
FCRTRANIV

VORTEX
FORTRAN IV REFERENCE MANUAL

The statements in this publication are not intended to create any warranty, express or im­
plied. Equipment specifications and performance characteristics stated herein may be
changed at any time without notice. Address comments regarding this document to Varian
Data Machines, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine,
California, 92713.

varlan data machines / a varlan subsidiary
2722 mlchelson drlve/p.o. box c-19504/lrvlne/calllornla/92713
© 1976 printed in USA

98A 9949 131

August 1976

(Equivalent to 98A 9952 040)

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 FORMAT .. 1-2
1.1.l Initial Line ... 1-2
1.1.2 Statement Number ... 1-4
1.1.3 Continuation Line .. 1-4
1.1.4 Comment Line ... 1-4
1.1.5 End Line .. 1-5
1.2 LANGUAGE CONVENTIONS ... 1-5
1.3 CHARACTER SET ... 1-5
1.4 ORGANIZATION ~ .. 1-7
1.5 BIBLIOGRAPHY ... 1-7

SECTION 2
BASIC ELEMENTS

2.1 DATA TYPES .. 2·1
2.2 DATA NAMES ... 2·1
2.3 CONSTANTS ... 2·1
2.3.l Numeric Constants ... 2·2
2.3.1.l Hexadecimal Constants ... 2·2
2.3.1.2 Integer Constants .. 2·3
2.3.1.3 Real Constants ... 2·4
2.3.1.4 Double-Precision Constants ... 2·5
2.3.1.5 Complex Constants .. 2-6
2.3.2 Non-Numeric Constants ... 2·6
2.3.2.l Logical Constants ... 2·6
2.3.2.2 Hollerith Constants' ... 2·7
2.4 VARIABLES ... 2·7
2.4.l Variable Names ... 2·7
2.4.2 Simple Variables ... 2·8
2.4.3 Arrays ... 2·8
2.4.4 Subscripts .. 2·9

SECTION ·3
SPECIFICATION STATEMENTS

3.1 ARRAY DECLARATORS.. 3-1
3.2 DIMENSION STATEMENT ... 3·2
3.3 COMMON STATEMENT' .. 3-2
3.4 EQUIVALENCE STATEMENT ... 3.7
3.5 VARIABLE TYPING ... 3·9
3.5~1 Variable Size Specification ... 3-9
3.5.2 IMPLICIT Statement..3-10
3.5.3 Explicit Type Statements .. 3-11
3.5.4 External Statement .. 3·12

iii

CONTENTS

CONTENTS

SECTION 4
EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS ... 4·1
4.1.1 Arithmetic Operators .. 4-3
4.1.2 Order of Computation .. 4-3
4.1.3 Use of Parentheses .. 4-4
4.1.4 Type and Length of Results of Expressions 4-5
4.2 LOGICAL EXPRESSIONS .. 4-6
4.2. l Relational Expressions .. 4-6
4.2.2 Logical Operators .. 4-7
4.2.3 Order of Computations ... 4-9
4.2.4 Use of Parentheses .. 4-9

SECTION 5
ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENTS

SECTION 6
CONTROL STATEMENTS

6.1 GO TO STATEMENTS .. 6·1
6.1.l Unconditional GO TO Statement.. ... 6:1
6.1.2 Computed GO TO Statement.. ... 6·2
6.1.3 ASSIGN and Assigned GO TO ... 6·3
6.2 IF STATEMENTS .. 6-4
6.2.1 Arithmetic IF ... 6-4
6.2.2 Logical IF ... 6-5
6.3 CALL STATEMENT ... 6-7
6.4 RETURN STATEMENT ... 6-8
6.5 PAUSE STATEMENT .. 6-8
6 6 STOP STATEMENT ... 6-8
6.7 CONTINUE STATEMENT ... 6-9
6.8 DO STATEMENT .. 6-10

SECTION 7
INPUT /OUTPUT STATEMENTS

7.1 FORTRAN UNIT NUMBERS .. 7-3
7.1.1 Implicitly Opened Files ... 7-3
7 .1.2 JCP-Opened Background Files ... 7 -3
7.1.3 Files Opened by CALL V$0PEN and V$0PNB 7-4
7.1.3.1 CALL V$0PEN and V$CLOS Statements 7-4
7.1.3.2 CALL V$0PNB and V$CLSB Statements 7-6
7.1.3.3 V$0PEN and V$0PNB Restrictions .. 7-8
7.1.4 Direct Access Files ... 7-9
7.2 EXTERNAL DEVICES .. 7-9

iv

SECTION 7
INPUT /OUTPUT STATEMENTS (continued)

7.2.l Physical Record Size .. 7-9
7.2.2 Console Devices ... 7-10
7.3 SEQUENTIAL INPUT /OUTPUT STATEMENTS7-10
7.3.1 READ Statements .. 7-10
7.3.2 WRITE Statements ... 7-12
7.4 DIRECT-ACCESS INPUT /OUTPUT STATEMENTS 7-14
7.4.1 Define File Statement.7-15
7.4.2 Direct-Access READ Statement... .. 7-16
7.4.3 Direct-Access WRITE Statement.. ... 7-17
7.4.4 FIND Statement .. 7-18
7.5 FORMAT STATEMENTS .. .7-19
7.5.1 FIELD Descriptors ... 7-22
7.5.2 A Format Code ... 7-23
7.5.3 D Format Code ... 7-23
7.5.4 E Format Code .. .7-23
7.5.5 F Format Code7-24
7.5.6 G Format Code .. 7-25
7.5.7 Hollerith Field Descriptor ... 7-27
7.5.8 I Format Code ... 7-28
7.5.9 L Format Code .. 7-28
7.5.10 T Format Code .. .7-29
7.5.11 X Format Code .. .7-30
7.5.12 Z Format Code .. 7-30
7.5.13 Scale Factor P ... 7-31
7.6 AUXILIARY 1/0 STATEMENTS .. 7-33
7.6.l ENDFILE Statement ... 7-33
7.6.2 REWIND Statement .. 7-34
7.6.3 BACKSPACE Statement ... 7-34
7.7 ENCODE/DECODE STATEMENTS ... 7-34
7.7.1 ENCODE Statement .. 7-34
7.7.2 DECODE Statement .. 7-35
7.8 IOCHK .. .7-36

SECTION 8
PROGRAMS AND SUBPROGRAMS

8.1 PROGRAM COMPONENTS ... 8-1
8.1.1 Program Part 8-1
8.1.2 Program Body ... 8-1
8.1.3 TITLE Statement... 8-1
8.1.4 Subprogram Statements ... 8-2
8.1.5 NAME Statement .. 8-2
8.2 MAIN PROGRAMS .. 8-2
8.3 SUBPROGRAMS.. 8-2
8.3.1 Function Subprograms .. 8-3

v

CONTENTS

CONTENTS

8.3.2 Subroutine Subprograms .. 8-5
8.3.3 Multiple Entry into a Subprogram .. 8-6
8.3.4 Block Data Subprogram ... 8-7
8.4 DATA STATEMENT .. 8-8
8.5 STATEMENT FUNCTIONS .. 8-10
8.6 INTRINSIC FUNCTIONS ... 8-11
8.7 BASIC EXTERNAL FUNCTIONS ... 8-11
8.8 DUMMY ARGUMENTS ... 8-11
8.9 ADJUSTABLE DIMENSIONS ... 8-12
8.10 COMBINING FORTRAN AND DAS MR. 8-14

SECTION 9
VORTEX OPERATING PROCEDURES

9.1 COMPILING WITH VORTEX ... 9·1
9.2 LOAD AND GO OPERATION ... 9·2
9.2.l Compiling and Cataloging Operation .. 9·2
9.2.2 Overlays ... 9-3
9.2.3 Resident Programs .. 9.3
9.3 1/0 DEVICE CONTROL .. 9·4
9.4 COMPILER INPUT RECORDS WITH VORTEX 9.4
9.5 COMPILER OUTPUT RECORDS WITH VORTEX 9-4
9.6 ERROR MESSAGES ... 9-4

GLOSSARY

APPENDIX A
VORTEX FORTRAN IV LANGUAGE

COMPARISONS

APPENDIX B
V70 SERIES ASCII CHARACTER CODES

LIST OF ILLUSTRATIONS
Figure 1-1. Sample FORTRAN Coding Form ... 1-8

LIST OF TABLES

Table 5-1. Conversion Rules for the Arithmetic Assignment Statement
a = b .. 5-2

Table 8-1. Intrinsic Functions ... 8-16
Table 8-2. Basic External Functions ... 8-18

vi

SECTION 1
INTRODUCTION

Varian level-G FORTRAN IV is a programming.system for the V70/620 series computers and
is comprised of a language, library of subprograms, compiler, and a run-time package
(program). FORTRAN IV can be compiled and run under the Varian Omnitask Real-Time
Executi11e (VORTEX) operating system.

The FORTRAN IV language is especially useful in writing programs for scientific and
engineering applications that involve mathematical computations. In fact, the name of the
language FORTRAN is derived from its primary use: FORmula TRANslating. Source programs
written in the FORTRAN language consist of a set of statements constructed from the
elements described in this publication. The FORTRAN compiler analyzes the source program
statemmts and transforms them into an object program that is suitable for execution. In
addition, when the FORTRAN compiler detects errors in the source program, appropriate error
messag,es are produced.

Any va~id programs compiled and executed using basic FORTRAN subset may also be
compiled and executed by the FORTRAN IV compiler. Equivalent results are ensured by:

a. Common data formats.

b. Common format code routines.

c. Common mathematical subroutines.

d. Common libraries.

The principal features of Level-G FORTRAN IV include:

Full compatibility with American National Standards Institute (ANSI) FORTRAN x3.9,
1966.

Alternate Return mechanism.

Up to seven dimensions.

Apostrophized string literals as constants, arguments, and format phrases.

Optional size in Type Specifications.

El'ITRY statement.

T, Z format phrases.

Generalized subscripts.

IMPLICIT statement

1-1

INTRODUCTION

Direct-Access statements

Mixed-Mode expressions

Entended display in STOP and PAUSE.

Initialization of variables in Type Specifications.

ENCODE/ DECODE.

See appendix A (VORTEX FORTRAN IV Language Comparisons), for exceptions.

1.1 FORMAT

A FORTRAN program consists of a series of statements divided into physical sections called
lines that must be coded to a precise grammatical format. FORTRAN statements fall into two
broad classes, executable and nonexecutable. Executable statements specify program action;
nonexecutable statements describe the use of the program, the characteristics of the
operands, editing information, statement functions, or data arragnement. The statements of
a FORTRAN source program are normally written on a standard FORTRAN coding form.

Figure 1-1 is a sample FORTRAN coding form. The coding form includes 80 columns of
information. Columns 73 through 80 are reserved for sequencing information, and have no
effect upon the generated object program. Columns 1 through 72 contain program
information in the format described below.

1.1.1 Initial Line

The first line of each statement is called an initial line. A statement line consists of three
fields: statement number field, continuation flag, and statement field. A statement can
include an initial line and continuation lines. Statements can have any number of
continuation lines as required subject to the following restrictions: DO statements must have
the first comma contained on an initial line; and the equals character (=) of a replacement
statement or a statement function definition must appear on the initial line. An initial line
can contain a statement label in columns 1 through 5. In this case, column 6 must contain a
zero digit, blank, or space character; and columns 7 through 72 may contain all or part of a
statement except for the restrictions noted.

Example

'"
. IT " .. 20 25 30 35

I I I I I I ...

1·2

.,,
ciQ"
c
;; ...
~

"' I»
3

"tJ
c;-
.,,
0
::c
-I
::c
)>
z
(")
0
c.
:;·

IJQ .,,
0

3

J,.... ----... -.------------.,-""r-e ---.... ,-::-R_T_RAN __ Codi_·ng_F_or_m _______ --11=-~-l @:~~~machines I
~ ST~~T § FORTRAN STATEMENT IDENTIFICATION

SEQUENCE

--,,- 1[16 ~][3' ~ :Ji[" " " r In_ :JO:

TH 15 PR OG RAM RE ADS IN THIE VA LU ES F¢R TH¢ ~IA TRICES)
F¢ R~S TH EIR Pfq ~~I UC T ~IND lP~I IN TS THE RE S~I LT s.
DI V>1 E INl 5 H]N A (cs } 2 O) > B (2 0 I IO) } c (s, I O) I
P. E AD (2 1 I 3) ((A (I , J) I I "I J 5) ' J= I' 2 0) J I T

I ((B C I '1.J) J I= I, 2 0) J J= I' I 0)
..i. t :__;_

D¢ 2 I= I, 5 I l
D¢ 2 J= I' I 0 I

J. J. i;
J. ..J.

I 2 c (I, J) = 0 . 0 I l l :
I D¢ 2 K = I, 2 O I I

~

I I

I CJ< I ' ~),= c (l J J)j't A(IJ., K).l"" B (K '
J) l l I T:I

WR IT E (51, b) '(_i(c (I, .J)', I = I, 5) i) J= I, I 0) l I I
'..L

13 F¢ R~ AT <11 EI 2. {,) ' T l: I

++
T'

'{, F'¢ R~ AT (2 3H TH ES E 1 IA RE. T HE, lAlN slw ERS J (S ET! 21.')) I
i

! l j S1T ~p 2_iz I I l l l l ~ l..i.. I
i I= ENPI 1 T I I I : l 1: 1_;_ l

: ' 11 I l I l I I T T I I Tr
i J. ll l I l I I l ..i. +T l _,.J.T I l : ;_

'l l l ! I .J. .J. +-)- '] j_ 1 tf I : 1:' I I I I I I

l T 'i l TT ...LI I T' T T T,

1 ;.l. l l .J. l
I I I I J.' 'J.' I I I J. I

.J.
I I

l I T T TT n !
T T

l l j__J_ ..L..l .J. l.l l .l ..L.l ..L ...L

T ~

= ''. s' 7. f IO 11 12 13 , .. 115 u 17. 1'i20 "" D:MIZS • 271212'. Jl3ZSl13'J5 3' p 31f• .40 41fczja_l,.. e; .t6i.a.cl"!l_.50 51SZ;53:S4 55 56jSl'l519,60 61,62,636':65 "161611'9J.70 "n 137 .. 175'76 "" ". z
-I
:::0
0 c
c
(")
-I
0 z

INTRODUCTION

1.1.2 Statement Number

The statement number permit statements to be referenced by other portions of a
program. A statement number is an integer value in the range 1 to 99999 (leading zeros or
blanks are not significant). The initial line of each statement may be given a unique number
in columns 1 through 5. The same number cannot be given to more than one statement in a
program unit.

Example

5 6 7 10 15 20 25 30 35

5 0 A=

'- O A=·

8 7 9 A::.·

1.1.3 Continuation Line

Continuation lines are used when additional lines of coding are required to complete a
statement originating on an initial line. There can be any number of continuation lines per
statement with the exceptions previously noted for initial lines. In a continuation line,
columns 1 through 5 are blank. Column 6 contains any character other than a zero, blank, or
space. The continuation of the statement is in columns 7 through 72.

Example

5 6 7 10 15 20 25 30 35

1.1.4 Comment Line

Any line with the character C or an asterisk ('') in column 1 is identified as a comment line.
Comments can appear anywhere in a program. All comment lines are ignored by a FORTRAN
compiler, except for display purposes. Comments are in columns 2 through 72.

Example

15 20 25 30 35

IS A

1-4

INTROD1UCTION

1.1.5 End Line

Any line containing the character blank in columns 1 through 6 and having only the character
string END in columns 7 through 72, preceded by, interspersed with, or followed by blank
characters, is recognized by the processor as an end line to inform the processor that it has
reached the physical end of the program.

Example

I" 'IT '°
15 20 25 30 35

1.2 LANGUAGE CONVENTIONS

The FORTRAN language constructs employed in this manual present the general format of the
construct with the optional portions of the construct represented by lower·case letters and
defined following the specification of the format. The remaining characters in the
specification are required portions of the construct being defined. For example, the proper
format for an Example Item is

EX(s)MP,LE

where

s is a string of from one to three characters, each
of which is the character A.

This example consists of the presentation of the general format of a fictitious language
construct called an "Example Item." The portion of the construct over which the programmer
has control is denoted by the lower-case letter s and is defined below the format specification.
The balance of the characters in the example format (i.e., all upper-case letters, the
parentheses, and the comma) are required portions of the construct. As defined, valid
examples of this sample construct would be:

EX(A)MP,LE
EX(A A)MP,LE
EX(AAA)MP,L E

1.3 CHARACTER SET

(blank characters are ignored in
FORTRAN except in string literals)

A FORTRAN program unit is written using the following letters, digits, and special characters:

Letters: A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z $

1-5

INTRODUCTION

Digits: 0 1 2 3 4 5 6 7 8 9

Special Characters:

blank or space
equals

+ plus
minus
asterisk

I slash
(left parenthesis
) right parenthesis

comma
decimal point

apostrophe

With the exception of the specific uses indicated in the following sections of this manual, a
blank character has no meaning, and can be used freely by the programmer to improve the
readability of the FORTRAN program.

The following special characters are classified as arithmetic operators and are significant in
the unambiguous statement of arithmetic expressions:

+ addition or positive value
subtraction or negative value
multiplication
division
exponentiation

The special characters apostrophe ('), equals (=), open parenthesis ((), close parenthesis
()), comma (.), and decimal point (.), have specific application in the syntactical expression of
the FORTRAN statement. The following sections of this manual qualify their use in particular
statements and expressions.

In addition to the FORTRAN character-set, the Varian 70/620 FORTRAN IV system accepts
the following characters in Hollerith fields:

quotation mark \ back slash
uparrow [left bracket
exclamation] right bracket

number sign < less than
% percent ? greater than
& ampersand ? question mark

semicolon colon

1-6

INTRODUCTION

1.4 ORGANIZATION

This manual presents the FORTRAN programmer with information directly connected with the
FORTRAN language as implemented on the 620 and V70 series computers under the VORTEX
operating system.

The general discussion in this document proceeds from basic language elements to general
FORTRAN program structures. This manual contains the following information:

Section 1 is an introduction to V70/620 FORTRAN.

Section 2 discusses constants, variables, and arrays. Primary units of which the
language is constructed.

Sections 3 through 7 discuss FORTRAN expressions and statements. Computation­
directed elements of the language.

Section 8 describes FORTRAN programs and subprograms.

Section 9 describes VORTEX operating system procedures.

In addition, a number of reference aids (appendices) are provided at the end of this manual.

1.5 BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals pertinent to the use of FORTRAN
and the V70/620 series computers (the x at the end of each document number is the
revision number and can be any digit 0 through 9):

Title
VORTEX Reference Manual
VORTEX 11 Reference Manual
V70 TOTAL Data Base Management

System Reference Manual
620-100 Computer Handbook
V72 System Handbook
V73 System Handbook
V74 System Handbook
V75 System Supplement

Software Maintenance Information

Number
98 A 9952 !Ox
98 A 9952 24x
98 A 9952 41x

98 A 9905 OOx
98 A 9906 20x
98 A 9906 Olx
98 A 9906 21x
98 A 9906 22x

Maintenance information is in the following software performance specifications (SPS):

1-7

INTRODUCTION

Title
VORTEX System Overview
VORTEX External Specification
VORTEX Internal Specification

Volume 1
Volume 2
Volume 3
Volume 4

VORTEX 11 System Overview
VORTEX 11 External Specification
VORTEX II Internal Specification

1-8

Number
89 A 0156
89 A 0203

89 A 0231
89 A 0232
89 A 0233
89 A 0204
89 A 0259
89 A 0273
89 A 0289

SECTION 2
BASIC ELEMENTS

Constants and variables are distinguished in FORTRAN to identify the nature and
characteristics of the values encountered in program execution. A constant is a quantity
whose value is explicitly stated. A variable is a numeric quantity referenced by name, rather
than by its explicit appearance in a program statement. During the execution of a program, a
variable can assume many different values.

2.1 DATA TYPES

The Varian 70/620 FORTRAN IV compiler recognizes the following types of data: integer,
real, double-precision, complex, logical, and Hollerith. Integer data are precise representations
of integral values. Real and double-precision data are approximations of real numbers.
Complex data are approximations of complex numbers. Integer, real, and double-precision
data may assume positive, negative, or zero values (zero is considered neither positive nor
negative).

Integer data may consist of 1-word or 2-word items. Real data may consist of 2-word or
4-word (identical to double-precision) items.

2.2 DATA NAMES

FORTRAN data (variables, arrays, and array elements) are identified by names made up of
letter or digit strings of one to six characters, the first character of which is a letter. (The
character $ is processed exactly like a letter, but it is reserved for Varian system names. To
avoid conflict, therefore, it is advisable not to use the $ character in names.) Names so
identified are implicitly specified as being of Type integer or real by the first character,
although this can be changed by an IMPLICIT statement, or in the case of any specified
name(s), by an explicit specification using a Type statement. In the absence of such
statements, names beginning with the letters I, J, K, L, M, and N denote integers and other
names denote real values.

Examples of implicit integer names are (if no Type or IMPLICIT statements are present):

I2A MZXF NS

Examples of implicit real-number names are (if no Type or IMPLICIT statements are present):

A B2 F5M79 AAA

2.3 CONSTANTS

Constant data are identified explicitly by giving their actual values. Constants do not change
in value during program execution. There are three classes of constants ·· those that specify

2-1

BASIC ELEMENTS

numbers (numerical constants), those that specify truth values (logical constants), and those
that specify character strings (Hollerith constants).

Numerical constants are integer, real, double-precision, or complex numbers; logical
constants are .TRUE. or .FALSE.; and Hollerith constants are a string of alphameric and/or
special characters.

2.3.1 Numeric Constants

A numeric constant can be written either in decimal form or as a hexadecimal (base 16)
string.

2.3.1.1 Hexadecimal Constants

The hexadecimal constant consists of the letter Z followed by a string of hexadecimal (base
16) digits. Hexadecimal constants may be used only as data initialization values in DATA
statements. The constant has the general form:

Zn

where

n is a hexadecimal digit string

The set of hexadecimal digit values are as follows:

Character
0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Decimal Value
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

The maximum number of digits allowed in a hexadecimal constant depends on the length
specification of the variable being initialized. If the number of digits is greater than the
maximum, the left·most digits are truncated. If the number is less than the maximum, the

2-2.

BASIC ELEMENTS

left-most positions are filled with zeros. The following list shows the maximum number of
digits for each length specification (in bytes):

Length Specification Maximum Number of Digits

Examples

8 16
4 8

2 4

Z1C49A2F1 represents the bit string:
00011100010010011010001011110001

ZBADFADE represents the bit string:
1011101011011111101011011110

2.3.1.2 Integer Constants

An integer constant is a string of decimal digits without a decimal point, or a hexadecimal
string. It can be preceded by a plus (+)or minus(-) sign.

An integer constant may be positive, zero, or negative. If unsigned and nonzero, it is assumed
to be positive. If a zero is specified with or without a preceding sign, the sign will have no
effect on the value zero. The magnitude must not be greater than the maximum and it may
not contain embedded commas. The constant has the general form:

sn
or

sZh

where

s is the optional signed character (+ or -)

n is a decimal character string (maximum magnitude is
32767 for 1-word items, and 1073741823 for 2-word
items)

h is a hexadecimal character string (maximum magnitude
is Z7FFF for 1-word items, and Z7FFF7FFF for 2-word
items)

Example Valid integer constants

0
91
173
-1073741823
Z5A

2-3

BASIC ELEMENTS

Invalid integer constants

27. (contains a decimal point)
3145903612(exceeds the maximum magnitude)
5,396 (contains an embedded comma)
Z100000005(exceeds the maximum magnitude)

2.3.1.3 Real Constants

A real constant is a hexadecimal string, or a decimal real constant, which is defined as
follows:

• A basic real constant is written as an integer part, a decimal point, and a fraction part, in
that order. Both the integer part and the fraction part are strings of decimal digit
characters; either one of these strings may be empty, but not both.

• A decimal exponent is written as the letter E, followed by an optionally signed decimal
integer constant.

• A decimal real constant is indicated by writing a basic real constant, a basic real constant
followed by a decimal exponent, or a decimal integer constant followed by a decimal
exponent.

• A real constant may occupy either 2- or 4-words (the 4-word real type is indistinguishable
from double precision). The range of both is approximately 10± 38 -

The format of a 2-word real constant is:

sm.n
or

sZh

where

s denotes an optional sign character, and m and n
represent strings of decimal digits (+ or -).
Either m or n (but not both) may be omitted. An
alternative form for a real constant, similar to
scientific notation is:

smpnEsd

h is a hexadecimal character string (maximum magnitude
Z7FFF7FFF).

where

2-4

s denotes an optional sign character (+ or -), and m
and n strings of decimal digits, p is an optional

decimal point which may be omitted only if n is
omitted, and d is a decimal integer constant s38.

The following are equivalent real constants:

Examples

17.
51E1
-479E-3

2E3
2.E3

+2.E+03
Z447DOOOO

-25.620E-1
+.42

.35E02

0.0
-479

The following are invalid real constants:

-1234

6.2E +99

6.2E-99

Z77

E5

l.2E3.4

3E4E5

5,432.l

No decimal point or E part; interpreted as
an integer literal

Exceeds maximum size limit

Smaller than minimum

Not real format

Exponent part alone not allowed; taken as a
variable name

Exponent part must be an integer

More than one exponent part

No commas or other punctuation allowed in
real constant

2.3.1.4 Double-Precision Constants

BASIC ELEMENTS

A double-precision exponent is identical to the exponent of a real constant, except the letter D
is used instead of the letter E. A double-precision constant is indicated by writing a basic real
constant followed by a double-precision exponent, an integer constant followed by a double­
precision exponent, or a hexadecimal character string.

A double-precision constant may assume positive, negative, and zero values.

2-5

BASIC ELEMENTS

Example

-3476.2D-4 28.DO .578D+3

Z814000 0000 0000

2.3.1.5 Complex Constants

A complex constant is formed by an ordered pair of signed or unsigned real 2-word constants
separated by a comma and enclosed in parentheses.

The real constants in a complex constant can be positive, zero, or negative (if unsigned, they
are assumed to be positive). The first real constant in a complex constant represents the real
part of the complex number; the second represents the imaginary part of the complex
number.

Examples

Valid Complex Constants

(-5.08 + 03,.168 + 02)
(4.08 + 03,.168 + 02)
(4.08 + 03,.168 + 02)
(2. 1, 0. 0)
(Z40COOOOO,Z40COOOOO)

where i equals the square root of -1.

has the value -5000. + 16.0i
has the value 4000. + 16.0i
has the value 4000. + 16.0i
has the value 2.1 + O.Oi
has the value 1.0 + l.Oi

Invalid Complex Constants

(292704, 1.697)

(1.28113.279.3)

(.003D4,.00SD6)

2.3.2 Non-Numeric Constants

the real part does not contain
a decimal point
the real part contains an invalid
decimal exponent
double-precision constants are
invalid

There are two kinds of non-numeric constants, they are logical and Hollerith.

2.3.2.1 Logical Constants

A logical constant specifies the logical value of a variable. There are two logical values: .TRUE.
and .FALSE .. Each must be preceded and followed by a period as shown. The logical constants
.TRUE. and .FALSE. specify that the value of the logical variable with which they are

2-6

BASIC ELEMENTS

associated is true or false, respectively. Logical constants may also be written as a
hexadecimal string, for example:

.TRUE.: ZFFFF

.FALSE.: ZO

2.3.2.2 Hollerith Constants

Hollerith constants are non-empty strings of alphanumeric and/or special characters. If
apostrophes delimit the string, a single apostrophe within the string is represented by two
apostrophes. If wH precedes the literal, a single apostrophe within the string is represented by
a single apostrophe. Blanks within the character string will be considered part of the string.

Hollerith constants can be used in actual argument lists of a subprogram, as data
initialization values, or in FORMAT statements. A string enclosed in apostrophes, may also be
used in a PAUSE or STOP statement. The constant has the general form:

wHs or 's'

where

w is a positive non-zero constant denoting the
width of the character string.

s denotes the character string.

Example

24H INPUT/OUTPUT AREA N0.2
'DATA'
'X-COORDINATE Y-COORDINATE Z-COORDINATE'
'3.14'
'DON' 'T'
SHDON'T

2.4 VARIABLES

A FORTRAN variable is a data item, identified by a symbolic name, that occupies a storage
area. This section explains the use of variable names, simple variables, arrays, and
subscripts.

2.4.1 Variable Names

A FORTRAN variable name is an identifier that consists of a string of one to six alphanumeric
characters with the leading character being a letter (including $). Embedded blanks are
permitted within variable names but will be removed by the system. A FORTRAN variable
name may refer to either a simply variable, or an array.

2-7

BASIC ELEllENTS

Variables are classified into the following five fundamental types: INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and LOGICAL.

2.4.2 Simple Variables

A simple variable is a single item which is only referenced by the variable name, without
subscripting.

2.4.3 Arrays

An array is an ordered set such that each member or element can be referenced by a
subscripted array name.

The proper format of an array element reference is:

v (s)

where

v is a variable name and s is a subscript list which
is a sequence of arithmetic expressions separated by
commas.

A variable name is an array name only if it appears in an appropriate specification statement,
such as a DIMENSION, Type or COMMON statement as a declarator. The declarator is used to
set the number and maximum size of the dimensions allowed. In a program, an identifier can
be used as a simple variable name or an array name, but not both.

Whenever an array name appears in FORTRAN program, the name must be immediately
followed by a subscript list, except when it appears in:

*a. A COMMON, DIMENSION, or type statement

b. A DA TA statement

c. The list of an 1/0 statement

d. The dummay argument list of a subprogram

e. The actual argument list of a subprogram reference

Each element of an array may be referenced by means of appropriate subscripts. Each entry
in a subscript list is evaluated to obtain an integer value. Normally, the minimum value that
the subscript of an array element can have is one. The maximum is the value specified in the
array declarator.

2-8

BASIC ELEMENTS

* In this case, an array name may be followed by an array declarator (see section 3.1), which
may be of similar format; but, whose meaning is different.

2.4.4 Subscripts

A subscript is an arithmetic expression, or a sequence of arithmetic expressions separated by
commas, that is associated with an array name to identify a particular element of the array.
The number of subscript expressions in any subscript must be the same as the number of
dimensions of the array with whose n·ame the subscript is associated. A subscript is enclosed
in parentheses and is written immediately after the array name. A maximum of seven
subscript expressions can appear in a subscript.

2·9

SECTION 3
SPECIFICATION STATEMENTS

Every FORTRAN program or subprogram consists of a sequence of statements terminating
with an END line. These statements may be classified into executable and non-executable
statements.

An executable statement causes an action at that point in the program when the program is
executed.

A non-executable statement supplies information to the compiler when it is processing the
FORTRAN statements. In general, these statements specify variable types, initial values,
storage allocation, and allow subprograms to be used as actual arguments.

Specification statements are non-executable statements that organize and classify data that
will be referred to by other statements in the FORTRAN program. Specification statements
include:

DIMENSION

COMMON

Names and declares the size of an array.

Assigns variable and/or named arrays to common
storage area.

EQUIVALENCE Assigns variables and names array to shared
storage areas.

EXTERNAL

IMPLICIT

Type

Declares a name to be external to the program.

Specifies the type and length (standard or
optional) of all variables, arrays, and user­
supplied function whose names begin with a
particular letter or range of letters.

Specifies the type and length (standard or
optional) of a variable, array, or user­
supplied function of a particular name.

Specification statements must precede all other statements except TITLE, BLOCK DATA,
FUNCTION, SUBROUTINE, and NAME.

3.1 ARRAY DECLARATORS

Array declarators indicate the name of the array, the number of dimensions it contains, and
the size of each dimension. An array declarator may appear in a DIMENSION, COMMON, or
explicit specification statement. An array declarator has the following format:

a(sl,s2, ... ,sn)

3-1

SPECIFICATION STATEMENTS

where

s is either an integer constant (si ~ 1), or an
integer variable. The integer variable si can
only be in a subprogram where both si and the
corresponding array (a) are formal parameters.

si specifies the maximum value of the ith sub­
script. The type of each array element is the
type associated with the name (a).

n specifies the number of dimensions in the array
(a).

3.2 DIMENSION STATEMENT

A DIMENSION statement specifies that the declarator names listed are arrays in the program
unit. The DIMEN~ION statement has the general form

DIMENSION al,a2, ... ,an

where

a is an array declarator

Example (assuming no Type or IMPLICIT statements are present)

DIMENSION A(S), I1!3,6), C(S, 10), BIG(10, 10, 10)

Explanation

This specification statement indicates that A is a real vector with five elements; 11 is an
integer matrix of size 3 X 6 = 18 elements; C is a real matrix of size 5 X 10 = 50 elements;
and BIG is a real matrix of size 10 X 10 X 10 = 1000 elements.

More than one DIMENSION statement can appear in a program.

Note: An array element is referred to by the array name qualified by a subscript to identify
the desired element. If the value of this subscript is out of the range specified by the array
declarator, the derived computational results will be unpredictable.

3.3 COMMON STATEMENT

The COMMON statement is used to cause the sharing of storage by two or more program
units, and to specify the names of variables and arrays that are to occupy this area. Storage
sharing can be used for various purposes, e.g., to conserve storage, by avoiding more than
one allocation of storage for variables and arrays used by several program units; or to
implicitly transfer arguments between a calling program and a subprogram. Arguments
passed in a common area are subject to the same rules with regard to type, length, etc., as
arguments passed in an argument list.

3·2

SPECIFICATION STATEMENTS

A given common block name may appear more than once in a COMMON statement, or in
more than one COMMON statement in a program unit. All entries within such blocks are
strung together in order of their appearance. Although the entries in a COMMON statement
can contain dimension information, object-time dimensions may never be used. The length of
a common area can be increased by using an EQUIVALENCE statement as long as elements
are not added before the established begin.ning of the COMMON block. The COMMON
statement has the general form

COMMON /rl/al,a2, ...

where

a is a variable name or array declarator which contains
no names that are formal parameters.

represents an optional common block name consisting of
one through six alphameric characters, the first of
which is alphabetic. These names must always be enclosed
in slashes.

The form I I (with no characters except possible blanks
between the slashes) may be used to denote blank com­
mom. If r denotes blank common, the two slashes imme­
diately following the word COMMON, are optional.

Variables or arrays that appear in a calling program or subprogram may be made to share the
same storage locations with variables or. arrays in other subprograms by use of the COMMON
statements. For example, if one program contains the statement:

COMMON TABLE

as its first COMMON statement, and a second program contains the statement:

COMMON TREE

as its first COMMON statement and the two programs ~re loaded together, the variable
names TABLE and TREE refer to the same storage location.

If the main program contains the statement:

COMMON A, B, C

and a subprogram contains the statement:

COMMON X, Y, Z

then A shares the same storage location as X, B shares the same storage location as Y, and C
shares the same storage location as Z.

Common entries appearing in COMMON statements are cumulative in the given order
throughout the program; that is, they are cumulative in the sequence in which they appear in
all COMMON statements. For example, consider the following two COMMON statements:

SPECIFICATION STATEMENTS

COMMON A, B, C
COMMON G, H

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H

Redundant entries are not allowed. For example, the following statement is invalid:

COMMON A, B, C, A

Consider the following ex,amples:

Example 1

Calling Program

COMMON A, B, C, R(100)
REAL A,B,C
INTEGER R

CALL KAPMY

Explanation

Subprogram

SUBROUTINE MAPMY
COMMON X, Y, Z, S(100)
REAL X,Y,Z
INTEGER S

The statement COMMON A,8,C,R(lOO) in the calling program would cause 106 words to be
reserved in the following order:

Beginning of common area
A

B

c

R(1)
R(2)

R(100)

The statement COMMON X, Y, Z, S(lOO) in the subprogram would then cause the variables X,
Y, Z, and S(l), ... ,S(lOO) to share the same storage space as A, 8, C, and R(l), ... ,R(lOO),
respectively. Note that values for X, Y, Z, and S(l), ... ,S(lOO), because they occupy the same
storage locations as A, 8, C, and R(l), ... ,R(lOO), do not have to be transmitted in the
argument list of a CALL statement.

3.4

SPECIFICATION STATEMENTS

Example 2

Assume a common area is defined in a main program and in three subprograms as follows:

Main Program: COMMON A,B,C (A and B are 4-words, C is 2-words)
Subprogram 1: COMMON D,E,F (D and E are 4-words, F is 2-words)
Subprogram 2: COMMON Q,R,S,T,U (2;words each)
Subprogram 3: COMMON V,W,X,Y,Z (2-words each)

The correspondence of these variables within common can be illustrated as follows:

Main Program Subprogram 1 Subprogram 2 Subprogram 3

COMMON A,B,C COMMON D,B,F COMMON Q,R,S,T,U COMMON V,W,X,Y,Z

Q -------- v
A D

R --- w

s - x
B -- E

T ---- y

c ---- F --- u ---- z

2 words 2 words 2 words 2 words

The main program can transmit values for A, B, and C to subprogram 1, provided that A is of
the same type as D, B is of the same type as E, and C is of the same type as F. However, the
main program and subprogram 1 cannot, by assigning values to the variables A and 8, or D
and E, respectively, transmit values to the variables Q, R, S, and T in subprogram 2, or V, W,
X, and Y in subprogram 3, because the lengths of their common variables differ. Likewise,
subprograms 2 and 3 cannot transmit values to variables A and 8, or D and E.

Values can be transmitted between variables C, F, U, and Z, assuming that each is of the
same type. With the same assumption, values can be transmitted between A and D, and B
and E, and between Q and V, R and W, S and X, and T and Y. Note, however, that assignment
of values to A or D destroys any values assigned to Q, R, V, and W, (and vice versa) and that
assignment to B or E destroys the values of S, T, X, and Y (and vice versa).

Blank and Labeled COMMON

In the preceding example, the common storage area (common block) established is called a
blank common area. That is, no name was explicitly given to that area of storage (the name
COMMON is assigned internally to the blank common block and will appear on maps). The
variables that appeared in the COMMON statements were assigned locations relative to the
beginning of the blank common area. However, variables and arrays may be placed in

SPECIFICATION STATEMENTS

separate common areas. Each of these separate areas (or blocks) is given a name consisting
of one through six alphanumeric characters (the first of which is alphabetic); those blocks
which have the same name occupy the same storage space.

Those variables that are to be placed in labeled (or named) common are preceded by a
common block name enclosed in slashes. For example, the variables A, B, and C will be
placed in the labeled common area, HOLD, by the following statement:

COMMON/HOLD/A, B, C

In a COMMON statement, blank common can be distinguished from labeled common by
preceding the variables in blank common by two consecutive slashes or, if the variables
appear at the beginning of the common statement, by omitting any block name. For example,
in the following statement:

COMMON A, B, C/ITEMS/X, Y, z//o, E, F

the variables A, B, C, D, E, and F will be placed in blank common in that order; the variables
X, Y, and Z will be placed in the COMMON area labeled ITEMS.

Blank and labeled common entries appearing in COMMON statements are cumulative
throughout the program. For example, consider the following two COMMON statements:

COMMON A, B, C/R/D, E/S/F
COMMON G, H/S/I, J/R/P//W

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, w/R/D, E, p/s/F, I, J

COMMON is allocated from low to high memory addresses within a common block.

Blank COMMON in VORTEX Foreground/Background

Blank common can be used like labeled common or for communications among foreground
tasks. The extent of blank common for foreground tasks is determined at system generation
time. The size of the foreground blank common can vary within each task without disturbing
the positional relationship of entries, but cannot exceed the limits set at system generation
time.

A blank common block for a background task is allocated within the load module. The size of
the background blank common can vary within each task, but the combined areas of the load
module and common cannot exceed available memory.

Each blank common is accessible only by the corresponding tasks (i.e., foreground tasks use
only foreground blank common, and background tasks use only background blank common).

Note: All definitions of labeled and blank common areas for a given load module must be in
the first object module loaded.

SPECIFICATION STATEMENTS

3.4 EQUIVALENCE STATEMENT

All the elements within a single set of parentheses share the same storage locations. The
EQUIVALENCE statement provides the option for controlling the allocation of data storage
within a single program unit. In particular, when the logic of the program permits it, the
number of storage locations used can be reduced by causing locations to be shared by two or
more variables of the same or different types. Equivalence between variables implies storage
sharing. Mathematical equivalence of variables or array elements is implied only when they
are of the same type, when they share exactly the same storage, and when the value assigned
to the storage is of that type. The EQUIVALENCE statement has the general form

EQUIVALENCE (al,a2,a3, ...), ...

where

a Each a is a variable or array element and may not be
a dummy argument. The subscripts of array elements may
have either of two forms:

If the array element has a single subscript quantity, it
refers to the linear position of the element in the array
(i.e., its position relative to the first element in the
array: 3rd element, 17th element, 259th element). .

If the array element is multi-subscripted (with the number
of subscript quantities equal to the number of dimensions
of the array), it refers to position in the same manner
as in an arithmetic statement (i.e., its position relative
to the first element of each dimension of the array). In
either case, the subscripts themselves must be integer
constants.

Since arrays are stored in a predetermined order, equivalencing two elements of two different
arrays may implicitly equivalence other elements of the two arrays. The EQUIVALENCE
statement must not contradict itself or any previously established equivalences.

Note that the EQUIVALENCE statement is the only statement in which a single subscript may
be used to refer to an element (or elements) in a multi-dimensional array.

Two variables in one common block or in two different common blocks cannot be made
equivalent. However, a variable in a program unit can be made equivalent to a variable in a
common block. If the variable that is equivalenced to a variable in the common block is an
element of an array, the implicit equivalencing of the rest of the elements of the array can
extend the size of the common block (see Example 3, below). The size of the common block
cannot be extended so that elements are added before the beginning of the established
common block.

3-7

SPECIFICATtON STATEMENTS

Example 1

Assume that in the initial part of a program, an array C of size 100 x 100 is needed; in the
final stages of the program C is no longer used, but arrays A and B of sizes 50 x 50 and 100,
respectively, are used. The elements of all three arrays are of the type DOUBLE PRECISION.
Storage space can then be saved by using the statements:

Explanation

DIMENSION C(100,100), A(S0,50), 8(100)
EQUIVALENCE (C(1), A(1)), (C(2501), 8(1))

The array A, which has 2500 elements, can occupy the same storage as the first 2500
elements of array C since the arrays are not both needed at the same time. Similarly, the
array B can be made to share storage with elements 2501 to 2600 of array C.

Example 2

Explanation

DIMENSION B(S), C(10, 10), D(S, 10, 15)
EQUIVALENCE (A I B (1) I c (s, 3)) , (D (5, 10 I 2) I E)

This EQUIVALENCE statement specifies that the variables A, 8(1), and C(5,3) are assigned
the same storage locations and that variables 0(5,10,2) and E are assigned the same storage
locations. It also implies that the array elements 8(2) and C(6,3), etc., are assigned the same
storage locations. Note that further equivalence specification of 8(2) with any element of
array C other than C(6,3) is invalid.

Example 3

Explanation

COMMON A, 8, C
DIMENSION D(3)
EQUIVALENCE (8,D(1))

This would cause a common area to be established containing the variables A, 8, and C. The
EQUIVALENCE statement would then cause the variable 0(1) to share the same storage
location as 8, 0(2) to share the same storage location as C, and 0(3) would extend the size of
the common area, in the following manner:

3-8

A
B, D(1)

C, D(2)
D(3)

(lowest location of the common area)

(highest location of the common area)

SPECIFICATION STATEMENTS

The following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(J))

because it would force D(l) to precede A, as follows:

D(1)

A, 0(2)
B, D(3)

c

3.5 VARIABLE TYPING

(lowest location of the common area)

(highest location of the common area)

Initially, the type of all variable and array names are specified implicitly, according to the first
character of the name, as follows:

First Character
I - N
All others

Type
Integer (1-word)
Real (2-words)

Those implicit type specifications can be changed by the IMPLICIT statement.

3.5.1 Variable Size Specification

IMPLICIT and Type statements allow a variable size specifier. This is an integer constant
which specifies the number of 8-bit bytes allocated to items. Since the V?0/620 is a 16-bit
word addressable computer, this specifier must be divided by two to get the corresponding
word count. The following table lists the permissible options:

Type Size Specifier Word/Item

INTEGER 2 (default) 1
4 2

REAL 4 (default) 2
8 4

COMPLEX 8 4

LOGICAL 2

DOUBLE- 8 4
PRECISION

Note: A REAL item with a size specifier of 8 is indistinguishable from a DOUBLE-PRECISION
item.

3-9

SPECIFICATION STATEMENTS

3.5.2 IMPLICIT Statement

The IMPLICIT specification statement enables the user to declare the type of the variable
appearing in his program (i.e., integer, real, double·precision, complex, or logical) by
specifying that variables beginning with certain designated letters are of a certain type.
Furthermore, the IMPLICIT statement allows the programmer to declare the number of words
to be allocated for each item in the group. of specified variables.

The IMPLICIT statement has the general form

IMPLICIT type *s(al,a2), ...

where

type is one of the following: INTEGER, REAL, DOUBLE­
PRECISION, COMPLEX, or LOGICAL.

*s is optional; and represents a variable size
specifier.

a is a single alphabetic character or a range of
characters drawn from the set A, B, ... ,Z, $, in
that order. The range is denoted by the first and
last characters of the range separated by a minus
sign (e.g., (A-D)).

If the standard length specification (for its associated type) is desired, the •:•s may be omitted
in the IMPLICIT statement. That is, the variables will assume the standard length
specification. If the optional length specification is desired, then the ~·s must be included
within the IMPLICIT statement.

Example 1

IMPLICIT REAL (A-H, 0-$), INTEGER (I-N)

Explanation

All variables beginning with the characters I through N are declared as INTEGER.
Since no length specification was explicitly given (i.e., the *s was omitted), 1-word (the
standard length for INTEGER) is allocated for each variable. All other variables (those
beginning with the characters A through H, 0 through Z, and $) are declared as REAL with
2-words allocated for each.

Example 2

IMPLICIT INTEGER•4(A-H), REAL•S(I-K), LOGICAL(L,M,N)

3-10

SPECIFICATION STATEMENTS

Explanation

All variables beginning with the characters A through H are declared as INTEGER with
2-words allocated for each. All variables beginning with the characters I through K are
declared as REAL with 4-words allocated for each. Variables beginning with the characters L,
M, and N are declared as LOGICAL with 1-word for each.

Since the remaining letters of the alphabet, namely, 0 through Z and $, are not specified by
the IMPLICIT statement, the predefined convention will take effect. Thus, variables beginning
with the characters 0 through Z and $ are declared as REAL, each with a standard length of
2-words.

3.5.3 Explicit Type Statements

The explicit type specification statements declare the type (INTEGER, REAL, DOUBLE­
PRECISION, COMPLEX, or LOGICAL) of a particular variable or array by its name, rather than
by its initial character. This differs from the other ways of specifying the type of a variable or
array (i.e., predefined convention and the IMPLICIT statement). In addition, the information
necessary to allocate storage for arrays (dimension information) may be included within the
statement. The statement has the general form

type*s al/xl/,a2/x2/, ...

where

type is INTEGER, REAL, DOUBLE-PRECISION, LOGICAL,
or COMPLEX.

*s is optional; and, represents a variable size
specifier.

a is a variable, array, array declarator, or
function name.

/xi is optional; and, represents initial data values.

Initial data values may be assigned to variables or arrays by use of /xn/, where xn is a
constant or list of constants separated by commas. The xn provides initialization only for the
immediately preceding variable or array. Tlie data must be of the same type as the variable or
array, except that Hollerith or hexadecimal data may also be used. Lists of constants are used
only to assign initial values to array elements. Successive occurrences of the same constant
can be represented by the form i* constant, as in the DATA statement. If initial data values
are assigned to an array in an Type specification statement, the dimension information for
the array must be in the Type statement or in a preceding DIMENSION or COMMON
statement. An initial data value may not be assigned to a function name. But, a function
name may appear in an explicit Type specification statement. Dummy arguments may not be
assigned initial values.

3-11

SPECIFICATION STATEMENTS

Initial data values cannot be assigned to variables or arrays in blank common. Assigning
initial value to variables and arrays in labeled common can only be done within a BLOCK
DATA subprogram.

In the same manner in which the IMPLICIT statement overrides the predefined convention,
the Type statement overrides the IMPLICIT statement and predefined convention. If the
length specification is omitted (i.e., *s), the standard length of the specified type is assumed.

3.5.4 Externat Statement

When an actual parameter list of a function reference or a subroutine call contains a function
or subroutine name, that name must appear in an EXTERNAL statement in the program in
which the reference or call appears.

The form of the EXTERNAL statement is

EXTERNAL s, s, s, ... s

where

s is a function or subroutine name

The EXTERNAL statement must appear before the function or subroutine reference.

The following are examples of valid EXTERNAL statements

3-12

EXTERNAL SUBl, SINF
EXTERNAL FRAIL

SECTION 4
EXPRESSIONS

Expr~ssions specify the procedure by which a data value is obtained. An expression is any
valid constant, variable, function reference, or a combination of these separated by
appropriate operators and parentheses, which conforms to the rules given in this section.

Expressions can be divided into three types: arithmetic, logical, and relational. If the value
which can represent the result is .TRUE. or .FALSE., then the expression is logical. A relational
expression appears only in the context of a logical expression. An expression which yields a
numeric quantity is an arithmetic expression.

The operators that can be used by a FORTRAN expression are listed in the table below with a
relative precedence assigned to each operator by the compiler (the lowest number has the
highest precedence). Since the unary + operator performs no functions, it is not included.

RELATIVE
OPERATOR PRECEDENCE FUNCTION
** 1 exponentiation
unary· 2 change of sign
I 3 division

* 3 multiplication
4 subtraction

+ 4 addition
.NE. 5 not equal to
.GE. 5 greater than or equal to
.GT. 5 greater than
.EQ. 5 equal to
.LE. 5 less than or equal to
.LT. 5 less than
.NOT. 6 logical negation
.AND. 7 logical conjunction
.OR. 8 logical disjunction

The occurrence of these operators indicates that an arithmetic, logical, or relational action is
to be performed.

4.1 ARITHMETIC EXPRESSIONS

The arithmetic elements are described by the following statements:

PRIMARY

FACTOR

An ARITHMETIC EXPRESSION enclosed in parentheses, a
constant, a variable reference, an array element
reference, or function reference.

A FACTOR is a PRIMARY or a construct of the form:
PRIMARr' ~'PRIMARY

4-1

EXPRESSIONS

TERM A TERM is a FACTOR or one of the forms: TERM/FACTOR
TERM*TERM

SIGNED TERM A TERM immediately preceded by a + or · sign.

SIMPLE
ARITHMETIC
EXPRESSION

ARITHMETIC
EXPRESSION

A TERM or two SIMPLE ARITHMETIC EXPRESSIONS
separated by a + or· · sign.

A SIMPLE ARITHMETIC EXPRESSION or a signed TERM
or either of the preceding immediately followed
by a + or · sign and a SIMPLE ARITHMETIC
EXPRESS/ON.

A part of an expression is evaluated only if it is necessary to establish the value of the
expression. The rules for formation of expressions imply the binding strength of operators.
The range of the subtraction operator is the term that immediately succeeds it. The
evaluation may proceed according to any valid formation sequence. Use of an array element
name requires the evaluation of its subscript. The type of the expression in which a function
reference or subscript appears does not affect, nor is it affected by, the evaluation of the
actual arguments or subscript. An element whose value is not mathemtically defined cannot
be evaluated.

The following rules represent the derivation of all permissible expressions:

A variable, constant, or function standing alone is an expression.

A(1)

JOBNO
217
17.26
SQRT(A+B)

If E is an expression whose first character is not an operator, then + E and ·E are
expressions.

-A(1)

+JOBNO
-217
+17.26
-SQRT(A+B)

If E is an expression, then (E) is an expression meaning the quantity E taken as a unit.

(-A)

-(+JOBNO)
-(X+Y)
(A-SQRT(A+B))

If E is an expression whose first character is not an operator, and F is an expression, then:
F + E,F·E,F*E,F/E and F**E are all expressions.

4-2·

EXPRESSIONS

-(B(I,J)+SQRT(A+B(K,L)))
-(B(I+B,3•J+K)+A)
1.7B-2U(X+S.0)

4.1.1 Arithmetic Operators

More complicated arithmetic expressions containing two or more primaries may be formed by
using arithmetic operators that express the computation(s) to be performed.

The arithmetic operators are as follows:

Arithmetic Operator

**
*

+

Definition

Exponentiation
Multiplication
Division
Addition
Subtraction

All desired computations must be specified explicitly. That is, if more than one primary
appears in an arithmetic expression, they must be separated from one another by an
arithmetic operator. For example, the two variables A and B will not be multiplied if written:

AB

In fact, AB is regarded as a single variable with a two-letter name.

If multiplication is desired, the expression must be written as follows:

A*B or B•A

No two arithmetic operators may appear consecutively in the same expression. For example,
the following expressions are invalid:

The expression A*·B could be written correctly as

A•(-B)

In effect, ·B will be evaluated first and then A will be multiplied with it.

4.1.2 Order of Computation

Computation is performed according to the hierarchy of operations shown in
the following list.

4.3

EXPRESSIONS

Operation

Evaluation of functions
Exponentiation (**)
Multiplication and division (* and I)
Addition and subtraction (+ and ·)

Hierarchy

1st
2nd
3rd
4th

This hierarchy is used to determine which of two sequential operations is performed first. If
the first operator is higher than or equal to the second, the first operation is performed. If
not, the second operator is compared to the third, etc.

For example, in the expression A*B+C*D**I, the operations are performed in the following
order:

1. A*B
2. D**I
3. C*Y
4. x+z

Call the result X (multiplication)
Call the result Y (exponentiation)
Call the result Z (multiplication)
Final operation (addition)

(X+C*D**I)
(X+C•Y)
(X+Z)

If there are sequential exponentiation operators, the evaluation is from right to left. Thus, the
expression:

A**B**C

is evaluated as follows:

1 B**C
2. A**Z

Call the result Z
Final operation

A unary plus or minus has the same hierarchy as a plus or minus in addition or subtraction.
Thus,

A•-B is treated as A•O-B

A•-B•c is treated as A•- c e•c >

A•-B+c is treated as A• c -B > +c

4.1.3 Use of Parentheses

Parentheses may be used in arithmetic expressions, as in algebra, to specify the order in
which the arithmetic operations are to be performed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is used. This is equivalent to
the definition above, since a parenthesized expression is a primary.

For example, the following expression:

B/((A-B)*C)+A**2

is effectively evaluated in the following order:

4.4

EXPRESSIONS

1. A-B Call the result W B/(W*C)+A**2
2. W*C Call the result X B/X+A**2
3. e/x Call the result Y Y+A**2
4. A**2 Call the result Z Y+Z
5. Y+Z Final operation

4.1.4 Type and Length of Results of Expressions

The type and length of the result of an operation depends upon the type and length of the two
operands (primaries) involved in the operation. The below matrix shows the type and length of
the result of the operations + , ·, *, and I.

TYPE and LENGTH MATRIX

~ INTEGER INTEGER REAL REAL COMPLEX.
(1) (2) (2) (4) (4)

INTEGER (1) INTEGER INTEGER REAL REAL COMPLEX
(1) (2) (2) (4) (4)

INTEGER (2) INTEGER INTEGER REAL REAL COMPLEX
(2) (2) (2) (4) (4)

REAL (2)
REAL REAL REAL REAL COMPLEX
(2) (2) (2) (4) (4)

REAL (4) REAL REAL REAL REAL REAL
(4) (4) (4) (4) (4)

COMPLEX (4) COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX
(4) (4) (4) (4) (4)

I

*in this matrix, all numeric entries present words

A PRIMARY of any type may be exponentiated by an INTEGER PRIMARY and the resulting
factor is of the same type as that of the element being exponentiated. A REAL or DOUBLE·
PRECISION PRIMARY may be exponentiated by a REAL or DOUBLE -PRECISION PRIMARY. The
resultant FACTOR is of type REAL if both PR/MAR/ES are REAL, and otherwise of type DOUBLE
PRECISION. These are the only cases for which use of the exponentiation operator is defined.
Valid combinations for exponentiation are:

Base

REAL

INTEGER

Exponent

REAL, INTEGER or DOUBLE PRECISION

INTEGER (REAL and DOUBLE PRECISION
exponents are invalid)

DOUBLE PRECISION REAL, INTEGER or DOUBLE PRECISION

4.5

EXPRESSIONS

4.2 LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical constant, logical variable,
logical subscripted variable, or logical function reference, the value of which is always a truth
value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical and relational operators.
These expressions may be in one of the three following forms:

a. Relational operators combined with arithmetic expressions whose type is INTEGER, REAL,
or DOUBLE PRECISION.

b. Logical operators combined with logical constants (.TRUE. and .FALSE.), logical variables,
subscripted logical variables, or logical function references.

c. Logical operators combined with either or both forms of the logical expressions described in
items a and b.

Item a is discussed in the following section, Relational Operators; items b and c are discussed
in the section entitled Logical Operators.

4.2.1 Relational Expressions

A relational expression consists of two arithmetic expressions separated by a relational
operator and has the value .TRUE. or .FALSE. as the relation is true or false.

The six relational operators, each of which must be preceded and followed by a period, are as
follows:

Relational
Operator

.GT.

.GB.

.LT.

.LB.

.BQ.

.NB.

Definition

Greater than ¢>)
Greater than or equal to ~)
Less than (<)
Less than or equal to (:s)
Equal to (=)
Note equal to (¢')

The relational operators express an arithmetic condition which can be either true or false.
Only arithmetic expressions whose type is INTEGER, REAL, or DOUBLE PRECISION can be
combined by relational operators. For example, assuming the type of variable has been
specified as follows:

4-6

Variable Names

ROOT, B, Q
A, I, P
L
c

Type

REAL variables
INTEGER variables
LOGICAL variable
COMPLEX variable

EXPRESSIONS

then, the following illustrates valid and invalid logical expressions using the relational
operators.

Example

Valid Logical Expressions Using Relational Operators:

(ROOT•Q) .GT.B

A.LT.I

B••2.7.EQ.(S.•ROOT+4.)

57.9.LE.(4.7+B)

.5.GE.9.•ROOT

E.EQ.27.3B+05

C.LT.ROOT

Invalid Logical Expressions Using Relational Operators:

Complex quantities can never appear in logical
expressions.

C.GE.(2.7,5.9E3) Complex quantities can never appear in logical
expressions.

E**2.EQ97.1E9

.GT.9

Missing period immediately after the relational
operator.

Missing arithmetic expression before the relational
operator.

4.2.2 Logical Operators

The three logical operators, each of which must be preceded and followed by a period, are as
follows: (A and B represent logical expressions).

Logical Operator

.NOT.

Definition

.NOT.A · if A is .TRUE., then .NOT.A
has the value .FALSE.; if A is .FALSE.,
then .NOT.A has the value .TRUE.

4-7

EXPRESSIONS

Loglcal Operator

.AND.

.OR.

Definition

A.AND.B - if A and B are both .TRUE.,
then A.AND.B has the value .TRUE.; if
either A or B or both are .FALSE., then
A.AND.B has the value .FALSE.

A.OR.B - if either A or B - or both are
.TRUE., then A.OR.B has the value .TRUE.;
if both A and B are .FALSE., then A.OR.B
has the value .FALSE.

Two logical operators may appear in sequence only if the second one is the logical operator
.NOT ..

Only those expressions which, when evaluated, have the value .TRUE. or .FALSE. may be
combined with the logical operators to form logical expressions. For example, assume that the
type of variable has been specified as follows:

Variable Names

ROOT, E, Q
A, I, F
L, W

c

Type

REAL variables
INTEGER variables
LOGICAL variables
COMPLEX variable

Then the following examples illustrate valid and invalid logical expressions using both logical
and relational operators.

Examples

Valid Logical Expressions:

(ROOT*Q.GT.E).AND.W

L.AND .. NOT.(I.GT.F)

(E + 5.9E2.GT.2.*E).OR.L

.NOT.W.AND .. NOT.L

L.AND .. NOT.W.OR.I.GT.F

(E**F.GT.ROOT).AND .. NOT.(I.EQ.A)

4-8

E.AND.L

. OR.W

NOT. (A.GT.Fl

(C . EQ . I) . AND. L

L.AND .. OR.W

. AND.L

Invalid Logical Expressions:

E is not a logical expression.

.OR. must be preceded by a logical expression .

missing period before the logical operator .NOT.

a complex variable may never appear in a logical
expression.

the logical operators .AND. and .OR. must always
be separated by a logical expression .

. AND. must be preceded by a logical expression .

4.2.3 Order of Computations

EXPRESSIONS

Where parentheses are omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are performed is as follows:

Operation

Evaluation of Functions
Exponentiation (•:• ~·)
Multiplication and division (':' and /)
Addition and subtraction (+ and -)
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE.
.NOT.
.AND.
.OR.

For example, the expression:

(A.GT.D**B.AND .. NOT.L.OR.N)

is effectively evaluated in the following order.

Hierarchy

1st (highest)
2nd
3rd
4th
5th
6th
7th
8th

1. D**B
2. A.GT.W

Call the result W (exponentiation)
Call the result X (relational operator)

3. .NOT.L
4. X.AND.Y
5. Z .OR.N

Call the result Y (highest logical operator)
Call the result Z (second highest logical operator)
Final operation

4.2.4 Use of Parentheses

Parentheses may be used in logical expressions to specify the order in which the operations
are to be performed. Where parentheses are used, the expression contained within the most

4-9

EXPRESSIONS

deeply nested parentheses (that is, the innermost pair of parentheses) is effectively evaluated
first. For example, the logical expression:

((I.GT.(B+C)).AND.L)

is effectively evaluated in the following order.

1. B+C
2. I.GT.X
3. Y.AND.L

Call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .NOT. applies must be enclosed in
parentheses if it contains two or more quantities. For example, assume that the values of the

logical variables, A and B, are .FALSE. and .TRUE., respectively. Then the following two
expressions are not equivalent:

.NOT.(A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is .TRUE., but .NOT. (.TRUE.)
implies .FALSE.. Therefore, the value of the first expression is .FALSE ..

In the second expression, .NOT.A is evaluated first. The result is .TRUE.; but .TRUE.OR.B
implies .TRUE .. Therefore, the value of the second expression is .TRUE..

4·10

SECTION 5
ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENTS

Each arithmetic or logical statement defines a numerical or a logical calculation. These
FORTRAN statements closely resemble a conventional algebraic equation; however, the equal
sign specifies replacement rather than equivalence. That is, the expression to the right of the
equal sign is evaluated, and the resulting value replaces the current value of the variable to
the left of the equal sign. These statements have the general form

a = b

where

a is a variable or array element.

b is an arithmetic or logical expression.

If b is a logical expression, a must be a logical variable or array element. If b is an.arith­
metic expression, a must be a integer, real, double-precision, or complex variable or array
element. Table 5-1 gives the conversion rules used for placing the evaluated result of arith -
metic expression b into variable a.

Assume that the type of the following data items has been specified as:

Symbolic Name Type Length Specification

I' J, w Integer variables 2' 2, 1
A, B, Real variables 2,2,4,4
C, D Double-precision

variables 4,4
E Complex variable 4
F(1), ••• ,F(S) Real array elements 2
G, H Logical variables 2,2

Then the following examples illustrate valid arithmetic statements using constants, variables,
and array elements of different types:

Statements

W • B

A • I

Description

The value of A is replaced by the current
value of 8.

The value of B is truncated to a 1-word
integer value, and this value replaces the
value of W.

The value of 2-word integer (I) is con­
verted to a real value, and this result
replaces the value of A.

5-1

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENTS

I • I +

A • C•D

The value of I is replaced by the value of I + 1.

The most significant part of the product of
C and D replaces the value of A.

Examples of logical assignment statements are:

Statement

G • .TRUB.

H • .NOT.G

G • 3 .. GT. I

Description

The value of G is replaced by the logical
constant .TRUE ..

If G is .TRUE., the value of H is replaced
by the logical constant .FALSE .. If G is
.FALSE., the value of H is replaced by the
logical constant .TRUE ..

The value of I is converted to a real value;
if the real constant 3. is greater than this
result, the logical constant .TRUE. replaces
value of G. If 3. is not greater than I, the
logical constant .FALSE. replaces the value
of G.

Table 5· 1. Conversion Rules for the Arithmetic Assignment Statement a b

~a ~p: b 1-----IN_T EG_E_R __ --1

~ I-word 2-word

i Assign
I ·word Assign I Low-order

i word
INTEGER

Extended

5-2

2-word Sign To Assign
high order

REAL

DOUBLE
PRECISION

COMPLEX

word

Float and
assign

DP float
and assign

Float and
assign to
real part;
imaginary
set to zero

REAL
DOUBLE
PRECISION

Fix and assign

DP eval-

Assign
uate and
Real
assign

DP evalu·
and as· Assign
sign

Assign
DP eval·
uate and

to real assign
part; real
imaginary part; imag-
part set inary part
to zero set to

COMPLEX

Fix and as·
sign real part;
imaginary part
not used.

Assign real
part; imag­
inary part
not used.

DP evaluate and
assign real
part; imagin·
ary not used.

Assign

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENTS

Notes:

1. Assign means transmit the resulting value, without change.

2. Real Assign means transmit to a as much precision of the most significant part of the
resulting value as a REAL datum can contain.

3. Fix means truncate the fractional portion of the resulting value and transform it to the form
of an integer.

4. Float means transform the resulting value to the form of a REAL datum retaining in the
process as much precision of the value as a REAL number can contain.

5. DP Float means transform the resulting value to the form of a DOUBLE-PRECISION datum.

6. An expression of the form E = (A,B) where E is a complex variable and A and B are real
variables, is invalid. The mathematical function subprogram CMPLX can be used for this
purpose.

7. DP Evaluate means evaluate the expression, then DP Float.

8. •Assign Low-Order Word means to perform the equivalent of loading the 2-word integer b in
registers AB, performing a LASL 15, and storing the A-register in a.

9. Extend Sign To High-Order Word means to perform the equivalent of loading 1-word integer
b into the A register, clearing bit 15 of the B-register, performing a LASR 15, and storing
registers AB in a.

5-3

SECTION 6
CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is, after one statement has
been executed, the statement immediately following it is executed. This section discusses
certain statements that may be used to alter and control the normal sequence of execution of
statements in the program.

The control statements are: GO TO, IF, CALL, RETURN, CONTINUE, PAUSE, STOP, and DO.

6.1 GO TO STATEMENTS

GO TO statements permit transfer of control to an executable statement specified by number
in the GO TO statement. Control may be transferred either unconditionally or conditionally.
The GO TO statements are:

a. Unconditional GO TO statement

b. Computed GO TO statement

c. Assigned GO TO statement

6.1.1 Unconditional GO TO Statement

This GO TO statement causes control to be transferred to the statement specified by the
statement number. Every subsequent execution of this GO TO statement results in a transfer
to that same statement. Any executable statement immediately following this statement
should have a statement number; otherwise it can never be referred to or executed. This
statement has the general form

GO TO xxxxx

where

xxxxx is the number of an executable statement in
the same program unit.

Example

GO TO 72

71 V7 • HQ(S)+Y**L

72 V7 • HQ(4)+X**J

f;.1

CONTROL STATEMENTS

Explanation

In this example, execution of the GO TO 72 statement causes statement number 71 and any
succeeding statements to be bypassed. Execution is resumed with statement number 72.

6.1.2 Computed GO TO Statement

This statement causes control to be transferred to the statement numbered x 1, x2, x3 ,. .. ,or
xn), depending on whether the current value of i is 1, 2, 3, ... , or n, respectively. If the value of
i is outside the range 1:;;; i:;;; n, the result is •Jndefined. This statement has the general'form

GO TO (xl ,x2 ,x3 , ... ,xn),

where

x is the number of an executable statement in the program
unit containing the GO TO statement.

Example

Explanation

is an integer variable (not an array element) which must
be given a value before the GO TO statement is executed.

GO TO (2 5, 1 0, 7 , 1 0) , ITEM
345 c • 7.02

7 C • E**2+A

25 L • C

10 B • 21.3E02

In this example, if the value of the integer variable ITEM is 1, statement 25 will be executed
next. If ITEM is equal to 2 or 4 statement 10 is executed next, and so on.

6-2

CONTROL STATEMENTS

6.1.3 ASSIGN and Assigned GO TO

The assigned GO TO statement causes control to be transferred to the statement numbered
xl, x2, x3, ... ,or xn,dependingon whether the current assignment of N is xl, x2, x3,. .. ,
or xn, respectively. For example, in the statement:

GO TO N, (1 0 , 2 5 , 8)

If the current assignment of the integer variable N is statement number 8, then the
statement numbered 8 is executed next. If the current assignment of N is statement number
10, the statement numbered 10 is executed next. If N is assigned statement number 25,
statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the current value of N must have
been defined to be one of the values x 1, x2 , ,xn by the previous execution of an ASSIGN
statement. The value of the integer variable m is not the integer statement number; ASSIGN
10 to I is not the same as I = 10.

Any executable statement immediately following this statement should have a statement
number; otherwise it can never be referred to or executed. This statement has the general
form

where

ASSIGN i TO m

GO TO m, (x 1, x2 , x,3 , ••• , x n)

is the number of an executable statement. It must
be one of the numbers x 1, x2, x3 ,xn .

x is the number of an executable statement in the
program unit containing the GO TO statement.

m is a 1-word integer variable (not an array element)
which is assigned one of the statement numbers:
xl, x2, x3, ... ,xn.

Example 1

ASSIGN SO TO NUMBER
1 0 GO TO NUMBER, (3 S , S 0 , 2 S , 12 , 1 8)

SO A • B + C

6·3

CONTROL STATEMENTS

Explanation

In Example l, statement 50 is executed immediately after statement 10.

Example 2

Explanation

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8, 12, 25, SO, 10)

8 A • B + C

10 B • C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C • E••2

In Example 2, the first time statement 13 is executed, control is transferred to statement 10.
On the second execution of statement 13, control is transferred to statement 25.

6.2 IF STATEMENTS

The following IF statements permit a programmer to change the sequence of statement
execution, depending on the value of an arithmetic or logical expression.

6.2.1 Arithmetic IF

The arithmetic IF statement causes control to be transferred to the statement numbered xl ,x2.
or x3 when the value of the arithmetic expression (a) is less than, equal to, or greater than
zero, respectively. This statement has the general form

IF (a) xl ,x2 ,x3

6·4

where

a is an arithmetic ·expression of any type except
complex.

x is the number of an executable statement in the
program unit containing the IF statement.

CONTROL STATEMENTS

Any executable statement immediately following this statement should have a statement
number; otherwise it can never be referred to or executed.

Example

Explanation

IP' (A(J,K)••3-B)10, 4, 30
qo D • C••2

30 C • D**2

10 E • (F•B)/D+1

In this example, if the value of the expression (A(J,K)**3-B) is negative, the statement
numbered 10 is executed next. If the value of the expression is zero, the statement numbered
4 is executed next. If the value of the expression is positive, the statement numbered 30 is
executed next.

6.2.2 Logical IF

The logical IF statement is used to evaluate the logical expression (a) and to execute or skip
statement s depending on whether the value of the expression is true or false, respectively.
This statement has the general form

IF (a) s

where

a is any logical expression.

6-5

CONTROL STATEMENTS

s is any executable statement except a DO statement
or another logical IF statement. The statement s
may not have a statement number.

Example 1

Explanation

IP(A.LE.~.O) GO TO 25
C • D + E
IP(A.EQ.B) ANSWER • 2.0•A/C
F • GIH

In the first statement, if the value of the expression is true (i.e., A is less than or equal to 0.0),
the statement GO TO 25 is executed next and control is passed to the statement numbered
25. If the value of the expression is false (i.e., A is greater than 0.0), the statement GO TO 25
is ignored and control is passed to the second statement.

In the third statement, if the value of the expression is true (i.e., A is equal to 8), the value of
ANSWER is replaced by the value of the expression (2.0*A/C) and then the fourth statement
is executed. If the value of the expression is false (i.e., A is not equal to 8), the value of
ANSWER remains unchanged and the fourth statement is executed next.

Example 2

Assume that P and Q are logical variables.

Explanation

IP(P.OR .. NOT.Q)A•B
C • B••2

In the first statement, if the value of the expression is true, the value of A is replaced by the
value of 8 and the second statement is executed next. If the value of the expression is false,
the statement A = 8 is skipped and the second statement is executed.

6-6

CONTROL STATEMENTS

6.3 CALL STATEMENT

The execution of the CALL statement causes the specified subroutine to be executed. The
CALL statement arguments must agree in number, type, and order of appearance with
the dummy arguments in the SUBROUTINE statement except'that subroutines used as actual
arguments have no type, and Hollerith constants may be associated with real or integer
dummy arguments of any type. The statement has the general form

where

name

a

CALL name (al,a2,a3, ...)

is the name of a SUBROUTINE subprogram.

is an actual argument that is being supplied
to the SUBROUTINE subprogram. The argument
may be a variable, array element, array name,
Hollerith constant, or arithmetic or logical
expression. Each a may also be of the form
&n: where n is a statement number

If the alternate RETURN 'mechanism is not used, control will be returned to the first
executable statement following the CALL statement upon execution of the RETURN statement
in the subroutine. Examples of calling sequences to subroutines are shown below.

Example

Explanation

CALL TEST (A,I)
CALL EXIT
CALL NEXT (A, &50)

50 I•2

The first example will transfer execution control to the subroutine TEST and include
the parameters or arguments A and I in the subroutine. The second example will cause
execution control to be transferred to the subroutine EXIT. Any arguments required for
execution of EXIT are self-contained in the logic of the subroutine or, in a COMMON block.

The third example will transfer execution to the subroutine NEXT,providing access to name A
and statement label 50. If NEXT exits via a RETURN statement, control will return to the
statement following CALL NEXT. If NEXT exits via a RETURN l, control will return to the
statement labelled 50.

6-7

CONTROL STATEMENTS

6.4 RETURN STATEMENT

The execution of a RETURN statement results in the exit from a subprogram. The normal
sequence of execution following the RETURN statement of a SUBROUTINE subprogram is to
the next statement following the CALL in the calling program. It is also possible to return to
any numbered statement in the calling program by using a return of the type RETURN i. The
value of i must be within the range of the argument list. Returns of the type RETURN i may
only be made in a SUBROUTINE subprogram. Returns of the type RETURN may be made in
either a SUBROUTINE or FUNCTION subprogram. The statement has the general form

where

RETURN
or

RETURNi

is a 1-word integer constant or variable whose
value, say n, denotes the n-th asterisk in the
argument list of a SUBROUTINE statement.

A RETURN statement may only appear in a procedure subprogram unit and procedure each
subprogram must contain at least one RETURN statement.

6.5 PAUSE STATEMENT

The execution of the PAUSE statement causes the unconditional suspension (SUSPND) of the
object program being executed pending operator action. To resume the suspended task, input
the operator-communication key·in request RESUME. Execution starts with the next
statement after the PAUSE statement. The statement has the general form

PAUSE op

where

op is optional; and, if present it represents a
string of one to five octal digits, or

is a Hollerith constant enclosed in apostrophelt·

When executed, the following message is output to the SO device before the task is
suspended.

task name PAUSE op

6.6 STOP STATEMENT

The execution of the STOP statement causes the unconditional termination of the execution of
the object program being executed. The statement has the general form

6-8

where

STOP op

op is optional; and, if present it represents a string
of one to five digits, or

is a Hollerith constant enclosed in apostrophes.

CONTROL STATEMENTS

When executed, the following message is output to the SO device before the task is
terminated.

task name STOP op

6.7 CONTINUE STATEMENT

CONTINUE is a statement that may be placed anywhere in the source program (where an
executable statement may appear) without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending the DO loop with a
GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of these forms. This statement has the general form

Example 1

Explanation

CONTINUE

DO 30 I• 1, 20
IF (A(I)-B(t)) 5,30,30

5 A(I) •A(I) +1.0
B(I) • B(I) -2.0

GO TO 7
30 CONTINUE

C • A(3) + 8(7)

In Example l, the CONTINUE statement is used as the last statement in the range of the DO
in order to avoid ending the DO loop with the statement GO TO 7.

6-9

CONTROL STATEMENTS

Example 2

DO 30 !•1,20
IF{A{I)-B(I))S,40,40
A(I) • C(I)
GO TO 30

40 A(I) • 0.0
30 CONTINUE

Explanation

In Example 2, the CONTINUE statement provides a branch point enabling the programmer to
bypass the execution of statement 40.

6.8 DO STATEMENT

The DO statement controls repetitive execution of a group of statements. The number of
repetitions depends on the value of a control variable. The statements assumes one of the
following forms

5,2661 DO n i = ml, m2, m3
or

CO n i = ml, m2

where

n is the statement label of an executable statement.

6-10

This statement, called the terminal statement of
the associated DO must physically follow and be
in the same program unit as the DO statement.
The terminal statement may not be a GO TO of
any form, arithmetic IF, RETURN, STOP, PAUSE,
or another DO statement, nor a logical IF
statement containing one of these forms.

is an integer variable name, identified as the
control variable.

ml is an integer constant or variable name, whose
value is greater than or equal to 1. ml is
called the initial parameter. At start of
execution of the DO loop, the control variable
i is loaded with ml.

CONTROL STATEMENTS

m2 is an integer constant or variable name, whose
value is greater than or equal to ml. m2 is
called the terminal parameter. When the terminal
statement is executed and the control variable
i is incremented by m3, the DO loop will terminate if i
is greater than m2.

m3 is an integer constant or variable, whose value
is greater than 1. If m3 is not present in the
statement, it is implicitly assigned a value of 1.
m3 is called the incrementation parameter. When the
terminal statement is executed, the control variable
is incremented by m3.

Associated with each DO statement is a range that is defined to be those executable
statements from and including the first executable statement following the DO, to and
including the terminal statement defined by the DO. A special situation, called nesting, occurs
when the range of a DO contains another DO statement. In this case, the range of the
contained DO must be a subset of the range of the containing DO. There is no limit to the
nesting of DO statements.

Execution of a DO range proceeds as follows:

The control variable is assigned the value represented by the initial parameter. This value
must be less than or equal to the value represented by the terminal parameter.

The range of the DO is executed.

After control reaches the terminal statement, the control variable of the most recently
executed DO statement associated with the terminal statement is incremented by the value of
its associated incrementation parameter.

If the value of the control variable is greater than the value represented by its associated
terminal parameter, the DO is said to be satisfied, and the control variable becomes
undefined.

If more than orie other DO statement refers to the same terminal statement, the
control variable of the next most recently executed DO statement is incremented by the value
represented by the associated incrementation parameter and so on until all DO statements
referring to the particular termination statement are satisfied, at which time the first
executable statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an arithmetic IF
statement, that is other than by satisfying the DO, the control variable of the DO is defined
and is equal to the most recent attained value.

A GO TO or arithmetic IF statement may not cause control to pass into the range of a DO
from outside its range. When a procedure reference occurs in the range of a DO, the actions
of that procedure are considered to be temporarily within that range, i.e., during the
execution of that reference.

6-11

CONTROL STATEMENTS

The control variable, initial, terminal, and incrementation parameters of a DO may not be
redefined during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO statement, the label of that
terminal statement may not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with that terminal statement.

Example

DO 607 K1 • 2, ID, 3

Explanation

The foregoing statement would cause Kl, the control variable, to be set to the value of the
initial parameter, 2. Execution would proceed at the statement immediately following, down to
and including the statement identified by the label 607. After each execution of the loop, Kl is
incremented by the incrementation parameter, 3, and evaluated in relation to the current
value of the terminal parameter, ID. If the current value of Kl ~ ID, execution control is
transferred to the statement following that identified by the label 607; otherwise, the DO cycle
is repeated.

Example illustrating DO nesting:

6-12

WRITE (MX,8)
L • 0
DO 150 J • 1, K
DO 140 I • 1 ,M
L • L + 1

140 D(I) • V(L)
150 WRITE (MX,9)J,(D(I),I • 1,M)

CALL LOAD (M,K,R,V)
C PRINT FACTOR MATRIX

WRITE (MX,10)K
DO 180 I • 1 ,M
DO 170 J • 1 ,K
L • M•(J-1)+1

170 D(J) • V(L)
180 WRITE (MX,11)I,(D(J),J • 1,K)

IF (K-1) 185, 185, 188
185 WRITE (MX,19)K

GO TO 100
188 CALL VARMX (M,K,V,NC,TV,B,T,D)

SECTION 7
STATEMENTS INPUT/OUTPUT

This section explains the following four types of input/output statements:

a. Sequential READ/WRITE statements

b. Direct access 1/0 statements

c. Auxiliary Input/Output statements

d. ENCODE and DECODE statements

READ statements provide a program with the means of receiving infor.mation from external
sources. WRITE statements allow the transmission of program data to external sources.
Auxiliary 1/0 statements set-up, manipulate, and control external sources. These external
sources may be devices such as magnetic tape and parer tape handlers, typewriters, and
punch card processor. ENCODE and DECODE statements do not refer to any external source,
but manipulate memory arrays as if they were READ/WRITE buffers.

There are two modes of READ/WRITE statements: sequential and direct access. Sequential
R~AD/WRITE statements are used for storing and retrieving data sequentially. These
statements are device independent and can be used for files on either sequential or direct
access devices.

The direct access READ/WRITE statements are used to store and retrieve data in an order
specified by the user. These statements can be used only for a file on a direct access storage
device.

1/0 List: READ/WRITE statements in FORTRAN are primarily concerned with the transfer of
data betwee{l storage locations defined in a FORTRAN program and records which are
external to the program. DECODE and ENCLODE perform operations that are subsets of
READ and WRITE, respectively. They transfer data between items in an an 1/0 list and a
buffer, under format control, but no physical 1/0 data transfer between the buffer and an
external device is performed.

On READ, data is transferred from an external device to a memory buffer. On DECODE, the
buffer is specified in the statement. In both cases, data is taken from the buffer, possibly
transformed under format control, and placed into storage locations that are note necessarily
contiguous.

On WRITE or ENCODE, data is gathered from diverse storage locations and placed into a
buffer. On WRITE, this buffer is transferred to an external device. An 1/0 list is used to
specify which storage locations are used. The 1/0 list can contain variable names, array
elements, array names, or a form called an implied DO (see below). No function references or
arithmetic expressions are permitted in an 1/0 list, except in subscripts of array elements in
the list. If a function reference is used in a subscript. the function may not perform input/
output.

7-1

INPUT /OUTPUT STATEMENTS

If a variable name or array element appears in the 1/0 list, one item is transmitted between a
storage location and a record.

If an array name appears in the list, the entire array is transmitted in the order in which it is
stored. (If the array has more than one dimension, it is stored in ascending storage locations,
with the value of the first subscript quantity increasing most rapidly and the value of the last
increasing least rapidly.

Implied DO: If an implied DO appears in the 1/0 list, the variables, array elements, or
arrays specified by the implied DO are transmitted. The implied DO specification is enclosed
in parentheses. Within the parentheses are one or more variables, array elements, or array
names, separated by commas, with a comma following the last name, followed by indexing
parameters i = ml, m2, m3. The indexing parameters are as defined for the DO statement.
Their range is the list of the DO-implied list and, for input lists, i, ml, m2, and m3 may
appear within that range only in subscripts.

For example, assume that A is a variable and that B, C, and D are I-dimensional arrays each
containing 20 elements. Then the statement:

WRITE (6) A, B, (C(I), !•1,4), 0(4)

writes the current value of variable A, the entire array B, the first four elements of the
array C, and the fourth element of D. (The 6 following the WRITE is the FORTRAN unit
number.) If the subscript (I) wre not included with array C, the entire array would be written
four times.

Implied DO's can be nested if required. For example, to read an element into array B after
values are read into each row of a 10 x 20 array A, the following would be written:

READ (5) ((A(I,J), J•1,20), B(I), !•1,10)

The order of the names in the list specifies the order in which the data is transferred between
the record and the storage locations.

Formatted and Unformatted Records: Data can be transmitted either under control of a
FORMAT statement or without the use of a FORMAT statement.

When data is transmitted with format control, the data in the record is coded in a form that
can be read by the programmer or which satisfies the needs of machine representation. The
transformation for input takes the character codes and constructs a machine representation
of an item. The output transformation takes the machine representation of an item and
contructs character codes suitable for printing. Most transformations involve numeric
representations that require base conversion. To obtain format control, the programmer must
include a FORMAT statement in the program and must give the statement number of the
FORMAT statement in the READ or WRITE statement specifying the input/output operation.

7-2

INPUT/OUTPUT STATEMENTS

When data is transmitted without format control, no FORMAT statement is used. In
this case, there is a one-to-one correspondence between internal storage locations and
external record positions. A typical use of unformatted data is for information that is written
out during a program, not examined by the programmer, and then read back in later in the
program, or in another program, for additional processing.

For formatted data, the 1/0 list and the FORMAT statement determine the form of the record.

7.1 FORTRAN UNIT NUMBERS

Except for ENCODE and DECODE, all 1/0 statements contain an external 1/0 device specifier,
u, which is called a FORTRAN unit number. This specifier (u) is always a 1-word integer in the
range of 0:5 u< 256.

At execution time, u must become associated with a VORTEX logical unit number or mass
storage file. This is discussed in detail in the following sections.

Note: For all VORTEX system concepts which are referenced in the following sections, refer to
the appropriate section in the VORTEX/VORTEX 11 reference manual.

7.1.1 Implicitly Opened Files

Implicitly opened files are files whose FORTRAN unit number (u) has not been defined by a
FORTRAN CALL V$0PEN or CALL V$0PNB statement, or by JCP directives. In this case, the
FORTRAN unit number (u) is simply used as the logical unit number (u cannot refer to a
mass storage device).

Example

WRITE(21) A

Explanation

Assuming that FORTRAN unit number 21 has not been defined by a CALL V$0PEN or a CALL
V$0PNB statement or by JCP directives, the above statement, at execution time, will simply
transfer the contents of A to an output buffer and execute a VORTEX WRITE call to output
this buffer to logical unit number 21.

7 .1.2 JCP-Opened Background Files

JCP-opened background files are mass storage files which are opened by use of the JCP
directives /ASSIGN and /PFILE. It is assumed in the following example that the FORTRAN
unit numbers referenced have not been defined by a CALL V$0PEN or a CALL V$0PNB
statement.

7.3

INPUT /OUTPUT STATEMENTS

Example

Explanation

/ASSIGN,PI,25
/PFILB,PI,,FILB1
/FORT

INTEGER PI
DATA PI/It/
RBAD (PI) A

In the above example, the FORTRAN unit number has been given in the integer variable name
Pl. The JCP directives have assigned logical unit name Pl (whose logical unit number i 4) to
logical unit 25, which is assumed to be an RMD partition containing the file name, FILEl; and
opened the Pl global FCB on the name FILEl. The FORTRAN execution-time routines will
perform a VORTEX READ on logical unit 4, using the Pl global FCB, and transfer the first
2-words of input buffer into real item A.

Note: This process can only be used by FORTRAN programs executing in background; and,

a. The FORTRAN unit number must correspond to a global FCB.

b. Only unkeyed files may be referenced.

c. The JCP directives must be executed prior to execution of the FORTRAN program.

7.1.3 Files Opened by CALL V$0PEN and V$0PNB

This section explains the use of CALL V$0PEN and V$0PNB, and associated statements in
opening sequential and random access files.

7.1.3.1 CALL V$0PEN and V$CLOS Statements

The CALL V$0PEN statement is used for general reference of mass storage files, from either
background or foreground. The general form of CALL V$0PEN is

CALL V$0PEN(u,l,n,m)

where

u is the FORTRAN unit number.

is the logical unit number.

7.4

INPUT/OUTPUT STATEMENTS

n is the name of a 13-word array containing the
file name in words 8, 9, 10, and the protect key
in the low-order byte of word 3.

m is the VORTEX OPEN mode:: O
1

OPEN/rewind
OPEN/no rewind

Files opened with the CALL V$0PEN statement are generally sequential, but random access
can be achieved by manipulating word 4 of array n. Word 4 specifies the current record
position, and is incremented after every READ or WRITE on the corresponding FORTRAN unit
number.

Example

INTBGBR
DIMBNSION
DATA
DATA

2H A,2HFI,2HLB,2HX//
CALL
WR I TB

1 FORMAT

Explanation

FUN
NAMB(13)
FUN,LUN,MODB/10,20,0/
NAMB(J),NAMB(8),NAMB(9),NAMB(10)/

VSOPBN(FUN,LUN,NAMB,MODB)
(FUN, 1)
('RBCORD HBADBR')

This example will open the tile named FILEXY, which is defined on the mass storage partition
with protect key A. Logical unit 20 is assigned to this partition. Since the mode specifies
rewind, the file will be positioned at its start, so the text string 'RECORD HEADER' will be
written at the start of the first record. If the WRITE statement had been preceded by a
NAME(4) - 5 statement, the text string would have been written on the fifth record.

CALL V$CLOS Statement

The CALL V$CLOS statement is associated with CALL V$0PEN, in that it is used to end
V$0PEN. The general form of CALL V$CLOS is

CALL V$CLOS(u,m)

where

u is the FORTRAN unit number defined by a CALL
V$0PEN statement.

m is the VORTEX CLOSE mode: 0
1

CLOSE/leave
CLOSE/update

7.5

INPUT /OUTPUT STATEMENTS

7.1.3.2 CALL V$0PNB and V$CLSB Statements

The CALL V$0PNB statement extends the power of the V$0PEN call. It performs blocking on
mass storalie devices, or variable record 1/0 on other type devices. The general form of CALL
V$0PNB is

CALL V$0PNB(u,l,n,m,r,b,f)

where

u is the FOTRAN unit number.

is the logical unit number.

n is the name of a 14-word array containing the
file name in words 8, 9, 10, and the protect
key in word 3.

m is the VORTEX OPEN mo~e: jO = OPEN/rewind
1 =- OPEN/leave

is the logical record size in words.

b is the name of a blocking buffer array.

is the read before write flag: 0 = no read before write
1 = read before write

Note: The first four parameters (u, I, n, and m) are identical to those of V$0PEN, except for
n, which requires an additional word.

In using FORTRAN support routines, a sufficient size blocking buffer (b) should be provided.
CALL V$0PNB associates this blocking buffer with a FORTRAN unit number u; therefore, the
contents of b should be not modified, or used as a blocking buffer for another V$0PNB call.

If a CALL V$CLSB is executed on u, the buffer is released and can be used for any desired
purpose, including a blocking buffer for another CALL V$0PNB.

The rules for defining the size of bin words are listed below, where:

a, b, Q, R are integers
Q (alb) = integer quotient of alb
R = a-b Q (alb) = integer remainder of a/b

u (not a mass storage file):

b:.? r

7-6

u (mass storage file):

r < 120 and R(l20/r) == 0 : b ;o: 120
r < 120 and R(120/r) "" 0 : b 2: 240
r ;o: 120 and R(r/120) = 0 : b == r

INPUT /OUTPUT STATEMENTS

r 2: 120 and R(r/120) = 1 : b == 120*(Q (r/120) + 1)
r 2: 120 and R(r / 120) > 1 : b = 120*(Q(r / 120) + 2)

A mass storage file opened by a CALL V$0PNB statement is processed as a sequence of
physically ~ontiguous logical records, each one r words in length. These logical records cross
physiGal record boundaries (without wasted space) except, possibly as the file ends. Input and
output is buffered through the user-supplied blocking buffer b.

Since VORTEX physical 1/0 is performed with buffer b, the file must be large enough to do 1/0
with the last logical record. Thus, when creating a file, allocate space for one additional logical
record than will be required.

On a WRITE operation to a mass storage file (where r is not a multiple or factor of 120 words),
data on the file can be overwritten unless the read-before-write flag is set. In some situations,
however, such as initial file writing in a strictly sequential fashion, read-before-write is
unnecessary and slow.

Example

Explanation

(mass storage file):

DIMBNSION IARR(14),IBUF(360),IX(200),IY(200)
DATA IARR(3),IARR(8),IARR(9),IARR(°10)/2H X,2HAB,2HC,2H /
CALL VSOPNB(100,10,IARR,0,200,IBUF,1)
IARR(4) • 10
RBAD(100) IX
IARR(4) • 9
RBAD(100) IY

This is an example of a large logical record (200 words) on a mass storage file. It
demonstrates random access. The statement IARR(4) = 10 requests that the file be
positioned at the tenth logical record. The statement READ(lOO) IX will read and transfer the
200 words in the tenth logical record from FORTRAN unit 100 to array IX. The last two
statements position FORTRAN unit 100 to logical record 9, and read logical record 9 into
array IY.

The CALL V$0PNB statement above has associated FORTRAN unit number 100 with the file
named ABC, on a partition with protect key X, to which logical unit number 10 is assigned.

Example (mass storage file):

DIMBSNION IARR(14),IBUF(120),IX(10),IY(10)
DATA IARR(3),IARR(8),IARR(9),IARR(10)/2H X, 2HAB,2HC /
CALL V$0PNB(100,10,IARR,0,10,IBUF,0)

7.7

INPUT /OUTPUT STATEMENTS

Explanation

IARR(4) • 10
RBAD (1 0 0) IX
IARR(4) • 9
RBAD(100) IY

This is the same example as before, but with a logical record size of 10 words. Note that in
this case there would only be one physical 1/0: 0 read of the first 120-word record of file ABC
into blocking buffer IBUF. S.ince logical records 9 and 10 are both in this physical record, the
statement READ(lOO) IV would cause only a 10-word memory to memory transfer from IBUF
to IV, with no external 1/0.

Example

Explanation

(not mass storage file):

DIMENSION IARR(14),IBUF(43),IX(43)
CALL V$0PNB(100,19,IARR,0,43,IBUF,O)
WRITB(100) IX

This example demonstrates writing a record of arbitrary size (here 43 words) to a non-mass
storage device, perpaps a magnetic tape.

CALL V$CLSB Statement

The CALL V$CLSB statement is associated with CALL V$0PNB, in that it is used to end
V$0PNB. The general form of CALL V$CLSB is

CALL V$0PNB(u,m)

where

u is the FORTRAN unit number

m is the VORTEX CLOSE MODE: 0 = CLOSE/leave
1 = CLOSE/update

Note: V$CLSB will undefine u and flush the blocking buffer.

7.1.3.3 V$0PEN and V$0PNB Restrictions

The number of files of this type open at any given time is unlimited, except by memory and
permissible range of FORTRAN unit numbers, which allow only numbers 0-255. Active
FORTRAN unit numbers (those defined by V$0PEN or V$0PNB and not yet undefined by
V$CLOSE or V$CLSB) must be unique, and blocking buffers allocated to active FORTRAN unit

7·8

INPUT /OUTPUT STATEMENTS

numbers (by a CALL V$0PNB) must be totally dedicated to this function. Different FORTRAN
unit numbers may be assigned to the same partition, or even to the same file, but this is not
advised for files opened with a CALL V$0PNB, for some of the file may be in a blocking buffer,
and not accessible to another program.

These files will accept the Auxiliary 1/0 statements, ENDFILE, BACKSPACE, and REWIND.
ENFILE will do a CLOSE/update and reopen.

The VORTEX end-of-file indicator must be used with caution on mass storage files opened
with a CALL V$0PNB, for it indicates physical record end-of-file, which may have no relation
to the logical record structure. It is best for the user to devise his own indicator on such files.

7.1.4 Direct Access Files

These are files opened by a DEFINE FILE statement, which is discussed in a later section.

7.2 EXTERNAL DEVICES

VORTEX FORTRAN is generally independent of the characteristics of the external device
associated with a given FORTRAN unit number. Physical record size and console devices are
two important exceptions.

7.2.1 Physical Record Size

FORTRAN associates a physical record size with each FORTRAN unit number (u). For files
opened with a CALL V$0PNB statement, it is the blocking buffer size (as shown in section
7.1). For files opened with a CALL V$0PEN statement, it is 120-words, except when u is
assigned to the same partition as SI, in which case it is 40-words.

For Direct-Access 1/0, it is the record size specified in the DEFINE FILE statement.

For implicitly opened files, FORTRAN associates a physical record size to each device,
according to its name, as follows:

First two Characters
CP
CR
CT
CP
TY
All others

Physical Record Size (in words)
40
40
40
66
40
60

This number is used to breakup an 1/0 request into separate VORTEX physical 1/0 requests.
This is normal for an unformatted 1/0 request, which may input or output a large array.

7-9

INPUT /OUTPUT STATEMENTS

VORTEX FORTRAN will also do this for formatted I /0 requests, although the user should
explicitly control records by using '/' and ')' format specifiers.

7.2.2 Console Devices

Console devices are handled in a special way, in that record input is automatically padded out
with blanks, if a partial record is input.

Devices whose names begin with CT or TY are flagged as console devices. On a READ, the
operator can always terminate input with a carriage return, and the record will be padded out
to its end with blanks.

Example

DIMBNSION IA(80)
RBAD(4,1) IA

1 P'ORMAT(80A1)

Explanation

If this section of program is executea, and FORTRAN unit number 4 is a console device, and
the operator enters AB CR, FORTRAN will transfer the characters A and B to IA(l) and IA(2),
respectively, transfer blanks to the other 78 array elements of IA, and consider the read
complete.

7.3 SEQUENTIAL INPUT/OUTPUT STATEMENTS

There are two sequential input/output statements: READ and WRITE. The READ and WRITE
statements cause transfer of records.

7 .3.1 READ Statements

These statements are used to obtain data values from an external source. The data values are
input in either formatted or unformatted mode. The general form of the READ statement is:

READ (a,b,ERR == c,END == d) list

wnere

7-10

a is a FORTRAN unit number

b is optional; and, is either the statement number
of the FORMAT statement describing the record(s)
being read, or the name of an array containing a
format specification.

INPUT /OUTPUT STATEMENTS

ERR .. c is optional; and, c is the number of a statement
in the same program unit as the READ statement
to which transfer is made if a transmission
error occurs during data transfer.

END - d is optional; and, d is the number of a state-
ment in the same program unit as the READ state­
ment to which transfer is made upon encounterihg
the end of the file.

list is optional; and, is an 1/0 list.

The value of a must always be specified, but under appropriate conditions b, c, d, and list can
be omitted. The order of the parameters ERR- c and END=- d can be reversed within the
parentheses.

Transfer is made to the statement specified by the ERR parameter if an input error occurs.
No indication is given of which record or records could not be read, only that an error
occurred during transmission of data. If the ERR parameter is omitted and an error occurs,
object program execution is terminated on the next 1/0 statement.

Transfer is made to the statement specified by the END parameter when the end of the file is
encountered; i.e., when a READ statement is executed after the last record on the file has
already been read. No indication is given of the number of list items read into before the end
of the file was encountered. If the END parameter is omitted and an end-of-file is
encountered, object program execution is terminated on the next 1/0 statement.

The basic forms of the sequential READ statements are:

Form
READ (a,b,ERR - c, END- d) list
READ (a, ERR== c, END= d) list

Purpose
Formatted READ
Unformatted READ

Unformatted 1/0 files are not structured, except for that imposed by the physical record size
associated with the FORTRAN unit number referencing them. Thus, they may be manipulated
by other VORTEX processor.

Formatted READ

The form READ (a,b) list is used to read data from the file associated with FORTRAN unit
number a into the variables whose names are given in the list. The data is transmitted from
the file to storage according to the specifications in the FORMAT statement, which is
statement number b.

Example

READ (5,98) A,B,(C(I,K),I•1,10)

7-11

INPUT /OUTPUT STATEMENTS

Explanation

The above statement causes input data to be read from the file associated with FORTRAN
unit number 5 into the variables A, B, C(l,K), C(2,K), ... , C(lO,K) in the format specified by the
FORMAT statement whose statement number is 98.

Unformatted READ

The form READ(a) list is used to read a single record from the file associated with FORTRAN
unit number a into the variables whose names are given in the list. Since the data is
unformatted, no FORMAT statement number is given. This statement may be used to read
unformatted data written by a WRITE(a) list statement. If the list is omitted, a record is
passed over without being read.

Example

RBAD (J) A,B,C

Explanation

The above statement causes data to be read from the file associated with file reference
number J into the variables A, B, and C.

7.3.2 WRITE Statements

WRITE statements are used to transfer program data to external devices. These data may be
formatted or unformatted. The general form of the WRITE statement is:

WRITE (a,b,ERR = c,END - d) list

where

7-12

a is an unsigned integer constant or an integer
variable and represents a FORTRAN unit number.

b is optional; and, is either the statement number
of the FORMAT statement describing the record(s)
being written, or the name of an array containing
a format specification.

ERR = c is optional; and, c is the number of a statement
in the same program unit as the WRITE statement
to which transfer is made if a transmission
error occurs during a data transfer.

INPUT /OUTPUT STATEMENTS

END - d is optional; and, d is the number of a state-
ment in the same program unit as the WRITE state­
ment to which transfer is made upon encountering
the end of the file or device.

list is optional; and, is an 1/0 list.

The value of a must always be specified, but under appropriate conditions b, c, d, and list can
be omitted. The order of the parameters ERR - c and END - d can be reversed within the
parentheses.

Transfer is made to the statement specified by the ERR parameter if an outpat error occurs.
No indication is given of which record or records could not be written, only that an error
occurred during transmission of data. If the ERR parameter is omitted and an error occurs,
object program execution is terminated on the next 1/0 statement.

Transfer is made to the statement specified by the END parameter when an end of the file or
device is encountered.

The basic forms of the WRITE statement are:

Form
WRITE (a,b,ERR - c, END - d) list
WRITE (a,ERR == c, END - d) list

Formatted WRITE

Purpose
Formatted WRITE
Unformatted WRITE

The form WRITE(a,b) list is used to write data into the file whose reference number is a from
the variables whose names are given in the list. The data is transmitted from storage to the
file according to the specifications in the FORMAT statement whose statement number is b.

Example

WRITB(7,75) A,(B(I,3),I•1,10,2),C

Explanation

The above statement causes data to be written from the variables A, 8(1,3), 8(3,3), 8(5,3),
8(7,3), 8(9,3), C into the file associated with FORTRAN unit number 7 in the format specified
by the FORMAT statement whose statement number is 75.

Unformatted WRITE

The form WRITE(a) list is used to write a single record from the variables whose names are
given in the list into the file whose FORTRAN unit number is a. This data can be read back
into storage with the unformatted form of the READ statement, READ(a) list.

7-13

INPUT /OUTPUT STATEMENTS

Example

WRITE (L) ((A(I,J),I•1,10,2), B(J,3), J•1,K)

Explanation

The above statement causes data to be written from the variables A(l,l), A(3,l), ... , A(9,l),
8(1,3), A(l,2), A(3,2), ... , A(9,2), 8(2,3), ... , 8(K,3) into the file associated with the file reference
number L. Since the record is unformatted, no FORMAT statement number is given.
Ther6fore, no FORMAT statement number should be given in the READ statement used to
read the data back into storage.

7.4 DIRECT-ACCESS INPUT/OUTPUT STATEMENTS

The direct-access statements permit a programmer to read and write records randomly from
any location within a file. They contrast with the sequential input/output statements,
described previously, that process records, one after the other, from the beginning of a file to
its end. With the direct-access statements, a programmer can go directly to any point in the
file, process a record, and go directly to any other point without having to process all the
records in between.

There are four direct-access input/output statements: READ, WRITE, DEFINE FILE, and
FIND. The READ and WRITE statements cause transfer of data into or out of internal storage.
These staements allow the user to specify the location within a file from which data is to be
read or into which data is to be written.

The DEFINE FILE statement describes the characteristics of the file(s) to be used during a
direct-access operation. The FIND statement updates the associated variable. In addition to
these four statements, the FORMAT statement (described previously) specifies the form in
which data is to be transmitted. The direct-access READ and WRITE statements and the
FIND statement are the only input/output statements that may refer to a FORTRAN unit
number defined by a DEFINE FILE statement.

Each record in a direct-access file has a unique record number associated with it. The
programmer must specify in the READ, WRITE, and FIND statements not only the FORTRAN
unit number, as for sequential input/output statements, but also the number of the record to
be read, written, or found. Specifying the record number permits operations to be performed
on selected records of the file, instead of on records in their sequential order.

The number of record physically following the one just processed is made available to the
program in an integer variable known as the associated variable. Thus, if the associated
variable is used in a READ or WRITE statement to specify the record number, sequential
processing is automatically secured. The associated variable is specified in the DEFINE FILE
statement, which also gives the number, size, and type of the records in the direct-access file.

7-14

INPUT /OUTPUT STATEMENTS

7 .4.1 Define File Statement

Each direct-access file must be described once, in either the main program or a subprogram.
The DEFINE FILE statement must logically precede any input/output statement referring to
the file being described. The first DEFINE FILE statement encountered for a file is the one
used during program execution. Subsequent descriptions are ignored. The statement has the
general form

DEFINE FILE al(ml,rl,fl,vl),a2(m2,r2,f2,v2), ...
where

a represents an unsigned integer constant that
is the FORTRAN unit number. a is also used to
represent the file name within the partition
indicated by the associated variable. The file
name is of the form:

FILEnn

where nn = ai OO;;nrt;;99. A maximum of
10 such files is allowed.

m represents an integer constant that specifies
the number of records in the file associated
with ai.

represents an integer constant that specifies
the maximum size of each record associated with
ai. The record size is measured in characters
(bytes), or storage units (words). The method
used to measure the record size depends upon
the specification for f.

specifies that the file is to be read or
written either with or without format control;
fi may be one of the following letters: L
indicates that the file is to be read or
written either with or without format con­
trol, and that the maximum record size is
measured in number of bytes.

E indicates that the file is to be read or
written with format control (as specified
by a FORMAT statement), and that the maximum
record size is measured in number of charac­
ters (bytes).

U indicates that the file is to be read or
written without format control, and that

7-15

INPUT /OUTPUT STATEMENTS

the maximum record size is measured in
number of words.

v represents a single word integer variable
(not an array element) called an associated
variable. Prior to the DEFINE FILE state­
ment, v must be set to contain the LUN of
the partition and the protection key·
for the indicated partition. The LUN is a
binary value from 0 to 255 and occurs in
the right byte. The protection key is an
ASCII graphic and occurs in the left byte.
At the conclusion of each read or write
operation, v is set to a value that points
to the record that immediately follows
the last record transmitted. At the con­
clusion of a FIND operation, v is set to
a value that points to the record found.

The associated variable cannot appear in the 1/0 list of a READ or WRITE statement for a file
associated with the DEFINE FILE statement.

Example

DATA I2,J3/ZD014,ZA1
DBFINB FILB 8(50,100,L,I2),9(100,50,L,J3}

This DEFINE FILE statement describes two files (FILE08 and FILE09), referred to by unit
reference numbers 8 and 9. The data in the first file consists of 50 records, each with a
maximum length of 100 storage locations. The L specifies that the data is to be transmitted
either with or without format control. 12 is the associated variable that serves as a pointer to
the next record. The partition is logical unit number 20 with protection key "P".

The data in the second file consists of 100 records, each with a maximum length of 50 storage
locations. The L specifies that the data is to be transmitted either with or without format
control. J3 is the associated variable that serves as a pointer to the next record. The partition
is logical unit number 161 and since the protection key is not an ASCII graphic, VORTEX will
expect the partition to be unprotected.

7.4.2 Direct-Access READ Statement

The direct-access READ statement causes data to be transferred from a direct-access device
into internal storage. The file being read must be defined with a DEFINE FILE statement. It
has the general form

READ (a'r,b,ERR = c,END == d)list

7-16

INPUT /OUTPUT STATEMENTS

where

a is a FORTRAN unit number.

is an integer expression that represents the
relative position of a record within the file
associated with a.

b is optional; and, if given, is either the
statement number of the FORMAT statement
that describes the data being read or the
name of an array that contains an object·time
format specification.

ERR = c is optional; and, c is the number of a state·
ment in the same program unit as the READ
statement to which control is given when a
device error condition is encountered during
data transfer from device to storage.

END= d is optional, and is the number of a statement
in the same program unit as the READ statement
to which transfer is to be made upon encountering
an end-of-file.

list is optional; and, is an 1/0 list.

The 1/0 list must not contain the associated variable defined in the DEFINE FILE statement
for unit a.

The relative record number of the first record of a direct-access file is 1.

7.4.3 Direct-Access WRITE Statement

The direct-access WRITE statement causes data to be transferred from internal storage to a
direct-access device. The file being written must be defined with a DEFINE FILE statement.
The statement has the general form:

WRITE (a'r,b,ERR = c,END = d) list

where

a is a FORTRAN unit number.

is an integer expression that represents the
relative position of a record within the file
associated with a.

7- 17

INPUT /OUTPUT STATEMENTS

b is optional; and, if given, is either the
statement number of the FORMAT statement
that describes the data being written or
the name of an array that contains an
object-time format.

ERR= c is optional; and, c is the number of a state­
ment in the same program unit as the READ
statement to which control is given when a
device error condition is encountered during
data transfer from device to storage.

END= d is optional, and is the number of a statement
in the same program unit as the READ statement
to which transfer is to be made upon encountering
an end-of-file.

list is optional; and, is an 1/0 list.

The 1/0 list must not contain the associated variable defined in the DEFINE FILE statement
for unit a.

7.4.4 FIND Statement

The FIND statement is included for compatibility with other processors. Its syntax is checked,
but it performs no hardware function at execution time. The associated variable is, however,
updated. The statement has the general form:

FIND (a'r)

where

a is a FORTRAN unit number.

is an integer expression that represents the
relative position of a record within the file
associated with a.

The file on which the record is being found must be defined with a DEFINE FILE statement.

Example

7-18

DEFINE FILE 8(1000,80,LrIVAR)
1 0 FIND (8 ' 5 0)

15 READ (8'50) A,B

INPUT /OUTPUT STATEMENTS

While the statements between statements 10 and 15 are executed, record 50, in the file
associated with unit number 8, is found. After the FIND statement is executed, the value of
IVAR is 50. After the READ statement is executed, the value is 51.

7.5 FORMAT STATEMENTS

FORMAT statements, with input/output operations, spedfy conversion and editing of
information between program storage and external representaiton. FORMAT statements are
nonexecutable and must have a statement lable to be referenced by input/output statements.
Conversion performed according to a FORMAT statement during output is in general the
reverse of conversion performed during an input operation.

A FORMAT statement is expressed as:

n FORMAT (q,t,z,t2z2 ... tnznq2)

where

n is the statement label.

q is a series of slashes or is empty.

z is a field separator.

is a field descriptor or series of field
descriptors.

The noun FORMAT and the parentheses must appear in this form.

The following list gives general rules for using the FORMAT statement:

a. FORMAT statements are not executed; their function is to supply information to the object
program. However, they must be placed among the executable statements, and cannot
occur in a BLOCKDATA subprogram.

b. Complex data items in records are processed exactly like two consecutive real items.

c. Any number of commas or slashes can be used as separators between format codes.

d. When defining a FORTRAN record by a FORMAT statement, it is important to consider the
maximum size record allowed on the input/output medium. FORTRAN will read or write
multiple records if move data then will fit in a record is requested.

e. When formatted records are prepared for printing at a printer or terminal, the first
character of the record is not printed. It is treated as a carriage control character:

7-19

INPUT /OUTPUT STATEMENTS

Character

Dlank

0

+

Meaning

Advance one line before printing

Advance two lines before printing

Advance to first line of next page

No advance (overprint)

For media other than a printer or terminal, the first character of the record is treated as
data. Refer to the VORTEX Reference Manual for devices that process the + character.

f. If the I /0 list is omitted from the READ or WRITE statement, a record is skipped on input,
or a blank record is inserted on output, unless the record was transmitted between the
file and the FORMAT statement (see Hollerith format descriptors).

Various Forms of a FORMAT Statement

All of the field descriptors in a FORMAT statement are enclosed in a pair of parentheses.
Within these parentheses, the format codes are delimited by the separators, slash and
comm~. The slash indicates the end of the physical record; the comma indicates the end of a
data item within the record.

Execution of a formatted READ or formatted WRITE statement initiates format control. Each
action of format control depends on information provided jointly by the 1/0 list, if one exists,
and the format specification. There is no 1/0 list item corresponding to the format descriptors
T, X, or Hollerith. These communicate information directly with the record.

Whenever an I, D, E, F, G, A, L, or Z code is encountered, format control determines whether
there is a corresponding element in the 1/0 list. If there is such an element, appropriately
converted information is transmitted. If there is no corresponding element, the format control
terminates, even if there is an unsatisfied repeat count.

If, however, format control reaches the last (outer) right parenthesis of the format
specification, a test is made to determine if another element is specified in the 1/0 list. If not,
control terminates. However, if another list element is specified, the format control demands
that a new record start. Control therefore reverts to that group repeat specification
terminated by the last preceding right parenthesis, or if none exists, then to the first left
parenthesis of the format specification.

Given the following FORMAT statements:

7-20

70 FORMAT (2(I3,F5.2),I4,FJ.1)
80 FORMAT (I3,F5.2,2(I3,2F3.1))
90 FORMAT (I3,F5.2,2I4,5FJ.1)

INPUT /OUTPUT STATEMENTS

With additional elements in the 1/0 list after control has reached the last right parenthesis of
each, control would revert to the 2 (13,F5.2) specification in the case of statement 70; to
2(13,2F3.1) in the case of statement 80; and to the beginning of the format specification,
13,F5.2, ... in the case of statement 90.

The question of whether there are further elements in the 1/0 list is asked only when an I, D,
E, F, G, A, L, or Z code or the final right parenthesis of the format specification is
encountered. Before this is done, T, X, and Hollerith codes, and slashes are processed. If
there are fewer elements in the 1/0 list than there are format codes, the remaining format
codes are ignored.

Comma: The simplest form of a FORMAT statement is the one shown in the general form at
the beginning of this section. The format codes, separated by commas, are enclosed in a pair
of parentheses. One FORTRAN record is defined within a single pair of left and right
parentheses. The following examples illustrate the use of the format codes I, F, D, E, Z, and G.

Example

75 FORMAT (I3,l"5.2,B10.3,G10.3)

RBAD (5,75) N,A,B,C

Explanation

a. For input fields are described in the FORMAT statement and four variables are in the 1/0
list. Therefore, each time the READ statement is executed, one input card is read from
the file associated with FORTRAN unit number 5.

b. When an input card is read, the number in the first field of the card (three columns) is
stored in integer format in location N. The number in the second field of the input card
(five columns) is stored in real format in location A, etc.

c. If there were one more variable in the 1/0 list, say M, another card would be read and the
information in the first three columns of that card would be stored in integer format in
location M. The rest of the card would be ignored.

d. If there were one fewer variable in the list (say C is omitted), format specification Gl0.3
would be ignored.

Slash: A slash is used to indicate the end of a FORTRAN record format. For example, the
statement:

25 FORMAT (IJ,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc., records are transmitted
according to the format 13, F6.2 and the second, fourth, etc., records are transmitted
according to the format Dl0.3,F6.2.

7.21

INPUT /OUTPUT STATEMENTS

Consective slashes can be used to introduce blank output records or to skip input records. If
there are n consecutive slashes at the beginning or end of a FORMAT statement, n input
records are skipped or n blank records are inserted between output records. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of records skipped or
blank records inserted is n-1. For example, the statement:

25 FORMAT (1X,10IS//1X,8B14.5)

describes three FORTRAN record formats. On output, it causes double spacing between the
line written with format lX,1015 and the line written with the format 1X,8El4.5.

7.5.1 FIELD Descriptors

FIELD descriptors describe the type of conversion and editing to be performed on each
variable appearing in the input/output list. FIELD descriptors can be in any of the following
forms:

rAw rFw.d rEw.d rDw.d rlw nHs 's' nX rlw rGw.d Ty Zh

a. The characters A, D, E, F, G, L, Z, and I indicate the manner of conversion for variables in
the list.

b. The character H, and 's' represent characters to be input/output directly from the format.

c. The character I represents the end of a record.

d. w and n are non-zero integer constants defining the width of the field (including digits,
decimal point, and algebraic signs) in the external character string.

e. d is an integer specifying the number of fractional digits appearing in the external string.

f. r is an optional, non-zero integer indicating that the specification is to be repeated r times.

g. s is a string of acceptable FORTRAN characters.

h. The T descriptor relocates the current absolute position in the external record.

i. The X descriptor relocates the current relative position in the external record.

j. y is a non-zero integer constant specifying the character position in the external record.

k. Z format code is used in the transmitting hexadecimal data.

I. h denotes a string of hexadecimal digits.

7-22

.JN PUT /OUTPUT STATEMENTS

7.5.2 A Format Code

An A format code is used in conjunction with a READ or WRITE statement for the input/
output of alphanumeric information to ro from a list element. The general form is

rAw

where r and w are unsigned integer constants. If r is one, it can be omitted.

Input: rAw will be interpreted to mean that the next r successive fields of w characters are
each to be stored in the associated REAL list elements. If w is greater than c, where c is the
number of characters a single list element can contain, only the c right-most characters will
be significant. If w is c or less, the characters will be left-justified, and the word(s) filled with
blanks, if necessary.

Output: rAw will be interpreted to mean that the next r successive fields of w characters are
each to be the result of alphanumeric transmission from the specified list elements. If w
exceeds g, only g characters of output will be transmitted, preceded by w · g blanks. If w is g
or less, the w left-most characters of the specified storage element will be transmitted.

7 .5.3 D Format Code

The D is used for the input/output of double-precision numbers. It is used exactly as the E
except the letter E is replaced by D.

7 .5.4 E Format Code

The E format is used in transmitting real data. The data must not exceed the maximum
magnitude for a real constant. The general form is

rEw.d

Input: Each external value is of field width w with d characters in the fractional part of the
value. The value is right-justified with all blanks counting as zeros. A minus sign may precede
the value of the exponent. A decimal point placed in the fractional part takes precedence over
the d specification. The character E may be present to separate the value and the exponent.

For a field specification of El0.3:

123E3
12874E2
-563E-02

398EOO
5387601
5455-01

-6.7563E05

is converted to
is converted to
is converted to
is converted to
is converted to
is converted to
is converted to

123.0
1287.4

-0.00563
0.398

538.7601
0.5455

-675630.0

7-23

INPUT /OUTPUT STATEMENTS

Output: Internal values are converted to decimal values of the forms:

.ddd ... dE + ee and .ddd ... E-ee

where

ddd ... d represents d digits, and ee is a decimal exponent.

The leading decimal point and E characters are present exactly as shown. Internal values are
rounded to d digits, and negative values are preceded by a minus sign. The external field is
right-justified and preceded by blanks to fill the width, w. This field width includes the
exponent digits, the sign of the expondnet (minus or space), the letter E, the magnitude digits,
the decimal point, and the sign of the value (minus or space). This means that the field width
should correspond to the relation: w2 d + 6.

If w is too small, the output will be truncated to w-1 characters, and an asterisk (*) placed in
the last character position to flag the error.

For a field specification of E12.5:

76.573
58796.341
-369.7583

0.006873
0.2

·0.0000054

7.5.5 F Format Code

is converted to
is converted to
is converted to
is converted to
is converted to
is converted to

.76573E 02

.58796E 05
-.36976E 03
.68730E ·02
.20000E 00
-.54000E ·05

The F format code is used in transmitting real data. The data must not exceed the maximum
magnitude for a real constant. The general form is

rFw.d

Input: Input strings are decimal numbers of length w with d characters in the fractional
portion. Blanks are treated as zeros. If a decimal point is present in a value, the fractional
portion of the value is explicitly defined by that decimal point character.

For a field specification F8.3:

35 is converted to
964372 is converted to

0.53821 is converted to
-16.402 is converted to
-12 is converted to
47.·4 is converted to

7-24

0.035
964.372

0.53821
-16.402
·0.012

0.0047

INPUT /OUTPUT STATEMENTS

Output: The field is right-justified with as many leading blanks as necessary to fill w. Negative
values are preceded by a minus sign. Internal values are converted to fixed-point decimal
numbers and rounded to d decimal places.

For a field specification of Fl0.4:

368.4
12.0

-17.90767
-37.5E-2

is converted to
is converted to
is converted to
is converted to

.368.4000
12.0000

-17.9077
.3750

If a value requires more positions than allowed by w, the most significant digits, including
sign if negative, are output. The error indication is designated by an asterisk in the least
significant character position.

For a field specification of F6.4:

4739.76
-12.463

7.5.6 G Format Code

is converted to
is converted to

4740*
-12.5*

The G format code is a generalized code in that it automatically selects an output format
appropriate to the magnitude of the real data. The general form is

where

rGw.d

is optional and is an unsigned integer constant
used to denote the number of times the same for·
mat code is repetitively referenced.

w is an unsigned integer constant specifying the
total field length.

d is an unsigned integer constant specifying the
number of significant digits.

Input: Input processing is the same as for the F conversion.

Output: The output format of an item whose magnitude is N, is as follows:

Magnitude of N
0.1 s; N <
1 s; N < 10

Format
F(w-4).d,4x
F(w-4).(d-l),4x

7-25

INPUT /OUTPUT STATEMENTS

10'1-1 < N < 10'1
otherwise

F(w-d).0,4x
sEw.d (s is scale factor)

For the purpose of simplification, the following examples deal with the printed line. However,
the concepts apply to all input/output media.

Example 1

Assume that the variables A, B, C, and D are of type real whose values are 292.7041,
82.43441, 136. 7632, 0.8081945, respectively.

Explanation

1
2

FORMAT
FORMAT
FORMAT

WRITE

(G12.4,G12.5,G12.4,G12.7l
(G13.4,G13.5,G13.4)
(G13. 4)

(5, n) A, B, C, D

a. If n has been specified as 1, the printed output would be as follows (b represents a blank):

Print Position 1

bbb292. 7bbbbbb82.434bbbbbbb 136.8bbbb.808 l 945bbbb

b. If n has been specified as 2, the printed output would be:

Print Position 1

bbbb292. 7bbbbbbb82.434bbbbbbbb 136.8bbbb
bbbb.8082bbbb

Print Position 48

Print Postion 39

Line 1
Line 2

From the above example, it can be seen that by increasing the field width reserved (w),
blanks are inserted.

c. If n has been specified as 3, the printed output would be:

Print Position 1

bbbb292. 7bbbb
bbbb82.43bbbb
bbbb136.8bbbb
bbbb.8082bbbb

7-26

Line 1
Line 2
Line 3
Line 4

INPUT /OUTPUT STATEMENTS

From the above example, it can be seen that the same format code is used for each variable
in the list. Each repetition of the same format code causes a new line to be printed.

7 .5.7 Hollerith Field Descriptor

In FORTRAN, Hollerith information consists of the legal FORTRAN character set plus the
additional characters

% & < > ?

Information input from the typewriter or paper tape is converted to the internal ASCII code
used by FORTRAN. When this information is output, the internal codes are converted to the
appropriate typewriter or paper tape codes. The general form is

nHs
or:

's'

Input: Thew characters in the string, s, are replaced by the next w characters from the
input record. The result is a new string in the field specification. Each apostrophe in a pair
is overlayed by an input character in the 's' format.

Example

Specification

5H12345
7HbTRUEbb
8Hbbbbbbbb
'AB'
'X'

b indicates a blank space

Input String

ABCDE
FALSEbb
MATRIXbb
12
ABC

Resultant Specification

SHABCDE
7HFALSEbb
8HMATRIXbb
• 12.
'ABC'

This feature can be used to change titles, dates, headings, etc., that are output with the
program data.

Output: The number of characters, n, in the string, s, should contain exactly the number of
characters specified so that characters from other fields are not taken as part of the string.

Blanks are countered as characters in the string. The apostrophe character (') can be
output using a pair of them in the 's' format description.

Example

7-27

INPUT /OUTPUT STATEMENTS

Specification

1HR
SHbSTRINGb
1 1 HX (1 , 3) • 1 2 • 0
'bA•'
'bs•' 'A''

b indicates a blank space

7.5.8 I Format Code

External Output

R
bSTRINGb

X(1,3)•12.0
bA•
bs•'A'

Only integer data may be processed by the I format code. The general form is

rlw

Input: External input values are right-justified with the width, w. Blanks are counted as
zeros. Input values must be integer values. A preceding minus sign may be placed on a value.

For a field specification of 14:

120
-144
102
-3

is converted to
is converted to
is converted to
is converted to

120
·144
102
-3

Output: Internal values are converted to integer constants. Negative values are preceded by
a minus sign. Each field is right-justified and filled with leading blanks.

For a field specification of 16:

281
-3567

is converted to
is converted to

281
-3567

If the data require more character positions than allowed by the width, w, only the most
significant w positions are output.

For a field specification of 13:

2810
-6374

7.5.9 L Format Code

is converted to
is converted to

3*
-6*

The L format code is used in transmitting logical variables. The general form is

rlw

7-28

INPUT /OUTPUT STATEMENTS

where

is optional; and, is an unsigned integer constant
used to denote the number of times the same for­
mat code is repetitively referenced.

w is an unsigned integer constant that sp~cifies the
number of characters of data.

Logical variables may be read or written by means of the format code Lw.

Input: The first T or F encountered in the next w characters of the input record causes a
value of .TRUE. or .FALSE., respectively, to be assigned to the corresponding logical variable.
If field w consists entirely of blanks, a value of .FALSE. is assumed.

Output: A T or F is inserted in the output record as the value of the logical variable in the
I /0 list. T is a non-zero value and F is zero. The single character is preceded by w - 1 blanks.

7.5.10 T Format Code

The T format code specifies the absolute position in the buffer where the buffer pointer is to
be positioned. The general form is

Ty

where

T is a descriptor that relocates the current
position in the buffer.

y is a non-zero positive integer constant that
specifies the character position in the buffer.

Input: A T specification can be used to skip or re-read fields.

Output: A T specification can be used to position column headers as follows (b indicates a
blank space):

FORMAT(T10,SHCOLb1 I T22 I 5HCOLb2)

This example causes

COLb1

to be printed starting in column 10, and causes

COLb2

7-29

INPUT /OUTPUT STATEMENTS

to be printed starting in column 22.

7.5.11 X Format Code

The X format code the relative position in the buffer where the buffer pointer is to be
positioned. Positioning is always forward, with blank fill on WRITE or ENCODE. The general
form is

nX

where

n is the number of characters skipped or filled
(n > O).

Input: n spaces are skipped from the input record.

Example

Specification

Fli.1, 3X, F3.0

Input String

12.SRRR120

The RRR characters are ignored by the 3X specification.

Output: n blanks are inserted in the external record.

Example

Specification

1HA, liX, 2HBC
liX, 3HABC
1X, ABC, 3X

7.5.12 Z Format Code

Output

AbbbbBC
bbbbABC

bABCbbb

Resultant Input

12. 5, 120.

The hexadecimal Z format code causes a string of hexadecimal digits to be interpreted as a
hexadecimal value and to be associated with the corresponding 1/0 list element for purposes
of data transmitting. It has the general form:

Zw

7.30

INPUT /OUTPUT STATEMENTS

where

w denotes a string of hexadecimal digits. The
maximum value that can be read depends on the
number of words in the corresponding item in
the 1/0 list.

Input: Scanning of the input field proceeds from right to left. Leading, embedded, and
trailing blanks in the field are treated as zeros. One word in internal storage contains four
hexadecimal digits; thus, if an input field contains a digit count that is not a multiple of four,
the number will be padded on the left with hexadecimal zeros when it is stored. If the storage
area is too small for the input data, the data is truncated and high-order digits are lost.

Output: If the number of characters in the storage location is less than w, the left-most print
positions are filled with blanks. If the number of characters in the storage location is greater
than w, the left-most digits are truncated and the rest of the number is printed.

7.5.13 Scale Factor P

The representation of the data, internally or externally, can be modified by the use of a scale
factor followed by ttie letter P preceding the F, E, G, and D format codes.

The scale factor affects the appropriate conversions in the following manner:

a. For F, E, G, and D input conversions (provided no exponent exists in the external field) and
F output conversions, the scale factor effect is as follows:
externally represented number equals internally represented number times the quantity
ten raised to the nth power.

b. For F, E, G, and D input, the scale factor has no effect if there is an exponent in the external
field.

c. For E and D output, the basic real constant part of the quantity is multiplied by ten to the
nth power and the exponent is reduced by the scale factor.

d. For G output, the effect of the scale factor is suspended unless the magnitude of the datum
to be converted is outside the range that permits the effective use of F conversion. If the
effective use of E conversion is required, the scale factor has the same effect as with E
output.

For example, if input data are in the form xx.xxxx and it is desired to use this internally in the
form .xxxxxx, the format code used to effect this change is 2PF7.4.

Input: As another example, consider the following input data:

27bb-93.2094bb-175.8041bbbb55.3647

where b represents a blank.

7-31

INPUT /OUTPUT STATEMENTS

The following statements:

5 FORMAT (I2, 3F 11 • II)

READ (11,5) K,A,B,C

cause the variables in the list to assume the following values:

K : 27 B -175.8041
A : -93.20911 c : 55.3647

The following statements:

FORMAT (I2,1P3F11.4)

READ (11,5) K,A,B,C

cause the variables in the list to assume the following values:

K : 27 B -17.58041
A : -9. 32094 c : 5.53647

The following statements;:

FORMAT (I2,1P3F11.ll)

READ (11,5) K,A,B,C

causes the variables in the list to assume the following values:

K : 27
A : -932.0911

B
c

-1758.041
553.6117

Output: Assume the variables K,A,B, and C have the following values:

K : 27 B -175.80111
A : -93.20911 c : 55.36117

then the following statements:

FORMAT (I2, 1P3F11.ll)

WRITE (5,5) K,A,B,C

cause the variables in the list to output the following values:

K : 27 B -1758.0111
A : -932.0911 c : 553.6117

7-32

INPUT /OUTPUT STATEMENTS

The following statements:

FORMAT (I2,-1P3P11.4)

.
WRITE (5,5) K,A,B,C

cause the variables in the list to output the following values:

K : 27 B -17.5804
A : -9. 3209 c : 5.5365

For output, when scale factors are used, they have effect only one real data. However, this real
data may contain an E or D decimal exponent. A positive scale factor used with real data that
contains an E or D decimal exponent increases the number and decreases the exponent.
Thus, if four data items in a 1/0 list were 27, .9321E02, .1758E03, and .3536E02, and the
statement FORMAT (1X,12,3El3.3) is used with an appropriate WRITE statement, the
following printed line is output:

b27bbbb-.932Eb02bbbb-.175Eb03bbbbb.553Eb02

the statement FORMAT (1X,12,1P3E13.3) used with the same WRITE statement results in the
following printed output:

b27bbb-9.321Eb01bbb-1.758Eb02bbbb5.536Eb01

The statement FORMAT (1X,12,-1P3El3.3) used with the same WRITE statement results in
the following printed output:

27bbbb-.093Eb03bbbb-.018Eb04bbbbb.055EB03

The scale factor is assumed to be zero if no other value has been given. However, once a value
has been given, it will hold for all format codes following the scale factor within the same
FORMAT statement. This also applies to format codes enclosed within an additional pair of
parentheses.

7.6 AUXILIARY 1/0 STATEMENTS

Auxiliary 110 statements (ENDFILE, REWIND, and BACKSPACE) do not apply to direct access
files (i.e., those files opened by a DEFINE FILE statement.

7.6.1 ENDFILE Statement

The ENDFILE statement defines the end of the file associated with a by causing an end-of-file
record to be written on mass storage files, it will cause a CLOSE/update followed by an
OPEN/Leave. The general form is

ENDFILE a

7-33

INPUT /OUTPUT STATEMENTS

where

a is a FORTRAN unit number.

7.6.2 REWIND Statement

The REWIND statement repositions a file associated with FORTRAN unit number (a), causing
a subsequent READ or WRITE statement referring to a to read data from or write data into
the first record of the file associated with a.

REWIND a

where

a is a FORTRAN unit number

7.6.3 BACKSPACE Statement

The BACKSPACE statement causes the file associated with a to backspace one record. If the
file associated with a is already at its beginning, or if the device (e.g., card punch) does not
permit it, execution of this statement has no effect. This statement may not be executed for
direct-access files. The general form is

BACKSPACE a

where

a is a FORTRAN unit number.

7.7 ENCODE/DECODE STATEMENTS

This section explains the use of the ENCODE and DECODE statements.

7.7.1 ENCODE Statement

The ENCODE statement takes an 1/0 list, converts each element and places it in a specified
buffer. This statement performs data conversion according to a .FORMAT statement without
performing external 1/0 operations. The general form is

ENCODE (c, f, a, i) list

7-34

INPUT /OUTPUT STATEMENTS

where

c is the number of characters in the record.

is the format statement label or array name.

a is the name of an array to be buffered.

is optional, and, is the integer variable into
which the number of characters processed will
be stored.

list is the input/output list.

7.7.2 DECODE Statement

The DECODE statement words from the buffer into the 1/0 list. This statement performs data
conversion according to a FORMAT statement without performing external 1/0 operations.
The general form is

DECODE (a, f, a, i) list

where

c is the number of characters in the record.

is the format statement label or array name.

a is the name of an array to be buffered.

is optional, and, is the integer variable into
which the number of characters processed will
be stored.

list is the input/output list.

Example

DIMENSION I(llO)
READ(CDR,10)I

10 FORMAT(40A2)
DECODE(10,20,I)K,L

20 FORMAT(2I5)

These statements read an ASCII card image into array I. The first two fields of five ASCII
characters are then decoded into their integer equivalent and placed into the variables K and
L.

7.35

INPUT /OUTPUT STATEMENTS

Note: If too many characters are generated--the extras will be lost. If not enough characters
are generated, the remainder of the buffer is filled with blanks.

7.8 IOCHK

The IOCHK subprogram provides an additional method for detecting end and error conditions.
It can be referenced as a subroutine or a function. IOCHK has one parameter (I), whose value
is set after a READ or WRITE, according to the following table:

Example

Example

0
-1
1

Meaning

Normal 1/0 completion
End-of-file or end-of -device
1/0 error

(subroutine)

READ(u) ...
CALL IOCHK(I)
IF (I) 1,2,3

where 1
2
3

EOF exit
Normal exit
Error ext

(Function)

READ(u)
IF(IOCHK(I).EQ.O) GO TO 2
IF (I.LT.0) GO TO 3

where exits have same meaning as above.

7-36

SECTION 8
PROGRAMS AND SUBPROGRAMS

This section explains the use and structure of FORTRAN programs and subprograms.

8.1 PROGRAM COMPONENTS

FORTRAN programs consist of program parts, program bodies, TITLE statements,
Subprogram statements, and NAME statements. Comment lines may be interspersed
arbitrarily among them.

8.1.1 Program Part

A program part must include at least one executable statement, and may include any number
of FORMAT statements. Optionally, this collection may be preceded by statement function
definitions and DATA statements.

8.1.2 Program Body

A program body is a (possibly empty) collection of specification statements, followed by a
·program part, followed by an END line.

8.1.3 TITLE Statement

Each VORTEX program or subprogram can contain as its first statement (except for comment
lines) a TITLE statement with the following format:

TITLE n

where

n is a character string representing the
program module name that is included in
the heading of the source listing, as well
as in the object program. This name is
used by system maintenance and generation
programs in VORTEX.

R-1

PROGRAMS AND SUBPROGRAMS

8.1.4 Subprogram Statements

Following are the three types of FORTRAN Subprogram statements:

• FUNCTION
• SUBROUTINE
• BLOCK DATA

8.1.5 NAME Statement

A main program can accept a main program entry name definition of the following format:

where

NAME Nl, N2, ... , Nn

Nl, N2, ... , Nn are entry names by which the
main program can be referenced

8.2 MAIN PROGRAMS

A main program consists of a program body that is optionally preceded by NAME statements.

A main program cannot contain a subprogram definition statement, namely:

a FUNCTION statement
a SUBROUTINE statement
a BLOCK DATA statement

A main program may contain calls to other subprograms or may contain statement function
subprograms.

A VORTEX main program must i.nclude specifications for all common blocks that are
referenced by the subprograms.

8.3 SUBPROGRAMS

A subprogram consists of a FUNCTION or SUBROUTINE statements, optionally preceded by a
TITLE statement and/or comment lines, followed by a program body, or is a BLOCK DATA
subprogram.

Subprograms are program units which may be called by other programs or subprograms.
Subprograms are categorized as one of the following:

8-?

PROGRAMS AND SUBPROGRAMS

PROCEDURE SUBPROGRAMS
FUNCTION subprogram
SUBROUTINE subprogram

SPECIFICATION subprogram
BLOCK DATA subprogram

Functions are programmed procedures that are often used to provide solutions to
mathematical functions. Function references may be used in the same manner as references
to variables in an expression. For example: X = AB*SIN (Y) · C*COS (Y*Z), where SIN is the
name of the sine function, COS is the name of the cosine function, and (Y) and (Y*Z) are their
respective argument lists. The value returned for a function reference is of the same mode as
the function name, corresponding to the rules for real and integer symbolic names.

A subprogram name consists of from one to six alphameric characters, the first of which must
be alphabetic. A subprogram name may not contain special characters.

Type declaration of FUNCTION Subprograms may be made by the predefined convention, by
the IMPLICIT statement, by an explicit specification in the FUNCTION statement, or by an
explicit specification statement within the FUNCTION subprogram. The type of a function
determines the type of the result that can be returned from it.

No type is associated with a SUBROUTINE name because the results that are returned to the
calling program are dependent only on the type of the variable names appearing in the
argument list of the calling program and/or the implicit arguments in COMMON.

8.3.1 Function Subprograms

The FUNCTION subprogram is a subprogram consisting of a FUNCTION statement followed
by other statements including at least one RETURN statement. It is an independently written
program that is executed wherever its name is referred to in another program. It has the
general form

where

type

name

Type FUNCTION name*s(al,a2,a3,. ..)

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL. Its inclusion is optional.

is the name of the FUNCTION.

PROGRAMS AND SUBPROGRAMS

s represents one of the permissible length
specifications for its associated type. It may
be included optionally only when Type is specified.
It must not be used when DOUBLE PRECISION is
specified.

a is a dummy argument. It must be a distinct
variable or array name (i.e., it may appear
only once within the statement) or dummy name of
a SUBROUTINE or other FUNCTION subprogram.
There must be at least one argument in the
argument list.

A type declaration for a function name may be made by the predefined convention, by an
IMPLICIT statement, by an explicit specification in the FUNCTION statement, or by an
explicit specification statement within the FUNCTION subprogram. The function name must
also be typed in the program units which refer to it if the predefined convention is not used.

Since the FUNCTION is a separate program unit, there is no conflict if the variable names
and statement numbers within it are the same as those in other program units.

Excepting TITLE statements and comment lines, the FUNCTION statement must be the
first statement in the subprogram. The FUNCTION subprogram may contain any
FORTRAN statement except a SUBROUTINE statement, another FUNCTION statement, or a
BLOCK DATA statement. If an IMPLICIT statement is used in a FUNCTION subprogram, it
must immediately follow the FUNCTION statement.

Example 1

Example 2

8-4

REAL FUNCTION SOMEF (A,B)

SOMEF•A**2+B••2

RETURN
END

INTEGER FUNCTION CALC (X,Y,Z)

RETURN
END

PROGRAMS AND SUBPROGRAMS

Explanation

The FUNCTION subprograms SOMEF and CALC in Examples 1 and 2 are declared as type
REAL and INTEGER, respectively.

8.3.2 Subroutine Subprograms

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in many respects.
The rules for naming FUNCTION and SUBROUTINE subprograms are similar. They both
require an END statement, and they both contain the same sort of dummy arguments. Like
the FUNCTION subprogram, the SUBROUTINE subprogram is a set of commonly used
computations, but it need not return any results to the calling program, as does the
FUNCTION subprogram. The SUBROUTINE subprogram is referenced by the CALL statement.
It has the general from

SUBROUTINE name (al,a2,a3, ...)

where

name is the SUBROUTINE name

Each a is a distinct dummy argument (i.e., it may appear only once within the statement).
There need not be any arguments, in which case the parentheses must be omitted. Each
argument used must be a variable or array name, the dummy name of another SUBROUTINE
or FUNCTION subprogram, or an asterisk, where the character "*" denotes a return point
specified by a statement number in the calling program.

Since the SUBROUTINE is a separate program unit, there is no conflict if the variable names
and statement numbers within it are the same as those in other program units.

The SUBROUTINE statement, except for TITLE statements and comment lines must be
the first statement in the subprogram. The SUBROUTINE subprogram may contain any
FORTRAN statement except a FUNCTION statement, another SUBROUTINE statement, or a
BLOCK DATA statement. If an IMPLICIT statement is used in a SUBROUTINE subprogram, it
must immediately follow the SUBROUTINE statement.

The actual arguments can be:

• A constant (including Hollerith constants)

• Any type of array name

• Any type of arithmetic or logical expression

• The name of a FUNCTION or SUBROUTINE subprogram

• A statement number preceded by"&"

8-5

PROGRAMS AND SUBPROGRAMS

Note: The last statement executed by a subroutine must be a RETURN statement.

Example

SUBROUTINE R(A,I,Z)
DIMENSION A(10)
z = 0
DO 1 J • 1, 10
Z • Z+A(Jl••I
RETURN
END

8.3.3 Multiple Entry into a Subprogram

The standard (normal) entry into a SUBROUTINE subprogram from the calling program is
made by a CALL statement that refers to the subprogram name. The standard entry into a
FUNCTION subprogram is made by a function reference in an arithmetic expression. Entry is
made at the first executable statement following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram (either SUBROUTINE or FUNCTION) by a CALL
statement or a function reference that references an ENTRY statement in the subprogram.
Entry is made at the first executable statement following the ENTRY statement. It has the
general form

where

name

a

ENTRY name (al,a2,a3, ...)

is the name of an entry point

is a dummy argument corresponding to an actual
argument in a CALL statement or in a function
reference.

An entry in a subroutine must be referred to by a CALL statement; an entry in a function
must be referred to by a function reference.

ENTRY statements are non-executable and do not affect control sequencing during execution
of a subprogram. A subprogram must not refer to itself directly or indirectly, or through any
of its entry points. Entry cannot be made into the range of a DO. The appearance of an
ENTRY statement does not alter the rule that statement functions in subprograms must
precede the first executable statement of the subprogram.

Allowable dummy and actual arguments for an entry in a subroutine subprogram are the
same as allowed for a subroutine subprogram. Allowable arguments for an entry in a function
subprogram are the same as allowed for a function subprogram.

8-6

PROGRAMS AND SUBPROGRAMS

The dummy arguments in the ENTRY statement need not agree in order, type, or number
within the dummy arguments in the SUBROUTINE or FUNCTION subprogram or any other
ENTRY statement in the subprogram. However, the arguments for each CALL or function
reference must agree in order, type, and number with the dummy agruments in the
SUBROUTINE, FUNCTION, or ENTRY statement to which it refers.

Entry into a subprogram associates actual arguments with the dummy arguments of the
referenced ENTRY statement. Thus, all appearances of these arguments in the whole
subprogram become associated with actual arguments. A function reference, and hence any
ENTRY statement in a FUNCTION subprogram, must have at least one argument.

A dummy argument must not be used in any executable statement in the subprogram unless
it has been previously defined as a dummy argument in an ENTRY, SUBROUTINE, or
FUNCTION statement.

If information for an object-time dimension array is passed in a reference to an ENTRY
statement, the array name and all of its dimension parameters (except any that are in a
common area) must appear in the argument list of the ENTRY statement.

In a FUNCTION subprogram, the types of the function name and entry name are determined
by the predefined convention, by an IMPLICIT statement, by an explicit type-statement, or by
a type in the FUNCTION statement. The types of these variables (i.e., the function name and
antry names) can be different; the variables are treated as if they were equivalenced. After
one of these variables is assigned a value in the subprogram, any others of different type
become indeterminate in value.

When there is an ENTRY statement in a function subprogram, either the function name or
one of the entry names must be assigned a value.

Upon exit from a FUNCTION subprogram, the value returned is the value last assigned to the
function name or any entry name. It is returned as though it were assigned to the name in
the current function reference. If the last value is assigned to a different entry name, and that
entry name differs in type from the name in the current function reference, the value of the
function is undefined.

8.3.4 Block Data Subprogram

To initialize variables in a COMMON block, a separate subprogram must be written. This
separate subprogram contains only the DATA, COMMON, DIMENSION, EQUIVALENCE, and
TYPE statements associated with the data being defined. This subprogram is not called; its
presence suffices to provide initial data values for references in main and subprograms to
labeled common blocks. Data may not be initialized in unlabeled common.

The general form is

BLOCK DATA

8·7

PROGRAMS AND SUBPROGRAMS

END

a. The BLOCK DATA subprogram may not contain any executable statements.

b. The BLOCK DATA statement, except for TITLE statements and comment lines must be the
first statement in the subprogram.

c. All elements of a COMMON block must be listed in the COMMON statement, even though
they are not all initialized; for example, the variable A in the COMMON statement in the
following example does not appear in the data initialization statement.

BLOCK DATA
COMPLEX C
COMMON/ELN/C,A,B/RMG/Z,Y
DATA C/(2.4.3.769)/

d. Data may be entered into more than one COMMON block in a single BLOCK DATA
subprogram.

e. An optional name n can follow the BLOCK DATA statement:

BLOCK DATA n

This causes output of n as an entry name so that the subprogram can be stored in a library
enabling it to be loaded with any module containing an EXTERNAL n statement.

8.4 DATA STATEMENT

A DATA initialization statement is used to define initial values of variables, array elements,
and arrays. There must be a .one-to-one correspondence between the total number of
elements specifi~d or implied by the list k and the total number of constants specified by the
corresponding list d after application of any replication factors, i.

For real, integer, complex, and logical types, each constant must agree in type with the
variable or array element it is initializing. Any type of variable or array element may be
initialized with a literal or hexadecimal constant.

This statement cannot precede any specification statement and it must precede all executable
statements and statement function definitions. The DATA statement has the general form

DATA kl/dl/,k2/d2/, ...

where

8-8

k is a list containing variables, array
elements (in which case the subscript
quantities must be unsigned integer
constants), array names, Dummy or
implied DO-lists. Arguments may not
appear in the list.

PROGRAMS AND SUBPROGRAMS

d is a list of constants (integer, real,
complex, hexadecimal, logical, or Hollerith),
any of which may be preceded by i*. Each
i is an unsigned integer constant. When
the form i* appears before a constant,

Example 1

Explanation

it indicates that the constant is to be
specified i times.

DIMENSION D(10)

DATA A, B , C/ 5 . 0 , 6 . 1 , 7 . 3 / , D (1) , D (2) , D (3) , D (4) , D (5) / 5 * 1 • 0 I

The DATA statement indicates that the variables A, 8, and Care to be initialized to the values
5.0, 6.1, and 7.3, respectively. In addition, the statement specifies that the first five variables
in array D are to be initialized to 1.0.

Example 2

Explanation

DIMENSION A(5),B(3),L(2)

DATA A (1) , A (2) , A (3) , A (4) , A (5) I 5 * 1 . 0 I , B (1) , B (2 l I 2 * 5 . 0 I
,L(1),L(2)/.TRUE.,.FALSE

The DATA statement specifies that all the variables in array A are to be initialized to 1.0 and
the first two elements of array B are to be initialized to 5.0. The logical variables, (L(l) and
L(2)?, in array Lare initialized to .TRUE. and .FALSE., respectively.

An initially defined variable, or any element, may not be in blank common. However, in a
labeled COMMON block, they may be initially defined only in a block data subprogram. (See
the Subprograms section.)

Example 3

DIMENSION A(3),B(3,2)
DAT A A/ 1 . 0 , 2 • 0 , 3 . 0 I , ((B (I , J) , J • 1 , 2) , I • 1 , 3 l I 6 * 5 . I

Explanation

The DATA statement loads real numbers 1.0, 2.0, and 3.0 into array A. It also loads real
number 5. into every element of array B. DATA statements must precede the first executable
statement or statement function, and must follow any specification statements.

8·9

PROGRAMS AND SUBPROGRAMS

8.5 STATEMENT FUNCTIONS

A statement function is defined internal to the program unit in which it is referenced. All
statement functions must precede the first executable statement and must follow any
specification statements or DATA statements of the program unit.

The type declaration of a Statement Function may be accomplished in one of three ways: by
the predefined convention, by the IMPLICIT statement, or by the explicit specification
statements. Thus, the rules for declarating the type of variables apply to statement functions.
The general form is

where

name

a

expression

name(a 1,a2,a3, ... ,an) expression

is the statement function name

is a dummy argument. It must be a
distinct variable (i.e., it may appear
only once within the list of arguments).
There must be at least one dummy
argument.

is any arithmetic or logical expression
that does not contain array elements. Any
statement function appearing in this
expression must have been defined previously.

The expression to the right of the equal sign defines the operations to be performed when a
reference to this function appears in a statement elsewhere in the program unit. The
expression defining the function must not contain a reference to the function it is defining.

The dummy arguments enclosed in parentheses following the function name are dummy
variables for which the arguments given in the function reference are substituted when the
function reference is encountered. The same dummy arguments may be used in more than
one statement function definition, and may be used as variables outside the statement
function definitions. An actual argument in a statement function reference may be any
expression of the same type as the corresponding dummy argument.

All statement function definitions to be used in a program must precede the first executable
statement of the program.

Example

FUNC(A,Bl • 3.*A+B**2.+X+Y+Z

8-10

PROGRAMS AND SUBPROGRAMS

Explanation

This example defines the Statement Function FUNC, where FUNC is the function name and A
and B are the dummy arguments. The expression to the right of the equal sign defines the
operations to be performed when the function reference appears in an arithmetic statement.

The function reference might appear in a statement as follows:

C • FUNC(D,El

This is equivalent to:

C • 3.*D+E**2.+X+Y+Z

Note that correspondence between the dummy arguments A and B in the function definition
and the actual arguments D and E in the function reference.

8.6 INTRINSIC FUNCTIONS

Intrinsic functions are commonly used subprograms contained in the FORTRAN library. The
symbolic names and meanings of the intrinsic functions are shown in·table 8-1.

An intrinsic function is referenced by a function call in an arithmetic expression. The
arguments in the argument list must agree in type, number, and order with those shown in
table 8-1.

Example

IF (SIGN(W,X)) 1,2,2
1 W • ABS(X)-ABS(Y)
2 S • W*FLOAT(I•J)

K • IFIX(X)+J

8.7 BASIC EXTERNAL FUNCTIONS

Basic external FUNCTIONS are standard subprograms contained in the FORTRAN library.
These are referenced in the same manner as normal FUNCTIONS. The symbolic names and
meanings of the basic external FUNCTIONS are shown in table 8-2.

8.8 DUMMY ARGUMENTS

Dummy arguments provide a means of passing information between a subprogram and the
program or subprogram that called it. Both function and subroutine subprograms may have
dummy arguments. A subroutine need not have any, while a function must have at least one.
Dummies provide definitions of the data type, number, and sequence of subprogram
parameters.

8-11

PROGRAMS AND SUBPROGRAMS

A dummy can be classified within a subprogram as a variable, an array, or an external
procedure name. The actual arguments defined by a calling program or subprogram to which
a dummy can correspond are: Hollerith constants, variables, array elements, arrays,
expressions, and external procedure names.

Within a subprogram, a dummy can be used in much the same way as any other variable or
array. A dummy can not appear in a COMMON or EQUIVALENCE statement.

The actual arguments (except for Hollerith constants) used in a calling statement agree in
data type with the corresponding dummy arguments, that is, real to real, integer to integer,
and array to array. If an actual argument is an expression, the result of the expression should
correspond in data type to the dummy.

A dummy array is defined as an argument which appears in a DIMENSION statement in the
subprogram. A dummy array does not occupy any storage but tells the subprogram that the
argument supplied in the calling statement defines the first element of an actual array. The
calling argument need not have the same dimensions as the dummy array. Useful operations
can sometimes be performed by defining different dimensions for the dummy and calling
arguments.

Example

DIMENSION
CALL

SUBROUTINE
DIMENSION

A(10, 10)
FM(A(6, 1))

FM(B)

8(50)

For this case, one-dimensional dummy array B corresponds to the last half of two-dimensional
array A. If the calling statement were CALL FM (A), dummy array B would correspond to the
first half of array A.

8.9 ADJUSTABLE DIMENSIONS

As shown in the previous examples, the maximum value of each subscript in an array is
specified by a numeric value. These numeric values (maximum value of each subscript) are
known as the absolute dimensions of an array and may never be changed. However, if any
array is used in a subprogram and is not in COMMON, the size of this array does not have to
be explicitly declared in the subprogram by a numeric value. That is, the specification
statement, appearing in a subprogram, may contain integer variables that specify the size of
the array. These integer variables must be either actual or implicit subprogram arguments.
When the subprogram is called, these integer variables receive their values from the calling
program. Thus, the dimensions (size) of a dummy array appearing in a subprogram are
adjustable and may change each time the subprogram is called. Integer variables that provide
dimension information may not be redefined within the subprogram.

8-12

PROGRAMS AND SUBPROGRAMS

rhe absolute dimensions of an array must be declared in a calling program. The adjustable
dimensions of an array, appearing in a subprogram, should be less than or equal to the
absolute dimensions of that array as declared in the calling program.

The following example illustrates the use of adjustable dimensions.

Example

CALLING PROGRAM

DIMENSION A(S,5)

CALL MAPMY(••• ,A,2,3, •••)

Explanation

SUBPROGRAM

SUBROUTINE MAPMY
(••• ,R,L,M, •••)

DIMENSION ••• ,R(L,M), •••

DO 100 I • 1, L

The statement DIMENSION A(5,5) appearing in the calling program declares the absolute
dimensions of array A. When subroutine MAPMY is called, dummy argument R assumes array
name A and dummy arguments L and M assume the values 2• and 3, respectively. The
<;orrespondence between the subscripted variables of arrays A and R is shown in the following
example.

R (1 , 1) R (2, 1) R (1 ,·2) R (2, 2) R (1 , 3) R (2, 3)

A(1, 1)A(2, 1)A(3,1)A(4, 1)A(5, 1)A(1, 2)A(2, 2) •••

Thus, in the calling program the subscripted variable A(l,2) refers to the sixth subscripted
variable in array A. However, in subprogram MAPMY, the subscripted variable R(l,2) refer to
the third subscripted variable in array A, namely, A(3,l). This is so because the dimensions of
array R as declared in the subprogram are not the same as those in the calling program.

If the absolute dimensions in the calling program were the same as the adjusted dimensions
in the subprogram, the subscripted variables R(l,1) through R(5,5) in the subprogram would
always refer to the same storage locations as specified by the subscripted variables A(l,1)
through A(5,5) in the calling program, respectively.

The numbers 2 and 3, which become the adjusted dimension of dummy array R, could also
have been variables in the argument list or implicit arguments in a COMMON block. For
example, assume that the following statement appeared in the calling program.

CALL MAPMY (... ,A,l,J, ...)

8-13

PROGRAMS AND SUBPROGRAMS

Then as long as the values of I and J are previously defined, the arguments may be variables.
In addition, the variable dimension size may be passed through more than one subprogram
level. For example, the subprogram MAPMY could have contained a call statement to another
subprogram in which dimension information about A could have been passed.

Dummy variables (e.g., L and M) may be used as dimensions of an array only in a FUNCTION
or SUBROUTINE subprogram.

8.10 COMBINING FORTRAN AND DAS MR

FORTRAN generates the following calling sequence for all implicit and explicit calls to
subprogram:

JMPM s
DATA P1
DATA P2

DATA Pn

where

s is the subprogram name

n is the number of arguments

Pl, P2, and Pn are the addresses (not the value)
of the arguments; these addresses can be direct
or indirect.

If the above calling sequence is used, DAS MR programs can reference any program in the
system library or any FORTRAN coded subprogram.

DAS MR subprograms to be used with FORTRAN must process the above calling sequence.
The library program $SE can be used to transfer parameters by coding the DAS MR
subprogram entry as follows:

8-14

ENTR
CALL $SE
DATA n
SSS n

PROGRAMS AND SUBPROGRAMS

where

s is the subprogram name

n is the parameter count

$SE transfers the n parameter addresses, resolving indirect addresses sequentially into the
block defined by BSS n. In addition, $SE increments the address in s so that the program
returns to the address following the calling sequence.

The above calling sequence does not define a parameter count so it is difficult to use with
subprograms that process a variable-length parameter list. The only library programs of this
type are the intrinsic functions that list maximum and minimum values. The FORTRAN
compiler detects calls to these values and outputs an absolute zero to mark the end of the
parameter list. DAS MR programs can reference these functions by terminating the calling
sequence with an absolute zero (not a pointer to zero).

8-15

cp Table 8-1. Intrinsic Functions "O

;;; ::a
Type of Type of 0

c;)
Intrinsic Function Definition Arguments Name Argument Function ::a

Jlo

ABS Real Real I::
Absolute Value lal 0

IABS Integer Integer Jlo
DABS Double Double z

c
tA

Truncation Sign of a times largest AINT Real Real c:
m

integer :o;I a I INT Real Integer "O
::a

IDINT Double Integer 0
c;)
::a

Remaindering* a1 (mod a:i) 2 AMOD Real Real Jlo

MOD Integer Integer I::
0

Choosing Largest Max (a1, a:i) ;;::2 AMAXO Integer Real
Value AMAXl Real Real

MAXO Integer Integer
MAXI Real Integer
DMAXI Double Double

Choosing Smallest Min (ap a:i •...) ;;::2 AMINO Integer Real
Value AMINI Real Real

MINO Integer Integer
MINI Real Integer
DMINI Double Double

Float Conversion from integer FLOAT Integer Real
to real

Fix Conversion from real to IFIX Real Integer
integer

Transfer of Sign Sign of a:i times I ail 2 SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double

Table 8-1. Intrinsic Functions (continued)

Type of Type of
Intrinsic Function Definition Arguments Name Argument Function

Positive Difference a1 - min (a1, ai) 2 DIM Real Real
IDIM Integer Integer

Obtain Most Significant SNGL Double Real
Part of Double-
Precision Argument

Obtain Real Part REAL Complex Real
of Complex Argument

Obtain Imaginary AIMAG Complex Real
Part of Complex
Argument

Express Single- DBLE Real Double
Precision Argument
in Double-Precision
Form

Express Two Real a1 + aiVl 2 COMPLX Real Complex
Arguments in Complex
Form

Obtain Conjugate of a Con jg Complex Complex
Complex Argument

* The function MOD or AMOD (a1, a2) is defined as a1 - [a1 lai] ai. where [x] is the integer
whose magnitude does not exceed the magnitude of x and whose sign is the same as x.

"'D :a
0
C> :a
J>
s:: en
J> z
c
en c:
OJ
"'D
:a
0
C>
:a
J>
s::
en

'?O Table 8-2. Basic External Functions 'ti
00 ::D

0

"' ::D
Type of Type of l>

External Functions Definition Arguments Name Argument Function I: en
l> z

Exponential e• EXP Real Real c
DEXP Double Double en c:
CEXP Complex Complex m

'ti
::D

Natural Logarithm lo&, (a) ALOG Real Real 0

"' DLOG Double Double ::D
l>

CLOG Complex Complex I:
en

Common Logarithm log10 (a) ALOGIO Real Real
DLOGIO Double Double

Trigonometric Sine sin(a) SIN Real Real
DSIN Double Double
CSIN Complex Complex

Trigonometric Cosine cos(a) cos Real Real
DCOS Double Double
ccos Complex Complex

Hyperbolic Tangent tanh(a) TANH Real Real

Square Root (a) SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex

Table 8-2. Basic External Functions (continued)

Type of
External Functions Definition Arguments Name Argument

Arctangent arctan(a) ATAN Real
DAT AN Double

arctan(a1 lai) 2 ATAN2 Real
DATAN2 Double

Remaindering* a1 (mod a) 2 DMOD Double

Modulus CABS Complex

* The function DMOD (a1, ai) is defined as a1 - [a, /a2] ai. where [x] is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same. as the sign of x.

Type of
Function

Real
Double
Real
Double

Double

Real

.,,
lJ
0
C>
lJ ,.
3::
en ,.
z
c
en
c:
m .,,
lJ
0
C>
lJ ,.
3C
en

SECTION 9
VORTEX OPERATING PROCEDURES

This section contains operating procedures for FORTRAN IV programming systems that are
used with VORTEX.

9.1 COMPILING WITH VORTEX

The initiation of th~ VORTEX FORTRAN IV compiler is accomplished by entering the control
directive:

/FORT,Pl,P2,. .. ,Pn.

This control directive directs the executive program to call the system loader to load the
FORTRAN IV compiler and commence compilation. The parameter string specifies optional
tasks that are to be performed. These options are:

Parameter Presence Absence

B Suppresses binary object Output binary object

D A !locates two words to inte·- A !locates one word to integer
ger array items and to inte- array items and to integer
ger and logical variables and logical variables
(ANSI standard). This has no
effect on range: 1-word
integers still are in the
range ± 32767 (the second
word is unused).

H Generate code using Floating- Generate no FPP instructions
Point Processor (FPP)

L Outputs binary object on GO Suppresses output of binary
file object on GO file

M Suppresses symbol-table Outputs symbol-table listing
listing

N Suppresses source listing Outputs source listing

0 Outputs object-module Suppresses object-module
listing listing

x Compiles conditionally Compiles normally

F Generates code with calls to Generates subroutine calls
faster firmware routines

9-1

VORTEX OPERATING PROCEDURES

The /FORT directive can contain such parameters in any order.

Input/output assignments during compilation are made through the /ASSIGN and /PFILE
control directives. The FORTRAN IV compiler uses the following logical units:

Source input
Object output
Listing
Load and go

Pl
BO
LO
GO (optional)

9.2 LOAD AND GO OPERATION

FORTRAN programs may be compiled and executed on a LOAD and GO basis by setting the
compiler operation switch 'L' ('B' is optional if permanent binary is not desired) and using the
JCP directive /EXEC upon final compulation. Using this method the program may be
reexecuted by successive /EXEC until SW is modified by another VORTEX program (i.e.,
LMGEN or another LOAD and GO operation). Note: LUN assignments must be made (if
needed) prior to the /EXEC command.

9.2.1 Compiling and Cataloging Operation

The object program output by the VORTEX compiler is input to the load module generator
(LMGEN). The job-control processor schedules LMGEN upon inputting the directive: /LMGEN.
LMGEN creates a load module on the system-workfile SW device on inputting the following
four directives:

TIDB,name, bf,s,DEBUG

LD,obj

LIB,lib

END,save

bf 1 for background:
2 for foreground

s = Overlay count

DEBUG is optional and loads the
DEBUG routine when present

obj = specifier giving object
module logical unit number and
key, lun/key

lib = specifier giving library
lun/key

save is optional for specifying
the load module save lun/key

The program can then be loaded and executed from SW by entering /EXEC on the System
Input (SI) device; or, if bf = 1 and save= BL,E, it can be executed by the JCP directive
/LOAD, name; or if bf = 2, it can be scheduled by entering the OPCOM directive
'SCHED,name,level,save, or by another task, using the SCHED macro.

9-2

VORTEX OPERATING PROCEDURES

9.2.2 Overlays

FORTRAN programs can be generated with or without overlays. The FORTRAN calling
sequence for overlay is

where

type

reload

name

CALL OVLA Y (type, reload, name, parameters)

is 0 (default value) for load and execute, or
1 for load and return following the request.

is a constant or name with the value zero to
load or non-zero to load only if not currently
loaded.

is a three-word Hollerith array containing the
overlay segment name.

parameters is optional, and, is the number of
parameters that must correspond to
the overlay subroutine formal param­
eter count.

FORTRAN overlays must be subroutines if called by a FORTRAN CALL. For example, find,
load, and execute overlay segment OVSGOI without return.

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HOV,2HSG,2H01/
CALL OVLAY(O,O,N1)

or

CALL OVLAY(0,0,6HOVSG01)

External subprograms may be referenced by overlays. If a subprogram S is called in several
overlays, and S is not in the main segment, each overlay will be built with a separate copy of
s.

Refer to the VORTEX reference manual sections 2.1.8 and 6.1.1, for more information on
overlays.

9.2.3 Resident Programs

FORTRAN generated programs may be made resident under VORTEX II by using the
SGEN TSK directive.

The object program output by the VORTEX compiler is input to the SGEN program and made
part of the VORTEX nucleus. All required subroutines must be added at this time.

9.3

VORTEX OPERATING PROCEDURES

Note: Almost all FORTRAN programs require several OM library modules to be cataloged.
Therefore, these OM modules must be included with the FORTRAN generated modules before
the FORTRAN programs can be handled by VORTEX SYSGEN. Whenever possible, it is
suggested that FORTRAN programs are not processed by SYSGEN.

9.3 1/0 DEVICE CONTROL

The 1/0 control components of VORTEX permit access to 1/0 devices through the use of
logical units. A logical unit is an 1/0 device or partition of a rotating-memory device (RMD). A
program references an assigned number. The logical unit numbers permit 1/0 operations
independent of the physical-device configuration. For further information on logical units,
refer to the input/output control description in the VORTEX reference manual.

The FORTRAN IV compiler inputs source text from logical unit Pl, outputs listings and maps
on logical unit LO, and produces an object module (code and loading information) on logical
units BO and GO. For further information, refer to the FORTRAN IV compiler description in
the VORTEX reference manual.

9.4 COMPILER INPUT RECORDS WITH VORTEX

The compiler requests 40-word (80-character) input records from IOCS, if Pl is not a rotating
memory device (RMD) or if Pl = SI. Otherwise, the compiler inputs 120-word records (three
FORTRAN source records) from the RMD, and does its own deblocking. FORTRAN RMD
source modules must start on a record boundary.

9.5 COMPILER OUTPUT RECORDS WITH VORTEX

Output records are 60 words long. An object module produced on an RMD is blocked two
records for each RMD record. FORTRAN object modules start on the RMD·record boundary.
The VORTEX reference manual describes the object module format.

9.6 ERROR MESSAGES

During compilation, source statements are checked for such items as validity, syntax, and
usage. When an error is detected, it is posted on the LO usually beneath the source
statement. The errors marked T terminate binary output.

All error messages are of the form

ERR xx c(l)·c(16)

where xx is a number from 0 to 18 (notification error), or T followed by a number from 0 to 9
(terminating error); and c(l)·c(16) is the last character string (up to 16) encountered in the
statement being processed. The right-most character indicates the point of error and the @
indicates the end of the statement. The possible error messages are:

9.4

Notification
Error

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Terminating
Error
TO
Tl
T2
T3
T4
T5
T6
T7
TB
T9
no
Tll
T12
T13
T14
T15
T16
Tl?
T18
T19

VORTEX OPERATING PROCEDURES

Definition
Illegal character input
Construction error
Usage error
Mode error
Illegal DO termination
Improper statement number
Common base lowered
Illegal equivalence group
Reference to nonexecutable statement
No path to this statement
Multiply defined statement number
Invalid format construction
Spelling error
Format statement with no statement number
Function not used as variable
Truncated value
Statement out of order
More than 29 named common regions
Noncommon data
Illegal name
DO index not referenced
Name is dummy
Array name previously declared
Exponent underflow or overflow
Undefined statement number

Definition
1/0 error
Construction error
Usage error
Data pool overflow
Illegal statement
Improper use
Improper statement number
Mode error
Constant too large
Improper DO nesting
DO not parenthesized
Item not operand
Item not function
Invalid unary +,
Invalid hierarchy
Invalid =
Illegal operator
Function statement without parameters
Logical If follows logical If
Invalid dimensions

Q.I'\

VORTEX OPERATING PROCEDURES

Terminating
Error

T20
T21
T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32

Definition

Operand is not a name
Too may numeric characters
Non-numeric exponent
Terminator not
Illegal terminator
Not statement end
Invalid common type
Target statement precedes DO
Subscript variable not dummy
Not first statement (Title statement)
First two characters not DO
Not in subprogram
Subscript not integer constant

Note: due to optimization, the error message may appear on the next labeled statement and
not on the actual statement error.

RUNTIME

When an error is detected during runtime execution of a program, a message is posted on the
LO device of the form:

taskname message

Fatal errors cause the job to be aborted; execution continues for non-fatal errors. The
messages and their definitions are:

Message
ARITH OVFL

GO TO RANGE

FUNC ARG

FORMAT

MODE

DATA

1/0

Cause
Arithmetic overflow

Computed GO TO out of range~·

Invalid function argument (e.g.,
square root of negative number)

Error in FORMAT statement~·

Mode error (e.g., outputting real
array with I format)*

Invalid input data (e.g., inputting
a real number from external medium
with I format)*

1/0 error (e.g., parity, EOF)*

* indicates fatal error; all others non-fatal

APPENDIX A
VORTEX FORTRAN IV LANGUAGE COMPARISONS

This appendix shows FORTRAN IV language feature comparisons. The VORTEX FORTRAN
language has all the capabilities of IBM level G FORTRAN for the 360/370 series computers
except for:

NAM ELI ST

Call-by-name arguments

Default integer size is *2 as opposed to *4

PRINT, PUNCH, and READ with default unit
identifier

Double precision complex data type

PROGRAM statement

Right-to-left operation of multiple
exponentiation

DA TA statement after the first executable
statement

DATA statement before specification statement

Optional size for logical data type

Sense switch/light

A-1

t IBM 1130 IBM 360/370
<

FEATURES ANSI ANSI IBM VARIAN 0
N

x3.9 x3.10 Version 2 System/3 Level G ::a
-I

'" Alternate RETURN no no no no yes yes)(

Adjustable dimension yes no no no yes yes
..,
0

Array dimensions 3 2 3 3 7 7 ::a
-I

ASSIGN, ASSIGNED GO TO yes no no no yes yes ::a
> z

AUXILIARY 1/0 <
REWIND yes yes yes yes yes yes > BACKSPACE yes yes yes yes yes yes z
ENDFILE yes yes yes yes yes yes G')

c:
BLOCK. DATA yes no no no yes yes >
Blanks in numeric G') .,,

conversions, non- n
leading zero no zero zero zero zero 0

3:: Call-by-name no no no no yes no ,,
CALL LINK no no no yes no no > ::a
CALL LOAD no no yes no no no u;

0 z
CHARACTER SET en

A-Z, 0-9 yes yes yes yes yes yes
blank = +- * I () I yes yes yes yes yes yes
$ yes no yes yes yes yes

no no yes yes yes yes
COMMON

Blank yes no no no yes yes
Named yes no no no yes yes
Dimensioned yes no yes yes yes yes

CONSTANTS
complex yes no no no yes yes
logical yes no no no yes yes
literal H no no H' , H' ,
hexadecimal no no no yes yes yes
octal yes yes yes yes yes yes

FEATURES ANSI ANSI IBM 1130 IBM IBM 360/370 VARIAN
x3.9 x3.10 Version 2 System/3 Level G

real
basic real yes yes yes yes yes yes
integer with
decimal exp. yes no no no yes yes

double precision
real with "D" in
place of "E" yes no no yes yes yes

Continuation lines 19 5 5 5 19 19+
DATA yes no no yes yes yes

Must be before first
executable statement no no no yes
Must be after last
specification state- <
ment no no no yes 0

::u
Data types (default

ITI
><

size, optional size) "Tl
0

Integer yes yes 4,2 4,2 4,2 2,4 ::u
Real yes yes 4,6 4,8 4,8 4,8

::u
Double precision yes no yes 8 8 8)It

z
Complex yes no no no 8,16 8 < Logical yes no no no 4,1 2
Hollerith yes no no no 1 1 >

ENTRY no no no no yes yes z
G)

ERR, END 1/0 Specifiers no no no yes yes yes c:
)It

Extended Range DO yes no yes yes yes yes G)

EXTERNAL
ITI

yes no yes yes yes yes
(')
0

FORMAT :!::
Level of parentheses 2 3 3

,,
)It

Run-time yes no no no yes ::u
yes iii

)> Types A yes no yes yes yes yes 0
I z w D yes no no yes yes yes tA

FEATURES ANSI ANSI IBM 1130 IBM IBM 360/370 VARIAN < t x3.9 x3.10 Version 2 System/3 Level G 0
.j:>.. :a

E -t yes yes yes yes yes yes "')(
F yes yes yes yes yes yes
G yes no no no yes yes 0
H yes yes yes :a yes yes yes -t

no no yes yes yes yes :a
>

I yes yes yes yes yes yes z
L yes no no no yes yes <
P (scale factor) yes no no yes yes yes > T no no yes yes yes yes z
x yes yes yes

Ci)
yes yes yes c:

z no no no no yes yes >
Ci)

Real Conversions "' E exponent yes yes yes yes yes yes n
0 D exponent yes no no yes yes yes 31: .,,

Generalized Subscript > no no no no yes yes :a
Generic References no no no yes no no c;;

0
GLOBAL no no no yes no no z
IMPLICIT tA no no no yes yes yes
INVOKE no no no yes no no

1/0
Unformatted yes yes yes yes yes yes
formatted yes yes yes yes yes yes
1st character

not printed yes yes yes yes yes yes
blank (space 1
line before) yes no yes yes yes yes
0 {space 2 lines
before) yes no yes yes yes yes
1 (1st line, new, page) yes no yes yes yes yes
+ (no advance) yes no yes yes yes yes

PRINT default unit no no no no no no
PUNCH default unit no no no no yes no

FEATURES ANSI ANSI IBM 1130 IBM IBM 360/370 VARIAN
x3.9 x3. 10 Version 2 System/3 Level G

READ default unit no no no no yes no
Direct Access no no yes yes yes yes
DEFINE FILE no no yes yes yes yes
FIND no no yes yes yes yes

Logical IF yes no no yes yes yes
Logica I operators yes no no no yes yes
Mixed-mode expressions no no yes yes yes yes
Multiple exponentiation

without parentheses no no ** *~' ** *
NAMELIST no no no no yes no
Numeric statement label 1-5 1-4 1-5 1-5 1-5 1-5

PAUSE <
digits 4 4 5 5 5 5 0

::a
literal no no no no yes yes -I

l"'1
PROGRAM statement no no no yes yes no ><
Relational expressions yes no no no yes yes ""l'I

0
Sense Switch/light Handling no no yes yes yes no ::a

-I
Specification Statements ::a

>
Precede 1st Executable yes yes yes yes yes yes z
Ordered: DIMENSION, <
COMMON, EQUIVALENCE no yes yes no no no s;:

STOP z
digits 5 4 5 5 5 5 G)

c:
literal no no no no yes yes >

G)
l"'1

Subprogram Arguments (")

Hollerith yes no no yes yes yes 0
s::

Literal no no yes yes yes yes .,,
External subprogram yes no yes yes yes yes > ::a
Define or redefine yes no no yes yes yes c;;

)> 0
I z

<..rt •(J)

)>
IBM 360/370

<
I FEATURES ANSI ANSI IBM 1130 IBM VARIAN 0
°' x3.9 x3.10 Version 2 System/3 Level G

::a
~ .,,

Type Statements)(

INTEGER yes no yes yes yes yes 0
REAL yes no yes yes yes yes ::a

~

COMPLEX yes no no no yes yes ::a
>

LOGICAL yes no no no yes yes z
DOUBLE PRECISION yes no no no yes yes <
Dimensioned yes no yes yes yes yes !;
Data initialized no no no no yes yes z
in FUNCTION statement yes no yes yes yes yes l:i)

c:
Length specified no no no yes yes yes >

4i') .,,
Variable Name size 1-6 1-5 1-5 1-6 1-6 1-6 C'>

0
i: ,,
> ::a

* left-to-right order c;;
** right-to-left order 0 z

U>

APPENDIX B
V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

200 128 NUL Null

201 129 SOH Start of Heading

202 130 STX Start of Text

203 131 ETX End of Text

204 132 EOT End of Transmission

205 133 ENQ Enquiry

206 134 ACK Acknowledge

207 135 BEL Bell

210 136 BS Backspace

211 137 HT Horizontal Tab

212 138 LF Line Feed

213 139 VT Vertical Tab

214 140 FF Form Feed

215 141 CR Carriage Return

216 142 so Shift Out

217 143 SI Shift In

220 144 OLE Data Link Escape

221 145 DCl Device Control 1

222 146 DC2 Device Control 2

223 147 DC3 Device Control 3

224 148 DC4 Device Control 4

225 149 NAK Negative Acknowledge

B-1

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

226 150 SYN Synchronous File

227 151 ETB End of Transmission Block

230 152 CAN Cancel

231 153 EM End of Medium

232 154 SUB Substitute

233 155 ESC Escape

234 156 FS File Separator

235 157 GS Group Separator

236 158 RS Record Separator

237 159 us Unit Separator

240 160 SP (blank) (blank) Space

241 161 11/2/8 11/2/8 Exclamation Point

242 162 7/8 0/5/8 Quotation Mark

243 163 # 3/8 017/8 Pound Sign

244 164 $ 11/3/8 11/3/8 Dollar Sign

245 165 % 0/4/8 1117 /8 Percent Sign

246 166 & 12 1217 /8 Ampersand

247 167 5/8 4/8 Apostrophe

250 168 12/5/8 0/4/8 Left Paren

251 169 11/5/8 12/4/8 Right Paren

252 170 11/4/8 11/4/8 Asterisk

253 171 + 12/6/8 12 Plus Sign

254 172 0/3/8 01318 Comma

255 173 11 11 Minus Sign

256 174 121318 12/3/8 Period

B-2

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

257 175 I 0/1 011 Slash

260 176 0 0 0

261 177

262 178 2 2 2

263 179 3 3 3

264 180 4 4 4

265 181 5 5 5

266 182 6 6 6

267 183 7 7 7

270 184 8 8 8

271 185 9 9 9

272 186 218 518 Colon

273 187 11/6/8 11/6/8 Semi-Colon

274 188 < 12/4/8 12/6/8 Less Than

275 189 618 318 Equal Sign

276 190 > 01618 618 Greater Than

277 191 ? 01718 12/2/8 Question Mark

300 192 @ 4/8 01218 At

301 193 A 12/l 12/l

302 194 B 12/2 12/2

303 195 c 12/3 12/3

304 196 D 12/4 12/4

305 197 E 12/5 12/5

306 198 F 12/6 12/6

307 199 G 12/7 1217

B-3

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

310 200 H 1218 12/8

311 201 1219 12/9

312 202 J 11/1 1111

313 203 K 1112 11/2

314 204 L 1113 1113

315 205 M 1114 1114

316 206 N 11/5 11/5

317 207 0 11/6 1116

320 208 p 1117 1117

321 209 Q 11/8 11/8

322 210 R 1119 1119

323 211 s 012 012

324 212 T 013 013

325 213 u 0/4 014

326 214 v 0/5 0/5

327 215 w 016 016

330 216 x 017 017

331 217 y 018 018

332 218 z 019 019

333 219 12/2/8 12/5/8 Left Bracket

334 220 ' 111718 0/6/8 Backslash

335 221 01218 11/5/8 Right Bracket

336 222 1 or/\ 1217 /8 718 Vertical Arrow

337 223 - or - 0/5/8 218 Horizontal Arrow

B-4

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

340 224 Accent Grave

341 225 a

342 226 b

343 227 c

344 228 d

345 229 e

346 230

347 231 g

350 232 h

351 233

352 234

353 235 k

354 236

355 237 m

356 238 n

357 239 0

360 240 p

361 241 q

362 242

363 243 s

364 244

365 245 u

366 246 v

367 247 w

B-5

V70 SERIES ASCII CHARACTER CODES

Octal Decimal Character 029 026 Description

370 248 x

371 249 y

372 250 z

373 251 Left Brace

374 252 Vertical Line

375 253 Right Brace

376 254 Sine Curve

377 255 DEL Delete, Rub Out

B-6

GLOSSARY

alphabetic character: a character of the set A,B,C, ... ,Z,$.

alphameric character: a character of the set which includes the alphabetic characters and the
numeric characters.

argument: a parameter passed between a calling program and a subprogram or statement
function.

arithmetic expression: a combination of arithmetic operators and arithmetic primaries.

arithmetic operator: one of the symbols +, ·, *, I, ~''', used to denote, respectively, addition,
subtraction, multiplication, division, and exponentiation.

arithmetic primary: an irreducible arithmetic unit; a single constant, variable, array element,
function reference, or arithmetic expression enclosed in parentheses.

array: an ordered set of data items identified by a single name.

array declarator: the part of a statement which describes an array used in a program unit.
It ifldicates the name of the array, the number of dimensions it contains, and the size of each
dimension. An array declarator may appear in a DIMENSION, COMMON, or type statement.

array element: a data item in an array, identified by the array name followed by a subscript
indicating its position in the array.

array name: the name of an ordered set of data items.

assignment statement: an arithmetic or logical variable or array element, followed by an equal
sign (=), followed by an arithmetic or logical expression.

basic real constant: a string of decimal digits containing a decimal point.

blank common: an unlabeled (unnamed) common block.

common block: a storage area that may be referred to by a calling program and one or more
subprograms.

complex constant: an ordered pair of real constants separated by a comma and enclosed in
parentheses. The first real constant represents the real part of the complex number; the
s_econd represents the imaginary part.

constant: a fixed and unvarying quantity. The four classes of constants specify numbers
(numerical constants), truth values (logical constants), literal data (literal constants), and
hexadecimal data (hexadecimal constants).

Glossary-]

GLOSSARY

control statement: any of the several forms of GO TO, IF and DO statements, or the PAUSE,
CONTINUE, and STOP statements, used to alter the normally sequential execution of
FORTRAN statements, or to terminate the execution of the FORTRAN program.

data item: a constant, variable, or array element.

data type: the mathematical properties and internal representation of data and functions. The
four basic types are integer, real, complex, and logical.

DO loop: repetitive execution of the same statement or statements by use of a DO statement.

DO variable: a variable, specified in a DO statement, which is initialized or incremented prior
to each execution of the statement or statements within a DO loop. It is used to control the
number of times the statements within the DO loop are executed.

dummy argument: a variable within a FUNCTION or SUBROUTINE statement, or statement
function definition, with which actual arguments from the calling program or function
reference are associated.

executable program: a program that can be used as a self-contained procedure. It consists of a
main program and, optionally, one or more subprograms or non-FORTRAN-defined external
procedures or both.

executable statement: a statement which specifies action to be taken by the program; e.g.,
causes calculations to be performed, conditions to be tested, flow of control to be altered.

extended range of a DO statement: those statements that are executed between the transfer
out of the innermost DO of a completely nested nest of DO statements and the transfer back
into the range of this innermost DO.

external function: a function whose definition is external to the program unit which refers to
it.

external procedure: a procedure subprogram or a procedure defined by means other than
FORTRAN statements.

formatted record: a record which is transmitted with the use of a FORMAT statement.

FUNCTION subprogram: an external function defined by FORTRAN statements and headed by
a FUNCTION statement. It returns a value to the calling program unit at the point of
reference.

hexadecimal constant: the character Z followed by a hexadecimal number, formed from the
set 0 through 9 and A through F.

Glossary-2

GLOSSARY

hierarchy of operations: relative priority assigned to arithmetic or logical operations which
must be performed.

implied DO: the use of an indexing specification similar to a DO statement (but without
specifying the word DO and with a list of data elements, rather than a set of statements, as
its range).

integer constant: a string of decimal digits containing no decimal point.

1/0 list: a list of variables in an 110 statement, specifying the storage locations into which ·
data is to be read or from which data is to be written.

labeled common: a named common block.

length specification: an indication, by the use of the form *s, of the number of bytes to be
occupied by a variable or array element.

logical constant: a constant that specifies a truth value: true or false.

logical expression: a combination of logical primaries and logical operators.

logical operator: any of the set of three operators .NOT., .AND., .OR ..

logical primary: an irreduceable logical unit: a logical constant, logical variable, logical array
element, logical function reference, relational expression, or logical expression enclosed in
parentheses, having the value true or false.

looping: repetitive execution of the same statement or statements, usually controlled by a DO
statement.

main program: a program unit not containing a FUNCTION, SUBROUTINE, or BLOCK DATA
statement and containing at least one executable statement. A main program is required for
program execution.

name: a string of from one through six alphameric characters, the first of which must be
alphabetic, used to identify a variable, an array, a function, subroutine, a common block, or a
namelist.

nested DO: a DO loop whose range is entirely contained by the range of another DO loop.

nonexecutable statement: a statement which describes the use or extent of the program unit,
the characteristics of the oprands, editing information, statement functions, or data
arrangement.

numeric character: any one of the set of characters 0, 1,2, ... ,9.

Glossarv-::l

GLOSSARY

numeric constant: an integer, real, or complex constant.

predefined specification: the FORTRAN-defined type and length of a variable, based on the
initial character of the variable name in the absence of any specification to the contrary. The
characters 1-N are typed INTEGER*4; the characters A-H, 0-Z and $are type REAL *4.

procedure subprogram: a FUNCTION or SUBROUTINE subprogram.

program unit: a main program or a subprogram.

range of a DO statement: those statements which physically follow a DO statement, up to an
including the statement specified by the DO statement as being the last to be executed in the
DO loop.

real constant: a string of decimal digits which must have either a decimal point or a decimal
exponent, and may have both.

relational expression: an arithmetic expression, followed by a relational operator, followed by
an arithmetic expression. The expression has the value true or false.

relational operator: any of the set of operators which express an arithmetic condition that can
be either true or false. The operators are: .GT., .GE., .LT., .LE., .EQ., .NE., and are defined as
greater than, greater than or equal to, less than, less than or equal to, equal to, and not equal
to, respectively.

scale factor: a specification in a FORMAT statement whereby the location of the decimal point
in a real number (and, if there is no exponent, the magnitude of the number) can be changed.

specification statement: one of the set of statements which provide the compiler with
information about the data used in the source program. In addition, the statement supplies
information required to allocate storage for this data.

specification subprogram: a subprogram headed by a BLOCK DATA statement and used to
initialize variables in labeled (named) common blocks.

statement: the basic unit of a FORTRAN program, composed of a line or lines containing some
combination of names, operators, constants, or words whose meaning is predefined to the
FORTRAN compiler. Statements fall into two broard classes: executable and nonexecutable.

statement function: a function defined by a function definition within the program unit in
which it is referenced.

statement function definition: a name, followed by a list of dummy arguments, followed by an
equal sign (=), followed by an arithmetic or logical expression.

statement function reference: a reference in an arithmetic or logical expression to a previously
defined statement function.

Glossary-4

GLOSSARY

statement label: a number of from one through five decimal digits placed within columns 1
through 5 of the initial line of a statement. It is used to identify a statement uniquely, for the
purpose of transferring control, defining a DO loop range, or referring to a FORMAT
statement.

subprogram: a program unit headed by a FUNCTION, SUBROUTINE, or BLOCK DATA
statement.

SUBROUTINE subprogram: a subroutine consisting of FORTRAN statements, the first of which
is a SUBROUTINE statement. It optionally returns one or more parameters to the calling
program unit.

subscript: a subscript quantity or set of subscript quantities, enclosed in parentheses and
used in conjunction with an array name to identify a particular array element.

subscript quantity: a component of a subscript: a positive integer constant, integer variable, or
expression which evaluates to a positive integer constant. If there is more than one subscript
quantity in a subscript, the quantities must be separated by commas.

type declaration: the explicit specification of the type and, optionally, length of a variable or
function by use of an explicit specification statement.

unformatted record: a record for which no FORMAT statement exists, and which is transmitted
with a one-to-one correspondence between internal storage locations (bytes) and external
positions in the record.

variable: a data item that is not an array or array element, identified by a symbolic name.

@
varian

Varian Data Machines
2722 Michelson Drive• P.O. Box C-19504 Irvine, California• 92713 • (714) 833-2400

Helping a Fast World Move Faster

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	G-01
	G-02
	G-03
	G-04
	G-05
	xBack

