VORTEX
REFERENCE MANUAL

Specifications Subject to Change Without Notice

varian data machines/a varian subsidiary
2722 michelson drive, irvine, california 92664

© 1972

98 A 9952 100

98 A 9952 100

FEBRUARY 1972

98 A 9952 100

FOREWORD

This manual explains the Varian Omnitask Real-Time Executive (VORTEX) and its use,
but it is not intended for a beginning audience. Prerequisite to an understanding of this
manual is a knowledge of general programming concepts, and preferably some
acquaintance with operating systems. In addition, cognizance of the applicable Varian 620
series computer system is desirable. '

This manual discusses the following components of the VORTEX system:

Real-time executive (RTE, section 2)

. Input/output control (I0C, section 3)

. Job-control processor (JCP, section 4)

. Language processors (section 5)

. Load-module generator (LMGEN, section 6)

. Debugging and snapshot dump programs (section 7)
. Source editor (SEDIT, section 8)

. File maintenance (FMAIN, section 9)

. Input/output utility program (IOUTIL, section 10)

. Support library (section 11)

. Real-time programming (section 12)

. System generation (SGEN, section 13)

. System maintenance (SMAIN, section 14)

. Operator communication (OPCOM, section 15)

. Operation of the VORTEX system (section 16)

. Error messages (section 17)

98 A 9952 100 i

1.3

2.1

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

System ReqUIrEMIENTS.ttt e e e e e e e s e s e e e s e e sressa e 1-2
System Flow and Organizationccuiiiiiiiiiiiii e e 1-3
1.2.1 Computer IMEMOIY..... ..t eeeie e er et re e eens s s s 1-4
1.2.2 Rotating Memory DevViCe.........ccooiiiiiiiiiiiinir ettt e 1-7
1.2.3 Secondary StOFAge........cccooiireiiieiiieierieerceteeeeertee e s et er e seenres s ane e s ernanees 1-8
BiblIOZrapNy oot e et e e e e n e e e e s e e naanneee 1-9

SECTION 2

REAL-TIME EXECUTIVE SERVICES

Real-Time EXeCUliVe MaCrOSccoovi ittt et e eeer e er e e e e 2-3
2.1.1 SCHED (Schedule) Macro.........cuuiiiiieiiiiieii e ee e eeeeee 2-4
2.1.2 SUSPND (Suspend) Macro......ccccciveiiiieiiieiiereieeceeieen e eeeecene e ee s 2-7
2.1.3 RESUME MACIO......ccceieeiiiicie e ctnteeteee e e st e s s e e e e e emnte e et e e scneeeaens 2-8
2.1.4 DELAY MACKO ... ettt e e e et e e eta e e e e e e aeeeaeeaeaeaeeeeeneeaeeaeanens 2-10
2.1.5 PMSK (PIM. Mask) MacCrOooeiiiiiiieiriiieccece e eeeee e e e 2-12
216 TIME MACKO.....ueniiiiieieeeeeee ettt s e e e e e e e e e e e e e e aan s e sanasasaeranas 2-15
2.1.7 OVLAY (Overlay) MAacrocooooiiiiiiiircieie s sae e e ee e e e e s eee s ees 2-16
2.1.8 ALOC (ANl0cate) MaCro.........ueiiiieiiieecieecciee et e 2-18
2.1.9 DEALOC (Deallocate) MacCro.........cccceeeueeiiiiiiiee et eer e eae e 2-22
2.1.10 EXIT MACKO...uiviiiiiieeecteeeceiie ettt e e etteesae e ebanes e eeeassansaeassnsaeassnseeenaannnns 2-23
2.1.11 ABORT MACKO....cuuiiiiiieiiiiiie e e e eeteteeeeeeeeeeeeeeeeesieesiasaaaeesaaesasanaeaanassaeesnesneenes 2-24
2.1.12 10LINK (170 Linkage) MacCrO..........oooimeiiieieeieee e eeeietteee e e eeee e eenae 2-26

98 A 9952 100 Vv

CONTENTS

SECTION 3
INPUT/OUTPUT CONTROL

3.1 Logical Units...cccooiiiiiiiiieece e e
3.2 RMD File Structure..........c.oooueimieiiiieeee e e
3.3 /O INTerTUPES ..ot
3.4 1/70-Control MacCroS..........couviueeeiceiee e eeeeeeeeeereeee e
3.4.1 OPEN MaACIO.......ooeuieeeeeiceeeeeeeeee e eee e e e
3.4.2 CLOSE MACIO....ueeueeeieeteeeeeeeeee e
3.4.3 READ MACIO...ooeeieeeeeeeeeeeeeeee et
3.4.4 WRITE MACIO e
3.4.5 REW (Rewind) Macro........ccocoeeeeoveeeeeeeeeeeeeeeeeeeeeeenans
3.4.6 WEOF (Write End of File) Macroccccooveeeeeeeceveeennn,
3.4.7 SREC (Skip Record) Macroccoeeememeeeomeeereeenrann,
3.4.8 FUNC (Function) Macrocceeveveeeveeeeeeeeeeeeseeeeenn,
3.4.9 STAT (Status) Macro........coueeeireeieeeeeeeeeeeeeeeeeeeeeee s
3.4.10 DCB (Data Control Block) Macro........ccccocoeeveeeeeneennn...
3.4.11 FCB (File Control Block) Macro........ccceeeeeeeeeeeeeeeeenn,

SECTION 4
JOB-CONTROL PROCESSOR

4.1 Organizationccooueeeiooouiieiieeeeeeeeeeeeee e
4.2 Job-Control Processor DireCtives.........c..oceeeeeeeeeeeeeeeeeeeneeennanns
4.2.1 /JOB Dir€CtiVe.........ooeeieeeeeeeeeeeeeeeeeeee e e
4.2.2 /ENDJOB Dir€CHIVEocveteeeeeeee e
4.2.3 /FINI (Finish) DireCtiveooooveeeeeeeeeeeeeeeeeeeeeeeeeeen,
4.2.4 /C (Comment) DireCtivec..ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeienns
4.2.5 /MEM (Memory) Directive..........ccooeeeeeeeeeeeereeeeeenn,
4.2.6 /ASSIGN Dir€CtiVe.......ooeeeeeeeeceeeeeeeeeeeeeeee e
4.2.7 /SFILE (Skip File) Directive.........ccccoveoveeveeeeeveeeeeeneann..
4.2.8 /SREC (Skip Record) Directivecoccooeeeeveeeeeeeeenann,

Vi

98 A 9952 100

CONTENTS

429 /WEOF (Write End of File) Directivecccconiiiiiinnanncie eerereeeeea 4-10
4.2.10 /REW (Rewind) DireCtive.......coooomiirmiiiiiiiiineiinnn s 4-10
4.2.11 /PFILE (Position File) Directive ... 4-11
4.2.12 /FORM Dir€CHVe.evieeerieermetiiiiteiine e s s 4-12
4.2.13 /KPMODE (Keypunch Mode) Directive.........ccocoumiiiiiiinnmninsiinnnene 4-12
4.2.14 /DASMR (DAS MR Assembler) Directive........ccccooieeniimmmisnsnnnneneens 4-13
4.2.15 /FORT (FORTRAN Compiler) DireCtiveccocvimiminiiinnniiniciennens 4-14
4.2.16 /CONC (System Concordance) Directivecoccveriiinmnieniiniinnen 4-15
4.2.17 /SEDIT (Source Editor) DireCtive. ..o 4-16
4.2.18 /FMAIN (File Maintenance) DireCtiveccoeiniiiniiiiiminininiieene 4-16
4.2.19 /LMGEN (Load-Module Generator) Directive.........ccooooiniivinnnnniinnnne: 4-17
4.2.20 /1IOUTIL (170 Utility) DireCtive.....cooooirminiiiiiiiir e 4-17
4.2.21 /SMAIN (System Maintenance) Directivecccooiiiniiiiiiinsiiennn 4-18
4.2.22 JEXEC (Execute) DireCtive.......ccocoviiiiiniiiiin e 4-18
4.2.23 /LOAD Dir€CHIVE ...oneieeeiieiie e 4-19
4.3 Sample DECK SEUPS.....ooiimeiririiiritiie s 4.20
SECTION 5

LANGUAGE PROCESSORS

5.1 DAS MR ASSEIMDIEY ..oeviiteieiiieeieeeere s ettt rar s s 5-1
5.1.1 TITLE DiIr@CHIVE cueuveeeteeieterie et ettt e 5-2
5.1.2 VORTEX MACIOSccveeieiiiieieitiiieesiraessassts s ias s st 5-3
5.1.3 Assembly Listing Formatccoooriiiiii e 5-12
5.2 Concordance Programi.......ccooii oot e 5-18
5.2.1 IMPUL. ettt e 5-18
B5.2.2 OULPUL ..cvvceiteiciieeisies s s 5-19
53 FORTRAN IV COMPIEE ..ot e 5-22
5.3.1 TITLE Statementcccoo oot e 5-23

5.3.2 Execution-Time 170 UNitS ... 5-24

98 A 9952 100 vii

CONTENTS

6.1

6.2

6.3

7.1
7.2

8.1
8.2

SECTION 6
LOAD-MODULE GENERATOR

Organizationooiiiiiiieeeeee e e 6-1
B.1.1 OVEIAYS ...ttt e e 6-5
6.1.2 COMIMON ...ttt et 6-6
Load-Module Generator DireCtivesccoueuevememeeeeeeeeeeeeeeeeeeeeeeoeoeeeoeoee oo 6-7
6.2.1 TIDB (Task-ldentification BIOCK) Dir€CtiVeeovoveeveueeeeeoeeeeoeoee 6-8
6.2.2 LD (Load) Dir€CtIVE..........oovieeeeeeeeeeeee oo 6-9
6.2.3 OV (Overlay) DIir€CtIVEeueuiveuceeeeeeeeereeeeeeeeeees e 6-10
6.2.4 LIB (Library) Dir€CtIVEccoueuruieeeceeeeeeeeee oo 6-10
6.2.5 END Dir€CtIVE....c.cuouireieeieeeeeeeeeteeeee e 6-12
Sample Decks for LMGEN OpPerationscooooeeoeeoeeeeeeeoeeeeeeeeeoeeeeoees oo 6-13
SECTION 7
DEBUGGING AIDS
Debugging Program ..o 7-1
Snapshot DUMP Program ... 7-6
SECTION 8
SOURCE EDITOR
Organization ..o e 8-1
SoUrce-Editor DIr€CHIVESooce.vieveeeeeeeeeeeeeee e 85
8.2.1 AS (Assign Logical Units) DireCtive...........ooeeeeeeeeeeeeeeeeeeeeeeeeoeooo 87
8.2.2 AD (Add Records) Dir€CtiVe...........oouoomeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeo 89
8.2.3 SA (Add String) Dir€CtiVe..........covmeeeeeeeeeeeeeeeeeeeeeeeee oo 8-10
8.2.4 REPL (Replace Records) Dir€CtiVe.........covoweeeeeeeeeeeeeeeeeeeeeeeoeeoeeeeo 8-12
8.2.5 SR (Replace String) Dir€CtiVvecoeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeo 8-13

viii

CONTENTS

8.2.6 DE (Delete Records) DireCtiVeccoueeeemeieeiiiieiieiieeieeeeeeeeeeeeeeee e 8-15
8.2.7 SD (Delete String) Directive.............uuueeiiiiiiiiiiiiieeeieeeeeieeeeee e 8-16
82.8 MO (Move Records) DireCtiveccccu.ooivieeiiiecciieeiiieceeee e, 8-17
8.2.9 FC (Copy File) DireCtiVe.....cccocviiiiiie tieieeiieeeeete et ceeereeree e e s e 8-18
8.2.10 SE (Sequence Records) Directive..........cocooveeeeeneeiieiiiieeeeieeceieeeeee e 8-18
8.2.11 LI (List Records) Directive........ccoeceeieiciieiieeeeee et 8-20
8.2.12 GA (Gang-Load All Records) Directive..........ocoeeeiieeeiueieeeeccee e, 8-20
8.2.13 WE (Write End of File) Directive..........ocoovemreeeooeiiiieiieceeeeeee . 8-21
8.2.14 REWI (Rewind) Dire€CtiVeceviieiiiieeeeeeeeeeeeeeeeeeee e 822
8.2.15 CO (Compare Inputs) Directive.........ccceueieiveeecciriccies e 8-22
SECTION 9
FILE MAINTENANCE

9.1 Organizationcccieiiiiee e e s 9-1
9.1.1 Partition Specification Table...............coooviiiiiiiii e 9-2
9.1.2 File-Name Dir€CtOry... ... e 9-3
9.1.3 Relocatable Object MOAUIEScoeviiiiiriiiiie e 9-5
9.1.4 Output LiStingS ...ccoiiiiiii et e e 9-5

9.2 File-Maintenance Dir€CHiVEScooveiiiiiie e s 9-6
9.2.1 CREATE Dir€CHIVe ...cueiiiii et e 9-8
9.2.2 DELETE Dir€CHIVE ...ttt e saane s e 99
9.2.3 RENAME DireCtiVe.......ciiiiiieeee et et ee et s e 9-10
9.2.4 ENTER DiIreCHiVE...ccoi ittt e savenn e e 9-11
9.2.5 LIST DireCHiVe .ocecieeee et 9-12
9.2.6 INIT (Initialize) Directive........ocoeoueeeeeeeiiceeeeeceeeeee e 9-13
9.2.7 INPUT Dir€CHVE ..ot ettt e e e st s e s 9-14
0.2.8 ADD DiIfeCHVE ..ottt e 9-15

98 A 9952 100

CONTENTS

10.1
10.2

11.1
11.2
11.3

12.1

12.2

12.3

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

(0157 1oV 1 (o] 2 T O USSR 10-1
1/0 Utility DIreCtives........cooeiiiueieieirceieiecerceete s ss e rse e e e e e e s e e eas seneeae s 10-2
10.2.1 COPYF (Copy File) Directive.........ccccooeevvvriiniiiiiiiiiirieee e 10-3
10.2.2 COPYR (Copy Record) Directive.........ccccovveiiriieeciiiiiiiiiririiiieiiineeen rveeeens 10-4
10.2.3 SFILE (Skip File) DireCtiveccccoeiiiiiiiieiiieee et e 10-6
10.2.4 SREC (Skip Record) Directivecccccovvriiciiiiiiiiiiiiiniiei e e, 10-6
10.2.5 DUMP (Format and Dump) Directivecccccoomieiriiiiiiiiiniiiniiiie e 10-7
10.2.6 WEOF (Write End of File) Directivecccooeeeeeiiiiiiiiiiiiiiiiiiii e 10-8
10.2.7 REW (Rewind) DireCtiveoeemmemmieiiieeeeeeeee e s e 10-8
10.2.8 PFILE (Position File) Directiveoueeeeeiiieiiiiiieccecii e 10-9
10.2.9 CFILE (Close File) Dir€CtiVe......ceueummieirieeiiieieeiicieec e 10-10

SECTION 11

SUPPORT LIBRARY

CalliNg SEOQUENCEvviieii ittt ceete e e e eree e ette e e ee e e es s s e snsmnrreeaeeees smmeeeneas 11-2
Number Types and FOrmats........cccouiereciiiiiiieeenire et cerece e e e 11-3
Subroutine Descriptions..........oo e et e 11-5

SECTION 12

REAL-TIME PROGRAMMING

INEEITUPTS ...t e e st e e aae s 12-1
12.1.1 External INterruplS. ...t s 12-1
12.1.2 Internal INterrupts ..ot e 12-6
12.1.3 Interrupt-Processing Task Installationcccccoooiiiiiinn e 12-7
SCREAUIINE. ... i er e e e et e e e e e e e e e st e e e e e bnseenens 12-7
12.2.1 SyStemM FIOW...oooii et e est et e a e e e e e e e s 12-7
12.2.2 PriOrIeS oot e 12-11
12.2.3 Timing Considerations (Approximate)..........cccccceeriieeiniiiiiiiniiieciennnns 12-31
Reentrant Subroutines..........cccovvioiiicic e 12-34

X 98 A 9952 100

CONTENTS

12.4 Coding an [/0 DIIVEFcoeiieeieeeee e sere s s e e ea e e s e e e e s saneeaeeenea e e aean 12-37
B 5 R 7 B 1= o 1= 12-37
12.4.2 1/0 Driver System FUNCtionsccooeeeeciiirciineiicreeeceece e, veoun 12-39
12.4.3 Adding an i/0 Driver to the System File..........ccccooeiiivinniionnncnen. 12-41
12.4.4 Enabling and Disabling PIM Interrupts.......ccccccceveiriiiivinienennennn. eare 12-45

SECTION 13
SYSTEM GENERATION

131 Organization ..ot e s e e et s e nn e e senee e e e snnne 131

13.2 System-Generation Library........ccierceeiiiciciiieeercceiereeee s ecresenneeesereese s easanes 13-4

13.3 Key-IN LOAErc.ooie ettt ettt s e et a e rneas 13-8

13.4 SGEN 170 Interrogation........coooviiiiiiciii e screree s e er e e e e e e s eaneesene 13-15
13.4.1 DIR (Directive-Input Unit) Directivecc.ceoevemeeeeeeirviiirccceeeee e 13-17
13.4.2 LIB (Library-Input Unit) Directive........cccoreeeeieieiccccccicen, 13-18
13.4.3 ALT (Library-Madification-Input Unit) Directive...........ccccervverrricnnanes 13-19
13.4.4 SYS (System-Generation-Output Unit) Directivecccceeeevieincenecnes 13-20
13.4.5 LIS DireChive ..ottt cre st s s s reae e e e s s s n e 13-21

13.5 SGEN Directive ProCeSSINgccccviiiiieeiiieeeiiicineesecieereresieecnsnssnseeseesesnssssssssnanes 13-22
13.5.1 MRY (Memory) Directiveccoeeeeiieieeeeeieeiciccieicciceeeeceeeeeee e, nennes 13-23
13.5.2 EQP (Equipment) Directive.........c.ccooormrererrceiiiierccerececeveeeeee e, S 13-24
13.5.3 PRT (Partition) DireCtivecccceueiiiiieciieiriicrcreeer e vcccceerrere e e e 13-26
13.5.4 ASN (AsSign) DireCtiveccceeveeeiiiicecieieiecieieceeere e cecevenereeee e s ss e 13-29
13.5.5 ADD (SGL Addition) DirectiVe.........ccouieeeeeieiinnrrenrneeincicnnrrnnnneens 13:32
13.5.6 REP (SGL Replacement) Directiveccccccocovemeccereiiecceneeeecnean eeeees 13-33
13.5.7 DEL (SGL Deletion) Directive.........ccccereecieieeiieriecieiesvceecee e eeeeeeane 1334
13.5.8 LAD (Library Addition) Directiveccccoverrermrieiirieeecceiee e e 13-35
13.5.9 LRE (Library Replacement) Directive...........cccocrrrvirericiereviniresensianenenn. 13436
13.5.10 LDE (Library Deletion) Directive........ccceccceeeerceeeeecieerercceieeesreeeeeee e, 13-37
13.5.11 PIM (Priority Interrupt) Directiveccccvuvvrenenneen. J 13-38
13.5.12 CLK (Clock) DirecCtive.........cccoecuieeieienieirecieeeeeeecceeseer e cees s re s e e 13-39
13.5.13 TSK (Foreground Task) Directive.........ccccoceiriiiiriiereesicineeceeereciee s e 13-40
13.5.14 EDR (End Redefinition) Directive........ccccoerriueecineiiciiriccireceerene . 13741

98 A 9952 100 Xi

CONTENTS

13.6

13.7

13.8
13.9

14.1

14.2

14.3
14.4

Building the VORTEX NUCIBUS. cccooiiiit et eeevveeeeee s s 13-43
13.6.1 SLM (Start Load Module) Directive.........cccccooevmeeeoeieaeeeeeeeeeeeaennn 13-44
13.6.2 TDF (Build Task-lIdentification Block) Directive.............ccoceeeuveeueennnn.. 13-44
13.6.3 END DireCtive.......cooiiiiiieciienierteseesttreee ettt seeans 13-45
Building the Library and Configurator..........c.ccccoeoiiniiniicciieeeecceeeee e 13-48
13.7.1 SLM (Start LMP) Dir€CtiVe.......coueeeeeeeeeiieeiceecee e e 13-50
13.7.2 TID (TIDB Specification) Directive............c...ccoeveoeveeeeeeeeeeeeeeeee e 13-51
13.7.3 OVL (Overlay) Directive.......ccoeuveeeeeeoeeireeeeeeeeeeeeenenn. beerereerreeerr e e 13-52
13.7.4 ESB (End Segment) Directive.........cccooueeeueioeieeiiciieeeeeeeeceeeee . 13-52
13.7.5 END (End Library) Dir€Ctive.........ccocoeeeeeeieeieeieiie e 13-53
System Initialization and Output Listings...........c.ococeevvievieniieeece e, 13-54
System Generation EXamMPIESccceeeeeureueiieieiececeee et e 13-59
SECTION 14

SYSTEM MAINTENANCE

OrganizZationooiiiiiiiiiiice ettt ettt e et seeeeaans 14-1
14.1.1 Control RECOIS......ooiviiiiiiiiceieteeeeeeeeeeee et e 14-5
14.1.2 Object MOUIES........covoiiiiiiieie et ete e e 14-6
14.1.3 System-Generation Library..........c..cccoooveeiimeiieieciiiceceeeeecee e e 146
System-Maintenance DireCtivesS...........o.eeeieeeieeiieeiecieeeee e e 14-7
14.2.1 IN (Input Logical Unit) Directive..........cccoeveeeveeieice e e 14-8
14.2.2 OUT (Output Logical Unit) Directive.........ccoooveeeeiceeeeiieeeeeeieen e 149
14.2.3 ALT (Alternate Logical Unit) Directiveccooooveeiivvirieveiieiee . 14-11
14.2.4 ADD DireCtiVe......ccceeiirieiiiieeeeeeeeeeeeseete ettt e e 14-12
14.2.5 REP (Replace) DIir€CtiVe.........cocoevueivueeeveiieiiiie et e 14-14
14.2.6 DEL (Delete) DIreCtiveccoeuveeveereeiieeeeeieeee e e 14-15
14.2.7 LIST Dlrectlve 14-16
14.2.8 END Dir€CVeciieiiieeeecee ettt e 14-16
System-Maintenance Operation.............cc.occecevveeeiveereeeeeceeeee et ee e e, 14-17
Programming EXamIPIEScveuvieieiieiie et e 14-17

Xii 98 A 9952 100

CONTENTS

SECTION 15
OPERATOR COMMUNICATION

15.1 DefinitioNS.....oooiii e e 15-1
15.2 Operator Key-In ReqUESTES........cevevieiriiiiiieiireritees e ae e eeere e rrrenee e reeesaeas 15-1
15.2.1 SCHED (Schedule Foreground Task) Key-In Request...............ccc.ceeee 154
15.2.2 TSCHED (Time-Schedulz Foreground Task) Key-In Request................. 155
15.2.3 ATTACH Key-In ReqUeSt.......ccoimiieiiiiieircinee e vevennenennrenens 15-6
15.2.4 RESUME Key-In Request ..o e e 15-7
1525 TIME Key-In ReQUESt.......ccocviiiieieeieiiieeteeeeeie et e 15-7
15.2.6 DATE Key-In Request.......ccoecureeerennenne. et etreae et ee e e e te et eatnaeeereeenns 15-8
15.2.7 ABORT Key-In ReQUESTocoiieeiiitreeettitee e et ee e es e e e veesnnns 158
15.2.8 TSTAT (Task Status) Key-In Request.......ccccoovoeimeiiiiciiiiiiiiii e,15-9
15.2.9 ASSIGN Key-In RequeStccuviiieiiiiiinieiiiieieceeeenccrrreevieeneenee eeeeeeenea 15-12
15.2.10 DEVDN (Device Down) Key-In Request...........ccceoeiiiiiiiiiiiiii e, 15-13
15.2.11 DEVUP (Device Up) Key-In Request.........ccccccovrviiriiriiieninacnnns rreeeeenrea—— 15-14
15.2.12 IOLIST (List 1/0) Key-In Requestccccoereiiiciiiieeeiinnee e e 15-14

SECTION 16

OPERATION OF THE VORTEX SYSTEM

16.1 Device INitialization.......cccocoiiiiir it et 16-2
16.1.1 €ard ReEAErc..uuuiiiiiie ettt e e et s et e et e e e 16-2
16.1.2 Card PUNCh...........cooi e e 16-2
16.1.3 LiNE PrINTOr oottt ettt et e e aae s 16-3
16.1.4 33/35 ASR Teletype....ccoieieieieie ettt e e e ...16-3
16.1.5 High-Speed Paper-Tape Reader.........ccccooviiiiiiiiiiiiniii e e 16-3
16.1.6 Magnetic-Tape Unit........c.cococvvvirnncennnne e eee ettt et et et eae e e aeins 16-3
16.1.7 Magnetic-Drum URitc.oouioveeeiecceeeeeeeeeeeee et er e e nasaenas 16-4.
16.1.8 Moving-Head DisC UNits........ccoirieiiiiiiriiecccir st e e 16-4

16.2 System Bootstrap Loader..........ccccoioeiiiiiiiiiiciee e e eereereeeenas 16-4
16.2.1 Automatic Bootstrap Loader..........cccoomiieiiceiiiiiiicienci et e ...16-4
16.2.2 Control Panel Loadingccccocoeiieeeiiiininicrieniceniiies e e e 16-6

98 A 9952 100 .x iii

CONTENTS

116.3 Disc Pack Handlingc..occooviiiiiniii e 16-7

16.3.1 PRT (Partition) DireCtiVeccccceieuiiiireiiiniee e cineeeeeses e seseeeeernenes 16-10

16.3.2 FRM (Format Rotating Memory) Directive........ccccccoveevrvernennen. e 16411

16.3.3 INL (Initialize) DireCtivecccoceeeiiiiiiiiiiicerceeececcree 16-12

16.3.4 EXIT DiIr€CHIVE....c.coeeeieeecereeeeetie e ecte e e e seee e e ee e s s sereae e e e s seeaens 16-12
SECTION 17

ERROR MESSAGES

17.1 Error MesSsSage INAEX.......cooiiiiiiiiiieeeeer et et seaaee s 17-1
17.2 Real-Time EXECULIVE ...ccccoiiiiriiiiiiiceiretensnrrens e ceeene e eer e sere e e e s s ene e e sreeneeeas 17-2
17.3 /0 CONTIONt eee s et e e e e e s e e e e e e e srneeeeaes 17-3
17.4 JOD-CoNtrol ProCeSSOrccoooiiiieiieeetee et eee et et et e 17-5
17.5 Language ProCESSOIS......ccciiciiiiiieriieterteeee e eecre et eetece e e s e emmne s e erasae s e anaas 17-6
17.6 Load-Module Generator..........c.ccviviiieiieiiiiereese et s e ce e e e 17-8
17.7 DebUEEINE PrOSIamococooiiiiieiicieereir e setere e e seesesee e e s e s rneee e e e snnnenees 17-9
17.8 SOUrCe EditOr.....occcoimiiiiiiiiice e e et e 17-10
17.9 File MaintelancCe. ...t e s 17-10
17.00 170 URIIIEY covneeeceee ettt e tee et e e e an e e e st e e et mn e e n et e 17-11
17.11 SUPPOrt LiDrary..... ...ttt et e e e 17-12
17.12 Real-Time Programming..........cccoiiiiiiiireieieeee e ctesere e e eee s sess sseees 17-12
17.13 System Generation ... e 17-12
17.14 System Maintenance.............c.cooovveieerieeceeeeeeeeeeeee e S 17-176
17.15 Operator COMMUNICAtIONc.cveeueeiierieecteeieeeeeieaeaese st evess e er e esess s eneanes 17-181
17.16 RMD Analysis and Initialization eteeenreeteeeareeeeabraeeeeanas nanees 17-147

Xiv 98 A 9952 100

CONTENTS

APPENDIX A
OBJECT MODULE FORMAT

APPENDIX B
170 DEVICE RELATIONSHIPS

APPENDIX C
DATA FORMATS

APPENDIX D
STANDARD CHARACTER CODES

APPENDIX E
TELETYPE AND CRT CHARACTER CODES

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

98 A 9952 100 XV

CONTENTS

1-1
1-2
1-3
5-1
5-2
5-3
5-4
6-1
121
12.2
12-3
12-4
12-5
131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
139
13-10
14-1

LIST OF ILLUSTRATIONS

VORTEX System FIOWcoociiiiiiiiiin e 1-5
VORTEX Computer Memory Map........ccccceveiiiiiinnnniieniinnie e 1-6
VORTEX RMD Storage Map.....ccoovemeeeeiiciimeiinccirrviieereses e ennanes 1-8
VORTEX Macro Definitions for DAS MR ... 5-3
Sample Assembly LiSting........cccoiiiiminniiiie e 5-13
Sample Concordance Listingccoccovuimmeeiininiiencc e 5-21
FORTRAN [/0 Execution SeQUENCES.........ccviririiiiriririmiieiininneenninese e 5-25
Load-Module Overlay Structureccccoooiiiiinie e, 6-4
Interrupt Line Handlers.........ccccoviiiinni 124
VORTEX MeMOIY MaPp ...ccccouiiiiieenneniitiiririesee et e e st 129
VORTEX Priority Structurecccocovrmiiiiiiine e 12-10
TIDB DeSCription......cccueiiiiieiieieecniecierne e 12-12
D11V G 0 =) o - 1o - OO UPPPPR S 12-46
SGEN Data FIOW ..oeoiiiiiiie ettt ce st ee s e s et e 13-2
System-Generation Library...........ccccoooiiiimiiiiin e 13-5
VORTEX NUCIBUS ...c.veiieiieiciiits e e eriee s et snsis s s e e s e seaas 13-7
Load-Module Libraryccooveeoiiirieeeieeeeecn e 139
Load-Module Package for Module Without Overlays............ccccooeee . 13-47
Load-Module Package for Module With Overlays.........cc..ccooiieninnee 1349
VORTEX Nucleus Load Map.....ccccooiiiinniiiiiiiiinicnie e e 13-55
Library Processor Load Mapccoceeveveemeeeecceemcmeminesinesesnnnses ens 13-586
RMD Partition LiSHNG.........coovveveeueureereaeeeseesssseseneseeseiereesssnssmnnsssees saes 13-567
Resident-Task LOAd Map........cocoiieevereuereresessenseeneneseseeseesessanesssasnass sons 13-578
SMAIN BIock Diagram..........coocoveeevievveieeeeniieerinisitnnrssress s e e 14-2

X Vi 98 A 9952 100

2-1
31
3-2
3-3
5-1
5-2
7-1
11-1
11-2
12-1
131
13-2
13-3
13-4
13-5
15-1
15-2
16-1

98 A 9952 100

CONTENTS

LIST OF TABLES

RTE Service Request MaCrosScooueieiiieieeeeeeeeeeeeeeee e, 2-2
VORTEX Logical-Unit AsSignmMentscooevveeiiiiioeeceeceeceeeeeeeeeeeea. 3-2
Valid Logical-Unit ASSIZNMENtS............coccuiiiiiieiiieeeee e, 36
FCB Words Under 170 Macro Controlcooecveeiiioeiiiieeeeeeeeeeraenn, 3-36
Directives Recognized by the DAS MR Assemblers........c...cccoeovveeenennn.... 5-2
RTE Macros Available Through FORTRAN IV.......ccoooiioioniieeeeeeeean, 5-23
DEBUG DireCtivesc.ooooiieeece e, 7-2
DAS Coded SUBIoutinesccoouevieieiieeceeeee e 11-6
FORTRAN [V Coded Subroutines..............coceeeeeieiieiooieceeeeee e, 11-12
Map of Lowest Memory Sector............cooueeiiieeuieiicecceeeeeeeeee e 12-20
SGEN Key-In Loaders.......ccoouiieiiieiceceeeeceeeeeeee e 13-13
Model Codes for VORTEX Peripherals..............ccocooeeiviieeieieeeeceeeieeneen . 13-25
Preset Logical-Unit AsSignments...........c.cooeviieeiiiiiciieicceeee e, 13-30
Permissible Logical-Unit Assignmentsccocoevioeeieeiieeeeeee e, 13-31
TIDB Status Word Bitsccocoiiiiiieieccecee e 13-46
PhySical 170 DEVICES......cooiiiiiiieeeeeeceeeeeeeee e e e 15-3
Task Status (TIDB Words 1 and 2)cccocoeiioeeoeeeeeieeeeeeeeeeeeee e, 15-10
Key-In Loader Programs............cccooevevmeeeeeeeeaeenenn, e eeteae e eeeearaan ———————— 16-5

Xvii

CONTENTS

In the directive formats given in this manual:
* Boldface type indicates an obligatory parameter.
. Italic type indicates an optionél parameter.
* Upper case type indicates that the parameter is to be entered exactly as written.

* Lower case type indicates a variable and shows where the user is to enter a legal
value for that variable.

A number with a leading zero is octal, one without a leading zero is decimal, and a
number in binary is specifically indicated as such.

98 A 9952 100

SECTION 1
INTRODUCTION

SECTION 1
INTRODUCTION

The VARIAN OMNITASK ReAL- Time EXecuTive (VORTEX) is a modular software operating
system for controlling, scheduling, and monitoring tasks in real-time multiprogramming
environment. VORTEX also provides for background operations such as compilation,
assembly, debugging, or execution of tasks not associated with the real-time functions of
the system. Thus, the basic features of VORTEX comprise:

98 A 9952 100

Real-time 1/0 processing

Provision for directly connected interrupts

Interrupt processing

Multiprogramming of real-time and background tasks
Priority task scheduling (clock time or interrupt)
Load and go

Centralized and device-independent 1/0

Operator communications

Batch-processing job-control fanguage

Program overlays

Background programming aids: FORTRAN compiler, DAS MR assem-

bler, load-module generator, library updating, debugging, and
source editor

1-1

SECTION 1

INTRODUCTION
. Use of background area when required by foreground tasks
. Disc/drum directories and references
. System generator

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware configuration:

2
a. Varian 620/f computer with 46K read/write main memory
(16K -‘r‘o“jl‘whg e R bnc)zanvvnl)
b. Direct memory access (DMA)
¢c. 33/35 ASR Teletype on a priority interrupt module (PIM)
d. Real-time clock
e. Memory protection
f. Power failure/restart
g. Optional instruction set

h. PIM

i. Rotating memory on a PIM with either a buffer interlace controller (BIC) or
priority memory access (PMA)

j- One of the following on a PIM:
(1) Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape unit with a BIC

1-2 98 A 9952 100

SECTION 1
INTRODUCTION

The system supports and is enhanced by the following optional hardware items:
a. Additional main memory (up to 32K) and/or rotaﬁng memory
b. Automatic bootstrap loader
c. Card reader, if one is not included in the minimum system
d. Card punch with BIC and PIM
e. Line printer with BIC and PIM
f. Paper-tape punch, if one is not included in the minimum system

The rotating-memory device (RMD) serves as storage for the VORTEX operating system
components, enabling real-time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time processing is implemented by
hardware interrupt controls and software task scheduling. Tasks are scheduled for
execution by operator requests, other tasks, device interrupts, or the completion of time
intervals.

Background processing (nonreal-time) operations, such as FORTRAN compilations or DAS
MR assemblies, are under control of the job-control processor (section 4), itself a VORTEX
background task. These background processing operations are performed simultaneously
with the real-time foreground tasks until execution of the former is suspended, either by
an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks scheduled by operator requests,
interrupts, or other tasks. All tasks are scheduled, activated, and executed by the real-

time executive component on a priority basis. Thus, in the VORTEX operating system,
each task has a level of priority that determines what will be executed first when two or
more tasks come up for execution simultaneously.

98 A 9952 100 1-3

SECTION 1
INTRODUCTION

The job-control processor component of the VORTEX system manages requests for the
" scheduling of background tasks.

Upon completion of a task, control returns to the real-time executive. In the case of a
background task, the real-time executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real-time executive service (section
2.1).

Figure 1-1 is an overview of the flow in the VORTEX operating system.

1.2.1 Computer Memory

The VORTEX operating system divides computer (main) memory into five areas (figure
1-2):

a. Real-time executive area

b. User’s resident task and subroutine area

c. User’'s nonresident task allocation area

d. Background task area

e. Low-memory block area
The real-time executive area is the highest segment of memory. It contains the real-time
executive, the 170 control component, 1/0 drivers, the load-module loader, interrupt
processors, and the foreground blank common (section 6). All subroutines that reside in
this area must be declared at system-generation time because no modification of the area
is possible at run time. (Maintenance of the foreground blank common is a user

responsibility. The VORTEX system provides blank-common pointers for use by the load-
module generator.)

14 98 A 9952 100

SECTION 1
INTRODUCTION

i
i
J
|
ONILYQ I S3D1AIQ SIDIAIQ
I S¥IAIYG
-an [e—e—sf N owmm ! Q3inddns | on | a3llddns
AV¥EIT " WaA ¥3sn
1
| [
i
t
| Y
|
| IOVIDVd SHSVL
¥IWWISSY | k s ALITLN | NOLLVD JOYINOD IN3QISTY
YW Sva o/1 | “INNWWOD O/1 -NON
| YOLVIIO WILSAS
|
| A
I
|
] y
|
4055315044 ! SISV
AVl le—>— T08NOD |e—! o 3ALMOIE g »| inzarn
REN] (-gor “ IWLL-TVIY ¥3Isn
I
| 4
|
I
[
I
i SMSVL
¥3TdWOD YOLVYINID | SIDIA¥IS LdN¥¥3INI INIQISTY
Al ilInaow A JALLNDIX3 NOILYDINNWWOD “NON
NVILIO4 -avo1 | IWIL-TVIY YOLVIIO 435N
|
|
ANNOYONDVE | ANNOY¥OIYO4

WILSAS ONILVYIIdO XILYOA

VTII-1314

Figure 1-1. VORTEX System Flow

98 A 9952 100

1.5

SECTION 1
INTRODUCTION

Memory

Area

512

8.5K

11K

16K

Interrupt Locations
System Pointers
Literal Pool

Protected Memory

Background

Unprotected Memory

Nonresident
Foreground

‘Resident Foreground
User Tasks and
Subroutines

—
v

o) System Tables

R

T 1/0 Control Protected Memory
E ,

X 1/0 Drivers

N Real-Time Executive

U

C Load-Module Loader

L |Fareqrovnf

E ABIank Common

U

S

-

Figure 1-2. VORTEX Computer Memory Map

1-6

98 A 9952 .100

SECTION 1
INTRODUCTION

The user’s resident task and subroutine area is adjacent to the real-time executive area.
All resident foreground subroutines must be declared at system-generation time because
no modification of the area is possible at run time.

The user's nonresident task allocation area is for the execution of tasks that reside on
the RMD in the form of load modules, i.e., fully link-edited, but relocatable. When such a
task is to be executed, it is loaded into this area and activated. If no nonresident
foreground area is available for loading this task, background area is used, the
background task being suspended and stored on the RMD. When the background area is
again free, the background task is reloaded and resumed.

The background task area is for the execution of tasks that are less time-critical, such as
compilers, assemblers, editors, and other general-purpose tasks. Note that this area is the
only unprotected area of memory. Tasks executing in this area cannot modify the system,
i.e., this area is suitable for the execution of undebugged tasks.

The low-memory block area contains system pointers and tables, interrupt addresses,
and the background literal pool.

1.2.2 Rotating Memory Device
At least one RMD (disc or drum) is required for storage of VORTEX operating system

components. The RMD is divided into a fixed number of variable-length areas called
partitions. These are defined at system-generation time (section 3).
The following reside on the RMD (figure 1-3):

a. System initializer, loader, and VORTEX nucleus in absolute format

b. Checkpoint file

c. GO file

d. User library

98 A 9952 100 1-7

SECTION 1
INTRODUCTION

e. Transient files
f. Relocatable object-module library

g Relocatable load-module library

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary storage devices that have been
specified at system-generation time.

System Initializer and
Loader

VORTEX Nucleus in
Absolute Format

Checkpoint File

GO File

User Library

Transient Files

Relocatable Object-Module
Library

Relocatable Load-Module
Library

Figure 1-3. VORTEX RMD Storage Map

1-8 98 A 9952 100

SECTION 1
INTRODUCTION

1.3 BIBLIOGRAPHY
The following gives the stock numbers of manuals pertinent to the use of VORTEX and "
the 620/f computer:
Title Document Number
620/f Computer Handbook 98 A 9908 002
620 FORTRAN |V Reference 98 A 9902 037

620 Training Manual

98 A 9902 503

620/f Maintenance Manual 98 A 9908 052

Maintenance information is in the following VORTEX Software Performance Specifications:

98 A 9952 100

Document Number

89A0156-000
89A0203-000
89A0232-000
89A0233-000
89A0234-000

Title

System Overview

External Specification
Internal Specification, Vol. |
Internal Specification, Vol. li
Internal Specification, Vol. |l

19

SECTION 2
REAL-TIME EXECUTIVE SERVICES

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive component (RTE) processes, upon request by a task,
operations that the task itself cannot perform, including those involving linkages with
other tasks. RTE service requests are made by macro calls to VSEXEC, followed by a
parameter list that contains the information required to process the request.

The contents of the volatile A and B registers and the setting of the overflow indicator are
saved during execution of any RTE macro. After completion of the macro, these data are
returned. The contents of the X register are lost.

There are 32 priority leveis in the VORTEX system, numbered 0 through 31. Levels 0 and
1 are for background tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or vice versa, the task
automatically receives the lowest valid priority level for the correct environment.

Background and foreground RTE service requests are similar. However, a level O
background RTE request causes a memory-protection interrupt and the request is
checked for validity. If there is an error, the system prints the error message EX11 with
the name of the task and the location of the violation of memory protection. The
background task is aborted.

Whenever a task is aborted, all currently active 170 requesfs are completed. Pending 1/0
requests are dequeued. Only then is the aborted task released.

There are 12 RTE service request macros. Certain of them are illegal in unprotected
background (level 0) tasks. Table 2-1 lists the RTE macros, indicates whether they are
illegal in level O tasks, and indicates whether there is a FORTRAN library subroutine
(section 11) provided.

Note: A task name comprises one to six alphahumefic characters (including $), left-
justified and filled out with blanks. Embedded blanks are not permitted.

98 A 9952 100 2.1

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Table 2-1. RTE Service Request Macros

Mnemonic Description Level O
SCHED Schedule a task Yes
SUSPND Suspend a task Yes
RESUME Resume a task No
DELAY Delay a task No
PMSK Store PIM mask register No
TIME Obtain time of day Yes
OVLAY Load and/of execute an Yes

overlay segment
ALOC Allocate a reentrant stack No

DEALOC Deallocate the current re- No
entrant stack

CEXIT Exit from a task (upon com- Yes
pletion)

ABORT Abort a task No

IOLINK Link background 1/0 Yes

2-2

FORTRAN

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROS

This section describes the RTE macros given in table 2-1.

The general form of an RTE macro is

label mnemonic,p(1),p(2),....p(n)
where
label permits access to the macro from elsewhere in the
program
mnemonic is one of those given in table 2-1
each p(n) is a parameter defined under the descriptions of

the individual macros below

The omission of an optional parameter is indicated by retention of the normal number of
commas unless the omission occurs at the end of the parameter string. Thus, in the macro
(section 2.1.1)

SCHED 8,,102,,'TA',"'SK','A '

the first double comma indicates a default value for the wait option and the second
double comma indicates omission of a protection code.

Error messages applicable to RTE macros are given in section 17.2.

98 A 9952 100 2-3

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.1 SCHED (Schedule) Macro

This macro schedules the specified task to execute on its designated priority level. The
scheduling task can pass the two values in the A and B registers to the scheduled- task.
The macro has the general form

label SCHED level,wait lun key,'xx’,'yy’,'z2’

where
level is the value from 0 (lowest) to 31 (highest) of the
priority level of the scheduled task

wait is 0 (default value) if the scheduling and scheduled
tasks obtain CPU time based on priority levels and
1/0 activity, or 1 if the scheduling task is suspended
until completion of the scheduled task

lun is the name or number of the logical unit whose li-
brary contains the scheduled task, zero to schedule
a resident foreground task, or 106 to schedule a
nonresident task from the foreground library

key is the protection code, if any, required to address
lun (0306 or 'F’ to schedule a nonresident task
from the foreground library)

XXyyzz ' is the name of the scheduled task in six ASCII char-
acters, coded in pairs between single quotation marks
and separated by commas; e.g., the task named BIGJOB
is coded 'Bl',’GJ',’OB' and the task named ZAP is
coded 'ZA',P ')

The foreground library logical unit and its protection key are specified by the user at
system-generation time.

2-4 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is
CALL SCHED(level,wait,lib,key,name)

where lib is the number of the library logical unit containing the task, and name is the
three-word Hollerith array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point locations, with the A and B registers containing
the values to be passed. The scheduled task executes when it becomes the active task
with the highest priority.

The specified logical unit (which can be a background task, a foreground task, or any
user-defined library on an RMD) must be defined in the schedule-calling sequence.

Expansion: The task name is loaded two characters per word. The wait option flag is bit
12 of word 2 (w).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 VSEXEC address

Word 2 w|0O O O O O 1 O level
Word 3 key lun

Word 4 Task name

Word 5 Task name

Word 6 Task name

98 A 9952 100 2.5

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Examples:

Schedule the foreground library task named TSKONE on priority level 5. Use

the no-wait option so that scheduled and scheduling tasks obtain CPU time based on
priority levels and 1/0 activity.

FL
KEY

EQU 106 (LUN assigned to foreground library)
EQU 0306 (Protection code for FL)

SCHED 5,0,FL,KEY,'TS','KO', 'NE'

* (Control return to highest priority)

Note that the KEY line can be coded with the equivalent ASCIl character enclosed in
single quotation marks

KEY

EQU 'F'

The same request in FORTRAN is

DIMENSION N1(3) ,N2(3)

DATA

DATA

CALL

or

CALL

N1(1)/2H ¥/
N2(1),N2(2),N2(3)/2HTS, 2HKO, 2HNE/
SCHED(5,0, 106 ,N1,N2)

SCHED(5,0,106,2H F, 6HTSKONE)

2.6 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating the macro. The task can be
resumed only by an interrupt or a RESUME (section 2.1.4) macro. The macro has the
general form

label SUSPND susp

where susp is 0 if the task is to be resumed by RESUME, or 1 if the task is to be resumed
by interrupt.

The FORTRAN calling sequence for this macro is
CALL SUSPND(susp)

Expansion: The susp flag is bit 0 of word 2 (s).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$EXEC address

Word 2 0O 0 0 011 s

Example: Suspend a task from execution. Provide for resumption of the task by
interrupt, which reactivates the task at the location following SUSPND.

L]
L]

SUSPND 1

The same request in FORTRAN is

CALL SUSPND(1)

98 A 9952 100 2-7

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.3 RESUME Macro

This macro resumes a task suspended by the SUSPND macro. The RESUME macro has
the general form

label RESUME xx','yy’,'zz'

where xxyyzz is the narhe of the task being resumed, coded as in the SCHED macro
(section 2.1.1).

The RTE searches for the named task and activates it when found. The task will execute
when it becomes the task with the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the specified task executes
immediately.
The FORTRAN calling sequence for this macro is

CALL RESUME(name)

where name is the three-word Hollerith array containing the name of the specified task.

Expansion: The task name is loaded two characters per word.

Bit 1514131211109876543210
Word 0 JSR

Word 1 V$EXEC address

Word 2 0O 0 o010 0'

Word 3 Task name

Word 4 Task name

Word 5 Task name

2.8 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Example: Resume (reactivate) the task TSKTWO, which will execute when it becomes
the task with the highest active priority.

RESUME 'TS', 'KT', 'WO'
. (Control return)

Control returns to the requesting task when it becomes the task with the highest active
priority. Control returns to the location following RESUME.

The same request in FORTRAN is

DIMENSION N1(3)

DATA N1(1),N1(2),N1(3)/2HTS, 2HKT, 2HWO/
CALL RESUME(N1)

or

CALL RESUME (6HTSKTWO)

98 A 9952 100 2.9

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.14 DELAY Macro

This macro suspends the requesting task for the specified time, which is given in two
increments. The first increment is the number of 5-millisecond periods, and the second,
the number of minutes. The macro has the general form

label DELAY milli, min,type
where
milli is the number of 5-millisecond increments delay
min is the number of minutes delay
type is O (default value) when the task is to be

suspended for the specified delay, remain in
memory, and automatically resume following the
DELAY macro; 1 when the task is to exit from the
system, relinquishing memory, and, after the
specified delay, be automatically rescheduled

and reloaded in a time-of-day mode; or 2 when
the task is to resume automatically after the
specified delay or upon receipt of an external
interrupt, whichever comes first, and automatically
resume following the DELAY macro

The FORTRAN calling sequence for this macro is
CALL DELAY(milli,min,type)
where the integer-mode parameters have the definitions given above.
The maximum value for either milli or min is 32767. Any such combination given the
correct sum is a valid delay definition; e.g., for a 90-second delay, the values could be

6000 and 1, respectively, or 18000 and 0. After specified delay, the task becomes active.
When it becomes the highest-priority active task, it executes.

2:10 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Note that the resolution of the clock is a user-specified variable having increments of 5
milliseconds. The time interval given in a DELAY macro is equal to or greater than the
resolution of the clock. The delay interval is stored in minute increments and real-time
clock resolution increments. Time is kept on a 24-hour clock.

Expansion: The type flag is bits 0 and 1 of word 2.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 VSEXEC address

Word 2 0O 0 1 0 01 type
Word 3 milli

Word 4 min

Examples: Delay the execution of a task for 90 seconds. At the end of this time, the task
becomes active. When it becomes the highest-priority task, it executes.

L]
DELAY 6000, 1
.

98 A 9952 100 2.11

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Delay the execution of a task for 90 seconds or until receipt of an external interrupt,
whichever comes first, at which time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

L]
DELAY 18000,0,2
L]

2.1.5 PMSK (PIM Mask) Macro

This macro redefines the PIM (priority interrupt module) interrupt structure, i.e., enables
and/or disables PIM interrupts. The macro has the general form

label PMSK pim,mask,opt

where
pim is the number (1 through 8) of the PIM being modified
mask indicates the changes to the mask, with the set bits

indicating the interrupt lines that are either to be
enabled or disabled, depending on the value of opt,
and with the other lines unchanged

opt is 0 (default value) if the set bits in mask indi-

cate newly enabled interrupt lines, or 1 if the set
bits in mask indicate newly disabled interrupt lines

2-12 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is
CALL PMSK pim,mask,opt

where the integer-mode parameters have the definitions given above.

The eight bits of the mask correspond to the eight priority interrupt lines, with bit 0
corresponding to the highest-priority line.

VORTEX operates with all PIM lines enabled unless altered by a PMSK macro. Normal
interrupt-processing allows all interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is associated with a lower-priority task,
or b) immediately suspends the interrupted task and schedules a new task if the
~interrupt is associated with a higher-priority task. PMSK provides control over this
procedure.

Note: VORTEX (through system generation) initializes all undefined PIM locations to

nullify spurious interrupts that may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit 0 of word 2 (0).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$EXEC address

Word 2 0 0 1000 0
Word 3 pim mask

98 A 9952 100 2-13

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2. Leave all other interrupt lines in
the present states.

PMSK 2,070

The same request in FORTRAN is
CALL PMSK(2,56,0)

Disable the same lines.

PMSK 2,070,1

214 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.6 TIME Macro
This macro loads the current time of day in the A and B registers with the B register
containing the minute, and the A register the 5-millisecond, increments. The macro has
the form

label TIME
The FORTRAN calling sequence for this macro is

CALL TIME(min,milli)

where min is the current time in 1-minute integer increments, and milli is the current
time in 5-millisecond integer increments.

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word O JSR
Word 1 V$EXEC address
Word 2 O 0 1 010

Example: Load the current time of day in the A (5-millisecond increments) and B (1-
minute increments) registers.

. (Return with time in A and B registers)

98 A 9952 100 2-15

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.7 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an overlay-structured task. It has the
general form

label OVLAY type,’xx’,’yy’,'z2’
where
type is O (default value) for load and execute, or 1 for
load and return following the request
Xxyyzz is the name of the overlay segment, coded as in

the SCHED macro (section 2.1.1)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$EXEC address

Word 2 0O 0 1 0 1 1 t
Word 3 Overlay segment name

Word 4 - Overlay segment name

Word 5 Overlay segment name

2-16 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Example: Find, load, and execute overlay segment OVSGO1 without return.

OVLAY 0,'ov,'sG','01"'
. (No return)

The same request in FORTRAN is

DIMENSION N1(3)

DATA N1{1) ,N1(2),N1(3)/2HOV, 2HSG,2H01/

CALL OVLAY;E(O) O,N 1)

or

CALL OVLAY (IS ERGrseet (o , 0, 6 HOVS&DI)

98 A 9952 100 2.17

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.8 ALOC (Allocate) Macro

~ This macro allocates space in a push-down (LIFO) stack of variable length for reentrant
subroutines. The macro has the general form

label ALOC address
where address is the address of the reentrant subroutine to be executed.
The FORTRAN calling sequence for this macro is

EXTERNAL ALOC(subr)
where subr is the name of the DAS MR assembly language subroutine.
The first location cf the LIFO stack is V$LOC, and that of the current position in the stack
is V$CRS. The first word of the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be allocated. If fewer than five
words are specified, five words are allocated.
Control returns to the location following ALOC when a DEALOC macro (section 2.1.7) is
executed in the called subroutine. Between ALOC and DEALOC, (1) the subroutine cannot

be suspended, (2) no IOC calls (section 3) can be made, and (3) no RTE service calls can
be made.

2:18 98 A 9952 100

SECTION 2

REAL-TIME EXECUTIVE SERVICES

Reentrant subroutines are normally included in the resident library at system-generation
time so they can be concurrently accessed by more than one task. The maximum size of
the push-down stack is also defined at system-generation time.

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR
Word 1 V$EXEC address
Word 2 0 0 01 10
Word 3 Reentrant subroutine address
98 A 9952 100 2-19

SECTION 2

REAL-TIME EXECUTIVE SERVICES

Reentrant subroutine:

The reentrant subroutine called by ALOC contains,

in entry

location x, the number of words to be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a DEALOC macro.

The reentrant stack is used to store register contents and allocate temporary storage
needed by the subroutine being called. The location VECRS contains a pointer to word 0 of
the current allocation in the stack. By loading the value of the pointer into the X (or B)
register, temporary storage cells can be referenced by an assembly language M field of
5,1 for the first cell; 6,1 for the second; etc.

A stack allocation generated by the ALOC macro has the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 Contents of the A register

Word 1 Contents of the B register

Word 2 Contents of the X register

Word 3 ovfl " Contents of the P register

Word 4 Stack-control pointer (for RTE use only)

Word 5 For reentrant subroutine use (temporary storage)
Wc.)rd n :

where ovfl is the overflow indicator bit.

2-20

98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The current contents of the A and B registers are stored in words O and 1 of the stack
and are restored upon execution of the DEALOC macro. The same procedure is used with
the setting of the overflow indicator bit in word 3 of the stack. The contents of word 2 (X
register) point to the location of the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0) point to the return location
following ALOC.

Example: Allocate a stack of six words. Provide for deallocation and returning of control
to the location following ALOC.

EXT SUB1

ALOC SUB1

. (Return control)

.

.

NAME SUB1
SUB1 DATA 6

.

.

.

DEALOC

END

Each time SUBI1 is called, six words are reserved in the reentrant stack. Each time the
reentrant subroutine makes a DEALOC request (section 2.1.7), six words are deallocated
from the reentrant stack.

98 A 9952 100 221

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.9 DEALOC (Deallocate) Macro

This macro deallocates the current reentrant stack, restores the contents of the A and B
registers and the setting of the overflow indicator to the requesting task, and returns
control to the location specified in word 3 (P register value) of the reentrant stack
(section 2.1.6). The macro has the form

label DEALOC

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 VSEXEC address

Word 2 0 0 01 11

Example: Release the current reentrant stack, restore the contents of the volatile
registers and the setting of the overflow indicator and return control to the location
specified in word 3 of the stack.

.

. (Reentrant subroutine)
DEALOC
END

.
.

.

2.22 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.10 EXIT Macro

This macro is used by a task to signal completion of that task. The requesting task is
terminated upon completion of its 1/0. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified) is

CALL EXIT

If the task making the EXIT is in unprotected background memory, the macro schedules
the job-control processor (JCP) task (section 4).

bExpansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word O JSR

Word 1 _ VSEXEC address

Word 2 0 0 0010

Example: Exit from a task. The task making the EXIT call is terminated upon
completion of its 170 requests.

EXIT (No return)

98 A 9952 100 2.23

SECTION 2

REAL-TIME EXECUTIVE SERVICES

2.1.11 ABORT Macro

This macro aborts a task. Active I/0 requests are completed, but pending 1/0 requests
are dequeued. The macro has the general form

label

ABORT

’xx"Yyy”

’zz’

where xxyyzz is the name of the task being aborted, coded as in the SCHED macro

(section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the name of the task being
aborted.

Expansion: The task name is loaded two characters per word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 JSR

Word 1 V$EXEC address

Word 2 6 0 01 01

Word 3 Task name

Word 4 Task name

Word 5 Task name

2-.24

98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Example: Abort the task TSK and return control to the location following ABORT.

. (Control return)

The same request in FORTRAN is

DIMENSION N1(3)

DATA N1(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT(N1)

or

CALL ABORT (6HTSK)

98 A 9952 100 2.25

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1.12 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer address and buffer size parameters
to the system background g|obay(FCBs) It has the general form
$ile controi blocRs

label 1OLINK lungsd,bufloc, bufsiz
where
lungsd is the logical unit number of the global system device
bufloc is the address of the input/output buffer
bufsiz is the size of the buffer (maximum and default value: 120)

Global file control blocks: There are eight global FCBs (section 3.3.11) in the VORTEX
system reserved for background use. System background and user programs can
reference these global FCBs. JCP directive /PFILE (section 4.2.12) stores the protection
code and file name in the corresponding FCB before opening/rewinding the logical unit.
The I0OLINK service request passes the buffer address and the size of the record to the
corresponding logical-unit FCB. The names of the global FCBs are SIFCB, PIFCB, POFCB,
SSFCB, BIFCB, BOFCB, GOFCB, and LOFCB, where the first two letters of the name
indicate the logical unit.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 VS$EXEC address

Word 2 0 0 1 1 0 O lungsd

Word 3 bufloc

Word 4 bufsiz

226 98 A 9952 100

SECTION 2
REAL-TIME EXECUTIVE SERVICES

Example: Pass the address and size specifications of a 40-word buffer at address BUF

to the Pl global FCB.

PI EQU
EXT

.
.

IOLINK
READ

L]
BUF BSS
END

4 (P! logical-unit number 4)
PIFCB

PI,BUF,40 :
pIFce,p1,0,1 (Read 40 ASCIlI words from PI)

40

If the PI file is on an RMD, reassign the Pl to the proper RMD partition, and then position
the PI file using JCP directive /PFILE.

98 A 9952 100

2-27

SECTION 3
INPUT/OUTPUT CONTROL

SECTION 3
INPUT/OUTPUT CONTROL

The VORTEX input/output-control component (I0C) processes all requests for 1/0 to be
performed on peripheral devices. The I0C comprises an |/0-request processor, a find-next-
request processor. an |/0-error processor, and /O drivers. The 10C thus provides a
common 1/0 system for the overall VORTEX operating system and eliminates the
programmer’s need to understand the computer hardware.

The contents of the volatile A and B registers and the setting of the overflow indicator are
saved during execution of any 10C macro. After completion of the macro, these data are
returned. The contents of the X register are lost.

If a physical-device failure occurs, the 170 drivers perform error recovery as applicable.
Where automatic error recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries has been reached, at which time
the 1/0 driver stores the error status in the user 1/0-request block, and the 1/0O-error
processor posts the error on the OC logical unit. The user can then try another physical
device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating-memory device (RMD). it is
referenced by an assigned number or name. The logical unit permits performance of 1/0
operations that are independent of the physical-device configurations by making possible
references to the logical-unit number. The standard interfaces between the program and
the 10C, and between the 10C and the 170 driver, permit substitution of peripheral
devices in 1/0 operations without reassembling the program.

VORTEX permits up to 256 logical units. The numbers assigned to the units are
determined by their reassignability: '

a. Logical-unit numbers 1-100 are used for units that can be reassigned through

the operator communications component (OPCOM, section 15) or the job-
control processor (JCP, section 4).

98 A 9952 100 3-1

SECTION 3
INPUT/OUTPUT CONTROL

Logical-unit numbers 101-179 are used for units that are not reassignable.

Logical-unit numbers 180-255 are used for units that can be reassigned through

OPCOM only.

Logical-unit number 0 indicates a dummy device. The I0C immediately returns -
control from a dummy device to the user as if a real 170 operation had been

completed.

VORTEX logical-unit assignments for all systems are specified in table 3-1. All logical-unit
numbers that are not listed are available to the reassignability scheme above.

Table 15-1 shows the scheme of system names for physical devices. Table 3-2 shows the
possible logical-unit assignments.

Number

Table 3-1. VORTEX Logical-Unit Assignments

Name Description
Dummy
oC Operator
communication
Si System input
SO System output

32

Function
For 1/0 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For display of all input
control directives and output
system messages; Teletype or
CRT only

98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments (continued)

Number Name
4 Pi
5 LO
6 Bl
7 BO
8 SS
9 GO
98 A 9952 100

Description

Processor input

List output

Binary input

Binary output

System scratch

Go unit

3-3

Function

For input of source statements
from all operating system
language processors

For output of operating system
input control directives,

system operations messages,
and operating system language
processors’ output listings

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

For output of the same infor-
mation as the BO unit by the
system assembler and compiler;
RMD partition only

SECTION 3
INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments (continued)
Number Name Description Function

10 PO Processor output For processor output; all
operating system language
processors that use an inter-
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

11 DI Debugging input For all debugging inputs
12 DO Debugging output For all debugging outputs
101 Ccu Checkpoint unit For use by VORTEX to

checkpoint a background task;
partition protection key S:
RMD partition only

102 Sw System work For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or
execution by other system
components; partition protec-
tion key B; RMD partition only

103 CL Core-resident For all core-resident system

library entry points; partition protec-
tion key C; RMD partition only

34 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments (continued)

Number Name
104 oM
105 BL
106 FL

Description

Object-module
library

Background library*

Foreground library*

Function

For the VORTEX system obiject-
module library; partition
protection key D; RMD partition
only

For the VORTEX system background
library; partition protection
key E; RMD partition only

For the VORTEX system fore-
ground library; partition
protection key F, RMD
partition only

Other units can be assigned as user foreground libraries provided they are specified at
system-generation time. However, there is only one background library in any case.

98 A 9952 100

35

SECTION 3

INPUT/OUTPUT CONTROL

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

ocC
1

CT

TY

PO
10

DUM
CcP

CcT
LP
MT
PT

TY

CR
CT

MT
PT

TY

DI
11

CR
CT

TY

Table 3-2. Valid Logical-Unit Assignments

SO PI LO BI
3 4 5 6

DUM DUM DUM
CcP
CR CR
CT CcT cT
D D D
LP
MT MT MT
PT PT PT
Y TY TY

DO CU sw cCL
12 101 102 103

DUM

CT

LP

TY

3-6

BO

DUM
CcP

MT
PT

oM
104

S§ GO
8 9
DUM
D D
MT MT
BL FL
105 106
D D
98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to 20 memory areas called
partitions. Each partition is referenced by a specific logical-unit number. The boundaries
of each partition are recorded in the core-resident partition specification table (PST). The
first word of the PST contains the number of VORTEX physical records per track. The
second word of the PST contains the address of the bad-track table, if any, or zero.
Subsequent words in the PST comprise the partition entries. Each PST entry is in the
format:

Bit 1514131211 109876543210

Word 0 Beginning partition address

Word 1 ppb Protection key

Word 2 Number of bad tracks in the
partition

Word 3 Ending partition address + 1

The partition protection bit, designated ppb in the above PST entry map, when set,
requires the correct protection key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST entry is also word O of the
following entry. The length of the PST is 3n + 2, where n is the number of partitions in
the system. The relative position of each PST entry is recorded in the device specification
table (DST) for that partition. '

The bad-track table, whose address is in the second word of the PST, is a bit string
constructed at system-generation time and thereafter constant. The bits are read from
left to right within each word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD.

98 A 9952 100 3-7

SECTION 3
INPUT/OUTPUT CONTROL

Each RMD partition can contain a file-name directory of the files contained in that
partition. The beginning of the directory is in the first sector of that partition. The
directory for each partition has a variable number of entries arranged in n sectors, 19
entries per sector. Sectors containing directory information are chained by pointers in the
last word of each sector. Thus, directory sectors need not be contiguous.
(Note: Directories are not automatically created when the partitions are defined at
system-generation time. It is possible to use a partition with no directory, e.g, by a
foreground program that is collecting data in real time.) Each directory entry is in the
format;

.'Bit 151413 1211109876543210
Word 0 File name
Word 1 File name
Word 2 File name
Word 3 Current position of file
Word 4 Beginning file address
Word 5 Ending file address

The file name comprises six ASCIl characters packed two characters per word. Word 3
contains the current address at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE macros (sections 3.4.1 and
3.4.2). The extent of the file is defined by the addresses set in words 4 and 5 when the file
is created, and which remain constant.

At system-generation time, the first sector of each partition is assigned to the file-name

directory and a zero written into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of the entries in that sector.

38 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

The last entry in each sector is a one-word entry containing either the value 01 (end of
directory), or the address of the next sector of the file-name directory.

The file-name directories are created and maintained by the VORTEX file-maintenance
component (section 9) for 10C use. User access to the directories is via the 10C, which
references the directories in response to the 1/0 macros OPEN and CLOSE. The file-
maintenance component sets words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by 10C operations. The 10C can modify only the current
position-of-file parameter. '

In the case of a file containing a directory, an OPEN is required before the file is
accessible. The macro searches the file directory for the entry corresponding to the name
in the file-control block (FCB) in use. When the entry is found, the file boundary
addresses and the current position-of-file value from the directory entry are stored in the
FCB. If the OPEN macro

a. Specifies the option to rewind, the FCB current position is set equal to the
address of the beginning of file.

b. Specifies the option not to rewind, the FCB current position is set equal to the
aldress of the position of file.

Once a file is thus opened, READ and WRITE operations are enabled. The 10C references
the file by the file boundary values set by the OPEN, rather than by the file name. READ
and WRITE operations are under control of the FCB current position value, the extent of
the file, and the current record number.

A CLOSE macro disables the 10C and user access to the file by zeroing the four file-
position parameters in the FCB. If the CLOSE macro

a. Specifies the option to update, the current position-of-file value in the directory
entry is set to the value of the FCB current position, allowing reference I a
later OPEN.

b. Specifies the option not to update, the file-directory entry remains unmodified.

98 A 9952 100 39

SECTION 3
INPUT/OUTPUT CONTROL

Special directory entries: A blank entry is created when a file name is deleted, in which
case the file name is ***#** and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is deleted, in which case the
deleted name is converted to a blank entry and all other names of the multiname file are
set to zero.

3.3 1/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven 1/0 system, thus optimizing the allocation of
CPU cycles in the multiprogramming environment.

3-10 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4 17/0-CONTROL MACROS

170 requests are written in assembly language programs as 1/0 macro calls. The DAS MR
assembler provides the following 1/0 macros to perform 1/0 operations, thus simplifying

coding:
. OPEN
. CLOSE
. READ
. WRITE
. REW
. WEOF
. SREC
. FUNC
. STAT
. DCB
. FCB

Open file

Close file

Read one record

Write one record

Rewind

Write end of file

Skip one record

Function

Status

Generate data control bldck

Generate file control block

The 10C performs a validity check on all 1/0 requests. It then queues (according to the
priority of the requesting task) each valid request to the controller assigned to the
specified logical unit. Finally, the 10C schedules the appropriate 170 driver to service the

queued request.

The assembler processes the 1/0 macro to yield a macro expansion comprising data and
executable instructions in the form of assembler language statements.

98 A 9952 100

3-11

SECTION 3
INPUT/OUTPUT CONTROL

Certain 1/0 operations require parameters in addition to those in the 1/0 macro. These
parameters are contained in a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.4.11) or a data control block (DCB,
section 3.4.10). Embedded but omitted parameters (e.g., default values must be
inclicated by the normal number of commas.

Error messages applicable to these macros are given in section 17.3.

170 Macros: The general form of 1/0 macros is:
label name cb, lun,wait,mode
where the symbols have the definitions given in section 3.4.1.
If the cb is for an FCB, it is mandatory. If it is for a DCB, it is optional.

The expansion of an 1/0 macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$10C address

Word 2 c Status e cc Priority*

Word 3 w | Mode Op--code Logical--unit number
Word 4 FCB or DCB address

Word 5 User task identification block address*

Word 6 I0C thread address*

312 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

where
c set indicates completion of 1/0 tasks
Status is the status of the 1/0 request
e set indicates an irrecoverable 1/0 error
cc is the completion code
Priority is the priority level of the task making the request
w is the wait/immediate-return option
Mode is the mode of operation
Op-code specifies the 1/0 operation to be performed

*

indicates an item whose initial value is zero

The wait option causes the task to be suspended until its 170 is complete. The immediate
option causes control to be returned immediately to the task after the 1/0 request is
queued. Therefore, to multiprogram effectively within VORTEX, the wait option is
preferred.

98 A 9952 100 ' 313

SECTION 3
INPUT/OUTPUT CONTROL

Word 2 contains the following information:

a.

b.

Bit 15 indicates whether the I/0 request is complete.

Bits 14 through 9 contain one of the error-message status codes described in
section 17.3. :

Bit 8 indicates an irrecoverable 1/0 error.
Bits 7 through 5 contain a completion code: 000 indicates a normal return;
101, an error; 110, an end of file, beginning of device, or beginning of tape; and

111, end of device, or end of tape.

Bits 4 through 0 indicate the priority level of the task making the request.

Word 5 initially points to the user’s task identification block. Upon completion of a READ
or WRITE macro (sections 3.4.3 and 3.4.4), the IOC sets word 5 to the actual number of
words transmitted.

3-14

‘ SECTION 3
INPUT/OUTPUT CONTROL

Status macro: The general form of the status (STAT) macro is:
label STAT req,err,aaa,bbb,busy

where the symbols have the definitions given in section 3.4.9.

The normal return is to the first word following the macro expansion.

The expansion of the STAT macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 V$I0C address

Word 2 Address of the 170 macro

Word 3 .Address of the 1/0 error routine

Word 4 aaa

Word 5 bbb

Wor& 6 Address of the busy or 1/0-not-complete routine

whére aaa and bbb have the definitions given in section 3.4.9.

98 A 9952 100 3-15

SECTION 3
INPUT/OUTPUT CONTROL

Control block macro: The general form of the DCB macro is:
label - DCB fl,buff, fun
where the symbols have the definitions given in section 3.4.10.

The expansion of the DCB macro is:

Bit 15 14 13 12 11 10 9 g 7 6 5 43 21 ¢
Word 0 | Record length

Word 1 Address of user data area

Word 2 Function code

The function code applies only to 1/0 drivers that allow:

a. The line printer to slew to top of form or to space through the channel selection
for paper-tape form control.

b. The paper-tape punch to punch leader.

¢. The card punch to eject a blank card as a separator.

3-16 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

The general form of the FCB macro is:
label FCB rl,buff,acc,key,’xx’,'yy’,'zz’
where the symbols have the definitions given in section 3.4.11.

The expansion of the FCB macro is:

Bit 1514131211,109876543210
Word 0 Record length

Word 1 Address of user data area

Word 2 Access method Protection key
Word 3 Current record number

Word 4 Current position-of-file address

Word 5 Beginning file address

Word 6 Ending file address

Word 7 File name

Word 8 File name

Word 9 File name

98 A 9952 100 3-17

SECTION 3
INPUT/OUTPUT CONTROL

The access method (word 2, bits 15 through 8) specifies one of the four methods of
reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses the contents of FCB word 3
as the number of the logical record within a file to be processed, but does not
alter word 3 after reading or writing. Word 3 is set by the user to the desired
record number prior to each read/write.

b. Sequential access by logical record: The /0 driver uses the contents of word 3
as the number of the logical record within a file to be processed, then
increments the contents of word 3 by one. Word 3 is set initially to zero when
the FCB macro expands. Successive reading and writing thus accesses records
sequentially.

c. Direct access by physical record: The 1/0 driver uses the contents of FCB word
3 as the number of the VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a read or write. Word 3 is set
by the user to the desired record number prior to each read/write.

d. Sequential access by physical record: The 1/0 driver uses the contents of FCB
word 3 as the number of the VORTEX physical record to be processed within a
file (120-word length), then increments the contents of word 3 by one. Word 3
is set initially to zero when the FCB macro expands. Successive reading and
writing thus accesses records sequentially.

3-18 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4.1 OPEN Macro

This macro, which applies only to RMDs or magnetic-tape units, enables 1/0 operations
on the devices by initializing the file information in the specified FCB. The macro has the
general form

label OPEN fcb,lun,wait, mode
where
fcb is the address of the file control block
lun is the number of the logical unit being opened
wait is 1 for an immediate return, or 0 (default value)

fc. a return suspended until the 1/0 is complete

mode is O (default value) for rewinding or 1 for not
rewinding. In the former case, word 3 (current
record number) of the FCB is set to 1, word 4
(current position-of-file address) is set to the
current position-of-file address given by the RMD
file directory, and rewinds the magnetic-tape unit.
In the latter case, the current position-of-file
address given by the RMD file directory is copied
into word 4, converted to a record number and
stored in word 3 of the FCB, thus initializing
the user FCB, enabling reading or writing from
a previously specified location,and the magnetic-
tape position is left unchanged (not rewound).

OPEN must precede any other 1/0 request (except REW) because the FCB file information
must be complete before any file-oriented 1/0 is possible. If a file has already been
opened, an OPEN will be accepted.

98 A 9952 100 3-19

SECTION 3
INPUT/QUTPUT CONTROL

The OPEN macro is file-oriented, while the REW macro is oriented to the logical unit. An
REW destroys information completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB (section 3.4.11).

If an attempt is made to apply the OPEN macro to any device other than an RMD or a
magnetic-tape unit, the 1/0 request is processed internally by the 10C but not by an 170
_driver. The I0C indicates the status as 1/0 complete.

Example: Read a 120-word record from the file FILE10 on logical unit 18, an RMD
partition with sequential, record-oriented access. BUFF is the address of the user’s buffer
area. Use the wait and rewind options, and set the logical-unit protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)

RL EQU 120 (Record length 120)

WAIT EQU 0 (Wait option)

REW EQU 0 (Rewind option)

KEY EQU 1 (Logical-unit protection key)

SEQR EQU 1 (Sequential, record-oriented access)
OPEN OPEN FCB,X1,WAIT,REW

READ READ FCB,X1,WAIT

FCB FCB RL,BUFF, SEQR,KEY, 'FI','LE',"10'

3-20 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape units, updates information in
the specified FCB file. This records and retains the current position within the file. The
mode option ignores the updating, thus retaining the previously defined position in the
fite. The macro has the general form

label CLOSE fcb,lun,wait, mode
where
fcb is the address of the FCB
lun is the number of the logical unit being closed
wait is 1 for an immediate return, or 0 (default value)

for a return suspended until the 1/0 is complete

mode is O (default value) for not updating, or 1 for
updating. In the former case, there is no change
to the current position-of-file address in the
RMD file directory, words 3, 4, 5, and 6 of the
FCB are set to zero, and the magnetic-tape
position is left unchanged (not rewound). In
the latter case, the contents of FCB word 3
(current record number) are converted to an
address and stored in the current position-of-file
address in the RMD file directory, words 3, 4, 5,
and 6 of the FCB are set to zero, and an
end-of-file mark written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file defined in the FCB (section
3.4.11).
If an attempt is made to apply the CLOSE macro to any device other than an RMD or

magnetic-tape unit, the 1/0 request is processed internally by the 10C, but not by an 1/0
driver. The |OC indicates the status as |/0 complete.

98 A 9952 100 321

SECTION 3
INPUT/OUTPUT CONTROL

Example: Close the file MATRIX on logical unit 180, an RMD partition with sequential,

record-oriented access. Use the wait and update options.

SEQR EQU 1 (Sequential, record-oriented access)
UPDATE EQU 1 (Update option)
WAIT EQU 0 (Wait option)
L]
.
.
CLOSE CLOSE FCB, 180,WAIT,UPDATE
FCB FCB »+SEQR, ,"MA', "TR', 'IX'

3-22

98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4.3 READ Macro

This macro retrieves a record of specified length from the specified logical unit, and
places it in the specified area of main memory. The macro has the general form

label READ cm,lun,wait,mode
where
cb is the address of the data control block, or of

the file control block

flun is the number of the logical unit from which the
record is read

wait is 1 for an immediate return, or 0 (default value)
for a return suspended until the 1/0 is complete

mode specifies the 1/0 mode: 0 (default value) for
system binary, 1 for ASCH, 2 for BCD, or 3 for
unformatted /0

The number of words read is stored in word 5 of the 170 macro.

98 A 9952 100 3-23

SECTION 3
INPUT/OUTPUT CONTROL

Example: Read a record from logical unit 4, a magnetic-tape unit. Use system binary
mode and the immediate return option. The record length is 60 words, and the address of
the user’'s data area is BUFF.

IM

MT
RECL

MTRD

TAPE
BUFF

DCB
BSS

1 (Immediate return)

(System binary mode)
4 (LUN assigned to magnetic-tape unit)
60 (Record length 60 words)

TAPE,MT,IM,BIN

rect,Burr (Data control block)
60 (User data area)

Note that the READ macro had a mode value of zero. Since this is the default value, the
macro could have been coded:

MTRD

READ

TAPE,MT, 1"

3-24

98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4.4 WRITE Macro

This macro takes a record of specified length from the specified area of main memory,
and transmits it to the specified logical unit. The macro has the general form

label WRITE cb,lun,wait,mode

where the parameters have the same definitions and take the same values as in the
READ macro (section 3.4.3).

The number of words written is stored in word 5 of the /0 macro.

Example: Obtain a system binary record 60 words in length from the user's data area
BUFF, and transmit it to logical unit 16, a magnetic-tape unit. Use the immediate-return
option.

M EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 16 (LUN assigned to magnetic-tape unit)
RECL EQU 60 (Record length 60 words)

MTWT WRITE TAFPE ,MT,IM,BIN

TAPE DCB recL,Burr (Data control block)

BUFF BSS 60 (User data area)

98 A 9952 100 3-25

SECTION 3
INPUT/OUTPUT CONTROL

3.45 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or rotating-memory devices, repositions
the specified logical unit to the beginning-of-unit position. It has the general form

| label REW fcb,lun,wait
or
label REW dcb,lun, wait
where
fcb is the address of the FCB
dcb is the address of the DCB
lun is the number of the logical unit being rewound
wait is 1 for an immediate return, or O (default value)

for a return suspended until the 1/0 is complete
Note that the DCB address is an optional parameter, but that the FCB address is
mandatory.

To reposition a named file on an RMD, use the OPEN macro (section 3.4.1).

Magnetic-tape devices: REW rewinds the specified unit and, upon successful completion
of the task, returns a beginning-of-device (BOD) status.

Rotating-memory devices: REW places the start-RMD-partition and end-RMD-partition
addresses in words 5 and 6, respectively, of the FCB (section 3.4.11).

3-26 98 A 9952 100

Examples:
specified by default.

SECTION 3
INPUT/OUTPUT CONTROL

Rewind logical unit 23, a magnetic-tape unit. Use the wait option, here

" EQU

REW

23 (LUN assigned to magnetic-tape unit)

Rewind logical unit 10, an RMD partition. Use the wait option, here specified by default.
Note that the REW for an RMD must have an associated FCB (section 3.4.11).

DISC EQU
RECL EQU
o

.

REWD REW
L]

FCB FCB
BUFF BSS
98 A 9952 100

10 (LUN assigned to RMD partition)

120

FCB,DISC

RECL,BUFF,,,"'SY','ST', 'EM'
120

3-27

(section 3.4.11)

SECTION 3
INPUT/OUTPUT CONTROL

3.4.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical unit. It has the general form

label WEOF cb,lun,wait
where
cb is the address of the control block
lun is the number of the affected logical unit
wait is 1 for an immediate return, or 0 (default value)

for a return suspended until the 1/0 is complete
Example: Write an end of file on logical unit 10. Use the wait option, here specified by
default.

TAPE EQU 10

EOF WEOF + TAPE

3-28 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

3.4.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape or rotating-memory devices, skips one
record in either direction on the specified logical unit. It has the general form

label SREC cb,lun,wait, mode
where .
cb is the address of the control block
lun is the number of the logical unit being manipulated
wait is 1 for an immediate return, or 0'(default value)

for a return suspended until the 1/0 is complete

mode specifies the direction of the skip: 0 (default
value) for a forward skip, or 1 for a reverse
skip

If applied to an RMD, SREC adds or subtracts from the value of word 3 of the FCB
(section 3.4.11).

If an attempt is made to apply this macro to a device other than a magnetic-tape or
rotating-memory unit, the 1/0 request is processed internally by the I0C but not by an
170 driver. The 10C indicates the status as 170 complete.

Example: Skip back one record on logical unit 57, a magnetic-tape unit. Use the
immediate-return option.

MT - EQU 57 (LUN assigned to magnetic-tape unit) -
REV EQU 1 (Reverse)
™ EQU 1 (Immediate return)

SKIP SREC ,MT,IM,REV

98 A 9952 100 3-29

SECTION 3
INPUT/OUTPUT CONTROL

3.4.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a specified logical unit. The function
(when present) cannot be defined by any of the preceding I/0 control functions. The
macro has the general form

label FUNC dcb,lun,wait
where
dcb is the address of the data control block
lun is the number of the logical unit being manipulated
wait is 1 for an immediate return, or 0 (default value)

for a return suspended until the 1/0 is complete

FUNC causes certain 1/0 drivers to perform special functions specified by the function
code fun in a DCB macro (section 3.4.10):

170 Driver Function Code Function
Card punch 0 Eject blank card
Paper-tape punch 0 Punch 256 blank frames
‘ for leader
Line printer and 0 Advance paper to top of
Teletype printer next form
1 Advance paper one line
2 Advance paper two lines

If an attempt is made to apply the FUNC macro to any other device, the I/0 request is
processed internally by the I0C but not by an 1/0 driver. The 10C indicates the status as
170 complete.

3-30 98 A 9952 100

SECTION 3
INPUT/QUTPUT CONTROL

Example: Skip two lines on the printer, which is logical unit 5. Use the wait option, here
specified by default. : ’

LP EQU 5 (LUN assigned to line printer)
CNT EQU 2 (Paper-tape channel 2)

UPSP FUNC DCB,LP

DCB DCB , +CNT

3.4.9 STAT (Status) Macro

This macro examines the status word in an 1,0 macro to determine the result of an 1/0
function request. The STAT macro has the general form

label STAT req,err,aaa,bbb busy
where
req is the address of the 1/0 macro (e.g., READ)
err is the address of the 1/0-error routine
aaa is the address of the end of file, beginning of

device, or beginning of tape
bbb is the address of the end of device or end of tape

busy is the address of the 1/0-not-complete routine

98 A 9952 100 3-31

SECTION 3
INPUT/OUTPUT CONTROL

All parameters (except the label) are mandatory. The contents of the overflow indicator
and the A and B registers are saved. Upon normal completion, control returns to the user
at the first word after the end of the macro expansion.

CAUTION
Foreground tasks should not loop to check for completion of 170

tasks because this inhibits all lower-level tasks.

Example: Rewind logical unit 12, a magnetic-tape unit, and check for beginning of
device (load point). Use the immediate-return option.

MT EQU 12 (LUN assigned to magnetic-tape unit)
M EQU 1 (Immediate return)

REW REW ,MT, IM (DCB can be omitted for REW)

BUSY STAT REW,ERR,BOT,EQT, BUSY

BOT .

ERR A

EQT .

3-32 98 A 9952 100

: "SECTION 3
INPUT/OUTPUT CONTROL

3.4.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by 1/0 macro requests to devices other than
RMDs. Note that not all such requests (e.g., rewinding a magnetic-tape unit) require a
DCB. The macro has the general form

label DCB rl,buff,fun
where
rl is the length, in words, of the record to be trans-
mitted
buff is the address of the user’s data area
fun is the function code for a FUNC request and is

unused for other requests (section 3.4.8)

Example: Read a record from logical unit 4 a magnetic-tape unit. Use system binary
mode and the immediate-return option. The record length is 60 words, and the address of
the user’s data area is BUFF.

M EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to magnetic-tape unit)
RECL EQU 60 (Record length 60 words)

MTRD READ TAPE , MT, IM,BIN

TAPE DCB rect, Burr (Data control block)

98 A 9952 100 3-33

SECTION 3
INPUT/OUTPUT CONTROL

34.11 FCB (File Control Block) Macro

This macro generates an FCB required by any I/O macro request to an RMD. The macro
has the general form

label FCB rl,buff,acc, key, xx','yy’,'zz’
where '
. is the length, in words, of the record to be trans-
mitted
buff is the address of the user's data block
acc specifies the access method and is 0 (default value)

for the direct access by logical record, 1 for
sequential access by logical record, 2 for direct
access using the relative sector number (beginning
with 1) within the file, or 3 for sequential access
using the relative sector number within the file

key is the protection code, if any, required to address
that logical unit. This is a single alphanumeric
ASCIl character coded between single quotation
marks (e.g., the protection code H would be
coded 'H'); or as the eight-bit octal equivalent,
in which case no quotation marks are used (e.g.,
0310 for the protection code H). The default
value is binary zero (not the character 0).

Xxyyzz is the name of the file being referenced. The
file name is one to six ASCII characters, coded
in pairs between single quotation marks and
separated by commas, e.g., the file hamed ARRIBA
is coded 'AR','RI'’BA’. Embedded blanks are
illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the 1/0 macros.

3-34 98 A 9952 100

SECTION 3
INPUT/OUTPUT CONTROL

Example: Create an FCB for the file FILEXX. Use the logical-record-oriented, sequential-
access method with a record length of 120 words. The user’s data area is BUFF and the
protection code is Z.

SEQR EQU 1 (Sequential, record-oriented access)
RECL EQU 120 (Record length 120 words)

DISC FCB RECL,BUFF,SEQR, '%2','FI','LE', "XX'

BUFF BSS 120

Note that the protection code character Z is coded between single quotation marks, i.e.,
'Z’, but it can also be coded as the octal value of the ASCIl character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement given in the example above is
equivalent to

DISC FCB RECL,BUFF, SEQR, 0322, 'PI', 'LE"', 'XX'

98 A 9952 100 3-35

SECTION 3

INPUT/OUTPUT CONTROL

Word

Table 3-3. FCB Words Under 1/0 Macro Contro!

OPEN

Set to
position
of cur-
rent rec-
ord by
mode
chosen

Set to
current
position
of file
as noted
on direc-
tory

Set to
beginning
of file
address
put in
this word

Set to
end of
file ad-
dress

READ

WRITE

SREC

Sequential-Access Method

Incre-
ments
record
number
by one

Checks
end of
file

No
action

No
action

Incre-
ments
record
number
by one

No
action

No
action

No
action

3-36

Adds or
subtracts
one

Checks
end of
file

No
action

No
action

CLOSE

Set to
position
of file

on direc-

tory by
mode
chosen

No
action

No
action

No
action

REW

Current
record set
to one or
beginning
address of
logical
unit

Set to

ending
address
of logi-
cal unit

Set to
beginning
address of
logical

unit

Set to

address
of logi-
cal unit

98 A 9952 100

SECTION 3

INPUT/OUTPUT CONTROL

Table 3-3. FCB Words Under 1/0 Macro Control (continued)

Word OPEN

3 Set to
position
of cur-
rent rec-
ord by
mode
chosen

4 Set to
current
position
of file
as noted

on direc-

tory

5 Set to
begin-
ning of
file ad-
dress

6 Set to
end of
file ad-
dress

98 A 9952 100

READ

No
action

No
action

No
action

No
action

WRITE

SREC

Direct-Access Method

No
action

No
action

No
action

No
action

3-37

No
action

No
action

No
action

No
action

CLOSE

Set to
position
of file
on direc-
tory by
mode
chosen

No
action

No
action

No
action

REW

Current
record set
to one or
beginning
address of
logical
unit

Set to

ending
address
of logi-
cal unit

Set to
beginning
address

~of logi-

cal unit

Set to

ending
address
of logi-
cal unit

SECTION 4
JOB-CONTROL PROCESSOR

SECTION 4
JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that permits the scheduling of
VORTEX system or user tasks for background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device assignments.

4.1 ORGANIZATION
The JCP is scheduled for execution whenever an unsolicited operator key-in request
(section 15.2) to the OC logical unit has a slash (/) as the first character.

Once initiated, the JCP processes all further JCP directives from the Sl logical unit.

If the Sl logical unit is a Teletype or a CRT device, the message JC** is output to indicate
the SI unit is waiting for JCP input. The operator is prompted every 15 seconds (by a beil
for the Teletype or tone for the CRT) until an input is keyed in.

If the Si logical unit is a rotating-memory-device (RMD) partition, the job stream is
assumed to comprise unblocked data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters, beginning with a slash. Directives input
on the Teletype are terminated by the carriage return.

98 A 9952 100 4-1

SECTION 4

JOB-CONTROL PROCESSOR

4.2 JOB-CONTROL PROCESSOR DIRECTIVES

This section describes the JCP directives:

a. Job-initiation/termination directives:

/JOB
/ENDJOB
/FINI

/C

/MEM

Start new job

Terminate job in progress

Terminate JCP operation

Comment

Allocate extra memory for
background task

b. 1/0-device assignment and control directives:

/ASSIGN
/SFILE
/SREC

/WEOF
/REW
/PFILE
/FORM
/KPMODE

Make logical-unit assignment(s)

Skip file(s) on magnetic-tape unit

Skip record(s) on magnetic-tape unit or
RMD partition

Write end-of-file mark

Rewind magnetic-tape unit or RMD partition

Position rotating-memory-unit file

Set line count on LO logical unit

Set keypunch mode

¢. Language-processor directives:

-

/DASMR
/FORT

d. Utility directives:

/CONC
/SEDIT
/FMAIN
/LMGEN
/I0OUTIL
/SMAIN

Schedule DAS MR assembler
Schedule FORTRAN compiler

Schedule system-concordance program
Schedule symbolic source-editor task
Schedule file-maintenance task
Schedule load-module generator
Schedule 1/0-utility processor
Schedule system-maintenance task

4.2 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

e. Program-loading directives:

. /EXEC Schedule loading and execution of a
, load-module from the SW unit file
. /LOAD Schedule loading and execution of a

user background task
JCP directives begin in column 1 and comprise sequences of character strings having no
embedded bianks. The character strings are separated by commas (,) or by equal signs
(=). The directives are free-form and blanks are permitted between the individual
character strings of the directive, i.e., before or after commas (or equal signs). Although
not required, a period (.) is a line terminator. Comments can be inserted after a period.
Each JCP directiv_e begins with a slash (/).

The general form of a job-control statement is

/name,p(1),p(2),...,p(n)

where
name is one of the directive names given (any other
character string produces an error)
eachp(n) is a parameter required by the JCP or by the

scheduled task and defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number has a leading zero.
For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas by equal

signs are omitted.

Error messages applicable to JCP directives are given in section 17.4.

98 A 9952 100 4-3

SECTION 4
JOB-CONTROL PROCESSOR

4.2.1 /JOB Directive

This directive initializes all background system pointers and flags, and stores the job

name if one is specified. It has the general form

/JOB,name

where name is the name of the job and comprises up to eight ASCII characters (additional

characters are permitted but ignored by the JCP).

The job name, if any, is then printed at the top of each page for all VORTEX background

programs.

Example: Initialize the job TASKONE.

/JOB, TASKONE

4.2.2 /ENDJOB Directive

This directive initializes all background system pointers and flags, and clears the job

name. It has the form

/ENDJOB

Example: Terminate the job in process.

/ENDJOB

4.4

98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.3 /FINI (Finish) Directive

This directive terminates all JCP background operations and makes an EXIT request to
the real-time executive (RTE) coinponent (section 2.1.10). It has the form

/FINI

To reschedule JCP after a FINI, input any JCP directive from the OC unit (section 15).

Example: Terminate JCP operations.

/FINI

4.2.4 /C (Comment) Directive

This directive outputs the specified comment to the SO and LO logical units, thus
permitting annotation of the listing. It is not otherwise processed. [t has the general form

/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all mag tapes.

/C,REWIND ALL MAG TAPES

98 A 9952 100 4-5

SECTION 4
JOB-CONTROL PROCESSOR

425 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of main memory to the next scheduled
background task. It has the general form

/MEM,n
where n is the number of 512-word blocks of main memory to be assigned.
/MEM permits larger symbol tables for FORTRAN compilations and DAS MR assemblies.
The total area of the 512-word blocks of memory plus the background program itself
cannot be greater than the total area available for background and nonresident

foreground tasks. An attempt to exceed this limit causes the scheduled task to be
aborted.

Example: Allocate an additional 1,024 words of main memory to the next scheduled
task.

/MEM, 2

4-6 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units to specific I/0 devices. It has
the general form

/ASSIGN,I(1) = r(1),/(2) = r(2),....I(n) = r(n)

where
each I(n) is a logical-unit number (e.g., 102) or name
(e.g., SI)
each r(n) is a logical-unit number or name, or a
physical-device system name (e.g., TYOO,
table 15-1)

The logical unit to the left of the equal sign in each pair is assigned to the unit/device to
the right.

If the controller and unit numbers are omitted from the name of a physical device,
controller 0 and unit O are assumed.

An inoperable device, i.e., one declared down by the ;DEVDN operator key-in request

(section 15.2.10), cannot be assigned. A logical unit designated as unassignable cannot
be reassigned.

Example: Assign the Pl logical unit to card reader CRO0 and the LO logical unit to

Teletype TYQO.

/ASSIGN,PI=CR,LO=TY

98 A 9952 100 4.7

SECTION 4
JOB-CONTROL PROCESSOR

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units, causes the specified logical unit
to move the tape forward the designated number of end-of-file marks. It has the general
form ‘

/SFILE,lun,neof

where
lun is the number or name of the affected logical unit

neof is the number of end-of-file marks to be skipped
If the end-of-tape mark is encountered before the required number of files has been

skipped, the JCP outputs to the SO and LO logical units the error message JCO5,nn, where
nn is the number of files remaining to be skipped.

Example: Skip three files on the Bl logical unit.

/SFILE,BI, 3

4-8 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.8 /SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape unit, causes the specified logical unit
to move the tape the designated number of records in the required direction. It has the
general form

/SREC,lun,nrec,direc

where
lun is the number or name of the affected logical unit
nrec is the number of records to be skipped
direc indicates the direction to be skipped; F (default

value) for forward, or R for reverse
If a file mark, end of tape, or beginning of tape is encountered before the required

number of records has been skipped, the JCP outputs to the SO and LO logical units the
error message JCO5,nn, where nn is the number of records remaining to be skipped.

Example: Skip nine records forward on the BO logical unit.

/SREC, BO, 9

98 A 9952 100 4-9

SECTION 4
JOB-CONTROL PROCESSOR

4.29 /WEOF (Write End of File) Directive

This directive writes an end-of-file mark on the specified logical unit. It has the general
form

/WEOF lun

where lun is the number or name of the affected logical unit.

Example: Write an end-of-file mark on the BO logical unit.

/WEOF, BO

4.2.10 /REW (Rewind) Directive

This directive, which applies only to magnetic-tape units, causes the specified logical
unit(s) to rewind to the beginning of tape. It has the general form

/REW, lun,lun,...,lun

where lun is the number or name of a logical unit to be rewound.

Example: Rewind the BO and P! logical units.

/REW,BO,PI

4-10 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs, causes the specified logical unit to move to the
beginning of the designated file. It has the general form

/PFILE,lun key,name

where
lun is the number or name of the affected logical unit
key is the protection code required to address lun
name is the name of the file to which the Ioglcal unit

is to be positioned

Global file control blocks: There are eight global file control blocks (FCB, section 34.11)
in the VORTEX system that are reserved for background use. System background and
user programs can reference these global FCBs. The /PFILE directive stores key and
name in the corresponding FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding logical-unit FCB, make an RTE
IOLINK service request (section 2.1.12). The names of the global FCBs are SIFCB, PIFCB,
POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and LOFCB, where the first two letters of the
name indicate the logical unit.

Example: Position the Pl logical unit to beginning of file FILEXY, whose protection key is
$.

/PFILE,PI,$,FILEXY

98 A 9952 100 4-11

SECTION 4
JOB-CONTROL PROCESSOR

4.2.12 /FORM Directive
This directive sets the specified line count on the LO logical unit. This is the number of
lines printed by DAS MR assembler or FORTRAN compiler before a top of form is issued.
The directive has the general form

/FORM lines

where lines is the number (from 5 to 9999, inclusive) of lines to be printed before a top of
form is issued.

The default value of lines is defined at system-generation time. If the directive contains a
value outside the legal range, the default value is used.

Example: Set a line-count value of 100.

/FORM, 100

4.2.13 /KPMODE (Keypunch Mode) Directive

This directive specifies the mode, 026 or 029, in which VORTEX is to read and punch
cards. It has the general form

/KPMODE,m

where m is 0 (default value) for 026 mode, or 1 for 029 mode.

Example: Specify that cards be read and punched in 029 keypunch mode.

/KPMODE, 1

4-12 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.14 /DASMR (DAS MR Assembler) Directive

This directive schedules the DAS MR assembler (section 5.1) with the specified options
for background operation on priority level 1. It has the general form

/DASMR,p(1),p(2),...,p(n)

where each p(n), if any, is a single character specifying one of the following options:

Parameter Presence Absence
B Suppresses binary object Outputs binary object
L Outputs binary object Suppresses output of
on GO file binary object on GO file
M Suppresses symbol-table Outputs symbol-table
listing listing
N Suppresses source listing Outputs source listing

The /DASMR directive can contain up to four such parameters in any order.

The DAS MR assembler reads source records from the Pl logical unit on the first pass.
The Pl unit must have been set to the beginning of device before the /DASMR directive.
This can be done with an /ASSIGN (section 4.2.6), /SFILE (section 4.2.7), /REW (section
4.2.10), or /PFILE (section 4.2.11) directive.

A load-and-go operation requires, in addition, an /EXEC directive (section 4.2.22).
Example: Schedule the DAS MR assembier with no source listing, but with binary-object
output on the GO file.

/DASMR,N, L

98 A 9952 100 4-13

SECTION 4
JOB-CONTROL PROCESSOR

4.2.15 /FORT (FORTRAN Compiler) Directive

This directive schedules the FORTRAN compiler (section 5.3) with the specified options for
background operation on priority level 1. It has the general form

/FORT,p(1),p(2),....p(n)

where each p(n), if any, is a single character specifying one of the following options:

Parameter Presence Absence

B Suppresses binary object Outputs binary object

D Assigns two words to Assigns one word to
integer array items and integer array items and
to integer and logical to integer and logical
variables (ANS! standard) variables

L Outputs binary object Suppresses output of
on GO file binary object on GO file

M Suppresses symbol-table Outputs symbol-table
listing listing

N Suppresses source listing Outputs source listing

0 Outputs object-module Suppresses object-module
listing listing

X Compiles conditionally Compiles normally

The /FORT directive can contain up to seven such parameters in any order.

4-14 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

The FORTRAN compiler reads source records from the Pl logical unit. The Pl unit must
have been set to the beginning of device before the /FORT directive. This can be done
with an /ASSIGN (section 4.2.6), /SFILE (section 4.2.7), /REW (section 4.2.10), or /PFILE
(section 4.2.11) directive.

A load-and-go operation requires, in addition, an /EXEC directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary-object, source, symbol-table, and
object-module listings; normal compilation; and no binary-object output on the GO file.

/FORT, O

4.2.16 /CONC (System Concordance) Directive
This directive schedules the system concordance program (section 5.2) for background
operation. It has the form

/CONC

The concordance program inputs from the SS logical unit and uses the same source
statements that are input to the DAS MR assembler. It outputs to the LO logical unit a
listing of all symbols and their referenced locations in the same input program.

The SS unit is set to the beginning of device before the /CONC directive.
Example: Schedule the system concordance program.

/ASSIGN, SS=MT00

/REW, SS

/CONC

/PFILE,SS,,SS
/CONC

98 A 9952 100 4-15

SECTION 4
JOB-CONTROL PROCESSOR

4.2.17 /SEDIT (Source Editor) Directive

This directive schedules the symbolic source editor (section 8) for background operation
on priority level 1. It has the form

/SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance) Directive

This directive schedules the file maintenance task (section 9) for background operation
on priority level 1. It has the form

/FMAIN

Example: Schedule the file maintenance task.

/FMAIN

4-16 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4219 /LMGEN (Load-Module Generator) Directive

This directive schedules the load-module generator (section 6) for background operation
on priority level 1. A memory map is output unless suppressed. The directive has the
general form

/LMGEN,M

where M, if present, suppresses the output of a memory map.

Example: Schedule the load-module generator task without a memory map.

/LMGEN M

4.2.20 /IOUTIL (170 Utility) Directive

This directive schedules the 170 utility processor (section 10) for background operation on
priority level 0. The directive has the form

/1OUTIL

Example: Schedule the 170 utility processor.

/IOUTIL

98 A 9952 100 4-17

SECTION 4
JOB-CONTROL PROCESSOR

4.2.21 /SMAIN (System Maintenance) Directive

This directive schedules the system maintenance task (section 14) for background
operation on priority level 1. The directive has the form

/SMAIN

Example: Schedule the system maintenance task.

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and execute a load module from
the SW logical unit file. Since this is not a VORTEX system task, execution is on priority
level 0. The directive has the general form

/EXEC,D
where D, if present, dumps all of background upon completion of execution.
Example: Schedule the loading of a user load module from the SW unit file without a
background dump.
/EXEC

Schedule a FORTRAN load-and-go operation.

/FORT, L
/EXEC

4-18 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

4.2.23 /LOAD Directive

This directive schedules a user task, which must be present in the background Iibrary,'for
background execution on priority level 0. The directive has the general form

/LOAD,name,P(1),p(2),....p(n)

where
name is the name of the user task being scheduled
each p(n) is a parameter required by the user task
(if any)

Each parameter specified, if any, will be in the job-control buffer when the user task is
scheduled. The parameter string, which can extend to the end of the 80-character buffer,
will appear in the buffer exactly as it does in the input directive. The address of the first
word of the parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parameters ALPHA1 and ALPHA2.

/LOAD, TSKONE ,ALPHA 1, ALPHA2

98 A 9952 100 4-19

SECTION 4
JOB-CONTROL PROCESSOR

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are envoked by JCP control directives in
combination with programs and data. These elements form the input job stream to
VORTEX. The input job stream can come from various peripherals and be carried on
various media. These examples illustrate common job streams and deck-preparation
techniques.

Example 1 - Card Input: Compile a FORTRAN IV main program (with source listing and
octal object listing), and assemble a DAS MR subprogram. Then load and execute the
linked program.

/JOB, EXAMPLE 1
/FORT,L,0

(Source Deck)

/DASMR, L

(Source Deck)

/EXEC
/ENDJOB

4-20 98 A 9952 100

SECTION 4
JOB-CONTROL PROCESSOR

Example 2 - Card Input: Assemble a DAS MR program (with source listing and load-
and-execute) and generate a concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER1 with protection key U. Assign the PI logical
unit to RMD partition DOOK, open file name USER1 for the assembler, assemble the
program, and execute the program with a dump.

/JOB, EXAMPLE2
/ASSIGN,PI=D00K
/PFILE,P1,U,USER1
/DASMR, L
/PFILE,SS, ,SS
/CONC

/EXEC,D

/ENDJOB

Example 3 - Card Input: Assemble a DAS MR program (with source listing and obiject-
module output on the BO logical unit). Assign the Pl logical unit to magnetic-tape unit
MTOO, the PO logical unit to dummy device, the SS logical unit to the PI logical unit, the
BO logical unit to RMD partition D00J, and output the object module to file name USER2
with no protection key. Before assembly, position the Pl logical unit to the third file.
Allocate four additional 512-word blocks for the DAS MR symbol-table area.

/JOB , EXAMPLE3
/ASSIGN,PI=MT00,PO=DUM,SS=PI,BO=D00J
/REW,PI

/SFILE,PI,2

/PFILE,BO, ,USER2

/MEM, 4

/DASMR

/ENDJOB

98 A 9952 100 421

SECTION 4
JOB-CONTROL PROCESSOR

Example 4 - Card Input: After generation of a VORTEX system, use FMAIN to initialize
and add object modules to the object-module library (OM) with protection key D. Assign
the Bl logical unit to CROO.

/JOB, EXAMPLEY
/ASSIGN,BI=CROO
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

.

.

(Object Modules)

(2-7-8-9 EOF Card)

.

/ENDJOB

4-22 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports two language processors: the DAS MR
assembler (section 5.1) and the FORTRAN IV compiler (section 5.3), plus the ancillary
concordance program (section 5.2).

5.1 DAS MR ASSEMBLER

DAS MR is a two-pass assembler scheduled by job-control directive /DASMR (section
4.2.14). DAS MR uses the secondary storage device unit for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on the PO unit. The source input for
pass 2 is entered from the SS logical unit.

When an END statement is encountered, the SS unit is repositioned and reread. During
pass 2, the output can be directed to the BO and/or GO units for the object module and
the LO unit for the assembly listing. The SS or PO file, which contains a copy of the source
module, can be used as input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the first of which must be alphabetic,
with the rest alphabetic or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form an extended symbol up to the
limit imposed by a single line of code. However, only the first six characters are
recognized by the assembler.

Since the DAS MR assembler is used within the VORTEX system under VORTEX 1/0
control, the VORTEX user can specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD partition.

DAS MR has a symbol-table area for 175 symbols at five words per symbol. To increase

this area, input before the /DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by 100 symbols.

98 A 9952 100 5-1

SECTION 5
LANGUAGE PROCESSORS

A VORTEX physical record on an RMD is 120 words. Source records are blocked three 40-
word records per VORTEX physical record, and object modules are blocked two 60-word
modules per record. However, in the case where S| = Pl = RMD, records are not blocked
but assumed to be one per VORTEX physical record.

Details of the DAS MR assembly language are given in the Varian 620/f Computer
Handbook (document 98 A 9908 001). These references include descriptions of the
directives recognized by the assembler (table 5-1), except for the new directive TITLE,
which is discussed below.

Table 5-1. Directives Recognized by the DAS MR Assembler

BES DETL EQU MAC PZE

BSS DUP EXT MZE PETU*

CALL EJEC FORM NAME SET

COMN END GOTO NULL SPAC

CONT EMAC IFF OPSY SMRY

DATA ENTR IFT ORG TITLE
LOC

5.1.1 TITLE Directive

This directive changes the title of the assembly listing and the identification of the object
program. It has the general form

TITLE symbol

where symbol is the new title of the assembly listing; the label field being ignored by the
assembler. There are a maximum of eight characters in symbol.

5.2 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

At the beginning of assembler pass 1, the title of the assembly listing and the
identification of the object program are initialized as blanks. When a TITLE directive is
encountered, title and identification assume the symbol given in the directive.
Examples: Entitle the assembly listing and object program NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and identification, obliterating the old title.

TITLE

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the real-time executive (RTE,
section 2.1) and 1/0 control (IOC, section 3.4) macros. Figure 5-1 iilustrates these
definitions.

M1 MAC
EXT v$ioc
JSR v$10C, 1
DATA 0100000
F FORM 1,3,4,8
F p(1),p(2),pP(3),pP(4)
DATA P(5),0,0
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR

98 A 9952 100 5.3

SECTION 5
LANGUAGE PROCESSORS

*

L NEE SN K

READ

* * *

*

WEOF

VORTEX READ MACRO DEFINITION
READ DCB,LUN,W, M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE
MAC
M1 P(3),p(4),0,P(2),P(1)
EMAC

VORTEX WRITE MACRO DEFINITION
WRITE DCB,LUN,W, M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE
MAC
M1 P(3),p(4),1,p(2),P(1)
EMAC

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,2,pP(2),P(1)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

98 A 9952 100

REW

L R I B

*

SREC

FUNC

SECTION 5
LANGUAGE PROCESSORS

VORTEX REWIND MACRO DEFINITION
REW DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,3,pP(2),P(1)
EMAC

VORTEX SKIP RECORD MACRO DEFINITION
SREC DCB,LUN,W,M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE
MAC
M1 p(3),p(4),4,P(2),P(1)
EMAC

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 p(3),0,5,P(2),P(1)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

98 A 9952 100 5.5

SECTION 5
LANGUAGE PROCESSORS

* VORTEX OPEN MACRO DEFINITION
* OPEN FCB,LUN,W,M
* WHERE FCB = FCB OR DCB ADDRESS
* LUN = LOGICAL UNIT NO.
* W = WAIT OPTION
* M = I/0 MODE
OPEN MAC
M1 p{3),p(4),6,P(2),P(1)
EMAC
*
* VORTEX CLOSE MACRO DEFINITION
* CLOSE FCB,LUN,W,M
* WHERE FCB = FCB OR DCB ADDRESS
* LUN = LOGICAL UNIT NO.
* W = WAIT OPTION
* M = I/0 MODE
CLOSE MAC
M1 p(3),pP(8),7,P(2),P(1)
EMAC
*
* VORTEX STATUS MACRO DEFINITION
* STAT FCB,ERR,EOF ,EOD, BUSY
* WHERE FCB = FCB OR DCB ADDRESS
* ERR = ERROR RETURN ADDRESS
* EOF = END OF FILE, BEGINNING
* OF DEVICE, OR BEGINNING OF
* TAPE RETURN ADDRESS

*

EOD = END OF DEVICE OR END OF TAPE
* RETURN ADDRESS
* BUSY = BUSY RETURN ADDRESS

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-6 98 A 9952 100

STAT

DCB

#* % * % X X X ¥ * *

FCB

98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

MAC

EXT V$10ST

JSR V$10ST, 1

DATA P(1),p(2),p(3),P(4),P(5)

EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL,BUF,CNT
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS

CNT = COUNT
MAC
DATA p(1),p(2),P(3)
EMAC

VORTEX FILE CONTROL BLOCK MACRO DEFINITION
FCB RL,BUF,AC,KEY, 'N1','N2', 'N3'
WHERE RL = RECORD LENGTH
BUF = DATA ADDRESS
AC = ACCESS METHOD
KEY = PROTECTION KEY
N1 = FIRST 2 ASCII FILE NAME
N2 = SECOND 2 ASCII FILE NAME
N3 = THIRD 2 ASCII FILE NAME

MAC

DATA P(1),P(2)

FORM 6,2,8

F o,p(3),p(4)

DATA 0,0,0,0,P(5),P(6),P(7)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-7

SECTION 5
LANGUAGE PROCESSORS

M2 MAC
EXT V$EXEC
JSR VS$EXEC, 1
EMAC
*
* VORTEX SCHEDULE MACRO DEFINITION
* SCHED PL,W,LUN,KEY, 'N1','N2"', 'N3"’
* WHERE PL = PRIORITY LEVEL
* W = WAIT OPTION
* LUN = LOGICAL UNIT NO.
* KEY = PROTECTION KEY
* N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
SCHED MAC
M2
F FORM 3,1,6,1,5
F o,p(2),1,0,pP(1)
F FORM 8,8
F p(4),p(3)
DATA P(s),p(6),P(7)
EMAC
*
* VORTEX EXIT MACRO DEFINITION
* EXIT
*
EXIT MAC
M2
DATA 0200
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5.8 98 A 9952 100

*

SUSPND

LR R I R R

RESUME

[JEEE N B .

ABORT

SECTION 5
LANGUAGE PROCESSORS

VORTEX SUSPEND MACRO DEFINITION

SUSPND T
WHERE T = TYPE OF SUSPENSION
MAC
M2
FORM 4,6,5,1
F 0,3,0,pP(1)
EMAC

VORTEX RESUME MACRO DEFINITION
RESUME 'N1','N2','N3"'
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA ou00,P(1),pP(2),P(3)

EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1','N2", 'N3'
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA 0500,P(1),P(2),P(3)

EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

98 A 9952 100 5.9

SECTION 5
LANGUAGE PROCESSORS

ALOC

*
*
*

DEALOC

PMSK

F1

VORTEX ALLOCATE MACRO DEFINITION

ALOC ADDR
WHERE ADDR = ADDRESS OF REENTRANT
SUBROUTINE
MAC
M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

MAC

M2

DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM,MSK, TYP
WHERE NUM = PIM NUMBER
MSK = PIM LINE MASK
TYP = ENABLE OR DISABLE TYPE

MAC

M2

FORM 4,6,5,1

F1 0,010,0,P(3)
FORM 8,8

F P(1),p(2)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-10

98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

*

* VORTEX DELAY MACRO DEFINITION
* DELAY T5,TM,DT
* WHERE T5 = DELAY TIME IN 5 MILLI-
* SECOND INCREMENT
* TM = DELAY TIME IN 1 MINUTE
* INCREMENTS
* DT = DELAY TIME
DELAY MAC
M2
F FORM 4,6,4,2
F 0,011,0,P(3)
DATA P(1),p(2)
EMAC
*
* VORTEX TIME REQUEST MACRO DEFINITION
* TIME
*
TIME MAC
M2
DATA 01200
EMAC
*
* VORTEX OVERLAY MACRO DEFINITION
* OVLAY TF, 'N1','N2', 'N3’
* WHERE TF = TYPE FLAG
* N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

98 A 9952 100 5-11

SECTION 5
LANGUAGE PROCESSORS

OVLAY MAC
M2
F FORM 4,6,5,1
F 0,013,0,P(1)
DATA p(2),p(3),P(4)
EMAC
*
* VORTEX IOLINK MACRO DEFINITION
* IOLINK LUN,BUF,NUM
* WHERE LUN = LOGICAL UNIT NO.
* BUF = USER'S BUFFER LOCATION
* NUM = BUFFER SIZE
IOLINK MAC
M2
F FORM 4,6,6
F 0,014,P(1)
DATA P(2),pP(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5.1.3 Assembly Listing Format

Figure 5-2 is a sample listing following the format described in this section.

Page format: The assembly listing is limited to the number of lines per page specified by
the VORTEX resident constant V$PLCT, with each line containing no more than 120
characters. Each page has a page number and title line followed by one blank line, and
then the program listing containing two lines less than the number specified by V$PLCT.
(This specification can be changed through the job-control processor (JCP).)

5-12 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

PAGE 23 01/22/72 PROG1 VORTEX DASMR V$JCP
588 EJEC
589 =*
590 =* SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE
591 =*
000660 074056 A 592 JCPRT STX JSPRX
000661 064056 A 593 STB JCPRB
000662 010412 A 594 LDA V$JCB GET BUFFER ADDRESS
000663 005311 A 595 DAR
000664 054003 A 596 STA *+4 SETUP LOFCB
597 IOLINK LO,*, 41
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598 LDX VSLUT1 ADRS OF LOG UNIT TBL
000673 015003 A 599 LDA s0,X
000674 150463 A 600 ANA BM377 SO CUR ASSIGNMT
000675 054274 A 601 STA JCTA
000676 015002 A 602 LDA SI,X
000677 150463 A 603 ANA BM377 SO CUR ASSIGNMT

Figure 5-2. Sample Assembly Listing

98 A 9952 100 5.13

SECTION 5

LANGUAGE PROCESSORS

000700
000701
000702
000703
000704

WRITE
000705
000706
000707
0060710
000711
000712
000713
000714
000715
000716
000717
000720
000721
000722
000723

Jc

144271
001010
000714
017000
054004

BUFFER
006505
000630
100000
010403
000633
000000
000000
030400
015005
150463
144252
001010
000733
017000
054004

WRITE JC BUFFER

604
605

606
607
608
SO

P oH D o D

=)
(o]

609
610
611

613

614
615
616
TO LO

> o> W oB PP P PP PEY P EDP

612

JCPR1

SUB
JAZ

LDA
STA

WRITE

LDX
LDA
ANA
SUB
JAZ

LDA
STA

WRITE

JCTA
JCPR1

JCFBCS+3

*45

LOFCB,S0,0,1

VS$LUT1
LO,X
BM377
JCTA
JCPRE

JCFCBS+3

*+5

LOFCB,LO,0,1

SO, SI SAME LUN

STORE 'LOFCB' ADRS IN CALL

No -WRrrE o SO

LO CUR ASSIGNMT
LO, SO SAME LUN

YES

STORE

'LOFCB'

ADRS IN CALL

NOo - WRITE T WO

Figure 5-2. Sample Assembly Listing (continued)

98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

At the end of the assembly, the following information is printed after the END statement:

A line containing the subheading ENTRY NAMES

All entry names (in four columns), each preceded by its value and a flag to
denote whether the symbol is absolute (A), relocatable (R), or common (C).

A line containing the subheading EXTERNAL NAMES

All external names (in four columns), each preceded by its value and a flag to
denote that the symbol is external (E)

A line containing the subheading SYMBOL TABLE

The symbol table (in four columns), each symbol preceded by its value and a
flag to denote whether the symbol is absolute (A), relocatable (R), common (C),
or external (E)

A line containing the subheading mmmm ERRORS ASSEMBLY COMPLETE,
where mmmm is the accumulated error count expressed as a decimal integer,
right-justified and left-blank-filled

Line format: Beginning with the first character position, the format for a title line is:

a.

b.

One blank

The word PAGE

One blank

Four character positions that contain the decimal page number
Two blanks

Eight character positions that contain the current date obtained from the
VORTEX resident constant V$DATE

98 A 9952 100 5.15

SECTION 5
LANGUAGE PROCESSORS

0.

Two blanks

Eight character positions that contain the program identification obtained from
the VORTEX resident constant V$JNAM

Two blanks

The word VORTEX

Two blanks

The word DASMR

Two blanks

Eight character positions that contain the program title from the TITLE directive

Blanks through the 120th character position

Beginning with the first character position, the format for an assembly line is:

a.

b.

One blank

Six character positions to display the location counter (octal) of the generated
data word

One blank

Six character positions to display the generated data word (octal)

One blank

One character position to denote the type of generated data word: absolute

(A), relocatable (R), common (C), external (E), literal (L), or indirect-address
pointer generated by the assembiler ()

5-16 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

g. One blank

h. Four character positions containing the decimal symbolic source statement line
number, right-justified and left-blank-filled

i. One blank

j. Eighty character positions that contain the image of the symbolic source
statement. (If the symbolic source statement is not a comment statement, the
label, operation, and variable fields are reformatted into symblolic source
statement character positions 1, 8, and 16, respectively. If commas separate
the label, operation, and variable fields, they are replaced by blank characters.)

k. Blanks, if necessary, through the 120th character position

98 A 9952 100 5.17

SECTION 5
LANGUAGE PROCESSORS

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an indexed listing of all source
statement symbols, giving the number of the statement associated with each symbol and
the numbers of all statements containing a reference to the symbol. CONC is scheduled
by job-control directive /CONC (section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The concordance is output on the LO unit.
CONC uses system global file control block SSFCB. If the SS logical unit is an RMD, a
/REW or /PFILE directive (section 10) establishes the FCB before the /CONC directive is
input to the JCP.

CONC has a symbol-table area to process 400 no-reference symbols at five words per
symbol, plus 400 referenced symbols (averaging five references per symbol) at ten words
per symbol. To increase this area, input before the /CONC directive a /MEM directive
(section 4.2.5), where each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source statements per 120-word VORTEX
physical record) and unpacked records (one source statement per record).

5.2.1 Input

CONC receives source-statment input from the SS logical unit. There is, however, no
positioning of the SS unit prior to reading the first record. The source statements are
identical with those input to the VORTEX assembler and thus conform to the assembler
syntax rules.

As the inputs are read, each source statement is assigned a line number, 1, 2, etc., which
is identical with that printed on the assembly listing. When a symbol appears in the label
field of a symbolic source statement, the line number of that source statement is
assigned to the symbol. When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a reference for the symbol.

5-18 98 A 9952 100

5.2.2

SECTION 5
LANGUAGE PROCESSORS

Output

CONC outputs the concordance listing on the LO logical unit. Output begins when one of
the following events occurs:

a.

b.

C.

d.

€.

CONC processes the source statement END
Another job-control directive is input

An SS end of file or end of device is found
A reading error is found

The symbol-table area is filled

If the output occurred because the symbol-table area of memory was full, CONC clears the
concordance tables, outputs error message CNO1, and continues until one of the other
terminating conditions is encountered. In all other cases, CONC terminates by calling

EXIT.

The concordance listing is made in the order of the ASCIl values of the characters
comprising the symbols. '

Beginning with the first character position, the format for a title line is:

a.

b.

One blank

The word PAGE

One blank

Four character positions that contain the decimal page number
Two blanks

Eight character positions that contain the date obtained from the VORTEX
resident constant VSDATE

98 A 9952 100 5-19

SECTION 5
LANGUAGE PROCESSORS

g- Two blanks

h. Eight character positions that contain the program identification obtained from
the VORTEX resident constant V$JNAM

i. Two blanks

j. The word VORTEX

k. Two blanks

. The word CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a concordance cross-reference
listing is:

a. Two blanks

b. Four character positions that contain the decimal line number of the source
statement assigned to the symbol in item (e) below

c. One blank

d. One character position containing an asterisk (*) if there are no references to
that symbol (otherwise blank)

e. Six character positions containing the symbol being listed

f. Two blanks

g. Four character positions that contain the decimal line number of a source
statement referencing the symbol in item (e) above

5.20 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

h. ltems (f) and (g) are repeated as necessary for each source statement
referencing the symbol in item (e) above, where up to nine references are
placed on the first line, and subsequent references on the next line(s).
Continuation lines that may be required for ten or more references to the same
symbol do not repeat items (a) through (e)

i. Blanks through the 72nd character position of the last line of the entry

Figure 5-3 illustrates the concordance listing.

PAGE 1 09/22/71 VSOPCM VORTEX CONC

509 B 841 859 879 990 1001 1002 1012 1068 1072
1074 1112 1230 1231

261 B10 *

262 B11 *

263 B12 *

1206 ODATE 1180 1182 1190

1937 ONUM 895 928 936 1017 1182 1190 1196 1254 1284
1406 1418

Figure 5-3. Sample Concordance Listing

98 A 9952 100 ' 5.21

SECTION 5
LANGUAGE PROCESSORS

5.3 FORTRAN IV COMPILER

The FORTRAN IV compiler is a one-pass compiler scheduled by job-control directive
/FORT (section 4.2.15). The compiler inputs a source module from the PI logical unit and
produces an object module on the BO and/or GO units and a source listing on the LO
unit. No secondary storage is required for a compilation.

If a fatal error is detected, the compiler automatically terminates output to the BO and
GO units. LO unit output continues. The compiler reads from the P! unit until an END
statement is encountered or a control directive is read. Compilation also terminates on
detection of an 1/0 error or an end-of-device, beginning-of-device, or end-of-file indication
from 1/0 control.

The output comprises relocatable object modules under all circumstances: main
programs and subroutines, function, and block-data subprograms.

FORTRAN IV has conditional compilation facilities implemented by an X in column 1 of a
source statement. When the X appears in the /FORT directive, all source statements with
an X in column 1 are compiled (the X appears as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines are assigned listing numbers
in either case, but the source statement is printed only when the X is present.

FORTRAN IV has a symbol-table area for 100 symbols (i.e., names), if none of the logical
units used is assigned to an RMD device. Each RMD assignment requires buffer space of
120 words (except when BO = GO = RMD, in which case BO and GO use the same
buffer) and the symbol capacity is reduced by 24 symbols per buffer. To increase the
symbol-table area, input before the /FORT directive a /MEM directive (section 4.2.5),
where each 512-word block enlarges the capacity of the table by 100 symbols.

A VORTEX physical record on an RMD is 120 words. Source records are blocked three 40-
word records per VORTEX physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record per physical record. However,
in the case where SI = Pl = RMD, records are not blocked but assumed to be one per
VORTEX physical record.

Table 5-2 lists the VORTEX real-time executive (RTE) service request macros available
through FORTRAN IV. These macros are detailed in section 2.1.

5.22 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT EXIT SCHED

ALOC OVLAY SUSPND

DELAY PMSK TIME
RESUME

Excepting the STOP and PAUSE statement, compilation and execution with the VORTEX
operating system is the same as with the MOS system described in Varian 620 FORTRAN
IV Reference Manual (document 98 A 9902 037). STOP and PAUSE statements output
the message

taskname STOP (or PAUSE) n
With VORTEX, the PAUSE statement generates a SUSPND call to the VORTEX executive.

To resume the suspended task, input operator-communication key-in request; RESUME
(section 15.2.4).

FORTRAN-compiled programs can execute either in foreground or background.

Details of the FORTRAN IV compiler language are given in the Varian 620 FORTRAN IV
Reference Manual, except for the new statement TITLE, which is discussed below.

5.3.1 TITLE Statement

This FORTRAN statement prints the title at the top of each page of the source listing and
the object module. it has the general form

TITLE name

where name is the title to be output. The title contains up to eight characters, and is
output in the object text as the name by which the program is to be referenced by SMAIN.

If a TITLE statement is used, it must be the first source statement.

98 A 9952 100 5-23

SECTION 5
LANGUAGE PROCESSORS

5.3.2 Execution-Time 170 Units

All FORTRAN /0 statements (FORTRAN IV manual) include a FORTRAN unit number or
name, which may or may not be identical with the logical unit containing the required
file(s). Three different cases of FORTRAN units must be distinguished as indicated in
figure 5-4.

Case 1, non-RMD unit: The logical-unit number is assigned to the device by SYSGEN
(section 13) or by the JCP /ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to rewind the PO logical unit (unit 10,
magnetic-tape unit 0), the job stack can be:

/ASSIGN,PO=MTO00
/FORT

.

.

.

REWIND 10

5-24 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

‘ START ’

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

VTIi-1445

98 A 9952 100

ASSOCIATED NO FUN
FCB FOUND IS AN RMD
/ PARTITION
YES
CASE
BACKGROUND
PROGRAM.
ACTIVE
GLOBAL FCB FOR
FUN
y
CONSTRUCT AND CONSTRUCT DCB AND
&%ﬁfﬁugggfu LOG /O ERROR EXECUTE 10C CALL EXECUTE I0C CALL
(FUN = LUN) (FUN = LUN)
y
ABORT
FINISH FINISH FINISH

NOTE: THE FORTRAN LOGICAL UNIT FUN IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT LUN UNLESS SO INDICATED,
V$OPEN OVERRIDES A /PFILE ASSIGNMENT,

Figure 5-4. FORTRAN 1/0 Execution Sequences

5-25

SECTION 5
LANGUAGE PROCESSORS

Case 2, RMD file executing in background only: The JCP /PFILE directive (section
4.2.11) positions the Pl unit to a background reassignable logical unit, and loads a global
FCB. As in case 1, the FORTRAN unit number is identical with that of the file unit. Thus,
to read the file FILE1 on logical unit 50 (protection code X) where Pl is logical unit 4, the
job stack can be:

.
L]

/ASSIGN,PI=50
/PFILE,4,X,FILE1
/FORT

.
.

READ (4,...

.
.

Case 3, RMD file executing in foreground or background: The CALL V$OPEN statement
associates any specified RMD file with the FORTRAN unit number. The CALL V$OPEN
statement overrides any /PFILE assignment (case 2). The format of the statement is

CALL V$OPEN(fun,lun,name,mode)

where
fun is the name or number of the FORTRAN unit
lun is the name or number of the file logical unit
name is the name of the 13-word array containing the
file name and the protection code
mode is the mode of the 1/0-control OPEN macro (section
34.1)

5.26 98 A 9952 100

SECTION 5
LANGUAGE PROCESSORS

V$OPEN constructs an FCB in the first ten words of the specified 13-word array, performs -
an 10C OPEN on this FCB, and links it with the active FCB chain. The remaining three
words of the array contain an FCB-chain link, the FORTRAN unit number, and the file
logical unit number. Thus, to reference file FIL on logical unit 20 (protection code Q) by
the number 2, rewinding upon opening the job stack can be:

/FORT
.

DIMENSION IFCB(13)

DATA IFCB{3)/2H @/

DATA IFCB(8),IFCB(9),IFCB(10)/2HFI,2HL ,2H /
*

L]

CALL V$OPEN(2,20,IFCB,0)

File FIL can now be referenced by FORTRAN statements by using 2 as the designation of
the FORTRAN logical unit. For instance,

READ (2,...

executes an 10C READ call, reading from FIL using IFCB as the FCB.

98 A 9952 100 5.27

SECTION 5
LANGUAGE PROCESSORS

Any record in a file opened by VBOPEN can be directly accessed by operating on the FCB
array. Thus, using the job stack in the previous example, record 61 in file FIL is read by
inputting

*
IFCB(4)=61
READ(2,...

To dissolve an existing association between an RMD file and a FORTRAN logical unit, use
the CALL V$CLOS statement of the format.

CALL V$CLOS(fun,mode)
where :
fun is the name or number of the FORTRAN logical unit
mode is the mode of the |/0-control CLOSE macro
(section 3.4.2)
Thus, when the processing of file FIL in the previous example is complete, to close/update

FIL and take IFCB off the active FCB chain so that FORTRAN statements with fun = 2 no
longer reference FIL, the job stack can be:

CALL vscLos(2,1)

5.28 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

SECTION 6
LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task that generates background
and foreground tasks from relocatable object modules. The tasks can be generated with
or without overlays, and are in a form called load modules.

To be scheduled for execution within the VORTEX operating system, all tasks must be
generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job-control processor (JCP) directive
/LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five words per symbol. To increase
this area, input a /MEM directive (section 4.2.5), where each 512-word block will enlarge
the capacity of the table by 100 symbols.
INPUTS to the LMGEN comprise:

« Load-module generator directives (section 6.2) input through the Si logical unit.

« Relocatable object modules from which the load module is generated.

« Error-recovery inputs entered via the SO logical unit.

98 A 9952 100 6-1

SECTION 6
LOAD-MODULE GENERATOR

Load-module generator directives define the load module to be generated. They specify
the task types (unprotected background or protected foreground) and the locations of the
object modules to be used for generation of the load modules. The directives supply
information for the cataloging of files, i.e., for storage of the files and the generation of
file-directory entries for them. LMGEN directives also provide overlay and loading
information. The directives are input through the Si logical unit and listed on the LO
logical unit. If the SI logical unit is a Teletype or a CRT device, the message LM** is
output on it to indicate that the Sl unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to generate the load modules. The
outputs from both the DAS MR assembler and the FORTRAN compiler are in the form of
relocatable object modules. Relocatable object modules can reside on any VORTEX
system logical unit and are loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or overlay, section 6.1.1) becomes
the execution address for that segment. (Note: If the load module being generated is a
foreground task, no object module loaded can contain instructions that use addressing
modes utilizing the first 2K of memory.

A VORTEX physical record on an RMD is 120 words. Object-module records are blocked
two 60-word records per VORTEX physical record. However, in the case of an RMD
assigned as the Sl logical unit, object modules are not blocked but assumed to be one
object module record per physical record.

Error-recovery inputs are entered by the operator on the SO logical unit to recover from
errors in load-module generation. Error messages applicable to this component are given
in section 17.6. Recovery from the type of error represented by invalid directives or
parameters is by either of the following:

6-2 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

a. Input the character C on the SO unit, thus directing LMGEN to go to the SI unit
for the next directive.

b. Input the corrected directive on the SO unit for processing. The next LMGEN
directive is then input from the Sl unit.

If recovery is not desired, input a JCP directive (section 4.2) on the SO unit to abort the
LMGEN task and schedule the JCP for execution. (Note: An irrecoverable error, e.g., 1/0
device failure, causes LMGEN to abort. Examine the 1/0 error messages and directive
inputs to determine the source of such an error.)

OUTPUTS from the LMGEN comprise:

. Load modules generated by the LMGEN

. Error messages

e Load-module maps output upon completion of a load-module generation

Load modules are LMGEN-generated absolute or relocatable tasks with or without
overlays. They contain all information required for execution under the VORTEX operating
system. During their generation, LMGEN uses the SW logical unit as a work unit. Upon
completion of the load-module generation, the module is thus resident on the SW unit.
LMGEN can then specify that the module be cataloged on another unit, if required, and
output the load module to that unit. Figure 6-1 shows the structure of a load module.
Error messages applicable to the load-module generator are output on the SO and LO

logical units. The individual messages, errors, and possible recovery actions are given in
section 17.6.

98 A 9952 100 6-3

SECTION 6
LOAD-MODULE GENERATOR

Load-module maps are output on the LO logical unit upon completion of the load-module
generation, unless suppressed. The maps show all entry and external names and labeled
data blocks. They also describe the items given as defined or undefined, and as absolute
or relocatable, and indicate the relative location of the items. The load-module map lists
the items in the format:

Print position 2345678 9 10 11 12 13 14 15 16

item b X y location

where
item is a left-justified entry or external name or
labeled data block
b is a blank

X is A for an absolute or R for a relocatable item

location is the left-justified relative location of the item

ROOT SEGMENT OVERLAY SEGMENT A

T T T T T T I
I TASK | TASK | TASK | TASK) TASK | TASK | TASK |
b1y 21 3] A1 B C1 Dy BLANK COMMON

U e B e B o BN e BN e BN ol IO ol
L gk gk k] k) k) k) k)

| OVERLAY SEGMENT B

A F-r-r- 71— - - - - - —-=-=-=- -
¥, = NAMED COMMON ITASK ITASKI TASK |
P At gt ¢l BLANK COMMON
Il 4 4 A
pakeoake o o* L. 4

| OVERLAY SEGMENT C
F-r-r-7-7—-7-—-—-—- - ==---- 4
ITASKITASK 1 TASK ITASK FTASK ¢

b al sl ctplegl BLANK COMMON
T e I ntoe I wvs I e BN e

S TR T TS T T 4
I

VTII-1315

Figure 6-1. Load-Module Overlay Structure

6-4 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

6.1.1 Overlays

Load modules can be generated with or without overlays. Load modules with overlays are
generated when task requirements exceed core allocation. In this case, the task is divided
into overlay segments that can be called as required. Load modules with overlays are
generated by use of the OV directive (section 6.2.3) and comprise a root segment and two
or more overlay segments (figure 6-1), but only the root segment and one overlay segment
can be in memory at any given time. Overlays can contain executable codes, data, or
both.

When a load module with overlays is loaded, control transfers to the root segment, which
is in main memory. The root segment can then call overlay segments as required.

Called overlay segments may or may not be executed, depending on the nature of the
segment. It can be an executable routine, or it can be a table called for searching or
manipulation, for example. Whether or not the segment consists of executable data, it
must have an entry point.

The generation of the load module begins with the root segment, but overlay segments
can be generated in any order.

The root segment can reference only addresses contained within itself. An overlay
segment can reference addresses contained within itself or within the root segment. Thus,
all entry points referenced within the root segment or an overlay segment are defined for
that segment and segments subordinate to it, if any.

98 A 9952 100 6-5

SECTION 6
LOAD-MODULE GENERATOR

6.1.2 Common

Common is the area of memory used by linked programs for data storage, i.e., an area
common to more than one program. There are two types of common: named common
and blank common. (Refer to the FORTRAN |V Reference Manual, document number 98
A 9902 037.)

Named common is contained within a task and is used for communication among the
subprograms within that task.

Blank common can be used like named common or for communication among foreground
tasks.

The extent of blank common for foreground tasks is determined at system generation
time. The size of the foreground blank common can vary within each task without
disturbing the positional relationship of entries but cannot exceed the limits set at system
generation time.

The extent of blank common for background tasks is allocated within the load module.
The size of the background blank common can vary within each task, but the combined
area of the load module and common cannot exceed available memory.

Each blank common is accessible only by the corresponding tasks, i.e., foreground tasks’
use only foreground blank common, and background tasks use only background blank

common.

All definitions of named and blank common areas for a given load module must be in the
first object module loaded to generate that load module.

6-6 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

6.2 LOAD-MODULE GENERATOR DIRECTIVES
This section describes the load-module generator directives:
. TIDB Create task-identification block
. LD Load relocatable object modules
. ov Overlay
. LIB Library search
. END

Load-module generator directives begin in column 1 and comprise sequences of character
strings having no embedded blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and blanks are permitted between the
individual character strings of the directives, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator. Comments can be inserted after
the period.

The general form of a load-module generator directive is

name,p(1),p(2),....p(n)

where
name is one of the directive nhames given above
each p(n) is a parameter required by the directive and
(if any) defined below under the descriptions of the

individual directives
Numerical data can be octal or decimal. Each octal number has a leading zero.
For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas (,) by

equal signs (=) are omitted.

Error messages applicable to load-module generator directives are given in section 17.6.

98 A 9952 100 6-7

SECTION 6
LOAD-MODULE GENERATOR

6.2.1 TIDB (Task-ldentification Block) Directive

This directive must be input before any other LMGEN directives can be accepted. It
permits task scheduling and execution, and specifies the overlay and debugging
characteristics of the task. The directive has the general form '

TIDB,name, type,segments, DEBUG

where

name is the name (1 to 6 ASCIl characters) of the task

type is 1 for an unprotected background task, or 2 for
a protected foreground task

segments is the number (2 to 9999) of overlay segments in
a task with overlays, or 0 for a task without
overlays (note that the number 1 is invalid)

DEBUG is present when debugging is desired

The DEBUG parameter includes the DEBUG object module as part of the task. If the task
is a load module without overlays, DEBUG is the last object module loaded. If the task is a
load module with overlays, DEBUG is the last object module loaded in the root segment
(section 6.1.1).

Examples: Specify an unprotected background task named DUMP as having no overlays
but with debugging capability.

TIDB,DUMP, 1,0, DEBUG

Specify a protected foreground task named PROC as having a root segment and four
overlay segments.

TIDB,PROC,2,4

6-8 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

6.2.2 LD (Load) Directive

This directive specifies the logical unit from which relocatable object modules are to be
loaded. It has the general form

LD, lun,key,file

for loading from RMD logical units, and
LD,lun

for loading from any other logical unit, where

lun is the name or number of the logical unit where
the object module resides

key is the protection code required to address lun

file is the name of the RMD file
From the object modules, LMGEN generates load modules (with or without overlays) on
the SW logical unit. Loading of object modules from the specified logical unit continues

until an end-of-file mark is encountered.

Successive LD directives permit the loading of object modules that reside on different
logical units.

Examples: Load the relocatable object modules from logical unit 6 (BI) until an end-of-
file mark is encountered.

LD,6

Open a file named DUMP on logical unit 9 (GO) with no protection code. (LMGEN loads
the relocatable object modules and closes the file.)

LD,9, ,DUMP

98 A 9952 100 6-9

SECTION 6
LOAD-MODULE GENERATOR

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment is an overlay segment. It has the general
form

OV,segname

where segname is the name (1 to 6 ASCII characters) of the overlay segment.

Example: Specify SINE as an overlay segment.

i

OV, SINE

6.2.4 LIB (Library) Directive

This directive indicates that all load (LD, section 6.2.2) directives have been input, i.e., all
object modules have been loaded except those required to satisfy undefined externals.
LIB also specifies the libraries to be searched (and the order in which the search is made)
to satisfy all undefined externals. The directive has the general form

LIB,lun(1),key(1),lun(2),key(2),....lun(n),key(n)
where
each lun(n) is the name or number of a resident-library

RMD logical unit to be searched

each key(n) is the protection code required to address
the preceding logical unit

6-10 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

The search is conducted in the order in which the logical units are given in the LIB
directive. When not specified by LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been searched. However, if LIB
specifies the CL and/or OM libraries, they are searched in the order given in LIB.

If the generation of the load module involves overlays, a LIB directive follows each overlay
generation.

Examples: Specify to the LMGEN a sequence of libraries to be searched to satisfy
undefined externals. Use logical unit 115, a user library, having protection code M,;
followed by logical unit 103, the CL library, having protection code C; and the OM library,
having protection code D. (Because the last two libraries are searched in any case, note
that the two inputs following are equivalent.) Input

LIB,115,M,103,C,104,D

or, more briefly,

LIB,115,M

To change the order of search to logical units 104, 115, and 103, input
LIB,104,D,115,M4,103,C

or, more briefly,

LIB,104,D,115,M

To search only the CL and OM libraries to satisfy undefined externals, input

LIB

98 A 9952 100 6-11

SECTION 6
LOAD-MODULE GENERATOR

6.2.5 - END Directive

This directive terminates the generation of the load module and, if specified, causes the
creation of a file and a directory entry (section 9) for the load-module contents on the
indicated logical unit. The indicated logical unit, if any, is an RMD, and thus requires a
protection code. The directive has the general form

END,lun,key

where
lun is the name or number of the logical unit on which the
file containing the load module will reside

key is the protection code, if any, required to address
lun

If TIDB (section 6.2.1) specified an unprotected background task (TIDB directive type =
1), the logical unit, if any, specified by the END directive must be that of the BL unit, i.e,,
unit 105. If TIDB specified a protected foreground task (TIDB directive type = 2), the
logical unit, if any, specified by the END directive must be that of the FL unit, i.e., unit
106, or that of any available assigned RMD partition.

If the END directive does not specify a logical unit, the load module resides on the SW
logical unit only.

If there are still undefined externals, the load module is not catalogued even if END
specifies a legal logical unit. In this case, the load module resides on the SW unit only.

Examples: Specify that the load module is complete (no more inputs to be made), create
a file and a directory entry on the BL logic | unit (105), and catalog the module. The
protection code is E. (Note: The load module will also reside on the SW unit.)

END, 105 ,E

Specify that the load module is complete (no more inputs to be made) and is to reside on
the SW unit only.

END

6-12 98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

6.3 SAMPLE DECKS FOR LMGEN OPERATIONS
Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN with control records input
from the Teletype and object module(s) on cards. Assign the Bl logical unit to card reader
unit CROO. Assign the task name EXC4 and catalog to the BL logical unit, and load
DEBUG as part of the task from the OM library.

/J0B ,EXAMPLE4 (Teletype input)
/ASSIGN,BI=CRO0O

/LMGEN

TIDB,EXCH4,1,0,DEBUG

LD,BI

LIB

END, BL,E

/ENDJOB

Note: The object module deck must be followed by an end of file (2-7-8-9 in card
column 1).

98 A 9952 100 6-13

SECTION 6
LOAD-MODULE GENERATOR

Example 2: Card Input

Generate a foreground task with overlays using LMGEN with control records and object
modules input from the card reader. Assign the Bl and Sl logical units to card reader unit
CRO0O. Assign the task name EXC5, overlay names SGM1, SGM2, and SGM3, and catalog

to the FL logical unit.

/JOB ,EXAMPLES
/ASSIGN,BI=CRO0,SI=CRO0

(Deck)
/LMGEN
TIDG,EXC5,2,3
LD,BI
(Object Module(s) -- root segment)
(End of File)

LIB

OVL, SGM1

(Object Module(s))
(End of File)

LIB

OVL, SGM2

(Object Module(s))
(End of File)

LIB

OVL , SGM3

- (Object Module(s))
(End of File)

LIB

END,FL,F

/ENDJOB

6-14

98 A 9952 100

SECTION 6
LOAD-MODULE GENERATOR

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN with control records input
from the Teletype and object moduie(s) from an RMD. The object module resides on RMD
107 under the name PGEX. Acsign the task name EXC6, search the OM library first to
satisfy any undefined externals, and catalog on RMD 120.

/JOB, EXAMPLE6
/LMGEN
TIDB,EXC6,2,0
LD, 107,2,PGEX
LIB,OM,D

END, 120,X
/ENDJOB

98 A 9952 100 6-15

SECTION 7
DEBUGGING AIDS

SECTION 7
DEBUGGING AIDS

The VORTEX system contains two debugging aids: the debugging program (DEBUG)
and the snapshot dump program (SNAP).

7.1 DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) is added to a task load module

whenever the DEBUG option is specified by a load-module generator TIDB directive

(section 6.2.1). The DEBUG object module is the last object module loaded if the root
segment of the task is an overlay load module. The load-module generator sets the load-
module execution address equal to that of DEBUG.

If the load module has been cataloged, DEBUG executes when the module is scheduled.
Otherwise, JCP directive /EXEC (section 4.2.22) is used to schedule the module and
DEBUG.

During the execution of DEBUG, the A, B, and X pseudoregisters save the contents of the
real A, B, and X registers, and restore the contents of these registers before terminating
DEBUG.

When debugging is complete, the input of any job-control directive (section 6.2) returns
control to the VORTEX system.

INPUTS to DEBUG comprise the directives summarized in table 7-1 input through the DI
logical unit. When DEBUG if first entered, it outputs on the Teletype or CRT device the
message DG** followed by the TIDB task name and the address of the first allocatable
memory cell. This message indicates that the system is ready to accept DEBUG directives
on the DI unit.

Each DEBUG directive has from 0 to 72 characters and is terminated by a carriage

return. Directive parameters are separated by commas, but DEBUG treats commas,
periods, and equal signs as deliminters.

98 A 9952 100 7-1

SECTION 7
DEBUGGING AIDS

Table 7-1. DEBUG Directives

Directive Description

A Display and change the contents of the A pseudoregister

Ax Change, but do not display, the contents of the A psuedo-
register

B Display and change the contents of the B pseudoregister

Bx Change, but do not display, the contents of the B pseudo-
register

Cx Display and change the contents of memory address x

Gx Load the contents of the pseudoregisters into the respec-

tive A, B, and X registers, and transfer to memory address x

Ix,y,z Initialize memory addresses x through y with the value of z

(0] Display and change the overflow indicator

Sx,y,z,m Search memory addresses x through 'y for the z value, using
mask m

Ty,x Place a trap at memory address y, starting execution at
address x

Ty Place a trap at memory address y, starting execution at

the last trap location

7.2 98 A 9952 100

SECTION 7
DEBUGGING AIDS

Table 7-1. DEBUG Directives (continued)

Directive Description

X Display and change the contents of the X pseudoregister

Xy Change, but do not display, the contents of the X pseudo-
register

XXXXXX Display the contents of memory address xxxxxx

XXXXXX,YYYYYY Display the contents of memory addresses xxxxxx through
yyyyyy

Numerical data are always interpreted as octal by DEBUG. Negative numbers are
accepted, but they are converted to their two’s complements by DEBUG.

OUTPUTS from DEBUG consist of corrections to registers and memory, displays, listings

on the DO logical unit, and error messages. Numerical data are always to be interpreted
as octal.

Examples of DEBUG directive usage: Note that, in the foliowing examples, operator
inputs are in bold type and the carriage return is represented by the at sign (@). Other
entries, in italics, are program responses to the directives.

Display the contents of a pseudoregister:

A@
(001200)@

Display and change the contents of a pseudoregister:

B@
(001200) 010406@

98 A 9952 100 7-3

SECTION 7
DEBUGGING AIDS

Change, but do not display, the contents of a pseudoregister:
X02050@

Display, but do not change, the status of the overflow indicator:

o@
(000001)@

Display and change the status of the overflow indicator:

o@
(000000) 000001@

Display, but do not change, the contents of memory address 002050:

C002050@
(102401)@

Display and change the contents of memory address 002050:

€002050@
(102401) 001234@

Display and change the contents of memory address 002050, then display the contents of

the next sequential location:
C002050@

(102401) 001234,@
(000067)@

7-4

98 A 9952 100

SECTION 7
DEBUGGING AIDS

Display, but do not change, the contents of memory address 002050, then display the
contents of the next location:

€002050@
(102401) ,@
(000067)@

Load the contents of the pseudoregisters into the respective A, B, and X registers, and
start execution at memory address 001001:

G001001@
Initialize memory addresses 000200 through 000210 to the value 077777
100020,000210,077777 @

Search memory addresses 000200 through 000240 for the value 000110 using the mask
000770, and display addresses that compare:

$000200,000240,000110,000770@
000220 (017110)

000234 (000110)

000237 (001110)@

Load the contents of the pseudoregisters and the overflow indicator status into the
respective registers, and start execution at memory address 001234, specifying a trap

address of 001236. Display the contents of the A, B, and X registers and the setting of
the overflow indicator when the trap address is encountered:

T001236,001234@
(001236) 142340 002000 010405 000001@

Display the contents of memory address 001234:

001234@
001234 (001200)@

98 A 9952 100 7-5

SECTION 7
DEBUGGING AIDS

Display the contents of memory addresses 001234 through 001237:

001234,001237@
001230 005000 005000 005000 005000 005000 005000 005000 005000@

7.2 SNAPSHOT DUMP PROGRAM

The 229-word snapshot dump program (SNAP) provides on the DO logical unit both
register displays and the contents of specified areas of memory. It is added to a task load
module if the task contains a SNAP request and calls the SNAP external routine. SNAP is
entered directly upon execution of the SNAP display request CALL SNAP. The SNAP
display request is an integral part of the task and is assembled with the task directives.
Thus, no external intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB name before listing the
requested items. The calling sequence for a SNAP display is

EXT SNAP
CALL SNAP
DATA start
DATA end
where
start is the first address whose contents are to be displayed
end is the last address whose contents are to be displayed

If start is a negative number, there is no memory dump. If more than one location is
specified to be displayed, the output dump will be in complete lines of eight addresses,
e.g., if start is 01231 and end is 01236, the dump will display the contents of addresses
01230 through 01237, inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the contents of the A, B, and X
registers and the setting of the overflow indicator are displayed.

7-6 98 A 9952 100

SECTION 7
DEBUGGING AIDS

Output examples:

With the SNAP request at 01234, display the contents of the A (017770), B (001244),
and X (037576) registers, and the overflow indicator (on).

SN** TASKO1
001234 017770 001244 037576 000001

Using the same data, display, in addition, the contents of memory addresses 001241
through 001255, inclusive.

SN** TASKO01

001234 017770 001244 037576 000001

601240 005000 005000 005000 005000 005000 005000 005000 005000
001250 001000 001244 000000 000000 000000 000000 000000 000000

98 A 9952 100 7-7

SECTION 8
SOURCE EDITOR

SECTION 8
SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a background task that
constructs sequenced or listed output files by selectively copying sequences of records
from one or more input files. SEDIT operates on the principle of forward-merging of
subfiles and has file-positioning capability. The output file can be sequenced and/or
listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP, section 4.2.17) upon input of the
JCP directive /SEDIT. Once activated, SEDIT inputs and executes directives from the Si
logical unit until another JCP directive (first character = /) is input, at which time
SEDIT terminates and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE operations (section 8.2.8). To
increase this, input a /MEM directive (section 4.2.5), where each 512-word block will
increase the capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the Sl logical unit.

b. Old source records input through the IN logical unit specified by an AS directive
(section 8.2.1).

c. New or replacement source records input through the ALT logical unit specified
by an AS directive.

d. Error-recovery inputs entered via the SO logical unit.

98 A 9952 100 8-1

SECTION 8
SOURCE EDITOR

Source-editor directives specify both the changes to be made in the source records, and
the logical units to be used in making these changes. The directives are input through the
S| logical unit and listed as read on the LO logical unit, with the VORTEX standard
heading at the top of each page. If the Sl logical unit is a Teletype or a CRT device, the
message SE** is output to it to indicate that the SI unit is waiting for SEDIT input.

There are two groups of source-editor directives: the copying group and the auxiliary
group. The copying group directives copy or delete source records input on the IN logical
unit, merge them with new or replacement source records input on the ALT unit, and
output the results on the OUT unit. Copying-group directives must appear in sequence
according to their positioning-record number since there is no reverse positioning. (Note
that if the remainder of the source records on the IN unit are to be copied after all editing
is completed, this must be explicitly stated by an FC directive, section 8.2.9.) Ends of file
are output only when specified by FC or WE directives (sections 8.2.9 and 8.2.13). The
processing of string-editing directives is different from that of record-editing directives. A
string-editing directive affects a specified record, where source records on the IN unit are
copied onto the OUT unit until the specified record is found and read into memory from

the IN unit. After editing, this record remains in memory and is not yet copied onto the
OUT unit. This makes possible multiple field-editing operations on a single source record.
The auxiliary group directives are those used for special 1/0 or control functions.

All source records, whether old, new, or replacement records, are arranged in blocks of
three 40-word records per VORTEX RMD physical record. Record numbers start with 1
and have a maximum of 9999. Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral increment. These specifications for
sequence numbers are given by the SE directive (section 8.2.10).

8-2 98 A 9952 100

SECTION 8
SOURCE EDITOR

Error-recovery inputs are entered by the operator on the SO logical unit to recover from
errors in SEDIT operations. Error messages applicable to this component are given in
section 17.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing SEDIT to go to the SI unit
for the next directive.

b. Input the corrected directive on the SO unit for processing. The next SEDIT
directive is then input from the Sl unit.

If recovery is not desired, input a JCP directive (section 4.2) on the SO unit to abort the
SEDIT task and schedule the JCP for execution. (Note: If there is an 1/0 control error
on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT logical unit specified by an
AS directive (section 8.2.1).

b. Error messages.
c. The listing of the SEDIT directives on the LO logical unit.
d. Comparison outputs (compare-inputs directive, section 8.2.15).
Edited source-record sequences have the same specifications as the input source records.

Error messages applicable to SEDIT are output on the SO and LO logical units. The
individual messages and errors are given in section 17.8.

98 A 9952 100 8-3

SECTION 8
SOURCE EDITOR

The listing of the SEDIT directives is made as the directives are read. SEDIT can also
output other directives for listing on the LO logical unit. The VORTEX standard heading
appears at the top of each page of the listing, and a four-character OUT record number
appears at the beginning of each line.

LOGICAL UNITS referenced by SEDIT are either fixed or reassignable units. The three
fixed logical units are:

a. The Sl logical unit, which is the normal input unit for SEDIT directives.

b. The SO logical unit, which is used for error-processing.

c. The LO logical unit, which is the output unit for SEDIT listings.

The three reassignable logical units are:

a. The SEDIT input (IN) logical unit, which is the normal input unit for source
records. This is assigned to the Pl logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with an IN parameter (section
8.2.1).

b. The SEDIT output (OUT) logical unit, which is the normal output unit for source
records. This is assigned to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which is the alternate input unit
used for new or replacement source records. This is assigned to the Bl logical

unit when SEDIT is loaded, but the assignment can be changed by an AS
directive with an AL parameter.

8-4 98 A 9952 100

8.2 SOURCE-EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying gr

oup:
AS
AD
SA
REPL
SR
DE
SD
Mo

b. Auxiliary group:

FC
SE

Li

GA
WE
REWI
co

Assign logical units
Add record(s)

Add string

Replace record(s)
Replace string
Delete record(s)
Delete string

Move record(s)

Copy file

Sequence records
List records
Gang-load all records
Write end-of-file
Rewind

Compare records

SECTION 8
SOURCE EDITOR

SEDIT directives begin in column 1 and comprise sequences of character strings having
no embedded blanks. The character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are permitted between individual
character strings of the directive, i.e., before or after commas (or equal signs). Although
not required, a period (.) is a line terminator. Comments can be inserted after the period.

98 A 9952 100

85

SECTION 8
SOURCE EDITOR

The general form of an SEDIT directive is

name,p(1),p(2),....p(n)

where
name is one of the directive names given above or a
longer string beginning with one of the directive
names (e.g., AS or ASSIGN)

each p(n) is a parameter defined below under the descrip-
tions of the individual directives

Where applicable in the following descriptions, a field specification of the format
(first,last) or (n1,n2,n3) is still separated from other parameters by parentheses even
though it is enclosed in commas. However, in the case of field parameters within
parentheses, the omission of such a field parameter need not be indicated by double
commas as for an ordinary omitted parameter. Note also that the character string string
is coded within single quotation marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8-6 98 A 9952 100

SECTION 8
SOURCE EDITOR

8.2.1' AS (Assign Logical Units) Directive

This directive specifies a unit assignment for a SEDIT reassignable logical unit (section
8.1). It has the general form

AS,nn = lun, key, file

where

nn is IN if the directive is making an assignment
of the IN logical unit, OU if the OUT logical
unit, or AL if the ALT logical unit

lun is the name or number of the logical unit being
assigned as the IN, OUT, or ALT unit

key is the protection code, if any, required to
address lun :

file is the name of an RMD file, if required

If the SEDIT reassignable units are to retain the assignments made when SEDIT was
loaded (default assignments: IN =PI, OUT=PO, ALT=BI). no AS directive is required.
Each AS directive can make only one reassignment (e.g., if both IN and OUT are to be
reassigned, two as directives are required).

Any RMD affected by an AS directive is automatically repositioned to beginning of device.

The AS directive merely fixes parameters in 1/0 control calls within SEDIT. It does not
alter 170 control assignments in the logical-unit table (table 3-1).

98 A 9952 100 8-7

SECTION 8
SOURCE EDITOR

Note: AS resets all record counters; however, no physical rewinding of devices occurs.

Examples: Assign the Pl logical unit as the SEDIT reassignable IN unit.
AS, IN=PI

or, the unabbreviated form

ASSIGN, INPUT=PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.

AS,0U=8

Assign as the SEDIT reassignable IN unit the file FILEX on logical unit 111, an RMD
partition without a protection key.

AS,IN=111, ,FILEX

88 98 A 9952 100

SECTION 8
SOURCE EDITOR

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form
AD,recno

where recno is the number of the record last copied from the IN logical unit before
switching to the ALT unit for further copying.

The AD directive copies source records from the IN logical unit onto the OUT logical unit
beginning with the current position of the IN unit and continuing up to and including the
record specified by recno. Then, source records are copied from ALT onto OUT from the
current position of the unit up to but not including the next end-of-file mark.

Example: Copy records from IN onto OUT from the current position of IN up to and
including IN record 7. Then, switch to ALT and copy records from the current position of
that unit up to but not including the next end-of-file mark.

AD,7

98 A 9952 100 89

SECTION 8
SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record field. It has the general form

SA,recno,(first,last),’string’

where

recno is the number of the source record in which the
character string is to be inserted

first is the number of the first character position to
be affected

last is the number of the last character position
to be affected

string is the string of characters to be inserted in the

field delimited by character positions first
and last in record number recno

The SA directive copies source records from the IN logical unit onto the OUT logical unit
beginning with the current position of the IN unit and continuing up to but not including
the record specified by recno. The record recno is read into the memory buffer. The
character string string shifts into the left end of the specified field firstlast, with
characters shifted out of the right end of the field being lost. There is no check on the
length of string and shifting continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting multiple string operations on

the same record. (If IN is already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

8-10 98 A 9952 100

SECTION 8
SOURCE EDITOR

The record recno is read out of the memory buffer and onto the OUT unit when an SEDIT
directive affecting another record is input.

The field specification firstlast is lost after one manipulation. Subsequent string
operations must specify the character positions based on the new configuration. For
example, for the character string ACDEGbb in positions 1 through 7, addition of the
character B in position 2 requires the field specification (2,3). Then, to add the character
F between E and G, one must specify the field (6,7) rather than (5,6) because of the shift
previously caused by insertion of the character B.

Example: Change the erroneous DAS MR source-statement operand in character

positions 16-21 of the 32nd record from LOCXbb to LOC,Xb.

SA,32,(19,20),","

98 A 9952 100 811

SECTION 8
SOURCE EDITOR

8.24 REPL (Replace Records) Directive

This directive replaces one sequence of source records with another sequence of records.
It has the general form

REPL,recnol,recno2

where
recnol is the number of the first record to be replaced

recno2 is the number of the last record to be replaced
If recno2 is omitted, it is assumed equal to recnol, i.e., one record will be replaced.

The REPL directive copies source records from the IN logical unit onto the OUT logical
unit beginning with the current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are read from IN, but not copied
onto OUT, up to and including the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records are copied from the ALT
logical unit from the current position of the unit up to but not including the next end-of-
file mark.

Example: Copy records from IN onto OUT from the current position of IN up to and
including record 9. Replace IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of ALT and the next end-of-file mark onto OUT.
Do not copy the end-of-file mark.

REPL, 10,20

8-12 98 A 9952 100

SECTION 8
SOURCE EDITOR

8.25 SR (Replace String) Directive

This directive replaces one character string within a source record with another character
string. It has the general form

SR,recno,(n1,n2,n3),'string’

where

recno is the number of the source record in which the
character string is to be replaced

nl is the number of the first character position
to be affected

n2 is the number of the last-shifted character position

n3 is the number of the last character position to
be affected

string is the string of characters to be inserted in the

field delimited by character positions n1 and
n3 in record number recno after shifting out
the characters in positions nl through n2,
inclusive

The SR directive copies source records from the IN logical unit onto the OUT logical unit
beginning with the current position of the IN unit and continuing up to but not including
the record specified by recno. The record recno is read into the memory buffer. Field
nl,n3 is then shifted to the left and filled with blanks until the field n1,n2 is shifted out.
Then, the character string string shifts into the left end of the field being lost. There is
no check on the length of string and shifting continues until it is left-justified in the field
nl,n3 with excess characters, if any, being truncated on the right.

98 A 9952 100 8-13

SECTION 8
SOURCE EDITOR

The record remains in the memory buffer, thus permitting multiple string operations on
the same record. (If IN is already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto the OUT unit when a SEDIT
directive affecting another record is input.

The field specification n1,n2,n3 is lost after one manipulation. Subsequent string
operations must specify the character positions based on the new configuration.

Example: Copy records from IN onto OUT up to and including record 49, and replace
the present contents of character positions 10 through 12, inclusive, in IN unit sour.e
record 50 with the character string XYb.

SR,50,(10,12,12), 'XY’

814 98 A 9952 100

SECTION 8
SOURCE EDITOR

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. It has the general form
DE,recnol,recno2

where
recnol is the number of the first record to be deleted

recno2 is the number of the last record to be deleted
If recno2 is omitted, it is assumed equal to recnol, i.e., one record will be deleted.
The DE directive processing is exactly like that of the REPL directive (section 8.2.4) except

that there is no copying from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit up to and including record
49, but delete records 50 through 54, inclusive.

DE, 50,54
Position IN at record 2, deleting record 1.

DE, 1

98 A 9952 100 8-15

SECTION 8
SOURCE EDITOR

i

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source record. It has the general form
SD,recno,(n1,n2,n3)
where

recno is the number of the source record from which the
character string is to be deleted

nl is the number of the first character position to be
affected

n2 is the number of the last-shifted character
position

n3 is the number of the last character position to
be affected

The SD directive processing is exactly like that of the SR directive (section 8.2.5) except
that no new character string is shifted into the affected field after the field nl,n2 is
shifted out.

Example: Copy records from IN onto OUT up to and including record 99, and delete
characters 2 through 4, inclusive, from record 100, shifting characters 5 through 10,
inclusive, three places to the left.

sp,100,(2,4,10)

8-16 98 A 9952 100

SECTION 8
SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It has the general form

MO,recnol,recno2,recno3

where
recnol is the number of the first record to be moved
recno2 is the number of the last record to be moved
recno3 is the number of the record after which the block

of records delimited by recnol and recno2 is
to be inserted

If recno2 is omitted, it is assumed equal to recnol, i.e., one record will be moved. An
omission of recno2 is indicated by a double comma, i.e., MO,recnol,,recno3.

The MO directive copies source records from the IN logical unit onto the OUT logical unit
beginning with the current position of the IN unit and continuing up to but not including
the record specified by recnol. The records recnol through recno2 are then read into a
special MOVE area in memory. The position of IN is now recno2 + 1. When OUT reaches
(by some succeeding directive) recno3 + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and including record 4, save records 5
through 10, inclusive, in the MOVE area of memory, copy records 11 through 99, inclusive,
from IN onto OUT, and then copy records 5 through 10 from the MOVE area to OUT. This
gives a record sequence on OUT of 1-4, 11-99, 5-10 (FC directive, section 8.2.9.).

MO,5,10,99
FC

98 A 9952 100 8-17

SECTION 8
SOURCE EDITOR

829 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file marks. It has the general form
FC,nfiles

where nfiles (default value = 1) is the number of files to be copied.

If the IN logical unit and/or the OUT logical unit is an RMD partition, nfiles must be 1 or

absent. If OUT is a named file on an RMD, there will be an automatic close/update.

Examples: Copy files from IN onto OUT up to and including the next end-of-file mark on

the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto OUT. This includes the sixth
end-of-file mark. (Note: If IN and/or OUT is an RMD partition, there will be an error.)

FC,6

8.2.10 SE (Sequence Records) Directive

This directive assi’ 1s a decimal sequence number to each source record output to the
OUT logical unit. It has the general form

SE, (first,last),initial,increment

8-18 98 A 9952 100

where
first

last

initial

increment

SECTION 8
SOURCE EDITOR

is the first character position of the sequence
number field

is the last character position of the sequence
number field, where the default value of
first,last is 76,80

is the initial number to be used as a sequence
number (default value = 10)

is the increment to be used between successive
sequence numbers (default value = 10)

There is also a special form of the SE directive to stop sequencing:

SE,N

where there are no parameters other than the letter N.

Examples: In the next record output to OUT, place 00010 in character positions 76
through 80, and increment the field by 10 in each succeeding record.

SE

In the next record output to OUT, place 030 in character positions 15 through 17, and
increment the field by 7 on each succeeding record.

sg,(15,17),30,7

Stop sequencing.

SE,N

98 A 9952 100

8-19

SECTION 8
SOURCE EDITOR

8.2.11 LI (List Records) Directive

This directive lists, on the LO logical unit, the records copied onto the OUT unit. The LI
directive has the general form

L, list

where list is A (default value) if all OUT records are to be listed, C if only changed records
are to be listed, or N if listing is to be suppressed.

Examples: List all records output to OUT.
LI
Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive

This directive loads the same character string into the specified field of every record
- copied onto the OUT logical unit. It has the general form

GA, (first,last),"string’

where
first is the first character position of the field to
be gang-loaded
last is the last character position of the field to
be gang-loaded, where the default value of
first,last is 73,75
string is the string of characters to be gang-loaded into

character positions first through last,
inclusive in all records copied onto OUT

8.20 98 A 9952 100

SECTION 8
SOURCE EDITOR

There is also a special form of the GA directive to stop gang-loading:
GA
where there are no parameters in the directive.
In every OUT record, GA clears the specified field, and loads the string into it. There is no

check on the length of string and shifting continues until it is left-justified in the specified
field with excess characters, if any, being truncated on the right.

Examples: Load character string VDMbb in character positions 11 through 15, inclusive,
of every record copied onto OUT.
GA,(11,15),'vDM'

Stop gang-loading.

GA

8.2.13 WE (Write End of File) Directive

This directive writes an end-of-file mark on the OUT logical unit. It has the form
WE

without parameters. If OUT is a named file on an RMD, there will be an automatic close/
update.

Example: Write and end-of-file mark on OUT, a magnetic-tape unit.

WE

98 A 9952 100 821

SECTION 8
SOURCE EDITOR

8.2.14 REWI (Rewind) Directive

This directive rewinds the specified SEDIT logical unit(s). It has the general form

REWI,p(1),p(2),p(3)

where each p(n) is a name of one of the SEDIT logical units: IN, OUT, or ALT. These can
be coded in any order.

Example: Rewind all SEDIT logical units.

REWI, IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs from the IN logical unit with those
from the ALT logical unit and lists discrepancies on the LO logical unit. The directive has
the general form

CO, (first,last),limit

where
first is the first character position of the field to be
compared
last is the last character position of the field to be
compared, where the default value of first,last
is 1,80
limit is the maximum number of discrepancies to be

listed before aborting the comparison and passing
to the next directive

822 98 A 9952 100

SECTION 8
SOURCE EDITOR

Any discrepancy between the IN and ALT inputs is listed in the format

Irecordnumber inrecord

Arecordnumber altrecord

If the comparison terminates by reaching the limit number of discrepancies, SEDIT
outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card is misplaced or missing on
one input. A normal termination of a comparison (at the next end-of-file mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80, inclusive, from the IN and ALT
units until either an end of file is found or there have been 5 discrepancies listed on the

LO.

co,5

98 A 9952 100 8-23

SECTION 9
FILE MAINTENANCE

SECTION 9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a background task that manages
file-name directories and the space allocations of the files. It is scheduled by the job-
control processor (JCP) upon input of the JCP directive /FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or drum) can be referenced by name.

File space is allocated within a partition forward in contiguous sectors of the same
cylinder, skipping bad tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2) received on the S| logical unit and
on the SO logical unit if it is a different physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP buffer.

If the SlI logical unit is a Teletype or a CRT device, the message FM*#* is output on it to
indicate that the Sl unit is waiting for FMAIN input.

if there is an error, one of the error messages given in section 17.9 is output on the SO
logical unit, and a record is input from the SO unit to the JCP buffer. If the first character
of this record is /, FMAIN exits via the EXIT macro. If the first character is C, FMAIN
continues. If the first character is neither / nor C, the record is processed as a normal
FMAIN directive. FMAIN continues to input and process records until one whose first
character is / is detected, when FMAIN exits via EXIT.

FMAIN has a symbol-table area for 200 symbols at five words per symbol. To increase this

area, input a /MEM directive (section 4.2.5), where each 512-word block will enlarge the
capacity of the table by 100 symbols.

98 A 9952 100 9-1

SECTION 9

FILE MAINTENANCE

9.1.1

Partition Specification Table

Each rotating-memory device (RMD) is divided into up to 20 memory areas called

partitions. Each partition is referenced by a specific logical-unit number. The boundaries
of each partition are recorded in the core-resident partition specification table (PST). The
first word of the PST contains the number of VORTEX physical records per track. The
second word of the PST contains the address of the bad-track table, if any. Subsequent
words in the PST comprise the four-word partition entries. Each PST entry is in the

format:
Partition 1 ¢
Entry
Partition 2
Entry

<,

N/

VW

Bit 1514131211 109876543210
VORTEX physical records

Word 0 Beginning partition address

Word 1 ppb Protection code

Word 2 Number of bad tracks in partition

Word 3 Ending partition address + 1

The partition protection bit, designated ppb in the above PST entry map, is unused in file
maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST entry is also word 0 of the

following entry. The relative position of each PST entry is recorded

specification table (DST) for that partition.

9.2

in the device

98 A 9952 100

SECTION 9
FILE MAINTENANCE

The bad-track table, whose address is in the second word of the PST, is a bit string read
from left to right within each word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track table, the second word of the
PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a file-name directory of the files contained in that partition.
The beginning of the directory is in the first sector of the partition. The directory for each
partition has a variable number of entries arranged in n sectors, 19 entries per sector.
Sectors containing directory information are chained by pointers in the last word of each
sector. Thus, directory sectors need not be contiguous. Each directory entry is in the
format:

Bit 1514131211 109876543210
Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCIl characters packed two characters per word. Word 3,
which contains the current address at which the file is positioned, is initially set to the
ending file address, and is manipulated by 1/0 control macros (section 3). The extent of
the file is defined by the addresses set in words 4 and 5 when the file is created, and
remains constant.

98 A 9952 100 9.3

SECTION 9
FILE MAINTENANCE

The first sector of each partition is assigned to the file-name directory. FMAIN allocates
RMD space forward in contiguous sectors, skipping bad tracks. The last entry in each
sector is a one-word entry containing either the value 01 (end of directory), or the address
of the next sector of the file-name directory.

The file-name directories are created and maintained by the file-maintenance component
for the use of the i/0 control component (section 3). User access to the directories is via
the 1/0 control component.

Special entries: A blank entry is created when a file name is deleted, in which case the
file name is ***** and words 3 through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in which case the deleted name is
converted to a blank entry and all other names of the multiname file are set to zero.

WARNING

To prevent possible loss of data from the file-name directory during
file-maintenance operations, FMAIN sets the lock bit (bit 12 of word
2 of the DST, section 3.2) before any directory operation, thus
inhibiting all foreground requests for 1/0 with the partition being
modified. Upon completion of the directory operation, FMAIN clears
the lock bit. Except for the use of protection codes, this is the only
protection for the file-name directory. Manipulation of foreground
files with FMAIN is at the user’s risk. For example, VORTEX does
not prevent deletion of a file name from a file-name directory that
has been opened and is being written into by a foreground
program. Therefore, foreground files should be reassigned prior to
manipulation by FMAIN.

9-4 98 A 9952 100

SECTION 9
FILE MAINTENANCE

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the FORTRAN compiler are in the form of
relocatable object modules. Relocatable object modules can reside on any VORTEX-
system logical unit. Before object modules can be read from a unit by the FMAIN INPUT
and ADD directives (sections 9.2.7 and 9.2.8), an 1/0 OPEN with rewinding (section
3.4.1) is performed on the logical unit, i.e., the unit (except paper-tape or card readers) is
first positioned to the beginning of device or load point for that unit. Object modules can
then be loaded until an end-of-file mark is found.

The system generator (section 13) does not build any object-module library. FMAIN is the
only VORTEX component used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object-module records are blocked
two 60-word records per VORTEX physical record. However, in the case of an RMD

assigned as the Sl logical unit, object modules are not blocked but assumed to be one
object-module record per physical record.

9.14 Output Listings
FMAIN outputs four types of listing to the LO logical unit:

* Directive listing lists, without modification, all FMAIN directives entered from
the Sl logical unit.

* Directory listing lists file names from a logical unit file-name directory in
response to the FMAIN directive LIST (section 9.2.5).

* Deletion listing lists file names deleted from a logical unit file-name directory in
response to the FMAIN directive DELETE (section 9.2.2).

* Object-module listing lists the object-module input in response to the FMAIN
directive ADD (section 9.2.8).

All FMAIN listings begin with the standard VORTEX heading.

98 A 9952 100 9-5

SECTION 9
FILE MAINTENANCE

The directory listing is further described under the discussion of FMAIN directive LIST
(section 9.2.5), the deletion listing under DELETE (section 9.2.2), and the object-module
listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES
This section describes the file-maintenance directives:

< CREATE file

e DELETE file

* RENAME file

* ENTER new file name

» LIST file names

« INIT (initialize) directory

= INPUT logical unit for object module

« ADD object module
File-maintenance directives comprise sequences of character strings having no embedded
blanks. The character strings are separated by commas (,) or by equal signs (=). The
directives are free-form and blanks are permitted between the individual character

strings of the directive, i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can be inserted after the period.

9.6 98 A 9952 100

SECTION 9
FILE MAINTENANCE

The general form of a file-maintenance directive is

directive,lun,p(1)p(2),....p(n)

where
directive is one of the directives listed above in capital
letters
lun is the number or name of the affected logical
unit
each p(n) is a parameter defined under the descriptions of

the individual directives below

Numerical data can be octal or decimal. Each octal number has a leading zero.

For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas (,) by
equal signs (=) are omitted.

Error messages applicable to file-maintenance directives are given in section 17.9.

98 A 9952 100 9.7

SECTION 9
FILE MAINTENANCE

9.2.1 CREATE Directive

This directive creates a new file on the specified logical unit, allocates RMD space to the
file, adds a corresponding entry to the file-name directory, and sets the current end-of-file
value to one greater than the address of the last sector assigned to the new file.

The directive has the general form

CREATE, lun, key,name,words,records

where
lun is the number or name of the logical unit where the
new file is to be created
key is the protection code, if any, required to address lun
name is the name of the file being created
words is the number of words in each record of the file
records is the number of records in the file

Size parameters merely allocate space for the file and do not limit file use to the specified
record size. To each file created, FMAIN assigns n records of 120 words each where n is
the smallest integer such that words/120 < n. The file size is n*records words. This
value is converted to a sector count to make assignments. Neither the file size value nor
the sector count value is saved.

Example: Create the file XFILE with ten records of 120 words each on logical unit 112,
whose protection code is K.

CREATE, 112,K,XFILE, 120, 10

9.8 98 A 9952 100

SECTION 9
FILE MAINTENANCE

9.2.2 DELETE Directive

This directive deletes the designated file and all file-name directory references to it from
the specified logical unit. It converts the specified file-name directory entry to a blank
to zero entries (all fields = zero, section 9.1.2), and outputs a listing of deleted file-
names on the LO logical unit. The directive has the general form

DELETE, lun,key,name
where

lun is the number or name of the logical unit from
which the file is being deleted

key is the protection code, if any, required to address
lun

name is the name of the file beihg deleted (in the case
of a multiname file, any one of the names can be
used)

The output format has, following the FMAIN heading, a two-line heading

DELETE LISTING FOR lun
FILE NAME START END CURRENT

where lun is the number of the logical unit from which the file is being deleted. This
heading is followed by a blank line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section 9.1.2) are placed in the FILE
NAME column; word 3, in the CURRENT column; word 4, in the START column; and word
5, in the END column. After the last file name, there is an e entry describing the blank
file created by the deletion, where the FILE NAME column contains ****#** the START
column contains the next available address (word 2 of the PST entry), and both the
CURRENT and END columns contain the last address + 1 (word 3 of the PST entry).

98 A 9952 100 9.9

SECTION 9
FILE MAINTENANCE

Example: Delete the file ZFILE (and all file-name directory entries referencing it) from
logical unit 112, whose protection code is P).

DELETE, 112,P,2FILE

The name ZFILE is replaced in the file-name directory by #**=%% and the space
allocation for this blank entry extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are converted to zero entries, as are all
other entries that reference the file ZFILE. Al affected file-name directory entries are
listed on the LO logical unit.

9.2.3 RENAME Directive

This directive changes the name of a file, but does not otherwise modify the file-name
directory. The directive has the general form

RENAME, lun, key,old,new

where
iun is the number or name of the logical unit where
the file to be renamed is located
key is the protection code, if any, required to address
lun
old is the old name of the file being renamed
new is the new name of the file being renamed

Following RENAME, old can no longer be used to reference the file.
' Example: On logical unit 112, whose protection code is P, change the name of the file

XFILE to YFILE.

RENAME, 112 ,P,XFILE, YFILE

9:10 98 A 9952 100

SECTION 9
FILE MAINTENANCE

9.24 ENTER Directive

This directive adds a new file name to be used in referencing an existing file, but does
not otherwise modify the file-name directory. ENTER thus permits multiname access to a
file. The directive has the general form

ENTER,lun, key,old,new

where

lun is the number or name of the logical unit where
the affected file is located

key is the protection code, if any, required to address
lun

old is an old name of the affected file

new is the new name by which the file can also be
referenced

Example: On logical unit 113, whose protection code is K, make the file X1 accessible by
using either the name X1 or the name Y1.

ENTER, 113,K,X1,Y1

98 A 9952 100 9-11

SECTION 9
FILE MAINTENANCE

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name directory of the specified logical
unit. The output comprises the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned space in the partition. The
directive has the general form

LIST,lun, key
where
lun is the number or name of the logical unit whose
contents are to be listed
key is the protection code, if any, required to address

lun
The output format has a two-line heading

FILE DIRECTORY FOR LUN lun
FILE NAME START END CURRENT

where lun is the number or name of the logical unit whose contents are being listed. This
heading is followed by a blank line and a listing of all file names from the directory, one
name per line. Words 0-2 of the file-name directory entry (section 9.1.2) are placed in the
FILE NAME column; word 4, in the START column; word 3, in the CURRENT column; and
word 5, in the END column. After the last file name, there is an entry describing the
unassigned space in the partition, where the FILE NAME column contains *UNAS#*, the
START column contains the next available address (word 2 of the PST entry), and both
the CURRENT and END columns contains the last address + 1 (word 3 of the PST
entry).

Example: List the file-name directory of logical unit 114, which has no protection code.

LIST, 114

9-12 98 A 9952 100

SECTION 9
FILE MAINTENANCE

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the specified logical unit, deletes all
file names in it, and releases all currently allocated file space in the partition by reducing
the file-name directory to a single end-of-directory entry. The directive has the general
form

INIT lun, key

where
lun is the number or name of the logical unit being
initialized
key is the protection code, if any, required to address
lun

Example: Initialize the file-name directory on logical unit 115, which has protection code
X.

INIT, 115,X

98 A 9952 100 9-13

SECTION 9
FILE MAINTENANCE

9.2.7 INPUT Directive

This directive specifies the logical unit from which object modules are to be input. Once
specified, the input logical-unit number is constant until changed by a subsequent INPUT
directive. The directive has the general form

INPUT lun, key, file

where
lun is the number or name of the logical unit from
which object modules are to be input
key is the protection code, if any, required to address
lun
file is the name of the RMD file containing the required

object module(s)
Neither key nor file are required unless lun is a RMD partition.
NOTE
There is no default value. Thus, if an attempt is made to input an

object module (ADD directive, section 9.2.8) without defining the
input logical unit by an INPUT directive, an error message will be

output.

Examples: Specify logical unit 6 as the device from which object modules are to be
input.

INPUT, 6

Open and rewind the file ARCTAN on logical unit 104, which has protection code D.

INPUT, 104,D,ARCTAN

9-14 98 A 9952 100

SECTION 9
FILE MAINTENANCE

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit (séction 9.2.7) and writes them
onto the SW logical unit, checking for entry names and validating check-sums, record
sizes, loader codes, sequence numbers, and record structures. Reading continues until an
end of file is encountered. Entry names are then added to the file-name directory of the
specified logical unit and the object modules are copied from the SW logical unit onto the
specified logical unit. The directive has the general form

ADD,lun, key
where
lun is the number or name of the logical unit onto
which object modules are to be written
key is the protection code, if any, required to address

lun
The specified logical unit lun references a system or user object-module library.
The names of the object modules and their date of generation, size in words (zero for
FORTRAN modules), entry names, and referenced external names are listed on the LO
logical unit.
To recover from errors in object-module-processing, reposition the logical unit to the
beginning of the module.

Example: Add object modules to logical unit 104, which has protection code D.

ADD, 104,D

98 A 9952 100 9:15

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

The 1/0 utility program (IOUTIL) is a background task for copying records and files from
one device onto another, changing the size and mode of records, manipulating files and
records, and formatting the records for printing or display.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP directive /I0UTIL (section 4.2.20) on
the Sl logical unit. If the Sl logical unit is a Telstype or a CRT device, the message JU** is
output to indicate that the Sl unit is waiting for IOUTIL input. Once activated, JOUTIL
inputs and executes directives from the Sl unit until another JCP directive (first character
= /) is input, at which time IOUTIL terminates and the JCP is again scheduled.

Error messages applicable to IOUTIL are given in section 17.10. Recovery from an error is
by either of the following:

a. Input the character C on the SO unit, thus directing IOUTIL to go to the Sl unit
for the next directive.

b. Input the corrected directive on the SO unit for processing. The next IOUTIL
directive is then input from the SI unit.

If recovery is not desired, input a JCP directive (section 4.2) on the SO unit to abort
IOUTIL and schedule the JCP for execution.

98 A 9952 100 10-1

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

10.2 170 UTILITY DIRECTIVES
This section describes the IOUTIL directives:
. COPYF Copy file
. COPYR Copy record
. SFILE Skip file
. SREC Skip record
. DUMP Format and dump
. WEOF Write end of file
. REW Rewind
. PFILE Position file
. CFILE Close file

IOUTIL directives begin in column 1 and comprise sequences of character strings having
no embedded blanks. The character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are permitted between individual
character strings of the directive, i.e., before or after commas (or equal signs). Although
not required, a period (.) is a line terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

name,p(1),p(2),....p(n)

where
name is one of the directive names given above

each p(n) is a parameter defined below under the descrip-
tions of the individual directives

Numerical data can be octal or decimal. Each octal number has a leading zero.

10-2 98 A 9952 100

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas (,) by
equal signs (=) are omitted.

Error messages applicable to IOUTIL directives are given in section 17.10.

10.2.1 COPYF (Copy File) Directive

This directive copies the specified number of files from the indicated input logical unit to
the given output logical unit(s). The directive has the general form

COPYF,{,iu,im,irl,ou(1),om,orl,ou(2),0u(3),...,ou(n)

where

f is the number of input files to be copied

iu is the name or number of the input logical unit

im is O for binary, 1 for ASCIl, 2 for BCD, or 3 for
unformatted input files

irl is the number of words in each record of the in-
put files

each ou(n) is the name or number of an output logical unit

om is O for binary, 1 for ASCIl, 2 for BCD, or 3
for unformatted output files

orl is the number of words in each record of the out-
put files

Any RMD involved with copying files, whether as input or output medium, must have been
previously positioned with a PFILE directive (section 10.2.8).

98 A 9952 100 10-3

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

If a difference in record lengths irl and orl causes a part-record to remain when an end of
file is encountered, the part-record is filled with blanks and thus transmitted to the
output unit(s).

Example:

Copy three files containing 120-word records from the SW logical unit onto

logical units LO, 50, and 51 in 40-word records.

COPYF,3,8wW,1,120,L0,1,40,50,51

10.2.2

COPYR (Copy Record) Directive

This directive copies the specified number of records from the indicated input logical unit
to the given output logical unit(s). The directive has the general form

where

COPYR,r,iu,im,irl,ou(1),om,orl,ou(2),0u(3),...,ou(n)

r

iu

irl
each ou(n)

om

orl

is the number of input records to be copied or
0 1f copying is to continue to the end of file

is the name or number of the input logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or 3 for
unformatted input records

is the number of words in each record of the input
is the name or number of an output logical unit

is O for binary, 1 for ASCII, 2 for BCD, or 3
for unformatted output records

is the number of words in each record of the
output

10-4 98 A 9952 100

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

Any RMD involved with copying records, whether as input or output medium, must have
been previously positioned with a PFILE directive (section 10.2.8).

If a difference in record lengths irl and orl causes a part-record to remain when an end-of-
file mark is encountered, the part-record is filled with blanks and thus transmitted to the
output unit(s).

Example: Copy 25 unformatted records of 200 words each from the SS logical unit to the
BO and PO units in binary format with 40 words per record.

COPYR, 25,S85,3,200,B0,0,40,P0

It may be necessary to copy from one file on an RMD partition to another file on the same
partition. This can be accomplished by assigning two different logical units to this RMD
partition, and then issuing two PFILE directives (section 10.2.8), positioning one logical
unit to the beginning of one file and the second logical unit to the beginning of the other
file. Additional positioning within the files can be specified by SREC directives (section
10.2.4).

Example: Copy the first ten records from file EDIT1 to record 11 through 20 of file
EDIT2. Both files are on RMD partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (default value = 0). Assign the Bl and BO logical
units to the task.

/ASSIGN,BI=D00K
/ASSIGN,BO=D00K

/IOUTIL
PFILE,BI,,120,EDIT1
PFILE,BO, 120,EDIT2
SREC,BO, 10

COPYR, 10,BI,1, 120,B0,1,120

98 A 9952 100 105

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

10.2.3 SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units, causes the specified logical unit
to move the tape forward the designated number of end-of-file marks. The directive has
the general form

SFILE lun,neof

whare
lun is the name or number of the affected logical
unit
neof is the number of end-of-file marks to be skipped

If the end-of-tape mark is encountered before the required number of files has been
skipped, IOUTIL outputs to the SO and LO logical units the error message 1U05,nn, where
nn is the number of files remaining to be skipped.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units and RMDs, causes the specified
logical unit to skip forward the designated number of records. The directive has the
general form

SREC,lun,nrec

where
lun is the name or number of the affected logical
unit
nrec is the number of records to be skipped

10-6 98 A 9952 100

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

Note that, unlike JCP directive /SREC (section 4.2.8), the IOUTIL directive SREC cannot
skip records in reverse.

If lun designates an RMD partition, the device must have been previously positioned with
a PFILE directive (section 10.2.8).

It a file mark, an end-of-tape mark, or an end-of-device mark is encountered before the
required number of records has been skipped, IOUTIL outputs to the SO and LO logical
units the error message 1U05,nn, where nn is the number of records remaining to be
skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI, 40

10.2.5 DUMP (Format and Dump) Directive

This directive copies the specified number of records from the indicated input logical unit,
formats them for listing, and dumps the data onto the output unit in octal format, ten
words per line, with one blank between words. The directive has the general form

DUMP r,iu,im,irl,ou

where

r is the number of input records to be copied

iu is the name or number of the input logical unit

im is 0 for binary, 1 for ASCIl, 2 for BCD, or 3
for unformatted input records

irl is the number of words in each record of the
input

ou is the name or number of the output unit, which

cannot be an RMD partition

98 A 9952 100 10-7

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

The first line of the dump contains the record number before word 1, but subsequent lines
do not have the record number.

Example: Dump 40 binary, 50-word records from the SW logical unit onto the LO unit.

DUMP, 40,S8W,0,50,L0O

10.2.6 WEOF (Write End of File)v Directive

This directive writes an end-of-file mark on each logical unit specified. The directive has
the general form

WEOF lun,lun,....lun

where each lun is the name or number of a logical unit upon which an end-of-file mark is
to be written.

Example: Write an end-of-file mark on the BO logical unit and on the PO logical unit.

WEOF , BO, PO

10.2.7 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units, causes the specified logical
unit(s) to rewind to the beginning of tape. The directive has the general form

REW, lun,lun,...,lun
where each lun is the name or number of a logical unit to be rewound.
Example: Rewind the Bl and PO logical units.

REW,BI, PO

10-8 98 A 9952 100

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

10.2.8 PFILE (Position File) Directive

This directive, which applies only to rotating-memory devices, causes the specified logical
unit to move to the beginning of the designated file, and opens the file. The directive has
the general form

PFILE,lun key,recl,name

where
lun is the name or number ‘of the affected logical
unit
key is the protection code required to address lun
recl is the number of words in each record of the
file
name is the name of the file to which the logical

unit is to be positioned

Since IOUTIL has only six FCBs, there can be a maximum of six files open at any given
time.

Example: Position the Pl logical unit, using protection code Z, to the beginning of the

file FILEXY, which contains 60-word records.

PFILE,PI,Z,60,FILEXY

98 A 9952 100 109

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

10.2.9 CFILE (Close File) Directive

This directive, which applies only to RMD partitions, closes the specified file. The directive
has the general form

CFILE, lun,key,name,add

where
lun is the name or number of the logical unit con-
taining the file to be closed
key is the protection code required to address lun
name is the name of the file to be closed
add is O (default value) if the current end-of-file

address on of the RMD file-directory is to re-
main unchanged, or 1 if it is to be replaced by
the current record (i.e., actual) address

A PFILE directive (section 10.2.8) must have been used to position lun before the CFILE
directive is issued. Closing a file frees the associated FCB for use with another file. Since
IOUTIL has only six FCBs, there can be a maximum of six files open at any given time.

Example: Close the file WORK on the SW logical unit (protection code B) and update the
file directory.

CFILE,SW,B,WORK, 1

10-10 98 A 9952 100

SECTION 11
SUPPORT LIBRARY

SECTION 11
SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine library directly available to the user.
The library contains mathematical subroutines to support the execution of a FORTRAN IV
program, plus many commonly used utility subroutines. To use the library, merely code
the proper call in the program, or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A = SQRT(B) generates a CALL SQRT(B)). All calls
generate a reference to the required routine, and the load-module generator brings the
subroutine into memory and links it to the calling program.

98 A 9952 100 11-1

SECTION 11
SUPPORT LIBRARY

11.1 CALLING SEQUENCE

The subroutines in the support library are called through DAS MR or FORTRAN V.

DAS MR: General form:

label CALL S,p(1),p(2),....p(n)

Expansion:
label JMPM S
DATA p(1)
DATA p(2)
L]
DATA pin)

FORTRAN IV: General form:
statement number CALL S(p(1),p(2),...,p(n))

Generated code:

JIMPM S
DATA p(1)
DATA pt2)
.
.
.
DATA p(n)

11-2

98 A 9952 100

SECTION 11
SUPPORT LIBRARY

11.2 NUMBER TYPES AND FORMATS

Single-precision integers use one 16-bit word. A negative number is in two’s complement
form. An integer in the range — 32,768 to + 32,767 can be stored as a single-precision
integer.

Doubls:precisign injelsers use Wb congecujitd 16-bit Words. N he/si
WQrd is Rlways xefo. A hegative tymbeN#$ reprdsented Ry theXone’s
firs word. Wny igftéger in thefange1,883w41,82{ to + Q83,741 ,8
a dogQle-precigion integer. N -

Single-precision floating-point numbers use two consecutive 16-bit words. The exponent
(in excess 0200 form) is in bits 14 to 7 of the first word. The mantissa is in bits 6 to 0 of
the first word and bits 14 to 0 of the second word. The sign bit of the second word is
always zero. A-mpgmhine—number is% by s one's complemenﬂ the first word.
Any real number in the range 10 ** can be stored as a single-precision floating-point

number having a precision of Suagiagis. § . L deq,mal &;514}

98 A 9952 100 11-3

SECTION 11
SUPPORT LIBRARY

Single-Precision Floating-Point Numbers

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Double-precision floating-point numbers use four consecutive 16-bit words. The exponent
(in excess 0200 form) is in bits 7 to 0 of the first word. The mantissa is in the second,

third, and fourth words. Bit 17 of the tgirg nd, fourth words and bits 17 to 8 of the first
word are zero. A_apgedive number isga;ogéés by &ae one’s complemen ‘edthe second
word. Any real number in the range 10 can be stored as a double-precision floating-

point number having a precision of & decimal digits.

13,5
Double-Precision Floating-Point Numbers

Bit 15 14 13 12 11 10 9 8 7 &6 S 4 3 2 1 0

n)] 0 0 0 0 0 0 0 =~---—---- Exponent--------
n+1) 0 mmmeee e High Mantissa--------—=-=---—-
n+2) 0 me--mmmmeeeo - Mid Mantissa----------—---———-
n+3) 0 —mmmmm e Low Mantissa--------------=—u

11-4 98 A 9952 100

SECTION 11
SUPPORT LIBRARY

11.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the subroutine descriptions given in this
section:

Notation Meaning

AB Hardware A and B registers

AC Four-word software accumulator for double-precision
numbers

ACCz Four-word accumulator for complex numbers (the real
part is in AB and the imaginary part is in Jaksiamd rsod)ne V#QG)

—SOMMOb=hinsimiStivia

d A double-precision number

f Two-word, fixed-point number

i An integer

r A real number o

s A sj'xschqm,t"u‘ AscIL fh‘inj

X Hardware X register

z A complex number

3%
*

Exponentiation

The external references in table 11-2 refer to items in tables 11-1 and 11-2. A subroutine
with more than one name is indicated by multiple calls under Calling Sequence.

98 A 9952 100 11-5

SECTION 11

SUPPORT LIBRARY

3S5¢$
‘NO$ ‘WO$ 10$ ‘NO$

3S$
‘HO$ ‘NO$ “10% ‘WO$

, 3s$ ‘NO$ ‘W03
‘3% TNNS ‘MO$ ‘Nwax
NO$

“10$ ‘0d$ ‘3s$ ‘nsax

‘laax “ININ$ ‘avax
‘nNax ‘wos ‘Mos ‘Ias

3S$ ‘dX3 ‘WO3$ DOV

NOE WO Sdemiads 158

ST ot
WHE & 35S Bk

S9OUB43J9Y |euU4alIX]

4'NIS 17v0
4500 1Iv0

I'NVLY 17v0

I'dX3 10

4907V 1Iv0

Z4'30% 12

1"3d$ 17v0

2I'IH$ 1V

aosuanbag Suyjesn

sauljnoiqng papo)d Svd

NIS UM 4 uis 4o ‘S0O
YyHm 4 sod apndwod ‘gy u|

4 ueyose sndwod ‘gy u|

"1 = MO|}489A0 ‘sased
yioq uj ‘jndino st DYy

ONN4 @8essaw ay} pue Jaquinu

jeal wnwixew = gy ‘MO|JJ9A0

J| '0=gy ‘mojlispun si
2oy} 4| "xx® 9Indwod ‘gy u|

"1 = MO}}49A0
pue 0=g=V Ylim }xe

pue 93y ONN4 @8essew jndino

‘0=~ 4 4| 4 uj andwod ‘gy uj|

‘24514 9ndwiod ‘gy ui
‘T4 SUIelUOD gY :UBAIY

lyxd 3INAWOD ‘gy Ul

‘} SUIBRlUOD gY [U3AAID

"Zsx 11 93ndWOd 'y ul
‘TI SUIElUOd ¥ UBAIY

uoipouny

‘T-11 °jqel

SOONIS

NV1V

dX3

901V

30%

3d$

IH$

aweN

98 A 9952 100

11-6

SECTION 11
SUPPORT LIBRARY

(4
WWNg 994 Taax
3S¢ Jem-SIN4$ ‘NINAX

3S$ ‘WS4$ ‘taax

duoN
SUON
SUoN

00dx ‘avax

00ax ‘nNsax

02ax

SUON

SaJualajay [eusajxy

ZANO$ 1IV0
ZA'NO% 1IV0

41408 1V

02ax 1vo
Z¥'NsSax 1vo
Z¥'avax 1vo

Z¥'NNAX Tv0

2¥'1laax 1vo

TANS 1IV0

WS4$ 1Iv0
SW4$ 1Tv0

aouanbag Suyen

(penuipuos) saulpnoigng

Papo) sva

T = MO|J43A0
‘sased yjoq uj -yndino

S| 74AO HLI¥v @3essew sy} pue
anjeA wnwixew = gy ‘MO[}49A0

}l "0=gV ‘mojjsepun

i 24U} 4| "NO$ yum za/14

10 ‘NOS Yum 21,14 9ndwiod
‘gy Ul ‘T4 suleluod gy USAID
4 jo joos aienbs 9ndwod ‘gy u|

} Jo aaiedau ayndwiod ‘gy uj
2t - T4 sindwod ‘gy uj
24+ 14 andwod ‘gy uj

Z4x 14 @Indwod ‘gy uj
24/ 14 81ndwod ‘'gy uj
1 9zijewsou ‘gy uj
AlsAnyoadsas ‘x pue

gy ojul 4 jo dnsuloeIEYD
pue essijuew 9jesedsg

uotjouny

T-11 2iqel

AQTNNA

140S
dW02AaX

ansax
aavax

1INNax

Aladax

TVINHONA

ILNVINL3S

aweN

117

98 A 9952 100

SECTION 11

SUPPORT LIBRARY

so¢ 3ss
3S¢$

3S$
3s$

3s$

3S$

33% “IWNS$ ‘WS4$ ‘IS$

S90U3J3J3Y |euLdIX]

ZI'NH$ 17v0
ZI'NDIS. 1TVD

ZI'NDISI 11V
4'sgv 1Ivo
r'savl 11v0

I'SH$ 11v0
J1%$ V0

1s0% 1IVD
od$ 11vD

2410% 1vo
ZA'M0% 1TIvo

@ouanbag Sunen

2I/11 aindwod ‘y ui
‘TI SpIoY v :usAID

24 10 jeyy o} jenbs
‘aY ul ‘T4 Jo udis ay) 1a9g

Z! o 1eyl o} |enba
VY ul ‘11 jo uBis sy jeg

4 9injosge ayndwod ‘gy uj
| 91njosge a1ndwod ‘y uj

I Ul }nsau
8101S ‘SH$ 404 ‘pue | 0]
av ut 4 3yl 1eAU0d ‘y uj

4 Ui ynsas a40}s ‘SO$
104 ‘pue 1utod-Zuneols o}
V Ul | 3y} J9AU0D ‘Y uj

"1 = MOJ}JaA0

‘sased yjoqg uj ‘yndino

SI 74A0 HLIYY @#8essaw ay} pue
dNjeA wnwixew = gy ‘MOjJIaA0

3 '0=gav ‘mojepun si

843y} 1 110$ UMM Zi- T4

10 ‘YOS YyUM Zi+ 14 andwod
‘gy ul ‘T4 sulejuod gy :uaaig

uonouny

(psnunuod) ssuiinoaqng papoy sya CI-I1 9lqe)

NH$

NOIS

NOISI

sav

savi

X141$

1v0O14$

ansaagvd4

aweN

98 A 9952 100

11-8

SECTION 11
SUPPORT LIBRARY

dwas ‘nsas
‘avas ‘oiss ‘'01as

dWas ‘avas ‘oias

NZ$ ‘Wz$ T1z$ ‘Mz$ IS$
33$ ‘ONa$ ‘oLs$ ‘O1as

NZ$ ‘Wz$ 11Z$ ™MZ$ '0Z$
‘33$ ‘'ONQ$ OV 3S$
‘'018$ ‘014$

A10d

‘1aa$ ‘dwas ‘ov
‘3s$ ‘41 ‘nsas
‘avas ‘oLss ‘01as

01as

IV ‘NZ$ ‘Wz$ ‘3S$

2% 'Mz$ ‘0z$ ‘Cweé ‘01S$
‘ONa#

EEY AR

S90UJ9)3Yy |euldIX]

9Hg3IHO 1IV0

A9V AT0d 1IVO

N1a$ 11vO
P'D0O1A 1V

P'dX3a TIvO
X3as 1vo

P'NVLVA TIvO
Nvd$ 1IvO

P's00Aa$ 11vO
P'00d% 1v0
P'NISa$ 11v0

P'ISa$ 1vo

Z'IHS 11v0

aouanbag Sulen

(psnuiuod) saulnoiqng papod Syda

0 ssaippe 1e 3uijels 1sl|
JUSIDIYB0D pUB SWLIB)Y T +1 YHM
salds |erwoukjod AsysAgay)
payiys apndwod ‘Jy uj

K ssaippe
e Juswngie pue ‘0 ssaippe
18 Suilels 1S JUaIdIYe0d

‘swusl } yum |eiwouAjod
uoisioaud-ajgnop andwod ‘Qy uj

p ul 8indwod ‘Qy U

p jennuauodxs apndwod ‘gy Uuj

p uejaie aindwod ‘Oy uj

p s09 4o p uls a}ndwod ‘Qy uj

2! 1! 91ndwod
'V Ut ‘T spjoy v ueAIn

uolouny

T-11 °iqel

g3HO

A10d

901a

dX3a

NvVLivd

SOONISd

WH$

awepN

119

98 A 9952 100

SECTION 11
SUPPORT LIBRARY

3s$ OV

3S$ OV

3s$

C
374 354 oy
'ONG$ ‘01a$ ‘01S$

3S$ OV ‘nsas
‘ONA$ ‘OLS$ ‘07a$

3s$ OV ‘avas
‘ONGa$ ‘0ols$ ‘01a$

3s$ ‘ONa$

3s¢$ Ov ‘liag
‘Nsas ‘onas ‘olas

Jv ‘3S$
‘laas ‘dnas ‘avas
‘ONad$ ‘0l1s$ ‘01as

S9JUd43)aYy [eusd}IX]

p'sz$ 1v0
P'OLS$ 1IVO

P'4Z$ 1IvO
P'01a%$ 11v0

ONad$ 1vO

ZPIZ$ 1O
ZPMZ$ 1IVO
ZP'nsas 1vo
Zr‘avas 1vo

ZP'NZ$ 1V
Zp'iaas 1vo

ZP'NZ$ 1TV
ZP'dnas 1vo

P'NIQl 1TVO
P11a$ 1Iv0

P'™4d$ 1IV0

P'¥OSA 1vD
p'OSAs$ 11vo

aousnbag 3uyjen

(panuijuod) ssuinoiqng papo) sva

P ul Qv @401S QVv3iYOLSA

P Yum Oy peo
p azijewou ‘Qy uj
nsas

Yim zp - 1p 40 ‘gvas
Yyim Zp+ 1p aindwod ‘Qy uj

Zp/1p @ndwod ‘Qy uj

2P 1p 81ndwod ‘Qy uj

p jo jied
jes8ajur ayndwod ‘Qy u|

p jo jed

leuoijoely ayndwod ‘Qy uj.

p jo
Joos ssenbs aindwod ‘Qy |

uoljouny

T-11 8lqel

dvavoia

TYIWHONA

gnsaava

jaiaiaa

17Na

LINIdl

44as$

140sa

aweN

98 A 9952 100

11-10

SECTION 11
SUPPORT LIBRARY

SUON

3UON

3S$

v

v

o)y

ov

S22U91949Y |eutd}X]

9'S'U'VZLIIN TIVO

9's'U'IINZY 1IVD

w'seg 11v0

0Z%$ 1Iv0
OA%$ 17V0

24$ 1O

1Z$ 11v0

asuanbag Suien

(panuiuod) sauynoigng papoy Sya

[1OSY Hg-1y3ie

0] apod Qog adel 2ijdpudew
HQ-xIS woi 3 e 3uipud pue s
je Suijuels u yjduas| jo Suldls
Jajoeseyd e Liowsw ui ajejsued|

9pod qOg ade} osudew

Hg-xis 0} ||OSY Hd-y3ie

woJj 9 je 3uipus pue s }e
gunjsels u yidusj jo Suias
Ja1oe4RYD B AJOWBW Ui dlejsued]

W Ssauppe Alowdw ul gy 24018

Qv ut p
3y} Jo aAljedau ayndwod ‘gy uj

P O} gV Ul J 8y} H9AUOD QY U
40} QY Ul P By} 1AUO0D ‘gy Ul

OV woJy piom udis essijuewl
uoIsI094d-3jqnop yum y peo

uoryouny

‘T-11 2Iqe]

VSl

1NCY

ses

dW00314d
379N0d

JTONIS

ovavoid

awepN

11-11

98 A 9952 100

SECTION 11

SUPPORT LIBRARY

48% ‘MO$ ‘S8$ ‘IS¢
48% ‘3%

MO$
‘WO$ ‘LHOS ‘38¢

48% ‘NO$ ‘YO$
‘sgvo ‘140S ‘3%

48% ‘NIS ‘WO$
‘S0 ‘dx3 ‘3Is$

18%
‘ZNVLY ‘NO$ ‘YOS
‘WO$ ‘DOTV ‘3S$

48% 0% ‘S02
‘WO$ ‘NO$ ‘NIS
‘NO$ ‘dx3 ‘3s$

S8% M8s
‘48% ‘NISO ‘3S$

S8% ‘N8$ ‘ws$
‘48% ‘savI ‘3Is$

| $80Ud49jaY |eusax]

Mv$ 1Tvo

(2)9rNOD TV2
(2)sgvo 11v0

(2)L40S0 1v2

(2)dX30 Vo

(2)9070 1VvO

(Z)NISO 1IVD
(2)S020 11vD

(N36$ 1VO

2ouanbag Suyen

sauilnoiqng papon Al NYY.LHO4

ZOOV j0 led |eas 0] 4 ppy

z jo sjednluod andwod ‘7Zooy u|

Z 91njosqe aindwod ‘gy

Z 0 1004 8.enbs ayndwod

z |eijusuodxa ayndwiod

Z u} ayndwod

Z uls ayndwod

Z s02 aindwiod

‘Z0av

‘ZO0vV

200V

‘Z00V

‘Z00v

ul

ul

uj

uj

uj

1+ ZOOV 9indwo)

uonouny

‘¢11 3lqel

Mv$

OrNOD

Savo

140S0

dX30

9010

NISO

S020

36%

awepN

98 A 9952 100

11-12

SECTION 11
SUPPORT LIBRARY

3s$
48% 'ss$

48% “10% ‘NO$ ‘N0O$
‘WOS ‘s8$ ‘3S%

48% ‘M0$ “10%
‘WOS ‘s8$ ‘3S$

48% 0% ‘ss¢$ ‘IS¢

48% ‘MO$ ‘S8$ ‘3IS$

48% 3S$
X1dWO ‘SE€$
48$ ‘WO$ 'S8 ‘Is$

48% ‘WOS$ ‘S8$ ‘3IS$

48% “10% ‘S8$ ‘Is$

S80UD49)3Y |eusa}xy

(2)DYWIVY 1Iv0

azs$ 1vo

(2)N8S 1Tv0

(2)Ngs 1Ivo

(@18¢% 1v0

(2%8% 1Iv0

(@1 THXIdND 1IVD
ov$ 11v0
(DNV$ 17VvD

MWv$ 1v0

()Iv$ 1vo

aouanbag Suien

Z jJo lJed
Aieuidew ay} yym gy peor

Z Jo aAlje3su ayndwon

z Aq 700V epiniQ

z Aq 700V Aldiiniy

ZOJV woy z yoeqnqng

ZJJV 01 Z ppy

24 lied

AleuiBewr ue pue 14 led |ess e
Buiney anjea e yum 700y peo
ZOJV Ul 810)s pue Z 0} Jy JBAUOY
4 Aq 700V eping

4 Aq zoov Adinpy

ZOJV 40 jed
|eaJ 8y} wody 4 joeaigng

uoi}ouny

(penujjuod) saunnoiqng papon Al NVNLIHO4 ‘Z-11 ajqe}

OVINIV

azs

N8$

W8s$

8%

%83

XTdWO
ovs
NV$

Wv$

s

aweN

11-13

98 A 9952 100

SECTION 11

SUPPORT LIBRARY

oZ$ 1z$
‘WZ$ ‘Sz$ ‘Nz$
‘4Z$ ‘INIQ ‘3S$

Wz$ '901a ‘Is$
NVlva Mz$ “1z$
‘Nz$ ‘¥3s 1z$
'SZ¢$ ‘478 ‘3S$

Wz$ ‘9070
‘dx3a ‘sz$ ‘3s$

4z¢$ 373
‘3184 'Sz$ ‘Is$

SZ$ ‘NZ$ ‘NH$
‘Wz$ ‘O ‘4Z$ ‘3S$

944 ‘se$ ‘IS8

/

sH SEX
Spg IS8
3s$

S8%

S90Ud49J9Y [RUJIBIXT

(gP'IP)aona 1vo

(P)OTH01a 1IVO

(ZP'TP)ZNVYLYA T1TVD

(2p)3z$ 1vo

(M3IA$ VO

(N3ax$ 1V
(2)s8% 1IV0
(Os0es o
(2)48% 1IVD

(21v3ay 1Ivo

0% 1VvO

aouanbag Sunjen

Zp onpow 1p aindwod ‘Qy uj

p 80| ayndwod ‘Qy uj

(zp/1pP) ueldie aindwiod ‘Oy U

OV ul SI TP aJaym Zp...Ip andwo)

OV Ul SI p dJ9ym U, .p dindwo)

OV Ul S p aJaym 1,.p 81ndwo)

4 w 2 v.iw mwawwO< %,M.ou.m

N\i,:s Zody yvo? FOSST
N Z Yim ZJJV peo

z jo yed |eaJ By} yum gy peoT

Z00V
j0 Med |eas 3y} yum gy peo

uoiouny

(penunuod) seuilnoiqng papo) Al NVHL¥04 °¢-11 alqel

aona

01901a

¢NV1vd

3z$

EP

Ix$

S8$A
O9FA

48%A

3y

0%

aweN

98 A 9952 100

11-14

SECTION 11
SUPPORT LIBRARY

JA$ ‘0d$
OA$ 3¢

NZ$ ‘4Z$
‘31940 ‘Sz$ ‘'3Is$

WZ$ ‘318Q 'sz$ ‘3s$

0z$ 1z$
3190 ‘Sz¢$ '3Is$

%Z$ ‘319a ‘sz¢$ ‘Is$

NZ$ ‘1Z$ '4z$ ‘3S$

1Z$ 1Z$ ‘v4$l
'SZ$ '4z$ '3s$

1Z$ 1z$ 'v4$l
'SZ$ '4z$ '3s%

Jz¢$ '12$ 4z$ '3S$

OX$ Org ‘4z¢$ '3ss

$S9JUBIAJ9Y |eusaixy

OX$ Tv2

(H31890 1VO

(ONAS$ 11Vv0

(DNAS 1TV0

(47A$ 1IV0

(DMAS 11V

(ZP'TPINDISA TIVD

AO—CU—...
ZPIP)INING 1TV0

4

AO»CU«...

CPIP)IXVYING 1TVD

(P)Sava 1vo

(PILNIQ 1VD

aouanbag 3Buyjen

v ul st |
83YM D 0] | 148AUOD ‘DY U]

P 01 4 HBAUOD 'OV uj

4 Aq 2V apnQ

1 Aq gy Aldinpy

OV wouy 4 1oesigng
Jv 0} 4 ppy

ZpP 30 jey;
01 jenba 1p jo uBis ay; jeg

up''gp ‘Ip 388 8y} ul
8NjeA WINWIUIW 3y} }9918S ‘OY U|

uprgp ‘Ip 18s ayy ui
anjeA wnwixew ay} 19918s ‘Qy u|

P ainjosge aindwod ‘Oy u|

p Jo uoinod
49891u1 ayndwod ‘9gy uj

uonouny

(penunuod) saunnoigng papoy Al NYY¥L1HO4 ‘Z-11 Siqel

0) ¢

314gd

NAS

NAS

TAS

MAS

NOISa

INING

IXVIAQ

Sava

INIC

aweN

11-15

98 A 9952 100

SECTION 11

SUPPORT LIBRARY

1vOi4 ‘v4¢$1 ‘3s$

10$ ‘v4$1 ‘3s$

10% ‘v4$! ‘3S$

od$ ‘0I$ ‘Is$

10% ‘WO%
‘NO$ ‘LNIV ‘3s$

WoO$ DoV ‘Is$

NO$ 0% ‘MO$
‘NVLlV ‘¥43$ ‘3s$

NO$ “10$
‘dX3 ‘W0$ ‘Is$

$3JUd49jaY |euta}x]

Ao‘c_-...
‘ZITDOXVINY T1VO

AO.C\-....
Z/TDINIAY 1IV0

AO»CL—‘..
ZVTHIXVAY 11v0

(DINIV TIV0

(24'19a0NWY 1vD

(NOTHOTV 1IVD

(24 THZNVLY 1IVv0

(MHNVYL 1IVD

aouanbag Suiyes

] 0] }43AUOD

pue urzitr 18s 8y}
anjea wnuwixew 8y} 199jas ‘gy

wittzd ‘14 18s ey}
anjeA wnwiuiw ay} 10948s ‘gy

ul'za T4 189S ey}
anjeA wnwixew ay} 199j9s ‘gy

4 8jeouni} ‘gy

Z4 ojnpow 14 8aindwiod ‘gy

4 80| ayndwod ‘gy

(g4/14) uejoue ayndwod ‘gy

4 yuey ayndwod ‘gy

uoij}ouny

(panuijuod) sauinoigng papod Al NVHLINO4 2-11 @lqel

ul
uj

ul
ul

ul
ul
u|
ul

uj
Ul

uj

OXVWY

INHAY

IXVIAY

INIV

aowy

01901V

CNVYLV

HNVYL

aweN

98 A 9952 100

11-16

SECTION 11
SUPPORT LIBRARY

X141 “10$ ‘v4¢$l ‘3s$

X141 0% ‘v4¢1 ‘Iss

v4$l ‘3S$

v4$1 ‘IS¢
od$ ‘4Z$ ‘3S$

0d$ 3s$

10¢ ‘3s$

1v014 ‘v4$1 ‘IS$

CERVESEYEYY I CIPES b

AonCl—hv-
TUTHININ TIV0

AO»C_-...
TUTHIXVYN 1TVD

Aonc_ﬁ...
‘CTTNONIW TIVD

AO.C_....
TUINOXYIN TV

(P)1DNS 11VD

(M1v0Td 1Iv0

(A THWIA 1TV

Our
TUTHDONIAY T1VD

aousnbag Sunjes

| 0} L9AUOD
pue uizZa T4 19s a8yl ul
BNjeA WNWIUIW 8y} 19919s ‘'Y U]

I 0} 149AUOD

pue u4za 14 18s 8yl ul
daNjeA winuwlixew 8y} 199(8s 'y uj

urizr T 1es ayl ul
anjeA WINWIUIW 3y} }09i8S ‘Y U|

2T 1es ayy i
anjea wnuwixew sy} 19918s 'y U|

4 0] p M8AUOD ‘gy Uu|
1 0} | JU8AUOD ‘gy uj

24 pue T4 ussm}aq souadaylp
anyisod ay) ayndwiod ‘gy uj

1 0} }49AUO0D

pue urUZITl 18s 8yl ul
anjen wnwiuiw sy} 199j9s ‘gy uj

uoijouny

(Panunuod) ssunnoiqng papo) Al NY¥LINO4 ‘2-11 ®iqel

ININ

IXVIN

ONIW

OXVIN

TONS

1vO1d

WiId

ONINY

awepN

11-17

SECTION 11

SUPPORT LIBRARY

LSOI$A “D0I$A

Ji$ 0u$

JI$ 3IS$

3¢

JI1$ ‘3S$

WH$ ‘NH$ 3S$

S30UBIBJBY [eu4ax]

U'W'dyNS T1v0

org 1Mvo

(X141 1IvD

@‘mwial 1vo

(OLNI 1TV0

(Z'1DAoNW 1Iv0

aouanbag Buies

uotindaxs weudoid 3unnp
sjutod palosies ik U ssaippe 0}
w ssadppe wodj Aowsw Aeldsiq

v ul 1jnsa.
910)S pUB | 0} P 142AU0D ‘QV U|

1 0} 4 }J9AUOD ‘Y U|

2! pue I usam}aq ddouaJayIp
aniyisod ay) aindwos ‘y uj

10}
LI9AUOD pue U 8}eound} ‘y U

2! ojnpow 711 sindwod ‘y uj

uonouny

(Panujuod) ssunnoiqng papoy Al NYYLHO4 2-11 3iqel

dVNS

aorg

Xidl
wiai

INI

aow

awepN

98 A 9952 100

11-18

SECTION 12
REAL-TIME PROGRAMMING

SECTION 12
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface directly with special devices,
develop software that is interrupt-driven, and utilize reentrant subroutines. Four areas are
covered in this section:

. Interrupts
. Task-scheduling
. Coding reentrant subroutines
. Coding 1/0 drivers
12.1 INTERRUPTS

12.1.1 External Interrupts

Priority interrupt module (PIM) hardware: A PIM comprises a group of eight interrupt
lines and an eight-bit register. The register holds a mask where each set bit disarms a
line. VORTEX allows up to eight PIMs for a maximum of 64 lines. The system of PIMs and
lines is called the external interrupt system. -

The processing of external interrupts is controlled by the programmed status of the line.
The lines are continuously hardware-scanned, regardiess of the status.

If more than one interrupt is detected on a single scan, the highest-priority line is
acknowledged, and, if the PIM is enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/first-out basis. If a signal is
received on a disabled line, it is stored by the PIM, and causes an interrupt when the line
is enabled.

98 A 9952 100 12-1

SECTION 12
REAL-TIME PROGRAMMING

Disabling the external interrupt system prevents any interrupt from entering the

computer. Enabling the entire system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected control of the system. Individual
line selection prevents receiving a second interrupt while a line is still. processing the first.

Program-clearing of PIM registers causes the PIM to ignore interrupts received on lines
that are busy processing an interrupt or held off because of priority.

All PIMs and interrupt lines to be used in VORTEX are specified at system-generation
time and their status specified when VORTEX is loaded and initialized. VORTEX does not
disable any line unless so directed by RTE service request PMSK (section 2.1.5).

When a PIM interrupt signal is acknowledged and the interrupt taken, the computer
executes the instruction in a selected memory location. Under VORTEX, PIM addresses
are from 0100 to 0277. Linkage to VORTEX interrupt-processing routines is accomplished
by a jump-and-mark instruction in the interrupt location. Unspecified lines are preset in
VORTEX with no-operation instructions that ignore unspecified or spurious interrupts.

Since VORTEX always includes memory protection, certain instruction sequences cannot

be interrupted and acknowledgement is delayed until they are complete. These include

the instruction following an external control, halt, execution, or any instruction manually
executed in step mode.

VORTEX interrupt line handlers: At system-generation time, a user specifies all
interrupt-driver tasks. These include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the interrupt themselves. Then,
VORTEX constructs a line-handler for each interrupt in the system (figure 12-1).

Directly connected routines preempt VORTEX and are thus used only when response time
demands it. The rules for the use of directly connected routines are:

12-2 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

a. All volatile registers used by the routine are restored before returning to the
interrupted task.

b. Interrupts remain disabled during processing.
¢c. 10C and RTE calls are not allowed.
d. Execution time is minimal.

e. Interrupts are enabled before returning to the interrupted task through word 0
of the line handler.

Common interrupt handler: The common interrupt handler is the interface between PIM
interrupts (via the line handlers) and system or user interrupt-processing tasks. Upon
entry, the contents of the volatile registers are saved and the interrupt event word is
inclusively ORed into the event word of the specified TIDB. A check then determines
whether to return to the interrupted tasks or to enter the interrupt-processing task,
depending upon priority. All interrupts are enabled upon leaving the common interrupt
handler.

Interrupt-processing tasks: A task is activated by an interrupt when: (1) task’s TiDB
interrupt-expected status bit is set, (2) the interrupt event word contains a nonzero, and
(3) the task is suspended.

The interrupt-processing task can be memory-resident or RMD-resident. In either case,
the processing task clears the event word and the interrupt-expected status bit to lock out
further interrupts until processing is complete. The event word distinguishes different
interrupt lines that could activate the same task.

98 A 9952 100 12-3

SECTION 12

REAL-TIME PROGRAMMING

/)\II\(\/\I\

yse] jdnissjuj
paidauuo) Apoaaq
10} 3pon Jasqn)

Jajuiod oejg pue
‘d ‘40 ‘X ‘g 'v
Hoels 1dnaasiug

PIOM JUBA]

piom peaiyl

i3juiod yoeis pue
‘d ‘40 ‘x ‘8 ‘v
)joels ydnasajul

PiOM JueA]

PiOM peaiyy

saall

P3Y0

apo) 49sn) o}
uononsuj e -pue-dwnp

uolonJlsu| ¥20)) ajqesiq

SSaippy uinjay

uoniedso] gail

PiOM JU3AT

Jajpuey 1dniidju| uowwos o3
uolonasu| yse-pue-dwung

SSaippy uJnjoy

uoijesol gall

L

payo0

PAOM JUBAT]

Jajpuey i1dniidjuj uowwo) oy
uol}onAIsu| yJep-pue-dwng

SSaippy uanjay

sid|pueH auiq

€
[4
1

¥9 4sjpueH aui7 o} uon
-onJisu| yse-pue-dwng

(adnaseyur pajyoeu
-uod Aj3oaap 1 ‘40)

O - AN MmS<

P ——

¢ 43jpuey aulq o3 uon
-onaysu| yse-pue-dwnp

1 J9jpuey sui] 03 uon
-on4ysu| yiep-pue-dwnp

- NV <

9420

€
co10
1
0010

$S24ppy

sassaJppy }dnuiajuj pajesdipaq

Figure 12-1. Interrupt Line Handlers

98 A 9952 100

124

SECTION 12
REAL-TIME PROGRAMMING

An interrupt processing task can exit with one of the following options:

a.

Issue a suspend RTE (type 1) service call that suspends the task and sets the
interrupt-expected status bit. Upon receiving the interrupt, the task continues
execution following the request.

Issue a delay RTE (type 2) service call that suspends the task and sets the
interrupt-expected status bit and time delay. Either one activates the task
following the delay call. (Upon entry, the event word not-zero indicates an
interrupt activation. The user also clears the time-delay status bit upon
reactivation.)

If RMD-resident, set the interrupt-expected status bit and call EXIT to release
space. (TIDB must be resident.)

Timing Considerations: The time necessary to process an interrupt through the common
interrupt handler depends on when the interrupt occurred:

a.

If a task is interrupted and the interrupt-processing task has a lower priority,
the interrupt is posted, and VORTEX returns control to the interrupted task in
approximately 56 cycles.

If a task is interrupted and the interrupt-processing task has a higher priority,
the interrupt is posted, and VORTEX transfers control to the dispatcher (section
12.3) to start the higher-priority interrupt-processing task (if all its conditions
are met). The posting time is 66 cycles, approximately.

If an interrupt occurs during a dispatcher scan, the posting time is about 32
cycles. VORTEX returns to the dispatcher to restart the scan.

It the real-time clock processor interrupts the interrupt handler, the common
interrupt handler posts the interrupt and returns to the clock processor in
approximately 40 cycles.

98 A 9952 100 125

B P T2

SECTION 12
REAL-TIME PROGRAMMING

12.1.2 Internal Interrupts

VORTEX recognizes and services internal interrupts related to various hardware
components. The processing routines are all directly connected and are the highest-
priority tasks in the system.

Memory protection interrupt: When the background area is active, it is run as an
unprotected area of memory with the rest of the system protected. In such a situation,
memory protection interrupts are generated when the background task attempts to
execute a " privileged" instruction such as external control or halt, or attempts to jump
into, write into, or perform 1/0 on protected memory. The memory protection routine
processes all protection violation interrupts and is the highest-priority interrupt in the
system.

Power failure/restart interrupt: When computer power goes down or comes up, the
power failure/restart routines are executed. On power-down, VORTEX saves the contents
of volatile storage and masks. On power-up, these data are restored and control returns
to the point of interrupt. During a power failure, 1/0 devices typically reset due to loss of
interrupts. |IOC attempts retrials and resumes normal operation upon resumption of
normal power. Data losses on the RMD due to power failure could cause VORTEX to
malfunction, but other nonsystem-resident devices are recoverable. The power failure/
restart routines operate just below memory protection as the second-highest priority
interrupts in the system.

Real-time clock interrupt: The real-time clock interrupt provides the basis for

timekeeping in VORTEX. It can be set to a minimum resolution of 5 milliseconds.

However, one greater than 5 milliseconds (i.e., 10-20 milliseconds) reduces overhead

when the system does not have high-resolution timekeeping requirements. Upon receipt
of an interrupt, the time-of-day is updated and the TIDBs are scanned for any time-driven
task requiring activation. PIMs are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third-highest priority interrupt in
VORTEX.

12-6 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.1.3 Interrupt-Processing Task Installation

To install an interrupt-processing task that is not directly connected, at system-generation
time provide line handlers and resident TIDBs by using a PIM directive (section 13.5.11)

with r(n) and s(n) both zero and a TDF directive (section 13.6.2) using the same task

name in both directives. Additional dummy TIDBs can be added during system
generation. (Once a TIDB is in the system, OPCOM directive :ATTACH can be used to
connect different interrupt-processing tasks to an interrupt line.)

Then, code the interrupt-processing task and add the task via system generation to the
VORTEX nucleus as a resident task.

Then, use the ;ATTACH directive to link the resident task ta the interrupt line.

12.2 SCHEDULING

12.2.1 System Flow

VORTEX is designed around the TIDB (figure 12-2). This block contains all of the
information about a task during its execution. The setting and clearing of status bits in
the TIDB causes a task to flow through the system. Two register stacks are saved within
the TIDB: a reentrant (suspend register) stack, and an interrupt stack.

The dispatcher (section 12.3) is the prime mover of tasks through the system. When any
function has reached a termination point or has to wait for an 1/0 operation, the task

gives control to the dispatcher, which then finds another task to execute. A task

maintains control until it gives control to the dispatcher, or to the interrupt task if the
interrupt-processing task has a higher priority. The contents of the interrupted task’s
volatile registers are saved in its TIDB interrupt stack and control goes to the dispatcher,
which searches for the highest-priority active task for execution.

98 A 9952 100 12-7

SECTION 12
REAL-TIME PROGRAMMING

Each TIDB is placed in sequence by priority level and threaded. Two stacks are
maintained in the system: a busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack and threaded onto the busy
stack according to priority level.

The status word of each TIDB, starting with the highest-priority task, is scanned.
Depending upon the setting of status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the dispatcher to process functions relating to
the execution of a task: (1) search, allocate, and load (SAL), and (2) common system
errors (ERROR). SAL searches, allocates, loads, and exits a scheduled task. ERROR posts
common system error messages. These two tasks are not reentered once they start
execution, so the dispatcher holds tasks requiring identical functions until they are
completed. Then, the highest-priority waiting task is given control of the required
function.

In VORTEX, SAL allocates memory in 512-word blocks starting with location 512 for
background, or the first 512-word block below the resident task directory for foreground
tasks. A foreground task is allocated into the first such available area. If space is not
available and the background is in operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground. Upon release of this space by
the foreground tasks, the background is read in from the RMD and reactivated.

If space is required to load a program and the background has already been
checkpointed, the task waits for a currently running task to exit and release memory.

The background memory allocation depends on the size of the background task being
loaded. Only the amount needed is so allocated automatically, although the JCP /MEM
directive can allocate extra memory for a background task. Figure 12-2 is a VORTEX
memory map, figure 12-3 shows the priority structure, figure 12-4 is a description of a
TIDB, and table 12-1 is a detailed description of lower memory.

12-8 98 A 9952 100

Address
0

512

Allocatable
Memory 24
Pool

10K

16K

98 A 9952 100

SECTION 12

REAL-TIME PROGRAMMING

Interrupt Location and System Pointers
Background Literal Pool

Nonresident Background Tasks

Nonresident Foreground Tasks

Resident Foreground User Tasks
and Subroutines

+ System Common

* Reentrant Stack

+ System and Unused TIDBs

* Line Handlers

+ Common Interrupt Handler

+ Dispatcher

+ Executive Call Handler

* Real-Time Clock

* Memory Protection Processing
* Power Failure/Restart

+ Real-Time Executive Services
+ 10C

* Drivers

+ System Tasks (SAL and ERROR)

Figure 12-2. VORTEX Memory Map

12-9

—

)

Protected
memory

Unprotected
memory is
allocated
starting at 512

Protected
memory is
allocated
starting from
high memory

Protected
memory

SECTION 12

REAL-TIME PROGRAMMING

Foreground
Priority
Levels

Background
Priority
Levels

Priority
Level
-
31
26
25 | VORTEX System Tasks SAL and ERROR
24 | Driver Tasks (Low-Speed Devices)
23 | Driver Tasks (High-Speed Devices)
) 22
11
10 | Operator Communication Task
9
2
>
1 | VORTEX System Protected Tasks
1 0 | User Unprotected Tasks

Figure 12-3. VORTEX Priority Structure

12-10

98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.2.2 Priorities

Thirty-two priority levels (0 through 31) are provided in the VORTEX system. Levels 2 to
31 are reserved for protected foreground usage. Level 25 is reserved for the two VORTEX
system tasks, SAL and ERROR. Levels 24 and 23 are reserved for 1/0 drivers. All other
foreground levels are available to the user. More than one task per level can be
scheduled.

Levels 1 and O are reserved for tasks running in the background allocatable memory and
residing in the background library. Level 1 is reserved for system tasks, e.g., the job-
control processor, the load-module generator, the FORTRAN compiler, the DAS MR
assembler, etc. These tasks run with memory protection disabled and can be

checkpointed when their space is needed by a foreground task. Level O is reserved for
unprotected background tasks, e.g., an undebugged user task. Level 0 tasks cannot

modify or destroy the system (figure 12-3).

Only one background task can be active and in memory at any given time. If other
background tasks have been scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be loaded and executed. If a
background task calls EXIT and no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is scheduled. Otherwise, there is
a normal exit.

98 A 9952 100 1\2_11

SECTION 12
REAL-TIME PROGRAMMING

Symbol Word Bits

15 5 0
TBTRD 0 Task Thread
TBST 1 Task Status
TBPL 2 Task Status Priority Level
TBEVNT 3 Interrupt Event
TBRSA 4 A Register (Reentrant and Suspension Stack)
TBRSB 5 B Register (Reentrant and Suspension Stack)
TBRSX 6 X Register (Reentrant and Suspension Stack)
TBRSP 7 OF P Register (Reentrant and Suspension Stack)
TBRSTS 8 Temporary Storage (Reentrant and Suspension Stack)
TBENTY 9 Task Entry Address
TBTMS 10 Time Counter - Clock Resolution Increments
TBTMIN 11 Time Counter - Minute Increments

Rt W N i Y N T

Figure 12-4. TIDB Description

12-12 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Symbol Word Bits
15 5 0
T N N e e el
TBISA 12 A Register (Interrupt Stack)
TBISB 13 B Register (Interrupt Stack)
TBISX 14 X Register (Interrupt Stack)
TBISP 15 OF P Register (Interrupt Stack)
TBISRS 16 Reentrant Stack Address (Interrupt Stack)
TBIO 17 No. of Blocks No. of 1/0 No. of 1/0
Allocated Req. Threaded Req. Active
TBKN1 18 Task Name
TBKN2 19 Task Name
TBKN3 20 Task Name
TBTLC 21 First Address in Allocatable Memory
TBCPTH 22 Background Task Queue
TBATSK 23 Address of Scheduling TIDB
TBRSE 24 Task Error Code

Figure 12-4. TIDB Descripﬁon (continued)

98 A 9952 100 _ 12-13

SECTION 12
REAL-TIME PROGRAMMING

KEY:

Symbol Word Bits
TBTRD 0 15-0
TBST 1 15-0
TBPL 2 15

14

13

12

Set =

Task thread

Task status

Task opened

Unused

Load overlay

Background
checkpoint
170 wait

Description

Points to next TIDB in
chain. Two queues are
maintained in the system:
active and inactive. V$TB
points to the highest-
priority active task.
V$UTB points to next
available inactive TIDB
space. Last TIDB on
queue has zero in
TBTRD.

See tabie 13-5.

Bit set when SAL has
opened task but not
loaded it (memory not
available).

RTE overlay request
made by task with
overlay name in user
request.

Foreground task wait-
ing for background 1/0
to complete so it can

be checkpointed to make
allocatable memory
available.

Figure 12-4. TIDB Description (continued)

12-14

98 A 9952 100

Symbol Word Bits

TBPL 2 11
(continued)

10

5-0

TBEVNT 3 15-0

Set =

Allocation

override flag

Background
being check-
pointed
TIDB not
available
Unused
Unused
Unused
Task priority

level

Interrupt
event

SECTION 12
REAL-TIME PROGRAMMING

Description

Overrides bits 9 and 12
of TBPL and bit 5 of
TBST. When FNIS routine
of SAL releases memory
and/or a TIDB, sets bit
11 for tasks having bits

9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory;
or scheduler, a TIDB

Background task being
written on checkpoint
file.

Schedule request made
but no TIDBs available
for allocation.

Specifies priority level
(0-31) of task to be exe-
cuted.

Matches bits in interrupt-
handler calling sequence
(interrupt-handler event
inclusively ORed) into

Figure 12-4. TIDB Description (continued)

98 A 9952 100

12-15

SECTION 12
REAL-TIME PROGRAMMING

Symbol Word Bits

TBEVNT

(continued)

TBRSA 4 15-0

TBRSB 5 15-0

TBRSX 6 15-0

TBRSP 7 15
14-0

Set =

A register
(reentrant

and suspen-

sion stack)

R register
(reentrant

and suspen-

sion stack)

X register
(reentrant

and suspen-

sion stack)

OF (overflow)
register (re-
entrant and

suspension
stack)

P register
(reentrant

and suspen-

sion stack)

Description

TIDB word 3 when processed
by line handler; if a bit

sets while status bits 3

and 14 are set, dispatcher
activates task. Clears

event word before exiting.

I0C and RTE calls store
volatile register contents
in this stack (words 4-8).

Figure 12-4. TIDB Description (continued)

12-16

98 A 9952 100

Symbol

TBRSTS

TBENTY

TBTMS

TBTMIN

TBISA

TBISB

98 A 9952 100

Word

10

11

12

Bits

15-0

15-0

15-0

15-0

15-0

15-0

Set =

Temporary
storage
(reentrant
and suspen-
sion stack)

Task entry

Time counter
(clock reso-
lution incre-
ments)

Time counter
(minute in-
crements)

A register
(interrupt
stack)

B register
(interrupt
stack)

12-17

SECTION 12
REAL-TIME PROGRAMMING

Description

Absolute address of first
executable data of a task.

Words 10 and 11 indicate
time left before execution.
(Clock routine increments
both words when bit 6 or
7 i1s set in status 1.)

Words 12-16 store volatile
register contents during
interrupt by higher-priority
task. (Upon reactivation,
words 12-16, volatile reg-
ister contents, and reen-
trant stack pointer are re-
stored and execution is
continued.)

Figure 12-4. TIDB Description (continued)

SECTION 12
REAL-TIME PROGRAMMING

Symbol Word Bits
TBISX 14 15-0
TBISP 15 15
14-0
TBISRS 16 15-0
TBIO 17 15-10
9-5
4-0

Set = Description

X register
(interrupt
stack)

OF (overflow)
register (inter-
rupt stack)

P register
(interrupt
stack)
Reentrant
stack pointer
(interrupt
stack)
Block allo- Number of 512-word blocks
cation size for execution of task.
Number of Incremented by I0C when
1/0 requests 1/0 request is received,
threaded and decremented upon com-
pletion. (A task cannot
exit or abort until counter
is zero.)
Number of Incremented by 10C when
active 1/0 it sets an /0 driver ac-
requests tive, and decremented upon

completion.

Figure 12-4. TIDB Description (continued)

12-18 98 A 9952 100

Symbol

TBKN1

TBKN2

TBKN3

TBTLC

TBCPTH

TBATSK

TBRSE

98 A 9952 100

Word

18

19

20

21

22

23

24

Bits

15-0
15-0

15-0

15-0°

15-0

15-0

15-0

Set =

Task name
Task name
Task name

First address
in allocatable
memory

Background
task queue

Address of
scheduling
task’'s TIDB

Task error

SECTION 12
REAL-TIME PROGRAMMING

Description

First two characters of
six-character task name.

Second two characters of
six-character task name.

Final two characters of
six-character task name.

Points to first address
allocated for use by task.

Any background task wait-
ing to be loaded in back-
ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,
but cannot load them
until space is available.)

Stores this address, and
upon EXIT or ABORT (if
bit 1 of TBST set) reac-
tivates scheduling.

Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints
message.

Figure 12-4. TIDB Description (continued)

12-19

SECTION 12

REAL-TIME PROGRAMMING

Address
00-01
02-017

020,021

022,023

024,025

026,027

030,031

032,033

034,035

036,037

040,041

042,043

Table 12-1. Map of Lowest Memory Sector

Symbolic Name

12-20

Description

CPU interrupt code (preset to NOP)

Unassigned: available to the user

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection

interrupt:
V$MPER)

interrupt:
V$MPER)

interrupt:
V$MPER)

interrupt:
VSMPJP)

interrupt:

halt

170

write

jump

over-

flow (jump-and-mark to VEMPER)

Memory protection

interrupt:

170

overflow (jump-and-mark to VSMPER)

Memory protection

interrupt:

write

overflow (jump-and-mark to VSMPER)

Memory protection

interrupt:

jump

overflow (jump-and-mark to VSMPER)

Power-down interrupt (jump-and-mark

to VSPFDN)

Power-up interrupt (jump-and-mark

to V$PFUP)

98 A 9952 100

SECTION 12

REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name
044,045

046,047

050-053 V$JNAM

054 VSLCNT

055 V$JCFG
056-067 V$BIC1
070-073 V$DATE

074 V$PLCT

98 A 9952 100

12-21

Description

Variable-interval interrupt address
(jump-and-mark to V$CLOK)

Reserved for future VORTEX use

Eight-character job name

Line count (set by a JCP /FORM

directive):

used by DAS MR assem-

bler and FORTRAN compiler to deter-
mine the number of lines printed
before a top of form is issued.

JCP flags:
Bits 15-10

Bits 9-5
Bit 4
Bit 3

Bits 2-0

Number of extra mem-
ory blocks to be
allocated with back-
ground task (cleared
after loading)

Unused.

Dump flag if load and go
Dump flag (if set,

the background dumps
after a normal EXIT
or abortion)
Load-and-go flags

BIC in sequence (maximum 10)

Eight-character date set up by
OPCOM directive ;DATE,mm/dd/yy

Permanent line count set up at
system-generation time

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

075 V$BGLB Protection code and logical unit
number of the BL unit

076 V$CRDM Keypunch (0 = 026, 1 = 029):
Bit O SGEN nominal keypunch
Bit 9 Current keypunch speci-

fied by JCP /KPMODE
directive (/JOB, /FINI,
or /ENDJOB resets cur-
rent value to nominal

value)

077 V$JCTM JCP temporary storage

0100-0117 PIM 1 jump-and-mark to individual
line handlers

0120-0137 PIM 2% jump-and-mark to individual
line handlers

0140-0157 ' PIM 3* jump-and-mark to individual
line handlers

0160-0177 PIM 4% jump-and-mark to individual
line handlers

0200-0217 PIM 5% jump-and-mark to individual
line handlers

0220-0237 PIM 6% jump-and-mark to individual
line handlers

0240-0257 PIM 7% jump-and-mark to individual
line handlers

1222 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0260-0277 PIM 8* jump-and-mark to individual
line handlers

0300 V$CTL Address of currently executing task

TIDB (0177777 = dispatcher 037 =
real-time clock routine)

0301 V$CPL Priority level of currently executing
task
0302 V$CRS Address of current reentrant stack

(zero if the currently executing
task is not executing a reentrant
subroutine)

0303 V$TB Address of highest-priority TIDB
in the active stack

0304 V$UTB Address of unused TIDB stack (zero
if no TIDB are available to be
allocated)

0305 ‘ V$PTVB Address of next entry in reentrant
stack

0306 V$FLRS Address of first location of re-

entrant stack

0307 V$LRSK Address of last location of re-
entrant stack + 1

0310 V$CKPT Checkpoint flag (set if background
checkpointed)

0311 V$OPCL Address of TIDB for OPCOM task

0312 VSLSAL Address of TIDB for system SAL task

98 A 9952 100 12-23

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name
0313 VSLER
0314 V$TJCP
0315 V$BTB
0316 V$LUP
0317 VSLLUP
0320 V$IM
0321

0322

0323

0324

0325

0326

0327

0330-0333 V$MPM

12-24

Description

Address of TIDB for system ERROR
task

Address of TIDB for JCP task
Address of current active back-
ground task TIDB (zero if no back-

ground task active)

Address of first unprotected word
(memory address 01000)

Address of last unprotected word
(depends upon size of background
executing task)

Interrupt mask for PIM 1 (0 = enable,
1 = disable)

Interrupt mask for PIM 2
Interrupt mask for PIM 3
interrupt mask for PIM 4
Interrupt mask for PIM 5
Interrupt mask for PIM 6
Interrupt mask for PIM 7
Interrupt mask for PIM 8
Memory protection mask (4 words),

0 = unprotected, 1 = protected
(words initially set to 0177777)

98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0334-0337 V$CAM Core allocation mask (4 words),
0 = 512-word block available for
allocation, 1 = 512-word block in

use and not available for alloca-
tion (SGEN generates initial mask)

0340 | Reserved for future VORTEX use
0341 V$CRDR Address of resident directory

0342 V$TBGT : Top of thread of background tasks
. waiting for allocation

0343 V$TMS Time-of-day in 5-millisecond incre-
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments, VE$TMS resets)

0344 VETMN Time-of-day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes), VETMN resets)

0345 VSLUNT - Address of logical-unit name table

0346 V$OPCF OPCOM lockout flag

0347 V$FGLB Protection code and logical-unit
number of the FL unit

0350 V$FREE Reserved for future VORTEX use

0351 V$CTMS Clock resolution in 5-millisecond

increments (user-specified milli-
second interrupt rate/5) speci-
fied at system-generation time

98 A 9952 100 1225

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0352 V$SCV Selected clock count (1 to 4095)
([user-specified millisecond
interrupt rate] x [1000/V$CKB])

0353 V$CKB Basic clock interrupt rate in milli-
seconds

0354 V$CRM Clock resolution increments for frac-
tions of a minute in 5-millisecond
increments

0355 V$DSTB Address of DST block

0356 V$LIT Last address in background literal
pool

0357 Reserved for future VORTEX use

0360 V$CTAD Base address for controller address
table

0361 V$SCTL Current controller in scan

0362 VSNCTR Number of controllers

0363-0372 V$PIMN External device address table for
PiMs

0373-0374 Reserved for future VORTEX use

0375 V$SLFG System SAL task busy flag (1 = busy)

0376 V$ERFG Error task busy flag (1 = busy)

0377 V$JOP JCP operating flag (1 = busy)

12-26 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0400 V$LUT1 Starting address of logical-unit
table for JCP/OPCOM-assignable
logical units

0401 - V$LUT2 Starting address of logical-unit
table for unreassignable logical
units

0402 V$LUT3 Starting address of logical-unit
table for OPCOM-assignable logical
units

0403 V$1MIN Clock constant set up by SGEN where
V$IMIN = 32767 - (60000/(5*V$CTMS))
+ 1

0404-0407 Reserved for future VORTEX use

0410 : V$I10A 170 algorithm

0411 V$CKIT Clock interrupted PIM before it

could be locked out (common inter-
rupt handier and clock-processor

flag)

0412 v$JCB Address of 41-word JCP buffer (all
system background programs and JCP
input directives into this system
buffer)

0413 V$0CB Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re-
quests into this buffer; if JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JCB before scheduling JCP)

98 A 9952 100 1227

SECTION 12

REAL-TIME PROGRAMMING

Address

0414

0415

0416

0417
0420
0421
0422
0423
0424
0425
0426
0427
0430
0431
0432

0433

Symbolic Name

V$BVN

V$BFC

V$TFC

V$PST
ZERO
BSO
BS1
BS2
BS3
BS4
BS5
BS6
BS7
BS8
BS9

BS10

12-28

Description

Table 12-1. Map of Lowest Memory Sector (continued)

Bottom of VORTEX nucleus

Top of foreground area, bottom

of foreground blank common

Top of foreground blank common,

top of VORTEX nucleus core

Maximum RMD partitions in system

Zero word

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

mask contents

0000001

0000002

0000004

0000010

0000020

0000040

0000100

0000200

0000400

0001000

0002000

98 A 9952 100

Address

0434

0435

0436

0437

0440

0441

0442

0443

0444

0445

0446

0447

0450

0451

0452

0453

0454

0455

0456

98 A 9952 100

Symbolic Name

BS11
BS12
BS13
BS14
BS15
BRO
BR1
BR2
BR3

BR4

‘BR5

BR6

BR7

" BR8

BR9

BR10

BR11

BR12

BR13

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

© Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

SECTION 12

REAL-TIME PROGRAMMING

Description

mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
mask contents
rﬁask contents

mask contents

Table 12-1. Map of Lowest Memory Sector (continued)

0004000

0010000

0020000

0040000

0100000

0177776

0177775

0177773

0177767

0177757

0177737

0177677

0177577

0177377

0176777

0175777

0173777

0167777

0157777

SECTION 12
REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0457 BR14 Bit mask contents 0137777
0460 BR15 Bit mask contents 0077777
0461 NEG Bit mask contents 0177777
0462 LHW Left-half word mask (0177400)
0463 RHW Right-half word mask (0000377)
0464 THREE Data word (000003)

0465 FIVE Data word (000005)

0466 SIX Data word (000006)

0467 SEVEN Data word (000007)

0470 NINE Data word (000011)

0471 TEN Data word (000012)

0472 BM17 Bit mask word (000017)

0473 BM37 Bit mask word (000037)

0474 BM77 Bit mask word (000077)

0475 BM177 Bit mask word (000177)

0476 BM777 Bit mask word (000777)

0477 BM1777 Bit mask word (001777)
0500—0.777 Background literals and pointers

e

* |f PIM is not present, the space is available to the user.

12-30 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.2.3 Timing Considerations (Approximafe)

Real-time clock interrupt processor: At each incrementation of the real-time clock,
there is a TIDB service scan requiring

X + 8y + 5z cycles

where
X is 60 when the scan interrupts the dispatcher, or 73 when
it interrupts a task and must establish a reentrant stack
and store the contents of the volatile registers
y is the number of TIDBs searched
z is the number of tasks having time- or schedule-delay

status bits set
The clock interrupt is disabled during the execution of the clock processor, and PIM

interrupts are disabled for 18 cycles following the initial entry of the clock processor.

Dispatcher interrupt processor: The time required to begin execution of a task through
the dispatcher is a function of the number of TIDBs searched before execution. The time
required to begin execution of the nth task is

t + 14u + 17v + 12w + 18x +25y + z cycles

where
1 is 9 or 11, depending on the entry to the dispatcher
u is the number of tasks with task-suspended bits (TBST bit 14)
set
v is the number of tasks with events expected but event word
reset

98 A 9952 100 12-31

SECTION 12
REAL-TIME PROGRAMMING

w is the number of tasks with error bits (TBST bit 4) set but
ERROR task busy

X is the number of tasks with either task-aborted (TBST bit 13)
or task-exited (TBST bit 12) set but 1/0 not completed

y is the number of tasks active but not loaded

z is one of the following values:

48 to activate the ERROR task

56 to activate the SAL task on aborting or exiting

60 to activate a loaded task that is not suspended,
or to activate the SAL task to load the requested
task

61 to activate an. interrupted, suspended task

65 to activate a task when the event word is set and
the interrupt suspended

Search, allocate, and load:
Open processing requires

X + y + z cycles

where
X is 180 for a foreground task, or 187 for a background task
y is the time required for an 170 open request (variable)
z is the time required to read one RMD 1/0 record (variable)

12-32 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Load processing requires, for a foreground task,

747 + w + x + ny + 214z cycles

where
w is the memory allocation time (average 1,334 cycles)
X is the time required to read one RMD |/0 record (variable)
n is the number of read-RMD records read
y . is the time required to read one RMD read record (variable)
z is the number of 16-bit relocation words

For a background task, load processing requires
346 + x cycles

where x is the time required to read one RMD 1/0 record.

Resident-task load processing requires

70 + 16x cycles

where x is the number of entries searched before the required task name is found.

98 A 9952 100 12-33

SECTION 12
REAL-TIME PROGRAMMING

12.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and add it to the VORTEX nucleus. RTE service
requests ALOC and DEALOC interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request that allocates a variable-length
push-down reentrant stack with the external name V$CRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first word of the reentrant

subroutine contains the number of words to be allocated.

A reentrant stack generated by the ALOC request has the format:

Word
VSCRS—— 0 A Register
1 B Register
2 X Register
3 OF P Register
4 Pointer to Previous Reentrant Stack
5 Available for Reentrant Subroutines
n .

12-34

Fixed
’ Size

I\

S Variable
Size

'98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

When writing a reentrant subroutine, ensure that the entry location contains the number
(=5) of words to be allocated, execution starts at the address (entry address + 1), and
that V$CRS contains the reentrant-stack address. No IOC or RTE calls except DEALOC
can be made while in a reentrant subroutine. The subroutine makes a DEALOC service
request to return control to the calling task. DEALOC releases the reentrant stack,
restores the A, B. and OF register contents, and returns control to the address following
the ALOC request. No temporary storage is available for the reentrant subroutine except
that allocated in the reentrant stack.

Parameters or pointers can be passed to the reentrant subroutine in the A and/or B
registers, as well as in-hine after the ALOC macro.

Two tasks make ALOC calls to RSUB. RSUB reserves six words of allocatable memory with
the sixth word as temporary storage. The A register (reentrant stack) returns a value to
the calling task If task A is on priority level 5 and task B is on level 6, RSUB running on
level 5 is interrupted and the level 6 task B executed. This, in turn, makes an ALOC
request and executes RSUB. RSUB then executes to completion before RSUB on level 5
can be completed.

Example:
Task A
ALOC RSUB
JAZ -—-
END
Task B
ALOC RSUB
JAZ ——-

END

98 A 9952 100 12-35

SECTION 12

REAL-TIME PROGRAMMING

V$CRS
RSUB

DEALOC
END

RSUB
0302

V$CRS

Allocate six-word stack
(one temporary location)

Save A in temporary storage

Get temporary storage value

Modify return in A register

Return to location following ALOC call

12-36

98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.4 CODING AN 1/0 DRIVER

The 10C (section 3) activates 1/0 drivers. When a user task makes an 170 request, it
executes a JSR V$IOC,X instruction with V$IOC containing the 10C entry address. 10C
then makes validity checks on the parameters specified in the request block (RQBLK) that
immediately follows the JSR instruction. 10C queues RQBLK to the 1/0 driver controller
table (CTBL), and activates the corresponding controller-table TIDB. The TIDB contains
the entry address for the 1/0 driver. To determine the proper CTBL and corresponding
TIDB, 10C obtains the logical-unit number from RQBLK. By referring to the logical-unit
table (LUT), IOC then finds the device assigned to that logical unit. Each device has a
device specification table (DST) associated with it, and each DST has a corresponding
controller table.

12.4.1 1/0 Tables

Not all the data discussed in this section are required for coding every special-purpose
driver, but it is presented to provide maximum flexibility in defining driver interfaces.

When an 170 driver is entered, it has the data, system pointers, and table address
necessary for the 1/0 driver processing. At system-generation time, additional working
storage space can be assigned to the 1/0 driver as an extension of the controller table.
The data available are:

a. VS$CTL (lower-memory system symbol defining the current TIDB) = address of
TIDB associated with the 1/0 driver controller table.

b. TBRST (word 7 of controller TIDB) = address of controller table CTBL.

c. Within CTBL, the following:
(1) CTIDB (word 0) = controlier TIDB address (V$CTL)
(2) CTDST (word 3) = address of DST
(3) CTRQBK (word 4) = address of RQBLK to be processed
(4) CTDVAT (word 6) = controller device address
(5) CTSTAT (word 8) = temporary storage available for driver

98 A 9952 100 12-37

SECTION 12
REAL-TIME PROGRAMMING

(6) CTBICB (word 9) = address containing assigned BIC address (e.g.,
020,022)

(7) CTFCB (word 10) = FCB or DCB address for 1/0 request specified in
CTRQBK (word 4)

(8) CTWDS (word 11) = contains, upon exit, number of words transferred

(9) CTSTSZ (word 13) = number of words per RMD sector

(10) CTTKSZ (word 14) = number of sectors per RMD track

(11) CTPSTO (word 15) = base address of the RMD for unit 0 on this controller
(12) CTPST1, CTPST2, and CTPST3 (words 16, 17, and 18) = PST addresses
for units 1, 2, and 3

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) = number (0-3) of this device on its
controller
(2) DSPSTI (bits 6-10 of word 2) = RMD partition number (1-20) used to
access the PST

e. Request block (RQBLK): Contains user task |/0 request information. The
address of RQBLK is contained in CTRQBK (word 4 of the controller tabie).
Word 1 of RQBLK contains the operation code in bits 8-11 and the mode
specification in bits 12-14. Word 0 bits 5-14 contain the status.

f. File control block (FCB): The FCB is used for RMD devices. CTFCB contains the
address of FCB.
(1) FCRECL (word 0) = record length
(2) FCBUFF (word 1) = user buffer
(3) FCACM (word 2) = bits 8-15, access method, and bits 0-7, protection code
(4) FCCADR (word 3) = current record number (relative within file)
(5) FCCEOF (word 4) = current EOF record number (relative within partition)

12-38 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

(6) FCIFE (word 5) = beginning-of-file record number (relative within
partition)

(7) FCEFE (word 6) = end-of-file record number (relative within partition)

(8) FCNAMI1, FCNAM2. and FCNAM3 (words 7, 8, and 9) = file names in
ASCI|

g Data control block (DCB): The DCB is used for non-RMD devices. CTFCB
contains the address of DCB.

(1) DCRECL (word 0) = record length
(2) DCBUFF (word 1) = user buffer
(3) DCCNT (word 2) = function count

12.4.2 1/0 Driver System Functions

Each 1/0 driver under 10C performs certain system pre- and post-processing functons.

Pre-interrupt processing: If the 1/0 driver uses a BIC, the driver calls V$BIC to build
and execute the initial BIC transfer instruction. If the BIC is shared, the interrupt line
handler is modified to the proper interrupt event word setting (TBEVNT) and TIDB
address. V$BIC performs this modification if the word immediately following the call (JSR
V$BIC,B) is nonzero, since this is assumed to be the interrupt event word setting. If it is
zero. no line handler modification is performed. The 1/0 driver clears the interrupt event
word (TBEVNT) in the controller TIDB immediately preceding a DELAY (type 2) call. To
wait for an interrupt, the 1/0 driver executes a DELAY (type 2) call with a time-out. The
return to the driver, either from a time-out or interrupt is to the address immediately
following the DELAY call.

98 A 9952 100 12-39

SECTION 12
REAL-TIME PROGRAMMING

Interrupt processing: The driver clears the time-delay flag (TBST bit 6) set by the
DELAY call, and checks TBEVNT to determine if an interrupt occurred (TBEVNT = 0
indicates a time-out). Following the interrupt processing, the driver clears TBEVNT and
calls DELAY (type 2) for the next instruction.

Post-interrupt processing (no errors): Upon the completion of interrupt processing, the
driver sets the status bits (5-14) of RSTPE (word 0) in RQBLK, and enters the number of
words transferred in CTWDS. The driver then relinquishes control and exits to 10C by
executing JMP V$FNR.

Post-interrupt processing (errors): If an error is encountered during interrupt
processing, the driver sets the status bits (5-14) of RSTPR, according to the type of error.
The driver then sets the A register to zero if the unit is not ready, negative if there is a
parameter error, or positive if there is a hardware error. Finally, the driver exits to the
10C error routine by executing JMP V$ERR.

12-40 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directives are required for linkages to the
controller table, controller TIDB, /0 driver entry location, DST, PST, and the PIM line
handler (section 13): .

Directive Description

EQP DSTs are generated by SGEN, one for each unit
specified by the EQP directive. All DSTs gen-
erated for a controller point indirectly to
the controller table specified by EQP. The
pointer is to the entry name in the controller
table assembly.

PIM A PIM directive is required for each PIM line
where an interrupt is expected. The PIM direc-
tive causes the system initializer to enable
the mask for that line (except for the TTY or
CRT output line, in which case it is initially
disabled). If the driver processes both input
and output interrupts, it may be advantageous
for processing to set the interrupt event word
for the input line to one value (e.g., 01) and
the interrupt event word for the output line
to another value (e.g., 02).

98 A 9952 100 12-41

SECTION 12
REAL-TIME PROGRAMMING

ASN This directive assigns logical units to phys-
ical units. If a new device is being added
and it is necessary to assign that device to
a logical unit when the system is initialized,
an ASN is input. Otherwise, the JCP or OPCOM
ASSIGN directive can be used. The logical-unit
table is established by these directives.

PRT This directive for RMDs specifies the size and
the mnemonic name of each partition. A PST
and DST are created for each partition.

TDF This VORTEX nucleus-generation control record
directive defines and builds the controller
TIDB. It specifies the name of the driver,
status word (TBST) setting, and priority level
of the driver.

12-42 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

Adding controller tables: A controller table is assembled as a separate entity and added
to the system-generation library (SGL) for loading at system-generation time. The
controller table name is CT followed by the three- or four-character ASCil name of the
controller, e.g., CTTYOA, CTMTO1, and CTDOB.

The controller table comprises parameters that are constant for a controller, and
parameters that are variables for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA statements can be added to the
controller table to provide additional working space for an 1/0 driver. The following items
in the controller table are treated as being constants for a controller.

(1) CTADNC (word 1) = end of table + 1

(2) CTOPM (word 2) = operation-code mask

(3) CTDST (word 3) = 0 (set by I0C)

(4) CTRQBK (word 4) = 0 (set by |10C)

(5) CTIOA (word 7) = 1/0 algorithm

(6) CTSTAT (word 8) = O (driver use)

(7) CTFCB (word 10) = O (set by 10C)

(8) CTWDS (word 11) = O (driver use)

(9) CTFRCT (word 12) = 1/0 algorithm frequency count

(10)CTSTSZ (word 13) = number of words in an RMD sector

I

(11)CTTKSZ (word 14) = number of sectors in an RMD track

98 A 9952 100 12-43

SECTION 12
REAL-TIME PROGRAMMING

The variable parameters are inserted into the controller table by SGEN during directive
processing. These are assembled, referencing the external names.

1)

@

(3)

(4)

)

(6)
7)
8

CTIDB (word 0) = name of the related controller TIDB (TB followed by the same
three- or four-character name used in the controller table, e.g., TBTYOA)

CTRTRY (word 5) = error retry count (#T followed by the name of the
controller, e.g., #TTYOA)

CTDVAD (word 6) = controller device address (# A followed by the name of the
controller, e.g., #ATYOA)

CTBICB (word 9) = address of BIC flag table (B followed by the name of the
controller, e.g., BTYOA)

CTPSTO (word 15) = base address of the PST for RMD unit O (P followed by
the four-character device name, e.g.,, PDOOA)

CTPST1 (word 16) = base address of the PST for RMD unit 1 (e.g., PDO1A)
CTPST2 (word 17) = base address of the PST for RMD unit 2 (e.g., PDO02A)

CTPST3 (word 18) = base address of the PST for RMD unit 3 (e.g., PDO3A)

12-44 98 A 9952 100

SECTION 12
REAL-TIME PROGRAMMING

12.4.4 Enabling and Disabling PIM Interrupts

EXC 0444 disables all PIM interrupts. EXC 0244 enables all PIM interrupts that are not
masked. There is a PIM directive for each PIM line at system-generation time. The system
initializer enables PIM lines. The mask is enabled unless the 1/0 driver specifically
disables it. If a PIM directive is omitted, the linkage between the trap and the interrupt
line handler cannot be established. If a PIM line mask is enabled or disabled by a driver,
the system mask is updated to reflect the current status. The system mask configuration
is given at low memory address V$IM (0320 for PIM1, 0321 for PIM2, etc.).

EXC 0747 disables the real-time clock interrupt and EXC 0147 enabiles it.

. slcn&o.r&
Figure 12-5 shows the stard=anpd VORTEX driver interface.

98 A 9952 100 12-45

SECTION 12
REAL-TIME PROGRAMMING

KEY:

Interrupt
Trap
Location
v
Interrupt Line Common

Handler (Using Interrupt
Common Handler) Handler

11
Task TIDB -~ =
v2

|
|
1
I
1/0 Driver :
!
1
!

v

Controller ¢ - [Controller
Table I Address

(for Drivers) Table

BN
A

Iy

Device 1
Specification
Tables

(for Drivers)

H> L L Hs s

The trap address corresponding to the PIM number (from PIM directive) points
to the SGEN-generated line handler. The line handler points to the TIDB
(named in PIM directive), using the matching TIDB name (on TDF control
record).

The TIDB name (on TDF control record) points to the task, using the entry name
in the assembly of the task.

For OPCOM device drivers only. The task TIDB points to the device controller
table name (on TDF control record), using the entry name in the controller table
assembly.

The DSTs are generated by SGEN, one for each unit specified on the EQP
directive. All DSTs generated for a controller point indirectly to the controller
table (named in EQP directive), using the entry in the controlier table assembly.

Figure 12-5. Driver Interface

12-46 98 A 9952 100

SECTION 13
SYSTEM GENERATION

SECTION 13
SYSTEM GENERATION

The VORTEX system-generation component (SGEN) tailors the VORTEX operating system
to specific user requirements. SGEN 1s a collection of programs on magnetic tape,
punched cards. or disc pack. It includes all programs (except the key-in loader, section
13.3) for generating an operating VORTEX system on an RMD.

Figure 13-1 is a block diagram of the data flow through SGEN.

13.1 ORGANIZATION

SGEN is a four-phase component comprising:

. |70 interrogation (section 13.4)

» SGEN directive processing (section 13.5)

» Building the VORTEX nucleus (section 13.6)

« Building the library and the resident-task configurator (section 13.7)
1/0 interrogation specifies the peripherals to:

a. Input VORTEX system routines (LIB unit)

b. Input user routines (ALT unit)

¢ Input SGEN directives (DIR unit)

d. Output the VORTEX system generation (SYS unit)

e. List special information and input user messages (LIS unit)

98 A 9952 100 13-1

SECTION 13
SYSTEM GENERATION

DIR INPUT UNIT LIB INPUT UNIT ALT INPUT UNIT
System Generation Library User Routines

SGEN DIRECTIVES
(Object modules and con- (Object modules and
trol records) control records)

Ee— SGEN ROUTINES G———|

= ¢ N

VORTEX
NUCLEUS

FOREGROUND BACKGROUND USER

LIBRARY LIBRARY LIBRARIES
(And system

initializer)

SYS OUTPUT UNITS

Figure 13-1. SGEN Data Flow

132 98 A 9952 100

SECTION 13
SYSTEM GENERATION

170 interrogation also specifies that the Teletype on hardware address 01 is the OC unit.
After these peripherals are assigned, appropriate drivers and 1/0 controls are loaded into
memory.

Note: SGEN does not build an object-module library To construct the VORTEX object-
module library (OM) or any user object-module library. use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the VORTEX system based on
user-supplied information that 1s compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the entire range of VORTEX
applications.

Building the VORTEX nucleus consists of gathering object moduies and control records
from the system-generation lbrary (SGL, section 13.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL items are input through the LIB
input unit, and user items through the ALT unit according to rules set up by the SGEN
directives.

Building the library and the resident-task configurator consists of generating load
modules from the object modules and control records input from the SGL and user data.
These load modules are then cataloged and entered into the foreground, background,
and user libraries During library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide variety of formats. After the
libraries are completed, designated load modules are copied into the VORTEX nucleus to
become resident tasks. The resident-task configuration of SGEN can also be generated
without regeneration of the VORTEX nucleus or libraries (section 13.7).

98 A 9952 100 13-3

SECTION 13
SYSTEM GENERATION

SGEN directive format requires that, unless otherwise indicated (e.g., section 13.5), the
directives begin in column 1 and comprise sequences of character strings having no

embedded blanks. The character strings are separated by commas (,) or by equal signs

(=). The directives are free-form and blanks are permitted between individual character
strings, i.e., before and after commas (or equal signs). Although not required, a period (.)
is a line terminator. Comments can be inserted after the period. For greater clarity in the
descriptions of the directives, optional periods, optional blank separators between
character strings, and the optional replacement of commas by equal signs are omitted.

Numerical data can be octal or decimal. Each octal number has a leading zero.

Error messages applicable to SGEN are given in section 17.13.

13.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of system programs (in object-module
form) and control records (in alphanumeric form) from which a VORTEX system is
constructed.

In the case of punched cards or of magnetic tape, the SGL occupies contiguous records,
beginning with the first record of the medium.

In the case of disc pack, the SGL occupies contiguous records beginning with the second
track. Track O contains the partition-specification table (PST, section 3.2) that specifies
one partition extending from the second track (track 1) to the end of device.

The SGL and the VORTEX system cannot be on the same disc pack during system
generation.

The SGL is functionally divided into six parts, each separated by CTL control records
(figure 13-2).

13-4 98 A 9952 100

PART O

PART 1

PART 2

PART 3

PART 4

PART 5

98 A 9952 100

&

*

9%

Figure

Bootstrap Loader and
1/0 Interrogation

CTL,PART0001

Relocatable Loader and
1/0 Control Routine

[SGEN Driver Library

CTL,PART0002

Directive Processor

CTL,PARTO0003

VORTEX Nucleus Processor

SLM,INIT

System Initializer

END

SLM,VORTEX

" VORTEX Nucleus
[Library

END

CTL,PART0004

Library Processor

' System Library
- Routines

CTL,PARTO0005

Resident-Task Configurator

CTL,ENDOFSGL

13-2. System-Generation Library

13-5

SECTION 13
SYSTEM GENERATION

NOTE:

* = Alphanumeric
control record

SECTION 13
SYSTEM GENERATION

Part 0 of the SGL comprises a VORTEX bootstrap loader and an 1/0 interrogation routine.
It is loaded with a device-sensitive key-in loader (section 13.3) that also serves the
bootstrap loader as a read-next-record routine. The bootstrap-loader/interrogator is a
core-image sequence of records generated by a VORTEX service routine. Because it calls
the key-in loader to read records, the bootstrap-loader/interrogator is itself device-
insensitive.

Control record CTL,PART0001 terminates part O of the SGL.

Part 1 of the SGL comprises the SGEN relocatable loader, the basic 1/0 control routine,
and library of peripheral drivers for the use of SGEN. Part 1 consists entirely of object
modules.

Control record CTL,PART0002 terminates part 1 of the SGL.

Part 2 of the SGL contains the directive processor. After being itself input, the directive
processor obtains all input from the DIR and OC input devices. Thus, there are no other
routines in part 2. '

Control record CTL,PARTO0003 terminates part 2 of the SGL.

Part 3 of the SGL comprises all system routines and control records required to build the
VORTEX nucleus (figure 13-3):

VORTEX nucleus processor -- the SGEN-processing portion
* SLM control record -- indicates the beginning of the system initializer portion

» System-initializer routines -- object modules to be converted into the system
initializer

* END control record -- indicates the end of the system-initializer portion

136 98 A 9952 100

SECTION 13
SYSTEM GENERATION

*

SLM,INIT

System Initializer

Low Memory Package

END

SLM,VORTEX

All TDF Control Records
Global FCBs

V$OPBF and V$JPBF Buffers
RTE Functions

RTE Services

RTE System Tasks

L)

o

L1l

10C Program
1/0 Controller Tables
[1/0 Drivers 1 NOTE:
* = Alphanumeric
* | END control record

Figure 13-3. VORTEX Nucleus

98 A 9952 100 13-7

SECTION 13
SYSTEM GENERATION

* SLM control record -- indicates the beginning of the VORTEX nucleus portion

* VORTEX nucleus routines -- control records and object modules to be converted
into the VORTEX nucleus

* END control record -- indicates the end of the VORTEX nucleus portion
Control record CTL,PART0004 terminates part 3 of the SGL.

Part 4 of the SGL comprises all system routines and control records required to build
load-module libraries (figure 13-4) on the RMD. The library processor converts these
inputs into load modules, catalogs them, and enters them into the foreground,
background, and user libraries. The library processor is followed by groups of control
records and object modules, with each group forming a load-module package (LMP).

Control record CTL,PART0005 terminates part 4 of the SGL.

Part 5 of the SGL contains the resident-task configurator portion of SGEN. The
configurator copies specified load modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL ENDOFSGL terminates the SGL.

13.3 KEY-IN LOADER

SGEN is initiated on a new or initialized system by inputting the key-in loader through the
CPU. The key-in loader loads the VORTEX bootstrap loader (part O of the SGL). Key-in
loaders are available for loading from magnetic tape, punched cards, or disc pack. The
required key-in loader is input to memory through the CPU console and then executed to
load the VORTEX bootstrap loader.

13-8 98 A 9952 100

REQUIRED
(FOREGROUND)
SYSTEM
TASKS

98 A 9952 100

%

LH

SLM,FGTSK1

TID,V$OPCM,2,8,106

V$OPCM Program

ESB

END

SLM,FGTSK2

TID,JCDUMP,2,0,106

JCDUMP Program

ESB

END

SLM,FGTSK3

TID,RAZ},2,0,106

RAZI Program

ESB

END

Figure 13-4. Load-Module Library

139

SECTION 13
SYSTEM GENERATION

SECTION 13
SYSTEM GENERATION

REQUIRED
(BACKGROUND)
SYSTEM

TASKS

Figure 13-4. Load-Module Library (continued)

%

SLM,BGTSK1

TID,JCP,1,0,105

Job-Control Processor

ESB

END

SLM,BGTSK2

TID,LMGEN,1,0,105

Load-Module Generator

ESB

END

SLM,BGTSK3

TID,FMAIN,1,0,105

File Maintenance

ESB

END

SLM,BGTSK4

TID,SMAIN, 1,0,105

System Maintenance

ESB

END

13-10

98 A 9952 100

98 A 9952 100

<

*

%

4%

SLM,BGTSK5

TID,FORT,1,0,105

FORTRAN Compiler

ESB

END

SLM,BGTSK6

TID,CONC,1,0,105

Concordance Program

ESB

END

SLM,BGTSK7?7

TiD,IOUTIL,1,0,105

1/0 Utility Program

ESB

END

- 13-11

SECTION 13
SYSTEM GENERATION

Figure 13-4. Load-Module Library (continued)

SECTION 13
SYSTEM GENERATION

%

SLM,BGTSK8
* | TID,SEDIT,1,0,105

Source Editor

ESB

END

SLM,BGTSK9
TID,DASMR,1,0,105
DAS MR Assembler
ESB

* 1 END

%

%

*

*

*

NOTE:

* = Alphanumeric
control record

Figure 13-4. Load-Module Library (continued)

13-12 98 A 9952 100

SECTION 13
SYSTEM GENERATION

Automatic bootstrap loader (ABL) In systems equipped with an ABL, load the key-in

loader from the input medium into memory starting with address 000000. To execute the
key-in loader, clear the A, B, X, |, and P registers; then press RESET, set STEP/RUN to
RUN, and press START.

Manual loading through the CPU front panel: The key-in loader can be entered manually
as follows using the appropriate loader given in table 13-1.

a. Press REPEAT.

b. Enter a STA instruction (045000) in the | register.

¢. Clear the P register.

d. Enter a key-in loader instruction in the A register.

e. Press STEP.

f. Clear the A register.

g Repeat steps (d), (e), and (f) for each key-in loader instruction.

To execute the key-in loader, clear the A, B, X, |, and P registers; then press RESET, set
STEP/RUN to RUN, and press START.

Table 13-1. SGEN Key-In Loaders

Address 620-30,31 Magnetic Tape 620-22,25 Card Reader
000000 010030 010054
000001 001010 001010
000002 001106 001106
000003 040030 040054
000004 001000 001000
000005 000012 000012

98 A 9952 100 13-13

SECTION 13

SYSTEM GENERATION

Address

000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044

Table 13-1. SGEN Key-In Loaders (continued)

620-30,31 Magnetic Tape

where zz

000000
006010
000300
050027
1041zz
1000zz
001000
000021
1025zz
057027
040027
1011zz
000016
1012zz
100006
001000
000021
000500
177742

= device address

13-14

000000
006010
000300
050053
10022z
002000
000046
1025zz
002000
000046
1026zz
004044
004444
057053
005001
040053
004450
002000
000046
10262z
004044
004450
002000
000046
1022zz
057053
040053
067053
040053
001000
000013

620-22,25 Card Reader

98 A 9952 100

SECTION 13
SYSTEM GENERATION

Table 13-1. SGEN Key-In Loaders (continued)

Address 620-30,31 Magnetic Tape 620-22, 25 Card Reader
000045 1011zz

000046 000000

000047 1016zz

000050 100006

000051 001000

000052 000045

000053 000500

000054 177742

13.4 SGEN 1/0 INTERROGATION

Upon successful loading of the bootstrap loader and 1/0 interrogation, the OC unit
outputs the message

I0 INTERROGATION

after which the SGEN peripherals are specified by inputting on the OC unit the five 170
directives:

. DIR Specify SGEN directive input unit

. LIB Specify SGL input unit

. ALT Specify SGL modification input unit

. SYS Specify VORTEX system generation output unit
. LIS Specify user communication and list output unit

These directives can be input in any order. SGEN will continue to request |/0 device
assignments until valid ones have been made for all five functions.

98 A 9952 100 13-15

SECTION 13
SYSTEM GENERATION

SGEN drivers are loaded from the SGEN driver library according to the specifications of
the SGEN 1/0 directives. Errors or problems with reading the drivers will cause the
applicable error messages (section 17.13) to be output.

The general form of a SGEN I/0 directive is

function = driver,device,bic

where
function is one of the directive names given above
driver is one of the driver names given below
device is the hardware device address
bic is the BIC address

The driver names are:

. MTcuf Magnetic-tape unit Cmodel s €20-30,~3(A4, - B(E; =310

. LPcui Line printer ¢ model ©20~27)

. CRcuf Card reader(model 20-~22, -25)

. PTcuA Paper-tape reader/punch { vwoRels &20-5%% "‘f A)~)
. TYcufd Teletype or CRT device (models &20-06~0F, £2257

. Dyl RMB D rum Memeory (rmokel 620~97)

' a8
where c is the controller number (0, 1, 2, or 3),Au is the unit number, et IS the-medal
LoceEeble-13-2).

° bé&ﬁ = Dervm M'emw‘:] (omode] 620 -L/&?)
. FD C‘\)Ag Dre e ’V\em07 (Wlel C’w""q7)

’ ’PCUB' fD]_'((/Vuem»r‘] CWNJJdJ éw”%,"??)

13-16 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.4.1 DIR (Directive-Input Unit) Directive

This directive specifies the unit from which all SGEN directives (section 13.5) will be input
(DIR unit). The directive has the general form

DIR = driver,device,bic

where
driver is one of the driver names MTcum, TYcum, or
CRcum
device is the hardware device address
bic is the BIC address (used only, and then option-

ally, for magnetic-tape units)

Example: Specify Teletype unit 0 having model code A and hardware device address 01

as the DIR unit.

DIR=TY0O0A,01

98 A 9952 100 13-17

SECTION 13
SYSTEM GENERATION

13.4.2 LIB (Library-Input Unit) Directive

This directive specifies the unit from which the SGL will be input (LIB unit). The directive
has the general form

LIB = driver,device,bic

where
driver is one of the driver names MTcum, CRcum, or
Dcum
device is the hardware device address
bic is the BIC address (used only, and then option-

ally, for magnetic-tape units)

Example: Specify magnetic-tape unit 0 having model code A and hardware device

address 010 (no BIC) as the LIB unit.

LIB=MTOO0A,010

13-18 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.4.3 ALT (Library-Modification Input Unit) Directive

This directive specifies the unit from which object modules that modify the SGL will be
input (ALT unit). The directive has the general form

ALT = driver,device,bic

where
driver is one of the driver names MTcum or CRcum
device is the hardware device address
bic is the BIC address (used only, and then optionally,

for magnetic-tape units)

Example: Specify card reader unit O having model code A and hardware device address
030 as the ALT unit.

ALT=CROOA, 030

98 A 9952 100 13-19

SECTION 13
SYSTEM GENERATION

13.4.4 SYS (System-Generation Output Unit) Directive

This directive specifies the RMD(s) onto which the VORTEX system will be generated, with
the VORTEX nucleus on the first such device specified. Up to 16 RMDs can be specified.
The directive has the general form

SYS =driverl,devicel,bicl;driver2, device2,bic2;...;drivern,devicen, bicn

where each
driver is an RMD driver name Dcum
device is the hardware device address of the corresponding
driver
bic is the mandatory address of the applicable BIC

Examples: Specify RMD 0 having model code B, hardware device address 016, and BIC
address 020 as the SYS unit.

SYsS=D00B, 016,020

oo AL
Specify two SYS units: RMD @ with model code 4 hardware device address 014, and
BIC address 020; and RMD 10 with model code B, hardware device address 015, and BIC

address 022.

SYS=DO0AQP14,020;D1OB,015,022

13-20 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.4.5 LIS Directive

This LIS (User-Communication and List Output Unit) directive specifies the unit that will
be used for user communication and list output (LIS unit). The directive has the general
form

LIS =driver,device

where
driver is one of the driver names TYcum or LPcum

device is the hardware device address

The following information appears on the LIS unit:
a. Error messages
b. Load map of each load module
c. Directives input through the DIR unit (section 13.4.1)

d. Partition table for each system RMD

Example: Specify line printer 0 having model code A and hardware device address 035
as the LIS unit.

LIS=LP0OA, 035

98 A 9952 100 13-21

SECTION 13
SYSTEM GENERATION

13.5 SGEN DIRECTIVE PROCESSING

Upon successful loading of the SGEN directive processor, the OC and LIS (section 13.4.2)
units output the message

INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives from the DIR unit (section
13.4.1).

The SGEN directives described in this section can be input in any order, except for the
EDR directive (section 13.5. 14), which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last information input as the correct data.

Errors cause the output of the applicable error messages (section 17.13).

The general form of an SGEN directive is

aaa,p(1)xp(2)x...xp(n)

where
aaa is a three-character SGEN directive name

each p(n) is a parameter as indicated in the specifications
for the individual directives

each x is a punctuation mark as indicated in the specifi-
ations for the individual directives

13-22 98 A 9952 100

SECTION 13
SYSTEM GENERATION

In contrast to most VORTEX system directives, the punctuation in SGEN directives is
exactly as defined in the specifications for the individual directives, although blanks are
allowed between parameters, i.e., before or after punctuation marks. SGEN directives
begin in column 1 and can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

13.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of SGEN. It has the general form
MRY,memory,common

where
memory is the extent of the memory area available to
VORTEX (minimum 12K = 027777)

common is the extent (0 or positive value) of the fore-
ground blank-common area

Examples: Specify a 16K memory for VORTEX with a foreground blank-common area
from 037600 to 037777.

MRY,037777,0200
Specify an 18,000-word memory for VORTEX with no foreground blank-common area.

MRY, 18000,0

98 A 9952 100 13-23

SECTION 13
SYSTEM GENERATION

13.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the system. It has the general form

EQP,name,address,number,bic,retry

where
name

address

number

bic

retry

is the mnemonic for a peripheral controller

is the controller device address (01 through 077
inclusive)

is the number (1 through 4, inclusive) of
peripheral units attached to the controller

is the BIC address (0 if no BIC applies)
is the number (0 to 99, inclusive) of retries

to be attempted by the 1/0 driver when an error
is encountered

Acceptable mnemonics for name are:

. MTnm
. LPnm

. CRnm
. PTnm

. TYnm

. CTnm

. CPnm
. Dnm

Magnetic-tape unit

Line printer

Card reader

Paper-tape reader/punch
Teletype

CRT device

Card Punch

RMD

where n is the controller humber (0, 1, 2, or 3), and m is the model code (table 13-2).

13-24

98 A 9952 100

Code
TYnA

CTnA
CRnA

CPnA

MTnA
MTnA
MTnA
MTnA

DNA
DnB

PTnA
LPnA

SECTION 13
SYSTEM GENERATION

Table 13-2. Model Codes for VORTEX Peripherals

Mode!l Number
620-06, or -08

E2250
620-22, -25

620-27
620-30
620-31A
620-31B
620-31C

620-47, 48-49
620-37, 36

620-55, -55A

£20-77

Description
33/35 ASR Teletype Keyboard/Printer

CRT keyboard/display device
Card reader: 300 or 600 cards per minute

Card punch: 35 cards per minute

Magnetic-tape unit: 9 track/800 bpi/25 ips
MTU: 7 track/200-556 bpi/25 ips
MTU: 7 track/200-800 bpi/25 ips
MTU: 7 track/556-800 bpi/25 ips

Drum memory
Disc memory

Paper-tape reader/punch
Lne Criyler

Note: Other peripheral devices can be added to the system by creating an EQP directive
with a unique phsyical-unit name for the device. A controller table with the same name is
then added to the VORTEX nucleus by an ADD directive (section 13.5.5).

Controller tables are arranged according to the priority levels of their task-identification
blocks (TIDBs). On any given level, the tables are arranged in the input sequence of the
corresponding EQP directives. Device-specification table (DST) entries are unsorted.

98 A 9952 100

13-25

SECTION 13
SYSTEM GENERATION

The following order is suggested for peripheral controllers:

a. RMDs
b. Operator-communication (OC) device (section 15)
c. Magnetic-tape units

d. Other units

Example: Define a system containing one model B RMD, one model A magnetic-tape
unit, one model A card reader, one model A line printer, and one model A Teletype.

EQP,DOB,016,1,020,5
EQP,MT0A,010,2,022,4
EQP,CROA,030,1,0,0
EQP,LPOA,035,1,0,0
EQP,TYO0A,01,3,0,0

13.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each RMD. It has the general form
PRT,Dcup(1),s(1),k(1);Dcup(2),5(2),k(2);...,Dcup(n),s(n),k(n)

where each
Dcup(n) is the name of the RMD partition with ¢ being

the number (0, 1, 2, or 3) of the controller, u
the unit number (0, 1, 2, or 3), and p the
partition letter (A through T, inclusive)

13-26 98 A 9952 100

SECTION 13
SYSTEM GENERATION

s(n) is the number (octal or decimal) of tracks in
the partition

k(n) is the protection code (single alphanumeric char-
acter including $) for the partition, or * if
the partition is unprotected

At least seven partitions are required for the system rotating memory. PRT directives are
required for every partition on every RMD in the system. While the partition specifications
can appear in any order, the set of partitions specified for each RMD must comprise a
contiguous group, e.g., the sequence DOOA, DOOC, DOOD, DOOB is valid, but the sequence
DOOA, DOOC, DOOD, DOOE constitutes an error.

Logical units 101 through 106 inclusive have preassigned protection codes (102 = B, 103
= C,104 = D, 105 = E, and 106 = F). Any attempt to change these codes is ignored.

98 A 9952 100 13-27

SECTION 13
SYSTEM GENERATION

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code
0 A 2 C
0 B 20 F
0 C 25 E
0 D 40 D
0 E 8 S
0 F 18 B
0 G 18 None
0 H 66 None
1 A 40 None
1 B 60 R
1 C 50 None
1 D 53 X

PRT,DOOA,2,C;DO0B, 20, F
PRT,D00C,25,E;D00OD,40,D;DOOE, 8,5
PRT,DOOF,18,F;D00G, 18 ,*;D00H, 66, *
PRT,DO01D,53,X;D01C,50,%
PRT,DO1A, 40, *;D01B,60,R

13-28 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.5.4 ASN (Assign) Directive

This directive assigns logical units to physical devices. It has the general form

ASN,lun(1) = dev(1),lun(2) = dev(2),....lun(n) = dev(n)

where each
lun(n) is a logical unit number (1 through 100 or 107
through 255, inclusive) that can be followed
optionally by a two-character logical unit name
e.g., 107:Y7
dev(n) is a four-character physical-device name, e.g.,
TY00, DOOG

If a new assignment specifies the same logical unit as a previous assignment, the old one
is replaced and is no longer valid. All logical units for which physical device assignments
are not explicitly made are considered dummy units.

Restrictions: Any attempt to change one of the preset logical unit name:number or

name:number:partition relationships given in table 13-3 will cause an error to be flagged.
Table 13-4 indicates the permissible physical unit assignments for the first 12 logical
units (with PO automatically set equal to SS).

Example: Specify physical device assignments for logical units 1-12, inclusive, 107 and
108, and 180 and 181, where the last two units have, in addition to their numbers, two-

character names.

ASN, 1=TY00,2=CR00, 3=TY01,4=CROO
ASN,5=LP00,6=MT00,7=D00I,8=D00A
ASN, 9=DO0H, 10=D00A, 11=TY00, 12=LP0O
ASN, 107=LP00, 108=CRO0

ASN, 180:56=MT00, 181:58=MT01

98 A 9952 100 13-29

SECTION 13

SYSTEM GENERATION

Preset logical-unit name/number relationships:

oc =1
Sl = 2
SO = 3
Pl = 4

LO =5
Bl =6
BO = 7
SS = 8

Preset logical-unit/RMD-partition relationships:

Logical-Unit

Name
CL

FL

BL

OM

Cu

Sw

Logical-Unit
Number

103
106
105
104
101

102

13-30

Table 13-3. Preset Logical-Unit Assignments

I
©

GO

PO 10

DI = 11

DO 12

Partition
Name

DOOA

DOOB

DooC

DOOD

DOOE

DOOF

98 A 9952 100

Logical Units
1 (0C)
2 (Sh
3 (SO)
4 (P
5 (LO)
6 (B
7 (BO)
8 (SS)
9 (GO)

10 (PO)

11 (Dh

12 (DO)

98 A 9952 100

SECTION 13
SYSTEM GENERATION

Table 13-4. Permissible Logical-Unit Assignments

Teletype
or CRT

X

X

Permissible Physical Units

Other Other

RMD or Line Output - Input
MT Printer (CP,PT) (PT,CR)

X ’ X

X X

X X X

X X

X X

X

X

X

X

13-31

SECTION 13
SYSTEM GENERATION

13.5.5 ADD (SGL Addition) Directive

This directive specifies the SGL control records and object modules after which new
control records and/or object modules are to be added during nucleus generation. It has
the general form

ADD,p(1),p(2),...p(n)

where each p(n) is the name of a control record or an object module after which new
items are to be added.

When the name of a specified item is read from the SGL, the program is processed and
the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is either

ALT

if an item is to be added from the SGEN ALT input unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former response is used, SGEN reads a
load module from the ALT unit and adds it to the SGL, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on the OC unit.

Example: Specify that items are to be added during nucleus generation after control
records or object modules named PROG1, PROG2, and PROGS3.

ADD,PROG1,PROG2,PROG3

13-32 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object modules to be replaced with
new control records and/or object modules during nucleus generation. It has the general
form

REP,p(1),p(2),....p(n)
where each p(n) is the name of a control record or an object module to be replaced.

When the name of the specified item is read from the SGL, the program is skipped and the
message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is either

ALT

if an item is to be replaced by one on the SGEN ALT input unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former response is used, SGEN reads a
load module from the ALT unit and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on the OC unit.

Example: Specify that control records or object modules named PROGA and PROGB are
to be replaced during nucleus generation.

REP, PROGA, PROGB

98 A 9952 100 13-33

SECTION 13
SYSTEM GENERATION

13.5.7 DEL (SGL Deletion) Directive

This directive specifies the SGL control records and object modules that are to be deleted
during nucleus generation.It has the general form

DEL,p(1),p(2),....p(n)

where each p(n) is the name of a control record or an object module to be deleted.

When the name of a specified item is read from the SGL, the item is skipped and
processing continues with the following control record or object module.

Example: Delete, during nucleus generation, all control records and object modules
named PROG1 and PROG2.

DEL,PROG 1, PROG2

13-34 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after which new load-module
packages are to be added during library generation. It has the general form

LAD,p(1),p(2),....p(n)

where each p(n) is the name of a load-module package from an SLM control directive
after which new items are to be added.

When the name of a specified load-module package is read from the SGL, the program is
processed and the message

ADD AFTER pf{n)
READY

appears on the OC unit. User response on the OC unit is either

ALT

if a load-module package is to be added from the SGEN ALT input unit (section 13.4.3), or
LIB

it processing from the SGL is to continue. If the former response is used, SGEN reads a
module from the ALT unit and adds it to the library, then prints on the OC unit the
message

READY
to which the user again responds with either ALT or LIB on the OC unit.

Example: Specify that items are to be added, during library generation, after load-
module packages named PROG1, PROG2, and PROGS3.

LAD,PROG1,PROG2, PROG3

98 A 9952 100 13-35

SECTION 13
SYSTEM GENERATION

13.5.9 LRE (Library Replacement) Directive

This directive specifies the SGL load-module package to be replaced with new load-module
package during library generation. It has the general form

LRE,p(1),p(2),...p(n)

where each p(n) is the name of a load-module package from an SLM control directive to be
replaced.

When the name of the specified load-module package is read from the SGL, the program
is skipped and the message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is either

ALT

if module is to be replaced by one on the SGEN ALT input unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former response is used, SGEN reads a
module from the ALT unit and replaces p(n) with it in the SGL, then prints on the OC unit
the message

READY

to which the user again responds with either ALT or LIB on the OC unit.

Example: Specify that load-module packages named PROGA or PROGB are to be
replaced during library generation.

LRE, PROGA, PROGB

13-36 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.5.10 LDE (Library Deletion) Directive

This directive specifies the SGL load-module packages that are to be deleted during
library generation. It has the general form

LDE,p(1),p(2),...p(n)

where each p(n) is the name of a load-module package from an SLM control directive to
be deleted.

When the name of a specified load-module package is read from the SGL, the load-module
package is skipped and processing continues with the following load module.

Example: Delete, during library generation, all load-module packages named PROG1

and PROG2.

LDE, PROG1,PROG2

98 A 9952 100 13-37

SECTION 13
SYSTEM GENERATION

13.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by specifying the number of
priority interrupt modules (PIMs) in the system, the interrupt levels to be enabled at
system-initialization time, and the interrupts to be manipulated by user-coded interrupt
handlers. The PIM directive has the general form

PIM,p(1),q(1),r(1),s(1);p(2),9(2),r(2),5(2);...;p(n).q(n),r(n),s(n)

where each

p(n) is an interrupt line number comprising two octal
digits with the first being the PIM number and the
second the line number within the PIM, e.g.,, 042

q(n) is the name (1 to 6 characters) of the task han-
dling the interrupt

r(n) is the content of the interrupt event word in
octal notation

s(n) is 0 for an interrupt using the common interrupt-

handler, or 1 for a directly connected interrupt
If an interrupt line is to use the common interrupt handler, a TIDB is generated for the
related interrupt-processing routine, which can be in the VORTEX nucleus or in the

foreground library.

If an interrupt line is to have a direct connection, the interrupt-processing routine must
be added to the VORTEX nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the common interrupt handler, the
other directly connected.

PIM,042,TBMTOA,00001,0;0u44 ,LPOB,01,1

13-38 98 A 9952 100

~ SECTION 13
SYSTEM GENERATION

13.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related to the operation of the real-
time clock. It has the general form ’

CLK,clock,counter,interrupt

where
clock is the number of microseconds in the basic clock
interval
counter is the number of microseconds in the free-running
counter increment period
interrupt is the number of milliseconds in the user

interrupt interval
The value of interval, when not a multiple of 5 milliseconds, is increased to the next

multiple of 5 milliseconds; e.g., if interval is 151, the interrupt interval is 155
milliseconds.

Example: Specify a basic clock interval of 100 microseconds, a free-running counter rate
of 100 microseconds, and a user interrupt interval of 20 milliseconds.

CLK, 100,100,20

98 A 9952 100 13-39

SECTION 13
SYSTEM GENERATION

13.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library that are to be made resident
tasks. It has the general form

TSK,task(1),task(2),... task(n)

where each task(n) is the name of an RMD foreground-library task that is to be made a
resident task.

If this directive is input as part of a full system generation, the names are those of tasks

that will be built on the foreground library during the library-building phase (section
13.7).

Example: Specify that foreground-library tasks RTA, RTB, and RTC be made resident
tasks.

TSK,RTA,RTB,RTC

13-40 98 A 9952 100

13.5.14

SECTION 13
SYSTEM GENERATION

EDR (End Redefinition) Directive

This directive, which must be the last SGEN directive, specifies all special system-
parameters, or terminates SGEN directive input. If only a redefinition of resident tasks is
required, the EDR directive is of the form

EDR,R

but if a full SGEN is necessary, the EDR directive has the general form

EDR,S,tidb,stack,part,list,kpun,map

where
tidb

stack

part

list

kpun

map

»

98 A 9952 100

is the number (01 through 0777, inclusive) of
25-word empty TIDBs allocated

is the size (0 through 037777, inclusive) of the
storage and reentry stack allocation, which is
equal to the number of words per reentrant sub-
routine multiplied by the number of levels call-
ing the subroutine

is the maximum number (1 through 20, inclusive)
of partitions on an RMD in the system

is the number of lines per page for the list
output, with typical values of 44 for the line
printer and 61 for the Teletype

is 26 for 026 keypunch Hollerith code, or 29
for 029 code

is L if map information is to be listed, or
0 if it is to be suppressed

13-41

SECTION 13
SYSTEM GENERATION

Bad-track or RMD partitiohing analysis is performed following input of the EDR directive.

When that process is complete, the VORTEX nucleus or resident-task processor is loaded

into main memory.

Examples: Specify redefinition of resident tasks only.

EDR,R

Specify full system generation with no empty TIDBs, no stack area, a maximum of five
partitions per RMD, 44 lines per page on the list output, 026 keypunch mode, and a list
map.

EDR,S,0,0,5,44,26,L

Specify full system generation with 100 empty TIDBs, 0500 addresses in the stack area, a
maximum of 20 partitions per RDM, 30 lines per page on the list output, 029 keypunch

mode, and suppression of the list map.

EDR,S,100,0500,20,30,29,0

13-42 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.6 BUILDING THE VORTEX NUCLEUS

If a full system generation has been requested by the S form of an EDR directive (section
13.5.14), the nucleus processor is loaded upon completion of directive processing. Once
loaded, the nucleus processor reads the SGL routines and builds the VORTEX nucleus as
specified by the routines and the SGEN control records.

There are three SGEN control records used in building the nucleus:

. SLM Start load module
. TDF Build task-identification block
. END End of nucleus library

Normally these control records are used only to replace existing SGL control records.

VORTEX nucleus processing consists of the automatic reading of control records and
object modules from the SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into the VORTEX nucleus. The only
manual operations are the addition and replacement of object modules during system
generation. In these cases, follow the procedures given in sections 13.5.5 and 13.5.6,
respectively.

98 A 9952 100 13-43

SECTION 13
SYSTEM GENERATION

13.6.1 SLM (Start Load Module) Directive

This directive specifies the beginning of a load module. Its presence indicates the
beginning of the system initializer or VORTEX nucleus. The directive has the general form

SLM,name
where name is the name of the load module that follows the directive.
Example: Indicate the beginning of the VORTEX nucleus.

SLM, VORTEX

13.6.2 TDF (Build Task-ldentification Block) Directive
This directive specifies all paramefers necessary to build a task-identification block in the
VORTEX nucleus. It has the general form

TDF,name,exec,ctrl,stat,levl

where
name is the name (1 to 6 alphanumeric characters)
given to the TIDB for linking purposes

exec is the name (1 to 6 alphanumeric characters)
associated with the execution address of the
task

ctrl is the name (1 to 6 alphanumeric characters)

of the controller table required for Teletype
and CRT processing tasks, or is O for any
other task

13-44 98 A 9952 100

SECTION 13
~ SYSTEM GENERATION

is the 16-bit TIDB status word where the

stat
settings of the individual bits have the
significance shown in table 13-5

levi is the priority level of the related tasks

Example: Define a foreground resident task PROG1 on priority level 10.

TDF,TIDPR1,PROG1,0,07401,10

13.6.3 END Directive
This directive indicates the end of the system initializer or the VORTEX nucleus. It has the
form

END

Example: Indicate the end of the system initializer.

END

98 A 9952 100 1345

SECTION 13
SYSTEM GENERATION

Table 13-5. TIDB Status-Word Bits
Bit When Set Indicates Explanation

15 Interrupt suspended The task is suspended during the
processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB
words 12-16 (interrupt stack).

14 Task suspended The task is suspended because
of 170 or because it is wait-
ing to be activated by an inter-
rupt, time delay, or another
task. The task is activated
whenever this bit is zero, or
if TIDB word 3 has an inter-
rupt pending and the task ex-
pects the interrupt.

13 Task aborted The task is not activated. All
stacked 1/0 is aborted, but
currently active 170 is com-
pleted.

12 Task exited The task is not activated. All
stacked and currently active
170 is completed.

11 TIDB resident The TIDB (drivers, task-
interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or
exited.

10 Task resident The task is resident and not

released when aborted or
exited.

13-46 98 A 9952 100

Bit

98 A 9952 100

SECTION 13
SYSTEM GENERATION

Table 13-5. TIDB Status-Word Bits (continued)

When Set Indicates

Foreground task

Background protected
task

Task scheduled by
time increment

Time delay active

Task checkpointed

Error in task

Task interrupt expected

Overlay task

Task-schedule this task

Task searched

13-47

Explanation

The task is in protected fore-
ground. A background task is
protected only if bit 8 is set.

The task is in protected back-
ground.

The task becomes nonsuspended
when a specified time interval

is reached. Prerequisite: Resi-
dent TIDB (bit 11).

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check-
pointed and suspended. 1/0 is
not activated. C

The task contains an error that
will cause an error message to
be output.

A task interrupt is expected.

The task contains overlays.

The scheduling task is suspended
until the scheduled task exits

or aborts.

The task is loaded in memory and
is ready for execution.

SECTION 13
SYSTEM GENERATION ‘

13.7 BUILDING THE LIBRARY AND CONFIGURATOR

If a full system generation has been requested by the S form of an EDR directive (section
13.5.14), the library generator is loaded upon completion of nucleus processing. If only
reconfiguration of resident tasks has been requested (R form of the EDR directive), the
library generator is loaded immediately after directive processing.

A load module I1s a logicaily complete task or operation that can be executed by the
VORTEX system in foreground or background. It resides in the foreground or background
library, or in the user library. Load modules are constructed from sets of binary object
modules interspersed with alphanumeric control records. The control records indicate the
beginning and end of data for incorporation into each load module, and specify certain
parameters to the load module. The group of object modules and control records used to
construct a load module is called a load-module package (LMP). Figure 13-5 shows an
LMP for a load module without overlays, and figure 13-6 shows an LMP for a load module
with overlays. Each LMP runs from a SLM control record to an END control record, and
includes all modules and records between.

* | SLM,namel

* | TID,name2,. . . NOTE:
[Object Modules Comprising] * = Alphanumeric
- the Root Segement 1 control record

* | ESB

* | END

Figure 13-5. Load Module Package for Module Without Overlays

13-48 98 A 9952 100

SECTION 13
SYSTEM GENERATION

#* | SLM,namel

* | TID,name2,. . .

| Object Modules Comprising
. the Root Segment J

* | ESB

| OVL,name3,. . .

| Object Modules Comprising
- the First Overlay Segment

* | ESB

| OVL,name4,. . .

L Object Modules Comprising
the Second Overlay Segment NOTE:
e e — i/

| Object Modules Comprising | * = Alphanumeric

the nth Overlay Segment control record
* | ESB

*

END

Figure 13-6. Load Module Package for Module With Overlays

98 A 9952 100 13-49

SECTION 13
SYSTEM GENERATION

There are five SGEN control records used in building the library:

. SLM Start load module

. TIiD Task-identification block specification
. OvL Overlay

. ESB End of segment

. END

Library processing consists of the automatic reading of control records and object
modules from the SGL, and construction of the library from these inputs. The only
manual operations are the addition and replacement of load modules. In these cases,
follow the procedures given in sections 13.5.5 and 13.5.6, respectively.

Resident-task configuration takes place upon completion of library processing. All tasks
specified by TSK directives (section 13.5.13) are copied from the foreground library into
the VORTEX nucleus, thus becoming resident tasks. To change the resident-task
configuration of a previously generated system, input the TSK directives followed by the R
form of the EDR directive (section 13.5.14), thus bypassing nucleus and library processing
and allowing the resident-task configurator to alter the existing system. Note: If a
specified program is not found in the foreground library, configuration continues, but an
appropriate message is output.

13.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the general form
SLM,name

where name is the name of the LMP that begins with this directive.

Example: Indicate the start of the LMP named ABC.

SLM,ABC

13-50 98 A 9952 100

SECTION 13
SYSTEM GENERATION

13.7.2 TID (TIDB Specification) Directive

This directive contains the parameters necessary for the generation of the task-
identification block required for each generated load module. The TID directive has the
general form

TiD,name,mode,ovly,lun

where
name is the name (one to six alphanumeric characters)
of the task
mode is 1 if the task is a background task, or 2

if it is a foreground task

ovly is the number of overlay segments, or O if
the task has no overlay segments, (note that
the value 1 is invalid)

lun is the number of the logical unit onto which
the task is to be cataloged

Once a TID directive is input and processed, object modules are input, processed, and
output to the specified logical unit until the ESB directive (section 13.7.4) is found.

Examples: Specify a TIDB for a task PROG1 without overlays for cataloging on the BL
unit (105).

TID,PROG1,1,0,105

Specify a TIDB for the task PROG2 with four overlay segments for cataloging on an FL unit (10 6)‘
RS-

TID,PROG2,1,4,10‘

98 A 9952 100 13-51

SECTION 13
SYSTEM GENERATION

13.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay segment. The OVL directive has the
general form

OVL,segname
where segname is the name (one to six alphanumeric characters) of the overlay segment.
Example: Indicate the beginning of the overlay segment SINE.

OVL,SINE

13.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e., that all object modules have been
loaded and processed. The directive has the form

ESB

The ESB directive causes the searching of the CL library, which was generated during
nucleus processing, to satisfy undefined externals.

The ESB directive concludes both root segments (following TID, section 13.7.2) and
overlay segments (following OVL, section 13.7.3) of a load module.

Example: Indicate the end of a segment.

ESB

13-52 98 A 9952 100

SECTION 13
SYSTEM GENERATION

i

- 13.7.5 END (End Library) Directive

This directive indicates the end of load-module generation. It has the form

END

Example: Specify the end of load-module generation.

END

98 A 9952 100 13-53

SECTION 13 |
SYSTEM GENERATION

13.8 SYSTEM INITIALIZATION AND OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs on the OC and LIS units the
message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded into memory, the initializer is
executed to initialize the system, and the nucleus is executed to begin system operation.

The VORTEX system is now operating with the peripherals in the status specified by TID
control records.

If the EDR directive specified a listing, linking information is listed on the LIS unit during
nucleus processing and library generation. Regardless of the EDR directive, RMD and
resident-task information is listed during nucleus processing or resident-task
configuration, respectively. Figures 13-7 through 13-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the RMD partitions, and the resident
tasks.

13-54 98 A 9952 100

SECTION 13
SYSTEM GENERATION

CORE RESIDENT LIBRARY

NAME LOCATION
AAA 017285
BBB 000100
222 025863

NONSCHEDULED TASKS

NAME LOCATION
ABC 022620
DEF 014640
XYZ 011400

Figure 13-7. VORTEX Nucleus Load Map

98 A 9952 100 13-55

SECTION 13

SYSTEM GENERATION

LOAD MODULE:

CATALOGED ON:

NAME

MOP A
QRS R
TUV A

LOAD MODULE:

CATALOGED ON:

NAME

GHI R
JKL R
MNO R

13-56

ABC

DOOH

LOCATION

032556
000200

.

032501

CDE

D10A

LOCATION

000010

000012

000077

Figure 13-8. Library Processor Load Map

98 A 9952 100

98 A 9952 100

RMD PARTITIONING

NAME

DOOA
DOOB
DoocC
DOOD
DOOE
DOOF
D00G
DOOH

DO1A
D01B
Doic
DO1D

FIRST
TRACK

0007
0009
0029
0054
0094
0102
0120
0138

0001
0040
0100
0150

Figure 13-9. RMD Partition Listing

13-57

LAST
TRACK

ooo8
0028
0053
0093
0101
0119
0137
0203

0039
0099
0149
0203

SECTION 13
SYSTEM GENERATION

BAD
TRACKS

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000

SECTION 13
SYSTEM GENERATION

CORE RESIDENT TASKS

NAME

PROG1
PROG2
PROG3
PROGY

LOCATIONS

014630
014630
NOT FOUND
014500

Figure 13-10. Resident-Task Load Map

13-58

98 A 9952 100

13.9

SECTION 13
SYSTEM GENERATION

SYSTEM GENERATION EXAMPLES
EXAMPLE 1

Problem: Generate a VORTEX system using the following hardware:

€.

f.

Computer with 16K main memory

A model 620-37 disc unit with device address 016

Teletype keyboard/printer

Card reader

Two buffer interlace controllers (BICs) with device addresses 020 and 022

One priority interrupt module (PIM) with device address 040

and having the characteristics listed below:

Foreground common size = 0200

Storage/reentry stack area size = 0200

Number of empty TIDBs = 20

Number of disc partitions = 9

All eight interrupt lines connected through a common interrupt handler
One user-coded program added to the resident module (PROG1)

JCP replaced with a new version

One user-coded load module added to the foreground library (after LMGEN)

The system file listed after system generation

98 A 9952 100 13-59

SECTION 13

SYSTEM GENERATION

Procedure:
Step

1

User Action

Load and execute the card
reader loader (table 13-1)

On the OC unit, input

DIR = TY00A,01

LIB =CRO00A,030
ALT = CRO0A,030
LIS = TYOO0A,01

SYS =D00B,016,020

On the Teletype (DIR unit),
type

CLK,100,100,20
MRY,037777,0200
EQP,DOB,016,1,020,3
EQP,TYOA,01,1,0,0
EQP,CROA,030,1,0,0
PRT,DO0A,2,C;DO0B,20,F
PRT,DO00C,25 E;DOOD,40,D
PRT,DOOE,8,S;DOOF,18,B
PRT,D00G,18,*;D00H 52, *
PRT,DO0I,14,*

ASN,1 = TY00,2 = TY00,3 = TY0O0
ASN,4 = CR00,5 = TY00, = CROO
ASN,7 = D00I,8 = DOOH,9 = DOOG

ASN,10 = DOOH, 11 = TY00,12 = TY00

ASN,180 = DOOH,181 = DOOI

13-60

SGEN Response

Loads the 170 interrogation
routine punched cards from
the card reader, and outputs
on the OC unit

1/0 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the disc, loads
the nucleus processor and
builds the nucleus, loads
the library processor and
builds the library until

load module JCP is encoun-
tered, and outputs

REPLACE JCP
READY

98 A 9952 100

Step

(contd)

98 A 9952 100

User Action

PIM,00,TBDOB,01,0;02, TBCROA,01,0
PIM,03,TBD0B,01,0;04, TBTYOA,01,0
PIM,05,TBTYO0A,02,0

TSK,PROG1

LRE,BGTSK1

LAD,BGTSK2
EDR,S,20,0200,9,44,26,L

Load revised version of

BGTSK1 load module in the
card reader, and on DIR

type:
ALT
Load the remainder of the

load module library in the
card reader, and on DIR type

LiB

Load the PROG1 load module
in the card reader, and on
DIR type

ALT

Load the PROG2 load module
in the card reader, and on
DIR type

ALT

13-61

SECTION 13
SYSTEM GENERATION

SGEN Response

Reads and processes the
new load module, and
outputs:

READY

Processes the load mod-
ule library until the
completion of LMGEN,
and outputs

ADD AFTER BGTSK2
READY

Reads and processes PROGI,
and outputs

READY
Reads and processes PROG2,
and outputs

READY

SECTION 13
SYSTEM GENERATION

Step User Action SGEN Response
8 Load the remainder of the Processes the remainder of

load module library in the the load module library,

card reader, and on DIR type copies PROG1 from the FL
unit to the VORTEX nucleus,

LiB lists the resident task in-
formation, and outputs on
OC and LIS

VORTEX SYSTEM READY

9 None . Loads and initializes the
VORTEX nucleus

EXAMPLE 2

Problem: Replace the current resident tasks in the foreground library with the tasks
listed below in an operational VORTEX system.

PROG1
ABC
TEST
EFG
Procedure:
Step User Action SGEN Response
1 Load and execute the magnetic Loads the 170 interrogation
tape loader (table 13-1) routine from magnetic tape,

and outputs from the OC unit

10 INTERROGATION

13-62 98 A 9952 100

Step

98 A 9952 100

User Action
On the OC unit, input

DIR = TY00A,01

LIB = MTODA,010
ALT = MT01A,010
LIS = LPOOA,035
SYS = D00A,014,020

On the Teletype (DIR unit),
type

TSK,PROG1,ABC

TSK,TEST,EFG
EDR,R

None

13-63

SECTION 13
SYSTEM GENERATION

SGEN Response

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROG1, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

SECTION 14
SYSTEM MAINTENANCE

SECTION 14
SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a background task that
maintains the system-generation library (SGL). The SGL (figure 14-1) comprises all object
modules and their related control records required to generate a generalized VORTEX
operating system.

14.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job-control-processor (JCP) directive
/SMAIN (section 4.2.21). Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the Sl logical unit to maintain the SGL. No processing of the
SGL takes place before all SMAIN directives are input and processed. Then user-specified
object modules and/or control records are added, deleted, or replaced to generate a new
SGL.

SMAIN has a symbol-table area for 200 symbols at five words per symbol. To increase
this, input a /MEM directive (section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbols.

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 14.2) input through the Sl logical unit.

b. The old SGL input through the logical unit specified by the IN directive (section
14.2.1).

c. New or replacement object modules and/or control records input through the
logical unit specified by the ALT directive (section 14.2.3).

d. Error-recovery inputs entered via the SO logical unit.

98 A 9952 100 14-1

SECTION 14
SYSTEM MAINTENANCE

SYSTEM INPUT SYSTEM OUTPUT
(SD) (5O)
LOGICAL UNIT LOGICAL UNIT

SMAIN DIREC-
TIVE INPUT

ERROR MESSAGES
AND RECOVERY

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

SMAIN

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE ALT

NEW OBJECT
MODULES AND

CONTROL
RECORDS

SGL AND SMAIN
DIRECTIVE
LISTINGS

LIST OUTPUT
(LO)
LOGICAL UNIT

VTII-1364
Figure 14-1. SMAIN Block Diagram

14-2

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

System-maintenance directives specify both the changes to be made in the SGL, and the
logical units to be used in making these changes. The directives are input through the Sl
logical unit and listed, when specified, on the LO logical unit. If the Sl logical unit is a
Teletype or a CRT device, the message SM**# is output to indicate that the SI unit is
waiting for SMAIN input.

The old SGL contains three types of record: 1) control records and comments (ASCII), 2)
the system-generation relocatable loader (the only SGL absolute core-image record), and
3) relocatable object modules such as are output by the DAS MR assembler and the
FORTRAN compiler.

New or replacement object modules and/or control records have the same specifications
as their equivalents in the old SGL. '

Error-recovery inputs are entered by the operator on the SO logical unit to recover from
errors in SMAIN operations. Error messages applicable to this component are given in
section 17.14. Recovery from the type of error represented by invalid directives or
parameters is by either of the following:

a. Input the character C on the SO unit, thus directing SMAIN to go to the SI unit
for the next directive.

b. Input the corrected directive on the SO unit for processing. The next SMAIN
directive is then input from the Sl unit.

Recovery from errors encountered while processing object modules and/or control records
is by either of the following:

a. Input the character R on the SO unit, thus directing a rereading and
reprocessing of the last record.

b. Input the character P on the SO unit, thus directing a rereading and
reprocessing from the beginning of the current object module or control record.

98 A 9952 100 14-3

SECTION 14
SYSTEM MAINTENANCE

In the last two cases, repositioning is automatic if the error involves a magnetic-tape unit
or an RMD. Otherwise, such repositioning is manual.

If recovery is not desired, input a JCP directive (section 4.2) on the SO unit to abort the
SMAIN task and schedule the JCP for execution.

OUTPUTS from the SMAIN comprise:
a. The new SGL
b. Error messages
c. The listing of the old SGL, if requested
d. Directive images

The new SGL contains object modules and control records. It is similar in structure to the
old SGL.

Error messages applicable to SMAIN are output on the SO and on LO logical units. The
individual messages, errors, and possible recovery actions are given in section 17.14.

The listing of the old SGL is output, if requested, on the LO unit. The output consists of a
list of all control records and the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the identification name of the module,
the date the module was generated, the size (in words) of the module (0 for a FORTRAN
object module), and the external names referenced by the module, in the following
format:

id-name date size entry-names external-names

14-4 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

Directive images are posted onto the LO unit, thus providing a hardcopy of the SMAIN
directives for permanent reference.

14.1.1 Control Records

In SMAIN there are two types of control record:
a. SGL delimiters
b. Object-module delimiters

SGL delimiters divide the SGL into six parts. Each part is separated from the following
part by a control record of the form

CTL, PART000Nn

where n is the number of the following part, and the SGL itself is terminated by a control
record of the form

CTL,ENDOFSGL

Within SMAIN directives, these control records are referenced in the following format

PART00O0n
ENDOFSGL

Object-module delimiters precede and/or follow each group of object modules within the
SGL. Each delimiter is of one of the forms

SLM,name
TID,name
OVL,name
TDF,name
ESB
END

98 A 9952 100 145

SECTION 14
SYSTEM MAINTENANCE

The control records containing a name can be referenced by use of the name alone in
SMAIN directives. These control records and their uses are described in the section on
the system-generator component (section 13).

A set of object modules preceded by an SLM control record and followed by an END
control record is known as a load-module package (LMP). To add, delete, or replace an
entire LMP, merely reference the name associated with the SLM control record. Thus, if
the directive specifies deletion and includes the name associated with the SLM record,
the entire LMP is deleted. Additions and replacements operate analogously.

14.1.2 Object Modules

Relocatable object-module outputs from the DAS MR assembier and the FORTRAN
compiler are described in appendix A.

14.1.3 System-Generation Library

The SGL is a collection of system programs in binary-object form, and of control records
in alphanumeric form, from which a VORTEX system is generated. The structure of the
SGL is described in section 13.

14-6 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

14.2 SYSTEM-MAINTENANCE DIRECTIVES
This section describes the SMAIN directives:
. IN Specify input logical unit
. ouT Specify output logical unit
. ALT Specify alternate input logical unit for new SGL items
. ADD Add items to the SGL
. REP Replace SGL items
. DEL Delete items from the SGL
. LIST List the old SGL
. END End input of SMAIN directives

SMAIN directives begin in column 1 and comprise sequences of character strings having
no embedded blanks. The character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are permitted between the individual
character strings of the directive, i.e., before or after commas (or equal signs). Although
not required, a period (.) is a line terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is

name,p(1),p(2),....p(n)

where
name is one of the directive names given above (any
other character string produces an error)
each p(n) is a parameter defined below under the descriptions

of the individual directives

Numerical data can be octal or decimal. Each octal number has a leading zero.

98 A 9952 100 14-7

SECTION 14
SYSTEM MAINTENANCE

For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas (,) by
equal signs (=) are omitted.

Error messages applicable to SMAIN directives are given in section 17.14.

14.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old SGL is to be input. It has the
general form

IN,lun, key, filename

where
lun is the name or number of the logical unit to be
used for the input of the old SGL
key is the protection code, if any, required to address
lun
filename is the name of the input file when lun is an RMD
partition

There is no default value for lun. If it is not specified, any attempt at SGL processing will
cause an error message output.

Once specified, the value of lun remains constant until changed by a subsequent IN
directive. Each change of lun requires a new IN directive.

If lun specifies an RMD partition, the RMD is rewound to the first sector following the

partition specification table (PST, section 3.2) before any processing takes place. The PST
comprises one entry defining the entire RMD.

14-8 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

Examples: The old SGL resides on logical unit 4, the Pl unit. Specify this unit to be the
SGL input unit.

IN, 4

The old SGL resides on logical unit 107, which requires the protection code G. Specify this
unit to be the SGL input unit.

IN,107,G

14.2.2 OUT (Output Logical Unit) Directive

This directive specifies the logical unit on which the new SGL is to be output. It has the
general form

OUT lun, key, filename

where
jun is the name or number of the logical unit to be
used for the output of the new SGL
key is the protection code, if any, required to address
lun
filename is the name of the output file when lun is an RMD
partition

98 A 9952 100 149

SECTION 14
SYSTEM MAINTENANCE

The default value of lun is zero. When lun is zero by specification or by default, there is no
output logical unit.

Once specified, the value of lun remains constant until changed by a subsequent ouT
directive. Each change of lun requires a new OUT directive.

If lun specifies an RMD partition, the RMD is rewound to the first sector following the PST
before any processing takes place. The PST comprises one entry defining the entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the output unit for the new SGL.
OuUT, 10
Specify that there is to be no output logical unit.

ouUT, 0

14-10 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

14.2.3 ALT (Alternate Logical Unit) Directive

This directive specifies the logical unit from which new object module(s) and/or control
record(s) are to be input to the new SGL. It has the general form

ALT lun,key,filename

where
Jun is the name or number of the logical unit to be
used for the input of new items to the SGL
key is the protection code, if any, required to address
lun
filename is the name of the input file when lun is an RMD
partition

There is no default value for lun. If it is not specified, any attempt to input new object
modules or control records to the SGL will cause an error message output.

Once specified, the value of lun remains constant until changed by a subsequent ALT
directive. Each change of lun requires a new ALT directive.

Examples: Specify that new object modules and control records are to be input to the
SGL from the Bl logical unit only.

ALT, 6

Make the same specification where Bl is an RMD partition without a protection code. Use
file FILEX.

ALT,BI, ,FILEX

98 A 9952 100 14-11

SECTION 14
SYSTEM MAINTENANCE

14.2.4 ADD Directive

This directive permits the addition of object modules and/or control records during the
generation of a new SGL, the additions being made immediately after each of the items
specified by the parameters of the ADD directive. The directive has the general form

ADD,p(1),p(2),....p(n)

where each p(n) is the name of an object module or control record after which additions
are to be made.

SMAIN copies object modules and control records from the old SGL into the new SGL up
to and including an item specified by one of the parameters, p(n), of the ADD directive.
After this item is copied, the message

ADD AFTER p(n)

is output to indicate that SMAIN is waiting for a control character (Y or N) to be input on
the SO logical unit.

If the control character input is Y, SMAIN adds the next object module or control record
contained on the logical unit specified by the ALT directive (section 14.2.3), then repeats
the message requesting another control character. This continues until the control
character input is N.

If the control character input is N, SMAIN assumes the additions at this point are
complete. It continues copying from the old SGL and outputs the message

END REPLACEMENTS
The entire process is repeated when the next item specified by one of the parameters,

p(n), of the ADD directive is found. The items in the directive need not be in the same
order as they appear on the old SGL.

14-12 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

Example: During generation of a new SGL, add object module(s) and/or control
record(s) after the old SGL control record PART0O001 and after the old SGL object module
LMP, the added items to be input from the logical unit specified by the ALT directive.
Input

ADD, PART0001, LMP

then, When the message

ADD AFTER PARTO0001

appears, input the control character Y. SMAIN then inputs the next item on the logical
unit specified by the ALT directive, and again outputs the message

ADD AFTER PARTO0001

and awaits another control character. If more is to be added here, input Y. If no more
additions are required at this point, input N. After receiving the N, SMAIN outputs the
message

END REPLACEMENTS

and continues to read the old SGL and copy it into the new SGL up to and including the
object module LMP. SMAIN then outputs the message

ADD AFTER LMP

at which time the process is repeated.

Note that PART0001 does not have to. precede LMP in the old SGL. If the positions of the
items are reversed relative to their order in the directive, the order of messages will be

reversed. In any case, the items on the logical unit specified by ALT must be in the order
in which they are to be added to the SGL.

98 A 9952 100 14-13

SECTION 14
SYSTEM MAINTENANCE

14.2.5 REP (Replace) Directive

This directive permits the replacement of object modules and/or control records during
generation of a new SGL. The directive has the general form

REP,p(1),p(2),....p(n)
where each p(n) is the name of an object module or control record that is to be replaced.

SMAIN copies object modules and control records from the old SGL into the new SGL until
it encounters one specified by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it into the new SGL. After this is
completed, the message

REP p(n)

is output to indicate that SMAIN is waiting for a control character (Y or N) to be input on
the SO logical unit. These control characters operate just as in the ADD directive (section
14.2.4), allowing tr.e addition (in this case, replacement, since the parameter item was

not copied into the new SGL) of new items to the SGL. The items in the directive need not
be in the same order as they appear in the old SGL.

Example: During generation of a new SGL, replace the old SGL object module I0CTL with
object modules and/or control records from the logical unit specified by an ALT directive
(section 14.2.3). Input

REP, IOCTL

then, when the message

REP IOCTL

appears, continue as for an ADD directive (section 14.2.4).

14-14 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

14.2.6 DEL (Delete) Directive

This directive permits the deletion of object modules and/or control records during
generation of a new SGL. The directive has the general form

DEL,p(1),p(2).....p(n)
where each p(n) is the name of an object module or control record that is to be deleted.
SMAIN copies object modules and control records from the old SGL into the new SGL until
it encounters one specified by one of the parameters, p(n), of the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into the new SGL. The items in the
DEL directive need not be in the same order as they appear on the old SGL.
If a listing of the old SGL is specified either by a LIST directive (section 14.2.7) or by the L

- parameter of an END directive (14.2.8), the deleted items are preceded on the listing by
asterisks (¥).

Example: During generation of a new SGL, delete the following old SGL items: object

module I0ST and control record LMGENCTL.

DEL, IOST, LMGENCTL

98 A 9952 100 14-15

SECTION 14
SYSTEM MAINTENANCE

14.2.7 LIST Directive

This directive lists, on the LO logical unit, the old SGL as found on the logical unit specified
by the SMAIN directive IN (section 14.2.1). The LIST directive has the form

LIST

Example: List the old SGL.

LIST

14.2.8 END Directive
This directive indicates that all ADD (section 14.2.4), REP (section 14.2.5), and DEL

(section 14.2.6) directives have been input. END initiates the SGL maintenance process.
The directive has the general form

END,L
where L, if present, specifies that the old SGL is to be listed.
Examples: After all ADD, REP, and DEL directives have been input, initiate SGL
maintenance processing.
END

Initiate the SGL maintenance processing as above, but list the old SGL.

END,L

14-16 98 A 9952 100

SECTION 14
SYSTEM MAINTENANCE

14.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an existing SGL from the logical unit
specified by the IN directive (section 14.2.1) to the logical unit specified by the ouT
directive (section 14.2.2), making the modifications specified by the ADD (section 14.2.4),
REP (section 14.2.5), and DEL (section 14.2.6) directives, and thus creating a new SGL.

Input of the END directive (section 14.2.8) initiates the copying process. All ADD, REP,
and DEL directives, if any, must precede the END directive.

Modifications to the SGL are made through the logical unit specified by the ALT directive
(section 14.2.3). Such modifications are in the form of additions and/or replacements of
object modules and/or control records. (These items can also be deleted, but this process
does not, of course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there is no error with respect to
check-sum, record size, loader codes, sequence numbers, or structure.

144 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from logical unit 4 onto logical unit 9
without listing the old SGL, and return to the JCP.

/SMAIN
IN, 4
ouT, 9
END
/ENDJOB

98 A 9952 100 14-17

SECTION 14
SYSTEM MAINTENANCE

Example 2: Schedule SMAIN; copy the old SGL from logical unit 4 onto logical unit 9,
listing the old SGL and deleting object modules A, B, C, D, and E; and return to the JCP.

/ SMAIN

IN,4

ouT, 9
DEL,A
DEL,B,C,D,E
END,L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL on logical unit 4, and return
to the JCP.

/SMAIN
IN, 4
LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from logical unit 4 onto logical unit 9
without listing the old SGL; add object modules or control records from logical unit 6 after
control record PARTO002 and after object module A; replace load module LMGEN and
control record JCPDEF; delete object modules B, C, D, and E; and return to the JCP.

/SMAIN

IN, 4

ouT, 9

ALT,6
ADD,PART0002,A
REP, LMGEN
DEL,B,C,D,E
REP, JCPDEF
END

/ENDJOB

14-18 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

SECTION 15
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system through the operator communica-
tion component by means of operator key-in requests input through the operator
communication (OC) logical unit.

15.1 DEFINITIONS

An operator key-in request is a string of up to 80 characters beginning with a semicolon.
The request is initiated by the operator and is input through the OC unit. An operator key-
in request is independent of 1/0 requests via the |OC (section 3) and, hence, is known as
an unsolicited request.

The operator communication (OC) logical unit is the logical unit through which the
operator inputs key-in requests. There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can be changed by use of the
:ASSIGN key-in request (section 15.2.9).

15.2 OPERATOR KEY-IN REQUESTS
This section describes the operator key-in requests:

. ;SCHED Schedule foreground task

. ;TSCHED Time-schedule foreground task

. ;ATTACH Attach foreground task to PIM line

. ;RESUME Resume task

. ;TIME Enter or display time-of-day

. :DATE Enter date

. ;ABORT Abort task

. ;TSTAT Test task status

. ;ASSIGN Assign logical unit(s)

. ;DEVDN Device down

. ;DEVUP Device up

. JJOLIST List logical-unit assignments

98 A 9952 100 15-1

SECTION 15
OPERATOR COMMUNICATION

Operator key-in requests comprise sequences of character strings having no embedded
blanks. The character strings are separated by commas (,) or by equal signs (=).
However, the key-in requests are free-form and blanks are permitted between the
individual character strings of the key-in request, i.e., before or after commas (or equal
signs). Although not required, a period (.) is a line terminator. Comments can be inserted
after the period. A carriage return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

;request,p(1),p(2),,...p(n)cr

where
request is one of the key-in requests listed above in
capital letters
eachp(n) is a parameter defined under the descriptions of
the individual key-in requests below
cr is the carriage return, which terminates all

operator key-in requests
Each operator key-in request begins with a semicoion (;) and ends with a carriage return.
Parameters are separated by commas. A backarrow (-) deletes the preceding character.
A backslash (\) deletes the entire present key-in request.

Table 15-1 shows the system names of physical |/0 devices as used in operator key-in
requests.

For greater clarity, optional blank separators between character strings, and the optional
replacement of commas (,) by equal signs (=) are omitted from the descriptions of the

key-in requests.

Error messages applicable to operator key-in requests are given in section 17.15.

15-2 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

Table 15-1. Physical 1/0 Devices

System Name Physical Device
DUM Dummy
CPcu Card punch
CRcu Card reader
CTcu Cathode ray tube (CRT) device
Dcup Rotating-memory device (RMD) (disc/drum)
LPcu Line printer
MTcu Magnetic tape unit
PTcu High-speed paper tape reader/punch
TPcu Teletype paper-tape punch
TRcu Teletype paper-tape reader
TYcu Teletype printer/keyboard
NOTES

¢ = Controller number. For each type of device, controllers are
numbered from O as required.

u = Unit number. For each controller, units are numbered from O
as required (within the capacity of the controller).

cu can be omitted to specify unit 0 controller O, e.g., CROO or CR.

p = Partition letter. RMD partitions are lettered from A to T as
required to refer to a partition on the specified device, e.g., DOOA.

98 A 9952 100 15-3

SECTION 15
OPERATOR COMMUNICATION

15.2.1 :SCHED (Schedule Foreground Task) Key-In Request

This key-in request immediately schedules the specified foreground-library task for
execution at the designated priority level. It has the general form

;SCHED, task,level,lun,key

where
task is the name of the foreground task to be scheduled
level is the priority level (from 2 to 31) of the scheduled
task
lun is the number or name of the foreground-library

rotating-memory logical unit where the scheduled task
resides (O for scheduling a resident foreground task)

key is the protection code, if any, required to address
lun

A dump of the contents of a library can be obtained by use of the VORTEX file-
maintenance component (section 9).

Operator key-in examples: Schedule on priority level 3 the foreground task DOTASK
residing on the FL logical unit. Use F as the protection key.

; SCHED,POTASK, 3,FL,F

Schedule on priority level 9 the resident foreground task COPYIO.
; SCHED,COPYI10,9,0,0

15-4 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

15.2.2 “TSCHED (Time-Schedule Foreground Task) Key-In Request

This key-in request schedules the specified foreground-library task for execution at the
designated time-of-day and priority level. It has the general form

;:TSCHED, task,level,lun,key,time

where

task is the name of the foreground task to be scheduled

level is the priority level (from 2 to 31) of the scheduled
task

lun is the number or name of the foreground-library
rotating-memory logical unit where the scheduled
task resides (O for scheduling a resident
foreground task)

key is the protection code, if any, required to address
lun

time is the scheduled time in hours (from 00 to 23) and

minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

Operator key-in examples. Schedule for execution at 11:30 p.m. on priority level 3 the
foreground task DOTASK residing on the US logical unit. Use T as the protection key.

; TSCHED, DOTASK, 3,US,T,2330

Schedule for execution at 8:30 a.m. on priority level 9 the resident foreground task
TESTIO.

; TSCHED, TESTI0,9,0,0,0830

98 A 9952 100 15-5

SECTION 15
OPERATOR COMMUNICATION

15.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified foreground task to the designated PIM (priority
interrupt module) line. It has the general form

;ATTACH task,line,iew,enable

where
task is the name of the foreground task to be attached to
the PIM line
line is the two-digit number of the PIM line to which the

task is to be attached, with the tens digit specifying
the PIM number (1-8) and the units digit the line
number (0-7) on that PIM

iew is the value (from 01 to 0177777) of the interrupt
event word (section 12) and identifies the bit(s)
to be set in the task TIDB when an interrupt
occurs on line

enable is E (default value) to enable the line, or D to
disable it

The task can be resident or nonresident. However, its TIDB must have been defined at
system-generation time. ATTACH provides a flexible way of altering interrupt assignments
without having to regenerate the system.

Operator key-in example: Connect task INTRPT to PIM 1, line 3. Use 020 as the
interrupt event word vaiue (i.e., set bit 4 of the interrupt event word in TIDB if INTRPT is
scheduled due to an interrupt on PIM 1, line 3).

; ATTACH, INTRPT, 13,020

156 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

15.2.4 :RESUME Key-In Request

This key-in request reactivates the specified task for execution at its specified priority
level. It has the general form

:RESUME task
where task is the name of the task to be resumed
Operator key-in example: Resume the task DOTASK.

; RESUME, DOTASK

15.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as system time-of-day. |f no time is
specified in the key-in request, ;TIME displays the current time-of-day. The key-in request
has the general form

:TIME, time

where time is the time-of-day in hours (from 00 to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45 p.m.

The time-of-day output for a ;TIME request without time is of the form
T hhmm HRS

where hhmm is the time of day in hours and minutes.

Operator key-in example: Set the system time-of-day to 3:00 p.m.

; TIME, 1500

98 A 9952 100 15-7

SECTION 15
OPERATOR COMMUNICATION

15.2.6 ;DATE Key-In Request
This key-in request enters the specified date as the system date. It has the general form
:DATE,mm/dd/yy
where
mm is the month (00 to 12)
dd is the day (00 to 31)
yy is the year (00 to 99)
Note that since the entire date is considered one parameter, there are no commas other
than the one immediately following DATE. The components of the date are, however,
separated by slashes as shown.

Operator key-in example: Set the system date to 25 December 1971.

; DATE, 12/25/71

15.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the general form
;ABORT, task

where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

; ABORT , DOTASK

15-8 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

15.2.8 ;TSTAT (Task Status) Key-In Request
This key-in request outputs the status of the specified task, if any. If no task is specified,
:TSTAT outputs the status of all tasks queued on the active task identification block
(TIDB) stack. This request is not applicable to tasks having no established TIDB. The
request has the general form

;TSTAT, task
where task is the name of the task whose status is to be output.

The status-output for a ;TSTAT key-in request is of the form

task Plevel Sstatus TMmin TSmilli

where
task is the name of the task whose status is being output
level is the priority level (from 2 to 31) of the task
status is the status of the task as found in words 1 and 2

of the TIDB (table 15-2)
min is the value of the counter in TIDB word 11
milli is the value of the counter in TIDB word 10

The values of minand milli are printed only if bit 0 and/or 7 of TIDB word 1 (table 15-2) is
set.

Thus, a typical status output from a ;TSTAT request is

NAMEO1 P24 S041200, 000000 TMO77777 TSO077430

98 A 9952 100 159

SECTION 15
OPERATOR COMMUNICATION

Table 15-2. Task Status (TIDB Words 1 and 2)

TIDB Word Bit Meaning of Set Bit
1 15 Suspend interrupt
1 14 Suspend task
1 13 Abort task
1 12 Exit from task
1 11 TIDB resident
1 10 Resident task
1 9 Foreground task
1 8 Protected task
1 7 Task scheduled by time-delay
1 6 Time-delay active
1 5 Task waiting to be loaded
1 4 Task error
1 3 Task interrupt expected
1 2 Overlay task
1 1 Scheduie task upon termination of active task
1 0 Task search-allocated-loaded
2 15 Task opened
2 14 Task loaded in background (checkpoint) area
2 13 Load overlay
2 12-6 Unused

15-10 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

Operator key-in examples: Request the output of the status of the task BIGJOB.

; TSTAT ,BIGJOB

The output will be

BIGJOB P02 s000100,

000000 TMO77777 TSO077430

if the status of BIGJOB is such that it is on priority level 2, contains a status of 0100 in
TIDB words 1 and 2, with time counters (TIDB words 10 and 11) of 077777 and 077430,
respectively. The latter two octal complement counters show zero minutes and 0340
5-millisecond increments.

Request the output of the status of all foreground tasks inputs.

; TSTAT

and receive as a typical response

VZDB
V$TYA
VS$TYA
VZLPA
VZCRA
VZMTA
VZMTA
V$OPCM
JCP

98 A 9952 100

P24
P23
P23
P22
P22
P22
P22
P10
PO1

so47401,
so47411,
so47411,
S047401,
s047401,
sou47401,
sS047401,
5005405,
so44400,

000000
000000
000000
000000
000000
000000
000000
020000
000000

TM077311
TM077005
TM077200
TM077002
T™™M077000
TM077200
TM077200
TM077020
TMO077000

15-11

TS071000
TS071011
TS076000
TS022000
TS070221
TS071000
TS071000
TS077033
TS070005

SECTION 15
OPERATOR COMMUNICATION

15.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logical units to specific 1/0 devices. It
has the general form

;ASSIGN,I(1) =r(1),i(2) =r(2),...,I(n) =r(n)

where
each I(n) is a logical-unit number (e.g., 12) or name
(e.g., Sh)
each r(n) is a logical-unit number or name, or a physical-

device system name (e.g., TYOO or TY, table 15-1)

The logical unit to the left of the equal sign in each pair is assigned to the unit/device to
the right.

An inoperable device, i.e., one declared down by ;DEVDN (section 15.2.10), cannot be
assigned. A logical unit designated as unassignable (unit numbers 101 through 179)

cannot be reassigned.

Operator key-in examples: Assign the card reader CROO as the SI logical unit and the
Teletype TYO1 as the OC unit.

;ASSIGN,SI=CR00,O0C=TYO01
Assign a dummy device as the Pl unit.

;ASSIGN,PI=DUM

15-12 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

15.2.10 ;DEVDN (Device Down) Key-In Request

This key-in request declares the specified physical device inoperable for system use. It is
not applicable to the OC unit or to devices containing system libraries. The request has
the general form

:DEVDN,device

where device is the system name of the physical device in four ASCIl characters, e.g.,
LPOO (or LP), TYO1, (table 15-1)

Operator key-in example; Declare TYO1 inoperable for system use.

;DEVDN, TYO1

98 A 9952 100 15-13

SECTION 15
OPERATOR COMMUNICATION

15.2.11 ;DEVUP (Device Up) Key-In Request

This key-in request declares the specified physical device operational for system use. It
has the general form

:DEVUP,device

where device is the system name of the physical device in four ASCIl characters, e.g.,
LPOO (or LP), TYO1 (table 15-1)

Operator key-in example: Declare TYO2 operational for system use.

; DEVUP,TY02

15.2.12 ;IOLIST (List 1/0) Key-In Request

This key-in request outputs a listing of the specified logical-unit assignments, if any. If no
‘logical unit is specified, ;IOLIST outputs all logical-unit assignments. The key-in request
has the general form

JOLIST,lun(1),lun(2),...,lun(n)
where each lun(n) is the name or number of a logical unit, e.g., SI,5.

Where the ;I0OLIST key-in request specifies a logical-unit name, the output is of the form

name (number) = device D

where
name is the name of the logical unit, e.g., LO
number is the number of that logical unit, e.g., 005
device is the name of the physical device assigned,
e.g., LPOO
D if present, indicates that the physical device has

been declared down and is thus inoperable

15-14 98 A 9952 100

SECTION 15
OPERATOR COMMUNICATION

If the key-in request specifies the number rather than the name of the logical unit, the
output will repeat the number in both the name and number fields.

In a listing of all assignments, the output uses a name and number where applicable, and
the repeated number where no name is assigned to the logical unit. Logical units without
names assigned at system-generation time are not listed and must be individually
specified by number.

Operator key-in examples: Request the output of the logical-unit assignments for the Bl
and BO units. Input

; IOLIST,BI,BO
and receive as a typical response

BI (006) = CROO
BO (007) = CPOO D

Request the output of the logical-unit assignment for logical unit 180. Input
; IOLIST, 180
and receive as a typical response

180 (180) = D11H

98 A 9952 100 15-15

SECTION 15

OPERATOR COMMUNICATION

Request the output of all logical-unit assignments. Input

; IOLIST

and receive as a typical response

ocC
SI
sO
PI
LO
BI
BO
Ss
PO
cu
GO
SW
CL
oM
BL

FL

(001)
(002)
(003)
(o004)
(005)
(o06)
(007)
(008)
(009)
(100)
(101)
(102)
(103)
(104)
(105)

(106)

TYOO
LPOO
TYOO
CROO
LPOO
CROO
PTOO
DOOH
DOOH
DOOA
DOOB
DooC
DOOD
DOOE
DOOF

DOOG

15-16

98 A 9952 100

SECTION 16
OPERATION OF THE VORTEX SYSTEM

SECTION 16
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the VORTEX system, the loading of the
system bootstrap and procedures for changing and initializing the disc pack during
VORTEX operation.

98 A 9952 100 16-1

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.1 DEVICE INITIALIZATION
16.1.1 Card Reader (Model 620-25)

a. Turn on the card reader.
b. Place the input deck in the card hopper.

¢. Press READY/ALERT.

16.1.2 Card Punch (Model 620-27)

a. Turn on the card punch.

b. Place blank cards in the card hopper.

¢. If the visual punch station is empty, insert a card into it as follows:

(1) Place a card in the auxiliary feed slot.
(2) Clear all registers.
(3) Set the instruction register to 0100131.

(4) Set REPEAT.

(5) Press STEP. The card should move from the auxiliary feed slot to the visual

punch station.

(6) Reset REPEAT.

16-2

98 A 9952 100

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.1.3 Line Printer (Model 620-77)

a. Turn on the line printer.
b. Wait for the READY light to come on.
c. Set the ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press the TOP OF FORM
switch.

16.1.4 33/35 ASR Teletype (Models 620-06, -08)

a. Turn on the Teletype.

b. Set the Teletype in off-line mode and simultaneously press the CONTROL and D,
then the CONTROL and T, finally the CONTROL and Q keys.

c. Set the Teletype on-line.

16.1.5 High-Speed Paper-Tape Reader (Model 620-55)

a. Turn on the paper-tape reader.

b. Position the input paper tape in the reader with blank leader at the reading
station and close the reading gate.

c. Set the LOAD/RUN switch to RUN.

16.1.6 Magnetic-Tape Unit (Models 620-30, -31)

a. Turn on the magnetic-tape unit.
b. Mount the input magnetic tape.
c. Position the magnetic tape to the loading point.

d. Press ON LINE.

98 A 9952 100 16-3

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.1.7 Magnetic-Drum Unit (Models 620-47 through 620-49)

a. Turn on the drum unit.

b. Wait for the drum unit to reach operating speed.

16.1.8 Moving-Head Disc Units (Models 620-36 and -37)
a. Place the START/STOP switch in the STOP position.

b. Press POWER ON button and wait for the SAFE light to come on.

¢. Mount the disc pack.

d. Place the START/STOP switch in the START position.

e. Wait for the disc unit to reach operating speed (READY indicator lights).

f. Turn off WRITE PROTECT.

16.2 SYSTEM BOOTSTRAP LOADER

System key-in loaders initiate loading of the VORTEX system from a drum (Models 620-47
through -49) or disc (Models 620-36 and -37) memory. The key-in loader loads the system
initializer from the RMD to main memory (locations 000000 to 001127). The system
initializer then loads and initializes the system. Table 16-1 contains the key-in loader
programs.

16.2.1 Automatic Bootstrap Loader (Model 620-15)

Where the automatic bootstrap loader option is available, the appropriate key-in loader is
loaded from the required medium (high-speed paper-tape or Teletype reader) into
locations 001130ff.

To initiate the loader: (1) clear the A, B, X, I, and P registers; (2) with the computer in
STEP, press the RESET switch on the front panel; (3) place the STEP/RUN switch in the
RUN position; and (4) press and release the LOAD switch.

16-4 98 A 9952 100

Address

001130
001131
001132
001133
001134
001135
001136
001137
001140
001141
001142
001143
001144
001145
001146
001147
001150
001151
001152
001153
001154
001155
001156
001157
001160
001161
001162
001163
001164
001165
001166

Drum

1000yy
006020
000002
005001
1031xx
006120
001127
1031yy
1000xx
1000zz
10322z
1010xx
000600
001000
001143

SECTION 16

OPERATION OF THE VORTEX SYSTEM

Table 16-1. Key-In Loader Programs

where xx = even BIC address, yy = odd BIC address, and zz =

98 A 9952 100

165

Disc

1004zz
10402z
1002zz
005001
10312z
1010zz
001141
001000
001135
10252z
151167
001016
001130
1000yy
1003zz
005102
1032zz
1031xx
006010
001130
1031yy
1000xx
1000zz
1014zz
001157
1025zz
151167
001016
001130
001000
000600
007760

device address.

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.2.2 Control Panel Loading

The appropriate key-in loader is entered through the computer control panel as follows:
a. Press REPEAT.

b. Load an STA instruction (store A register, addressing mode relative to P) into
the | register (054000).

c. Load 001130 into the P register.
d. Load a key-in loader instruction into the A register.
e. Lift the STEP/RUN switch to STEP.
f. Clear the A register.
g. Repeat steps (d), (e), and (f) for each bootstrap instruction.
To initiate the bootstrap, clear the A, B, X, and | registers, and load 001130 into the P

register. Then, press RESET, place the STEP/RUN switch in the RUN position, and press
START.

16-6 98 A 9952 100

_ SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs during program execution by
means of a system utility program called rotating memory analysis and initialization
(RAZI). RAZI handles:

a. A disc pack not previously used with VORTEX that is replacing a disc pack
presently in the system.

b. A disc pack previously formatted under VORTEX that is replacing a disc pack
presently in the system.

The normal RAZ| operating procedure is:

a. The task requiring the disc pack change issues an operator message directing
him to switch packs.

b. The task suspends itself.
c. The operator makes the necessary pack changes.
d. The operator schedules and executes RAZI.
e. Upon complétion of RAZI, the operator resumes the suspended task. The task
can now perform 1/0 on the new pack.
RAZI is a foreground program residing in the foreground library (FL). It is scheduled by a
request of the form:

;SCHED,RAZ|p,FLF

where p is the priority level.

98 A 9952 100 16-7

SECTION 16
OPERATION OF THE VORTEX SYSTEM

If the Sl logical unit is a Teletype or a CRT device, the message RZ** is output to indicate
that the Sl unit is waiting for RAZI input.

Each directive is completely processed before the next is entered. All directives are output
on the SO and LO devices. In addition, partitioning information is listed on the LO device
when integration of the requested disc pack is complete.
OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZI directives on the SO and LO units

c. Partition description listing

Error messages applicable to RAZ! are output on the SO and LO Iogical units. The
individual messages and errors are given in section 17.16.

The listing of the RAZI directives is made as the directives are read. The VORTEX
standard heading appears at the top of each page of the listing, and the directives are
listed without modification.

The partition description listing is output on the LO device upon completing the
integration of a new disc pack into the VORTEX system. After the VORTEX standard
heading, there are three blank lines followed by the RAZ! heading:

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS

followed by one more blank line. Then the information concerning each partition of the
device is output, one partition per line, as shown in the following example.

16-8 98 A 9952 100

PARTITION
NAME

D10A
D10B
D10C
D10D
D10E
D10OF
D10G
D10H
D10I
D10J
D10K

The RAZI directives are:

FIRST
TRACK

0002
0020
0053
0083
0119
0127
0142
0157
0207
0243
0252

PRT

FRM

INL

EXIT

LAST
TRACK

0019
0052
0082
0118
0126
o141
0156
0206
0242
0251
0256

Partition

BAD

TRACKS

0000
0001
0000
0000
0000
0000
0000
0002
0000
0000
0000

SECTION 16
OPERATION OF THE VORTEX SYSTEM

Format rotating memory

Initialize

RAZI directives begin in column 1 and comprise sequences of character strings having no
embedded blanks. The character strings are separated by commas (,) or equal signs (=).
The directives are free-form, and blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can be inserted after a period.

98 A 9952 100

16-9

SECTION 16
OPERATION OF THE VORTEX SYSTEM

The general format of a RAZI directive is

name,p(1),p(2),....p(n)

where
name is one of the directive names given above
each p(n) is a parameter required by the directive and defined
if any below under descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number has a leading zero.

For greater clarity in the descriptions of the directives, optional periods, optional blank
separators between character strings, and the optional replacement of commas (,) by
equal signs (=) are omitted.

Note: The disc pack containing the VORTEX nucleus cannot be replaced.

16.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for each RMD partition. It has the
general form

PRT,p(1),s(1),k(1),p(2),5(2),k(2),...,p(n),s(n),k(n)

where
each p(n) is the RMD partition letter (A through T, inclusive)
s(n) is the number (octal or decimal) of tracks in the
partition
k(n) is the protection code, if any, required to address

A

p, or * if the partition is unprotected

16-10 98 A 9952 100

SECTION 16
OPERATION OF THE VORTEX SYSTEM

While the parition specifications can appear in any order, the set of partitions specified
for each RMD must comprise a contiguous group, e.g., the sequence A, C, D, B, but the
sequence A, C, D, E constitutes an error.

Example: Define three partitions on an RMD. The first occupies ten tracks and uses
protection code Q, the second two tracks (11 and 12) and code S, and the third 48 tracks
(13 through 50, inclusive) without protection.

PRT,A,10,0,B,2,5,C,060,*

16.3.2 = FRM (Format Rotating Memory) Directive
This directive causes RAZI to run a bad-track analysis on the specified RMD and build a
new PST for it. The direciive has the general form

FRM, lu,size,flag

where
lu is the logical-unit name or number to which the sub-

ject RMD is assigned

size is the number (octal or decimal) of tracks on the
RMD
flag is 1 to perform a complete bad-track analysis and

clear the RMD, or O to merely clear the RMD and
verify that it is cleared

Examples: Clear the RMD assigned to PO, having 203 tracks, and build a PST for it
according to previously defined partition information.

FRM,P0O,203,0

Run a complete bad-track analysis on the RMD assigned to 25, having 128 tracks, and
build a PST for it according to previously defined partition information.

FRM,25,128,1

98 A 9952 100 16-11

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad-track table from the named
RMD into the VORTEX nucleus. It has the general form

INL lu,size
where lu and size have the same definition as in the FRM directive (section 16.3.2).

Example: Read the PST and bad-track table from the unit assigned to BO, having 128
tracks, and incorporate them into the VORTEX nucleus.

INL,BO, 128

16.3.4 EXIT Directive

This directive terminates RAZI. It has the general form
EXIT
Example: Terminate RAZI.

EXIT

16-12 98 A 9952 100

SECTION 17

ERROR MESSAGES

SECTION 17
ERROR MESSAGES

This section comprises a directory of VORTEX operating system error messages, arranged
by VORTEX component. For easy reference, the number of the subsection containing the
error messages for a component ends with a number corresponding to that of the section
that covers the component itself, e.g., the file-maintenance error messages are listed in
subsection 17.9 because the file-maintenance component itself is discussed in section 9.

17.1 ERROR MESSAGE INDEX

Except for the language processors (section 5), VORTEX error messages each begin with
two letters that indicate the corresponding component:

Messages beginning with:

c™M
DG
EX
FM
10
iU
JC
LG
oC
SE
SG
SM

%

98 A 9952 100

Are from component:

Concordance program
Debugging program
Real-time executive
File maintenance

170 control

170 utility

Job-control processor
Load-module generator
Operator communication
Source editor

System generator
System maintenance
DAS MR assembler

17-1

Listed in subsection:

17.5
17.7
17.2
17.9
17.3
17.10
17.4
17.6
17.15
17.8
17.13
17.14
175

SECTION 17

ERROR MESSAGES

17.2 REAL-TIME EXECUTIVE

Message
EXO1,xxxxxx

EX02,xxxxxx

EXO03,xxxxxx

EX04,xxxxxx

EXO05,xxxxxx

EX06,xxxxxx

EXO7,xxxxxx

EX11,xxxxxx,n

EX12,xxxxxx

Condition

invalid RTE service
request by task xxxxxx

Scheduled task xxxxxx
name not in specified
load-module library

Task xxxxxx made
RESUME request but re-
quested task not found

Task xxxxxx made ABORT
request but requested
task not found

Background task xxxxxx
larger than allocatable
area

Not enough allocatable
space available for
ALOC request

OVLAY requests a seg-
ment not in library

Memory protection vio-
lation at address n

1/0 link error (fore-
ground task making
request, or incorrect
logical unit number)

Note: xxxxxx is the name of a task.

17-2

Action

Abort task xxxxxx

Abort task xxxxxx

Continue scheduling
task

Continue scheduling
task

Abort task xxxxxx

Abort task xxxxxx

Abort task xxxxxx

Abort task xxxxxx

Abort task xxxxxx

98 A 9952 100

170 CONTROL

Message

1000, xxxxxX
1001, xxxxxXx
1002, xxxxxX
1003, xxxxxX

1004, xxxxxX

1005, xxxxxX

1006, xxxXXX

1007, xxxxxX

1010, xxxxxx

1011, xxxxxXx

1012, xxxxxx

1013, xxxXXXX-

1014, xxxxxXx

98 A 9952 100

SECTION 17
ERROR MESSAGES

Condition

Unit not ready, or unit file protected
Device declared down

Invalid LUN specified

FCB/DCB parameter error

Invalid protection code, or priority 0 task
requested protected partition

Protected partition specified by unprotected
task

/0 request error, e.g., 1/0-complete bit not
set, prior request may be queued

Attempt to read from a write-only device, or
vice versa

File name specified in OPEN or CLOSE not found

Invalid file extent, record number, address,
or skip parameter

RMD OPEN/CLOSE error, or bad directory thread
Level O program read a JCP (/) directive

Interrupt timed out or no cylinder-search-
complete interrupt

17-3

SECTION 17

ERROR MESSAGES

Note:

Message

1015, xxxxxx
1016, xxxxXX
1017, xxxxxx

1020, xxx XXX

1021, xxxxxx

1022, xxXXXX

1023, xxxxXX

1024, xxxxxx

1025, xxxxXX

1026,xxxxxX

1027 ,xxxxxX

1030, xxxxxx
1031, xxxxxX

1032, xxxxXX

Disc cylinder-search or

Condition

Disc read/write timing

Disc end-of-track error

BIC1:
out error

BiC2:
out error

BIC3:
out error

BIC4:
out error

BIC5:
out error

BICé6:
out error

BIC7:
out error

BICS:
out error

Parity error

abnormal stop,

abnormal stop,

abnormal stop,

abnormal stop,

abnormal stop,

abnormal stop,

abnormal stop,

abnormal stop,

Reader or tape error

Odd-length record error

xxxxxx is the name of a task or device.

17-4

malfunction error

error

not

not

not

not

not

not

not

not

ready,

ready,

ready,

ready,

ready,

ready,

ready,

ready,

or time

or time

or time

or time

or time

or time

or time

or time

98 A 9952 100

SECTION 17
ERROR MESSAGES

17.4 JOB-CONTROL PROCESSOR

Message Condition Action
JCO1 Invalid JCP directive Ignore directive
JCO2 Invalid or missing parameter in Ignore directive

a JCP directive; or illegal
separator or terminator

Jco3 Specified physical device cannot Ignore directive
perform the functions of the as-
signed logical unit

JCOo4 Invalid protection code or file Ignore directive
name in a JCP directive

JCO5,nn End of tape before the number Ignore directive
of files specified by an /SFILE
directive has been skipped; or
end of tape, beginning of tape,
or file mark before the number
of records specified by an /SREC
directive has been skipped where
nn is the number of files (or
records) remaining to be skipped

JCO6 An irrecoverable 1/0 error Job flushed to
while compiling or assembling; next /JOB direc-
or an error during a load/go tive
operation

JCOo7 Invalid or illegal logical/ Ignore directive

physical-unit referenced in
JCP directive

98 A 9952 100 17-5

SECTION 17
ERROR MESSAGES

17.5 LANGUAGE PROCESSORS

DAS MR ASSEMBLER: During assembly, the source statements are checked for syntax
errors and usage. In addition, errors can occur where the program cannot determine the
correct meaning of the source statement.

When an error is detected, the assembler outputs an error code following the source
statement containing the error, on the LO unit, and continues to the next statement.

The assembler error messages are:

Message Condition

*IL First nonblank character of the source statement
invalid (statement is not processed)

*0P Instruction field undefined (two no-operation (NOP)
instructions are generated in the object module)

*SY Expression contains undefined symbol

*EX Expression contains two consecutive arithmetic op-
erators

*AD Address expression error

*FA Floating-point number format error

*DC An 8 or 9 in an octal constant

*DD Invalid redefinition of a symbol or the location
counter

17-6 98 A 9952 100

Message

*VF

*MA
*NS
*NR

*TF

*S$Z

*UD

*SE

*E

*R

*MQ

SECTION 17
ERROR MESSAGES

Condition

Instruction contains variable subfieids either
missing or inconsistent with the instruction type

Inconsistent use of indexing and indirect addressing
Nested DUP statements
Symbol table full

Tag error (undefined or illegal index register
specifications)

Expression value too large for the size of the
subfield, or a DUP statement specifying more than
three symbolic source statements to be assembled

Undefined digit in an arithmetic expression

The symbol in the label field has, during pass 2,
a value different than that in pass 1

Syntax error (source statement incorrectly formed)

Relocation error (relocatable item encountered
where an absolute item was expected)

Missing right quotation mark in character string

Invalid use of literal

CONCORDANCE PROGRAM:

Message

CNo1

98 A 9952 100

Condition
Symbol table full

17-7

SECTION 17
ERROR MESSAGES

17.6 LOAD-MODULE GENERATOR
Message Condition

LGO1 Invalid LMGEN directive
LGO2 Invalid or missing parameter

in an LMGEN directive

LGO3 Check-sum error in object module

LGO4 READ error in object module

LGO5 WRITE error in load module

LGO6 Cataloging error

LGO7 Loader code error in object
module

LGO8 Sequence error in object module

LGO9 Structure error in object module

LG10 Literal pool overflow

17-8

Action

lgnore directive

Ignore directive

Abort loading
Abort loading
Abort loading
Abort loading

Abort loading

Abort loading
Abort loading

Abort loading

98 A 9952 100

Message
LG11

LG12

LG13

LG14

LG15

LG16

LG17

17.7

98 A 9952 100

Condition

invalid redefinition of common-
block size during load-module
generation

Load-module size exceeds avail-
able memory

LMGEN internal tables exceed
available memory

Number of overlay segments input
not equal to that specified in
TIDB

Undefined externals

No program execution address

Attempt to load protected task
on background library or un-
protected task on foreground
library

DEBUGGING PROGRAM

Message Condition

DGO1

DGO2

Invalid DEBUG directive

Invalid or undefined parameter

in DEBUG directive

17-9

SECTION 17
ERROR MESSAGES

Action

Abort loading

Abort loading

Abort loading

Abort loading

Load module gen-
erated but cannot
be loaded (i.e.,
can reside on the
SW logical unit

only)

Abort loading

Abort loading

SECTION 17
ERROR MESSAGES

17.8 SOURCE EDITOR
Message Condition Action
SEO1 Invalid SEDIT directive Abort SEDIT
SEO02 Invalid or missing parameter Input recovery
in SEDIT directive message
SEO3 Error reported by 10C call Input recovery
message
SEO4 Invalid end of file Input recovery
message
17.9 FILE MAINTENANCE
Message Condition Directory Status
FMoO1 Invalid FMAIN directive Unaffected
FMO02 Name already in directory Unaffected
FMO3 Name not in directory " Unaffected
FMO4 Insufficient space for entry Unaffected
FMO5 170 error Indeterminate
FMO6 Directory structure error, Indeterminate
including writing over the
directory by direct addressing
of an RMD partition
FMO7 Check-sum error in object module #
FMO08 No entry name in object module *

17-10 98 A 9952 100

Message

FMO09
FM10

FM11

FM12
FM13

FM14

Condition

Record-size error in object
module

Loader code error in object
module

Sequence error in object module

Nonbinary record in object
module

Number of input logical unit
not specified by INPUT

insufficient space im memory

SECTION 17
ERROR MESSAGES

Directory Status

=

%

%

* Messages FMO7 through FM14 apply only to the processing of object modules. The
occurrence of any of these errors requires that the processing of the object module be
restarted after the error condition is removed.

17.10

1Uo1

1U02

o3

1Uo4

1U05

98 A 9952 100

170 UTILITY

Message Condition

invalid IOUTIL directive

Invalid or missing parameter in IOUTIL directive

PFILE directive not used to open an RMD file

170 error

End of file or end of tape before the specified
number of records skipped, or end of tape before

specified number of files skipped

17-11

SECTION 17
ERROR MESSAGES

17.11 SUPPORT LIBRARY

There are no error messages unique to this section of the manual.

17.12 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the manual.

17.13 SYSTEM GENERATION
RECORD-INPUT ERRORS: Errors in input record found before processing.

Message Condition Action

SGO00 Read error (1/0) Correct input record, or
indicate that the record
is positioned for rereading

SGO1 Syntax error in SYSGEN directive Correct input record, or
indicate that the record
is positioned for rereading

SG02 Invalid or missing parameter in Correct input record, or
SYSGEN directive indicate that the record
is positioned for rereading

SGO3 Syntax error in control record Correct input record, or
indicate that the record
is positioned for rereading

SG04 Invalid or missing parameter Correct input record, or
in control record indicate that the record
is positioned for rereading

SGO05 Binary-object check-sum error Correct input record, or
indicate that the record
is positioned for rereading

17-12 98 A 9952 100

Message Condition

SG06 Binary-object sequence error

SG07 Binary-object record code error

SGO08 Unexpected end of file, end
of device, or beginning of
device

SGO09 Improper ordering of load-
module-package control
records

OUTPUT ERRORS:

Message Condition

SG10 RMD 1/0 error in directive
processor

SG11 RMD 1/0 error in nucleus
processor

SG12 RMD 1/0 error during library
generation

SG13 RMD 1/0 error during resident-
task generation

SG14 First track on RMD bad (unable
to write PST/bad-track table)

SG15 Write error on listing device

98 A 9952 100 17-13

SECTION 17
ERROR MESSAGES

Action

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct order of records and
continue processing

Errors in the attempt to perform 1/0 on an RMD or listing unit.

Action

Restart directive proc-
essor

Restart nucleus processor
Reload directive proc-
essor

Reload directive proc-
essor

Restart directive
processor

Retry operation

SECTION 17
ERROR MESSAGES

SYSTEM-GENERATOR PROCESSING ERRORS: Errors preventing the correct functioning
of the system generator.

Message Condition Action

S$G20 Requested SYSGEN driver not Restart 1/0 interrogation
available

$G21 Loading error in directive Reload directive proc-
processor essor

$G22 Loading error in nucleus proc- Reload nucleus processor
essor

SG23 Loading error in library Reload library processor/
processor/resident-task resident-task configurator
configurator

$G24 Stacks exceed available'memory Reload directive proc-

essor

SG25 Incomplete system definition Restart directive
(missing directives) processor

SG26 RMD error (foo many sectors Restart directive
allocated, or nonsequential processor

partition assignments)

SG27 Error while loading SYSGEN Restart SYSGEN
loader, 1/0 control, or drivers

SG28 Error while loading SGEN compo- Reload component
nent
MEMORY ERRORS: Errors of compatibility between allocated memory and a portion of

the VORTEX system.

17-14 98 A 9952 100

SECTION 17
ERROR MESSAGES

Message Condition Action
SG30 Size of nucleus larger than that Reload directive proc-
of defined foreground area essor
SG31 Load-module literal pool overflow Abort current load module

and initiate generation of
next load module

SG32 Size of load module larger than Abort current load module
defined memory area and initiate generation of
next load module

SG33 Invalid definition of common Abort current load module
during load-module generation and initiate generation of
next load module

SG34 Number of overlays . input not Abort current ioad module
the same as specified by OVL and initiate generation of
control record next load module

SYSTEM LOADING AND LINKING ERRORS: Errors that prevent normal loading or
linking of system components.

Message Condition Action
SG40 Loader code error in library Abort current load module
processor and initiate generation of

next load module

SG41 Loaded program contains no Abort current load moduie
entry name and initiate generation of
next load module

S$G42 Unsatisfied external in library Abort current load module

processor and initiate generation of
next load module

98 A 9952 100 17-15

SECTION 17
ERROR MESSAGES

Message Condition Action

SG43 No execution address found in Continue processing of
root segment or overlay current load module

SG44 Loader code error in nucleus Restart directive processor
processor

SG45 Unsatisfied external in nucleus Restart directive processor
processor

SG46 System peripheral assigned to Restart directive processor
to more than one logical-unit
class

17.14 SYSTEM MAINTENANCE

Message _ Condition

SMO1 Invalid SMAIN directive

SMO02 Record not recognized

SMO03 Check-sum error in object module

SMo04 Incorrect size of object-module record (correct: 120

words for RMD input, otherwise 60 words)

SM05 Loader code error in object module

SMO06 Sequence error in object module

SMO07 Object module contains nonobject-module text record
SMo8 Error or end of device received after reading operation
SMO09 Error or end of device received after writing operation
SM10 Stack area full

SM11 Invalid control record

17-16 98 A 9952 100

17.15

OPERATOR COMMUNICATION

SECTION 17
ERROR MESSAGES

There are no error messages unique to this section of the manual.

17.16

Message
RZO1

RZ02

RZ03

RZ04

RZ05

RZ06

98 A 9952 100

RMD ANALYSIS AND INITIALIZATION

Condition

Invalid RAZI directive or illegal
separator or terminator

Invalid parameter in a RAZI direc-

tive

Insufficient or conflicting
directive information

New PST incompatible with the
system

Named device cannot be replaced
(system RMD or device busy)

Irrecoverable 170 error on desig-
nated RMD

17-17

Action

Input corrected directive
on SO, or input C to con-
tinue processing

Input corrected directive
on SO, or input C to con-
tinue processing

Input corrected directive
on SO, or input C to con-
tinue processing

Restart RAZ| by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

SECTION 17
ERROR MESSAGES

Message Condition Action
Rz07 First track of disc pack bad Restart RAZI by inputting
(pack unusable) the next directive on SO,
or input C to continue
processing
RZ08 Directive incompatible with Restart RAZI by inputting
specified RMD the next directive on SO,
or input C to continue
processing
R209 Irrecoverable 1/0 error on system Restart RAZI by inputting
RMD (VORTEX nucleus) the next directive on SO,
or input C to continue
processing
RZ10 1/0 error on LO device Restart RAZI by inputting

the next directive on SO,
or input C to continue
processing

RZ11 170 error on Si device Restart RAZ| by inputting
the next directive on SO,
or input C to continue
processing

17-18 98 A 9952 100

APPENDIX A
OBJECT MODULE FORMAT

APPENDIX A i
OBJECT MODULE FORMAT

Object modules generated by the VORTEX language processors result from assembly or
compilation. The modules are input by the load-module generator and are bound together
into a load module.

The first record of the module contains the size of the program, an eight-character
identification, and an eight-character date. Entry name addresses, if any, appear as the
first data field items of the object module.

A.l RECORD STRUCTURE

Object-module records have a fixed length of sixty 16-bit words. Word 1 is the record
control word. Word 2 contains the exclusive-OR check-sum of word 1 and words 3 to 60.
Words 3 to 11 can contain a program identification block (optional). Words 12 to 60 (or 3
to 60 if there is no program identification block) contain data fields.

Table A-1 illustrates record control word formats.

Table A-1. Record Control Word Format

Bit Binary Value Meaning

15 0 Verify check-sum
1 Suppress check-sum

13-14 11 Binary record
00-10 Nonbinary record

12 0 First record of module
1 Not the first record

11 0 Last record of module
1 Not the last record

10 0

9 0

8 0 Not a relocatable module (absolute)
1 Relocatable module

0-7 Sequence number (modulo 256)

98 A 9952 100 A-1

APPENDIX A

OBJECT MODULE FORMAT

A.2 PROGRAM IDENTIFICATION BLOCK

The program identification (ID) block appears in words 3 to 11 of the starting record of
each module. Word 3 contains the program size, words 4 to 7 contain an ASCII eight-
character program identification, from the TITLE statement, and words 8 to 11 contain
an ASCI| eight-character date.

A3 DATA FIELD FORMATS

Data fields contain one-, two-, three-, or four-word entries. One-word entries consist of a

control word; two-word entries consist of a control

word and a data word; three-word

entries consist of a control word and two data words; and four-word entries consist of a
control word, two name words, and a data word. Data words can contain instructions,

constants, chain addresses,

entry addresses, and address offset values.

A.4 LOADER CODES

Loader codes, which have the following format, are among the data in an object module.

15 14 13 12 11 10
Code Subcode

Code Values

00

01

02

03

9 876 5 4 3 210
Pointer Name
Meaning

Refer to subcode for specific action.
Undefined.

Add the value of the selected pointer to the
data word before loading.

Add the value of the selected pointer to the
first data word (literal value) and enter the
sum in the direct literal pool if bit 11 of
the second data word is zero. Otherwise,
enter it in the indirect literal pool. Add

the address of the literal to the second data
word before loading.

A-2

. 98 A 9952 100

Code Values
04

05-07

Subcode Values

00

01

02

03

04-06

07

010

011

98 A 9952 100

APPENDIX A
OBJECT MODULE FORMAT

Meaning

Load the data word(s) absolute. Bits 12 through
0 indicate the numbef of words minus one (n-1) to
load.

Undefined.

Meaning

Ignore this entry (one word only).

Set the loading address counter to the sum of the
specified pointer plus the data word.

Chain the current loading address counter value
to the chain whose last address is given by the
sum of the selected pointer plus the data word.
Stop chaining when an absolute zero address is
encountered.

Complete the postprogram references by adding to
each address the sum of the selected pointer plus
the data word.

Undefined.

Set the program execution address to the sum of the
values of the selected pointer plus the data word.

Define the entry name with entry location as equal
to the value of the selected pointer plus the data
word.

Denfine a region for the pointer whose size is given

in the data word. If the entry name is not blank,
define the entry point as the base of the region.

A3

‘APPENDIX A
OBJECT MODULE FORMAT

Subcode Values Meaning

012 Enter a load request for the external name. The
chain address is given by the sum of the selected
pointer plus the data word.

013 Enter the loading address of the external name in
the indirect literal pool. Add the address of the
literal plus the value of the selected pointer to
the data word (command) before loading.

014-017 Undefined.

Pointer Values Meaning
00 Program region.

01 Postprogram region.

02 Blank common region.
03-036 Labelled COMMON regions.
037 Absolute (no relocation).

Name Format

‘Names are one to six (six-bit) characters, starting in bit 3 of the control word and ending
with bit O of the seconcd name word. Only the right 16 bits of the two name words are
used.

A.5 EXAMPLE

The following is a sample background program with the description of the object module
format after the assembly and the core image after loading.

A-4 98 A 9952 100

A.5.1

SUBR

DONG

TIME

A.5.2
060400

157631

000016

142730
140715
150314
142640

131263
126661
130255
133271

98 A 9952 100

Source Module

NAME
EXT
ENTR
LDA*
CALL
STA
JAN
LDA
CALL
INR
JMP*
BSS
END

Object Module

SUBR
BBEN

SUBR
BBEN
TIME
DONG
=2

BBEN
SUBR
SUBR

APPENDIX A
OBJECT MODULE FORMAT

Record control word (first and last record, verify check-sum

sequence number 0)

Check-sum word.

(Begin program ID block)

Program size (exclusive of FORTRAN COMMON, literals, and in-

direct address pointers).

Identification in ASCIll (assume this program was labeled

EXAMPLE).

Date of creation in ASCIl (assume assembled 03-10-69)

A-5

APPENDIX A
OBJECT MODULE FORMAT

(End program ID block)

010000 Define entry name SUBR at relative O (code 0, subcode 010,
000647 pointer 0, name SUBR, and data word 0).

054262

000000

100000 Enter absolute data word O in memory at relative O.
000000

060000 Enter literal (indirectly addressed relative 0) in indirect
100000 pointer pool, add address of pointer to load 017000 and en-
017000 ter memory at relative 1.

100000 Enter absolute data word 02000 in memory at relative 2.
002000

100000 Enter absolute data word 000000 in memory at relative 3.
000000

100000 Enter absolute data word 054010 in memory at relative 4.
054010

100000 Enter absolute data word 01004 in memory at relative 5.
001004

040000 Enter relative data word 012 in memory at relative 6.
000012

060760 Enter literal (absolute 2) into literal pool, add address of
000002 literal to load command 010000, and enter in memory at relative
010000 7.

100000 Enter absolute data word 02000 in memory at relative 010.
002000

040000 Enter relative data word 03 in memory at relative 011.
000003

A-6 98 A 9952 100

060000
000000
047000

100000
001000

040000
100000

001000

012003
000212
024556

98 A 9952 100

APPENDIX A
OBJECT MODULE FORMAT

Enter literal (relative 0) into indirect pointer pool, add
address of literal to increment command 047000, and enter in
memory at relative 012.

Enter absolute data word 01000 in memory at relative 013.

Enter relative data word 0100000 in memory at relative 014.

Set loading location for next command, if any, to relative

0le6.

Enter load request for external name BBEN and chain entry ad-
dress to relative 011.
000011

(The remaining words of this record contain zero).

A-7

APPENDIX A

OBJECT MODULE FORMAT

A.53

Core Image

Assume the program originates at 01000, the literal pool limits are 0500-0777, and BBEN
is loaded at 01016.

0500
0501

01000
01001
01002
01003
01004
01005
01006
01007
01010
01011
01012
01013
01014
01015
01016

100500
000500

000002

000000
017500
002000
001016
054010
001004
001012
010777
002000
001016
047501
001000
101000

DATA
DATA

DATA

ENTR
LDA*
JMPM

STA
JAN

LDA
JMPM

INR*
JMP

BSS
BSsS

0500
0500

0500

01016
01015

01012
0777

01016
0501

0500

98 A 9952 100

APPENDIX A
OBJECT MODULE FORMAT

The following six-bit codes are used by the load-module generator in building load
modules. The codes define names created by NAME, TITLE, and EXT directives.

Character Octal Character Octal Character Octal
@ 40 v 66 + 13
A 41 W 67 14
B 42 X 70 - 15
C 43 Y 71 . 16
D 44 Y4 72 / 17
E 45 [73 0 20
F 46 \ 74 1 21
G 47] 75 2 22
H 50 1 76 3 23
| 51 - 77 4 24
J 52 (blank) 00 5 25
K 53 ! 01 6 26
L 54 " 02 7 27
M 55 # 03 8 30
N 56 $ 04 9 31
(0] 57 % 05 : 32
P 60 & 06 ; 33
Q 61 ' 07 < 34
R 62 (10 = 35
S 63) 11 > 36
T 64 ¥ 12 ? 37
U 65

98 A 9952 100 A9

APPENDIX B

1/0 DEVICE RELATIONSHIPS

APPENDIX B

1/0 DEVICE RELATIONSHIPS

Allowable Functions by 1/0 Device Type

Function
Read binary record
Read alphanumeric record
Read BCD record
Read unformatted record
Write binary record

Write alphanumeric
record

Write BCD record

Write unformatted record
Write end of file |
Rewind unit

Skip one record forward
Skip one record backward

Perform function zero

98 A 9952 100

RMD MT
X X
x' X
1
X X
x' X
X X
x' X
1
X X
1
X X
X
X X
X X
X X

B-1

170 Device
PT CR CP LP

X X
X X

x> X

X X

X X x*
X X X
X x> x*
X X x*
X X

x> x X

TY or CRT

APPENDIX B
170 DEVICE RELATIONSHIPS

Allowable Functions by 1/0 Device Type (continued)

170 Device
Function RMD MT PT CR CP LP TY or CRT

Perform function one X’ X’
Perform function two X’ X’
Open a file with rewind X X

option
Open a file with leave X X

option
Close a file with leave X X

option
Close a file with update X X

option

NOTES

(1) Al modes are read/written in binary mode.

(2) BCD mode is handled like unformatted mode.

(3) Punch 256 frames of leader on paper tape or eject one blank
card on card punch.

(4) All modes are written in alphanumeric mode.

(5) Advances paper to top of form on line printer, or causes
carriage return and feeds three lines on Teletype or CRT.

(6) Advances paper one line.

(7) Advances paper two lines.

(8) Rings bell on Teletype or beeps on CRT.

B-2 98 A 9952 100

~ APPENDIX B
170 DEVICE RELATIONSHIPS

I/0 Errors by 1/0 Device Type

1/0 Device
Code Description RMD MT PT CR CP LP TY or CRT
000 Unit not ready X X X X X X X
001 Device down 0 0 o) 0 0 0] X
002 Illegal LUN speci- 0] 0] 0) 0] 0] 0] 0]
fied
003 FCB/DCB parameter o} 0] 0) o) o) 0] (0]
error
" 004 Level O program 0] 0] 6] 0 0 0] o)
references a pro- ~
tected partition
005 Level O program 0] 0 0 (0] 0] 0] (0]
references pro-
tected memory
006 |/0 request error 0] 0] 0 0 (0] 0 0]
007 Read request to 0 0] 0]

write-only device,
or vise versa

010 File name not found X
011 File extent error X
012 RMD directory error X

98 A 9952 100 B-3

APPENDIX B
170 DEVICE RELATIONSHIPS

1/0 Errors by 1/0 Device Type (continued)

1/0 Device

Code Description RMD MT PT CR CP LP TY or CRT
013 Level O program o) 0] (0] 0

read a JCP (/)

directive on SI
014 Interrupt time out X
015 RMD cylinder-search X

or malfunction error
016 RMD read/write X

timing error
017 RMD address error X
02n BICn error X X X X X
030 Parity error X X
031 Reading error by X X

card reader or
paper tape device

032 0dd-length record X
error

X = Error reported by I/0 drivers.

O = Error reported by 170 control processor.

B-4 98 A 9952 100

APPENDIX C
DATA FORMATS

APPENDIX C
DATA FORMATS

This appendix explains the formats and symbols used by VORTEX for storing information
on paper tape, cards, and magnetic tape.

C.1 PAPER TAPE

Information stored on paper tape is binary, alphanumeric, or unformatted. It is separated
into records (blocks of words) by three blank frames. The last frame of each record
contains an end-of-record mark (1-3-4-8 punch).

C.1.1 Binary Mode

Binary information is stored with three frames per computer word (figure C-1). Note that
channels 6 and 7 are always punched.

C.1.2 Alphanumeric Mode

Alphanumeric information is stored with one frame per character (figure C-2). Standard
ASCII-8 punch levels are used.

C.1.3 Unformatted Mode

The tape is handled as for alphanumeric mode, but without validity-checking.

C.14 Special Characters
An end of file is represented by the ASCII-8 BELL character (1-2-3-8 punch).

When paper tape is punched on a Teletype, the ASCII-8 ERROR character flags erroneous
frames punched by the Teletype when it is turned on or off. This notifies the Teletype and
paper-tape reader drivers to ignore the next frame.

98 A 9952 100 C-1

APPENDIX C
DATA FORMATS

CHANNEL:
8 QAXXAXXQXX QXX*BBBQXX
7 * % * % x * % *x % ***BBBB***
6 * %k * % % % *x * % ***BBBB***
5 QXXQAXXQX X QXXBBBBQXX
4 X XXX XXXXX XXX*BBBXXX
TIMING e e e 8 o e & o & e * e & e e e e s+ e =
3 XXXXXXXXX XXX*BBBXXX
2 XXXXXXXXX XXXBBBBX XX
1 \ XXXXXXXXX XXX*BBBXXX
WORD 1— L_worp 2 WORD N - _I L L worp 1
EOR RECORD
;‘ BINARY RECORD g GAP
* = HOLE
B = BLANK
X = DATA BIT
EOR = END - OF - RECORD
Q= BLANK
VTII-1374
Figure C-1. Paper Tape Binary Record Format
CHANNEL:
8 X X X X X X X +«BBB XX
7 X X X X X X XBBBB XX
6 X XXX X X XBBBB XX
5 X XX X X XXBBBB XX
4 XXX XX X X +BBB XX
]’[MING e o o o e e o ¢ o & o o s o o
3 XX X X X XX *»BBB XX
2 XXX XX X XBBBB XX
1 * k % % * * * *x BB B *» *
N ——— Nt gt \rstngmm— g’
L Asc 11 CHARACTERS — l_ L— ASC I CHARACTERS OR
EOR RECORD BINARY WORD
N ALPHANUMERIC RECORD mmsamed! GAP

* = HOLE FOR ASC II CHARACTER OR DATA BIT FOR
BINARY INFORMATION
B = BLANK
X = DATA BIT
EOR = END-OF-RECORD
VTII-1375

Figure C-2. Paper Tape Alphanumeric Record Format

C2 98 A 9952 100

APPENDIX C
DATA FORMATS

When alphanumeric input tapes are punched off-line on a Teletype, there is no means of
spacing the three blank frames after every record. The following procedure gives a tape
that can be read by the paper-tape reader driver:

a. Punch the alphanumeric statement.

b. Punch an end of record (RETURN on the Teletype keyboard).

¢. Punch three or more frames containing any of the following characters:

Press CONTROL and: ASCII-8 Equivalent
@ DCO
LINE FEED LINE FEED
WRU WRU"
EOT ' EOT
RU RU
vT VTAB
TAB HTAB
HERE IS (33 ASR only) NULL
NOTE

Any of these characters can also be used for leader and trailer.

d. Punch the next alphanumeric statement. Return to step b.

C.2 CARDS

Information stored on cards is binary, alphaumeric, or unformatted. Each card holds one
record of information. Hence, there is no end-of-record character for cards.

C.21 Binary Mode

Binary information is stored with sixty 16-bit words per card. The information is serial
with bit 15 of the first word in row 12 of column 1, bit 14 in row 11, etc. (figure C-3).

98 A 9952 100 C-3

APPENDIX C
DATA FORMATS

C.2.2 Alphanumeric Mode

Alphanumeric information is stored one character per card column (figure C-4) using the
standard punch patterns.

Cc.23 Unformatted Mode

The data are handled, one column per computer word, right-justiﬁed, and without
validity-checking.

C24 Special Character

An end of file is represented on cards by a 2-7-8-9 punch in column 1 of an otherwise
blank card.

C3 MAGNETIC TAPE

Information stored on seven-track magnetic tape is either binary or BCD. On nine-track
tape, information is always binary.

C.3.1 Seven-Track

For system-binary, ASCIl, and unformatted modes, the first frame is read into bits 15-12
of the word, the second frame into bits 11-6, and the third into bits 5-0. For BCD mode,
the first frame is read into bits 11-6 and the second into bits 5-0.

C.3.2 Nine-Track

In all modes, the first frame is read into bits 15-8 of the word, and the second frame into
bits 7-0.

cC4 98 A 9952 100

APPENDIX C
DATA FORMATS

000 000602000000000
BRISH TR TN 2NN HBITIS
IIRERRRARRRRRRARE
pl222222222222222
313333333333353333
Wa144d404aa40414a4a

5]5865555555555555

9 919 95999"95Q“999939
it 2w BE T N %21 829
i STANDARD. + 5wid 5081

WORD:

VTI1-1376

gnonnnnuonnununacuouuouuoouuuunnuuﬁuuonanuuauenauunuoono"n E

r? ,3.‘ $6 75 S INITNMHLIEIBIBNN2NNA5527T8INNIINE 5’7‘!3!004!424 444545 . 385950 515253 54 S5 56 57 58 5360 61 62 (3 64 65 66 67 BB €S J0 11 1 L 4 *
11%11111111111111111;11111111111111111 11\.1111111111111111111111111111111111111
2222§22222222222222222%522222222222222222222222222222222%22222222222222222222222
333333533323333333333323533333333333353333%3333333333335233%3535333333333§3%353%3
B444442445448484448450442044544454444°2444804445484444844444445544443344404442048544
5555555555§55555555555550555%505555555555555555555555559553552#555555555358°5555%
655666666666566666666666665666566065666566666566365666665655666635665565666666666
1177770200000 34771110107170 0170002110717 07009 0071090141 700090171791011141111711111117111
8388888262888388:888888883888888888588388888888:386888¢688368888885888588¢: i3 48

$9¢ Q9§9995999 5999 39%9999979999999399395992299999990347499.959999
:J 9 o

4267621287920 51 1354 5536 3/ 82940 41 4243444546 4 £0 01 62 63 €4 6566 67 =5 L N CSTN 90

V1I1-0957

Figure C-4. Card Alphanumeric Record Format (IBM 026)

98 A 9952 100 C-5

APPENDIX D

STANDARD CHARACTER CODES

IBM 026 Punch
Symbol

\/-o

blank)

AT AR ENWAROON®O

mTOIT

98 A 9952 100

ASClI

336
276
272

247

275
337
271
270
267
266
265
264
263
262
261
240
246
274
333
251
256
277
311
310
307
306

7-8
6-8
5-8
4-8
3-8
2-8

= NWaPLOOO N

Hollerith

(blank)

12-7-8
12-6-8
12-5-8
12-4-8
12-3-8
12-2-8
12-9
12-8
12-7
12-6

D-1

APPENDIX D

STANDARD CHARACTER CODES

IBM 029 Punch
ASCII

242
275
247
300
243
272
271
270
267
266
265
264
263
262
261

240

336
253
250
274
256
333
311
310
307
306

Symbol

#® T

HNWPLPOOO N W'

blank)

-~

A~ g

nTOIT——

APPENDIX D
STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch
Symbol ASCII Hollerith ASClI Symbol
E 305 125 305 E
D 304 124 304 D
c 303 123 303 c
B 302 12-2 302 B
A 301 12-1 301 A
+ 253 12 246 &
% 245 11-7-8 334 \
: 273 1168 273 ;
] 335 11-5-8 251)
252 11-4-8 252 *
$ 244 11-3-8 244 $
(. 241 11-2-8 241 '
R 322 119 322 R
Q 321 11-8 321 Q
P 320 11-7 320 P
0 317 116 317 o)
N 316 115 316 N

M 315 114 315 M
L 314 11-3 314 L
K 313 112 313 K
J 312 11-1 312 J
- 255 11 255 -
243 0-7-8 277 ?
\ 334 0-6-8 276 >
" 242 0-5-8 337 -
) 250 0-4-8 245 %
, 254 0-3-8 254 ,
@ 300 0-2-8 335]
y4 332 0-9 332 Y4
Y 331 0-8 331 Y

D-2 98 A 9952 100

1BM 026 Punch

Symbol

o~wnw-Hc<sX

98 A 9952 100

ASCIl

330
327
326
325
324
323
257
260

APPENDIX D
STANDARD CHARACTER CODES

IBM 029 Punch

Hollerith ASCII Symbol
0-7 330 X

0-6 327 W

0-5 326 '

0-4 325 U

0-3 324 T

0-2 323 S

0-1 257 /

0 260 0

D-3

APPENDIX E

TELETYPE AND CRT CHARACTER CODES

-APPENDIX E
TELETYPE AND CRT CHARACTER CODES
Character 620 Internal ASCIl Character 620 Internal ASCII
0 260 R 322
1 261 S 323
2 262 T 324
3 263 U 325
4 264 v 326
5 265 W 327
6 266 X 330
7 267 Y 331
8 270 zZ 332
9 271 (blank) 240
A 301 1 241
B 302 " 242
C 303 #* 243
D 304 $ 244
E 305. % 245
F 306 & 246
G 307 ! 247
H 310 (250
l 311) 251
J 312 ® 252
K 313 + 253
L 314 , 254
M 315 - 255
N 316 . 256
(0] 317 / 257
P 320 : 272
Q 321 : 273

98 A 9952 100 E-1

APPENDIX E
TELETYPE AND CRT CHARACTER CODES

Character 620 Internal ASCH Character 620 Internal ASCII
< 274 FORM 214
= 275 RETURN 215
> 276 SO 216
? 277 Si 217
@ 300 DCO 220
333 X-ON 221

334 TAPE AUX
335 ON 222
1 336 X-OFF 223
- 337 TAPE OFF
RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
EOM 203 SO 230
EOT 204 S1 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237
V TAB

E-2 98 A 9952 100

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

- APPENDIX F
VORTEX HARDWARE CONFIGURATIONS
Device Interrupt
Device Address Interrupt Address BIC Comments
620-05 045 MP halt error 020 n/a Wired as system
Memory MP /0 error 022 n/a priority 1
Protection MP write error 024 n/a
MP jump error 026 n/a
MP overflow 030 n/a
error
MP 1/0 and 032 n/a
overflow error
MP write and 034 n/a
overflow error
MP jump and 036 n/a
overflow error
620-12 Power failure 040 n/a Wired as system
Power Power restart 042 n/a priority 2
Failure/
_ Restart
620-13 047 RTC variable 044 n/a Wired as system
Real-Time interval priority 4
Clock RTC overflow 046 n/a
Base timer inter-
val rate is 100
microseconds; ,
free-running clock
rate is 100 micro-
seconds
98 A 9952 100 F-1

APPENDIX F

VORTEX HARDWARE CONFIGURATIONS

Device
Device Address
620-16
Priority
Interrupt
Module
(PIM)

040-043

Special 044
PIM
Instruction

620 020-026
Buffer 070-073
Interlace

Controller

(BIC)

620-47, 014
-48,-49

Drum

Memory

620-37, 016-017
-36 Disc

Memory

Interrupt

Interrupt Address BIC

0100-0277 n/a

n/a n/a

BIC complete 0100-0277 n/a

BIC complete 0100-0277 Yes

0100-0277 Yes
0100-0277

BIC complete
Cylinder-
search complete

F-2

Comments

Wired as system
priority 5; assign-
ments should be
from fastest to
slowest

Addresses 064-
067 available for
special use

PIMs modified to
enable/disable
with EXC 044

All wired as sys-
tem priority 3

Addresses 070-
073 available
for BIC5 and
BIC6; others
created for spe-
cial use

RMD assigned to
highest system
BIC (no other
devices can be
so assigned)

RMD assigned to
highest system
BIC (no other
devices can be
so assigned)

98 A 9952 100

Device

- 620-35
Disc
Memory

620-30,
-31A, -31B,
or -31C
Magnetic
Tape Unit

620-25
Card
Reader

620-77
Line
Printer

620-27
Card
Punch

620-55,
-55A

Paper Tape
System

620-6,

7, -8
Teletype

98 A 9952 100

Device
Address

015

010-013

030

035-036

031

037,034

001-007

Interrupt

BIC complete
Cylinder-

search complete

BIC complete
Tape motion
complete

BIC complete

BIC complete

BIC complete

Character
ready

Read buffer
ready

Write buffer
ready

F-3

APPENDIX F

VORTEX HARDWARE CONFIGURATIONS

Interrupt
Address

0100-0277
0100-0277

0100-0277
0100-0277

0100-0277

0100-0277

0100-0277

0100-0277

0100-0277

0100-0277

BIC

Yes

Yes

Yes

Yes

Yes

No

No

Comments

RMD assigned to
highest system
BIC (no other
devices can be
so assigned)

APPENDIX

VORTEX HARDWARE CONFIGURATIONS

Device

620-
(E-2250)
CRT with
E-2184
Controller

Front
Panel

620/1-10
Optional
Instruction
Set

620/1-15
Automatic
Bootstrap
Loader
(PT only)

F

Device
Address Interrupt
Read buffer
ready
Write buffer
ready

Interrupt
Address

0100-0277

0100-0277

00-01

n/a

n/a

NOTES

BIC

No

No

n/a

n/a

Comments

Compatible with
Teletype

Wired as system
priority 6; not
used by VORTEX

(1) The priority look-ahead option is required if there are more
than eight priority devices in the system.

(2) PIM assignments are arranged from the fastest devices to the

slowest.

(3) No two output devices are assigned to the same BIC.

F4

98 A 9952 100

EVALUATION QUESTIONNAIRE

TITLE
MANUAL NUMBER

The purpose of this questionnaire is to provide suggestions about how the manual can be improved when it is revised.
It is the goal of the Technical Publications Department to make each manual as useful as possible and at the same
time eliminate material that is of no practical value to the user or Customer Service Representative in acquiring
initial knowledge of, and in maintaining, the equipment in the field. You, as the person working most closely with
the manual and the equipment, can best provide the input needed by the writer to make the best possible manual for
your use.

1. Please complete the following chart.
CHAPTER/SECTIONS | MOST USEFUL NEEDS MORE NEEDS LESS
7 P, BNNE, 0,
e/o,'? ro,,,, /. >3 Usy, \ G > e’q/ 7
G/‘r C‘for O;,o GQIO Sof
S/)ce Oesc e‘gc/./,o \ Gscr%
’7'0)'/0 }/0 f’O,,
d
2. Please list any errors, omissions, or difficult areas noticed in the manual.
3. Please list any improvements you recommend for this manual.
4. In an overall evaluation of this manual, how do you rate it in the following?
(] Above Average (] Average [Below Average

5. Personal Information

a. Company

b. Years with Varian

c. EDP experience (years)
Years college
Years technical training

d. NAME

S6AS424-000A

FIRST CLASS

PERMIT NO, 323

NEWPORT BEACH,
CALIFORNIA

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

varian data machines /a varian subsidiary
2722 michelson drive / irvine / california / 92664

ATTN: TECHNICAL PUBLICATIONS

Staple

