
VORTEX II

VORTEX II

REFERENCE MANUAL

The statements in this publication are not intended to create any warranty, express or im­
plied. Equipment specifications and performance characteristics stated herein may be
changed at any time without notice. Address comments regarding this document to Varian
Data Machines, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine,
California, 92713.

@ varian data machines I a varian subsidiary
2722 michelson drive I p.o. box c-19504 I irvine I california I 92713

@ 1976 printed in USA

98A 9949 130
August 1976

{Equ i va I ent to 98A 9952 243)

This manual explains the Varian Omnitask Real· Time
Executive (VORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some Varian Data Machines 620
series or V70 series computer system is desirable.

NOTATION IN THIS MANUAL

In the directive formats given in this manual:

• Boldface type indicates an obligatory parameter.

• Italic type indicates an optional parameter.

Upper case type indicates that the parameter is to be
entered exactly as written.

• Lower case type indicates a variable and shows where
the user is to enter a legal value for that variable.

a(l),a(2), ... ,a(n).

Indicates a series of elements separated by commas
repeated and terminated with a period.

If at least one element is required the first element is given
in bold. The parentheses are only part of the format
description.

For example

a(l),a(2), ... ,a(n).

where

each a(i) is a single alphabetic character
allows

A,B,C,F,G,H.
or

z.v.x.
or

V.
or

blank
as valid in this position.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

iii

FOREWORD

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 SYSTEM REQUIREMENTS ... 1-1

1.2 SYSTEM FLOW AND ORGANIZATION ... 1-2

1.2.1 Computer Memory .. 1-2

1.2.2 Rotating Memory Device.. 1-4

1.2.3 Secondary Storage .. 1-4
1.3 MEMORY MAP CONCEPT... 1-4

1.4 BIBLIOGRAPHY .. 1-6

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROS... 2-1
2.1.1 SCHED (Schedule) Macro ... 2-2

2.1.2 SUSPND (Suspend) Macro ... 2-3

2.1.3 RESUME Macro ... 2-3
2.1.4 DELAY Macro ... 2-3

2.1.5 LDELAY Macro ... 2-4

2.1.6 PMSK (PIM Mask) Macro.. 2-5
2.1.7 TIME Macro ... 2-5

2.1.8 OVLAY (Overlay) Macro .. 2-5
2.1.9 ALOC (Allocate) Macro.. 2-6

2.1.10 DEALOC (Deallocate) Macro ... 2-7
2.1.11 EXIT Macro ... 2-7

2.1.12 ABORT Macro... 2-8

2.1.13 IOLINK (l/O Linkage) Macro... 2-8

2.1.14 PASS Macro.. 2-9
2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro... 2-9
2.1.16 ALOCPG (Allocate Memory Pages) Macro.. 2-9

2.1.17 DEALPG (Deallocate Memory

Pages) Macro .. 2-10

2.1.18 MAPIN (Map·ln Specified Physical
Pages of Memory) Macro .. 2-1 0

2.1.19 PAGNUM (Identify Physical Page

Number) Macro' .. 2-11
2.2 RTE SYSTEM FLOW .. : ... 2-12

2.3 TASK LIMITATIONS AND DIFFERENCES .. 2-12
2.4 ABORT PROCEDURE ... 2-14

2.5 CHECKPOINTING OF TASKS .. 2-14

2.6 PAGE ALLOCATION SCHEME ... 2-14

iv

SECTION 3
INPUT /OUTPUT CONTROL

3.1 LOGICAL UNITS.. 3-1

3.2 RMD FILE STRUCTURE... 3-4
3.3 110 INTERRUPTS... 3-5

3.4 SIMULTANEOUS PERIPHERAL OUTPUT

OVERLAP (SPOOL) 3-5

3.4.1 SPOOL Operation.. 3-6

3.4.2 SPOOL Files.. 3-6

3.5 l/O·CONTROL MACROS.. 3-7

3.5.1 OPEN Macro .. 3~10

3.5.2 CLOSE Macro .. 3-10

3.5.3 READ Macro ... 3-11

3.5.4 WRITE Macro .. 3-11

3.5.5 REW (Rewind) Macro .. 3-12
3.5.6 WEOF (Write End of File) Macro .. 3-12

3.5.7 SREC (Skip Record) Macro ... 3-12
3.5.8 FUNC (Function) Macro .. 3-13

3.5.9 STAT (Status) Macro ... 3-14

3.5.10 DCB (Data Control Block) Macro .. 3-14

3.5.11 FCB (File Control Block) Macro ... 3-14

SECTION 4
JOB-CONTROL PROCESSOR

4.1 ORGANIZATION.. 4-1

4.2 JOB-CONTROL PROCESSOR DIRECTIVES.. 4-1

4.2.1 /JOB Directive... 4-2

4.2.2 /ENDJOB Directive... 4-2
4.2.3 /FINI (Finish) Directive... 4-2

4.2.4 IC (Comment) Directive... 4-2

4.2.5 /MEM (Memory) Directive .. 4-3
4.2.6 I ASSIGN Directive ... 4-3

4.2.7 /SFILE (Skip File) Directive.. 4-3
4.2.8 /SREC (Skip Record) Directive .. 4-3
4.2.9 /WEOF (Write End of File)

Directive 4-4
4.2.10 /REW (Rewind) Directive.. 4-4

4.2.11 /PFILE (Position File) Directive .. 4-4
4.2.12 /FORM Directive... 4-4
4.2.13 /KPMODE (Keypunch mode)

Directive 4-4
4.2.14 IDASMR (DAS MR Assembler)

Directive ... 4-5
4.2.15 /FORT (FORTRAN Compiler)

Directive.. 4-5

4.2.16 ICONC (System Concordance)
Directive ... 4-6

CONTENTS

CONTENTS

SECTION 4
JOB-CONTROL PROCESSOR (continued)

4.2.17 /SEDIT (Source Editor)
Directive 4-6

4.2.18 /FMAIN (File Maintenance) .. .
Directive 4-6

4.2.19 !LMGEN (Load-Module Generator)
Directive.. 4-6

4.2.20 /IOUTIL (110 Utility) Directive... 4-7

4.2.21 /SMAIN (System Maintenance)
Directive... 4-7

4.2.22 /EXEC (Execute) Directive.. 4-7

4.2.23 /LOAD Directive.. 4-8
4.2.24 I AL TUB (Alternate

Library) Directive... 4-8

4.2.25 /DUMP Directive... 4-.8
4.2.26 /CFILE Directive .. 4- 8

4.2.27 /DBGEN (Data Base Generator) Directive.. 4-8

4.2.28 /PLOAD Directive.. 4"9

4.2.29 /FMUTIL Directive... 4-9

4.2.30 /RPG (RPG II Compiler) Directive... 4-9

4.2.31 /P (Pause) Directive... 4-9
4.3 SAMPLE DECK SETUPS .. 4-10

SECTION 5
LANGUAGE PROCESSORS

5.1 DAS MR Assembler.. 5-1

5.1.1 TITLE Directive... 5-1
5.1.2 VORTEX Macros... 5-2

5.1.3 Assembly Listing Format 5-1 O

5.2 CONCORDANCE PROGRAM .. 5-11
5.2.1 Input .. 5-12
5.2.2 Output ... 5-12

5.3 FORTRAN IV COMPILER ... 5-13
5.3.1 FORTRAN IV Enhancements ... 5-13

5.3.2 Execution-Time 110 Units .. 5-.18

5.3.3 Runtime 110 Exceptions ... 5-22
5.3.4 Reentrant Runtime 1/0 .. 5-22

5.4 RPG IV COMPILER ... 5-.22
5.4.l Introduction ... 5-22
5.4.2 RPG IV 110 Units.. 5-23.
5.4.3 Compiler and Runtime Execution .. 5-23

5.5 RPG II COMPILER.. 5-23
5.5.l Introduction ... 5-23

5.5.2 RPG II 110 Units ... 5-23
5.5.3 Compiler and Runtime Execution.. 5-23

vi

SECTION 6
LOAD-MODULE GENERATOR (continued)

6.1 ORGANIZATION.. 6-1

6.1.1 Overlays.. 6-3

6.1.2 Common... 6-3

6.2 LOAD-MODULE GENERATOR DIRECTIVES... 6-3

6.2.l TIDB (Task-Identification Block)

Directive... 6-4

6.2.2 LD (Load) Directive... 6-4

6.2.3 OV (Overlay) Directive 6-4

6.2.4 LIB (Library) Directive.. 6-5

6.2.5 END Directive.. 6-5

6.2.6 CLD Directive... 6-5

6.2.7 MEM (Memory) Directive 6-6

6.3 SAMPLE DECKS FOR LMGEN

OPERATIONS... 6-6

SECTION 7
DEBUGGING AIDS

7.1 DEBUGGING PROGRAM... 7-1

7.2 SNAPSHOT DUMP PROGRAM.. 7-3

SECTION 8
SOURCE EDITOR

8.1 ORGANIZATION.. 8-1

8.2 SOURCE-EDITOR DIRECTIVES... 8-2

8.2.1 AS (Assign Logical Units) Directive... 8-2

8.2.2 AD (Add Records) Directive... 8-3

8.2.3 SA (Add String) Directive... 8-3

8.2.4 REPL (Replace Records) Directive 8-4

8.2.5 SR (Replace String) Directive 8-4

8.2.6 DE (Delete Records) Directive... 8-4

8.2.7 SD (Delete String) Directive.. 8-5

8.2.8 MO (Move Records) Directive.. 8-5

8.2.9 FC (Copy File) Directive.. 8-5
8.2.10 SE (Sequence Records) Directive... 8-6

8.2.11 LI (List Records) Directive.. 8-6

8.2.12 GA (Gang-Load All Records) Directive... 8-6

8.2.13 WE (Write End of File).

Directive... 8-7

8.2.14 REWI (Rewind) Directive.. 8-7

8.2.15 CO (Compare Inputs) Directive.. 8-7
8.3 EXAMPLE OF EDITING A FILE... 8-7

Vii

CONTENTS

CONTENTS

SECTION 9
FILE MAINTENANCE (continued)

9.1 ORGANIZATION... 9-1
9.1.1 Partition Specification Table.. 9-1
9.1.2 File·Name Directory... 9-1
9.1.3 Relocatable Object Modules 9-2
9.1.4 Output Listings.. 9-2
9.2 FILE·MAINTENANCE DIRECTIVES... 9-2
9.2.1 CREATE Directive.. 9-3
9.2.2 DELETE Directive... 9-3
9.2.3 RENAME Directive... 9-4

9.2.4 ENTER Directive "·· 9-4
9.2.5 LIST Directive.. 9-4
9.2.6 INIT (Initialize) Directive.. 9-4
9.2.7 INPUT Directive... 9-5
9.2.8 ADD Directive.. 9-5
9.3 VORTEX FOREGROUND FILE MAINTENANCE (V$FGFM) 9-5

SECTION 10
INPUT /OUTPUT UTILITY PROGRAM

10.1 ORGANIZATION... 10-1
10.2 1/0 UTILITY DIRECTIVES .. 10-1
10.2.1 COPYF (Copy File) Directive ... 10-1
10.2.2 COPYR (Copy Record) Directive... 1 0-2
10.2.3 SFILE (Skip File) Directive.. 10-3
10.2.4 SREC (Skip Record) Directive.. 10-3
10.2.5 DUMP (Format and Dump)

Directive... 1 0-3
10.2.6 PRNTF (Print File) Directive ... 10-4
10.2.7 WEOF (Write End of File)

Directive.. 1 0-4
10.2.8 REW (Rewind) Directive ... 10-4
10.2.9 PFILE (Position File)

Directive .. 10-4
10.2.10 CFILE (Close File) Directive ... 10-5
10.2.11 PACKB (Pack Binary) Directive .. .
10.3 MUL Tl·VOLUME TAPE HANDLING (V$RSW)

SECTION 11
VSORT (SORT /MERGE)

10-5
10-5

11.1 ORGANIZATION ... 11-1
11.2 VSORT DIRECTIVES .. 11-1
11.2.1 SORT Directive ... 11-2
11.2.2 INPUT Directive .. 11-2
11.2.3 OUTPUT Directive.. 11-2
11.2.4 WORK1,WORK2,WORK3, Directives ... 11-2
11.2.5 SORTKEY Directive 11-2
11.2.6 INEXIT Directive ... 11-3

viii

SECTION 11
VSORT (SORT /MERGE) (continued)

11.2. 7 OUTEXIT Directive... 11-3

11.2.8 ENDSORT Directive ... 11-3

11.3 USER EXITS.. 11-3

11.3.1 Calling Sequence... 11-3

11.3.2 Implementation .. 11-4

11.4 VSORT MESSAGES... 11-4

SECTION 12
DATAPLOT II

12.1 SYSTEM FLOW OUTLINE... 12-1

12.2 HARDWARE REQUIREMENTS... 12-1

12.3 GENERAL DESCRIPTION.. 12-1

12.3.1 DATAPLOT II Organization... 12-1

12.3.2 System Considerations.. 12-3

12.3.3 VORTEX Considerations.. 12-3

12.4 DATAPLOT II SUBROUTINES.. 12-4

12.4.1 DPINIT (System File Initialization).. 12-5

12.4.2 PLOTS (Work Buffer Initialization).. 12-5
12.4.3 PLOT (Generate Plot).. 12-5

12.4.4 SCALE (Generates Scale Factor).. 12-6

12.4.5 AXIS (Generate Segmental Axis).. 12-7
12.4.6 SYMBOL (Generate Symbols)... 12-8

12.4.7 NUMBER (Generate Number).. 12-9

12.4.8 LINE (Generate Graph Line) ... 12-10

12.4.9 MLTPLE (Multiple Plot) ... 12-11

12.4.10 FACTOR (Alter Plot Size) .. 12-11

12.4.11 WHERE (Locate Coordinates)... 12-11

12.4.12 APPEND (Append File) ... 12-12

12.4.13 TOPFRM (Top·of-Form) .. 12-12
12.4.14 CUT (Cut Paper) ... 12-12

12.4.15 ENDCUT (Eject and Cut Paper) .. 12-13
12.4.16 DPSORT (Sort Plot File) ... 12-13

12.4.17 DPPLOT (Output File) ... 12-13
12.4.18 DPCLOS (Close Plot File) .. 12-14
12.4.19 ORIG ·· Offsetting the Origin

Entry Point... 12-14

12.4.20 VECT ·· Vector Entry Point .. 12-14
12.4.21 Special SYMBOL Subroutine ... 12-15

12.5 PLOT FILE DATA FORMAT .. 12-15
12.5.1 Vectors .. 12-15

12.5.2 Characters .. 12-15
12.5.3 End-of-Plot Indicator ... 12-16

12.6 EXAMPLE OF APPLICATION OF DATAPLOT 11 .. 12-16
12.6.1 Program to Generate Sine Wave... 12-16

12.6.2 Program to Generate Communication Network.. 12-16

CONTENTS

CONTENTS

SECTION 12
DATAPLOT II (continued)

12.7 OPERATING PROCEDURES AND ERROR MESSAGES 12-17
12.7.1 VORTEX Operating Procedures ... 12-17

12. 7 .2 Unsorted Plot Files .. 12-17

12.7.3 Presorted Plot Files .. 12-17

12.7.4 VORTEX Special Procedures .. 12-17

SECTION 13
SUPPORT LIBRARY

13.1 CALLING SEQUENCE ... 13-1

13.2 NUMBER TYPES AND FORMATS .. 13-1

13.3 SUBROUTINE DESCRIPTIONS .. 13-2
13.4 DECIMAL SUBROUTINE ... 13-11

SECTION 14
REAL-TIME PROGRAMMING

14.1 INTERRUPTS .. 14-1
14.1.1 External Interrupts.. 14-1

14.1.2 Internal Interrupts... 14-3
14.1.3 Interrupt-Processing Task

Installation... 14-4
14.1.4 Interrupt State... 14-4
14.2 SCHEDULING.. 14-4

14.2.l System Flow... 14-4
14.2.2 Priorities... 14-5

14.2.3 Timing Considerations (Approximate) .. 14-22

14.3 REENTRANT SUBROUTINES ... 14-23
14.4 CODING AN 1/0 DRIVER .. 14-24

14.4.1 1/0 Tables .. 14-24

14.4.2 1/0 Driver System Functions.. 14-.24
14.4.3 Adding an 1/0 Driver to the System File.. 14-25
14.4.4 Enabling and Disabling PIM

Interrupts.. 14-26
14.4.5 Directly Connected Interrupt Handler ... 14-28
14.4.6 VORTEX Use of BICs and BTCs ... 14-28
14.4.7 VORTEX II and VORTEX Compatibility .. 14-29
14.4.8 Resident Tasks... 14-.30

SECTION 15
SYSTEM GENERATION

15.1 ORGANIZATION.. 15-1

15.2 SYSTEM-GENERATION LIBRARY... 15-2

15.3 KEY-IN LOADER... 15-5

15.4 SGEN 1/0 INTERROGATION.. 15-6

15.4.l DIR (Directive-Input Unit)

Directive... 15-7

15.4.2 LIB (Library-Input Unit) Directives.. 15-7

15.4.3 ALT (Library-Modification

Input Unit) Directive... 15-7

15.4.4 SYS (System-Generation

Output Unit) Directive.. 15-7

15.4.5 LIS LJirective .. 15-8

15.5 SGEN Directive Processing.. 15-8

15.5.1 MRY (Memory) Directive... 15-8
15.5.2 EQP (Equipment) Directive... 15-9

15.5.3 PRT (Partition) Directive ... 15-12

15.5.4 ASN (Assign) Directive... 15-12

15.5.5 ADD (SGL Addition) Directive ... 15-14
15.5.6 REP (SGL Replacement) Directive 15-14

15.5.7 DEL (SGL Deletion) Directive .. 15-15

15.5.8 LAD (Library Addition) Directive ... 15-15

15. 5. 9 LRE (Library Replacement) Directive.. 15-16

15.5.10 LOE (Library Deletion) Directive ... 15-16

15.5.11 PIM (Priority Interrupt) Directive .. 15-16

15.5.12 CLK (Clock) Directive ... 15-17

15.5.13 TSK (Foreground Task) Directive .. 15-17
15.5.14 DEF (Define External) Directive .. 15-17

15.5.15 EDR (End Redefinition)

Directive .. 15-17

15.5.16 Required Directives .. 15-18

15.6 BUILDING THE VORTEX NUCLEUS ... 15-18

15.6.l SLM (Start Load Module)

Directive .. 15-19

15.6.2 TDF (Build Task-Identification Block)

Directive.. 15-19
15.6.3 END Directive ... 15-20
15.6.4 MEM Directive .. 15-20

15.6.5 Memory Parity Considerations .. 15-21

15.7 BUILDING THE SYSTEM LIBRARIES AND RESIDENT

TASK CONFIGURATION ... 15-21

15.7.1 SLM (Start LMP) Directive .. 15-22
15.7.2 TIO (TIDB Specification).

Directive .. 15-22
15.7.3 OVL (Overlay) Directive .. 15-22
15.7.4 ESB (End Segment) Directive ... 15- 23

15.7.5 END (End Library) Directive ... 15-.23
15.8 SYSTEM INITIALIZATION AND

OUTPUT LISTINGS ... 15-23
15.9 SYSTEM GENERATION EXAMPLES ... 15-24

XI

CONTENTS

SECTION 16
SYSTEM MAINTENANCE

16.1 ORGANIZATION .. 16-1
16.1.1 Control Records... 1 6-2
16.1.2 Object Modules... 16-3
16.1.3 System-Generation Library.. 16-3
16.2 SYSTEM-MAINTENANCE DIRECTIVES.. 16-3
16.2.1 IN (Input Logical Unit) Directive... 16-3
16.2.2 OUT (Output Logical Unit) Directive... 16-4
16.2.3 ALT (Alternate Logical Unit)

Directive 1 6-4
16.2.4 ADD Directive.. 16-4
16.2.5 REP (Replace) Directive.. 16-5
16.2.6 DEL (Delete) Directive.. 16-5
16.2.7 LIST Directive ... 16-6
16.2.8 END Directive ... 16-7
16.3 SYSTEM-MAINTENANCE OPERATION ... 16-7
16.4 PROGRAMMING EXAMPLES ... 16-7

SECTION 17
OPERATOR COMMUNICATION

17.1 DEFINITIONS .. 17-1
17.2 OPERATOR KEY-IN REQUESTS ... 17-1
17.2.1 ;SCHED (Schedule Foreground Task)

Key-In Request... 1 7-2
17.2.2 ;TSCHED (Time-Schedule Foreground

Task) Key-In Request.. 17-2
17.2.3 ;ATTACH Key-In Request .. 17-3
17.2.4 ;RESUME Key-In Request... 17-3
17.2.5 ;TIME Key-In Request ... 17-3
17.2.6 ;DATE Key-In Request... .. 17-3
17.2.7 ;ABORT Key-In Request .. 17-4
17.2.8 ;TSTAT (Task Status) Key-In Request. .. 17-4
17.2.9 ;ASSIGN Key-In Request ... 17-5
17.2.10 ;DEVON (Device Down) Key-In.

Request 1 7 -5
17.2.11 ;DEVUP (Device Up) Key-In

Request 17-5
17.2.12 ;IOLIST (List 1/0 Key-In

Request 1 7 -5

SECTION 18
OPERATION OF THE VORTEX SYSTEM

18.1 DEVICE INITIALIZATION ... 18-1
18.1.1 Card Reader ... 18-1
18.1.2 Card Punch ... 18-1

Xii

CONTENTS

CONTENTS

SECTION 18
OPERATION OF THE VORTEX SYSTEM (continued)

18.1.3 Line Printer.. 18-1
18.1.4 Statos·31 (Model 70-6602 and -6603)... 18-1
18.1.5 33135 ASR Teletype .. 18-1
18.1.6 High-Speed Paper-TApe Reader .. 18-1
18.1.7 Magnetic-Tape Unit ... 18-1
18.1.8 Magnetic-Drum and fixed-Head

Disc Units .. 18-1
18.1.9 Moving-Head Disc Units ... 18-1
18.1.10 Moving-Head Disc Units ... 18-2
18.1.11 Moving-Head Disc Units ... 18-2
18.1.12 Moving-Head Disc Units.. 18-2
18.2 SYSTEM BOOTSTRAP LOADER... 18-2
18.2.1 Automatic Bootstrap Loader ... 18-2
18.2.2 Control Panel Loading.. 18-3
18.3 DISC PACK HANDLING... 18-3
18.3. l PRT (Partition) Directive .. ,............................. 18-4
18.3.2 FRM (format Rotating Memory)

Directive 18-4
18.3.3 INL (Initialize) Directive ... 18-4
18.3.4 EXIT Directive .. 18·5
18.4 70-7500 (620-35) DISC PACK

FORMATTING PROGRAM .. 18-5
18.5 70-7510 (620-34) DISC PACK

FORMATTING PROGRAM .. 18-5
18.6 70-760317613 DISC PACK FORMATTING PROGRAM 18·6
18.7 WRITABLE CONTROL STORE (WCS) ... 18-7

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION .. 19-1
19.2 PROCESS OUTPUT ... 19-1
19.2.1 Hardware .. 19-1
19.2.2 SGEN Operations ... 19-1
19.2.3 Output Calls ... 19-2
19.3 PROCESS INPUT .. 19-3
19.3.1 Hardware .. 19-3
19.3.2 SGEN Operations ... 19-3
19.3.3 Input Calls ... 19-4
19.3.4 Low· Level Multiplexor Gain Control.. 19-5
19.4 ISA FORTRAN PROCESS CONTROL

SUBROUTINES... 19-6
19.4. l Input/Output Calls.. 19-6
19.4.2 Bit String Operations .. 19-8
19.5 ERRORS ... 19-8
19.6 EXTENSIONS 19-8

xiii

CONTENTS

SECTION 20
WRITABLE CONTROL STORE AND FLOATING-POINT

PROCESSOR

20.l MICROPROGRAMMING SOFTWARE ...•.....•...•........ 20-1
20.1.1 Microprogram Assembler .. 20-1
20.1.2 Microprogram Simulator ... 20-1
20.1.3 Microprogram Utility ... 20-1
20.1.4 WCS Reload Task, WCSRLD ... 20-2
20.2 STANDARD FIRMWARE... 20-2
20.2.1 Fixed-Point Arithmetic

Firmware•................•........................... 20-2
20.2.2 Floating-Point Arithmetic

Firmware•.•.. 20·3
20.2.3 Data Transfer Firmware .. 20·3
20.2.4 FORTRAN-Oriented Firmware•.................................... 20·3
20.2.5 Byte Manipulation Firmware•................................... 20-4
20.2.6 Stack Firmware ... 20-5
20.2.7 Firmware Macros ... 20-8
20.2.8 Commercial· Firmware .. 20-13

SECTION 21 FILE MAINTENANCE UTILITY

21.l ORGANIZATION ... 21·1
21.2 PARTITION SPECIFICATION TABLE .. 21-1
21.3 OUTPUT LISTINGS .. 21-1
21.4 FILE MAINTENANCE UTILITY DIRECTIVES ... 21-1
21.5 D DIRECTIVE ... 21-2
21.5.1 Dump File ... 21-2
21.5.2 Dump Partition ... 21-3
21.5.3 Dump File-Name Directory .. 21·4
21.6 L DIRECTIVE ... 21-6
21.6.1 Load File ... 21-6
21.6.2 Load Partition ... 21-6
21.6.3 Load Directory .. 21·7
21.7 R DIRECTIVE ... 21·7
21.8 E. DIRECTIVE .. 21·7
21.9 S DIRECTIVE ... 21-7
21.10 P DIRECTIVE ... 21-8
21.11 U DIRECTIVE ... 21-8
21.12 EXIT DIRECTIVE .. , 21·8

SECTION 22 COMPRESSION/EDIT SYSTEM (COMSY)

22.l ORGANIZATION ... 22-1
22.1.1 COMSY Compression ... 22·1
22.1.2 Sequential Files .. 22-2
22.1.3 Random Files .. 22·2
22.1.4 Common Files ... 22-2
22.1.5 Sequence and Edition Numbers ... 22-2

xiv

22.2 INPUT/OUTPUT ... 22·2
22.3 COMSY DIRECTIVES ... 22·2
22.3. l ASSIGN Directive .. 22·3
22.3.2 UNIT Directive ... 22·4
22.3.3 SET Directive ... 22·4
22.3.4 GANG Directive ... 22·5
22.3.5 DECK Directive.. 22-6
22.3.6 COMDECK Directive.. 22-6

22.3.7 COPY Directive
22.3.8 RANDOM Directive ...
22.3.9 APPEND Directive
22.3.1 O EDIT Directive ..
22.3.11 LIST Directive
22.3.12 CHECK Directive ...
22.3.13 INSERT (ADD) Directive
22.3.14 REPLACE (DELETE) Directive ..

22.3.15 COMMON Directive

........... 22-7

""' .. 22-7
. 22~1

. 22-8
... 22-8

.. 22-8
........ 22-8

.. 22-9
............ 22-9

22.3.16 COMSY Directive 22-10

22.3.17 FILE Directive 22-1 O
22.3.18 END Directive...... 22-10

22.4 COMSY LOAD MODULE GENERATION .. 22·1 l
22.5 COMSY EXECUTION ... 22-11
22.6 ERROR PROCESSING .. 22-11

APPENDIX A
ERR.OR MESSAGES

A.l ERROR MESSAGE INDEX... A-1
A.2 REAL· TIME EXECUTIVE.. A-1
A.3 1/0 CONTROL... A-4
A.4 JOB-CONTROL PROCESSOR... A-7
A.5 LANGUAGE PROCESSORS.. A-8
A.5.1 DAS MR Assembler... A-8
A.5.2 FORTRAN IV Compiler and Runtime

Compiler.. A-.9

A.5.3 RPG IV Compiler and Runtime
Compiler .. A-10

A.6 LOAD-MODULE GENERATOR ... A-12
A.7 DEBUGGING PROGRAM .. A-13
A.8 SOURCE EDITOR... A-13
A.9 FILE MAINTEANCE ... A-14
A.10 1/0 UTILITY .. A-15
A.11 SORT ERROR MESSAGES .. A-15
A.12 DATAPLOT ... A-16
A.13 SUPPORT LIBRARY ... A-16
A.14 REAL·TIME PROGRAMMING ... A-17

xv

CONTENTS

CONTENTS

APPENDIX A
ERROR MESSAGES (continued)

A.15 SYSTEM GENERATION ... A-17
A.16 SYSTEM MAINTENANCE .. A-21
A.17 OPERATOR COMMUNICATION , A-22
A.18 RMD ANALYSIS AND INITIALIZATION ... A-22
A.19 PROCESS INPUT/OUTPUT ... A-23
A.20 WRITABLE CONTROL STORE.. A-23

A.20.1 Microprogram Assembler.. A-.23
A.20.2 Microprogram Simulator.. A-24
A.20.3 Microprogram Utility... A-25

A.21 VTAM NETWORK CONTROL MODULE ... A-26

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS ... A-27
A.23 COMSY ERROR MESSAGES .. A-28
A.24 ERROR CODES... A-29
A.24.1 Errors Related to Directives ... A,29
A.24.2 Errors Related to Programs... A- 29
A.24.3 Errors Related to Memory Size .. A-30
A.24.4 Errors Related to Hardware .. A-30

APPENDIX B
1/0 DEVICE RELATIONSHIPS

APPENDIX C
DATA FORMATS

C.l PAPER TAPE .. C-1
C.1.1 Binary Mode .. C-1
C.1.2 Alphanumeric Mode.. C-1
C.1.3 Unformatted Mode .. C-1
C.1.4 Special Characters .. C-1
C.2 CARDS .. C-2
C.2.1 Binary Mode .. C-2
C.2.2 Alphanumeric Mode C-2
C.2.3 Unformatted Mode.. C-4
C.2.4 Special Character.. C-4
C.3 MAGNETIC TAPE .. C-4
C.3.1 Seven· Track C-4
C.3.2 Nine-Track ... C-4
C.4 STATOS PRINTER/PLOTIER ... C-4
C.4.1 Alphanumeric Mode .. C-4
C.4.2 Unformatted Mode.. C-4

xvi

APPENDIX D
STANDARD CHARACTER CODES

APPENDIX E
ASCII CHARACTER CODES

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

APPENDIX G
OBJECT MODULE FORMAT

G.l RECORD STRUCTURE•... G-1

G.2 PROGRAM IDENTIFICATION BLOCK .. G-1

G.3 DATA FIELD FORMATS ... G-1
G.4 LOADER CODES•... G-1

G.5 EXAMPLE .. G-3

G.5.1 Source Module ... ,. G-3

G.5.2 Object Module... G-3

G.5.3 Core Image ..•... G-5

G.6 END LOAD RECORD ... G-6

INDEX

xvii

CONTENTS

CONTENTS

LIST OF ILLUSTRATIONS

Figure 1-1. VORTEX System Flow 1-2
Figure 1-2. VORTEX Nucleus, Map O .. 1-3
Figure 1-3. VORTEX RMD Storage Map. 1-4
Figure 2-1. Matrix of Nucleus Module Access Mode 2-13
Figure 2-2. V$PAGE, Page Allocation Table' ... 2-14
Figure 3-1. Spooling Subsystem Flow.. 3-6
Figure 5-1. VORTEX Macro Definitions for DAS MR. 5-2
Figure 5-2. Sample Assembly Listing 5-10
Figure 5-3. Sample Concordance Listing 5-13
Figu.re 5-4. FORT.R!\N 1/0 Execution Sequences. 5-19
Figure 6-1. Load-Module Overlay Structure (virtual memory)................................ 6-2
Figure 12·1. DATAPLOT II Graphics System Data Flow.. 12-1
Figure 12-2. DATAPLOT II Organization... 12-2
Figure 12·3. Minimum and Maximum Plot Values.. 12-4
Figure 12·4. + x Axis and + y Axis Relative to Paper Direction 12-14
Figure 12·5. Vector-Data Format. ... 12-15
Figure 12·6. Character Data Format... 12-15
Figure 12-7. Character Orientation Data Format... 12-15
Figure 12·8. End-of-Plot Indicator.. 12-16
Figure 12·9. Sine Wave Plot Generated by DATAPLOT 11 12-16
Figure 12-10. Communication Network Plot Generated by DATAPLOT 11 12-17
Figure 14-1. Interrupt Line Handlers...... 14-2
Figure 14·2. VORTEX Memory Map.. 14-6
Figure 14-3. VORTEX Priority Structure.. 14-7
Figure 14-4. TIDB Description ... 14-8
Figure 14-5. Driver Interface.. 14-27
Figure 15-1. SGEN Data Flow.. 15-1
Figure 15-2. System-Generation Library.. 15-3
Figure 15-3. VORTEX Nucleus.. 15-3
Figure 15-4. Load-Module Library.. 15-4
Figure 15-5. Load Module Package for Module Without Overlays 15-21
Figure 15-6. Load Module Package for Module With Overlays............................. 15·22
Figure 15-7. VORTEX Nucleus Load Map ... 15-23
Figure 15-8. Library Processor Load Map ... 15·24
Figure 15-9. RMD Partition Listing... 1 5-24
Figure 15-10. Resident-Task Load Map ... 1 5-24
Figure 15-11. Physical Memory Allocation .. 15-24
Figure 16-1. SMAIN Block Diagram.. 16-1
Figure .!6·2. SMAIN LIST Directive Listing... 16-6
Figure 20-1. Base and Limit of Stack... 20-5
Figure 20-2. Stack Control Block... 20-5
Figure 20-3. Stack Multiply .. : , 20-6
Figure 20·4. Stack Divide... 20-6
Figure 20·5. Stack Push 20-6
Figure 20-6. Stack Pop .. , 20-6
Figure 20-7. Stack Double Push.. 20-7
Figure 20-8. Stack Double Pop.. 20-7
Figure 22-1. COMSY Data Flow 22. 1
Figure C-1. Paper Tape Binary Record Format.. C-1
Figure C-2. Paper Tape Alphanumeric Record Format.. C-2
Figure C-3. Card Binary Record Format C-3
Figure C-4. Card Alphanumeric Records Format (IBM 026) C-3

XVIII

LIST OF TABLES

Table 1-1. Executive Mode States .. 1-6
Table 2·1. RTE Service Request Macros... 2-1
Table 3-1. VORTEX Logical-Unit Assignments.. 3-1
Table 3-2. Valid Logical-Unit Assignments.. 3-3
Table 3-3. FCB Words Under 110 Macro Control.. 3-15
Table 5-1. Directives Recognized by the DAS MR Assembler.............................. 5-1
Table 5-2. RTE Macros Available Through FORTRAN IV...................................... 5-13
Table 7-1. DEBUG Directives... 7-1
Table 13-1. DAS Coded Subroutines... 13-2

Table 13-2. OM Library Subroutines.. 13-6
Table 13-3. FORTRAN Coded Subro.. 13·8
Table 14-1. Memory Protection Interrupt Address.. 14-3
Table 14-2. TIDB Description... 14-9
Table 14-3. Map of Lowest Memory Sector .. 14-14
Table 15-1. SGEN Key-In Loaders... 15-5

Table 15-2. Model Codes for VORTEX Peripherals.. 15-10
Table 15-3. Preset Logical-Unit Assignments .. 15-13
Table 15·4. Permissible Logical-Unit Assignments ... 15-14
Table 15-5. TIDB Status-Word Bits ... 15-19
Table 17-1. Physical 1/0 Devices... 17-1
Table 17-2. Task Status (TIDB Words 1 and 2)... 17-4
Table 18-1. Key-In Loader Programs... 18-2
Table 20-1. Firmware Availability ... 20·2
Table 22·1. Default VORTEX.. 22·2
Table G-1. Record Control Word Format.. G-1

xix

CONTENTS

SECTION 1
INTRODUCTION

The Varian Omnitask Real-Time EXecutive (VORTEX II) is
a modular software operating system for controlling,
scheduling, and monitoring tasks in real-time multipro·
gramming environment. VORTEX II supports memory map
operation to a maximum of 256K of central memory.
VORTEX II also provides for background operations such as
compilation, assembly, debugging, or execution of tasks not
associated with the real-time functions of the system. In
addition, VORTEX II supports user tasks using the V75
extended instruction set. Thus, the basic features of
VORTEX II comprise:

NOTE:

Memory map management

Real-time 1/0 processing

Provision for directly connected interrupts

Interrupt processing

Multiprogramming of real-time and background
tasks

Overlapping output to peripherals with spooling

Priority task scheduling (clock time or
interrupt)

Load and go (automatic)

Centralized and device-independent 1/0 system
using logical unit and file names

Operator communications

Batch-processing job-control language

Program overlays

Background programming aids: FORTRAN and
RPG IV compilers, DAS MR assembler, load-module
generator, library updating, debugging, and
source editor.

Use of background area when required by
foreground tasks

Disc/drum directories and references

System generator

Individual task protection

Throughout this manual, all references to
VORTEX imply VORTEX II.

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian V70 series computers with 32K memory

b. 33/35 ASR Teletype or compatible CRT on a priority
interrupt module

c. Priority Interrupt Module (PIM)

d. Rotating memory device (RMD) on a PIM with either a
buffer interlace controller (BIC) or block transfer
controller (BTC)

e. One of the following on a Pl M:
(1) Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape unit with a BIC

Memory map hardware

The system supports and is enhanced by the following
optional hardware items:

a. Additional main memory (up to a total of 256K)

b. Additional rotating memory devices

c. Automatic bootstrap loader with VORTEX II (device
dependent) system boot

d. Card reader, if one is not included in the minimum
system with BIC and PIM

e. Card punch with BIC and PIM

Line printer with BIC and Pl M

g. Paper-tape punch, if one is not included in the
minimum system

h. Process input and output

Data communications multiplexor

Electrostatic printer /plotter

k. Writable control store

Floating-point processor

m. V75 extended instruction set.

All BICs, BTCs, and DCMs must have memory mapping
capability.

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real­
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for

1-1

INTRODUCTION

execution by operator requests, other tasks, device inter­
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assemblies, are under
control of the job-control processor (section 4), itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus­
pended, either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real­
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX
operating system. Section numbers refer to further discus­
sion of this manual.

1.2.1 Computer Memory

VORTEX requires a minimum of 32K words of main
memory and supports up to a maximum of 256K words.

The system generation (SGEN, section 15) programs
execute in a non-memory map environment and conse­
quently utilize only the first physical 32K words of main

VORTEX 0 PER AT ING SYSTEM

USER
NON-
RESIDENT
TASKS

1
USER
RESIDENT
TASKS

SYSTEM
NON-
RESIDENT
TASKS

USER
SUPPLIED
DEVICES

J'Tll-111'

1-2

OPERATOR
COMMUNICATION
INTERRUPT

1
REAL-TIME
EXECUTIVE

1
1/0
CONTROL
(SECTION 3)

1

FOREGROUND BACKGROUND

REAL-TIME LOAD- FORTRAN
EXECUTIVE
SERVICES ~~~~~TOR 1--.- CO~PILER
(SECTION 2) (SECTION 6) (SECTION 5.3)

J
~ JOB-
14---------'--...i CONTROL USER'S

TASKS
l...c

OPERATOR
COMMUN I-
CATION
PACKAGE
(SECTION 17)

VDM

PROCESSOR
(SECTION 4)

1/0 ASSEMBLER W DAS MR

UTILITY f+-< (SECTION 5. 1)
(SECTION 10)

H RPG IV
4 COMPILER

(SECTION 5.4)

14------ 1/0
DRIVERS i.--- SUPPLIED LIBRARY

UP-DATING
(SECTIONS
7,8, & 9)

DEVICES

Figure 1-1. VORTEX System Flow

256K

V$TFC
32K

V$BFC

(a) Foreground Blank Common
(Full Access)

Mapped in with all
foreground tasks
referencing blank
common

Possible unassigned space to keep Mapped in with all
global FCBs on the same page (80 background tasks
words maximum) referencing global

(b) • .. • "' •• • • •" • • •• ... • • ... • • • • • • ... FCBs
Global FCBs

V$GFCB

JCPIOPCOM Buffers
DST !LU NI PST !COT AD

(c) Controller Tables Mapped in with programs
TIDBs referencing CL labels
User Data (except reentrant
subroutines called with ALOC)

V$BTBM
Bottom of table region

V$EXEC Real-Time Executive
V$10C Input/Output Control

(d) Drivers Accessible only to Map 0
Reentrant Subroutines
Reentrant Subroutine Stack

V$BVN Bottom of fixed nucleus

V$CRDR
Resident Task Directory

Unallocated Memory Bottom of nucleus (may
(e) Dynamically allocated for be redefined by EDR.R

TIDB, 110 requests, map SGEN directive, which
images, etc. does not change V$BVN)

02000
Page 1 reserved for OPCOM

01000

(f) Page 0 System Constants
.._ _____________ ..JMapped into all tasks

NOTE: TSK defined resident tasks are loaded upward from
physical address 02000 in the first physical 32K of memory
by SGEN. However, the resident tasks are not mapped in
Map 0 but in a user map (1·15) as the resident tasks are
scheduled. The physical page numbers defining the
resident tasks are contained in the resident directory
(V$CRDR).

NOTE: VTFC, VBFC, etc. are system pointers in page O
described in section 14, table 14-1.

NOTE: V$TFC, top of nucleus, is specified on SGEN MRY
directive (described in section 15.5.1).

Figure 1-2. VORTEX Nucleus, Map 0

INTRODUCTION

1-3

INTRODUCTION

memory. All resident tasks and data reside in the first 32K
of memory. Except for those resident tasks defined by the
SGEN TSK directive, all other resident tasks and data are
considered as part of the VORTEX nucleus. The nucleus is
assigned to be in the executive mode, map 0, virtual
memory (see section 1.3).

Figure 1·2 illustrates the map 0 nucleus memory layout.
The 32K words memory space is grouped into several
modules:

a. Foreground Blank Common Module: This module is
mapped with all foreground tasks referencing blank
common.

b. Global FCB Module: This module is mapped with all
background tasks referencing the global FCBs. It is
read only access mode for priority O tasks and read/
write for priority 1 tasks. This module is of approxi·
mately 90 words.

c. Nucleus Table Module: This module is mapped with all
tasks with an external name defined in the CL library.
Read-only access mode for priority 0 tasks and read/
write access for all other tasks. The bottom of this
module is defined in V$BTBM and is determined by
SGEN during the nucleus module building. Control
record CTL,21 specifies the end of the nucleus table
module. All user data and programs which are to be
included in this module must precede the CTL,21
control record. The approximate size of this module is
1000 words (RMD, line printer, card reader, Teletype,
CRT).

d. Nucleus Programs Module: This module consists of
V$EXEC, V$10C, 1/0 drivers, reentrant subroutines,
stacks, and any user programs inserted between the
CTL,21 and CTL,PART0003 SGEN tasks. The bottom
of this module is defined by V$CRDR. The approxi­
mate size of this module is 6800 words (RMD, line
printer, card reader, Teletype, CRT drivers).

e. Map 0 Allocable Memory Space: The virtual memory
space between page two and V$CRDR is available for
dynamic allocation. 1/0 request block, TIDB block,
and map image memory space are allocated in this
region. Page one is reserved for the OPCOM task. The
actual physical memory assigned to the virtual
memory space is memory management performed by
the RTE component.

Page 0: Always reserved for system constants, interrupt
traps, and background literal pool (a description is
found in section 14, table 14-3).

The unused physical memory in the first 32K and all
physical memory above 32K are designated as allocable
memory. This is the physical memory which is dynamically
allocated for map 0 memory space as described in e, and
which is allocated to a user mode task's logical memory.

1-4

1.2.2 Rotating Memory Device

At least one RMD (disc or drum) is required for storage of
VORTEX operating system components. The RMD is divided
into a fixed number of variable-length areas called
partitions. These are defined at system-generation time
(section 15).

The following reside on the RMD (figure 1-3):

a. System initializer, loader, and VORTEX nucleus in
absolute format

b. Checkpoint file

c. GOfile

d. User library

e. Transient files

Relocatable object-module library

g. Relocatable load-module library

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary
storage devices that have been specified at system­
generation time.

System Initializer and
Loader

VORTEX Nucleus in
Absolute Format

CL Directory

Relocatable Object-Module
Library

Relocatable Load-Module
Libraries

Checkpoint File

GO File

User library

Transient Files

Figure 1-3. VORTEX RMD Storage Map

1.3 MEMORY MAP CONCEPT

VORTEX logical (virtual) memory is defined to be 32K
words. This is the maximum memory space that any single
task can address, even though the physical memory space
may be as great as 256K words. Where in actual or physical

memory that task resides is transparent to the task and is
a memory management function performed by the RTE
component of VORTEX.

Each logical memory space (32K) is organized into fixed­
size blocks of 512 words (01000 in octal), called logical
(virtual) pages. Hence, there are 64 logical pages within a
32K logical memory space. The size of the logical memory
available to a task is reduced by:

a. Page 0: The first page of 512 words is reserved for
system constants, interrupt trap locations, background
literal pool and communication link for IOC and
V$EXEC calls. This page is mapped in all logical
memories.

b. Nucleus Modules: A task referencing an external name
which is defined in the CL library will have the
corresponding VORTEX nucleus module mapped in
logical memory for a task. (Section 1.2.l describes in
greater detail the nucleus modules.) These are:
(1) Foreground blank common module.
(2) Global FCB module, and/or
(3) Nucleus table module

c. Any FORTRAN program performing input/output
operation will have the nucleus table module mapped
into its virtual memory. FORTRAN runtime package
requires access to the device specification table
(DST), logical unit tables (LUT), and controllers tables
for linking information. The maximum available
logical memory space available is V$BTBM (bottom of
nucleus table module, location 0331) minus 01000
(program start logical address). V$BTBM is defined
on the SGEN listing.

d. For background priority 1 tasks, page 0 is set to read/
write access mode to permit tasks, e.g., JCP, to modify
low memory pointers V$JCFG, V$CRDM, etc. Hence,
the method of transferring control from user mode to
executive mode for 1/0 and RTE calls is to map in the
pages containing the entry to V$10C (l/O calls).
V$EXEC (RTE calls), and V$10ST (STAT calls).
Therefore a priority 1 task making an l/O call (or RTE
call, or STAT call), executes a JSR,X to location 0404.
Because page 0 is set to read/write access mode, the
instruction at 0404 (JMP V$10C) is executed. The first
instruction in V$10C (likewise, V$EXEC and V$10ST)
is a disable PIM (EXC 0444) instruction. Execution of
an 110 type instruction in the user map generates a
memory-protection interrupt, which forces the system
to the executive mode and hence the means of
transferring control to the map 0 tasks. Therefore, the
available memory space for a background task is
from location 01000 to the page where V$10C (which
is lower in memory than V$EXEC) resides. V$10C
address is defined on the SGEN output listing.

All user mode tasKs are loaded from logical address 01000.
A task not referencing external names defined in the CL
library has all of the logical memory available to it except
page 0.

Physical memory is also organized into fixed-size blocks of
512 words, referred to as physical pages. A system with

INTRODUCTION

physical memory size of 256K words contains 512 physical
pages (64 physical pages for each 32K words of memory).

Allocation of logical memory to physical memory is
accomplished by pages. A task of 010000 (4096 in decimal)
words will reside in eight physical pages of physical
memory. These physical pages need not be contiguous.
However, that fact is transparent to the task. During
execution, the task assumes that its eight pages are
contiguous. The linking of physical pages is performed by
the memory map hardware. All user program object
modules are assembled relative to location 0. Load modules
are generated by SGEN and LMGEN to be relative to logical
address 01000.

A map defines the 64 logical pages within a logical memory.
Each logical page can be set to one of four possible access
modes:

Unassigned

Read/Write

Read Operand
Only

Read Only

The logical addresses within that
virtual page are unassigned.

All accesses including write operation
permitted to/from the logical page.

Only operand fetches permitted from
the logical page.

Only instruction or operand fetches
permitted within the logical page.

Each logical page, except for the pages with unassigned
status, must be assigned to a physical page. The RTE task
sets the status for each page, allocates a physical page to
each logical page, and loads the corresponding mapping
registers.

The memory map hardware provides a 4-bit map register
for the 16 possible maps. This 4-bit map register is set by
the RTE component to select the proper map (0-15). Map O
is defined as the executive mode. All other map selections
(1-15) are designated as being in the user mode. However,
when the system is forced to the executive mode, state 0,
by an 1/0, real-time, or memory map interrupt, the map
register will continue to contain the currently executing
user map selection number.

Executive Mode

All instructions except HALT are permitted in this mode.
Any interrupt will force the hardware to enter this mode in
executive mode state 0. The interrupt will not disable the
map. VORTEX Real-Time Executive (RTE), lnputJOutput
Control (IOC), 1/0 drivers, and other resident tasks and
constants are mapped into the executive mode. The
instructions and data which comprise the VORTEX nucleus
are mapped in the executive mode. Any task executing l/O
instructions (EXC, OAR, SEN, etc.) must execute in map 0.

A HALT instruction executed in the executive mode with the
map enabled will generate an interrupt. The HALT is
permitted only in the disabled map state.

1-5

INTRODUCTION

There are four executive modes states as shown in table
1-1. A map 0 task'will normally execute in state 0. In state
0, all instruction fetches and operand fetches and stores
are performed in map 0 logical memory. If a map 0 task
must fetch and store data to or from a user map (1-15), the
map O task must switch to the proper executive mode state
(1, 2 or 3), then upon completion of the fetch or store,
restore the executive mode to state 0. A convenient way of
switching executive or mode states is to output one of the
control words established by the RTE component in the
page 0 system data region, locations 0334-0337: V$STO,
V$ST1, V$ST2, and V$ST3 for executive mode states 0
through 3 respectively. An example of switching to
executive mode 3 is OME 046, V$ST3, where 046 is the
memory-map device address.

User Mode

All operands and instructions are mapped in accordance
with the map register contents. Error conditions will cause
interrupts, which force the system to the executive mode.
User mode is entered from the executive mode under
control of RTE.

Privileged instructions (e.g., EXC, HALT) are not permitted
in this mode. An interrupt is generated if a task attempts
to execute a privileged instruction. Foreground tasks may
execute disable and/or enable PIMS and RT clock
instructions (EXC 0444, EXC 0244, EXC 0147, EXC 0747).
Section 14.4.4 describes this subject further.

Section 2.2, RTE System Flow, describes the user mode and
executive mode tasks.

Table 1-1. Executive Mode States

Instruction Operand
State Fetch Fetch Store

0 MAP 0 MAP 0 MAP 0
1 MAP 0 MAP 0 •MAP N
2 MAP 0 MAP N MAP 0
3 MAP 0 MAP N MAP N

+MAP 0 refers to the executive task map.
•MAP N refers to the task map specified by

the map register. (n - 1-15)

1-6

1.4 BIBLIOGRA~HY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the V70/620
computers:

Tltle

V72 Handbook
V73 Handbook
V70 Series Memory Map Manual
620-100 Computer Handbook
FORTRAN IV Reference Manual
RPG IV User's Manual
VTAM Reference Manual
HASP/RJE Operator's Manual
Microprogramming Guide
VORTEX Installation Manual

Document
Number

98 A 9906 20x
98 A 9906 Olx
98 A 9906 lOx
98 A 9905 OOx
98 A 9902 03x
98 A 9947 03x
98 A 9952 22x
98 A 9952 21x
98 A 9952 21x
98 A 9906 07x

Where x is a revision level number subject to change.

Maintenance information is in the following VORTEX and
VORTEX II Software Performance Specifications:

Title

VORTEX II System Overview
VORTEX II External

Specification
VORTEX II Internal

Specification

VORTEX External
VORTEX Internal Volume 1
VORTEX Internal Volume 2
VORTEX Internal Volume 3
VORTEX Internal Volume 4

DAS MR Assembler Internal
FORTRAN IV Compiler Internal
FORTRAN IV Library Internal
RPG IV Runtime/Loader

Internal
RPG IV Compiler Internal
FORTRAN Accelerator and

VORTEX Spooler Overview I
External

Document
Number

89A0259
89A0273

89A0289

89A0203
89A0231
89A0232
89A0233
89A0304

89A0225
89A0214
89A0211
89A0234

89A0184
89A0285

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.
If the task uses the V75 registers 3 through 7, the contents
of R3 through R7 are also saved.

There are 32 priority levels in the VORTEX system,
numbered 0 through 31. Levels 0 and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority. If more than one task has the same
priority level, they are selected for execution on a first-in,
first-out basis. Background and foreground RTE service
requests are similar.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN

SCH ED Schedule a task Yes Yes

SUSPND Suspend a task Yes Yes

RESUME Resume a task No Yes

DELAY Delay a task No Yes

LDELAY Delay and reload from No Yes
specified logical unit

PMSK Store PIM mask register No Yes

TIME Obtain time of day Yes Yes

OVLAY Load and/or execute an Yes Yes
overlay segment

ALOC Allocate a reentrant No Yes
stack

DEALOC Deallocate the current No No
reentrant stack

EXIT Exit from a task (upon Yes Yes
completion)

ABORT Abort a task No Yes

IOLINK Link background 1/0 Yes No

PASS Pass map O data Yes Yes

TBEVNT Set/fetch task's TBEVNT Yes No

ALOCPG Allocate memory page(s) Yes No
(Priority O in map 0)

DEALPG Deallocate memory Yes No
page(s) (Priority 0 in
map 0)

MAPIN Map in specified memory No No
page(s)

PAGNUM Identify physical page Yes No
number

Whenever a task is aborted, all currently active 110
requests are completed. Pending 1/0 requests are de­
queued. Only then is the aborted task released.

There are 18· RTE service request macros. Certain of them
are illegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are legal
in level 0 tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric
characters (including $), left-justified and filled out with
blanks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS

This section describes the RTE macros given in table 2-1.

The general form of an RTE macro is

where

label mnemonlc,p(1),p(2), .. .,p(n)

label permits access to the macro from
elsewhere in the program

mnemonic is one of those given in table 2-1

each p(n) is a parameter defined under the
descriptions of the individual macros

The omission of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string. Thus,
in the macro (section 2.1.1)

2-1

REAL-TIME EXECUTIVE SERVICES

SCHBD 8,, 106,, 'TA', 'SK', 'A'

the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are given in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macro schedules the specified task to execute on its
designated priority level. The scheduling task can pass two
values in the A and B registers to the scheduled task (a
task using the V75 registers 3 through 7 can also pass
parameters in R3 through R7). A TIDB is created for each
scheduled task, (see section 14 for a description of TIDB).
The macro has the general form.

where

Isbel SCHED level,wait,lun,key,'xx','yy','zz'

level is the value from 0 (lowest) to 31
(highest) of the priority level of the
scheduled task

wait is 0 (default value) if the scheduling and
scheduled task obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended until
completion of the scheduled task

lun

key

xxyyzz

is the name or number of the logical unit
whose library contains the scheduled

task, zero to schedule a resident
foreground task, pr 106 to schedule a
nonresident task from the foreground
library. If a zero is specified and the task
is not found in the re~ident directory, the
RTE component (SAL) will automatically
search for the task on the foreground
library(FL)

is the protection code, if any, required to
address lun (0306 or 'f' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at system-generation time

is the name of the scheduled task in six
ASCII characters, coded in pairs
between single quotation marks and
separated by commas; e.g., the task
named BIGJOB is coded 'Bl','GJ','08'
and the task named ZAP is coded
'ZA','P',''

The FORTRAN calling sequence for this macro is

CALL SCHED{level,wait,llb,key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith

2-2

array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point locations, with
the A and B registers (and the V75 registers if available)
containing the value to be passed. The scheduled task
executes when it becomes the active task· with the highest
priority.

The specified logical unit (which can be a background
library, a foreground library, or any user-defined library on
an RMD) must be defined in the schedule-calling sequence.

Expansion: The task name is loaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

BH 15 14)] 12 11 10 9 I 7 6 5 4 3 2 1 0

WordO JS R,X

Word 1 0406

Word2 ~wlo 0 011 level

'ijtwd 3 key l
Word 4 Task name

Word 5 Task name

Word 6 Task name

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor­
Unit (CPU) time based on priority levels and 1/0 activity.

PL BQU

KEY BQU

106

0306

(LUN assigned to
foreground library FL)
(Protection code
for FL)

SCHBD 5,0,FL,KBY, 'TS', 'KO', 'NB'
(Control return to
highest priority)

Note: the KEY line can be coded with the equivalent ASCII
character enclosed in single quotation marks.

KEY BQU 'p'

The same request in FORTRAN is

DIMENSION N1,N2(3)
DATA N1/2H P/
DATA N2(1),N2(2),N2(3)/2HTS,2HK0,2HNB/
CALL SCHBD(S,0,106,N1,N2)

or

CALL SCHBD(S,0,106,2H P,6HTSKONB)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an external
interrupt, a simulated interrupt caused by IOC ,or 110
completion events for the task, or a RESUME (section
2.1.3) macro. The macro has the general form

/able SUSPND susp

where susp is 0 if the task is to be resumed by RESUME or
1 if the task is to be resumed by external interrupt, or 2 if
the task is to be resumed by external interrupt or by IOC or
1/0 completion events via a simulated interrupt (i.e.,
TBEVNT word in task's TIDB is set to 1).

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)

Expansion: The susp flag is bit 0 of word 2 (s).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WordO JS R,X

Word l 0406

Word 2

Example: Suspend a task from execution. Provide for
resumption of the task by interrupt, which reactivates the
task at the location following SUSPND.

SUSPND

The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macro resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

label RESUME 'xx' ,'yy', 'zz'

where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes before the requesting task and
immediately if it has the highest priority.

The fORTRAN calling sequence for this macro is

CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task.

REAL· TIME EXECUTIVE SERVICES

Expansion: The task name is loaded two characters per
word.

15 14 13 12 11 10 9 I 7 6 5 4 3 2 1 O

WordO J S R,X

Wordl 0406

Word 2

Word 3 Task name

Word 4 Task name

Word 5 Task name

Example: Resume (reactivate) the task TSKTWO, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS', 'KT','WO'
(Control return)

Control returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS,2HKT,2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the general form

label

where

mllli

min

type

DELAY milli,min,type

is the number of 5-millisecond
increments delay

is the number of minutes delay

is 0 (default value when the task is to be
suspended for the specified delay,
remain in memory, and automatically
resume following the DELAY macro

1 when the task is to exit from the
system, relinquishing memory, and

2-3

REAL-TIME EXECUTIVE SERVICES

after the specified delay, be auto­
matically rescheduled and reloaded
in a elapsed time mode, or

2 when the task is to resume auto­
matically after the specified delay
or upon receipt of an external
interrupt whichever comes first,
and automatically resume following
the DELAY macro; or

3 when the task is to resume auto­
matically after the specified delay,
or upon receipt of an external inter­
rupt, or completion of an 1/0 request
initiated previously, whichever comes
first, and automatically resume following
the DELAY macro.

IOC resumes execution of the task by
setting the TBEVNT word in the task's
TIDB to 1.

The FORTRAN calling sequence for this macro is

CALL DELAY(mlHl,mln,type)

where the integer-mode parameters have the definitions
given above.

The maximum value for either mllll or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and l, respectively, or 18000 and 0. After the
specified delay, the task becomes active. When it becomes
the highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 milliseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolution of the clock. The delay interval
is stored in minute increments and real-time clock
resolution increments.

Expansion: The type flag is bits 0 and 1 of word 2.

Bit 15 14 ll 12 II 10 9 I 7 6 5 4 3 2 I 0

W0<dO JS~.X

WO<d I 0406

Word 2

Wordl

Word 4

Examples: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000,1

Delay the execution of a task for 90 seconds or until receipt
of an external interrupt, whichever comes first, at which

2-4

time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
Delay the execution of a task for 90 seconds, or until
receipt of an external interrupt, or the completion of a
previously initiated 110 request, whichever comes first.

DELAY 18000,0,3

2.1.5 LDELA Y Macro

This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is
to be reloaded after the delay. The macro has the general
form:

where

label

mllll

min

LDELAY mllll,min,lun,key

is the number of 5-millisecond
increments delay

is the number of minutes delay

lun is the number of the logical unit from
which the task is to be loaded after the
delay (DELAY tape 1 reloads from FL
library)

key is the protection code for the logical unit

The FORTRAN calling sequence for this macro is

CALL LDELAY (mllll,mln,lun,key)

where the integer-mode parameters have the definitions
given above.

Time is the same as specified for DELAY.

Expansion:

Bit 15 14 13 12 II 10 9 I 7 6 5 4 3 2 I 0

Word 0 J S R,X

Word 1 0406

Word~ ><Jo 0 I 0 0 l~l I I

il'ordl milll

Word 4 min

Word 5 key l lun

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest priority task, it is loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,0301

2.1.6 PMSK (PIM Mask) Macro

This macro redefines the PIM (priority interrupt module)
interrupt structure, i.e., enables and/or disables PIM
interrupts. The macro has the general form

label PMSK plm,mask,opt

where

plm Is the number (1 through 8) of the PIM
being modified

mask indicates the changes to the mask, with
the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other lines unchanged

opt is 0 (default value) if the set bits in mask
indicate newly enabled interrupt lines,

or 1 If the set bits in mask indicate newly
disabled interrupt lines

The FORTRAN calling sequence for this macro is

CALL PMSK(plm,mask,opt)

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit 0 corresponding to the highest·
priority line.

VORTEX operates with all PIM lines enabled unless altered
by a PMSK macro. Normal interrupt-processing allows all
interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the Interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nullify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit 0 of word 2 (o).

Ill 15 14 13 12 II 10 9 • 7 6 5 4 3 2 I 0

WonlO J S R,X

-di 0406

Won! 2 Io 0 1 o o oI l·
Won13 pim I mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.

PHSK 2,070

REAL-TIME EXECUTIVE SERVICES.

The same request in FORTRAN is

CALL PHSK(2,56,0)

Disable the same lines.

PHSK 2,070,1

2.1.7 TIME Macro

This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label TIME

The FORTRAN calling sequence for this macro is

CALL TIME(mln,mllli)

where min is the integer minutes to the 24 hour total, and
mllll is the seconds in 5·millisecond integer increments.

Expansion:

Bil 15 14 13 12 II 10 9 I 7 6 5 4 3 2 I 0

Word 0 JS R,X

Word 1 0406

Word2

Example: Load the current time of day In the A (5·
millisecond increments) and B (1-minute increments)
registers.

TIHB
(Return with time in A
and B registers)

2.1.8 OVLA Y (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. It has the general form

label

where

type

xxyyzz

OVLAY type, 'xx', 'yy', 'zz•

Is 0 (default value) for load and
execute, or 1 for load and return
following the request. If only
load is specified, the load address
is returned in the X register.

is the name of the overlay segment,
coded as in the SCHED macro (section
2.1.1)

2-5

REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is

CALL OVLAY(type,reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines if called by a
FORTRAN call.

Expansion: The overlay segment name is loaded two
characters per word. The type flag is bit 0 of word 2 (t).

13 12 II 10 9 I 7 6 5 • 3 2 I 0
1-----~----------------l

Word 0 JS R,X

Word 1 0406

Word 2

Word 3 Overlay segment name

Word4 Overlay segment name

Word 5 Overlay segment name

When the load and execute mode is selected in the OVLAY
macro RTE executes an equivalent of a root segment JSR
instruction to enter the overlay segment. Therefore, the
return address of the root segment is available to the
overlay segment in the X register.

Example: Find, load, and execute overlay segment
OVSGOI without return.

OVLAY O,'OV,'SG', '01'
(No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(J)/2HOV,2HSG,2H01/
CALL OVLAY(O,O,N1)

or

CALL OVLAY(0,0,6HOVSG01)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overlays containing 1/0 statements
for RMD files defined by CALL V$0PEN or CALL V$0PNB
statements (described in section 5.3.2), the main segment
must contain an 1/0 statement so that the runtime l/O
program (V$FORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2-6

2.1.9 ALOC (Allocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is

EXTERNAL subr

CALL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The first location of the LIFO stack is V$FLRS, and that of
the current position in the stack is V$CRS. The first word of
the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be
allocated. If fewer than five words are specified, five words
are allocated.

Control returns to the location following ALOC when a
DEALOC macro (section 2.1.10) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no IOC calls (section 3) can be
made, and (3) no RTE service calls can be made.

Reentrant subroutines are normally included in the
resident library at system-generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is also defined at
system-generation time.

Expansion:

15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0

Word 0 J S R.X

Word 1

Word 2

Word 3 Reentrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + I. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register ccmtents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word 0 of
the current allocation in the stack. By loading the value of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M field of
5, I for the first cell; 6, I for the second; etc.

A stack allocation generated by the ALOC macro has the
format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0

Word 1

Word 2

Word 3

Word 4

Word5

Word n

Word,t n+l
to
n+5

Contents of the A register

Contents of the B register

Contents of the X register

ovfl I Contents of the P register

Stack-control pointer {for RTE use only)

For reentrant subroutine use (temporary storage)

V75 registers 3.7

where ovfl is the overflow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overflow indicator bit in word 3 of the. stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

SUB1

EXT SUB1
ALOC

NAME
DATA

DEALOC
END

SUB1
(Return Control)

SU.B1
6

Each time SUBl is called, six words are reserve~ in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request (section 2.1.10), six words are deallo·
cated from the reentrant stack. If the calling task uses the
V75 registers, 11 words are allocated/deallocated.

2.1.10 DEALOC (Deallocate) Macro

This macro deallocates the current reentrant stack,
restores the contents of the A and B (and V75) registers
and the setting of the overflow indicator to the requesting

REAL·TIME EXECUTIVE SERVICES

task, and returns control to the location specified in word 3
(P register value) of the reentrant stack (section 2.1.9). The
macro has the form

label DEALOC

Expansion:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word I 0406

Word 2

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

DEALOC
END

2.1.11 EXIT Macro

(Reentrant subroutine)

This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its l/O. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT

If the task making the EXIT is in unprotected background
memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 JS R,X

Word 1 0406

Word 2

Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its 1/0 requests.

EXIT (No return)

2-7

REAL-TIME EXECUTIVE SERVICES

2.1.12 ABORT Macro

This macro aborts a task. Active 110 requests are
completed, but pending 1/0 requests are dequeued. The
macro has the general form

label ABORT 'xx', 'yy', 'zz'

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three·word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two charac¥irs per
word.

Btt 12 II 10 9 I 7 6 5 4 3 2 I 0
!-----~-------------_____....,

Word 0 J S R,X

Word 1 0406

Word 3 Task name

Word .4 Task name

Task name

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT 'TS','K','
(Control return)

The same request in FORTRAN is

DIMBNSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT (N 1)

or

CALL ABORT(6HTSK

2-8

2.1.13 IOLINK (l/O Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back·
ground global FCBs. It has the general form

where

label

lun1sd

IOLINK lungsd,bufloc,bufsiz

is the logical unit number of the global
system device

bufloc is the address of the input/output buffer

bufsiz is the size of the buffer (maximum and
default value: 120

ABORT 'TS',' 'I'

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(section 4.2.11) stores the protection code and file name in
the corresponding FCB before opening/rewinding the
logical unit. The IOLINK service request passes the buffer
address and the size of the record to the corresponding
logical·unit FCB. The names of the global FCBs are SIFCB,
PIFCB. POFCB, SSFCB, BIFCB, BOFCB. GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

15 14 13 12 II 10 9 I 7 6 5 4 3 2 I 0

Word 0 J S R,X

Word 1 0406

Word2 ><Jo O I I o ~ lungsd

Word 3 bufloc

Example: Pass the address and size specifications of a
40-word buffer at address BUF to the Pl global FCB.

PI

BUF

BQU
BXT PIFCB

(Pl logical·unit number 4)

IOLINK PI,BUF,40
RBAD PIFCB,P1,0,1

BSS
BND

(Read 40 ASCII words
from Pl)

40

If the Pl file is on an RMD, reassign the Pl to the proper
RMD partition, and then position the Pl file using JCP
directive /PFILE.

2.1.14 PASS Macro

This macro fetches map 0 data into the user map. It has
the general form ·

label PASS count, from, to

where

count is the number of words to be passed

from is the map 0 fetch address

to is the user map store address

The FORTRAN calling sequence for this macro is:

CALL PASS(count, from, to)

Expansion:

15 14 13 12 II 10 9 I 7 6 5 4 3 2 I 0

J S R,X

Word 1

Word 2

Word 5

If a negative or zero word count is specified, an EX16 error
message is posted and the task aborted. Any memory
protection violation will result in an EX20-EX25 error
message.

Example: Pass the TIDB information into PBUF

V$CTL EQU 0300

LDA V$CTL
STA P1+4

P1 PASS 29,•,PBUF

PBUF BSS 29
END

(Get TIDB address)

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro

This macro fetches or sets the requesting task's event
word, TBEVNT, as well as alters other TIDB entries. It
should be noted here that most changes to TIDB entries

REAL-TIME EXECUTIVE SERVICES

could cause irrecoverable errors, so TBEVNT should be
used with caution.

The macro has the general form:

label TBEVNT value, disp, els

where:

value is 0177777 (mask)

disp is the TIDB word ordinal number
(displacement) to be altered

els is the clear /set indication

Explanation:

If disp - 0, the following is done according to the value
parameter. If value is 0-0177776 it is set into the
requesting task's TIDB event word, TBEVNT. If the value is
0-017777, the request will fetch TBEVNT from the request­
er's TIDB and return with the A register set to the TBEVNT
content. (See section 14 for information on use of the event
word.)

If disp .;. 0, the action depends on the els indication.
When c/s - 1 (i.e., set), the correspo'nding TIDB (word
number displacement) bits are set according to the ones in
the mask value.

When c/s - 0 (i.e., reset), the corresponding TIDB (word
number displacement) are reset according to the zero bits
in the mas~ value.

15 14 13 12 11 10 9 • 7 6 5 4 3 2 I 0

WordO JS R,X

Word l

Word 3 Value

Word 4 d/sp

Word 5

Default values: disp - 0 els - 0

Example: Reset TBPL (word 2 of TIDB) bit 8 and then
set it again.

TBEVNT 0177377, 2, 0
TBEVNT 0400, 2, 1

2.1.16 ALOCPG (Allocate Memory
Pages) Macro

(reset)
(set)

This macro allocates in physical pages from the pool of
available pages to logical pages starting at the specified
logical address, modulo 01000. The logical pages to be
mapped must not have been previously assigned. The
logical pages are assigned as read/write access mode. If an

2-9

REAL-TIME EXECUTIVE SERVICES

error condition occurs, an EX27 error message is output
and the task resumes operation at the specified reject
address. The general form is

where

label ALOCPG n,loglcal addr,reject addr

n is the number of pages to be allocated

logical addr is the logical address, modulo 01000,
where the n pages are allocated. If the
logical address is negative (l's comple·
ment) the address is assumed to be in
map 0. If the logical address is positive,
the address is assumed to be the
requestor's map (priority tasks cannot
allocate memory in map 0)

reject addr is the error return address when a task
exits or is aborted all ALOEPG. pages are
automatically deallocated.

Expansion:

Bit 15 14 13 12 II 10 9 I 1 6 5 4 3 2 I 0

WordO J S R,X

Word l 0406

Word2 ><Jo 1 0 0 0 oi_><
Word 3

logical addr

Word 5 reject addr

Example: Allocate 4 pages of memory to the requesting
task's virtual memory starting at logical address 06000. If
error, go to ERROL

ALOCPG 4,06000,ERR01

ERR01 STA (Error routine)

2.1.17 DEALPG (Deallocate Memory
Pages) Macro

This macro deallocates n pages of memory starting at the
specified logical address, modulo 01000. The deallocated
logical pages are set to unassigned access mode. Deallo·
cated physical pages, which were not assigned by MAPIN
requests, are returned to the pool of available pages.
Specifying logical page 0 or non-read/write page results in

2-10

EX30 error message to be posted and the task's operation
resumed at the reject address. The general form is·

label DEAL PG n,loglcal addr,reject addr

where

is the number of pages to be deallocated

logical addr is the logical address, modulo 01000,
where the n pages are deallocated if
negative, 1 's complement of map O
logical address (illegal for priority 0
tasks)

reject addr is the error return address

Expansion:

Bit 15 14 13 12 II JO 9 8 1 6 5 4 3 2 I 0

WordO J S R,X

Word2 ><lo 1 o o o i[::><
Word 3

Word 4 logicaladdr

Word 5 rejectaddr

Example: Deallocate 4 pages of memory in the requesting
task's virtual memory starting at logical address 06000. If
error, go to ERR02.

DEAL PG 4,06000,ERR02

ERR02 LDA (Error routine)

2.1.18 MAPIN (Map-In Specified Physical
Pages of Memory) Macro

This macro allows the requestor to specify physical pages of
memory to be assigned to the requestor's logical memory
starting at the specified logical address, modulo 01000.
Priority 0 tasks are not permitted to execute the MAPIN
request. The specified logical pages to be mapped must not
have been previously assigned except by a previous MAPIN
request. All logical pages are set to the read/write access
mode. Pages mapped in by this request do not effect the
pool of available pages. The requested physical pages
cannot include page 0 nor any of the pages assigned to the
nucleus program module. Any error condition causes EX31

to be output and the task resumed at the reject address.
The general form is

label

where

n

MAPIN n,loglcal addr,
buffer or page,
reject addr

is the number of pages of memory to be
allocated

loglcal addr is the requestor's logical address,
modulo 01000, where the specified
physical pages are to be mapped

buffer address is the actual physical page number to
or physical
page number

reject addr

Expansion:

be mapped or the address of the buffer
containing the physical page numbers.
If the value is positive and less than 512,
it is assumed to be a physical page
number. If n is greater than 1, all physi­
cal pages assigned will be consecutive.

0

lf the value is positive and greater than
511, it is assumed to be a map O buffer
address, e.g., TIDB map image address.
If the value is negative, it is assumed
to be the one's complement of the buffer
address within the requestor's logical
space, which contains the physical page
numbers

is the error return address

811 15 14 13 12 II 76543210

JS R,X

0406

Word 2 ><Jo 1 o o 1 ol><
Word 3

Word 4 logical addr

Word 5 bufferaddrofphysicalpage

Word 6 reject addr

Example: Copy the same 2 physical pages as used by task
A, logical address ABUF, into task B's logical memory at
logical address BBUF. Task A scheduled task B, passing
task A's TIDB address to task B.

TASK A

PL
KBY
VSCTL

ABUP

TASK B

TBMING
TASKB
Pl

M1

PBUP

BBUP

NAMB
TITLB
EQU
EQU
BQU

LDBI
LDA
SCHBD

BSS
BND

NAME
TITLB
EQU
STA
PASS

TBA
TZB
LLSR

ADDE

MAPIN

TBA
LSRA
ADDI
TAB

BSS

BSS
BQU

BND

REAL-TIME EXECUTIVE SERVICES

TASKA
TASKA
106
0306
0306

ABUP
VSCTL
2 , 0 , PL, KEY,

02000

TASKB
TASKB
27
P1+4
29, *, PBUF

TBMING+PllUP
M1+5

2, BBUF, •

BBUP

29

TASKB-•+5 t2

(8 • Buffer Address)
(A - Task A's TIDB)
'TA','SK','8'

(Schedule task B, pass
parameters in A, 8)

(Set task A •s TIDB addr)
(Pass task A's TIDB
into PBUF)

(8 - ABUF addr)

(A - Page number, B -
offset in pap)

(Add task A's map image
addr
(MAPIN same 2 physical
pages at BBUF shared by
task A at ABUF)
(8 - Offset into page)
(Add BBUF addr)
(8 - Start of ABUF)

(TIDB buffer)

(Set to page boundary)
(Assume task B < 512

words)

2.1.19 PAGNUM (Identify Physical Page
Number) Macro

This macro allows the requestor to identify th!! physical
page number assigned to a specified logical address. If an
unassigned logical address is specified, return is to the
requester with the A register = 0. Otherwise, return is
made with the A register set to the physical page number
and the B register set to the task's map image address for
the specified logical address. The general form is

label PAGNUM loglcal addr

where logical addr is the address where the identity of the
assigned physical page is requested.

2-11

REAL-TIME EXECUTIVE SERVICES

Expansion: component designates an available map key (1-15) to
the background task and sets the appropriate
mapping registers to reflect the task's logical memory.

811 15 14 13 12 11 10 9 I 7 6 5 4 3 2 1 0

WordO J S R,X

Word 1 0406

Ward2

W0<d3 toeical addr

Example: Identify the physical page assigned to PBUF.

LDAI
STA

PBUP
P1+3

(Get RBUF addr)

P1 PAGNUM (Identify physical page)

PBUP' BSS 100

2.2 RTE SYSTEM FLOW

The RTE component loads and executes a task depending
on the category of that task:

Executive Mode Tasks

These are the VORTEX system and user tasks designated
during system generation (SGEN) to be resident (excludes
tasks specified on SGEN TSK directives). The RTE, IOC, 110
drivers, and common interrupt processors are examples of
system executive mode tasks (map 0). · OPCOM is loaded
into and executed from page 1 of map 0. All other non·
resident tasks are defined to be user mode tasks.

User Mode Tasks

a. Background tasks with a priority of zero: Tasks that are
executed via a DASMR or FORTRAN load-and-go
operation and those that are loaded and executed
from the BL library with a JCP/LOAD directive are in
this group.

2-12

These tasks are loaded with the first page of physical
memory (0-0777) designated as read operand only. The
literal and indirect pointer pool is loaded in the first
page at locations 0500-0777. The remainder of the
background task is loaded in whatever physical pages
are available at the time the task is loaded. These
pages are designated as read/write access. If a
nucleus module is referenced, that module is mapped
as read operand only. All other pages in the logical
memory are designated as unassigned. The RTE

b. Background priority 1 tasks: System tasks such as the
Job-Control Processor (JCP}, Input/Output Utility
(IOUTIL}, System Maintenance (SMAIN). Source
Editor (SEDIT), DAS MR, FORTRAN, RPG IV, MIDAS,
MICSIM, and File Maintenance (FMAIN) require full
access to the nucleus (to modify tables or utilize the
global FCBs). These tasks are loaded with the
required nucleus modules designated as read/write
access mode permitting fetches and stores into these
areas. The literal and indirect pointer pool is loaded
in the first page at locations 0500-0777. The task is
loaded starting at logical address 01000.

c. Foreground tasks: Page 0 is mapped read operand only
for a foreground task. Nucleus modules (including
blank common) referenced by foreground tasks, are
mapped in the read/write access mode (see figure
2-1). The maximum logical memory space available to
a foreground task is thus dependent on the number
and type of nucleus module referenced by the task.
The pages within the logical memory not utilized are
mapped as unassigned. All foreground tasks are
loaded at logical memory address 01000.

d. Read-only pages: During the creation of a load module
by LMGEN, the user has the capability to specify pages
within the load module as read-only pages. The
designated read-only pages are indicated in the
pseudo TIDB block. When the task is loaded, the RTE
component will designate those pages in the task's
logical memory as read-only pages.

2.3 TASK LIMITATIONS AND DIFFERENCES

In VORTEX the following differences and features are
apparent between a background task and a foreground
task:

a. A background task has a priority level of 0 or 1. A
foreground task can have a priority of 2 through 31.

b. Only one background task can be executed at a time.
Excluding the RTE, IOC, and 1/0 driver tasks, a
maximum of 15 (user mode of 1 through 15) user
foreground tasks can be in operation concurrently,
provided physical memory size is adequate. See
section 2.5 for a description of checkpointing of tasks.

c. A background task can be checkpointed and its
operation pre-empted by a foreground task. A
foreground program memory space is not check­
pointed (see section 2.5).

REAL-TIME EXECUTIVE SERVICES

d. A background task can have literals and indirect
pointers, a foreground task cannot.

g. Background level 0 or 1 task can schedule a task from
the background library only. Foreground tasks cannot
schedule a task from the background library.

e. All tasks whether background or foreground have
individual task protection.

If allocable memory is not available to load a
background task, the RTE component will output an
error message (EX05) and abort the operation. If a
foreground task is to be loaded and allocatable
memory is not available, the RTE component will
reattempt the load when memory becomes available.

h. Foreground tasks can utilize foreground blank
common. Background tasks cannot.

Background level 0 tasks have restricted RTE requests
(see table 2-1). Foreground tasks have no restriction on
RTE service requests.

Priority of Task
Background Background
Priority Priority

Nucleus Modules 0

Foreground
Blank COMMON UN UN
Nucleus Module

Global FCT ROP RW
Nucleus Module

System Table ROP RW
Nucleus Module

System Resident
Tasks Nucleus UN UN
Module

Page O ROP RW
System Constants

Key: RW Read-Write Access Mode
ROP Read Operand Only Access Mode
RO Read-Only Access Mode
UN Unassigned Access Mode

Note: Since the upper three modules are defined contigu­
ously, without regard to page boundaries, and since maps
are full pages, a map for any of these modules may include
a partial page of an adjoining module, with the same
access mode.

Figure 2-1. Matrix of Nucleus Module Access Mode

Foreground
Priorities

2·31

RW

UN

RW

UN

ROP

2-13

REAL· TIME EXECUTIVE SERVICES

2.4 ABORT PROCEDURE

Whenever a task is aborted, all currently active 1/0
operations are allowed to complete. All 110 requests that
are threaded (queued, or waiting to be activated) are not
activated. Upon completion of all active 1/0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2.5 CHECKPOINTING OF TASKS

A background task's memory space and/or assigned map
may be checkpointed for use by a foreground task. The
background task is restarted when memory space and/or a
map key becomes available.

A foreground task may be checkpointed by a higher priority
foreground task. It may also be checkpointed by a lower
priority task depending on the value of TBST bit 8. The
default value of this bit is on (-1) i.e., "may be
checkpointed by a lower priority task". In order to turn this
bit off, a usage of TBEVNT (2.1.15) is recommended. The
foreground task's memory space is never checkpointed.
More than one foreground task's map may be
checkpoirited.

2.6 PAGE ALLOCATION SCHEME

The page allocation routine scans the page bit mask table,
V$PAGE (figure 2-2}° to determine the allocable physical
pages. To expedite the process, the allocation routine first
checks the page 0 system word V$NPAG to find the total
number of allocable pages in V$PAGE. If the required
number of pages exceeds V$NPAG, scanning of V$PAGE is
not attempted. The allocation routine scans V$PAGE
starting with the word number specified in V$LPP (page O
system pointer). The system generation program initially
sets V$LPP to 0. The allocation routine updates V$LPP
during the scanning while the page deallocation routine
sets V$LPP to the deallocated pages.

2-14

Word

0

2

3

3

29

35

31

32

Bit Position

15 14 2 l 0

Size of V$PAGE

0 l Increasing Page 15
Numbers

16 31

32 47

48 ~ 63

64 79

448 463

464 479

480 495

496 511

Corresponding Page Bit Positions:

- Page is allocatable

O - Page is unallocatable

Address of V$PAGE

First

Physical

32K Words

Last
Physical
32K Words
(Maximum
256K)

V$PGT
V$LPP
V$NPAG

0, Pointer to last word tested
Number of available pages

Figure 2-2. V$PAGE, Page Allocation Table

The size of V$PAGE is determined by SGEN based on the
physical memory size specified on the MRY directive.

SECTION 3
INPUT /OUTPUT CONTROL

The VORTEX input/output-control component (IOC)
processes all requests for 1/0 to be performed on
peripheral devices. The IOC comprises an l/0-request
processor, a find-next-request processor, an 1/0-error
processor, and 1/0 drivers. The IOC thus provides a
common 1/0 system for the overall VORTEX operating
system and eliminates the programmer's need to under­
stand the computer hardware.

All ltO with remote devices connected through the Data
Communications Multiplexor (DCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter­
faces with IOC. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and 8 registers and the
setting of the overflow indicator are saved during execution
of any IOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 1/0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the 1/0 driver stores the
error status in the user 1/0-request block, and the 1/0-error
processor posts the error on the OC logical unit. The user
can then try an_.her physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating­
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
110 operations that are independent of the physical-device
configurations by making possible references to the logical·

unit number. The standard interfaces between the program
and the IOC, and between the IOC and the 110 driver,
permit substitution of peripheral devices in 1/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. T~e numbers
assigned to the units are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 17) or the job-control
processor (JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number 0 indicates a dummy device. The
IOC immediately returns control from a dummy device
to the user as if a real 110 operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 17-1 shows the scheme of system names for physical
devices. Table 3·2 shows the possible logical-unit
assignments.

Table 3·1. VORTEX Logical-Unit Assignments

Number Name Description Function

0 OUM Dummy For 110 simulation

oc Operator For system operator
communication communication with immediate

return to user control;
Teletype or CRT only

SI System input For inputs of all JCP control
directives to any device

3 so System output For display of all input
control directives and output
system messages; Teletype or
CRT only

4 Pl Processor input For input of source statements
from all operating system
language processors (continued)

3-1

INPUT /OUTPUT CONTROL

Number

6

8

10

11

12

101

102

103

3-2

Table 3-1. VORTEX Logical-Unit Assignments

(continued)

Name

LO

Bl

BO

SS

GO

PO

DI

DO

cu

SW

CL

Description

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Checkpoint unit

System work

"Core" -resident
library

Function

For output of operating system
input control directives,
system operations messages,
and operating system language
processors' output listings

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter­
mediate scratch unit input
from this unit

For output of the same infor­
mation as the BO unit by the
system assembler and compiler;
RMD partition or MT.

For processor output; all
operating system language
processors that use an inter­
mediate scratch unit output lo
this unit; PO and SS are
assigned lo the same device
at system-generation time

For all debugging inputs

For all debugging outputs

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or
execution by other system
components; partition protec­
tion key B; RMD partition only

For all "core" -resident system
entry points; partition protec­
tion key C; RMD partition only
(12 names per 2 sectors)

INPUT /OUTPUT CONTROL

Number Name

Table 3-1. VORTEX Logical-Unit Assignments
(continued)

Description Function

104 OM Object-module For the VORTEX system object·
library module library; partition

protection key D; RMD partition
only

105 BL Background library''' For the VORTEX system background
library; partition protection
key E; RMD partition only

106 FL Foreground library* For the VORTEX system fore·
ground library; partition
protection key F; RMD
partition only

* Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Table 3-2. Valid Logical-Unit Assignments

Logical Unit oc SI so Pl LO Bl BO SS GO
Unit No. 1 2 4 5 6 8 9

Device

Dummy DUM DUM DUM DUM DUM
Card punch CP CP
Card reader CR CR CR
CRT device CT CT CT CT CT
RMD (disc/drum) D D D D D D D

partition
Line printer LP
Magnetic-tape unit MT MT MT MT MT MT MT
Paper-tape reader/ PT PT PT PT PT

punch
Teletype TY TY TY TY TY
Remote Teletype TC TC TC TC

Logical Unit PO DI DO cu SW CL OM BL FL
Unit No. 10 11 12 101 102 103 104 105 106

Device

Dummy DUM DUM
Card punch CP
Card reader CR
CRT device CT CT CT
RMD (disc/drum) D D D D D D D

partition
Line printer LP LP
Magnetic-tape unit MT
Paper-tape reader/ PT

punch
Teletype TY TY TY
Remote Teletype TC TC

3.3

INPUT /OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda­
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O Beginning partition address (track number)

Word 1 ppb

Word 2

Word 3

Protection key

Number of bad tracks in the
partition

Ending partition address + I

Section 9.1 describes the full PST format.

The partition protection bit, designated ppb in the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The length of the
PST is 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left within each word, and forward through contiguous
words,"with set bits flagging bad tracks on the RMD.

Each RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati­
cally created when the partitions are defined at system­
generation time. It is possible to use a partition with no

3-4

directory, e.g., by a foreground program that is collecting
data in real time.) Each directory entry is in the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
is created, and which remain constant.

At system-generation time, the first sector of each partition
is assigned to the file-name directory and a zero written
into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector is a one-word entry containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
IOC use. User access to the directories is via the IOC, which
references the directories in response to the 1/0 macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by IOC operations. The
IOC can modify only the current position-of-file parameter.

In the case of a file containing a directory, an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,

the file boundary addresses and the current position-of-file
value from 1he directory entry are stored in the FCB. If the
OPEN macro

a. Specifies the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The IOC references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the IOC and user access to the file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option to update, the current position-of­
file value in the directory entry is set to the value of the
FCB current position, allowing reference by a later
OPEN.

b. Specifies the option not to update, the file-directory
entry remains unmodified ..

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is••••••
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is
deleted, in which case the deleted name is converted to a
blank entry and all other names of the multiname file are
set to zero.

3.3 1/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven 110 system, thus
optimizing the allocation of CPU cycles in the multipro­
gramming environment.

INPUT /OUTPUT CONTROL

3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task's output to intermediate RMD
files. This avoids the user task waiting for the device
transfer completion. Total system throughput will be
increased because waiting for transfers to be completed,
both in the use of 1/0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also, non-resident tasks may transfer to a spooled device
and immediately exit, instead of remaining resident until
completion of the transfer.

At system generation, the user may have the output of
some logical units, such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
IOC driver to which data output may be assigned and which
transfers output for its associated logical unit to a circular
RMD file or directly to the output listing task, and (2) and
output listing task which accepts messages from this
circular RMD file or directly from the IOC driver and
transfers them to the appropriate output device.

Communication between these two tasks is accomplished
through parameters within the listing rask which are
established by the IOC driver. When these and other
system parameters indicate that the listing task has caught
up with the spoolout task, output messages will be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMD transfers).

All data records transferred to the circular RMD file will
contain record length and a key signifying whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL file overflow messages will be output when appropri·
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3·1 shows a simplified flow of output data through
the SPOOL subsystem.

3-5

INPUT /OUTPUT CONTROL

USER
TRANSFER TO
LOGICAL UNIT

SPOOLER IOC
DRIVER
(VZSPOA)

CONTROLLER
TABLE CT SPnA

DATA DIRECTLY
TO SPOOLOUT
BUFFER

RESIDENT
LISTER TASK

TRANSFER TO
LOGICAL UNIT
180 + n*

TRANSFER IF
SPOOL STREAM
n* IS BUSY

RMD FILE
SPOOL n*

* WHERE n IS AN INTEGER FROM ZERO TO SEVEN

VTll-1113

Figure 3-1. Spooling Subsystem Flow

3.4.1 SPOOL Operation

During the system generation, up to eight spool pseudo
devices may be defined. These pseudo·devices, SPOA'
through SP7A are dummies which can be assigned to any
logical unit used only for output. Such assignments can be
made permanently at SGEN time, or dynamically through
JCP or OPCOM.

Each pseudo·device, SPiA, has a corresponding RMD file
name, SPOOU. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
(named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing a WRITE request to an LUN assigned to device
SPiA, will have data transferred to file SPOOLi on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow.

3-6

If the output device is not busy when a user request is
made, and if the RMD stream is inactive, the user data is
moved directly to the output device via a SPOOL buffer. In
this case, the user request is set complete as soon as the
buffer is queued for the device.

If a user's l/O requests are made and a spool pseudo­
device number for the appropriate SPOOLi file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user's data to be queued directly to
the output device, up to a maximum of two buffers per
stream. If the user should issue a request that would
require a third buffer for that stream, then the SPOOL
driver enters a delay loop until the two buffer limit can be
satisfied. During this wait time, the user's 110 is active.

If the output device to which a user is spooling output
should go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user's requests will be delayed after two buffers are
allocated to the stream.

Should the user fill the RMD file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Without these, the SPOOL subsystem will
function at a reduced rate. Files SPOOLO through SPOOL?,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

Files must be created after SGEN but before the first user
of the SPOOL program. To establish files in a manner
consistent with SPOOL, an exact procedure must be
followed. If LO is assigned to SPOOL, it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

1ASSIGN,LO•LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following
manner:

/FKAIN
INIT, 107 ,S
CRBATB,107,S,SPOOL0,120,n
CRBATB,107,S,SPOOL1,120,n

CRBATB,107,S,SPOOL7,120,n
/FINI

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data streams
are required.

The number of 120-word records to be established within
the file is given as the last parameter of the CREATE
directive. SPOOL files are circular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full,
i.e., that another entry cannot be placed on the file without
destroying one which has not been removed, transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file size is increased, the
likelihood of a full file is decreased. File size should be a
function of expected stream utilization and device output
speed, which determines how quickly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is full. If this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.

This procedure for creation of SPOOL files needs to be
done only once. It is performed immediately after comple­
tion of SGEN when the "VORTEX SYSTEM READY" mes­
sage is output. If these file sizes are found to be unsatisfac­
tory, the system may be rebooted and file sizes modified
by executing the procedure again.

As part of the SGEN for systems using the SPOOL program,
controller table 0 (stream 0) must be included since the
initialization routine is included in its buffers. Additional
controller tables may be included as desired. However,
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-word
buffers, and odd streams contain only two 74-word buffers.
For systems with a large amount of SPOOL throughput, it is
recommended that four buffers be specified for controller
tables, otherwise two-buffer tables should be sufficient.

3.5 l/0-CONTROL MACROS

1/0 requests are written in assembly language programs as
110 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform 1/0 operations, thus
simplifying coding:

INPUT/OUTPUT CONTROL

OPEN Open file

CLOSE Close file

READ Read one record

WRITE Write one record

REW Rewind

WEOF Write end of file

SREC Skip one record

FUNC Function

STAT Status

DCB Generate data control block

FCB Generate file control block

The IOC performs a validity check on all 1/0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the IOC schedules the
appropriate 110 driver to service the queued request.

The assembler processes the 1/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain 110 operations require parameters in addition to
those in the 1/0 macro. These parameters are contained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default values) must be indicated
by the normal number of commas.

Error messages applicable to these macros are given in
Appendix A.3.

110 Macros: The general form of 110 macros is:

label name cb,lun,wait,mode

where the symbols have the definitions given in section
3.5.1.

If the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optional.

3-7

INPUT /OUTPUT CONTROL

The expansion of an 110 macro is:

111 15 14 13 12 II 10 9 I 7 6 5 4 3 2 I 0

WordO

Wordl

Word 2

Word 3

Word 4

Word5

Word 6

where

Status

cc

Priority

w

Mode

Op-code

J S R,X

c l Status] e] cc l Priority•

w J Mode J Op··code J Loaical··unit number

FCB or DCB address

User task identification block address•

IOC thread address•

set indicates completion of l/O tasks

is the status of the 110 request

set indicates an irrecoverable 1/0
error

is the completion code

is the priority level of the task
making the request

is the wait/immediate-return option

is the mode of operation

specifies the 1/0 operation to be
performed

indicates an item whose initial
value is zero

The wait option causes the task to be suspended until its
1/0 is complete. The immediate option causes control to be
returned immediately to the task after the 1/0 request is
queued. Therefore, to multiprogram effectively within
VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15 indicates whether the 1/0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in Appendix B.2.

c. Bit 8 indicates an irrecoverable 1/0 error.

d. Bits 7 through 5 contain a completion code: 000
indicates a normal return; 101, an error; 110, an end of
file, beginning of device, or beginning of tape; and
111, end of device, or end of tape.

3-8

e. Bits 4 through O indicate the priority level of the task
making the request.

Word 3 contains the following information:

Bits 0·7 Logical Unit (LUN)

When an l/O request is made to V$10C, V$10C uses the
LUN as an index into the logical unit table (LUT). V$10C
then uses the current assignment pointer of that entry in
the LUT to determine the address of the DST on which the
110 is to be performed. To determine the DST address, the
current assignment value less one is multiplied by the
length of a DST (3 words) and added to the base address
of the DST block. V$10C verifies the validity of the specified
LUN.

If the LUN is invalid, a parameter error has occurred (refer
to sections 3.1 and 3.3).

Bits 8-11 Op-Code

Op-codes can range in value from 0 to 15; however, not all
op-codes are applicable for every device. V$10C, using the
op-code as an index gets an entry from a bit table. This
word contains a 1 in the bit position associated with the op·
code and is compared with the controller table item
CTOPM. If the corresponding bit in CTOPM is set to 1, it
means that the device connected to the controller can
perform the requested operation. If the corresponding bit
in CTOPM is zero, the 1/0 request is not performed, and
the 110 complete indicator (bit 15) set.

Bit 8·11 Meaning

0000 Read
0001 Write
0010 Write EOF
0011 Rewind
0100 Skip record
0101 Function
0110 Open
0111 Close
1000-1111 Not used

Bits 12·14 Mode

The mode bits are not used by V$10C nor V$FNR. The 110
driver use this information whenever applicable to the op­
code.

Bit 15 Wait Option

V$10C uses this bit to determine whether the requesting
task is to be suspended until 1/0 is completed or whether
an immediate return is required.

Bit 15 - 0

. Bit 15 - 1

Suspend until 1/0 completed. V$10C
sets bit 14 in TBST in the requesting
task's TIDB.

Immediate return required (via V$DISP) .
V$10C clears bit 14 in TBST in the
requesting task's TIDB.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the IOC sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:

label STAT req,err,aaa,bbb,busy

where the symbols have the definitions given in section
3.5.9.

The normal return is to the first word following the macro
expansion.

The expansion of the STAT macro is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word 1

Word 2 Address of the 110 macro

Word3 Address of the 1/0 error routine

Word 4

Word 5 bbb

Word 6 Address of the busy or 1/0-not-complete routine

where aaa is the address of the end of file, beginning of
device or beginning of the tape routine and bbb is the
address of the end of the tape or end of the device routine.

Control block macro: The general form of the DCB macro
is:

label DCB rl,buff,fun

where the symbols have the definitions given in section
3.5.10.

The expansion of the DCB macro is:

Bit 15 14 13 12 11 10 9 • 7 6 5 4 3 2 1 0

WordO Record length

Word 1 Direct Address of user data area

Word 2 Function code

INPUT /OUTPUT CONTROL

The function code applies only to 1/0 drivers that allow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The paper-tape punch to punch leader.

c. The card punch to eject a blank card as a separator.

The general form of the FCB macro is:

label FCB rl,buff,acc,key, 'xx', •yy', 'zz'

where the symbols have the definitions given in section
3.5.11.

The expansion of the FCB macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
--

Word 0 Record length

Word 1 Address of user data area

Word 2 Access method l Protection key

Word 3 Current record number

Word 4 Current end-of-file address

Word 5 Begmnmg file address

Word 6 Endmg file address

Word 7 File name

Word 8 File name

Word 9 File name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses
the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

b. Sequential access by logical record: The 110 driver
uses the contents of word 3 as the number of the logical
record within a file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

3.9

INPUT /OUTPUT CONTROL

c. Direct access by physical record: The 110 driver uses
the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

d. Sequential access by physical record: The 1/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

This macro, which applies only to RMDs or magnetic-tape
units, enables 110 operations on the devices by initializing
the file information in the specified FCB. The macro has
the general form

where

label OPEN fcb,lun,wait,mode

fcb is the address of the file control block

lun

wait

mode

is the number of the logical unit being
opened

is 1 for an immediate return, or O
(default value) for a return suspended
until the 110 is complete

is 0 (default value) for rewinding or 1 for
not rewinding. In the former case. word
3 (current record number) of. the FCB is
set to 1, word 4 (current position-of-file
address) is set to the current position-of­
file address given by the RMD file
directory, and rewinds the magnetic·
tape unit. In the latter case, the current
position-of-file address given by the
RMD file directory is copie'd into word 4,
converted to a record number and
stored in word 3 of the FCB. thus
initializating the user FCB, enabling
reading or writing from a previously
specified location, and the magnetic­
tape position is left unchanged (not
rewound).

OPEN must precede any other 1/0 request (except REW)
because the FCB file information must be complete before
any file-oriented 1/0 is possible. If a file has already been
opened, an OPEN will be accepted.

3-10

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

If an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the 1/0
request is processed internally by the IOC but not by an
1/0 driver. The IOC indicates the status as 1/0 complete.

Example: Read a 120-word record from the Filo on logical
unit 18, an RMD partition with sequential, record-oriented
access. BUFF is the address of the user's buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to l.

X1
RL
WAIT
REW
KEY
SEQR

OPEN
READ

FCB

EQU 18 (LUN assigned to unit Xl)
EQU 120 (Record length 120)
EQU 0 (Wait option)
EQU 0 (Rewind option)
EQU (Logical-unit protection key)
EQU (Sequential, record-oriented

access)
OPEN FCB,X1 ,WAIT,REW
READ FCB,X1 ,WAIT

FCB RL, BUFF, SEQR, KEY,
• FI.,. 10.,. I

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
previously defined position in the file. The macro has the
general form

where

label CLOSE fcb,lun,wait,mode

fcb is the address of the FCB

lun is the number of the logical unit being
closed

wait is l for an immediate return. or 0
(default value) for a return suspended
until the I /O is complete

mode is 0 (default value) for not updating, or 1
for updating In the former case, there is
no change to the current position-of-file
address in the RMD file directory, words
3, 4, 5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). In the latter
case, the contents of FCB word 3
(current record number) are converted
to an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

If an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 110
request is processed internally by the IOC, but not by an
110 driver. The IOC indicates the status as 1/0 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

SEQR EQU

UPDATE EQU
WAIT EQU

CLOSE CLOSE

FCB FCB

(Sequential, record­
oriented access)
(Update option)
(Wait option)

FCB, 180,WAIT,UPDATE

,,SEQR,, 'MA', 'TR', 'IX'

3.5.3 READ Macro

This macro retrieves a record of specified length from the
specified logical unit, and places it in the specified area of
main memory. The macro has the general form

where

label READ cb,lun,wait,mode

cb is the address of the data control block,
or of the file control block

lun is the number of the logical unit from
which the record is read

wait

mode

is 1 for an immediate return, or O
(default value) for a return suspended
until the I /0 is complete

specifies the 1/0 mode: 0 (default value)
for system binary, 1 for ASCII, 2 for BCD,
or 3 for unformatted 110 (see appendix
C for format)

INPUT /OUTPUT CONTROL

The number of words read is stored in word 5 of the 110
macro.

Example: Read a record from logical unit 4, a magnetic­
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM
BIN
MT

RECL

MTRD

TAPE
BUFF

EQU
EQU
EQU

EQU

READ

DCB
BSS

(Immediate return)
(System binary mode)
(LUN assigned to
magnetic-tape unit)

60 (Record length 60 words)

TAPE,MT,IM,BIN

RECL, BUFF (Data control block)
60 (User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE,MT,IM

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun,wait,mode

where the parameters have the same definitions and take
the same values as in the READ macro (section 3.5.3).

The number of words written is stored in word 5 of the 110
macro. The first byte of each print line is treated as a print
control character and not echoed when outputting to a
listing device.

Example: Obtain a system binary record 60 words in
length from the user's data area BUFF, and transmit it to
logical unit 16, a magnetic-tape unit. Use the immediate­
return option.

IM
BIN
MT

RECL

MTWT

TAPE
BUFF

EQU
EQU
EQU

EQU

WRITE

DCB
BSS

(Immediate return)
(System binary mode)

16 (LUN assigned to magnetic-
tape unit)

60 (Record length 60 words)

TAPE,MT,IM,BIN

RECL, BUFF (Data control block)
6 0 (User data area)

3-11

INPUT /OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

where

label REW cb,lun,wait

cb is the address of the FCB or DCB, which
is optional

lun

wait

is the number of the logical unit being
rewound

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

Note that the DCB address is an optional parameter, but
that the FCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and, upon successful completion of the task, returns a
beginning-of-device (BOD) status.

Rotating-memory devices: REW places the start-RMD­
partition and end-RMD·partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11).

Examples: Rewind logical unit 23, a magnetic·tape unit.
Use the wait option, here specified by default.

MT EQU

REWT REW

23

,MT

(LUN assigned to magnetic·
tape unit)

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.5.11).

DISC EQU

RECL EQU

REWD REW

FCB FCB

BUFF BSS

3-12

10

120

(LUN assigned to RMD
partition)

FCB,DISC

RECL, BUFF, , , 'SY' , 'ST' , 'EM'
(section 3.5.11)
120

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

where

label WEOF cb,lun,wait

cb is the address of the control block

lun is the number of the affected logical unit

wait is l for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

Example: Write an end of file on logical unit 10. Use the
wait option, here specified by default.

TAPE EQU 10

EOF WEOF CB,TAPE

3.5.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape, card
reader, or rotating-memory devices, skips one record in
either direction on the specified logical unit. It has the
general form

where

label SREC cb,lun, wait, mode

cb is the address of the control block

lun is the number of the logical unit being
manipulated

wait

mode

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I 10 is complete

specifies the direction of the skip: 0
(default value) for a forward skip, or 1 for
a reverse skip. Reverse skip does not
apply to the card reader.

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt is made to apply this macro to a device otht;ir
than a magnetic-tape or rotating-memory unit, the 1/0
request is processed internally by the IOC but not by an
110 driver. The IOC indicates the status as 1/0 complete.

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT EQU 57 (LUN assigned to magnetic-
tape unit)

REV EQU (Reverse)
IM EQU (Immediate return)

SKIP SREC CB,MT,IM,REV

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when present) cannot
be defined by any of the preceding 1/0 control functions.
The macro has the general form

label FUNC dcb,lun,wait

where

deb is the address of the data control block

lun

wait

is the number of the logical unit being
manipulated

is 1 for an immediate return, or 0
(default value) for a return suspended
until the 1/0 is complete

FUNC causes certain 1/0 drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.5.10):

1/0 Driver

Card punch

Paper-tape punch

Line printer and
Teletype printer

Statos 31

Function
Code Function

Eject blank card

Punch 256 blank frames
for leader

Advance paper to top of
next form, or on Tele­
type 3 lines
Advance paper one line
Advance paper two lines

Advance paper to bottom
of form

8 Normal print size•
9 Large print size•

*Only for software character generator.

INPUT /OUTPUT CONTROL

Function
1/0 Driver Code Function

Statos 31/42 00 Advance paper to top
of form

01 Advance paper one line
02 Advance paper two lines
07 Advance paper to bottom

of form
08 Step plotter one raster

line
10 Select small/upright
11 Small/ +90 degrees
12 Small/ 180 degrees
13 Small!-90 degrees
14 Large/upright
15 Large/ + 90 degrees
16 Large/ 180 degrees
17 Large/ -90 degrees
20 Cut paper
21 End cut

Plot data may be transmitted to the Statos 31 by specifying
unformatted mode, 3, in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the left-most dot position.

Statos 31142 The WRITE macro enables the transfer
of one data buffer to the printer/
plotter and allows for five different
modes of operation:

Mode 1 -- Compatible line printer
(70-6701) mode

Mode 3 -- Plot (raster) mode (binary
raster data transfer)

Mode 4 -- Print mode selectable size
and orientation

Mode 5 -- Simultaneous print/plot
mode (ASCII data transfer)

Mode 6 -· Simultaneous print/plot
mode (binary raster data)

All other modes default to mode 1.

If an attempt is made to apply the FUNC macro to any
other device, the l/O request is processed internally by the
IOC but not by an 1/0 driver. The IOC indicates the status
as 110 complete.

3-13

INPUT/OUTPUT CONTROL

Example: Skip two lines on the printer, which is logical
unit 5. Use the wait option, here specified by default.

LP
CNT

EQU
EQU 2

(LUN assigned to ,line
printer) (Paper-tape
channel 2)

UPSP FUNC DCB,LP

DCB DCB , ,CNT

3.5.9 STAT (Status) Macro

This macro examines the status word in an 110 macro to
determine the result of an 110 function request. The STAT
macro has the general form

label STAT req,err,aaa,bbb,busy

where

req

err

aaa

bbb

busy

is the address of the 1/0 macro (e.g.,
READ)

is the address of the I /0-error routine

is the address of the end of file,
beginning of device, or beginning of
tape routine

is the address of the end of device or
end of tape routine

is the address of the l/O·not·complete
routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

3.14

CAUTION

Foreground tasks should not loop to check for
completion of 1/0 tasks because this inhibits all
lower-level tasks.

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option.

MT EQU 12 (LUN assigned to magnetic·
tape unit)

IM EQU (Immediate return)

REW REW ,MT,IM (DCB can be omitted
for REW)

BUSY STAT REW,ERR,BOT,EQT,BUSY

BOT

ERR

3.5.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by 110 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

where

label

rl

DCB rl,buff,fun

is the length, in words, of the record to
be transmitted

buff is the address of the user's data area

fun is the function code for a FUNC request
and is unused for other requests (section
3.5.8)

Example: Read a record from logical unit 4, a magnetic­
tape unit. Use system binary mode and the immediate·
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU (Immediate return)
BIN EQU (System binary mode)
MT EQU (LUN assigned to magnetic-

tape unit)
RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL, BUFF (Data control block)

3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any 110 macro
request to an RMD. The macro has the general form

label

where

rl

buff

ace

key

xxyyzz

Word

3

4

FCB rl,buff,acc,key, 'xx', 'yy', 'zz'

is the length, in words, of the record to
be transmitted

is the address of the user's data block

specifies the access method and is 0
(default value) for the direct access by
logical record, 1 for sequential access
by logical record, 2 for direct access
using the relative sector number
(beginning with 1) within the file, or 3 for
sequential access using the relative
sector number within the file

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCII character coded
between single quotation marks (e.g.,
the protection code H would be coded
' H') or as the eight-bit octal equivalent,
in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default value is binary zero (not
the character 0).

is the name of the file being referenced.
The file name is one to six ASCII
characters, coded in pairs between
single quotation marks and separated

INPUT/OUTPUT CONTROL

by commas, e.g., the file named ARRIBA
is coded ' AR' , ' RI' , ' BA' . Embedded
blanks are illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
110 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU (Sequential, record-
oriented access)

RECL EQU 120 (Record length 120
words)

DISC FCB RECL,BUFF,SEQR, 'Z',
'FI' , I LE I , 'xx I

BUFF BSS 120

Note that the protection code character Z is coded between
single quotation marks, i.e., 'Z'. but it can also be coded as
the octal value of the ASCII character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement
given in the example above is equivalent to

DISC FCB RECL, BUFF, SEQR,
0322, 'FI', 'LE', 'XX'

Table 3·3. FCB Words Under 1/0 Macro Control

OPEN READ WRITE SREC CLOSE REW

Sequential-Access Method

Set to lncre- lncre- Adds or Put into Current
position men ts men ts subtracts position record set
of cur- record record one of file (directory
rent rec- number number on direc- partition)
ord by by one by one tory by to one or
mode mode beginning
chosen chosen address of

logical
unit (non-
directory
partition)

Set to Checks No Checks Cleared Set to
current end of action end of ending
position file file address
of file of logi-
as noted cal unit
on direc-
tory

3-15

INPUT /OUTPUT CONTROL

Table 3-3. FCB Words Under 1/0 Macro Control (continued)

Word OPEN READ WRITE SREC CLOSE REW

Set to No No No Cleared Set to Skip first
beginning action action action beginning directory
of file address sector
address of logi· (directory
put in cal unit partition)
this word (non·

directory
partition)

6 Set to No No No Cleared Set to
end of action action action ending
file ad- address
dress of logi·

cal unit

Direct-Access Method

Set to No No No Put into Current
position action action action position record set
of cur· of file (directory
rent rec· on direc· partition)
ord by tory by to one or
mode mode beginning
chosen chosen address of

logical
unit (non·
directory
partition)

4 Set to No No No Cleared Set to
current action action action ending
position address
of file of logi·
as noted cal unit
on direc·
tory

Set to No No No Cleared Set to Skip first
beginning action action action beginning directory
of file address sector
address of logi- (directory

cal unit partition)
(non-
directory
partition)

Set to No No No Cleared Set to
end of action action action ending
file ad· address
dress of logi·

cal unit

3-16

SECTION4

JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request to the OC logical unit has a slash
(/) as the first character.

Once initiated, the JCP processes all further JCP directives
from the SI logical unit.

If the SI logical unit is a Teletype or a CRT device, the
message JC•• is output to indicate the SI unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the SI logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

All JCP directives are echoed to the SO logical unit if SI ;i0

SO. All directives, except IC and IP have the time of day
append onto the front of the directive when echoed to SO.
The format is

HH:MM:SS /JCP directive

4.2 JOB-CONTROL PROCESSOR DIRECTIVES

This section describes the JCP directives:

a. Job-initiation/termination directives:

/JOB
/ENDJOB
/FINI
IC
/P
!MEM

Start new job
Terminate job in progress
Terminate JCP operation
Comment
Pause
Allocate extra memory for
background task

b. l/0-device assignment and. control directives:

/ASSIGN
/SFILE

Make logical-unit assignment(s)
Skip file(s) on magnetic-tape unit

/SREC

!WEOF
/REW

/PFILE
/FORM
/KPMODE
/OPEN
/CLOSE
!CFILE

Skip record(s) on magnetic-tape unit
or RMD partition
Write end-of-file mark
Rewind magnetic-tape unit or RMD
partition
Position rotating memory-unit file
Set line count on LO logical unit
Set keypunch mode
Open VTAM line or terminal.
Close VTAM line or terminal
Close file on global logical unit

c. Language-Processor directives:

/DASMR
!FORT

Schedule DAS MR assembler
Schedule FORTRAN compiler

d. Utility directives:

!CONC
/SEDIT
/FMAIN
/LMGEN
/IOUTIL
/SMAIN

Schedule system-concordance program
Schedule symbolic source-editor task
Schedule file-maintenance task ·
Schedule load-module generator
Schedule l/0-utility processor
Schedule system-maintenance task

e. Program-loading directives:

/EXEC

/LOAD

!ALTUS

/DUMP

Schedule loading and execution of a
load-module from the SW unit file
Schedule loading and execution of a
user background task
Schedule the next background task
from the specified logical unit
rather than from the background
library
Dump background at completion of
task execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (.) or by equal
signs (-). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after· a period.

Each JCP directive begins with a slash (/).

The general form of a job-control statement is

/name,p(1),p(2), .. . ,p(n)

4.1

JOB-CONTROL PROCESSOR

where

name is one of the directive names given (any
other character string produces an
error)

each p(n) is a parameter required by the JCP or by
the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of some directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP directives are given
Appendix A.4.

4.2.1 I JOB Directive*

This directive initializes all background system pointers
and flags, and stores the job name if one is specified. It
has the general form

/JOB.name

where name is the name of the job and comprises up to
eight ASCII characters (additional characters are permitted
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs.

The occurrence of the I JOB directive causes the scheduling
of the background task V$ACTl. V$ACTl is a dummy task
on BL which only performs an EXIT. However, V$ACTl may
be replaced by a user task to perform any desired
accounting function.

Example: Initialize the job TASKONE.

/JOB,TASKONE

4.2.2 /ENDJOB Directive*

This directive initializes all background system pointers
and flags, and clears the job name. It has the form

/ENDJOB

4·2

The occurrence of the /ENDJOB directive causes the
scheduling of the background task V$ACT2. V$ACT2 is a
dummy task on BL which only performs an EXIT. However,
V$ACT2 may be replaced by a user task to perform any
desired accounting function.

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive*

This directive terminates all JCP background operations
and makes an EXIT request to the real·time executive RTE
component (section 2.1.11). It has the form

/FINI

To reschedule JCP after a FINI, input any JCP directive
from the OC unit

The occurrence of the /FINI directive causes the scheduling
of the background task V$ACT3. V$ACT3 is a dummy task
on BL which only performs an EXIT. However, V$ACT3 may
be replaced by a user task to perform any desired
accounting function.

Example: Terminate JCP operations.

/FINI

• The JCP directives JOB, ENDJOB, and FINI reset all
logical units and table l units to their default (system)
values. JOB and ENDJOB do not set the SI logical unit.

4.2.4 IC (Comment) Directive

This directive outputs the specified comment to the SO and
LO logical units, thus permitting annotation of the listing. It
is not otherwise processed. It has the general form

!C,comment

where comment is any desired free·form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL HAG TAPES

4.2.5 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of main
memory to the next scheduled background task. It has the
general form

IMEM,n

where n is the number of 512-word blocks of main memory

JOB-CONTROL PROCESSOR

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

/SFILE,lun,neof

to be assigned. where

/MEM permits larger symbol tables for FORTRAN compila·
lions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area available for background and nonresident foreground
tasks. An attempt to exceed this limit causes the scheduled
task to be aborted.

Example: Allocate an additional 1,024 words of main
memory to the next scheduled task.

/MEM,2

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units
to specific 110 devices. It has the general form

I ASSIGN,1(1) = r(l),/(2) = r(2), .. ,l(n) = r(n)

where

each l(n)

each r(n)

is a logical-unit number (e.g., 102)
or name (e.g., SI)

is a logical-unit number or name, or
a physical-device system name (e.g.,
TYOO, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

If the controller and unit numbers are omitted from the
name of a physical device, controller 0 and unit 0 are
assumed.

An inoperable device, i.e., one declared down by the
;DEVON operator. key-in request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the Pl logical unit to card reader CROO
and the LO logical unit to Teletype TYOO.

/ASSIGN,PI•CR,LO•TY

lun is the number or name of the
affected logical unit

neof is the number of end-of-file
marks to be skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, the JCP outputs to the
SO and LO logical units the error message JC05,nn, where
nn is the number of files remaining to be skipped.

Example: Skip three files on the Bl logical unit.

/SFILE,BI,3

4.2.8 /SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers, and RMDs, causes the specified logical unit
to move the tape the designated number of records in the
required direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

where

lun

nrec

di rec

/SREC,lun,nrec,direc

is the number or name of the
affected logical unit

is the number of records to be
skipped

indicates the direction to be
skipped; F (default value) for
forward, or R for reverse.
Reverse skip does not apply to
the card reader.

If a file mark, end of tape, or beginning of tape is
encountered before the required number of records has
been skipped, the JCP outputs to the SO and LO logical
units the error message JC05,nn, where nn is the number
of records remaining to be skipped.

4.3

JOB-CONTROL PROCESSOR

Example: Skip nine records forward on the BO logical
unit.

/SREC,B0,9

4.2.9 /WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specified
logical unit. It has the general form

/WEOF,lun

where lun is the number or name of the affected logical
unit. (Not accepted for RMD.)

Example: Write an end-of-file mark on the BO logical unit.

/WEOF,BO

4.2.10 /REW (Rewind) Directive

This directive, which applies only to magnetic-tape units
and RMDs, causes the specified logical unit(s) to rewind to
the beginning of tape. It has the general form

/REW,lun,lun, .. ,lun

where lun is the number or name of a logical unit to be
rewound.

Example: Rewind the BO and Pl logical units.

/REW,BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs and MT
assigned to global logical units causes the specified logical
unit to move to the beginning of the designated file. It has
the general form

where

lun

4-4

/PFILE,lun,key,name

is the number or name of the
affected logical unit. The
logical unit must be one of
the system defined logical
units which has a global FCB

key

name

is the protection code required
to address lun

is the name of the file to which
the logical unit is to be
positioned

Global file control blocks: There are eight global file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Position the Pl logical unit to beginning of file
Fl LEXY, whose protection key is$.

/PFILE,PI,$,FILEXY

4.2.12 /FORM Directive

This directive sets the specified line count on the LO logical
unit. This is the number of lines printed by DAS MR
assembler or FORTRAN compiler before a top of form is
issued. The directive has the general form

/FORM, lines

where lines is the number (from 5 to 9999, inclusive) of
lines to be printed before a top of form is issued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORM,100

4.2.13 /KPMODE (Keypunch mode)
Directive

This directive specifies the mode, 026 or 029, (BCD or
EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

KPMODE,m

where m is 0 for 026 mode, or 1 for 029 mode.

Example: Specify that cards be read and punched in 029
keypunch mode.

/KPMODE, 1

4.2.14 /DASMR (DAS MR Assembler)
Directive

This directive schedules the DAS MR assembler (section
5.1) with the specified options for background operation on
priority level 1. It has the general form

IDASMR,p(l),p(2), p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Parameter Presence Absence

B Suppresses binary Output binary object
object

Outputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Output symbol-table
table listing listing

N Suppresses source Outputs source
listing listing

Assembles V75 Flags V75 extended
extended instru- instructions with
ct ions. '*OP error'.

Flags implicit Assembles implicit
indirect instru- indirect instructions.
uctions with
'*II error'.

The /DASMR directive can contain up to four such
parameters in any order.

The DAS MR assembler reads source records from the Pl
logical unit on the first pass. The Pl unit must have been
set to the beginning of device before the IDASMR directive.
This can be done with an /ASSIGN (section 4.2.6), /SFILE

JOB-CONTROL PROCESSOR

(section 4.2.7), /REW (section 4.2.10), or /PFILE (section
4.2.11) directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the DAS MR assembler with no source
listing, but with binary-object output on the GO file.

/JOB,EXAMPLE
/PFILE,BO,,BO
/DASMR,N,L

I JOB initializes the GO file to start of file. If BO is assigned
to a rotating memory partition, a /PFILE,80.,80 must pre­
cede the /DASMR directive to initialize the file (unless the
assembly is part of a stacked job - see section 4.3 for sample
deck setup).

4.2.15 /FORT (FORTRAN Compiler)
Directive

This directive schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT,p(l),p(2), ... ,p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Parameter Presence Absence

B Suppresses binary Output binary object
object

D Assigns two words Assigns one word to
to integer array integer array items
items and to inte· and to integer and
ger and logical logical variables
variables (ANSI
standard)

H Generate code Generate no FPP
using Floating- instructions
Point Processor
(FPP)

Outputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Outputs symbol·table
table listing listing

4.5

JOB-CONTROL PROCESSOR

N

0

x

Suppresses source
listing

Outputs object·
module listing

Compiles condi·
tionally

Generates code
with calls to
faster firmware
routines (see
section 20.2)

Outputs source
listing

Suppresses object·
module listing

Compiles normally

Generates subroutine
calls

The /FORT directive can contain any or all such parame·
ters in any order.

Sample deck formats are illustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pl unit must have been set· to the
beginning of device before the /FORT directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary·
object, source, symbol-table, and object-module
listings; normal compilation; and no binary-object output
on the GO file.

/FORT,O

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. It has the form

/CONC,l

where L is an optional parameter to request that all
symbols in a source program be listed. Normally, CONC
only lists those symbols which were referenced.

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the

4-6

DAS MR assembler. It outputs to the LO logical unit a
listing of all symbols and their referenced locations in the
same input program.

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.

/ASSIGN,PI•MTOO
/Rl!!:W,PI
/DASMR
/PP'ILI!!:, SS, , SS
/CONC,L

4.2.17 /SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section
8) for background operation on priority level l. It has the
form

/SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (section
9) for background operation on priority level 1. It has the
form

/FMAIN

Example: Schedule the file maintenance task.

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section
6) for background operation on priority level 1. A memory
map is output unless suppressed. The directive has the
general form

/LMGEN,M

where M, if present, suppresses the output of a memory
map.

Example: Schedule the load-module generator task with­
out a memory map.

/LMGEN,M

4.2.20 /IOUTIL (1/0 Utility) Directive

This directive schedules the 110 utility processor (section
10) for background operation on priority level 0. The
directive has the form

/IOUTIL

Example: Schedule the 1/0 utility processor.

/IOUTIL

4.2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operation on priority level 1.
The directive has the form

/SMAIN

Example: Schedule the system maintenance task.

/SHAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logical unit file. Since
this is not a VORTEX system task, execution is on priority
level 0. The directive has the general form

/EXEC,D

Where D, if present, ·dumps all of the background upon
completion of execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen­
tation appear in the dump. During ASCII dump non-ASCII
characters appear as blanks. ASCII dump is suppressed if
dump is to a TY or CT device.

The dump format consists of eight memory locations per
line as follows:

JOB-CONTROL PROCESSOR

XXXXXX AAAAAA BBBBBB ... HHHHHH

where XXXXXX is the starting memory address location of
the eight following data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same value as
the previous line.

/EXEC can be used to create a load module (named SW)
on the SW logical unit and then schedule it, or to execute
an existing load module on the· SW logical unit. The action
taken depends on the setting of bit 2 of the low core flag
V$JCPF. If the bit is set, LMGEN is scheduled to read
binary from the GO logical unit and catalog the task on SW.
If the bit is not set, the current load module on SW is
executed. This bit is set by performing a "load-and-go"
assembly or compulation using the "L" option flag. This bit
is cleared by the loading of any background program.
(Note: JCP directives which do not load tasks, for
example, /ASSIGN, /PFILE, do not clear this bit.). The load
module on SW may be executed at anytime until SW is
modified (i.e., another load-and-go, LMGEN, COMSY, or any
other task that writes to SW).

Example: Schedule the loading of a user load module
from the SW unit file without a background dump.

/EXEC

Schedule a FORTRAN load·and-go operation.

/FORT,L
/EXEC

When a dump has been specified the dump will be output
to the List Output unit after the task exits or is aborted.
Once the dump has started, it may be terminated by use of
the Operator Communication ;ABORT. When the dump is
aborted in this manner, it is required that the executing
task be aborted by a previous action.

Example:

/EXEC,D

7ABORT,SW

7ABORT,JPDUMP

7ABORT,SW

Executes a load module
from SW unit file re­
questing background
dump on exit

Causes the task to abort
and dump the background

Causes the background
dump to be aborted

Causes the task to be
released and JCP to be
reloaded

4-7

JOB-CONTROL PROCESSOR

4.2.23 /LOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back­
ground execution on priority level 0. The directive has the
general form

where

/LOAD,name,p(l),p(2), ... ,p(3)

name

each p(n)
(if any)

is the name of the user task being
scheduled

is a parameter required by the user
task

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the BO-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame­
ters ALPHAl and ALPHA2.

/LOAD,TSKONE,ALPHA1,ALPHA2

4.2.24 I AL TLIB (Alternate
Library) Directive

This directive replaces the background library with the
specified alternate library unit as the unit from which a
background task is to be loaded. The directive has the
general form:

where

lun

key

I AL TLIB,lun,key

is the number or name of the
alternate library logical unit

is the protection code required
to address lun

This directive affects the loading of the next task which
would normally be loaded from the background library. It
affects the loading of VORTEX language processors and
utility tasks in addition to user tasks loaded with the /LOAD
directive.

It has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from which background tasks are to be loaded.

4·8

Example: Schedule the user task TSKONE from logical unit
25, protection key N.

/ALTLIB,25,N
/LOAD,TSKONE

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background library or an alternate library. The dump
format is the same as the format for /EXEC,D (see section
4.2.22).

Example: Schedule the execution of user task TSKONE with
a dump at completion of execution.

/DUMP
/LOAD,TSKONE

4.2.26 /CFILE Directive

This directive, which applies only to RMDs and MTs
assigned to global logical units, causes the designated file
on the logical unit to be closed with update. It has the
general form

where

/CFILE,lun,key,name

lun

key

name

is the name or number of the affected
logical unit. The logical unit must be
one of the global logical units.

is the protection code required to
address lun.

is the name of the file on lun to
be closed with update.

Example: Close the file FILEA on logical unit PO with no
protection code.

/CFILE,PO,,FILEA

4.2.27 /DBGEN (Data Base Generator) Directive

This directive schedules the Data Set Generator Program
(see TOTAL Manual for more detailed information) for
background operation on priority level 1. It has the form

/DBGEN

Example: Schedule the Data Base Generator for TOTAL

/DBGEN

4.2.28 /PLOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back·
ground execution on priority level I. The directive has the
general form

where

/PLOAD,xxxxxx,p(1),p(2), ... p(n)

xxxxxx

p(n)

is the name of the user task being
scheduled. The name must not con·
tain numeric characters.

is a parameter required by the user
task.

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can be extended to the end of the 80·
character buffer, will appear in the buffer exactly as it does
in the input directive. The address of the first word of the
parameter string is in location V$JCB.

4.2.29 /FMUTIL Directive

This directive causes files, directories, and/or partitions to
be dumped or loaded from RMD's or magnetic tapes, and
schedules the file maintenance utility (section 21) for
background operation on priority level l. The directive has
the form

tFMUTIL

Examples: Schedule File Maintenance Utility.

/FMUTIL

4.2.30 /RPG (RPG II Compiler) Directive

This directive schedules the RPG II compiler (section 5.5)

JOB-CONTROL PROCESSOR

Parameter Presence Absence

B Suppresses binary Output binary object.
object.

0 Include RPG debug Suppress debug features.
features in object
module.

Outputs binary Suppresses output of
object on GO file. binary object on GO file.

M Suppresses symbol Outputs symbol table
table listing. listing.

N Suppresses source Outputs source listing.
listing.

The /RPG directive can contain up to five such parameters
in any order.

Sample deck formats are illustrated in section 4.3.

The RPG II compiler reads source records from the Pl
logical unit. The Pl unit must have been set to the
beginning of device before the /RPG directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

Example: Schedule the RPG II compiler with binary object,
source, and symbol-table listings; normal compilation; and
no binary object output on the GO file.

/RPG

Example: Schedule RPG II for normal compilation but with
binary object output on the GO file instead of the BO file.

/RPG,L,B

4.2.31 /P (Pause) Directive

This directive outputs the specified comment to the SO and
LO logical units and then causes JCP to be suspended. In
addition to the specified comment, instructions are output
to SO on how to resume JCP. It has the general form

!P,comment

with the specified options for background operations on where
priority level l. It has the general form

where

!RPG,p(l),p(2), .. .,p(n)

p(n) is a single character specifying one
of the following options:

comment is any desired free-form
comment.

Example: Request that the current job requires MT # 800
on MTOO before it continues.

/P, Mount MT #800 on MTOO

4.9

JOB-CONTROL PROCESSOR

in addition, JCP will output:

Pause---WHEN READY, TYPE --:RESUME, JCP

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck-prepara­
tion techniques.

Example 1 · Card Input: Compile a FORTRAN IV main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program.

/JOB,EXAMPLE1
IFORT,L,O

(Source Deck)

IDASMR,L

(Source Deck)

/EXEC
/ENDJOB

Example 2 · Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USERl with protec­
tion key U. Assign the Pl logical unit to RMD partition
DOOK, open file name USERl for the assembler, assemble
the program, and execute the program with a dump.

/JOB,EXAMPLE2
/ASSIGN,Pl•DOOK
/PFILE,PI,U,USER1
/DASMR,L
/PFILE,SS,,SS
/CONC
/EXEC,D
/ENDJOB

Example 3 · Card Input: Assemble a DAS MR program
(with source listing and object-module output on the BO
logical unit). Assign the Pl logical unit to magnetic-tape
unit MTOO, the PO logical unit to dummy device, the SS
logical unit to the Pl logical unit, the BO logical unit to
RMD partition DOOJ, and output the object module to file
name USER2 with no protection key. Before assembly,

4-10

position the Pl logical unit to the third file. Allocate four
additional 512-word blocks for the DAS MR symbol-table
area.

/JOB,EXAMPLE3
/ASSIGN,Pl•MTOO,PO•DUM,SS•PI,BO•DOOJ
/REW,PI
/SFILE,PI,2
/PFILE,BO, ,USER2
/MEM,4
/DAS MR
/ENDJOB

Example 4 · Card Input: After 'generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bl logical unit to CROO.

/JOB,EXAMPLE4
/ASSIGN,BI•CROO
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

(Object Modules)

(2-7-8-9 EOF Card)

/ENDJOB

Example 5 · Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Save output on BO. Execute the
linked programs.

/JOB,EXAMPLES
/PFILE,BO,,BO
/FORT,L

(Source deck FORTRAN main program)

(Source deck FORTRAN subprogram)

/DASMR,L

/EXEC
/FINI

(Source deck DASMR subprogram)

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary conC:ordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two·pass assembler scheduled by job-control
directive IDASMR (section 4.2.14). DAS MR uses the
secondary storage device unit for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on
the PO unit. The source input for pass 2 is entered from
the SS logical unit.

When an END statement is encountered, the SS unit is
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units for the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recognized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exclamation mark or dollar sign, in initial and other
positions.

Since the DAS MR assembler is used within the VORTEX
system under VORTEX 1/0 control, the VORTEX user can
specify the .desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition. Except when Pl is equal to SS as shown in section
4.3 (example 3).

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60·
word modules per record. However, in the case where SI =

Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may

be ensured by following the END statement of the previous
source module with two blank records.

Detailed references to the DAS MR assembly language are
given in the appropriate Varian reference manuals (see
section 1.3). These references include descriptions of the
directives recognized by the assembler (table 5-1), except
for the title directive which is discussed below. DAS MR will
assemble the entire V75 extended instruction set if the E
parameter is specified in the /DASMR directive.

Table 5-1. Directives Recognized by the DAS MR
Assembler

BES IFF
BSS IFT
CALL LIST
COHN LOC
CONT MAC
DATA MZE
DETL NAME
DUP NLIS
EJEC NULL
END OPSY
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SHRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1.

5.1.1 TITLE Directive

This directive changes the title of the assembly listing and
the identification of the object program. It has the general
form

TITLE symbol

where symbol is the new title of the assembly listing; the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass l, the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
is encountered, title and identification assume the symbol
given in the directive.

Examples: Entitle the assembly listing and object pro­
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and identification, obliterating the old
title.

TITLE

5·1

LANGUAGE PROCESSORS

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and 1/0 control (IOC,
section 3.5) macros. Figure 5-1 illustrates these definitions .

•
M1 MAC

EXT V$IOC
JSR 0404, 1
DATA 0100000

F FORM 1, 3, 4, 8
F P(1) ,P(2) ,P(J) ,P(4)
DATA p(5), 0. 0
EMAC

•
• VORTEX READ MACRO DEFINITION
• READ DCB,LUN,W,M
• WHERE DCB • FCB OR DCB ADDRESS
• LUN • LOGICAL UNIT NO.
• w • WAIT OPTION
• M • I/O MODE
READ MAC

M1 P(J) ,P(4) ,O,P(2) ,P(1)
EMAC

•
VORTEX WRITE MACRO DEFINITION

• WRITE DCB,LUN,W,M
• WHERE DCB • FCB OR DCB ADDRESS
• LUN • LOGICAL UNIT NO.
• w • WAIT OPTION
• M • I/O MODE
WRITE MAC

M1 P(J) ,P(4), 1,P(2) ,P(1)
EMAC

•
• VORTEX WRITE END OF FILE MACRO DEFINITION
• WEOF DCB,LUN,W
• WHERE DCB • FCB OR DCB ADDRESS
• LUN • LOGICAL UNIT NO.
• w • WAIT OPTION
WEOF MAC

M1 P(J) ,0,2,P(2) ,P(1)
EMAC

•
• VORTEX REWIND MACRO DEFINITION
• REW DCB,LUN,W

• WHERE DCB • FCB OR DCB ADDRESS
• LUN • LOGICAL UNIT NO.
• w • WAIT OPTION
REW MAC

M1 P(3l,0,3,P(2),P(1)
EMAC

•
• VORTEX SKIP RECORD MACRO DEFINITION
• SREC DCB,LUN,W,M
• WHERE DCB • FCB OR DCB ADDRESS
• LUN • LOGICAL UNIT NO.
• w • WAIT OPTION
• M • I/O MODE

figure 5-1. VORTEX Macro Definitions for DAS MR

5-2

LANGUAGE PROCESSORS

SREC

•
•
•
•
•
•

MAC
M1
EMAC

P(J) ,P(4) ,4,P(2) ,P(1)

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO .

W • WAIT OPTION
FUNC MAC

•
•
•
•
•
• •
OPEN

•
•
•
•
•
• •
CLOSE

•
• •
•
•
•
•
•
•
•
•
•

M1 P(3) ,0,5,P(2) ,P(1)
EMAC

VORTEX OPEN MACRO DEFINITION
OPEN

MAC
M1
EMAC

FCB,LUN,W,M
WHERE FCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO .
W • WAIT OPTION
M • I/O MODE

P(3) ,P(4) ,6,P(2) ,P(1)

VORTEX CLOSE MACRO DEFINITION
CLOSE

MAC
M1
EMAC

FCB,LUN,W,M
WHERE FCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO .
W • WAIT OPTION
M • I/O MODE

P(3),P(4),7,P(2),P(1)

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR,EOF,EOD,BUSY

WHERE FCB • FCB OR DCB ADDRESS
ERR • ERROR RETURN ADDRESS
EOF • END OF FILE, BEGINNING

OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS

EOD • END OF DEVICE OR END OF TAPE
RETURN ADDRESS

BUSY • BUSY RETURN ADDRESS

STAT MAC

•
• • •
• •
DCB

EXT V$IOST
JSR 0373,1
DATA P(1),P(2),P(3),P(4),P{S)
EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL,BUF,CNT

MAC

WHERE RL • RECORD LENGTH
BUF • DATA ADDRESS
CNT • COUNT

DATA P{1),P{2),P(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5.3

LANGUAGE PROCESSORS

5.4

*
*
*
*
*
*

VORTEX FILE CONTROL BLOCK MACRO DEFINITION
FCB RL,BUF,AC,KEY, 'N1' ,'N2', 'NJ'

WHERE RL • RECORD LENGTH
BUF • DATA ADDRESS
AC • ACCESS METHOD
KEY • PROTECTION KEY
N1 • FIRST 2 ASCII FILE NAME
N2 • SECOND 2 ASCII FILE NAME
NJ • THIRD 2 ASCII FILE NAME

FCB MAC

F

*
M2

*
*
*
*
*
SCH ED

F

F

*

DATA
FORM
F
DATA
EMAC

MAC

p(1) 'p(2)

6,2,8
0,P(J),P(4)
0,0,0,0,P(S) ,P(6) ,P(7)

EXT VS EXEC
JSR 0406,1
EMAC

VORTEX SCHEDULE MACRO DEFINITION
SCHED

MAC
M2
FORM
F
FORM
F
DATA
EMAC

PL,W,LUN,KEY, 'N1', 'N2', 'NJ'
WHERE PL • PRIORITY LEVEL

W • WAIT OPTION
LUN • LOGICAL UNIT NO.
KEY • PROTECTION KEY
N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
NJ • THIRD 2 ASCII TASK NAME

J.,. 6., '5
O,P(2),1,0,P(1)
8,8
P(4) ,P(J)
P(5) ,P(6) ,P(7)

* VORTEX EXIT MACRO DEFINITION
* EXIT

EXIT MAC
M2
DATA 0200
EMAC

*
* VORTEX SUSPEND MACRO DEFINITION

* SUSPND T

*
SUSPND MAC

M2
FORM

WHERE T • TYPE OF SUSPENSION

F

*
*
*
*
*
*

4. 6. 5. 1
F 0, J, 0 ,P(1)
EMAC

VORTEX RESUME MACRO DEFINITION
RESUME 'N1' ,'N2' ,'NJ'

WHERE N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
NJ • THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

LANGUAGE PROCESSORS

RESUME MAC

*
*
*
*
ABORT

*
*
*

M2
DATA 0400,P(1),P(2),P(3)
EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1', 'N2', 'N3'

MAC
M2

WHERE N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD ~ ASCII TASK NAME

DATA 0 5 0 0, P (1) , P (2) , P (3)
EMAC

VORTEX ALLOCATE MACRO DEFINITION
ALOC ADDR

WHERE ADDR • ADDRESS OF REENTRANT
SUBROUTINE

ALOC MAC

*
*
*

M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

DEALOC MAC

*
*
*
*

M2
DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM,MSK,TYP

WHERE NUM • PIM NUMBER
MSK • PIM LINE MASK

* TYP • ENABLE OR DISABLE TYPE
PMSK MAC

F1

F

M2
FORM
F1
FORM
F
EMAC

4. 6. 5. 1
0,010,0,P(3)
8. 8
P(1l,P(2)

VORTEX DELAY MACRO DEFINITION

*
*
*
*

DELAY

DELAY MAC

F
M2
FORM
F
DATA
EMAC

TS,TM,DT
WHERE TS • DELAY TIME IN 5 MILLI­

SECOND INCREMENTS
TM • DELAY TIME IN 1 MINUTE

INCREMENTS
DT • DELAY TYPE

4. 6. 4. 2
0,011,0,P(3)
p(1), P(2)

Figure 5·1. VORTEX Macro Definitions for DAS MR (continued)

5.5

LANGUAGE PROCESSORS

5-6

•
•
•
•
•
•
•
•
•
LDELAY

•

VORTEX LDELAY MACRO DEFINITION
LDELAY TS, TH, LUN,KEY

WHERE TS • DELAY TIME IN S-HILLISECOND

MAC
H2

INCREMENTS
TH • DELAY TIME IN 1-HINUTE

INCREMENTS
LUN • LOGICAL UNIT NUMBER FOR TASK LOAD
KEY • PROTECTION KEY

DATA 01107,P(1),P(2)
FORM 8,8
F P(4),P(3)
EMAC

VORTEX TIME REQUEST MACRO DEFINITION
TIME

TIME MAC

•
•
•
OVLAY

F

•
•
•
IOLINK

F

•
•
•
•
•
•

M2
DATA 01200
EMAC

VORTEX OVERLAY MACRO DEFINITION
OVLAY

MAC
M2
FORM
F
DATA
EMAC

VORTEX
IOLINK

MAC
M2
FORM
F
DATA
EHAC

TF, 'N1', 'N2', 'N3'
WHERE TF • TYPE FLAG

N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME

4, 6, s, 1
0,013,0,P(1)
P(2) ,P(3) ,P(4)

IOLINK MACRO DEFINITION
LUN.BUF,NUH

WHERE LUN • LOGICAL UNIT NO.

4,6,6
0, 014 ,P(1)
P(2) ,P(3)

BUF • USER'S BUFFER LOCATION
NUH • BUFFER SIZE

VORTEX PASS MACRO DEFINITION
PASS COUNT,FROM,TO

WHERE COUNT • WORD COUNT
FROM • FROM ADDRESS
TO • TO ADDRESS

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

LANGUAGE PROCESSORS

*
PASS MAC

F

*
*

*
*

*
*
*

M2
FROM
F
DATA
EMAC

4,6,6
0,016,0
P(1) ,P(2) ,P(J)

VORTEX TBEVNT MACRO DEFINITION
TBEVNT VALUE, , DISP, ,els

WHERE

OPTIONS:

VALUE • IS A BIT MASK

DISP • IS THE TIDB WORD TO BE ALTERED.

els

IT IS EXPRESSED BY WAY OF A NUMBER,
THE DISPLACEMENT (OR POSITION) OF THIS
WORD IN THE TIDB.

• IS THE CLEAR/SET INDICATION (O • CLEAR,
1 • SET)

BOTH DISP AND c/s ARE OPTIONAL AND
THE DEFAULT FOR BOTH IS O.

IMPLEMENTATION:
WHEN DISP • 0 THE ACTION DEPENDS ON
THE VALUE OF VALUE:

VALUE, IF 0-177776, IS SET INTO
THE REQUESTING TASK'S TIDB TBEVNT
WORD. IF VALUE IS 0177777, RETURN
IS WITH THE REQUESTOR'S TBEVNT IN
THE A REGISTER

WHEN DISP • O, DISP WILL BE ALTERED
ACCORDING TO VALUE AND els.

els • 0, ALL THE BITS IN DISP CORRESPONDING
TO THE ZERO (O) BITS IN VALUE
WILL BE RESET TO 0.

els. 1,. ALL THE BITS IN DISP CORRESPONDING
TO THE ONE (1) BITS IN VALUE
WILL BE SET TO 1.

TBEVNT MAC
M2
DATA
DATA
EMAC

01700
P(1),P(2),P(J)

Figure 5·1. VORTEX Macro Definitions for DAS MR (continued)

5-7

LANGUAGE PROCESSORS

5-8

•
•
•
• •
•
•
•

VORTEX ALLOCATE PAGE MACRO DEFINITION
ALOCPG N,LOGICA ADDR,RBJBCT ADDR

WHBRB N • NUMBER OF PAGES TO ALLOCATE
LOGICAL ADDR • LOGICAL ADDRESS

MODULO 01000, WHBRB
PAGES ARB ALLOCATED

RBJBCT ADDR • ERROR RETURN ADDRESS

ALOCPG MAC

• •
•
•
•
•
•
•
•
•
•

H2
DATA
DATA
DATA
DATA
EMAC

02000
P(1 I
P(2)
p(J)

VORTEX DEALLOCATE PAGE MACRO DEFINITION
DEAL PG N,LOGICAL ADDR,RBJBCT ADDR

WHERE N • NUMBER OF PAGES TO DEALLOCATE
LOGICAL ADDR • LOGICAL ADDRESS,

MODULO 01000, WHERE
PAGES ARE TO BB
DEALLOCATED

REJECT ADDR • ERROR RETURN ADDRESS

DBALPG MAC

•
•
•
•
•
•
•
•
•
•
•
•
•
•
MAP IN

H2
DATA
DATA
DATA
DATA
EMAC

02100
p(1)

P(2)
P(J)

VORTEX MAPIN MACRO DEFINITION
MAP IN

MAC
M2
DATA
DATA
DATA
DATA
DATA
BMAC

N,LOBICAL ADDR,BUFFBR ADDR,REJECT ADDR

02200
Pl 1 I
P(2)
p(J)

P(ll)

WHBRB N • NUMBER OF PAGES TO BE HAPPD
LOGICAL ADDR • LOGICAL ADDRESS, MODULO

01000, WHERE PAGES ARE TO
BB ALLOCATED

BUFFER ADDR • PHYSICAL PAGE NUMBER
OR BUFFER ADDRESS CON­
TAINING PHYSICAL PAGES
TO BE HAPPED

REJECT ADDR • ERROR RETURN ADDRESS

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

• •
•
•
• •
•
•
•

LANGUAGE PROCESSORS

VORTEX PAGE NU~BER MACRO DEFINITION
PAGNUH LOGICAL ADDR

WHERE LOGICAL ADDR • ADDRESS WITHIN THE
REQUESTING TASK'S VIRTUAL
MEMORY WHERE IDENTIFICATION
OF THE ASSIGNED PHYSICAL
PAGE IS REQUIRED

PAGNUH MAC
H2
DATA
DATA
EMAC

02300
p(1)

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-9

LANGUAGE PROCESSORS

5.1.3 Assembly Listing Format

Figure 5-2 is a sample listing following the format described
in this section.

Page format: The assembly listing is limited to the
number of lines per page specified by the VORTEX resident

PAGE 23 01/22/12

000660 0711056 A
000661 0611056 A
000662 0101112 A
000663 005311 A
0006611 0511003 A

000665 006505 A
000666 0006011 E
000667 0011105 A
000670 000665 R
000671 000051 A
00067'2 0301100 A
000673 015003 A
0006711 1501163 A
000675 05112711 A
000676 015002 A
000677 1501163 A
000700 11111271 A
000701 001010 A
000702 0007111 R
000703 017000 I
0007011 05110011 A

000705 006505 A
000706 000630 E
000707 100000 A
000710 0101103 A
000711 000633 E
000712 000000 A
000713 000000 A
0007111 0301100 A
000715 015005 A
000716 1501163 A
000717 11111252 A
000720 001010 A
000721 000733 R
000722 017000 A
000723 05110011 A

588
589
590
591
592
593
5911
595
596
597

598
599
600
601
602
603
6011
605

606
607
608

609
610
611
612
613

6111
615
616

PROG1 VORTEX

EJEC

•
SUBROUTINE

JCPRT STX
STB
LDA
DAR
STA
IOLINK

LDX
LDA
ANA
STA
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

JCPR1 LDX
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
line followed by one blank line, and then the program
listing containing two lines less than the number specified
by V$PLCT. (This specification can be changed through the
job-control processor (JCP).)

DAS MR V$JCP

PRINTS JCP DIRECTIVE ON SO AND LO DEVICE

JSPRX
JCPRB
V$JCB GET BUFFER ADDRESS

•+Ii SETUP LOFCB
LO,•, 111

V$LUT1 ADRS OF LOG UNIT TBL
so,x
BM377 SO CUR ASSIGNMT
JCTA
SI,X
BM377 SO CUR ASSIGNMT
JCTA SO, SI SAME LUN
JCPR1

JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
•+5
LOFCB,S0,0,1 NO - WRITE TO so

V$LUT1
LO,X
BM377 LO CUR ASSIGNMT
JCTA LO, so SAME LUN
JC PRE YES

JCFCBS+3 STORE 'LOFCB' ADRS IN CALL
•+5
LOFCB,L0,0,1 NO - WRITE TO LO

figure 5·2. Sample Assembly Listing

5-10

At the end of the assembly, the following information is
printed after the END statement:

a. A line containing the subheading ENTRY NAMES

b. All entry names (in four columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

c. A line containing the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a flag to denote that the symbol is external
(E)

e. A line containing the subheading SYMBOL TABLE

The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E)

g. A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position,
the format for a title line is:

a. Oneblank

b. The word PAGE

c. Oneblank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the current date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Two blanks

The word VORTEX

k. Two blanks

The word DASMR

m. Two blanks

n. Eight char_acter positions that contain the program title
from the TITLE directive

o. Blanks through the 120th character position

LANGUAGE PROCESSORS

Beginning with the first character position, the format for
an assembly line is:

a. Oneblank

b. Six character positions to display the location counter
(octal) of the generated data word

c. Oneblank

d. Six character positions to display the generated data
word (octal)

e. Oneblank

f. One character position to denote the type of generated
data word: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembler (I)

g. Oneblank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

One blank

Eighty character positions that contain the image of the
symbolic source statement. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions l, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are replaced by
blank characters.)

k. Blanks, if necessary, through the 1201h character
position

Error Chaining: If syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not contain a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-control directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance 'IS output on the LO unit. CONC uses system

5-11

LANGUAGE PROCESSORS

global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 Input

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax rules.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output

CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the following events
occurs:

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SS end of file or end of device is found

d. A reading error is found

e. The symbol-table area is filled

If the output occurred because the symbol-table area of
memory was full, CONG clears the concordance tables,
outputs error message CNOl, and continues until one of
the other terminating conditions is encountered. In all
other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCII
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

5-12

a. Oneblank

b. The word PAGE

c. Oneblank

d. Four character positions that contain the decimal page
number

e. Two blanks

Eight character positions that contain the date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

Two blanks

The word VORTEX

k. Two blanks

The word CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Two blanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. Oneblank

d. One character position containing an asterisk (*) if
there are no references to that symbol (otherwise
blank)

e. Six character positions containing the symbol being
listed

f. Twoblanks

g. Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. Items (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symbol do not
repeat items (a) through (e)

i. Blanks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

LANGUAGE PROCESSORS

PAGB 0~122111 V$0PCM VORTBX CONC

509 B 841 859 879 990 1001 1002 1012 1068 1072
1074 1112 1230 1231

261 B10 •
262 811 •
263 812 •

1206 ODA TB 1180 1182 1190
1937 ONUH 895 928 936 1017 1182 1190 1196 1254 1284

1406 1418

Figure 5·3. Sample Concordance Listing

5.3 FORTRAN IV COMPILER

The FORTRAN IV complier is a one-pass compiler sched·
uled by job-control directive /FORT (section 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

If a fatal error is detected, the compiler automatically
terminates output to the BO and GO units. LO unit output
continues. The compiler reads from the Pl unit until an
END statement is encountered or a control directive is
read. Compilation also terminates on detection of an 110
error or an end-of-device, beginning-of-device, or end-of-file
indication from 1/0 controL

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func­
tion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compiler are
given in Appendix A.5.2.

FORTRAN IV has conditional compilation facilities imple·
mented by an X in column 1 of a source statement. When
the X appears in the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN IV has a symbol-table area for approximately 70
symbols (i.e., names), if none of the logical units used is
assigned to an RMD device. Each RMD assignment
requires buffer space of 120 words (except when BO - GO
- RMD, in which case BO and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
buffer. To increase the symbol-table area, input before the
/FORT directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. If a larger symbol-table is used, greater
subexpression optimization is possible.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where SI - Pl -

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5·2 lists the VORTEX real-time executive (RTE)
service 'request macros available through FORTRAN IV.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT
ALOC
DBLAY
LDBLAY

BXIT
OVLAY
PMSK
RBSUMB

SCHBD
SUSPND
TIMB
PASS

5.3.1 FORTRAN IV Enhancements

The VORTEX FORTRAN IV language additions and en­
hancements make the VORTEX FORTRAN compiler more
consistent with IBM FORTRAN (level G). Except for these
additions and enhancements, FORTRAN compilation and
execution with the VORTEX operating system is the same
as with the Master Operating System (MOS) described in
the FORTRAN IV Reference Manual (98 A 9902 03x).

FORTRAN-eomplied programs can ex~ute in either fore·
ground or background.

Detailed information on the VORTEX FORTRAN IV lan­
gu1tge additions and enhancements are given in the
VORTEX FORTRAN IV Reference Manual (98 A 9902 04x).

5.3.1.1 Variables

VORTEX FORTRAN IV variables are identifiers which
consist of a string of one to six alphanumeric characters
and correspond to the type of data the variable represents.
Variables are classified into the following five fundamental
types: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and LOGICAL.

The following list shows each variable type with its
associated standard and optional length (in bytes):

5-13

LANGUAGE PROCESSORS

Variable Type Standard Optional

INTEGER 4
REAL 4 8
COMPLEX 8
LOGICAL 2
DOUBLE PRECISION 8

5.3.1.2 Constants

There are four categories of VORTEX FORTRAN IV con­
stants: NUMERICAL, LOGICAL LITERAL, and HEXADECI­
MAL These four constant data constructions are discussed
below.

NUMERICAL constants are integer, real, or complex
numbers. Integer constants may be positive, zero, or
negative. If the constant has so sign, it is interpreted as
representing a positive value. If a zero is specified, with or
without a preceding sign, the sign will have no effect on the
value zero. The constant has the general form

sn

where

is the optional signed character
(+ or-).

is a decimal character string
(maximum magnitude is 1073741823).

LOGICAL constants allow for the use of logical operations
through the medium of the logical expression. Thus, two
logical constants are provided to represent the "true" and
"false" logical values. The constant has the general form

.TRUE. or .FALSE.

LITERAL constants are a string of alphanumeric and/or
special char.acters. If apsostrophes delimit the literal, a
single apostrophe within the literal is represented by two
apostrophes. The number of characters in a string,
including blanks, may not be less than 1 or greater than
255. Blanks within the character string will be considered
part of the string. The constant has the general form

where

wHs or 's'

is a positive non-zero constant denoting
the width of the character string.

denotes the character string.

HEXADECIMALconstant consists of the letter Z followed by
1 to 16 hexadecimal digits. The constant has the general
form

Zn

5-14

where

is a 1 to 16 hexadecimal digit string.

The maximum number of digits allowed in a hexadecimal
constant depends on the length specification of the
variable being initialized. If the number of digits is greater
than the maximum, the left-most digits are truncated. If
the number is less than the maximum, the left-most
positions are filled with zeros.

5.3.1.3 IMPLICIT Statement

The IMPLICIT statement must be the first statement in a
main program or the second statement in a subprogram.
The statement enables the user to specify the type,
including length of all variables, arrays, and function
names. The statement has the general form

where

IMPLICIT type •s(al,. . .,)

type is a type name.

•s is optional; and, represents one of the
permissible length specifications (see
variable).

is an initial character string
(A, B, .. .,Z,$,) in that order.

5.3.1.4 Explicit Type Statements

The Explicit Type Specification statement declares the type
of variable, function name, statement function name, or
array by its name rather than by its initial character.
Optionally, it may also initialize the variable. The statement
overrides the IMPLICIT statement, which in turn overrides
the predefined convention. The statement has the general
form

where

type*s al*sl(kl)/xl/,

type

•s

(k)

is a type name.

is optional; and, represents one of
the permissible length specifications.

is a variable, array, or function
name.

is optional; and, gives dimension
information for arrays. When the
TYPE statement in which it appears
is in a subprogram, k may contain

/XI

integer variables of length 2
(section 5.3.1.1), provided that
the array is a dummy argument.

is optional; and, represents
initial data values (see DATA
statement).

5.3.1.5 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement overrides any specifi·
cation of a variable made by either the predefined
convention or the IMPLICIT statement. The statement has
the general form

where

DOUBLE PRECISION a(k),.

(k)

represents a variable, array, or
function name.

is optional; and, is composed of
one to seven unsigned integer con­
stants that represent the maximum
value of each subscript in the
array. k may contain integer
variables of length 2, provided
that the array is a dummy argument.

5.3.1.6 PAUSE Statement

The execution of the PAUSE statement causes the uncondi­
tional suspension (SUSPND) of the object program being
executed pending operator action. To resume the sus­
pended task, input the operator-communication key-in
request RESUME. The statement has the general form

where

PAUSE
or
PAUSE n or PAUSE m

m

is a string of one to five
decimal digits.

is a literal constant enclosed
in apostrophes.

5.3.1. 7 STOP Statement

The execution of the STOP statement causes the uncondi­
tional termination of the execution of the object program
beging executed. The statement has the general form

STOP
or
STOP n or STOP m

where

m

LANGUAGE PROCESSORS

is a string of one to five decimal
digits.

is a literal constant enclosed in
apostrophes.

5.3.1.8 CALL Statement

The execution of the CALL statement causes the specified
subroutine to be executed. The CALL statement arguments
must agree in number and order of appearance with the
dummy arguments in the SUBROUTINE statement. The
statement has the general form

where

CALL name (al,a2), ... ,

name is the name of a SUBROUTINE
subprogram.

is an actual argument that is
being supplied to the SUBROUTINE
subprogram. The argument may be
a variable array element, array
name, literal, or arithmetic or
logical expression. Each a may
also be of the form n, where n
is a statement number.

5.3.1.9 RETURN Statement

The RETURN statement provides the method by which the
calling program is reentered following the execution of a
subprogram. The normal sequence of execution following
the RETURN statement of a SUBROUTINE subprogram is
to the next statement following the CALL statement in the
calling program. The statement has the general form

where

RETURN or RETURN i

is an integer constant or variable
whose value, for example n, denotes
the n-th asterisk in the argument
list of a SUBROUTINE statement.
RETURN ; may be specified only in
a SUBROUTINE subprogram.

5.3.1.10 READ/WRITE Statements

VORTEX FORTRAN IV allows two optional parameters to
the READ/WRITE statements. These optional parameters
allow for conditional exits on an end-of-data or transmis­
sion error.

5-15

LANGUAGE PROCESS.ORS

Example: READ{4,10,ERR = 105,END-200)A,B

In the above example, control will be transferred to
statement 105 if an 1/0 error occurs, or to statement 200 if
an end-of-data occurs on unit 4.

5.3.1.11 ENCODE/DECODE Statement

ENCODE/DECODE statements perform data conversion
according to a FORMAT statement without performing
external 1/0 operations. ENCODE statement takes an 1/0
list, converts each element and places ii in a specified
buffer. DECODE statement words from the buffer into the
l/O list. For example:

DIMENSION I(40)
READ(CDR,10)I

10 FORMAT(40A2)
DECODE(10,20,I)K,L

20 FORMAT(2IS)

These statements read an ASCII card image into array I.
The first two fields of five ASCII characters are then
decoded into their integer equivalent and placed into the
variables K and L.

5.3.1.12 Direct-Access INPUT /OUTPUT
Statements

The direct-access INPUT /OUTPUT statements allows a
programmer to go directly to any point in a file which
resides on an RMD, and process a record without having to
process all the records within the file. To use direct-access
INPUT/OUTPUT statements (READ, WRITE, and FIND),
the file(s) to be operated on must be described with a
DEFINE FILE statement. The statement has the general
form

where

5-16

DEFINE FILE al(ml,rl,fl,vl), ...

m

specifies the unit number.

represents the relative position
of a record within the file.

specifies the maximum size of
each record in the file.

specifies whether the file is
to be read or written with or
without format control.

specifies an integer variable
(not an array element) called
an associated variable, which

points to the record immediately
following the last record
transmitted.

5.3.1.13 Direct-Access READ Statement

The READ statement causes data to be transferred from a
direct-access device into internal storage. The statement
has the general form

where

READ(a'r,b,ERR = Ec)/ist

ERR= Ec

list

specifies the unit number
and must be followed by an
apostrophe.

represents the relative
position of a record within
the file.

is optional; and, if given,
is either the statement
number of the FORMAT state­
ment, or the name of an array
that contains an object-time
format.

is optional; and, specifies
the number of a statement to
which control is given when
an error condition is
encountered

is optional; and, is an 1/0
list. The 1/0 list must not
contain the associated
variable.

5.3.1.14 Direct-Access WRITE Statement

The WRITE statement causes data to be transferred from
internal storage to a direct-access device. The statement
has the general form

where

WRITE (a'r,b)list

specifies the unit number and
must be followed by an apostrophe.
represents the relative position
of a record within the file.

is optional; and, if given, is
either the statement number of
the FORMAT statement, or the

list

name of an array that contains
an object-time format.

is optional; and, is an 110
list. The list must not
contain the associated vari­
able.

5.3.1.15 FIND Statement

The FIND statement causes the next input record to be
found while the present record is being processed. The
statement has the general form

where

FIND (a'r)

specifies the unit number and must
be followed by an apostrophe.

represents the relative position of
a record within the file.

At the conclustion of a FIND operation, the associated
variable points to the record found.

5.3.1.16 DATA Statement

The DATA statement is used to define initial values of
variables, array elements, and arrays. This statement
cannot precede any specification statement that refers to
the same variables, array elements, or arrays. The DATA
statement may not precede an IMPLICIT statement. It has
the general form

where

DATA kid/, ...

is a list containing variables,
array elements, or array names.

is a list of constants (integer,
real, complex, hexadecimal, logical,
or literal), any of which may be
preceded by i*, where ;•
indicates that the constant is to
be specified i times.

5.3.1.17 TITLE Statement

The TITLE statement declares a module name which is
output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

where

name

LANGUAGE PROCESSORS

is the title to be output.
The title contains up to
eight characters, and is
output in the object text
as the name by which the
program is to be referenced
by SMAIN.

If a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.1.18 Subprogram Multiple Entry

VORTEX FORTRAN IV facilitiates multiple entry into
SUBROUTINE and FUNCTION subprograms by specifying a
CALL statement or a FUNCTION reference that refers to an
ENTRY statement in the subprogram. Entry is made at the
first executable statement following the ENTRY statement.
The statement has the general form

where

ENTRY name(a 1,a2,a3), ...

name is the name of an entry point.

is a dummy argument corresponding
to an actual argument in a CALL
statement or FUNCTION reference.

5.3.1.19 SUBROUTINE Subprogram

The SUBROUTINE subprogram may contain any FORTRAN
IV statement except a FUNCTION statement, another
SUBROUTINE statement, or an BLOCK DATA statement. If
an IMPLICIT statement is specified, it must immediately
follow the SUBROUTINE statement. SUBROUTINE has the
general form

where

SUBROUTINE name(al ,a2,a3), ...

name is the SUBROUTINE name.

is a distinct dummy argument.
Each argument used must be a
variable or array name, the dummy
name of another SUBROUTINE, FUNCTION
subprogram, or an asterisk "*"

which denotes a return point specified
by a statement number in the calling
program.

The actual arguments can be:

5-17

LANGUAGE PROCESSORS

A literal, arithmetic, or logical constant

Any type of variable or array element

Any type of array name

Any type of arithmetic or logical expression

The name of a FUNCTION or SUBROUTINE
subprogram

• A statement number

5.3.1.20 FUNCTION Subprogram

The FUNCTION subprogram is an independent subprogram

FORTRAN rules. If the evaluated expression is real, it
is converted to integer

The evaluated result of a subscript quantity should
always be greater than zero

5.3.1.22 Z Format Code

The hexadecimal Z format code causes a string of
hexadecimal digits to be interpreted as a hexadecimal
value and to be associated with the corresponding 110 list
element for purposes of data transmitting. It has the
general form

Zw

consisting of a FUNCTION statement and at least one where
RETURN statement. It has the general form

type FUNCTION name•s(al,a2,a3),

where

type

name

•s

is INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or
LOGICAL. Its inclusion
is optional.

is the name of the

FUNCTION.

represents one of the
permissible length
specifications.

is a dummy argum,ent or
dummay SUBROUTINE name or
other FUNCTION subprogram.

5.3.1.21 Subscripts

A subscript is a set of integer subscript quantities that are
associated with an array name to identify a particular
element of the array. A maximum of seven subscript
quantities, separated by commas, can appear in a
subscript. The following rules apply to the construction of
subscript quantities:

5-18

Subscript quantities may contain arithmetic
expressions that use any of the arithmetic operators:
+I -, *' I' * $

Subscript quantities may contain FUNCTION
references

Subscript quantities may contain array elements

Integer and real mixed-mode expressions within
subscript quantities are evaluated according to normal

w denotes a string of hexadecimal
digits. The maximum value that
can be read is FFFFFFFFFFFFFFFF

On input, if an input field contains an odd number of
digits, the number will be padded on the left with a
hexadecimal zero when it is stored.

On output, if the number of characters in the storage
location is less than w, the left-most print positions are
filled with blanks. If the number of characters in the
storage location is greater than w, the left-most digits are
truncated and the rest of the number is printed.

5.3.2 Execution-Time 110 Units

All FORTRAN 110 statements (FORTRAN IV manual)
include a FORTRAN unit number (FUN) or name, which
may or may not be identical with the logical unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to
rewind the PO logical unit (unit 10, magnetic-tape unit 0),
the job stack can be:

/ASSIGN,PO•MTOO
/FORT

REWIND 10

LANGUAGE PROCESSORS

Case 2, RMD file executing In background only: The JCP
/PFILE directive (section 4.2.11) positions the Pl unit to a
background reassignable logical unit, and loads a global
FCB. As in case l, the FORTRAN unit number is identical
with that of the file unit. Thus, to read the file FILEl on
logical unit 50 (protection code X) where Pl is logical unit 4,
the job stack can be:

START

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

YES

CONSTRUCT AND
EXECUTE roe CALL

FINISH

NO

LOG VO ERROR

ABORT

NO

NO

/FORT,L,B

READ (II, •••

END

CONSTRUCT AND
EXECUTE roe CALL
(FUN ° LUN)

FINISH

NO

CASE

CONSTRUCT DCB AND
EXECUTE roe CALL
(FUN ° LUN)

FINISH

NOTE: THE FORTRAN LOGICAL UNIT FUN IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED.
V$0PEN OVERRIDES A /PFILE ASSIGNMENT.

l'Til-IU5

Figure 5-4. FORTRAN 1/0 Execution Sequences

5-19

LANGUAGE PROCESSORS

/ASSIGN,PI•SO
IPP'ILE,ll,X,P'ILE1
/EXECC

Case 3, normal RMD file executing in foreground or
background: the CALL V$0PEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL V$0PEN statement overrides any tPFILE assignment
(case 2). The format of the statement is:

CALL V$0PEN(fun,lun,name,mode)

where

fun

lun

name

mode

is the name or number of the
FORTRAN unit which may be num­
eric value, defined by a DATA
statement, or an assignment
statement

is the name or number of the
logical unit which may be
numeric value, defined by a
DATA statement, or an assignment
statement

is the name of the 13-word array
containing the file name and the
protection code

is the mode of the 110-control
open macro (section 3.5.1)

V$0PEN constructs an FCB in the first ten words of the
specified 13-word array, performs an IOC OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FCB-chain link, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

/FORT

DIMENSION IFCB(13)
DATA IFCB (3) /:ZH QI
DATA IFCB(8),IFCB(9),IFCB(10)/2HFI,2HL ,2H I

CALL V$0PEN (2, 20, IFCB, 0)

File FIL can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

5-20

READ (2, ...

executes an IOC READ call, reading from FIL using IFCB as
the FCB.

Note: V$0PEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
110 package has reserved only a 120 word buffer.

Any record in a file opened by V$0PEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL is
read by inputting

IFCB(ll)•61
READ(2, .•.

To dissolve an existing association between an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

where

CALL V$CLOS(fun,mode)

fun is the name or number of the FORTRAN
logical unit

mode is the mode of the 110-control CLOSE
macro (section 3.5.2)

Thus, when the processing of file FIL in the previous
example is complete, to close/update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
= 2 no longer reference FIL, the job stack can be:

CALL VSCLOS(2,1)

Note: the auxiliary FORTRAN 110 statements REWIND,
BACKSPACE, and ENDFILE cannot be used with RMD files.
Use instead (where IFCB is the ECB array):

IFCB (II l • 1 For rewind
IFCB (II) • IP'CB (II l -1 For backspace
CALL V$CLOS (fun, 1) For endfile

Case 4, blocked RMD file executing In foreground or
background: the CALL V$0PNB statement associates any
specified RMD file with a FORTRAN unit number. This
statement overrides any /PFILE statement. The format is:

CALL V$0PNB (fun, lun, name, mode, recsz, buff, rbwfl)

where

fun

lun

is the name or number of the
FORTRAN unit which may be
numeric value, defined in a
DATA statement, or an assign.
ment statement

is the name or number of the
file logical unit which may be
numeric value, defined in a DATA
statement, or an assignment
statement

name is the name of a 14·word FCB
array

mode

recsz

buff

rbwfl

is the mode of the 1/0 control
OPEN macro

is the logical record size in
words

is the address of a blocking
buffer array

is the read·before-write flag

The first parameters are identical in function to those of
the CALL V$0PEN statement. The other three specify
blocking information.

An RMD file opened by a CALL V$0PNB statement is
processed as though it were a consecutive series of logical
records, each one recsz words in length. These logical
records continue across physical record boundaries with no
space wasted (except possibly at the end of file). Input and
output is buffered through the user-supplied buffer array
buff as specified above.

Since actual physical 1/0 is performed on buff, the file must
be large enough to do 1/0 on the end of the last logical
record. It is sufficient to allocate RMD space for one more
logical record than will ever be used.

It is the user's responsibility to declare the size of the
buffer array buff sufficiently large, remembering that it is a
function of the logical record size recsz, that it must be a
multiple of the basic record size of 120, and that it must be
large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical
record may overlap the physical record boundaries. The
following tables specify all conditions, where:

LANGUAGE PROCESSORS

Q(xty) means the quotient of x/y
R(x/y) means the remainder of x/y

recsz < 120

R(l20/recsz) Size of Array Buff

- 0 120 words
"" O 240 words

recsz 2: 120

R(recsz/ 120) Size of Array Buff

recsz - 0
= 1
> 1

120 • (1 + Q(recsz/120))
120 • (2 + Q(recsz/120))

If recsz is not a multiple or factor of 120 words, the
blocking buffer buff must allow room for an extra 120-word
physical record at the start or end of a logical record.

On a WRITE operation where recsz is not a multiple of 120
words, data on the RMD can be overwritten unless a read­
before-write is performed. In some situations, such as
initial file creation in a strictly sequential fashion, this is
unnecessary and slow.

The parameter rbwfl allows the user to select this feature.
If rbwfl is zero, read-before-write is disabled. Any non-zero
value enables read-before-write.

Example: An RMD file opened by CALL V$0PNB can be
accessed randomly, as with CALL V$0PEN, by a replace­
ment statement using the logical record number.

/FORT
DIMENSION IFCB(14),IBUFF(120)

DATA IFCB(3),IFCB(8),IFCB(9),IFCB(10)
/0,2HBL,2HFI,2HLE/

CALL V$0PNB (2, 10, IFCB, 0, 10, I BUFF, 1)
IFCB(4) • 5
READ (2) I
READ (2) J

This sequence causes the unkeyed file name BLFILE on
logical unit 10 to be opened and assigned FORTRAN unit
number 2. The first READ statement causes the entire first
120-word physical record (first 12 logical records) to be
input into blocking buffer IBUFF, and the first word of the
fifth logical record to be transferred to I . The second READ
would not require another physical input for record 6 in
IBUFF. This READ statement would simply transfer the first
word of logical record 6 to J.

To flush the blocking buffer, close the file and disassociate
the FORTRAN and logical unit numbers the CALL V$CLSB
statement is provided. Its format is:

CALL V$CLSB (fun,mode)

5-21

LANGUAGE PROCESSORS

where

fun

mode

is the FORTRAN unit number

is the mode of the 110 control CLOSE
macro

The end-of-file information in a FILE NAME DIRECTORY
refers to a physical 120-word record number. Therefore, if
logical record size is not a multiple of 120 words, the user
may need to define his own end-of-file mark. Close and
Update, Open and Leave, and IOCHK (section 5.3.4) EOF
features all operate on this File Name Directory parameter
referring strictly to 120-word physical record numbers.

5.3.3 Runtime 1/0 Exceptions

The FORTRAN runtime 1/0 program allows a program to
detect 1/0 errors and end-of-file or end-of-device condi­
tions. Status of a READ or WRITE operation is available
immediately after the operation is complete and before
another I /0 operation is executed. This status can be
checked by executing a subroutine or function call in the
form.

CALL IOCHK(status)

where status is the name of an integer variable which is to
receive the result of the status check.

If the last 1/0 operation had been completed normally, the
value of zero will be returned. If an error had occurred, the
value minus one is returned. If either an end-of-file or an
end-of-device had occurred, the value positive one will be
returned.

The status may be checked and the result tested in a single
statement by use of the form:

IF (IOCHK(status)) label(l), label(2), label(3)

where

status

label(l)

522

is the name of an integer
variable which receives the
result of the status check.
A value of zero indicates
normal completion. A neg­
ative non-zero value indi­
cates an error. A positive
non-zero value indicates
EOF or EOD.

is a statement label
to which control is
transferred, if an I /0
error occurred.

label(2)

label{3)

is a statement label to
which control is to be
transferred if the op­
eration was completed
normally.

is a statement label to
which control is trans·
ferred, if an end-of.file
or end-of-device was en­
countered.

If the program does not check the status of a READ or
WRITE operation in which an error occurs, FORTRAN will
abort execution of the task upon the next entry to the
runtime 1/0 routine. At that time the diagnostic message
will be output to the System Output device. Any data which
is input to a read in which an error occurred will be invalid.
After a call to IOCHK is executed, any error status is reset
and the program may proceed with additional input and/or
output.

5.3.4 Reentrant Runtime 1/0

The VORTEX runtime 1/0 program processes all FORTRAN
READ, WRITE, auxiliary 110, and open and close state­
ments at execution time. It is composed of two modules,
V$FORTIO and the reentrant task V$RERR. Both are in the
OM library. V$RERR is also in the nucleus portion of the
SGL. SGEN then automatically loads V$RERR in the
VORTEX nucleus, and all FORTRAN programs automati­
cally link to it. If V$RERR is not desired in the VORTEX
nucleus, the SGEN directive DEL, V$RERR must be entered
during system generation. Each FORTRAN program will
then get its own copy of V$RERR from the OM library.
V$RERR is approximately 3K words long.

5.4 RPG IV COMPILER

5.4.1 Introduction

The VORTEX RPG IV System is a software package for
general data processing applications. It combines verstile
file and record defining capabilities with powerful process­
ing statements to solve a wide range of applications. It is
particularly effective in processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG IV runtime/loader program.

The VORTEX RPG IV compiler and the runtime/loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the /MEM
directive.

The RPG language, and its compilation and execution
under VORTEX is described in the Varian 620 RPG IV
User's Manual (98 A 9947 03x).

Error messages applicable to the RPG IV compiler are given
in Appendix A.

5.4.2 RPG IV 1/0 Units

The RPG IV compiler reads source records from the
Processor Input (Pl) file, write object records on the Binary
Output (BO) file, and lists the source program on the List
Output (LO) file.

The RPG IV runtime/loader will normally load the RPG
object program from the Binary Input (Bl) file. When the
program executes, the READ CARD, PUNCH and PRINT
statements are performed on logical units 13, 14, and 15
respectively, statements for performing input and output to
logical units 16 through 22.

5.4.3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiler is scheduled from the background library by
the directive

/LOAD,RPGC

The compiler terminates when the required END statement
in the RPG program is encountered. The compiler exits to
the executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the Pl, BO, and LO files at the
beginning of the compilation.

The runtime/loader is scheduled from the background
library by the directive

/LOAD,RPGRT

The loader expects the RPG object program is on the Binary
Input (Bl), and loads and executes it. If the load directive
contains the name of an RPG program to be loaded in the
form,

/LOAD,RPGRT,name

the runtime/loader will assume the program mentioned is
in the background library and will load it from there. An
RPG object program may be 'cataloged' into the back­
ground library by creating a directory entry and allocating
file space with FMAIN and copying the RPG object program
into the file with IOUTIL.

LANGUAGE PROCESSORS

5.5 RPG II COMPILER

5.5.1 Introduction

The VORTEX RPG II System is an industry compatible
software package for general data processing applications.
It combines versatile file and record defining capabilities
with powerful processing statements to solve a wide range
of applications. It is particulary effective in processing data
for reports. The VORTEX RPG II system consists of the RPG
II compiler and RPG II runtime interpreter.

The VORTEX RPG II compiler executes as a level one
background program in unprotected memory. The compiler
will operate in 4K of memory with limited work space. The
work space may be expanded and consequently larger RPG
programs may be compiled by use of the /MEM directive.

The RPG II language, and its compilation and execution
under VORTEX is described in the RPG II User's Manual.

5.5.2 RPG II 1/0 Units

The RPG II compiler reads source records from the
Processor Input (Pl) file, writes object records on the
Binary Output (BO) file, and lists the source program on
the List Output (LO) file. Optionally, object records may be
written on the GO file.

5.5.3 Compiler and Runtime Execution

The RPG II compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as a
background unprotected task, with the name RPG.

The compiler is scheduled from the background library by
the directive:

/RPG

The compiler terminates when the required 1• statement in
the RPG program is encountered. The compiler exits to the
executive. There is no provision for stacking multiple
compilations or for operating in compile-a!1d-go mode.

The compiler rewinds Pl, BO, and LO files at the beginning
of the compilation.

An RPG object program may be 'cataloged' into the
background library by creating a directory entry and
allocating file space with FMAIN and copying the RPG
object program into the file with IOUTIL.

SECTION 6

LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are ~n a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job·
control processor (JCP) directive /LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

Load-module generator directives (section 6.2) input
through the SI logical unit.

• Relocatable object modules from which the load module
is generated.

Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog·
ing of files, i.e., for storage of the files and the generation
of file-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the SI logical unit and listed on the LO
logical unit. If the SI logical unit is a Teletype or a CRT
device, the message LM** is output on it to indicate that
the SI unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the load modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modules
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or
overlay, section 6.1.1) becomes the execution address for
that segment. (Note: If the load module being generated is

a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory, other than the base page (page 0). No
assembler generated indirects or literals are allowed.

A VORTEX physical record on an RMD is 120 words. Object­
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the SI logical unit, object modules are not
blocked but assumed to be one object module- record per
physical record.

Error-recovery inputs are .entered by the operator on the
SO logical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in Appendix A.6.

Recovery from the type of error represented by invalid
directives or parameters is by either of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next LMGEN directive is then input
from the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and schedule
the JCP for execution. (Note: An irrecoverable error, e.g.,
1/0 device failure, causes LMGEN to abort. Examine the
1/0 error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:

Load modules generated by the LMGEN

Error messages

Load-module maps output upon completion of a load­
module generation

Load modules are LMGEN-generated absolute or relocat·
able tasks with or without overlays. They contain all
information required for execution under the VORTEX
operating system. During their generation, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

6-1

LOAD-MODULE GENERATOR

Foreground Global
Blank Common FCBs

Nucleus Table Nucleus Table
Module Module

Unused Unused

Programs Programs

Named Named
Common Common

Overlay Overlay
Information Information

01000 01000
Page 0 Page 0

Data Data
0

Foreground Background

All foreground tasks share the foreground blank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure (virtual memory)

Note: LMGEN locks out the partition while it is modifying
the directory.

Load-module maps are output on the LO logical unit upon
completion of the load-module generation, unless sup·
pressed. The maps show all entry and external names and
labeled data blocks. They also describe the items given as
defined or undefined, and as absolute or relocatable, and
indicate the relative location of the items. The load-module
map 11sts the nems in the format, four entries per line:

Error messages applicable to the load-module generator
are output on the SO and LO logical units. The individual
messages, errors, and possible recovery actions are given in
appendix A.6.

Print position 2345678 9 10 11 12 13 14 15 16

where

item

b

location

6-2

item b b

is a left-justified entry or external name or
labeled data block

is a blank

is A for .an absolute or R for a relocatable item

is the left-justified relative location of the item

location

The following appear at the end of the LMGEN map.

[$1AP]

[$LIT]

[$PED]

Top of indirect address pool, which
begins at 0500

Bottom of literal pOol, which begins at
0777

Last loaded location. Foreground, word
size of load module. Background, last
location loaded (loading begins at
01000).

LMGEN performs special handling for an external of the
form 'V$PED'. LMGEN satisfies this external with the last
loaded location plus one of the load modules for both
overlayed and non-overlayed tasks. This external can be
used for specifying table areas behind tasks that link with
external routines.

6.1.1 Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requirements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive (section 6.2.3) and comprise a root
segment and two or more overlay segments (figure 6·1),
but only the root segment and one overlay segment can be
in memory at any given time. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it, if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1.8.

LOAD-MODULE GENERATOR

6.1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and blank common. (Refer to the FORTRAN IV Reference

Manual, document number 98 A 9902 03x, or the DAS MR
COMN directive description in the computer handbook, for
the system being used.

Named common is contained within a task and is used for
communication among the subprograms within that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated within the load module. The size of the back·
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond·
ing tasks, i.e., foreground tasks use only foreground blank
common, and background tasks use only background
blank common.

All definitions of named and blank common areas for a
given load module must be in the first object module
loaded to generate that load module.

6.2 LOAD-MODULE GENERATOR DIRECTIVES

TIDB
LD.
ov
LIB
CLD

MEM
END

Create task-identification block
Load relocatable object modules
Overlay
Library search
Load relocatable object modules
without re-opening or repositioning

Default extra memory pages

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed·
ded blanks. The character strings are separated by
commas (,) or by equal signs (=). The directives are free­
form and blanks are permitted between the individual
character strings of the directives, i.e., before or after
commas (or equal signs). Although not required, a period
(.) is a line terminator. Comments can be inserted after the
period.

6·3

LOAD-MODULE GENERATOR

The general form of a load-module generator directive is

where

name,p(l),p(2), ... ,p(n)

name

each p(n)
(if any)

is one of the directive names given above

is a parameter required by the
directive and defined below
under the descriptions of the
individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (-) are omitted.

Error messages applicable to load-module generator direc·
lives are given in Appendix A.6.

6.2.1 TIDB (Task-Identification Block)
Directive

This directive must be input before any other LMGEN
directives can be accepted. It permits task scheduling and
execution, and specifies the overlay and debugging charac­
teristics of the task. The directive has the general form

where

TIDB,name,type,segments,OEBUG, ropages

name is the name (1 to 6 ASCII characters) of
the task

type is 1 for an unprotected background task
on Bl, or 2 for a protected foreground
task or 3 for a background task on an
alternate library

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or 0 for
a task without overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

ropages is an optional ready-only page specifier
(1·77). It can be a single number or a
range of consecutive numbers (e.g., 3,5).

The DEBUG parameter includ11s the DEBUG object module
as part of the task. If the task is a load module without
overlays, DEBUG is the last object module loaded. If the
task is a load module with overlays, DEBUG is the last
object module loaded in the root segment (section 6.1.1).

The ropage parameter allows specification of a range of
virtual pages as read-only.

6-4

Examples: Specify an unprotected background task
named DUMP as having no overlays but with debugging
capability.

TIDB,DUMP,1,0,DBBUG

Specify a protected foreground task named PROC as
having a root segment and four overlay segments.

TIDB,PROC,2,q

6.2.2 LD (load) Directive

This directive specifies the logical unit from which relocat­
able object modules are to be. loaded. It has the general
form

LD,lun,key, file

for loading from RMD logical units, and

LD,lun

for loading from any other logical unit, where

lun is the name or number of the logical unit
where the object module resides

key is the protection code required to
address lun

file is the name of the RMD file

From the object modules, LMGEN generates load modules
(with or without overlays) on the SW logical unit. Loading of
object modules from the specified logical unit continues
until an end-of-file mark or an end-of-load module record
(appendix G.6) is encountered.

Successive LO directives permit the loading of object
modules that reside on different logical units. The execu­
tion address for the load module is the last encounter
execution address.

Examples: load the relocatable object modules from
logical unit 6 (Bl) until an end-of-file mark is encountered.

LD,6

Open a file named DUMP on logical unit 9 (GO) with no
protection code. (LMGEN loads the relocatable object
modules and closes the file.)

LD,9,,DUMP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment is an
overlay segment. It has the general form

OV,segname

where segnarne is the name (1 to 6 ASCII characters) of
the overlay segment.

Example: Specify SINE as an overlay segment.

OV,SINB

6.2.4 LIB (Library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched
(and the order in which the search is made) to satisfy all
undefined externals. The directive has the general form

where

LIB,lun(l),key(l),lun(2),key(2), ... ,lun(n),key(n)

each lun(n) is the name or number of a resident·
library RMD logical unit to be searched

each key(n) is the protection code required to
address the preceding logical unit

The search is conducted in the order in which the logical
units are given in the LIB directive. When not specified by
LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in LIB.

If the generation of the load module involves overlays, a LIB
directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externals. Use logical
unit 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C; and the OM library, having protection code D. (Because
the last two libraries are searched in any case, note that
the two inputs following are equivalent.) Input

LIB,115,M,103,C,104,D

or, more briefly,

LIB,115,M

To change the order of search to logical units 104, 115, and
103, input

LIB, 104,D, 115,M, 103,C

or, more briefly,

LIB,104,D,115,M

LOAD-MODULE GENERATOR

To search only the CL and OM libraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive

This directive terminates the generation of the load module
and, if specified, causes the creation of a file and a
directory entry (section 9) for the load-module contents on
the indicated logical unit. The indicated logical unit, if any,
is an RMD, and thus may require a protection code. The
directive has the general form

END,/un,key

where

lun

key

is the name or number of the logical unit
on which the file containing the load
module will reside

is the protection code, if any, required to
addresslun

If TIDB (section 6.2.1) specified an unprotected back·
ground task (TIDB directive type - 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type - 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition. If TIDB specified an alternate library background
task (TIDB directive type - 3), the logical unit, if any,
specified by the END directive, may be that of any available
assigned RMD partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
cataloged even if END specifies a legal logical unit. In this
case, the load module resides on the SW unit only.

Examples: Specify that the load module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will also
reside on the SW unit.)

END, 105 ,E

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

END

6.2.6 CLD Directive

This directive specifies the logical unit from which relocat­
able object modules are to be loaded. It has the general
forms

6-5

LOAD-MODULE GENERATOR

CLD,lun,key,file

or

CLD,lun

Where use of the two forms and the meaning of lun, key,
and file is as for the LD directive (section 6.2.2). This
directive specifies the same action as for the LD directive
except that successive CLD directives do not cause re­
opening or repositioning of the specified logical unit.

6.2.7 MEM (Memory) Directive

This optional directive is used to specify the default
number of extra memory blocks to be attached to a
background task in a similar manner to the /MEM
directive of JCP. This value is in addition to a /MEM
request and is stored in word 12 of the task's pseudo TIDB.
The directive has the general form

MEM,n

where

is the number of 512 word blocks
(pages)

This directive, if used, must appear after the last LIB
directive and before the END directive.

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN
with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card
reader unit CROO. Assign the task name EXC4 and catalog
to the BL logical unit, and load DEBUG as part of the task
from the OM library.

/JOB,EXAMPLEll
/ASSIGN,BI•CROO
/LMGEN
TIDB,EXCll, 1,0,DEBUG
LD,BI
LIB
END,BL,E
/ENDJOB

(Teletype input)

Note: The object module deck must be followed by an
end of file (2·7·8·9 in card column 1).

6·6

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and SI logical units to card
reader unit CROO. Assign the task name EXC5, overlay
names SGMl, SGM2, and SGM3, and catalog to the FL
logical unit.

/JOB,EXAMPLES
/ASSIGN,BI•CROO,SI•CROO

(Deck)

/LMGEN
TIDB,EXC5,2,3
LD,BI
(Object Module(s) ·· root segment)

(End of File)
LIB
OV,SGM1
LD,BI
(Object Module(s))

(End of File)
LIB
OV,SGM2
LD,BI
(Object Module(s))

(End of File)
LIB
OV,SGMJ
LD,BI
(Object Module(s))

(End of File)
LIB
END,FL,F
/ENDJOB

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN
with control records input from the Teletype and object
module(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undefined
externals, and catalog on RMD 120.

/JOB,EXAMPLE6
/LMGEN
TIDB,EXC6,2,0
LD,107,Z,PGEX
LIB,OM,D
END, 120 ,X
/ENDJOB

SECTION 7
DEBUGGING AIDS

The VORTEX II system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

During the execution of DEBUG, the A, B, and X
pseudoregisters save the contents of the real A, B, and X
registers, and restore the contents of these registers before
terminating DEBUG. If the task uses V75 registers, the
contents of R3 through R7 are also saved and restored.

7.1 DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
is specified by a load-module generator TIDB directive
(section 6.2.1). The DEBUG object module is the last object
module loaded of the root segment if the task is an overlay
load module. The load-module generator sets the load­
module execution address equal to that of DEBUG.

When debugging is complete, the input of any job-control
directive (section 4.2) returns control to the VORTEX
system.

If the load module has been cataloged, DEBUG executes
when the module is scheduled. Otherwise, JCP directive
/EXEC (section 4.2.22) is used to schedule the module and
DEBUG (level zero only).

INPUTS to DEBUG comprise the directives summarized in
table 7-1 input through the DI logical unit. When DEBUG is
first entered, it outputs on the Teletype or CRT device the
message DG** followed by the TIDB task name and the
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the DI unit.

Directive

A

Ax

B

Bx

0 Rn

0 Rnx

Cx

Gx

lx,y,z

0

p

Sx,y,z,m

Ty,x

Table 7-1. DEBUG Directives

Description

Display and change the contents of the A pseudoregister

Change, but do not display, the contents of the A pseudoregister

Display and change the contents of the B pseudoregister

Change, but do not display, the contents of the B pseudoregister

Display and change the contents of the V75 register

n (n - 0-7).

Change, but do not display, the contents of the V75
register n.

Display and change the contents of memory address x

Load the contents of the pseudoregisters into the
respective A, B, and X registers, and transfer to
memory address x

Initialize memory addresses x through y with the value of z

Display and change the overflow indicator

Read DEBUG directives from Bl unit until EOF

Search memory addresses x through y for the z value,
using mask m

Place a trap at memory address y, starting execution
at address x

7-1

DEBUGGING AIDS

Directive

Table 7-1. DEBUG Directives (continued)

Description

Ty Place a trap at memory address y, starting execution
at the last trap location

x Display and change the contents of the X pseudoregister

Xy Change, but do not display, the contents of the X
pseudoregister

xxxxxx Display the contents of memory address xxxxxx

xxxxxx,yyyyyy Display the contents of memory addresses xxxxxx through
yyyyyy

• - V75 systems only

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats commas, periods,
and equal signs as delimiters.

Numerical data are always interpreted as octal by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

An error message, EX20-EX25, is output and the task is
aborted, if a memory-map protection violation occurs.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit, and
error messages. Numerical data are always to be inter·
preted as octal.

Error messages applicable to the debugging program are
given in Appendix A.7.

Examples of DEBUG directive usage: Note that, in the
following examples, operator inputs are in bold type.
Entries in italics, are program responses to the directives.

Display the contents of a pseudoregister A:

A
(001200)

Display and change the contents of a pseudoregister B:

B
(001200) 010406

Change, but do not display, the contents of a pseudoregis·
ter X:

X02050

7·2

Display, but do not change, the status of the overflow
indicator:

0
(000001)

Display and change the status of the overflow indicator:

0
(000000) 000001

Display, but do not change, the contents of memory
address 002050:

C002050
(102401)

Display and change the contents of memory address
002050:

C002050
(102401)
001234

Display and change the contents of memory address
002050, then display the contents of the next sequential
location:

C002050
001234. (102401)
(000067)

Display, but do not change, the contents of memory
address 002050, then display the contents of the next
location:

C002050
(102401),
(000067)

Load the contents of the pseudoregisters into the respective
A, B, and X registers, and start execution at memory
address 001001:

0001001

Initialize memory addresses 000200 through 000210 to the
value 077777:

1000200,000210,077777

Search memory addresses 000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

S000200,000240,000110,000770
000220 (017110)
000234 (000110)
000237 (001110)

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, B, and X
registers and the setting of the overflow indicator when the
trap address is encountered:

T001236,001234
001236 (142340) 002000 010405 012345 000001

Execute the same trap if the task uses V75 instructions
(assuming Rn - n):

T001236,001234
001236 (142340) 002000 010405 012345 000001
000003 000004 000005 000006 000007

Display the contents of memory address 001234:

001234
(001200)

Display the contents of memory addresses 001234 through
001237:

001234,001237
001230 005000

Total of 8 values

7.2 SNAPSHOT DUMP PROGRAM

005000

The 294-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load

DEBUGGING AIDS

module if the task contains a SNAP request and calls the
SNAP external routine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is

where

start

end

tldb

EXT
CALL
DATA
DATA
DATA

SNAP
SNAP
start
end
ti db

is the first address whose contents are
to be displayed

is the last address whose contents are to
be displayed

is less than zero if dump of task TIDB is
desired, is positive if TIDB dump is to be
suppressed

If start is a negative number, there is no memory dump. If
more than one location is specified to be displayed, the
output dump will be in complete lines of eight addresses,
e.g., if start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the
contents of the A, B, and X (and V75 if present) registers
and the setting of the overflow indicator are displayed.

Output examples: with the snap request at 01234, display
the contents of the A (017770), B (001244), and X
(037576) registers, and the overflow indicator (on).

SN** TASK01
001234 017770 001244 037576 000001

•000003 000004 000005 000006 000007

Using the same data, display, in addition, the contents of
memory addresses 001002 through 001025, inclusive and
request a dump of the active TIDB.

7.3

DEBUGGING AIDS

SN•• SW 000500
001023 000000 000000 001023 000000

•000003 000004 000005 000006 000007

TIDB LOC 055013 •CONTENTS•

055010 000000 000000 000000 000000 000001 000000 000000 001527
055020 001527 067001 001326 141146 001000 065604 000007 001302
055030 000001 001541 000002 000000 002000 151727 120240 120240
055040 000500 000000 0711627 0646011 055075 000003 000004 000005

•055050 000006 000007 000000 000000 000000 000000 000000 000000

SNAP DUMP
001000 006505 070275 001402 001031 000050 006505 066270 100000
001010 010002 0753311 000000 000000 006505 070137 001005 001101
001020 001101 001101 001014 002000 001107 001000 001027 001000

~ These lines appear only if the task uses V75 register

7.4

SECTION 8
SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
background task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of
forward-merging of subfiles and has file-positioning capa­
bility. The output file can be sequenced and/or listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP,
section 4.2.17) upon input of the JCP directive /SEDIT.
Once activated, SEDIT inputs and executes directives from
the SI logical unit until another JCP directive (first
character - I) is input, at which time SEDIT terminates
and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations (section 8.2.8). To increase this, input a !MEM
directive (section 4.2.5), immediately preceding the /SEDIT
directive, where each 512-word block will increase the
capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the
SI logical unit.

b. Old source records input through the IN logical unit.

c. New or replacement source records input through the
ALT logical unit.

d. Error-recovery inputs entered via the SO logi~al unit.

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the SI logical unit and listed· as read on the LO
logical unit, with the VORTEX standard heading at the top
of each page. If the SI logical unit is a Teletype or a CRT
device, the message SE .. is output to it before directive
input to indicate that the SI unit is waiting for SEDIT input.

There are two groups of source-editor directives: the
copying group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit, merge them with new or replacement source
records input on the ALT unit, and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. If the remainder of
the source records on the IN unit are to be copied after all
editing is completed, this must be explicitly stated by an FC
directive, (section 8.2.9). Ends of file are output only when
specified by FC or WE directives (sections 8.2.9 and
8.2.13). The processing of string-editing directives is

different from that of record-editing directives. A string·
editing directive affects a specified record, where source
records on the IN unit are copied onto the OUT unit until
the specified record is found and read into memory from
the IN unit. After editing, this record remains in memory
and is not yet copied onto the OUT unit. This makes
possible multiple field-editing operations on a single source
record. The auxiliary group directives are those used for
special 1/0 or control functions.

All source records, whether old, new, or replacement
records, are arranged in blocks of three 40-word records
per VORTEX RMD physical record. Any unused portion of
the last physical record of an RMD file on the IN unit
should be padded with blanks. When necessary, SEDIT will
pad the last RMD record on the OUT unit. When the OUT
file will contain more than one source module for input to a
language processor, the user should insert two blank
records after each END statement to insure that each
source module starts on a physical record boundary.
Record numbers start with 1 and have a maximum of 9999.
Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral
increment. These specifications for sequence numbers are
given by the SE directive (section 8.2.10).

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SEDIT operations.
Error messages applicable to this component are given in
Appendix A.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing
SEDIT to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SEDIT directive is then input from
the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SEDIT task and schedule
the JCP for execution. (Note: If there is an 110 control
error on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT
logical unit.

b. Error messages.

c. The listing of the SED/T directives on the LO logical unit.

d. Comparison outputs (compare-inputs directive, section
8.2.15).

e. Listing of source records on the LO logical unit when
specified by the LI directive (section 8.2.11).

8-1

SOURCE EDITOR

Error messages applicable to SEDIT are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.8.

The listing of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or outpi;~. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEDIT are either fixed or
reassignable units. The three fixed logical units are:

a. The SI logical unit, which is the normal input unit for

SEDIT directives begin in column l and comprise se­
quences of character strings having no embedded blanks.
The character strings are separated by commas (.) or by
equal signs (-). The directives are free-form and blanks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period {.) is a line terminator.
Comments can be inserted after the period.

The general form of an SEDIT directive is

name,p(l),p(2), .. .,p(n)

SEDIT directives. where

b. The SO logical unit, which is used for error-processing.

c. The LO logical unit, which is the output unit for SEDIT
listings.

The three reassignable logical units are:

a. The SEDIT input (IN) logical unit, which is the normal
input unit for source records. This is assigned to the Pl
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS directive with an IN
parameter (section 8.2.1).

b. The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which is
the alternate input unit used for new or replacement
source records. This is assigned to the Bl logical unit
when SEDIT is loaded, but the assignment can be
changed by an AS directive with an Al parameter.

8.2 SOURCE-EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying group:
AS Assign logical units
AD Add record(s)
SA Add string
REPL Replace record(s)
SR Replace string
DE Delete record(s)
SD Delete string
MO Move record(s)

b. Auxiliary group:
FC Copy file
SE Sequence records
LI list records
GA Gang-load all records
WE Write end-of-file
REWI Rewind
co Compare records

8-2

name is one of the directive names given above
or a longer string beginning with one of
the directives names (e.g., AS or
ASSIGN)

each p(n) is a parameter defined below under the
descriptions of the individual directives

Where applicable in the following descriptions, a field
specification of the format (flrst,last) or (nl,n2,n3). is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
character string string is coded within single quotation
marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.l AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassignable logical unit (section 8.1). It has the general
form

where

AS,nn • lun,key,file

nn is IN if the directive is making an
assignment of the IN logical unit, OU if
the OUT logical unit, or AL if the Al T
logical unit

lun is the name or number of the logical unit
being assigned as the IN, OUT, or Al T
unit

key is the protection code, if any, required to
address lun

file is the name of an RMD file, if required

If the SEDIT reassignable units are to retain the assign­
ments made when SEDIT was loaded (default
assignments: IN - Pl, OUT- PO, Al T - Bl), no AS direc-

tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are required).

Any RMD affected by an AS directive is automatically
repositioned to beginning of device.

The AS directive merely fixes parameters in 1/0 control
calls within SEDIT. It does not alter 110 control assign­
ments in the logical-unit table (table 3-1).

Note: AS resets the corresponding record counter; how­
ever, no physical rewinding of devices occurs.

Examples: Assign the Pl logical unit as the SEDIT
reassignable IN unit.

AS,IN•PI

or, the unabbreviated form

ASSIGN,INPUT•PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.

AS,OU•8

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protection key.

AS,IN•111,,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the ALT unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from ALT onto OUT from the current position of the
unit up to but not including the next end-of-file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to ALT and copy records from the current
position of that unit up to but not including the next end­
of-file mark.

AD,7

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field. It has the general form

where

SA,recno,(first,last),' string'

rec no

first

last

string

is the number of the source record in
which the character string is to be
inserted

is the number of the first character
position to be affected

is the number of the last character
position to be affected

is the string of characters to be inserted
in the field delimited by character
positions first and last in record number
rec no

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the. specified field first,last, with.
characters shifted out of the right end of the field being
lost. There is no check on the length of string and shifting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when an SEDIT directive affecting another
record is input.

The field specification flrst,last is lost after one manipula­
tion. Subsequent string operations must specify the
character positions based on the new conf)guration. For
example, for the character string ACDEGbb in positions 1
through 7, addition of the character B in position 2 requires
the field specification (2,7). Then, to add the character F
between E and G, one must specify the field (6,7) rather·
than (5,7) because of the shift previously caused by
insertion of the character 8.

Example: Change the erroneous DAS MR source-state­
ment operanp in character positions 16-21 of the 32nd
record from LOCXbb to LOC,Xb.

SA,32,(19,20), ·~·

8-3

SOURCE EDITOR

8.2.4 REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the general form

REPL,recnol,recno2

where

recnol

recno2

is the number of the first record to be
replaced

is the number of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be replaced.

The REPL directive copies source records from the IN
logical unit onto the OUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the ALT logical unit from the current
position of the unit up to but not including the next end-of­
file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including record 9. Replace
IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of ALT and the
next end-of-file mark onto OUT. Do not copy the end-of-file
mark.

REPL,10,20

8.2.5 SR (Replace Str~ng) Directive

This directive replaces one character string within a source
record with another character string. It has the general
form

SR,recno,(nl,n2,n3),'strlng'

where

rec no

nl

n2

8-4

is the number of the source record in
which the character string Is to be
replaced

is the number of the first character
position of the string to be replaced

is the number of the last character
position of the string to be replaced

n3

string

is the number of the last character
position of the field in which the string to
be replaced occurs

is the string of characters to be inserted
in the field delimited by character
positions nl and n3 in record number
rec no after shifting out the characters in
positions nl through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The re.cord recno is
read into the memory buffer. Field nl,n3 is then shifted to
the left and filled with blanks until the field nl,n2 is shifted
out. Then, the character string string shifts into the left
end of the field nl,n3. There is no check on the length of
string and shifting continues until it is left-justified in the
field nl,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when a SEDIT directive affecting another
record is input.

The field specification nl,n2,n3 is lost after one manipula­
tion. Subsequent string operations must specify the
character positions based on the new configuration.

Example: Copy records from IN onto OUT u~ to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

SR,50, (10, 12, 12), 'XY '

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. It has
the general form

DE,recnol,recno2

where

recnol

recno2

Is the number of the first record to be
deleted

Is tlie number of the last record to be
deleted

If recno2 is omitted, it Is assumed equal to recnol, i.e., one
record will be deleted.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE,50,54

Position IN at record 2, deleting record 1.

DE, 1

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source
record. It has the general form

SD,recno,(nl,n2,n3)

where

recno is the number of the source record from
which the character string is to be
deleted

nl

n2

n3

is the number of the first character
position of the string to be deleted

is the number of the last character
position of the string to be deleted

is the number of the last character
position of the field in which the string to
be deleted occurs

The SD directive processing is exactly like that of the SR
directive (section 8.2.5) except that no new character string
is shifted into field n2,n3 after the field nl,n2 is shifted out.

Example: Copy records from IN onto OUT up to and
including record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with blank fill on the
right.

SD, 100, (2,4, 10)

SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol,recno2,recno3

where

recnol

recno2

recno3

is the number of the first record to be
moved

is the number of the last record to be
moved

is the number of the record after which
the block of records delimited by recnol
and recno2 is to be inserted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be moved.

The MO directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but .not
including the record specified by recnol. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2 + 1.
When OUT reaches (by some succeeding directive)
recno3 + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4, save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on OUT of 1-4, 11-99, 5-10 (FC directive, section
8.2.9.).

M0,5,10,99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. It has the general form

FC,nfiles

where nfi/es (default value = 1) is the number of files to be
copied.

If the IN logical unit and/or the OUT logical unit is an RMD
partition, nfi/es must be 1 or absent. If OUT is a named file
on an RMD, there will be an automatic close/update.
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

8-5

SOURCE EDITOR

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto
OUT. This includes the sixth end-of-file mark. (Note: If IN
and/or OUT is an RMD partition, there will be '!n error.)

FC,6

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE,(first,last),initial,increment

where

first

last

initial

is the first character position of the
sequence name field

is the last character position of the
sequence number field, where the de­
fault value of first.last is 76,80

is the initial number to be used as a
sequence number (default value = 10)

increment is the increment to be used between
successive sequence numbers (default
value = 10)

There is also a special form of the SE directive to stop
sequencing:

SE,N

where there are no parameters other than the letter N.

Examples: In the next record output to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.

SE

In the next record output to OUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.

SE, (1 5, 17) , 3 0, 7

Stop sequencing.

SE,N

8·6

8.2.11 LI (List Records) Directive

This directive lists, on the LO logical unit, the records
copied onto the OUT unit. The LI directive has the general
form

LI.list

where list is A (default value) if all OUT records are to be
listed, C if only changed records are to be listed, or N if
listing is to be suppressed. Source records output to the
OUT file are listed with their OUT record number at the left
of the print list.

Examples: List all records output to OUT.

LI

Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive

This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA,(first,last),"string'

where

first

last

string

is the first character position of the field
to be gang-loaded

is the last character position of the field
to be gang-loaded, where the default value
of first.last is 73,75

is the string of characters to be gang­
loaded into character positions first
through last, inclusive in all records
copied onto out

There is also a special form of the GA directive to stop
gang-loading:

GA

where there are no parameters in the directive.

In every OUT record, GA clears the specified field, and
loads the string into it. There is no check on the length of
string and shifting continues until it is left-justified in the
specified field with excess characters, if any, being
truncated on the right.

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA, (11 , 1 5) , I VDM I

Stop gang-loading.

GA

8.2.13 WE (Write End of File)
Directive

This directive writes an end-of-file mark on the OUT logical
unit. It has the form

WE

without parameters. If OUT is a named file on an RMD,
there will be an automatic close/update.

Example: Write an end-of.file mark on OUT, a magnetic·
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This fJirective rewinds the specified SEDIT logical unit(s). It
has the general form

REWl,p(l),p(2),p(3)

where each p(n) is a na.me of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.

Example: Rewind all SEDIT logical units.

REWI,IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs
from the IN logical unit with those from the ALT logical unit
and lists discrepancies on the LO logical unit. The directive
has the general form

CO,(first,last),limit

where

first

last

is the first character position of the field
to be compared

is the last character position of the field
to be compared, where the default value
of first, last is 1,80.

SOURCE EDITOR

limit is the maximum number of
discrepancies to be listed before
aborting the comparison and passing to
the next directive.

Any discrepancy between the IN and ALT inputs is listed in
the format ·

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

If the comparison terminates by reaching the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misplaced or missing on one input. A normal termination
of a comparison (at the next end-of-file mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and ALT units until either an end of
file is found or there have been 5 discrepancies listed on
the LO.

CO, ,5

8.3 EXAMPLE OF EDITING A FILE

Following is a sample job stream for editing an existing file
on a magnetic tape onto a new file on magnetic tape. The
input file consists of SO-character records followed by an
end·of-file mark. The job stream and the edit cards are
read through the system input device.

/JOB,EDIT
/ASSIGN,PI•MTOO,PO•MT10
/REW,PI,PO
/SEDIT
AS,IN•PI
AS,OUT•PO
AS,ALT•SI
DE,5
REPL,8,10

LDA TEMP
(EOF card, 2-7-8-9 punch)
ADD, 17
TBL BSS
(EOF card, 2-7-8-9 punch)
l"C
REWI, IN, OUT
/ENDJOB

8-7

SOURCE EDITOR

The result of running the precedif)g source editor example
would be the following:

Input File

1 •
2 • CATALOG ROUTINE
3 •
lj A$3 EQU
5 B$3 EQU
6 •
7 CATLOG DATA
8 LDA TMX
9 LDB THY

10 JBZM ODER
11 ADD PARM6
12 ANAI 0770
13 STA TBL+2
14 LRLA 6
15 STA TBL+ll
16 TZB
17 JMP• CATLOG

8-8

Output File

1 •
2 • CATALOG ROUTINE
3 •
lj A$3 EQU
5 •
6 CATLOG DATA
7 LDA TEMP
8 ADD PARM6
9 ANAI 0770

10 STA TBL+2
11 LRLA 6
12 STA TBL+ll
13 TZB
111 JMP• CATLOG
15 TBL BSS 5

SECTION 9
FILE MAINTENANCE

The VORTEX file .. malntenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job·
control processor (JCP) upon input of the JCP directive
/FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or
drum) can be referenced by name.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2)
received on the SI logical unit and outputs them on the LO
logical unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffer.

If the SI logical unit is a Teletype or a CRT device, the
message FM** is output on it before input to indicate that
the SI unit is waiting for FMAIN input.
If there is an error, one of the error messages given in
Appendix A.9 is output on the SO logical unit, and a record
is input from the SO unit to the JCP buffer. If the first
character of this record is /, FMAIN exits via the EXIT
macro. If the first character is C, FMAIN continues. If the
first character is neither I nor C, the record is processed as
a normal FMAIN directive. FMAIN continues to input and
process records until one whose first character is I is
detected, when FMAIN exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas called partitions. Each partition is

referenced by a specific logical-unit number. The bounda­
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
comprise the four-word partition entries. Each PST is in the
format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Size of bad track table (120-words)

Word 1 Address of bad track table (0 if none)
relative to word 0

Word 0 Beginning partition track address

Word 1 PPB INot used IProtection code

Word 2 Number of bad tracks iii partition

Word 3 Ending partition address + 1

....___ ~ '-- - ----~

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word O of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a .file-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in

9-1

FILE MAINTENANCE

the last word of each sector. Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file is
positioned, is initially set to the ending file address, and is
manipulated by 110 control macros (section 3). The extent
of the file is defined by the addresses set in words 4 and 5
when the file is created, and remains constant.

The first sector of each partition is assigned to the file­
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each directory sector is a one-word tag containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file·name directories are created and maintained by
the file,maintenance component for the use of the 110
control component (section 3). User access to the directo­
ries is via the 110 control component.

Special entries: A blank entry is created when a file name is
deleted, in which case the file name is****** and words 3
through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname file are set to zero.

9·2

WARNING
To prevent possible loss of data from the file­
name directory during file-maintenance opera­
tions, FMAIN sets the lock bit (bit 12 of word 2
of the DST) before any directory operation, thus
inhibiting all foreground requests for 1/0 with
the partition being modified. Upon completion
of the directory operation, FMAIN clears the lock
bit. Except for the use of protection codes, this
Is the only protection for the flle-name dlrec·
tory. Manipulation of foreground files with
FMAIN is at the user's risk. For example,
VORTEX does not prevent deletion of a file
name from a file-name directory that has been
opened and is being written into by a fore·
ground program. Therefore, foreground files
should be reassigned prior to manipulation by
FMAIN.

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object modules can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2.7 and 9.2.8), an 1/0 OPEN with rewinding
(section 3.5.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or toad point for that unit. Object
modules can then be loaded until an end-of-file mark is
found.

The system generator (section 15) does not build any
object-module library. FMAIN is the only VORTEX compo·
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object­
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the SI logical unit, object modules are not
blocked but assumed to be one object-module record per
physical record.

9.1.4 Output Listings

FMAIN outputs four types of listing to the LO logical unit:

Directive listing lists, without modification, all FMAIN
directives entered from the SI logical unit.

Directory listing lists file names from a logical unit file­
name directory in response to the FMAIN directive LIST
(section 9.2.5).

Deletion listing lists file names deleted from a logical
unit file-name directory in response to the FMAIN
directive DELETE (section 9.2.2).

• Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

All FMAIN listings begin with the standard VORTEX
heading.

The directory listing is further described under the
discussion of FMAIN directive LIST (section 9.2.5), the
deletion listing under DELETE (section 9.2.2), and the
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

• CREATE file

RENAME file

LIST file names

• DELETE file

• ENTER new file name

• INIT (initialize) directory

• INPUT logical unit for object module

• ADD object module

File-maintenance directives comprise sequences of charac·
ter strings having no embedded blanks. The character
strings are separated by commas (.) or by equal signs (=).
The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can
be inserted after the period.

The general form of a file-maintenance directive is

dlrectlve,lun,p(l),p(2), .. . ,p(n)

where

directive is one of the directives listed above in
capital letters

lun is the number or name of the affected
logical unit

each p(n) is a parameter defined under the
descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(.) by equal signs (=) are omitted.

Error messages applicable to file-maintenance directives
are given in Appendix A.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit, allocates RMD space to the file, adds a corresponding
entry to the file-name directory; and sets the current end·
of·file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

CREA TE,lun, key,name, words, records

where

lun

key

name

words

records

is the number or name of the logical
unit where the new file is to be
created

is the protection code, if any, required
to address lun

is the name of the file being created

is the number of words in each record
of the file

is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not limit file use to the specified record size. To each record
in the created file, FMAIN assigns n records of 120 words
each where n is the smallest integer such that words/ 120
is less than or equal to n. The file size is n times records
words. This value is converted to a sector count to make
assignments. Neither the file size value nor the sector
count value is saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protection code is K.

CRE~TE,112,K,XFILE,120,10

9.2.2 DELETE Directive

This directive deletes the designated file and all file-name
directory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field = • • • ** •, section 9.1.2) and all other
directory references to this file to zero entries (all fields =

zero, section 9.1.2), and outputs a listing of deleted file·
names on the LO logical unit. The directive has the general
form

where

DELETE,lun,key,name

lun is the number or name of the logical
unit from which the file is being deleted

key is the protection code, if any, required
to address lun

name is the name of the file being deleted (in
the case of a multiname file, any one of
the names can be used, all names are
deleted)

The output format has, following the FMAIN heading, a
two-line heading

DELETE LISTING FOR lun
FILE NAME START END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a blank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, (in
octal) in the CURRENT column; word 4, (in octal) in the
START column; and word 5, (in octal) in the END column.
After the last file name, there is an entry describing the
blank file created by the deletion, where the FILE NAME
column contains 0 ••••, the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns. contain the last address
+ 1 (word 3 of the PST entry).

9.3

FILE MAINTENANCE

Example: Delete the file ZFILE (and all file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE,112,P,ZFILE

The name ZFILE is replaced in the file-name directory by
• • • • • •, and the space allocation for this blank entry
extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3 RENAME Directive

This directive changes the name of a file, but does not
otherwise modify the file-name directory. The directive has
the general form

where

RENAME,lun,key,old,new

lun is the number or name of the logical unit
where the file to be renamed is located

key is the protection code, if any, required to
address lun

old is the old name of the file being renamed

new is the new name of the file being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code is P,
change the name of the file XFILE to YFILE.

RENAHE,112,P,XFILE,YFILE

9.2.4 ENTER Directive

This directive adds a new file name to be used in
referencing an existing file, but does not otherwise modify
the file-name directory. ENTER thus permits multiname
access to a file. The directive has the general form

where

9-4

ENTER, fun, key, old, new

lun is the number or name of the logical unit
where the affected file is located

key

old

new

is the protection code, if any, required to
address lun

is an old name of the affected file

is the new name by which the file can
also be referenced

Example: On logical unit 113, whose protection code is K,
make the file Xl accessible by using either the name Xl or
the name Yl.

ENTER,113,K,X1,Y1

9.2.5 LIST Directive
This directive outputs on the LO logical unit the file-name
directory of the specified logical unit. The output comprises
the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned
space in the partition. All numbers are in octal. The
directive has the general form

LIST,lun,key

where
lun

key

is the number or name of the logical unit
whose contents are to be listed

is the protection code, if any, required to
address lun

The output format has a two-line heading

FILE DIRECTORY FOR LUN lun
FILE NAME START END CURRENT

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column;
word 4, (in octal) in the START column; word 3, (in octal)
in the CURRENT column; and word 5, (in octal) in the END
column. After the last file name, if there is any unassigned
space in the partition, there is an entry describing the
unassigned space in the partition, where the FILE NAME
column contains •uNAS*, the START column contains the
next available address, and both the CURRENT and END
columns contains the last address + 1. All numerical
values are octal sectors.

Example: List the file-name directory of logical unit 114,
which has no protection code.

LIST,114

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the
specified logical unit, deletes all file names in it, and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

INIT,lun,key

where
lun

key

is the number or name of the logical unit
being initialized

is the protection code, if any, required to
address lun

Example: Initialize the file;name directory on logical unit
115, which has protection code X.

INIT,115,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Once specified, the input logical­
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

INPUT,lun,key,file

where

lun

key

file

is the number or name of the logical unit
from which object modules are to be
input

is the protection code, if any, required to
address lun

is the name of the RMD file containing
the required object module(s)

Neither key nor file are required unless lun is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive, an error message
will be output.

Examples: Specify logical unit 6 as the device from which
object modules are to be input.

INPUT,6

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

INPUT,104,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums,
record sizes, loader codes, sequence numbers, and record
structures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object

FILE MAINTENANCE

modules are copied from the SW logical ·unit onto the
specified logical unit. The directive has the general form

ADD,lun,key

where

lun

key

is the number or name of the logical unit
onto which object modules are to be
written

is the protection code, if any, required to
address lun

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation, size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-module-processing, reposi·
lion the logical unit to the beginning of the module.

Example: Add object modules to logical unit 104, which
has protection code D.

ADD, 104 ,D

9.3 VORTEX FOREGROUND FILE
MAINTENANCE (V$FGFM)

The VORTEX Foreground File Maintenance program pro·
vides a subset of the VORTEX FMAIN services. V$FGFM
executes as an independent task from the VORTEX
foreground library at the same priority as the calling task.
The interface to V$FGFM is the subroutines, V$FILE, which
must be in the Object Module Library and V$FMCB which
must be resident in the nucleus table area (this occurs
automatically during system generation unless modules are
specifically deleted).

The calling sequence to request a file service is as follows:

where

EXT
LDAI
LDBI
JSR

V$FILE
code
fmcb
V$FILE,X

code is the operation code for the requested
service

O - create
1 - delete

- rename

9.5

FILE MAINTENANCE

3 - enter
4 • unused

fmcb is the address of the file maintenance
control block (see table)

The create, delete, rename and enter requests perform the
same operations as in the VORTEX FMAIN program. The
unused request releases the unused portion of the named
file which is that area of the file beyond the current end-of­
file.

Upon exit from a file request the A register contains the
completion status code. The interface program allows only
one file request to be processed at a time. If upon entry a

previous request is being processed (V$FMCB is busy),
V$FILE executes a 500 millisecond DELAY and tries again.
If ater 15 seconds (30 retries) V$FMCB is still busy V$FILE
will proceed to schedule V$FGFM and process the new
request. The completion status codes are as follows:

1 busy
0 request completed without error
1 invalid request code
2 name already in directory
3 name not found
4 unsufficient space
5 input/ output error occurred
6 directory structure error

The file maintenance control blocks for the requests must
be arranged as follows:

Word Create

0 logical unit
1 key

!}
file name

5 number of sectors
6
7

9-6

Delete. Unused

logical unit
key

file name

Rename Enter

logical unit
key

current file name

} new file name

SECTION 10
INPUT /OUTPUT UTILITY PROGRAM

The 110 utlllty program (IOUTIL) is a background task for
copying records and files from one device onto another,
changing the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
directive /IOUTIL (section 4.2.20) on the SI logical unit. If
the SI logical unit is a Teletype or a CRT device, the
message IU** is output to indicate that the SI unit is
waiting for IOUTIL input. Once activated, IOUTIL inputs
and executes directives from the SI unit until another JCP
directive (first character is a slash) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

"The IOUTIL buffer is usually 1024 words long. The /MEM
directive can be used to increase this size by increments of
512 words."

IOUTIL has the option of calling V$RSW (multi·volume reel­
switch routine), when using a copy file, copy record, skip
file, skip record, format and dump, position file, and pack
binary.

Error Messages applicable to IOUTIL are given in Appendix
A.10. Recovery from an error is by either of the following:

a. Input the character C on the SO unit, thus directing
IOUTIL to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next IOUTIL directive is then input
from the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort IOUTIL and schedule the JCP
for execution.

10.2 1/0 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

COPYF
COPYR
SFILE
SREC
DUMP
PRNTF
WEOF
REW
PFILE
CFILE
PACKB

Copy file
Copy record
Skip file
Skip record
Format and dump
Print file
Write end of file
Rewind
Position file
Close file
Pack binary

IOUTIL directives begin in column and comprise
sequences of character strings having no embedded

blanks. The character strings are separated by commas (,)
or by equal signs (-). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

where

name,p(l),p(2), .. .,p(n)

name is one of the directive names given
above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (-) are omitted.

The IOUTIL buffer is usually 1024 words long. The /MEM
directive can be used to increase this size by increments of
512 words.

10.2.1 COPYF (Copy Fiie) Directive

This directive copies the specified number of files from the
indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

COPYF,f,lu,lm,lrl,ou(l),om,orl,ou(2),ou(3), ... ,ou(n)

lu

Im

lrl

is the number of input files to be copied
(must be 1 for RMD)

is the name or number of the input
logical unit

is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the

10-1

INPUT /OUTPUT UTILITY PROGRAM

ou(n)

om

Ori

read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

is the name or number of an output
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files

is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the in out record length.

Any RMD involved with copying files, whether as input or
output medium, must have been previously positioned with
a PFILE directive (section 10.2.9).

If a difference in record lengths irl and orl causes a partial
record to remain when an end of file is encountered, the
part·record is filled with blanks and thus transmitted to the
output unit(s).

The following relation holds for input/output record
lengths:

Input Output
RCL RCL Output Format

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

fixed random (0) Unblocked only
random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy three files containing 120-word records
from the Pl logical unit onto logical units LO, 50, and 51 in
40-word records.

COPYF,3,PI,1,120,L0,1,40,50,51

10.2.2 COPYR (Copy Record) Directive

This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

10·2

COPYR,r,lu,lm,lrl,ou(l),om,orl,ou(2),ou(3), ... ,ou(n)

is the number of input records to be
copied, or 0 if copying is to continue to
the end offile

iu

Im

irl

is the name or number of the input
logical unit

is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input records

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

each ou(n) is the name or number of an output
logical unit

om is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output records

orl is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.9).

If a difference in record lengths irl and orl causes a part­
record to remain when an end-of-file mark is encountered,
the part-record is filled with blanks and thus transmitted to
the output unit(s).

Example: Copy 25 unformatted records of 200 words each
from the SS logical unit to the 80 and PO units in binary '
format with 40 words per record.

COPYR,25,SS,3,200,B0,0,40,PO

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can be
accomplished by assigning two different logical units to this
RMD partition, and then issuing two PFILE directives
(section 10.2.9), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additional positioning within
the files can be specified by SREC directives (section
10.2.4).

The following relation holds for input/output record
lengths:

Input Output Output Format
RCL RCL

fixed !ixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

Input
RCL

fixed
random (0)

Output
RCL

random (0)
random (0)

Output Format

Unblocked only
Unblocked only

Record lengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy the first ten records from file EDITl to
record 11 through 20 of file EDIT2. Both files are on RMD
partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (default value = 0).
Assign the Bl and BO logical units to the disc.

/ASSIGN,BI•DOOK
/ASSIGN,BO•DOOK
/IOUTIL
PFILE,BI,,120,EDIT1
PFILE,B0,,120,EDIT2
SREC,B0,10
COPYR I 10 I BI I 1, 120 I BO I 1, 120

10.2.3 SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units,
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. The directive has the general form

SFILE,lun,neof

where

lun is the name or number of the affected
logical unit

neof is the number of end·of.file marks to
be skipped

If the end·Of·tape mark is encountered before the required
number of files has been skipped, IOUTIL outputs to the
SO and· LO logical units the error message IU05,nn, where
nn is the number of files remaining to be skipped.

Example: Move tape on unit Pl past three end-of.file marks.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers and RMDs, causes the specified logical unit
to skip forward the designated number of records. The
directive has the general form

SREC,lun,nrec

where

lun

INPUT /OUTPUT UTILITY PROGRAM

is the name or number of the affected
logical unit

nrec is the number of records to be skipped

Note that, unlike JCP directive /SREC (section 4.2.8), the
IOUTIL directive SREC cannot skip records in reverse.

If lun designates an RMD partition, the device must have
been previously positioned with a PFILE directive (section
10.2.9).

If a file mark, an end·of-tape mark, or an end·of·device
mark is encountered before the required number of records
has been skipped, IOUTIL outputs to the SO and LO logical
units the error message IU05,nn, where nn is the number of
records remaining to be skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI,110

10.2.5 DUMP (Format and Dump)
Directive

This directive copies the specified number of records from
the indicated input logical unit, formats them for listing,
and dumps the data onto the output unit in octal format,
ten words per line, with one blank between words. The
directive has the general form

DUMP ,r ,iu,im,irl,ou

where

iu

im

is the number of input records to be
dumped or is zero if dumping is to
continue to an end·of-file

is the name or number of the input
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input records

irl is the number of words in each record of
the input

OU is the name or number of the output
unit, which cannot be an RMD partition

The first line of the dump contains the record number
before word 1, but subsequent lines do not have the record
number.

If ASCII mode is specified by im then an ASCII scan and
dump will be made in addition to the octal dump. Printable

10-3

INPUT /OUTPUT UTILITY PROGRAM

character bytes will appear to the right of each line of the
octal dump. Non-printable characters will appear as ASCII
blanks. ASCII scan and dump is suppressed if dump is to a
TY or CT device regardless of the mode.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP,40,SW,0,50,LO

10.2.6 PRNTF (Print File) Dir~tive

This directive prints the specified number of files from the
indicated input logical unit to the list output logical unit(s)
specified. The directive has the general form

PRNTF,f,iu,ou(1),ou(2), ... ou(n)

where

iu
is the number of files to be printed
is the name or number of the input
logical unit

each ou(n) is the name or number of a list output
logical unit

If an RMD is specified as the input logical unit, it must
have been previously positioned with a PFILE directive
(section 10.2.9) and only one file may be printed at a time
(i.e., if it is greater than 1, it is defaulted to 1), because the
end-of-file terminates printing.

This directive is designed to print list output files directed
to devices other than a line printer (i.e., magnetic tape or
disc). Therefore, the input file is read in ASCII mode (1),
132 characters, and the list output records are written also
in ASCII mode.

Example: Print two (2) files on magnetic tape unit 18 on
LO.

/IOUTIL
REW, 18
PRNTF,2,18,LO
/ENDJOB

Example: Print an RMD file called SYSOUT in logical unit
25 to LO.

/IOUTIL
PFILB,25,,120,SYSOUT
PRNTF, 1 , PI , LO
/BNDJOB

10·4·

10.2.7 WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on each logical unit
specified. The directive has the general form

WEOF,lun,/un, ... ,/un

where each lun is the name or number of a logical unit
upon which an end-of.file mark is to be written.

Example: Write an end-of-file mark on the BO logical unit
and on the PO logical unit.

WBOF,BO,PO

10.2.8 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. The directive has the general form

REW,lun,/un,. .. ,lun

where each lun is the name or number of a logical unit to
be rewound.

Example: Rewind the Bl and PO logical units.

REW,BI,PO

10.2.9 PFILE (Position File)
Directive

This directive, which applies only to rotating-memory
devices, causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

PFILE,lun,key,recl,name

where

lun

key

reel

name

is the name or number of the affected
logical unit

is the protection code required to
address lun

is the number of words in each record of
the file

is the name of the file to which the
logical unit is to be positioned

Since IOUTIL has only six FCBs, there can be a maximum
of six files open at any given time.

Example: Position the Pl logical unit, using protection
code Z, to the beginning of the file FILEXY, which contains
60-word records.

PFILB,PI,Z,60,FILBXY

10.2.10 CFILE (Close File) Directive

This directive, which applies only to RMD partitions, closes
the specified file. The directive has the general form

CFILE,lun,key,name,add

where

lun is the name or number of the logical unit
containing the file to be closed

key is the protection code required to
address lun

name is the name of the file to be closed

add is O (default value) if the current end-of·
file address on the RMD file-directory is to
remain unchanged, or 1 if it is to be
replaced by the current record (i.e., actual)
address

A PFILE directive (section 10.2.9) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
IOUTIL has only six FCBs, there can be a maximum of six
files open at any given time.

Example: Close the file WORK on the SW logical unit
(protection code B) and update the file directory.

CFILB,SW,B,WORK,1

10.2.11 PACKB (Pack Binary) Directive

This directive copies the specified number of files from the
indicated input logical unit to the given output logical
unit(s). It causes each new system binary program to start
on a record boundary. The directive has the general form

where

PACKB,f,lu,lm,lrl,ou(l),om,orl,ou(2), ... ou(n)

lu

is the number of input files to be copied

is the name or number of the input
logical unit.

Im

lrl

ou(n)

om

orl

The following
lengths:

Input
RCL

fixed

random (0)

fixed
random (0)

INPUT /OUTPUT UTILITY PROGRAM

is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files.

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

is the name or number of an output
logical unit.

is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files.

is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

relation holds for input/output r.ecord

Output Output
RCL Format

fixed As defined (bloc.ked
or unblocked)

fixed As defined (blocked
or unblocked)

random (0) Unblocked only
random (0) Unblocked only

Any RMD used in this directive must have been previously
positioned with a PFILE directive (section 10.2.9).

This directive can be used for any output media and any
record length. It is primarily intended to be used for RMD
output of 120 words. Use with non-RMD output may not
produce the intended effect.

Example: Pack one binary file from the card reader onto a
RMD file on logical unit 25 in 120 word blocks:

PACKB,1,CR,0,60,25,0,120

10.3 MULTI-VOLUME TAPE HANDLING (V$RSW)

IOUTIL provides the operator with interfaces necessary for
handling multi volume (i.e., multi-reel), magnetic tape files.
The routine directs the operator to unload the current
magnetic tape volume and mount a new one whenever end­
of-tape is encountered.

10·5

INPUT /OUTPUT UTILITY PROGRAM

The magnetic tape unit to be unloaded is given a rewind
directive and the following message is output to the
opera~r:

where

10-6

IOUTIL: UNLOAD LUN nn
IOUTIL: MOUNT NEXT VOLUME

nn is the logical unit number of the
magnetic tape to unload

After the message for mounting a new magnetic tape has
been output to the operator, the subroutine issues a
suspend request. When the new volume has been success·
fully mounted, the operator can continue execution by
keying in the following:

;RESUME, IOUTIL

. If the mounting of a new magnetic tape volume is not
needed, the operator will key in the message 1 ABORT,
IOUTIL on the OC device, which will return control to
JCP.

SECTION 11
VSORT (SORT /MERGE)

The VORTEX Sort/Merge (VSORT) task constructs a sorted
file in the order determined by fields selected by the user.

11.1 ORGANIZATION

VSORT is scheduled as a background task by the Job·
Control Processor (JCP, section 4.2.19) upon input of the
JCP directive

/LOAD,VSORT

Once activated, VSORT inputs the sort parameters from the
SI logical unit. The maximum number of VSORT directives
is five records. The directive ENDSORT terminates the
input of VSORT directives within five records. Upon
completion of the sort/merge, VSORT exits to JCP.

VSORT has a buffer area large enough for most sort/merge
operations. To increase the size of the butler, input a
/MEM directive (see section 4.2.3) immediately preceding
the /LOAD,VSORT directive.

Inputs to VSORT comprise

a. VSORT directives (section 11.2) input through the SI
logical unit

b. File to be sorted, input through the INPUT logical unit

Outputs from VSORT comprise

a. Sorted file on the OUTPUT logical unit

b. Listing of VSORT directives on the LO logical unit

c. Listing of VSORT totals for the sort/merge on the LO
logical unit

d. Error messages, if any, on the LO logical unit

Error messages applicable to VSORT are given in Appendix
A.11.

VSORT performs either a full-record sort or a tag sort. In a
full-record sort the entire records are moved in central
memory in order to accomplish the sort. In a tag sort, only
the concatenated sorting control fields and the record
numbers are manipulated in central memory. VSORT will
perform the more efficient tag sort unless one of the
following conditions occurs:

a. INPUTfileisnotanRMD

b. The file used for INPUT is also used for another file in
the sort, either as a WORK or OUTPUT file

c. A user input exit routine is specified (by the INEXIT
directive)

Workspace Requirements: Each work file must be large
enough to contain a number of work records equal to the
number of input records. For tag sorts, the length of the
work records is equal to the sum of the length of the control
fields plus one word. On full-record sorts, the sum of the
control fields plus one input record length is needed.

Work records are blocked with a blocksize equal to a fourth
or third of the central memory workspace for the merge
phase.

Work space for the sort phase in central memory is
allocated dynamically to overlay the initialization routine
(about 2K), which occupies the highest memory locations of
VSORT. Work space for the merge phase occupies an
additional lK in central memory. Additional work space
may be allocated for a background sort by using the !MEM
directive (JCP, 4.2.3).

11.2 VSORT DIRECTIVES

This section describes the VSORT directives.

a. Required Group

Sort directives follow SORT
INPUT
OUTPUT
WORK
SORTKEY
ENDSORT

Define logical unit for input
Define logical unit for output
Define work file(s)

b. Optional Group

INEXIT
OUTEXIT

Define sorting field(s)
Begin sorting

Use input preprocessor
Use output preprocessor

The general form of a VSORT directive is

name= p(1),p(2). ... ,p(n) terminator

where

name is one of the VSORT directives

p(n) is a parameter required by VSORT and

defined below under the descriptions of
the individual directives

terminator is a blank or right parenthesis

11.1

VSORT (SORT/MERGE)

11.2.1 SORT Directive

This directive starts the series of directives. The general
form is

SORT

The word SORT must be followed by at least one blank.
The SORT directive must be the first directive on the first
control record.

11.2.2 INPUT Directive

This directive describes the sort input file which contains
the records to be sorted. It has the general form

INPUT • (lun,filename,key,recordlen1th)

where

lun

filename

is a 1- to 3·character decimal number
specifying the logical unit of the file

is a 1- to 6-character name of the file as
it exists on the RMD file directory
(required for all RMD files) -

key is the single character file protection
key, as contained in the file directory for
the file (required only if the filename is
present and the RMD is protected

recordlen1th is a 1- to 4-digit decimal number
specifying the length in words of the
records in the file.

Example: Describe a sort input file on magnetic tape on
logical unit 18, which has 200-word records.

INPUT•(18,,,200)

11.2.3 OUTPUT Directive

This directive describes the output file which will ultimately
contain the sorted records. It has the general form

OUTPUT• (lun,filename,key,recordlen1th)

where lun, filename, key and recordlength are the same as
they are described in the INPUT directive (section 11.2.2).

Example: Describe a sort output file on a line printer logical
unit 5, which has a 60-word (120·character) record.

OUTPUT•(S,,,60)

11-2

11.2.4 WORK1,WORK2,WORK3, Directives

These directives describe the intermediate work files for
the sort. They have the general form

where lun, filename, and key are the same as described for
the INPUT directive (section 11.2.2).

The work files must be RMD files. Each file must have
sufficient space to contain the intermediate work records
equal to the number of records in the input file for the sort.

Example: Describe intermediate sort files named Wl, W2,
and W3 on RMD logical unit 25. These files do not have
protection keys.

WORK1•(25,W1),WORK2•(25,W2),WORK3•(25,W3)

11.2.5 SORTKEY Directive

This directive describes one to six control fields to be used
to sequence the records of the sort input file. It has the
general form

SORTKEY • (1c(l),ec(l),order(l), ... ,sc(6),ec(6),order(6))

where each

sc(n)

ec(n)

order(n)

is a one- to four-digit decimal number
specifying the starting character (or
byte) position of the control field as it
exists in the input record, or, if there
positions are modified by an INEXIT
routine, as they exist in the modified
input record.

is a one- to four-digit decimal number
specifying the ending character (or byte)
position of the control field. It must be
greater than or equal to the preceding
starting character position

is a single character A or D for
ascending or descending sequence,
respectively, for sorting the control field

At least one control field specification must be given. Each
control field specification must have all three parameters
specified.

Control fields may overlap.

Character positions are numbered starting with one.

The sig"ificance of a control field depends on its placement
in the SORTKEY directive. The first control field defined is
the most important (or major) control field. The next is the
secondary (used in cases of matches in the first) control
field. Similarly, until the last specification given is the least
important.

Collating sequence: An algebraic collating sequence is used
to sort the data. Each word (in numeric data) or each byte
(in character data) is interpreted as an octal number
having an algebraic sign. Thus, ASCII characters have the
collating sequence from 0240 (low) to 0337 (high). If
characters are other than ASCII, the sign bit (bit 7) of each
B·bit character must be the same for all the characters.

Word-boundary data are treated as signed octal numbers
and have the collating sequence from 0100000 (low) to
077777 (high). Thus, FORTRAN variables of integer, real,
complex or logical types may be sorted with SORT control
fields. FORTRAN double-precision numbers cannot be
sorted because the sign of the number is not in the first
word.

Example: Describe two control fields, one is bytes 27 and
28 in ascending order, and the other is byte 1 through 4 to
be sorted in descending order.

SORTKEY•(27,28,A,1,4,D)

11.2.6 INEXIT Directive

This optional directive specifies whether a user-written
input-exit routine is to be called at the time the input file is

being read by the sort part of VSORT. The general form of
the directive is

INEXIT- { ~~S}
The equal sign may be followed by a string of up to four
alphabetic characters. Unless YES is specified, the default
is NO (a user routine is not called). YES or NO must be
followed by at least one blank.

11.2.7 OUTEXIT Directive

This optional directive specifies whether a user-written
output exit routine is to be called at the time the final file
output file is being created by the merge phase of VSORT.
It has the general form

OUTEXIT - { ~~S}
The meaning of YES and NO is the same as described for
the INEXIT directive (section 11.2.6).

11.2.8 ENDSORT Directive

This directive signals the end of the sort directives. The
word ENDSORT must be followed by at least one blank as
the last directive on the last control record for VSORT.

VSORT (SORT /MERGE)

11.3 USER EXITS

User exits provide for the insertion, deletion, or modifica­
tion of input and output records by user-written routines.
Exits are requested by the VSORT directives, INEXIT -
YES and/or OUTEXIT - YES. The exit routines written by
the user are added to VSORT at load-module generation
time.

The input exit routine, if provided, is called for each input
record before it enters the sort. Possible uses of the input
exit are

• Add input records

• Delete input records

Create part or all of the input file

Change input records, such as control fields

The input record length may be changed to the output
record length specified on the OUTPUT directive.

The output exit routine, if provided, is called for each
output record before it is written on the output file.
Possible uses for the output exit are

• Add output records, effectively merging one or more
files with the sorted file

• Delete sorted output records, such as duplicates

Change the sorted output records

If output records are added or changed, it's the user's
responsibility to ensure that the control fields of the output
records remain in sequence.

11.3.1 Calling Sequence

VSORT uses the following calling sequence for user exits:

Word 1 JMPM XITn

Word 2 input buffer address

Word 3 output buffer address

Word 4 flag

where

is 1 for input exit and 2 for output exit

Input
buffer
address

is the address of input record passed to
the user routine (INEXIT) or the address
to which the user must move a record if
it is to be inserted before the output
record (or EOF) passed to the user
routine (OUTEXIT)

11·3

VSORT (SORT /MERGE)

output buffer
address

flag

is the address of the output record
passed to the user routine (OUTEXIT)
or the address to which the user must
move a record if it is to be inserted
before the input record (or EOF) passed
to the user routine (INEXIT)

is set by VSORT as 0 for an EOF en­
countered, l for INEXIT, or 2 for OUT­
EXIT; otherwise it is set by the user rou­
tine as follows

Bit 0 = 1 accept input record (INEXIT)
or insert record in input buffer
before output record (OUT­
EXIT)

= O is ignore the record in the
input buffer

Bit 1 = 1 accept the output record
(OUTEXIT) or insert record in
the output buffer before the
input record (INEXIT)

= 0 ignore the record in output
buffer

After EOF notification has been given to the user input
(output) exit routine, the user routine may continue to pass
records to VSORT in the buffer, but the contents of the
buffer are ignored.

11.3.2 Implementation

The exit routines written by the user must have the
following external names

11·4

XITl User input exit entry point

XIT2 User output exit entry point

To build a load module using user exits, place the user exit
modules in front of the VSORT object module and proceed
to generate a single load module.

11.4 VSORT MESSAGES

In addition to listing the VSORT directives, VSORT outputs
the following totals:

a. End of sort phase totals

SORT PHASE COMPLETE,TOTAL MERGE
RECORDS•XXXXX

INPUT XXXXX ACCEPTED•XXXXX
INSERTED•XXXXX DELETED•XXXXX

b. End of merge phase totals

SORT COMPLETE,OUTPUT RECORDS
COUNT•XXXXX

MERGE•XXXXX ACCEPTED•XXXXX
INSERTED•XXXXX DELETED•XXXXX

SECTION 12
DATAPLOT II

DATAPLOT II is a collection of FORTRAN callable subrou·
tines that provide the user with interface to the Varian
STATOS 31 and STATOS 33 electrostatic printer/plotters.

Using DATAPLOT II, the programmer can specify the
desired graphic output at the functional level. For example,
DATAPLOT II enables the STATOS printer/plotter to

• Draw a vector between two given points

• Produce a scaled set of axes for a given magnitude

• Produce a plot from a set of input data, using specified
plot point markers

12.1 SYSTEM FLOW OUTLINE

DATAPLOT II consists of FORTRAN and DAS MR subrou·
tines which permit STATOS 31 or STATOS 33 printer/
plotters to draw lines, numbers, letters, symbols, and chart
axes. Provision is also made for plotting lines from existing
X·Y arrays and/or data from an external data base.

Figure 12·1 shows the relationship between the user and
the DATAPLOT II Graphics System.

12.2 HARDWARE REQUIREMENTS
DATAPLOT subroutines can be linked to either foreground
or background tasks under VORTEX (see VORTEX installa·
tion manual for memory requirements). DATAPLOT can be
used with the following considerations:

The STATOS equipmeet that is supported under
VORTEX is

Unit Model Width

STATOS 31 70·6602 14-7 /8 inches
STATOS 31 70·6608 11 inches
STATOS 33 70·6611/21 8-1 /2 inches
STATOS 33 70·6613/23 11 inches
STATOS 33 70·6615/25 14-7 /8 inches
STATOS 33 70·6617127 22 inches

b. The STATOS unit must be operated under BIC control
with PIM assigned interrupts. In addition, the STATOS
31 printer/plotters will support the single-line Input
Buffer Option (Model 31-152); except, those without a
hardware character generator.

c. DATAPLOT II does not support any of the Hardware
Character Generator options, the Simultaneous Print/
Plot options, or the High Speed option.

12.3 GENERAL DESCRIPTION

12.3.1 DATAPLOT II Organization

DATAPLOT II is organized into the following five logical
operations:

• Defining the Plot File and Initialization

• Building the Plot File

• Sorting the Plot File

• ST ATOS Paper Control

• Outputting the Plot File in ST ATOS Raster Format

These are shown schematically in figure 12·2.

Defining the Plot File: Subroutine DPINIT defines which
VORTEX logical unit will contain the Plot File, the logical
size of the plot file records, and the block size of the output
device for the plot data. If DPINIT is not called, the plot file
will default to System Scratch (SS) with 120-word records,
and plot data will be output in blocks of 88 words for the
14·7/8 inch STATOS. Subroutine DPINIT must be called
when Dataplot is operating in a foreground mode to
prevent a possible conflict with background programs
which may use System Scratch.

Building the Plot File: If the plot file is to be built through
calls to Dataplot subroutines ORIG, CHAR, PLOT, VECT,
NUMBER, SCALE, AXIS, DATA, SYMBOL, APPEND, and
LINE, the plot file must be assigned to an RMD device or
the sort subroutine will not work.

STATOS Paper Control: Subroutine CUT, ENDCUT, and
TOPFRM are auxiliary paper control subroutines. These
subroutines issue FUNC commands to the output driver
and will be processed as applicable to the driver.

12-1

DATAPLOT II

SYSTEM SI

DIRECTIVES

r USER
Pl

FORTRAN
PROGRAM

VTJ/-311J

VTII-J1H

12-2

,----- - --------- --,
I OPERATING SYSTEM

I
I

JOB CONTROL
PROCESSOR

FORTRAN

I COMPIL~R

I
L

LO

BO/Bl

- - -

I
I
I

DATAPLOT II

LIBRARY

OM

- - - - J

DATA FLOW~
CONTROL FLOW _____.

Figure 12-1. DATAPLOT II Graphics System Data Flow

PLOT FILE
IDENTIFICATION

AND
lN!TlAL!ZATION

BUILDING
THE

PLOT FILE

SORTING
THE

PLOT FILE

OUTPUTTING
THE

PLOT FILE

ST ATOS
PAPER

CONTROL

Figure 12-2. DATAPLOT II Organization

DATA FLOW~
CONTROL FLOW _____.

Outputting the Plot Fiie: Subroutine DPPLOT outputs
ST ATOS raster format data. DPPLOT is called by subroutine
PLOT when the plot is terminated.

12.3.2 System Considerations

DATAPLOT II is supplied as three groups of object module
routines. The first group is the basic Dataplot Object
Module (BDPOM). It contains the subroutines for initializ·
ing the plot file, drawing lines, sorting and outputting the
plot file, and paper control. The second group is the
VORTEX (pen-plotter compatible) Dataplot Object Module
(VDPOM). It contains higher level routines for building the
plot file. The third group is the MOS (compatible) Dataplot
Object Module (MPBOM). It contains calls which are
compatible to the MOS Dataplot II.

DATAPLOT II is put onto the object module library as a
combination of either the BDPOM and VDPOM, or the
BDPOM and MDPOM, depending on which set of higher
level subroutines the user wishes to call. The VDPOM
routines offer axes, character and number strings at any
angle, while the MDPOM offers only two angles (0 degrees
and 90 degrees). The MDPOM subroutines are provided for
users who have already written MOS programs calling
DATAPLOT 11.

The MDPOM routines may be placed on an alternate object
module library and the VDPOM routines may be placed
on the standard OM library. Programs using the MDPOM
routines may search the alternate library before the stan­
dard OM library, but this also prevents a load-and-go opera­
tion.

When converting programs written for MOS DATAPLOT II,
a call to PLOTS must be substituted for the calls to OPEN
HOPEN, and DOPEN. The call CALL PLOT (0.0,0.0,999)
must be substituted for calls to CLOSE, HCLOSE, and
DCLOSE. There is a shift in the logical plot origin if the
pseudo-pen encounters a plot boundary in VORTEX
DATAPLOT II (incl MDPOM). There is no such shift in the
MOS DATAPLOT II routines.

DATAPLOT II subroutines are listed below:

Dataplot II initialization

DPINIT
PLOTS

Building the Plot File

PLOT
VECT

BDPOM
BDPOM

BDPOM
BDPOM

DATAPLOT II

ORIG BDPOM
FACTOR BDPOM
WHERE BDPOM
MLTPLE BDPOM
APPEND BDPOM
NUMBER MDPOM
NUMBER VDPOM
SCALE MDPOM
SCALE VDPOM
AXIS MDPOM
AXIS VDPOM
DATA MDPOM
LINE VDPOM
SYMBOL MDPOM
SYMBOL VDPOM
CHAR MDPOM

Sort and Output

DP SORT BDPOM
DPPLOT BDPOM

Paper Control

TOPFRM BDPOM
CUT BDPOM
ENDCUT BDPOM

12.3.3 VORTEX Considerations

Plot File Assignment: The user must supply a secondary
storage file sufficiently large enough to hold the plot file
when the plot file is unsorted or generated by calls to
DATAPLOT II subroutines ORIG, VECT, CHAR, NUMBER,
SCALE, DATA, AXIS, LINE, PLOT, SYMBOL, or APPEND.
Four 16-bit words are used for each vector or character to
be plotted, and four 16-bit words are used for the end-of.
plot indicator. An error (DPOO) will be reported if the plot
file is overflowed.

The user may supply a sorted plot file in vector-end-point
format. Sorted data may be plotted directly from the plot
file by assigning the plot file to the logical unit containing
the data during the call to DPINIT.

User-Supplied Central Memory Buffers: DATAPLOT II may
use up to three types of buffers which the user must supply
by a FORTRAN DIMENSION statement. The buffer types
are:

• DATAPLOT II Working Buffer --defined in call to PLOTS

Append FILE 110 Buffer -- defined in call to APPEND

• Data Array Buffer(s) -- used by DATA and SCALE
subroutines

12·3

DATAPLOT II

DATAPLOT II Working Buffer: The DATAPLOT II Working
Buffer is used in building, sorting, and outputting the plot
file.

The algorithm for determining the size of the DATAPLOT II
working buffer is:

22 + PFIO + RO + 6(VECmax>

where

PFIO

RO

is the size of the plot file 1/0 buffer

is the size of the raster (ST ATOS) output
buffer

is the maximum number of vectors or
characters on any one ST ATOS scan line

The plot file 1/0 buffer size is a multiple of the physical
record length of the plot file, and is specified in the call to
DPINIT.

The raster output buffer size is determined by the width of
the STATOS printer/plotter for which the plot is intended,
as shown in the following table, and is specified in the call
to DPINIT.

ST ATOS Width No. Raster
Model Stylli/Llne Buffer Size

70-6608 11 inches 1056 66
70-6602 14-718 inches 1408 88
70-6611 and 8-112 inches 800 50

70-6621
70-6613 and 11 inches 1056 66

70-6623
70-6615 and 14·7 /8 inches 1408 .88

70-6625
70-6617 and 22 inches 2048 132

70-6629

The buffer is also used to hold vectors and characters at
the time they are being converted to STATOS raster format.
A six-word entry will be placed in this b!lffer when the
vector or character is first to appear on a STATOS scan
line. The entry remains until the vector or character
reaches its last ST ATOS scan line.

An error (DPOl) will be reported if the concurrent vector
buffer is overflowed.

Example: DATAPLOT II is going to plot from a plot file
whose record length is 120, to a STATOS printer/plotter
whose width is 14-7 /8 inches. The maximum number eif
vectors or characters expected on any one raster line is
130. The length of the working buffer should be:

22+ 120+88+780 - 1010

12-4

Minimum and Maximum Plot Values: The minimum x value
is -30.00 inches. The maximum x value is +297.00 inches.
The maximum y value is determined by the width of the
STATOS for which the plot is intended. These values are
shown in figure 12·3.

f----- ----327 .00" -------1~

r
WIDTH OF

I :1Lx
: 0.50"

A= Physical origin (0.0,0.0)

B =Starting logical origin (0.0,0.0) or (0.0,0.5) physical.

VT/1-31111

figure 12-3. Minimum and Maximum Plot Values

The logical origin may be moved by calling subroutine
PLOT or ORIG. Subroutine PLOT will move the logical origin
referenced to the last logical origin. Subroutine ORIG will
move the logical origin referenced to the physical origin.

If the plot boundaries are encountered while building the
plot file, the logical origin will be effectively shifted in a
manner similar to a pen plotter. An error (DP04) will be
reported.

12.4 OATAPLOT II SUBROUTINES

The general form of the DATAPLOT II functions is:

where:

(statement number) CALL S (p(l),p(2), ... p(n))

(statement is the optional statement number.
number)

S is the name of the subroutine.

p(l), ... p(n) are the parameters, if any.

12.4.1 DPINIT (System File Initialization)

This function enables the user to Specify certain initial
conditions relating to the plot file and plot file 110 buffer.
In the absence of this function, the default parameter
values shown in the parameter description will exist.

The function has the general form

CALL DPINIT (lun,key,name,lpltbf,outslz)*
*BDPOM
where

lun is the number or variable of the plot
file logical unit (Integer).

key is the protection key, if any.

name RMD: is the six-character name of the
plot file. It may be given as an array
name or a Hollerith constant
non-RMD: Not used.

ipltbf is the length, of the plot file 110 buffer.
(Integer)

outsiz is the block size of the output plot data
as given in section 12.3.3 (Integer).

Error Conditions: None

Default

8

None

SS
(background
scratch file)

120

88

Example: Select logical unit 25, file name PLTFIL, protec­
tion key Z, length 120 as the plot file. The output is to go to
a STATOS, width 14-7/8 inches.

CALL DPINIT (25,2HbZ,6HPL TFIL, 120,88)

12.4.2 PLOTS (Work Buffer Initialization)

The PLOTS function is used to initialize the DATAPLOT II
work buffer. It must be called prior to any calls to the PLOT
subroutine and prior to calls to higher level plot
subroutines.

The function has the general form

CALL PLOTS (lbuf,nloc,lun)*

*BDPOM

where

ibuf

nloc

lun

Error Conditions:

Condition:
Action:
Message:

Conditions:
Action:
Message:

Example:

DATAPLOT II

is the name of the user-supplied storage
area to be used as a work buffer by
DATAPLOT 11. This array should be
dimensioned by the user in his
FORTRAN program.

is the number which identifies the size
of the work buffer (ibuf). It will normally
be the same number used in the
DIMENSION statement. The size is
determined by the algorithm supplied in
section 12.3.3 (Integer).

is the logical unit number of the output
device (Integer).

Work buffer size is too small
Incomplete Plot
DPOl

PLOTS not called
Abort Plot
DP05

DIMENSION IBUF (1500)

CALL PLOTS (IBUF,1500,5)

The above defines logical unit number 5 as the output
device for the data in STATOS raster format. Buffer IBUF,
of length 1500 words, will be used ·as a central memory
work area by DATAPLOT 11.

12.4.3 PLOT (Generate Plot)

The PLOT function is basic to the generation of graphic
output. It may be used to draw lines between points, define
new plot origins, sort plot data, cause the transfer of plot
information to the output device and terminate plot
generation.

The function has the general form

CALL PLOT (x,y,±ldraw)*
*BDPOM

12-5

DATAPLOT II

where

x,y

:tdraw

are the x and y coordinates, in inches
from the currently defined origin (Real).

is an integer which determines whether
or not a line is drawn from the "current"
x,y coordinates to the coordinates
defined in the call. It may also be used to
define a new plot origin or to terminate
the plot generation process and cause
transfer of plot information to the output
device.

If IDRAW - 2, a line is drawn from the current x,y
coordinates to the coordinates defined in the call. The
new coordinates then become the current x,y
coordinates.

If IDRAW - 3, the coordinates in the call become the
current x,y coordinates, but no line is drawn.

If IDRAW - ·2 or ·3, a new origin is defined at the call
coordinates and the operation is completed as if
IDRAW were positive. The current x and y coordinates
are set to zero with respect to the new origin. If no
call has been made to ML TPLE, or if the last call to
MLTPLE was made with IND - 0, the current plot
will be terminated and subsequent plotting will be
defined with reference to a new origin on the paper. If
the last call to MLTPLE was made with IND - l, a
redefinition of the origin will occur and subsequent
plot definitions will be treated as belonging to the
current plot.

If IDRAW - 999, the plot generation process will be
terminated and all accumulated plot information will
be transferred to the output device. Further calls to
PLOT are not processed.

Error Conditions:

The normal pen plotter routines do not keep track of the
actual location of the pen, but instead always assume that
the pen can be moved from the current location to the new
location and that enough commands are output to
accomplish this. If a mechanical stop is encountered during
plotting, the motion in that direction is simply inhibited by
the plotter. Because the mechanical stops are not precise,
errors will be produced if a mechanical stop is encountered
during plotting. However, this is sometimes done before
initiating a plot in order to position the pen in a known
location before beginning the actual plot.

DATAPLOT II routines have software stops contained
internally and attempt to produce the same effect as a
mechanical stop. If a plot boundary is encountered, an

12-6

error (DP04) will be reported, the line will extend toward
the boundary and follow the boundary to the final position,
and the origin will be effectively shifted in a manner similar
to the pen plotter.

Examples:

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,2)

The above calls will draw a line between (1,2) and (2,2).

CALL MLTPLB (1)
CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,3.0,-2)
CALL PLOT (1.0,1.0,2)

The above calls will draw a line in absolute coordinates
from (1,2) to (3,4) and redefine the plot origin (0,0) to (2,3)
in absolute coordinates.

12.4.4 SCALE (Generates Scale Factor)

This subroutine scales data by computing a scale factor
and a displacement factor.

The subroutine has the general form

CALL SCALE (arr,npts,pg.IZ, +Int)*
or

CALL SCALE (arr,pg1Z,npts,:tlnt)u
*MDPOM

**VDPOM

where

arr is the name of the (real) array to be
scaled.

npts is the number of points to be scaled in
the array. Normally, all points are scaled
(Integer).

pglZ is the size of the page (linear interval in
inches) within which the data must fall.
It must be greater than 1.0 inch (Real).

:I; Int is the interval at which the array is to be
sampled.

If INT is positive, the selected displacement
approximates a minimum, and the scale factor is
positive.
If INT is negative, the selected displacement
approximates a maximum, and the scaling factor is
negative (VORTEX call only).

The array must be dimensioned at least two elements
larger than the actual number of data values it contains.
The calculated displacement will be stored in
ARR(NPTS+ 1), and the calculated scale factor will be
stored in ARR(NPTS + 2).

The subroutine scales data within the following constraints:

a. The scale factors is 1., 2., 4., 5., or 8. times lOE(n).

b. The displacement is an integral multiple of the scale
factor.

c. The displacement is .LE. the minimum value in the
array.

d. The displacement + the scale factor (units/inch)* axis
length is .GE. the minimum value in the array.

Examples are shown in the sample programs (section 12.6).

Error Conditions: None

Examples:

1. Given an array of 24 data values to be plotted over a
5-inch axis, assume the minimum value in the array is
1.00 and the maximum is 42.00. The statement CALL
SCALE (ARR,5.0,24, + 1) would give the following
results:

Units/inch - (42.00-1.00)/5.0 - 8.2
SF (scale factor) - 10.0
VLO (first value plotted) - 0.0

VLO value is stored in ARR(25)
SF value is stored in ARR(26)

Using these values, AXIS would draw the following axis line:

,-----(Range of Data)-----~

I
0.00 10.00 20.00 30.00 40.00 50.00

2. Assume that the array of Example 1 is to be plotted on a
4 inch axis, from maximum to minimum. CALL SCALE
(ARR,4.0,24,-1) would give these results:

80.00

SF - (1.00-42.00)/4.0 - ·10.25, which is
adjusted to -20.
Minimum multiple - 0.00; VLO - Minimum
+ (AXLEN * SF) - 80.00

In this case the following axis'would be drawn:

,.--(Range of Data) ----._

60.00 40.00 20.00 0.00

DATAPLOT II

3. Assume 100 points are to be plotted on a 4 inch axis
from maximum (+22) to minimum (·9), using every
other data value in the array. The DIMENSION
statement should specify ARR(204), and the calling
sequence is CALL SCALE (ARR, 4.0,100.-2).

Initial SF - (·9 -22)/4 - -7.75, adjusted to -8.
Initial VLO - + 16.00; last value on axis - -16.00.
The axis range is inadequate for the data range, so SF

is revised to the next higher interval.
Revised SF - -10., stored in ARR(203).
Revised VLO - 30.00, stored in ARR(201).

The resulting axis would appear as follows:

,---- (Range of Data)----

30.00 20.00 10.00 00.00 -10.00

12.4.5 AXIS (Generate Segmental Axis)

Subroutine AXIS produces entries into the plot file for an
axis with the markers every inch, an axis label and number
labels for each tic mark, using the results of the SCALE
subroutine if desired.

The subroutine is of the general form

CALL AXIS (x,y,axlh,kllr,bcd,t nch,vlo,sf)*
or

CALL AXIS (x,y,bcd,± nchar,axlh,angle,vlo,sf)**

• MDPOM

••vDPOM

where

x,y

axlh

kllr

bed

is the starting point on the page of the
axis to be drawn (Real).

is the length of the axis in inches. The
value given will be truncated to the next
smallest integer value (Real).

is the axis direction. Zero for x direction.
Non-zero for y direction (Integer).

is the first word address of a character
string to be plotted as a label for the axis.
If there is no label, use a dummy space.

12-7

DATAPLOT 11

±nchar

±nch

vlo

sf

angle

NCHAR is the number of letters con­
tained in the character string to be plot­
ted as a title (Integer).

If NCHAR<O: the title, tic marks
and interval labels
will be plotted on the
clockwise side of the
axis.

If NC HAR ;,,,O: the title, tic marks
and interval labels
will be plotted on the
counter-clockwise
side of the axis.

NCH is the number of letters contained
in the character string to be plotted as
a title (Integer).

If NCH ;,,,O, the title, tic marks, and inter­
val labels will be plotted on the clock­
wise side of the axis.

If NCti;,,,O, the title, tic marks, and inter­
val labels will be plotted on the
counter-clockwise side of the axis.

is the number to be plotted at the start­
ing point of the axis (Real).

is the scale factor (units/inch) to be
used in labelling the 1-inch intervals. By
making SF = ARR(NPTS + 2) (see
SCALE routine), the axis and data will
have the same scale factor (Real).

is the angle at which the axis is to make
with the x axis.

The interval labels will be scaled by powers of 10 if they are
too large or too small to fit into two decimal place accuracy.
Thus, assuming a scale factor of 1000.linch, 12000. would
be printed 12.00 on the interval tic mark, but a note would
be added to the axis label: "x10'."

The SCALE routine should be used prior to using AXIS if SF
= ARR(NPTS + 2).

Error Conditions: None

Example:

CALL AXIS (0.0,0.0,5.0,0,4HAXIS,
4,5.0, 100.0)•

CALL AXIS (0.0,0.0,4HAXIS,-4,5.0,
0.0,5.0,100.0)••

* MDPOM

•• VDPOM

12-8

The resulting axis would appear as follows:

x,y .,. angle, idir

!\//
i.---..------axlh-------........

'~, __.\~.....--~~...-~~.--~~~----, I I I I I
00.50 10.50 20.50 30.50 40.50 50.50
~

vto
AXIS • 101

I~
ibcd,nchar

12.4.6 SYMBOL (Generate Symbols)

This function generates plot file entries defining printable
characters. Each entry contains an x and a y coordinate, a
code which specifies that the entry is for a character, a
code identifying the character and codes for size and
orientation. The characters are software generated dot
matrix characters in two sizes (5 x 7 and 10 x 14) and four
orientations.

The function is of the general form

or
CALL CHAR (x,y,lbcd,lsoar,+nchar,lspac)*

CALL SYMBOL (x,y,helghl,lbcd,angle,± nchar)**

'' MDPOM

•• VDPOM

where

x,y

I bed

isaor

height

are the x and y coordinates (in inches) of
the first letter to be plotted. x will be the
minimum x value of the character and y
will be the minimum y value of the
character (Real).

is the address of the first word contain­
ing the ASCII character string to be
plotted. It can be given as an array name
or a Hollerith constant.

is the size and orientation:
O - small, + 90 degrees

rotation from x direction.

small, O degrees rotation
from x direction.

= large, + 90 degrees
rotation from x direction.

- large, 0 degrees rotation
from x direction.

selects the character height. If heights
0.10, the characters will be 0.07
inches high. If height > O • 1 O ,

characters will be 0.14 inches high
(Real).

angle

lspac

nchar

is the angle, in degrees from the x-axis,
at which the character string is to be
plotted. The individual characters will be
plotted at 0, 90, 180, or 270 degrees
depending on the value of "angle"
(Real).

is the spacing constant in styli or scans
from the starting coordinate of the pre­
vious character. A negative number
causes default standard spacing (In­
teger).

is the total number of characters to be
plotted in the string (Integer).

if NCHAR = 0, one character will be
plotted from the low order byte of the
word containing the string. (VORTEX
call only)

If NCHAR = -1, one symbol will be
plotted. The symbol must be identified
by setting IBCD to an integer (0 through
5). (VORTEX call only)

If NCHAR = -2 or less, one symbol will
be plotted along with a vector from the
previous current location to the symbol
starting location. (VORTEX call only)

IBCD (when NCHAR 0) Symbol

0

2 0

3 0

4 • •
Character Orientation and Coordinates:

Angle -44 46 136 226
(in to to to to
degrees) 45 135 225 315

lsaor 1,3

8 VORTEX B cc. t:c7

MOS B ~

The dot references the starting coordinate of the character.

Error Conditions: None

DATAPLOT II

Example:

DIMENSION LABEL (J)

DATA LABEL/2HST,2HAT,2HOS/
17 CALL CHAR (5.0,5.0,6HSTATOS,2,6,-1)
20 CALL CHAR (5.0,5.0,LABEL,2,6,-1)

Statement 17 will place six entries for large letters, 90
rotation from the x axis, standard spacing, into the plot file.
Statement 20 will do likewise. The characters "STATOS"
will be printed starting at 5.0,5.0 from the last origin.

25 CALL SYMBOL (2.0,2.0,0.14,6HSTATOS,45.0,6)

Statement 25 will place six entries for large ·letters into the
plot file. "STATOS" will be printed as follows:

---T
--A

r
2.0 s ---,

2.0

s
0

12.4.7 NUMBER (Generate Number)

This function converts single precision real numbers to
character codes and places corresponding entries into the
plot file.

This function has the general form

CALL NUMBER (x,y,fpn,lsaor,±ndec)•

or

CALL NUMBER (x,y,helght,fpn,angle,±ndec)••

" MDPOM
'''" VDPOM

where
x,y

fpn

lsaor

are coordinates (in inches) of the first
number in the string (Real).

is the real number to be plotted. If nega­
tive, will be prefixed with a minus sign.
Leading zeros will be suppressed, ex­
cept the zero to the left of the decimal
point. The real number is rounded by
adding five to the digit to the right of
the last digit to be plotted, then truncat­
ing the result (Real).

is size and orientation:

O = small, + 90 degrees rotation from
x direction (Default).

12-9

DATAPLOT II

height

angle

ndec

1 = small, 0 degrees rotation from x

direction.
2 = large, + 90 degrees rotation from

x direction.
3 = large, 0 degrees rotation from y

direction.

selects the character height. If height
= > 0.10, the characters will be 0.07
inches high. If height = 0.10, char­
acters will be 0.14 inches high (Real).

is the angle, in degrees from the x axis,
at which the character string is to be
plotted. The individual characters will
be plotted at 9, 90, 180, or 270 degrees
depending on the value of "angle"
(Real).

If this parameter is larger than zero, it
defines the number of digits to be plot­
ted to the right of the decimal point.

If NDEC = 0, the integer part will be
plotted followed by a decimal point only.

If NDEC = -1, only the integer part will
be plotted.

If NDEC is less than -1, (NDEC)-1 digits
are truncated from the integer part (In­
teger).

The following table illustrates the use of the NDEC parame­
ter.

Suppose FPN - 123.4567; how the number actually will
appear is a function of the parameter NDEC.

NDEC Number Plotted Comments

4 123.4567
3 123.457 Note rounding action
2 123.46
1 123.5
0 123.

·l 123
·2 12 Note truncation action
-3 1
-4 Nothing is plotted

Error Conditions: None

Example:

CALL NUMBER (1.0,2.0,12.3,3,1)*
CALL NUMBER (1.0,2.0,0.14,12.3,

0. 0. 1) ••
The above will produce the number 12.3 at location x -
1.0,y = 2.0 in 10 x 14 character matrix, zero degrees from
the x axis.

• MDPOM • * VDPOM

12-10

12.4.8 LINE (Generate Graph Line)

Subroutines DATA and LINE produce a data line with one
call. Prior to the call, the data must be placed in two arrays
which have been dimensioned to provide two extra
locations in each array. These must be placed at the end of
the arrays and contain the displacement and scale factors
in that order. The two arrays must be of equal size, ·one
containing x values and the other y values.

The subroutine is of the general form

CALL DATA (xarr,yarr,npts,inc,± lty,i_eq)•
or

CALL LINE (xarr,yarr,npts,lnc,± lty,ieq)**

• MDPOM

** VDPOM

where

xarr

yarr

npts

Inc

±lly

is the name of the array from which x
values are to be extracted.

is the name of the array from which the
y values are to be extracted.

is the number of data points to be plot­
ted from each array to the end of the
array (Integer).

is the increment at which the arrays are
to be sampled. INC = 1 means every
x,y pair is plotted. INC = 2 means every
other pair, etc. (Integer).

indicates the type of line desired (In­
teger).

L TY<O: A symbol will be plotted at each selected point
but no lines will connect the symbols.

L TY - O: A line will be drawn connecting each selected
point. No symbols wlll be drawn.

L TY.>O : A symbol will be plotted at each selected point
and a line will connect all symbols.

leq is the positive integer designating sym­
bol to be produced (1,2,3,4, or 5).

If L TY = 0, IEQ has no meaning.

Plot values will be generated by the following algorithm:

Plot Value array value-displacement

scale factor

Error Conditions:

Condition:

Action:
Message:

The scale factor in the data
array - 0.0
Incomplete plot
ARITH OVFL

Examples:

or

DIMENSION XAR (6), YAR (6)
DATA XAR/1.0,2.0,3.0,4.0,1.0,1.0/
DATA YAR/ 1. 0, 1 . 0, 1. 0, 1. 0, 1 . 0, 1. O/

CALL DATA (XAR,YAR,4,1,LTY,1)

CALL LINE (XAR,YAR,4,1,LTY,1)

The above will produce the following plots:

LTY> 0 D i-------t-0-+----+0-+-----10
(1,1) (4,1)

LTY - 0
(1,1) (4,1)

LTV< 0 0 0 0 0
(1,1) (4,1)

12.4.9 MLTPLE (Multiple Plot)

The sign of the PLOT parameter !DRAW is used to indicate
whether a new logical origin is to be defined. The Ml TPLE
call allows the user to change the origin without terminat­
ing his current plot definition. If no call has been made to
Ml TPLE, the. PLOT origin change is treated as the
completion of the current plot and the start of the new plot.

The subroutine is of the general form

*BDPOM
where

ind

CALL ML TPLE (ind)

+ 1 = on future calls to PLOT, a
redefinition of the logical origin will not
be treated as the end of the plot, and
multiple logical plots will be treated as
belonging to the same real plot.

0 - on future calls to PLOT, a redefinition of the
logical origin will also be treated as the end of
the plot.

- 1 - Same as + 1 except that the accumulated
information from past PLOT calls defines a complet!l
plot and it should be output. Note that the state·
ment CALL Ml TPLE (- 1) is exactly equivalent to:

CALL WHERE (x,y,fact)
CALL MLTPLE (O)
CALL PLOT (0.0,0.0,-3)
CALL MLTPLE (+1)
CALL PLOT (x,y,+3)

Error Conditions: None

Examples:

CALL PLOT (1.0,2.0,3)
CALL fLOT (2.0,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

DATAPLOT 11

The above sequence will output two physical plots of one
line each.

CALL MLTPLE (1)

CALL PLOT (1.0,2.0,3)
CALL PLOT (2. 0 •• 2. 0, -2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output one physical plot with two
lines on the plot.

12.4.10 FACTOR (Alter Plot Size)

This function is used to alter the overall size of the plot by
changing the ratio of the desired plot size to the normal
size.

The function is of the general form

*BDPOM
where

CALL FACTOR (fact)

fact is the ratio of the desired plot size to
normal plot size. If FACTOR is not called,
fact - 1.0 (Real).

Error Conditions: None

Example: Make plot one-half normal size.

CALL FACTOR (0.5)

12.4.11 WHERE (Locate Coordinates)

This function returns information to the user. The three
variables designated in the calling sequence are set to the
current x and y coordinates and the current plot sizing
factor.

12-11

DATAPLOT II

The function is of the general form

CALL WHERE (rx,ry,rfact)*
*BDPOM
where

rx

ry

rfact

is the variable which will be set to the
current x coordinate.

is the variable which will be set to the
current y coordinate.

is the variable which will be set to the
current plot sizing factor.

Error Conditions: None

Example:

CALL MLTPLE (1)
CALL FACTOR (2.5)
CALL PLOT (1.0,2.0,3)
CALL WHERE (XA,YA,Fl
CALL PLOT (3.0,1.0,-~
CALL WHERE (XB,YB,F)

The above sequence will set the variables as follows:

XA • 1. 0
YA • 2.0
F • 2.5
XB • 0.0
YB • 0. 0 new origin defined

12.4.12 APPEND (Append File)

Previously generated files in vector-end-point format may
be added to the plot file and merged during the sort. A call
to APPEND must be made after the call to PLOTS. If the
file to be appended is not on an RMD device, it must be
previously positioned.

The function is of the general form

CALL APPEND (lun,key,name,abull,labuff)•
*BDPOM

where

lun

key

name

a bull

12-12

is the variable or number of the logical
unit containing the file to be appended
(Integer).

is the protection key, if any.

is the six-character name of the file to
be appended. It may be given as an
array name or a Hollerith constant.

the name of the APPEND file input
buffer.

la bull

Error Conditions:

Condition:
Action
Message:

Condition:
Action:
Message:

is the le~gth of abuff (Integer).

Wrong protection key
Append call is ignored
1004,xxxxxx

File name not found
Append call is ignored
1010,xxxxxx

xxxxxx is the task name.

Examples:

117 CALL APPEND (18,0,0,BUFF,1024)
136 CALL APPEND (132,2HbP,6HMAPbb,

ABUFF,960)

Statement 117 will cause the file on logical unit 18 to be
appended to the plot file. BUFF will be used as the input
buffer. Statement 136 will cause the file named MAP on
logical unit 132, with protection code P, to be appended to
the plot file. ABUFF will be used as the input buffer. Data
will be input in blocks of 960 words (8 sectors).

12.4.13 TOPFRM (Top-of-Form)

TOPFRM subroutine will advance the paper to the next
TOP-OF-FORM mark or eleven inches, whichever occurs
first (FUNC code - 0). A Top-of-Form command will be
output to the output driver at the time the subroutine is
called.

The subroutine is of the general form

CALL TOPFRM*
*BDPOM

Error Conditions: None

Example:

CALL TOPFRM (Outputs FUNC (0)
to the plot output device)

12.4.14 CUT (Cut Paper)

The CUT subroutine issues a cut command (FUNC code =

20) to the output driver when the subroutine is called.

The subroutine is of the general form

CALL CUT*
''BDPOM

Error Conditions:

Condition:
Action:
Message:

Paper cutter option not connected.
Command ignored
none

Example:

CALL CUT

A cut command (FUNC (20)) is sent to the plot output
device.

12.4.15 ENDCUT (Eject and Cut Paper)

The ENDCUT subroutine issues a FUNC code equal to 21
(cut command) to the output device and moves the paper
approximately 34 inches.

The subroutine is of the general form

"BDPOM

Error Conditions:

Condition:
Action:
Message:

Example:

CALL ENCUT*

Output device not STATOS.
Command ignored
None

CALL ENDCUT

The above issues a cut and move paper command to the
plot output device.

12.4.16 DPSORT (Sort Plot File)

This function sorts an RMD plot file. No sort is attempted if
the plot file is not assigned to an RMD.

DPSORT is also called by subprogram DPPLOT when
IDRAW = 999, or when IDRAW 1, or when ML TPLE is
set 0.

The function is of the general form

CALL DPSORT*
*BDPOM

Parameter Description: None

Error Conditions:

Condition:
Action:
Message:

Condition:
Action:
Message:

Example:

Data Plot working buffer too small.
Abort program
DPOl

Plot file not assigned to RMD.
Abort program
DP07

CALL DPSORT

DATAPLOT II

12.4.17 DPPLOT (Output File)

DPPLOT subroutine converts the plot file to STATOS raster
format and outputs the raster data to the output device
specified in the call to PLOTS. DPPLOT is called by

subroutine PLOT when IDRAW = 999 or when IDRAW <O,
and ML TPLE = O or when ML TPLE is set <o, to output
the plot data.

This subroutine is of the general form

CALL DPPLOT*
'''BDPOM

Parameter Description: None

Error Conditions:

Condition:
Action:
Message:

Condition:
Action:
Message:

Condition:

Action:
Message:

Condition:
Action:

Message:

Condition:
Action:
Message:

Example:

Working buffer overflow
Incomplete plot
DPOl

Attempted to plot from unsorted File.
Abort plot
DP02

End-of-plot indicator not detected.

Abort plot
DP03

Min/Max x/y values exceeded.
Line will follow plot boundary,
plot origin will be shifted.
DP04

PLOTS not called.
Abort plot
DP05

DIMENSION IBUF (1200)
CALL PLOTS (IBUF,1200,5)
CALL DPINIT (107,2HbF,6HPLTFIL,

120,88)

CALL DPSORT } or CALL PLOT
CALL DPPLOT (0.0,0.0,999)

The above program will output raster plot data to logical
unit 5, block size 88, from an unsorted plot file residing on
logical unit 107, protection code of F, name PLTFIL, block
size of 120.

If the plot file is sorted, the call to DPSORT may be
eliminated.

If the plot file is on system scratch (SS) and the STATOS is
14-7 /8 inches wide, the call to DPINIT may be eliminated.

12-13

DATAPLOT II

12.4.18 DPCLOS (Close Plot File)

DPCLOS subroutine closes and updates the plot file and
writes an end-of-file if the plot file is on magnetic tape. The
first three words of DPFCB (data plot file control block) are
set to zero, and the plot file cannot be referenced until a
call is made to DPINIT to restore DPFCB.

The subroutine is of the general form

CALL DPCLOS•
*BDPOM

Parameter Description: None

Error Conditions:

If the plot file is assigned to a device other than an RMD or
magnetic tape, the close request will be ignored.

Example:

170 CALL DPCLOS

Statement 170 closes the plot file.

12.4.19 ORIG ·· Offsetting the Origin
Entry Point

This function offsets the origin entry point of the plot.

The origin of the plot is the lower left hand corner of the
plot area, with the + y axis towards the right and the + x
axis pointing into the plotter.

VTll-3067

Figure 12-4. + x Axis and + y Axis Relative to
Paper Direction

12-14

The absolute y displacement may not go negative. If it is
desired to offset the origin in order to allow (relative)
negative numbers, or to allow large positive values to be
plotted without wasting paper, it is possible to offset both x
and y coordinates of the (relative) origin by the following
call of the general form:

*BDPOM

where

CALL ORIG (x,y)*

is the distance (in inches) along
the x axis which the new (relative)
origin will be offset (Real).

is the distance (in inches) along
the y axis which the new (relative)
origin will be offset (Real).

The coordinates used in locating plot elements are always
relative to the origin location.

Error Conditions: None

Example:

170 CALL ORIG (7.0,3.1)

Statement 170 offsets the origin 7.0 inches in the x
direction and 3.1 inches in they direction from the physical
origin (0.0,0.0).

12.4.20 VECT ·· Vector Entry Point

This subroutine generates plot file entries defining straight
lines between two points. Four parameters define the
points in the following order:

x1, y1, x2, y2. The parameters are single precision, real
numbers representing inches from the origin. Provision is
made for retaining the "current" (or last defined) point.
When x1 = 999.0, a file entry is produced to generate
a line between the "current" point and the point defined
by x2 and y2. ·

The subroutine is of the general form

CALL VECT (x1,y1,x2,y2)'"
*BDPOM

where

x1 is the starting x coordinate of line.

y1 is the starting y coordinate of line.

x2 is the ending x coordinate of line.

y2 is the ending y coordinate of line.

Error Conditions: The normal plotter routines do not keep
track of the actual location of the pen, but instead always
assume that the pen can be moved from the current location
to the new location and that enough commands are output
to accomplish this. If a mechanical stop is encountered
during plotting, the motion in that direction is simply inhib­
ited by the plotter. Because the mechanical stops are not
precise, errors will be produced if a m~chanical stop is
encountered during plotting. However, this is sometimes
done before initiating a plot to position the pen in a known
location before beginning the actual plot.

DATAPLOT II routines have software stops contained inter­
nally in order to produce the same effect. If a plot boundary
is encountered, an error (DP04) will be reported, the line
will extend toward the boundary and follow the boundary
to the final position, and the origin will be effectively shifted
in a manner similar to the pen plotter.

Example: 5 CALL VECT (3.2, 1.0,4.0, 1.0)

Statement 5 will place an entry in the plot file for the vector
x = 3.2 to 4.0 and y = 1.0.

12.4.21 Special SYMBOL Subroutine

Subroutine SYMBOL produces special symbols on the plot.

The subroutine is of the general form

CALL SYMBOL (x,y,leq)*

* MDPOM

where

x,y

leq

IEQ

1
2
3
4
5

Error Conditions:

Example:

are the x and y coordinates of the center
of the symbol (Real).

is the positive integer designating the
symbol to be produced.

SYMBOL

0
0
~ •

None

CALL SYMBOL (1.0,2.0,4)

The above will place a filled in square (•) at location x -
1.0, y - 2.0.

DATAPLOT II

12.5 PLOT FILE DATA FORMAT

12.5. l Vectors

X values represent distances from the beginning of the plot
in the opposite direction of paper movement. A unit of x
corresponds to one step of paper movement in the
machine.

Y values represent stylus numbers.

--------16 bits--------

Xl

Yl

X2

Y2

Figure 12-5. Vector-Data Format

where

X2 !> X 1 s 3 2 , 7 0 0

Y1 and Y2 number of STATOS stylii

12.5.2 Characters

15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 0

Xe Word O

Ye Word I

077774 Word 2

Unused }~}Jal ASCII CODE Word 3

Figure 12-6. Character Data Format

Word 3, Bit 9 - O for small character (5x7)
- 1 for large character (10xl4)

Word 3, Bit 8 and 10 determine the character orientation.
The x and y coordinates refer to the lower left-hand corner
of the character.

Bit 8
Bit 10

I B~St=
1
0

0
0

0
1

Figure 12-7. Character Orientation Data Format

12-15

DATAPLOT II

12.5.3 End-of-Plot Indicator

The end of the plot indicator is shown in figure 12-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

077777

077777

077777

077777

Figure 12-8. End-of-Plot Indicator

12.6 EXAMPLE OF APPLICATION OF DATAPLOT II

12.6. l Program to Generate Sine Wave

c
c
c

c
c
c

SAMPLE PLOT (BDPOM/VDPOM CALLS)

DIMENSION XAR (34),YAR(34),
IBUFF(1000)
XAR (33) • 0.0
XAR (34) • 1.0
YAR (33) • -100.0
YAR (34) • 100.0
CALL PLOTS (IBUFF, 1000,5)
CALL MLTPLE (1)
CALL PLOT (1.0,1.0,-3)
XVA • 0.0
DO 200 I• 1,32
XVA • XVA + 0.25
XAR (I) • XVA

200 YAR (I) •100.0+200.0•SIN(XVA)

PLOT AXES, DATA

CALL AXIS (0.0,0.0,6HY-AXIS,
6,4.0,90.0,YAR(33),YAR(34)
CALL AXIS (0.0,0.0,6HX-AXIS,
-6, 8. 0, 0. 0 ! XAR (3 3) ! XAR (3 4 l)

CALL LINE (XAR,YAR,32,1,-1,1)
CALL PLOT (0.0,0.0,999)
CALL EXIT
END

(END-OF-FILE)

12-16

c
c
c

SAMPLE PLOT (BDPOM/MDPOM CALLS)

DIMENSION XAR (34) • YAR (34) •
IBUFF (1000)

XAR (33) • 0.0
XAR (34) • 1.0
YAR (33) • ·100.0
YAR (34) • 100,0
CALL PLOTS (IBUFF, 1000, S)
CALL ORIG (1. 0 • 1. 0)
XVA • 0.0
DO 200 I • 1, 32
XVA • XVA + O.ZS
XAR (I) • XVA

200 YAR (I) • 100.0 + 200.0 * SIN (XVA)
c
c
c

NI 0

VTll-3095

PLOT AXES, DATA

CALL AXIS (O.O, O.O, 4.0, 1,
6HY-AXIS, -6, YAR (33) •
YAR (34))

CALL AXIS (O.O, O.O, 8.0, O,
6HX-AXIS, 6, XAR (33),
XAR (34))

CALL DATA (XAR, YAR, 32, 1, ·l, l)
CALL PLOT (O.O, O.O, 999)
CALL EXIT
END

o""

Figure 12-9. Sine Wave Plot Generated by DATAPLOT II

12.6.2 Program to Generate
Communication Network

c
c
c

c

SAMPLE COMMUNICATIONS NETWORK

DIMENSION IBUFF (1000),
XAR (1 2) , Y AR (1 2)
CALL PLOTS (IBUFF,1000,5)

BUILD END-POINTS
DO 10 I • 1, 12
X • 6.283 • FLOAT (I)/12.0
YAR(I) • 5.0 * SIN (X)+7.0

10 XAR(I) • 5.0 • COS(Xl+7.0

c

30

DRAW THE LINES
DO 3 0 I 1 - 1 I 11
K • I1 + 1
no 3 o I 2 • K , 1 2
CALL VECT (XAR(I1),YAR (I1),
XAR(I2), YAR(I2))
CALL PLOT (0.0,0.0,-3)
CALL EXIT
END

(END-OF-FILE)

"Tll-109#

Figure 12-10. Communication Network Plot
Generated by DAT APLOT II .

12.7 OPERATING PROCEDURES AND
ERROR PJ,!ESSAGES

12.7.1 VORTEX Operating Procedures

Use of the DATAPLOT II plot generation routines requires
the preparation of FORTRAN programs which make
appropriate calls to the FORTRAN and VDM 70/620
assembly language programs.

The user may execute in a compile-and-go mode by ending
his program with a call to PLOT (x,y,999) or PLOT (x,y,-i)
and the plot output device assigned to the STATOS printer/
plotter (Ref. paras 12.4.2).

DATAPLOT II

12.7.2 Unsorted Plot Files

Unsorted plot files may be output by VORTEX DATAPLOT II
by transferring the plot file to an RMD (if not already
there) by IOUTIL or the APPEND subroutine, and calling
the following subroutines:

DIMENSION
CALL DPINIT if necessary
CALL PLOTS
CALL DP SORT
CALL DPPLOT
CALL EXIT
END

12.7.3 Presorted Plot Files

Files which have been presorted may be in physical records
whose length is any multiple of four 16-bit words. There is
no restriction on the number of records which may be
processed, other than the physical capacity of the periph­
eral device. The file must have been sorted on the
numerical value of the Xl 's, in descending order. Each Xl
must be greater than or equal to its associated X2. An end­
of-plot indicator (four words containing 077777) must
appear at the end of the significant data in the last record.

Presorted plot files may be output by VORTEX DATAPLOT
II by assigning the plot file to the physical unit containing
the plot file (DPINIT) and calling the following routines:

DIMENSION
CALL DPINIT
CALL PLOTS
CALL DPPLOT
CALL EXIT
END

if necessary

12.7.4 VORTEX Special Procedures

The VORTEX DATAPLOT II package may be executed in
one, two, or three sections. No special modifications are
necessary to build, sort, and output the plot file in one
module.

Sorting and outputting the plot file may be separated from
building the plot file by supplying dummy sorting and
outputting routines. For example, this method may be used
if it is desired to build the plot file in the background and
output the plot file from the foreground. Subroutine PLOTS

12-17

DATAPLOT II

must be ineluded in each section or an error (DP05) will be
output.

Ex amp~:

/FORT,B,L,M
C BUILD THE PLOT FILE

DIMENSION IBUFF (142)

c

12-18

CALL DPINIT (25,2HbK,6HFILEbb,
120,88)
CALL PLOTS (IBUFF,124,27)
CALL AXIS (1.0,1.0,4HAXIS,4,5.0,
o.o,o.o, 1.0)
CALL PLOT (0.0,0.0,999)
CALL EXIT
END

DUMMY SUBROUTINES
SUBROUTINE DPSORT
RETURN
END
SUBROUTINE DPPLOT
RETURN
END

/FORT,B,L,M
C SORT AND OUTPUT THE PLOT FILE

DIMENSION IBUFF (1000)
CALL DPINIT (25,2HbK,6HFILEbb,
120,88)
CALL PLOTS (IBUFF,1000,27)
CALL DPSORT
CALL DPPLOT
CALL EXIT
END

(END-OP-FILE)

The above programs. referenced the plot file named FILE on
logical unit number 25, protection code K.

The IBUFF in the first program only needs to be the plot
file record size (120) plus 22. The size of IBUFF in the
second program may be increased to provide faster sorting
when large plot files are generated.

SECTION 13

SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine
library directly available to the user. The library contains
mathematical subroutines to support the execution of a
program, plus many commonly used utility subroutines. To
use the library, merely code the proper call in the program,
or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A = SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
required routine, and the load-module generator brings the
subroutine into memory and links it to the calling program.

FORTRAN IV: Genera/ form:

statement number CALL S(p(l),p(2), . . ,p(n))

Generated code:

JMPM S
DATA q(1)
DATA q(2)

DATA q(n)

The performance of several routines in the support library
is improved through the use of the V70 series Floating
Point Firmware on V70 series systems having Writable
Control Store (WCS). The necessary firmware and library
routines which call the firmware are added to the Object
Module Library (OM) by executing the supplemental WCS
job stream supplied with the System Generation Library.

Where q(i) - p(i) if p(i) is a single variable or array name.
Otherwise, q(i) - address containing p(i).

13.1 CALLING SEQUENCE
13.2 NUMBER TYPES AND FORMATS

The subroutines in the support library are called through
DAS MR or FORTRAN IV. Integers use one 16-bit word. A negative number is in two's

complement form. An integer in the range - 32,767 to
+ 32,767 can be stored as an integer.

DAS MR: Genera/ form:

label CALL S,p(l),p(2), .. ,p(n)

Expansion:

label JMPM
DATA
DATA

DATA

Bit 15
n)
n+l)

Bit 15
n) 0
n+ 1) s
n+2) 0
n+3) O

s
p(1)

p(2)

p(n)

Real numbers use two consecutive 16-bit words. For a
positive real number, the exponent (in excess 0200 form) is
in bits 14 to 7 of the first word. The mantissa is in bits 6 to
0 of the first word and bits 14 to 0 of the second word. The
sign bit of the second word is zero. The negative of this
number is created by one's complementing the first word.
Any real number in the range 10±'" can be stored as a
single·precision floating-point number having a precision of
more than six decimal digits.

Single-Precision Floating-Point Numbers

141312 11109
-------Exponent--------- ----High Mantissa----
-----------------Low Mantissa------------------
Double-preclsion floating-point numbers use four consecu·
live 16-bit words. The exponent (in excess 0200 form) is in
bits 7 to 0 of the first word. The mantissa of a positive
number is in the second, third, and fourth words. Bit 15 of
the second, third and fourth words .and bits 15 to 8 of the
first word are zero. The negative of this number is created
by one's complementing the second word. Any real number
in the range 10±" can be stored as a double·precision
floating.point number having a precisjon of more than 13
decimal digits.

Double-Precision Floating-Point Numbers

14 13 12 11 10 9 8 7 6 5
0 0 O 0 O 0 0 --------Exponent--------
-----------------High Mantissa-----------------
-----------------Mid Mantissa------------------
-----------------Low Mantissa------------------

13·1

SUPPORT LIBRARY

13.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the
subroutine descriptions given in this section:

Notation

AB

AC

ACCZ

Meaning

Hardware A and B registers

Four-word software accumulator for double­
precision numbers

Four-word accumulator for complex numbers
(the real part is in AB and the imaginary
part is in a temporary cell in subroutine V$8G)

Address of a double-precision number

Address of a two-word, fixed-point number

Address of an integer

Address of a real number

s A six-character ASCII string

x Hardware X register

Address of a complex number

Exponentiation

An additional name in parentheses indicates a replace­
ment by standard firmware. For example. $SE(FSE)
indicates the firmware routine FSE replaces $SE on 70
series systems using standard firmware. Section 20.2
describes standard firmware.

The external references in table 13-3 refer to items in
tables 13-1 and 13·2. A subroutine with more than one
name is indicated by multiple calls under Calling Sequence.

Table 13-1. DAS Coded Subroutines

13-2

Name

$HE

$PE

$QE

ALOG

EXP

ATAN

Function

Given: A contains ii.
in A compute il*"i2.

Given: AB contains r.
in AB, compute r**i.

Given: AB contains rl.
in AB, compute rl ''"''r2.

In AB, compute In r. If r - o.
output message FUNC ARG and
exit with A= B = 0 and
overflow= 1.

In AB. compute e" ·:·r. If there
is underflow. AB= 0. If
overflow. AB= maximum real
number and the message FUNC
ARG is output. In both
cases. overflow = l.

In AB. compute arctan r

SINCOS In AB. compute cos r with
COS. or sin r with SIN

SQRT In AB. compute square root of r

FMULDIV Given: AB contains rl. in AB.
compute rl *r2 with $QM. or
rl /r2 with $QN. If there is
underflow. AB= 0. If
overflow, AB= maximum value
and the message ARITH OVFL is
output. In both cases.
overflow= 1.

Calling Sequence

CALL $HE,i2

CALL $PE,i

CALL $QE.r2

CALL ALOG,r

CALL EXP.r

CALL ATAN.r

CALL COS,r
CALL SIN.r

CALL SQRT.r

CALL $QM.r2
CALL $QN.r2

External References

$SE(FSE). $HM

$SE(FSE). $QM, $QN

ALOG, $QM. EXP, $SE(FSE)

$EE. $QK(FAD). $QM. XDMU.
XDAD. $NML. XDDI.
XDSU. $SE(FSE). $PC. $QL(FSB),
$QN

XDMU, $QK(FAD). $NML, $EE,
$QM. $QN. $SE(FSE)

$QM. $QL(FSB). $QN. $QK(FAD)

$SE(FSE)

$QK(FAD),$QL(FSB), $QM, $QN,
$SE(FSE)

XDDI. $FSM, $SE(FSE)

XDMU. $FMS, XDDI,
$SE(FSE), $EE, $NML

SUPPORT LIBRARY

Table 13-1. DAS Coded Subroutines (continued)

Name Function Calling Sequence External References

FADDSUB Given: AB contains rl, in AB, CALL $QK,r2 $SE(FSE), $FSM, $NML, $EE
compute rl + r2 with $QK, or CALL $QL,r2
rl - r2 with $QL. If there
is underflow, AB= 0. If
overflow, AB= maximum value
and the message ARITH OVFL is
output. In both cases,
overflow = l.

SEPMANTI Separate mantissa and CALL $FMS None
characteristic of r into AB CALL $FSM
and X, respectively

FNORMAL In AB, normalize r CALL $NML XDCO

XDDIV In AB, compute fl/f2 CALL XDDl,f2 XDSU, XDCO

XDMULT In AB, compute fl '''f2 CALL XDMU,f2 XDAD, XDCO

XDADD In AB, compute fl + f2 CALL XDAD,f2 None

XDSUB In AB, compute fl - f2 CALL XDSU,f2 None

XDCOMP In AB, compute negative of f CALL XOCO None

$FLOAT In AB, convert the i in A CALL $PC $SE(FSE)
to floating.point and, for CALL $QS,r
$QS, store result 1n r

$1FIX In A, convert the r in AB CALL $IC $SE(FSE), $EE
to i and, for $HS, store CALL $HS,i
result in i

IABS In A, compute absolute 1 CALL IABS.1 $SE(FSE)

ABS In AB, compute absolute r CALL ABS,r $SE(FSE)

ISIGN Set the sign of il, in A. CALL ISIGN,12 $SE(FSE)
equal to that of 12

SIGN Set the sign of rl, in AB, CALL SIGN,r2 $SE(FSE)
equal to that of r2

$HN Given: A holds il, CALL $HN,i2 $SE(FSE), $EE
in A, compute il/i2

$HM Given: A holds il, in A CALL $HM,i2 $SE(FSE), $EE
compute il *i2

DSINCOS In AC, compute sin d or cos d CALL $DSl,d $STO,$DNO, $ZC, $ZK, $ZL,
CALL $DSIN,d $SE(FSE), $ZM, $ZN, AC
CALL $DCO,d $DLO
CALL $DCOS,d

DAT AN In AC, compute arctan d CALL $DAN $DLO, $STO, $DAD,
CALL DATAN,d $DSU, IF, $SE(FSE),

AC, $DMP, $DDI,
POLY

13-3

SUPPORT LIBRARY

Table 13·1. DAS Coded Subroutines (continued)

Name Function Calling Sequence External References

DEXP In AC, compute exponential d CALL $DEX $DLO, $STO,
CALL DEXP,d $SE(FSE), AC, $DNO, $EE,

$ZC, $ZK, $ZL, $ZM, $ZN

DLOG In AC, compute In d CALL DLOG,d $DLO, $STO, $DNO, $EE
CALL $DLN $SE(FSE), $ZK, $ZL, $ZM, $ZN

POLY In AC, compute double-precision CALL POL Y,t,c,y $DLO, $DAD, $DMP
polynomial with t terms.
coefficient list starting at
address c, and argument at
address y

CHEB In AC. compute shifted CALL CHEB,t,c $DLO, $STO, $DAD,
Chebyshev polynomial series $DSU, $DMP
with t + 1 terms and coefficient
list starting at address c

DSQRT In AC, compute square root CALL $DSQ,d $DLO, $STO, $DNO,
of d CALL DSQR,d -$DAD, $DMP, $DDI,

$SE(FSE), AC

$DFR In AC, compute fractional CALL $DFR,d $DLO, $DNO, $DSU,

part of d $DIT, AC, $SE(FSE)

IDINT In AC, compute integral CALL $DIT,d $DNO, $SE(FSE)
part of d CALL IDINT,d

DMULT In AC, compute di *d2 CALL $DMP,d2 $DLO, $STO, $DNO,
CALL $ZM,d2 $DAD, AC, $SE(FSE)

DD I VI DE In AC, compute dl!d2 CALL $DDl.d2 $DLO, $STO, $DNO,
CALL $ZN,d2 $DSU, AC, $SE(FSE)

DADDSUB In AC, compute di + d2 with CALL $DAD,d2 $STO, $DLO, $DNO,
$DAD, or di - d2 with CAL $DSU,d2 AC, $SE(FSE), $EE
$DSU CALL $ZK,d2

CALL $ZL,d2

DNORMAL In AC, normalize d CALL $DNO $SE(FSE)

DLOADAC Load AC with d CALL $DLO,d AC, $SE(FSE)
CALL $ZF,d

DSTOREAC Store AC in d CALL $STO,d AC, $SE(FSE)
CALL $ZS,d

RLOADAC Load A with double-preciston CALL $ZI AC
mantissa sign word from AC

SINGLE In AB. convert the d in AC to r CALL $RC AC

DOUBLE In AC. convert the r in AB to d CALL $YC AC

DBLECOMP In AC, compute negative of the CALL $ZC AC
d in AC

$3S Store AB in memory address m CALL $3S,m $SE(FSE)

13-4

Table 13·1. DAS Coded Subroutines (continued)

Name

A2MT

MT2A

EXIT

SUSPND

RESUME

ABORT

ALOC

Function

Translate in memory a character
string of length n starting
at s and ending at e from
eight-bit ASCII to six-bit
magnetic tape BCD code

s is the start of the ASCII block
and e is the start of the BCD block.

Translate in memory a character
string of length n starting at
s and ending at e from six-bit
magnetic tape BCD code to
eight-bit ASCII .

s is the start of the BCD block
and e is the start of the ASC 11 block.

Formats and executes an RTE
EXIT macro

Formats and executes an RTE
SUSPND macro with parameter i.

Formats and executes an RTE
RESUME macro to resume task s.

Formats and executes an RTE
ABORT macro to abort task s.

Formats and executes an RTE
ALOC macro to call reentrant
subroutine s.

PMSK Formats and executes an RTE
PMSK macro to operate on PIM
il with line mask i2 and
enable/disable flag i3.

DELAY

LDELAY

TIME

Formats and executes an RTE
DELAY macro with the 5-
millisecond count in i I, the
minute count in i2, and delay
mode in i3.

Formats and executes an RTE DELAY
type 1 with additional parameters to
specify the LUN from which the task
(lun in i4 key In i5) is to be reloaded.

Formats and executes an RTE
TIME macro with the minute
count in il, and 5-millisecond
count in i2.

Calling Sequence

CALL A2MT,n,s,e

CALL MT2A,n,s,e

CALL EXIT

CALL SUSPND(i)

CALL RESUME(s)

CALL ABORT(s)

CALL ALOC(s)

CALL PMSK(il,
i2,i3)

CALL D_ELAY(il,
i2,i3)

CALL LDELAY (il,i2,i3,
i4, i5)

CALL TIME(il,i2)

SUPPORT LIBRARY

External References

None

None

V$EXEC

V$EXEC

V$EXEC, $RTENM

V$EXEC, $RTENM

V$EXEC

V$EXEC

V$EXEC

V$EXEC

V$EXEC

13-5

SUPPORT LIBRARY

Table 13·1. DAS Coded Subroutines (continued)

Name Function Calling Sequence External References

OVLAY Formats and executes an RTE CALL OVLAY(il, V$EXEC, $RTENM
OVLAY macro with il = 0 to i2,s)
execute, i2 - O to load, and
s is the overlay name.

SCH ED Formats and executes an RTE CALL SCHED(il, i2, V$EXEC, $RTENM
SCHED macro with il - priority, i3,sl,s2)
i2 - wait flag, i3 =

logical-unit number, sl = key
and s2 = task name.

$RTENM Moves the six·character name CALL $RTENM None
from X to B

$EE Outputs error messages on CALL $EE V$10C, V$10ST,
the SO device. V$EXEC

$SE Fetches n parameters from a CALL $SE, n None
subroutine call BSS n

V$RSW Handles multi-reel volume LDA-LUN to A = Restored
files and information. unload.

LDX<O for B Restored
no mount.

LDX =0 for x Restored
mount next
volume.

LD>C> O addr.
of filename
for mount.

B =next
volume num-
ber if >C>O

CALL V$RSW

V$HDR To format a standard CALL V$HDR A,B,X restored
VORTEX header. DATA page Header in 38

number ad- word external
dress buffer V$HBUF
DATA program
name address
DATA program
title address
(= O if not
used)

13-6

Name

CB2A

CA2B

MOVE

CTIME

Table 13-2. OM Library Subroutines

Function

Covert a 16-bit binary value
(positive or negative) to an
ASCII character string (octal
or decimal) with leading zeros
suppressed and right justi­
fied minus sign on negative
decimal values.

Convert a decimal or octal
ASCII number (positive
or negative decimal) to
a 16-bit binary value.

Move a block of n wsrds
from address f to address
t. If an overlap move,
then; move in reverse.

Convert the time of day
to an ASCII string of the
form:

HH:MM:SS:TTT

Calling Sequence

LDA = O for octal
conversion

- 0 for deci·
mal conver-
sion

JSR CB2A,X
DATA Address of

binary value

JSR
DATA

DATA

CA2B,X
ASCII
string ad­
dress
(compl =
left byte,
pos = right
byte)
Address of
termination
character
block

The termination block
format is

DATA Legal termination
character (right
justified)

DATA Legal termination
character (right
justified)

DATA O (end of block)

JSR MOVE,X
DATA n (word

count)
DATA f (from ad­

dress)
DATA t (to address)

JSR CTIME,X

SUPPORT LIBRARY

External References

(A) - Address of ASCII
string

(B) - Restored

(A) - Binary value
(B) - Next byte address

OVFL - Set if an illegal
character encountered

(A) - Restored
(B) - Restored

(A) - Address of ASCII
string

(B) - Restored

13-7

SUPPORT LIBRARY

Table 13·3. FORTRAN IV Coded Subroutlne1

Name Function Calling Sequence External References

$9E Compute ACCZ*''i CALL $9E(i) $SE(FSE), IABS, $8F,
$8M, $8N, $8S

ccos In ACCZ, compute cos z CALL CCOS(z) $SE(FSE), CSIN, $8F,
$8K, $8S

CSIN In ACCZ, compute sin z CALL CSIN(z) $SE(FSE), EXP, $QN,
SIN, $QK(FAD), $QM,
COS, $QL(FSB), $8F

CLOG In ACCZ, compute In z CALL CLOG(z) $SE(FSE), ALOG, $QM,
$QK(FAD), $QN, ATAN2,
$8F

CEXP In ACCZ, compute exponential z CALL CEXP(z) $SE(FSE), EXP, COS,
$QM, SIN, $8F

CSQRT In ACCZ, compute square root of z CALL CSQRT(z) $SE(FSE), SQRT, CABS
$QK, $QN, $8F

CABS In AB, compute absolute z CALL CABS(z) $SE(FSE), SQRT, $QM,
$QK(FAD)

CON JG In ACCZ, compute con1ugate of z CALL CONJG(z) $SE(FSE), $8F

$AK Add r to real part of ACCZ CALL $AK(r) $SE(FSE), $8S, $QK(FAD), $8F

$AL Subtract r from the real CALL $AL(r) $SE(FSE), $8S, $QL(FSB), $8F
part of ACCZ

$AM Multiply ACCZ by r CALL $AM(r) $SE(FSE), $8S, $QM, $8F

$AN Divide ACCZ by r CALL $AN(r) $SE(FSE), $8S, $QM, $8F

$AC Conve_rt AC to z and store in ACCZ CALL $AC $3S, CMPLX

CMPLX Load ACCZ with a value having CALL CMPLX(rl.r2) $SE(FSE), $8F
a real part rl and an imaginary
part r2

$8K Add z to ACCZ CALL $8K(z) $SE(FSE), $8S, $QK(FAD), $8F

$8L Subtract z from ACCZ CALL $8L(z) $SE(FSE), $8S, $QL(FSB), $8F

$8M Multiply ACCZ by z CALL $8M(z) $SE(FSE), $8S, $QM,
$QL(FSB), $QK(FAD), $8F

13·8

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name Function Calling Sequence External References

$8N Divide ACCZ by z CALL $8N(z) $SE(FSE), $8S, $QM,
$QK(FAD), $QN, $QL(FSB), $8F

$ZD Compute negative of z CALL $ZD $8S, $8F

AIMAG Load AB with the imaginary CALL AIMAG(z) $SE(FSE)
part of z

$0C Load AB with the real part of CALL $0C $8S

ACCZ

REAL Load AB with the real part of z CALL REAL(z) $SE(FSE)

$8F Load ACCZ with z CALL $8F(z) $SE(FSE)

$BS Store ACCZ in z CALL $8S(z) $SE(FSE), $3S

$XE Compute d'"''i where d is in AC CALL $XE(i) $SE(FSE), $ZF, MOD, $ZM,
$HN, $ZN, $ZS

$YE Compute d" ''r where d is in AC CALL $YE(r) $SE(FSE), $ZS, DBLE,
$ZE, $ZF

$ZE Compute dl ''"'d2 where di is in AC CALL $ZE(d2) $SE(FSE), $ZS, DEXP,
DLOG, $ZM

DATAN2 In AC, compute atctan (dl!d2) CALL DATAN2(dl,d2) $SE(FSE), $ZF, $ZS,
$ZI, $ER, $ZN,
$ZL, $ZK, DATAN

DLOGIO In AC, compute log d CALL DLOGIO(d) $SE(FSE), DLOG, $ZM

DMOD In AC, compute di modulo d2 CALL DMOD(dl,d2) $SE(FSE), DINT, $ZF,
$ZN, $ZS, $ZM,
$ZL, $ZC

DINT In AC, compute integer CALL DINT(d) $SE(FSE), $ZF, $JC, $XC
portion of d

DABS In AC, compute absolute d CALL DABS(d) $SE(FSE), $ZF, $ZI, $ZC

DMAXl In AC, select the maximum value CALL DMAXl(dl,d2 $SE(FSE), $ZF, $ZS,
in the set di, d2, dn ... ,dn,0) 1$FA, $ZL, $ZI

DMINI In AC, select the minimum value CALL DMINl(dl,d2 $SE(FSE), $ZF, $ZS,
in the set di, d2, ... ,dn ... ,dn,0) 1$FA, $ZL, $ZI

DSIGN Set the sign of d I equal to CALL DSIGN(dl,d2) $SE(FSE), $ZF, $ZI, $ZN
that of d2

$YK Add r to AC CALL $YK(r) $SE(FSE), $ZS, DBLE, $ZK

$YL Subtract r from AC CALL $YL(r) $SE(FSE), $ZS, DBLE,
$ZL, $ZC

$YM Multiply AC by r CALL $YM(r) $SE(FSE), $ZS, DBLE, $ZM

13-9

SUPPORT LIBRAR.Y

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name Function Calling Sequence External References

$YN Divide AC by r CALL $YN(r) $SE(FSE), $ZS, DBLE,
$ZF, $ZN

DBLE In AC, convert r to d CALL DBLE(r) $SE(FSE), $YC

$XC In AC, convert i to d where CALL $XC $PC, $YC
i is in A

TANH In AB, compute tanh r CALL TANH(r) $SE(FSE), $QK(FAD), EXP,
$QL(FSB), $QN

ATAN2 In AB, compute arctan (r1/r2) CALL ATAN2(rl,r2) $SE(FSE), $ER, ATAN,
$QK(FAD), $QL(FSB), $QN

ALOGIO In AB, compute log r CALL ALOGIO(r) $SE(FSE), ALOG, $QM

AMOD In AB, compute rl modulo r2 CALL AMOD(rl,r2) $SE(FSE), AINT, $QN,
$QM, $QL(FSB)"

AINT In AB, truncate r CALL AINT(r) $SE(FSE), $IC, $PC

AMAX I In AB, select the maximum value CALL AMAXl(rl.r2) $SE(FSE), 1$FA, $QL(FSB)
in the set rl,r2, ... ,rn ... ,rn,O)

AMINI In AB, select the minimum value CALL AMINl(rl,r2) $SE(FSE), 1$FA, $QL(FSB)
in the set rl, r2, ... ,rn ... ,rn,0)

AMAXO In AB, select the maximum value CALL AMAXO(il,12, $SE(FSE), 1$FA, FLOAT
in the set 1 l ,i2, . ,in and ... ,in,O)
convert to r

AMINO In AB, select the minimum value CALL AMIN0(11,i2, $SE(FSE), 1$FA, FLOAT

in the set il,12, .. ,1n and ... ,in,O)
convert to r

DIM In AB, compute the positive CALL DIM(rl,r2) $SE(FSE), $QL(FSB)
difference between rl and r2

FLOAT In AB, convert 1 to r CALL FLOA T(i) $SE(FSE), $PC

SNGL In AB, convert d to r CALL SNGL(d) $SE(FSE), $ZF, $RC

MAXO In A, select the maximum value CALL MAXO(il,i2, $SE(FSE), 1$FA
in the set 11,i2, ... ,in ... ,in,0)

MINO In A, select the minimum value CALL MINO(iI,i2, $SE(FSE), 1$FA
in the set il,i2, ... ,in ... ,in,0)

MAXI In A, select the maximum value CALL MAXI(rI,r2, $SE(FSE), 1$FA, $QL(FSB), IFIX
in the set rl,r2, ... ,rn and ... ,rn,0)
convert to i

MINI In A, select the minimum value CALL MINI(rl,r2, $SE(FSE), 1$FA, $QL(FSB), IFIX
in the set rI,r2, .. ,rn and .. ,rn,O)
convert to i

MOD In A, compute iI modulo i 2 CALL MOD(iI,i2) $SE(FSE), $HN, $HM

13-10

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name

INT

IDIM

IFIX

$JC

Function

In A, truncate r and convert
to i

In A, compute the positive
difference between il and i2

In A, convert r to i

In AC, convert d to i and store
result in A

13.4 DECIMAL SUBROUTINE

The decimal subroutine performs requested decimal
operations (add, subtract, multiply, divide, move, or
compare). Besides operand addresses and sizes, the user
may specify pre-shifting of operands and post-shifting and
rounding of result. Note that pre-shifting is decimal
alignment and does not imply physical shifting. Operands
may be signed or unsigned.

Decimal compare sets the user result condition word as
follows:

=0
~1

=2

if operand /¥::. operand B
if operand A = operand B
if operand A > operand B

Parameter Block

I5 I4 I3 I2 II 10

Word 0 CODE p LAUB

BNA

2 BN8

3 Q DA DB

4 R UC DC

Calling Sequence External References

CALL INT(r) $SE(FSE), $IC

CALL IDIM(il,i2) $SE(FSE)

CALL IFIX(r) $SE(FSE), $IC

$RC, $IC CALL $JC

9

Decimal compare arithmetically compares two decimal
operands.

On entry register RO(A) contains the address of an 85 word
temporary storage block available to firmware, Rl(B)
contains the address of the user result condition word, and
R2(X) contains the address of the users descriptive
parameter block. Decimal math may be accessed either via

JMPM V$DECM
or

JMP C$DECM

If C$DECM is used, return will be made to user supplied
location VC$RTN. If V$DECM is used, the user must still
define VC$RTN.

8 6 5 4 3 2 1

LA LB

displacement A

displacement 8

SA SB

LC SC

displacementc

13-ll

SUPPORT LIBRARY

Parameter Description:

CODE

p

UA

UB

LA
LB
BNA

BN 8

Q

DA

DB

SA
SB
R

UC

DC

LC
SC
BNc

Displacement
A, B, or C

represents operation to be performed:

0 - opA + opB
1 - opA - opB
2 - compare opA: opB
3 - move opA to opB
4-opA"opB
5 - opA/opB

- 1 for presence of word 3.
= O for absence of word 3.
- 1 if operand A is unsigned.
- O if operand A is signed.
- 1 if operand B is unsigned.
- O if operand B is signed.
= length of A in digits (1 to 31).
- length of B in digits (1 to 31).
- main storage base register number

of operand A.
- main storage register number of

operand B.
- 1 if returned in third operand

(words 4 and 5 present).
- O if third operand not present

(words 4 and 5 absent).
= 1 pre shift operand A left
= 0 pre shift operand A right
- 1 pre shift operand B left
- O pre shift operand B right

Operand A shift amount
Operand B shift amount

- 1 if rounding to be applied to
result (only if result returned
in third operand)

O if rounding not applied to
result

- 2 if result unsigned
- O if result signed
= 1 to shift result left
= O to shift result right

length of result field
result shift amount
main storage base register
number of result

Byte count used to calculate
byte address of decimal operands.

Error Conditions:

{Note that on an error, register R2 will be incremented past
the parameter block, and results will be unreliable.)

a. Result operand overflow - if the result operand has an
inadequate number of digits to contain the result, the
condition result word (CONDIT) will be set to the
value 3.

13-12

b. Invalid digit - if the number portion of a digit (bits 23
-

2°) contains a value other than O - 910 or the zone
portion (bits 27

- 24> contains a value other than 1110 ,

the conditions result word will be set to the value 4.
This is also true of values specified as signed having
signs other than blank (octal 240), minus (octal 255),
or plus (octal 253).

c. If the base word related to respective BN field is zero
then the condition result word CONDIT will be set to 5.

d. Attempted division by zero results in CONDIT being set
to3.

Notes

If operand C is not specified, the result will be returned in
operand A, except for move. Decimal move moves operand
A to operand B. Note that for a decimal move, the
parameter block may be a maximum of 4 words. In this
case, the Q bit is used to specify rounding, rather than a
third operand.

Parameter byte addresses are calculated as follows: (Rl +
1 + BN) •2 + displacement = byte address of least
significant byte of decimal operand.

This represented pictorially as follows:

Rl Condition Word

Base register 0
address

Base register 1
address

Base register 15
address

Optional
Word Address Byte Address Sign

When pre-shifting is specified, this does not imgly physical
shifting of operands. Only the operand designated for
result is modified by a decimal operation.

When the operation is complete, only the integrity of
register R2 and Rl are maintained. R2 will be incremented
to the address of the next word following the parameter
block.

This is meant to imply all other V75 registers are volatile.
The user must save and restore any registers R3 through
R7 he requires to be maintained when executing the
decimal operation.

SUPPORT LIBRARY

Examples:

Note: The following may be used to create decimal
parameter blocks:

FOLLOWING ARE FORMS OF DECIMAL
INSTRUCTION.

DWORDO FORM
DWORD1 FORM
DWORD2 FORM
DWORD3 FORM
DWORDll FORM
DWORD5 FORM

3, 1, 11, 5, 5
II, 12
II, 12
3, 1, 1, 1, 5, 5
3, 1, 1, 1, 5, 5
II, 12

DECIMAL OPERATION MACRO (DECIMAL
PARAMETER BLOCK)

DECOP MAC

DECWD1

DECWD2

IFT
GOTO
DWORDO
GOTO.
COUNT
DWORDO
CONT
DWORD1
DWORD2
IFF

P(12)-P(13)-P(5)-P(6)+P(111)
DECWD1
P(7),0,P(1),P(3),P(ll),P(11)
DECWD2

P(7),1,P(1),P(8),P(ll),P(11)

P(2) ,P(3)
P(9) ,P(10)
P(12)+P(13)+P(5)+P(6)+P(111)

Select appropriate Word O
(Note no third, fourth,
or fifth word)

(Parameter block includes
at least word 3)

GOTO DECWD3 (Terminate if no word 3)
DWORD3 O,P(111)P(5) ,P(12) ,P(6) ,P(13)
IFF p(111)
GOTO DECWD3 (Terminate if no third
DWORDll
DWORD5

O , P (1 5) , P (1 6) , P (2 O) , P (1 9) , P (2 1) operand words 4 and 5)
P(17) ,P(18)

DECWD3 CONT
EMAC

INTERPRETIVE PARAMETER BLOCK DEFINED AS FOLLOWS:

P(01) OP1 SIGNED (S) OR UNSIGNED (U)
P(02) OP1 REG
P(03) OP1 DISPLACEMENT
P(011) OP1 LENGTH
P(05) OP1 SHIFT LEFT (l) OR RIGHT (R)
P(06) OP1 SHIFT AMOUNT
P(07) OPERATION (DADD, DSUB, SMULL, DDIV,

DMOV, DCMP)
P(08) OP2 SIGNED (S) OR UNSIGNED (U)
P(09) OP2 REG
p(10) OP2 DISPLACEMENT
p(11) OP2 L:ENGTH
p(12) OP2 SHIFT LEFT (L) OR RIGHT (R)
p(13) OP2 SHIFT AMOUNT
p(111) •EQ IF RESULT IN THIRD OPERAND
p(15) F FOR ROUNDING
p(16) OP3 SIGNED (S) OR UNSIGNED (U)
p(17) OP3 REG
p(18) OP3 DISPLACEMENT
p(19) OP3 LENGTH
P(20) OP3 SHIFT LEFT (L) OR RIGHT (R)
P(21) OP3 SHIFT AMOUNT

13-13

SUPPORT LIBRARY

Following are equates to be used with the above macro:

BNO EQU BASE NUMBER 0
BN1 EQU BASE NUMBER 1
BN2 EQU BASE NUMBER 2
BN3 EQU 3 BASE NUMBER 3
BN4 EQU 4 BASE NUMBER 4
BN5 EQU 5 BASE NUMBER 5
BN6 EQU 6 BASE NUMBER 6
BN7 EQU BASE NUMBER 7
BNS EQU BASE NUMBER 8
BN9 EQU BASE NUMBER 9
BNA EQU 10 BASE NUMBER 10
BNB EQU 11 BASE NUMBER 11
BNC EQU 12 BASE NUMBER 12
BND EQU 13 BASE NUMBER 13
BNE EQU 14 BASE NUMBER 14
BNF EQU 15 BASE NUMBER 15
DADD EQU 0 DECIMAL ADD
DSUB EQU 1 DECIMAL SUBTRACT
DCMP EQU 2 DECIMAL COMPARE
DMOV EQU 3 DECIMAL MOVE
DMUL EQU 4 DECIMAL MULTIPLY
DDIV EQU 5 DECIMAL DIVIDE
EQ EQU RESULT RETURNED IN C
F EQU ROUND (ADJUST)
R EQU SHIFT RIGHT
L EQU SHIFT LEFT
s EQU SIGNED
u EQU UNSIGNED

The above macro may be used as follows:

1.DECOP U, BN1,2,4,R,1,DAD,U,BN2,0,4,L1

generates four word parameter block

16204
10002
20000
02041

Explanation: Operand A is an unsigned decimal string
residing in memory accumulator 1. It begins (most
significant digit) two bytes into accumulator 1 with a length
of four bytes. Operand A will be logically reshifted right one
digit. Operand B is an unsigned decimal string beginning
in memory accumulator 2 with a length of four bytes.
Operand B will be logically pre-shifted left one digit. The
result of addition will be returned in operand A. If operand
A = 4310 and operand B = 0129, result of the above
operation would be 1721.

Note following register settings:

13-14

RO(A)
R1C B)
R2(X)

Before Operation

1016
3100
4102

After Operation

1016
3100
4106

2. DECOP U,BN5,0,4,, ,DMUL,S,BNE,0,3,,,

EQ,F,U,BN1,0,7,R,1

generates six word parameter block

114203
050000
160000
010000
014341
010000

Explanation: An unsigned 4 digit decimal string in memory
accumulator 5 is multiplied by a signed 3 digit decimal
string in memory accumulator 14. The result will be right
shifted one digit position, rounded, and stored in memory
accumulator 1 (note maximum resulting digit string length
is 7). If operand A = 0321 and operand B = 987 + result
of above operation would be 0003168.

Note following register settings:

RO(A)
R1 (B)
R2(X)

Before Operation

1200
1105
3506

After Operation

1200
1105
3514

3. DECOP S,BNC,0,3,,,DCMP,S,BN1,0,4

generates three word parameter block

040144
150000
010000

Example 3 compares decimal digit string in memory
accumulator D with decimal digit string in memory
accumulator 1. If operand A = 123 + and operand B =
9871-, condition word pointed to by Rl(B) would be set to
20.

Note following register settings:

RO(A)
R1 (B)
R2(X)

Before Operation

13012
6512
1234

After Operation

13012
6512
1237

SECTION 14
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface
directly with special devices, develop software that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

Interrupts

Task-scheduling

Coding reentrant subroutines

Coding 1/0 drivers

14.1 INTERRUPTS

14.1. l External Interrupts

Priority Interrupt module (PIM) hardware: A PIM com­
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is acknowledged, and, if the PIM is
enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/
first-out basis. If a signal is received on a disabled PIM, it
is stored by the PIM, and causes an interrupt when the
PIM is enabled.

Disabling the external interrupt system prevents any
interrupt from entering the computer. Enabling the entire
system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected
control of the system. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Program setting of PIM registers causes the PIM to ignore
interrupts received on lines that are busy processing an
interrupt or held off because of priority.

All PIMs and interrupt lines to be used in VORTEX are
specified at system-generation time and their status
specified when VORTEX is loaded and initialized. VORTEX
does not disable any line unless so directed by RTE service
request PMSK (section 2.1.6).

When a PIM interrupt signal is acknowledged and the
interrupt taken, the computer executes the instruction in a

selected memory location. Under VORTEX, PIM addresses
are from 0100 to 0277. linkage to VORTEX interrupt­
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no-operation instructions that
ignore unspecified or spurious interrupts.

Since VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowl·
edgement is delayed until they are complete. These include
the instruction following an external control, halt, execu­
tion, or any instruction manually executed in step mode.

VORTEX Interrupt line handlers: At system-generation
time, a user specifies all interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line·
handler for each interrupt in the system (figure 14.1).

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. Section 14.4.5
describes directly connected interrupt handlers in detail.

Common Interrupt handler: The common interrupt han­
dler is the interface between PIM interrupts (via the line
handlers) and system or user interrupt-processing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inclusively ORed into the
event word of the specified TIDB. A check then determines
whether to return to the interrupted task or to enter the
interrupt-processing task, depending upon priority. All
interrupts are enabled upon leaving the common interrupt
handler.

Interrupt-processing tasks: A task is activated by an
interrupt when: (1) task's TIDB interrupt-expected status
bit is set, (2) the interrupt event word contains a nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD-resident, In either case, the processing task clears the
event word. The event word distinguishes different interrupt
lines that could activate the same task. The dispatcher
clears the interrupt expected bit and time delay activity for
all tasks except TTY and CRT drivers.

An interrupt-processing task can exit with one of the
following options:

a. Issue a suspend RTE (type 1 or 2) service call that
suspends the task and sets the interrupt-expected
status bit. Upon receiving the external interrupt or
simulated interrupt (TBEVNT word in TIDB is set to
1) caused by IOC or 1/0 completion events (type 2
only), the task continues execution following the
request.

14-1

REAL-TIME PROGRAMMING

Dedicated Interrupt Addresses Line Handlers TIDBs

0 Thread Word
Return Address ORed

Address
0
1
2
3

Jump-and-Mark Instruction Event Word
to Common lnterru t Handler

0100
1

0102
3

Jump-and-Mark Instruc­
tion to Line Handler 1
Jump-and-Mark Instruc­
tion to Line Handler 2 0

1
2
3
4

Event Word Interrupt Stack:
TIDB Location A, B, X, OF, P,

and Stack Pointer
Return Address

(or, if directly con­
nected interrupt} Option 1

Jump-and-Mark Instruction
to Common lnterru t Handler
Event Word
TIDB Location

0 Thread Word

Event Word

0104
0105

Jump-and-Mark Instruc­
tion to Line Handler 3 0

1
Return Address Interrupt Stack:

(or, if directly con­
nected interrupt}

Option 2

4

Disable Clock Instruction A, B, X, OF, P,
Jump-and-Mark Instruction and Stack Pointer
to User Code

ri_ u.,: Codo '"

Event word

0106
0107

Jump-and-Mark Instruc­
tion to Line Handler

0 Return Address Directly

Disable Clock Instruction Connected
Jump-and-Mark Instruction Interrupt Task

3
4

to V$DHD

1-U;..s:.:e:.:..:r...:C:,:;o;::d::..e .::E:.:..:n.;.:tr..!.y...:A~d:.:d:.:..:re:.:sc.::s-t------- V$DHD, system
Event Word .routine to save

volatile registers

I User code

Note: See section 14A.5 on directly-connected Interrupt
handler.

Figure 14-1. Interrupt Line Handlers

b. Issue a delay RTE (type 2 or 3) service call that
suspends the task and sets the interrupt-expected and
time-delay active status bits. The task is reactivated
when time-delay expires or upon receipt of external
interrupt or a simulated interrupt caused by IOC or
1/0 completions (type 3 only).
Upon entry, the event word non-zero indicates
interrupt activation by external or simulated interrupt
(1). Since IOC set the TIDB event word to a l, the
event word in line handlers for external interrupts
should be set to something other than 1 if a type 3
delay is to be used. The word also clears the time­
delay status bit upon reactivation.
It should also be noted that for supspend (type 2) and
delay (type 3) service calls, bit 6 of TBPL word of
task's TIDB is set to cause IOC to set TBEVNT word to
1 on 1/0 completion events. This bit is reset whenever
a suspend or delay service call of a type other than
the ones mentioned above.

c. If RMD-resident, set the interrupt-expected status bit
and call EXIT to release space. (TIDB must be
resident.)

14-2

Timing Considerations: The time necessary to process an
interrupt through the common interrupt handler depends
on when the interrupt occurred:

a. If a task is interrupted and the interrupt-processing
task has a lower priority, the interrupt is posted, and
VORTEX returns control to the interrupted task in
approximately 56 cycles.

b. If a task is interrupted and the interrupt-processing
task has a higher priority, the interrupt is posted, and
VORTEX transfers control to the dispatcher (section
14.2.3) to start the higher-priority interrupt-process­
ing task (if all its conditions are met). The posting
time is 66 cycles, approximately.

c. If an interrupt occurs during a dispatcher scan, the
posting time is about 32 cycles. VORTEX returns to the
dispatcher to restart the scan.

d. If the real-time clock interrupts the interrupt handler,
the RTC interrupt handler posts the interrupt and the
common interrupt handler returns to the clock
processor in approximately 40 cycles.

14.1.2 Internal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

Memory protection Interrupt: Memory protection interrupts
are generated when a task attempts to execute a privileged
instruction such as external control or halt, or attempts to
violate the access mode. The memory protection routines
process all protection violation interrupts which are the
highest priority interrupts in the system. When the
interrupt occurs, the system is forced to the executive
mode, state 0 (see table 1-1). Section 1.3 describes the
memory map concept and the access modes which can be
assigned to each virtual page.

VORTEX uses the memory protection interrupt for switch·
ing from the user mode to the executive mode when an 110
(section 3) or RTE (section 2) request is made.

The memory protection interrupt addresses for the various
violations are shown in table 14·1.

Table 14·1. Memory Protection Interrupt Addresses

Interrupt Map Active
Error Address Access Control Status

HALT 020 Attempt was made to execute
HALT Instruction.

1/0 022 A map number other than 0
attempted to execute an 1/0
instruction.

WRITE 024 Attempt was made to write
into read-only or execute-
only location.

JUMP 026 Attempt was made to jump
into read operand only
location.

UNASSIGNED 030 Attempt was made to read
or write into unassigned
location.

INSTRUCTION 032 Attempt was made to fetch
FETCH instruction from read

operand only location.

Power failure/restart interrupt: An interrupt occurs when
the system detects a power failure. The VORTEX power
failure processor saves the contents of volatile registers and
the status of the overflow indicator, sets a power failure
flag, and halts with the I register set to 077.

Following the power-up sequence, the PF /R hardware
generates an interrupt. Upon entry to the VORTEX power­
up procesor, the power-failure flag is checked. A power-

REAL-TIME PROGRAMMING

down sequence must have occurred or else a fatal error
condition is assumed to have occurred and VORTEX halts
with the I register set to 077.

If a power-down sequence had occurred, the power-failure
flag is cleared, the PIM mask registers are set, the real­
time clock's variable interrupt interval is set, the saved
volatile registers are restored, the clock and PIMs are
enabled (if enabled upon interrupt), and control is
returned to the location before the interrupt. Any input or
output data transfers in operation at the time of the power
failure result in the loss of data.

For peripheral devices such as magnetic tapes and RMDs,
the 1/0 operation is automatically retried.

For other peripheral devices, such as the card reader,
paper-tape system, card punch and lineprinter, a retry is
not attempted.

The error message posted depends upon the error detected
by the respective 1/0 driver, such as abnormal BIC stop,
parity error, interrupt time-out, etc. Data losses on the
RMD due to power failure could cause VORTEX to
malfunction, but other devices which are not system­
resident are recoverable.

The power failure-restart routines operate at the second­
highest priority level in the system, which has memory
protection at the highest priority level.

The power-up routine reloads the volatile memory map
registers by scanning the TIDB thread and outputting the
map image for each task which has an assigned, non­
checkpointed map. Each task's map key number is
contained in TBKEY and the map image adddress con­
tained in TBMING.

The. power-up routine also automatically reloads the
writable control store for systems with WCS. Sections
20.1.3 and 20.1.4 describe the manner in which the
microutility task saves the WCS image in the OM library file
named WCSIMG and how the WCS reload task, WCSRLD,
utilizes the file to restore the WCS content. The power-up
routine checks location 017 to determine if WCS has been
loaded. A zero value indicates no WCS. A non-zero value is
assumed to be the WCSRLD TIDB address. The FL library
logical unit number and protect key are stored in TBRSTS
and the WCSRLD TIDB (resident TIDB, non-resident task)
is set active.

Real-time clock Interrupt: The real-time clock interrupt
provides the basis for timekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, a
value greater than 5 milliseconds (i.e., 10-20 milliseconds)
reduces overhead when the system does not have high­
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third­
highest priority interrupt in VORTEX.

14-3

REAL-TIME PROGRAMMING

14.1.3 Interrupt-Processing Task
Installation

To install an interrupt-processing task that is not directly
connected, at system-generation time provide line handlers
and resident TIDBs by using a PIM directive (section
15.5.11) with s(n) zero and a TDF directive (section 15.6.2)
using the same task name in both directives. Additional
dummy TIDBs can be added during system generation.
(Once a TIDB is in the system, OPCOM directive ;ATIACH
can be used to connect different interrupt-processing tasks
to an interrupt line.)

Then, code the interrupt-processing task and add the task
via system generation to the VORTEX nucleus as a resident
task.

Then, use the ;ATIACH directive to link the resident task to
the interrupt line (if PIM directive not used).

14.1.4 Interrupt State

When a memory-protection, real-time (RT) clock or PIM
interrupt occurs, the system is forced to the executive
mode, state 0. The interrupts are enabled or disabled as
follows:

a. Memory-Protection Interrupt
1. RT clock is unaffected and remains in the enabled
state.
2. Memory protection is disabled and is enabled prior
to exiting the memory· protection processing routine
(EXC 0646).
3. PIMs are disabled when the JMPM instruction is
executed and PIMs are enabled prior to exiting (EXC
0244).

b. PIM Interrupt
1. RT clock is unaffected and remains in the enabled
state. The common interrupt line handler routine
disables and enables the RT clock. The clock is not
enabled if the PIM interrupted out of the RT clock
processor (see section 14.4.5 for directly connected
interrupt handlers).
2. Memory protection is unaffected and remains in
the enabled state.
3. PIMs are disabled when the JMPM instruction is
executed. The common interrupt line handler routine
enables the PIMs upon exiting.

c. RT Clock Interrupt

14-4

1. The RT clock processor disables and reenables the
RT clock.
2. Memory protection is unaffected and remains in
the enabled state.
3. The Pl Ms are disabled when the JMPM instruction
is executed. The RT clock processor enables the Pl Ms.

14.2 SCHEDULING

14.2.1 System Flow

VORTEX is designed around the TIDB (table 14·1). This
block contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to flow through the system. Two
register stacks are saved within the TIDB: a reentrant
(suspend register) stack, and an interrupt stack.

The dispatcher (section 14.3) is the prime mover of tasks
through the system. When any function has reached a
termination point or has to wait for an 1/0 operation, the
task gives control to the dispatcher, which then finds
another task to execute. A task maintains control until it
gives control to the dispatcher, or to the interrupt task if
the interrupt-processing task has a higher priority. The
contents of the interrupted task's volatile registers are
saved in its TIDB interrupt stack and control goes to the
dispatcher, which searches for the highest-priority active
task for execution.

Each TIDB is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack
and threaded onto the busy stack according to priority
level.

The status word of each TIDB, starting with the highest·
priority task, is scanned. Depending upon the setting of
status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the dispatcher
to process functions relating to the execution of a
task: (1) search, allocate, and load (SAL), and (2)
common system errors (ERROR). SAL searches, allocates,
loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not reentered
once they start execution, so the dispatcher holds tasks
requiring identical functions until they are completed.
Then, the highest-priority waiting task is given control of
the required function.

In VORTEX, SAL assigns a map (1·15) to each non-resident
task scheduled to be executed. If a map is not available,
SAL: (1) checkpoints any executing background task's map
(memory is checkpointed as required only); (2) checkpoints
a lower priority foreground task's map; or (3) checkpoints a
higher priority foreground task's map (if TBST bit 8 is set);
or (4) exits and does not execute the task until a map
becomes available.

Each map defines a logical memory space of 32K words
which is segmented into 512-word pages (see section 1.3).
~AL sets each logical page to one of four access modes:
unassigned, read only, read operand only, or read-write.
Each logical page which is assigned an access mode other
than unassigned is linked to a physical page of memory. If

the access mode is violated by the executing task, a
memory protect interrupt occurs. The memory protection
interrupt processing is described in section 14.1.2. Page 0
(logical addresses 0-0777) is always assigned to physical
page 0, which is the system data region as defined in table
14-1.

Each task, foreground or background, executes within its
own logical memory space. The amount of logical memory
space available to a task is reduced by: (1) page 0 for
system data; and (2) the VORTEX nucleus module accessed
by the task and mapped into its logical memory (see
section 2.2). If none of the VORTEX nucleus module is
accessed, the task has available all but one page (page 0)
of the 32K logical memory space. Each task is loaded and
executed from logical address 01000. Section 1.3 describes
in greater detail available logical memory space.

SAL allocates physical memory by pages. SAL maintains a
table designating the allocatability of each physical page
within the system as defined during system generation.

If space is not available and the background is in
operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon release of this space by the foreground tasks, the
background is read in from the RMD and reactivated.

If space is required to load a program and the background
has already been checkpointed, the task waits for a
currently running task to exit and release memory.

A task may dynamically request more memory space via
the ALOCPG and MAPIN RTE requests. Sections 2.1.15 and
2.1.17 further describe these RTE requests.

The background memory allocation depends on the size of
the background task being loaded. Only the amount

REAL-TIME PROGRAMMING

needed is so allocated automatically, although the JCP/
MEN directive can allocate extra memory for a background
task. Figure 14-2 is a VORTEX memory map of map 0,
figure 14-3 shows the priority structure, table 14-2 is a
description of a TIDB, and table 14-3 is a detailed
description of lower memory.

14.2.2 Priorities

Thirty-two priority levels (0 through 31) are provided in the
VORTEX system. Levels 2 to 31 are reserved for protected
foreground usuage. Level 26 is reserved for SAL2. Level 25
is reserved for the two VORTEX system tasks, SAL and
ERROR. Levels 24 and 23 are reserved for 110 drivers. All
other foreground levels are available to the user. More than
one task per level can be scheduled.

Levels 1 and 0 are reserved for tasks running in the
background allocatable memory and residing in the
background library. Level 1 is reserved for VORTEX system
protected tasks, e.g., the job-control processor, the load­
module generator, the FORTRAN compiler, the DAS MR
assembler, etc. These tasks run with memory protection
disabled and can be checkpointed when their space is
needed by a foreground task. Level 0 tasks cannot modify
or destroy the system (figure 14-3).

Only one background task can be active and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is
scheduled. Otherwise, there is a normal exit.

14-5

REAL-TIME PROGRAMMING

14-6

Address

0

512

Allocatable
Memory
Pool

<

'-

Interrupt Location and System Pointers
Background Literal Pool }
Nonresident Background Tasks 1
Nonresident Foreground Tasks j
Resident Foreground User Tasks
and Subroutines

M-7K

M=
Highes
Memor
Addres

t
y
s

System Common
Reentrant Stack
System and Unused TIDBs
Line Handlers
Common Interrupt Handler
Dispatchl!r
Executive Call Handler
Real-Time Clock
Memory Protection Processing
Power Failure/Restart
Real-Time Executive Services
IOC
Drivers
System Tasks (SAL and ERROR)

If a configuration increases memory, the allocatable
memory pool would increase and resident routines would
reside in a higher position in memory.

• 7K is enough room for the minimum VORTEX nucleus
components, plus four empty TIDB's and three 1/0 drivers.
Users with more 110 devices or a greater number of TIDB's
will need more than SK.

Figure 14-2. VORTEX Memory Map

Protected
memory

Unprotected
memory is
allocated
starting at 512

Protected
memory is
allocated
starting from
high memory

Protected
memory

Foreground
Priority
Levels

Background
Priority
Levels

Priority
Level

31

26 System Task SAL2

25 VORTEX System Tasks SAL and ERROR

24 Driver Tasks (low-Speed Devices)

23 Driver Tasks (High-Speed Devices)

22

11

10 Operator Communication Task

9

2

1 VORTEX System Protected Tasks

0 User Unprotected Tasks

Fleure 14-3. VORTEX Prlorlfy Structure

REAL-TIME PROGRAMMING

14-7

REAL-TIME PROGRAMMING

Symbol Word

TBTRD

TBST

TBPL

TBEVNT

TBRSA

TBRSB

TBRSX

TBRSP

TBRSTS

TBENTY

TBTMS 10

TBTMIN 11

TBISA 12

TBISB 13

TBISX 14

TBISP 15

TBISRS 16

TBIO 17

TBKNl 18

TBKN2 19

TBKN3 20

TB TLC 21

TBCPTH 22

TBATSK 23

TBRSE 24

TBSIZ 25

TBNUCL 26

TBMING 27

TBIST 28

0 TBRSR3· TBRSR7 29.33

0 TBISR3· TBISR7 34·30

14-8

Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Task Thread

Task Status

Task Status l Priority Level

Interrupt Event

A Register (Reentrant ~nd Suspension Stack)

B Register (Reentrant and Suspension Stack)

X Register (Reentrant and Suspension Stack)

OF r Register (Reentrant and Suspension Stack)

Temporary Storage (Reentrant and Suspension Stack)

Task Entry Address

Time Counter - Clock Resolution Increments

Time Counter - Minute Increments

A Register (Interrupt Stack)

B Register (Interrupt Stack)

X Register (Interrupt Stack)

OF I P Register (Interrupt Stack)

Reentrant Stack Address (Interrupt Stack)

No. of 110 No. of 110
Requests Threaded 1 Requests Active

Task Name

Task Name

Task Name

First Address in Allocatable Memory

Back ground Task Queue

Address of Scheduling TIDB

Task Error Code

Task Size I Unused

Nucleus Module Unused I Map
Indicators Key

Map Image Address

Interrupt Status
r--

V75 Registers (reentrant and suspension stack)

V75 Registers (Interrupt stack)

•words 29 through 38 are present only if the V75 flag was
set at SYSGEN and the task had a long TIDB created.

Figure 14·4. TIDB Description

Key:

Symbol Word Bits

TBTRD 0 15-0

TBST 15-0

TBPL 2 15

14

13

12

11

10

9

8

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description

Set •

Task thread

Task status

Task opened

Long TIDB

Load overlay

Background
checkpoint
1/0 wait

Allocation
override flag

Background
being check-
pointed

TIDB not
available

Description

Points to next TIDB in
chain. V$TB points to the
highest-priority active task.
Last TIDB on queue has zero in
TBTRD.

See table 15-5.

Bit set when SAL has
opened task but not
loaded it (memory not
available).

Bit set if V75 SYSGEN and task had
a long TIDB created. Ten words are
allocated at the end of TIDB to save
extra registers.

RTE overlay request
made by task with
overlay name in user
request. 1 = overlay load.

Foreground task wait­
ing for background 1/0
to complete so it can
be checkpointed to make
allocatable memory
available. 1 = yes.

Overrides bits 9 and 12
of TBPL and bit 5 of
TBST. When FNIS routine
of SAL releases memory
and/or a TIDB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory;
nor scheduler, a TIDB.
1 - override.

Background task being
written on checkpoint
file. 1 = yes.

Schedule request made
but no TIDBs available
for allocation. The task
is suspended until one becomes
available. 1 = TIDB
not available.

Task waiting for available
map. 1 = map has been
assigned to task.

14-9

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Symbol Word Bits Set - Description

Task map checkpoint. 1 -
task's map has been checkpointed.

6 Delay type Set by RTE when a delay, type 3
3 request request is made. Cleared by IOC

upon completion of l/O request.

5-0 Task priority Specifies priority level
level (0-31) of task to be exe-

cuted.

TB EV NT 3 15-0 Interrupt Matches bits in interrupt-
event handler calling sequence.

Interrupt-handler event
inclusively ORed into TIDB
word 3 when processed by line
handler. If a bit sets
while status bits 3 and 14
are set, dispatcher
activates task. Clear
event word before exiting.

TB RSA 4 15-0 A register IOC and RTE calls store
(reentrant volatile register contents
and suspen- in this stack (words 4-8).
sion stack)

TBRSB 15-0 B register
(reentrant
and suspen-
sion stack)

TB RSX 6 15-0 X register
(reentrant
and suspen-
sion stack)

TBRSP 15 OF (overflow)
register (re-
entrant and
suspension
stack)

14-0 P register
(reentrant
and suspen-
sion stack)

TBRSTS 8 15-0 Temporary
storage
(reentrant
and suspen-
sion stack)

TBENTY 9 15-0 Task entry Absolute address of first
executable data of a task.

14-10

REAL-TIME PROGRAMMING

Table 14·2. TIDB Description (continued)

Symbol Word Bits Set • Description

TBTMS 10 15-0 Time counter Words 10 and 11 indicate
(clock reso- time left before execution.
lution incre- (Clock routine increments
ments) both words when bit 6 or

7 is set in status 1.)

TBTMIN 11 15-0 Time counter
(minute in-
crements)

TBISA 12 15-0 A register Words 12-16 store volatile
(interrupt register contents during
stack) interrupt by higher-priority

task. (Upon reactivation,
words 12-16, volatile reg-
ister contents, and reen-
trant stack pointer are re-
stored and execution is
continued.)

TBISB 13 15-0 B register
(interrupt
stack)

TBISX 14 15-0 X register
(interrupt
stack)

TBISP 15 15 OF (overflow)
register (inter-
rupt stack)

14-0 P register
(interrupt
stack)

TBISRS 16 15-0 Reentrant
stack pointer
(interrupt
stack)

TBIO 17 15-8 Number of Incremented by IOC when
1/0 requests 1/0 request is received,
threaded and decremented upon com-

pletion. (A task cannot
exit or abort until counter
is zero.)

7-0 Number of Incremented by IOC when
active l/O it sets an 1/0 driver ac-
requests tive, and decremented upon

completion.

TBKNl 18 15-0 Task name First two characters of
six-character task name.

14-11

REAL·TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Symbol Word Bits Set • Description

TBKN2 19 15-0 Task name Second two characters of
six-character task name.

TBKN3 20 15-0 Task name Final two characters of
six-character task name.

TB TLC 21 15-0 First address Points to first address
in allocatable allocated for use by task.
memory After a task has been loaded,

SAL save the read-only page
number and number of pages
in TBTLC as described for
TBNUCL, bit 12.

TBCPTH 22 15-0 Background Any background task wait-
task queue ing to be loaded in back-

ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,
but cannot load them
until space is available.)

TBATSK 23 15-0. Address of Stores this address, and
scheduling upon EXIT or ABORT (if
task's TIDB bit 1 of TBST set) reac-

tivates scheduling.

TBRSE 24 15-0 Task error Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints
message.

TBSIZ 25 15-10 Task size Number of pages of memory
to be allocated to task.

9-0 Reserved for
future use

TBNUCL 26 15-8 Nucleus Bit 8 reserved for future
indicator VORTEX use.

Bit 9 when set indicates
map foreground blank
common in task; read-
write access mode.
Bit 10 when set indicates
map nucleus table module
in task; priority 0 tasks
are mapped with module
set to read operand only.
All other priority tasks
are mapped with the module
set to read-write access
mode.

14-12

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Symbol Word Bits Set= Description

Bit 11 when set indicates
map global FCB in task;
this module is mapped read·
write access mode.
Bit 12 when set indicates
map pages read-only
specified by LMGEN. Read
only pages have been
designated during load
module generation. The
logical page number and
the number of pages are
set in the load module
pseudo TIDB and temporarily
stored in TBTMIN bits 15-8
and bits 7·0 respectively.
After the task is loaded in
memory, the page numbers
are stored in TBTLC, SAL
sets the specified pages
to read-only access mode.

7-4 Reserved for
future VORTEX
use

TB KEY 26 3-0 Key Task map key. This is the
map number (0-15) assigned
to the task by SAL or SGEN.

TBMIMG 27 15-0 Map image Address of task map image.
This is the map O logical
address of the task's map
image. Normally it would
be immediately following
the task's TIDB.

TBIST 28 15-0 Interrupt Bit 15 is 0 if V$KEY to be
status set to zero and is 1 if

V$KEY to be set to TBIST
(bits 3-0).
Bits 14-0 are the map status
as input from hardware.

TBRSR3 29 15-0 V75 register IOC and RTE call store
3 (reentrant volatile register contents
and suspension in this stack (words 29-34).
stack)

TBRSR4 30 15-0 V75 register 4

TBRSR5 31 15-0 V75 register 5

TBRSR6 32 15-0 V75 register 6

TBRSR7 33 15-0 V75 register 7

14-13

REAL-TIME PROGRAMMING

14-14

Symbol

TBISR3

TBISR4

TBISR5

TBISR6

TBISR7

Address

00-01

02-015
016

017

020,021

022,023

024,025

026,027

030,031

032,033

034,037

040,041

Table 14-2. TIDB Description (continued)

Word 8118 Sel • Description

34 15-0 V75 register 3 Words 31-35 store volatile
register contents during
interrupt by higher
priority task (see descrip-
tion of TBISA).

35 15-0 V75 register 4

36 15-0 V75 register 5

37 15-0 V75 register 6

38 15-0 V75 register 7

Table 14-3. Map of Lowest Memory Sector

Symbolic Name Description

CPU interrupt code (preset to NOP)

Unassigned: available to the user
Unassigned. Reserved for future VORTEX II use

TIDB address for WCS reload task

Memory protection interrupt: halt
(jump-and-mark to VSMPER)

Memory protection interrupt: 1/0
(jump-and-mark to V$MP3)

Memory protection interrupt: write
(jump-and-mark to V$MP2)

Memory protection interrupt: jump
(jump-and-mark to V$MAP2)

Memory protection interrupt: unassigned
(jump-and-mark to V$MAP1)

Memory protection interrupt: instruction
fetch (jump-and-mark to VSMAPE)

Reserved for future VORTEX II use.
Jump-and-Mark to VSMPIO to ignore
spurious interrupts

Power-down interrupt (jump-and-mark
to VSPFDN)

Address

042,043

044,045

046

047

050-053

054

055

056-067

070-073

074

075

076-077

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$CRDM

V$JCTM

V$JNAM

V$LCNT

V$JCFG

V$BIC1

V$DATE

V$PLCT

V$BGLB

Description

Power-up interrupt (jump-and-mark
to V$PFUP)

Variable-interval interrupt address
(jump-and-mark to V$CLOK)

Keypunch (0 = 026, 1 = 029):
Bit 0 SGEN nominal keypunch
Bit 1 Set to 1 (if V75 system)
Bit 8 Current keypunch specified by JCP

/KPMODE directive (I JOB, /FINI, or
/ENDJOB resets the current value to
nominal value)

JCP Temporary Storage

Eight-character job name

Line count (set by a JCP /FORM
directive): used by DAS MR assem­
bler and FORTRAN compiler to deter­
mine the number of lines printed
before a top of form is issued.

JCP flags:
Bits 15-10

Bits 9-5
Bit 4

Bit 3

Bits 2-0

Number of extra mem­
ory blocks to be
allocated with back­
ground task (cleared
after loading)
Unused.
Dump _flag if load and go

Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)
Load-and-go flags

BIC in sequence (maximum 8). See section
14.4.6 for a description of VORTEX II use
of BICs and BTCs

Eight-character date set up by
OPCOM directive ;DATE,mm/dd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the BL unit

FPP (Floating-Point Processor)
interrupt (jump and mark to V$FPP)

14-15

REAL-TIME PROGRAMMING

Addre11

0100-0117

0120-0137

0140-0157

0160-0177

0200-0217

0220-0237

0240-0257

0260-0277

0300

0301

0302

0303

0304

0305

0306

0307

0310

14-16

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$CTL

V$CPL

V$CRS

V$TB

V$UTB

V$PTVB

V$FLRS

V$LRSK

V$CKPT

Description

PIM 0 jump-and-mark to individual
line handlers. Unassigned lines are set
to JMPM V$MPIO to ignore spurious interrupts

PIM l • jump-and-mark to individual
line handlers

PIM 2• jump-and-mark to individual
line handlers

PIM 3• jump-and-mark to individual
line handlers

PIM 4* jump-and-mark to individual
line handlers

PIM 5* jump-and-mark to individual
line handlers

PIM 6* jump-and-mark to individual
line handlers

PIM 7• jump-and-mark to individual
line handlers

Address of currently executing task
TIDB (0177777 - dispatcher, 037, =
real-time clock routine)

Priority level of currently executing
task

Address of current reentrant stack
(zero if the currently executing
task is not executing a reentrant
subroutine)

Address of highest-priority TIDB
in the active stack

Address of dynamically allocated page.
If zero, no page yet allocated. This
is the top of the thread for pages allocated
for dynamic memory allocation as required
for TIDB space, 1/0 request, etc.

Address of next entry in reentrant
stack

Address of first location of re­
entrant stack

Address of last location of re­
entrant stack + 1

Checkpoint flag (set if background
checkpointed)

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0311 V$0PCL Address of TIDB for OPCOM task

0312 V$LSAL Address of TIDB for system SAL task

0313 V$LER Address of Tl DB for system ERROR
task

0314 V$TJCP Address of TIDB for JCP task

0315 V$BTB Address of current active back·
ground task TIDB (zero if no back·
ground task active)

0316 V$NPAG Number of available physical pages
remaining in V$PAGE for allocation

0317 V$LLUP Logical address specifying the end
of the execution background tasks
allocated memory space

0320 V$1M Interrupt mask for PIM O (0 enable,
1 = disable) (bit 0 = line 0)

0321 Interrupt mask for PIM 1

0322 Interrupt mask for PIM 2

0323 Interrupt mask for PIM 3

0324 Interrupt mask for PIM 4

0325 Interrupt mask for PIM 5

0326 Interrupt mask for PIM 6

0327 Interrupt mask for PIM 7

0330 V$MAP Map key availability flag word. Bit
O = map 0, bit 1 = map 1, etc.
A zero indicates that the map is un·
available for assignment, a 1 =
map is available for assignment

0331 V$BTBM Base address of nucleus table module.
Top of nucleus table module defined
by V$GFCB

0332 V$GFCB Base address of global FCBs

0333 V$MIMG Map 0 image address

14-17

REAL· TIME PROGRAMMING

Address

0334-0337

0340

0341

0342

0343

0344

0345

0346

0347

0350

0351

0352

0353

0354

0355

14-18

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

VSTO, VST1,
V$ST2, V$ST3

V$KEY

V$CRDR

V$TBGT

V$TMS

V$TMN

V$LUNT

V$0PCF

V$FGLB

V$FREE

V$CTMS

V$SCV

V$LPP

V$CRM

V$DSTB

Description

FUNCI word for executive mode states
0, 1, 2, 3. Used by map 0 tasks to
switch executive mode states. See
section 1.3 for description on the
use of V$STO-V$ST3. These words are
set up by the dispatcher. Bits 0·3 are
set to the map number in TBKEY. If
the task has been interrupted, the
map number in bits 0·3 of TBIST is
used

VORTEX currently executing map key

Address of resident directory. See
section 14.4.8

Top of thread of background tasks
waiting for allocation

Time-of-day in 5-millisecond incre·
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments, V$TMS resets). The
range is 0 to 12000.

Time-of-day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes). V$TMN resets). The range is
0 to 1440.

Address of logical-unit name table

OPCOM lockout flag (busy)

Protection code and logical-unit
number of the FL unit

Reserved for future VORTEX use

Clock resolution in 5-millisecond
increments (user-specified milli·
second interrupt rate/5) speci·
tied at system-generation time

Selected clock count (1 to 4095)
([user-specified millisecond
interrupt rate] x [1000!V$CKB])

Pointer to last tested word in V$PAGE

Clock resolution increments for frac·
tions of a minute in 5-millisecond
increments

Address of DST block

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0356 V$LIT Last address in background literal
pool

0357 V$PGT Address of V$PAGE, physical page
availability mask.

0360 V$CTAD Base address for controller address
table

0361 V$SCTL Current controller in scan

0362 V$NCTR Number of controllers

0363-0372 V$PIMN External device address table for
Pl Ms

0373-0374 JUMP V$10ST VORTEX II link for IOC STAT CALL

0375 V$SLFG System SAL task busy flag (1 - busy)

0376 V$ERFG Error task busy flag (1 - busy)

0377 V$JOP JCP operating flag (1 - busy)

0400 V$LUT1 Starting address of logical-unit
table for JCP/OPCOM-assignable
logical units (l - 100)

0401 V$LUT2 Starting address of logical-unit
table for unreassignable logical
units (101-179)

0402 V$LUT3 Starting address of logical-unit
table for OPCOM-assignable logical
units (180-255)

0403 V$1MIN Clock constant set up by SGEN where
V$1MIN - 32767 - (60000/(5°V$CTMS))
+ 1

0404-0405 JUMP V$10C VORTEX II link to IOC

0406,0407 JUMP V$EXEC VORTEX II link to RTE

0410 V$10A 1/0 algorithm

0411 V$CKIT Clock interrupted PIM before it
could be locked out (common inter-
rupt handler and clock-processor
flag)

0412 V$JCB Address of 41-word JCP buffer (all
system background programs and JCP
input directives into this sytem buffer)

14-19

REAL-TIME PROGRAMMING

Address

0413

0414

0415

0416

0417

0420

0421

0422

0423

0424

0425

0426

0427

0430

0431

0432

0433

0434

0435

0436

0437

0440

0441

0442

0443

14-20

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$0CB

V$BVN

V$BFC

V$TFC

V$PST

ZERO

BSO

BSl

BS2

BS3

BS4

BS5

BS6

BS7

BS8

BS9

BSlO

BSll

BS12

BS13

BS14

BS15

BRO

BRl

BR2

Description

Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re­
quests into this buffer; if JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JCB before scheduling JCP)

Bottom of VORTEX nucleus. SGEN sets
to virtual address. Initializer sets to
page number

Bottom of foreground blank common

Top of foreground blank common,
top of VORTEX nucleus core

Maximum RMD partitions per unit in system

Zero word

Bit mask contents 0000001

Bit mask contents 0000002

Bit mask contents 0000004

Bit mask contents 0000010

Bit mask contents 0000020

Bit mask contents 0000040

Bit mask contents 0000100

Bit mask contents 0000200

Bit mask contents 0000400

Bit mask contents 0001000

Bit mask contents 0002000

Bit mask contents 0004000

Bit mask contents 0010000

Bit mask contents 0020000

Bit mask contents 0040000

Bit mask contents 0100000

Bit mask contents 0177776

Bit mask contents 0177775

Bit mask contents 0177773

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0444 BR3 Bit mask contents 0177767

0445 BR4 Bit mask contents 0177757

0446 BR5 Bit mask contents 0177737

0447 BR6 Bit mask contents 0177677

0450 BR? Bit mask contents 0177577

0451 BR8 Bit mask contents 0177377

0452 BR9 Bit mask contents 0176777

0453 BRIO Bit mask contents 0175777

0454 BRll Bit mask contents 0173777

0455 BR12 Bit mask contents 0167777

0456 BR13 Bit mask contents 0157777

0457 BR14 Bit mask contents 0137777

0460 BR15 Bit mask contents 0077777

0461 NEG Bit mask contents 0177777

0462 LHW Left-half word mask (0177400)

0463 RHW Right-half word mask (0000377)

0464 THREE Data word (000003)

0465 FIVE Data word (000005)

0466 SIX Data word (000006)

0467 SEVEN Data word (000007)

0470 NINE Data word (000011)

0471 TEN Data word (000012)

0472 BM17 Bit mask word (000017)

0473 BM37 Bit mask word (000037)

0474 BM77 Bit mask word (000077)

0475 BM177 Bit mask word (000177)

0476 BM777 Bit mask word (000777)

0477 BM1777 Bit mask word (001777)

0500-0777 Background literals and pointers

14-21

REAL-TIME PROGRAMMING

14.2.3 Timing Considerations (Approximate)

Real-time clock Interrupt processor: At each incrementa­
tion of the real-time clock, there is a TIDB service scan
requiring

where

x + By + 7z cycles

is 48 when the scan interrupts the
dispatcher, or 63 when it interrupts a
task and must establish a reentrant
stack and store the contents of the
volatile registers

is the number of TIDBs searched

is the number of tasks having time- or
schedule-delay status bits set

The clock interrupt is disabled during the execution of the
clock processor, and PIM interrupts are disabled for 26
cycles following the initial entry of the clock processor.

Dispatcher Interrupt processor: The time required to
begin execution of a task through the dispatcher is a
function of the number of TIDBs searched before execu­
tion. The time required to begin execution of the nth task is

where

u

w

14-22

+ 14u + 17v + 12w + 18x +25y + z

is 17 or 25, depending on the entry to
the dispatcher

is the number of tasks with task·
suspended bits (TBST bit 14) set

is the number of tasks with events
expected but event word reset

is the number of tasks with error bits
(TBST bit 4) set but error task busy

is the number of tasks with either task­
aborted (TBST bit 13) or task-exited
(TBST bit 12) set but 1/0 not completed

is the number of tasks active but not
loaded

is one of the following values:

107 to activate the .ERROR task
110 to activate the SAL task on aborting
or exiting
114 to activate a loaded task that is not
suspended, or to activate the SAL task to
load the requested task
104 to activate an interrupted,
suspended task
62 to activate a task when the event
word is set and the interrupt suspended

Search, allocate, and load:

Load processing requires, for a foreground task

852(k) + v(k) + w(k) + x + y + ny

where

ny

w

is the cycle time

is the nucleus module required by the
task and is 28 + A + B + C cycles

where

A is 28 + 8 times the size
of common, in pages

B is 81 cycles as an average
for the nucleus table module

C is 11 + 11 times the number
of specified read-only pages

is the time to process an OPEN request

is the time to read an RMD record
{pseudo TIDB)

is the time to read a task from RMD into
memory (variable depending on RMD
device and task size)

is the page allocation 45 + 35 times the
task size, in pages

For a background task, load processing requires

where

945(k) + v(k) + w(k) + x + y + ny

w

is the cycle time

is the page allocation and is 45 + 35
times the task size, in pages

nucleus module required by task and is
28+A+B+C

where

A is 53 cycles (global FCB
module)

B is 81 cycles (average,
nucleus table module)

C is 11 + 11 times the number
of specified read-only pages

x, y and ny are as defined for foreground task.

Resident task load processing requires

(533 + 9(x) + y)k

where

is the cycle time

is the task size, in pages

y is the nucleus module required by task
48+A+B+C+D

where

A is 28 + 8 times the size
of common, in pages

B is 53 cycles for global FCB
C is 81 cycles for nucleus

table module
D is 11 + 11 times the number

of read-only pages

14.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name V$CRS. The reentrant subroutine
address Is specified in the ALOC calling sequence. The first
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format:

Word

Y$CRS--O A Realster

B Realster

X Realster

OFI P Realster

Pointer to Previous Reentrant Stack

Available for Reentrant Subroutines

n+l
to V75 Registers 3.7
n+5~------------'

Fl•ed
Size

Variable
Sin

When writing a reentrant subroutine, ensure that the entry
location contains the number (~ 5) of words to be
allocated, execution starts at the address (entry address +
1), and that V$CRS contains the reentrant-stack address.
No IOC or RTE calls except DEALOC can be made while in a
reentrant subroutine. The subroutine makes a DEALOC
service request to return control to the calling task.
DEALOC releases the reentrant stack, restores the A, B,
and OF register contents, and returns control to the
address following the ALOC request. No temporary storage
is available for the reentrant subroutine except that
allocated in the reentrant stack.

Parameters or pointers can be passed to the reentrant
subroutine in the A and/or B (and V75 if present) registers,
as well as in-line after the ALOC macro.

REAL-TIME PROGRAMMING

Two tasks make ALOC calls to RSUB. RSUB reserves six
words of allocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a value to the calling task. If task A is on priority level 5
and task B is on level 6, RSUB running on level 5 is
interrupted and the level 6 task B executed. This, in turn,
makes an ALOC request and executes RSUB. RSUB then
executes to completion before RSUB on level 5 can be
completed.

Example:

V$CRS
RSUB

Task A

ALOC RSUB
JAZ

BND

ALOC
JAZ

BND

Task B

RSUB

Reentrant Subroutine

NAMB RSUB
BQU 0302
DATA 6
LDX V$CRS

STA 5, 1

LDA 5, 1

STA o, 1

DBALOC

BND

Allocate six-word
Stack (one temporary
location)

Save A in temporary
storage

Get temporary storage
value

Modify return in A
register

Return to location
following ALOC call

14-23

REAL-TIME PROGRAMMING

14.4 CODING AN 110 DRIVER

The IOC (section 3) activates 1/0 drivers. When a user task
makes an 1/0 request, it executes a JSR 0404,X instruc·
tion. IOC then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. IOC queues RQBLK to the 1/0
driver controller table (CTBL), and activates the corre·
sponding controller-table TIDB. The TIDB contains the
entry address for the 1/0 driver. To determine the proper
CTBL and corresponding TIDB, IOC obtains the logical-unit
number from RQBLK. By referring to the logical-unit table
(LUT), IOC then finds the device assigned to that logical
unit. Each device has a device specification table (DST)
associated with it, and each DST has a corresponding
controller table.

In VORTEX all RQBLKs are moved to map O dynamically
allocable space. Upon completion of the 1/0 request, IOC
moves the RQBLK to the requesting task's logical memory.

14.4.1 1/0 Tables

Not all the data discussed in this section are required for
coding every special-purpose driver, but it is presented to
provide maximum flexibility in defining driver interfaces.

When an 1/0 driver is entered, it has the data, system
pointers, and table address necessary for the 1/0 driver
processing. At system-generation time, additional working
storage space can be assigned to the 1/0 driver as an
extension of the controller table. The data available are:

a. VSCTL (lower-memory system symbol defining the
current TIDB) - address of TIDB associated. with the
1/0 driver controller table.

b. TBRSTS (word 8 of controller TIDB) - address of
controller table CTBL.

c. Within CTBL, the following:

14-24

(1) CTIDB (word 0) - controller TIDB address
(V$CTL)
(2) CTDST (word 3) - address of DST
(3) CTRQBK (word 4) - address of RQBLK to be
processed
(4) CTDVAT(word6) - controllerdeviceaddress
(5) CTSTAT (word 8) - temporary storage available
for driver
(6) CTBICB (word 9) - address containing assigned
BIC address (e.g., 020,022)
(7) CTFCB (word 10) - FCB or DCB address for 1/0
request specified in CTRQBK (word 4)
(8) CTWDS(word 11) - contains, upon exit, number
of words transferred
(9) CTSTSZ (word 13) - number of words per RMD
sector
(10) CTTKSZ (word 14) - number of sectors per RMD
track
(11) CTPSTO (word 15) - base address of the RMD for
unit O on this controller
(12) CTPSTl, CTPST2, and CTPST3(words 16, 17, and
18) - PST addresses for units 1, 2, and 3

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) - number (0-
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) - RMD partition
number (1-20) used to access the PST

e. Request block (RQBLK): Contains user task 1/0
request information. The address of RQBLK is
contained in CTRQBK (word 4 of the controller table).
Word 1 of RQBLK contains the operation code in bits
8·11 and the mode specification in bits 12-14. Word 0
bits 5-14 contain the status.

File control block (FCB): The FCB is used for RMD
devices. CTFCB contains the address of FCB.
(1) FCRECL (word 0) - record length
(2) FCBUFF (word 1) - user buffer
(3) FCACM (word 2) - bits 8-15, access method, and
bits 0-7, protection code
(4) FCCADR (word 3) - current record number
(relative within file)
(5) FCCEOF (word 4) - current EOF record number
(relative within partition)

(6) FCIFE (word 5) - beginning-of-file record
number (relative within partition)
(7) FCEFE (word 6) - end-of-file record number
(relative within partition)
(8) FCNAMl, FCNAM2, and FCNAM3 (words 7, 8,
and 9) - file names in ASCII

g. Data control block (DCB): The DCB is used for non­
RMD devices. CTFCB contains the address of DCB.
(l) DCRECL(word 0) - record length
(2) DCBU FF (word 1) - user buffer
(3) DCCNT (word 2) - function count

h. VSCTL, TIDB, CTBL, DST, and the RQBLK reside in map
0. The FCB and DCB reside in the user's logical memory
and to access the data, the l/O drivers must switch to
the proper executive mode state (see section 1.3).

14.4.2 1/0 Driver System Functions

Each l/O driver under IOC performs certain system pre­
and post- processing functions.

Pre-Interrupt processing: The 110 driver must switch
executive mode states to fetch or store data from user
mode (see section 1.3). If the 1/0 driver uses a BIC, the
driver calls V$BIC with the X and A registers set to the
initial and final buffer addresses respectively to build and
execute the initial BIC transfer instruction. If the BIC is
shared, the interrupt line handler is modified to the proper
interrupt event word setting (TBEVNT) and TIDB address.
VSBIC performs this modification if the word immediately
following the call (JSR VSBIC,B) is nonzero, since this is
assumed to be the interrupt event word setting. If it is zero,
no line handler modification is performed. The 1/0 driver
clears the interrupt event word (TBEVNT) in the controller
TIDB immediately preceding a DELAY (type 2) call. To wait

for an interrupt, the 1/0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver, either from a
time-out or interrupt is to the address immediately
following the call. The contents of the X register is not
restored following a DELAY call but the A and B registers
are. Executing a TXA immediately preceding and a TAX
following the DELAY call X restores the value in the X
register.

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the DELAY call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT - 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruction.

Post-interrupt processing (no errors): Upon the completion
of interrupt processing, the driver sets the status bits (5-
14) of RSTPR (word O) in RQBLK, and enters the number of
words transferred in CTWDS. The driver then relinquishes
control and exits to IOC by executing JMP V$FNR.

Post-interrupt processing (errors): If an error is encoun­
tered during interrupt processing, the driver sets the status
bits (5-14) of RSTPR, according to the type of error. The
driver then sets the A register to zero if the unit is not
ready, negative if there is a parameter error, or positive if
there is a hardware error. Finally, the driver exits to the IOC
error routine by executing JMP V$ERR.

14.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directives
are required for linkages to the controller table, controller
TIDB, 1/0 driver entry location, DST, PST, and the PIM line
handler (section 15):

Directive

EQP

PIM

Description

DSTs are generated by SGEN, one for
each unit specified by the EQP directive.
All DSTs generated for a controller point
indirectly to the controller table
specified by EQP. The pointer is to the
entry name in the controller table
assembly.

A PIM directive is required for each PIM
line where an interrupt is expected. The
PIM directive causes the system
initializer to enable the mask for that
line (except for the TTY or CRT output
line, in which case it is initially disabled).
If the driver processes both input and
output interrupts, it may be
advantageous for processing to set the
interrupt event word for the input line to
one value (e.g .. 01) and the interrupt
event word for the output line to another
value (e.g., 02). The PIM directive also
specifies if a directly connected interrupt
handler is to ·be used (see section
14.4.5).

ASN

REAL-TIME PROGRAMMING

This directive assigns logical units to
physical units. If a new device is being
added and it is necessary to assign that
device to a logical unit when the system
is initialized, an ASN is input. Otherwise,
the JCP or OPCOM ASSIGN directive can
be used. The logical-unit table is
established by these directives.

PRT This directive for RMDs specifies the
size and the mnemonic name of each
partition. A PST and DST are created for
each partition.

TDF This VORTEX nucleus-generation
control record directive defines and
builds the controller TIDB. It specifies
the name of the driver, status word
(TBST) setting, and priority level.

Adding controller tables: A controller table is assembled
as a separate entity and added to the system-generation
library (SGL) for loading at system-generation time. The
controllet table name is CT followed by the three· or four.
character ASCII name of the controller, e.g.. CTTYOA,
CTMTOA, and CTDOB.

VORTEX Input/Output Control (IOC) assumes the first 13
words of all non-RMD controller tables to be identical, i.e.,
word 0 - CTIDB; word 1 = CTADNC, etc. For RMDs the
first 18 words are assumed to be identical. Additional
words may be added to the controller table by use by the
individual 1/0 driver.

The controller table comprises parameters that are
constant for a controller, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA
statements can be added to the controller table to provide
additional working space for an 1/0 driver.

The following standard items are required by IOC:

Word Item Description

O CTIDB - Name of the related controller TIDB (TB
followed by the same three or four-character name used
in the controller table e.g ... TBDOB (for CTDOB). An
EXT statement must specify the TIDB name as an
external name.

EXT TBDOB
DATA TBDOB

CTADNC = This word is used by IOC as temporary
storage.

2 CTOPM = The operation code mask specifying the type
of 110 operation the driver is capable of processing 1 -
driver is capable of processing.

14-25

REAL-TIME PROGRAMMING

Bit Operation

0 Read
1 Write
2 Write EOF
3 Rewind
4 Skip record
5 Function
6 Open
7 Close
8·16 Reserved for future use

Example: DATA 037
For all operations excluding Function,
Open, and Close.

3 CTDST - Set by IOC to DST address
Example: DATA 0

4 CTRQBK - Set by IOC to l/O request block being
processed.

Example: DATA 0

5 CTRTRY - Error retry count. # T followed by the name
of the controller.

Example: DATA #TTYOA
EXT #TTYOA

6 CTDVAD - Controller device address. #A followed by
the name of the controller

Example: DATA #ATYOA
EXT #ATYOA

CTIOA - 1/0 algorithm. The ratio of device transfer
rate to OMA transfer rate + 10 percent of the result
times 32767. Zero for all non·BIC devices.

Example: when a disc transfer rate is
lOOK words per second and OMA rate is
300K words per second, the ratio is about
.33. Set CTIOA to: DATA 030000
If ratio is .25 or 25 percent set
CTIOA (DATA 020000); 50 percent
set CTIOA (DATA 040000), etc.
To make CTIOA a SGEN selectable parameter
(refer to section 15.5.2, EQP directive)
assemble as an external e.g., EXT # D followed
by the name of the controller:

EXT
DATA

#DCIOA
#DCIOA

for process 1/0

8 CTSTAT - DATA 0, for driver use.

9 CTBICB - Address of BIC flag table. B followed by the
name of the name of controller,

Example: DATA BOOB
EXT BOOB

When the driver is entered the item
points to a call containing the BIC
device address, 020, 022, 024, etc.

10 CTFCB - Set by IOC to the DCB or FCB address. Set to
DATA 0

14-26

11 CTWDS - DATA
words transferred.

0. Driver use for number of

12 CTFRCT - 1/0 algorithm frequency count. The
number of retires to be attempted by IOC before
suspending all subsequent 1/0 operations until the
request in CTRQBK (word 4) is activated. DATA O
for non-BIC devices.

13 CTSTSZ - RMD only. Number of words in an RMD
sector.

Example: DATA 120

14 CTTKSZ - RMD only. Number of sectors in an RMD
track

Example: DATA 48

15 CTPSTO - RMD only. Base address of the PST for
RMD unit 0 connect to this controller. P followed by the
four character device name.

Example: DATA ! PDOOB
EXT !PDOOB

16 CTPSTl - RMD only. Base address of the PST for
RMDunitl.

Example: DATA
EXT

!PDOlB
! PDOlB

17 CTPST2 - RMD only. Base address of PST for RMD
unit2.

Example: DATA
EXT

!PD02B
!PD02B

18 CTPST3 - RMD only. Base address of PST for RMD
unit3.

Example: DATA
EXT

IPD03B
IPD03B

14.4.4 Enabling and Disabling PIM
Interrupts

The disable and enable PIMs and RT clock instructions
(EXC 0147, EXC 0747, EXC 0244, EXC 0444) are priv·
iledged instructions and cannot be executed in a user map
(non-map 0) without creating a memory protect interrupt.
The memory protect processor recognizes the interrupts
caused by the disable/enable instructions and returns to
the foreground task in the proper disabled or enabled
state. The following restrictions apply:

a. Only foreground tasks are permitted to execute the
disable/enable PIMs and RT clock instructions. EX21
error message is output of a background task
attempts to execute those instructions.

b. The return to the foreground task is at location n + 2.
In other words, both the disable PIMs and clock
instructions (EXC 0747, EXC 0444 or vice versa) or
enable PIMs and clock instructions (EXC 0147, EXC
0244 or vice versa) must be together. The second EXC
instruction is not executed.

Example:

Location

n

n+l

n+2

REAL-TIME PROGRAMMING

Instruction

EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM
directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
unless the· 110 driver specifically disables it. If a PIM
directive is omitted, the linkage between the trap and the
interrupt line handler cannot be established. If a PIM line
mask is enabled or disabled by a driver, the system mask
is updated to reflect the current status. The system mask
configuration is given at low memory address V$1M (0320
for PIMl, 0321 for PIM2, etc.).

EXC 0444

EXC 0747

Disable RT clock
instruction creates
interrupt.

This instruction is
not executed.

Return location from
the memory protect
processor with PIMs
and RT clock disabled.

Interrupt
Trap
Location

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

Figure 14-5 shows the standard VORTEX driver Interface.

Interrupt Line
Handler (Using
Common Handler)

Common
Interrupt
Handler

1

- ,
I

110 Driver

Controller
Table

Controller
Address
Table (for Drivers)

Device
Specificati_on
Tables
(for Drivers)

KEY:
1. The trap address corresponding to the PIM number

(from PIM directive) points to the SGEN-generated line
handler. The line handler points to the TIDB {named
in PIM directive), using the matching TIDB name (on
TDF control record).

2. The TIDB name (on TDF control record) points to the
task, using the entry name in the assembly of the task.

3. For OPCOM device drivers only. The task Tl DB points to
the device controller table name (on TDF control
record), using the entry name in the controller table
assembly.

4. The DSTs are generated by SGEN, one for each unit
specified on the EQP directive. All DSTs generated for a
controller point indirectly to the controller table
(named. in EQP directive), using the entry in the
controller table assembly.

Figure 14·5. Driver Interface

14-27

REAL-TIME PROGRAMMING

14.4.5 Directly Connected Interrupt Handler .

VORTEX provides a user two options of specifying directly
connected interrupt handlers. The use of a directly
connected interrupt handler, in lieu of the VORTEX
common interrupt handler, is specified on the PIM directive
during system generation (section 15.5.11). The interrupt
handlers must be resident in executive mode, map 0.

Option 1 (specifying 1 as the s(n) parameter on the PIM
directive) requires the user to:

a. Save and restore the overflow indicator and all volatile
registers used by the directly connected interrupt
routine before returning to the interrupted task.

b. Not allow IOC and RTE calls.

c. Minimize execution time.

d. Continue to lockout interrupts during processing, then
enable the PIMs upon exiting. The RT clock is
enabled in all cases except when the real time clock
processor has been interrupted. Location 0300,
V$CTL, will contain 037 if the RT clock processor had
been interrupted. The interrupt handler must provide
a check for interruption out of the RT clock processor
and enable or disable the RT clock accordingly.

e. Restore the VORTEX system to the proper pre­
interrupted state, executive or user mode. Any
interrupt forces the system to executive mode, state 0
(see table 1-1). The interrupt handler must return to
the proper state. V$KEY, location 0340, contains the
map key number of the interrupted task. If the
interrupt task is the user mode (1 :S: V$KEY :s: 15) ,
the switch from "executive to user mode enable"
instruction (EXC2 0246) must be executed. The "clear
executive mode state mask" instruction (EXC2 0546)
must also be executed.

Example:

LDB DSOOO
LDA 0300 Check location 0300
SUB 01173 System constant - 037
JAZ DIH10 Zero - interrupt out of
LDBI 01045116 RT clock
LDAI 01001117 Otherwise enable clock
JHP DIH10+1

DIH10 LDA D5000 - 5000
STA DIH30 Enable dock instruction
STB DIH30+1 Enable mask instruction
ROF
LDA ROV Restore overflow
JANZ *+3
SOF
LDB D5000 NOP instruction
LDA 03110 V$KEY check interrupts

14-28

ANA 01172 Task map key
JAZ DIH20 0 - map 0
LDB 010112116 Switch to user map

DIH20 ST8 DIH30+2
LDB RB Now restore A, B, X
LDX RX
LDA RA
EXC 021111 Enable PIM

DIH30 EXC 01117 Modified to enable clock
or NOP

EXC2 05116 Modified to clear mask
EXC2 02116 Modified to switch to

user map
EXC2 06116 Enabled memory protect
JMP * Modified to return

address
D5000 DATA 05000

f. Obtain the interrupted task return address. The
directly connected interrupt line handler is entered via
a JMPM instruction from the line handler (see figure
14-1) and as such the first word in the interrupt
handler must be a mark location. The return address
of the interrupted task is found in word 0 of the line
handler, which is obtained by subtracting four from
the contents of the interrupt handler's mark location.

Option 2 (specifying 2 as the s(n) parameter on the PIM
directive) permits the user to use system routines to save
(V$DHD) the volatile registers and overflow indicator and
restore (V$DRTN) the volatile registers, overflow indicator,
and reset the system to the proper pre-interrupted state as
described above. Option 2 relieves the directly connected
interrupt handler of the housekeeping chores. The A, B, X
registers, overflow indicator are saved, PIM and clock
interrupts are disabled prior to entering the user code (via
JMPM), (see figure 14-1). The user code is entered with the
A register set to the TBEVNT value and the X register set to
the user code entry address.

Upon completion of processing, the directly connected
interrupt handler exits to system routine, V$DRTN.

Example:

TASK
NAME
ENTR
STA

EXT
JHP

TASK

EVNT

V$DRTN
V$DRTN

Save TBEVNT word
Do processing

Exit to common
processor

where task must be specified on SGEN PIM directive, e.g.,
PIM,010,TASK,Ol,2.

14.4.6 VORTEX Use of BICs and BTCs

VORTEX supports a maximum of 15 BICs or BTCs. The
practical system limit may be considerably less than ten
depending on the availability of device addresses, the type

and number of peripherals, and other configuration
considerations. The BIC or BTC transfer complete inter­
rupts must be assigned by ascending BIC or BTC numbers
(020, 022, 024, 026, 070, 072, etc.) starting with the first
PIM and the first interrupt i.e., PIM 0, line 0 assigned to
BIC 020; PIM 0, line 1 assigned to BIC 022, etc. The first
BIC must have a device address of 020; the second, 022;
the third, 024; the fourth, 026; the fifth, 070; the sixth, 072;
etc. Unless the special DEF control directive is used.

1/0 drivers utilizing BICs or BTC must call the common BIC
routine V$BIC. The X register is set to the initial buffer
address and the A register set to the final buffer address.
The call to V$BIC is:

JSR V$BIC,B
DATA Interrupt event word or 0 if no

line handler modification to be

DATA
performed.
Map number

14.4.7 VORTEX II and VORTEX Compatibility

User programs written to operate under VORTEX will be
operable under VORTEX II under the following conditions:

a. Programs which contain any RTE service requests or
Input/Output Control requests must be assembled by
the VORTEX II version of DAS MR. Any program
which builds these requests without the DAS MR
macros must be modified so that the requests
conform to the VORTEX II calling sequence.

b. Any foreground task which executes hardware 1/0
instructions except disabling and/or enabling PIMs
and RT clock, see section 14.4.4, must be included as
part of the resident nucleus when the system is
generated. Foreground library tasks which are made
resident during system generation by use of the TSK
directive are not considered nucleus tasks and
therefore must not contain any hardware 1/0 instruc­
tions (see section 14.4.8 for discussion on resident
tasks).

c. Intertask communications can be accomplished:
through the use of foreground blank common; by
establishing named tables and buffers in the nucleus
table module and referencing the named block by an
external statement; by use of the RTE PASS request
between a user map and map O; by switching
executive mode states (see section 1.3); by sharing
the same physical pages utilizing the MAPIN and/or
PAGNUM RTE requests.

d. User tasks (except priority 1 system tasks) may not
write into or execute instruction from the first physical
page. This page is the VORTEX II low memory area. It
is mapped as read-operand only into all user tasks
(see figure 2-2), except priority 1 tasks where page 0
is mapped as read·write access mode.

REAL-TIME PROGRAMMING

e. User tasks (non-nucleus) must not communicate with
the nucleus except through the use of standard
executive service and 1/0 requests or by referencing
entry points which are contained in the core-residl!nt
library.

f. A user task can request a transfer of a block of data
from map 0 to the user may by executing a RTE PASS
request.

g. Direct connect interrupt handlers must restore the
system to the pre·interrupted map state after servicing
the interrupt. An alternative is to utilize the SGEN
PIM directive, option 2, as described in section
14.4.5.

h. 1/0 drivers written for VORTEX operation must
be modified for VORTEX II as follows:
1. The map number must be passed when call­
ing V$BIC, common BIG I BTC routine (see section
14.4.6).
2. The 1/0 drivers must switch executive mode
states (see section 1.3) to fetch/store data from
a user map (DCB, FCB, buffer). RQBLK data are
stored in map O by dynamic memory allocation.
3. Rotating memory device (RMD) drivers must
determine if a data transfer (read, write) 1/0 re­
quest is by SAL (search-allocated-load task). If
it is a SAL request, the map number is obtained
from TBEVNT of the TIDB for SAL. Otherwise,
the requestor's map number is obtained from
TBKEY. SAL is the RTE component which loads
non- resident tasks into memory. The check may
be accomplished as follows:

LDA RTIDB, B RTIDB - word 4 of RQBLK
SUB VSLSAL V$LSAL - location 0312 - SAL TIDB
JANI XXX Jump if not SAL
LDB V$LSAL Yes SAL. Get map key
LDA TBBVNT, B From TBEVNT
JMP YYY Now common processln1
LDB RTIDB, B 110 request not by SAL
LDA TBKBY, B Get map key from TBKEY
ANA BM 17 Mask bits 4·0

4. Following a BIC transfer complete interrupt the 1/0
driver sense for a map memory protection 1/0 data
transfer error:

SBN 0101+da,er

where da is the BIC device address (which is found in
word 011 of the controller table), and er is the
address of the error processing routine which must
set up an 1046 error code prior to calling V$ERR.

i. If a user wants to fetch/store from the nucleus tables,
the user must ensure that the nucleus table module is
mapped Into the user's logical memory. He does this
through an external reference to a symbol, TIDB,
controller table, etc., within the nucleus module.
Example -- have an "EXT TBTYOA."

14-29

REAL-TIME PROGRAMMING

TIDBs for non-resident tasks·· except JCP and OPCOM
·· are dynamically allocated in map 0. Hence a
foreground user task cannot load a register (B,X)
from location 0300 (V$CTL or an address from any
other low-core location) and directly fetch the TIDB
data. In VORTEX, it is possible; in VORTEX II, such an
attempt would result in a memory protect interrupt.
The foreground user can fetch the TIDB data by use
of the PASS macro. Except for clearing the TBEVNT
word, via the RTE TBEVNT request, a foreground user
task cannot modify the TIDB.

14.4.8 Resident Tasks

The VORTEX II user may specify two types of resident tasks
during system generation; user mode resident tasks; and
executive mode map 0 resident tasks.

a. User mode resident tasks. These tasks are foreground
library tasks that are made resident via the SGEN
TSK directive. These tasks execute as user mode
tasks and cannot execute any 110 type instructions
except enable/disable PIMs and RT clock. They reside
in memory and may be scheduled via OPCOM or RTE
SCHED requests specifying LUN - 0. As these tasks
do not reside in map 0 virtual memory, the dynami­
cally allocated space (see figure 1.2) is not reduced as
it would be for the executive mode map 0 resident
tasks. These resident tasks are defined in the
resident directory specified by V$CRDR (0341). Each
entry in the directory is as follows:

14-30

Word/llt 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0

Task Name, first two characters

Task Name, second two characters

Task Name, third two characters

Entry Point

Startin1 physk:al pap number

Number of pa1n

Nucleus module
indicator l R-lor

future use

b. Executive mode, map 0 resident tasks. These tasks
reside in the nucleus program module in map 0. No
special SGEN directive is required to include these
tasks as part of the nucleus. The VORTEX 11 user
specifies the generation of these resident tasks by
adding the program object modules on the SGL
between the CTL,21 and CTL,PART3 control records
(see figure 15-2). The program name should not start
with the characters "VZ··" as these are reserved for
1/0 drivers. SGEN processes 110 drivers selectively
and ignores all 110 driver object modules unless a
SGEN EQP directive specified the corresponding
peripheral. These executive mode resident tasks: (1)
are permitted to execute 110 type instructions; (2)
canndt normally be scheduled via the OPCOM or RTE
SCHED request, but are activated by resetting bit 14
of the TIDB status word TBST (table 15-5) as are the
1/0 drivers and SAL; (3) must have a resident TIDB
created by a SGEN TDF directive. An alternate means
of executing these tasks is via an OPCOM RESUME
request. However, caution must be exercised as the
RESUME request activates the highest priority task
with a matching name.

SECTION 15
SYSTEM GENERATION

The VORTEX system-generation component (SGEN)
tailors the VORTEX operating system to specific user
requirements. SGEN is a collection of program on
magnetic tape, punched cards, or disc pack. It includes
all programs (except the key-in loader, section 15.3)
for generating an operating VORTEX system on an
RMD.

Figure 15-1 is a block diagram of the data flow through
SGEN.

15.1 ORGANIZATION

SGEN is a five.phase component comprising:

• Building the VORTEX nucleus (section 15.6)

• Building the library (section 15.7)

• Resident· task configuration

1/0 Interrogation specifies the peripherals to:

a. Input VORTEX system routines (LIB unit)

b. Input user routines (ALT unit)

c. Input SGEN'directives (DIR unit)

d. Output the VORTEX system generation (SYS unit)

• 1/0 interrogation (section 15.4)

• SGEN directive processing (section 15.5)
e. List special information and input user messages (LIS

unit)

VTl/-3222

DIR INPUT UNIT

SGEN DIRECTIVES

VORTEX

NUCLEUS

(And system
initializer)

LIB INPUT UNIT

System Generation Library

(Object modules and con­
trol records)

FOREGROUND

LIBRARY

BACKGROUND

LIBRARY

SYS OUTPUT UNITS

Figure 15-1. SGEN Data Flow

ALT INPUT UNIT

User Routines

(Object modules and
control records)

USER

LIBRARIES

15-1

SYSTEM GENERATION

110 interrogation also spe<;:ifies that the Teletype on
hardware address 01 is the OC unit. After these peripherals
are assigned, appropriate drivers and l/O controls are
loaded into memory.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the
VORTEX system based on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Building the VORTEX nucleus consists of gathering object
modules and control records from the system-generation
library (SGL, section 15.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the ALT unit according to rules set up by the SGEN
directives.

Building the library and the resident-task conflgurator
consists of generating load modules from the object
modules and control records input from the SGL and user
data. These load modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated load modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
15.7).

SGEN directive format requires that, unless otherwise
indicated (e.g., section 15.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
separated by commas (,) or by equal signs (-). The
directives are free-form and blanks are permitted between
individual character strings, i.e., before and after commas
(or equal signs). Although not required, a period(.) is a line
terminator. Comments can be inserted after the period. For
greater clarity in the descriptions of the directives, optional
periods, optional blank separators between character
strings, and the optional replacement of commas by equal
signs are omitted. Section 14.4.8 describes resident tasks
in greater detail.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in Appendix
A.15.

15-2

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific
error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual
intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCII record) or the letter " C" . In the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the " C" is
input. If the input media is magnetic tape or disc pack,
positioning to reread an input statement is also automatic.

15.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

In the case of disc pack, the SGL occupies contiguous
records beginning with the second track. Track 0 contains
the partition-specification table (PST, section 3.2) that
specifies one partition extending from the second track
(track 1) to the end of device.

The SGL and the VORTEX system cannot be on the same
disc pack during system generation.

The SGL is divided into five functional parts, each
separated by CTL control records (figure 15·2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an 110 interrogation routine. It also comprises the
SGEN relocatable loader, the basic 110 control routine, and
library of peripheral drivers for the use of SGEN. Part 1
consists entirely of object modules. It is loaded with device·
sensitive key-in loader (section 15.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader/interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap·
loader/interrogator is itself device-insensitive.

Control record CTL,PARTOOOl terminates part 1 of the
SGL.

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the DIR and OC input devices. The system generation
directives are to be placed between the directive processor
and the CTL,PART0002 control record if the CIB and DIR
input units are the same.

Control record CTL,PART0002 terminates part 2 of the
SGL.

Bootstrap Loader and
110 Interrogation

PART 1 Relocatable Loader and
I /O Control Routine

SGEN Driver Library

CTL,PARTOOOl

PART 2 Directive Processor

CTL,PART0002

VORTEX Nucleus Processor

SLM, I NIT

System Initializer

PART 3 END

SLM, VORTEX

VORTEX Nucleus
Library

END

CTL,PART0003

Library Processor

PART 4 System Library
Routines

CTL,PART0004

PART 5 Resident· Task Conflgurator

CTL,ENDOFSGL

NOTE:

• = Alphanumeric control record

Figure 15-2. System-Generation Library

Part 3 of the SGL comprises all system routines and
control records required to build the VORTEX nucleus
(figure 15·3):

• VORTEX nucleus processor ·· the SGEN-processing
portion

• SLM control record .. indicates the beginning of the
system initializer portion

• System-initializer routines ·· object modules to be
converted into the system initializer

• END control record ·· indicates the end of the system·
initializer portion

• SLM control record .. indicates the beginning of the
VORTEX nucleus portion

• VORTEX nucleus routines -- control records and object
modules to be converted into the VORTEX nucleus

• END control record -- indicates the end of the VORTEX
nucleus portion

SYSTEM GENERATION

• Control Record CTL,21 -· specifies the end of the
nucleus table module. All user data and programs to be
included in this module must precede the CTL,21
control record.

• All programs contained on the SGL between the CTL,21
and CTL,PART0003 control records are included in the
nucleus program module

SLM,INIT

System lnltlallzer

Low Memory Package

END

SLM, VORTEX II

All TDF Control Records

Global FCBs

V$0PBF and V$JPBF Buffers

l/O Controller Table

CTL,21

IOC Program

RTE Services

RTE System Tasks

RTE Functions

1/0 Drivers

END

CTL,PART0003

NOTE:

• = Alphanumeric control record

Figure 15-3. VORTEX Nucleus

Control record CTL,PART0003 terminates part 3 of the
SGL.

Part 4 of the SGL comprises all system routines and
control records required to build load-module libraries on
the RMD. The library processor converts these inputs into
load modules, catalogs them, and enters them into the
foreground, background, and user libraries. The library
processor is followed by groups of control records and
object modules, with each group forming a load-module
package (LMP).

Control record CTL,PART0004 terminates part 4 of the
SGL.

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL,ENDOFSGL terminates the SGL.

15-3

SYSTEM GENERATION

15-4

REQUIRED

(FOREGROUND)

SYSTEM

TASKS

REQUIRED

(BACKGROUND)

SYSTEM

TASKS

SLM,FV$0PC SLM,BFORT

TIO, V$0PCM,2,8, 106 TID,fORT, 1,0, 105

V$0PCM Program FORTRAN Compiler

ESB ESB

END END

SLM,FJCDUM SLM,BCONC

TID,JCDUMP ,2,0, 106 TID,CONC, 1,0, 105

JCDUMP Program Concordance Program

ESB ESB

END END

SLM,FRAZI SLM,BIOUTI

TID,RAZl,2,0, 106 TID,IOUTIL, 1,0, 105

RAZI Program 110 Utility Program

ESB ESB

END END

SLM,BJCP SLM,BSEDIT

TID,JCP, 1,0, 105 TID,SEDIT, 1,0, 105

Job-Control Processor Source Editor

ESB ESB

END END

SLM,BLMGEN SLM,BDASMR

TID,LMGEN, 1,0, 105 TID,DASMR, l,0, 105

Load-Module Generator DAS MR Assembler

ESB ESB

END END

SLM,BFMAIN

TID,fMAIN, 1,0, 105
NOTE:

file Maintenance

ESB
• - Alphanumeric control record

END

SLM,BSMAIN

TID,SMAIN, 1,0, 105

System Maintenance

ESB

END

figure 15-4. Load-Module Library

15.3 KEY-IN LOADER

SGEN is initiated on a new or initialized system by
inputting the key-in loader through the CPU. The key-in
loader loads the VORTEX bootstrap loader (part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards, or disc pack. The required
key-in loader is input to memory through the CPU console
and then executed to load the VORTEX bootstrap loader.

SYSTEM GENERATION

Automatic bootstrap loader (ABL): In systems equipped
with an ASL, load the key-in loader from the input medium
into memory starting with address 000000. To execute the
key-in loader, clear the A, B, X, I, and P registers; then
press RESET, set STEP/RUN to RUN, and press START.

See hardware handbook for details on manual loading.

Table 15-1. SGEN Key-In Loaders

RMD RMD
Address Magnetic Tape Card Reader 70-76x.O 70-76x3

000000 010030 010054 010064 010064
000001 001010 001010 140066 140066
000002 001106 001106 001010 001010
000003 040030 040054 001106 001106
000004 001000 001000 001000 001000
000005 000012 000012 000012 000012
000006 000000 000000 000000 000000
000007 006010 006010 006010 006010
000010 000300 000300 000300 000300
000011 050027 050053 050065 050065
000012 104lzz 1002zz 1004zz 1004zz
000013 lOOOzz 002000 1002zz 010063
000014 001000 000046 010063 110072
000015 000021 1025zz 110072 103lzz
000016 1025zz 002000 103lzz 1002zz
000017 057027 000046 lOluzz lOldzz
000020 040027 1026zz 000023 000023
000021 lOllzz 004044 001000 001000
000022 000016 004444 000017 000017
000023 1012zz 057053 1025zz 1025zz
000024 100006 005001 150071 150071
000025 001000 040053 001016 001016
000026 000021 004450 000012 000012
000027 000500 002000 lOOOyy lOOOyy
000030 177742 000046 1003zz 5000
000031 1026zz 010064 010064
000032 004044 ll0072 110072
000033 004450 103lzz 103lzz
000034 002000 010065 010065
000035 000046 103lxx 103lxx
000036 1022zz 120070 120070
000037 057053 005012 005012
000040 040053 103lyy 103lyy
000041 067053 lOOOxx lOOOxx
000042 040053 lOOOzz lOOOzz
000043 001000 1014zz 1014zz
000044 000013 000043 000043
000045 lOllzz 1025zz 1025zz
000046 000000 150071 150071
000047 1016zz 001016 001016
000050 100006 000012 000012
000051 001000 060065 060065
000052 000045 040064 040064
000053 000500 010064 010064

15-5

SYSTEM GENERATION

Table 15-1. SGEN Key-In Loaders (continued)

RMD RMD
Address Magnetic Tape Card Reader 70-76x0 70-76x3

where

xx
yy

000054
000055
000056
000057
000060
000061
000062
000063
000064
000065
000065
000067
000070
000071
000072

even BIC address
odd BIC address

zz device address
u = RMD unit number in Sense Instruction

u 0 for unit 0
u = 1 for unit 1

15.4 SGEN 1/0 INTERROGATION

Upon successful loading of the bootstrap loader and 1/0
interrogation, the OC unit outputs the message

IO INTBRROGATION

after which the SGEN peripherals are specified by inputting
on the OC unit the five 1/0 directives:

DIR Specify SGEN directive input unit
LIB Specify SGL input unit
ALT Specify SGL modification input unit
SYS Specify VORTEX system generation

output unit
LIS Specify user communication and

list output unit

These directives can be input in any order. SGEN will
continue to request 1/0 device assignments until valid ones
have been made for all five functions.

SGEN drivers are loaded from the SGEN driver library
according to the specifications of the SGEN 1/0 directives.
Errors or problems with reading the drivers will cause the
applicable error messages (Appendix A.15) to be output.

The general form of a SGEN 1/0 directive is

function• driver,device,bic

15-6

177742 140067 140067
001016 001016
100006 100006
050064 050064
040063 040063
001000 001000
100006 100006
000001 000001
000001 000001
000500 000500
000037 000037
000060 000069
000074 000074
007760 007760
OvOOOO wwOOOO

RMD unit number in unit Select Instruction
v O for unit 0
v = 4 for unit 1

d - RMD drive number (0·3)
ww - drive (bits 15·14) /platter (bit 13)

(i.e., platter 1 drive O · 02)

where

function is one of the directive names given
above

driver is one of the driver names given below

device is the hardware device address

bic is the BIC address

Name• Type of Device Model Numbers

MTcuA Magnetic-tape unit 70-7100

LPcuA Line Printer 70-6701
LPcuD All Statos 70-6602

models*** 70-6603
CRcuA Card reader 70-6200

PTcuA Paper-tape 70-6320
read/punch

TYcuA Teletype or CRT 70-6100,
70-6104

DcuAl Rotating memory 70-7702
DcuA2 Rotating memory 70-7703
DcuA5 Rotating memory 620·49
DcuB Rotating memory 70-7600,

70-7610

Name•

DcuC

DcuD

Type of Device

Rotating memory**

Rotating memory**

Model Numbers

70-7500

70-7510

DcuF'"*** Rotating memory** 70-7603

• where c stands for the controller number (0, 1, 2, or 3),
and u for the unit number (0, 1, 2, or 3).

**Always specify the first master unit of a particular device
as being on controller 0, the second master unit on
controller 1, etc. Regardless of the controller specifications
in the EQP directives, different controller numbers must be
used for each RMD type. (i.e., if using MT 1 on DA 12,
specify MTOOA). If the system has a 7600 and 7500 RMD,
then specify DOOB and DlOC.

**" Statos 33 is not supported during system generation.

• 0 • Unit number u - 0 through 7.

15.4.1 DIR (Directive-Input Unit)
Directive

This directive specifies the unit from which all SGEN
directives (section 15.5) will be input (DIR unit). The
directive has the general form

where

DIR• drlver,devlce,bic

driver

device

bic

is one of the driver names MTcum,
TYcum, PTcum, or CRcum (m is a model
code, as given.in 15.4)

is the hardware device address

is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify Teletype unit O having model code A
and hardware device address 01 as the DIR unit.

DIR•TYOOA,01

15.4.2 LIB (Library-Input Unit) Directives

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the general form

where

LIB• driver,devlce,bic

driver

device

is one of the driver names MTcum,
CRcum, or Dcum

is the hardware device address

bic

SYSTEM GENERATION

is the BIC address (used only, and then
optionally, for magnetic-tape units)
mandatory for RMDs

Example: Specify magnetic-tape unit O having model code
A and hardware device address 010 (no BIC) as the LIB
unit.

LIB•MTOOA,010

15.4.3 ALT (Library-Modification
Input Unit) Directive

This directive specifies the unit from which object modules
that modify the SGL will be input (ALT unit). The directive
has the general form

ALT• driver,devlce,bic
where

driver

device

bic

is one of the driver names MTcum,
PT cum or CR cum

is the hardware device address

is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify card reader unit O having model code A
and hardware device address 030 as the ALT unit.

ALT•CROOA,030

15.4.4 SYS (System-Generation
Output Unit) Directive

This directive specifies the RMD(s) onto which the VORTEX
system will be generated, with the VORTEX nucleus on the
first such device specified. Up to 16 RMDs can be specified.
The directive has the general form

SYS • driverl,devlcel,bicl;driver2,device2,
bic2; .. . ;drivern,devicen,bicn

where

driver

device

bic

is an RMD driver name such as Dcum,
where c = controller, u = unit, and m
= model code

is the hardware device address of the
corresponding driver

is the mandatory address of the
applicable BIC or BTC

All RMDs specified in the EQP directives (15.5.2) must be
specified in the SYS directive. Subsequent SYS directives
will overlay the previous directives. If all RMDs cannot be
specified in a single line, then the directive must be

15-7

SYSTEM GENERATION

terminated with a colon. This will cause the next input line
to be treated as a continuation of the previous SYS
directive. The additional input lines begin with the driver
parameter. The directive "SYS - " must not be used on
additional SYS directive input lines.

Examples: Specify RMD O having model code B, hardware
device address 016, and BIC address 020 as the SYS unit.

SYS•DOOB,016,020

Specify two SYS units: RMD 0 with model code A2.,
hardware device address 014, and BIC address 020; and
RMD 0 with model code B, hardware device address 015,
and BIC address 022.

A system with 70-7500 (620-34)or 70-7510 (620-35) disc
requires a special formatting program, described in section
18.4. This program formats disc packs and performs bad­
track analysis.

SYS•DOOA2,014,0201D10B,015,022

15.4.5 LIS Directive

This LIS (User-Communication and List Output Unit)
directive specifies the unit that will be used for· user
communication and list output (LIS unit). The directive has
the general form

LIS• driver,devlce

where

driver is one of the driver names TYcum or
LPcum

device is the hardware device address

The following information appears on the LIS unit:

a. Error messages

b. Load map of each load module

c. Directives input through the DIR unit (section 15.4.1)

d. Partition table for each system RMD

To suppress listing during system generation set "map" to
zero in EDR directive.

Example: Specify line printer O having model code A and
hardware device address 035 as the LIS unit.

LIS•LPOOA,035

15.5 SGEN Directive Processing

Upon successful loading of the SGEN directive processor,
the OC and LIS (section 15.4.5) units output the message

15-8

INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 15.4.1).

The SGEN directives described in this section can be input
in any order, except for the EDR directive (section 15.5.14),
which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last informa·
tion input as the correct data.

Errors cause the output of the applicable error messages
(Appendix A.15).

The general form of an SGEN directive is

aaa,p(l)xp(2)x ... xp(n)

where

aaa is a three-character SGEN directive
name

each p(n) is a parameter as indicated in the

each x

specifications for the individual
directives

is a punctuation mark as indicated in
the specifications for the individual
directives

In contrast to most VORTEX system directives, the
punctuation In SGEN directives 11 exactly as defined In the
specifications for the Individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

15.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

MRY ,memory ,common, size~ V75]

where

memory

common

size

V75

is the extent of the memory area
available to VORTEX (minimum 12K -
027777)

is the extent (0 or positive value) of the
foreground blank-common area

is the total physical memory available to
VORTEX in units of 1 024 words (K
words). The minimum is 32 and the
maximum is 256

specifies V75 system

Examples: Specify a 48K memory for VORTEX with a
foreground blank common area of 0200 words. Save
locations 075777 to 077777 of the first 32K memory for
AID I.

MRY,075777,0200,48

Specify an 18,000-word memory for a VORTEX V75 system
with no foreground blank-common area.

MRY, 18000,0,V75

15.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of· the
system. It has the general form

EOP,name,address,number,bic,retry,a/g,mu/

where

name

address

number

hie

retry

alg

mu/

is the mnemonic for a peripheral
controller

is the controller device address (01
through 077 inclusive)

is the number (1 through 4, inclusive) of
peripheral units attached to the
controller

is the BIC or BTC address (0 if no BIC
applies)

is the number (0 to 99, inclusive) of
retries to be attempted by the 1/0 driver
when an error is encountered

is the 110 algorithm value (OS alg s
1) as a decimal fraction (see section
14.4.3, word 7 for the calculation of
this value). NOTE: this is an optional
parameter and is not needed unless a
change is desired in the algorithm value.
If this parameter is to be used on non.
process 110 controller tables, the subject
controller table must contain CTIOA as
an entry name

is the multiplexor address (this
parameter applies only to process I 10
drivers)

Acceptable mnemonics for name are:

MTnm
LPnm
CR nm
PT nm

Magnetic-tape unit
Line printer
Card reader
Paper-tape reader /punch

TY nm
CT nm
CPnm
Dnm

Cl
co

·WCS

SPnm
MXnm
TCnm

SYSTEM GENERATION

Teletype
CRT device
Card Punch
RMD

Process input
Process output
Writable control store

Spool Unit
Communication Multiplexor
Psuedo TCM

Where n is the controller number (0, 1. 2, or 3), and m is
the model code (table 15-2).

Controller tables are arranged according to the priority
levels of their task-identification blocks (TIDBs). On any
given level, the tables are arranged in the input sequence
of the corresponding EQP directives. Device-specification
table (DST) entries are unsorted.

The following order is suggested for peripheral controllers:

a. RMDs

b. Operator-communication (OC) device (section 17)

c. Magnetic-tape units

d. Other units

For the 70·7603/7013 disc, a special DEF directive must be
included for each EQP directive used for this model disc.

where

DEF, V$DSKx,y

is the controller number (0·3)

is a bit pattern in bits 0-7. Bit(n)
corresponds to platter(n). The bit is
set if the corresponding platter is
part of a dual platter driver.

Example: A system contains two 70-76x3 controllers with
the following drives attached:

Controller O has 1 dual unit and 3 single units
Controller 1 has 2 dual units, and 1 single

unit, and 1 dual unit

the corresponding directives would be:

EQP,DOF,016,5,020,5
DEF,V$DSK0,3
EQP,D1F,017,7,022,5
DEF,V$DSK1,0157

15-9

SYSTEM GENERATION

Table 15·2. Model Codes for VORTEX Peripherals

Code Model Number Description

TYnA 70-6104 ASR Teletype Model 33
(620·08) ASR Teletype Model 35

CTnA 70-6401 CRT keyboard/display

CRnA 70-6200 Card reader: 300 or 600 cards/minute
(620·22,

620-25)

CPnA 70-6201 Card punch: 35 cards/minute
(620-27)

MTnA 70-7100 Magnetic-tape: 9-track, 800 bpi, 25 ips
(620-30)
(620·31A) Magnetic-tape: 7-track, 200·556 bpi
(620-316) Magnetic-tape: 7-track, 200·800 bpi
(620·31C) Magnetic-tape: 7-track, 556·800 bpi
70-7102 Magnetic tape: 9-track, 800 bpi, 37 ips
(620-32)
70-7103 Slave unit with 620-32
(620·32A)

MXnA 70-520X (520X) Data communications multiplexor
70-521X

DnA 620·47 ,·48,49 Rotating memory
70-770X Rotating memory
(620-43C,43D)

DnB 70-7600 Rotating memory
(620-36)
70-7610 Rotating memory
(620-37)

DnC 70-7500 Rotating memory
(620-35)

DnD 70-7510 Rotating memory
(620·34)

Dnf 70-7603 Rotating Memory
70-7613

PTnA 70-6320 Paper-tape reader/punch
(620·55A)
(620-51A)

LPnA 70-6701 Line Printer
(620-77)

LPnD 70-6602 Statos-31 Printer/plotter

15-10

Table 15-2. Model Codes for VORTEX Peripherals
(continued)

Code Model Number Description

LPnE 70-6603 Statos-31,-41 Printer/plotter
(620-76)

LPnG 70-6603 Statos-31/42 Printer/plotter
(42,51,71)

LPnH 70-7702 Statos-31 (-41,-51,-52)

LPnJ 70-66xx Statos-33

ClnA See sec. 19 Process 1/0

COnA See sec. 19 Process 1/0

wcs 70-4002 Writable control store

Note: Other peripheral devices can be added to the
system by creating an EQP directive with a unique phsyical­
unit name for the device. A controller table with the same
name is then added to the VORTEX nucleus by an ADD
directive (section 15.5.5).

SYSTEM GENERATION

15-11

SYSTEM GENERATION

Example: Define a system containing one model B RMD,
one model A magnetic-tape unit, one mode A card reader,
one model A line printer, one model A Teletype, one model
A high-speed paper-tape reader/punch, one model A card
punch, and a writable control store.

EQP,DOB,016,1,020,3
EQP,MTOA,010,1,022,5
EQP,CROA,030,1,024,0
EQP,LPOA,035,1,024,0
EQP,TYOA,01,1,0,p
EQP,PTOA,037,1,0,0
EQP,CPOA,031,1,022,0
EQP,WCS,074,1,0,0

The paper width of each Statos on the system must be
defined through use of the SGEN DEF directive (see section
15.5.14). This directive has the form

where

DEF, V$SWnm,c

m

is the controller number (0, 1 or 2)

is the Statos model code (D,E,G,H, or J)

is the width code, defined as

O - 8-1/2-inch
1 = 11-inch
2 = 14-7 /8-inch
3 22-inch

4 with SUB
5 = with SUB
6 with SUB

with SUB

Example: Specify a SGEN directive for model G Statos on
controller 1 with 14-7 /8-inch width paper

DEF,VSSW1G,2

15.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each
RMD. It has the general form

where

15-12

PRT,Dcup{l),s(l),k{l);Dcup(2),s(2),k(2); ... ;
Dcup(n),s(n),k(n)

Dcup{n)

s{n)

k{n)

is the name of the RMD partition with c
being the number (0, 1, 2, or S) of the
controller, u the unit number (0, 1, 2, or
3), and p the partition letter (A through
T, inclusive)

is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on any RMD is 32,768
sectors

is the protection code (single
alphanumeric character including$) for
the partition, or • if the partition is
unprotected

At least six paritions are required for the system rotating
memory. PRT directives are required for every partition on
every RMD in the system. While the partition specifications
can appear in any order, the set of partitions specified for
each RMD must comprise a contiguous group, e.g., the
sequence DOOA, DOOC, DOOD, DOOB is valid, but the
sequence DOOA, DOOC, DOOD, DOOE constitutes an error.

NOTE: If the LIB unit is an RMD, the PRT directives for
that RMD are ignored and the existing PST for the RMD is
used. However, even though the PRT directives are ignored
the RMD unit should have at least one PRT directive. RAZI
may be used to partition the RMD unit after system
generation. If the RMD SGL is to be saved, it must be
replaced with a scratch pack prior to executing RAZI for
that unit.

Logical units 101 through 106 inclusive have preassigned
protection codes. Do not attempt to change these codes.

Preassigned Protection Codes
Unit Number 101 102 103 104 105 106
Code S B C D E F

Total number of tracks of all partitions and the capacity of
VORTEX nucleus must not exceed rotating-memory track
capacity. The nucleus size is equal to the memory size
divided by the product of the number of sectors per track
and 120. Tracks not included by a PRT directive are not
accessable to the system.

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code

0 A 2
0 B 20
0 c 25
0 D 40
0 E 8
0 F 18
0 G 18
0 H 66

A 40
B 60
c 50
D 52

PRT,DOOA,2,C1DOOB,20,F
PRT,DOOC,2S,E1DOOD,40,D;DOOE,8,S
PRT,DOOF,18B1DOOG,18,*1DOOH,66,*
PRT,D01D,52;X;D01C,50,*
PRT,D01A,40,•;D01B,60,R

15.5.4 ASN (Assign) Directive

c
F
E
D
s
B
None
None
None
R
None
x

This directive assigns logical units to physical devices. It
has the general form

ASN,lun(l) = dev(l),lun(2) = dev(2), ... ,lun(n) - dev(n)

where each

lun(n) is a logical unit number (1 through 100
or 107 through 255, inclusive) that can
be followed optionally by a two-character
logical unit name e.g., 107:Y7

dev(n) is a four-character physical-device
name, e.g., TYOO,DOOG (table 17-1)

If a new assignment specifies the same logical unit as a
previous assignment, the old one is replaced and is no
longer valid. All logical units for which physical device
assignments are not explicitly made are considered dummy
units, except preassigned.

SYSTEM GENERATION

Restrictions: Any attempt to change one of the preset
logical unit name:number or name:number:partition rela·
tionships given in table 15·3 will cause an error to be
flagged. Table 15·4 indicates the permissible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS for normal assembler
operation).

Example: Specify physical device assignments for logical
units 1·12, inclusive, 107 and 108, and 180 and 181, where
the last two units have, in addition to their numbers, two·
character names.

ASN,1•TY00,2•CR00,3•TY01,4•CROO
ASN,5•LP00,6•MT00,7•DOOI,8•DOOG
ASN,9•DOOH,10•DOOG,11•TY00,12•LPOO
ASN,107•LP00,108•CROO
ASN,180:S6•MT00,1811S8•MT01

Table 15-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

oc - 1 LO = 5 GO = 9 13 - RPG IV READ

SI - 2 Bl = 6 PO = 10 14 RPG IV PUNCH

so - 3 BO = 7 DI = 11 15 RPG IV PRINT

Pl - 4 SS - 8 DO = 12

Preset logical-unit/RMD-partition relationships:

Logical-Unit Logical-Unit Partition
Name Number Name

CL 100 DOOA
FL 106 DOOB
BL 105 DOOC
OM 104 DOOD
cu 101 DOOE
SW 102 DOOF

Optional logical-unit!RMD-partition relationships

GO 9 DOOG
SS 8 DOOH
PO 10 DOOH
Bl 6 DOOi
BO DOOi

1. CU file must be as large as background task's largest
part in central memory at one time (24K assumed
above).

2. SW file must be as large as the largest single task
including overlays (24K assumed above).

3. GO file must be somewhat larger than the largest task
run in load-and-go mode (24K assumed). If system is

Protection
Key

c
F
E
D
s
B

none
none
none
none
none

Minimum
VORTEX Sector
Allocation

025 (see note 5)
0106

01135
0417
0310 (See note 1)
0310 (See note 2)

0310 (See note 3)
varies
0515 (See note 4)
varies
varies

foreground only or all tasks will be entered in libraries
before execution, this partition may be eliminated.

4. PO file must be large enough for source images of the
largest task to be assembled or compiled. Source
images are stored 3 card images per sector (1000
cards assumed above). If this function is assigned to
magnetic tape, this partition may be eliminated.

5. There are 12 entries per 2 sectors. Number of sectors
equals numbers of entry + 6.

15-13

SYSTEM GENERATION

Table 15-4. Permissible Logical-Unit Assignments

Telety11e
Logical Units or CRT

(OC) x

(SI) x

3 (SO) x

4 (Pl) x

(LO) x

6 (Bl)

(BO)

8 (SS)

9 (GO)

10 (PO)

11 (DI) x

12 (DO) x

15.5.5 ADD (SGL Addition) Directive

This directive specifies the SGL control records and object
modules after which new control records and/or object
modules are to be added during nucleus generation. It has
the general form

ADD,p(l),p(2), . . ,p(n)

where each p(n) is the name of a control record or an
object module after which new items are to be added.

When the name of a specified item is read from the SGL,
the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT*

if an item is to be added from the SGEN ALT input unit
(section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the

15-14

Permissible Physical Units

RMD or
MT

x

x

x

x

x

x

x

x

Other Other
Line Output Input
Printer (CP,PT) (PT,CR)

x

x

x x

x

x

x

x

ALT unit and adds it to the SGL, then prints on the OG unit
the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added during
nucleus generation after control records or object modules
named PROGl, PROG2. and PROG3.

ADD,PROG1,PROG2,PROG3

15.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object
modules to be replaced with new control records and/or
object modules during nucleus generation. It has the
general form

REP,p(l),p(2), ... ,p(n)

where each p(n) is the name of a control record or an
object module to be replaced.

When the name of the specified item is read from the SGL,
the item is skipped and the message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT*

if an item is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reacis an object module from the
ALT unit and replaces p(n) with it in the SGL, then prints
on the OC unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that control records or object modules
named PROGA and PROGB are to be replaced during
nucleus generation.

REP,PROGA,PROGB

~ALT has a special form which allows searching the ALT
device for a specified program. The form is

ALT,name

where

name is one to six alphanumeric characters
representing the TITLE name of the
model to be added

name can either specify an object module name or a TDF
record name. When specified, ALT will search the alternate
unit from its current position for the specified module. If an
EOF is encountered prior to finding the module an SG08
diagnostic occurs. To cause the alternate unit to rewind
prior to each search, set Sense Switch 1 prior to entering
the ALT directive. If no module name is specified, ALT will
load from its current position.

For example, to search for and load an object module
named PGRMl, specify

ALT,PGRM1

To search for and load a TDF directive for TBLPOF, specify
ALT,TBLPOF

SYSTEM GENERATION

15.5.7 DEL (SGL Deletion) Directive

This directive specifies the SGL control records and object
modules that are to be deleted during nucleus generation.It
has the general form

DEL,p(1),p(2), ... ,p(n)

where each p(.n) is the name of a control record or an
object module to be deleted.

When the name of a specified item is read from the SGL,
the item is skipped and processing continues with the
following control record or object module.

Example: Delete, during nucleus generation, all control
records and object modules named PROGl and PROG2.

DEL,PROG1,PROG2

15.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after
which new load-module packages are to be added during
library generation. It has the general form -

LAD,p(1),p(2), ... ,p(n)

where each p(n) is the name of a load·module package
from an SLM control directive after which new items are to
be added.

When the name of a specified load-module package is read
from the SGL, the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if a load-module package is to be added from the SGEN
ALT input unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and adds it to the library, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added, during
library generation, after load·module packages named
PROGl, PROG2, and PROG3.

LAD,PROG1,PROG2,PROG3

15-15

SYSTEM GENERATION

15.5.9 LRE (Library Replacement) Directive

This directive specifies the SGL load-module package to be
replaced with new load-module packages during library
generation. It has the general form

LRE,p(l},p(2), ... ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be replaced.

When the name of the specified load-module package is
read from the SGL, the program is skipped and the
message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if module is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on
theOC unit.

Example: Specify that load-module packages named
PROGA or PROGB are to be replaced during library
generation.

LRE,PROGA,PROGB

15.5.10 LOE (Library Deletion) Directive

This directive specifies the SGL load-module packages that
are to be deleted during library generation. It has the
general form

LDE,p(l),p(2), ... ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read
from the SGL, the load-module package is skipped and
processing continues with the following load module.

15-16

Example: Delete, during library generation, all load­
module packages named PROGl and PROG2.

LDE,PROG1,PROG2

15.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modules (PIMs)
in the system, the interrupt levels to be enabled at system­
initialization time, and the interrupts to be manipulated by
user-coded interrupt handlers. The PIM directive has the
general form

PIM,p(l},q(l),r{l),s(l);p(2),q(2),r(2),

where each

p(n)

q(n)

r{n)

s(n)

s(2); ... ;p(n),q(n),r(n),s(n)

is an interrupt line number comprising
two octal digits with the first being the
PIM number and the second the line
number within the PIM. The two digits
must be preceded by a zero, e.g.,
002,011

is the name (1 to 6 characters) of the
task handling the interrupt. The name
format is TBxxxx, where xxxx is the
hardware code name. For s(n) = 2, q(n)
is the interrupt processor entry name.

is the content of the interrupt event
word in octal notation (see appendix F
for nonzero values for standard
hardware)

is 0 for an interrupt using the common
interrupt-handler or 1 for a directly
connected interrupt option l, or 2 for
directly connected interrupt option 2.
(Described in section 14.4.5)

If an interrupt line is to use the common interrupt handler,
a TIDB is generated for the related interrupt-processing
routine, which can be in the VORTEX nucleus or in the
foreground library.

If an interrupt line is to have a direct connection, the
interrupt-processing routine must be added to the VORTEX
nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the
common interrupt handler, the other directly connected,
option 1.

PIM,002,TBMTOA,00001,0;003,TBLPOB,01,1

Note: The only interrupt used by the magnetic-tape 1/0
driver is the motion complete.

Note: The interrupt event word, r(n) for a Teletype or CRT
(Teletype compatible) must be set to 01 for input interrupt
on 02 for output interrupt.

15.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real-time clock. It has the general
form

where

CLK,clock,counter,interrupt

clock

counter

is the number of microseconds in the
basic clock interval

is the number of microseconds in the
free-running counter increment period.
Stored in V$FREE but not used in
VORTEX II. Its nominal value is 100.

interrupt is the number of milliseconds in the user
interrupt interval: This value must be
between 5 and 50.

The value of interrupt, when not a multiple of 5 millisec·
onds, is increased to the next multiple of 5 milliseconds;
e.g., if interrupt is 31, the interrupt interval is 35
milliseconds.

Example: Specify a basic clock interval of 100 microsec·
onds, a free-running counter rate of 100 microseconds, and
a user interrupt interval of 20 milliseconds.

CLK,100,100,20

15.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSK,task(l),task(2), ... ,task(n)

where each task(n) is the name of an RMD foreground·
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec·
tion 15.7).

SYSTEM GENERATION

Resident Tl DBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified on a SCHED call. A
resident TIDB is created at system generation for each task
specified on a TDF directive (paragraph 15.6.2).

These tasks are treated as user mode tasks and are not
executed in map 0. Hence, 1/0 instructions cannot be
executed by these tasks. Resident map O tasks are added
to the nucleus by adding the programs on the SGL between
the CTL,21 and CTL,PART003 control records. Section
14.4.8 describes resident tasks.

Example: Specify that foreground-library tasks RTA, RTB,
and RTC be made resident tasks.

TSIC,RTA,RTB,RTC

15.5.14 DEF (Define External) Directive

This directive enters a name with a corresponding absolute
value into the SGEN loader tables and the CL library. It has
the general form

DEF,name(l),value(l);name(2),va/ue(2); ... ;name(n)
va/ue(n)

Modules processed by either SGEN or LMGEN can refer·
ence any names defined by the DEF directive

Example: Use the DEF directive for the VTAM LCB address
in CTMXOA. The entry in CTMXOA for the LCB address
might be

EXT
DATA

V$LCWO
V$LCWO

Then, the following DEF directive would define the LCB to
be at location 075000

DEF,V$LCW0,075000

15.5.15 EDR (End Redefinition)
Directive

This directive, which must be the last SGEN directive,
specifies all special system-parameters, or terminates
SGEN directive input. If only a redefinition of resident tasks
is required, the EDR directive is of the form

EDR,R

but if a full SGEN is necessary, the EDR directive has the
general form

where

tidb

EDR,S, tidb,stack,part,llst,kpun,map,ana/ysis

is the number (01 through 0777,
inclusive) of 25-word empty TIDBS
allocated

15-17

SYSTEM GENERATION

a tack

part

list

kpun

map

analysis

is the size (0 through 037777, inclusive)
of the storage and reentry stack
allocation, which is equal to the number
of words per reentrant subroutine
multiplied by the number of levels
calling the subroutine summed overall
subroutines

is the maximum number (6 through 20,
inclusive) of partitions on an RMD in the
system

is the number of lines per page for the
list output, with typical values of 44 for
the line printer and 61 for the Teletype

is 26 for 026 keypunch Hollerith code, or
29 for 029 code

is L if map information is to be listed, or
O if it is to be suppressed

is 0 or blank if a complete bad track
analysis is desired on all RMD's, or 1 if
the bad track tables from the last SGEN
are to be reused. If this parameter is
omitted, a full analysis is performed. A
value of 1 may be entered only when an
analysis has been made on a previous
SGEN effort. If SGL is on slave disc,
bypass (SET 1) the bad track analysis.

Bad-track or RMD partitioning analysis is performed
following input of the EDR directive. When that process is
complete, the VORTEX nucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinition of resident tasks only.

EDR,R

Specify full system generation with no stack area, a
maximum of five partitions per RMD, 44 lines per page on
the list output, 026 keypunch mode, and a list map, and a
new bad track analysis is wanted.

EDR,S,0,0,5,44,26,L

Specify full system generation with 0500 addresses in the
stack area, a maximum of 20 partitions per AMO, 30 lines
per page on the list output. 029 keypunch mode, and sup­
pression of the list map. Assume bad track tables from
the last SGEN are still good. and reuse them.

EDR,S,O,OS00,20,30,29,0,1

15.5.16 Required Directives

VORTEX system including writable control store (WCS)
must include an EQP,WCS ... directive.

15·18

Systems without a WCS must delete certain WCS support
software modules. In particular, the following directives
should be included to delete the MIUTIL and WCSRLD
tasks:

LDE,l"MIUTI
LDE,l"WCSRL

In addition, the following directives may optionally be used
to delete the remaining microprogramming support mod·
ules. These modules may be used on systems without WCS,
but their deletion will make extra space available in the
background library. The following directives delete the
microprogram assembler and the simulator:

LDE,BMIDAS
LDE,BMICSI

Systems including VTAM require a DEF directive to define
the LcB address. The format is:

DEF, V$LcWn, aaaaaa where n is the DCM number
and aaaaaa is the LcB address for the DCM

Systems including a statos printer /plotter require a DEF
directive to define the bed width. The format is:

DEF, V$SWcm,a
where c - controller number

m - model code
a - 0 for 8·112 inches

1 for 11 inches
2 for 14·5/8 inches
3 for 22 inches

4 - with SUB
5 - with SUB
6 - with SUB

- with SUB

15.6 BUILDING THE VORTEX NUCLEUS

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the nucleus
processor is loaded upon completion of directive process·
ing. Once loaded, the nucleus processor reads the SGL
routines and builds the VORTEX nucleus as specified by
the routines and the SGEN control records.

There are three SGEN control records used in building the
nucleus:

SLM Start load module
TDF Build task-identification block
MEM Default extra memory pages
END End of nucleus library

Normally these control records are used only to replace
existing SGL control records.

VORTEX nucleus processing consists of the automatic
reading of control records and object modules from the
SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases, follow the procedures given in
section 15.5.5 and 15.5.6, respectively.

15.6.1 SLM (Start Load Module)
Directive

This directive specifies the beginning of a load module. Its
presence indicates the beginning of the system initializer or
VORTEX nucleus. The directive has the general form

SLM, name

where name is the name of the load module that follows the
directive.

Example: Indicate the beginning of the VORTEX nucleus.

SLM, VORTEX

15.6.2 TDF (Build Task-Identification Block)
Directive

This directive specifies all parameters necessary to build a
task·identification block in the VORTEX nucleus. It has the
general form

TDF,name,exec,ctrl,stat,level ~ V75 J

where

name

exec

ctr I

stat

SYSTEM GENERATION

is the name (1 to 6 alphanumeric
characters) given to the TIDB for linking
purposes

is the name (1 to 6 alphanumeric
characters) associated with the
execution address of the task

is the name (1 to 6 alphanumeric
characters) of the controller table
required for Teletype and CRT
processing tasks, or is O for any other
task

is the 16·bit TIDB status word where the
settings of the individual bits have the
significance shown in table 15-5

levl is the priority level of the related tasks

V75

Example:

specifies long TIDB for V75 system

Define a foreground resident task PROGl
on priority level l O to execute on boot.

The TDF directive causes a resident TIDB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See
section 15.5.13 for generation of resident tasks without
resident TIDB.

Table 15·5. TIDB Status-Word Bits

Bit When Set Indicates

15 Interrupt suspended

14 Task suspended

13 Task aborted

Explanation

The task is suspended during the
processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB
words 12-16 (interrupt stack).

The task Is suspended because
of 110 or because it is wait-
ing to be activated by an inter­
rupt, time delay, or another
task. The task is activated
whenever this bit is zero, or
if TIDB word 3 has an inter·
rupt pending and the task ex­
pects the interrupt.

The task is not activated. All
stacked 1/0 is aborted, but
currently active 1/0 is com­
pleted.

15-19

SYSTEM GENERATION

Table 15·5. TIDB Status-Word Bits (continued)

Bit

12

11

10

9

8

6

4

3

2

0

15.6.3 END Directive

When Set Indicates

Task exited

TIDB resident

Task resident

Foreground task

Check-point flag

Task scheduled by
time increment

Time delay active

Task checkpointed

Error in task

Task interrupt expected

Overlay task

Task-schedule this task

Task searched, allo·
cated and loaded

This directive indicates the end of the system initializer or
the VORTEX nucleus. It has the form

END

Example: Indicate the end of the system initializer.

15·20

END

Explanation

The task is not activated. All
stacked and currently active
l/O is completed.

The TIDB (drivers, task·
interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or
exited.

The task is resident and not
released when aborted or
exited.

The task is in protected fore·
ground.

Set: may be check-pointed by a lower
priority task.

Reset: may not be check-pointed by a
lower priority task.

The task becomes nonsuspended
when a specified time interval
is reached.

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check·
pointed and suspended. 1/0 is
not activated.

The task contains an error that
will cause an error message to
be output.

A task interrupt is expected.

The task contains overlays.

The scheduling task is suspended
until the scheduled task exits
or aborts.

The task is loaded in memory and
is ready for execution.

15.6.4 MEM Directive

This optional directive performs the same function as the
same directive in LMGEN (see section 6.2.7). The directive
has the general form

MEM,n

where

is the number of extra pages desired.

This directive, if used, must appear after the last ESB
directive and before the END directive.

15.6.5 Memory Parity Considerations

Memory parity is not a supported feature under VORTEX.
For those systems which require the use of memory parity,
the user may write his own memory.parity service routine
(see section 14) and add it to the system. The following are
considerations when using memory parity:

The memory parity interrupt trap must be an even
modulo·8 address, e.g., 010, 0100, 0110, 0200, etc. The
exact address depends upon the number of PIMs in
the system. For example, a system with 3 PIMs can
use any of the following addresses: 0160, 0170, 0200,
0230, 0240, 0250, 0260, 0270, or 010. If 4 PIMs are
in the system, then any of the above addresses except
for 0160 and 0170 may be used. In the case where all
8 PIMs are used, the only available address will be
010.

For trap addresses between 0100 and 0277, the SGEN
PIM directive, specifying the direct connect option,
may be used to link up the trap address with the user's
memory-parity routine. If a trap address of 010 is used,
the PIM directive cannot be used. In this case, the
easiest means of linking the trap address and the
service routine would be to modify the "low-core"
module (V$LMEMBK) to specify an EXT to the user's
interrupt service routine.

No enable/disable memory parity instructions are
required and hence no changes are required for the
system initializer.

15.7 BUILDING THE SYSTEM LIBRARIES AND
RESIDENT TASK CONFIGURATION

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the library
generator is loaded upon completion of nucleus processing.
If only reconfiguration of resident tasks has been requested
(R form of the EDR directive), the resident task configura­
tor is loaded immediately after directive processing.

A load module is a logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. It resides in the foreground or background
library, or in the user library. Load modules are constructed
from sets of binary object modules interspersed with
alphanumeric control records. The control records indicate
the beginning and end of data for incorporation into each

SYSTEM GENERATION

load module, and specify certain parameters to the load
module. The group of object modules and control records
used to construct a load module is called a load-module
package (LMP). Figure 15·5 shows an LMP for a load
module without overlays, and figure 15-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record, and includes all
modules and records between the SLM and END.

SLM,namel

TID',name2, . . .

Object Modules Comprising
the Root Segement

ESB

END

NOTE:

= Alphanumeric control record

Figure 15-5. Load Module Package for Module Without
Overlays

There are five SGEN control records used in building the
library:

SLM
TID
OVL
ESB
END

Start load module
Task-identification block specification
Overlay
End of segment

Library processing consists of the automatic reading of
control records and object modules from the SGL, and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases, follow the procedures given in
sections 15.5.8 and 15.5.9, respectively.

Resident-task configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 15.5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system, input the TSK directives followed by the
R form of the EDR directive (section 15.5.15), thus
bypassing nucleus and library processing and allowing the
resident-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro­
priate message is output.

15-21

SYSTEM GENERATION

15.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the
general form

SLM, name

where name is the name of the LMP that begins with this
directive.

Example: Indicate the start of the LMP named ABC.

SLM,ABC

15.7.2 TIO (TIDB Specification)
Directive

This directive contains the parameters necessary for the
generation of the task·identification block required for each
generated load module. The TIO directive has the general
form

where

TID,name,mode,ovly,lun

name

mode

ovly

is the name (one to six alphanumeric
characters) of the task

is 1 if the task is a background task, or 2
if it is a foreground task

is the number of overlay segments, or O
if the task has no overlay segments,
(note that the value 1 is invalid)

lun is the number of the logical unit onto
which the task is to be cataloged

Once a TIO directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 15.7.4) is found.

Examples: Specify a TIOB for a task PROGl without
overlays for cataloging on the BL unit (105).

TID,PROG1,1,0,105

Specify a TIOB for the task PROG2 with four overlay
segments for cataloging on an FL unit (106).

TID,PROG2,2,4,106

15-22

Note: If a specified program is not found in the foreground
library, configuration continues, but an appropriate mes­
sage is output.

SLM,namel

TID,name2, ...

Object Modules Comprising
the Root Segment

ESB

OVL,name3, ...

Object Modules Comprising
the First Overlay Segment

ESB

OVL,name4, ...

Object Modules Comprising
the Second Overlay Segment

Object Modules "C'omprising
the nth Overlay Segment

ESB

END

NOTE:

• = Alphanumeric control record

Figure 15-6. Load Module Package for Module With
Overlays

15.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL,segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: Indicate the beginning of the overlay segment
SINE.

OVL,SINB

15.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e., that all
object modules have been loaded and processed. The
directive has the form

ESB

The ESB directive causes the searching of the CL library,
which was generated during nucleus processing, to satisfy
undefined externals.

The ESB directive concludes both root segments (following
TID, section 15.7.2) and overlay segments (following OVL,
section 15.7.3) of a load module.

Example: Indicate the end of a segment.

ESB

15.7.5 END (End Library) Directive

This directive indicates the end of load-module generation.
It has the form

END

Example: Specify the end of load-module generation.

END

15.8 SYSTEM INITIALIZATION AND
OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and LIS units the message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. If writable control store is present in the system,
the following messages will appear on the OC device at thi~
time:

I010,WCSRLD
PILE WCSIHG NOT FOUND
WCS RELOAD ABORTED

These messages are output by the WCS reload task. In
WCS systems, this task is automatically scheduled upon
loading the system in order to restore WCS contents. To do

SYSTEM GENERATION

this, it uses the contents for WCS which were saved on a
disc file the last time WCS was loaded. At this point,
however, WCS has not yet been loaded. Thus, the reload
task cannot restore WCS and exits after outputting the
above messages. At this time, the OM library should be
loaded and build on the RMD using FMAIN.

The OM library is provided as job streams as the second
through thirty-fifth files on the SGL. An EOF separates the
SGL from the OM stream. A system generation leaves

magnetic tape and card SGLs prior to this EOF, thus it
must be skipped over before executing the OM job stream.
For disc SGLs the OM library object modules are on the
second partition of the disc pack (DcuB). Refer to the
VORTEX/VORTEX II Installation Manual for details.

The VORTEX system is now operating with the peripherals
in the status specified by TID control records.

If the EDR directive specified a listing, linking information
is listed on the LIS unit during nucleus processing and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 15·7 through 15-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME

AAA
BBB

zzz

LOCATION

017285
021255

075777

NONSCHEDULED TASKS

NAME

TBABC
TB DEF

TBXYZ

LOCATION

072620
074640

076400

Figure 15-7. VORTEX Nucleus Load Map

15-23

SYSTEM GENERATION

SLM,BGTSKI
TID,JCP,1,0,105
ESB

MOP A 032556
QRS R 000200

TUV A 032501
SLM,FGTSKI

TID,V$0PCM,2,8,106

ESB

GHI R 000010
JKL R 000012

MNO R 000077

Figure 15-8. Library Processor Load Map

RMD PARTITIONING
NAME

DOOA
DOOB
DOOC
DOOD
DOOE
DOOF
DOOG
DOOH

D01A
D01B
D01C
D01D

15-24

FIRST LAST
TRACK TRACK

0007 0008
0009 0028
0029 0053
0054 0093
0094 0101
0102 0119
0120 0137
0138 0203

0001 0039
0040 0099
0100 0149
0150 0203

Figure 15-9. RMD Partition Listing

MEMORY RESIDENT TASKS

NAME

PROG1
PROG2
PROG3
PROG4

LOCATIONS

014630
014630
NOT FOUND
014500

Figure 15-10. Resident-Task Load Map

BAD
TRACKS

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000

PAGES (OCTAL) ALLOCATED TO

0 PAGE 0 SYSTEM DATA
1 - so UNALLOCATED

51 - 72 NUCLEUS PROGRAM MODULE
72 - 75 NUCLEUS TABLE MODULE

75 GLOBAL FCB PAGE
75 FOREGROUND BLANK COMMON

100 - 177 UNALLOCATED
VORTEX SYSTEM READY

Fl1ure 15-11. Phy1lcal Memory Allocation

15.9 SYSTEM GENERATION EXAMPLES

EXAMPLE 1

Problem: Generate a VORTEX system using the following
hardware:

a. Computer with 32K main memory

b. A model 70·7610 (620-37) disc unit with device address
Ol6on BIC20

c. Teletype keyboard/printer

d. Card reader

e. Two buffer interlace controllers (BICs) with device
addresses 020 and 022

One priority interrupt module (PIM) with device
address040

g. No writable control store

and having the characteristics listed below:

a. Foreground common size - 0200

b. Storage/reentry stack area size - 0200

c. Number of disc partitions - 9

d. All eight interrupt lines connected through a common
interrupt handler 0 - BICl, 1 - BIC2, 2 - CR, 3 -
Disc seek, 4 - TY read, 5 = TY write, 6·7
unassigned

e. One user-coded task added to the resident module
(PROGl)

JCP replaced with a new version

g. Che user-coded load module added to the background
library (after LMGEN) (PROG2)

h. The system file listed after system generation

SYSTEM GENERATION

Procedure:

Step User Action SGEN Response

1 Load and execute the card Loads the l/O interrogation
reader loader (table 15-1) routine punched cards from

the card reader, and outputs
on the OC unit

1/0 INTERROGATION

2 On the OC unit, input Loads the SGEN drivers and
directive processor, and

DIR= TYOOA,01 outputs
LIB= CROOA,030
ALT• CROOA,030 INPUT DIRECTIVES
LIS• TYOOA,01
SYS• DOOB,016,020

3 On the Teletype (DIR unit), Processes the directives,
type partitions the disc, loads

the nucleus processor and
CLK, 100, 100,20 builds the nucleus, loads
MRY,757777,0200,32 the library processor and
EQP,DOB,016,1,020,3 builds the library until
EQP, TYOA,01, 1,0,0 load module JCP is encoun-
EQP,CROA,030, 1,022,0 tered, and outputs
PRT,DOOA,2,C;DOOB,20,F
PRT,DOOC,25,E;DOOD,40,D REPLACE BJCP
PRT ,DOOE,8,S;DOOF, 18,B READY
PRT,DOOG, 18, *;DOOH,52, •
PRT,DOOl,14,*
ASN,1 • TY00,2 • TY00,3 = TYOO
ASN,4 "' CR00,5 == TY00,6 • CROO
ASN,7 • DOOl,8 • DOOH,9 • DOOG
ASN, 10•DOOH,11 • TY00, 12 • TYOO
ASN.180•DOOH,181 • DOOi

PIM,03, TBDOB,01,0;02, TBCROA,01,0
PIM,03, TBDOB,Ol,0;04, TBTYOA,01,0
PIM,05, TBTYOA,02,0
TSK,PROGl
LRE,BJCP
LAD,BLMGEN
LDE,FMIUTI
LDE,FMICSI
LDE,FMIDAS
LDE,FNCSRL
EDR,S,20,0200,9,61,26,L

4 Load revised version of Reads and processes the
BJCP load module in the new load module, and
card reader, and on DIR outputs:
type:

READY
ALT

5 Load the remainder of the Processes the load mod·
load module library in the ule library until the
card reader, and on DIR type completion of LMGEN,

and outputs

LIB ADD AFTER BLMGEN

READY

6 Load the PROGl load module Reads and processes PROGl,
in the card reader, and on and outputs
DIR type

15·25

SYSTEM GENERATION

15·2·6

Procedure: (continued)

Step

8

9

User Action

ALT

Load the PROG2 load module
in the card reader, and on
DIR type

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LIB

None

EXAMPLE 2

SGEN Response

READY

Reads and processes PROG2,
and outputs

READY

Processes the remainder of
the load module library,
copies PROGl from the FL
unit to the VORTEX nucleus,
lists the resident task in·
formation, and outputs on
OC and LIS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

Problem: Replace the current resident tasks in the
foreground library with the tasks listed below in an
operational VORTEX system. Assume the SGL is on
magnetic tape unit 0. The system has a line printer and a
620-48 RMD on DA014. ALT is on the slave MT.

Procedure:

Step

2

3

4

User Action

PROGl
ABC
TEST
EFG

Load and execute the magnetic
tape loader (table 15·1)

On the OC unit, input

DIR • TYOOA,01
LIB• MTOOA,010
ALT• MTOlA,010
LIS • LPOOA,035
SYS • DOOA2,014,020

On the Teletype (DIR unit),
type

TSK,PROGl,ABC
TSK,TEST,EFG
EDR,R

None

SGEN Response

Loads the 1/0 interrogation
routine from magnetic tape
and outputs from the OC unit

10 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROGl, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

SECTION 16
SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a
background task that maintains the system-generation
library (SGL). The SGL (figure 15-2) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating system.

16.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job­
control-processor (JCP) directive /SMAIN (section 4.2.21).

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE ALT

NEW OBJECT

SYSTEM INPUT
(SI)

LOGICAL UNIT

MODULES AND ,____ ____ .,
CONTROL
RECORDS

SMAIN

Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the SI logical unit to maintain
the SGL. No processing of the SGL takes place before all
SMAIN directives are input and processed. Then user·
specified object modules and/or control records are added,
deleted, or replaced to generate a new SGL.

SMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this, input a /MEM directive
(section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbols.

SYSTEM OUTPUT
(SO)

LOGICAL UNIT

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

LIST OUTPUT
(LO)

LOGICAL UNIT

VTll-111!1

Figure 16-1. SMAIN Block Diagram

16-1

SYSTEM MAINTENANCE

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 16.2) input
through the SI logical unit.

b. The old SGL input through the logical unit specified by
the IN directive (section 16.2.1).

c. New or replacement object modules and/or control
records input through the logical unit specified by the
ALT directive (section 16.2.3).

d. Error-recovery inputs entered via the SO logical unit.

System-maintenance directives specify both the changes to
be made in the SGL, and the logical units to be used in
making these changes. The directives are input through the
SI logical unit and listed, when specified, on the LO logical
unit. If the SI logical unit is a Teletype or a CRT device, the
message SM*• is output to indicate that the SI unit is
waiting for SMAIN input.

The old SGL contains three types of records: 1) control
records and comments (ASCII), 2) the system-generation
relocatable loader and BOOTLODR (the only SGL absolute
core-image records), and 3) relocatable object modules
such as are output by the DAS MR assembler and the
FORTRAN compiler.

New or replacement object modules and/or control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SMAIN operations.
Error messages applicable to this component are given
Appendix A.16. Recovery from the type of error represented
by invalid directives or parameters is by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the SI unit.

Recovery from errors encountered while processing object
modules and/or control records is by either of the
following:

a. Input the character R on the SO unit, thus directing a
rereading and reprocessing of the last record.

b. Input the character Pon the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or control record.

In the last two cases, repositioning is automatic if the error
involves a magnetic-tape unit or an RMD. Otherwise, such
repositioning is manual.

16·2

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SMAIN task and schedule
the JCP for execution.

OUTPUTS from the SMAIN comprise:

a. The new SGL

b. Error messages

c. The listing of the old SGL, if requested

d. Directive images

The new SGL contains object modules and control records.
It is similar in structure to the old SGL.

Error messages applicable to SMAIN are output on the SO
and on LO logical units. The individual messages, errors,
and possible recovery actions are given in Appendix A.16.

The listing of the old SGL is output, if requested, on the LO
unit. The output consists of a list of all control records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the
identification name of the module, the date the module
was generated, the size (in words) of the module (0 for a
FORTRAN object module), and the external names refer­
enced by the module, in the following format:

id-name date size entry-names external-names

Directive images are posted onto the LO unit, thus
providing a hardcopy of the SMAIN directives for perma·
nent reference.

16.1.1 Control Records

in SMAiN there are two types of control record:

a. SGL delimiters

b. Object-module delimiters

SGL delimiters divide the SGL into five parts. Each part is
separated from the following part by a control record of the
form

CTL,PARTOOOn

where n is the number of the following part, and the SGL
itself is terminated by a control record of the form

CTL,ENDOFSGL

Within SMAIN directives, these control records are refer­
enced in the following format

PARTOOOn
ENDOFSGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name
TID,name
OVL,name
TDF,name
ESB
END

The control records containing a name can be referenced
by use of the name alone in SMAIN directives. These
control records and their uses are described in the section
on the system-generator component (section 15).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load­
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record, the
entire LMP is deleted. Additions and replacements operate
analogously.

16.1.2 Object Modules

Relocatable object-module outputs from the DAS MR
assembler and the FORTRAN compiler are described in
appendix G.

16.1.3 System-Generation Library

The SGL is a collection of system programs in binary-object
form, and of control records in alphanumeric form, from
which a VORTEX system is generated. The structure of the
SGL is described in section 15.

16.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

IN
OUT
ALT

ADD
REP
DEL
LIST
END

Specify input logical unit
Specify output logical unit
Specify input logical
unit for new SGL items
Add items to the SGL
Replace SGL items
Delete items from the SGL
List the old SGL
End input of SMAIN directives

SYSTEM. MAINTENANCE

SMAIN directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (.)
or by equal signs (=). The directives are free-form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive.is

where

name,p(l),p(2), ... ,p(n)

name is one of the directive names given
above (any other character string
produces an error)

each p(n) is a parameter defined below under
the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(.) by equal signs (=)are omitted.

Error messages applicable to SMAIN directives are given in
Appendix A.16.

16.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old
SGL is to be input. It has the general form

where

I N,lun, key, filename

lun

key

is the name or number of the logical unit
to be used for the input of the old SGL

is the protection code, if any, required to
address fun

filename is the name of the input file only when
fun is a11 RMD oartition with a directory

There is no default value for fun. If it is not specified, any
attempt at SGL processing will cause an error message
output.

Once specified, the value of fun remains constant until
changed by a subsequent IN directive. Each change of fun
requires a new IN directive.

16-3

SYSTEM MAINTENANCE

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the start of the partition before
any processing takes place.

Examples: The old SGL resides on logical unit 4, the Pl
unit. Specify this unit to be the SGL input unit.

IN,4

The old SGL resides on logical unit 107, which requires the
protection code G. Specify this unit to be the SGL input
unit. (This is a non-directoried partition.)

IN, 107 ,G

16.2.2 OUT (Output Logical Unit) Directive

This directive specifies the logical unit on which the new
SGL is to be output. It has the general form

OUT ,lun, key, filename

where

lun is the name or number of the logical unit
to be used for the output of the new SGL

key is the protection code, if any, required to
addresslun

filename is the name of the output file when lun is
an RMD partition

The default value of lun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the PST before any processing
takes place. The PST comprises one entry defining the
entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new SGL.

OUT, 10

Specify that there is to be no output logical unit.

OUT,O

16-4

16.2.3 ALT (Alternate Logical Unit)
Directive

This directive specifies the logical unit from which new
object module(s) and/or control record(s) are to be input to
the new SGL. It has the general form

where

AL T,lun,key,filename

lun is the name or number of the logical unit
to be used for the input of new items to
theSGL

key is the protection code, if any, required to
address lun

filename is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains constant until
changed by a subsequent ALT directive. Each change of lun
requires a new ALT directive.

Examples: Specify that new object modules and control
records are to be input to the SGL from the Bl logical unit
only.

ALT,6

Make the same specification where Bl is an RMD partition
without a protection code. Use file FILEX.

ALT, BI, , FI LEX

Note: SMAIN does not accept packed binary. Use IOUTIL
to unpack binary if necessary.

16.2.4 ADD Directive

This directive permits the addition of object modules and/
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD,p(l),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record after which additions are to be made.

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and including an item
specified by one of the parameters, p(n), of the ADD
directive. After this item is copied, the message

ADD AFTER p(n)
SM**

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit.

If the control character input is Y, SMAIN adds the next
object module or control record contained on the logical
unit specified by the ALT directive (section 16.2.3), then
repeats the message requesting another control character.
This continues until the control character input is N.

If the control character input is N, SMAIN assumes the
additions at this point are complete. It continues copying
from the old SGL and outputs the message

END REPLACEMENTS

The entire process is repeated when the next item specified
by one of the parameters, p(n), of the ADD directive is
found. The items in the directive need not be in the same
order as they appear on the old SGL.

Example: During generation of a new SGL, add object
module(s) and/or control record(s) after the old SGL
control record PARTOOOl and after the old SGL object
module LMP, the added items to be input from the logical
unit specified by the ALT directive. Input

ADD,PART0001,LMP

then, when the message

ADD AFTER PART0001
SM**

appears, input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the ALT
directive, and again outputs the message

SM**

and awaits another control character. If more is to be
added here, input Y. If no more additions are required at
this point, input N. After receiving the N, SMAIN outputs
the message

END REPLACEMENTS

and continues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

ADD AFTER LMP
SM**

at which time the process is repeated.

SYSTEM MAINTENANCE

Note that PARTOOOl does not have to precede LMP in the
old SGL. If the positions of the items are reversed relative
to their order in the directive, the order of messages will be
reversed. In any case, the items on the logical unit
specified by ALT must be in the order in which they are to
be added to the SGL.

16.2.5 REP (Replace) Directive

This directive permits the replacement of object modules
and/or control records during generation of a new SGL.
The directive has the general form

REP,p(l),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it
into the new SGL. After this is completed, the message

REPLACE p(n)
SM**

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit. These
control characters operate just as in the ADD directive
(section 16.2.4), allowing the addition (in this case,
replacement, since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

Example: During generation of a new SGL, replace the old
SGL object module IOCTL with obiect modules and/or
control records from the logical unit specified by an ALT
directive (section 16.2.3). Input

REPLACE, IOCTL

then, when the message

REP IOCTL
SM**

appears, continue as for an ADD directive (section 16.2.4).

16.2.6 DEL (Delete) Directive

This directive permits the deletion of object modules and/
or control records during generation of a new SGL. The
directive has the general form

DEL,p(l),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record that is to be deleted.

16-5

SYSTEM MAINTENANCE

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n). of the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into
the new SGL. The items in the DEL directive need not be in
the same order as they appear on the old SGL.

If a listing of the old SGL is specified either by a LIST
directive (section 16.2.7) or by the L parameter of an END
directive (16.2.8), the deleted items are preceded on the
listing by asterisks(*).

Example: During generation of a new SGL, delete the
following old SGL items: object module IOST and control
record LMGENCTL.

DEL,IOST,LHGENCTL

~
PAGE 11/lJ/72

-114.M.l

Cl
uur~Pu
I.UT
.liOUT!.ODR
10 NAME UATE SIZE

~~ VSSGENL.0 10/02172 15!51

P•

Ul..filt!! OHE SIZE
:~l:

VSOOOAl OV24172 36

:!~f~! ID NAME IJA TE SlZE
v S.0.0.QA2 02124172 31'1

!;'lli;

lo NAfo'E OATE SIZE
-· VSOOl,)A\5 02124/72 3fi

t~;

l.D .. NAM.E OATE SIZE
vso10•1 02/24/12 31'1

·=

·~;~· 10 NA,.E DATE SIZE
UOtOA2 02/2<4172 3,;

..

ll> NAlolE OATE SIZE
:~;i VS01r:>A5 02/24172 Jl'I

.81j;

lo NA'1E IJATE SIZE
VSD20A1 02/24172 Jh

16.2.7 LIST Directive

This directive lists, on the LO logical unit, the old SGL as
found on the logical unit specified by the SMAIN directive
IN (section 16.2.1). The LIST directive has the form

LIST

Example: List the old SGL.

LIST

Figure 16-2 shows the format of output from this directive.

VC1ATEX SMAIN

ENTRY NAMES EXTERNAL NAK!I.
SGLOR TPROG lliUU,

8Sll.C..K. l!ll.M.
IPU8 l.LUN
II.US

ENTRY NAMES Elll!.BJiAI. tiil.!J
00041 ORW!O, DUU!

DR SK.RD Dfll11L
DRRU! nuun
OR RUD

f"ITAY NAM[S !llTU~L. l'l.AMJ
0ClOA2 DRW.10~ 12.RllAT

OR SK RD DBMIL.
ORR IT! DRR!lflD
ORlt!AD

ENTRY NA"IES !XTERNAL. ~AMI
OOOA5 ORlllEO' D.BlUT

ORl.K!JO lllt1tlL
OR RI Tl O!R!WO
OR RUD

ENTRY NAMES fl(l!BMM. Mllll
010A1 OFh•EO' DBIU T

D!ifSI< RD Dltl1lL
OR RITE .Dll.!J!D
ORRE4D

ENTRY NAMES !)(T!RNAL NA!1!1
D10A2 ORw!Qf J:tllll1

OR SK RD ORUJL.
ORRlTE DRR!l'tD
ORRUO

ENTRY NAMES F.:XT!R,.AI. NAH.D
010A5 ORlllf:O' DRl'UT

DRSK!ID Olll.lL
ORRITE ORR DO
ORRE~D

f NTRY r..iA"IES EXTERN.AL li!MU
D20A1 ORwEOf' D~SUT

Figure 16-2. SMAIN LIST Directive Listing

16-6

16.2.8 END Directive

This directive indicates that all ADD (section 16.2.4), REP
(section 16.2.5), and DEL (section 16.2.6) directives have
been input. END initiates the SGL maintenance process.
The directi.;e has the general form

END,l

where L, if present, specifies that the old SGL is to be
listed.

Examples: After all ADD, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

Initiate the SGL maintenance processing as above, but list
the old SGL.

END,L

16.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 16.2.1) to the logical unit specified by the
OUT directive (section 16.2.2), making the modifications
specified by the ADD (section 16.2.4), REP (section 16.2.5),
and DEL (section 16.2.6) directives, and thus creating a
new SGL.

Input of the END directive (section 16.2.8) initiates the
copying process. All ADD, REP, and DEL directives, if any,
must precede the END directive.

Modifications to the SGL are made through the logical unit
specified by the ALT directive (section 16.2.3). Such
modifications are in the form of additions and/or replace­
ments of object modules and/or control records. (These
items can also be deleted, but this process does not, of
course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there
is no error with respect to check-sum, record size, loader
codes, sequence numbers, or structure.

SYSTEM MAINTENANCE

16.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL,
and return to the JCP.

/SMAIN
IN,11
OUT,9
END
/ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9, listing the old SGL and
deleting object modules A, B, C, D, and E; and return to
the JCP.

/SMAIN
IN, II
OUT,9
DEL,A
DEL,B,C,D,E
END,L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL
on logical unit 4, and return to the JCP.

/SMAIN
IN,11
LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL;
add object modules or control records from logical unit 6
after control record PART0002 and after object module A;
replace load module LMGEN and control record JCPDEF;
delete object modules B, C, D, and E; and return to the
JCP.

/SMAIN
IN,11
OUT,9
ALT,6
ADD,PART0002,A
REP,LMGEN
DEL,B,C,D,E
REP,JCPDEF
END
/ENDJOB

16·7

SECTION 17
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

17.1 DEFINITIONS

An operator key-In request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of 110 requests
via the IOC (section 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
17.2.9).

17.2 OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

;SCH ED
;TSCHED
;ATIACH
;RESUME
;TIME
;DATE
;ABORT
;TSTAT
;ASSIGN
;DEVON
;DEVUP
;IOLIST

Schedule foreground task
Time-schedule foreground task
Attach foreground task to PIM line
Resume task
Enter or display time-of-day
Enter date
Abort task
Test task status
Assign logical unit(s)
Device down
Device up
List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (-).
However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

;request,p(l),p(2)., ... ,p(n)cr

where

request is one of the key-in requests listed above
in capital letters

each p(n) is a parameter defined under the
descriptions of the individual key-in
requests below

er is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash (\) deletes the entire present key-in
request.

Table 17-1 shows the system names of physical 110 devices
as used in operator key-in requests.

Peripherals for data communication are not used in
OPCOM request, but are controlled with the Network
Control Module (NCM) described in the VTAM Reference
Manual.

For greater clarity, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (-) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key-in requests are
given in Appendix A.17.

Table 17-1. Physical 1/0 Devices

System Name Physical Device

OUM Dummy

CPcu Card punch

CRcu Card reader

CTcu Cathode ray tube (CRT) device

Dcup Rotating-memory device (RMD)
(disc/drum)

LPcu Line printer or Statos-31/33

MTcu Magnetic tape unit

PTcu High-speed paper tape reader /punch

TYcu Teletype printer/keyboard

CLmA, COmA Process 1/0

17-1

OPERATOR COMMUNICATION

Table 17-1. Physical 110 Devices (continued)

System Name Physical Device

MXcu Communication Multiplexor

TCco Psuedo TCM

SPco Spool Unit

NOTES

c - Controller number. For each type of device,
controllers are numbered from 0 as required.

u - Unit number. For each controller, units are
numbered from 0 as required (within the
capacity of the controller).

cu can be omitted to specify unit 0 controller 0,
e.g., CROO or CR.

p = Partition letter. RMD partitions are lettered
from A to T as required to refer to a partition on
the specified device, e.g .. DOOA.

m = Multiplexor number

17.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key-in request immediately schedules the specified
foreground-library task for execution at the designated
priority level. It has the general form

;SCHED, task,level,lun,key

where

task

level

lun

key

is the name of the foreground task to be
scheduled

is the priority level (from 2 to 31) of
the scheduled task

is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foregro'und task)

is the protection code, if any, required to
address lun

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

17-2

Operator key-In examples: Schedule on priority level 3
the foreground task DOTASK residing on the FL logical
unit. Use F as the protection key.

1SCHED,DOTASK,J,FL,F

Schedule on priority level 9 the resident foreground task
COPYIO.
1SCHED,COPYI0,9,0

17.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground­
library task for execution at the designated time-of-day and
priority level. It has the general form

where

;TSCHED,task,level,lun,key, time

task

level

lun

key

is the name of the foreground task to be
scheduled

is the priority level (from 2 to 31) of the
scheduled) task

is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

is the protection code, if any, required to
address lun

time is the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45 p.m.

Operator key-in examples. Schedule for execution at
11 :30 p.m. on priority level 3 the foreground task DOTASK
residing on the US logical unit. Use T as the protection key.

;TSCHED,DOTASK,3,US,T,2330

Schedule for execution at 8:30 a.m. on priority level 9 the
resident foreground task TESTIO.

1TSCHED,TESTI0,9,0,0830

17.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified foreground task
to the designated PIM (priority interrupt module) line. It
has the general form

where

;ATTACH, task,line,iew,enab/e

task

line

iew

enable

is the name of the foreground task to be
attached to the Pl M line

is the two-digit number of the PIM line to
which the task is to be attached, with the
tens digit specifying the PIM number (O·
7) and the units digit the line number (0-
7) on that Pl M

is the value (from 01 to 0177777) of the
interrupt event word (section 14 or
appendix F) and identifies the bit(s)
to be set in the task TIDB when an
interrupt occurs on line

is E (default value) to enable the line, or
D to disable it

The task can be resident or nonresident. However, its TIDB
must have been defined at system-generation time.
ATTACH provides a flexible way of altering interrupt
assignments without having to regenerate the system.

Operator key-In example: Connect task INTRPT
to PIM 0, line 3. Use 020 as the interrupt event
word value (i.e., set bit 4 of the interrupt event
word in TIDB if INTRPT is scheduled due to an
interrupt on PIM 0, line 3).

iATTACH,INTRPT,03,020

A PIM directive with the PIM line to be attached must have
been specified during system generation to set up the link
to the interrupt line handler region.

Note: This directive detaches the PIM from a previous task.

17.2.4 ;RESUME Key-In Request

This key-in request reactivates the specified task for
execution at its specified priority level. It has the general
form

;RESUME, task

where task is the name of the task to be resumed

OPERATOR COMMUNICATION

Operator key-In example: Resume the task DOTASK.

;RESUME,DOTASK

17.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as
system time-of-day. If no time is specified in the key-in
request, ;TIME displays the current time-of-day. The key-in
request has the general form

;TIME, time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

The time-of-day output for a ;TIME request without time is
of the form

T hhmm HRS

where hhmm is the time of day in hours and minutes.

Operator key-in example: Set the system time-of-day to
3:00 p.m.

;TIME,1500

17.2.6 ;DATE Key-In Request

This key-in request enters the specified date as the system
date. It has the general form

;DATE,mm/dd/yy

where

mm is the month (01 to 12)

dd istheday (01 to 31)

YY is the year (00 to 99)

Note that since the entire date is considered one
parameter, there are no commas other than the one
immediately following DATE. The components of the date
are, however, separated by slashes as shown. VORTEX does
not support date roll-over.

Operator key-in example: Set the system date to 25
December 1971.

;DATE,12/25/71

17-3

OPERATOR COMMUNICATION

17.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the
general form

;ABORT,task

where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

;ABORT,DOTA5K

17.2.8 ;TSTAT (Task Status) Key-In Request
This key-in request outputs the status of the specified task,
if any. If no task is specified, ;TSTAT outputs the status of
all tasks GUeued on the active task identification block
(TIDB) stack. This request is not applicable to tasks having
no established TIDB. The request has the general form

;TSTAT,task

where task is the name of the task whose status is to be
output.

The status-output for a ;TSTAT key-in request is of the form

where

task Plevel Sstatus TMmin TSmilli

task

level

status

min

mi Iii

is the name of the task whose status is
being output

is the priority level (from 0 to 31) of the
task

is the status of the task as found in
words 1 and 2 of the Tl DB (table 17-2)

is the value of the counter in Ti DB word
11

is the value of the counter in TIDB word
10

The values of min and milli are printed only if bit 6 and/or
7 of TIDB word 1(table17-2) is set.

17-4

Table 17-2. Task Status (TIDB Words 1 and 2)

TIDB
Word Bit Meaning of Set Bit

15 Suspend interrupt
14 Suspend task
13 Abort task

12 Exit from task
11 TIDB resident
10 Resident task
9 Foreground task
8 Protected task

Task scheduled by time-delay
Time-delay active
Task waiting to be loaded

(check pointed)
4 Task error
3 Task interrupt expected
2 Overlay task

Scheduled task upon
termination of active
task

1 0 Task search-allocated-loaded
2 15 Task opened, but not loaded
2 14 Task loaded in background

(checkpoint) area
2 13 Load overlay

2 12 Background checkpoint 110 wait
2 11 Allocation override flag
2 10 Background being checkpointed
2 9 TIDB not available
2 8 Unused
2 7 Unused
2 6 Delay type 3 request
2 5-0 Task priority level

Operator key-In examples: Request the output of the
status of the task BIGJOB.

;T5TAT,BIGJOB

The output will be

BIGJOB P02 SOOO 100, 000000 TM077777 TS077Q30

if the status BIGJOB is such that it is on priority level 2,
contains a status of 0100 in TIDB words 1 and 2, with time
counters (TIDB words 1 and 10) of 077777 and 077430,
respectively. The latter two octal complement counters
show zero minutes and 0347 5-millisecond increments.

Request the output of the status of all active tasks.

;TSTAT

and receive as a typical response

VZDB P24 50117401, 000000
V$TYA P23 5047411, 000000
V$TYA P23 5047411, 000000
VZLPA P22 5047401, 000000
VZCRA P22 5047401, 000000

VZMTA
VZMTA
V$0PCM
PROG1
JCP

P22
P22
P10
P05
P01

5047401,
5047401,
5005405,
5041501,
5044400,

000000
000000
020000
000000
000000

17.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logical
units to specific 1/0 devices. It has the general form

where

;ASSIGN,1(1)"' r(l),1(2) = r(2), ... l(n) = r(n)

each l(n)

each r(n)

is a logical-unit number (e.g.. 12) or
name(e.g .. SI)

is a logical-unit number or name, or a
physical-device system name (e.g .. TYOO
or TY, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

An inoperable device, i.e., one declared down by ;DEVON
(section 17.2.10), cannot be assigned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CROO
as the SI logical unit and the Teletype TYOl as the OC unit.

;A55IGN,5I•CROO,OC•TY01

Assign a dummy device as the Pl unit.

;A55IGN,PI•DUM

17.2.10 ;DEVON (Device Down) Key-In
Request

This key-in request declares the specified physical device
inoperable for system use. It is not applicable to the OC
unit or to devices containing system libraries. The request
has the general form

;DEVDN,device

where device is the system name of the physical device in
four ASCII characters, e.g .. LPOO (or LP), TYOl, (table 17-1)

Operator key-in example; Declare TYOl inoperable for
system use.

;DEVDN,TY01

OPERATOR COMMUNICATION

17.2.11 ;DEVUP (Device Up) Key-In
Request

This key-in request declares the cspecified physical device
operational for system use. It has the general form

;DEVUP,devlce

where device is the system name of the physical device in
four ASCII characters, e.g .. LPOO (or LP), TYOl (table 17-1)

Operator key-in example: Declare TY02 operational for
system use.

;DEVUP,TY02

17.2.12 ;IOLIST (List 1/0) Key-In
Request

This key-in request outputs a listing of the specified logical­
unit assignments, if any. If no logical unit is specified,
;IOLIST outputs all logical-unit assignments with names.
The key·in request has the general form

;IOLIST,lun(l),lun(2), lun(n)

where each lun(n) is the name or number of a logical unit,
e.g .. Sl,5.

Where the ;IOLIST key-in request specifies a logical-unit
name, the output is of the form

where

name (number) == device D

name is the name of the logical unit, e.g., LO

number

device

D

is the number of that logical unit, e.g ..
005

is the name of the physical device
assigned, e.g .. LPOO

if present, indicates that the physical
device has been declared down and is
thus inoperable

If the key-in request specifies the number rather than the
name of the logical unit, the output will repeat the number
in both the name and number fields.

In a listing of all assignments, the output uses a name and
number where applicable. Logical units without names
assigned at system-generation time are not listed and must
be individually specified by number.

OPERATOR COMMUNICATION

Operator key-in examples: Request the output of the
logical-unit assignments for the Bl and BO units. Input

;IOLIST,BI,BO

and receive as a typical response

BI (006) • CROO
BO (007) • CPOO D

Request the output of the logical-unit assignment for logical
unit 180. Input

;IOLIST,180

and receive as a typical response

180 (180) • D11H

Request the output of all logical-unit assignments. Input

17-6

;IOLIST

and receive as a typical response

OC (001) • TYOO
SI (002) • TYOO
so (003) • TYOO
PI (0011) • CROO D
LO (005) • LPOO
BI (006) • CROO D
BO (007) • PTOO
SS (008) • DOOH
PO (009) • DOOH
cu (100) • DOOE
GO (101) • DOOG
SW (102) • DOOP'
CL (103) • DOOA
OM (1011) • DOOD
BL (105) • DOOC
P'L (106) • DOOB

SECTION 18
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap
loading and initializing of writable control store and
procedures for changing and initializing the disc pack
during VORTEX operation.

18.1 DEVICE INITIALIZATION

18.1.1 Card Reader
(Model 70-6200)

a. Turn on the card reader.

b. Place the input deck in the card hopper.

c. Press READY I ALERT.

18.1.2 Card Punch
(Model 70-6200)

a. Turn on the card punch.

b. Place blank cards in the card hopper.

c. If the visual punch station is empty, insert a card into it
as follows:

(1) Place a card in the auxiliary feed slot.

(2) Clear all registers.

(3) Set the instruction register I to 0100131.

(4) Set REPEAT.

(5) Press STEP. The card should move from the
auxiliary feed slot to the visual punch station.

(6) Reset REPEAT.

18.1.3 Line Printer
(Model 70-6701)

a. Turn on the line printer.

b. Wait for the READY light to come on.

c. Set the ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

18.1.4 Statos-31 (Model 70-6602 and -6603)

a. Turn on plotter/printer

b. Set the ON LINE/OFF LINE switch to ON LINE

c. Select roll or z-fold paper switch for paper type used

d. For manual form feed press FORM FEED

18.1.5 33/35 ASR Teletype
(Models 70-6200 and 6201

a. Turn on the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

c. Set the Teletype on·line.

18.1.6 High-Speed Paper-Tape Reader
(Model 70-6320)

a. Turn on the paper·tape reader.

b. Position the input paper tape in the reader with blank
leader at the reading station and close the reading
gate.

c. Set the LOAD/RUN switch to RUN.

18.1.7 Magnetic-Tape Unit
(Models 70-7100,-7102, and 620-31

a. Turn on the magnetic-tape unit.

b. Mount the input magnetic tape.

c. Position the magnetic tape to the loading point.

d. Press ON LINE.

18.1.8 Magnetic-Drum and Fixed-Head
Disc Units

(Models 62047 through 62049,
70-7702 and 70-7703

a. Turn on the drum unit.

b. Wait for the drum unit to reach operating speed.

18.1.9 Moving-Head Disc Units
(Models 70..7600 and 70-7610

a. Place the START /STOP switch in the STOP position.

b. Press POWER ON button and wait for the SAFE light to
come on.

c. Mount the disc pack.

d. Place the START !STOP switch in the START position.

e. Wait for the disc unit to reach operating speed (READY
indicator lights).

18-1

OPERATION OF THE VORTEX SYSTEM

f. Turn off WRITE PROTECT.

18.1.10 Moving-Head Oise Units
(Model 70-7500)

a. Mount the disc pack

b. Press POWER-ON button and wait for unit to reach
operating speed and for the heads to emerge

c. Press on-line button.

18.1.11 Moving-Head Oise Units
(Model 70-7510)

a. Mount the disc pack(s).

b. Turn power on and wait for the unit(s) to reach
operating speed (unit-ready light comes on).

18.1.12 Moving-Head Disc Units
(Models 70-7603, 70-7613)

a. Mount disc pack.

b. Press START button and wait for Ready light.

18.2 SYSTEM BOOTSTRAP LOADER

System key-in loaders initiate loading of the VORTEX
system from a drum or disc memory. The key-in loader loads
the system initializer from the RMD to main memory
(locations 000000 to 001127). The system initializer then
loads and initializes the system. Table 18-1 contains the
key-in loader programs.

Table 18-1. Key-In Loader Programs
Address Drum Disc Disc Disc

-48,49 70-7510 70-7500 70-7600,
-7610,
-7603 or
7613

001130 lOOOyy 005302 005302 1004zz
001131 006020 006030 006030 l040zz
001132 000002 000005 177773 1002zz
001133 005001 005001 005001 005001
001134 103lxx lOOOzz lOOOzz 103lzz
001135 006120 103lzz 103lzz 1010zz
001136 001127 1005zz 1005zz 001141
001137 103lyy 1010zz 1010zz 001000
001140 lOOOxx 001143 001143 001135
001141 lOOOzz 001000 001000 1025zz

18-2

Table 18-1. Key-In Loader Programs (continued)

Address Drum Disc Disc Disc

-48,49 70-7510 70-7500 70-7600,
-7610,
-7603 or
7613

001142 1032zz 001137 001137 151167
001143 1010xx 1025zz 1025zz 001016
001144 000600 001016 001016 001130
001145 001000 001200 001130 lOOOyy
001146 001143 005123 005122 1003zz.
001147 006120 005021 005102
001150 000167 006120 1032zz
001151 004460 000167 1031xx
001152 lOOOzz 004460 006010
001153 lOOOyy lOOOzz 001130
001154 103lxx lOOOyy 103lyy
001155 1032yy 103lxx lOOOxx
001156 lOOOxx 1032yy lOOOzz
001157 005041 lOOOxx 1014zz
001160 103lzz 005041 001157
001161 1004zz 006150 1025zz
001162 1014zz 000007 151167
001163 001166 103lzz 001016
001164 001000 1004zz 001130
001165 001162 1014zz 001000
001166 1025ZZ 001171 000600
001167 001016 001000 007760
001170 000120 001165
001171 005145 1025ZZ
001172 006140 001016
001173 000012 001130
001174 001002 005144
001175 000600 001040
001176 001000 000600
001177 001146 001000
001200 000000 00114~

where xx - even BIC address, yy = odd BIC address, and
zz = device address.

18.2.1 Automatic Bootstrap Loader

Where the automatic bootstrap loader option is available,
the appropriate key-in loader is loaded from the required
medium (high-speed paper-tape or Teletype reader) into
locations starting with 001130. If the system contains a
V70 RMD ABL the boot program is automatically loaded
and executed.

To initiate the loader: (1) clear the A, B, X, I, and P
registers; (2) with the computer in STEP, press the RESET
switch on the front panel; (3) place the STEP/RUN switch
in the RUN position; and (4) press and release the LOAD
switch.

18.2.2 Control Panel Loading

The appropriate key-in loader is entered through the
computer control panel. Refer to the hardware handbook
for details.

To initiate the bootstrap, clear the A, B, X, and I registers,
and load 001130 into the P register. Then, press RESET,
place the STEP/RUN switch in the RUN position, and press
START. See section 15.8 and 20.1.4 for details as system
initialization messages.

NOTE: To facilitate reloading, the key-in loader may be
dumped out on paper tape and then loaded by the binary
loader (BLD II).

18.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs
during program execution by means of a system utility
program called rotating memory analysis and Initialization
(RAZI). RAZI handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. A disc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing him to switch packs.

b. The task suspends itself.

c. The operator makes the necessary pack changes.

d. The operator schedules and executes RAZ!.

e. Upon completion of RAZI, the operator resumes the
suspended task. The task can now perform 1/0 on the
new pack.

RAZI is a foreground program residing in the foreground
library (FL). It is scheduled by a request of the form:

;SCHED,RAZl,p,FL,F

where p is the priority level.

If the SI logical unit is a Teletype or a CRT device, the
message RZ* • is output to indicate that the SI unit is
waiting for RAZI input.

Each directive is completely processed before the next is
entered. All directives are output on the SO device. In
addition, partitioning information is listed on the LO device
when integration of the requested disc pack is complete.

OPERATION OF THE VORTEX SYSTEM

OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZ/ directives on the SO unit

c. Partition description listing

Error messages applicable to RAZI are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.18.

The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
VORTEX system. After the VORTEX standard heading,
there are three blank lines followed by the RAZI heading:

PARTITION
NAME

FIRST
TRACK

LAST
TRACK

BAD
TRACKS

followed by one more blank line. Then the information
concerning each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS

D10A 0002 0019 0000
D10B 0020 0052 0001
D10C 0053 0082 0000
D10D 0083 0118 0000
D10E 0119 0126 0000
D10F 0127 0141 0000
D10G 0142 0156 0000
D10H 0157 0206 0002
D10I 0207 0242 0000
D10J 0243 0251 0000
D10K 0252 0256 0000

The RAZI directives are:

PRT Partition

FRM Format rotating memory

INL Initialize

EXIT Exit

RAZI directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (.) or equal
signs (-). The directives are free-form, and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).

The general format of a RAZI directive is

name,p(l),p(2), ... ,p(n)

18-3

OPERATION OF THE VORTEX SYSTEM

where

name is one of the directive names given
above

each p(n) is a parameter required by the directive
and defined below under descriptions of
the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,)by equal signs (-) ere omitted.

Note: The disc pack containing the VORTEX nucleus
cannot be replaced.

18.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. It has the general form

PRT,p(l),s(l),k(l),p(2),s(2),k(2), ... ,p(n),s(n),k(n)

where

each p(n) is the RMD partition letter (A through T,
inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. This value must
be greater than zero.

k(n) is the protection code, if any, required to
address p, or * if the partition is
unprotected

While the partition specifications can appear in any order,
the set of partitions specified for each RMD must comprise
a contiguous group, e.g .. the sequence A, C, D, B is valid
but, the sequence A, C, D, E constitutes an error.

Consecutive PRT directives redefine partitions, if p(n) has
been specified, or adds partitions if p(n) is new partition
letter.

Example: Define three partitions on an RMD. The first
occupies ten tracks and uses protection code Q, the second
two tracks and code S, and the third 48 tracks without
protection.

PRT,A,10,Q,B,2,S,C,060,•

18.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZ! to run a bad·track analysis on
the specified RMD and build a new PST for it or accepts a

18-4

previously constructed bad-track-table from the RMD and
builds a new PST for it.• The directive has the general form

FRM,lu,slze,flag

where

lu

size

flag

is the logical-unit name or number to
which the subject RMD is assigned. This
must be the assigned to the first
partition.

is the number (octal or decimal) of
tracks on the RMD

is 1 to perform a complete bad-track
analysis, or Oto accept a bad-track-table
fromtheRMD

•FRM clears all PSTs and directories. It should not be used
when a unit contains a good BIT and files as these will be
destroyed.

Caution: When performing a bad-track analysis or accept­
ing a bad-track table from an RMD the bad-track table is
positioned adjacent to the resident foreground task area.
Unless there already exists an active bad-track table for the
prior RMD, the bad-track table for the new RMD will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed.

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

FRM,P0,203,0

Run a complete bad-track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition information.

FRM, 25, 128, 1

620-35 and 620·34 discs in a system require the formatting
program (describe in section 18.4) to format disc and
analyze bad tracks.

18.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad·
track table from the named RMD into the VORTEX nucleus.
It has the general form

INL,lu,slze

where lu and size have the same definition as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track table from the unit
assigned to BO, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,BO, 128

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form

EXIT

Example: Terminate RAZI.

BXIT

18.4 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM

Each 70-7500 (620-35) disc pack requiries formatting
before any input or output operation can be performed on
it. Before VORTEX can be prepared on a 70-7500 disc pack
or any 70-7500 discs can be used under VORTEX, disc
packs must be formatted. The formatting program forms
120-word sectors, which are grouped 24 per track. The
program also examines the disc pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID or BLD.
Execution begins at location 01354. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The following requests are made. An
inappropriate response causes the request to be repeated.

Request

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT VARIABLE SECTOR GAP

Type a value and carriage return. Acceptable
values are l, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans­
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

OPERATION OF THE VORTEX SYSTEM

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
110 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM

Each 620-34 disc pack requires formatting before any input
or output operation can be performed on it. Before VORTEX
can be prepared on a 620-34 disc pack or these disc can be
used under VORTEX, . the packs must be formatted. The
formatting program forms 120-word sectors, which are
grouped 24 per track. The program also examines the disc
pack for bad tracks.

The formatting program operates without an operating
system. It may be loaded and executed either with AID II or
BLD II. Its execution begins at location 01354. Upon
execution the formatting program requests some parame­
ters to be input from the keyboard. An inappropriate
response causes the request to be repeated. The following
requests are made.

INPUT BTC NUMBER

18-5

OPERATION OF THE VORTEX SYSTEM

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070.

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return.

INPUT VARIABLE SECTOR GAP

Type a value and a carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans­
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each a1sc pack at the completion of its
formatting. The bad-track table is located on sectors O
through 4 of the first track. The table is 508 words long,
starting at word 64 of sector 0. The first 64 words of sector
O reserve the necessary space for the PST. The remaining
unused words of sector 4 are filled with zeros. Each disc
110 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message:

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to

obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the

18-6

program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.6 70-7603/7613 DISC PACK
FORMATTING PROGRAM

Each 70-761317613 disc pack requires formatting before
any input or output operation can be performed on it. The
formatter forms 120 word sectors which are grouped 48 per
track. The program also performs a bad-track analysis.

The formatter (format F pin 92A0205·030) operates under
the MAINTAIN Ill executive. For instructions on loading
from magnetic tape, cards or paper tape, see the MAIN·
TAIN Ill Manual (98A9952-070). Execution begins at
location 500. Some parameters are requested from the
keyboard. Inappropriate responses cause the request to be
repeated. All inputs are terminated by periods.

INPUT BIC NUMBER

Enter an even value in the range octal 020 through 076.

INPUT DEVICE ADDRESS

Enter a value in the range octal 014 through 017.

INPUT UNIT

Enter a value in the range 0 through 7. This must be the
physical unit number calculated as follows:

where

UU is unit number 0-3
P is platter O fixed

platter 1 removable
(Note: System RMD is always
000 regardless of which
platter.

INPUT KNOWN BAD TRACKS

Enter octal track numbers in the range 0 through 0625
separated by commas and terminated by a period. If there
are no known bad tracks, input only a period.

In addition, the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sector 0 of
the first track. The table is 26 words long, starting at word
64 of sector 0. The first 64 words of sector 0 reserve the
necessary space for the PST. The remaining unused words
of sector 0 are filled with zeros. Each disc 1/0 error will

generate a five event retry sequence which, upon failure,
will set the corresponding bit in the bad-track table. No
alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The for- matting program may be terminated at
this point when no disc packs (except those with bad first
tracks) remain unformatted. Formatting disc packs is not
necessary before every VORTEX system generation. Head
crashes generally indicate formatting should be done
again.

OPERATION OF THE VORTEX SYSTEM

18.7 WRITABLE CONTROL STORE (WCS)

The writable control store must be loaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL is a foreground
program scheduled by a request:

;SCHED,MIUTIL,p,FL,F

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

If the optional V70 series Floating Point Firmware is to be
used, it must be loaded into page 1 of WCS. The WCS
microprogram is catalogued into the OM library under the
name WCSFP, and must be transferred to the Bl device for
loading by MIUTIL. The WCS should be initialized through
the use of MIUTIL prior to loading the floating-point
microprograms.

Section 20 gives additional information about writable
control store.

18-7

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION

VORTEX supports a number of VDM devices which are used
in industrial applications for a wide range of monitor and
control purposes. These devices are called 'Process Input/
Output' devices and are listed below:

VDM Model

70·8310 and -8311
(620·830A/8)

70-8410 and -8411
(620-831A/8)

70·800x and 70·80lx
(620-850/851)

70-8020 and ·8021
(620-860/860/ A

70-8022 and ·8023
(620-86l/861A)

70-82 lx,8220,8221
(620-87011121
3/4/5,
620-870A/8,
620-871A/8,
620/872A/8)

70-81 lx,812x
(620-855xx)

Description

Digital Output Module
User's Guide (98 A 9968 100)

Digital Input Module
User's Guide (98 A 9968 110)

Analog-to-Digital
User's Guide (98 A 9968 060)

Converter I Multiplexor
User's Guide (98 A 9968 070)

Digital-to-Analog Module
User's Guide (98 A 9968 050)

Low Level Multiplexor
User's Guide (98 A 9968 130)

VORTEX configurations which include Process Input/
Output devices differ from others in that each is, to some
degree, 'tailor-made', even though they are composed of
the standard products listed above. This requires the
VORTEX user to operate with VORTEX 1/0 features at a
more fundamental level than with most other devices. For
this reason, the operation of Process Input/Output devices
under VORTEX will be presented in considerable detail in
the following sections.

The VORTEX Support Library includes a number of
subroutines (section 19.4) with FORTRAN calling se­
quences defined by the Instrument Society of America
(ISA), which are useful for input, output, and manipulation
of process data.

19.2 PROCESS OUTPUT

19.2.1 Hardware

VORTEX supports combinations of the 70-8310 (620-830A)
Digital Output Module and the 70-8311 (620-8308) Digital
Output Expansion Module. VORTEX also supports combina­
tions of the following DAC (Digital-to-Analog Converter)
modules and expansion modules: 70·8210 through 70·
8221 (620-870, -870A,-8708,-871,-871A, -8718,-872,-872A,
8728,-873,-874,-875).

Eight device addresses (050-057) are available for these
modules. Each address can hold up to four modules, each
module containing two digital output registers or DAC's for
a maximum of 64 registers or DACs.

For VORTEX operation, a device is defined as the collection
of modules at a single device address, and the word
'device' will have this meaning for the remainder of this
section. The word 'channel' will be used to mean either a
digital output register or a DAC.

Software capabilities for referencing channels directly by
number are provided. For this purpose, channels are
assigned an (octal) number mn, where:

m - (device address-050)
n - hardware channel number (0-7) within device.

thus, for example, the channel selected by the command

EXC 0352

would be called channel number 023.

Process output is totally under control of software (no 81Cs,
interrupts, or SENs are used). Therefore, no ready,
complete, or error information is provided by the hardware.

19.2.2 SGEN Operations

The following SGEN operations must be performed to
include Process Output capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.

b. Add ASN directives to SGEN directive input file.

19-1

PROCESS INPUT/OUTPUT

Note: the SGL contains four input controller tables, four
output controller tables, input and output drivers, and TDF
records.

In the examples in the following discussions, the symbols
'm' and 'n' refer to register number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,COmA, 050+m, 1,0,0,ioa,ma
(ioa • r/o algorithm as decimal fraction]
(ma • Multiplexor address)

For example, the device at address 053 with 1/0 algorithm
of .33 and multiplexor address 062 will require the directive

EQP,COJA,053,1,0,0,.33,062

The ASN Directive

Each device must be assigned to a logical unit number by
any ASN directive of the following format:

ASN, lun •coma

For example, assigning the device at address 053 to logical
unit 24 will require the directive:

ASN, 24•C030

19.2.3 Output Calls

Output to a Process Output device is by use of the IOC
'WRITE' macro. FORTRAN source programs can request
output by calling one of the ISA process control subroutines
described in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.5.4):

WRITE pcb,lun,wait,mode

where:

pcb Name of Process Control Block (PCB)
lun Logical Unit Number
wait Wait Flag
mode Data Mode (ignored)

Data is always output directly, without modification, so the
Data Mode is effectively System Binary.

19-2

PCB format is:

Output Word Count C Word 0

Output Buffer Address Word 1

Address of Channel Number List Word 2

Status Word Address (0 if none) Word 3

Mask Word Address (0 if none) Word 4

Pulse Width Word Address (0 if none) Word 5

The Channel Number List is. a sequential list of channel
numbers m(i)n(i) (i - l,C). where m(i) = m(l) for all i,
and the device address to which the logical unit number is
assigned is 050 + m(i). Thus, a single WRITE call can only
reference those channels assigned to a single device
address.

The Status Word is a word in the calling program in which
status of the IOC call is maintained. This is required by the
ISA subroutines of section 19.4.

The Mask Word is used by the ISA 'Latching' subroutines
DOL and DOLW. I-bits in this word flag bits that are to be
updated. The device controller table will contain the
previous setting of all bits in the output word and the
output buffer will contain the new settings.

An error 1003 is reported if the Channel Number List
contains a channel mn where m is not in range 0-7, or if m
does not correspond to the device address defined by the
ASN directive at SGEN time.

The Pulse Width Word is used by the ISA 'Momentary'
subroutines DOM and DOMW. It gives the time in VORTEX
basic cycles (5·millisecond) that output points are to
remain set.

Example 1:

A DASMR source program is to output the first 3 words
from buffer OBUF to channels 023, 027, and 021 in a
group of Digital Output Modules which are assigned to
logical unit number 24.

Note that channels 023, 027, and 021 are all assigned to
the module at device address 052 by the channel
numbering convention.

PCB1

WRITE

DATA
DATA
DATA
DATA

PCB1,24,0,0

OBUF
PTLIST
0,0,0

PTLIST DATA 023,027,021

Example 2:

A FORTRAN program is to output the first 3 words of OBUF
to analog channels 49, 50, and 53, which are assigned to
logical unit 17. The octal equivalents of these channel
numbers are 061, 062, and 065, so the device address of
the output module is 056 (46 in decimal digits).

INTEGER STAT, PTLIST, OBUF
DIMENSION OBUF (3), PTLIST (3)
DATA PTLIST/49, 50, 53/

CALL V$0PIO (46, 17, 0, STAT)

CALL AO (3, PTLIST, OBUF, STAT)

19.3 PROCESS IN PUT

19.3.1 Hardware

VORTEX supports combinations of the 70-8410 (620-831A)
Digital Input Module and the 70-8411 (620-8318) Digital
Input Expansion Module. VORTEX also supports combina­
tions of the 70-8010 (620-850) and the 70-8011 (620-851)
Analog Input System, the 70-8020 (620-860) and 70-8022
(620-861) High-Level Multiplexor Modules and the 70-8021
(620-860A) and the 70-8023 (620-861A) High-Level Multi­
plexor Expansion Modules, and the 70-8llx (620-855x)
Low-Level Analog Input System and the 70-812x Low-Level
Multiplexor Expansion Modules. These provide from 1 to
2,048 digital or analog input channels.

Eight device addresses (060 to 067) are available for these
modules. Each address can handle, through multiplexing,
up to 256 digital channels. To each of these device
addresses will correspond a multiplexor attached to a
different device address in the range (040-077). All Process
Input requires a Buffer Interlace Controller (BIC).

PROCESS INPUT/OUTPUT

Software capabilities are provided for referencing channels
directly by number. Each channel is assigned an (octal)
number mn by the following rules:

m - (device address - 060)
n - hardware channel number (0-255) within

device. n is a 3-digit octal number

Thus, for example, channel number 01003 would be
selected by outputting a 3 as the select code to the
multiplexor which is connected to the Analog-to-Digital
converter whose address is 061.

A BIC will be used for all input and all input will end with a
BIC complete interrupt. The BIC will operate with the
programmable timer.

19.3.2 SGEN Operations

The following SGEN operations must be performed to
include Process Input capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.

b. Add ASN directive to SGEN directive input file.

c. Add Pl M directive to SGEN directive input file.

In the example in the following discussions, the symbols
'm' and 'n' refer to channel number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,CimA, 060+m, 1,b,O, ioa,ma
b • BIC device address
ioa • I/O algorithm as decimal

fraction, see example
ma • multiplexor address

For example, the device at address 063 using the BIC at
address 020 with 110 algorithm value of .5 and multiplexor
address 072 will require the directive:

EQP,CI3A,063,1,020,0,.5,072

The ASN Directive

Each device must be assigned to a logical unit number by
an ASN directive of the following format:

ASN,lun•CimO

19-3

PROCESS INPUT/OUTPUT

For example, assigning the device at address 063 to logical
unit number 21 will require the directive:

ASN,21 •CIJO

The PIM Directive

Linkage must be established between the BIC and its
Priority Interrupt Module (PIM) by a PIM directive of the
format:

where:

PIM,pl,TBCimA,1,0

p - PIM number (single octal digit)
I - line number (single octal digit)

110 Algorithm

The 1/0 algorithm value must be set for the highest
transfer rate (smallest PCB Timer Count) that will be used
in the system.

1.10 x (BIG RATE* /DEVICE RATE)

Rates are in microseconds.

• BIG rate represents the maximum trap·in, trap-out timing
sequence on the E-bus.

19.3.3 Input Calls

Input to a Process Input device is by use of the IOC 'READ'
macro. FORTRAN source programs can request input by
calling one of the ISA process control subroutines de­
scribed in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.5.3)

where:

19-4

READ pcb,lun,wait,mode

pcb - Name of Process Control Block (PCB)
lun = Logical Unit Number
wait - Wait Flag
mode = Data Mode (ignored)

Data is always input directly, without modification, so the
Data Mode is effectively System Binary.

PCB format is:

Input Word Count C Word 0

Input Buffer Address Word 1

Address of Channel Number Word 2

Status Word Address (0 if none) Word 3

Op Code Word 4

Timer Count Word 5

The Status Word is a word in the calling program in which
status of the IOC call is maintained. This is required by the
ISA subroutines of section 19.4.

The Op Code (OP) is defined thus:

OP - 0:

Sequential Mode. Let mOOn be the channel number
specified by word 2. Data is repeatedly input from channels
mOOl-mOOn, till the input word count C (Word 0) is
satisfied.

OP - 1:

Random Mode. Channel mn is repeatedly input the number
of times specified in word 0.

The Timer Count (Word 5) is the desired time, in
microseconds, between inputs. This value is output to the
programmable timer, which will control the BIG input rate.

An error (1003) is reported if m is not in range 0·7, if n (or
C, if in sequential mode) is not in range 0-255, or if m does
not correspond to the device address defined by the ASN
directive at SGEN time.

Example 1:

A DAS MR program is to sample an input channel 100
times at a rate of 1 input/50 microsecond. The channel.is
number 5 on device address 062, which is assigned to
logical unit number 22, and the data is to be input into
buffer IBUF. Do not return till 1/0 complete.

READ PCBl, 22, 0, 0

PCBl DATA 100
DATA IBUF
DATA CHNO
DATA 0
DATA 1
DATA 50

CHNO DATA 02005

Example 2: (see section 19.4)

A FORTRAN program is to input sequentially from channels
04001, 04002, and 04003, which are assigned to logical
unit number 35, storing the input values into IBUF. Do not
return till 110 complete. Set the input rate to 1 word/20
microsecond. The device address to which the input module
is assigned is seen to be 064 (52 in decimal digits, and the
decimal equivalent of 04000 is 2048).

INTEGER STAT, PTUST
DIMENSION IBUF(3)
DATA PTUST/2049/

CALL V$0PIO (52, 35, 20, STAT)

CALL AISQW(3, PTLIST, IBUF, STAT)

19.3.4 Low-Level Multiplexor Gain Control

Control of the low-level multiplexor amplifier gains is
accomplished through the use of the IOC FUNC macro.
FORTRAN source programs can set amplifier gains by
calling one of the subroutines described in section 19.4.l,
which will construct and execute such a macro.

PROCESS INPUT/OUTPUT

The macro call has the general form (see section 3.5.8).

FUNC

where:

deb

lun

wait

dcb,lun,wait

the address of the data control block.

the number of the logical unit (ADCM)
being manipulated.

unused.

The DCB macro has the general form

DCB rl,buff,fun

where:

rl is the number of channels for which the
gain will be set.

buff address of the channel table.

fun is the function code.

O Set gains on sequential channels to a
fixed value, delay 5 milliseconds.

- Set 'gains on random channels through a
table, delay 5 milliseconds.

2 = Set gains on sequential channels to a
fixed value, immediate return.

3 = Set gains on random channels through a
table, immediate return.

The format of the channel table when fun - 0 or 2 is:

STARTING CHANNEL ADDRESS

GAIN OF CHANNELS

Word 0

Word 1

The format of the channel tables when fun = 1 or 3 is:

Word

0 - ADDRESS OF CANNEL a
1 = GAIN CODE FOR CHANNEL a
2 = ADDRESS OF CHANNEL b
3 - GAIN CODE FOR CHANNEL b
4 - ADDRESS OF CHANNEL c

etc.

19-5

PROCESS INPUT/OUTPUT

The gain is internally referenced by the following table
Gain parameter Actual MUX Gain

0 8
1 16
2 32
3 M
4 128
5 256
6 512

1024

Therefore the gain parameter must be in the range of 0
through 7.

An error (1003) is reported if the gain is not in the
proper range.

Example: In a DAS MR program, set the gain to 256 (gain
code 5) on 27 contiguous channel (starting from 04001),
which are assigned to logical unit 36.

Delay 5 milliseconds after the gains have been set to give
the amplifier time to settle.

FUNC LDCB,36,0

LDCB DCB 27,TABLE,0

TABLE DATA 04001,5

Example 2: A DAS MR program is to set the gain of 3
random channels which are assigned to logical unit 37.
Return after the gains have been set. The gain of channel
04001 will be set to 64 (gain code 3), the gain of channel
04031 will be set to 512, and the gain of 04007 to 8.

FUNC LLDCB,37,0

LL DCB DCB 3,TABLE,3

TABLE DATA 04001,3,04031,6,04007,0

19-6

19.4 ISA FORTRAN PROCESS CONTROL
SUBROUTINES

The Instrument Society of America (ISA) has defined as
standards a number of FORTRAN subprogram calls useful
in process input/output applications. VORTEX includes the
following subroutines of this group:

Input/Output Calls

AISQ(W):
AIRD(W):
AO(W):
Dl{W):
DOM(W):,
DOL(W):

Analog Input Sequential
Analog Input Random
Analog Output
Digital Input
Digital Output·Momentary
Digital Output-Latching

The (W) option with each of these subroutine names selects
a 'wait' mode, that is, it specifies that return is not be
made from the subroutine until the 110 is finished, either
normally or erroneously.

IOR:
IAND:
NOT:
IEOR:
ISHFT:

Bit String Manipulation

Inclusive OR (logical add)
AND (logical multiply)
NOT (logical invert)
Exclusive OR (logical subtract)
Logical Shift

VORTEX also provides two FORTRAN subprogram calls to
set the amplifier gains on the low-Level Multiplexors. The
gain control calls are not ISA standard calls.

Low Level Gain Calls

SGNF(D): Set gain on
sequential channels

SGNT(D): Set gains through
a table

The (D) option of each of these routines cause a 5
millisecond delay after the last gain control has been
issued, to give the amplifiers time to settle.

19.4.1 Input/Output Calls

The parameter 'stat' appears in all the following 1/0 calls.
Its contents give the status of the call, as follows:

stat = 1: l/O correctly completed
2: 1/0 in execution
3: Invalid channel number
4: BIC timeout error
5: Invalid parameter value

VORTEX provides a FORTRAN call which establishes
execution-time association between channel numbers and
logical unit numbers, and sets the timer for data input
rate. The format is:

CALL V$0PIO (da, lun, time, stat)

where:

da
lun
time

device address
logical unit number
time, in microseconds, between input.
This is loaded into device programmable
timer, which controls BIC rate. It is
ignored on output. Parameters may be
redefined by successive calls to V$0PIO.

Read Analog Input Sequential

CALL AISQ (count, ptlist, ibuf, stat)

or

CALL AISQW (count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf, starting
with channel OXOOI, where ptlist contains OXYYY, and
reading channels sequentially.

Read Analog Input Random

CALL AIRD (count, ptlist, ibuf, stat)

or

CALL AIRDW (count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf,
inputting from the list of random points ptlist.

Perform Analog Output

CALL AO (count, ptlist, obuf, stat)

or

CALL AOW (count, ptlist, obuf, stat)

This call outputs count analog values from buffer obuf,
outputting to the list of random points ptlist.

Read Digital Input

CALL DI (count, ptlist, ibuf, stat)

or

CALL DIW (count, ptlist, ibuf, stat)

This call reads count words of digital input into buffer ibuf,
inputting from the list of random digital channels ptlist.

PROCESS INPUT/OUTPUT

Perform Digital Output - Momentary

CALL DOM (count, ptlist, obuf,
time, stat)

or

CALL DOMW (count, ptlist, obuf,
time, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. If time = O this completes the operation. Otherwise,
after 5*time in milliseconds a word of zeros will be output
to every channel in ptlist, thus resetting all channels.

Perform Digital Output - Latching

CALL DOL (count, ptlist, obuf,
mask, stat)

or

CALL DOLW (count, ptlist, obuf,
mask, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. The device driver program will save the previous word
output to each channel, and change only those bits
specified by I-bits in mask, which is an integer array
parallel to obuf and ptlist.

Perform Gain Selection on Sequential Channels

CALL SGNF (chntbl,nochnl)

or

CALL SGNFD (chntbl,nochnl)

This call selects the gain on nochnl sequential low level
input channels. Chntbl is the name of a two word control
table. The first word contains the address of the first low
level channel. The second word contains the gain parame­
ter (0-7).

Perform Gain Selection on Channels through a Table

CALL SGNT (chntbl,nochnll

or

CALL SGNTD (chntbl,nochnl)

19-7

PROCESS INPUT/OUTPUT

This call selects gains on nochnl low level channels. Chntbl
is the name of a table which contains a pair of words for
control for each low level channel. The first word of each
pair contains the address of the low level channel. The
second word of each pair contains the gain parameter (0-
7).

19.4.2 Bit String Operations

All these subprograms are defined as Integer Function
Subprograms. In the following descriptions, m and n are
integer mode expressions.

IOR{m, n) - m.OR.n
IAND(m, n) - m.AND.n
NOT(m) = NOT.m
IEOR{m, n) - n.XOR.n

ISHFT(m,n) - 0

m•2••n

19-8

Inclusive OR (logical sum)
AND (logical product)
NOT (logical invert)
Exclusive OR (logical
difference)
If the absolute value of
n ;::-: 16
Otherwise

19.5 ERRORS
Process Output

I003 INVALID CHANNEL NUMBER

Process Input

I003 INVALID CHANNEL NUMBER
I02X BIC TIMEOUT ERROR

19.6 EXTENSIONS

Other process control devices besides those in the table of
section 19.1 may be brought into the VORTEX system at
some future time. The procedure for entering a new process
control device is as given for the currently supported
devices: one codes a driver program and controller tables
and enters them into the VORTEX Nucleus at SGEN time,
remembering to increment the one-character suffix on all
names (all names herein end in 'A'; the next type of DAC,
say, would be tagged with 'B'). The controller table can be
extended by as many words as desired, to store flags and
fixed device parameters. For variable parameters, say a
gain parameter on an analog input device, the PCB table
can be extended to hold the new parameter. In the
FORTRAN 110 calls, the array PTLIST can be made
2-dimensional if gain or other parameter information is to
be transferred with each point or channel number.

SECTION 20
WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

The Writable Control Store (WCS) option extends the
Varian 70 series processor's read-only control store to
permit the addition of new instructions, development of
microdiagnostics, and optimal tailoring of the computer
system to its application. Unlike the read-only control store,
which contains the Varian 70 series standard instruction
set and cannot be altered, the WCS can be loaded from
main memory under control of certain 1/0 instructions. The
capabilities of WCS give the user more complete access to
the resources of the V<1rian 70 series computer system.

20.1 MICROPROGRAMMING SOFTWARE

Supporting software for the WCS includes the following:

Microprogram assembler MIDAS

Microprogram simulator MICSIM microprogram

Microprogram utility loader and diagnostic MIUTIL

WCS reload task

All software for microprogram development operates under
VORTEX. The capabilities and use of WCS and its
supporting software are described in the Varian Micropro·
gramming Guide.

20.1.1 Microprogram Assembler

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms. MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
scheduled from the background library at level 0 by

Under VORTEX, MIDAS is scheduled from the background
library at level 0 by

• /LOAD,MIDAS

20.1.2 Microprogram Simulator

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
scheduled from the background library at level 0 by

/LOAD,MICSIM

20.1.3 Microprogram Utility

Loading the control store with the assembled and tested
microcode is performed by microprogram utility, MIUTIL.

In addition, on-line debugging directives are available
through the utility on a special configuration. The MIUTIL
program operates as a foreground program at priority level
set by the user. The program is scheduled by operator
input over the OC device. For example,

;SCHED,MIUTIL,3,FL,F

The microprogram utility is also responsible for maintain·
ing an up.to.date image of the contents of the WCS on an
RMD file, named WCSIMG on the OM library, see section
15.8. This image is then used by the WCS reload task,
WCSRLD, to restore the WCS following a power failure/
restart and VORTEX reload. The RMD file image is updated
each time the R directive is used to exit from the utility.

If the update is completed successfully, the message:

WCS SAVED

is output on the OC and LO devices before the utility exits.
If the RMD file for saving the WCS is not present on the
OM library the OM library, the system outputs

I010,MIUTIL
FILE WCSIMG NOT FOUND
WCS SAVE ABORTED

110 errors which may occur during the save operation
result in outputting messages

IOxx,MIUTIL
WCS SAVE ABORTED

If the restoration of WCS is completed successfully, the
message WCS RELOADED will be output to the OC and LO
devices before the reload task exits.

To exit from the microprogram utility without updating the
RMD file, the operator may issue the directive.

;ABORT,MIUTIL

20·1

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.1.4 WCS Reload Task, WCSRLD

This task, WCSRLD, reinitializes the WCS to the contents
specified by the RMD file image of WCS, WCSIMG on the
OM library. It is automatically scheduled on power failure/
restart or upon the reloading of the VORTEX system. In this
way, WCS contents are preserved through any periods
without power.

Though usually scheduled automatically by the system, the
reload task may also be scheduled manually by the
operator. For example, the following directive schedules the
reload task at priority level 15:

1SCHED,WCSRLD,15,FL,F

20.2 STANDARD FIRMWARE

Standard firmware is available on the 70 series computers
to provide faster and more compact code. The executable
code which uses the firmware, or microprograms, is
automatically generated by the VORTEX FORTRAN IV
compiler when the option F is specified (in the JCP
directive /FORT, see section 4.2.15). The firmware also
extends the capabilities of the user's assembly language
programs and the support library (see section 13).

Standard firmware includes routines which are loaded into
the system's WCS for the following categories of operations:

Arithmetic for two-word fixed-point and integer
numbers

Arithmetic for real (floating-point) numbers

Transfer of two-word values, such as a memory to
memory move

• FORTRAN oriented routines

Byte manipulation

Stack manipulation

Executing a branch-to-control-store (BCS) instruction
causes a transfer of control from the system's read-only
memory to the WCS at the address specified in the BCS
instruction. The MIUTIL program (see section 20.1.3) loads
the standard firmware as well as any extensions to the
instruction set the user may write. To execute firmware, the
program must use a BCS instruction with the appropriate
entry address and calling sequence for passing parameters.

A FORTRAN IV program specifies the option F on its
request for compilation, and then BCS instructions are
generated. The FORTRAN IV programs use this firmware
without any changes to the FORTRAN IV statements.

20-2

Due to size constraints, some firmware is unavailable
under certain hardware configurations. Table 20·1 shows
these restrictions.

Table 20-1. Firmware Availability
Hardware Configurations

Firmware Routine without FPP with FPP

XAD,XSB YES
XMU,XDV YES
IMU,IDV NO
FAD,FSB,FMU,FDV YES
FSQ NO
FLD,FST,FMV YES
FSE,FDO,FDOl YES
FTNE,FTEQ, ... ,FTGT NO
F JNE,F JEQ, ... ,F JGT NO
FAIF,FIOP NO
FRSC, FRSR, F JAG NO
Byte Firmware YES
Stack Firmware YES

20.2.1 Fixed-Point Arithmetic
Firmware

YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES

Two-word fixed-point and integer numbers use the following
arithmetic firmware:

Mnemonic Function BCS Call

XAD Fixed-point and integer add 0105334
XSB Fixed-point and integer sub- 0105374

tract
XMU Fixed-point multiply 0105274
XDV Fixed-point divide 0105234
IMU Integer multiply 0105027
iDV integer divide 0105067

These operations are performed on the hardware A and B
registers (AB), using the number specified by the second
word of the respective BCS call. If overflow occurs, AB is set
to the maximum number with the proper sign and the
overflow flag (OVFL) is set.

For two-word fixed-point numbers, the decimal point is
assumed to be to the left of bit 15 of the most significant
word. For two-word integer numbers, the decimal point is
assumed to be to the right of bit O of the least significant
word. As a result, rounding and overflow conditions are
different for multiply and divide. For example, multiplying
two double-word numbers produces a logical four-word
result. The fixed-point function returns the high order two·
words and drops the lower two. The integer multiply returns
the lower two-words of the logical result and sets overflow if
either of the two higher words are non-zero.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.2 Floating-Point Arithmetic

Firmware

The addition, subtraction, multiplication, and division of
single-precision real, or floating-point, numbers can be
performed with the following firmware.

Mnemonic Function

FAD Floating-point add
FSB Floating-point subtract
FMU Floating-point multiply
FDV Floating-point divide
FSQ Floating-point square root

BCS Call

0105134
0105174
0105074
0105034
0105127

A floating-point arithmetic operation is performed on AB
using the floating-point number specified by the second
word of the BCS call. If underflow occurs, AB is set to zero.
If overflow occurs, AB is set to the maximum floating-point
number with a proper ,sign. Taking square root of a
negative number results in the overflow being set and AB
set to zero.

20.2.3 Data Transfer Firmware

The data transfer firmware routines load AB from memory,
store AB in memory, and move the contents of two
contiguous memory locations to another place in memory.

Mnemonic Function BCS Call

FLD Load AB with two words 0105032
from memory

FST Store AB into memory 0105033
FMV Memory-to-memory move 0105037

of two words

20.2.4 FORTRAN-Oriented Firmware

These microprograms are oriented toward FORTRAN IV
operations. However, they have a similar utility to assem­
bly-language programs.

Mnemonic Use BCS Call

FINE Test for not equal 0105024
FTEQ Test for equal 0105064
FTLT Test for less than 0105124
FTGE Test for greater than 0105164

or equal
FTLE Test for less than or 0105324

equal
FTGT Test for greater than 0105364
FJNE Jump if not equal 0105026
FJEQ Jump if equal 0105066

Mnemonic Use BCS Call

FJLT Jump if less than 0105126
FJGE Jump if greater than 0105166

or equal
FJLE Jump if less than or 0105326

equal
FJGT Jump if greater than 0105366
FAIF Arithmetic IF processor 0105226
FIOP lr:idexed operand proces- 0105167

sor
FRSC Reentrant subroutine 0105025

call
FRSR Reentrant subroutine 0105065

return
FJAG Jump if A register 0105125

greater

FSE Pass parameters between 0105036
subroutines

FDO Terminate DO loop 0105035
FDOl Terminate DO loop 0105027

(1 increment)

For FSE, the calling routine would use the following
sequence:

CALL
DATA

DATA

SUB
P1

Pn

Address of first
data to be moved

Address of last
data to be moved

In the subroutine being called, the following sequence is
necessary to receive the data or ~ata address:

SUB BSS
DATA
DATA
BSS

1
0 1 0 5 0 3 6 BCS transfer for FSE
n Number of parameters
m Number of parameters

The second instruction, FDO to control a DO loop, uses the
following calling sequence:

DATA 0 105 0 3 5 BCS transfer to FDO
DATA P 1 Address of DO

increment

DATA P2

DATA P3

DATA P4

Address of DO loop
counter

Address of DO loop
limit

Address for jump if
the counter is not
greater than the
limit

20·3

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The third instruction, FDOl to control a DO loop with
increment of 1 uses the following calling sequence.

DATA
DATA

DATA

DATA

O 1O5 O 2 7 BCS transfer to FDOl
P 1 Address of DO loop

counter
P2 Address of DO loop

limit
P 3 Address for jump

if the counter is
not greater than the
limit

The DO loop is incremented and tested against the DO loop
limit. If the loop counter is less than the limit, execution
continues at the address specified by the BCS call word 5.
If the value of the loop counter is equal to or greater than
the value represented by the limit, execution continues at
the instruction following this calling sequence.

The calling sequence for all the relational test (FT--) and
jump (FJ--) instructions are as follows:

BCS
DATA Address of first number
DATA Address of second number
DATA Jump address

These routines compare the two single precision floating­
point numbers pointed to be the words following the BCS.
The A register is set to minus one or zero, depending on
the specified relation being met or not met, respectively.
For the jump instructions, F J--, the branch address is taken
only when the condition is met, (i.e., when the A register
equals minus one). Note that the specified relation is that
of the first number to the second. For example, FTGT tests
for the first number greater than the second.

The calling sequence for the arithmetic IF processor (FAIF),
is as follows:

BCS
DATA Address of first number
DATA Address of second number
DATA Branch address if less than
DATA Branch address if equal
DATA Branch address if greater than

This BCS also compares two single precision floating-point
numbers. It determines if the first number is less than,
equal to, or greater than the second number, and then
takes the appropriate branch address.

The indexed operand processor is used to compute the
effective apdress of an element in a FORTRAN real array. It
has the following call sequence:

BCS
DATA Address of index value
DATA Base address

20-4

The effective address is computed by subtracting one from
the index value, multiplying the result by two, and then
adding in the base address. This allows for,an array with
two-word entries and induces from one to W. The effective
address is stored in the second word of the following
instruction.

The reentrant subroutine call, FRSC, has the following call
sequence:

BCS
DATA Subroutine address

The B register points to a memory location which is used as
a stack pointer. This memory location is decremented and
the resulting value used as the address where the return
address is stored.

Control is then transferred to the subroutine. Note that the
subroutine address should be that of the first instruction of
the subroutine.

The reentrant subroutine return, FRSR, has a calling
sequence consisting of just the BCS without parameters.
The return address is popped off the stack using the B
register and the memory stack pointer as in the subroutine
call. Note that no limit checks are made on the stack by
either the call or the return. Also, the stack pointer format
is not consistent with that of the general stack firmware.

The BCS calling sequence for F JAG (jump if A register
greater than zero) is as follows:

BCS
DATA Jump address

The jump address is taken only if the A register is strictly
greater than (and not equal to) zero.

20.2.5 Byte Manipulation Firmware

The byte instructions use a byte pointer address where bits
15-1 specify the word number and bit 0 is 0 for the left byte
and 1 for the right byte. The byte-oriented instructions
implemented in firmware are:
Mnemonic Function BCS Call

CBS
MBS

Compare byte strings
Move byte string

0105030
0105070

In the first microprogram sequence, the CBS instruction
requires that the second word contain the address to which
control is returned if the strings are not equal. The B
register contains the byte starting address of the first
string, the X register is the byte starting address of the
second string, and the A register specifies the number of
bytes to be compared.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The second byte-oriented microprogram sequence, the MBS
instruction, moves the number of bytes specified in the A
register from the location specified by the B register to the
location specified by the X register.

Both share a common BCS entry point, and this may be
extended for six more instructions.

20.2.6 Stack Firmware

A stack is kept in memory for use for return addresses,
temporary storage or arithmetic operations. The base and
limit of the stack (see figure 20-1) are defined by the user.
The stack control block is indicated by a pointer in the
second word of the calling sequence. Figure 20-2 is the
format of the stack control block.

The following BCS instructions correspond with each of the
stack operations:

Operation BCS Operation BCS

Add 0105031 Push 0105231
Subtract 0105071 Pop 0105331
Multiply 0105131 Push double 0105271
Divide 0105171 Pop double 0105371

Eight stack instructions transfer to the same initial entry
point in the WCS, where the decoder determines the
specific instruction to be executed.

32K

STACK GROWS
TOWARD LOW
ADDRESS

~ LIMIT

STACK ~

~BASE

i---.--
INITI AL

ER POINT

Figure 20-1. Base and Limit of Stack

On all stack operations, if the top-of-stack pointer (PTR)
ever exceeds the boundaries of the stack (as the user
defined them in the stack control block), no further
processing takes place and a JMPM is made to the fourth
word in the stack control block.

Single-Precision Integer Stack Arithmetic

Add: adds the top two words of the stack, increments the
pointer and replaces the new topmost word. If the result
exceeds the maximum positive number (077777), the
overflow indicator (OF) and the sign in bit 15 are set to
one. For example, adding 000002 to 077777 sets OF to one
and the result to 100001.

Subtract: subtracts the next stack word from the top of
stack word (by adding the top word to the two's comple­
ment of the next stack word), increments the top-of-stack
pointer, and stores the remainder in the new top-of-stack
word. If the result exceeds the maximum negative number,
it sets the overflow indicator and resets the sign.

Multiply: multiplies the two words at the top of the stack
and replaces them by their 32-bit product (see figure 20-3).
The most significant part of the product is placed in the top
word, and the least significant portion will be placed in the
next word. The sign bit of the top word gives the sign of the

• product, and the sign of the next word is set to zero. The
overflow indicator (OF) is not set.

Word

0 CURRENT STACK POINTER

LIMIT OF STACK

2 BASE OF STACK

3 ADDRESS OF INSTRUCTION
WHICH CAUSED STACK
OVERFLOW OR UNDERFLOW

4 ERROR ROUTINE FOR OVERFLOW
OR UNDERFLOW

Figure 20-2. Stack Control Block

20-5

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Divide: divides the top stack word into the following two
words. The top-of-stack pointer (PTR) is incremented and
the single-precision quotient with the sign of the dividend is
stored in the new top-of-stack location. The remainder is
stored in the next stack location (see figure 20.4).

BEFORE AFTER
0

sj x

s] y

PTR PTR
s] x - y (MS)

P] x - y (LS l

32K 32K

Figure 20·3. Stack Multiply

If the quotient overflows, the contents are unpredictable,
and control is returned with the overflow indicator set (OF).

PTR

32K

20·6

BEFORE AFTER

x x
PTR

Y (MS> q

Y (MS) r

32K~-----~

+ yl± x = ± quotient q with remainder r

Figure 20-4. Stack Divide

Stack operators: these operators also require a stack
control block as in figure 20-2.

Push (SPUSH): the A register (RO) is placed on the stack at
the location addressed by the decremented top-of-stack
pointer (see figure 20-5.)

PTR -

BEFORE
SPUSH

PTR

AFTER
SPUSH

A-REGISTER

32K------~

Figure 20-5. Stack Push

Pop (SPOP): the A-register (RO) is loaded from the top
stack word and the stack pointer is incremented (see figure
20-6).

BEFORE SPOP AFTER SPOP

INTO
A REG-
ISTER PrR x x

~

PTR

Figure 20-6. Stack Pop

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Push Double (PUSHD): decrements the stack pointer and
stores the 8 register (RI), and then decrements the pointer
and stores the A register (RO) (see figure 20·7).

PTR

BEFORE
SPUSHED

------1---~~~----1

32K~-----~

PTR

AFTER
SPUSHD

A REGISTER

8-REGISTER

32K~-----~

Figure 20-7. Stack Double Push

Pop Double (POPD): loads the A register (RO) with the word
addressed by the top-of-stack pointer and then increments
the top-of-stack pointer; loads the 8 register (RI) with the
word addressed by the new value of the top-of-stack
register and then increments the top-of-stack pointer again
(see figure 20-8).

BEFORE POPD AFTER POPD

INTO A
REGISTER

INTO 8 ---PTR 1--------1 REGISTER

Figure 20-8. Stack Double Pop

20-7

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20·8

20.2.7 Firmware Macros

The mnemonics given are not supported by the DAS MR
assembler. The assembly-language programmer must
supply his own macros in order to .use any of these
mnemonics. The following are examples and possible use of
the required macros.

Macro

Fixed point add:

XAD MAC
DATA 0105334,P(1)
EMAC

Fixed point subtract:

XSB MAC
DATA 0105374,P(1)
EMAC

Fixed point multiply:

XMU MAC
DATA 0105274,P(1)
EMAC

Fixed point divide:

XDV MAC
DATA 0105234,P(1)
EMAC

Integer multiply:

IMU MAC
DATA 0105027,P(1)
EMAC

Integer divide:

IDV MAC
DATA
EMAC

0105067,P(1l

and, immediately following. the macros
for floating point divide, add:

Floating square root:

FSQ MAC
DATA 0105127,P(1)
EMAC

Floating point add:

FAD MAC
DATA 0105134,P(1)
EMAC

Use

XAD address

XSB address

XMU address

XDV address

IMU address

IDV address

FSQ address

FAD address

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Floating point subtract:

FSB MAC FSB address
DATA 0105174,P(l)
EMAC

Floating point multiply:

FMU MAC FMU address
DATA 0105074,P(l)
EMAC

Floating point divide:

FDV MAC FDV address
DATA 0105034,P(l)
EMAC

Load AB:

FLD MAC FLD address
DATA 0105032,P(l)
EMAC

Store AB:

FST MAC FST address
DATA 0105033,P(1)

EMAC

Memory to memory:

FMV MAC FMV address,address
DATA 0105037,P(1) ,P(1)
EMAC

Pass parameters:

FSE MAC FSE #params
DATA 0105036,P(l)
BSS P(1)
EMAC

DO loop:

FDO MAC FDO inc addr, count addr,
lim addr, loop addr

DATA 0105035,P(1) ,P(2),
p(3). p(4)

EMAC

DO loop (one increment):

FD01 MAC FD01 count addr, lim addr,
loop addr

DATA 0105027,P(1) ,P(2) ,P(3)
EMAC

20-9

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-10

Test for not equal:

FTNE MAC FTNE OP address, OP address
DATA 0105024,P(1),P(2)
EMAC

(Typical relational test form).

Jump if not equal:

FJNE DATA 0105026,P(1),P(2),P(3) FJNE OP address, OP address
jump address

(Typical relational Jump form).

Arithmetic IF processor:

FAIF FAIF OP address, OP address, MAC
DATA
EMAC

0105226,P(1) ,P(2) ,P(J) ,P(4) ,P(5)LT address, EQ address,
GT address

Index operand processor:

FIOP MAC
DATA
EMAC

0105167,P(1),P(2)

Reentrant subroutine call:

FRSC MAC
DATA 0105025,P(1)
EMAC

Reentrant subroutine return:

FRSR MAC
DATA 0105065
EMAC

Jump if A register greater:

FJAG MAC
DATA 0105125,P(1)
EMAC

Compare string:

CBS MAC
DATA 0105030,P(1)
EMAC

Move string:

MBS MAC
DATA 0105070
EMAC

FIOP

FRSC

FRSR

FJAG

CBS

MBS

index address, base
address

sub address

jump address

non compare addr

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Stack add:

SADD MAC SADD stack addr
DATA 0105031,P(l)
EMAC

Stack subtract:

SSUB MAC SSUB stack addr
DATA 0105071,P(1)
EMAC

Stack multiply:

SMUL MAC SMUL stack addr
DATA 0105131,P(1)
EMAC

Stack divide:

SDIV MAC SDIV stack addr
DATA 0105171,P(1)
EMAC

Stack push:

SPUSH MAC SPUSH stack addr
DATA 0105231,P(1)
EMAC

Stack pop:

SPOP MAC SPOP stack addr
DATA 0105331,P(1)
EMAC

Stack push double:

SPUSHD MAC SPUSHD stack addr
DATA 0105271,P(1)
EMAC

Stack pop double:

SPOPD MAC SPOPD stack addr
DATA 0105371,P(1)
EMAC

20-11

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-12

The Floating Point Processor has the following OP codes.

Mnemonic Opcode Operation

FLD 0105420 Floating load single
FLDD 0105522 Floating load double
FAD 0105410 Floating add single
FADD 0105503 Floating add double
FSB 0105450 Floating subtract single
FSBD 0105543 Floating subtract double
FMU 0105416 Floating multiply single
FMUD 0105506 Floating multiply double
FDV 0105401 Floating divide single
FDVD 0105535 Floating divide double
FLT 0105425 Fix to float
FIX 0105621 Float to fix
FST 0105600 Floating store single
FSTD 0105710 Floating store double

Load or Float interrupts are locked out until a store or fix.
EX34, ·· as time out.

An interrupt after a store may change floating-point
registers. User should restore their contents.

Mnemonics for floating-point operations are not supported
by DAS MR. The following are possible macros which must
be included by the user to define the mnemonics:

Macro

FLD MAC
DATA 0105420,P(l)
EMAC

FLDD MAC
DATA 0105522,P(l)
EMAC

FAD MAC
DATA 0105410,P(1)

EMAC

FADD MAC
DATA 0105503,P(l)
EMAC

FSB MAC
DATA 0105450,P(l)
EMAC

FSBD MAC
DATA 0105543,P(1l
EMAC

FMU MAC
DATA 0105416,P(1l
EMAC

Use

FLD

FLDD

FAD

FADD

FSB

FSBD

FMU

address

address

address

address

address

address

address

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

FMUD MAC
DATA 0105506,P(1)
EMAC

FDV MAC
DATA 0105401,P(1)
EMAC

FDVD MAC
DATA 0105535,P(1)
EMAC

FLT MAC
DATA 0105425,P(1)
EMAC

FIX MAC
DATA 0105621,P(1)
EMAC

FST MAC
DATA 0105600,P(1)
EMAC

FSTD MAC
DATA 0105710,P(1)
EMAC

20.2.8 Commercial Firmware

Commercial firmware is available on the 70 series comput­
ers for supporting VORTEX, COBOL, and TOTAL. The
firmware and assembly language routine V$DECM (see
seCtion 13), also extends the capabilities of the user's
assembly language programs.

Commercial firmware includes the following operations:

• COBOL decode
• Load/Store multiple registers
• Main storage move or compare
• 32 bit unsigned math

Additionally, an assembly language routine V$DECM is
provided in the support library for interface to the firmware
decimal math routines.

0105021

FMUD address

FDV address

FDVD address

FLT address

FIX address

PST address

FSTD address

The Commercial Firmware package is optionally available
with the FORTRAN accelerator package requiring 1024
words of WCS on a V70 series computer.

COBOL Decode

COBOL decode uses the most significant 5 bits of the
specified word of main storage to perform a 32 way branch.
Register R2(X) points to the main storage word to be
decoded. The BCS is followed by the 32 vector addresses.
When the BCS is complete, RO(A) contains O and Rl(B)
contains the least significant eleven bits (left justified). R2
is not incremented. The calling routine uses the following
sequence:

BCS value DATA
DATA
DATA

vector address zero
vector address one

DATA vector address thirty-one

20-13

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Load/Store Registers

Multiple register loading or storing is performed by the
following BCS instructions:

DATA

DATA

Registers loaded/ stored

0105020
0105060
0105120
0105160
0105220
0105260
0105320
0105360

0105017
0105057
010 5117
0105157
0105217
0105257
0105317
0105357

load

load

T.
store

RO
R0,R1
RO, - .. ,R2
RO, ... , R3
RO, ... , R4
RO, ... ,RS
RO, ... , R6
RO, ... ,R7

RO
RO,R1
RO, ... , R2
RO, ... , R3
RO, ... ,R4
RO, ... , RS
RO, ... ,R6
RO, ... ,R7

R7 contains the main storage address for loading or storing
registers. Register contents are stored in main storage as
follows:

addr
R7 before storage -- Rn

Rn-1 X·l

RO x·n

R7 after storage -....__ _____ _. X·n·l

R7 is decremented to the location following the contents of
RO. For load registers, R7 initially points to the word
following RO. After loading is complete, R7 will point to the
last register loaded.

Main Storage Move or Compare

The Move routine moves a byte block of main storage from
one area to another (overlap is allowed). The compare
routine compares two byte blocks of main storage. The
compare is logical and sets a user supplied condition word
as follows:

0 first block less than second block
1 = first block equal to second block
2 = first block greater than second block

20·14

At the end of each byte move or compare, byte pointers are
incremented. Optionally, the user may specify non·incre·
menting of the first block byte pointer. This will result in
storing a single byte value throughout a block of main
storage or comparing a single byte value to a block of main
storage.

Initially RO(A) points to the user's descriptive parameter
block and Rl(B) contains the address of the user's
condition word. The parameter block appears as follows:

word O byte addr of first main storage block
byte addr of second main storage block
number of bytes for move or compare

The calling routine will issue one of the following BCS
values:

0105223
0105263
0105323
0105363

Move without increment
Compare with increment
Compare without increment
Compare with increment

When execution is complete, parameter block contents are
as follows:

Move without increment

word 0
word 1
word 2

single byte address
last byte stored address + 1
0

Move with increment

word 0 = last byte fetched address
word 1 last byte stored address + 1
word 2 0

Compare without increment

word 0 single byte address
word 1 last byte compared address + 1

if equal
= last byte compared address

if unequal
word 2 0 if equal. Otherwise

decremented once for each
equal byte.

Compare with increment

word 0 last byte compared address
word 1 last byte compared address

+ 1 if equal.
= last byte compared address if

unequal.
word 2 = 0 if equal. Otherwise

decremented once for each
equal byte.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

32 Bit Integer Math

These routines perform the operations add, subtract,
multiply, and divide on 32 bit unsigned integer operands.
Register RO(A) contains the four word parameter block
address. The four word parameter block contains the two
operands and received the results as follows:

add

subtract

multiply

Operand two is replaced by the sum of the
two operands.

Operand two is replaced by operand one
minus operand two.

Both operands are replaced by the 4 word
product of the two operands.

divide Operand one receives the quotient of
operand one divided by operand two;
operand two is replaced by the remainder.

The hardware overflow flag is set when any of the following
occur:

• carry out of the most significant bit during an add.
subtracting a larger number from a smaller one.
dividing by zero.

The calling routine uses one of the following
instructions:

Add
Subtract
Multiply
Divide

DAT A 01 05023
DAT A 01 05063
DATA 0105123
DATA 0105163

20-15

SECTION 21
FILE MAINTENANCE UTILITY

The File Maintenance Utility program (FMUTIL) is a
background task for copying and/or loading files, file
directories and/or partitions from one device onto another,
for manipulating files and records, for formatting files and
records which are to be displayed or printed, and for
managing filename directories and space allocations of the
files.

Only files assigned to rotating memory devices (disc or
drum) can be referenced by name.

File space is allocated contiguously within a partition,
skipping bad tracks.

21.1 ORGANIZATION

FMUTIL is scheduled for execution by inputting the JCP
directive /FMUTIL. If the SI logical unit is a teletype or a
CRT device, the message Fu•• is output to indicate that
the SI unit is waiting for FMUTIL input. Once activated,
FMUTIL accepts directives from the SI unit until:

a. Another JCP directive (first character is a slash) is
input, or

b. The exit directive, E, is input.

In either case, FMUTIL terminates and JCP is scheduled.

If there is an error, one of the error messages given in
appendix A is output on the SO logical unit, and a record is
input from the SO unit to the JCP buffer. If the first
character of this record is I, FMUTIL exits via the EXIT
request. If the first character is C, FMUTIL continues. If the
first character is neither I or C, the record is processed as
a normal FMUTIL directive.

21.2 PARTITION SPECIFICATION TABLE

For a description of the Partition Specification Table (PST)
and File Name Directory, refer to section 9.1.

21.3 OUTPUT LISTINGS

FMUTIL outputs the following two types of listings to the LO
logical unit:

a. Directive Listing lists, without modification, all FMUTIL
directives entered from SI logical unit.

b. Directory Listing, lists file names from a logical unit
filename directory in response to the FMUTIL,P,D, and
L directives.

All FMUTIL listings begin with the standard VORTEX
headings.

21.4 FILE MAINTENANCE UTILITY DIRECTIVES

The following file maintenance utility functions are sup­
ported by FMUTIL:

D Dumps RMD files, partitions, and file name directories
to magnetic tape.

Loads RMD files, partitions, and file name directories
from magnetic tape.

R Rewinds magnetic tape.

Writes end-of.file on magnetic tape.

S Searches for RMD files, partitions, and file name
directories on magnetic tape.

P Prints a listing of file names contained on each
directory.

U Releases all unused space in each file.

Exits from FMUTIL.

File maintenance utility directives comprise sequences of
character strings having no embedded blanks. The charac­
ters strings are separated by commas (,) or key equal signs
(=). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of a file maintenance utility directive is

where

directive, p(l),1(2), ... ,p(n)

directive

p(l)

is one of the directive
names given above.

is a parameter

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional blank separators between character strings, and
the optional replacement of commas (.) by equal signs (=)
are omitted.

21-1

FILE MAINTENANCE UTILITY

Error messages applicable to file maintenance utility
directives are given in appendix A.

21.5 D DIRECTIVE

This directive dumps information contained in files,
partitions, and/or directories onto magnetic tape where
this information can be later re-loaded onto the RMD, or
stored for later use. There are three types of D directives;
one for file, one for partitions, and one for directories.

21.5.1 Dump File

The directive for dumping a file has the following general
form

where

lun

key

file

tapelun

D,lun,key,file,tapelun

is the number of name of the input
logical unit.

is the partition protection code.

is the name of the file being dumped.

is the number or name of the output
logical unit. (magnetic tape only)

When a file is dumped to magnetic tape, it is organized
with a header record, end-of-file, n file records, and
terminates with a double end-of-file. The file, after the
dump with the header record, is formatted as follows:

Each n file record has 5,760 words, except for the last
which has the remaining number of words in the file. In
other words, the last record may have less than 5,760
words.

On a dump file directive a listing is output. The listing
output format is as follows:

PAGE!: xxxx xx/xx/xx XX:XX:XX VORTEX PHUTIL

D,22,X,COBINT,18
COBINT 141 141

The top heading line consists of:

a. Oneblank

b. The word PAGE

c. Four character positions that contain the decimal page
number

d. Two blanks

e. Eight character positions that contain the current data
obtained from the VORTEX resident constant V$DATE.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

Word 0 'F' I 'I'
Word l 'L' T 'E'
Word 2
Word 3
Word 4
Word 5
Word 6 FCB
Word 7
Word 8
Word 9
Word 10
Word 11

end-of-file

5760 word data record

5760 word data record

:5 5760 word last data record

end-of-file
end-of-file

212

Two blanks

g. Eight character positions that contain the current time
HR: MN:SC.

h. Two blanks

Name of run-time operating system.

Two blanks

k. The I JOB name of which the system is executing

Two blanks

m. Eight character positions that contain the job processor
name, FMUTIL

n. Blanks through the !20th character position.

Beginning with the first character position, the next line
(alter 2 blank lines) contains the list of the input directives.

Beginning with the first character position the next line
contains: the name of the file, number of sectors used,
number of sectors unused, and the number of total sectors
allocated to the file.

Example: Dump the file COB INT contained on logical unit
22, whose protection code is X, onto magnetic tape unit 18.

D,22,X,COBINT,18

FILE MAINTENANCE UTILITY

21.5.2 Dump Partition

The directive for dumping a partition has the following
general form

where

D,lun,key,ALL,tapelun

lun

key

tapelun

ALL

is the number or name of the input
logical unit.

is the protection code required to
address lun.

is the output logical unit (magnetic
tape only).

keyword specifying partition dump.

All partitions dumped onto magnetic tape are organized
with a header record, n files record, and terminated by an
end-of-file.

The header record is formatted as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'P' 1 'A'

Word 1 'R' l 'T'

Word 2 number of file entries

Word 3 logical unit number

Word 4

Word 5 all zeros

Word 6

Word 7

end·of-file

213

FILE MAINTENANCE UTILITY

An alternate name record has the format shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Word 0 'E'

Word 1 'T'

Word 2

Word 3 Entry Name

Word 4

Word 5

Word 6 Original Name

Word 7

Word 8 file size

end-of-file

A partition dump directive produces a listing. This listing
output format has the following FMUTIL heading, a one line
heading as shown below:

FILENAME USED UNUSED TOTAL LOGICAL UNIT-XXXX

The heading line consists of:

a. Oneblank

b. The word FILENAME that shows an alphabetical list of
all the file located on a particular partition.

c. Four blanks

d. The word USED shows many sectors, of each file,
contain information.

e. Four blanks

The word UNUSED shows how many sectors contain
blanks.

g. Five blanks

h. The word TOTAL shows the total number of sectors
allocated to each file.

Forty spaces

The words LOGICAL UNIT shows what logical unit the
files are located on.

k. Four character positions that contain the logical unit
number.

21-4

T 'N'

1 'R'

Example: Dump the partition contained on logical unit
OM, protection code D, onto magnetic tape unit 18.

D,OM,D,AL,18

21.5.3 Dump File-Name Directory

The directive for dumping a directory has the following
general form

where

D,lun,key,DIR, tapelun

lun

key

tapelun

is the number or name of the input
logical unit.

is the protection code required to
address lun.

is the number or name of the
output logical unit. (magnetic tape
only.)

DIR keyword specifying directory dump.

A filename directory dumped to magnetic tape is organized
into a header record, directory record, and double end-of.
file. The header record is formatted as follows:

FILE MAINTENANCE UTILITY

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'D' j 'I'

Word 1 'R' blank

Word 2 all zeros

Word 3 logical unit number

Word 4

Word 5 all zeros

Word 6

Word 7

end-of-file

The directory record has the following format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Directory Sector Addr

1-120 120 word directory block

121 Directory Sector Addr

122-241 120 word directory block

5639 Directory Sector Addr

5640 5759 120 word directory block

end-of-file

end-of-file

21-5

FILE MAINTENANCE UTILITY

Example: Dump directories for partition contained on
logical unit OM, protection code D, onto magnetic tape unit
18.

D,OM,D,DIR,18

21.6 L DIRECTIVE

This directive loads information into RMD files, partitions,
and/or directives from magnetic tape.

There are three types of L directives, one for files, one for
partitions, and one for directories.

21.6.1 Load File

The directive for loading a file has the following general
form

where

L,lun,key, file, tapelun

lun is the number or name of the output
logical unit.

key

file

tapelun

is the partition protection code.

is the name of the file being loaded.

is the number or name of the input
magnetic tape unit.

When a file is being loaded from magnetic tape, a search is
made for that file. After the search, the tape is positioned
in front of the file within the correct partition dump. The
search stops if a double end-of.file is encountered and an
error message is output. After the file is located, an
attempt is made to create the file space. If the file already
exists the existing file is used. If the existing file is too
small, an error message is output.

When creating a file for loading, the file size of the created
file will include all of the original extent of the file,
including the unused portion.

When a file already exits, the only check made is to see if
there is enough space for the used portion of the file as on
the tape, and the original extent of the file is ignored.

On a load file directive a listing is output. The listing output
format is the same as the D directive when files are called.
The only change would be the directive shown on the
listing.

Example: Load the file COBINT contained on magnetic
tape unit 18 onto RMD logical unit 22, protection code is X.

L,22,X,COBINT, 18

21-6

21.6.2 Load Partition

The directive for loading a partition has the following
general form

L,lun,key,ALL, tapelun

where

lun

key

tapelun

ALL

is the number or name of the
output logical unit.

is the partition protection code.

is the number or name of the input
magnetic tape unit.

keyword specifying partition load.

When a partition is loaded, from magnetic tape, a search is
made for it as specified by the logical unit number
parameter. After the search tape is positioned in front of
the required partition dump, the search stops if a triple
end-of-file is encountered and an error message is output.

When the partition is found, the files are loaded as
indicated key file loading in the order in which they appear
on the tape. If any non-previous record names are
encountered, an entry is made in the directory for them.

During the loading of a partition, space for the directory is
allocated at the beginning of the partition. After loading,
however, there is no embedded unused space in the
partition. All unused space is at the end of the partition.

On a partition load directive, a listing is output. The listing
output has the following FMUTIL heading, a one-line
heading as shown below:

P'ILENAHE USBD UNUSBD TOTAL START END LOGICAL UNIT-XXXX

The heading line consists of:

a. One blank

b. The word FILENAME that gives a list of all filenames
now contained in the partition.

c. Four blanks

d. The word USED shows how many sectors per filename
contain valid information.

e. Four blanks

The word UNUSED shows how many sectors per
filename contain blanks.

g. Five blanks

h. The word TOTAL shows how many sectors have been
allocated to each file.

i. Ten blanks

The word START shows the beginning sector number

k. Seven blanks

The word END shows the ending sector numbers.

m. Fifteen blanks

n. The word LOGICAL UNIT shows on which logical unit
(partition) these files are contained.

o. Four character positions that contain the logical uni1
number.

Example: Load the partition contained on magnetic tape,
which is on logical unit 18, onto RMD logical unit name
OM, protection code.

L,OM,D,ALL,18

21.6.3 Load Directory

The directive for loading filename directories has the
following general form

where

L,lun,key,DIR,tapelun

lun

key

tapelun

DIR

is the number or name of the
output logical unit.

is the protection code required
to address lun.

is the number or name of the
input magnetic tape unit.

keyword specifying directory load.

When a directory is being loaded, a search is made tor it on
the input magnetic tape, after the search tape is positioned
in front of the required partition directory.

If the directory is found its sectors are loaded onto their
former recorded sectors. No reorganization takes place.

If the directory is not found or if a triple end·of·file is
encountered, an error message is output, and the search
stops.

FILE MAINTENANCE UTILITY

Example: Load directory for partition contained on
magnetic tape, on magnetic tape unit 18, onto RMD logical
unit OM, protection code is D.

L,OM,D,DIR, 18

21.7 R DIRECTIVE

This directive rewinds a magnetic tape to the beginning of
tape. The directive has the general form

where

R,lun

lun is the number or name of the
input or output magnetic tape
unit.

Example: Rewind magnetic tape located on logical unit
18.

R, 18

21.8 E. DIRECTIVE

This directive writes an end-of-file on a magnetic tape. The
directive has the general form

E,lun

where

lun is the number or name of the
output magnetic tape unit.

This directive should be used after writing a series of files
onto magnetic tape instance:

!Header Record I EOF I Series of Partition Files I EOF I EOF I EOF "I

*The E directive is used to write the third end-of-file.

E, 18

21.9 S DIRECTIVE

This directive searches tor files, partitions, and directories
located on magoetic tapes. The directive has the general
form

S,lun,key, tapelun

21.7

FILE MAINTENANCE UTILITY

where

lun

key

tapelun

is the number or name of the
RMD's logical unit.

is the protection code required
for addressing lun.

is the number or name of the
input magnetic tape unit.

After the search, the tape will be positioned after the
partition or file identification record, and is now ready for
the loading of individual files.

Example: Search for the partition, file or directory named
OM, protection code D, located on logical unit 18.

S ,OM,D, 18

21.10 P DIRECTIVE

This directive prints out a listing of the file directory on the
LO for each partition specified. The directive has the
general form

P,lun,key

where

lun

key

is the number or name of the
input logical unit.

is the protection code required
for addressing lun.

Files are listed in alphabetical order. The output listing has,
following the FMUTIL heading, a one-line heading as shown
below:

FIL!:NAM! USBD UNUSBD TOTAL START 'IND LOGICAL UNIT-XX.XX

The heading line consists of:

a. Oneblank

b. The word FILENAME that gives a list of all filenames
contained in a partition.

c. Four blanks

d. The word USED shows how many sectors per filename
contain information.

e. Four blanks

21-8

The word UNUSED shows how many sectors per
filename contain blanks.

g. Five blanks

h. The word TOTAL shows how many sectors have been
allocated for each file.

i. Ten blanks

The word START shows the beginning sector number.

k. Seven blanks

The word END shows the ending sector number.

m. Fifteen blanks

n. The words LOGICAL UNIT, one character, a dash (-),
shows upon which logical unit (partition) these files are
contained.

o. Four character positions that contain the logical unit
number.

Example: Print a listing of OM, protection code D.

P,OM,D

21.11 U DIRECTIVE

This directive releases unused space from files, after they
have been written on the RMD. The directive has the
general form

U,lun,key, file

where

lun

key

file

is the number or name of the
logical unit where space to be
released is located in the
protection code

is the protection code required
for addressing lun.

is the name of the file where
the unused space is located.

Example: Release unused space located in file COBINT,
on partition 22, protection code X.

U,22,X,COBINT

21.12 EXIT DIRECTIVE

This directive exits from FMUTIL. The directive has the
general form

where

keyword specifying EXIT from
FMUTIL

Example: Exit from FMUTIL

E

FILE MAINTENANCE UTILITY

21-9

SECTION 22
COMPRESSION/EDIT SYSTEM

(COM SY)

COMSY is a source record COMpression and edit SYstem. It
is a background task that constructs files of programs in a
compressed format for later updating and decompression.
It has provision for maintaining these files as sequential
files on magnetic tape and RMD or as random accessed
files on RMD.

Figure 22·1 is a block diagram of the general data flow
through COMSY.

22.1 ORGANIZATION

COMSY is scheduled by the job-control processor (JCP)
directive/COMSY. Once activated, COMSY inputs and
executes directives from the SI logical unit. COMSY
directives specify both the action to be taken and the
logical units and files to be used.

SI

DIRECTIVE INPUT

GO

COMMON DECKS r----1

Pl

80 CHARACTER SOURCE ~
COMSY COMPRESSED SOURCE

l
CM SW

COMMON DECK COMSY DIRECTIVES

STORAGE AND EDIT RECORDS

VT/1-3537

~

COM SY

22.1.1 COMSY Compression

COMSY compresses 80 character ASCII records into
modules called decks. A COMSY deck consists of an ASCII
deck identification record and any number of 60-word
binary records. The deck identification record is described
in section 22.3.15.

COMSY binary records consist of a sequence count in word
0, a checksum in word l, and compressed ASCII text in
words 2 through 59. The last record of a deck contains its
sequence number as a negative number. The checksum is
a value which is obtained by summing the 116 8 bit bytes
contained in words 2 through 59 in an unpacked array with
each byte right justified in a word with the remainder of the
word zeros.

COM SY compresses the ASCII text by reducing two or more
imbedded blanks to a two character sequence the first of

LO

~ EDIT HISTORY

80 CHARACTER SOURCE LISTING

1
SS BO

80 CHARACTER SOURCE COMSY COMPRESSED SOURCE

(PACKED INTO 120 WORDS) 80 CHARACTER SOURCE

Figure 22-1. COMSY Data Flow

22-1

COMPRESSION/EDIT SYSTEM (COMSY)

which is an ASCII NUL character (200) and the second of
which is the count of the number of blanks imbedded
minus two. During compression, characters 73 through 80
are ignored and any trailing blanks are dropped and
replaced by an end of record character represented by an
ASCII rub,out (377). The last compressed record of a deck
is followed by an ASCII EOT character (204).

22.1.2 Sequential Files

A sequential COMSY file is a file of COMSY decks which
contain unpacked records. The last deck is followed by a
. Fi LE directive and an end-of.file. Sequential files may be
recorded on magnetic tape or RMD. Although COMSY will
allow input of decks from a card reader, it is not
programmed to consider the handling of files from cards.

22.1.3 Random Files

A random COMSY file is an RMD file which contains a deck
directory and COMSY decks. COMSY decks are recorded in
120 word blocks of two 60 word records per block. This
provides faster access to specific COMSY decks that can be
obtained on a sequential file.

22.1.4 Common Files

A COMSY common file is a file containing up to nineteen
decks which may be inserted into COMSY decks as
updates. Each common file contains a directory which
allows random accessing of the decks which it contains.
Common decks may be entered into a common file by
transferring an existing COMSY deck or by input of 80
character source records. Common decks are stored on an
RMD in uncompressed form to allow for speedy insertion
into other decks.

When initialized, COMSY assumes that the common file is
assigned to unit CM with the default logical unit as lun 9
(GO File). A different common file may be utilized by
assigning it to unit CM with a UNIT directive.

22.1.5 Sequence and Edition Numbers

During the compression of 80 character source records,
COMSY truncates characters 73 through 80. Any identifi­
cation or sequence numbers contained in these characters
is lost. In order that different versions of the same deck
may be identified, COMSY maintains a deck edition
number. A decks edition number appears in its identifica­
tion records.

Within a deck, COMSY identifies records by their relative
positions in the deck. The first record has a sequence
number of one, the second, two, etc. COMSY updating
directives require the use of these sequence numbers to
specify the location of insertions and deletions.

22-2

When 80 character source records are output, COMSY
inserts the deck edition number in character positions 73
through 74 and the record sequence number in positions
75 through 80 of each record. When a new COMSY deck is
not being output, the edition number used is the edition
number of the input and the sequence numbers refer to
each records position in the input deck. Inserted records
are denoted by the insertion of asterisks in place of edit ion
and sequence numbers. If a new COMSY deck is being
output, the edition number used is the edition number of
the new deck and the sequence numbers refer to each
records position in the new deck. In this case, inserted
records will have an edition and sequence number.

22.2 INPUT /OUTPUT

COMSY utilizes seven logical units, some of which are
reassignable by use of the .ASSIGN and .UNIT directives.
Table 22·1 contains the logical unit names, default
assignments and usage.

Table 22-1. Default VORTEX

COMSY Default
Name LUN Unit Usage

SI SI Directive input.
Source record input.
COMSY deck input.

Pl 4 Pl Source record input.
COMSY deck input.
COMSY file input.

BO BO Unblocked decompressed
output.

COMSY deck output.
COMSY file output.

LO LO List output.

SS 8 SS Block decompressed
output.

SW 102 SW Temporary update
storage.

CM 9 GO Common deck . storage.

Note: SS, SW and CM must be on RMD.

22.3 COMSY DIRECTIVES

This section describes the COMSY directives:

a. I /O assignment and option selection directives

ASSIGN Assign non-RMD logical unit

UNIT Assign and open RMD file (with rewind)

SET Set COMSY options

GANG Select and specify out of
identification field

These directives are used to replace the default logical
units assigned by COMSY with user specified logical units
and to select user options.

b. Deck creation, copying and checking directives

DECK Build COMSY deck from source input

COMDECK Build a common deck

COPY Copy decks or files

RANDOM Build a random file

APPEND Append to a random file

EDIT Edit a random file

LIST List decknames in a file

CHECK Check sequence and checksums

These directives are used to create, copy and check the
validity of COM SY decks and files.

c. Updating directives

INSERT
(ADD) Record insertion

REPLACE
(DELETE) Record deletion and replacement

COMMON Common deck insertion

COMSY Deck decompression

These directives are used to update an existing COMSY
deck and to cause decompression when required. The
updating directives INSERT, ADD, REPLACE, DELETE
and COMMON must directly precede as a group the
COMSY directive which specifies the deck to be
processed. All other directives required to produce a
desired result must precede the updating directives.
Sequence numbers must always be in ascending
order (note: Equal is not considered ascending).

d. End-of-file and exit directives

FILE Logical end-of-file
END Exit COMSY

These directives are used to specify a logical end-of-file
and to exit from COMSY.

COMSY directives must begin with a period as the first
character of the record and must contain no imbedded
blanks. Directives are terminated at the first blank with the

COMPRESSION/EDIT SYSTEM (COMSY)

exception of the .COMSY record which is the first record of
a COMSY deck. Comments may appear after the terminat­
ing blank.

The general form of a COMSY directive is .

.name,p(l),p(2) ... p(n)

where

name is one of the directives names
given above

each p(n) is a parameter defined below
under the descriptions of the
individual directives.

22.3.1 ASSIGN Directive

This directive specifies a logical unit assignment for a
COMSY reassignable unit. This directive cannot be used for
an RMD logical unit. It has the form

where

unit

lun

R

.ASSIGN,unit,lun,R

is the name of a COMSY reassignable
unit. Allowable unit may be SI, Pl,
BO, LO, and SS.

is the two character name or the
logical unit number of the VORTEX
logical unit to be assigned.

is the character R which along with
its preceding comma is optional.
If present, it indicates the unit
is to be rewound prior to use.

If the result of the assignment is a reassignment of unit BO
or the logical unit, lun, currently assigned to BO, COMSY
checks to see if any COMSY output had been written on BO
since the last assignment of BO. If so, a .FILE directive and
an end-of-file are output to BO prior to making the
assignment. Additionally, if the current assignment of BO
is to an RMD file (see section 22.3.2), the file is closed with
update.

If the logical unit, lun, being assigned is currently assigned
to unit Pl and the current assignment is to an RMD file,
the file is closed without update prior to making the
assignment.

Reassignment of a lun to the same unit as is currently
assigned is permitted and should be used to rewind units
when necessary.

Example: Assign MO as Pl and logical unit 25 as BO
specifying rewind of BO.

.ASSIGN,PI,MO

.ASSIGN,B0,25,R

COMPRESSION/EDIT SYSTEM (COMSY)

22.3.2 UNIT Directive

This directive specifies a logical unit and file assignment
for a COMSY reassignable unit on RMD. It has the form

where

unit

lun

file

key

.UNIT,unit,lun,file,key

is the name of a COMSY reassignable
unit which may be assigned to RMD.

Allowable units may be Pl, BO or CM.

is the two character name or the
logical unit number of the RMD
partition containing the file to be
assigned.

is the name of the file to be assigned
and opened.

is the one character key for the
assigned partition, lun. This parameter
along with its preceding comma may
be omitted when the partition does
not require a key.

If the result of the assignment is a reassignment of unit BO
or the logical unit, lun, currently assigned to BO, COMSY
checks to see if any COMSY output had been written on BO
since the last assignment of BO. IF so, a .FILE directive and
an end-of-file are output to BO prior to making the
assignment. Additionally, if the current assignment of BO
is to an RMD file, the file is closed with update.

Since COMSY compares only the partition logical unit
numbers and ignores file names, it is not possible to have
two files referenced with the same logical unit number. If
this is required, an alternate logical unit number should be
assigned to the partition outside of COMSY. The normal
logical unit number is then used for one file and the
alternate may be used for the other.

Reassignment of a lun and file to the same unit as is
currently assigned is permitted and should be used to
reposition to beginning of file when necessary.

Example: Assign file OFILE on logical unit 25, key equal X,
to Pl.

.UNIT,PI,25,0FILE,X

Assign files OFILE to Pl and NFILE to BO. Both files are on
logical unit 20. The partition has no key.

224

/ASSIGN,25,20
/COMSY
.UNIT,PI,20,0FILE
.UNIT,B0,25,NFILE

22.3.3 SET Directive

This directive is used to turn on selected user options. It
has the general form

where

each P(i)

.SET,P(l),P(2) ... P(n)

is one of the parameters listed
in the table below.

The appearance of a parameter in the list turns the
selected option on. All options whose parameters do not
appear in the list are turned off. Any options which are
previously set on and which are to remain on must appear
in the list. The resulting option setting remains in effect
until another SET directive is encountered.

If no parameters appear, the standard default options as
indicated in the table below will be set. The standard
default options are automatically set when COMSY is
initialized. The acceptable parameters are:

Parameter Default Option

A on Addition/deletion listing

c on Compile file output

off End-of-file insertion

off Input source records from Pl

off List output

N off New decks to be output

s off Source record output

Vn off VORTEX option switch

off Copy option

Examples: Set the options to input source records from Pl
and output a new COMSY deck.

.SET,I,N

Set the standard default options which are to output to the
compile file and list all additions/deletions.

.SET

The following describes the characteristics of the SET
options:

Addition/Deletion List Option (A)

When this option is turned on, all records which are added
or deleted are listed on the LO unit. Records which are
deleted are preceded on the line by *D*. Records which are
added or inserted are preceded by *A*. The update
directive which caused deletions and/or additions is listed
preceding the deleted or added records.

Compile File Option (C)

When this option is turned ·on, it indicates that 80
character source records which are decompressed are to be
output to SS for submission to FORTRAN or DASMR.
Records are packed three to a sector. The last sector will be
blank filled when necessary. Records from successive
decompression of different COMSY decks may be concate·
nated on the compile file, however, the last RMD sector
occupied by records from a deck may contain up to two
trailing blank records. If each deck is a separate subpro·
gram, the last record is an END. FORTRAN and DASMR
will ignore the trailing blank records and begin processing
with the first record of the next sector. COMSY closes the
file with update after each deck insertion.

Source Record Output Option (S)

When this option is turned on, it indicates that 80
character source records which are decompressed are to be
output a record at a time to unit BO.

End-of-file Option (E)

When this option is turned on and the source record output
option is also on (S), an end-of-file is output on BO after
the last record of each deck is output.

New Deck Option (N)

When this option is turned on, it indicates that a new
COMSY deck is to be output to BO for each COMSY deck or
source. deck input. Any updates which are applied to a
COMSY deck input will be included in the deck output. The
new deck retains the same name and date of origination,
however, the edition number is incremented by one and
the date of last update is set to the current date.

Copy Option (Y)

When this option is turned on, it has the same effect·as the
new deck option (N), with the following addition. In
addition to outputting a new deck for each COMSY deck or
source deck processed, any COMSY decks which are passed
over during a search for a specific COMSY deck will be
copied without modification to BO.

Input Source from Pl Option (I)

When a DECK directive is encountered, this option will
cause COMSY to input source records from Pl until a FILE

directive or an end-of-file is encountered. When this option
is turned off source records are input from SI.

COMPRESSION/EDIT SYSTEM (COMSY)

List Output Option (L)

When this option is turned on, 80 character source records
will be listed on unit LO.

VORTEX Switch Option (Vn)

This option is used to control the conditional assembly of
programs. When the option is turned on, it causes COMSY
to examine the first source record of each COMSY deck
which is being decompressed. If the first record is a
DASMR SET directive of the form:

16

VORTEX SET c

where

c is any character

The character in position 16 is replaced by character n.
Character n may be omitted, in which case a 2 is placed in
position 16.

Examples:

A DASMR SET directive of the following form appears as
the first record of a deck.

VORTEX SET

A COMSY SET directive of the form:

• SET, V4,

would cause the above record to be changed to:

VORTEX SET 4

and a COMSY SET directive of the form:

.SET, V,

would cause the above record to be changed to:

VORTEX SET 2

Note: If the first record of a deck does not contain a SET
directive in the form indicated above, the option has no
effect on that deck.

22.3.4 GANG Directive

This directive specifies a three character identification code
which is to be inserted into the identification field,
character positions 73 through 75, of all 80 character
source records which are output as a result of the source
record output option (S) is set. The identification code

22·5

COMPRESSION/EDIT SYSTEM (COMSY)

replaces the deck edition number which is normally
inserted in each record. The GANG directive has the
general form

where

xxx

.GANG,xxx

is any three ASCII characters, including

blank.

If the parameter is omitted, the comma is absent, the
normal edition number insertion made is reinstated. The
GANG directive has no effect on other forms of COMSY
output.

Example: Output a COMSY deck in 80 character source
record mode, with the identification field set to COM.

.GANG,COM

.SET,S

22.3.5 DECK Directive

This directive is used to specify the name of a deck and to
direct COMSY to input 80 character source records from
unit SI or Pl. The form of the directive is

where

.DECK,deckname

deckname is a one to eight ASCII character
name to be assigned to the deck.

If the input from Pl option is on (I), input is from unit, Pl;
otherwise, input is from unit SI. Records are input until a
FILE directive or an end-of-file condition is encountered on
the input unit. Output created as a result of this directive is
controlled by the on or off conditions of the user options as
specified by the last SET directive encountered.

Example: Input source records from SI and output a new
COMSY deck with the deckname SOURCE, listing the
records on the printer.

.SET,N,L

.DECK,SOURCE
n 80 character source
records

.FILE

Example: Input source records from logical unit MO and
output a new COMSY deck with the deckname ALPHA on
logical unit 25.

22-6

.ASSIGN,PI,MO

.ASSIGN,B0,25

.SET,I,N

.DECK,ALPHA

22.3.6 COMDECK Directive

This directive is used to specify the name of a common
deck and to cause COMSY to transfer the deck to the
common file (see section 22.1.4). A special form of the
directive is used to open an existing common file. The
directive has the form:

where

.COMDECK,deckname,S

deckname is a one to eight ASCII character
name to be assigned to the deck.

is the optional character S, which
when present, causes COMSY to
input 80 character source records
from Pl until a .FILE or end-of-file
is encountered.

If no parameter appears, COMSY will input a COMSY deck
from SI using the name of the COMSY deck input as the
common deck name. If parameter S and its preceding
comma are absent, COMSY will search the COMSY file on
Pl for the named COMSY deck and transfer it to the
common file.

Common decks are transferred to a common file as
uncompressed records packed three records per RMD
sector. Decks may be added to an existing common file up
to a maximum of nineteen decks, after which an error will
be indicated. Common decks which are to be used in any
one update of a COMSY deck must reside in the same
common file as there is no provision for changing common
file once an update is started.

Upon initialization, the common file is defaulted to the
VORTEX GO file. The UNIT directive may be utilized to
assign CM to a diffetent user file. A special COMDECK
directive of the form:

.COMDECK,*

will cause COMSY to open the file currently assigned to CM,
assuming that the file already contains a directory and
existing common decks. If this directive does not appear,
COMSY will assume that the file assigned to CM does not
contain valid common information. It should be noted that
a common file which resides in the VORTEX GO file will not
be retained between COMSY executions within the same
job.

Example: Assign an existing common file, CMFILE, on
logical unit 25 as the common file and add COMSY deck
COMMON from the file on Pl into it.

.UNIT,CM,25,CMFILE

.COMDECK,•

.COMDECK,COMMON

Example: Input 80 character source records from Pl and
transfer them to the common file with a common deck
named COMF.

.COMDECK,COMF,S

22.3. 7 COPY Directive

This directive is used to copy COMSY decks on unit Pl to a
file on unit BO. It has the form

where

first

last

.COPY, first, last

is the optional deckname of the first

deck to be copied. COMSY will search
the file on Pl for the named deck.
If the parameter is absent, COMSY
will copy decks from the current

position on Pl.

is the optional deckname of the last
deck to be copied. If the parameter
is absent, COMSY will copy decks
until a FILE directive or end-of-file
is encountered on Pl.

Input to COPY is always in the form of COMSY decks. Pl
may be an existing random file in which case decks are
copied in the order in which they were placed in the file.
Output from COPY is controled by the settings of the user
selectable output options. If the new deck (N) or copy (Y)
options are set, output is in the form of COMSY decks.
Otherwise, output is in the form selected by the remaining
user options (S,E, C and L). The output file is always
sequential. Random files may be copied by utilizing the
RANDOM directive.

Example: Copy decks from the current position on Pl until
the deck named ADECK is copied. Output is to be COMSY
decks.

.SET,N

. COPY, , ADECK

Copy decks starting from deck FIRST to end-of-file

.COPY,FIRST

Copy the deck named MYDECK only

.COPY,MYDECK,MYDECK

COMPRESSION/EDIT SYSTEM (COMSV)

22.3.8 RANDOM Directive

This directive is used to copy COMSY decks from an
existing sequential or random COMSY file into a new
random file. It has the form

where

first

last

.R ANDOM,first, last

is the optional deckname of the first
deck to be copied. COMSY will
search the file on Pl for the named

deck. If the parameter is absent,
COMSY will copy decks from the
current position on Pl.

is the optional deckname of the last

deck to be copied. If the parameter
is absent, COMSY will copy decks

until a FILE directive or end-of-file
is encountered on Pl.

During the process of copying, COMSY constructs a
directory which will allow random accessing of the file. The
input file may be an existing random file. If so, any deleted
decks (decks which contain the deckname "DELETED) will
be omitted from the output file.

At the completion of the copy, the output file is closed and
must be reopened for subsequent use. Once a random file
is created, additions to the file are made by use of the
APPEND directive.

Example Build a random file called RFILE on logical unit
22, key X, from a COMSY file on tape unit MO.

.ASSIGN,PI,MO

.UNIT,B0,22,RFILE,X

.RANDOM

In the above example, include only those decks which are
between and include DECKA and DECKZ.

.RANDOM,DECKA,DECKZ

22.3.9 APPEND Directive

This directive is used to copy COMSY decks from an
existing sequential or random COMSY file into an existing
random file. It has the form

.APPEND, first, last

22-7

COMPRESSION/EDIT SYSTEM (COMSY)

where

first

last

is the optional deckname of the first

deck to be copied. COMSY will search
the file on Pl for the named deck.
If the parameter is absent, COMSY
will copy decks from the current
position on Pl.

is the optional deckname of the last
deck to be copied. If the parameter
is absent, COMSY will copy decks
until a FILE directive or end-of-file

is encountered on Pl.

Decks which are copied are appended to the end of the
existing random file. At the completion of the copy, the
output file is closed and must be reopened for subsequent
use.

Example: Append decks FDECK to and including LDECK
from a tape on logical unit 18 to an existing random file,
RFILE, on logical unit 22, key X.

.ASSIGN,PI,18,R

.UNIT,B0,22,RFILE,X

.APPEND,FDECK,LDECK

Append decks from FDECK until the end of the input file.

. APPEND,FDECK

Append all decks from current position to the end-of-file

.APPEND

22.3.10 EDIT Directive

This directive used to edit existing random files. It may be
used to delete a deck, rename a deck, or change a deck
edition number. It has the form

where

228

.EDIT ,op,deckname,newname, newedition

op is DEL to delete deckname or REN to
rename deckname and I or change
the edition number

deckname is the current name of the effected

deck.

newname is the optional new deckname for the
specified deck.

newedition is the optional new edition number

for the specified deck.

COMSY does not remove the entry for a deleted deck from
the directory or is the deck removed from the file. The
deckname is replaced by the name •DELETED in both the
directory and in the deck's COMSY record. Deleted decks
may be dropped by copying a random file to a new file
utilizing the RANDOM directive.

Examples: Delete deck named ALPHA

.EDIT,DEL,ALPHA

Rename deck currently named as BETA with new name
GAMMA and edition 01

.EDIT,REN,BETA,GAMMA,01

22.3.11 LIST Directive

This directive is used to list the deck information from the
COMSY records of all the decks contained in the file
assigned to Pl. It has the form

.LIST

Listing starts from the current position on Pl, with no
rewind, and continues until a FILE directive or end-of-file is
detected. The listing contains deck position, deckname,
edition, original COMSY date, last update date, deck size,
and file accumulated size. Deck size is the number of
records in the deck including the initial COMSY record .

22.3.12 CHECK-Directive

This directive is used to verify the contents of a COMSY file
on Pl to list the deck information from the COMSY records
of the decks contained in the file. It has the form

.CHECK

Verification starts from the current position on Pl, with no
rewind, and continues until a FILE directive or end-of-file is
detected. A listing is produced with the same format as
that produced by the LIST directive. All records contained
within the decks are checked for checksum and sequence.
When an error is detected, an error message is output prior
to the deck information for the erroneous deck.

22.3.13 INSERT (ADD) Directive

This directive is used to insert new records after the record
with the sequence number specified. It has the form

.INSERT,seqno

or

.ADD,seqno

where

seq no is the sequence number (in the COMSY

deck to be processed), of the record
after which new records are to be

inserted.. Records directly following

the INSERT directive are inserted

until another directive is encountered.
When an addition/ deletion listing is
checked (see SET directive) added
records are preceded by "A*.

Example: Insert new records after record number 8 and
after record number 15.

.INSERT,8
ABX•10
ABY•ABX*25

.INSERT,15
READ(5,100)IBUF

.COMSY,HTEST

22.3.14 REPLACE (DELETE) Directive

This directive is used to delete old records and to optionally
replace the deleted records with new records. It has the
form

where

first

last

.REPLACE, first,/ast

or

.DELETE, first,/ast

is the sequence number of the first
record to be deleted.

is the optional sequence number of
the last record to ·be deleted. If
omitted, only the record specified
by first is deleted.

REPLACE and DELETE both operate in the same manner
and are interchangeable. Records are first deleted from
output and then replaced by new records which directly
follow the directive until another directive is encountered.
New records may be omitted to cause deletion only. When
an addition/deletion listing is created (see SET directive),
deleted records are preceded by "D* and added records by

A

Example: Replace records 15 through 19 with new records
and delete record 24.

COMPRESSION/EDIT SYSTEM (COMSY)

.REPLACE 15, 19
LDA TEMP
STAE ALPHA

.DELETE,24

.COMSY (process next
deck from PI)

22.3.15 COMMON Directive

This directive is used to insert a deck from the common file
after a specified input record, or in place of specified input
records. It has the form

where

name

action

first

last

.COMMON,name,action,first,last

is the name of the deck to be inserted
from the common file currently open.

is the directive INSERT or the directive

REPLACE to specify designed action.

ADD or DELETE are not acceptable.

is the sequence number of the input

record after which the common deck

is to be inserted, or is the first

record to be replaced.

is the optional sequence number of
the last record to be replaced. If

omitted, only the record specified by
first is replaced.

This directive essentially operates in the same manner as
INSERT and REPLACE, with the exception that the new
records are in the common file rather than following the
directive.

Example: Place decks COMl and COM2 in the common
file and then insert COMl at record 2 and replace records
25 through 32 with COM2.

.COMDECK,COM1

.COMDECK,COM2

.COMMON,COM1,INSERT,2

.REPLACE,16
LDXI 5

.COMMON,COM2,REPLACE,25,32

.COMSY,PROGA

22-9

COMPRESSION/EDIT SYSTEM (COMSY)

22.3.16 COMSY Directive

This directive specifies the COMSY deck which is to be
processed. Updates directly preceding the COMSY directive
will be applied during processing. It has the following two
forms

form 1:

form 2:

where in form 1

deckname

newname

newedition

where in form 2

deck name

edition

odate

update

.COMSY, deckname, newname,newedition

or

.COMS Y ,deckname,editlon,odate,udate

is the optional name of the deck
to be processed

is the optional new name to be
assigned to the deck if a new

COMSY deck is to be output

is the optional new edition number
to be assigned to the deck if a

new COMSY deck is to be output

is the eight character deckname
(including blanks)

is the two character edition

number (00·99)

is the date the original COMSY
edition was created

is the date the deck was updated

When deckname is omitted in form (1), the deck to be
processed is the next deck on unit Pl. When deckname is
present, it is the name of the deck to be searched for in the
COMSY file assigned to Pl. The input file may be in
sequential or random format. During the search on a
sequential file, decks passed over will be copied to BO if the
copy option is selected (see SET directive).

The second form of the COMSY directive is the COMSY
record which is output by COMSY as the first record of a
COMSY deck. When a COMSY deck is to be processed from
SI, form (1) must be omitted. Although COMSY originates
form (2) it may be modified or replaced by the user;
however, character positions within the record are fixed,
therefore, field sizes must not be changed.

22-10

Example: Process deck ABLE changing its name to
BAKER and edition to 09 .

. COMSY,ABLE,BAKER,09

22.3.17 FILE Directive

This directive is used to specify a logical end-of-file. It may
replace or be replaced by a physical end-of-file or a disc
end-of-file. It has the form

.FILE

22.3.18 END Directive

This directive causes COMSY to exit. It may optionally
specify that a series of JCP directives be executed. It has
the form

where

NN

directive

.END,NN,directive

is an optional numeric parameter
specifying the number of pages

to be allocated by a JCP/MEM
directive. If omitted, the .preceding

comma is omitted.

is optionally, any legal JCP directive
without a slash (/).

Prior to exiting, a check is made to determine if any new
COMSY decks have been output on BO. If so, a FILE
directive and an end-of-file are output to BO. If BO is
assigned to a file on RMD, the file is closed with update.

When the first parameter is present, COMSY performs the
JCP/MEM function as if a /MEM,NN directive had been
processed by JCP. If the second parameter is present, the
parameter, preceded by a slash (/). is transferred into the
JCP input buffer; and, if the compile file output option is
on, the JCP functions

/ASSIGN,PI•SS,PO•DUM
/PFILE,PI, ,SS

are preformed as if they had been input to JCP.

Example:
/COMSY
.SET,N,C
.DELETE,5
.COMSY,PROG1
.END,3,DASMR,B

The above directives will cause program PROGl to be input
from Pl, record 5 will be deleted, a new COMSY deck will be

output to BO, assembler input will be blocked and output
to SS, and COMSY will cause the following JCP functions to
be performed:

/ASSIGN,PI•SS,PO•DUM
/PFILE,PI, ,SS
/MEM,3
/DASMR,B

22.4 COMSY LOAD MODULE GENERATION

COMSY is normally executed as a priority 1 task from the
VORTEX Background Library (BL). It may also be executed
from an alternate library.

COMSY contains eighteen overlays. During load module
generation, the error code LG16 will be output to SO for
each overlay. This diagnostic is normal and should be
ignored. COMSY requires lOK (20 pages) of memory for
execution.

COMPRESSION/EDIT SYSTEM (COMSY)

22.5 COMSY EXECUTION

COMSY is executed by input on the SI logical unit of a
directive of the form

/COMSY

There are no parameters.

22.6 ERROR PROCESSING

When COMSY detects an error, a diagnostic message is
printed on the LO logical unit and processing is terminated.
COMSY exits by executing a FORTRAN STOP statement
which contains the error number of the error detected.
FORTRAN displays the STOP statement in the form

COMSY STOP

where n is the error number

2211

APPENDIX A
ERROR MESSAGES

This appendix comprises a directory of VORTEX operating
system error messages, arranged by VORTtX component.
For easy reference, the number of the subsection contain·
ing the error messages for a component ends with a
number corresponding to that of the section that covers the
component itself, e.g., the file-maintenance error messages
are listed in subsection A.9 because the file-maintenance
component itself is discussed in section 9.

A.1 ERROR MESSAGE INDEX

Except for the language processors (section 5), VORTEX
error messages each begin with two letters that indicate
the corresponding component:

Messages
beginning
with:

CM
DG
DP

Are from
component:

Concordance program
Debugging program
Dataplot II

Listed in
subsections:

A.5.3
A.7
A.12

A.2 REAL-TIME EXECUTIVE

Message Condition

EXOl,xxxxxx Invalid RTE service
request by task xxxxxx

EX02,xxxxxx Scheduled task xxxxxx
name not in specified
load-module library

EX03,xxxxxx Task xxxxxx made
RESUME request but re-
quested task not found

EX
FM
10

IU
JC
LG
MS
MU
NC
oc
RP
RT
SE
SG
SM
ST

Real-time executive
File maintenance
1/0 control

l/O utility
Job-control processor
Load-module generator
Microprogram simulator
Microprogram utility
VTAM Network control
Operator communication
RPG IV Compiler
RPG IV Runtime/Loader
Source editor
System generator
System maintenance
VS ORT
DAS MR assembler

A.2
A.9
A.3

A.IO
A.4
A.6
A.20-2
A.20.3
A.21
A.17
A.3
A.5.3
A.8
A.15
A.16
A.11
A.5.1

Section A.24 gives explanations of error codes listed under
"Possible User Action" in the last column of the following
sections.

Possible
User

Action Action

Abort task D01,D02,P01
xxxxxx

Abort task D01,D03
xxxxxx

Continue D01,D03
scheduling
task

EX04,xxxxxx Task xxxxxx made ABORT Task xxxxxx D01,D03
request but requested continues
task not found

EX05,xxxxxx Background task xxxxxx Task xxxxxx M01,M02,M03
larger than allocatable not loaded M04,P02

EX06,xxxxxx Not enough allocatable Abort task M06
space available for xxxxxx
ALOC request

EX07,xxxxxx OVLA Y requests a seg- Abort task D01,D03
ment not in library xxxxxx

A·l

ERROR MESSAGES

EXlO,xxxxxx Scheduled request has Schedule D04,D02,P01
a library task priority request ig-
conflict (task priority nored,
O from foreground scheduling
library, task priority task continues
2 from background
library). Scheduled
request specifies a
foreground task to be
executed at priority
0 or 1

EXl 1,xxxxxx,n Memory protection vio- Abort task P03
lation at address n xxxxxx

EX12,xxxxxx 1/0 link error (fore- Abort task POl
ground task making xxxxxx
request, or incorrect
logical unit number)

EX13,xxxxxx Attempted to load map Abort task H05
registers and a sense- xxxxxx
OMA-error stop condition
occurred

EX14,xxxxxx Lack allocable TIDB If an OPCOM M02
memory space for task request, OP-
xxxxxx attempted to COM is
be scheduled aborted. If

the schedule
is not an
OPCOM,
the request is
reattempted

EX15,xxxxxx Foreground common Abort task POl
specified by back- xxxxxx
ground task

EX16,xxxxxx PASS macro specified Abort task POl
zero or negative word xxxxxx
count

EX17,xxxxxx RMD 1/0 error detected Abort task H06,P01
when SAL attempted to xxxxxx
load scheduled task,
xxxxxx. Also pseudo
TIDB data assumed bad,
execution address less
than 01000

EX20,xxxxxx,h Map memory-protection Abort task Pl7
I HALT violation at xxxxxx

virtual address n in
task xxxxxx

Note: xxxxxx is the name of a task.

A-2

ERROR MESSAGES

EX21,xxxxxx,n Map memory-protection Abort task Pl7
I 110 violation at xx xx xx

virtual address n in
task xxxxxx. User
attempted to execute
110 command in a map
other than map O

EX22,xxxxxx,n Map memory-protection Abort task Pl7
I WRITE violation at xxxxxx

virtual address n in
task xxxxxx. User
attempted to write/
store into read-only
or read-operand-only
location

fX23,xxxxxx,n,m Map memory-protection Abort task Pl7
JUMP violation at xx xx xx
virtual address n in
task xxxxxx. User
attempted to jump into
read-operand-only
location m + 2

fX24,xxxxxx,n,m Map memory-protection Abort task Pl7
UNASSIGNED violation xxxxxx
at virtual address n
in task xxxxxx. User
attempted to read or
write into unassigned
location m

f X25,xxxxxx,n Map memory-protection Abort task
instruction-fetch xxxxxx
violation at virtual
address n in task
xxxxxx. User attempted
to fetch an instruction
from read-operand-only
location

EX26,xxxxxx,m Firmware floating Task is None
I point or stack over· continued at

flow or underflow location n + 2
occurred at logical
address or in task
xxxxxx.

EX27,xxxxxx ALOCPG request error. Program con- POl
Parameter error or tinues execu·
pages not available lion at speci·
for allocation. tied reject

address

A-3

ERROR MESSAGES

A-4

EX30,xxxxxx

EX3 l,xxxxxx

EX32,xxxxxx

EX33,xxxxxx

EX34,xxxxxx

DEALPG request error.
Parameter error. Pro·
gram continues execution
at specified reject
address

MAPIN request error.
Request executed by
priority 0 task

Attempted to schedule
a task from a non-RMD
unit

Floating-point proc·
essor, FPP, error

Floating-point proc·
essor. FPP, timeout

1 The instruction which generated the memory-protec­
tion violation and the contents of the A, B, and X (and
V75) registers are also posted.

Note: xxxxxx is the name of a task.

A.3 1/0 CONTROL

Message Condition

1000,xxxxxx Unit not ready, or
unit file protected

1001,xxxxxx Device declared down

1002,xxxxxx Invalid LUN specified

Program con­
tinues execu·
tion at speci­
fied reject
address

Program con·
tinues execu·
at specified
reject address

Directive
ignored

Program con·
tinues at the
address follow­
ing the FPP
store instruc·
ti on

Program con·
tinues at
interrupted
instruction

Action

Repeats mess·
age until con·
dition is cor-
rected

Repeats mess·
age until con·
dition is cor-
rected

Abort task
or request

POl

POl

D02,P01

None

None

Possible
User
Action

H01,H03

H04,D19

D02,P01

ERROR MESSAGES

1003,xxxxxx FCB/DCB parameter error Abort task P04
or request

1004,xxxxxx Invalid protection code Abort task DOI,D02,POI
or request

1005,xxxxxx Protected partition Abort task POI
specified by unpro- or request
tected task

1006,xxxxxx 110 request error, Abort task POI
e.g., I /0-complete or request
bit not set, prior
request may be queued

1007,xxxxxx Attempt to read from a Abort task D02,POI
write-only device, or or request
vice versa

1010,xxxxxx File name specified in Abort task DOI ,D03,POI,
OPEN or CLOSE not found or request D29

1011,xxxxxx Invalid file extent, Abort task P04,POI
record number, address or request
or skip parameter, file
already closed

1012,xxxxxx RMD OPEN/CLOSE error, Abort task H05,D03
or bad directory thread, or request
seek or read error on OPEN
request.

1013,xxxxxx Level 0 program read a Task xxxxxx None
JCP {I) directive is aborted,

directive
passed to JCP
buffer

1014,xxxxxx Interrupt timed out or Abort task H05,D05
no cylinder-search- or request
complete interrupt

1015,xxxxxx Disc cylinder-search Abort task H05
or malfunction error or request

1016,xxxxxx Disc read/write timing Abort task H05
error or request

1017,xxxxxx Disc end-of-track error Abort task H05
or request

1020,xxxx BIC: abnormal stop, Abort task DOS.HOS
not ready, or time out or request
error on device xxxx

1030,xxxxxx Parity error Abort task H05,D02
or request

A-5

ERROR MESSAGES

1031,xxxxxx Reader or tape error Abort .task H05,P19
or request

1032,xxxxxx Odd-length record error Abort task H05,P12
or request

1033,xxxxxx Invalid terminal Request 027
identifier or logical ignored
line number

1034,xxxxxx Line or terminal not Request 028
opened ignored

1035,xxxxxx Line or terminal down Request 028
ignored

1036,xxxxxx Line or terminal already Request 028
open ignored

1037 ,xxxxxx Request still pending Request None
ignored

1040,xxxxxx Action on terminal not Request 028
opened ignored

1042,xxxxxx Invalid physical line Request 027
address ignored

1043,xxxxxx Invalid TCM type Request 027
ignored

1044,xxxxxx No temporary storage Request None
available ignored

1045,xxxxxx RMD error. Format, Abort task H05,D13
end-of-file or head or request
selection error

1046,xxxxxx Map memory protection Abort task H05
1/0 data transfer error or request

1047,xxxxxx User write specified Record is P04
word count ::> 7 3 truncated

105x,xxxxxx RMD read error on spool The data is H06
stream X. Specified used
stream is last digit
of error number

1060,xxxxxx RMD file full The program DOB
waits until
space is avail-
able on the
file. The
message is re-
pealed every
200 times the
condition
occurs

A-6

ERROR MESSAGES

1061,xxxxxx User parameter error Request is POI
in request ignored

1062,xxxxxx RMO write error The bad sec- H06
tor is
skipped. This
is likely to
cause an 105x
error later,
but no data
will be lost

1063,xxxxxx Buffer unavailable Spooler waits None
for spooler until buffer

is available

Note: xxxxxx is the name of a task or device.

A.4 JOB-CONTROL PROCESSOR

Possible
User

Message Condition Action Action

JCOl Invalid JCP directive Ignore 001,002
directive

JC02 Invalid or missing Ignore 001,002
parameter in a JCP directive
directive; or illegal
separator or terminator

JC03 Specified physical Ignore 007,H06
device cannot perform directive
the functions of the
assigned logical unit

JC04 Invalid protection Ignore 001,002
code or file name in directive
a JCP directive

JC05,nn End of tape before the SFILE, SREC P07
number of files spec- terminates
ified by an /SFILE upon error
directive has been condition
skipped; or end of
tape, beginning of tape,
or file mark before the
number of records spec·
fied by an ISREC di-
redive has been skipped
where nn is the num-
ber of files (or
records) remaining
to be skipped

A-7

ERROR MESSAGES

A-8

JC06

JC07

An irrecoverable 1/0
error while compiling
or assembling; or an
error during a load/go
operation; or insuf­
ficent symbol table
memory (insufficient
/MEM directive), or
an EOF was encountered
before an END statement

Invalid or illegal
logical/physical-unit
referenced in JCP
directive

Job flushed
to next /JOB
directive

Ignore
directive

A.5 LANGUAGE PROCESSORS

A.5.1 DAS MR Assembler

During assembly, the source statements are checked for
syntax errors and usage. In addition, errors can occur
where the program cannot determine the correct meaning
of the source statement.

When an error is detected, the assembler outputs an error
code following the source statement containing the error,
on the LO unit, and continues to the next statement.

The assembler error messages are:

Message

*IL

•op

*SY

*EX

*AD

*FA

•oc

•oo

*VF

*MA

Condition

First nonblank character of the source statement
invalid (statement is not processed)

Instruction field undefined (two no-operation (NOP)
instructions are generated in the object module)

Expression contains undefined symbol

Expression contains two consecutive arithmetic op­
erators

Address expression error

Floating-point number format error

An 8 or 9 in an octal constant

Invalid redefinition of a symbol or the location
counter

Instruction contains variable subfields either
missing or inconsistent with the instruction type

Inconsistent use of indexing and indirect addressing

three symbolic source statements to be assembled

P07,M01,P06

D01,D02,H06

ERROR MESSAGES

*NS

*NR

*Tf

•sz

•uo

*SE

*E

*R

*MQ

·-
•11

Nested DUP statements

Symbol table full

Tag error (undefined or illegal index register
specifications)

Expression value too large for the size of the
subfield, or a DUP statement specifying more than

Undefined digit in an arithmetic expression

The symbol in the label field has, during pass 2,
a value different than that in pass 1

Syntax error (source statement incorrectly formed)

Relocation error (relocatable item encountered
where an absolute item was expected)

Missing right quotation mark in character string

Invalid use of literal

Implicit indirect reference when I parameter is
present on the /DASMR directive

A.5.2 FORTRAN IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax, and usage. When an error is
detected, it is posted on the LO usually beneath the source
statement. The errors marked T terminate binary output.

All error messages are of the form

ERR xx c(1)-c(16)

where xx is a number form Oto 18 (notification error), or T
followed by a number from 0 to 9 (terminating error); and
c(l)·c(16) is the last character string (up to 16) encoun­
tered in the statement being processed. The right-most
character indicates the point of error and the @ indicates
the end of the statement. The possible error messages are:

Notification

Error

0
1
2
3

Definition

Illegal character input
Construction error
Usage error
Mode error

Notification
Error

4
5
6
7
8

9
10

11
12
13

14
15
16
17

18
19
20
21
22
23
24

Definition

Illegal DO termination
Improper statement number
Common base lowered
Illegal equivalence group
Reference to nonexecutable
statement
No path to this statement
Multiply defined statement
number
Invalid format construction
Spelling error
Format statement with no
statement number
Function not used as variable
Truncated value
Statement out of order
More than 29 named common
regions
Noncommon data
Illegal name
DO index not referenced
Name is dummy
Array name previously declared
Exponent underflow or overflow
Undefined statement number

A-9

ERROR MESSAGES

Terminating

Error

TO
Tl
T2
T3
T4
T5
T6
T7
TB
T9
no
Tll
Tl2
Tl3
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29

T30
T31
T32

Definition

1/0 error
Construction error
Usage error
Data pool overflow
Illegal statement
Improper use
Improper statement number
Mode error
Constant too large
Improper DO nesting
DO not parenthesized
Item not operand
Item not function
Invalid unary +,
Invalid hierarchy
Invalid -
Illegal operator
Function statement without parameters
Logical If follows logical If
Invalid dimensions
Operand is not a name
Too many numeric characters
Non-numeric exponent
Terminator not
Illegal terminator
Not statement end
Invalid common type
Target statement precedes DO
Subscript variable not dummy
Not first statement
(Title statement)
First two characters not DO
Not in subprogram
Subscript not integer constant

Note: due to optimization, the error message may appear
on the next labeled statement and not on the actual
statement error.

RUNTIME

When an error is detected during runtime execution of a
program, a message is posted on the LO device of the form:

taskname message

Fatal errors cause the job to be aborted; execution
continues for non-fatal errors. The messages and their
definitions are:

A-10

Message Cause

ARITH OVFL Arithmetic overflow

GO TO RANGE Computed GO TO out of
range*

FUNC ARG Invalid function argument
(e.g., square root of
negative number)

FORMAT Error in FORMAT statement•

MODE Mode error (e.g., outputting
real array with I format)*

DATA Invalid input data (e.g.,
inputting a real number
from external medium with
I format)*

110 1/0 error (e.g., parity,
EOF)*

* indicates fatal error; all others non-fatal

A.5.3 RPG IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax and usage. When an error is
detected an arrow is printed pointing to the discrepancy in
the source statement and an error message is output on
the LO device. Detailed descriptions can be found in the
RPG IV User's Manual (98 A 9947 03X). The possible error
messages are:

Messages

Indicator
Invalid
Label
Literal

Name
Relational
Size
Syntax

If an 110 error occurs during compilation one of the
following messages is posted on Logical Unit 15 and
compilation is terminated:

ERROR MESSAGES

Possible
User

Message Condition Action Action

RPOl,nnn 1/0 error Compilation H06
terminated

RP02,nnn End of file error Compilation P07
terminated

RP03,nnn End of device error Compilation P07
terminated

RP04 End card error (End Compilation P07
card encountered before terminated
procedure card)

RP05 Available memory Compilation M01,M03,M04
exceeded terminated

where nnn is the logical unit number on which the error
occurred.

RPG Runtime/loader during the loading or executing of an
RPG IV object program in the background any of the
following conditions will cause an error. The message is
posted on Logical Unit 15 and the task aborted:

Possible
User

Message Condition Action Action

RTOl,nnn 1/0 error Task aborted H06

RT02,nnn End of file error Task aborted P07

RT03,nnn End of device error Task aborted P07

RT04 Program too big Task aborted P07

RT05 Invalid object record Task aborted POB

RT06 Checksum error Task aborted POB

RT07 Sequence error Task aborted P08

RTOS Program not executable Task aborted POB

RT09 Work list overflow Task aborted M01,M02,M03
M04

RTlO,xxxxxx Invalid call to sub· Task aborted P08
routine or missing sub·
routine where xxxxxx
- subroutine name

A-11

ERROR MESSAGES

Concordance Program:

Possible
User

Message Condition Action Action

CNOl Symbol table full Partial con- MOl
cordance out-
put, then next
segment is
processed

A.6 LOAD-MODULE GENERATOR

Possible
User

Message Condition Action Action

LGOl Invalid LMGEN directive Ignore 001,002
directive

LG02 Invalid or missing para- Ignore 001,002
meter in an LGMEN direc- directive
tive

LG03 Check-sum error in Abort loading P08,D02
object module

LG04 READ error in object Abort loading P08,H06
module

LG05 WRITE error in load Abort loading P08,H06
module loading

LG06 Cataloging error, name Abort loading D03,H06
already in library,
library full

LG07 Loader code error in Abort loading P08
object module

LG08 Sequence error in object Abort loading P08
module

LG09 Structure error in ob- Abort loading P08
ject module (i.e., non-
binary record)

LGlO Literal pool overflow Abort loading POB,P09
or use of literal or
indirect by foreground
program

LGll Invalid redefinition of Abort loading POB
common-block size during
load-module generation

LG12 Load-module size exceeds Abort loading P02,D34
available memory or SW
file size

A-12

ERROR MESSAGES

LG13 LMGE internal tables Abort loading MOl
exceed available memory

LG14 Number of overlay seg- Abort loading D01,D02
ments input not equal
to that specified in
TIDB

LG15 Undefined externals Loading PIO
continues

LG16 No program execution Loading con- Pl?
address tinues. Ad·

dress defaults
to the first
location of
the program

LG17 Attempt to load pro· Abort loading D01,D02,D33
tected task on back·
ground library or
unprotected task on
foreground library

LG18 No load module Abort P08
to catalog cataloging

A.7 DEBUGGING PROGRAM

Possible
User

Message Condition Action Action

DGOl Invalid DEBUG direc· Ignore D01,D02
tive directive

DG02 Invalid or undefined Ignore D01,D02
parameter in DEBUG directive
directive

A.8 SOURCE EDITOR

Possible
User

Message Condition Action Action

SEOl Invalid SEDIT direc· Directive D01,D02
tive ignored

SE02 Invalid or missing para- Directive D01,D02
meter in SEDIT directive ignored

SE03 Error reported by IOC Edit H06
call terminated

SE04 Invalid end of file Edit PO?
terminated

A-13

ERROR MESSAGES

A-14

A.9 FILE MAINTENANCE

Message

FMOl

FM02

FM03

FM04

FM05

FM06

FM07

FM08

FM09

FMlO

FMll

FM12

FM13

FM14

Condition

Invalid FMAIN direc­
tive

Name already in direc­
tory

Name not in directory

Insufficient space for
entry

1/0 error

Directory structure
error, including
writing over the direc­
tory by direct ad­
dressing of an RMO
partition

Check-sum error in
object module

No entry name in ob­
ject module

Record-size error in
object module

Loader code error in
object module

Sequence error in ob­
ject module

Non-binary record in
object module

Number of input logical
unit not specified by
INPUT

Insufficient space in
memory

• Messages FM07 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

Action

Ignore
directive

Module not
added

Module not
deleted

Module not
added

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

Possible
User
Action

001,002

003,001,002,
007

003,001,002

007,008,009

H06

H06

P08

POB

Pl2

POB

POB

Pl2

001,002

MOl

ERROR MESSAGES

A.10 1/0 UTILITY

Possible
User

Message Condition Action Action

IUOl Invalid IOUTIL directive Directive D01,D02
ignored

IU02 Invalid or missing para- Directive D01,D02
meter in IOUTIL direc- ignored
tive

IU03 PFILE directive not used Directive D02
to open an RMD file ignored

IU04 1/0 error IOUTIL process H06
terminated

IU05,nn END-OF-FILE before the SFILE, SREC P07
specified number or rec- terminates
ords skipped. When upon error
nn - the number of condition
records remaining when
the END-OF-FILE or
END-OF-DEVICE (on RMD
only) occurred. END-
OF-TAPE outputs MSG
where operator has op-
tion to ;RESUME or
ABORT. Note: nn is
module O to 100.

A.11 SORT ERROR MESSAGES

Message Condition Action

STOl,xxxxxxxx Invalid or missing Abort job DOI
parameter or control
word for the SORT
control word xxxxxxxx

ST02 Record lengths for Abort job DOl
INPUT and OUTPUT
unequal and no user
exit specified.

ST03 SORT control field Abort job DOl
ending character po-
sition is less than
start character position,
or character position
is past end of sort
record

ST04 Insufficient memory Abort job MOI
available for work
space.

A-15

ERROR MESSAGES

A-16

STOS,xxxxxx OPEN error on file
xxxxxx

ST06,xxxxxx 1/0 error on file
)()()(){)()(

ST07,xxxxxx Attempt to write past
end-of-file xxxxxx.
(Work file or output
file too small.)

A.12 DATAPLOT

Message Condition

DPOO,xxxxxx Plot file overflow

DPOl,xxxxxx Buffer overflow

DP02,xxxxxx Attempted to plot from
unsorted plot file

DP03,xxxxxx End-of-file detected
before end-of-plot
indicator

DP04,xxxxxx Minimum/maximum x or
y value exceeded

DPOS,xxxxxx PLOTS not called

DP06,xxxxxx Data Plot 1/0 error

DP07,xxxxxx Attempted to sort from
a non-RMD media

where xxxxxx is the task name.

A.13 SUPPORT LIBRARY

There are no error messages unique to this section of the
manual.

Abort job D01,H06

Abort job H06

Abort job 032

Possible
User

Action Action

Incomplete 030
plot

Incomplete M05
plot

Abort plot P20

Incomplete P07
plot

Line will P21
follow plot
boundary,
origin will
be shifted

Abort plot P22

Abort task H06,H05
)(){)()()()(

Abort task 031

A.14 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the
manual.

A.15 SYSTEM GENERATION

RECORD-INPUT ERRORS: Errors in input record found
before processing.

Message Condition

SGOO Read error (1/0)

SGOl Syntax error in
SGEN directive

SG02 Invalid or missing
parameter in SGEN
directive

SG03 Syntax error in control
record

SG04 Invalid or missing
parameter in control
record

SG05 Binary-object check·
sum error

SG06 Binary-object sequence
error

SG07 Binary-object record
code ·error

SG08 Unexpected end of file,
end of device, or
beginning of device

ERROR MESSAGES

Possible
User

Action Action

Waits for P19,011
corrected
input

Waits for 001,011
corrected
input

Waits for 001,011
corrected
input

Waits for Dll
corrected
input

Waits for 001,Dll
corrected
input

Waits for P08,Dll
corrected
input

Waits for P08,Dll
corrected
input

Waits for POB,011
corrected
input

Waits for P07,011
corrected
input

A-17

ERROR MESSAGES

SG09 Improper ordering of Waits for 011
load-module-package corrected
control records input

OUTPUT ERRORS: Errors in the attempt to perform 110
on an RMO or listing unit.

Possible
User

Message Condition Action Action

SGlO RMO 1/0 error in Waits for 012
directive processor indicated

corrective
action

SGll RMO 1/0 error in Waits for 012
nucleus processor indicated

corrective
action

SG12 RMO 1/0 error during Waits for 012
library generation indicated

corrective
action

SG13 RMO 1/0 error during Waits for 012
resident-task generation indicated

corrective
action

SG14 First track on RMO bad Waits for 012
(unable to write PST I indicated
bad-track table) corrective

action

SG15 Write error on listing Waits for None
device indicated

corrective
action

SYSTEM-GENERATOR PROCESSING ERRORS: Errors pre-
venting the correct functioning of the system generator.

Possible
User

Message Condition Action Action

SG20 Requested SGEN driver System halts M05,022,018,
not available 015

SG21 Loading error in direc- Waits for 012
tive processor indicated

corrective
action

A-18

ERROR MESSAGES

SG22 Loading error in Waits for 012
nucleus processor indicated

corrective
action

SG23 Loading error in Waits for 012
library processor I indicated
resident-task corrective
configurator action

SG24 Stacks exceed avail- Waits for M03,Dl2
able memory indicated

corrective
action

SG25 Incomplete system Waits for 001,012
definition (missing indicated
directives) corrective

action

SG26 RMD error (too many Waits for D01,D25,D12
sectors allocated, or indicated
nonsequential par- corrective
tition assignments) action

SG27 Error while loading System halts 015
SGEN loader, 110
control, or drivers.
Driver not found in
SGL

SG28,xx Error while loading Waits for P08,Dl2
SGEN component indicated

xx - 05 · checksum corrective
06 - sequence action
07 · record
21 · other in

SGENl
22 - other in

SGEN2
23 · other in

SGEN3
24 · other in

SGEN4

MEMORY ERRORS: Errors of compatibility between allo·
cated memory and a portion of the VORTEX system.

Possible
User

Message Condition Action Action

SG30 Size of nucleus larger Waits for M03,Dl2
than that of defined indicated
foreground area corrective

action

SG31 Load-module literal Current load P09,Dl7
pool overflow module

processing
terminated,
system con·
tinues

A-19

ERROR MESSAGES

A-20

SG32 Size of load module
larger than defined
memory area

SG33 Invalid definition of
common during load·
module generation

SG34 Number of overlays in-
put not the same as
specified by TIO
control record

SYSTEM LOADING AND LINKING ERRORS: Errors that
prevent normal loading or linking of system components.

Message

SG40

SG41

SG42

SG43

SG44

Condition

Loader code error in
library processor

Loaded program contains
no entry name

Unsatisfied external in
library processor

No execution address
found in root segment
or overlay

Loader code error in
nucleus processor (i.e.,
indirect or literal
in foreground task)

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Action

Current load
module
processing
terminated,
system con­
tinues

Current load
module
processing
terminated,
system con­
tinues

Current load
module
processing
terminated,
system con­
tinues

Processing
continues.
Address
defaults to
the first
location of
the program

Waits for
indicated
corrective
action

M03,P02,D17

M03,D17

001,017

Possible
User
Action

P08,D17

P08,D17

Pl0,017

Pll

P08,Dl2,

ERROR MESSAGES

S645 Unsatisfied external in Waits for Pl0,012
nucleus processor indicated

corrective
action

S646 System peripheral Waits for 012
assigned to more than indicated
one logical-unit class corrective

action

A.16 SYSTEM MAINTENANCE

Possible
User

Message Condition Action Action

SMOl Invalid SMAIN direc- Ignore 001,002
tive directive

SM02 Record not recognized Ignore P19,0IO
directive

SM03 Check-sum error in Waits for POB,010
object module indicated

corrective
action

SM04 Incorrect size of Waits for Pl2,0IO
object-module record indicated
(correct: 120 words corrective
for RMO input, other- action
wise 60 words)

SM05 Loader code error in Waits for POB,010
object module indicated

corrective
action

SM06 Sequence error in Waits for POB,010

object module indicated
corrective
action

SM07 Object module contains Waits for Pl2,0IO
non-object-module text indicated
record corrective

action

SMOS Error or end of device Waits for P07,010
received after reading indicated
operation corrective

action

SM09 Error or end of device Waits for P07,010
received after writing indicated
operation corrective

action

A-21

ERROR MESSAGES

SMlO Stack area full Waits for MOl
indicated
corrective
action

SMll Invalid control record Waits for Pl9,010
indicated
corrective
action

A.17 OPERATOR COMMUNICATION

Possible
User

Message Condition Action Action

OCOl Request type error Ignore 001,002
directive

OC02 Parameter limits Ignore 001,002
exceeded directive

OC03 Missing parameter Ignore 001,002
directive

OC04 Unknown or undefined Ignore 001,002
parameter directive

ocos Attempt to schedule Ignore 001,002
or time schedule directive
OPCOM task

OC06 Attempt to declare OC Ignore 001,002
device or system directive
resident unit down

OC07 Task specified in TSTAT Ignore 001,002
key-in has no es· directive
tablished TIOB, task
currently not active

OClO Attempt to assign unit Ignore 019,H04
declared down or assign directive
an unassignable logical
unit/device

ocn Attempt to allocate Ignore M02
TIOB unsuccessful for directive
TSCHEO request

A.18 RMD ANALYSIS AND INITIALIZATION

Possible
User

Message Condition Action Action

RZOl Invalid RAZI direc· Ignore 001,011
tive or illegal sepa· directive
rator or terminator

A-22

RZ02 Invalid parameter in
a RAZI directive

RZ03 Insufficient or con-
flicting directive
information

RZ04 New PST incompatible
with the system

RZ05 Named device cannot be
replaced (system -RMD or
device busy)

RZ06 Irrecoverable 1/0 error
on designated RMD

RZ07 First track of disc
pack bad (pack unusable)

RZ08 Directive incompatible
with specified RMD

RZ09 Irrecoverable 110 error
on system RMD (VORTEX
nucleus)

RZlO 1/0 error on LO device

RZll l/O error on SI device

RZ12 No memory available to
allocate for new bad-
track table

RZ13 Total number of tracks
specified in PRT direc-.
tive exceeds size of
the device or is in-
compatible with the FRM
directive

A.19 PROCESS INPUT /OUTPUT

There are no error messages unique to this section of the
manual.

A.20 WRITABLE CONTROL STORE

A.20.1 Microprogram Assembler

ERROR MESSAGES

Ignore DOl,Dll
directive

Ignore DOl,Dll
directive

Ignore D20,D21,D22.
directive Dll

Ignore DOl,Dll
directive

Ignore H06,Dll
directive

Ignore D24
directive

Ignore D25,D23
directive

Ignore H06,Dll
directive

Ignore Dll,H06
directive

Ignore Dll,H06
directive

RAZI aborted M02

Ignore D25,Dll
directive

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and 10 errors terminate the assembly.

A-23

ERROR MESSAGES

Each error code with the exception of 10 is followed by a
space and two decimal digits indicating the character
position the assembler was scanning when the error was
detected.

The error codes and their meanings are listed below:

Error
Code Meaning

AD Address expression or associated
fields in error

cc Continuation not expected

CE Numeric conversion error

DD Illegal redefinition of a symbol

ER Syntax error

EX An expression contained an
illegal construction

FN Field number inconsistent with
format

10

LC

1/0 error

Program location counter setting
exceeds the maximum WCS page size
(512 words)

MF Duplicate field reference

NR No memory available for addition of
an entry to assembler's tables

NS No symbol in the label field where
required

OP Operation field undefined

SE Symbol in label field has a value
during pass 2 that is different from
the value determined in pass 1

Sy Undefined symbol. A value of zero
is assumed

SZ A value too large for the size of a
field, or the fields defined in a
format statement do not equal 64 bits

A.20.2 Microprogram Simulator

Poss Ible
User

Message Condition Action Action

MSOl Input could not be interpreted Directive ignored; D01,D02
as a valid command input recovery*

MS02 A non-hex character was Directive ignored; D02,D02
encountered when hex expected input recovery*

MS03 Insufficient common Request for M01,D26
area to contain spec· highest page
ified number of pages repeated

MS04 The selected page Directive D26
number was not valid ignored;

input
recovery*

MS05 An attempt was made Simulation P13
to jump to an unavail· halted
able WCS page

MS06 A BCS instruction was Simulation D26,P13
encountered when WCS halted
page 1 is unavailable

MS07 Read error on Bl Loading H06
device aborted

MSOS EOF encountered before Loading P07
load complete aborted

A-24

ERROR MESSAGES

MS09 EOD/BEOD encountered Loading P08
before load complete aborted

MS10 Sequence error on Bl Loading P08
aborted

MS11 Invalid loader code Loading P08
aborted

MS12 Checksum error Loading P08
aborted

MS13 Undefined macro opcode Simulation PI5
continues

MS14 Attempted to write to Simulation PI6
memory outside defined continues
main memory

MS15 Attempted to load out- Loading P23
side main memory aborted

MS16 Invalid field name Remainder of DOI
directive
ignored

MS17 Invalid field value Remainder of DOI
directive
ignored

. Input recovery message or corrected directive from SO
device.

A.20.3 Microprogram Utility

Possible
User

Message Condition Action Action

MUOI Input could not be Directive DOI,D02
interpreted as a valid ignored;
command input

recovery*

MU02 A non-hex character Directive DOI,D02
was encountered when ignored;
hex expected input

recovery•

MU03 EOF detected on SI Microprogram P07
utility
aborted

A-25

ERROR MESSAGES

MU04 The selected pag~ Directive D01,D02
number was not valid ignored;

input
recovery•

MUOS Unable to access WCS: Directive HOS
WCS is busy ignored

MU06 Unable to access WCS: Directive HOS
BIC load in progress ignored

MU07 Read error on BID Loading H06
device aborted

MUOB EOF encountered before Loading P07
load complete aborted

MU09 EOD/BOD encountered Loading P08
before load complete aborted

MUlO Sequence error on Bl Loading P08
aborted

MUll Invalid loader code Loading P08
aborted

MU12 Checksum error Loading P08
aborted

. Input recovery message or corrected directive from SO
device.

A.21 VTAM NETWORK CONTROL MODULE

The VTAM network control module (NCM) generates the
following error messages:

Possible
User

Message Condition Action Action

NCOl Syntax error Ignore D01,D02
directive

NC02 Undefined line Ignore D27,D02
directive

NC03 Undefined TUID Ignore D27,D02
directive

NC04 1/0 error on file Ignore H06,D02
VT$DFL directive

NCOS 1/0 error on file Ignore H06,D02
VT$DFT directive

NC06 Undefined CCM number Ignore D27,D02
directive

A-26

ERROR MESSAGES

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS

Message Condition Action Possible User
Action

END-OF-FILE This is an ERROR MSG FMUTIL D01,P07
meaning an END-OF-FILE Process
was encountered before Terminated
the specified request
could be completed.

A DIRECTORY A • blanks FMUTIL H06
STRUCTURE lun - 4 digits giving Process
ERROR-LUN iun logical unit number Terminated
SECTOR-sector sector num - 7 digits
num giving the sector number

in error. This is an
ERROR MSG. Meaning there
is a structure error in
the object module.

FILENAME ERROR INVALID filename or No action D01,D02,
filename not found taken error D03

output and
ignored goes
to next entry.

- DIRECTORY Directory error shows FMUTIL P17
ERROR writing over the direc- Process
ERROR - - - tory by direct address- Terminated
Beg. - - end ing of an RMD partition.
- - eof - - - - blanks
current - - Beg - 2 digits showing
end - - eof. beginning sector addr.

end. - 2 digits showing
the ending sector addr.
eof - 2 digits showing
end-of-file addr.
current - 7 digits
showing current beg.
addr.
end • 7 digits showing
ending addr. of current
sector.
eof • 7 digits showing•
current eof.

TAPE INPUT READ ERROR (file Header Outputs error D01,D07,
ERROR not found) tries again. Dll

PARTITION Insufficient space for Module not D07,D09,
OVERFLOW entry into partition. added, outputs D01,D03

last directory
sector.

INSUFFICIENT Insufficient space for ~ile not added,
SPACE IN entry FMUTIL process H06,M01
PARTITION terminated

A-27

ERROR MESSAGES

Message

FMAIN ERROR-

CAPACITY
EXCEEDED

PARTITION

Condition

4 blanks and 1 digit
reference to FMAIN
ERROR indicated re­
quired 1/0 error.

Insufficient space for
entry to Directory.

Partition size and

Action Possible User
Action

Outputs msg. H06
FMUTIL process
terminated,
depending upon
error mentioned.

Sorts entries MOl
in alphabetical
order, and out-
puts listing.

Returns to try Pl7,H06
SIZE sze sectors as stated in again.
SECTORS error message have not
· · - - - num been assigned.
ARE UNASSIGNED · = blanks

size = 7 digits showing
size of partition.
num = 5 digits show­
ing number of sectors
unassigned.

A.23 COMSY ERROR MESSAGES

The following are the COMSY error numbers and associ­
ated types of errors detected:

Error

4

6

A-28

Definition

Directive not understood.

Missing directive.

Input was not .COMSY or .FILE when
searching for a named COMSY deck on Pl.

Record sequence error on binary COMSY
input.

Record checksum error on binary COMSY

input.

Parameter list in error.

Missing .COMSY directive on Pl.

9

10

11

12

14

15

16

17

18

Updates were not terminated by a .COMSY

directive.

Sequence number greater than 99999 on
an update directive.

Update sequence numbers not ascending.

.COMSY deck specified, not on COMSY

file on Pl.

Incorrect unit.

Common decks limited to 19.

Common deck not found.

Update directive not understood.

110 error.

Erroneous end-of-file condition.

19 Directory error on a random file.

A.24 ERROR CODES

A.24.1 Errors Related to Directives

DOI Check spelling, delimiters, and parameters.

D02 Enter corrected request from OC or SO.

D03 Check specified library for module name (FMAIN list).

D04 Correct task priority.

D05 Check PIM directives used at system generation.

D06 Use a global logical unit in directive.

D07 Use an alternate library or unit.

D08 Increase library size with RAZI or during SGEN.

D09 Delete unused modules from library.

DlO Reposition record if PT or CR (for MT or RMD
positioning is automatic and enter on SO:

R@ to reread the record or where @ is a
P@ to reread the program or carriage return

/SMAIN@ to restart SMAIN

Dl 1 Correct input record by entering it on SO or
indicate that it is positioned for rereading
by entering C on SO.

Dl2 Restart component by entering C on SO.
(Repositioning is automatic for MT and RMD,
for cards reload the entire deck and SGEN
will find component.)

Dl3 SGEN requesting bad track analysis for unformatted

RMDs or reformat formatted RMDs.

D14 Restart SGEN from beginning.

D15 Check spelling, delimiters, etc. of 10
I NTEROGATION.

D16 Correct appropriate SGEN directives as indicated.

D17 Correct indicated module for next SGEN or add
corrected module with LMGEN after SGEN completes.

D18 Check that all RMDs are included in the SYS
directive that are indicated by the EQUIP
directives.

019 Use OPCOM IOLIST for unit to check unit status
(up or down) and unit's logical group.

020 Check PRT directive.

ERROR MESSAGES

021 Check if maximum number of partitions specified
in EDR directive has been exceeded.

022 Check for conflicts in controller/unit relations.

D23 Check logical unit in directive, must be assigned
to first partition of the subject RMD unit.

024 The specified RMD pack cannot contain a bad track
table due to the first track being bad, use another
pack.

025 Check FRM directive and total number of tracks
specified in PRT directive. The following
table gives the track capacity for the standard
RMDs:

70-75XX 4060 tracks
70-76XO 203 tracks
70-76X3 406 tracks
70-7701 128 tracks
70-7702 256 tracks
70-7703 512 tracks

026 Check response to the highest page number
requested.

D27 Check NDM definition or use LIST directive
of NCM.

028 Use NCM module to check line/terminal status.

D29 Check that all subject logical units assigned
to RMD have been positioned with a PFILE.

D30 Use a larger file for the plot file.

D31 Check for proper logical unit (i.e., IOLIST).

D32 Increase work file xxxxxx size.

033 Check type parameter on TIDB directive

A.24.2 Errors Related to Programs

POI Correct request in requesting task and re-execute.

P02 Recode task using overlays.

P03 Check for privileged or illegal instruction
at specified location. Check listings or check
memory by requesting a dump.

P04 Check FCB or DCB entries.

P05 Check for proper read mode, packed or
unpacked.

P06 Check for needed global files such as PO,
SS, GO, SW. Note: the diagnostic gives
the task name and not necessarily the missing
file name.

A-29

ERROR MESSAGES

P07 Check source for an erraneous EOF, END directive,
etc.

P08 Check module for the indicated error;
sequence number··word 1, bits 0-7
checksum value--word 2

Note: binary records can be listed using the DUMP
directive of IOUTIL.

P09 Check $LIT and $1AP values from the load module
map.

PlO Examine map for missing externals and make
necessary program changes.

Pl 1 Check for an execution label on the END statement
of the source. Note: this is a normal diagnostic
for FORTRAN overlays.

Pl2 Check for a non-binary record or a short or long
record in the module. The record length can be
found in word 5 of the request block upon completion
of 1/0.

Pl3 Check code and continue after making corrections
as indicated. ·

Pl4 Check requested page number.

P15 Check opcode for valid instruction.

Pl6 Check memory address, store request is ignored.

Pl7 Check for specified instruction or operation at
location indicated in error message. Note: the address
indicated refers to the instruction causing the
error and not the violated address.

Pl8 Check the page status: read/write, read only,
fetch operand only, or unassigned.

Pl9 Check for illegal data under current mode, i.e., binary
in ASCII record, non-binary in binary record.

P20 Sort the plot file.

P21 This may be an intentional message. Plot continues.

P22 Call PLOTS.

A-30

P23 Check memory address, check ORG value and load
range

P24 Recode into multi tasks or use fewer overlays

A.24.3 Errors Related to Memory Size

MOl If background, adjust MEM directive as needed.

M02 Wait for foreground tasks to release
memory or TIDB space.

M03 If MEM request OK or cannot be increased then cut
back on foreground common, empty TIDBs, reentry
stack size, peripheral drivers, etc. by re-SGEN.

M04 If sharing blank common and VTAM LCB area,
check that a program has not used part of the
LCB area.

M05 Increase buffer area with BSS or dimension commands.

M06 Increase reentry stack size in SGEN EDR directive.

A.24.4 Errors Related to Hardware

HOl Make indicated unit ready.

H02 Clear the protection of the unit. (Disc
write protection or write ring in MT).

H03 ABORT task, reassign SI if necessary, and then
declare device down through OPCOM, do not
forget to declare it back up again.

H04 ABORT task and assign alternate device or
declare device back up.

H05 Check hardware for indicated problem.

H06 Check the OC device for an 10 error message,
i.e., IOxx.

APPENDIX B
1/0 DEVICE RELATIONSHIPS

Allowable Functions by 1/0 Device Type
Function RMD MT

Read binary record x x

Read alphanumeric record x• x

Read BCD record x• x

Read unformatted record x• x•

Write binary record x x

Write alphanumeric x• x
record

Write BCD record x• x

Write unformatted record x• x•

Write end of file x

Rewind unit x x

Skip one record forward x x

Skip one record backward x x

Perform function zero

Perform function one

Perform function two

Open a file with rewind x x
option

Open a file with leave x x
option

Close a file with leave x x
option

Close a file with update x x
option

(1) All modes are read/written in binary
mode.
(2) BCD mode is handled like unformatted
mode.
(3) Punch 256 frames of leader on paper tape
or eject one blank card on card punch.
(4) All modes are written in alphanumeric
mode.
(5) Advances paper to top of form on line

PT

x

x
xi

x

x

x

xi

x

x
x3

x3

NOTES

CR CP LP TY or CRT

x x4

x x
xi x4

x x4

x x9 x4

x3 x x

xi x9 x4

x X9,IO x4

x Xs

x

x3 xs xs

x6 x6

x1 x1

printer, or causes carriage return and feeds
three lines on Teletype or CRT.
(6) Advances paper one line.
(7) Advances paper two lines.
(8) Rings bell on Teletype or beeps on CRT.
(9) 620·77 line printer ·· All modes are treated
as alphanumeric.
(10) 620·76 printer/plotter .. Unformatted rec­
ords are transmitted without interpretation as
plot data.

B-1

1/0 DEVICE RELATIONSHIPS

1/0 Errors by l/O Device Type

l/O Device
Code Description RMD MT PT CR CP LP TY or CRT

000 Unit not ready x x x x x x x

001 Device down 0 0 0 0 0 0 x

002 Illegal LUN speci- 0 0 0 0 0 0 0
fied

003 FCBIDCB parameter 0 0 0 0 0 0 0
error

004 Level 0 program 0 0 0 0 0 0 0
references a pro-
tected partition

005 Level 0 program 0 0 0 0 0 0 0
references pro-
tected memory

006 1/0 request error 0 0 0 0 0 0 0

007 Read request to 0 0 0
write-only device,
or vise versa

010 File name not found x

011 File extent error x

012 RMD directory error x

013 Level 0 program 0 0 0 0
read a JCP (/)
directive on SI

014 Interrupt time out x x x

015 RMD cylinder-search x
or malfunction error

016 RMD read/write x
timing error

017 RMD address error x

02n BICn error x x x x x

030 Parity error x x

031 Reading error by x x
card reader or
paper tape device

032 Odd-length record x
error

x Error reported by 1/0 drivers.

0 Error reported by 1/0 control processor.

B-2

APPENDIX C
DATA FORMATS

This appendix explains the formats and symbols used by
VORTEX for storing information on paper tape, cards, and
magnetic tape.

C.1 PAPER TAPE
Information stored on paper tape is binary, alphanumeric,
or unformatted. It is separated into records (blocks of
words) by three blank frames. The last frame of each
record contains an end-of-record mark (1·3·4·8 punch).

C.1.1 Binary Mode
Binary information is stored with three frames per
computer word (figure C·l). Note that channels 6 and 7 are
always punched.

CHANNEL

8
7
6
5
4

TIMING
3
2
I

QXXQXXQXX

QXXQXXQXX
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

C.1.2 Alphanumeric Mode

Alphanumeric information is stored with one frame per
character (figure C-2). Standard ASCll·8 punch levels are
used.

C.1.3 Unformatted Mode

The tape is handled as for alphanumeric mode, but without
validity-checking.

C.1.4 Special Characters

An end of file is represented by the ASCll-8 BELL character
(1·2·3·8 punch).

QXX* B B B Q XX
* * * B B B B * * *
* * * B B B B * * *
OXXB B B BQXX
xx x * B B B X XX

xx x * B B B X xx
XX X B B B B X xx
xx x * B B BX xx

WORD ~-LwoRD2 WORD N_J_J_L_LwoRD I

EOR RECORD

VT/J.1174

----· BINARY RECORD GAP

*=HOLE
B =BLANK
X =DATA BIT

EOR = END - OF - RECORD
Q= BLANK

Figure C·l. Paper Tape Binary Record Format

C·l

DATA FORMATS

When paper tape is punched on a Teletype, the ASCll-8
ERROR character flags erroneous frames punched by the
Teletype when it is turned on or off. This notifies the
Teletype and paper-tape reader drivers to ignore the next
frame.

When alphanumeric input tapes are punched off-line on .a
Teletype, there is no means of spacing the three blank
frames after every record. The following procedure gives a
tape that can be read by the paper-tape reader driver:

a. Punch the alphanumeric statement.

b. Punch an end of record (RETURN on the Teletype
keyboard).

c. Punch three or more frames containing any of the
following characters:

Press CONTROL and:

@
LINE FEED
WRU
EOT
RU
VT
TAB
HERE IS (33 ASR only)

CHANNEL:

8
7
6
5
4

TIMING
3
2
I

ASCll-8 Equivalent

DCO
LINE FEED
WRU
EOT
RU
VTAB
HTAB
NULL

xx xx x
xx xx x
xx xx x
xx xx x
xx xx x

xxxxx
xx xx x

NOTE

Any of these characters can also be used for leader
and trailer.

d Punch the next alphanumeric statement. Return to step
b.

C.2 CARDS

Information stored on cards in binary, alphanumeric, or
unformatted. Each card holds one record of information.
Hence, there is no end-of-record character for cards.

C.2.1 Binary Mode

Binary information is stored with sixty 16-bit words per
card. The information is serial with bit 15 of the first word
in row 12 of column 1, bit 14 in row 11, etc. (figure C-3).
Any 11-0 punch in column 1 is treated as binary.

C.2.2 Alphanumeric Mode

Alphanumeric information is stored one character per card
column (figure C-4) using the standard punch patterns.

XX•BBB xx
XX BB BB xx
XXBBBB xx
XXBBBB xx
XX•BBB xx

x x • B B B xx
xx B B B B xx

• B B B

LAsCII CHARACTERsYJ........,_____.L LASCH CHARACHRS OR
EOR RECORD BINARY WORD

VTll-IJ75

C-2

'--ALPHANUMERIC RECORD ----.I GAP

*=HOLE FOR ASC!l CHARACTER OR DATA BIT FOR
BINARY INFORMATION

B =BLANK
X = DATA BIT

EOR = END-OF-RECORD

Figure C-2. Paper Tape Alphanumeric Record Format

VTll-/J76

VTl/-0957

DATA FORMATS

WORD:

0000 00000 OOOPOOOOOOOOOOOOOO
I l J 4 $ 6; 8 910 11111141~!~111~'.' ~;1/;>;-lH;·;.-,;•,82

1111111111111111111111111111

222222222222222222222222222

JJ3333333JJ333333333J33J3333

44444444444444444444444444444

5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 c

6666666666666666666656666666

7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 J 7 7 7 7 7

8888888888888888888888888888

999999999999999999g95g"999999
1 i J 4 ~ 6 ~-·~ ~ 10 11 :~ u 14 ,J !~/~~~~~~, ~---:<} ~~:a/b 212s19

Figure C-3. Card Binary Record Format

111111111
1ooooonooooooaooo0Uolololololololooolooooo
1} l 4 s 6 1 A !11tl···-•J•.1s•6!11!•inJ;;}~J}4~5161128nlOJ'J~J,~4JSJ6JJJ8J9f041HOHH464l4849~·0~l~;sJ~4SS~&!ll5~~96061626l6465666163G91:1;1nn14J5;~d:&19ao

1 l I 1 11111 1111 1 1 1 1 1 1 1 I 1 1 11 1 1 1 1 1 1 1 1 11111I1 I 11 1 I I I 1 I I I I I I I I 1-1 I 1 I 1111 I 1 I 11 I I I I I I I I I 1

1211111111111111111 711 I 2 21122111111111111111111111111111111111111121121111111111

J3333lll333333~33333333JIJJJJJJ3333333333Jl333333333333333IJJ3333J33JJJJl1l1IJIJ

4 4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5555555555l55555555555555555l555555~5555555555l555555555555555l55555555555555555

s s s 6 s s s s 6 6 6 s Is s s 6 s s 6 s s 6 s s s 6 6 s b Is s s s s s s s s s s s s s s 6 s ls s s 6 s s s s s s s s 6ss16 s s 6 s s s 6 s 6 6 s s s s
77 7 7 7 7 7 7 7 1 7 7 7 7 I 7 7 7 7 7 7 17 7 7 7 7 7 7 7 7 7 I 77 7 77 7 7 7 7 7 7 7 7 7 7 7 7 I 7 7 77 7 7 7 7 7 7 7 77 77 I 7 7 7 7 7 7 7 7 7 7 7 77

s s s s s s s s a s s as s s s Is s s s s s s s s s Bas BBB BIBB BBB B B s s s s BBB B a a Is a a B s s s BB s s Bass Is B BI s Is Is Is
g9999999999~999999l99999999999999999l99999999999999999l399999999999999l999999999
I 1 J 4 ~ 6 ~L~ii1:.'t'N6 \} ll 14 I~ l~il~~!!R~ ;~~~\~~~1:G 1! ni~),} ll)~I~;~ l~lt .11 JBH ~o c 4~4341 H4f. 0 484~~c ~l ~· ~; ~l ~~~6 ~! ;8 5'$0 ~1~16l&4 f~~t.11 t: ~;JC ;1 '2 J) ;4 15 16 !I)~ 'l 8.')

Figure C-4. Card Alphanumeric Record Format (IBM 026)

C-3

DATA FORMATS

C.2.3 Unformatted Mode

The data are handled, one column per computer word,
right-justified, and without validity-checking.

C.2.4 Special Character

An end of file is represented on cards by a 2-7-8-9 punch in
column 1 of an otherwise blank card.

C.3 MAGNETIC TAPE

Information stored on seven-track magnetic tape is either
binary or BCD. On nine-track tape, information is always
binary.

C.3.1 Seven-Track

For system-binary, ASCII, and unformatted modes, the first
frame is read into bits 15-12 of the word, the second frame
into bits 11-6, and the third into bits 5-0. For BCD mode,
the first frame is read into bits 11-6 and the second into
bits 5-0.

C.3.2 Nine-Track

In all modes, the first frame is read into bits 15-8 of the
word, and the second frame into bits 7-0.

C-4

C.4 STATOS PRINTER/PLOTTER

Information may be output to the Statos printer/plotter in
alphanumeric and unformatted modes.

C.4.1 Alphanumeric Mode

Information output in alphanumeric mode is assumed to be
ASCII characters packed two to a word. Each character is
converted to a dot matrix and the print line is transmitted
to the device. Characters may be printed in two sizes. The
normal print size consists of a 7 by 11 dot matrix and
allows 140 characters per line. The large size print consists
of a 14 by 22 dot matrix and allows 70 characters per line.
Excess characters will be truncated.

C.4.2 Unformatted Mode

Information output in unformatted mode is assumed to be
plot data. The information is truncated after n words and
transmitted to the device without conversion. Each 1 bit
transmitted will cause a dot to be printed on the output
line. The most significant bit of the first word is transmit­
ted to represent the left-hand dot position on the line.

"n" depends on the bed width of the plotter. See section
20.3.3 for specific value.

APPENDIX D

STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch
Symbol ASCII Hollerith ASCII Symbol

t 375 11-0 242
:> 276 6-8 275

272 5-8 247
247 4-8 300 @
275 3-8 243 #

337 2-8 272
9 271 9 271
8 270 8 270
7 267 7 267 7

266 6 266 6
265 5 265. 5

4 264 4 264 4
3 263 3 263 3
2 262 2 262 2
1 261 1 261
(blank) 240 (blank). 240 (blank)
& 246 11-0 375 t

< 274 12·6·8 253 +
[333 12-5·8 250 (
) 251 12-4·8 274 <

256 12·3·8 256
277 12·2·8 333

I 311 12-9 311
H 310 12·8 310 H
G 307 12-7 307 G
F 306 12-6 306 F
E 305 12·5 305 E
D 304 12-4 304 D
c 303 12·3 303 c
B 302 12·2 302 B
A 301 12·1 301 A
+ 253 12 246

245 11-7-8 334
273 11·6·8 273
335 11-5·8 251
252 11-4·8 252
244 11-3·8 244
241 11-2·8 241 I

R 322 11-9 322 R
Q 321 11-8 321 Q
p 320 11-7 320 p
0 317 11-6 317 0
N 316 11·5 316 N
M 315 11-4 315 M
L 314 11-3 314 L
K 313 11·2 313 K
J 312 11-1 312

255 11 255
243 0-7-8 277 7
\ 334 0·6-8 276 :>

242 0-5-8 337
250 0-4-8 245 %

D-1

STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch
Symbol ASCII Hollerith ASCII Symbol

254 0·3·8 254
@ 300 0·2·8 335
z 332 0·9 332
y 331 0·8 331 y

x 330 0·7 330 x
w 327 0·6 327 w
v 326 0·5 326 v
u 325 0-4 325 u
T 324 0·3 324 T
s 323 0·2 323 s
I 257 O·l 257
0 260 0 260

D-2

APPENDIX E
ASCII CHARACTER CODES

Character Internal ASCII Character Internal ASCII

0 260 R 322
1 261 s 323
2 262 T 324
3 263 u 325
4 264 v 326
5 265 w 327
6 266 x 330

267 y 331
8 270 z 332
9 271 (blank) 240
A 301 241
B 302 242
c 303 # 243
D 304 $ 244
E 305 245
F 306 246
G 307 247
H 310 250
I 311 251
J 312· 252
K 313 + 253
L 314 254
M 315 255
N 316 256
0 317 257
p 320 272
Q 321 273
< 274 FORM 214

275 RETURN 215
> 276 so 216

277 SI 217
@ 300 DCO 220

333 X-ON 221
334 TAPE AUX
335 ON 222
375 X-OFF 223
337 TAPE OFF

RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
EOM 203 so 230
EOT 204 SI 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237
V TAB 213

E·l

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

73-3300 046 MP halt error 020 nla Wired as system
Memory MP 1/0 error 022 nla priority 1
Map MP write error 024 nla

MP jump error 026 n/a
MP unassigned 030 nla

error
MP instruction 032 n/a

fetch error
MP write and 034 nla

overflow error
MP jump and 036 n/a

overflow error

Power Power failure 040 n/a Wired as system
Failure/ Power restart 042 n/a priority 2
Restart

Real-Time 047 RTC variable 044 n/a Wired as system
Clock interval priority 4

RTC overflow 046 n/a
Base timer inter-
val rate is 100
microseconds;
free-running clock
rate is 100 micro-
seconds

Priority 040-043 0100-0277 n/a Wired as system
Interrupt priority 5; assign-
Module ments should be
(PIM) from fastest to

slowest

Addresses 064-
067 available for
special use

Special 044 n/a nla PIMs modified to
PIM enable/disable
Instruction with EXC 044

Buffer 020-027 BIC complete 0100-0277 n/a All wired as sys-
Interlace 070-073 tern priority 3
Controller
(BIC) or Addresses 070-
Block Transfer 073 available
Controller (BTC) for BIC5 and

BIC6 others
created for spe-
cial use

F-1

VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

Disc 70-7702 620-47 014 BIC complete 0100-0277 Yes RMD assigned to
Memory 70-7703 -48,-49 Highest system

Drum -43C, BIC (no other
D Disc devices can be
Memory so assigned)

Disc 70-7600 620-37, 016-017 BIC complete 0100-0277 Yes RMD assigned to
Memory 70-7610 -36 Disc Cylinder- 0100-0277 highest system

Memory search com- BIC (no other
plete devices can be

so assigned)

70-7603 Model F 015-017 BIC complete 0100-0277 Yes RMD assigned to
70 7613 Disc Cylinder- 0100-0277 highest system BIC

Memory search com- (no other devices
plete can be so assigned)

70-7500 620-35 015 BIC complete 0100-0277 Yes RMD assigned to
Disc Cylinder- 0100-0277 highest system
Memory search com- BTC (no other

plete devices can be
so assigned)

70-7510 620-34 015-017 BIC complete 0100-0277 Yes RMD assigned to
Disc Cylinder- 0100-0277 highest system
Memory search com- BTC (no other

plete devices can be
so assigned)

Magnetic 70-7100 620·30 Tape motion 0100-0277 Yes
Tape -31A, complete 0100-0277

-318, or
-31C, -32
Magnetic
Tape Unit

Card 70-6200 620-25 030 BIC complete 0100:0277 Yes
Reader Card

Reader

Printer/ 70-6602 620-75 035-036 BIC complete 0100-0277 Yes
Plotter Statos PC not busy

Printer/
plotter

70-7702 035·036 BIC complete 0100-1077 Yes Interrupt event
70-660x PC not busy 0100-0277 words should be
Statos Statos not 0100-0277 01 for BIC, 02
Printer/ busy for Statos, and
Plotter 04 for PC

Line Printer 620-77 035-036 BIC complete 0100-0277 Yes
Line
Printer

F-2

VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

Card 70-6201 620-27 031 BIC complete 0100-0277 Yes
Punch Card

Punch

Paper- 70-6320 620-55, 037,034 Character 0100-0277 No
tape -55A ready
System Paper

Tape
System

Teletype 70-6100 620-6, 001-007 Read buffer 0100-0277 No Event 1 = READ
70-6104 -7, -8 ready Event 2 = WRITE

Teletype Write buffer 0100-0277
ready

70-6400 CRT with Read buffer 0100-0277 No Compatible with
E-2184 ready Teletype (Event 1 =
Controller Write buffer 0100-0277 READ, Event 2 =

ready WRITE)

Front 00-01 No Wired as system
Panel priority 6; not

used by VORTEX

wcs 73-4000, 070-074 nla nla No Only one device is used
-4001, in a given system.
-4002 Multiple (512 word) WCS

pages use the same
device address.

NOTES

(1) The priority look-ahead option is required if
there are more than eight priority devices in the
system.

(2) PIM assignments are arranged from the
fastest devices to the slowest.

F-3

APPENDIX G
OBJECT MODULE FORMAT

Object modules generated by the VORTEX language
processors result from assembly or compilation. The
modules are input by the load-module generator and are
bound together into a load module.

The first record of the module contains the size of the
program, an eight-character identification, and an eight­
character date. Entry name addresses, if any, appear as
the first data field items of the object module.

G.1 RECORD STRUCTURE

Object-module records have a fixed length of sixty 16-bit
words. Word 1 is the record control word. Word 2 contains
the exclusive-OR check-sum of word 1 and words 3 to 60.
Words 3 to 11 can contain a program identification block
(optional). Words 12 to 60 (or 3 to 60 if there is no program
identification block) contain data fields.

Table G-1 illustrates record control word formats.

G.2 PROGRAM IDENTIFICATION BLOCK

The program identification (ID) block appears in words 3 to
11 of the starting record of each module. Word 3 contains
the program size, words 4 to 7 contain an ASCII eight­
character program identification, from the TITLE state­
ment, and words 8 to 11 contain an ASCII eight-character
date.

G.3 DATA FIELD FORMATS

Data fields contain one-, two·, three·, or four-word entries.
One-word entries consist of a control word; two-word

15 141312 11109

Code Subcode

Code Values

entries consist of a control word and a data word; three·
word entries consist of a control word and two data words;
and four-word entries consist of a control word, two name
words, and a data word. Data words can contain instruc­
tions, constants, chain addresses, entry addresses, and
address offset values.

Table G-1. Record Control Word Format

Bit Binary Value Meaning

15 Verify check-sum
Suppress check-sum

13·14 11 Binary record
00-10 Nonbinary record

12 0 First record of module
1 Not the first record

11 Last record of module
Not the last record

10 0
9 0
8 0 Not a relocatable module (absolute)

1 Relocatable module
0-7 Sequence number (modulo 256)

G.4 LOADER CODES

Loader codes, which have the following format, are among
the data in an object module.

8 7 6 5 4 2 1 0

Pointer Name

Meaning

00 Refer to subcode for specific action.

01

02

03

Undefined.

Add the value of the selected pointer to the
data word before loading.

Add the value of the selected pointer to the
first data word (literal value) and enter the
sum in the direct literal pool if bit 11 of
the second data word is zero. Otherwise,
enter it in the indirect literal pool. Add
the address of the literal to the second data
word before loading.

G-1

OBJECT MODULE FORMAT

Name Format

Code Values

04

05·07

Subcode Values

00

01

02

03

04-06

07

010

011

012

013

014-017

Pointer Values

00

01

02

03·036

037

Meaning

Load the data word(s) absolute. Bits 12 through
0 indicate the number of words minus one (n·l) to
load.

Undefined.

Meaning

Ignore this entry (one word only).

Set the loading address counter to the sum of the
specified pointer plus the data word.

Chain the current loading address counter value
to the chain whose last address is given by the
sum of the selected pointer plus the data word.
Stop chaining when an absolute zero address is
encountered.

Complete the postprogram references by adding to
each address the sum of the selected pointer plus
the data word.

Undefined.

Set the program execution address to the sum of the
values of the selected pointer plus the data word.

Define the entry name with entry location as equal
to the value of the selected pointer plus the data
word.

Define a region for the pointer whose size is given
in the data word. If the entry name is not blank,
define the entry point as the base of the region.

Enter a load request for the external name. The
chain address is given by the sum of the selected
pointer plus the data word.

Enter the loading address of the external name in
the indirect literal pool. Add the address of the
literal plus the value of the selected pointer to
the data word (command) before loading.

Undefined.

Meaning

Program region.

Postprogram region.

Blank common region.

Labelled COMMON regions.

Absolute (no relocation).

Names are one to six (six-bit) characters, starting in bit 3
of the control word and ending with bit 0 of the second

name word. Only the right 16 bits of the two name words
are used.

G-2

OBJECT MODULE FORMAT

G.5 EXAMPLE

The following is a sample background program with the
description of the object module format after the assembly
and the core image after loading.

G.5.1 Source Module

NAME SUBR
EXT BBEN

SUBR ENTR
LDA* SUBR
CALL BBEN
STA TIME
JAN DONG
LDA •2
CALL BBEN

DONG INR SUBR
JMP* SUBR

TIME BSS 1
END

G.5.2 Object Module

060400

157631

000016

142730
140715
150314
142640

131263
126661
130255
133271

010000
000647
054262
000000

100000
000000

060000
100000
017000

100000
002000

Record control word (first and last record. verify check·sum
sequence number 0)

Check-sum word.

(Begin program ID block)

Program size (exclusive of FORTRAN COMMON, literals. and in­
direct address pointers).

Identification in ASCII (assume this program was labeled
EXAMPLE).

Date of creation in ASCII (assume assembled 03-10-69)

(End program ID block)

Define entry name SUBR at relative 0 (code O. subcode 010.
pointer O. name SUBR. and data word 0).

Enter absolute data word 0 in memory at relative 0.

Enter literal (indirectly addressed relative 0) in indirect
pointer pool, add address of pointer to load 017000 and en­
ter memory at relative 1.

Enter absolute data word 02000 in memory at relative 2.

G-3

OBJECT MODULE FORMAT

G-4

100000
000000

100000
054010

100000
001004

040000
000012

060760
000002
010000

100000
002000

040000
000003

060000
000000
047000

100000
001000

040000
100000

001000

012003
000212
024556
000011

Enter absolute data word 000000 in memory at relative 3.

Enter absolute data word 054010 in memory at relative 4.

Enter absolute data word 01004 in memory at relative 5.

Enter relative data word 012 in memory at relative 6.

Enter literal (absolute 2) into literal pool, add address of
literal to load command 010000, and enter in memory at relative
7.

Enter absolute data word 02000 in memory at relative 010.

Enter relative data word 03 in memory at relative 011.

Enter literal (relative 0) into indirect pointer pool, add
address of literal to increment command 047000, and enter in
memory at relative 012.

Enter absolute data word 01000 in memory at relative 013.

Enter relative data word 0100000 in memory at relative 014.

Set loading location for next command, if any, to relative
016.

Enter load request for external name BBEN and chain entry
address to relative 01 L

(The remaining words of this record contain zero).

OBJECT MODULE FORMAT

G.5.3 Core Image

Assume the program originates at 01000, the literal pool
limits are 0500-0777, and BBEN is loaded at 01016.

0500 101000 DATA •01000
0501 001000 DATA 1000

0777 000002 DATA 2

01000 000000 ENTR 0
01001 017500 LDA* 0500
01002 002000 JMPM
01003 001016 01016
01004 054010 STA 01015
01005 001004 JAN
01006 001012 01012
01007 010777 LDA 0777
01010 002000 JMPM
01011 001016 01016
01012 047501 INR* 0501
01013 001000 JMP
01014 101000 • 01000
01015 BSS 1
01016 BSS 1

The following six-bit codes are used by the load-module
generator in building load modules. The codes define
names created by NAME, TITLE, and EXT directives.

Character Octal Character Octal Character Octal

@ 40 v 66 + 13
A 41 w 67 14
B 42 x 70 15
c 43 y 71 16
D 44 z 72 I 17
E 45 [73 0 20
F 46 \ 74 1 21
G 47 l 75 2 22
H 50 76 3 23
I 51 77 4 24
J 52 (blank) 00 5 25
K 53 I 01 6 26
L 54 02 7 27
M 55 # 03 8 30
N 56 $ 04 9 31
0 57 % 05 32
p 60 & 06 33
Q 61 07 < 34
R 62 10 35
s 63 11 > 36
T 64 12 ? 37
u 65

G-5

OBJECT MODULE FORMAT

G.6 END LOAD RECORD

An end-load-module record is used to terminate one or
more object modules which comprise a root or sequent of a
load module. This record is processed simularly to an end­
of-file indication by LMGEN, however, more than one end­
load-module record may be present on an RMD file.

C0-6

The form of an end-load-module record is a binary record
in which the first word has the value 077000 and all other
words are zero.

INDEX

A
ABL: Automatic Bootstrap Loader, 18-2
ABORT (OPCOM), 17-4
ABORT (RTE), 2-8
ABORT procedure, 2-14
accelerator (FORTRAN firmware), 20.2, 13.1
access method (1/0), 3-9
access modes, 1-5, 2-13
AD (SEDIT), 8-3
ADD (FMAIN), 9-5
ADD (SGEN), 15-14
ADD (SMAIN), 16-4
add records (SEDIT), 8-3
add string (SEDIT), 8-3
adding an 1/0 driver, 14-25
adding controller tables, 14-25
allocate memory pages, 2-9
allocate, stack, 2-6
ALOC (RTE), 2-6
ALOCPG, 2-9
ALOCPG (RTE), 2-9
alphanumeric mode, Statos, C-4
alphanumeric mode, cards, C-2
alphanumeric mode, paper tape, C-1
ALT (SGEN), 15-7
ALT (SMAIN), 16-4
alternate logical unit (SMAIN), 16-4
AL TLIB (JCP), 4-8
analog input system, 19-3
AS (SEDIT), 8-2
ASCII character codes, E-1
ASA Teletype, 18-1
ASN (SGEN), 15-12
assembler, DAS MR, 5-1
assembly listing format, 5-10
ASSIGN (JCP), 4-3
ASSIGN (OPCOM), 17-5
ASSIGN (SGEN), 15-12
assign logical units (SEDIT), 8-2
ATTACH (OPCOM), 17-3
automatic bootstrap loader, 18-2
auxiliary group directives, 8-1

B
background processing, 1-2
background tasks, 2-12
bad-track analysis, 15-18
bad-track table, 3-4
bibliography, 1-6
Bl: Binary input, 3-2
BIG flag table, 14-25
BIG (Buffer Interlace Controller), 14-28
binary mode, cards, C-2
binary mode, paper tape, C-1
binary records (COMSY), 22-1
bit string operations, 19-8
blank common, 6-3
bootstrap loader, 18-2
BTC (Block Transfer Controller), 14-28
build task identification block (SGEN),

15-19
building the library configurator, 15-21

building the VORTEX II nucleus, 15-1
15-2, 15-8

byte manipulation firmware, 20-4

c
C (JCP), 4-2
card data modes, C-2
card punch (initializing), 18-1
card reader (initializing), 18-1
card reader, SGEN key-in loader, 15-5
CFILE (IOUTIL), 10-5
character codes, standard, D-1
checkpoint file, 1-4
checkpointing, 2-14
CLK (SGEN), 15-17
clock (SGEN), 15-17
CLOSE (IOC), 3-10
close file (IOUTIL), 10-5
CO (SEDIT), 8-7
COBOL decode, 20-13
codes, ASCII character, E-1
codes, standard character, D-1
COMDECK, 22-6
COMSY, 22-1, 22-10
COMSY binary records, 22-1
COMSY directives, 22-2, 22-10
COMSY error messages, A-28
COMSY error processing, 22-11
COMSY execution, 22-11
COMSY load module generation, 22-11
comment (JCP), 4-2

Commercial Firmware, 20-13
common, 6-3
common Illes (COMSY), 22-2
common Interrupt handler, 14-1
common module, foreground blank, 1-4
compare inputs (SEDIT), 8-7
compare main storage, 20-14
Compression/Edit System

(COMSY), 22-1
compile conditionally, 4-5
compilers: language processors, section 5
CONG (JCP), 4-6
concordance program, 5-11
configurations, hardware, F-1
configurator, building the library, 15-21
control panel, 15-5
control records (SMAIN), 16-2
controller device address, 14-25
controller tables, 15-8
copy file (IOUTIL), 10-1
copy file (SEDIT), 8-5
copy record (IOUTIL), 10-2
COPYF (IOUTIL), 10-1
copying group, 8-1
COPYR (IOUTIL), 10-2
CREATE (FMAIN), 9-3
CTL control recrods 15-2
CTL control records 15-2
CTADNC 14-25
CTBICB, 14-26
CTDST, 14-26

INDEX-1

INDEX

CTDVAD, 14-26
CTFCB, 14-26
CTFRCT, 14-26
CTIDB, 14-25
CTIOA, 14-26
CTOPM, 14-25
CTPSTO, 14-26
CTPST1, 14-26
CTPST2, 14-26
CTPST3, 14-26
CTRQBK, 14-26
CTRTRY, 14-26
CTSTAT, 14-26
CTSTSZ, 14-26
CTTKSZ, 14-26
CTWDS, 14-26

D
DASMR (JCP), 4-5
DASMR assembler, 5-1, 4-5
DASMR assembler, error messages, A-8
data control block (IOC), 3-14
data formats, B-1, C-1
DATAPLOT II, 12-1
data transfer firmware, 20-2
DATE (OPCOM), 17-3
DCB (IOC), 3-14
DE (SEDIT), 8-4
deallocate pages of memory, 2-1 0
deallocate reentrant stack, 2-7
DEALOC (RTE), 2-7
DEAL PG (RTE), 2-1 0
DEBUG, 7-1
Decimal Subroutine, 13-10
Decode (COBOL), 20-13
debugging program, error

messages, A-14
DECK SETUPS (JCP), 4-10
DEL (SGEN), 15-15
DEL (SMAIN), 16-5
DELAY (RTE), 2-3
DELA Y3 (RTE), 2-4
DELETE (FMAIN), 9-3
delete (SMAIN), 16-5
delete records (SEDIT), 8-4
delete string (SEDIT), 8-5
DEVON (OPCOM), 17-5
device down (OPCOM), 17-5
device initialization, 18-1
device specification table (DST), 3-4
device, type of, 15-6
DEVUP (OPCOM), 17-5
digital input expansion module, 19-3
digital input module, 19-3
digital output expansion module, 19-1
digital output module, 19-1
digital-to-analog converter, 19-1
DIR (SGEN), 15-7
direct access, 3-9
directive (COMSY), 22-1 0
directive-input unit (SGEN), 15-7
directives, COM SY, 22-2

INDEX-2

directives, DASMR assembler, 5-1
directives, FMUTIL, 21-1
directly connected interrupt handler,

14-28
disc, 18-1
disc, key-in loader programs, 18-2
disc pack formatting program, 18-5
disc pack handling, 18-3
dispatcher interrupt processor, 14-22
driver interface, 14-27
drum, key-in loader programs for, 18-2
DUMMY logical unit, 3-1
DUMP (FMUTIL), 21-2
DUMP (IOUTIL), 10-3
DUMP (JCP), 4-8
dump directory (FMUTIL), 21-4
dump partition (FMUTIL), 21-7

E
edition numbers (COMSY), 22-2
EDR (SGEN), 15-17
END (COMSY), 22-10
END (LMGEN), 6-5
END (SGEN), 15-20
END (SMAIN), 16-7
end library (SGEN), 15-23
end of file (IOC), 3-12
end redefinition (SGEN), 15-17
end segment (SGEN), 15-23
END JOB (JCP), 4-2
ENTER (FMAIN), 9-4
EQP (SGEN), 15-9
equipment assignment (SGEN), 15-9
ERROR task, 14-4
error messages, (FMUTIL), A-27
error retry count (CTRTRY), 14-26
errors, 14-25
error processing (COMSY), 22-11
error messages (COMSY), A-28
ESB (SGEN), 15-23
event word, 2-9
EXEC (JCP), 4-7
execute (COMSY), 22-11
execute (JCP), 4-7
executive mode, 1-5, 2-12, 14-4
execution-time 110 unit

(FORTRAN), 5-18
EXIT (FMUTIL), 21-8
EXIT (RAZI), 18-5
EXIT (RTE), 2-7
external interrupts, 14-1

F
FC (SEDIT), 8-5
FCB (IOC), 3-14
FCB module, global, 1-4
file control block (IOC), 3-14
file maintenance (JCP), 4-6
file maintenance utility (FMUTIL), 21-1
file maintenance, error messages

A-14
file-name directory, 3-4, 9-1

file search (FMUTIL), 21-7
FINI (JCP), 4-2
finish (JCPO), 4-2
firmware, 20-2
firmware, F option, 4-6
fixed-point arithmetic firmware, 20-2
floating-point arithmetic firmware, 13-1,

20-3
flow, system, 1-2
FMAIN (JCP), 4-6
FMAIN: file maintenance, 9-1
FMUTIL, 21-1
FMUTIL directives, 21-1
FMUTIL directory, 21-7
FMUTIL, dump file, 21-2
FMUTIL, dump partition, 21-3
FMUTIL error messages, A-27
FMUTIL, load file, 21-6
FMUTIL, load partition, 21-6
foreground blank common module, 1-4
foreground task (SGEN), 15-17
foreground tasks, 2-12
FORM (JCP), 4-4
format and dump (IOUTIL), 10-3
format rotating memory (RAZI), 18-4
formatting program, disc pack, 18-5
FORT (JCP), 4-5
FORTRAN IV compiler, 5-13
FORTRAN IV compiler, error messages,

A-10
FORTRAN IV level-G

enhancements, 5-13
FORTRAN IV functions, 13-1
FORTRAN compiler (JCP), 4-5
FORTRAN-oriented firmware, 20-3
FORTRAN program input/output

operation, 1-5
FORTRAN subprogram calls for process

1/0, 19-6
free-running counter, 15-17
FRM (RAZI), 18-4
FUNG (IOC), 3-13
function (IOC), 3-13

G
GA (SEDIT), 8-6
gang-load all records (SEDIT), 8-6
generation, system, 15-1
global FCB module, 1-4, 4-4
GO file, 1-4

H
handlers, 14-1
hardware configurations, F-1
hardware, minimum, 1-1

identify the physical page number, 2-14
initialize, 15-23
initialize background pointers, 4-2
initialize memory (DEBUG), 7-1

initialize peripheral devices, 18-1
IN (SMAIN), 16-3
INIT (FMAIN), 9-4
initialize (FMAIN), 9-4
initialize (RAZI), 18-4
INL (RAZI), 18-4
INPUT (FMAIN), 9-5
input logical unit (SMAIN), 16-3
integer math (32 bit), 20-15
integers, storing, 13-1
interrupt handler, directly connected, 14-28
interrupt-processing task, exit, 14-2
interrupt-processing tasks, 14-1
IOC: input/output control, 3-1
IOLINK (RTE), 2-8
IOLIST (OPCOM), 17-5
IOUTIL: input/output utility program,

10-1
IOUTIL, scheduling (JCP), 4-7
1/0 algorithm, 14-25
1/0 control, error messages, A-3
1/0 devices, physical, 17-1, B-1
I /0 driver, 14-24, 14-29
1/0 errors by 1/0 device type, B-2
1/0 interrupts, 3-5
110 linkage, 2-8
1/0 tables, 14-24
1/0 utility (JCP), 4-7
1/0 utility, error messages, A-15
ISA FORTRAN process control, 19-6

JCP: job-control processor, 4-1
JCP (ASSIGN), 4-3
JCP (COMSY), 22-1
JOB (JCP), 4-2
job-control processor, error messages,

A-7
JCP (FMUTIL), 21-1
JCP (JOB), 4-2
JCP (LMGEN), 4-6
JCP (LOAD), 4-8
JCP (memory), 4-3
JCP (PFILE), 4-4
JCP (position file), 4-4
JCP (REW), 4-4
JCP (rewind), 4-4
JCP (SFILE), 4-3
JCP (SMAIN), 4-7
JCP (SREC), 4-3

K
key-in requests, 17-1
keypunch mode (JCP), 4-5
KPMODE (JCP), 4-5

L
LAD (SGEN), 15-15
language processors, 5-1
LD (LMGEN), 6-4
LDE (SGEN), 15-16

INDEX

INDEX-3

INDEX

LI (SEDIT), 8-6
LIB (LMGEN), 6-5
LIB (SGEN), 15-7
library (LMGEN), 6-5
library addition (SGEN), 15-·15
library deletion (SGEN), 15-16
library-input unit (SGEN), 15-7
library-modification input unit (SGEN), 15-7
library processing, 15-21
library replacement (SGEN), 15-16
line printer, 18-1
linkage, 1/0 with RTE, 2-8
LIS (SGEN), 15-8
LIST (FMAIN), 9-4
LIST (SMAIN), 16-6
list 110 (OPCOM), 17-5
list records (SEDIT), 8-6
listing format (concordance), 5-11
listing format (DASMR), 5-10
LMGEN (JCP), 4-6
LMGEN: load-module generator, 6-1
LMP: load module package, 16-3
LOAD (JCP), 4-8
load (LMGEN), 6-4
load directory (FMUTIL), 21-7
load file (FMUTIL), 21-6
load/store registers, 20-14
load partition (FMUTIL), 21-6
load module, 15-19
load-module generation (COMSY), 22-11
load-module generator (JCP), 4-6
load-module generator, error messages,

A-12
load-module library, 15-4
load-module package (LMP), 15-22
loader, bootstrap, 18-2
loader codes, B-1
loader, key-in, 15-5
lock bit, 9-2
logical memory, 1-4
logical record, 3-9
logical unit, 3-1, 8-2
logical-unit assignments, 15-12
LRE (SGEN), 15-16

M
magnetic-drum, (see RMD), 18-1
magnetic-tape modes, C-4
magnetic tape, SGEN key-in loader, 15-5
magnetic-tape, 18-1
main storage (compare) 20-14
main storage (move), 20-14
manual loading, 15-5
map, memory, 1-4, 14-4
map 0 allocable memory, 1-4
map 0, nucleus. 1-3, 1-4
MAPIN, 14-5
MAPIN (RTE), 2-10
mask, 2-5
memory, 1-2
memory (JCP), 4-3
memory (SGEN), 15-8

INDEX-4

memory map, 1-4, 1-5
memory protection interrupt, 14-3
MEM (JCP), 4-3
microprogram assembler (MIDAS), error

messages, A-23
microprogram simulator (MICSIM), error

messages, A-24
microprogram utility (MIUTIL), error

messages, A-25
MICSIM, 20-1
MIDAS, 20-i
MIUTIL, 20-1
MO (SEDIT), 8-5
model codes, 15-1 O
model numbers, 15-5
move main storage, 20-14
move records (SEDIT), 8-5
moving-head disc, (see RMD), 18-1
MRY (SGEN), 15-8
multiplexor expansion modules, 19-3
multiplexor modules, 19-3
multi-volume tape handling (VSRSW), 10-5 Iii

N
named common, 6-3
nine-track magnetic tape, C-4
non-relocatable load-module library, 1-4

nucleus, 15-2
nucleus, building the VORTEX II, 15-2

15-18
nucleus, map 0, 1-3
nucleus modules, 1-5
nucleus programs module, 1-4
nucleus table module, 1-4 ·

0
object module formats, B-1
(OPCOM) operator communication, 17-1
OPEN (IOC), 3-10
operator communication, error messages

A-22
OUT (SMAIN), 16-4
output calls, process I /0, 19-2
output logical unit (SMAIN), 16-4
OV (LMGEN), 6-4
overlay (RTE), 2-5
overlays, 6-3
overlay (SGEN), 15-22
OVL (SGEN), 15-22
OVLA Y (RTE), 2-5

p
page 0, 1-4, 1-5
pages, 1-5
PAGNUM (RTE), 2-11
paper-tape modes, C-1
paper-tape reader, 18-1
partition (FMUTIL), 21-3, 21-6, 21-7
partition (RAZI), 18-4
partition (SGEN), 15-12
partition description listing, 18-3
partition protection bit, 3-4

partition specification table (PST), 3-4,
9-1

partitions, 1-4
partitions, 9-1
partitions (RMD), 3-4
PASS (RTE), 2-9
pass buffer parameters, 2-9
peripherals, 15-10
PFILE (IOUTIL), 10-4
PFILE (JCP), 4-4
physical 110 devices, 17-1
physical memory, 1-5
physical record, 3-10
PIM (SGEN), 15-16
PIM interrupts, 2-5, 14-26
PMSK (RTE), 2-5
position file (IOUTIL), 10-4
position file (JCP), 4-4
post-interrupt processing, 14-25
power failure/restart interrupt, 14-3
power-down 14-3
power-up, 14-3
pre-interrupt processing, 14-24
print file (IOUTIL), 10-4
printer, line, 18-1
priorities, 14-5
priority 1 tasks, 1-5
priority interrupt (SGEN), 15-16
priority interrupt module (PIM), 14-1
priority levels, 2-1
PRNTF (IOUTIL), 10-4
process input/output, 19-1
program identification block, B-1
programs module, nucleus, 1-4
protection codes, 15-12
PRT (RAZI), 18-4
PRT (SGEN), 15-12
Pseudoregisters (DEBUG), 7-1

R
Random files (COMSY), 22-2
RAZI: rotating memory analysis and

initialization, 18-3
READ (IOC), 3-11
read-only pages, 2-11
real numbers, 13-1
real-time clock, 14-26, 15-17
real-time clock interrupt, 14-3
real-time executive, error messages,

A-1
real-time interrupt processor, 14-22
record structure, B-1
reentrant runtime 1/0 (FORTRAN), 5-22
reentrant subroutine, 2-6, 14-23
registers, load/store, 20-14
relocatable object-module library, 1-4
RENAME (FMAIN), 9-2, 9-4
REP (SGEN), 15-14
REP (SMAIN), 16-5
REPL (SEDIT), 8-4
replace (SMAIN), 16-5
replace records (SEDIT), 8-4

replace string (SEDIT), 8-4
requirements •. system, 1-1
resident-task configuration, 15-21
resident-tasks, 14-30
RESUME (OPCOM), 17-3
RESUME (RTE), 2-3
REW (IOC), 3-12
REW (IOUTIL), 10-4
REW (JCP), 4-4
REWI (SEDIT), 8-7
rewind (FMUTIL), 21-7
rewind (IOC), 3-12
rewind (IOUTIL), 10-4
rewind (JCP), 4-4
rewind (SEDIT), 8-7
RMD analysis and initialization (RAZ!),

error messages, A-22
RMD file structure, 3-4
RMD, SGEN key-in loader, 15-5
RMD storage map, 1-4
rotating memory analysis and

initialization (RAZ!), 18-3
rotating-memory device, 1-1
RPG IV compiler, 5-22
RPG II compiler, 5-23
RPG IV compiler, error messages,

A-11
RPG IV 110 units, 5-23
RPG II 110 units, 5-23
RTE macros available through

FORTRAN IV, 5-13
RTE: real-time executive, 2-1
RTE system flow, 2-12
runtime 1/0 exceptions (FORTRAN),

5-22

s
SA (SEDIT), 8-3
SAL: search, allocate and load task,

14-4, 14-22
SCHED (OPCOM), 17-2
SCHED (RTE), 2-2
schedule foreground task (OPOM),

17-2
scheduling, 14-4
SD (SEDIT), 8-5
SE (SEDIT), 8-6
search, allocate, and load, 14-22
search (FMUTIL directory), 21-7
search (FMUTIL file), 21-7
search (FMUTIL partition), 21-7
secondary storage, 1-4
sectors, RMD, 9-1
SEDIT (JCP), 4-6
(SEDIT) source editor, 8-1
sequence numbers (COMSY), 22-2
sequence records (SEDIT), 8-6
sequential access, 3-1 O
sequential files (COMSY), 22-2
seven-track magnetic tape, C-4
SFILE (IOUTIL), 10-2
SFILE (JCP), 4-3

INDEX

INDEX-5

INDEX

SGEN, 15-1
SGEN directive processing, 5-8
SGEN key-in loaders, 15-5
SGEN operations, for process 110, 19-1

19-3

(SGEN) system generation, 15-1
SGL, 16-1
SGL addition (SGEN), 15-14
SGL deletion (SGEN), 15-15
SGL replacement (SGEN), 15-14
SI: system input file, 3-1
simultaneous peripheral output overlap

(SPOOL), 3-5

skip file (IOUTIL), 10-3
skip record (IOC), 3-12
skip record (IOUTIL), 10-3
SLM (SGEN), 15-22
SLM (SGEN), 15-19
SMAIN (JCP), 4-7
(SMAIN) system maintenance, 16-1
snapshot dump program, 7-3
SO: system output file, 3-1
source editor (JCP), 4-5
source editor, error messages, A-14
special characters, cards, C-4
special characters, paper tape, C-1
SR (SEDIT), 8-4
SPOOL: simultaneous peripheral output

overlap, 3-5

SREC (IOC), 3-12
SREC (IOUTIL), 10-2
SREC (JCP), 4-3
stack allocation, 2-7
stack control block, 20-5
stack firmware, 20-5
standard character codes, D-1
start LMP (SGEN), 15-22
start load module (SGEN), 15-19
STAT (IOC), 3-14
Statos printer/plotter, C-4
Statos-31, 18-1
status (IOC), 3-14
storage, secondary, 1-4
support library, 13-1
support library, error messages, A-17
SUSPND (RTE), 2-3
SYS (SGEN), 15-7
system concordance (JCP), 4-6
system generation, 14-1
system-generation library (SGL), 15-2
system-generation output unit (SGEN),

15-7

system maintenance, 16-1
system maintenance, error messages,

A-16

system maintenance scheduling (JCP),
4-7

symbol table, 16-1

INDEX-6

T
table module, nucleus, 1-4
task-identification block (LMGEN), 6-4
task status (OPCOM), 17-4
TBEVNT, 2-9
TBEVNT (RTE), 2-9
TDF (SGEN), 15-19
Teletype, ASR, 18-1
TID (SGEN), 15-22
TIDB: task-identification block, 14-4
TIDB (LMGEN), 6-4
TIDB specification (SGEN), 15-22
TIME (OPCOM), 17-3
TIME (RTE), 2-5
time-schedule foreground task (OPCOM),

17-2
timing considerations, 14-2, 14-21
TITLE (DASMR), 5-1
TITLE (FORTRAN), 5-17
TSCHED (OPCOM), 17-2
TSK (SGEN), 15-17
TSTAT (OPCOM), 17-4

u
unformatted mode, cards, C-4
unformatted mode, paper tape, C-1
unformatt6d mode, Statos, C-4
user library, 1-4
user mode, 1-6
user-mode tasks, 1-5, 2-12

v
VORTEX II (DASMR), 5-2
VORTEX II and VORTEX compatibility,
14-29
VTAM network control module, error

messages, A-26
V$BFC, 1-3
V$CRS, 14-23
V$LPP, 2-14
VSNPAG, 2-14
V$PAGE, 2-14
V$PLCT, 5-10
V$RSW, 10-5
V$TFC, 1-3

w
WCS: writable control store, 15-18

18-7, 20-1
WCSRLD: WCS reload task, 20-1
WE (SEDIT), 8-7
WEOF (IOC), 3-12
WEOF (IOUTIL), 1 0-4
WEOF (JCP), 4-4
writable control store, error messages

A-23
WRITE (IOC), 3-11
write end-of-file (FMUTIL), 21-7
write end-of-file (IOUTIL), 10-4
write end-of-file (SEDIT), 8-7

@
varian

Varian Data Machines
2722 Michelson Drive • P.O. Box C-19504 Irvine, California • 92713 • (714) 833-2400

Helping a Fast World Move Faster

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	xBack

