to use.

If the result of the assignment is a reassignment of unit BO
or the logical unit, lun, currently assigned to BO, COMSY
checks to see if any COMSY output had been written on BO
since the last assignment of BO. If so, a .FILE directive and
an end-of-file are output to BO prior to making the
assignment. Additionally, if the current assignment of BO
is to an RMD file (see section 22.3.2), the file is closed with
update.

If the logical unit, fun, being assigned is currently assigned
to unit Pl and the current assignment is to an RMD file,
the file is closed without update prior to making the
assignment.

Reassignment of a lun to the same unit as is currently

assigned is permitted and should be used to rewind units
when necessary.

Example: Assign MO as Pl and logical unit 25 as BO
specifying rewind of BO.

.ASSIGN,PI,M0
-ASSIGN,BO,25,R

22-3

COMPRESSION/EDIT SYSTEM (COMSY)

22.3.2 UNIT Directive

This directive specifies a logical unit and file assignment
for a COMSY reassignable unit on RMD. it has the form

JUNIT,unit,lun,file, key

where

unit is the name of a COMSY reassignable
unit which may be assigned to RMD.

Allowable units may be PI, BO or CM.

lun is the two character name or the
logical unit number of the RMD
partition containing the file to be
assigned.

file is the name of the file to be assigned
and opened.

key is the one character key for the
assigned partition, lun. This parameter
along with its preceding comma may
be omitted when the partition does
not require a key.

If the result of the assignment is a reassignment of unit BO
or the logical unit, lun, currently assigned to BO, COMSY
checks to see if any COMSY output had been written on BO
since the last assignment of BO. IF so, a .FILE directive and
an end-of-file are output to BO prior to making the
assignment. Additionally, if the current assignment of BO
is to an RMD file, the file is closed with update.

Since COMSY compares only the partition logical unit
numbers and ignores file names, it is not possible to have
two files referenced with the same logical unit number. If
this is required, an alternate logical unit number should be
assigned to the partition outside of COMSY. The normal
logical unit number is then used for one file and the
alternate may be used for the other.

Reassignment of a lun and file to the same unit as is
currently assigned is permitted and should be used to
reposition to beginning of file when necessary.

Example: Assign file OFILE on logical unit 25, key egual X,
to PI.

.UNIT,PI,25,0FILE,X

Assign files OFILE to Pl and NFILE to BO. Both files are on
logical unit 20. The partition has no key.

/ASSIGN, 25,20
/COMSY
.UNIT,PI,20,0FILE
.UNIT,BO,25,NFILE

22-4

22.3.3 SET Directive

This directive is used to turn on selected user options. It
has the general form

SET.P(1),P(2)...P(n)

where

each P(i) is one of the parameters listed
in the table below.

The appearance of a parameter in the list turns the
selected option on. All options whose parameters do not
appear in the list are turned off. Any options which are
previously set on and which are to remain on must appear
in the list. The resulting option setting remains in effect
until another SET directive is encountered.

If no parameters appear, the standard default options as
indicated in the table below will be set. The standard
default options are automatically set when COMSY is
initialized. The acceptable parameters are:

Parameter Default Option
A on Addition/deletion listing
Cc on Compile file output
E off End-of-file insertion
| off Input source records from Pl
L oft List output
N off New decks to be output
S off Source record output
vn off VORTEX option switch
Y off Copy option

Examples: Set the options to input source records from Pi
and output a new COMSY deck.

.SET,I,N

Set the standard default options which are to output to the
compile file and list all additions/deletions.

.SET

The following describes the characteristics of the SET
options:

Addition/Deletion List Option (A)

When this option is turned on, all records which are added
or deleted are listed on the LO unit. Records which are
deleted are preceded on the line by *D*. Records which are
added or inserted are preceded by *A*. The update
directive which caused deletions and/or additions is listed
preceding the deleted or added records.

Compile File Option (C)

When this option is turned -on, it indicates that 80
character source records which are decompressed are to be
output to SS for submission to FORTRAN or DASMR.
Records are packed three to a sector. The last sector will be
blank filled when necessary. Records from successive
decompression of different COMSY decks may be concate-
nated on the compile file, however, the last RMD sector
occupied by records from a deck may contain up to two
trailing blank records. If each deck is a separate subpro-
gram, the last record is an END. FORTRAN and DASMR
will ignore the trailing blank records and begin processing
with the first record of the next sector. COMSY closes the
file with update after each deck insertion.

Source Record Qutput Option (S)

When this option is turned on, it indicates that 80
character source records which are decompressed are to be
output a record at a time to unit BO.

End-of-file Option (E)

When this option is turned on and the source record output
option is also on (S), an end-of-file is output on BO after
the last record of each deck is output.

New Deck Option (N)

When this option is turned on, it indicates that a new
COMSY deck is to be output to BO for each COMSY deck or
source deck input. Any updates which are applied to a
COMSY deck input will be included in the deck output. The
new deck retains the same name and date of origination,
however, the edition number is incremented by one and
the date of last update is set to the current date.

Copy Option (Y)

When this option is turned on, it has the same effectas the
new deck option (N), with the following addition. In
addition to outputting a new deck for each COMSY deck or
source deck processed, any COMSY decks which are passed
over during a search for a specific COMSY deck will be
copied without modification to BO.

input Source from Pl Option (1)

When a DECK directive is encountered, this option will
cause COMSY to input source records from Pl until a FILE
directive or an end-of-file is encountered. When this option
is turned off source records are input from SI.

COMPRESSION/EDIT SYSTEM (COMSY)

List Output Option (L)

When this option is turned on, 80 character source records
will be listed on unit LO.

VORTEX Switch Option (Vn)

This option is used to control the conditional assembly of
programs. When the option is turned on, it causes COMSY
to examine the first source record of each COMSY deck
which is being decompressed. If the first record is a
DASMR SET directive of the form:

1 8 16

VORTEX IzET IC l
where

(o] is any character

The character in position 16 is replaced by character n.
Character n may be omitted, in which case a 2 is placed in
position 16.

Examples:

A DASMR SET directive of the following form appears as
the first record of a deck.

VORTEX SET 1
A COMSY SET directive of the form:
.SET,V4,.....
would cause the above record to be changed to:
VORTEX SET 4
and a COMSY SET directive of the form:
.SET,V,....
would cause the above record to be changed to:
VORTEX SET 2
Note: If the first record of a deck does not contain a SET

directive in the form indicated above, the option has no
effect on that deck.

22.3.4 GANG Directive

This directive specifies a three character identification code
which is to be inserted into the identification field,
character positions 73 through 75, of all 80 character
source records which are output as a result of the source
record output option (S) is set. The identification code

225

COMPRESSION/EDIT SYSTEM (COMSY)

replaces the deck edition number which is normally
inserted in each record. The GANG directive has the
general form

GANG,xxx
where
XXX is any three ASCII characters, including
blank.

If the parameter is omitted, the comma is absent, the
normal edition number insertion made is reinstated. The
GANG directive has no effect on other forms of COMSY
output.

Example: Output a COMSY deck in 80 character source
record mode, with the identification field set to COM.

.GANG, COM

.SET,S
22.3.5 DECK Directive
This directive is used to specify the name of a deck and to
direct COMSY to input 80 character source records from
unit Sl or Pi. The form of the directive is

DECK,deckname

where

deckname is a one to eight ASCIl character
name to be assigned to the deck.

if the input from Pi option is on (l), input is from unit, PI;
otherwise, input is from unit S|. Records are input until a
FILE directive or an end-of-file condition is encountered on
the input unit. Output created as a result of this directive is
controlled by the on or off conditions of the user options as
specified by the last SET directive encountered.

Example: Input source records from S| and output a new
COMSY deck with the deckname SOURCE, listing the
records on the printer.

.SET,N,L
.DECK, SOURCE
n 80 character source
records
.FILE
Example: Input source records from logical unit MO and
output a new COMSY deck with the deckname ALPHA on
logical unit 25.

.ASSIGN,PI, MO
.ASSIGN,BO, 25

226

.SET,I,N
.DECK ,ALPHA

22.3.6 COMDECK Di